
http://www.allitebooks.org


ffirs.indd   iiffirs.indd   ii 10/31/08   6:32:53 PM10/31/08   6:32:53 PM

www.allitebooks.com

http://www.allitebooks.org


Beginning

T-SQL with Microsoft® SQL Server® 2005 and 2008

Introduction ................................................................................................ xix

Chapter 1: Introducing T-SQL and Data Management Systems ..........................1

Chapter 2: SQL Server Fundamentals ............................................................23

Chapter 3: SQL Server Tools .........................................................................49

Chapter 4: Introducing the T-SQL Language .................................................101

Chapter 5: Data Retrieval ...........................................................................129

Chapter 6: SQL Functions ...........................................................................165

Chapter 7: Aggregation and Grouping ..........................................................219

Chapter 8: Multi-Table Queries ....................................................................245

Chapter 9: Advanced Queries and Scripting .................................................273

Chapter 10: Transactions ............................................................................297

Chapter 11: Advanced Capabilities ..............................................................329

Chapter 12: T-SQL Programming Objects .....................................................355

Chapter 13: Creating and Managing Database Objects ................................409

Chapter 14: Analyzing and Optimizing Query Performance ............................443

Chapter 15: T-SQL in Applications and Reporting .........................................477

Appendix A: Command Syntax Reference ................................................... 527

Appendix B: System Variables and Functions Reference      .............................. 549

Appendix C:   System Stored Procedure Reference     ....................................... 573

Appendix D:   Information Schema Views Reference       ...................................... 595

Appendix E:   FileStream Objects and Syntax       ................................................ 609

Appendix F: Answers to Exercises    .............................................................. 613

Index ........................................................................................................ 625

ffirs.indd   iffirs.indd   i 10/31/08   6:32:52 PM10/31/08   6:32:52 PM

www.allitebooks.com

http://www.allitebooks.org


ffirs.indd   iiffirs.indd   ii 10/31/08   6:32:53 PM10/31/08   6:32:53 PM

www.allitebooks.com

http://www.allitebooks.org


Beginning
T-SQL with Microsoft® SQL Server® 

2005 and 2008

Paul Turley and Dan Wood

Wiley Publishing, Inc.

ffirs.indd   iiiffirs.indd   iii 10/31/08   6:32:53 PM10/31/08   6:32:53 PM

www.allitebooks.com

http://www.allitebooks.org


Beginning T-SQL with Microsoft® SQL Server® 2005 and 2008
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-25703-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or 
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted 
under  Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written 
 permission of the  Publisher, or authorization through payment of the appropriate per-copy fee to the 
 Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. 
Requests to the Publisher for  permission should be addressed to the Permissions Department, John Wiley & 
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at  
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or 
warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim 
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may 
be created or extended by sales or promotional materials. The advice and strategies contained herein may 
not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged 
in rendering legal, accounting, or other professional services. If professional assistance is required, the services 
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for 
damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation 
and/or a potential source of further information does not mean that the author or the publisher endorses the 
information the organization or Website may provide or recommendations it may make. Further, readers 
should be aware that Internet Websites listed in this work may have changed or disappeared between when 
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department 
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related 
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the 
United States and other countries, and may not be used without written permission. Microsoft and SQL 
Server are registered trademarks of Microsoft Corporation in the United States and/or other countries. All 
other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with 
any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be 
available in electronic books.

ffirs.indd   ivffirs.indd   iv 10/31/08   6:32:53 PM10/31/08   6:32:53 PM

www.allitebooks.com

http://www.wiley.com
http://www.allitebooks.org


My wife, Sherri, is the reason I do anything meaningful in my life.  
The rest of it I pretty much come up with on my own.  
Thank you for your love, support and the occasional 

knock upside the head.
—Paul Turley

For my wonderful wife, Sarah: Without your constant 
love and support, I could accomplish nothing. 

You are truly my best friend.
—Dan Wood

ffirs.indd   vffirs.indd   v 10/31/08   6:32:53 PM10/31/08   6:32:53 PM

www.allitebooks.com

V413HAV
Typewritten Text
V413HAV

http://www.allitebooks.org


          About the Authors          
    Paul Turley  (Vancouver, WA) is a Manager of Specialized Services for Hitachi Consulting Education 
Services. Paul manages the Business Intelligence training team and teaches classes for companies 
throughout the world on Microsoft SQL Server technologies. He works with companies to architect and 
build BI and reporting solutions. He has been developing business database solutions since 1991 for 
companies like Microsoft, Disney, Nike, and Hewlett - Packard. He has been a Microsoft Certified Trainer 
since 1996 and holds several industry certifications, including MCTS and MCITP for BI, MCSD, MCDBA, 
MSF Practitioner, and IT Project+. 

 Paul has authored and co - authored several books and courses on database, business intelligence, and 
application development technologies. He is the lead courseware developer for the Hitachi Consulting 
courses: SQL Server 2008 Business Intelligence Solutions and SQL Server 2008 Reporting Services 
Solutions. Books include the prior edition of this book, the 2008, 2005 and 2000 editions of  Professional 
SQL Server Reporting Services ,  Beginning SQL Server 2005 Administration ,  Beginning Access 2002 VBA ,  Data 
Warehousing with SQL Server 2000 Analysis Services , and  Professional Access 2000 Programming  — all from 
Wrox. He is also a contributing author for  SQL Server 2005 Integration Services Step by Step  from 
Microsoft Press. 

  Dan Wood  (Silverdale, WA) is the senior database administrator for Avalara, a sales tax compliance 
company, where he both administers and develops database solutions for several enterprise applications 
that handle global address validation, tax rate calculation, and sales tax remittance for e - commerce and 
ERP clients. He has been working with SQL Server as a DBA, consultant, and trainer since 1999. Dan was 
a contributing author on  Beginning Transact - SQL with SQL Server 2000 and 2005  and the lead author of 
 Beginning SQL Server Administration , both from Wrox.           

ffirs.indd   viffirs.indd   vi 10/31/08   6:32:54 PM10/31/08   6:32:54 PM

www.allitebooks.com

http://www.allitebooks.org


  Executive Editor  
 Robert Elliott 

  Development Editor  
 John Sleeva 

  Technical Editor  
 David Norton 

  Production Editor  
 Daniel Scribner 

  Copy Editor  
 Nancy Rapoport 

  Editorial Manager  
 Mary Beth Wakefield 

  Production Manager  
 Tim Tate 

  Vice President and Executive Group Publisher  
 Richard Swadley 

  Vice President and Executive Publisher  
 Joseph B. Wikert 

  Project Coordinator, Cover  
 Lynsey Stanford 

  Proofreader  
 Publication Services , Inc.

  Indexer  
 Robert Swanson   

Credits

ffirs.indd   viiffirs.indd   vii 10/31/08   6:32:54 PM10/31/08   6:32:54 PM

www.allitebooks.com

http://www.allitebooks.org


                                            Acknowledgments          

 This book wouldn ’ t exist without the hard work and dedication of my coauthor, Dan Wood. Dan ’ s a 
good friend, a true professional, a great father and husband  -  and I hear he ’ s an okay football coach. 
Thanks to Bob Elliot and John Sleeva at Wrox who have been incredibly patient and professional with 
two completely over - committed authors for the past year. DJ Norton did a great job with the technical 
review. Thanks, DJ, for breaking my code and making more work for me. Thanks to Lance Baldwin and 
Drew Naukam on Hitachi Consulting ’ s Microsoft Strategic Alliance team for giving me the space to 
complete this and the Reporting Services book this year. To all of the amazing people I work with at 
Hitachi Consulting, thanks for making this such a terrific organization for our clients and a great place to 
call home. 

  — Paul Turley 

 I ’ d like to thank Paul Turley, who is not only a great friend, but an amazing person, and I appreciate the 
opportunity to work with him again. Many thanks to our Wrox development editor, John Sleeva, who 
did an outstanding editing job  —  not to mention the job he did working with us, which was probably 
very much like herding cats. Special thanks go to the awesome development team at Avalara for a 
rewarding and stimulating work environment and for giving me inspiration for many of the examples in 
this book. Most important, I would like to thank my wonderful wife, Sarah, for all her patience and 
support as I disappeared for hours at a time and spent many a late night trying to finish the latest 
chapter. I would also like to thank my kids, Lukas, Tessa, and Caleb, who think it ’ s cool that Dad is 
writing a book but would much prefer that I spend time with them. 

  — Dan Wood     

ffirs.indd   viiiffirs.indd   viii 10/31/08   6:32:54 PM10/31/08   6:32:54 PM

www.allitebooks.com

http://www.allitebooks.org


Contents

Introduction xix

Chapter 1: Introducing T-SQL and Data Management Systems 1

T-SQL Language 1
Programming Language or Query Language? 2
What’s New in SQL Server 2008 3
Database Management Systems 4

SQL Server as a Relational Database Management System 5
Tables 5
Relationships 14
RDBMS and Data Integrity 17

SQL Server and Other Products 20
Microsoft SQL Server 20
Oracle 20
IBM DB2 21
Informix 21
Sybase SQLAnywhere 21
Microsoft Access (Jet) 21
MySQL 22

Summary 22

Chapter 2: SQL Server Fundamentals 23

Who Uses SQL Server? 23
SQL Server Editions and Features 25

SQL Server Compact Edition 25
SQL Server Express Edition 25
SQL Server Workgroup Edition 26
SQL Server Standard Edition 26
SQL Server Enterprise Edition 26
Relational Database Engine 27

Semantics 27
Changing Terminology 28
Relationships 30

ftoc.indd   ixftoc.indd   ix 10/31/08   6:35:23 PM10/31/08   6:35:23 PM



Contents

x

Primary Keys 31
Foreign Keys 32

Normalization Rules 33
First Normal Form 34
Second Normal Form 35
Third Normal Form 35
Boyce-Codd Normal Form, Fourth and Fifth Normal Form 35
Other Normal Forms 36
Transforming Information into Data 36

Applying Normalization Rules 37
Thinking Ahead 39
Multiple Associations 42
Multi-Valued Columns 43
To Normalize or To De-normalize? 44
Question Authority 44

The Mechanics of Query Processing 45
The AdventureWorks Databases 47
Summary 48

Chapter 3: SQL Server Tools 49

Common SQL Server Tasks 49
SQL Server Management Studio 51

Tool Windows 56
Toolbars 64
SQL Server Management Studio Configuration 71

SQL Server Business Intelligence Development Studio 75
SQL Server Profiler 76
Database Tuning Advisor 76
SQL Server Configuration Manager 76
Command-Line Tools 76

SQLCMD 76
Writing Queries 79

Scripting Options 81
Using the Graphical Query Designer 83
Using Templates 88
Using the Debug Feature 91

Summary 97
Exercises 97

Exercise 1 98
Exercise 2 98
Exercise 3 98
Exercise 4 99

ftoc.indd   xftoc.indd   x 10/31/08   6:35:23 PM10/31/08   6:35:23 PM



Contents

xi

Chapter 4: Introducing the T-SQL Language 101

The Nature of SQL 102
Where to Begin? 103
Data Manipulation Language 103

Queries Have Layers 104
Set-Based Operations 104
Row-Based Operations 105
Query Syntax Basics 105
Naming Conventions 108
Object Delimiting 111
Commenting Script 112
Using Templates 114
Generating Script 115
Managing Script 115
Version Control 115

Data Definition Language 116
Creating a Table 117
Creating a View 117
Creating a Stored Procedure 118
Creating a Trigger 118
Creating a User-Defined Function 119
Scripting Practices 120

Data Control Language 124
Summary 126
Exercises 127

Exercise 1 127
Exercise 2 127

Chapter 5: Data Retrieval 129

Storage and Retrieval 129
The SELECT Statement 130

Choosing Columns 131
Column Aliasing 137
Calculated and Derived Columns 139
Filtering Rows 141
The WHERE Clause 141
Using Parentheses 156
Sorting Results 158
Top Values 160

Summary 162
Exercises 163

ftoc.indd   xiftoc.indd   xi 10/31/08   6:35:24 PM10/31/08   6:35:24 PM



Contents

xii

Exercise 1 163
Exercise 2 163
Exercise 3 163
Exercise 4 163

Chapter 6: SQL Functions 165

The Anatomy of a Function 166
I’d Like to Have an Argument 166
Deterministic Functions 167
Using User Variables with Functions 168
Using Functions in Queries 169
Nested Functions 169

Aggregate Functions 170
The AVG() Function 171
The COUNT() Function 172
The MIN() and MAX() Functions 172
The SUM() Function 173

Configuration Variables 173
The @@ERROR Variable 173
The @@SERVICENAME Variable 175
The @@TOTAL_ERRORS Variable 175
The @@TOTAL_READ Variable 175
The @@VERSION Variable 175
Error Functions 176

Conversion Functions 178
The CAST() Function 178
The CONVERT() Function 181
The STR() Function 184
 1.0000 184

Cursor Functions and Variables 184
The CURSOR_STATUS() Function 185
The @@CURSOR_ROWS Global Variable 185
The @@FETCH_STATUS Global Variable 185

Date Functions 185
The DATEADD() Function 186
The DATEDIFF() Function 187
The DATEPART() and DATENAME() Functions 190
The GETDATE() and GETUTCDATE() Functions 190
The SYSDATETIME() and SYSUTCDATETIME() Functions 191
The DAY(), MONTH(), and YEAR() Functions 191

String Manipulation Functions 191
The ASCII(), CHAR(), UNICODE(), and NCHAR() Functions 191

ftoc.indd   xiiftoc.indd   xii 10/31/08   6:35:24 PM10/31/08   6:35:24 PM



Contents

xiii

The CHARINDEX() and PATINDEX() Functions 195
The LEN() Function 195
The LEFT() and RIGHT() Functions 196
The SUBSTRING() Function 197
The LOWER() and UPPER() Functions 198
The LTRIM() and RTRIM() Functions 201
The REPLACE() Function 201
The REPLICATE() and SPACE() Functions 202
The REVERSE() Function 202
The STUFF() Function 202
The QUOTENAME() Function 203

Mathematical Functions 203
Metadata Functions 204
Ranking Functions 207

The ROW_NUMBER() Function 207
The RANK() and DENSE_RANK() Functions 208
The NTILE(n) Function 210

Security Functions 210
System Functions and Variables 211

The COALESCE() Function 214
The DATALENGTH() Function 214

Global System Statistical Variables 216
Summary 216
Exercises 217

Exercise 1 217
Exercise 2 217
Exercise 3 217
Exercise 4 217
Exercise 5 217

Chapter 7: Aggregation and Grouping 219

To Group or Not to Group 219
Using Aggregate Functions 220

The COUNT() Function 221
The SUM() Function 222
The AVG() Function 222

Understanding Statistical Functions 223
The STDEV() Function 224
The STDEVP() Function 224
The VAR() Function 224
The VARP() Function 226
User-Defined Aggregate Functions 226

ftoc.indd   xiiiftoc.indd   xiii 10/31/08   6:35:24 PM10/31/08   6:35:24 PM



Contents

xiv

Grouping Data 226
The GROUP BY Clause 226
The HAVING Clause 231
Total and Subtotal Group Modifiers 235
Subgrouping 236
The ROLLUP Clause 237
The CUBE Clause 238
The GROUPING() Function 238
The COMPUTE and COMPUTE BY Clauses 241

Summary 243
Exercises 244

Exercise 1 244
Exercise 2 244
Exercise 3 244

Chapter 8: Multi-Table Queries 245

Understanding Subqueries and Joins 248
Joining Tables in the WHERE Clause 248
Joining Tables in the FROM Clause 249
Types of Joins 250
Inner Joins 250
Outer Joins 251
Multicolumn Joins 256
Non-Equijoins 257
Special-Purpose Join Operations 258
Union Queries 266

Summary 271
Exercises 272

Exercise 1 272
Exercise 2 272
Exercise 3 272

Chapter 9: Advanced Queries and Scripting 273

Subqueries 274
Scalar Expressions 274
Alternate Join Operations 277
Correlated Subqueries 283
Business Cases for Subqueries 286

Common Table Expressions 289
Cursors 291

Rowset Versus Cursor Operations 292

ftoc.indd   xivftoc.indd   xiv 10/31/08   6:35:25 PM10/31/08   6:35:25 PM



Contents

xv

Creating and Navigating a Cursor 292
Summary 295
Exercises 295

Exercise 1 295
Exercise 2 296
Exercise 3 296

Chapter 10: Transactions 297

Introducing Transactions 298
Transaction Types 298
The ACID Test 299
The Transaction Log 299
Logged Operations 300

Let’s Do CRUD with Data 300
Adding Records 301
Modifying Records 310
Removing Records 316
Automating Inserts, Updates, and Deletes with the MERGE Command 322

Explicit Transactions 325
Summary 327
Exercises 328

Exercise 1 328
Exercise 2 328
Exercise 3 328

Chapter 11: Advanced Capabilities 329

Pivoting Data 329
The PIVOT Operator 331
The UNPIVOT Operator 334

Full-Text Queries and Approximation Matching 336
Microsoft Search Service 337

Soundex Matching 337
The DIFFERENCE() Function 339

Managing and Populating Catalogs 340
Full-Text Query Expressions 347

Summary 353
Exercises 354

Exercise 1 354
Exercise 2 354
Exercise 3 354

ftoc.indd   xvftoc.indd   xv 10/31/08   6:35:25 PM10/31/08   6:35:25 PM



Contents

xvi

Chapter 12: T-SQL Programming Objects 355

Views 356
Virtual Tables 356
Creating a View 357
Securing Data 369
Hiding Complexity 369
Modifying Data Through Views 371

Stored Procedures 372
Stored Procedures as Parameterized Views 372
Using Parameters 373
Returning Values 374
Record Maintenance 376
Handling and Raising Errors 381
Error Messages 381
Processing Business Logic 391
Looping 397

User-Defined Functions 399
Scalar Functions 399
Inline Table-Valued Functions 402
Multi-Statement Table-Valued Functions 403

Transaction Management 405
Locking Options 405

Summary 407
Exercises 408

Exercise 1 408
Exercise 2 408
Exercise 3 408

Chapter 13: Creating and Managing Database Objects 409

Data Definition Language 409
Creating Objects 410
Altering Objects 410
Dropping Objects 410
Naming Objects 410
Creating DDL Scripts 413
CREATE TABLE 414
Unique Identifiers 421
Constraints 422
CREATE VIEW 429
Indexed Views 432

ftoc.indd   xviftoc.indd   xvi 10/31/08   6:35:25 PM10/31/08   6:35:25 PM



Contents

xvii

CREATE PROCEDURE 434
CREATE FUNCTION 438

IF EXISTS 438
Securing Database Objects 439

Managing Security Objects 440
Data Control Language 440

Summary 441
Exercises 442

Exercise 1 442
Exercise 2 442

Chapter 14: Analyzing and Optimizing Query Performance 443

Data Retrieval 443
Analyzing Queries 445

Session Options 447
Graphical Execution Plans 460

Writing Efficient T-SQL (Best Practices) 471
Writing Efficient Filters 472

Summary 476
Exercises 476

Exercise 1 476

Chapter 15: T-SQL in Applications and Reporting 477

Application Programming Models 477
Selecting a Model 478

Desktop Database Applications 481
Client/Server Database Solutions 481
n-tier Component Solutions 485
Web Server Applications 490
Multi-Tier Web Service Solutions 491
Multi-System Integrated Solutions 492

SQL Server 2008 Reporting Services 494
Reporting Services Architecture 494
SQL Server 2008 Report Design 495
Deploying the Report 518
Viewing the Report with Report Manager 519
Report Data Caching 519
Business Intelligence and Business Reporting 520
Report Application Integration 522

Summary 524

ftoc.indd   xviiftoc.indd   xvii 10/31/08   6:35:25 PM10/31/08   6:35:25 PM



Contents

xviii

Appendix A: Command Syntax Reference 527

Appendix B: System Variables and Functions Reference      549

Appendix C:   System Stored Procedure Reference     573

Appendix D:   Information Schema Views Reference       595

Appendix E:   FileStream Objects and Syntax       609

Appendix F: Answers to Exercises    613

Index 625

ftoc.indd   xviiiftoc.indd   xviii 10/31/08   6:35:26 PM10/31/08   6:35:26 PM

www.allitebooks.com

http://www.allitebooks.org


          Introduction          

 Welcome to the world of Transact - Structured Query Language programming with SQL Server 2005 and 
2008. Transact - SQL, or T - SQL, is Microsoft Corporation ’ s powerful implementation of the ANSI standard 
SQL database query language, which was designed to retrieve, manipulate, and add data to relational 
database management systems (RDBMS). 

 You may already have a basic idea of what SQL is used for, but you may not have a good understanding 
of the concepts behind relational databases and the purpose of SQL. This book will help you build a 
solid foundation of understanding, beginning with core relational database concepts and continuing to 
reinforce those concepts with real - world T - SQL query applications. 

 If you are familiar with relational database concepts but are new to Microsoft SQL Server or the T - SQL 
language, this book will teach you the basics from the ground up. If you ’ re familiar with earlier versions 
of SQL Server, it will get you up   to   speed on the newest features. And if you know SQL Server 2005, 
you ’ ll learn about some exciting new capabilities in SQL Server 2008. 

 A popular online encyclopedia lists about 800 distinct programming languages in use today. These 
languages are used to develop different types of applications for different types of computer systems 
and specialized devices. Needless to say, we have a lot of software in our information - rich society. 
Programming languages rapidly evolve and come and go, but one of few constants in the industry is 
that most business applications read, store, and manipulate data  —  data stored in relational databases. 
If you use Microsoft SQL Server in any capacity, the need to learn and use T - SQL is inescapable. 
Amazing things are possible with just a few keystrokes of powerful SQL script. 

 Indeed, SQL is one of the few standard languages in the industry that doesn ’ t come and go and has 
remained constant over the decades. The capabilities of T - SQL expand as features are added to each 
version of the SQL Server product. The concepts and exercises in this book will help you to understand 
and use the core language and its latest features.  

  Who This Book Is For 
 Information Technology professionals in many different roles use T - SQL. Our goal is to provide a guide 
and a reference for IT pros across the spectrum of operational database solution design, database 
application development, and reporting and business intelligence solutions. 

 Database solution designers will find this book to be a thorough introduction and comprehensive 
reference for all aspects of database modeling, design, object management, query design, and advanced 
query concepts. 

 Application developers who write code to manage and consume SQL Server data will benefit from our 
thorough coverage of basic data management and simple and advanced query design. Several examples 
of ready - to - use code are provided to get you started and to continue to support applications with 
embedded T - SQL queries. 

flast.indd   xixflast.indd   xix 10/31/08   6:33:25 PM10/31/08   6:33:25 PM



Introduction

xx

 Report designers will find this book to be a go - to reference for report query design. You will build on a 
thorough introduction to basic query concepts and learn to write efficient queries to support business 
reports and advanced analytics. 

 Finally, database administrators who are new to SQL Server will find this book to be an all - inclusive 
introduction and reference of mainstream topics. This can assist you as you support the efforts of other 
team members. Beyond the basics of database object management and security concepts, we recommend 
 Beginning SQL Server 2005 Administration  and  Beginning SQL Server 2008 Administration  from Wrox, 
co - authored in part by the same authors.  

  What This Book Covers 
 This book introduces the T - SQL language and its many uses, and serves as a comprehensive guide at a 
beginner through intermediate level. Our goal in writing this book was to cover all the basics thoroughly 
and to cover the most common applications of T - SQL at a deeper level. Depending on your role and skill 
level, this book will serve as a companion to the other Wrox books in the Microsoft SQL Server  Beginning  
and  Professional  series. Check the back cover of this book for a road map of other complementary books 
in the Wrox series. 

 This book will help you to learn: 

  How T - SQL provides you with the means to create tools for managing databases of different 
size, scope, and purpose  

  Various programming techniques that use views, user - defined functions, and stored procedures  

  Ways to optimize query performance  

  How to create databases that will be an essential foundation to applications you develop later     

  How This Book Is Structured 
 Each section of this book organizes topics into logical groups so the book can be read cover - to - cover or 
used as a reference guide for specific topics. 

 We start with an introduction to the T - SQL language and data management systems, and then continue 
with the SQL Server product fundamentals. This first section teaches the essentials of the SQL Server 
product architecture and relational database design principles. This section (Chapters 1 – 3) concludes 
with an introduction to the SQL Server administrator and developer tools. 

 The next section, encompassing Chapters 4 through 9, introduces the T - SQL language and teaches the 
core components of data retrieval, SQL functions, aggregation and grouping, and multi - table queries. We 
start with the basics and build on the core structure of the SQL  SELECT  statement, progressing to 
advanced forms of  SELECT  queries. 

❑

❑

❑

❑

flast.indd   xxflast.indd   xx 10/31/08   6:33:25 PM10/31/08   6:33:25 PM



Introduction

xxi

 Chapter 10 introduces transactions and data manipulation. You will learn how the  INSERT ,  UPDATE , and 
 DELETE  statements interact with the relational database engine and transaction log to lock and modify 
data rows with guaranteed consistency. You will not only learn to use correct SQL syntax but will 
understand how this process works in simple terms. 

 More advanced topics in the concluding section will teach you to create and manage T - SQL 
programming objects, including views, functions, and stored procedures. You learn to optimize query 
performance and use T - SQL in application design, applying the query design basics to real - world 
business solutions. Chapter 15 contains a complete tutorial on using SQL Server 2008 Reporting Services 
to visualize data from the T - SQL queries you create. 

 The book concludes with a comprehensive set of reference appendixes for command syntax, system 
stored procedures, information schema views, file system commands, and system management 
commands.  

  What You Need to Use This Book 
 The material in this book applies to all editions of Microsoft SQL Server 2005 and 2008. To use all the 
features discussed, we recommend that you install the Developer Edition, although you can also use 
the Enterprise, Standard, or Workgroup editions. 

 SQL Server 2005 Developer Edition or SQL Server 2008 Developer Edition can be installed on a desktop 
computer running Windows 2000, Windows XP, or Windows Vista. You can also use Windows 2000 
Server, Windows Server 2003, or Windows Server 2008 with the Enterprise or Standard edition. The 
SQL Server client tools must be installed on your desktop computer and the SQL Server relational 
database server must be installed on either your desktop computer or on a remote server with network 
connectivity and permission to access. 

 Consult  www.microsoft.com/sql  for information about the latest service packs, specific 
compatibilities, and minimum recommend system requirements. 

 The examples throughout this book use the following sample databases, which are available to 
download from Microsoft: the sample database for SQL Server 2005 is called  AdventureWorks , and the 
sample database for SQL Server 2008 is called  AdventureWorks2008 . Because the structure of these 
databases differs significantly, separate code samples are provided throughout the book for these two 
version - specific databases. 

 An example using the AdventureWorks2008DW database for SQL Server 2008 is also used in Chapter 15. 

 To download and install these sample databases, browse  www.codeplex.com .  

  Conventions 
 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used a number of 
conventions throughout the book.  

flast.indd   xxiflast.indd   xxi 10/31/08   6:33:26 PM10/31/08   6:33:26 PM



Introduction

xxii

  Try It Out 

 The  Try It Out  is an exercise you should work through, following the text in the book.   

  1.   They usually consist of a set of steps.  

  2.   Each step has a number.  

  3.   Follow the steps through with your copy of the database.          

     Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this. 

 As for styles in the text:     

  We  highlight  new terms and important words when we introduce them.  

  We show keyboard strokes like this: Ctrl+A.  

  We show filenames, URLs, and code within the text like so:  persistence.properties .  

  We present code in two different ways: 

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that’s particularly important in 

the present context.      

  Source Code 
 As you work through the examples in this book, you may choose either to type in all the code manually 
or to use the source code files that accompany the book. All the source code used in this book is available 
for download at  www.wrox.com . Once at the site, simply locate the book ’ s title (either by using the 
Search box or by using one of the title lists) and click the Download Code link on the book ’ s detail page 
to obtain all the source code for the book.     

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is 
978 - 0 - 470 - 25703 - 6.   

❑

❑

❑

❑

 Boxes like this one hold important, not - to - be forgotten information that is directly 
relevant to the surrounding text.   

flast.indd   xxiiflast.indd   xxii 10/31/08   6:33:26 PM10/31/08   6:33:26 PM



Introduction

xxiii

 Once you download the code, just decompress it with your favorite compression tool. Alternatively, you 
can go to the main Wrox code download page at  www.wrox.com/dynamic/books/download.aspx  
to see the code available for this book and all other Wrox books.  

  Errata 
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is 
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty 
piece of code, we would be very grateful for your feedback. By sending in errata you may save another 
reader from hours of frustration and at the same time you will be helping us provide even higher quality 
information. 

 To find the errata page for this book, go to  www.wrox.com  and locate the title using the Search box or 
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can 
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list 
including links to each book ’ s errata is also available at  www.wrox.com/misc - pages/booklist.shtml . 

 If you don ’ t spot  “ your ”  error on the Book Errata page, go to  www.wrox.com/contact/techsupport
.shtml  and complete the form there to send us the error you have found. We ’ ll check the information 
and, if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions 
of the book.  

  p2p.wrox.com 
 For author and peer discussion, join the P2P forums at  p2p.wrox.com . The forums are a Web - based 
system for you to post messages relating to Wrox books and related technologies and interact with other 
readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of 
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts, 
and your fellow readers are present on these forums. 

 At  http://p2p.wrox.com  you will find a number of different forums that will help you not only as 
you read this book, but also as you develop your own applications. To join the forums, just follow 
these steps: 

  1.   Go to  p2p.wrox.com  and click the Register link.  

  2.   Read the terms of use and click Agree.  

  3.   Complete the required information to join as well as any optional information you wish to 
provide, and click Submit.  

  4.   You will receive an e - mail with information describing how to verify your account and complete 
the joining process.        

 You can read messages in the forums without joining P2P but in order to post your own messages, you 
must join.   

flast.indd   xxiiiflast.indd   xxiii 10/31/08   6:33:26 PM10/31/08   6:33:26 PM



Introduction

xxiv

 Once you join, you can post new messages and respond to messages other users post. You can read 
messages at any time on the Web. If you would like to have new messages from a particular forum 
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing. 

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to 
questions about how the forum software works as well as many common questions specific to P2P and 
Wrox books. To read the FAQs, click the FAQ link on any P2P page.           

flast.indd   xxivflast.indd   xxiv 10/31/08   6:33:26 PM10/31/08   6:33:26 PM



                                                                1    
Introducing T - SQL and Data 

Management Systems          

 This first chapter introduces you to some of the fundamentals of the design and architecture of 
relational databases and presents a brief description of SQL as a language. If you are new to SQL 
and database technologies, this chapter will provide a foundation to help ensure the rest of the 
book is as useful as possible. If you are already comfortable with the concepts of relational 
databases and Microsoft ’ s implementation, you might want to skip ahead to Chapter  2 ,  
“ SQL Server Fundamentals, ”  or Chapter  3 ,  “ SQL Server Tools. ”  Both of these chapters introduce 
the features and tools in SQL Server 2005 and 2008 and discuss how they are used to write T - SQL.  

  T -  SQL  Language 
 I have mentioned to my colleagues and anyone else who might have been listening that one 
day I was going to write a version of Parker Brother ’ s Trivial Pursuit entitled  “ Trivial Pursuit: 
Geek Edition. ”  This section gives you some background on the T - SQL language and provides the 
information you need to get the orange history wedge on the topic of  “ Database History ”  in Trivial 
Pursuit: Geek Edition. 

 T - SQL is Microsoft ’ s implementation of a standard established by the American National 
Standards Institute (ANSI) for the Structured Query Language (SQL). SQL was first developed by 
researchers at IBM. They called their first pre - release version of SQL  “ SEQUEL, ”  which is a 
pseudo - acronym for  S tructured  E nglish  QUE ry  L anguage. The first release version was renamed 
to SQL, dropping the English part but retaining the pronunciation to identify it with its 
predecessor. As of the release of SQL Server 2008, several implementations of SQL by different 
stakeholders are in the database marketplace. As you sojourn through the sometimes mystifying 
lands of database technology you will undoubtedly encounter these different varieties of SQL. 
What makes them all similar is the ANSI standard to which IBM, more than any other vendor, 
adheres to with tenacious rigidity. However, what makes the many implementations of SQL 
different are the customized programming objects and extensions to the language that make it 
unique to that particular platform. 

c01.indd   1c01.indd   1 10/31/08   6:16:43 PM10/31/08   6:16:43 PM



2

Chapter 1: Introducing T-SQL and Data Management Systems

 Microsoft SQL Server 2008 implements the 2003 ANSI standard. The term  “ implements ”  is of 
significance. T - SQL is not fully compliant with ANSI standards in any of its implementations; neither is 
Oracle ’ s P/L SQL, Sybase ’ s SQLAnywhere, or the open - source MySQL. Each implementation has 
custom extensions and variations that deviate from the established standard. ANSI has three levels of 
compliance: Entry, Intermediate, and Full. T - SQL is certified at the entry level of ANSI compliance. If you 
strictly adhere to the features that are ANSI - compliant, the same code you write for Microsoft SQL 
Server should work on any ANSI - compliant platform; that ’ s the theory, anyway. If you find that you are 
writing cross - platform queries, you will most certainly need to take extra care to ensure that the syntax is 
perfectly suited for all the platforms it affects. The simple reality of this issue is that very few people will 
need to write queries to work on multiple database platforms. The standards serve as a guideline to help 
keep query languages focused on working with data, rather than other forms of programming. This may 
slow the evolution of relational databases just enough to keep us sane. 

  Programming Language or Query Language? 
 T - SQL was not really developed to be a full - fledged programming language. Over the years, the ANSI 
standard has been expanded to incorporate more and more procedural language elements, but it still 
lacks the power and flexibility of a true programming language. Antoine, a talented programmer and 
friend of mine, refers to SQL as  “ Visual Basic on Quaaludes. ”  I share this bit of information not because 
I agree with it, but because I think it is funny. I also think it is indicative of many application developers ’  
view of this versatile language. 

 T - SQL was designed with the exclusive purpose of data retrieval and data manipulation. 
Although T - SQL, like its ANSI sibling, can be used for many programming - like operations, its 
effectiveness at these tasks varies from excellent to abysmal. That being said, I am still more than 
happy to call T - SQL a programming language if only to avoid someone calling me a SQL  “ queryers. ”  
However, the undeniable fact still remains: as a programming language, T - SQL falls short. The good 
news is that as a data retrieval and set manipulation language it is exceptional. When T - SQL 
programmers try to use T - SQL like a programming language, they invariably run afoul of the best 
practices that ensure the efficient processing and execution of the code. Because T - SQL is at its best when 
manipulating sets of data, try to keep that fact foremost in your thoughts during the process of 
developing T - SQL code. 

 With the release of SQL Server 2005, Microsoft muddied the waters a bit with the ability to write calls to 
the database in a programming language like C# or VB.NET, rather than in pure SQL. SQL Server 2008 
also supports this very flexible capability, but use caution! Although this is a very exciting innovation in 
data access, the truth of the matter is that almost all calls to the database engine must still be 
manipulated so that they appear to be T - SQL based. 

 Performing multiple recursive row operations or complex mathematical computations is quite possible 
with T - SQL, but so is writing a .NET application with Notepad. When I was growing up my father used 
to make a point of telling me that  “ Just because you can do something doesn ’ t mean you should. ”  The 
point here is that oftentimes SQL programmers will resort to creating custom objects in their code that 
are inefficient as far as memory and CPU consumption are concerned. They do this because it is the 
easiest and quickest way to finish the code. I agree that there are times when a quick solution is the best, 
but future performance must always be taken into account. 

 One of the systems I am currently working on is a perfect example of this problem. The database started 
out very small, with a small development team and a small number of customers using the database. It 
worked great. However, the database didn ’ t stay small, and as more and more customers started using 

c01.indd   2c01.indd   2 10/31/08   6:16:44 PM10/31/08   6:16:44 PM



3

Chapter 1: Introducing T-SQL and Data Management Systems

the system, the number of transactions and code executions increased exponentially. It wasn ’ t long 
before inefficient code began to consume all the available CPU resources. This is the trap of writing 
expedient code instead of efficient code. Another of my father ’ s favorite sayings is  “ Why is there never 
enough time to do the job right, but plenty of time to do it twice? ”  This book tries to show you the best 
way to write T - SQL so that you can avoid writing code that will bring your server to its knees, begging 
for mercy. Don ’ t give in to the temptation to write sloppy code just because it is a  “ one time deal. ”  I have 
seen far too many times when that one - off ad - hoc query became a central piece of an application ’ s 
business logic.  

  What ’ s New in  SQL  Server 2008 
 When SQL Server 2005 was released, it had been five years since the previous release and the changes to 
the product since the release of SQL Server 2000 were myriad and significant. Several books and 
hundreds of websites were published that were devoted to the topic of  “ What ’ s New in SQL Server 2005. ”  
With the release of SQL Server 2008, however, there is much less buzz and not such a dramatic change 
to the platform. However, the changes in the 2008 release are still very exciting and introduce many 
changes that T - SQL and application developers have been clamoring for. Since these changes are 
sprinkled throughout the capabilities of SQL Server, I won ’ t spend a great deal of time describing all the 
changes here. Instead, throughout the book I will identify those changes that are applicable to the subject 
being described. In this introductory chapter I want to quickly mention two of the significant changes to 
SQL that will invariably have an impact on the SQL programmer: the incorporation of the .NET 
Framework with SQL Server and the introduction of Microsoft Language Integrated Query (LINQ). 

  Kiss T -  SQL  Goodbye? 
 I have been hearing for years that T - SQL and its ANSI counterpart, SQL, were antiquated languages and 
would soon be phased out. However, every database vendor, both small and large, has devoted millions 
of dollars to improving their version of this versatile language. Why would they do that if it were a dead 
language? The simple fact of the matter is that databases are built and optimized for the set - based 
operations that the SQL language offers. Is there a better way to access and manipulate data? Probably so, 
but with every major industry storing their data in relational databases, the reign of SQL is far from over. 

 I worked for a great guy at a Microsoft partner company who was contracted by Microsoft to develop 
and deliver a number of SQL Server and Visual Studio evangelism presentations. Having a background 
in radio sales and marketing, he came up with a cool tagline about SQL Server and the .NET Framework 
that said  “ SQL Server and .NET  —  Kiss T - SQL Goodbye. ”  He was quickly dissuaded by his team when 
presented with the facts. However, Todd wasn ’ t completely wrong. What his catchy tagline could have 
said and been accurate was  “ SQL Server and .NET  —  Kiss Inefficient, CPU - Hogging T - SQL Code 
Goodbye. ”  

 Two significant improvements in data access over the last two releases of SQL Server have offered fuel 
for the  “ SQL is dead ”  fire. As I mentioned briefly before, these are the incorporation of the .NET 
Framework and the development of LINQ. LINQ is Microsoft ’ s latest application data - access technology. 
It enables Visual Basic and C# applications to use set - oriented queries that are developed in C# or VB, 
rather than requiring that the queries be written in T - SQL. Building in the .NET Framework to the SQL 
Server engine enables developers to create SQL Server programming objects such as stored procedures, 
functions, and aggregates using any .NET language and compiling them into Common Language 
Runtime (CLR) assemblies that can be referenced directly by the database engine. 

c01.indd   3c01.indd   3 10/31/08   6:16:44 PM10/31/08   6:16:44 PM



4

Chapter 1: Introducing T-SQL and Data Management Systems

 So with the introduction of LINQ in SQL Server 2008 and CLR integration in SQL Server 2005, is T - SQL 
on its death bed? No, not really. Reports of T - SQL ’ s demise are premature and highly exaggerated. The 
ability to create database programming objects in managed code instead of SQL does not mean that 
T - SQL is in danger of becoming extinct. Likewise, the ability to create set - oriented queries in C# and VB 
does not sound the death knell for T - SQL. SQL Server ’ s native language is still T - SQL. LINQ will help 
in the rapid development of database applications, but it remains to be seen if this technology will match 
the performance of native T - SQL code run from the server. This is because LINQ data access still must be 
translated from the application layer to the database layer, but T - SQL does not. It ’ s a fantastic and 
flexible access layer for smaller database applications, but for large, enterprise - class applications, LINQ, 
like embedded SQL code in applications before it, falls short of pure T - SQL in terms of performance. 

 What was true then is true now. T - SQL will continue to be the core language for applications that need to 
add, extract, and manipulate data stored on SQL Server. Until the data engine is completely re - engineered 
(and that day will inevitably come), T - SQL will be at the heart of SQL Server.   

  Database Management Systems 
 A database management system (DBMS) is a set of programs designed to store and maintain data. The 
role of the DBMS is to manage the data so that the consistency and integrity of the data is maintained 
above all else. Quite a few types and implementations of database management systems exist: 

   Hierarchical database management systems (HDBMS)   —  Hierarchical databases have been 
around for a long time and are perhaps the oldest of all databases. They were (and in some cases 
still are) used to manage hierarchical data. They have several limitations, such as being able to 
manage only single trees of hierarchical data and the inability to efficiently prevent erroneous or 
duplicate data. HDBMS implementations are getting increasingly rare and are constrained to 
specialized, and typically non - commercial, applications.  

   Network database management system (NDBMS)   —  The NDBMS has been largely abandoned. 
In the past, large organizational database systems were implemented as network or hierarchical 
systems. The network systems did not suffer from the data inconsistencies of the hierarchical 
model, but they did suffer from a very complex and rigid structure that made changes to the 
database or its hosted applications very difficult.  

   Relational database management system (RDBMS)   —  An RDBMS is a software application 
used to store data in multiple related tables using SQL as the tool for creating, managing, and 
modifying both the data and the data structures. An RDBMS maintains data by storing it in 
tables that represent single entities, such as  “ Customer ”  and  “ Sale ”  and storing information 
about the relationship of these tables to each other in yet more tables managed by the system 
which define the relationship between the Sale table and the Customer table. The concept of a 
relational database was first described by E. F. Codd, an IBM scientist who defined the relational 
model in 1970. Relational databases are optimized for recording transactions and the resultant 
transactional data. Most commercial software applications use an RDBMS as their data store. 
Because SQL was designed specifically for use with an RDBMS, I will spend a little extra time 
covering the basic structures of an RDBMS later in this chapter.  

   Object - oriented database management system (ODBMS)   —  The ODBMS emerged a few years 
ago as a system where data was stored as objects in a database. ODBMS supports multiple classes 
of objects and inheritance of classes along with other aspects of object orientation. Currently, no 
international standard exists that specifies exactly what an ODBMS is and what it isn ’ t. 

❑

❑

❑

❑

c01.indd   4c01.indd   4 10/31/08   6:16:45 PM10/31/08   6:16:45 PM

www.allitebooks.com

http://www.allitebooks.org


5

Chapter 1: Introducing T-SQL and Data Management Systems

Because ODBMS applications store objects instead of related entities, they make the system very 
efficient when dealing with complex data objects and object - oriented programming (OOP) 
languages such as the .NET languages from Microsoft as well as C and Java. When ODBMS 
solutions were first released, they were quickly touted as the ultimate database system and 
predicted to make all other database systems obsolete. However, they never achieved the wide 
acceptance that was predicted. They do have a very valid position in the database market, but it 
is a niche market held mostly within the Computer - Aided Design (CAD) and 
telecommunications industries.  

   Object - relational database management system (ORDBMS)   —  The ORDBMS emerged from 
existing RDBMS solutions when the vendors who produced the relational systems realized that 
the ability to store objects was becoming more important. They incorporated mechanisms to be 
able to store classes and objects in the relational model. ORDBMS implementations have, for the 
most part, usurped the market that the ODBMS vendors were targeting for a variety of reasons 
that I won ’ t expound on here. However, Microsoft ’ s SQL Server, with its  xml  data type, the 
incorporation of the .NET Framework, and the new  filestream  data type introduced with SQL 
Server 2008, could arguably be labeled an ORDBMS. The  filestream  data type is discussed in 
more detail later in this chapter and in Appendix  E .      

   SQL  Server as a Relational Database 
Management System 

 This section introduces you to the concepts behind relational databases and how they are implemented 
from a Microsoft viewpoint. This will, by necessity, skirt the edges of database object creation, which is 
covered in great detail in Chapter  13 , so for the purpose of this discussion I will avoid the exact 
mechanics and focus on the final results. 

 As I mentioned earlier, a relational database stores all its data inside tables. Ideally, each table will 
represent a single entity or object. You would not want to create one table that contained data about both 
dogs and cars. That isn ’ t to say you couldn ’ t do this, but it wouldn ’ t be very efficient or easy to maintain 
if you did. 

  Tables 
 Tables are divided up into rows and columns. Each row must be able to stand on its own, without a 
dependency to other rows in the table. The row must represent a single, complete instance of the entity 
the table was created to represent. Each column in the row contains specific attributes that help define the 
instance. This may sound a bit complex, but it is actually very simple. To help illustrate, consider a 
real - world entity, such as an employee. If you want to store data about an employee, you would need to 
create a table that has the properties you need to record data about your employee. For simplicity ’ s sake, 
call your table Employee. 

 When you create your employee table, you also need to decide which attributes of the employee you 
want to store. For the purposes of this example, suppose that you have decided to store the employee ’ s 
last name, first name, Social Security number, department, extension, and hire date. The resulting table 
would look something like that shown in Figure 1  - 1 .   

❑

c01.indd   5c01.indd   5 10/31/08   6:16:45 PM10/31/08   6:16:45 PM



6

Chapter 1: Introducing T-SQL and Data Management Systems

 The data in the table would look something like that shown in Figure  1 - 2 .   

Figure 1-1

Figure 1-2

  Primary Keys 
 To manage the data in your table efficiently, you need to be able to uniquely identify each individual row 
in the table. It is much more difficult to retrieve, update, or delete a single row if there is not a single 
attribute that identifies each row individually. In many cases, this identifier is not a descriptive attribute 
of the entity. For example, the logical choice to uniquely identify your employee is the Social Security 
number attribute. However, there are a couple of reasons why you would not want to use the Social 
Security number as the primary mechanism for identifying each instance of an employee, both boiling 
down to two different areas: security and efficiency. 

 When it comes to security, what you want to avoid is the necessity of securing the employee ’ s Social 
Security number in multiple tables. Because you will most likely be using the key column in multiple 
tables to form your relationships (more on that in a moment), it makes sense to substitute a non -
 descriptive key. In this way you avoid the issue of duplicating private or sensitive data in multiple 
locations to provide the mechanism to form relationships between tables. 

 As far as efficiency is concerned, you can often substitute a non - data key that has a more efficient or 
smaller data type associated with it. For example, in your design you might have created the Social 
Security number with either a character data type or an integer. If you have fewer than 32,767 
employees, you can use a double - byte integer instead of a 4 - byte integer or 10 - byte character type; 
besides, integers process faster than characters. 

 So, instead of using the Social Security number, you will assign a non - descriptive key to each row. The 
key value used to uniquely identify individual rows in a table is called a  primary key . (You will still 
want to ensure that every Social Security number in your table is unique and not null, but you will use a 
different method to guarantee this behavior without making it a primary key.) 

 A non - descriptive key doesn ’ t represent anything else with the exception of being a value that uniquely 
identifies each row or individual instance of the entity in a table. This will simplify the joining of this 
table to other tables and provide the basis for a  “ relation. ”  In this example you will simply alter the table 
by adding an EmployeeKey column that will uniquely identify every row in the table, as shown in 
Figure  1 - 3 .   

c01.indd   6c01.indd   6 10/31/08   6:16:45 PM10/31/08   6:16:45 PM



7

Chapter 1: Introducing T-SQL and Data Management Systems

 With the EmployeeKey column, you have an efficient, easy - to - manage primary key. 

 Each table can have only one primary key, which means that this key column is the primary method for 
uniquely identifying individual rows. It doesn ’ t have to be the only mechanism for uniquely identifying 
individual rows; it is just the  “ primary ”  mechanism for doing so. Primary keys can never be null, and 
they must be unique. Primary keys can also be combinations of columns (though I ’ ll explain later why 
I am a firm believer that primary keys should typically be single - column keys). If you have a table where 
two columns in combination are unique, while either single column is not, you can combine the two 
columns as a single primary key, as illustrated in Figure  1 - 4 .   

Figure 1-3

Figure 1-4

 In this example, the LibraryBook table is used to maintain a record of every book in the library. Because 
multiple copies of each book can exist, the ISBN column is not useful for uniquely identifying each book. 
To enable the identification of each individual book, the table designer decided to combine the ISBN 
column with the copy number of each book. Personally, I avoid the practice of using multiple column 
keys. I prefer to create a separate column that can uniquely identify the row. This makes it much easier to 
write join queries (covered in detail in Chapter  8 ). The resulting code is cleaner and the queries are 
generally more efficient. For the library book example, a more efficient mechanism might be to assign 
each book its own number. The resulting table would look like that shown in Figure 1  - 5 .    

Figure 1-5

c01.indd   7c01.indd   7 10/31/08   6:16:46 PM10/31/08   6:16:46 PM



8

Chapter 1: Introducing T-SQL and Data Management Systems

  Table Columns 
 As previously described, a table is a set of rows and columns used to represent an entity. Each 
row represents an instance of the entity. Each column in the row will contain at most one value that 
represents an attribute, or property, of the entity. For example, consider the employee table; each 
row represents a single instance of the employee entity. Each employee can have one and only one first 
name, last name, SSN, extension, or hire date, according to your design specifications. In addition to 
deciding which attributes you want to maintain, you must also decide how to store those attributes. 
When you define columns for your tables, you must, at a minimum, define three things: 

  The name of the column  

  The data type of the column  

  Whether the column can support null     

  Column Names 
 Keep the names simple and intuitive (such as LastName or EmployeeID) instead of more cumbersome 
names (such as EmployeeLastName and EmployeeIdentificationNumber). For more information, 
see Chapter  8 .  

  Data Types 
 The general rule on data types is to use the smallest one you can. This conserves memory usage and disk 
space. Also keep in mind that SQL Server processes numbers much more efficiently than characters, so 
use numbers whenever practical. I have heard the argument that numbers should be used only if you 
plan on performing mathematical operations on the columns that contain them, but that just doesn ’ t 
wash. Numbers are preferred over string data for sorting and comparison as well as mathematical 
computations. The exception to this rule is if the string of numbers you want to use starts with a zero. 
Take the Social Security number, for example. Other than the unfortunate fact that some Social Security 
numbers begin with a zero, the Social Security number would be a perfect candidate for using an integer 
instead of a character string. However, if you tried to store the integer 012345678, you would end up 
with 12345678. These two values may be numeric equivalents, but the government doesn ’ t see it that 
way. They are strings of numerical characters and therefore must be stored as characters rather than as 
numbers. 

 When designing tables and choosing a data type for each column, try to be conservative and use the 
smallest, most efficient type possible. But at the same time, carefully consider the exception, however 
rare, and make sure that the chosen type will always meet these requirements. 

 The data types available for columns in SQL Server 2005 and 2008 are specified in the following table. 
Those that are unique to SQL Server 2008 are prefixed with an asterisk (*). 

❑

❑

❑

c01.indd   8c01.indd   8 10/31/08   6:16:47 PM10/31/08   6:16:47 PM



9

Chapter 1: Introducing T-SQL and Data Management Systems

     Data Type      Storage      Description   

     Integers         Note: Signed integers can be both positive and negative, 
whereas unsigned integers have no inherent signed value  

     bigint     8 bytes    An 8 - byte signed integer. Valid values are 
 − 9223372036854775808 through +9223372036854775807.  

     int     4 bytes    A 4 - byte signed integer. Valid values are  − 2,147,483,648 
through +2,147,483,647.  

     smallint     2 bytes    A double - byte signed integer. Valid values are  − 32,768 
through +32,767.  

     tinyint     1 byte    A single - byte unsigned integer. Valid values are from 
0 through 255.  

     bit     1 bit    Integer data with either a 1 or 0 value.  

     Exact Numerics           

     decimal     5 – 17 bytes    A predefined, fixed, signed decimal number ranging from 
−  100000000000000000000000000000000000001 (−  10 38 +1) to 
99999999999999999999999999999999999999 ( − 10 38  − 1). 
A  decimal  is declared with a precision and scale value that 
determines how many decimal places to the left and right 
are supported. This is expressed as  decimal[(precision,
[scale])] . The  precision  setting determines how 
many total digits to the left and right of the decimal point 
are supported. The  scale  setting determines how many 
digits to the right of the decimal point are supported. For 
example, to support the number 3.141592653589793, 
the  decimal  data type would have to be specified as 
 decimal(16,15) . If the data type were specified 
as  decimal(3,2) , only 3.14 would be stored. The scale 
defaults to zero and must be between 0 and the precision. 
The precision defaults to 18 and can be a maximum of 38.  

     numeric     5 – 17 bytes    The  numeric  data type is identical to the  decimal  data 
type, so use  decimal  instead, for consistency. The 
 numeric  data type is much less descriptive because 
most people think of integers as being numeric.  

     money     8 bytes    The  money  data type can be used to store values from  
− 922,337,203,685,477.5808 to +922,337,203,685,477.5807 of 
a monetary unit, such as a dollar, euro, pound, and so on. 
The advantage of the  money  data type over a  decimal  
data type is that developers can take advantage of 
automatic currency formatting for specific locales. Notice 
that the  money  data type supports figures to the fourth 
decimal place. Accountants like that. A few million of 
those ten thousandths of a penny add up after a while!  

(continued)

c01.indd   9c01.indd   9 10/31/08   6:16:47 PM10/31/08   6:16:47 PM



10

Chapter 1: Introducing T-SQL and Data Management Systems

     Data Type      Storage      Description   

     smallmoney     4 bytes    Bill Gates needs the  money  data type to track his 
portfolio, but most of us can get by with the 
 smallmoney  data type. It consumes 4 bytes of storage 
and can be used to store values of  − 214,748.3648 to 
+214,748.3647 of a monetary unit.  

     Approximate 
Numerics   

        

     float     4 or 8 bytes    The  float  data type is an approximate value (SQL 
Server performs rounding) that supports real numbers 
in the range of  − 1.79E + 308 to −2.23E −   308, 0 and 
2.23E  −  308 to 1.79E + 308.  float  can be used as a 
4 - byte or 8 - byte data type, depending on an optional 
mantissa value (the number of bits used to store 
the mantissa of the float).  float(24)  or any value 
between 1 and 24 will cause the float to be defined as 
a 4 - byte value that can store real numbers in the range 
of  − 3.40E + 38 to  − 1.18E  −  38, 0 and 1.18E  −  38 to 3.40E 
+ 38. Any number between 25 and 53 will cause the 
float to be defined as an 8 - bit float (aka, a double 
precision) in the default manner of  float(53).   

     real     4 bytes    The  real  data type is a synonym for a 4 - byte  float .  

     Date and Time 
Data Types   

        

     datetime     8 bytes    The  datetime  data type is used to store date and time 
from January 1, 1753 through December 31, 9999. The 
accuracy of the  datetime  data type is 3.33 
milliseconds.   

* datetime2 8 bytes The  datetime2  data type is used to store date and 
time from January 1, 0001 through December 31, 9999. 
The accuracy of the  datetime2  data type is variable 
but defaults to 100 nanoseconds.

     smalldatetime     4 bytes  The  smalldatetime  data type stores date and time 
from January 1, 1900 through June 6, 2079, with an 
accuracy of 1 minute. 

* date 3 bytes The  date  data type stores dates only from January 1, 
0001 through December 31, 9999, with an accuracy of 
1 day. 

*time 5 bytes The  time  data type stores time - only data, with a 
variable precision of up to 100 nanoseconds

c01.indd   10c01.indd   10 10/31/08   6:16:48 PM10/31/08   6:16:48 PM



11

Chapter 1: Introducing T-SQL and Data Management Systems

     Data Type      Storage      Description   

  * datetimeoffset 10 bytes   The  datetimeoffset  data type is used to store date 
and time from January 1, 0001 through December 31, 
9999. The accuracy of the  datetimeoffset  data type 
varies based on the type of server hardware SQL Server 
is installed on, but defaults to 100 nanoseconds if 
supported. When defined, the  datetimeoffset  data 
type expects a date and time string to be specified 
along with a time zone offset. Possible time zone offsets 
are between −  14.00 and +14.00 hours. For example, to 
define a variable that is time - zone aware for Pacific 
Standard Time, the following code would be used:  

DECLARE @PacificTime AS datetimeoffset(8)   

     Character Data Types           

     char     1 byte per 
character. 
Maximum 
8000 
characters.  

  The  char  data type is a fixed - length data type used to 
store character data. The number of possible characters is 
between 1 and 8000. The possible combinations of 
characters in a  char  data type are 256. The characters that 
are represented depend on what language, or collation, is 
defined. English, for example, is actually defined with a 
Latin collation. The Latin collation provides support for 
all English and western European characters.  

     varchar     1 byte per 
character. Up 
to 2GB 
characters.  

  The  varchar  data type is identical to the  char  data 
type, but with a variable length. If a column is defined 
as  char(8) , it will consume 8 bytes of storage even if 
only three characters are placed in it. A  varchar  
column consumes only the space it needs. Typically, 
 char  data types are more efficient when it comes to 
processing and  varchar  data types are more efficient 
for storage. The rule of thumb is to use  char  if the data 
will always be close to the defined length, but use 
 varchar  if it will vary widely. For example, a city name 
would be stored with  varchar(167)  if you wanted to 
allow for the longest city name in the world, which is 
Krung thep mahanakhon bovorn ratanakosin 
mahintharayutthaya mahadilok pop noparatratchathani 
burirom udomratchanivetmahasathan amornpiman 
avatarnsathit sakkathattiyavisnukarmprasit (the poetic 
name of Bangkok, Thailand). Use  char  for data that is 
always the same. For example, you could use  char(12)  
to store a domestic phone number in the United States: 
(123)456 - 7890. The 8000 - byte limitation can be exceeded 
by specifying the  (MAX)  option  (varchar(MAX)) , 
which allows for the storage of 2,147,483,647 characters 
at the cost of up to 2GB storage space.  

(continued)

c01.indd   11c01.indd   11 10/31/08   6:16:48 PM10/31/08   6:16:48 PM



12

Chapter 1: Introducing T-SQL and Data Management Systems

     Data Type      Storage      Description   

     text     1 byte per 
character. 
Maximum 
2,147,483,648 
characters 
(2GB).  

  The  text  data type is similar to the  varchar  data type 
in that it is a variable - length character data type. The 
significant difference is the maximum length of about 
2 billion characters (including spaces) and where the 
data is physically stored. With a  varchar  data type on 
a table column, the data is stored physically in the row 
with the rest of the data. With a  text  data type, the 
data is stored separately from the actual row and a 
pointer is stored in the row so that SQL Server can find 
the text. The  text  data type is functionally equivalent 
to the  varchar(MAX)  data type.  

     nchar     2 bytes per 
character. 
Maximum 
4000 
characters 
(8000 bytes).  

  The  nchar  data type is a fixed - length type identical to 
the  char  data type, with the exception of the number of 
characters supported.  char  data is represented by a 
single byte and thus only 256 different characters can be 
supported.  nchar  is a double - byte data type and can 
support 65,536 different characters. The cost of the extra 
character support is the double - byte length, so the 
maximum  nchar  length is 4000 characters or 8000 bytes.  

     nvarchar     2 bytes per 
character. Up 
to 2GB.  

  The  nvarchar  data type is a variable - length type 
identical to the  varchar  data type, with the exception 
of the amount of characters supported.  varchar  data 
is represented by a single byte and only 256 different 
characters can be supported.  nvarchar  is a double -
 byte data type and can support 65,536 different 
characters. The cost of the extra character support is 
the double - byte length, so the maximum  nvarchar  
length is 4000 characters or 8000 bytes. This limit can 
be exceeded by using the  (MAX)  option, which allows 
for the storage of 1,073,741,823 characters in 2GB.  

     ntext     2 bytes per 
character. 
Maximum 
1,073,741,823 
characters.  

  The  ntext  data type is identical to the  text  data type, 
with the exception of the number of characters 
supported.  text  data is represented by a single byte and 
only 256 different characters can be supported.  ntext  is a 
double - byte data type and can support 65,536 different 
characters. The cost of the extra character support is the 
double - byte length, so the maximum  ntext  length is 
1,073,741,823 characters or 2GB. The  ntext  data type is 
functionally equivalent to the  nvarchar(MAX)  data type.  

     Binary Data Types           

     binary     1 – 8000 bytes    Fixed - length binary data. Length is fixed when created 
between 1 and 8000 bytes. For example,  binary(5000)  
specifies the reserving of 5000 bytes of storage to 
accommodate up to 5000 bytes of binary data.  

c01.indd   12c01.indd   12 10/31/08   6:16:49 PM10/31/08   6:16:49 PM



13

Chapter 1: Introducing T-SQL and Data Management Systems

     Data Type      Storage      Description   

     varbinary     Up to 
2,147,483,647 
bytes  

  Variable - length binary data type identical to the 
 binary  data type, with the exception of consuming 
only the amount of storage that is necessary to hold 
the data. Using the  (MAX)  option allows for the 
storage of up to 2GB of binary data. However, only 1 
through 8000 or  MAX  can be specified as storage 
options.  

     image     Up to 
2,147,483,647 
bytes  

  The  image  data type is similar to the  varbinary  
data type in that it is a variable - length binary data 
type. The significant difference is the maximum length 
of about 2GB and where the data is physically stored. 
With a  varbinary  data type on a table column, the 
data is stored physically in the row with the rest of the 
data. With an  image  data type, however, the data is 
stored separately from the actual row and a pointer 
is stored in the row so that SQL Server can find the 
data. Typically,  image  data types are used to store 
actual images, binary documents, or binary objects. 
The  image  data type is functionally identical to 
 varbinary(MAX) .  

     Other Data Types           

     timestamp     8 bytes    The  timestamp  data type has nothing to do with 
time. It is more accurately described as a data 
type that maintains row version data. In light of this 
fact, a system alias of  rowversion  is available for 
this data type and is generally preferred to avoid 
confusion. What  timestamp  actually provides is 
a database unique identifier to identify a version of a 
row. Every time a row that contains a  timestamp  data 
type is modified, the value of the timestamp changes.  

     uniqueidentifier     32 bytes    A data type used to store a globally unique identifier 
(GUID).  

* hierarchyid Up to 892 
bytes

The  hierarchyid  data type is a variable length data 
type that is used to represent position in a hierarchy.

    sql_ variant     Up to 8016 
bytes  

   sql_variant  is used when the exact data type is 
unknown. It can be used to hold any data type with 
the exception of  text ,  ntext ,  image , and  timestamp .  

xml Up to 2GB The  xml  data type is used to store well - formed 
XML. The XML stored can be specified to be well -
 formed fragments or complete documents and can be 
enforced with an XML schema bound to the variable, 
parameter, or column containing the XML data.

c01.indd   13c01.indd   13 10/31/08   6:16:49 PM10/31/08   6:16:49 PM



14

Chapter 1: Introducing T-SQL and Data Management Systems

 SQL Server supports additional data types, listed in the following table, that can be used in queries and 
programming objects, but they are not used to define columns. 

     Data Type      Description   

    cursor    The  cursor  data type is used to point to an instance of a cursor.  

    table    The  table  data type is used to store an in - memory rowset for processing. It was 
developed primarily for use with the table - valued functions that were introduced 
in SQL Server 2000.  

  Nullability 
 All rows from the same table have the same set of columns. However, not all columns will necessarily 
have values in them. For example, a new employee is hired, but he has not been assigned an extension 
yet. In this case, the extension column may not have any data in it. Instead, it may contain null, which 
means the value for that column was not initialized. Note that a null value for a string column is 
different from an empty string. An empty string is defined; a null is not. You should always consider a 
null as an unknown value. When you design your tables, you need to decide whether to allow a null 
condition to exist in your columns. Nulls can be allowed or disallowed on a column - by - column basis, so 
your employee table design could look like that shown in Figure  1 - 6 .     

Figure 1-6

  Relationships 
 Relational databases are all about relations. To manage these relations, you use common keys. For 
example, your employees sell products to customers. This process involves multiple entities: 

  The employee  

  The product  

  The customer  

  The sale    

 To identify which employee sold which product to which customer, you need some way to link together 
all the entities. Typically, these links are managed through the use of keys  —  primary keys in the parent 
table and foreign keys in the child table. 

❑

❑

❑

❑

c01.indd   14c01.indd   14 10/31/08   6:16:50 PM10/31/08   6:16:50 PM

www.allitebooks.com

http://www.allitebooks.org


15

Chapter 1: Introducing T-SQL and Data Management Systems

 As a practical example, you can revisit the employee example. When your employee sells a product, his or 
her identifying information is added to the Sale table to record who the responsible employee was, as 
illustrated in Figure  1 - 7 . In this case, the Employee table is the parent table and the Sale table is the child table.   

Figure 1-7

 Because the same employee could sell products to many customers, the relationship between the 
Employee table and the Sale table is called a  one - to - many relationship . The fact that the employee is the 
unique participant in the relationship makes it the  parent table . Relationships are very often  parent - child 
relationships , which means that the record in the parent table must exist before the child record can be 
added. In the example, because every employee is not required to make a sale, the relationship is more 
accurately described as a  one - to - zero - or - more relationship . In Figure 1  - 7  this relationship is represented 
by a key and infinity symbol, which doesn ’ t adequately model the true relationship because you don ’ t 
know if the EmployeeKey field is nullable. In Figure  1 - 8 , the more traditional and informative  “ crows 
feet ”  symbol is used. The relationship symbol in this figure represents an exactly one (the double vertical 
lines) to zero (the ring) or more (the crows feet) relationship. Figure 1  - 9  shows the two tables with an 
exactly one to one or more relationship symbol. The PK abbreviation stands for primary key, while the 
FK stands for foreign key. Because a table can have multiple foreign keys, they are numbered 
sequentially starting at 1.   

Figure 1-8

Figure 1-9

c01.indd   15c01.indd   15 10/31/08   6:16:54 PM10/31/08   6:16:54 PM



16

Chapter 1: Introducing T-SQL and Data Management Systems

 Relationships can be defined as follows: 

  One - to - zero or more  

  One - to - one or more  

  One - to - exactly - one  

  Many - to - many    

 The many - to - many relationship requires three tables because a many - to - many constraint would be 
unenforceable. An example of a many - to - many relationship is illustrated in Figure  1 - 10 . The necessity for 
this relationship is created by the relationships between your entities: In a single sale many products can 
be sold, but one product can be in many sales. This creates the many - to - many relationship between the 
Sale table and the Product table. To uniquely identify every product and sale combination, you need to 
create what is called a  linking table . A linking table is simply another table that contains the combination 
of primary keys from the two tables, as illustrated in Figure  1 - 10 . The Order table manages your many -
 to - many relationship by uniquely tracking every combination of sale and product.   

❑

❑

❑

❑

Figure 1-10

 As an example of a one - to - one relationship, suppose that you want to record more detailed data about a 
sale, but you do not want to alter the current table. In this case, you could build a table called SaleDetail to 
store the data. To ensure that the sale can be linked to the detailed data, you create a relationship between 
the two tables. Because each sale should appear in both the Sale table and the SaleDetail table, you would 
create a one - to - one relationship instead of a one - to - many, as illustrated in Figures 1 - 11 and 1 - 12.    

Figure 1-11

Figure 1-12

c01.indd   16c01.indd   16 10/31/08   6:16:57 PM10/31/08   6:16:57 PM



17

Chapter 1: Introducing T-SQL and Data Management Systems

   RDBMS  and Data Integrity 
 An RDBMS is designed to maintain data integrity in a transactional environment. This is accomplished 
through several mechanisms implemented through database objects. The most prominent of these 
objects are as follows: 

  Locks  

  Constraints  

  Keys  

  Indexes    

 Before I describe these objects in more detail, it ’ s important to understand two other important pieces of 
the SQL architecture: connections and transactions. 

  Connections 
 A connection is created anytime a process attaches to SQL Server. The connection is established with 
defined security and connection properties. These security and connection properties determine which 
data you have access to and to a certain degree, how SQL Server will behave during the duration of the 
query in the context of the query. For example, a connection can specify which database to connect to on 
the server and how to manage memory - resident objects.  

  Transactions 
 Transactions are explored in detail in Chapter  10 , so for the purposes of this introduction I will keep the 
explanation brief. In a nutshell, a SQL Server transaction is a collection of dependent data modifications 
that is controlled so that it completes entirely or not at all. For example, you go to the bank and transfer 
$100.00 from your savings account to your checking account. This transaction involves two 
modifications  —  one to the checking account and the other to the savings account. Each update is 
dependent on the other. It is very important to you and the bank that the funds are transferred correctly, 
so the modifications are placed together in a transaction. If the update to the checking account fails but 
the update to the savings account succeeds, you most definitely want the entire transaction to fail. The 
bank feels the same way if the opposite occurs. 

 With a basic idea about these two objects, let ’ s proceed to the four mechanisms that ensure integrity and 
consistency in your data.  

  Locks 
 SQL Server uses locks to ensure that multiple users can access data at the same time with the 
assurance that the data will not be altered while they are reading it. At the same time, the locks are used 
to ensure that modifications to data can be accomplished without affecting other modifications or reads 
in progress. SQL Server manages locks on a connection basis, which simply means that locks cannot be 
held mutually by multiple connections. SQL Server also manages locks on a transaction basis. In the 
same way that multiple connections cannot share the same lock, neither can transactions. For example, if 
an application opens a connection to SQL Server and is granted a shared lock on a table, that same 
application cannot open an additional connection and modify that data. The same is true for 
transactions. If an application begins a transaction that modifies specific data, that data cannot be 
modified in any other transaction until the first has completed its work. This is true even if the multiple 
transactions share the same connection. 

❑

❑

❑

❑

c01.indd   17c01.indd   17 10/31/08   6:16:59 PM10/31/08   6:16:59 PM



18

Chapter 1: Introducing T-SQL and Data Management Systems

 SQL Server utilizes six lock types, or more accurately, six resource lock modes: 

  Shared  

  Update  

  Exclusive  

  Intent  

  Schema  

  Bulk Update    

 Shared, update, exclusive, and intent locks can be applied to rows of tables or indexes, pages (8 - kilobyte 
storage page of an index or table), extents (64 - kilobyte collection of eight contiguous index or table 
pages), tables, or databases. Schema and bulk update locks apply to tables.   

Shared Locks 
 Shared locks allow multiple connections and transactions to read the resources they are assigned to. No 
other connection or transaction is allowed to modify the data as long as the shared lock is granted. Once 
an application successfully reads the data, the shared locks are typically released, but this behavior can 
be modified for special circumstances. For instance, a shared lock might be held for an entire transaction 
to ensure maximum protection of data consistency by guaranteeing that the data that a transaction is 
based on will not change until the transaction is completed. This extended locking is useful for situations 
where transactional consistency must be 100% assured, but the cost of holding the locks is that 
concurrent access to data is reduced. For example, you want to withdraw $100.00 from your savings 
account. A shared lock is issued on the table that contains your savings account balance. That data is 
used to confirm that there are enough funds to support the withdrawal. It would be advantageous to 
prevent any other connection from altering the balance until after the withdrawal is complete. Shared 
locks are compatible with other shared locks so that many transactions and connections can read the 
same data without conflict.

    Update Locks 
 Update locks are used by SQL Server to help prevent an event known as a  deadlock . Deadlocks are bad. 
They are mostly caused by poor programming techniques. A deadlock occurs when two processes get 
into a standoff over shared resources. Let ’ s return to the banking example: In this hypothetical banking 
transaction both my wife and I go online to transfer funds from our savings account to our checking 
account. We somehow manage to execute the transfer operation simultaneously and two separate 
processes are launched to execute the transfer. When my process accesses the two accounts, it is issued 
shared locks on the resources. When my wife ’ s process accesses the accounts, it is also granted a shared 
lock to the resources. So far, so good, but when our processes try to modify the resources, pandemonium 
ensues. First my wife ’ s process attempts to escalate its lock to exclusive to make the modifications. At 
about the same time my process attempts the same escalation. However, our mutual shared locks 
prevent either of our processes from escalating to an exclusive lock. Because neither process is willing to 
release its shared lock, a deadlock occurs. 

 SQL Server doesn ’ t particularly care for deadlocks. If one occurs, SQL Server will automatically select 
one of the processes as a victim and kill it. SQL Server selects the process with the least cost associated 
with it, kills it, rolls back the associated transaction, and notifies the responsible application of the 
termination by returning error number 1205. If properly captured, this error informs the user that 

❑

❑

❑

❑

❑

❑

c01.indd   18c01.indd   18 10/31/08   6:16:59 PM10/31/08   6:16:59 PM



19

Chapter 1: Introducing T-SQL and Data Management Systems

 “ Transaction ## was deadlocked on  x  resources with another process and has been chosen as the 
deadlock victim. Rerun the transaction. ”  To avoid the deadlock from ever occurring, SQL Server will 
typically use update locks in place of shared locks. Only one process can obtain an update lock, 
preventing the opposing process from escalating its lock. The bottom line is that if a read is executed for 
the sole purpose of an update, SQL Server may issue an update lock instead of a shared lock to avoid a 
potential deadlock. This can all be avoided through careful planning and implementation of SQL logic 
that prevents the deadlock from ever occurring.    

Exclusive Locks 
 SQL Server typically issues exclusive locks when a modification is executed. To change the value of a 
field in a row, SQL Server grants exclusive access of that row to the calling process. This exclusive access 
prevents a process from any concurrent transaction or connection from reading, updating, or deleting 
the data being modified. Exclusive locks are not compatible with any other lock types.    

Intent Locks 
 SQL Server issues intent locks to prevent a process from any concurrent transaction or connection from 
placing a more exclusive lock on a resource that contains a locked resource from a separate process. For 
example, if you execute a transaction that updates a single row in a table, SQL Server grants the 
transaction an exclusive lock on the row, but also grants an intent lock on the table containing the row. 
This prevents another process from placing an exclusive lock on the table. 

 Here is an analogy I often use to explain the intent lock behavior in SQL programming classes: You check 
in to Room 404 at the SQL Hotel. You now have exclusive use of the fourth room on the fourth floor 
(404). No other hotel patron will be allowed access to this room. In addition, no other patron will be 
allowed to buy out every room in the hotel because you have already been given exclusive control to one 
of the rooms. You have what amounts to an intent exclusive lock on the hotel and an exclusive lock on 
Room 404. Intent locks are compatible with any less - exclusive lock, as illustrated in the following table 
on lock compatibility. 

         Existing Granted Lock   

     Requested Lock Type      IS      S      U      IX      X   

    Intent shared (IS)    Yes    Yes    Yes    Yes    No  

    Shared (S)    Yes    Yes    Yes    No    No  

    Update(U)    Yes    Yes    No    No    No  

    Intent exclusive (IX)    Yes    No    No    Yes    No  

    Exclusive (X)    No    No    No    No    No  

    Schema Locks 
 There are two types of schema locks SQL Server will issue on a table: schema modification locks (Sch - M) 
and schema stability locks (Sch - S). Schema modification locks prevent concurrent access to a table while 
the table is undergoing modification  —  for example, a name change or a column addition. A schema 
stability lock prevents the table from being modified while it is being accessed for data retrieval.    

c01.indd   19c01.indd   19 10/31/08   6:17:00 PM10/31/08   6:17:00 PM



20

Chapter 1: Introducing T-SQL and Data Management Systems

Bulk Update Locks 
 A bulk update lock on a table allows multiple bulk load threads to load data into a table while 
preventing other types of data access. Bulk update locks are issued when table locking is enabled at the 
table or the chosen as an option with the bulk operation.    

Key Range Locks 
 Key - range locks protect a range of rows implicitly included in a record set being read by a Transact - SQL 
statement while using the serializable transaction isolation level. The serializable isolation level requires 
that any query executed during a transaction must obtain the same set of rows every time it is executed 
during the transaction. A key range lock protects this requirement by preventing other transactions from 
inserting new rows whose keys would fall in the range of keys read by the serializable transaction.     

   SQL  Server and Other Products 
 Microsoft has plenty of competition in the client/server database world and SQL Server is a relatively 
young product by comparison. However, it has enjoyed wide acceptance in the industry due to its ease 
of use and attractive pricing. If our friends at Microsoft know how to do anything exceptionally well, it ’ s 
taking a product to market so it becomes very mainstream and widely accepted. 

  Microsoft  SQL  Server 
 Here is a short history lesson on Microsoft ’ s SQL Server. Originally, SQL Server was a Sybase product 
created for IBM ’ s OS/2 platform. Microsoft engineers worked with Sybase and IBM but eventually 
withdrew from the project. Then, Microsoft licensed the Sybase SQL Server code and ported the product 
to work with Windows NT. It took a couple of years before SQL Server really became a viable product. 
The SQL Server team went to work to create a brand new database engine using the Sybase code as a 
model. They eventually rewrote the product from scratch. 

 When SQL Server 7.0 was released in late 1998, it was a major departure from the previous version, SQL 
Server 6.5. SQL Server 7.0 contained very little Sybase code with the exception of the core database 
engine technology, which was still under license from Sybase. SQL Server 2000 was released in 2000 with 
many useful new features, but was essentially just an incremental upgrade of the 7.0 product. SQL 
Server 2005, however, is a major upgrade and some say it’s the very first completely Microsoft product. 
Any vestiges of Sybase are long gone. The storage and retrieval engine has been completely rewritten, 
the .NET Framework has been incorporated, and the product has significantly risen in both power and 
scalability. SQL Server 2008 is to SQL Server 2005 what SQL Server 2000 was to SQL Server 7.0. There are 
some very interesting and powerful improvements to the server, which we will address in the coming 
chapters, but the changes are not as dramatic as the changes that SQL Server 2005 brought.  

  Oracle 
 Oracle is probably the most recognizable enterprise - class database product in the industry. After IBM ’ s 
E. F. Codd published his original papers on the fundamental principles of relational data storage and 
design in 1970, Larry Ellison, founder of Oracle, went to work to build a product to apply those 
principles. Founded in 1977, Oracle has had a dominant place in the database market for quite some time 
with a comprehensive suite of database tools and related solutions. Versions of Oracle run on UNIX, 
Linux, and Windows server operating systems. 

c01.indd   20c01.indd   20 10/31/08   6:17:00 PM10/31/08   6:17:00 PM



21

Chapter 1: Introducing T-SQL and Data Management Systems

 The query language of Oracle is known as Procedure Language/Structured Query Language (PL/SQL). 
Indeed, many aspects of PL/SQL resemble a C - like procedural programming language. This is evidenced by 
syntax such as command - line termination using semicolons. Unlike T - SQL, statements are not actually 
executed until an explicit run command is issued (preceded with a single line containing a period.) PL/SQL is 
particular about using data types and includes expressions for assigning values to compatible column types.  

   IBM DB 2 
 This is really where it all began. Relational databases and the SQL language were first conceptualized 
and then implemented in IBM ’ s research department. Although IBM ’ s database products have been 
around for a very long time, Oracle (then Relational Software) actually beat them to market. DB2 
database professionals perceive the form of SQL used in this product to be purely ANSI SQL and other 
dialects such as Microsoft ’ s T - SQL and Oracle ’ s PL - SQL to be more proprietary. Although DB2 has a long 
history of running on System 390 mainframes and the AS/400, it is not just a legacy product. IBM has 
effectively continued to breathe life into DB2 and it remains a viable database for modern business 
solutions. DB2 runs on a variety of operating systems today, including Windows, UNIX, and Linux.  

  Informix 
 This product had been a relatively strong force in the client/server database community, but its 
popularity waned in the late 1990s. Originally designed for the UNIX platform, Informix is a serious 
enterprise database. Popularity slipped over the past few years, as many applications built on Informix 
had to be upgraded to contend with year 2000 compatibility issues. Some organizations moving to other 
platforms (such as Linux and Windows) have also switched products. The 2001 acquisition of Informix 
nudged IBM to the top spot over Oracle as they brought existing Informix customers with them. Today, 
Informix runs on Linux and integrates with other IBM products.  

  Sybase  SQLA nywhere 
 Sybase has deep roots in the client/server database industry and has a strong product offering. At the 
enterprise level, Sybase products are deployed on UNIX and Linux platforms and have strong support in 
Java programming circles. At the mid - scale level, SQLAnywhere runs on several platforms, including 
UNIX, Linux, Mac OS, NetWare, and Windows. Sybase has carved a niche for itself in the industry for 
mobile device applications and related databases.  

  Microsoft Access (Jet) 
 To be perfectly precise, Access is not really a database platform. Access is a Microsoft Office application 
that is built to use the Microsoft Jet database platform. Access and Jet were partially created from the 
ground up but also leverage some of the technology gleaned from Microsoft ’ s acquisition of FoxPro. As a 
part of Microsoft ’ s Office Suite, Access is a very convenient tool for creating simple business applications. 
Although Access SQL is ANSI 92 SQL – compliant, it is quite a bit different from T - SQL. For this reason, 
I have made it a point to identify some of the differences between Access and T - SQL throughout the book. 

 Access has become the non - programmer ’ s application development tool. Many people get started in 
database design using Access and then move on to SQL Server as their needs become more sophisticated. 
Access is a powerful tool for the right kinds of applications, and some commercial products have actually 
been developed using Access. Unfortunately, because Access is designed (and documented) to be an end 
user ’ s tool rather than a software developer ’ s tool, many Access databases are often poorly designed and 
power users learn through painful trial and error about how not to create database applications. 

c01.indd   21c01.indd   21 10/31/08   6:17:00 PM10/31/08   6:17:00 PM



22

Chapter 1: Introducing T-SQL and Data Management Systems

 The Jet Database Engine was designed in 1992. Jet is a simple and efficient storage system for small to 
moderate volumes of data and for relatively few concurrent users, but it falls short of the stability and 
fault - tolerance of SQL Server. For this reason, a desktop version of the SQL Server engine (now called 
SQL Server Express, but formally known as Microsoft SQL Desktop Engine [MSDE]) has shipped with 
Access since Office 2000. SQL Server Express is an alternative to using Jet and really should be used in 
place of Jet for any serious database. Starting smaller - scale projects with SQL Server Express provides an 
easier path for migrating them to full - blown SQL Server editions later on.  

  My SQL  
 MySQL is a developer ’ s tool embraced by the open source community. Like Linux and Java, it can be 
obtained free of charge and includes source code. Compilers and components of the database engine can 
be modified and compiled to run on most any computer platform. Although MySQL supports ANSI 
SQL, it promotes the use of an application programming interface (API) that wraps SQL statements. As a 
database product, MySQL is a widely accepted and capable product. However, it appeals more to the 
open source developer than to the business user. 

 Many other database products on the market may share some characteristics of the products discussed 
here. The preceding list represents the most popular database products that use ANSI SQL.   

  Summary 
 Microsoft SQL Server 2005 has earned a very good reputation in the marketplace and remains a very 
capable and powerful database management server. SQL Server 2005 took T - SQL and database 
management a huge step forward. Now SQL Server 2008 promises to continue the maturation of the 
product with new and very powerful T - SQL commands and functions. 

 The upcoming chapters explore most of the longstanding features and capabilities of T - SQL and 
preview the awesome new capabilities that SQL Server 2005 and SQL Server 2008 have brought to the 
field of T - SQL programming. So sit back and hold on; it ’ s going to be an exciting ride. 

 If the whole idea of writing T - SQL code and working with databases doesn ’ t thrill you like it does me, 
I apologize for my overt enthusiasm. My wife has reminded me on many occasions that no matter 
how I may look, I really am a geek. I freely confess it. I also eagerly confess that I love working with 
databases. Working with databases puts you in the middle of everything in information technology. 
There is absolutely no better place to be. Can you name an enterprise application that doesn ’ t somehow 
interface with a database? You see? Databases are the sun of the IT solar system! 

 In the coming months and years you will most likely find more and more applications storing their data 
in a SQL Server database, especially if that application is carrying a Microsoft logo. Microsoft Exchange 
Server doesn ’ t presently store its data in SQL, but it will. Active Directory will also reportedly move its 
data store to SQL Server. Microsoft has been exploring for years the possibility and feasibility of moving 
the Windows file system itself to a SQL - type store. For the T - SQL programmer and Microsoft SQL Server 
professional, the future is indeed bright.               

c01.indd   22c01.indd   22 10/31/08   6:17:01 PM10/31/08   6:17:01 PM



                                                                2     
SQL  Server Fundamentals          

 Where does SQL Server fit in the grand scheme of business applications? At one time, this was a 
simple question with a simple answer. Today, SQL Server is at the core of many different types of 
applications and business solutions large and small. The new generation of servers and operating 
systems blend file storage and document and data management in a seamless, uniform approach  — 
 and at the core of all this technology is SQL Server. Under the hood, this is not the same SQL 
Server as it was in years past. SQL Server 2005 and SQL Server 2008 are complex, multipurpose 
data storage engines, capable of doing some very sophisticated things. This new - and - improved 
SQL Server can manage complex binary streams, hierarchies, cubes, files, and folders in addition 
to text, numbers, and other simple data types. 

 For the purposes of this book, we ’ re concerned only with using SQL Server to store and manage 
 relational  data. This is what it was designed for years ago  —  and what it does even better today. 
However, SQL Server can also be used to store and manage application objects in the form of XML. 
The addition of native XML storage to SQL Server has opened up many doors and possibilities.  

  Who Uses  SQL  Server? 
 Not very long ago, enterprise databases were hidden away on large servers that were never visible 
to the casual business computer user. Any interaction with these systems was performed only by 
members of the elite order of database administrators and data developers. These highly revered 
professionals worked in large, noisy, sealed server rooms on special consoles and workstations. 
Even after many companies migrated their database systems from mainframe and mid - range 
computer platforms to PC - based servers, the databases were still hands - off and carefully protected 
from all but a select few. 

 A generation of smaller - scale database products evolved to fill the void left for the casual 
application developer and power user. Products such as the following became the norm for 
department - level applications because they were accessible and inexpensive: 

  dBase  

  FoxPro  

  Paradox  

❑

❑

❑

c02.indd   23c02.indd   23 10/31/08   6:18:17 PM10/31/08   6:18:17 PM



Chapter 2: SQL Server Fundamentals

24

  Clipper  

  Clarion  

  FileMaker  

  Access    

 The big databases were in another class and were simply not available outside of formal IT circles. They 
were complicated and expensive. Database administrators and designers used cumbersome command -
 line scripts to create and manage databases. It was a full - time job; DBAs wrote the script to manage the 
databases and application developers wrote the code for the applications that ran against them. Life was 
good. Everyone was happy. However, there is only one real constant in the IT world and that is change. 
In the past ten years, there have been significant changes in the world of application development, 
database design, and management. 

 At the launch event for SQL Server 7.0, Steve Ballmer, the President of Microsoft Corporation, was on the 
road to introduce this significant product release. After demonstrating several simple, wizard - based 
features, he asked for all the career database administrators to stand up. There were probably 1500 
people in the audience and 100 or so DBAs came to their feet. He said,  “ I ’ d like to do you all a favor and 
give you some career advice. ”  He paused with a big smile before he continued,  “ Learn Visual Basic. ”  
Needless to say, there were several uneasy DBAs leaving the launch event that day. Steve ’ s advice was 
evidence of the harsh reality of changing times. Today, SQL Server and other related Microsoft products 
represent a toolkit in the hands of a different kind of business IT professional  —  not a full - time DBA, 
specialized Business Analyst, or single - minded Application Developer, but a Solution Architect who 
creates a variety of software solutions consisting of all these pieces. From the initial requirement 
gathering and solution concept to the database design, component architecture, and user - interface 
construction, the Database Solution Developer often covers all these bases. Just a quick note to help 
clarify Mr. Ballmer ’ s point: What do SQL Server and Visual Basic have to do with one another? 
Chapter  15  answers this question more completely by showing you some examples of complete 
application solutions. In short, solving business problems requires the use of multiple tools, SQL and 
programming languages working together. 

 Although we have certainly seen a lot of change recently in the database world, I won ’ t be so na ï ve to 
say that traditional database servers are going away. On the contrary, most large companies have 
centralized most of their data on large - scale servers and the largest corporate databases are now in the 
ballpark of 10 – 20 terabytes in size. In just the past few years, these volumes have been doubling about 
every three years. There are really two separate trends: Corporate, mission - critical data is growing more 
than ever, stored on large - scale (albeit physically much smaller) servers, managed by full - time database 
administrators. The other trend is that small - scale, regional data marts (relatively small reporting 
databases) and data silos (specialized, departmental databases) have emerged. Unlike the ad - hoc, 
desktop databases of the past decade, these are stored on department - level database servers. They are 
managed and used primarily by business unit power users, rather than career IT folks. 

 A new class of SQL Server user has recently emerged. Computer power users now have access to SQL 
Server using a variety of tools. Bill Gates refers to these individuals as the  “ knowledge worker ”  of the 
twenty - first century. Desktop applications such as Microsoft Excel and Access can easily be used as front -
 ends for SQL Server. Microsoft Access gives users the ability to create and manage database objects, much 
like an administrator would using Management Studio. This means that more casual users have the ability 

❑

❑

❑

❑

c02.indd   24c02.indd   24 10/31/08   6:18:17 PM10/31/08   6:18:17 PM

www.allitebooks.com

http://www.allitebooks.org


Chapter 2: SQL Server Fundamentals

25

to create and utilize these powerful databases that were available only to highly trained professionals a 
few years ago. Microsoft Excel enables information workers to connect to and analyze data stored on 
a SQL Server like never before. Of course, this also means that untrained users can use these powerful 
tools to make a big mess. Yes, this means that more users now have the tools to create poorly designed 
databases, more efficiently than ever before. 

 Let ’ s hope your organization has standards and policies in place to manage production database servers 
and to control access to sensitive data. With a little guidance and the appropriate level of security access, 
SQL Server can be a very useful tool in the hands of new users who possess some fundamental skills.  

   SQL  Server Editions and Features 
 SQL Server comes in five different flavors, each having its specific place in the data management 
infrastructure. At the top is the Enterprise Edition, which supports absolutely everything that SQL 
Server 2005 has to offer. On the other end of the spectrum is the Express Edition, which offers very 
limited but still exciting features. 

   SQL  Server Compact Edition 
 SQL Server Compact is the replacement for SQL Server CE first offered in SQL Server 2000. The Compact 
Edition enables the installation of a small SQL Server database on a mobile device to support a Windows 
mobile application. SQL Server Compact also enables the support of a database that is replicated from a 
database hosted on a Windows Server. This ability creates a world of opportunity for collecting data in 
a remote scenario and synchronizing that data with a land - based database. For example, consider an 
overnight delivery service that must maintain a record of a delivery truck ’ s inventory, including 
packages delivered and picked up. The truck inventory could be uploaded via replication to a mobile 
device where a mobile application kept track of the deliveries and new packages picked up at delivery 
locations. Once the truck arrived back to the delivery center, the mobile device could be synchronized 
with the central database via replication or data upload.  

   SQL  Server Express Edition 
 SQL Server Express is at the lowest end of functionality and scalability as far as a non - mobile application 
goes. However, I am very excited about this particular edition. SQL Server Express has a great price for a 
lot of functionality  —  it ’ s free! For its very low price (you can ’ t beat free), it still contains a great deal of 
functionality. 

 The reason this edition excites me is that it is perfect for many of my customers who are starting or 
running small businesses. They have a genuine need for a centralized managed database but aren ’ t 
ready to pay for a more scalable and robust solution. At the risk of offending my friends in the open 
source community, most of my customers are not very technically savvy, so very flexible and viable 
solutions such as MySQL running on Linux or Windows is just not appropriate when a database engine 
with an intuitive and free graphical management tool exists. 

c02.indd   25c02.indd   25 10/31/08   6:18:17 PM10/31/08   6:18:17 PM



Chapter 2: SQL Server Fundamentals

26

 One of the most exciting improvements to Microsoft ’ s free version of their database system is that it 
comes with a graphical management environment. It also supports databases up to 4 gigabytes in size 
and contains much of the same functionality as the other editions. 

 SQL Server Express is a big step up from MSDE (Microsoft SQL Server Desktop Engine), its predecessor, 
and is a very viable solution for stand - alone applications that require a managed data - store or even 
distributed applications with a minimal number of connections. 

 SQL Server Express can be installed on any Microsoft desktop or server operating system from Windows 
2000 and beyond, so a very small company can still leverage the database technology without making a 
large investment. (Did I mention that it ’ s free?) Once the company starts to grow, it inevitably will need 
to make the move to one of the more robust editions, but the upgrade process from SQL Server Express to 
its bigger siblings is a piece of cake because the data structures are near identical.  

   SQL  Server Workgroup Edition 
 The Workgroup Edition contains all the functionality of SQL Server Express Edition and then some. This 
edition is targeted to those small companies that have either outgrown the Express Edition or need a 
more flexible solution to begin with and yet do not need all the features of the Standard or Enterprise 
Edition. 

 The Workgroup Edition is very flexible and contains many of the features of the more expensive editions. 
What the Workgroup Edition doesn ’ t provide is support for more advanced business intelligence 
applications because SQL Server Integration Services and Analysis Services are not included in this 
edition. The Workgroup Edition also has a reduced feature set in regards to reporting services, although 
the reporting services features supported should satisfy most small organizations. 

 Like the Express Edition, the Workgroup Edition can be installed on both desktop and server operating 
systems, with the exception of Windows XP Home, which is not supported.  

   SQL  Server Standard Edition 
 Most of the capabilities of SQL Server are supported in the Standard Edition, making it the ideal data 
platform for many organizations. What the Standard Edition does not provide are many of the features 
designed for the support of large enterprise databases. These features include many of the high 
availability and scalability enhancements, such as partitioned tables and parallel online index operations. 
It also lacks some of the more advanced business intelligence features of Integration Services, Reporting 
Services, and Analysis Services.  

   SQL  Server Enterprise Edition 
 The Enterprise Edition is the full - meal deal. Nothing is held back. Parallel operations, physical table 
partitioning, complete business intelligence, and data - mining support  —  you name it, the Enterprise 
Edition has it. 

 If you require an easy to implement and maintain platform that can support millions of transactions a 
second, terabytes of RAM, and 64 64 - bit processors, then this release is for you. It is also an appropriate 
solution if you just require advanced business analytics and not necessarily the millions of transactions a 

c02.indd   26c02.indd   26 10/31/08   6:18:18 PM10/31/08   6:18:18 PM



Chapter 2: SQL Server Fundamentals

27

second that this edition offers. Another important aspect of the Enterprise Edition is performance. 
Although the feature set between the Enterprise Edition and the Standard Edition is not huge, the 
differences in performance between the two editions can be. The Enterprise Edition fully optimizes read -
 ahead execution and table scans, resulting in marked improvement in read and scan performance.  

  Relational Database Engine 
 Big differences exist between a true relational database management system (RDBMS) and a file - based 
database product. Although a true RDBMS product, such as SQL Server, does store its data in files 
managed by the file system, the data in these files cannot be accessed directly. The concepts of relational 
integrity have been applied to file - based databases for several years. Programmers wrote these rules into 
their program code. The difference is that the RDBMS system contains this code to enforce business rules 
and doesn ’ t allow a user or developer to work around them once a database has been designed with 
certain rules applied. 

 The language used to access nearly all relational database products is SQL. The dialect of SQL used in 
Microsoft SQL Server is called Transact - SQL. Using SQL is the front door to the data in a database and 
the administrative objects of the database server. Specialized programmatic interfaces also exist that 
developers can use to access a database with the appropriate security clearance. Unlike file - based 
databases, RDBMS systems are designed so there is no  “ back door ”  to a database.   

  Semantics 
 The words used to describe data concepts are often different, depending a great deal upon the context of 
the discussion. Data lives in tables. Usually, a table represents some kind of business entity, such as a 
 Product  or  Customer , for example. Each item in a table is called a  row  or  record . For our purposes, these 
mean the same thing. I may use these words interchangeably throughout the book. Envision several 
rows in an Excel worksheet representing different products. Each product has a manufacturer, supplier, 
packaging quantity, and price. In Excel, these values would be contained in different cells. In a table, 
separate values are referred to as a  column  or  field . As far as we ’ re concerned, these words have the 
same meaning as well. How do you decide how data should be organized into tables and columns? 
That is the fine art of database design and is often no easy task. To arrive at an optimal database design, 
you must first have a thorough understanding of the business process and the how data will be used. 

 So, what is data, really? We often hear the words  “ information ”  and  “ data ”  used to mean the same thing. 
In reality, they are very different concepts. As humans, we generally concern ourselves with meaningful 
information we can use day - to - day. Information has a context  —  it makes sense to us. If my wife asks me 
to stop by the store on the way home from work and pick up eggs and milk, I should have enough 
information to accomplish this simple task. I have a few informational items to contend with in this 
scenario: the store, eggs, and milk. If we were to ask some people in the database business about these 
simple things, we might get some interesting (or not so interesting) answers. For example, my friend 
Greg, a city geographic information systems (GIS) expert employed by the city government, might point 
out that in his database, the  store  is a building with an address, property plot number, city zoning record, 
water, sewer, and electrical service locations. It has latitude and longitude coordinates, a business license, 
and a tax record. If we were to talk to someone in the grocery business, they might tell us that  eggs  and 
 milk  exist in a  products  table in their point of sale and inventory management database systems. Each is 
assigned a product record ID and UPC codes. The product supplier, vendors, shipping companies, and 

c02.indd   27c02.indd   27 10/31/08   6:18:18 PM10/31/08   6:18:18 PM



Chapter 2: SQL Server Fundamentals

28

the dairies likely have their own systems and deal with these items in different ways. However, as 
a consumer, I ’ m not concerned with such things. I just need to stop by the store and pick up the eggs 
and milk. 

 Here ’ s the bottom line: data is just numbers and letters in a database or computer application 
somewhere. At some point, all that cryptic data was probably useful information until it was entered 
into the database. For the database designer or programmer, these values may be meaningful. For the 
rest of us, it isn ’ t useful at all until it gets translated back into something we understand  —  information. 
Part of the job description of SQL programmers is to retrieve data from one or more databases and turn 
that data into information. By combining data from multiple entities, or simplistically, tables, the SQL 
programmer puts context to the data, turning it into information. 

  Changing Terminology 
 One of the greatest challenges in our relatively new world of technology is how we use common 
language to communicate both technical and non - technical concepts. Even when dealing with the same 
system, terminology often changes as you progress through the different stages of the solution design 
and construction. These stages are generally as follows: 

  Conceptual or architectural design  

  Logical design  

  Physical design    

  Conceptual Design 
 As you approach the subject of automating business processes through the use of databases and 
software, one of the first and most important tasks is to gather business requirements from users 
and other business stakeholders. Beginning with non - technical, business, and user - centric language, 
you must find terms to describe each unit of pertinent information to be stored and processed. 
A complete unit of information is known as an  entity . Business entities generally represent a whole unit 
that can stand on its own. For example, a  customer  and a  product  are examples of entities. 

 Another conceptual unit of information is an  attribute . This unit of information describes a characteristic 
of an entity. An attribute may be something as simple as the color or price of a product. It could also be 
something more complex, such as the dimensions of a package. The important thing during conceptual 
design is to deal with the simple and conceptual aspects and not all of the implementation details. 
This way you leave your options open to consider creative ways to model and manage the data 
according to your business requirements. 

 In most processes, different terms may be used to describe the same or similar concepts. For example, in 
an order processing environment, the terms  customer ,  shopper,  and  purchaser  could mean the same thing. 
Under closer evaluation, perhaps a  shopper  is a person who looks for products and a  customer  is a person 
who actually purchases a product. In this case, a  shopper  may become a  customer  at some point in the 
process. In some cases, a  customer  may not actually be a person. A  customer  could also be an  organization . 
It ’ s important to understand the distinction between each entity and find agreeable terms to be used by 
anyone dealing with the process, especially non - technical users and business stakeholders. Conceptual 
design is very free - form and often takes a few iterations to reveal all of the hidden requirements. 

❑

❑

❑

c02.indd   28c02.indd   28 10/31/08   6:18:18 PM10/31/08   6:18:18 PM



Chapter 2: SQL Server Fundamentals

29

 Along with the entity and attribute concepts, another important notion is that of an  instance . You may 
have 100,000 customers on record, but as far as your database system is concerned, these customers 
don ’ t really exist until you need to deal with their information. Sure, these people do exist out in 
customer land, but your unfeeling database system couldn ’ t care less about customers who are not 
currently engaged in buying products, spending money, or updating their billing information. Your 
system was designed to process orders and purchase products  —  that ’ s it. If a customer isn ’ t involved in 
ordering, purchasing, or paying, the system pays no attention. When a customer places an order, you 
start caring about this information and your order processing system needs to do something with the 
customer information. At this point, your system reaches into the repository of would - be customers and 
activates an instance of a specific customer. The customer becomes alive just long enough for the system 
to do something useful with it and then put it back into cold storage, moving on to the next task. 
Therefore, in our database system a single customer record is an instance of the Customer entity. All 
instances of an entity have prescribed attributes, but they don ’ t necessarily share all attributes. For 
example, it could be possible that not all customers have phone numbers, or middle names. During the 
conceptual design phase it ’ s best to identify what attributes must be shared by all instances of an entity 
and what ones are optional.  

  Logical Design 
 This stage of design is the transition between the abstract, non - specific world of conceptual design and 
the very specific, technical world of physical design. After gaining a thorough understanding of business 
requirements in the language of users, this is an opportunity to model the data and the information flow 
through the system processes. With respect to data, you should be able to use the terms  entity ,  attribute,  
and  instance  to describe every unit of data. Contrasted with conceptual design, logical design is more 
formalized and makes use of diagramming models to confirm assumptions made in conceptual design. 

 Prototyping is also part of the logical design effort. A quick mock - up database can be used to 
demonstrate design ideas and test business cases. It ’ s important, though, that prototypes aren ’ t allowed 
to evolve into the production design. Fredrick P. Brooks said in his book,  The Mythical Man Month , 
 “ When designing a new kind of system, a team should factor in the fact that they will have to throw 
away the first system that is built since this first system will teach them how to build the system. The 
system will then be completely redesigned using the newly acquired insights during building of the 
first system. ”  When you finally happen upon a working model, throw it out and start fresh. This gives 
you the opportunity to design a functional solution without the baggage of evolutionary design. 
In logical design, you decide what you ’ re going to build and for what purpose. 

 In particular, logical database design involves the definition of all the data entities and their attributes. 
For example, you know that a customer entity should have a name, a shipping location, and a line of 
credit. Although you realize that the customer ’ s name may consist of a first name, middle initial, and last 
name, this is unimportant in this stage of design. Likewise, the customer ’ s location may consist of a 
street address, city, state, and zip code; you also leave these details for the physical design stage. The 
point during this stage is to understand the need and recognize how this entity will behave with other 
data entities and their attributes.  

  Physical Design 
 One of the greatest reasons to have a formal design process is to find all of the system requirements 
before attempting to build the solution. It has been said,  “ Requirements are like water. They ’ re easier to 
build on when they ’ re frozen. ”  So any attempt to define requirements as you go along instead of before 

c02.indd   29c02.indd   29 10/31/08   6:18:19 PM10/31/08   6:18:19 PM



Chapter 2: SQL Server Fundamentals

30

you start will inevitably lead to disastrous results. Ask any seasoned software professional and 
I guarantee their response will be preceded with either a tear or a smile. 

 Physical design is like drawing the blueprints for a building. It ’ s not a sketch or a rough model. It is the 
specification for the real project in explicit detail. As your design efforts turn to the physical database 
implementation, entities may turn into tables and attributes into columns. However, there is not always 
a one - to - one correspondence between conceptual entities and physical tables. That is the simplification 
I mentioned earlier. The value of appropriate design is to find similarities and reduce redundant effort. 
You will likely discover the need for more detail than originally envisioned. For instance, a company 
may have customers that are individuals, but other customers might be a collection of individuals or a 
corporation. 

 I worked on a project for a training center where much more detail was needed than first believed. After 
careful requirements gathering, we found that students attending a class may have paid for the training 
themselves or had their entire class paid for by their employer. In addition students might have had to 
pay part of the cost themselves with their employer covering the rest. Then there were the cases that part 
of the cost was paid by the employer, part by the student, and another part by state agencies. Who was 
the customer in this last case? As it turned out, according to the company ’ s business rules, the individual 
student, the employer, and the state agency were all customers. As a result, in the physical design, 
entities of customer, transaction, and invoice were designed to encompass situations where more than 
one customer paid for an individual instance of a course.   

  Relationships 
 Although entity relationships were discussed briefly in Chapter  1 , I want to devote a little more time 
expounding on the concepts to add clarity to the current topic of design. The purpose of nearly all 
database systems is to model elements in our physical world. To do this effectively, you need to consider 
the associations that exist between the various entities you want to keep track of. This concept of an item 
or multiple items being related to a different item or multiple items is known as  cardinality  or 
 multiplicity . To illustrate this concept, just look around you. Nearly everything fits into some kind of 
collection or set of like objects. The leaves on a tree, the passengers in a car, and the change in your 
pocket are all examples of this simple principle. These are sets of similar objects in a collection and 
associated with some kind of container or attached to some type of parent entity. In the previous section, 
I described the somewhat complex scenario of many customers and a single transaction. In that case, 
a relationship was defined between an instance of a class, an instance of a student, an instance of 
multiple invoices, and instances of multiple customers. Relationships can be described and discovered 
using common language. As you describe associations, listen for words such as  is ,  have , and  has . For 
example, a customer  has  orders. Now turn it around: an order  has  a customer. By looking at the equation 
from both sides, you ’ ve discovered a  one - to - many relationship  between customers and orders. 

 Relationships generally can be grouped into three different types of cardinality: 

  One - to - one  

  One - to - many  

  Many - to - many    

 The one - to - one and one - to - many relationships are fairly easy to define using a combination of foreign 
keys and unique constraints, but many - to - many relationships cannot actually be defined using two 

❑

❑

❑

c02.indd   30c02.indd   30 10/31/08   6:18:19 PM10/31/08   6:18:19 PM



Chapter 2: SQL Server Fundamentals

31

tables. To reduce redundancy, minimize data storage requirements, and facilitate these relationships, 
you apply standard rules of normalization (the rules of normal form), which are described briefly in 
this section.  

  Primary Keys 
 According to the rule of first normal form (1NF), which says that each column must contain a single 
type of information or a single value with no repeating groups of data, it is imperative that each row 
(or record) be stamped with a unique key value. This key could be either a meaningful value that is 
useful for other reasons, or a surrogate key, a value generated only for the sake of uniqueness. The 
uniqueness of a record depends entirely on the primary key. Be very cautious and think twice (or three 
times) before choosing to use non - surrogate key values. I ’ ve designed more than a few database systems 
where it seemed to make sense to use an intelligent value for the primary key (for example, social 
security number, address, phone number, product code, and so on) and later wished I had just generated 
a unique value for the key. Most experienced database folks have horror stories to share about such 
experiences. 

 So, what ’ s a surrogate key? Two common forms of surrogate key values exist, although there certainly 
could be more. The first and probably most common form is the  IDENTITY  property. A SQL Server 
 IDENTITY  property is simply an integer value that is automatically incremented by the database system. 
In the world of Microsoft Access, the identity function is known as an Auto - Number field. SQL Server ’ s 
 IDENTITY  property is more flexible, however, since the integer can be seeded at any supported value 
and incremented by an integer value. This can serve as a unique value as long as all data is entered into a 
single instance of the database and uniqueness on the identity value is enforced. In distributed systems 
consisting of multiple, disconnected databases, it can be a bit challenging and next to impossible to keep 
these values unique. In these cases another type of automatically generated key can be used. This special 
data type is called a  unique identifier  or globally unique identifier (GUID). This SQL data type is 
equipped to store a large binary value that is automatically generated by the system. A complex 
algorithm is used to produce a value that is partially random and partially predictable. The result is 
what I call a  big ugly number . It is  statistically guaranteed  to be unique  —  any time and anywhere. 
The emphasis on  “ statistically guaranteed  ”   is intentional. The reason is that chances of this value being 
duplicated are astronomically improbable, but  not  impossible. 

 To see surrogate keys in action, you need to build a table that will auto - populate field values. We will 
cover building objects with T - SQL in Chapter  13 , but to clarify the principle of surrogate keys it is useful 
to take a sneak peek. 

 The following code creates a table that uses a  uniqueidentifier  data type with the  NEWID()  function 
along with an integer with an  IDENTITY()  function to auto - populate field values when new rows are 
added to the table: 

CREATE TABLE dbo.SurrogateTable

(IdentityColumn int IDENTITY (1,1) NOT NULL

,GUIDColumn uniqueidentifier NOT NULL DEFAULT NEWID()

,DataColumn nvarchar(50) NOT NULL )

GO  

 The  IDENTITY()  function can accept two values to specify which number to start with and which 
number to increment by. If the values are not specified, the function defaults to starting at one and 
incrementing by one, which is also what we specified specifically. It ’ s important to note that neither the 

c02.indd   31c02.indd   31 10/31/08   6:18:19 PM10/31/08   6:18:19 PM



Chapter 2: SQL Server Fundamentals

32

IdentityColumn nor the GUIDcolumn in the preceding example will enforce uniqueness by default, so it 
is very important to add some type of unique value enforcement to the table to avoid a duplicate from 
being manually added. This enforcement takes the form of primary key constraints, unique constraints, 
and unique indexes. Constraints are covered in more detail in Chapter  13 . 

 Now that we have a table that auto - populates fields, let ’ s give it a try. For both SQL Server 2005 and SQL 
Server 2008 the following code will add two rows of data to the new table: 

INSERT dbo.SurrogateTable

(DataColumn)

VALUES

(‘Fred’)

INSERT dbo.SurrogateTable

(DataColumn)

VALUES

(‘Barney’)  

 In SQL Server 2008, the code can be simplified to the following: 

INSERT dbo.SurrogateTable

(DataColumn)

VALUES

(‘Fred’),(‘Barney’)  

 Now that we have added the rows, let ’ s check out the results by querying our table: 

SELECT * FROM dbo.SurrogateTable  

 Here are the results: 

IdentityColumn  GUIDColumn                            DataColumn

--------------  ------------------------------------  ---------------------

1               594FB9AB-C92C-4B4A-A438-1AEF5EC65F67  Fred

2               3D020CA5-6F64-4EF7-90A9-7DEBFFC11E0B  Barney  

 Remember, because the GUID value was automatically generated, the odds that your results are the 
same as those listed above are astronomical!  

  Foreign Keys 
 One purpose for keys is to enforce the relationship between the records in one table to those in another 
table. A column in the table containing related records is designated as a  foreign key . This usually means 
that it contains the same values found in the primary key column(s) of the primary table. However, with 
SQL Server it could also mean that it contains the same values as those defined by an object known as a 
 unique constraint  .  The only difference between a primary key and a unique constraint is that all primary 
key values must be defined, whereas a SQL Server unique constraint allows for a single undefined, or 
null, value. Unlike a primary key or unique constraint, a foreign key doesn ’ t have to be unique. Using 
the Customer/Order example, one customer can have multiple orders but one order has only one 
customer. This describes a one - to - many relationship. The primary key column of the Customer table is 
related to the foreign key column of the Order table through a relationship known as a  foreign key 
constraint . Later, in Chapter  13 , you see how this relationship is defined in T - SQL.   

c02.indd   32c02.indd   32 10/31/08   6:18:20 PM10/31/08   6:18:20 PM



Chapter 2: SQL Server Fundamentals

33

  Normalization Rules 
 Because this is not a book about database design, I will not engage in a lengthy discussion on the 
background behind these rules. Volumes have been written on these subjects. On the surface, a short 
discussion on database design is an important prerequisite to using the T - SQL language. The problem 
with this is that it ’ s nearly impossible to engage in a short discussion on a topic that is so conceptual and 
subject to individual style and technique. Like so many  “ simple ”  concepts in this industry, this one can 
be debated almost endlessly. Having written and rewritten this section a few times now, I have decided 
not to walk through an example and align this with the true rules of normal form, as so many books on 
this subject do. Rather, I ’ ll briefly present the definitions of each rule and then walk you through an 
example of distilling an unnormalized database into a practical, normalized form without the weighty 
discussion of the rules. 

 Unless you have a taste for mathematical theory, you may not even be interested in the gory details of 
normalized database design. Throughout this book, I discuss query techniques for normalized and 
de - normalized data. It would be convenient to say that when a person designs any database, he or she 
should do so according to certain rules and patterns. In fact, a number of people do prescribe one single 
approach regardless of the system they intend to design. Everyone wants to be normal, right? Well, 
maybe not. Perhaps it will suffice to say that most folks want their data to be normal. But, what does this 
mean in terms of database design? Are different values stored in one table or should they be stored in 
multiple tables with some kind of association between them? If the latter approach is taken, how are 
relationships between these tables devised? This is the subject of a number of books on relational 
database design. If you are new to this subject and find yourself in the position of a database designer, 
I recommend that you pick up a book or research this topic to meet your needs. This subject is discussed 
in greater detail in Rob Vieira ’ s books on SQL Server programming, also published by Wrox. I ’ ll discuss 
some of the fundamentals here, but this is a complex topic that goes beyond the scope of the T - SQL 
language.     

 The AdventureWorks and AdventureWorks2008 databases supplied with SQL Server 2005 and SQL 
Server 2008 are very normalized. In order to adequately describe the normalization process, we will be 
using a hypothetical case in which we are building tables to contain information about a company ’ s 
employees. We will normalize the tables as the discussion progresses. The queries given as examples will 
not work on any specific database, unless of course you were to build a database and populate it with 
tables like those in the example.   

 In the early 1970s, a small group of mathematicians at IBM proposed a set of standards for designing 
relational data systems. In 1970, Dr. Edgar (E. F.) Codd wrote a paper entitled  “ A Relational Model of 
Data for Large Shared Data Banks ”  for the Association of Computing Machinery. He later published a set 
of 12 principles for relational database design in 1974. These principles described the low - level 
mechanics of relational database systems as well as the higher - level rules of entity - relation design for a 
specific database. Dr. Codd teamed with others who also wrote papers on these subjects, including Chris 
(CJ) Date and Raymond F. Boyce. Boyce and Codd are now credited as the authors of relational database 
design. Codd ’ s original 12 principles of design involved using set calculus and algebraic expressions to 
access and describe data. One of the goals of this effort was to reduce data redundancy and minimize 
storage space requirements. Something to consider is that, at the time, data was stored on magnetic tape, 
paper punch cards, and, eventually disks ranging from 5 to 20 megabytes in capacity. As the low - level 
requirements were satisfied by file system and database products, these 12 rules were distilled into the 
five rules of normal form taught in college classes today. 

c02.indd   33c02.indd   33 10/31/08   6:18:20 PM10/31/08   6:18:20 PM



Chapter 2: SQL Server Fundamentals

34

 In short, the rules of normal form, or principles of relational database design, are aimed at the following 
objectives: 

  Present data to the relational engine that is set accessible  

  Label and identify unique records and columns within a table  

  Promote the smallest necessary result set for data retrieval  

  Minimize storage space requirements by reducing redundant values in the same table and in 
multiple tables  

  Describe standards for relating records in one table to those in another table  

  Create stability and efficiency in the use of the data system while creating flexibility in its 
structure    

 To apply these principles, tables are created with the fewest number of columns (or fields) to define a 
single entity. For example, if your objective is to keep track of customers who have ordered products, 
you will store only the customer information in a single table. The order and product information would 
be stored their own respective tables. 

 The idea behind even this lowest form of normalizations is to allow straightforward management of the 
business rules and the queries that implement these rules against data structures that are flexible to 
accommodate these changes. 

 The real purpose of first normal form is to standardize the shape of the entity (relation)  —  to form a two -
 dimensional grid that is easily accessed and managed using set - based functions in the data engine. 

 It ’ s really quite difficult to take a table and apply just one rule. One of the tenets of all the rules of normal 
form is that each rule in succession must conform to its predecessor. In other words, a design that 
conforms to second normal form must also conform to first normal form. Also, to effectively apply one, 
you may also be applying a subsequent rule. Although each of these rules describes a distinct principle, 
they are interrelated. This means that generally speaking, normalization, up to a certain level, is kind of a 
package deal. 

 In the next sections I ’ ll briefly describe the different forms of normalization and then take you through 
the exercise of normalizing employee data to clarify the rules. 

  First Normal Form 
 First normal form (1NF) states that: 

  A table is two - dimensional. It has rows and columns and each row must have the same number 
of columns.  

  Each column in a table contains a single attribute and all attributes in the column must be the 
same type.  

  Each row must be uniquely identifiable.    

❑

❑

❑

❑

❑

❑

❑

❑

❑

c02.indd   34c02.indd   34 10/31/08   6:18:20 PM10/31/08   6:18:20 PM

www.allitebooks.com

http://www.allitebooks.org


Chapter 2: SQL Server Fundamentals

35

 To convert flat data to first normal form, additional tables are created by the database designer. Duplicate 
columns are eliminated and the corresponding values are placed into unique rows of a second table. This 
rule is applied to reduce redundancy along the horizontal axis (columns).  

  Second Normal Form 
 The second normal form (2NF) rule states that non - key fields cannot depend on only a portion of the 
primary key. These fields are placed into a separate table from those that depend on the key value alone. 
For instance, if you had a table that had a primary key made up of two columns, all other columns in the 
row must depend on both of the two columns, not just one. 

 To meet second normal form, you must satisfy first normal form and then identify any columns that 
have partial dependencies to the table ’ s primary key. Columns that have a partial dependency are placed 
in separate tables. 

 By avoiding multi - column primary keys or by removing partially dependent columns, you arrive at 
second normal form. Then move to third normal form.  

  Third Normal Form 
 The first rule states that rows are assigned a key value for identification. Third normal form (3NF) takes 
this principle one step further by stating that the uniqueness of any row depends entirely upon the 
primary key. My friend Rick, who teaches and writes books on this topic, uses a phrase to help 
remember this rule:  “ The uniqueness of a row depends on the key, the whole key, and nothing but the 
key; so help me Dr. Codd. ”  

 In some cases it makes sense for the primary key to be a combination of columns. For example, a linking 
table that is created to manage a many - to many - relationship, as discussed in Chapter  1 , can be 
configured so that the combination of the primary keys from the linked tables is the primary key for the 
linking table. Redundant values along multiple rows should be eliminated by placing these values into a 
separate table as well. Compared with first normal form, this rule attempts to reduce duplication along 
the vertical axis (rows).  

  Boyce - Codd Normal Form, Fourth and Fifth Normal Form 
 Boyce and Codd built their standard  —  Boyce - Codd normal form (BCNF)  —  on earlier ideals that 
recognized only those discussed thus far. You must satisfy first and second and third normal forms 
before moving on to satisfy subsequent forms. In fact, it is the process of the first, second, and third 
normal forms that drives the need for BCNF. Through the decomposition of attribute functional 
dependencies, many - to - many relationships develop between some entities. This is sometimes 
inaccurately left in a state where each entity involved has duplicate candidate keys in one or more 
of the entities. 

 Attributes upon which non - key attributes depend are candidate keys. BCNF deals with the 
dependencies within candidate keys. The short version of what could be a lengthy and complex 
discussion of mathematical theory is that fourth and fifth normal forms are used to resolve many - 
to - many relationships. On the surface this seems to be a simple matter  —  and for our purposes, we ’ ll 
keep it that way. Customers can buy many different products, and products can be purchased by 

c02.indd   35c02.indd   35 10/31/08   6:18:21 PM10/31/08   6:18:21 PM



Chapter 2: SQL Server Fundamentals

36

multiple customers. Concerning ourselves with only customers and products, these two entities have a 
many - to - many relationship. The fact is that you cannot perform many - to - many joins with just two 
tables. This requires another table, sometimes called a  bridge  or  intermediary table , to make the 
association. The bridge table typically doesn ’ t need its own specific key value, because the combination 
of primary key values from the two outer tables will always be unique. (Keep in mind that this is not a 
requirement of this type of association but is typically the case.) Therefore, the bridge table conforms to 
third normal form by defining its primary key as the composite of the two foreign keys, each 
corresponding to the primary keys of the two outer, related tables. Fifth normal form is a unique 
variation of this rule, which factors in additional business logic, disallowing certain key combinations. 
For our purposes, this should suffice.  

  Other Normal Forms 
 A number of disciplines and conceptual approaches to data modeling and database design exist. Among 
others, these include Unified Modeling Language (UML) and Object Role Modeling (ORM). These 
include additional forms that help to manage special anomalies that might arise to describe constraints 
within and between groups or populations of information. The forms that qualify these descriptions 
usually move into user - defined procedures added to the database and not the declarative structures that 
have been addressed so far.  

  Transforming Information into Data 
 In the real world, the concepts and information you deal with exist in relationships and hierarchies. Just 
look around you and observe the way things are grouped and associated. As I write this, I ’ m sitting on a 
ferry boat. The ferry contains several cars, and cars have passengers. If I needed to store this information 
in a relational database, I would likely define separate tables to represent each of the entities I just 
mentioned. These are simple concepts, but when applied at all possible levels, some of the associations 
may take a little more thought and cautious analysis. At times the business rules of data are not quite so 
straightforward. Often, the best way to discover these rules (and the limits of these rules) is to ask a 
series of  “ what if ”  questions. Given the ferry/car/passenger scenario, what if a passenger came onto the 
ferry in one car and left in another? What if she walked on and then drove off? Is this important? Do we 
care? These questions are not arbitrarily answered by a database designer but through the consensus of 
designers and system stakeholders. 

 At some point you will need to decide upon the boundaries of your business rules. This is where you 
decide that a particular exception or condition is beyond the scope of your database system. Don ’ t treat 
this matter lightly. It is imperative to define specific criteria while also moving quickly past trivial 
decision points so that you can move forward and stay on schedule. This is the great balancing act of 
project management. 

 When you attempt to take this information and store it in a flat, two - dimensional table as rows and 
columns, you can ’ t help but create redundant or repeating values. Take a look at a simple example using 
data from a fictitious small company with only nine employees. The table in Figure  2 - 1  shows employee 
records. Each employee has a name and may have two addresses and two phone numbers. Most 
employees also have a supervisor. This is the way this data might appear in a simple spreadsheet.   

c02.indd   36c02.indd   36 10/31/08   6:18:21 PM10/31/08   6:18:21 PM



Chapter 2: SQL Server Fundamentals

37

 The  < NULL >  text is SQL Server ’ s way of telling you that there is nothing in that field. Each employee 
has a name, title, one or two residence locations, a home and work phone number, and a supervisor. 
This data is easy to read in this form but it may be difficult to use in a proper database system.   

  Applying Normalization Rules 
 Using the Employees table shown in Figure  2 - 1 , look for violations of first normal form. Does more than 
one column contain information about the same type of attributes? Beginning with the numbered 
Address and CityLine fields, each  “ location ”  consists of a column for the address and another column 
for the city, state, and zip code. Because there are two pairs of these columns, this may be a problem. 
Each phone number is a single column, designated as either the home or work phone. How would 
I make a single list of all phone numbers? What happens if I need to record a mobile phone for an 
employee? I could add a third column to the table. How about a fourth? How about the Title column? 
The SupervisorName column may be viewed as a special case, but the fact is that the EmployeeName 
and SupervisorName columns store the same type of values. They both represent employees. 

 I can move all these columns into separate tables, but how do I keep them associated with the employee? 
This is accomplished through the use of keys. A key is just a simple value used to associate a record in 
one table to a record in another table (among other things). To satisfy first normal form, I ’ ll move these 
columns to different tables and create key values to wire up the associations. In the following example, 
I have removed the address and city information and have placed it into a separate table. 

 I have devised a method to identify each employee with a six - character character key, using part of their 
last and first names. I chose this method because this was once a very popular method for assigning key 
values. This allows me to maintain the associations between employees and their addresses. In this first 
iteration (see Figure  2 - 2 ), I use this method to make a point. This is a relatively small database for a small 
company and I don ’ t have any employees with similar first and last names, so this method ought to 
work just fine, right? Hold that thought for now.   

Figure 2-1

Figure 2-2

c02.indd   37c02.indd   37 10/31/08   6:18:21 PM10/31/08   6:18:21 PM



Chapter 2: SQL Server Fundamentals

38

 I do the same thing with the new Addresses table (see Figure  2 - 3 ). Each address record is assigned an 
EmployeeKey value to link it back to the Employees table.   

Figure 2-3

 I have lost a significant piece of information in doing this. I ’ ve flattened the address information so that I 
no longer have one address designated as either primary or secondary for an employee. I ’ ll get to this 
later. For now, I ’ m only concerned with adhering to first normal form. Besides, does the information in 
the old Address1 and CityLine1 columns imply that this is the employee ’ s primary residence? Did I have 
a complete understanding of the business rules when I began working with this data? Unfortunately, in 
most ad - hoc projects, it is more often a case of making things up as we go along. 

 For the phone numbers I ’ ll do the same thing as before  —  move the phone number values into their own 
table and then add the corresponding key value to associate them with the employee record. I ’ m also 
going to add a column to designate the type of phone number this represents (see Figure  2 - 4 ). I could use 
this as an argument to do the same thing with the addresses, but I ’ ll hold off for now.   

Figure 2-4

 Now that I have three tables with common column values, do I have a relational database? Although it 
may be true that this is related data, it ’ s not a fully relational database. The key values only give me the 
ability to locate the related records in other tables, but this does nothing to ensure that my data stays 
intact. Take a look at what I have done so far (see Figure  2 - 5 ). The presence of the same key value in 
all three of these tables is an implied relationship. There is currently no mechanism in place for the 
database to prevent users from making silly mistakes (such as deleting an employee record without also 
removing the corresponding address and phone information). This would create a condition, common in 
early database systems, called  orphaned records .   

c02.indd   38c02.indd   38 10/31/08   6:18:22 PM10/31/08   6:18:22 PM



Chapter 2: SQL Server Fundamentals

39

 Before continuing, I must correct a horrible indiscretion. I told you that this business of using parts of 
different field values (such as the first and last name) to form a meaningful unique key was once a 
common practice. This is because database system designers in the past often had to create a system 
where users had to provide a special number to look up a record. To make this easier, they would come 
up with some kind of intelligent, unique value. It might include characters from a customer or patient ’ s 
name, or perhaps a series of numbers with digits in specific positions representing an account type or 
region. For example, when was the last time you called the bank or the telephone company and were 
asked for your account number? This happens to me all the time. It amazes me that the companies in 
possession of the most sophisticated, state - of - the - art technology on the planet require me to memorize 
my account number. How about looking up my account using my name, address, phone number, 
mother ’ s maiden name, or any of the other information they required when I set up my account? 

 Using this simple name - based key may have seemed like the right thing to do at the time, but the fact is 
that it will likely get me into a whole lot of trouble down the road. I worked for a company that used this 
approach in a small, commercial application. The program even appended numbers to the end of the 
keys so there could be nearly a hundred unique key values for a given last name/first name 
combination. What they didn ’ t anticipate was that their product would eventually become the most 
popular medical billing software in the country and would be used in business environments they 
couldn ’ t possibly have imagined. Eventually this got them into trouble, and they had to completely 
re - architect the application to get around this limitation. One customer, a medical office in the Chicago 
area, had so many patients with the same or similar names, that they actual ran out of key values. 

  Thinking Ahead 
 I ’ ll resolve the EmployeeKey issue by changing it to an auto - sequencing integer called an  identity  
(see Figure  2 - 6 ). This is known as a  surrogate key , which simply means that key values are absolutely 
meaningless as far as the user is concerned. The database assigns numbers that will always be unique 

Figure 2-5

c02.indd   39c02.indd   39 10/31/08   6:18:23 PM10/31/08   6:18:23 PM



Chapter 2: SQL Server Fundamentals

40

within this column. The purpose of the key is to uniquely identify each row, not to give employees or 
users something to memorize.   

Figure 2-6

 The next step is to designate the EmployeeKey in the Employees table as a primary key and the related 
keys as foreign keys. The foreign key constraints cause the database engine to validate any action that 
could cause these relationships to be violated. For example, the database would not allow an employee 
record to be deleted if there were existing, related address or phone records. Related tables are often 
documented using an entity - relationship diagram (ERD). The diagram in Figure  2 - 7  shows the columns 
and relationships between these tables.   

Figure 2-7

 There is still work to do. The SupervisorName is also a violation of first normal form because it duplicates 
some employee names. This is a special case, however, because these names already exist in the 
Employees table. This can be resolved using a self - join, or relationship, on the same table (see Figure  2 - 8 ).   

c02.indd   40c02.indd   40 10/31/08   6:18:25 PM10/31/08   6:18:25 PM



Chapter 2: SQL Server Fundamentals

41

Figure 2-9

Figure 2-8

 The supervisor designation within the Employees table is now just an integer value referring to another 
employee record. 

 The Title column is also in violation of first normal form and could be moved into its own table, as well. 
A title isn ’ t uniquely owned by an employee, but each employee only has one title. To discern this 
relationship, you must look at it from both directions: 

  One employee has one title.  

  One title can have multiple employees.    

 This is a one - to - many relationship from the title to the employee. Resolving this is a simple matter of 
placing one instance of each title value in a separate table, identified by a unique primary key. A similar 
column is added to the Employees table as a non - unique foreign key (see Figure  2 - 9 ).   

❑

❑

c02.indd   41c02.indd   41 10/31/08   6:18:26 PM10/31/08   6:18:26 PM

V413HAV
Typewritten Text
V413HAV



Chapter 2: SQL Server Fundamentals

42

 You should see a pattern developing. This is an iterative process that will typically send you in one of 
two directions in each cycle. You will either continue to move these values into related tables with 
related keys, or you will find discrepancies between your business rules and the data, and then head 
back to the drawing board to correct the data and table structure.  

  Multiple Associations 
 I know that a title can be associated with more than one employee, but what happens if an address is 
shared by more than one individual? This is a problem in the current database model. I can ’ t use one 
primary key value and have multiple associations going in both directions. The only way I can do this is 
to create a primary key that includes two separate values: one for the employee key and one for the 
address key. However, I can ’ t do this using either of these two tables. If I add the EmployeeKey to 
the Addresses table, I ’ m back to the original problem, where I would have duplicate address rows. 
Because a record in the Addresses table will no longer be directly tied to a record in the Employees table, 
I must remove the EmployeeKey and create a new primary key for this table and remove the duplicate 
values. Now the Addresses table conforms to first normal form and third normal form. 

 Many - to - many relationships are solved using a separate table, often called a  join  or  bridge table . Often, 
this table contains no user - readable values, only keys to bridge one table to another. However, you may 
recall that we have a missing bit of information. Remember when I moved the address information from 
the Address1/CityLine1 columns and Address2/CityLine2 columns into the Address table? I said that we 
had no way to trace these back to their roots and recall which location was the employee ’ s primary 
residence? I can now resolve this within the bridge table by adding an additional column (see Figure  2 - 10 ).   

Figure 2-10

 The new AddressType column is used to indicate the type of residence. This allows employees to share 
addresses while eliminating redundant address records. Does the AddressType column violate first 
normal form? Technically, yes. This could be an opportunity to optimize the database even more by 
creating yet another table for these values. It looks like there would only be three address type records 
related to the nine employees (see Figure  2 - 11 ).   

Figure 2-11

c02.indd   42c02.indd   42 10/31/08   6:18:27 PM10/31/08   6:18:27 PM



Chapter 2: SQL Server Fundamentals

43

 A simple query is used to obtain detail information about employees at a common address: 

SELECT   EmployeeName, AddressLine, CityLine, AddressType

FROM     Employees 

  INNER JOIN EmployeeAddresses

         ON Employees.EmployeeKey = EmployeeAddresses.EmployeeKey

  INNER JOIN Addresses

         ON EmployeeAddresses.AddressKey = Addresses.AddressKey

WHERE    Addresses.AddressKey = 10  

 It looks like the Vice President of Sales and the Inside Sales Coordinator share a residence only on 
weekends (see Figure  2 - 12 ).    

Figure 2-12

  Multi - Valued Columns 
 The last issue to contend with is that of having multiple values stored in a single column. There are quite 
a few examples in these tables. For example, the EmployeeName column in the Employees table contains 
both the first and last name, the AddressLine column in the Addresses table includes all parts of a street 
address, and the CityLine contains the city name, U.S. state, and zip code/postal code. Before I just 
willy - nilly start parsing all the values into separate columns, it ’ s important for me to consider how this 
data will be used and the advantages and disadvantages of breaking it into pieces. Here are some sample 
questions that can help to define these business requirements: 

  Will the employee first name and last name ever be used separately?  

  Will I ever need to sort on one single value (such as last name)?  

  Does every employee have a first name and last name? Do they only have a first name and last 
name (middle names/initials, hyphenated names, and so on)?  

  Is there any value or need in separating parts of the address line (will I need a list of streets, and 
so on)?  

  If I separate parts of the AddressLine or CityLine into separate columns, do I need to 
accommodate international addresses?    

 Apparently I do need to consider addresses in at least two locales because I have locations in the UK and 
the United States, so I will need to think beyond only one style of address. So, suppose that I have 
consulted my sponsoring customer and have learned that it would be useful to store separate first names 
and last names and we don ’ t care about middle names or initials. We also don ’ t plan to accommodate 
anyone without a first and last name. We have no need to break up the address line. This practice is 
highly uncommon outside of specialized systems and would be very cumbersome to maintain. We 
would benefit from storing the city, postal code or zip code, and state or province. It would also be useful 
to store the country, which is currently not included. Storing geographic information can be tricky 
because of the lack of consistency across international regions. This may require that you devise your 
own synonyms for different regional divisions (such as city, township, municipality, county, state, 

❑

❑

❑

❑

❑

c02.indd   43c02.indd   43 10/31/08   6:18:29 PM10/31/08   6:18:29 PM



Chapter 2: SQL Server Fundamentals

44

province, and country). In distributing these values into separate columns, you may find even more 
redundancies. Should these be further normalized and placed into separate tables? Does this ever end? 
I ’ ll cite one example where the city, state, and zip code is normalized. I maintain a system that stores U.S. 
addresses and stores only the zip code on the individual ’ s record. A separate table contains related city 
and state information obtained from the U.S. Postal Service. 

 I won ’ t bore you will the mechanics of separating all these fields. The process is quite straightforward 
and very similar to what ’ s already been done. Figure  2 - 13  shows the completed data model, based on the 
original flat table.    

Figure 2-13

  To Normalize or To De - normalize? 
 Depending on how a database is to be used (generally, it will be used for data input or for reporting), it 
may or may not be appropriate to apply all the rules just presented. The fact of the matter is that fully 
normalized databases require some gnarly, complex queries to support reporting and business analysis 
requirements. Complying fully with all the rules of normal form often adds more overhead to the 
application. Without going into detail, here ’ s something to think about: If you are designing a new 
database system to support a typical business process, you will usually want to follow these rules 
completely and normalize all your data structures. After a time, when you have a large volume of data to 
extract and analyze through reports and business intelligence tools, you may find it appropriate to create 
a second database system for this purpose. In this database, you will strategically break the rules of 
normal form, creating redundant values in fewer, larger tables. Here ’ s the catch: Only after you fully 
understand the rules of normal form will you likely know when and where you should break them.  

  Question Authority 
 You should ask yourself an important question as you encounter each opportunity to normalize:  “ Why? ”  
Know why you should apply the rules and what the benefits and cost are. One of the challenges of 
applying normalization rules is to know just how far to go and to what degree it makes sense to apply 
them. At times it just makes sense to break some of the rules. There are good arguments to support both 
sides of this issue and without a complete understanding of business requirements I would be hard 
pressed to make a general statement about how data elements (such as phone numbers, titles, or 
addresses) should always be managed. In short, you need to understand the business requirements for 
your application and then apply the appropriate level of database normalization to reach that goal. If 
ever in doubt, it ’ s usually best to err on the side of keeping the rules. 

c02.indd   44c02.indd   44 10/31/08   6:18:30 PM10/31/08   6:18:30 PM

www.allitebooks.com

http://www.allitebooks.org


Chapter 2: SQL Server Fundamentals

45

 That being said, don ’ t let yourself be bullied into adhering strictly to normalization rules if they don ’ t 
make sense. A case in point: I worked for a very smart guy who had virtually no database experience. 
Very often he would read an article or a chapter of a book and suddenly became an expert on that 
particular technology. When he noticed that duplicate state codes were showing up repeatedly in our 
database, he decided that we needed a State table so that the states were not duplicated and that only 
valid states were added to a record. Because the addition of state code data was completely controlled by 
the application and not by ad - hoc changes to the database tables, his reasoning was not very valid. The 
data team finally got him to relent after pretending to enthusiastically endorse his opinion and add to it 
by claiming we also needed a street number table to avoid erroneous addresses as well as an area code 
table and a phone prefix table. He got the message almost immediately and decided that separating the 
state codes out didn ’ t make as much sense as he originally thought. 

 Normalization is very important to database integrity, but remember that the more tables involved in a 
query to extract data, the worse the performance of the query. 

 We have discussed some abstract normalization concepts, which can be a bit confusing to someone new 
to databases. It is important to understand the basics if you are ever going to be called on to build data 
entities and not just to query them. Another important aspect of T - SQL programming is to understand 
how queries are processed by SQL Server. This will give you insight on how you should formulate your 
queries. The next section gives a brief description of the query processing process.   

  The Mechanics of Query Processing 
 To drive a car, it ’ s not essential to understand how the engine works. However, if you want to be able to 
drive a car well (and perhaps maintain and tune it for optimal performance), it ’ s helpful to have a 
fundamental understanding of the engine mechanics and to know what ’ s going on inside. Likewise, it ’ s 
possible to use SQL Server without fully understanding its mechanics, but if you want to create queries 
that work efficiently, it will help to understand what goes on within the relational database engine and 
the query processor. 

 When a SQL statement is presented to the database engine, the engine begins to analyze the request and 
break it down into steps. Based on characteristics of the data stored in tables, decisions are made 
resulting in the selection of appropriate operations. Many factors are considered including the table 
structures, existence of indexes, and the relative uniqueness of relevant data values. 

 It would be inefficient for the query - processing engine to analyze all the data prior to each query, so SQL 
Server gathers statistical information it uses to make these decisions. By default, SQL Server will gather 
statistical data about data stored in columns, such as the amount of rows, the ratio of rows to unique 
values and the distribution of the data in the rows. SQL Server uses this statistical data to build an 
efficient data retrieval plan and will adapt over time as the data changes. 

 Complex queries are broken down into individual steps  —  smaller queries  —  that process granular 
operations. This list of steps and operations is known as an  execution plan . Chapter  14  gives a more 
detailed description of execution plans and how to analyze them. The query ’ s syntax may actually be 
rewritten by the query optimizer into a standard form of SQL. SQL Server doesn ’ t actually execute SQL; 
that ’ s just how we talk to it. Before SQL Server can send instructions to the computer ’ s processor, these 
commands must be compiled into low - level computer instructions, or object code. The optimized, 
compiled query is placed into an in - memory cache. Depending on how the query is created (for example, 

c02.indd   45c02.indd   45 10/31/08   6:18:30 PM10/31/08   6:18:30 PM



Chapter 2: SQL Server Fundamentals

46

 After the initial processing of a query, subsequent processing gets to take a shortcut. Because the query 
has already been parsed, resolved, optimized, and compiled, the compiled plan can be retrieved from 
cache and executed as shown in Figure  2 - 15 .    

it may be saved as a view or stored procedure), the execution plan is saved with that object in a memory 
location called the  procedure cache . Even ad - hoc queries can benefit from this process. The cached 
compiled query and execution plan is held into memory and reused until the plan is aged out. This way, 
if the same query is executed multiple times, it should run faster and more efficiently after the first time. 

 Additionally, the data that is read from disk during the query is placed in a memory location called the 
 buffer cache . When the same query (or similar queries) is executed, the data can be retrieved from 
memory instead of making repeated trips to the disk. 

 In SQL Server, the same mechanism is used to manage both buffer cache and procedure cache. Here ’ s a 
closer look at this process, also illustrated in Figure  2 - 14 : 

  1.   First, the query is parsed for syntactic accuracy. The text is flat - lined and translated into a stan-
dardized form of SQL.  

  2.   Objects and then permissions are resolved, replacing object names with data - specific numeric 
identifiers and security context. These identifiers streamline conversations between the relation 
and storage engine.  

  3.   The query processor then analyzes the query to find the lowest cost method of executing it. This 
includes looking for appropriate indexes, determining the order in which to search and retrieve 
data from referenced objects, and determining whether to use multiple or single CPU ’ s to pro-
cess the query.  

  4.   The query is translated, or compiled, from SQL to Tabular Data Stream (TDS), the native lan-
guage of the SQL Server network libraries. In this translation, operations are simplified and fur-
ther optimized.  

  5.   A compiled version of the plan and call are placed into cache for reuse.  

  6.   The relational engine spawns threads for calling logical and physical I/O and operational execu-
tion. Database object locks are placed and managed by the transactional engine.      

Pase
SQL Resolve Execute Return

Results
Optimize

Statements
Compile to
Object Code

Buffer
Procedure

Cache

Figure 2-14

c02.indd   46c02.indd   46 10/31/08   6:18:31 PM10/31/08   6:18:31 PM



Chapter 2: SQL Server Fundamentals

47

Pase
SQL Resolve Execute Return

Results
Optimize

Statements
Compile to
Object Code

Buffer
Procedure

Cache

Figure 2-15

  The AdventureWorks Databases 
 Through the remainder of the book, you ’ ll be working with a database used by the fictitious company 
Adventure Works Cycles, which sells bicycles and related products. This database, called  AdventureWorks  
with SQL Server 2005 and  AdventureWorks2008  with SQL Server 2008, is a sample database included with 
SQL Server. There have actually been several different versions of this database as it evolved from the 
first edition in 2004 and then through the SQL Server 2008 CTP test period. The version that installs with 
SQL Server 2005 is slightly different from the version installed with SQL Server 2008. To accommodate 
for these differences, we have done one of three things. For the most part, we have attempted to use 
tables in our examples that are the same in structure in both SQL versions. When that was not possible, 
we either wrote two sets of examples, one for SQL Server 2005 and the other for SQL Server 2008, or we 
built views to emulate the table structure of SQL Server 2005 in SQL Server 2008. With this caveat in 
mind, all the query examples shown in the book will work with both versions, unless specified 
otherwise, but queries run with the 2005 version may return different results from those shown in this 
book. For the sake of simplicity and consistency, all references to the sample database will be to 
AdventureWorks2008 only. However, AdventureWorks2008 implies either AdventureWorks2008 
or AdventureWorks. 

 You can download and install either the AdventureWorks or AdventureWorks2008 sample database 
from the support site for this book at  www.wrox.com . Keep in mind that while the 2005 version of the 
database will work with either SQL Server 2005 or 2008, the 2008 version will work with SQL Server 2008 
only. To install the sample database, follow these steps: 

  1.   Click the Download button for the database you want, click Open in the File Download dialog, 
and then follow the directions in the InstallShield Wizard.  

  2.   Double - check that the AdventureWorks or AdventureWorks2008 database has been added to the 
list of available databases on your server. If it hasn ’ t, right - click the Databases node in SQL 
Server Management Studio ’ s Object Explorer and choose Refresh.  

  3.   If the new database is not displayed on the database tree, the database file may need to be 
attached manually. Simply right - click the database server node in the SQL Server Management 
Studio object browser and select Attach Database. Then click the Add button in the middle of 
the window, browse to the location of the database file, and click OK.     

c02.indd   47c02.indd   47 10/31/08   6:18:32 PM10/31/08   6:18:32 PM



Chapter 2: SQL Server Fundamentals

48

  Summary 
 SQL Server is widely used by many different people in many different ways. At its core is the relational 
database engine, and sitting on this foundation is a wealth of features and capabilities. The way that SQL 
Server databases are designed and administered has changed as the client applications have improved 
and been integrated into Microsoft ’ s suite of solution development tools. SQL Server is now accessible to 
business users in addition to technical professionals. 

 In this chapter, you read about the conceptual, logical, and physical phases of solution design and how 
they apply to designing a database. A relational database stores data in separate tables, associated 
through primary key/foreign key relationships that implement the rules of normal form. You saw how 
flat, spreadsheet - like data is transformed into a normalized structure by applying these rules. 
Normalizing data structures is not an absolute necessity for all databases and it sometimes is prudent to 
ignore the rules to simplify the design. Both normalizing and de - normalizing a database design come at 
a cost that must be carefully considered and kept in balance with the business rules for the solution. 
These business rules and the user ’ s requirements ultimately drive the capabilities and long - term needs 
of a project. 

 You also learned about the client/server database execution model and how SQL Server uses both client -
 side and server - side components to process requests and to execute queries. The execution and 
procedure caches allow SQL Server to optimize performance by compiling execution plans for ad - hoc 
queries and prepared stored procedures. 

 In the next chapter, you learn how to use the different tools available to the SQL programmer to create 
and manage database scripts and projects.               

c02.indd   48c02.indd   48 10/31/08   6:18:33 PM10/31/08   6:18:33 PM



                                                                                3     
SQL  Server Tools          

 It ’ s said that a craftsman ’ s work is only as good as his tools. To some degree, this principle applies 
to SQL Server. However, many database professionals from the old school choose not to use 
sophisticated tools, just as many craftsmen use old manual tools (chisels, carving knives, and so 
on) to do the work that is often simplified through automation. Many would even argue that the 
results are different, perhaps even better, when you remove automation from the equation. 
Regardless of the ideals to which you subscribe, a number of tools and applications are available 
that you can use to create and debug queries. Which tools do you need? This depends a great deal 
on what you need to do.  

  Common SQL Server Tasks 
 Here ’ s a breakdown of some of the common tasks you may need to perform with SQL Server: 

   Administrative tasks   

  Creating databases  

  Creating and managing server logins and database roles and users  

  Granting and managing security permissions  

  Scheduling backups  

  Auditing and error checking  

  Diagnosing failures and application errors  

  Performance tuning  

  Configuring data replication  

  Managing disk space and data files    

❑

❏

❏

❏

❏

❏

❏

❏

❏

❏

c03.indd   49c03.indd   49 10/31/08   6:19:49 PM10/31/08   6:19:49 PM



Chapter 3: SQL Server Tools

50

   Database management tasks   

  Adding and managing tables, views, stored procedures, and functions  

  Creating indexes  

  Creating views, stored procedures, and functions  

  Importing, exporting, or transforming data    

   Data operations   

  Inserting, updating, and deleting records  

  Supporting application features  

  Defining business rules  

  Selecting records from a table or multi - table join      

 Whether you are using SQL Server 2005 or SQL Server 2008, this chapter walks you through exercises 
that will work for either version of the product. Where there are differences (and they are very few), 
I will identify them. I ’ m assuming that you have SQL Server installed on your local computer with all 
the server and client tools. If your database server is on another computer, you may need to install the 
client tools on your local computer to follow these directions. I am also assuming that you are using 
Integrated Windows authentication and that your Windows account has sufficient permissions to create 
objects and run queries against the database server. If you have installed SQL Server on your local 
computer with default options, this should be the case  —  unless, of course, you are using Windows Vista 
as your operating system. If you have installed SQL Server on a Vista machine and your normal logon is 
not the administrator account (which it probably shouldn ’ t be), you will need to add an account for your 
normal logon to avoid having to run the client tools as Administrator. 

 You can perform the following steps to create a logon to a local server running on a Vista machine: 

  1.   Click the Windows logo in the bottom - left corner to bring up the program menu.  

  2.   Click All Programs and then on Microsoft SQL Server 2008 (or 2005).  

  3.   Right - click the SQL Server Management Studio link on the menu and click Run as 
Administrator. When prompted, enter the administrator password. (You do know what the 
administrator password is, right?)  

  4.   After Management Studio opens you will be prompted to connect to a server. In the ServerName 
box you can type either the name of your local computer or  (local) , or just a period ( . ) to connect 
to the local default instance of SQL Server.  

  5.   After the connection has been made to your local SQL Server, click the New Query button to 
open a new query window (see Figure  3 - 1 ).    

❑

❏

❏

❏

❏

❑

❏

❏

❏

❏

c03.indd   50c03.indd   50 10/31/08   6:19:49 PM10/31/08   6:19:49 PM



Chapter 3: SQL Server Tools

51

  6.   In the new query window, type the following code to create a privileged user account mapped 
to your normal login account that has permissions to perform all the exercises in this book. 
I don ’ t want to insult your intelligence, but keep in mind that you will have to replace the name 
of the server and the login name with those on your computer. My computer name is WoodVista 
and my login name is DanW.      

CREATE LOGIN [WOODVISTA\DanW] FROM WINDOWS 

WITH DEFAULT_DATABASE=[master]

EXEC sp_addsrvrolemember @loginame = N’WOODVISTA\DanW’

                        ,@rolename = N’sysadmin’  

 Now that you have a SQL account with database administrator access, you can launch and use 
Management Studio without having to use the Windows Vista elevated permission feature. 

 If you are working with a remote database server, you should talk to your system administrator and 
make sure you have the client tools correctly installed and that you have the appropriate permissions to 
run queries. As you work through these exercises, the only difference will be that you will be connecting 
to a remote server rather than to the local server.  

  SQL Server Management Studio 
 SQL Server Management Studio completely replaces Enterprise Manager and Query Analyzer. It also 
replaces some of the functionality formerly found in Analysis Manager. It does an excellent job of both 
replacing the old tools and exceeding them in almost every possible way. 

 The SQL Server Management Studio interface looks a lot like the Visual Studio IDE and is in actuality a 
Visual Studio shell. The Visual Studio shell brings many very useful tools and features to the creation 
and organization of database objects, as well as the full feature set of the old tools. 

 If you have SQL Server 2000 or SQL Server 7 experience, you will notice that when SQL Server 
Management Studio is first launched, the default view is a great deal like the old Enterprise Manager, 
with a slight Query Analyzer influence (see Figure  3 - 2 ).    

Figure 3-1

c03.indd   51c03.indd   51 10/31/08   6:19:50 PM10/31/08   6:19:50 PM



Chapter 3: SQL Server Tools

52

Figure 3-2

Pinned

Unpinned

Figure 3-3

 Many different windows can be viewed in Management Studio, so the management of screen real estate 
becomes critical. Most of the windows have the ability to either be pinned open or configured to fly out 
when the mouse pointer is placed over the menu bar or auto hide when the mouse cursor is placed 
elsewhere. If you are familiar with the Visual Studio IDE, this will be very familiar; if not, it may take a 
little while to get used to. 

 For those of you who are unfamiliar with the Visual Studio interface, the following bit of instruction is 
offered: Any window that supports the pinned and unpinned option will have a pin at the top right of 
the window. When the window is pinned, the pin will appear vertically oriented. When the window is 
unpinned, it will be horizontal (see Figure  3 - 3 ) and the toolbar will auto hide or fly out, depending on 
the mouse cursor location.   

c03.indd   52c03.indd   52 10/31/08   6:19:50 PM10/31/08   6:19:50 PM



Chapter 3: SQL Server Tools

53

 Most of the toolbars and windows also support the ability to be repositioned or configured to float. 
To reposition a tool window, you can just grab it by the title bar using the mouse pointer, and then 
drag to undock and move it around the design surface (see Figure  3 - 4 ). Something interesting happens 
when you do this.    

Figure 3-4

 When a window is undocked and you drag it around the main window, guide diamonds are displayed, 
like points of a compass, to assist with the docking window placement (see Figure  3 - 5 ).    

Figure 3-5

c03.indd   53c03.indd   53 10/31/08   6:19:53 PM10/31/08   6:19:53 PM



Chapter 3: SQL Server Tools

54

 When you hover over one of the guide diamonds, the docking target area of the window is designated 
with a translucent shaded rectangle. As you see in Figure  3 - 6 , you can also use the guide diamonds in 
the center cluster of the window. If a window is already docked in that area, using the center guide will 
dock your window adjacent to the existing window.   

Figure 3-6

 If you hover over an existing docked window, a separate set of guides will appear, allowing you to dock 
within this space or to create tabbed documents where the windows share screen real estate with other 
windows in the same space (see Figure  3 - 7 ).   

c03.indd   54c03.indd   54 10/31/08   6:19:54 PM10/31/08   6:19:54 PM



Chapter 3: SQL Server Tools

55

Figure 3-7

 If you get into trouble and can ’ t place a window where you want it, click to set focus to the window and 
then use the Window menu on the standard menu bar to toggle the window back to either Floating or 
Dockable. This should allow you to reposition the window as you like. 

 If you don ’ t have any experience with Microsoft ’ s development environment, the Visual Studio interface 
may take a little getting used to, but once you do, it is hard to imagine any interface that works as well. 
It offers the advantage of being able to hide windows when you don ’ t need them but make them visible 
when you do, without having to reconfigure the interface. This conserves a great deal of screen real 
estate without having to click on several menus to expose the features you want. 

c03.indd   55c03.indd   55 10/31/08   6:19:55 PM10/31/08   6:19:55 PM



Chapter 3: SQL Server Tools

56

  Tool Windows 
 SQL Server Management Studio offers many different tool windows that facilitate the development and 
modification of database objects as well as the effective management of SQL Server. The various views 
are accessible from the View menu as well as the Standard toolbar. Each window can be configured as 
dockable, which is the default, but it can also be configured as a tabbed document or a floating window. 

  Object Explorer 
 Object Explorer is more than just a way to explore the database objects on a server; it is also a tool that 
can be used to create basic template scripts for selecting, inserting, updating, and deleting data. As 
shown in Figure  3 - 8 , Object Explorer is arranged in a standard tree view with different groups of objects 
nested in folders.   

Figure 3-8

 Object Explorer ’ s functionality is exposed through the context menu. Right - clicking on any object or 
folder within Object Explorer exposes the list of available options. For example, right - clicking on a 
table exposes the context menu shown in Figure  3 - 9 . Putting the mouse over the Script Table As option 
exposes additional options for creating basic scripts for that table, as also shown in Figure  3 - 9 .   

c03.indd   56c03.indd   56 10/31/08   6:19:56 PM10/31/08   6:19:56 PM



Chapter 3: SQL Server Tools

57

 The context menu also presents the ability to create scripts that manipulate the object. For example, 
right - clicking on a table exposes a context menu that allows the user to either view or modify the table 
structure through the graphical interface. This functionality exists for virtually every object that is visible 
in Object Explorer. 

 Another great feature of SQL Server Management Studio that is exposed through Object Explorer and 
other areas of the studio interface is the ability to create scripts based on actions performed in the 
graphical designers. For instance, right - clicking on the table folder and choosing to create a new table 
launches a graphical interface where the table structure can be defined. Once the table design is 
complete, you can either save the table, which creates it, or you can click the Generate Change Script 
button on the Table Designer toolbar (see Figure  3 - 10 ), which will write the appropriate T - SQL to 
complete the task.   

Figure 3-9

Figure 3-10

c03.indd   57c03.indd   57 10/31/08   6:19:56 PM10/31/08   6:19:56 PM



Chapter 3: SQL Server Tools

58

 Likewise when working with other objects in Management Studio, a Script button will appear at the top 
of the respective designer, which will cause the actions performed in the designer to be scripted to a new 
editor window. This feature is especially useful when several different objects of the same type are to be 
created. The first one can be designed in the designer, the script generated for it, and that script modified 
to create the remaining objects. It is also very useful to learn the syntax for creating and modifying 
objects. 

 In this example you will use Object Explorer to create a script to select data from the HumanResources.
Department table.   

  1.   In Object Explorer, click the + symbol to the left of Databases to expand the database folder. 
Then expand the AdventureWorks database folder and then the Tables folder.  

  2.   Right - click the HumanResources.Department table.  

  3.   On the context menu, click the Select Top 1000 rows item. Management Studio will generate a 
new query window with the script and execute it. 

  The new query window and the query results are displayed to the right of the Object Explorer 
(see Figure  3 - 11 ). Notice that the script generator places brackets around all the object names. 
This isn ’ t really required for the objects in this query, but the script generator defaults to this 
behavior in case an object has an embedded space or reserved word in it. We ’ ll discuss the 
particulars of object delimiting in Chapter  4 .       

Figure 3-11

c03.indd   58c03.indd   58 10/31/08   6:19:57 PM10/31/08   6:19:57 PM



Chapter 3: SQL Server Tools

59

  Code Editor 
 SQL Server Management Studio ’ s Code Editor provides the ability to open, edit, or create new queries. 
When you click New Query, the query window that opens is also known as the Code Editor. The Code 
Editor supports the following types of queries: 

   Database engine queries   —  Database engine queries are written in T - SQL.  

   Data mining queries   —  Data mining queries are created by using extensions to the SQL 
language called DMX, or Data Mining Extensions. DMX queries are written to return 
information from data mining models created in SQL Server Analysis Services.  

   Multidimensional queries   —  Multidimensional queries are written using Multidimensional 
Expressions (MDX). MDX queries are used to retrieve information from multidimensional cubes 
created in SQL Server Analysis Services.  

   XML for analysis queries   —  XMLA queries are built to create, manage, and manipulate 
Analysis Server objects.  

   SQL Server Compact Edition queries   —  Compact edition queries are used in mobile 
applications hosted by the Windows Mobile operating system and SQL Server Compact Edition.    

 The Code Editor is essentially a word processor. It provides color coding of syntax, multiple query 
windows, and partial code execution by highlighting the desired code and clicking the execute button or 
pressing F5. SQL Server documentation refers to the Code Editor as the Query Editor, the Text Editor, 
or simply the Editor, depending on what aspect of SQL Server you are reading about. 

 In SQL Server 2008, the basic functionality that the Code Editor brings is the same for all the possible types 
of queries it supports. For example, the Code Editor provides support for basic IntelliSense functions and 
code completion such as those found in Visual Studio. In SQL Server 2005 the code - completion and 
IntelliSense features are not available with T - SQL queries. IntelliSense and code - completion are discussed 
later in this chapter. The Code Editor window also provides direct access to a graphical query builder. 
Right - clicking on the Code Editor window, when that window is associated with a database engine query, 
results in a context menu that includes the Design Query in Editor option (see Figure  3 - 12 ). The Query 
Designer is very useful when writing queries against databases that you are not familiar with. At the end 
of this chapter is an exercise to show you how to use this useful tool to quickly create T - SQL queries.    

❑

❑

❑

❑

❑

Figure 3-12

c03.indd   59c03.indd   59 10/31/08   6:19:58 PM10/31/08   6:19:58 PM



Chapter 3: SQL Server Tools

60

  Solution Explorer 
 Before SQL Server 2005, organizing queries and object definitions was completely left to the DBA or 
database developer. The ability to organize and group scripts together or to check them in to a source 
control system was completely manual. SQL Server Management Studio takes full advantage of Visual 
Studio ’ s solution system by providing the means of grouping one or more projects that contain various 
connection objects and scripts into a single solution called a SQL Server Management Studio  solution . 
Each solution can have one or more projects associated with it. For example, if you are developing 
several objects for a new application that includes both database engine and analysis engine objects, you 
can create a new solution that links them all together by creating a SQL Server Management Studio 
solution and creating both a SQL Server Scripts and Analysis Server Scripts project in that solution. 
You do this, oddly enough, not by creating a new solution, which there is no option for, but instead by 
creating a new project by clicking the File menu and choosing New Project, which launches the New 
Project dialog (see Figure  3 - 13 ).    

Figure 3-13

 If no solution is currently open, Management Studio will create a new solution. If a solution is presently 
open, you will be given the choice of adding the project to the existing solution or closing the present 
solution and creating a new one. As you can see in Figure  3 - 13 , there are three types of projects from 
which to choose: 

  SQL Server Scripts projects contain T - SQL database engine queries.  

  Analysis Services Scripts projects contain MDX, DMX, and XMLA analysis queries.  

  SQL Server Compact Edition Scripts projects contain queries for the Compact Edition of SQL 
Server that is used in Windows Mobile devices.    

❑

❑

❑

c03.indd   60c03.indd   60 10/31/08   6:19:58 PM10/31/08   6:19:58 PM



Chapter 3: SQL Server Tools

61

 The solution is managed through a solution file with an .ssmssln extension. The example shown in 
Figure  3 - 13  created a new solution folder called AdventureWorksWebApp that contains a project folder 
called ProductCatalog. By default the solution folder and the first project folder will have the same 
name, so it is generally a good idea to change the name of the solution. The Create directory for solution 
option can also be cleared and a base solution folder specified. In this way only a project folder will be 
created in the specified directory. If a solution is already opened, creating a new project can add the 
project to the solution or be configured to create a whole new solution and close the open one. 

 In the solution folder are two files. One file is the solution file, which in this case is called 
AdventureWorksWebApp.ssmssln and contains a list of all the projects in the solution and their location. 
The second file is the solution options file, called AdventureWorksWebApp.sqlsuo. The solution options 
file contains information about the options that customize the development environment. 

 The solution folder will contain a project folder for every project added to the solution. The project folder 
contains all the project files including the project definition file. The project definition file is a XML file 
with the .ssmssqlproj extension. In the previous example this file is called ProductCatalog.ssmssqlproj. 
The project definition file contains the connection information as well as metadata about the remaining 
files in the project. 

 A rather annoying aspect of the Solution Explorer is that new queries are not automatically added to the 
solution if they are not added from the Solution Explorer itself. For example, suppose that you have 
created a new project and then click on the New Query button at the top left of Management Studio. 
A new query window will open, but the query will not be part of your open project. To ensure that new 
queries are added to the project, you need to right - click on the Queries folder and select New Query.  

  Properties Window 
 As shown in Figure  3 - 14 , the Properties window is linked to the Solution Explorer and simply displays 
the properties for the currently selected item in the Solution Explorer window. Editable properties will be 
bolded. If the Properties window is not visible, you can open it from the View menu or by pressing F4.    

Figure 3-14

c03.indd   61c03.indd   61 10/31/08   6:20:02 PM10/31/08   6:20:02 PM



Chapter 3: SQL Server Tools

62

  Registered Servers 
 Multiple servers can be registered and connected to with Management Studio. This allows the DBA to 
manage multiple servers in a single environment. The Registered Servers window is not visible by 
default. To display it, click the View menu and choose Registered Servers, or press Ctrl+Alt+G. 
Right - clicking anywhere in the Registered Servers window will expose a context menu that allows for 
the addition of new server registrations. It also allows for the creation of server groups. If you have 
multiple servers in your organization, server groups can be very useful. For instance, server registrations 
can be segregated so that all the test and development servers are in one group and the production 
servers are in another, or servers could be grouped based on function or department. Instances of the 
database engine, analysis services, reporting services, integration services, and SQL Server Compact 
Edition can be registered in the Registered Servers window. Once registered, the Registered Servers 
window provides the ability to manage the associated services or quickly connect Object Explorer to that 
server instance, as shown in Figure  3 - 15 .    

Figure 3-15

  Bookmark Window 
 When working with very large scripts in the Code Editor, it is very useful to be able mark a location in 
the script. Bookmarks enable this functionality. The Bookmark window is made visible with the View 
menu and is enabled when working with any SQL Server script type. Any number of bookmarks can be 
created and then renamed with an intuitive name that identifies the bookmark. If the script is part of a 
solution, the bookmarks are saved with the solution in the solution options file. Bookmarks can be 
organized in to multiple folders for each project. Figure  3 - 16  shows the bookmark window open and a 
bookmark called Catch Block.    

c03.indd   62c03.indd   62 10/31/08   6:20:05 PM10/31/08   6:20:05 PM



Chapter 3: SQL Server Tools

63

  Toolbox 
 The toolbox contains maintenance plan tasks that can be dragged to the Maintenance Plan designer used 
by database administrators to create maintenance plans for routine scheduled maintenance, such as 
database backups and index maintenance operations.  

  Object Explorer Details 
 The Object Explorer Details pane is displayed by default and is a great deal like the list or detail view in 
Windows Explorer.  

  Web Browser 
 Your default web browser can be launched from within SQL Server Management Studio to minimize the 
number of open applications and to allow direct access to Internet content from within the Management 
Studio application. This is done from the View menu by choosing Web Browser.  

  Template Explorer 
 The Template Explorer contains hundreds of SQL Server, Analysis Server, and SQL Mobile scripts. Each 
script is grouped into folders based on their function. The template scripts can be opened by being 
dragged on to an open query window. If no query window is open, the templates can be opened 
through a double mouse click, the Edit menu, or right - click context menu, all of which cause a new 
query window to open. Once a template is open in the Query Editor, the parameters of the template can 
be replaced with actual values by launching the Specify Values For Template Parameters dialog. This 
dialog can be launched from the SQL Editor toolbar or through the Query menu.  

  Error List 
 The Error List window is available only with SQL Server 2008 and contains a list of all errors detected in 
the open query window (see Figure  3 - 17 ).     

Figure 3-16

c03.indd   63c03.indd   63 10/31/08   6:20:06 PM10/31/08   6:20:06 PM



Chapter 3: SQL Server Tools

64

  Toolbars 
 SQL Server Management Studio provides several different toolbars that expose features from various 
menus. Each toolbar can be displayed or hidden in the typical Windows toolbar method of selecting 
View    Toolbars and choosing which toolbars to display. In addition, you can customize the toolbars to 
display only the buttons most often used by right - clicking the toolbar and choosing Customize. 

  Database Diagram Toolbar 
 The Database Diagram toolbar exposes a great deal of functionality for use on database diagrams. The 
toolbar is not used just for diagramming the database, but also for modifying or creating database 
objects from within the diagram interface. The toolbar is not displayed by default when working with 
database diagrams. It must be selected through the View    Toolbars menu. In addition, a menu item 
labeled Database Diagram will appear on the menu bar when a database diagram is open. The menu 
has the same options as the toolbar. The Database Diagram toolbar features are described in the 
following table. 

     Feature      Purpose   

    New Table    Enables the creation of new tables from within the database diagram.  

    Add Table    Adds an existing table from the database to the diagram.  

    Add Related Tables    If you select a table in the database diagram and click on the Add 
Related Tables button, all the tables that are related by a declarative 
Foreign Key constraint will be added to the diagram.  

    Delete Tables From 
Database  

  Not only removes the table from the diagram, but deletes the table 
and its contents as well.  

    Remove From Diagram    Removes the selected table from the diagram.  

Figure 3-17

c03.indd   64c03.indd   64 10/31/08   6:20:06 PM10/31/08   6:20:06 PM



Chapter 3: SQL Server Tools

65

     Feature      Purpose   

    Generate Change Script    Any changes made to database objects in the diagram, such as 
creating, deleting, or modifying of attributes, can be sent to a script. 
If changes are made to underlying objects and the diagram is saved, a 
prompt is shown asking to confirm changes to the underlying objects.  

    Set Primary Key    Sets or changes the primary key assignment to the selected column.  

    New Text Annotation    Adds a textbox for annotation to the database diagram.  

    Table View    Enables the changing of table presentation in the diagram, including 
a customized view to configure exactly what aspects of the table are 
displayed.  

    Show Relationship Labels    Displays or hides the name of the foreign key constraints.  

    View Page Breaks    Displays or hides page break lines to enable the organization of 
diagrams for printing.  

    Recalculate Page Breaks    Re - centers table objects onto as few pages as possible after being 
manually arranged on the diagram.  

    Autosize Selected Tables    Resizes tables to fit the diagram in the smallest size that still shows all 
fields.  

    Arrange Selection    Arranges selected tables so that they do not overlap and are viewable 
in the diagram.  

    Arrange Tables    Arranges all tables so that they do not overlap and are viewable in the 
diagram.  

    Zoom    Increases or decreases the zoom factor on the displayed diagram.  

    Relationships    Launches a dialog that displays existing foreign keys defined on a 
selected table and enables the defining of additional foreign keys.  

    Manage Indexes and 
Keys  

  Launches a dialog that displays existing primary and unique keys 
defined on a selected table and enables the defining of additional keys.  

    Manage Full - Text Index    Launches a dialog that displays existing full - text indexes on a selected 
table and enables the defining of additional full - text indexes on full -
 text index enabled databases.  

    Manage XML Indexes    Launches a dialog that displays existing XML Indexes on a selected 
table and enables the defining of additional XML indexes.  

    Manage Check 
Constraints  

  Launches a dialog that displays existing check constraints on a 
selected table and enables the defining of additional check constraints.  

    Manage Spatial Indexes    Launches a dialog that displays existing spatial indexes on a selected 
table and enables the defining and creation of new spatial indexes 
that are associated with the new  geometry  data type included with 
SQL Server 2008.  

c03.indd   65c03.indd   65 10/31/08   6:20:07 PM10/31/08   6:20:07 PM



Chapter 3: SQL Server Tools

66

  Help Toolbar 
 The Help toolbar provides a very easy and convenient mechanism for consulting online help articles 
while using Management Studio.  

  Query Designer Toolbar 
 The Query Designer toolbar is enabled when a table is opened with SQL Server 2005 ’ s Object Explorer or 
when the top 200 rows are opened for edit in SQL Server 2008. 

 To open a table in SQL Server 2005: 

  1.   Right - click the table you want to open in Object Explorer.  

  2.   Click Open Table.    

 To open the top 200 rows for edit in SQL Server 2008: 

  1.   Right - click the table you want to open in Object Explorer.  

  2.   Click Edit Top 200 Rows.    

 If the Query Designer toolbar was not visible, it will be when the table is opened. If it was visible, it 
will now be enabled. Although opening a table in a test and development environment is probably 
acceptable, opening a table in this manner in a production environment is not recommended. Opening a 
table with Object Explorer dumps the data from the table into a memory object called an  updateable 
scrollable cursor . What this means is that while the table data is exposed in the results window, any 
change to the displayed data is made to the underlying data in the table. This can be very dangerous. 
Displaying the entire contents of the table also can consume a great deal of server resources if the table is 
large. As a general rule, if the entire contents of a table need to be exposed the best way is to write a 
query with no filters, such as: 

SELECT * FROM Person.Address  

 This exposes the same information as opening the table but does not populate an updateable cursor, so 
the results are read - only. If the data in that table needs to be updated, an update command (which is 
covered in Chapter  10 ) is more appropriate than modifying the data in an open table results window. 
Because the ability to open a large table is generally not a good idea, SQL Server 2008 replaced that 
ability with the new Edit Top 200 Rows feature. 

c03.indd   66c03.indd   66 10/31/08   6:20:07 PM10/31/08   6:20:07 PM



Chapter 3: SQL Server Tools

67

 The following table describes the Query Designer toolbar features. 

     Feature      Purpose   

    Show Diagram Pane    Displays or hides the diagram pane that can be used to add or 
remove tables from the query, add derived tables, and configure 
table join criteria.  

    Show Criteria Pane    Displays or hides the criteria pane which can be used to alias 
column names, establish sort orders, and configure filter criteria.  

    Show SQL Pane    Displays or hides the SQL pane which displays the resultant SQL 
syntax from the diagram pane. The SQL syntax can also be 
manipulated in the SQL pane resulting in changes to the criteria and 
diagram panes.  

    Show Results Pane    Displays or hides the results of the query if it has been executed.  

    Change Type    Allows changing the type of query from  SELECT  to  INSERT ,  DELETE  
or  UPDATE.   

    Execute SQL    Executes the query against the database.  

    Verify SQL Syntax    Validates the syntax of the query, but does not execute it.  

    Add Group By    Adds a  GROUP BY  expression and formats the query so that 
non - aggregated columns in the  SELECT  list are present in the  GROUP 
BY  list.  

    Add Table    Adds an existing table to the diagram pane and SQL pane.  

    Add New Derived Table    Adds an empty table to the diagram pane and the shell syntax for 
creating a derived table subquery to the SQL pane.  

  Source Control Toolbar 
 The Source Control toolbar is enabled when working with scripts and a Source Control plug - in has been 
configured, such as Visual Source Safe or Visual Studio Team System. The following table describes the 
toolbar options. 

c03.indd   67c03.indd   67 10/31/08   6:20:08 PM10/31/08   6:20:08 PM



Chapter 3: SQL Server Tools

68

     Feature      Purpose   

    Change Source 
Control  

  Displays a dialog that enables the linking of new and existing items in the 
Solution Explorer to a source control database folder.  

    Get Latest Version    Opens the latest version of the item or items selected in the Solution Explorer.  

    Get    Returns a list of all versions of the selected item and allows the selection of 
a particular version.  

    Check Out for 
Edit  

  Opens the selected items for editing and marks its status in the source 
control database as Open for Edit, preventing other users from editing it at 
the same time.  

    Check In    Saves changes and marks the selected items in the source control database 
as Checked In, and allows editing by other users.  

    Undo Checkout    Discards any changes and marks the selected item in the source control 
database as Checked In, and allows editing by other users.  

    View History    Displays the history of a project, which includes a list of everything done to 
the project from creation to deletion.  

    Refresh Status    Queries the source control database for the most recent status of all project 
items.  

    Share    Allows for a single item to be shared in multiple projects. Changes made to 
shared items are reflected in all the projects that use the item.  

    Compare    Compares an item to a previous version to expose the changes made.  

    Properties    Displays detailed status information on the selected item.  

    Source Control 
Manager  

  Launches the associated source control application as identified in the 
Managements Studio options settings.  

  SQL Editor Toolbar 
 The SQL Editor toolbar becomes visible, or is enabled if already visible, when a new SQL query window 
is opened. The toolbar provides the most common features used by SQL programmers and DBAs. The 
supported features are described in the following table. 

     Feature      Purpose   

    Connect    Queries can be written without being connected to a database. So, 
when it comes time to execute the query or validate its syntax against 
a database, the Connect button displays a server connection dialog 
that enables the selection of the applicable server and database.  

    Change Connection    Enables you to change the connected server. A script can be created 
and tested on a test and development server and then the connection 
changed to the production server for execution.  

c03.indd   68c03.indd   68 10/31/08   6:20:08 PM10/31/08   6:20:08 PM



Chapter 3: SQL Server Tools

69

     Feature      Purpose   

    Available Databases    Displays a drop - down list box for selecting the database context for 
the query.  

    Execute    Executes the SQL in the current window against the selected database.  

    Debug    The debug feature is only included with SQL Server 2008. It 
enables the SQL programmer to systematically step through large 
scripts to debug and track logic flow. Debugging is covered in more 
detail later in the chapter.  

    Parse    Checks the SQL in the current window for valid structure and syntax. 
It does  not  check to ensure that referenced objects actually exist.  

    Cancel Executing Query    Terminates the present query.  

    Display Estimated 
Execution Plan  

  Displays a graphical execution plan for the current window. It does 
not actually execute the query, but simply checks the metadata of the 
referenced object and builds a query plan based on current 
information.  

    Design Query in Editor    Launches the Graphical Query Editor.  

    Specify Values for 
Template Parameters  

  Displays a dialog that enables the replacement of template parameters 
with defined values.  

    Include Actual Execution 
Plan  

  Returns a graphical query plan used during execution, along with the 
results of the query.  

    Include Client Statistics    Returns client statistics, including statistics about the query, network 
packets, and the elapsed time of the query, along with the query results.  

    SQLCMD Mode     SQLCMD  replaces  OSQL  as the command - line SQL tool. SQLCMD Mode 
allows the editing and testing of command - line scripts in the editor.  

    Results to Text    Formats the results of any query executed in the Query Editor as text.  

    Results to Grid    Returns query results in a grid. By default, grid results cannot exceed 
65,535 characters.  

    Results to File    When a query is executed, a Save Results window will appear, 
prompting for a file name and location.  

    Comment Out Selected 
Lines  

  Adds in - line comment marks to comment out the selected lines.  

    Uncomment Selected 
Lines  

  Removes in - line comment marks.  

    Decrease Indent    Decreases the indent of selected text.  

    Increase Indent    Increases the indent of selected text.  

c03.indd   69c03.indd   69 10/31/08   6:20:09 PM10/31/08   6:20:09 PM



Chapter 3: SQL Server Tools

70

  SQL Compact Edition Toolbar 
 The SQL Compact Edition toolbar becomes visible, or is enabled if already visible, when a new SQL 
Compact Edition query window is opened. The tools on the toolbar are a subset of the SQL Editor tools 
showing only those that are applicable for SQL Compact Edition queries.  

  SQL Server Analysis Services Editor Toolbar 
 The Analysis Services toolbar also becomes visible, or is enabled if already visible, when a new analysis 
query is opened or created. The tools on this toolbar are also a subset of the SQL Editor tools, but contain 
only those tools applicable to Analysis Services queries (DMX, MDX, XMLA).  

  Standard Toolbar 
 The Standard toolbar provides buttons to execute the most common actions, such as opening and saving 
files. It also provides buttons that will launch new queries and expose different tool windows.  

  Table Designer Toolbar 
 The Table Designer toolbar becomes visible, or is enabled if already visible, when either a new table 
is created using Table Designer or an existing table is modified using the Table Designer. The Table 
Designer is launched by right - clicking on the table node in the Object Explorer and choosing New Table 
from the context menu, or by right - clicking on an existing table in the table node of Object Explorer and 
choosing Design. The Table Designer toolbar has buttons that enable the creation or deletion of primary 
keys on a table, as well as launching dialogs for creating and managing indexes, constraints, and table 
relationships.  

  Text Editor Toolbar 
 As previously described, Management Studio supports a few different languages, with each language 
having its own specific toolbar. The Text Editor toolbar offers additional shortcuts to those provided in 
the other language - specific editors. The features are described in the following table. 

     Feature      Purpose   

    Display an Object Member List    When you are editing DMX, MDX, or XMLA scripts, this 
feature invokes an IntelliSense window that displays a list 
of possible script members. IntelliSense features are not 
available when working with SQL scripts.  

    Display Parameter Info    Displays the parameter list for system stored procedures 
and functions used with Analysis Services.  

    Display Quick Info    Displays declaration information for XML objects created 
or referenced in an XMLA script.  

    Display Word Completion    Displays possible words to complete a variable, command, 
or function call. If only one possible option exists, it is 
implemented.  

    Decrease Indent    Decreases the indent of selected text.  

c03.indd   70c03.indd   70 10/31/08   6:20:09 PM10/31/08   6:20:09 PM



Chapter 3: SQL Server Tools

71

     Feature      Purpose   

    Increase Indent    Increases the indent of selected text.  

    Comment Out Selected Lines    Adds in - line comment marks to comment out the selected 
lines.  

    Uncomment Selected Lines    Removes in - line comment marks.  

    Toggle a Bookmark on the Current 
Line  

  Adds or removes a bookmark to the current script at the 
position of the cursor.  

    Move the caret to the previous 
bookmark  

  Moves the cursor to the previous set bookmark in the 
current script project.  

    Move the caret to the next 
bookmark  

  Moves the cursor to the next set bookmark in the current 
script project.  

    Move the caret to the previous 
bookmark in the current folder  

  Moves the cursor to the previous set bookmark in the 
currently selected bookmark folder of the bookmark 
window.  

    Move the caret to the next 
bookmark in the current folder  

  Moves the cursor to the next set bookmark in the currently 
selected bookmark folder of the bookmark window.  

    Move the caret to the previous 
bookmark in the current document  

  Moves the cursor to the previous set bookmark in the 
current script window.  

    Move the caret to the next 
bookmark in the current document  

  Moves the cursor to the next set bookmark in the current 
script window.  

    Clear all bookmarks in all files    Removes all configured bookmarks from the current 
project.  

  View Designer Toolbar 
 The View Designer toolbar is almost exactly like the Query Designer toolbar, with the exception of being 
limited to writing  SELECT  queries. In addition, queries written with the View Designer are saved as 
views and not just as query scripts.   

  SQL Server Management Studio Configuration 
 Management Studio ’ s look and feel can be customized through the Tools    Options menu. The Options 
dialog, shown in Figure  3 - 18 , enables you to customize the Management Studio IDE. The configuration 
options are divided into the following seven areas.   

c03.indd   71c03.indd   71 10/31/08   6:20:09 PM10/31/08   6:20:09 PM



Chapter 3: SQL Server Tools

72

  Environment 
 The Environment section is broken down into the following four sub - areas: 

   General   —  The General section provides startup options and environment layout, such as 
tabbed windows versus MDI (Multiple Document Interface) windows and how the windows 
behave.  

   Fonts and Colors   —  The fonts and colors used in the text editor are extraordinarily customizable 
in this area. The color and font used for reserved words, stored procedures, comments, and 
background colors are just a sampling of what can be changed.  

   Keyboard   —  For those database administrators who are used to Query Analyzer ’ s keyboard 
shortcuts, this configuration area enables the setting of the keyboard shortcuts to the same ones 
used in Query Analyzer. The keyboard configuration area also allows for the addition of custom 
keyboard shortcuts.  

   Help   —  The Help area enables the integration of Help into a Management Studio window or the 
ability to launch Help externally. It also enables you to customize local and online help 
resources.     

  Text Editor 
 The Text Editor section, which enables you to customize various text editors, is divided into the 
following four sub - areas: 

   File Extension   —  File extensions for all the possible script and configuration files can be 
configured in the File Extension area. Known file extensions such as .sql, .mdx, .dmx, and .xml 
are not listed but are automatically associated with their respective editors. They can be 
reassigned with a  “ with encoding ”  option so that Management Studio will prompt for specific 
language encoding every time an associated file type is opened. Custom file extensions can also 
be added.  

❑

❑

❑

❑

❑

Figure 3-18

c03.indd   72c03.indd   72 10/31/08   6:20:10 PM10/31/08   6:20:10 PM



Chapter 3: SQL Server Tools

73

   All Languages   —  The All Languages area is divided into two parts  —  General and Tabs  —  and 
provides configuration settings for IntelliSense features, word - wrap, line numbers, and 
indentation for all script languages. Keep in mind that IntelliSense options have no impact on 
SQL scripts in SQL Server 2005. IntelliSense for T - SQL scripts is new to SQL Server 2008.  

   Plain Text   —  The Plain Text configuration settings are for plain text documents not associated 
with a particular scripting language.  

   XML   —  This area provides configuration settings for XML documents. These settings consist of 
the same settings from the All Languages area as well as XML - specific settings such as 
automatic formatting and schema download settings.     

  Query Execution 
 The Query Execution section provides configuration options for how queries are executed as well as 
connection properties and timeout settings. The Query Execution section is divided into two sub - areas: 

   SQL Server   —  The SQL Server area has configuration options that control the maximum row 
count and the maximum amount of text or Unicode text that is returned to the Management 
Studio results window. This area also has options to specify a batch delimiter other than  GO  and 
to specify query execution time - out settings. Batch delimiters are discussed in Chapter  4 . There 
is also an advanced and ANSI area that provides for the configuration of specific connection -
 level options.  

   Analysis Services   —  This area provides configuration setting to control the execution timeout 
setting for Analysis Services queries.     

  Query Results 
 The Query Results section provides configuration options for how query results are formatted and is 
also divided into the same two sub - areas as the Query Execution settings.   

   SQL Server   —  The SQL Server section has configuration options to specify the default location 
for query results  —  to a grid, as text, or to a file  —  as well as the default location for results sent 
to a file.  

   Analysis Services   —  Configuration settings for Analysis Services query results include showing 
grids in separate tabs and playing the default windows beep when the query completes. Both 
settings are disabled by default.     

  SQL Server Object Explorer 
 SQL Server 2008 provides an additional section that enables you to configure the amount of records 
displayed by default when querying the audit log, as well as the amount of records returned in 
SQL Server 2008 ’ s new context menu choices of Edit Top  < n >  Rows and Select Top  < n >  Rows 
(see Figure  3 - 19 ). The new choices are shown when right - clicking a table in Object Explorer, as shown in 
Figure  3 - 20 . This section also provides the ability to configure scripting defaults. The scripting menu is 
also available in SQL Server 2005.    

❑

❑

❑

❑

❑

❑

❑

c03.indd   73c03.indd   73 10/31/08   6:20:12 PM10/31/08   6:20:12 PM



Chapter 3: SQL Server Tools

74

Figure 3-19

Figure 3-20

  Designers 
 The Designers section provides configuration options for the graphical designers used in Management 
Studio. The Designers section is divided into three sub - areas: 

   Table and Database Designers   —  The Table and Database Designers area allows for the 
configuration of specific designer behavior.  

   Maintenance Plans   —  The Maintenance Plans options determine the way new shapes are added 
to the maintenance plan design area.  

   Analysis Services Designers   —  The Analysis Services Designers page provides options to set 
the connection timeout for the Analysis designers and the colors for the Data Mining Model 
viewer.     

  Source Control 
 The Source Control configuration section allows for the integration of a source control plug - in, such as 
Visual Source Safe or Visual Studio Team System.    

❑

❑

❑

c03.indd   74c03.indd   74 10/31/08   6:20:13 PM10/31/08   6:20:13 PM



Chapter 3: SQL Server Tools

75

  SQL Server Business Intelligence 
Development Studio 

 The SQL Server Business Intelligence Development Studio, or BI Studio, is actually Visual Studio. 
Regardless of whether Visual Studio is launched from the SQL Server menu as BI Studio or from the 
Visual Studio menu as Visual Studio, it launches the exact same application. If the full Visual Studio suite 
has not been installed, the only available project templates will be Business Intelligence projects. 
However, if the full suite is installed, all the installed features and templates will be available. 

 A complete discussion of the Visual Studio IDE is beyond the scope of this book, but a brief description 
is definitely in order. 

 Microsoft has divided business intelligence into three distinct pieces: integration, analysis, and 
reporting. These three parts of the business intelligence package are implemented through SQL Server 
Integration Services, SQL Server Analysis Services, and SQL Server Reporting Services, respectively. 
Correspondingly, the BI Studio provides business intelligence project templates that focus on these three 
areas. The following table briefly describes the available templates. 

     Template      Description   

    Integration Services Project    Integration Services projects are used to create robust Extract -
 Transform - Load (ETL) solutions to enable the moving and 
transforming of data.  

    Analysis Services Project    Analysis Services projects are used to create SQL Server Analysis 
Services databases that expose the objects and features of 
analysis cubes used for complex data analysis.  

    Import Analysis Services 9.0 
Database  

  The import project enables the creation of an Analysis Services 
project from an existing SQL Server Analysis Services database. 
It essentially reverse - engineers the project from an existing 
database and creates a project from an existing Analysis Services 
database.  

    Report Server Project    Report Server projects are used to create and deploy enterprise 
reports for both traditional (paper) and interactive reports.  

    Report Server Project Wizard    The Report Server Project Wizard offers the same functionality 
as the Report Server Project option, but starts the development 
of the project in a step - by - step process that guides the user 
through the various tasks required to create a report. As with 
many wizards, this one leaves the project in a skeleton phase 
that will require more detailed finalization.  

    Report Model Project    Report Model projects are used to create and deploy SQL Server 
Reporting Services report models, which can in turn be used by 
end users to create reports using the Report Builder tool.  

c03.indd   75c03.indd   75 10/31/08   6:20:18 PM10/31/08   6:20:18 PM



Chapter 3: SQL Server Tools

76

  SQL Server Profiler 
 The SQL Server Profiler is an absolutely essential tool for both database administrators and database 
developers alike. The Profiler provides the ability to monitor and record virtually every facet of SQL 
Server activity. It is actually a graphical interface for SQL Trace, which is a collection of stored procedures 
and functions that are used to monitor and record server activity. A complete discussion of Profiler is 
beyond the scope of this book. For more information on the Profiler, check out  Beginning SQL Server 2005 
Administration  (Wrox).  

  Database Tuning Advisor 
 The Database Tuning Advisor (DTA) can analyze SQL Server scripts or SQL Server Profiler traces to 
evaluate the effective use of indexes. It can also be used to get recommendations for building new 
indexes, indexed views, or for creating physical table partitions. The DTA is a useful tool for database 
administrators and is described in detail in the book  Beginning SQL Server 2005 Administration  (Wrox).  

  SQL Server Configuration Manager 
 The SQL Server Configuration Manager is a Microsoft Management Console (MMC) snap - in used to 
manage all the services and protocols used by an instance of SQL Server. Each instance of SQL Server is 
divided into three nodes: SQL Server Services, SQL Server Network Configuration, and SQL Native 
Client Configuration. This tool is almost exclusively used by database administrators and is explained in 
detail in  Beginning SQL Server 2005 Administration  (Wrox).  

  Command - Line Tools 
 SQL Server comes with plenty of great graphical tools to accomplish almost everything you could ever 
need to do, but there also comes a time when a simple command - line tool is the best tool for the job. 
The two tools used most frequently are  SQLCMD  and  BCP , but there are many more. This section will 
describe just the  SQLCMD  utility because it is the one that will be used with T - SQL. For more information 
about all the command - line tools supported by SQL Server, check out SQL Server Books Online under 
the topic  “ Command Prompt Utilities. ”  

  SQLCMD 
 The  SQLCMD  utility replaced  OSQL  starting with SQL Server 2005 as the utility used to execute T - SQL 
statements, stored procedures, and SQL script files from the command prompt.  SQLCMD  utilizes OLE DB 
(Object Linking and Embedding, Data Base) as the interface to connect to SQL Server and execute T - SQL. 
OLE DB is a very efficient mechanism for connecting to databases and provides many more error 
handling and connection options than the classic ODBC (Open Data Base Connectivity) connection 
objects used with OSQL. 

c03.indd   76c03.indd   76 10/31/08   6:20:19 PM10/31/08   6:20:19 PM



Chapter 3: SQL Server Tools

77

 The  SQLCMD  utility enables you to use variables, connect to servers dynamically, query server 
information, and pass error information back to the calling environment. 

  SQLCMD  supports several arguments that change the way it behaves and how it connects to an instance of 
SQL Server. An abbreviated list is included in the following table. For a complete list of the argument 
options, consult SQL Server Books Online under the topic  “ SQLCMD Utility. ”  Note that  SQLCMD  
command - line arguments are case sensitive. 

     Argument      Description   

      - S     Specifies the SQL Server instance name for  SQLCMD  to connect to  

      - E     Configures  SQLCMD  to use a trusted connection  

      - U     Specifies the user name to use when connecting with a SQL Server login  

      - P     Specifies the password to use when connecting with a SQL Server login  

      - i     Specifies the T - SQL script input file to run  

      - o     Specifies the output text file to return the results of a  SQLCMD  execution  

      - v     Specifies the parameter(s) to pass to a  SQLCMD  script execution  

      - A     Designates the  SQLCMD  connection as a Dedicated Administrator Connection (DAC)  

 The  SQLCMD  utility typically is used to execute saved T - SQL scripts in batch processes. This functionality 
is further enhanced by the ability of  SQLCMD  to accept scripting parameters. SQL Server Management 
Studio makes the creation of  SQLCMD  scripts even easier with its SQLCMD Mode. You can write and test 
the scripts with Management Studio by selecting SQLCMD Mode on the SQL Editor toolbar. 

 Multiple variables can be declared and their values set with the  SETVAR  command as well as passed in 
to a SQLCMD script with the   – v  argument. The following example shows how to use multiple  SETVAR  
commands by creating two variables, ColumnName and TableName. The  SETVAR  command not only 
creates the variables, it also specifies the value of the variables.   

USE AdventureWorks2008

GO

:SETVAR ColumnName “Name” 

:SETVAR TableName “Production.Product”

SELECT $(ColumnName)

FROM $(TableName)  

 When testing this example, make sure to select the SQLCMD mode on the Query menu so that the query 
is run through the SQLCMD command. (see Figure  3 - 21 ).   

c03.indd   77c03.indd   77 10/31/08   6:20:19 PM10/31/08   6:20:19 PM



Chapter 3: SQL Server Tools

78

 Now let ’ s use the  SQLCMD  utility from the command prompt. First, modify the preceding example and 
remove the  SETVAR  commands. Then save the script to a file as GetProducts.SQL. I am saving it to 
the root of my C: drive. The script should look like the following example: 

USE AdventureWorks2008

GO

SELECT $(ColumnName)

FROM $(TableName)  

 You could execute this script with the  SQLCMD  utility by using the following command line: 

SQLCMD /E /S WoodVista /i C:\GetProducts.SQL /v ColumnName=”Name” TableName = 

“Production.Product”  

 Because  SQLCMD  isn ’ t a particularly interactive environment, actions must be performed using a 
single - line command. When you launch  SQLCMD , you must provide login information   —   either a 
username and password for SQL Server authentication, or a switch to indicate that you want to use 
integrated Windows security. The following example uses integrated security by using the  /E  switch. 
(This stands for Enterprise security.) Note that the documentation for the  /E  switch shows that this 
means  trusted connection . I am using it with the  /S  switch that specifies the server to connect to. If the 
server is not specified, the  SQLCMD  utility will attempt to connect to the local default instance of SQL 
Server. When you press Enter, a new prompt is displayed that shows the first line of a T - SQL batch along 
with a caret symbol: 

SQLCMD /E /S WoodVista

1 >   

Figure 3-21

c03.indd   78c03.indd   78 10/31/08   6:20:20 PM10/31/08   6:20:20 PM



Chapter 3: SQL Server Tools

79

 This indicates that you are now working in the  SQLCMD  environment rather than at the command 
prompt. It also lets you know that this is the first line in a batch process.  SQLCMD  runs all commands in 
batch mode and doesn ’ t actually execute any commands until you explicitly tell it to, using the  GO  
command. You can write as many lines of code as you want, but they will not be executed until the 
 GO  command is specified. You can think of the  GO  command very much the same as the Execute button 
on the SQL Editor toolbar. SQL batches are explained in detail in Chapter  4 . For now, I ’ ll continue to 
enter SQL commands and then type  GO  when I ’ m ready to execute the entire batch. Notice that the 
batch line number resets after every  GO  statement (Figure  3 - 22 ).   

SQLCMD -E -S WoodVista

1 > USE AdventureWorks2008

2 > GO

Changed database context to ‘AdventureWorks2008’

1 > SELECT Name, ListPrice FROM Production.Product WHERE ProductID = 879

2 > GO

Name                                           ListPrice

-------------------------------------------------  ---------

All-Purpose Bike Stand                             159.0000

                   

 < 1 Rows affected > 

1 >   

 Although the  SELECT  command asked only to return two columns, the results used up most of my 
screen real estate. Each character type column will use the maximum number of allocated characters. 
This means that if you have a column defined as  varchar(255) , even if the actual data doesn ’ t take 
up this much space, this column will require 255 characters of screen space, not allowing much room for 
anything else. Another drawback to using this interface for returning data is that little of the result set is 
held in memory after the query runs. You can scroll the command window up to view some text, but this 
is very limited. 

 The  EXIT  command is used to leave  SQLCMD  and return to a command prompt. Type  EXIT  again to 
close the command prompt window.   

  Writing Queries 
 Now that we have taken a look at the tools available, let ’ s spend a little time using Management Studio 
to create queries. 

 Creating a query in SQL Server Management Studio involves defining a connection to a data source 
and opening an editor window. A query can be saved to a script file or simply used as a temporary 
workspace. To create a new SQL query, use the New Query button on the Standard toolbar, as shown in 
Figure  3 - 22 .   

c03.indd   79c03.indd   79 10/31/08   6:20:21 PM10/31/08   6:20:21 PM



Chapter 3: SQL Server Tools

80

 If you are presently connected to a server with the Object Explorer, a new Query window will open 
connected to that server. If you are connected to multiple servers with Object Explorer, the query 
window will open connected to whichever server was last selected. When working with multiple 
servers, be careful that the query window is associated with the correct server. Running ad - hoc code 
accidently on a production system can quickly get you into deep trouble with the DBA. If you are not 
connected to a server with Object Explorer, a connection dialog for the query window will open. 

 With the new query window open, you will probably need to specify the database you would like to 
use. If the database of interest was selected in Object Explorer when you opened the new query window, 
the window’s database context will be set to it. If not, you will have to specify the database manually. 
You can do this in one of two ways. With a query window open, the SQL Editor toolbar is displayed 
with a drop - down list of available databases from the current data source (server), as shown in 
Figure  3 - 23 . In the drop - down list, select the database you want to use. All the examples in this book 
use the AdventureWorks2008 database, but they will also work with SQL Server 2005 version of the 
database, regardless if it is running on SQL Server 2005 or 2008. Simply omit the 2008 from the names 
if you are not using the SQL Server 2008 version. Using the database drop - down list has the same effect 
as the second way of setting context  —  typing the SQL command  USE (  database_name  ) , as shown in 
following example.   

Figure 3-22

Figure 3-23

c03.indd   80c03.indd   80 10/31/08   6:20:21 PM10/31/08   6:20:21 PM



Chapter 3: SQL Server Tools

81

 Now for a simple query: To set the database context and then list all the columns and rows in the 
Production.Product table, type the following SQL expression: 

USE AdventureWorks2008

GO

SELECT * FROM Production.Product  

 After typing this text into the query window, run the query by either clicking the Execute button on the 
SQL Editor toolbar (that ’ s the button with the red exclamation mark) or by pressing F5. When you do 
this, your computer will go to work and look up about 500 product records. While the query is running, 
a small, animated icon of a spinning green circle is displayed in the status bar at the bottom of the 
window. When it ’ s done, summary information will be displayed with the running time and the number 
of records returned. The rows are displayed in a new window pane at the bottom of the Management 
Studio window. Although this is a very simple example, anything else that you would do to retrieve 
data, regardless of how complex, will be an extension of this simple exercise. 

  Scripting Options 
 SQL statements can be very verbose and often require a lot of typing. Much of this work can be 
minimized by letting the Management Studio do the work for you. Most common actions can 
be scripted automatically using a few simple menu selections. There are too many methods for scripting 
a query and too many actions to perform to demonstrate here. And the menu selections are, for the most 
part, self - explanatory. But the following Try It Out section should get you started.  

  Try It Out   

  1.   Using the Object Explorer, expand the AdventureWorks2008 database and then the Tables 
folder. Under this folder, you will see a list of all the tables in the database. You want to 
generate a script to return all the columns in the Sales.SalesOrderDetail table.  

  2.   Scroll down until you see Sales.SalesOrderDetail . Right - click this item and navigate through 
the menus, as shown in Figure  3 - 24 . You want to generate a  SELECT  statement to read and 
return rows from the table. You also want to display the script in a new query window, so 
choose New Query Editor Window.   

Figure 3-24

c03.indd   81c03.indd   81 10/31/08   6:20:22 PM10/31/08   6:20:22 PM



Chapter 3: SQL Server Tools

82

  The  SELECT  statement is generated and displayed in a new window (see Figure  3 - 25 ). You 
should know that many options can affect the way a query looks on the screen but the way 
the code looks doesn ’ t matter significantly to SQL Server. The automated script is formatted 
based on the creators of the scripting engine and is designed to make the script runnable in 
almost every environment. You should note a couple things about the format of this SQL 
script. The first thing to notice is the use of square brackets. Square brackets are used by the 
scripting engine to define object names. This is the defined behavior in case the object contains 
a reserved word, such as Transaction, or contains an embedded space, such as My Column. 
The use of square brackets is discussed in more detail in Chapter  4 , but know that their use is 
optional. The only time that it is required to define an object name is when that object name 
contains an embedded space or reserved word. There are no names in this query that meet 
those criteria, so it really doesn ’ t matter. Also, take a look at the line starting with the word 
 “ FROM. ”  The script includes the database name, schema name, and then the table name 
separated by periods. The database name is optional when you have elected to set this as a 
current database. Auto - generated script is generally very descriptive. Another interesting 
feature of the editor window is that a colored line will appear to the left of the code indicating 
the status of the code. By default, new code will be indicated by a yellow vertical line. 
After the script is saved, however, the line turns green.    

Figure 3-25

  3.   Finally, execute this query using the Execute button on the SQL Editor toolbar. After a few 
seconds the results will be displayed in a grid at the bottom of the window. Look at the status 
bar shown in Figure  3 - 26 . More than 121,000 rows were returned in about 4 seconds. The time 
it takes to run a query will depend on several factors, of course, so your results might differ 
from my results.         

c03.indd   82c03.indd   82 10/31/08   6:20:23 PM10/31/08   6:20:23 PM



Chapter 3: SQL Server Tools

83

  Using the Graphical Query Designer 
 The single - table queries written so far are fairly simple. Now you can start building a more complex 
query. To use the graphical query designer, right - click an empty query window and choose Design 
Query in Editor from the menu. If you need to edit existing query text, you can highlight the SQL and 
use this same technique to make changes using the query builder. The following Try It Out section 
demonstrates building a query using the AdventureWorks sample database.  

  Try It Out   

  1.   Open a new query window by clicking the New Query button on the standard toolbar, 
which is located on the upper - left of Management Studio by default.  

  2.   Set the database context to the AdventureWorks2008 database by choosing 
AdventureWorks2008 from the Available Databases drop - down on the SQL Editor toolbar 
(see Figure  3 - 27 ).     

Figure 3-26

Figure 3-27

c03.indd   83c03.indd   83 10/31/08   6:20:23 PM10/31/08   6:20:23 PM



Chapter 3: SQL Server Tools

84

 The Query Designer opens with the Add Table dialog to prompt you for the tables to be used in this 
query (see Figure  3 - 29 ). The tables listed are from the database context of the query window. If you 
forget to set the context, you may not see any tables or not see the tables you expected because the wrong 
database context is selected. Note that the schema names are displayed in parentheses following the 
table names. You can either double - click each table one at a time or hold down the Ctrl key and click to 
select multiple tables. For this exercise, choose the Product, ProductCategory, and ProductSubCategory 
tables to be added to this query. Click the Add button to add these tables to the query and then click 
Close when you ’ re done.   

Figure 3-28

  3.   Right - click anywhere in the new query window and select the Design Query in Editor option 
(see Figure  3 - 28 ).        

c03.indd   84c03.indd   84 10/31/08   6:20:24 PM10/31/08   6:20:24 PM



Chapter 3: SQL Server Tools

85

 There are three panes in the designer window, each representing the query in a different way: 

  Diagram pane  

  Columns pane  

  SQL pane    

 The three panes are synchronized, and changes made to the query in any one of these panes will be 
reflected in the others. A window graphically representing each table is placed into the top - most 
diagram pane of the designer. The graphical query designer draws lines from column names in each 
of these tables, with a diamond on each. This represents an inner join derived from the existence of 
corresponding relationships that exist in the database design. For example, in the definition for 
the ProductCategory table, a relationship, or foreign key constraint, is defined between the 
ProductCategoryID column and the ProductCategoryID column in the ProductSubCategory table. 
The Query Designer is smart enough to translate this relationship into a join statement between 
these tables. The diamond tells you that this is an inner join and that records will only be returned if 
corresponding values exist in the joined columns for both of these tables. Joins will be discussed in great 
detail in Chapter  8 . 

❑

❑

❑

Figure 3-29

c03.indd   85c03.indd   85 10/31/08   6:20:25 PM10/31/08   6:20:25 PM



Chapter 3: SQL Server Tools

86

 One thing that can be a little confusing when discussing your interaction with the columns pane is the 
use of the word  “ columns. ”  Each column that is to be returned from the query is displayed as a row in 
the columns pane grid. It would be convenient if they could be referred to as  “ fields ”  rather than 
 “ columns ” ; however, the tool makes reference to  “ Columns ”  in the first column of the grid. This means 
that in our conversations regarding this interface, we are left to distinguish the columns (or fields) of the 
query from the columns in the grid, which represent attributes or characteristics to the query columns. 

 To choose columns to be returned, check the boxes in the table windows in the order that they appear in 
Figure  3 - 30 . As you do this, these column names will be added to the columns pane and to the  SELECT  
clause in the SQL pane. Note that there are three different Name columns between the three tables. 
Because the column names in a query must be unique, the designer creates aliased names for the 
ProductSubCategory and Product Name columns as Expr1 and Expr2. This satisfies this rule, but the 
aliases ’  names aren ’ t exactly optimal.   

Figure 3-30

 I ’ d prefer to use more intuitive names for the three Name columns. In the columns pane (second 
section of the designer), add or replace the text with the alias names from Figure  3 - 31 . Call the 
ProductSubCategory.Name field  “ SubCategory, ”  and the Product.Name field  “ Product. ”  To be 
consistent, also change the alias of the ProductCategory.Name field to  “ Category. ”  Finally, under the 
Sort Order column, type or select the values 1, 2, and 3 for the first three columns, respectively.   

c03.indd   86c03.indd   86 10/31/08   6:20:25 PM10/31/08   6:20:25 PM



Chapter 3: SQL Server Tools

87

 The query is now ready to be run. Click the OK button to transfer the script to the open query window. 
Click the Execute button and you should see rows returned in the results grid below your query window. 

 You can experiment by adding and removing columns and changing the sort order and alias names. 
I didn ’ t intend to save this query as a script file, so if you close the query window, just indicate that you 
don ’ t want to save changes. 

 The Query Designer is very useful for creating queries on databases that you are not very familiar with 
and even, at times, with ones you are familiar with. However, it does create what I call  “ ugly code. ”  It is 
not particularly easy to read or edit. In Chapter  4 , we will discuss formatting code in more detail, but for 
now take a look at the previous query the way the Query Designer wrote it: 

SELECT     Production.ProductCategory.Name AS Category,

Production.ProductSubcategory.Name AS Subcategory, Production.Product.Name AS

Product, Production.Product.Color, Production.Product.ListPrice

FROM       Production.Product INNER JOIN

Production.ProductSubcategory ON Production.Product.ProductSubcategoryID =

Production.ProductSubcategory.ProductSubcategoryID INNER JOIN

Production.ProductCategory ON Production.ProductSubcategory.ProductCategoryID =

Production.ProductCategory.ProductCategoryID

ORDER BY Category, Subcategory, Product  

Figure 3-31

c03.indd   87c03.indd   87 10/31/08   6:20:29 PM10/31/08   6:20:29 PM



Chapter 3: SQL Server Tools

88

 Now look at the same query with some appropriate formatting: 

SELECT  Production.ProductCategory.Name AS Category

       ,Production.ProductSubcategory.Name AS Subcategory

       ,Production.Product.Name AS Product

       ,Production.Product.Color

       ,Production.Product.ListPrice

FROM    Production.Product 

INNER JOIN Production.ProductSubcategory 

   ON Production.Product.ProductSubcategoryID = 

      Production.ProductSubcategory.ProductSubcategoryID 

INNER JOIN Production.ProductCategory 

   ON Production.ProductSubcategory.ProductCategoryID = 

      Production.ProductCategory.ProductCategoryID

ORDER BY Category

        ,Subcategory

        ,Product   

 We will fine - tune this formatting in the next chapter, but as you can see, the formatted code is easier to 
read and modify, which makes life much easier for the SQL programmer.  

  Using Templates 
 Unless you have a perfect memory, there will be many times in your journey with SQL Server that you 
will need some assistance. I ’ d say that about 98 percent of the SQL I write is from memory because the 
vast majority of the time, I need to do fairly common things: select, insert, update, delete, and so on. The 
rest of the time, I either need to jog my memory or learn to use a command I haven ’ t had to use before. 
I have enough trouble just remembering the names of my kids let alone how to rebuild an index with a 
specific fill - factor. So, I ’ ll either need to look this up in Books Online and/or go find an example. Most of 
the time, it ’ s more helpful to see the script than it is to learn about the command and exactly how it 
affects the mechanics of the database engine. This is where script templates come in. 

 Script templates simply provide a starting point for queries. A template is really just a piece of script 
saved to a file that you open in the SQL Query Designer and then modify to suit your needs. The 
Templates Explorer window is optional. Use the View menu or Templates Explorer button on the toolbar 
to enable this window if it isn ’ t already visible (see Figure  3 - 32 ). As mentioned earlier, templates are 
organized into categories. Simply expand the folder icons on the tree view to find the template you are 
looking for.   

 Now, create a query to add columns to an existing table. This is easy to do using a template. Find the 
folder for table - related templates, expand it, and then find the template labeled Add Column. Right - click 
this item to display the pop - up menu, and then select Open to use the template in a new query, as shown 
in Figure  3 - 33 .   

Figure 3-32

c03.indd   88c03.indd   88 10/31/08   6:20:30 PM10/31/08   6:20:30 PM



Chapter 3: SQL Server Tools

89

Figure 3-33

 This action opens a new Query Editor window with a copy of the template. Note the color - coding used 
to help distinguish keywords, commands, and comments in the SQL text. With the skeleton of the query 
written for you, it ’ s a fairly simple matter to replace the generic placeholders with your own text. In fact, 
there is a tool to help you do just that. 

 With the template script open, click on the Query menu and choose the Specify Values for Template 
Parameters item (see Figure  3 - 34 ).    

Figure 3-34

c03.indd   89c03.indd   89 10/31/08   6:20:31 PM10/31/08   6:20:31 PM



Chapter 3: SQL Server Tools

90

 This opens a dialog that allows you to quickly replace all the template parameters with your own values 
(see Figure  3 - 35 ). In my example, I simply added some generic values for the table name and column 
name so that we could see the results of our work.   

Figure 3-35

 After clicking OK to close the Specify Values for Template Parameters dialog, you are ready to run the 
new script. As you can see in Figure  3 - 36 , the script has been written and has incorporated the values 
specified earlier.    

Figure 3-36

c03.indd   90c03.indd   90 10/31/08   6:20:33 PM10/31/08   6:20:33 PM



Chapter 3: SQL Server Tools

91

  Using the Debug Feature 
 SQL Server 2000 had a very useful feature for debugging SQL stored procedures, but it was removed 
with the release of SQL Server 2005 and the change to the SQL user interfaces. With the release of SQL 
Server 2008, the debug feature is back and bigger and better than before. Now instead of just being able 
to debug stored procedures, you can run any SQL code through the debugger. 

 The debug feature is particularly useful for stepping through large batches of T - SQL code to ensure 
that the defined logic and data manipulation is handled in a way that is intended. Instead of attempting to 
step through a large and complicated script, which could become very confusing, I will show you the 
basics of the debug feature with a simple script that populates two variables. Although the script is simple, 
it does contain a couple of features that have not been adequately explained  —  functions and variables. 
Because both of these concepts will be explained in later chapters, I will not spend a great deal of time here 
defining them. Suffice it to say at this point that a variable is a named memory location that is assigned a 
specific data type. That memory location can be populated and modified by the SQL programmer through 
the use of  SET  and  SELECT  commands. A function is a programmatic object that when called always 
returns a value. It can optionally be passed in values to manipulate. This example uses the  PI()  function, 
which, as you would expect, returns the mathematical value of  �  (3.14159265358979). 

 The script that will be sent through the debug process is as follows: 

DECLARE @Terra as float, @Description as varchar(20)

SET @Terra = 24901.55

SET @Description = ‘Terra C Mi’

EXEC sp_who2

SELECT @Terra AS ‘Distance’, @Description AS ‘Terra Defined’

SET @Terra = @Terra / PI()

SET @Description = ‘Terra D Mi’

SELECT @Terra AS ‘Distance’, @Description AS ‘Terra Defined’  

 Type the script in a new query window. Because we are not accessing a database in this example, it 
doesn ’ t matter which database the query window ’ s context is set to. 

 Now on the SQL Editor toolbar, click the green debug triangle (see Figure  3 - 37 ) or press Alt+F5 to begin 
the debugging process.   

Figure 3-37

c03.indd   91c03.indd   91 10/31/08   6:20:34 PM10/31/08   6:20:34 PM



Chapter 3: SQL Server Tools

92

 The script will be opened in a debug window with a cursor pointing to the first line of executable code 
(see Figure  3 - 38 ). In our case, that is the first  SET  statement.   

Figure 3-38

 Notice in Figure  3 - 38  that the values for the two variables are empty. The variables have been declared at 
this point but not populated. Also note that the Debug toolbar has been enabled (see Figure  3 - 39 ).    

Figure 3-39

c03.indd   92c03.indd   92 10/31/08   6:20:35 PM10/31/08   6:20:35 PM



Chapter 3: SQL Server Tools

93

 The Debug toolbar has eight buttons by default, as described in the following table. 

     Feature      Purpose   

    Continue 
(Alt+F5)  

  Runs the remainder of the code until the next breakpoint or until 
the end of the code. (Breakpoints are described later in this section.)  

    Break All
(Ctrl+Alt+Break)  

  Stops the code processing at its current position. It can be resumed 
with the Continue button.  

    Stop 
(Shift+F5)  

  Stops code execution and exits the debugger.  

    Select Next Statement    Moves the cursor to the next statement to be executed.  

    Step Into
(F11)  

  Executes the next line of code. If the next line is a programming 
object, such as a stored procedure or user - defined function, the 
debugger opens the object so that each line of code in the object can 
be stepped through.  

    Step Over
(F10)  

  Executes the next line of code. If the next line is a programming 
object, such as a stored procedure or user - defined function, the 
debugger executes the object in its entirety and moves to the next 
line of code in the calling code.  

    Step Out
(Shift F11)  

  Used to return to the calling code after using the Step Into feature 
to step into a stored procedure or function. The Step Out feature 
runs the remaining lines of code in the programming object and 
returns to the next line of executable code.  

    BreakPoints    The Breakpoint button launches the Breakpoints window (see 
Figure  3 - 40 ), which enables the programmer to mark a portion of 
code for the debugger to break on. The purpose of this feature is to 
enable the programmer to run large portions of code that are 
known to be bug free and to break right before a problematic 
section of code in order to step through that code systematically. 
Breakpoints are added to code with the F9 key or by selecting 
Toggle Breakpoint on the Debug menu.  

Figure 3-40

c03.indd   93c03.indd   93 10/31/08   6:20:36 PM10/31/08   6:20:36 PM



Chapter 3: SQL Server Tools

94

 Now that you have a basic understanding of the debug features, let ’ s step through our code. In 
Management Studio, click the Step Into button twice (see Figure  3 - 41 ) or press F11 twice to execute the 
next two lines of code that assign our variable values.   

Figure 3-41

Figure 3-42

 Notice that in the Locals window, which shows the value of variables, the variable @Terra has now been 
assigned a  float  number and the @Description has been assigned a string, or  varchar , value. The 
Call Stack window also shows the new line that the cursor is on (see Figure  3 - 42 ).   

 The next line of code in our script is one that executes the system stored procedure  sp_who2 , which 
returns information about all or one connection presently active on the server. When we step into the 
 EXEC sp_who2  line of code, we will be stepping in to the  sp_who2  code. Click the Step Into button once 
to step into the  sp_who2  stored procedure. Notice that the code that makes up the stored procedure has 
been opened in a new query window (see Figure  3 - 43 ) and now it is possible to step through each line of 
code in the  sp_who2  stored procedure. Click the Step Into button several times to step through the 
different sections of the stored procedure.   

c03.indd   94c03.indd   94 10/31/08   6:20:36 PM10/31/08   6:20:36 PM



Chapter 3: SQL Server Tools

95

 Because we can be fairly certain that there are no bugs in the  sp_who2  system stored procedure, we can 
click Step Out or press Shift+F11 to run the rest of the stored procedure and return to the next line of 
executable code in our calling code. 

 What happens when you know that large portions of your code are problem free and you want to focus 
on the sections of code that are problematic? That ’ s where breakpoints come in. Breakpoints can be 
placed only on lines of executable code, which essentially means that on that line the code has to  do  
something. Declaring variables or placing comments in code does not count. 

 Place a breakpoint in the code by clicking line 7 of the code and pressing F9 (see Figure  3 - 44 ). A red ball 
appears to the left of that line of code. In very large scripts it is advantageous to use breakpoints to 
quickly run through the majority of code by clicking the Continue button. The code will be executed 
until the breakpoint is encountered. In our particular example, the cursor is sitting on Line 5. You can 
now click the Continue button to advance the cursor to the breakpoint (see Figure  3 - 45 ).   

Figure 3-43

Figure 3-44

c03.indd   95c03.indd   95 10/31/08   6:20:37 PM10/31/08   6:20:37 PM



Chapter 3: SQL Server Tools

96

 As shown in Figure  3 - 45 , also note that the values in the Locals window have been updated. Click the 
Continue button one more time to execute the remaining lines of code. Notice that the debugger exits 
and the typical query result window is displayed with the results of the code (see Figure  3 - 46 ). 

 Notice that the results window shows the result of the  sp_who2  stored procedure and the  SELECT  
statements in the code.     

Figure 3-45

 Figure 3 - 46 

c03.indd   96c03.indd   96 10/31/08   6:20:37 PM10/31/08   6:20:37 PM



Chapter 3: SQL Server Tools

97

  Summary 
 I could have written a complete book about the features of the SQL Server client and management tools. 
The application is very rich and very powerful. Even after using it for the past few years, since SQL 
Server 2005 was in early beta, I continue to find new aspects of the application that make my life as a 
development DBA much easier. However, in this book you get just a taste, albeit a fairly thorough one, of 
all the aspects and options available with the SQL Server 2005 and 2008 toolset. 

 In this chapter you learned what you will need to know to write SQL queries and choose the best tool for 
the job. Depending on your role and objectives, you will use different tools to do different things. 

 If you are a database administrator, you will invariably spend some time using the SQL Configuration 
Manager to configure servers and manage the services that comprise SQL Server. You will also spend 
much of your time using SQL Server Management Studio to secure databases, create, monitor, and 
tune various database objects, and occasionally use the  SQLCMD  utility to run SQL scripts on the 
command line. 

 If you are an architect or solution designer, you may use the SQL Server Management Studio to diagram 
and generate database objects and the SQL Query Editor to create stored procedures, functions, and 
views to optimize database access. You may also use Microsoft Visio and the advanced solution design 
tools in Visual Studio and the Business Intelligence Studio to design and manage database projects. 

 If you are an application developer, you will likely spend most of your time developing software and 
creating integrated stored procedures and views in the Visual Studio integrated database design 
environment, and using SQL Server Management Studio to create and manage database objects. 

 It ’ s often difficult to draw a clear distinction between these roles anymore. This is why these tools are 
tightly integrated and contain overlapping features and capabilities. Fortunately, they have been 
designed to work together and provide a consistent user experience. Once you have mastered 
Management Studio, for example, you should be able to open the Business Intelligence Studio and work 
comfortably with the menus, toolbars, tool windows, and similar features. 

 As you read on, I will make reference to some of these other tools, but you will spend most of your time 
using the SQL Server Management Studio. To use the T - SQL language, you don ’ t need to be concerned 
about the features of a particular design application, but you will find these features useful when you go 
to design entire database solutions, debug queries, and tune database objects.  

  Exercises 
 The exercises for this chapter and Chapter  4  provide numbered, step - by - step instructions. The 
solutions for these exercises are the final query, commands, or result and are located in Appendix  F . 
The exercises for subsequent chapters provide less - detailed instructions. You should use the material in 
each chapter to determine the appropriate steps and to find the solutions. The instructions specify the 
AdventureWorks2008 database, but will also work for the SQL Server 2005 version of the database and 
the SQL Server 2005 database engine. 

c03.indd   97c03.indd   97 10/31/08   6:20:38 PM10/31/08   6:20:38 PM



Chapter 3: SQL Server Tools

98

  Exercise 1   
  1.   Using SQL Server Management Studio, create a new query using the AdventureWorks2008 

database.  

  2.   Add the Product table to the designer.  

  3.   Select the ProductID, Name, and ListPrice columns by checking the corresponding boxes in the 
table window.  

  4.   Sort the results by the Name column in ascending order using the Sort Type option.  

  5.   Check the SQL expression in the third pane of the graphical query designer with the solution.     

  Exercise 2   
  1.   Using SQL Server Management Studio, create a new query using the AdventureWorks2008 

database, as you did in Exercise 1.  

  2.   Add two tables: Product and ProductSubCategory.  

  3.   For the ProductSubCategory table, select the Name column and create an alias for it named 
SubCategory. For the Product table, select the Name column and create an alias for it 
named ProductName. Also select the ListPrice column from this table.  

  4.   Sort the query by the ProductSubCategory Name column and then the Product table Name 
column, both in ascending order.  

  5.   Execute the query and scroll through the results. Check the SQL expression displayed with the 
solution.     

  Exercise 3 
 Write a simple query using the Query Editor window in SQL Server Management Studio using the 
following steps: 

  1.   Open SQL Server Management Studio.  

  2.   Enter  localhost  for the server name (or enter the name of your server, if connecting remotely).  

  3.   Create a new query and select the AdventureWorks2008 database from the database selection 
list in the toolbar.  

  4.   Enter the following SQL script in the query window: 

SELECT * FROM Production.Product WHERE ListPrice  >  3000   

  5.   To find out how many products have a list price greater than $3000, execute this query, and 
check the row count in the status bar.     

c03.indd   98c03.indd   98 10/31/08   6:20:38 PM10/31/08   6:20:38 PM



Chapter 3: SQL Server Tools

99

  Exercise 4 
 Execute a simple query using command - line utilities: 

  1.   Use the  SQLCMD  utility to utilize Windows Integrated (Enterprise) security. Each statement 
should be followed by a batch delineation ( GO ) command.  

  2.   Indicate that you want to run statements using the AdventureWorks2008 database.  

  3.   Execute the following SQL statement and view the results: 

SELECT ProductCategoryID, Name FROM Production.ProductCategory   

  4.   Exit the command - line utility and then the command window.  

  5.   Check your statements with the solution.        

c03.indd   99c03.indd   99 10/31/08   6:20:39 PM10/31/08   6:20:39 PM



c03.indd   100c03.indd   100 10/31/08   6:20:39 PM10/31/08   6:20:39 PM



                                                                                                                4    
Introducing the T - SQL 

Language          

 In the early days of relational databases, a number of industry - wide efforts were made to unify 
different, proprietary query languages. IBM had established an early standard called  Structured 
English Query Language . This name was condensed to spell the word  SEQUEL . Another effort 
resulted in a language called  Select Query Language  (SQL), which included commands allowing 
data to be read only for reporting and record look - up. This became a popular, product -
 independent standard to which the  “ Sequel ”  acronym was still applied by members of the 
database community. Eventually, additional commands were added, enabling records to be added, 
deleted, and modified. This created a quandary: they had worked so hard to create a standard 
language with a cute name that no longer fit. The word  Select  was finally replaced with the word 
 Structured , and the universe was once again brought back to a state of balance. Of course, the 
purists will insist that SQL is pronounced ESS CUE EL, rather than  “ SEQUEL. ”  So, how should 
you pronounce it? Any way you want. Disagree if you like, but I save one syllable and say 
 “ SEQUEL. ”  For the SQL language to survive outside of a specific product or company, the 
standard was published and held by an independent standards organization. The SQL standard 
was originally registered with the American National Standards Institute and officially called the 
 ANSI SQL  standard, established in 1986. This standard has been revised a few times, resulting in 
revisions known as the following: 

  ANSI SQL - 86  

  ANSI SQL - 89  

  ANSI SQL - 92  

  ANSI SQL:1999  

  ANSI SQL:2003  

  ANSI SQL:2006    

 The concept seems quite simple but there is a little more to this story. The ANSI SQL standard is 
actually no longer held exclusively by the American National Standards Institute. This is a 
common tale of American - born standards that are later implemented internationally. In 1987,

❑

❑

❑

❑

❑

❑

c04.indd   101c04.indd   101 10/31/08   6:21:17 PM10/31/08   6:21:17 PM



Chapter 4: Introducing the T - SQL Language

102

SQL became an international standard and was registered with the International Organization for 
Standardization (ISO) using its previously copyrighted title, ANSI SQL. This means that the 1992 
revision of the SQL standard is actually known as  ISO ANSI SQL - 92 . Even though the standard was 
updated in 1999, 2003, and 2006, most SQL - based database products had been established on the ANSI 
SQL - 92 standard, and they have not been revised to fully conform to the ANSI SQL - 99, 2003, or 2006 
specifications. Like most of its competition, T - SQL does not fully conform to any of the more recent ANSI 
versions, but it does implement many of the selected features. 

 Finally, the ANSI SQL standard actually defines three conformance levels: Entry, Intermediate, and Full. 
Most products, including SQL Server, conform entirely to the entry - level standard and partially to the 
higher levels.  

  The Nature of SQL 
 Many people who work with T - SQL have had some experience with other languages. If you ’ ve never 
done any programming, please don ’ t close the book at this point and give up. This is certainly not a 
prerequisite for writing SQL, but it is a reference point for many who have worked with computer 
systems in other capacities. 

 Comparing T - SQL to a procedural or object - oriented programming language (such as Java, C, C++, C#, 
or Visual Basic) is like comparing apples to pomegranates. It ’ s not better than or worse than, but quite 
different than, a true programming language  —  even though you may see some similarities in the syntax 
and structure of certain statements. For different types of operations, T - SQL may be far superior or much 
worse than these languages, simply because of what it is designed to accomplish. One of the challenges 
in making broad statements about the capabilities of different languages is that as they continue to grow 
and evolve, version after version, additional capabilities are added. The problem with industry 
standards is that everyone is out to protect and enhance their own product. Over time, the capabilities of 
each technology (or language, in this case) begin to overlap, leaving us with a number of different 
options to perform the same tasks. 

 Is it possible to perform data access or data manipulation (to insert, modify, or delete values in a 
database) with a procedural programming language without using SQL? Yes, but it ’ s cumbersome and 
usually inefficient. Can you perform complex mathematical operations, looping, string parsing, or 
multidimensional array management in T - SQL? Certainly, but it won ’ t be a very good experience. 
Chapter  1  mentioned that SQL Server 2005 gives programmers the capability of writing stored 
procedures and user - defined functions entirely in object - oriented program code, rather than SQL. This 
doesn ’ t make T - SQL any less capable as SQL Server ’ s native query language. It simply gives 
programmers another option. 

 T - SQL is designed primarily to work with relational data. No big surprise here. Secondarily, T - SQL also 
has a number of useful capabilities for working with scalar (single value) data, logical operations, 
mathematics, decision structures, text string parsing, and looping mechanisms. However, compared with 
most programming languages, SQL is not as powerful or as capable as a true programming language. 
If your needs call for advanced functionality that may be outside the realm of SQL ’ s native capabilities, 
you may need to carefully consider using a different approach, such as a custom, extended, stored 
procedure, application programming interface (API), .NET assembly, or other programming solution. 
This is why SQL Server ’ s Integration Services can utilize both programming code and T - SQL. With that 
settled, what can you do with T - SQL? Quite a lot. What should you do with T - SQL? That ’ s an even better 
question. I hope to give you a good idea by the time you finish this chapter. 

c04.indd   102c04.indd   102 10/31/08   6:21:17 PM10/31/08   6:21:17 PM



Chapter 4: Introducing the T - SQL Language

103

 T - SQL is the language used to talk to SQL Server, and query expressions are essentially used to ask the 
server to do things. It ’ s important to know what you can ask for  —  and what SQL Server can do. Query 
operations are divided into three different categories. I ’ ll briefly describe them and then take some time 
to look at specific examples. Like everything else in the technical world, these categories are best known 
by three - letter abbreviations (that ’ s TLA, for short.) Locally, these fall in the order I ’ ve listed here: 

   Data Definition Language (DDL)   —  DDL statements are used to create and manage the objects 
in a database. They can be used to create, modify, and drop databases, tables, indexes, views, 
stored procedures, and other objects. 

  Examples include  CREATE ,  ALTER , and  DROP .  

   Data Control Language (DCL)   —  DCL statements control the security permissions for users and 
database objects. Some objects have different permission sets. You can grant or deny these 
permissions to a specific user or users who belong to a database role or Windows user group. 

  Examples include  GRANT ,  REVOKE , and  DENY .  

   Data Manipulation Language (DML)   —  DML statements are used to work with data. This 
includes statements to retrieve data, insert rows into a table, modify values, and delete rows. 

  Examples include  SELECT ,  INSERT ,  UPDATE , and  DELETE .     

  Where to Begin? 
 Where should we begin? This is one of those chicken and egg questions. Before you can query data, you 
have to have it stored somewhere. I think it would be a bit distracting to start from the very beginning 
and step through the entire process to create a new database. For simplicity ’ s sake, I ’ d like to start out 
working with data stored in an existing database so we don ’ t get too far off topic. I ’ ll cover DDL and 
DCL statements, used primarily for database construction and administration, at the end of this chapter. 

 You ’ ll be working with the AdventureWorks2008 sample database. The versions of this database that 
Microsoft includes with SQL Server 2005 and SQL Server 2008 are a bit different in content, but the same 
in structure. The SQL Server 2008 version was updated to better normalize the data, but in most cases 
the data returned from either database will be very similar. 

 Because you ’ ve already learned the basics of using the Query Editor in SQL Server Management Studio, 
I ’ m not going to be giving you specific instructions regarding the use of the tool. The purpose here is to 
focus on the language. If you need to, review these instructions in Chapter  3 . To begin, open the SQL 
Server Management Studio Query Editor and connect to your database server.  

  Data Manipulation Language 
 The basic statements of Data Manipulation Language (DML) are introduced in this chapter with 
elaboration to follow in later chapters. 

 You can do only four things with data. You can  Create  records,  Read  them,  Update  record values, and you 
can  Delete  records. That spells  CRUD   —  we do CRUD with data. Cool, huh? When SQL was devised, 
they chose to use different words for these four operations:  Insert, Select ,  Update , and  Delete . Somehow, 

❑

❑

❑

c04.indd   103c04.indd   103 10/31/08   6:21:18 PM10/31/08   6:21:18 PM



Chapter 4: Introducing the T - SQL Language

104

ISUD isn ’ t quite as easy to remember as CRUD. If you can master these four types of statements, you 
will be able to do just about anything with data using SQL. 

  Queries Have Layers 
 In the movie  Shrek , Mike Myers ’  character, Shrek the Ogre, explains to his friend Donkey that  “ Ogres are 
like onions  —  they have layers. ”  To some degree, the  SELECT  statement is like an Ogre, or rather it ’ s like 
an onion  —  it has layers. On the surface, there isn ’ t that much to it. However, when you start peeling 
back the layers, there ’ s quite a lot to it. You ’ ve likely discovered this fact on your own. Here ’ s the 
important point: it ’ s not complicated. It ’ s really just layers upon simple layers. The fundamentals are 
quite simple. I call this principle  compounded simplicity . 

 Before I can effectively introduce the next topic, I need to jump the gun a little bit and briefly discuss the 
 SELECT  statement. This statement is covered thoroughly in Chapter  5 . For now, it ’ s important to 
understand that to return data from tables in SQL Server, you will use the  SELECT  statement. 
In relational databases, information gets transformed into data, typically by storing it in multiple tables. 
It would stand to reason, then, that to turn data back into useful information it must be retrieved from 
multiple tables. This is accomplished by using a handful of techniques: joins, subqueries, and unions. 
You learn more about these topics in future chapters. For now, know that these represent the bulk of the 
work you will do as you create and use queries. 

 Here ’ s a simple example. When the following query runs, the query processor parses the query and 
breaks it down into individual steps.   

SELECT TOP 10 Production.Product.Name

             ,Sales.SalesOrderDetail.LineTotal 

FROM Production.Product 

INNER JOIN Sales.SalesOrderDetail

   ON Production.Product.Productid = Sales.SalesOrderDetail.ProductID

WHERE Sales.SalesOrderDetail.SpecialOfferID = 1

ORDER BY Sales.SalesOrderDetail.LineTotal DESC  

 The different steps are covered in detail in Chapter  14 , but for now it is sufficient to understand that the query 
processor works the query essentially from the bottom up, excluding the row ordering. The first thing that 
happens is the query processor looks at the filter, which in this case is  SpecialOffer   =   1 . Then it proceeds to 
figure out how best to return the product name and line total for all products sold with the special offer. 

 The low - level instructions used to process these steps are compiled into executable instruction code 
and cached in - memory so that subsequent executions don ’ t require the same degree of preparation and 
resource overhead. Depending on whether this query is part of an ad - hoc SQL statement or a saved 
database object, the compiled instructions may also be saved to permanent storage, improving efficiency 
in the long term.  

  Set - Based Operations 
 When SQL Server processes a  SELECT  command, it builds a structure in memory to return a result set. 
This structure, essentially a two - dimensional array of rows and columns, is known as a  cursor . The word 
 “ cursor ”  is an acronym for  CUR rent  S et  O f  R ecords. As such, it represents the entire set of rows returned 
from a table or query. SQL Server ’ s query - processing engine is built on a foundation of cursor processing 
and is optimized to work with data as a set of records, rather than individual rows.  

c04.indd   104c04.indd   104 10/31/08   6:21:18 PM10/31/08   6:21:18 PM



Chapter 4: Introducing the T - SQL Language

105

  Row - Based Operations 
 A technique more popular in other database products is to populate a cursor type variable from a 
 SELECT  query and then step through each row. You can do this in SQL Server, but it generally works 
against the query - processing engine. Whenever possible, it is advisable to work with set - based results 
rather than trying to process individual rows. That being said, row - level cursor operations certainly have 
their place. That place, however, is rarely transactional code. The cursor object and its place in the grand 
scheme of things are discussed more thoroughly in Chapter  13 .  

  Query Syntax Basics 
 The term  query  is a bit misleading. Normally, you would think of a query as a question. People often will 
associate the term  query  with a  SELECT  statement in T - SQL. However, whether the T - SQL contains a 
 SELECT ,  UPDATE ,  DELETE , or  INSERT  statement, it is still a query. A query is like a sentence; it must to be 
a complete statement with at least a subject and a verb. The semantic rules of SQL define a simple 
structure. You start with a clause that states what you intend to do: Select, Insert, Update, or Delete  — 
 these are the verbs. You also must define the columns or values to be returned. Usually, you will indicate 
the table or other database object you want to work with  —  this is the subject or noun. Depending on the 
type of operation, there are connecting words such as From and Into. 

 You ’ ll learn about each of these statements in greater detail later but, for now, some simple examples 
follow. If you want to retrieve all of the column values from all rows in the Product table, you would 
execute the following query: 

SELECT * From Production.Product  

 If you need to raise the cost of all product records by 10 percent, this statement would work: 

UPDATE Production.Product SET StandardCost = StandardCost * 1.1  

 The T - SQL language is very forgiving when it comes to formatting statements. The SQL Server query -
 processing engine doesn ’ t care about whether commands are in upper -  or lowercase. It doesn ’ t care 
about spaces, tabs, and carriage returns as long as they don ’ t interfere with the name of a command or 
value. This means that you can format your script for readability just about any way you like. For 
example, the following query returns product sales information for a range of dates, sorted by product 
category and subcategory. The query could be written like this: 

SELECT Production.ProductCategory.Name AS Category, Production.

ProductSubCategory.Name AS SubCategory, Production.Product.Name AS 

ProductName ,Sales.SalesOrderHeader.OrderDate, Sales.SalesOrderDetail.

OrderQty, Sales.SalesOrderDetail.UnitPrice

FROM   Sales.SalesOrderHeader INNER JOIN Sales.SalesOrderDetail ON 

Sales.SalesOrderHeader.SalesOrderID = Sales.SalesOrderDetail.SalesOrderID 

INNER JOIN Production.Product ON Sales.SalesOrderDetail.ProductID = Product.

ProductID INNER JOIN Production.ProductSubCategory ON Production.Product.

ProductSubCategoryID = Production.ProductSubCategory.ProductSubCategoryID 

INNER JOIN Production.ProductCategory ON Production.ProductSubCategory.

ProductCategoryID = Production.ProductCategory.ProductCategoryID

WHERE Sales.SalesOrderHeader.OrderDate BETWEEN ‘1/1/2003’ AND ‘12/31/2003’

ORDER BY Production.ProductCategory.Name, Production.ProductSubCategory.Name, 

Production.Product.Name  

c04.indd   105c04.indd   105 10/31/08   6:21:18 PM10/31/08   6:21:18 PM



Chapter 4: Introducing the T - SQL Language

106

 Or, it could be written like this: 

SELECT Production.ProductCategory.Name AS Category

      ,Production.ProductSubCategory.Name AS SubCategory

      ,Production.Product.Name AS ProductName

      ,Sales.SalesOrderHeader.OrderDate

      ,Sales.SalesOrderDetail.OrderQty

      ,Sales.SalesOrderDetail.UnitPrice

FROM   Sales.SalesOrderHeader

    INNER JOIN Sales.SalesOrderDetail

       ON Sales.SalesOrderHeader.SalesOrderID =

          Sales.SalesOrderDetail.SalesOrderID 

    INNER JOIN Production.Product 

       ON Sales.SalesOrderDetail.ProductID = Product.ProductID

    INNER JOIN Production.ProductSubCategory 

       ON Production.Product.ProductSubCategoryID = 

          Production.ProductSubCategory.ProductSubCategoryID 

    INNER JOIN Production.ProductCategory 

       ON Production.ProductSubCategory.ProductCategoryID = 

          Production.ProductCategory.ProductCategoryID

WHERE Sales.SalesOrderHeader.OrderDate BETWEEN ‘1/1/2003’ AND ‘12/31/2003’

ORDER BY Production.ProductCategory.Name

        ,Production.ProductSubCategory.Name

        ,Production.Product.Name  

 Obviously, the second query is easier to read and would be much easier for someone to look at and 
figure out what ’ s going on. It ’ s entirely up to the T - SQL programmer to make sure the code is formatted 
for readability. The first example was very messy, but I took the time to format the second example so 
that it was easy to read. However, we ’ re not done yet. The code is still messier than it needs to be. To 
clean up the code and remove the redundant schema and table references, we will use table aliases. 
To do this, you simply create an alias after the table is referenced for the first time in the  FROM  or  JOIN  
clauses. An alias is sort of like a nickname. You simply give the object a new name by placing the 
nickname after the object ’ s given name, as shown in the following example: 

SELECT PC.Name AS Category

      ,PSC.Name AS SubCategory

      ,P.Name AS ProductName

      ,SOH.OrderDate

      ,SOD.OrderQty

      ,SOD.UnitPrice

FROM   Sales.SalesOrderHeader AS SOH

    INNER JOIN Sales.SalesOrderDetail AS SOD 

       ON SOH.SalesOrderID = SOD.SalesOrderID 

    INNER JOIN Production.Product AS P 

       ON SOD.ProductID = P.ProductID

    INNER JOIN Production.ProductSubCategory AS PSC

       ON P.ProductSubCategoryID = PSC.ProductSubCategoryID 

    INNER JOIN Production.ProductCategory AS PC

       ON PSC.ProductCategoryID = PC.ProductCategoryID

WHERE SOH.OrderDate BETWEEN ‘1/1/2003’ AND ‘12/31/2003’

ORDER BY PC.Name

        ,PSC.Name

        ,P.Name  

c04.indd   106c04.indd   106 10/31/08   6:21:19 PM10/31/08   6:21:19 PM



Chapter 4: Introducing the T - SQL Language

107

 Referencing columns from aliased tables can be confusing, depending on who wrote the code. The 
official rule is that the only columns that require the table alias are those that are ambiguous  —  or more 
simply, ones that appear in multiple tables. So, technically we could write our query like this: 

SELECT PC.Name AS Category

      ,PSC.Name AS SubCategory

      ,P.Name AS ProductName

      ,OrderDate

      ,OrderQty

      ,UnitPrice

FROM   Sales.SalesOrderHeader AS SOH

    INNER JOIN Sales.SalesOrderDetail AS SOD 

       ON SOH.SalesOrderID = SOD.SalesOrderID

    INNER JOIN Production.Product AS P 

       ON SOD.ProductID = P.ProductID

    INNER JOIN Production.ProductSubCategory AS PSC

       ON P.ProductSubCategoryID = PSC.ProductSubCategoryID 

    INNER JOIN Production.ProductCategory AS PC

       ON PSC.ProductCategoryID = PC.ProductCategoryID

WHERE SOH.OrderDate BETWEEN ‘1/1/2003’ AND ‘12/31/2003’

ORDER BY PC.Name

        ,PSC.Name

        ,P.Name  

 Note that in this example the OrderDate, OrderQty, and UnitPrice columns are not labeled as far as their 
source table is concerned. Personally, I don ’ t believe this is a good practice. The reason being is that if 
you are not familiar with the database structure, it is very difficult to figure out where the OrderDate, 
OrderQty and UnitPrice columns are coming from. Are they in the SalesOrderHeader table or the 
SalesOrderDetail Table? In my opinion, you should always provide the source table or table alias with 
the column name whenever your query references more than one table. 

 As I mentioned in the previous chapter, the  AS  keyword is almost always optional. Most SQL programmers 
I have worked with use them for column aliasing but not for table aliasing. Using the  AS  keyword with 
columns makes the code much easier to read. Using the keyword with Tables definitely doesn ’ t hurt 
readability either, but whether it helps is a matter of personal taste. The important thing is to be consistent. 

 By now you have also probably noticed that whenever a T - SQL keyword is used, it is written in all 
uppercase. This is by no means a requirement. T - SQL is very indifferent to how you write your code, as 
long as the words are spelled correctly. However, this flexibility should not be used as an excuse to write 
poorly formatted code. Properly well - formatted code is easy to read and easy to debug. But because both 
uppercase and lowercase statements are acceptable, a query could be written as follows: 

select Name, StandardCost from Production.Product  

 Although the preceding statement would execute just fine, it ’ s not quite as easy to read as the following: 

SELECT Name, StandardCost FROM Production.Product  

 This is especially true if you happen to be using a tool that does not color code the T - SQL. Also, there 
will be times when you are dealing with data in a database that has been configured to be case - sensitive. 
In that case, selecting from the product table will raise an error if the name of the table is Product .

c04.indd   107c04.indd   107 10/31/08   6:21:19 PM10/31/08   6:21:19 PM



Chapter 4: Introducing the T - SQL Language

108

 The last things I want to discuss about formatting are indenting and commas. Indenting makes the code 
easy to read and gives it a professional look. You may not think that is very important, but when you 
have to look at as much code as I do every day, you soon learn to appreciate those programmers who put 
the extra effort into making the code as easy to read as possible. As for commas, you will probably have 
noticed that when a list spans more than one line I have placed the comma at the beginning of the line 
and not the end. This probably goes against everything you learned in school. Commas, of course, go at 
the end of a line, not the beginning. In T - SQL there is a very good reason for placing commas at the 
beginning of a line. It makes it very easy to remove or comment out that line during the course of 
development. For example, using the previous example, what happens if we decide to comment out or 
remove the UnitPrice column so that the price value is not returned by the query (code commenting is 
covered in a later section in this chapter)?   

SELECT PC.Name AS Category

      ,PSC.Name AS SubCategory

      ,P.Name AS ProductName

      ,SOH.OrderDate

      ,SOD.OrderQty

--    ,SOD.UnitPrice

FROM   Sales.SalesOrderHeader AS SOH

    INNER JOIN Sales.SalesOrderDetail AS SOD 

       ON SOH.SalesOrderID = SOD.SalesOrderID 

    INNER JOIN Production.Product AS P 

       ON SOD.ProductID = P.ProductID

    INNER JOIN Production.ProductSubCategory AS PSC

       ON P.ProductSubCategoryID = PSC.ProductSubCategoryID 

    INNER JOIN Production.ProductCategory AS PC

       ON PSC.ProductCategoryID = PC.ProductCategoryID

WHERE SOH.OrderDate BETWEEN ‘1/1/2003’ AND ‘12/31/2003’

ORDER BY PC.Name

        ,PSC.Name

        ,P.Name  

 By placing the double - dash in front of the UnitPrice field, it is effectively removed from the query. 
However, if the commas were at the end of the line, I would have broken the query since there would be 
a trailing comma with no additional columns specified.   

SELECT PC.Name AS Category,

       PSC.Name AS SubCategory,

       P.Name AS ProductName,

       SOH.OrderDate,

       SOD.OrderQty,

--     SOD.UnitPrice

FROM   Sales.SalesOrderHeader AS SOH

...

Msg 156, Level 15, State 1, Line 7

Incorrect syntax near the keyword ‘FROM’   

  Naming Conventions 
 There seems to be a universal concept that anything that can be very simple and uncomplicated  must  
become confusing and overly complicated. When a database is created, objects should be named 
according to some kind of sensible naming convention. There is no industry - wide standard, and people 

c04.indd   108c04.indd   108 10/31/08   6:21:19 PM10/31/08   6:21:19 PM



Chapter 4: Introducing the T - SQL Language

109

have different ideas about appropriate naming conventions. Most folks perceive this as a simple matter 
of common sense, so they don ’ t put much effort into it. The problem with common sense is that it ’ s not 
very common and everyone seems to have their own idea about what is sensible. 

 It would be very convenient to have one simple standard to follow, and if things were that simple, I ’ d tell 
you exactly what to do. Most of it is quite easy, but object naming is a bit of an art. There are many 
considerations. For example, it ’ s a good idea to use names that are descriptive and complete, describing 
the purpose of each object. On the other hand, you should keep names short and simple so users don ’ t 
have to do a lot of extra typing. These are conflicting directions. 

 A general rule of thumb when creating objects in SQL Server is that if the Query Editor turns the color of 
the name from black to any other color, you should probably avoid using it. However, you will quickly 
learn that Microsoft violates this rule repeatedly with the names it gives to both system objects and 
sample objects in the AdventureWorks2008 database. Also keep in mind that the Query Editor changes 
the color of all words it has been configured to recognize. These words include SQL reserved words, 
functions and system objects, ODBC reserved words, and even future reserved words. So, not all words 
that change color are really reserved words. For example, the word  “ Description ”  turns blue when typed 
into an open query window. It can still be used without any special handling, but Management Studio 
recognizes it as a potential reserved word. 

 Some older database products don ’ t support mixed - case names or names containing spaces. For this 
reason, many database administrators continue to use all lowercase names with words separated by 
underscores. Personally, I find mixed - case names a little easier on the eyes. 

 Trends come and go. With Windows 95, Microsoft promoted the use of long filenames. Microsoft Access, 
which was developed at about the same time, also promoted the use of long database object names. 
From a certain perspective, it makes sense to use friendly, sentence - like, descriptive names. The fact is 
that SQL Server will have no problem with names containing spaces, but other components of a solution 
may have issues with this. As values are handled at different levels of an application, they may move 
from the controls in the user interface to variables in the program code, then to the method parameters 
or properties of a class. Eventually, these values are passed into a stored procedure as parameters or as 
field names in a SQL statement. The point is that it is much easier on everyone involved if these items all 
have the same, or very similar, names. 

 You could argue that there would be no harm in using space - filled field names in the database and 
similar names, sans spaces, elsewhere  —  and you ’ d probably be right. The general belief among 
database professionals is that spaces don ’ t belong in object names. Frankly, this is probably more of an 
issue of perception, rather than technical feasibility. However, writing code that references objects with 
embedded spaces is prone to errors and application exceptions. If you want to stay on friendly terms 
with the application developers who create programs to access your database, avoid embedded spaces. 

 I ’ ve done a lot of one - man solution development where I create the database, write the software 
components, design and develop the user interfaces, and write all the program code to glue the pieces 
together. Even in these applications, it ’ s easy to get lost if related object names aren ’ t the same. I have 
always insisted that they be consistent throughout the entire solution. I ’ ve also worked on some fairly 
large, complex projects where the database was designed by someone else long ago. If the names aren ’ t 
clear and concise in the beginning, I ’ m faced with a quandary: change the names in my program code to 
something easier to understand (accepting that they don ’ t match the table and field names), or 
consistently apply the same cryptic and confusing names throughout the entire solution. 

c04.indd   109c04.indd   109 10/31/08   6:21:19 PM10/31/08   6:21:19 PM



Chapter 4: Introducing the T - SQL Language

110

 It ’ s not uncommon for a database designer to model and create tables, applying his or her own naming 
standards to table and field names. After this person has moved on to a different job, another database 
expert comes in and adds stored procedures. He might disagree with the names applied by the original 
designer, so he names the procedures and input parameters differently than the fields in the table. Along 
comes an outside consultant developing software components, and he uses abbreviated names for the 
related class properties that correspond to the fields and parameters. Later, a junior - level software 
developer is assigned to create a user application for the data. He takes a class or reads a book about 
appropriate object naming standards and decides to fix the problem by applying his own names in spite 
of those that already exist. Coincidentally, I just finished modifying some report queries today. I had 
designed the tables these reports used. In testing, I discovered that performance wasn ’ t ideal and 
decided to build another table with pre - aggregated data. Another database designer stepped in to help 
and named some of the columns differently than mine. For example, I have a column named 
FiscalMonthYearNumber and his was FiscalMonthNum. Is this a big deal? Not really, but it does require 
that I fix the queries for all of my reports. 

 There is no easy solution to this common problem. Ideally, the person who designs the database should 
carefully consider the impact of the names chosen and document them thoroughly. This sets the 
standard for all those who follow  —  and all names should remain consistent. I typically use mixed - case 
names, capitalizing each word and concatenating them. In programming circles, this is often referred to 
as  Pascal case , named after the Pascal programming language. The following table shows a few 
common naming standards with some of the history and pros and cons regarding each. 

     Naming Standard      Example      Description   

    Pascal Case    CustomerFirstName    All words are capitalized and concatenated 
without delimiting characters.  

    Camel Case    customerFirstName    All characters are lowercase except the 
first letter of each word after the first 
word. This standard is common in XML 
element names but not as common in 
database object naming.  

    Hungarian 
Notation  

  VcCustomerFirstNamemstr
CustomerFirstName  

  Objects are prefixed with characters used 
to denote data type and/or scope. This 
standard is more common in 
programming code than in database 
object naming. True Hungarian Notation 
can be very complicated and verbose.  

    Lower - Case, 
Delimited  

  customer_first_name    Comes from legacy database products 
that don ’ t support mixed - case names. 
Still commonly used due to backward 
compatibility and tradition.  

    Long Names    Customer First Name    Promoted in Microsoft products such as 
Access. Has the advantage of being 
readable but not commonly used in 
serious software solutions. Incompatible 
with related programming code.  

c04.indd   110c04.indd   110 10/31/08   6:21:20 PM10/31/08   6:21:20 PM



Chapter 4: Introducing the T - SQL Language

111

  Object Delimiting 
 As I have previously discussed, it is probably best to avoid using embedded spaces or reserved words 
when creating objects. However, you will undoubtedly encounter databases where the designer did not 
adhere to this best practice. For example, I currently work with a database that has an audit table named 
 “ Transaction. ”  Transaction is most definitely a reserved word and should not have been used. To make 
things worse the table has a column named Timestamp and another one named LineNo. The table was 
obviously created by a developer using visual tools because creating it any other way would have been 
problematic. Here is a simplified version of the table creation script: 

CREATE TABLE Transaction

(TransactionId bigint NOT NULL

,Timestamp datetime NOT NULL

,Service varchar(75) NOT NULL

,LineNo int )  

 If you attempt to run this script, it will fail with the following error: 

Msg 156, Level 15, State 1, Line 1

Incorrect syntax near the keyword ‘Transaction’  

 In order to create the table successfully, the keywords in its definition must be delimited. SQL Server 
supports two types of delimiting characters: square brackets and double quotes. In the following 
example you see how to delimit the objects with square brackets: 

CREATE TABLE [Transaction]

(TransactionId bigint NOT NULL

,[Timestamp] datetime NOT NULL

,Service varchar(75) NOT NULL

,[LineNo] int )  

 In the next example, double quotes are used to delimit the object names: 

CREATE TABLE “Transaction”

(TransactionId bigint NOT NULL

,”Timestamp” datetime NOT NULL

,Service varchar(75) NOT NULL

,”LineNo” int )  

 By default, Management Studio sets the connection property of new query windows to support double -
 quote delimiting, but it can be turned off. If it is turned off, double quotes will be considered illegal 
operators. The code to set double - quote support on and off is as follows: 

SET QUOTED_IDENTIFIER ON

...

SET QUOTED_IDENTIFIER OFF  

 If you type in the table definition for the Transaction table in the example, you will also notice that the 
word  “ Service ”  is blue as well as the other delimited keywords.  “ Service ”  is a keyword in SQL Server; 
however, it is one of those keywords like  “ Description ”  that can be used and not delimited. 

 The other types of names that must be delimited are those with embedded spaces. I don ’ t believe 
embedded spaces should ever be used in object names, but I am sure there are very smart people who 

c04.indd   111c04.indd   111 10/31/08   6:21:20 PM10/31/08   6:21:20 PM



Chapter 4: Introducing the T - SQL Language

112

would disagree. In my experience, they complicate an already complex technology. So, while you could 
create a table with the following code, why would you?   

CREATE TABLE [My long named table that holds customer data]

([Customer data key] int NOT NULL

,[Customer Last Name] varchar(75) NOT NULL

,[Customer First Name]varchar(75) 

)   

 Writing an interface to access a table with this type of naming structure will be problematic at best. 
As I mentioned before, SQL Server ’ s flexibility should not be used as an excuse to write bad code or 
create objects that will create more problems than they are worth. 

 You will notice as you use Management Studio ’ s scripting tools that SQL Server delimits all objects. This 
is not because it is necessary or even the best way to write code. It was just easier to wrap all objects in 
delimiters than to write a scripting engine that had to look for objects that required delimiting.  

  Commenting Script 
 When you write SQL script, it will inevitably be easy to read and understand  —  at the time you write it. 
Programming is something we do in a certain context. When I work on a project, my head is in that 
project and most everything makes perfect sense at the time. I once developed a database application for 
a consulting client. A few different people had been involved in writing queries and program code over a 
few months. They asked me to come back in to create some new reports. As I opened the project and 
read through the code, I found it difficult to understand the logic. In my frustration, I said,  “ I don ’ t 
understand what is going on in this code. Who wrote this? ”  My customer replied to my dismay,  “ That ’ s 
your code. You wrote it last year. ”  Needless to say, I was embarrassed as well as frustrated. 

 I learned a valuable lesson: comment everything. No matter how plain the logic seems. No matter how 
much sense it makes at the time, it probably won ’ t make so much sense to the next person who reads it, 
especially months or years later. If nothing else reminds you of this simple lesson, just remember this: 
Every one of us leaves a legacy. Other query designers and programmers will remember you for what 
you leave behind for them to maintain. They will most likely either remember you for making their job 
difficult or for making their job easier. 

 T - SQL comments come in two forms. One is a block comment and the other is an in - line comment. Block 
comments are very often used in header blocks. A header block is a formal block of text that precedes 
every scripted object, such as a stored procedure or user - defined function. It should conform to a 
standard format and should contain information such as the following: 

  The name of the scripted object  

  The name of the designer or programmer  

  Creation date  

  Revision dates and notes  

  Information about what the object does and how it ’ s called  

  Validation testing and approval notes    

❑

❑

❑

❑

❑

❑

c04.indd   112c04.indd   112 10/31/08   6:21:20 PM10/31/08   6:21:20 PM



Chapter 4: Introducing the T - SQL Language

113

 Block comments begin with a forward slash and at least one asterisk (/*) and end with an asterisk and a 
forward slash (*/). Everything in between is treated as a comment and ignored by the query parser. 
A header block doesn ’ t need to be complicated. It should just be consistent. Here ’ s an example of a 
simple header block preceding the script for a stored procedure used to insert product records: 

/***************************************************************************

*   spInsProduct - Inserts product records

*

*   Accepts ProductName, StandardPrice, QtyInStock, CategoryID

*   Returns new ProductID, Int

*

*   Created: 6-12-08 (Paul Turley)

*

*   Revisions:

*   7-10-08 - (Dan Wood)      Added MarkupPercent parameter

*   7-12-08 - (Paul Turley)   Changed MarkupPercent parameter data type from 

*                             int to decimal(10,2)

****************************************************************************/  

 In - line comments are placed in the body of the script to document the process and flow along with the 
actual script. Comments are preceded by two hyphens (  -  -  ). The query parser ignores the remainder of 
the line. In - line comments can be placed after the executable script on the same line or can be written on 
a separate line, as you can see in the following example: 

CREATE PROCEDURE spGetProductHistory

-- Define date parameters, set NULL defaults to make parameters optional

   @StartDate datetime = NULL

  ,@EndDate datetime = NULL

AS

--Check date values. If NULL set default dates to cover entire product history

  IF @StartDate IS NULL       

     SET @StartDate = ‘1900-01-01’

  IF @EndDate IS NULL

     SET @EndDate = GETDATE()

                 

    -- Return all product history for defined time period

       SELECT PC.Name AS Category

             ,PSC.Name AS SubCategory

             ,P.Name AS ProductName

             ,SOH.OrderDate

             ,SOD.OrderQty

--           ,SOD.UnitPrice

       FROM   Sales.SalesOrderHeader AS SOH

       INNER JOIN Sales.SalesOrderDetail AS SOD 

          ON SOH.SalesOrderID = SOD.SalesOrderID 

       INNER JOIN Production.Product AS P 

          ON SOD.ProductID = P.ProductID

       INNER JOIN Production.ProductSubCategory AS PSC

          ON P.ProductSubCategoryID = PSC.ProductSubCategoryID 

       INNER JOIN Production.ProductCategory AS PC

          ON PSC.ProductCategoryID = PC.ProductCategoryID

       WHERE SOH.OrderDate BETWEEN @StartDate AND @EndDate

    ORDER BY PC.Name

        ,PSC.Name

        ,P.Name  

c04.indd   113c04.indd   113 10/31/08   6:21:21 PM10/31/08   6:21:21 PM



Chapter 4: Introducing the T - SQL Language

114

 Note that in this example the comments are used by the programmer to tell anyone coming along 
afterward what the script is meant to do. If in doubt, add a comment. If not in doubt, add one anyway. 
Don ’ t worry about overdoing it. Granted, some of your script will make sense without commenting and 
may be somewhat self - documenting, but don ’ t take a chance. Don ’ t listen to yourself when that little 
voice says,  “ Don ’ t worry about commenting your code now. You can do it later. ”  Maybe you ’ re more 
disciplined than I am, but if I don ’ t write comments when I ’ m writing code, it won ’ t get done. In fact 
many books on writing good programming code insist that comments should be written first without 
writing any actual code. This is sometimes inaccurately referred to as  pseudo code . After you have 
several comment blocks and in - line comments, you go back in and fill in the actual code. Using our 
previous example the code would look like the following example prior to writing the actual code: 

CREATE PROCEDURE spGetProductHistory

-- Define date parameters, set NULL defaults to make parameters optional 

-- Check date values. If NULL set default dates to cover entire product history

  

    -- Return all product history for defined time period  

 Another important application of in - line comments is as temporary development notes both to myself 
and to others. Inevitably, on the first pass through my script, I ’ m most concerned about getting core 
functionality working. Exceptions to basic logic, problem workarounds, error - handling, and less -
 common conditions are usually secondary to just getting the code to work once under ideal conditions. 
As I consider all of these secondary factors, I make notes to myself that may include to - do items and 
reminders to go back and add clean - up code and polished features. 

 In addition, there invariably will be times when building large scripts when you want to prevent certain 
lines of code from executing  —  either to locate faulty code or to prevent code from running that is 
unnecessary  —  but for documentation sake the code is left behind, but commented out. Again, there are 
two ways of commenting out code: block comments and in - line comments. Generally, in - line comments 
are the preferred method of commenting out sections of code. SQL Server Management Studio makes 
this easy by providing both a keyboard and button shortcut to comment out any highlighted code. 
Simply highlight the section of code that you want to disable or  comment out , and then click the 
Comment Selection button on the SQL Editor toolbar (see Figure  4 - 1 ). If you would rather use the 
keyboard shortcut, simply highlight the section of code and then press Ctrl+K and then Ctrl+C. To 
uncomment the selection, click the Uncomment button or press Ctrl+K and then Ctrl+U.    

 Figure 4 - 1 

  Using Templates 
 Management Studio provides a very useful, and often underutilized, feature called  templates . Templates 
provide a starting place for a variety of database object scripts. Several templates come with SQL Server 
and adding your own is an easy task. In Chapter  3 , you learned how to use the script template features 
in Management Studio. In reality, a template is just a text file containing SQL commands and 

c04.indd   114c04.indd   114 10/31/08   6:21:21 PM10/31/08   6:21:21 PM



Chapter 4: Introducing the T - SQL Language

115

placeholders for object names. Using a template can save considerable time and effort, especially when 
writing script that you may not use very often. 

 Template scripts provide a basic pattern to get you started. If you ’ d like to create your own templates, 
this is very easy to do. Simply write the script in a new query window and then select File    Save As to 
save it to a Template SQL file. 

 Template files saved to the standard template folders will be added to the available templates for SQL 
Management Studio. In a default SQL Server installation, these folders are found in the following 
locations:

     Version      Templates Folder Path   

    SQL Server 2005    C:\Program Files\Microsoft SQL Server\90\Tools\Binn\VSShell\
Common7\IDE\sqlworkbenchnewitems\Sql  

    SQL Server 2008    C:\Program Files\Microsoft SQL Server\100\Tools\Binn\VSShell\
Common7\IDE\sqlworkbenchnewitems\Sql  

  Generating Script 
 The term  script  simply refers to a bunch of SQL statements typically used together to perform some 
useful purpose. This could vary from a simple SQL query to a group of several queries and commands 
used to create an entire database. The SQL Server client and administrative tools (Management Studio 
and Visual Studio) have the ability to generate script for just about any object or combination of objects. 
You can even generate the script to re - create an entire database. Scripts are usually saved to a file with a 
.sql extension and are simply plain text. You could easily create or edit a script file with Notepad or any 
other text editor.  

  Managing Script 
 I suggest that you have a designated folder for your script files. I usually create a folder for each 
database project or application I ’ m working on. I will also make it a point to back up and archive the 
script files in these folders. Just like program source code, my scripts are treated like gold. Especially for 
the programming objects in your database (views, functions, and stored procedures), these objects 
should be scripted and saved on a CD or protected network folder. This practice will be invaluable in 
case (make that  when ) something goes wrong.  

  Version Control 
 One of the greatest challenges in managing scripts is how to keep track of multiple versions of the same 
file. The natural order of application development involves prototyping a feature, working through 
iterations of design, testing, and debugging until the feature is stable. At this point, it is important to 
keep a copy of the working SQL script and program source code before any changes are made. Adding 
features and capabilities to a query or programming object nearly always has adverse effects, at least in 
the short term. The secret to success is to script and save your queries and objects to script files after you 
get them working. 

c04.indd   115c04.indd   115 10/31/08   6:21:22 PM10/31/08   6:21:22 PM



Chapter 4: Introducing the T - SQL Language

116

 On many occasions, I have been asked to make some minor change or enhancement to a project. It may 
involve adding a column to a table or just adding a calculation to a query. If the changes are not scripted 
and rigorously tested, they will inevitably have some unforeseen impact. Perhaps my customer calls in a 
panic to inform me that she ’ s getting an error, it ’ s the end of the month, and they can ’ t print invoices. 
These are not the kind of calls you want to take. 

 Making minor changes often seems like a good idea at the time. If objects were originally scripted before 
making any changes, it ’ s usually a simple task to either review the original script or make corrections, or 
to run the original script, returning the query to its previous, working state. Script version management 
is not complicated, but without having a system in place and making a deliberate effort to follow it, it ’ s 
easy to lose track of your changes. 

 A few simple approaches to version control exist. Version control software, such as Microsoft Visual 
SourceSafe, automates this task by storing files in a central database. As files are checked out and 
checked in, a separate copy is time - stamped and stored in the SourceSafe database. Any version of the 
file can then be retrieved at any time. Source control is the best bet if a group of people will be sharing 
script files and working on different, networked development computers. SQL Server Management 
Studio integrates with Visual SourceSafe or Visual Studio team System as well as a number of third - party 
source control applications. Much like Visual Studio, files can be checked out, checked in, and managed 
from within the Management Studio design environment. 

 A less - sophisticated approach is to simply append filenames with the date they are created and the 
initials of the person creating them. Keep these files in project - related folders and back them up 
regularly. The following are examples of the script files for a stored procedure called 
 spGetCustomerAccountDetail : 

  Create spGetCustomerAccountDetail  –  7 - 02 - 07 PT.sql  

  Create spGetCustomerAccountDetail  –  7 - 09 - 07 DW.sql  

  Create spGetCustomerAccountDetail  –  7 - 11 - 07 PT.sql  

  Create spGetCustomerAccountDetail  –  7 - 15 - 07 PT.sql  

  Create spGetCustomerAccountDetail  –  8 - 03 - 07 DW.sql      

  Data Definition Language 
 If you have used Management Studio, Visual Studio, Access, or any other tools to create and design SQL 
Server databases, you have used Data Definition Language (DDL)  —  perhaps not directly but by using 
these user interface tools to manage database objects. Nearly all database maintenance operations are 
scripted and then that script is executed. This is one reason why there are so many scripting options in 
the SQL Server management tools. The scripting engine has been there for years in one form or another. 

 This is a simple topic because you can do only three things with any database object: create it, modify it, 
or delete it. The table that follows lists the corresponding DDL statements. 

❑

❑

❑

❑

❑

c04.indd   116c04.indd   116 10/31/08   6:21:22 PM10/31/08   6:21:22 PM



Chapter 4: Introducing the T - SQL Language

117

     Statement      Description   

     CREATE     Used to create a new object. This applies to many common database objects, 
including databases, tables, views, procedures, triggers, and functions.  

     ALTER     Used to modify the structure of an existing object. The syntax for each object will 
vary, depending on its purpose.  

     DROP     Used to delete an existing object. Some objects cannot be dropped because they 
are schema - bound. This means that you will not be able to drop a table if it 
contains data participating in a relationship or if another object depends on the 
object you intend to drop.  

 The syntax of DDL statements is quite simple. A quick tour through each of the common database objects 
and an example for each follows. Because this isn ’ t a database programming book, we won ’ t be 
exploring the nuances and uses for these objects, but the syntax used to manage them. 

  Creating a Table 
 In its simplest form, to add a new table to the current database, you specify the table name and then list 
the table ’ s new columns in parentheses, followed by their data type. Here ’ s an example: 

CREATE TABLE Appointment 

   (  AppointmentID   int

     ,Description     varchar(50)

     ,StartDateTime   datetime

     ,EndDateTime     datetime

     ,Resource        varchar(50) NULL

   )  

 You can specify several options for each column definition. Briefly, this might include options such as 
auto - sequencing identity, default values, constraints, and whether the column value may be set to Null. 
For a complete list of options, check the SQL Server Books Online documentation.  

  Creating a View 
 A view is similar to a table in that users can select from a view like a table, and, in some cases, update or 
delete values as well. Views are stored in the database, but they don ’ t really store data. A view is really 
just a  SELECT  query that gets optimized to make it execute more efficiently than if you were to make up 
the query every time you wanted to select data. However, views can do some very interesting things that 
we ’ re not going to get into (like actually storing data.). They can be indexed and they can be used with 
other programming objects to make SQL Server do some very powerful things. Enough for now. 
The finer points of views are discussed in Chapter  13 . 

c04.indd   117c04.indd   117 10/31/08   6:21:22 PM10/31/08   6:21:22 PM



Chapter 4: Introducing the T - SQL Language

118

 When you create a view, you ’ re really just naming a  SELECT  statement. The syntax looks like this: 

CREATE VIEW vwProductByCategory

AS

SELECT PC.Name AS Category

      ,PSC.Name AS SubCategory

      ,P.Name AS Product

FROM   Production.ProductCategory PC

INNER JOIN Production.ProductSubcategory PSC

  ON PC.ProductCategoryID = PSC.ProductCategoryID 

INNER JOIN Production.Product P

  ON P.ProductSubcategoryID = PSC.ProductSubcategoryID;   

  Creating a Stored Procedure 
 Stored procedures can perform a wide range of actions and business functionality. For example, a stored 
procedure can insert, update, or delete records in a table. By passing parameter values, it can make 
decisions and either select data or perform other operations accordingly. Because stored procedures can 
be used in so many unique ways, it ’ s hard to exemplify a  “ typical ”  stored procedure. The syntax for 
creating a stored procedure is similar to that of a view. Note the input parameters defined just before the 
word AS: 

/******************************************************

*  Checks for existing Product record

*  If exists, updates the record.  If not,

*  inserts new record

******************************************************/

CREATE PROCEDURE spInsertOrUpdateProduct

  -- Input parameters -- 

   @ProductName nvarchar(50)

  ,@ProductNumber nvarchar(25)

  ,@StdCost money

AS

  IF EXISTS(SELECT * 

            FROM Production.Product 

            WHERE ProductNumber = @ProductNumber)

     UPDATE Production.Product 

      SET NAME = @ProductName, StandardCost = @StdCost

     WHERE ProductNumber = @ProductNumber

  ELSE

     INSERT INTO Production.Product 

     (Name, ProductNumber, StandardCost)

     SELECT @ProductName

           ,@ProductNumber

           ,@StdCost   

  Creating a Trigger 
 Creating a trigger is similar to creating a stored procedure. Actually, a trigger is a special type of stored 
procedure that gets executed when specific operations are performed on the records in a table (such as 
an Insert, Update, or Delete). Business logic similar to that of a standard stored procedure may be 
performed within a trigger, but it is typically used to apply specialized business rules to ensure data 

c04.indd   118c04.indd   118 10/31/08   6:21:23 PM10/31/08   6:21:23 PM



Chapter 4: Introducing the T - SQL Language

119

integrity. Some of the unique characteristics of triggers include their assignment to a DML operation 
(Insert, Update, and/or Delete), implicit transaction control, and virtual table references that are used to 
represent the record or records involved in the transaction that caused the trigger to fire. 

 In the following example, note the reference to a virtual table called Deleted. This  “ table ”  is actually a 
virtual set of rows that are in the process of being deleted as the trigger is automatically executed. There 
is no script to explicitly begin processing a transaction because the trigger execution is the result of a 
transaction in progress. The  ROLLBACK TRANSACTION  command affects this inherent transaction and 
prevents the delete operation from being completed.   

/******************************************************

   Checks for existing sales orders using

   the product being deleted.

   Prevents deletion if orders exist.

******************************************************/

CREATE TRIGGER tr_DelProduct

ON Production.Product

FOR DELETE

AS

  IF (SELECT Count(*) 

      FROM Sales.SalesOrderDetail 

      INNER JOIN Deleted 

        ON SalesOrderDetail.ProductID = Deleted.ProductID)  >  0

  BEGIN

    RAISERROR (‘Cannot delete a product with sales orders’,14,1)

    ROLLBACK TRANSACTION

    RETURN

  END   

  Creating a User - Defined Function 
 User - defined functions are used to apply custom business logic such as performing calculations, parsing 
values, and making value comparisons. Functions are often called within views and stored procedures to 
reduce code redundancy and to encapsulate functionality. The script used to create a new user - defined 
function is similar to that of a stored procedure. The function is defined on the first executable line of the 
script (preceded in this example by a comment block). Immediately following the  CREATE  command, 
the function name references one or more parameters followed by a data type, in parentheses. The text 
following the  Returns  keyword indicates the data type that the function will return. This is a simple 
scalar (single value) function that returns a  datetime  type value. In Chapter  10 , you also learn how 
user - defined functions can return complex, multi - value results and table - type result sets, similar to a 
view or stored procedure. This function utilizes local variables and system functions to perform its 
internal logic.   

/**********************************************************

 Returns a date representing the last date

 of any given month.

**********************************************************/

CREATE Function dbo.fn_LastOfMonth(@TheDate datetime) 

Returns datetime

AS

BEGIN

(continued)

c04.indd   119c04.indd   119 10/31/08   6:21:23 PM10/31/08   6:21:23 PM



Chapter 4: Introducing the T - SQL Language

120

 DECLARE @FirstOfMonth  datetime

 DECLARE @DaysInMonth int

 DECLARE @RetDate datetime

 SET @FirstOfMonth = DATEADD(mm, DATEDIFF(mm,0,@TheDate), 0)

 SET @DaysInMonth = DATEDIFF(d, @FirstOfMonth, DATEADD(m, 1, @FirstOfMonth))

 RETURN  DATEADD(d, @DaysInMonth - 1, @FirstOfMonth)

END   

  Scripting Practices 
 When scripting objects, a common practice is to check for the existence of the object before creating it. 
Although this isn ’ t necessary when you know the object isn ’ t already in the database, if you generate 
script using SQL Server Management Studio, logic is typically included to remove the object if it exists 
and then re - create it. Keep in mind that dropping and re - creating an object will remove any security 
privileges that have been granted to users. If you simply need to modify an object to add capabilities, it 
may be advisable to use the  ALTER  command rather than  DROP  followed by the  CREATE  command. 
A number of different scripting options can be used to customize auto - generated script, and many of the 
non - default options may be unnecessary. 

 Every SQL Server database contains a number of standard system views that provide information about 
the different objects in a database. This information is known as  metadata . Ask any database 
professional to define metadata and you will undoubtedly get the same response:  “ Metadata is data 
about data. ”  Although this definition is technically correct, it is also pretty much useless in defining what 
metadata really is. The problem with defining metadata is that metadata is contextual. Depending on 
how you are looking at the information changes its context. It can be metadata or just data. For example, 
is the name of the columns on the Production.Product table data or metadata? In the context of the table, 
it is metadata, but if you were to query the sys.columns system view, the names become data, as the 
query in Figure  4 - 2  shows.   

 Figure 4 - 2 

(continued)

c04.indd   120c04.indd   120 10/31/08   6:21:23 PM10/31/08   6:21:23 PM



Chapter 4: Introducing the T - SQL Language

121

 So, yes, metadata is data about data. But more important, it is data that describes other data and gives it 
context. 

 You can get a lot of useful information about your database from these views. The following script 
searches the  sys.objects  system view to find out if the Person.Address table exists in the current 
database. If it does exist, the  DROP  statement is conditionally executed to delete the table.   

IF  EXISTS (SELECT * FROM sys.objects 

            WHERE object_id = OBJECT_ID(‘Person.Address’) 

              AND type in (N’U’))

DROP TABLE Person.Address

GO  

 A line of script may fail for a variety of reasons. Because of referential constraints and other 
dependencies, tables must be dropped in the right order. In case the table isn ’ t successfully dropped, it 
may be a good idea to check again for the existence of the table before attempting to create it. This is 
performed in the following script: 

IF NOT EXISTS (SELECT * FROM sys.objects 

               WHERE object_id = OBJECT_ID(‘Person.Address’) 

                 AND type in (N’U’))

BEGIN

  CREATE TABLE Person.Address(

   AddressID int IDENTITY(1,1) NOT NULL

  ,AddressLine1 nvarchar(60) NOT NULL

  ,AddressLine2 nvarchar(60) NULL

  ,City nvarchar(30) NOT NULL

  ,StateProvinceID int NOT NULL

  ,PostalCode nvarchar(15) NOT NULL

  ,Rowguid uniqueidentifier ROWGUIDCOL  NOT NULL

  ,ModifiedDate datetime NOT NULL)

END  

 As useful as they are, system views didn ’ t appear to be designed for ease of use or readability, so they 
can be somewhat cryptic. Another problem if you use system views is that there are no guarantees that 
they won ’ t change in later versions of SQL Server, possibly breaking your code if you were to upgrade 
and migrate your database. In lieu of directly querying system views, a set of views is provided with 
SQL Server to simplify the structure and data in the system views. These  information schema views  are 
available in each database. Essentially, these views are just saved queries that extract information from 
the underlying system views, but the data is formatted and cleansed so that it ’ s easy to read and query. 
Each view is prefixed with the name  INFORMATION_SCHEMA , followed by a period and a general object 
type. In place of the script in the previous example, which selects from the  sys.objects  table, a similar 
script may be used with the  INFORMATION_SCHEMA.TABLES  view, such as in the following: 

IF EXISTS (SELECT * 

           FROM INFORMATION_SCHEMA.Tables 

           WHERE TABLE_NAME = ‘Address’ 

             AND TABLE_SCHEMA = ‘Person’)

     DROP TABLE Person.Address

GO  

c04.indd   121c04.indd   121 10/31/08   6:21:24 PM10/31/08   6:21:24 PM



Chapter 4: Introducing the T - SQL Language

122

 As Figure  4 - 3  shows, the output and query of the information schema view is much simpler and 
straightforward. Appendix  D  contains a reference for the information schema views included with SQL 
Server.    

 Figure 4 - 3 

  Altering Objects 
 The script used to modify some existing objects is very similar to the syntax used to create objects, using the 
 ALTER  command in place of  CREATE . This is the case for objects that contain SQL expressions such as views, 
stored procedures, and user - defined functions. The following script is very similar to the example used to 
demonstrate how to create a stored procedure. An additional input parameter and error handling have 
been added.   

/******************************************************

*   Checks for existing Product record

*   If exists, updates the record.  If not,

*   inserts new record

*   Revised: 2-12-08 Dan Wood

******************************************************/

ALTER PROCEDURE spInsertOrUpdateProduct

  -- Input parameters -- 

   @ProductName nvarchar(50)

  ,@ProductNumber nvarchar(25)

  ,@StdCost money

  ,@ListPrice money

AS

c04.indd   122c04.indd   122 10/31/08   6:21:24 PM10/31/08   6:21:24 PM



Chapter 4: Introducing the T - SQL Language

123

   BEGIN TRY

      BEGIN TRANSACTION

        IF EXISTS(SELECT * 

                  FROM Production.Product 

                  WHERE ProductNumber = @ProductNumber)

           UPDATE Production.Product 

            SET NAME = @ProductName, StandardCost = @StdCost

           WHERE ProductNumber = @ProductNumber

        ELSE

           INSERT INTO Production.Product 

           (Name, ProductNumber, StandardCost, ListPrice)

           SELECT @ProductName

                 ,@ProductNumber

                 ,@StdCost

                 ,@ListPrice

      COMMIT TRANSACTION

   END TRY

   BEGIN CATCH

      DECLARE @ErrMsg varchar(1000)

      SET @ErrMsg = ERROR_MESSAGE()

      ROLLBACK TRANSACTION

      RAISERROR(@ErrMsg, 14,1)

      RETURN

   END CATCH  

 After the  ALTER  statement has been executed, the object retains all of its previous properties and security 
access privileges or restrictions, but its definition is updated with any of the script changes. This includes 
the comment block before the  ALTER  statement line. 

 Some objects require different syntax used to alter their definition than the language used to create them. 
For example, when creating a table, columns are defined within parentheses after the table name. To 
alter the design of a table and change the columns, you would use the  ADD  or  DROP  keyword before each 
column definition. Any existing columns that are not addressed in the  ALTER TABLE  script remain in the 
table ’ s definition.   

ALTER TABLE Appointment 

ADD  LeadTime smallint NULL  

 Each column or constraint change must be performed in a separate  ALTER TABLE  statement. For 
example, if my goal was to add the LeadTime column and to drop the Resource column, this can be 
performed using the previous and next statements but can ’ t be done in a single statement.   

ALTER TABLE Appointment 

DROP COLUMN Resource   

  Dropping Objects 
 Why is it that the most dangerous commands are the easiest to perform? Dropping an object removes it 
from the database catalog, completely deleting it from the database. Tables containing data and their 
related indexes are de - allocated, freeing the storage space for other data. To quote a well - known former 
president of the United States,  “ Let me make one thing perfectly clear ”   —  there is no Undo command in 
SQL Server. If you have dropped an object or deleted data, it ’ s gone. 

c04.indd   123c04.indd   123 10/31/08   6:21:25 PM10/31/08   6:21:25 PM



Chapter 4: Introducing the T - SQL Language

124

 The syntax for dropping all objects is the same:  DROP objecttype objectname  .  Here are a few 
examples of script used to drop the objects I previously created: 

DROP TABLE Appointment

DROP VIEW vwProductOrderDetails

DROP PROCEDURE spInsertOrUpdateProduct

DROP TRIGGER TR_Del_Product

DROP FUNCTION dbo.fn_LastOfMonth  

 Some objects cannot be dropped if there are dependent objects that would be affected if they no longer 
existed. Examples are tables with foreign key constraints, user - defined types, and rules. This safety 
feature is called  schema binding . Some objects don ’ t enforce schema binding by default but it can be 
created to explicitly enforce this rule. Views, stored procedures, and user - defined functions can 
optionally be created with schema binding and prevent orphaned dependencies. This feature is 
discussed in greater detail in Chapter  12 .    

  Data Control Language 
 Data Control Language (DCL) is by far the simplest subset of the SQL language. The goal of DCL is to 
manage users ’  access to database objects. After the database has been designed and objects are created 
using DDL, a security plan should be implemented to provide users and applications with an 
appropriate level of access to data and database functionality, while protecting the system from 
intrusion. Access privileges can be controlled at the server or database level, and groups of privileges can 
be assigned to individual users and to groups of users who are assigned role membership. Although 
database security involves simple concepts, it is not a task to be approached in a haphazard manner. It ’ s 
important to devise a comprehensive plan and to consider all of the business requirements and the 
organization ’ s security standards when devising a database security plan. 

 SQL Server recognizes two separate security models. These include SQL Server Security, where roles and 
users are managed entirely within the database server, and Integrated Windows Security, which maps 
privileges to groups and users managed in a Windows - based network system. This topic is discussed in 
greater detail in Chapter  16 , but some of the basic principles are explained in this section. 

 The easiest way to think about permissions is in layers. Because users can have memberships to multiple 
roles, they may have a mixed set of privileges for different database objects. Like placing multiple locks 
on a door, a user can only gain access to an object if all restrictive permissions are removed and they 
have been granted access through at least one role membership. Using the lock analogy, if you had a key 
to one of three locks, you would not be able to open the door. Likewise, if a user is a member of three 
roles, two of which are denied access to an object, access won ’ t be allowed even if it is explicitly granted. 
The user must be either removed from the restrictive roles or these permissions must be revoked. 

 In short, DCL consists of three commands that are used to manage security privileges for users or roles 
on specific database objects: 

  The  GRANT  command gives permission set to a user or role.  

  The  DENY  command explicitly restricts a permission set.  

  The  REVOKE  command is used to remove a permission set on an object.    

❑

❑

❑

c04.indd   124c04.indd   124 10/31/08   6:21:25 PM10/31/08   6:21:25 PM



Chapter 4: Introducing the T - SQL Language

125

 Revoking permissions removes an explicit permission ( GRANT  or  DENY ) on an object so that permissions 
that may have been applied at a less - specific level are used. Before permissions can be applied to objects, 
users and roles are defined. SQL Server provides a set of standard roles for both the database server and 
for each database. You learn how to manage permissions for roles and users in Chapter  13 . 

 Following are some examples. This statement grants  SELECT  permission to the user Paul on the 
Production.Product table: 

GRANT SELECT ON Production.Product TO Paul  

 Tables and views have permissions to allow or restrict the use of the four DML statements:  SELECT , 
 INSERT ,  UPDATE , and  DELETE . Stored procedures and functions recognize the  EXECUTE  permission. 
On tables, views, and functions, permissions can also be given or restricted on a user ’ s ability to 
implement referential integrity, using the  REFERENCE  permission. The  REFERENCE  permission means 
that if a user is given access to a table that has a foreign key defined on it that references another table, 
the user will need access to the other table. At a minimum the permission is  REFERENCE . 

 This example grants  EXECUTE  permission to members of the db_datawriter built - in role but denies this 
permission to a user named Martha: 

GRANT EXECUTE ON spAddProduct TO db_datawriter

DENY EXECUTE ON spAddProduct TO Martha  

 Multiple permissions can be applied on an object by placing permissions in a comma - delimited list, as in 
the following: 

GRANT SELECT, INSERT, UPDATE ON Production.Product TO Paul  

 An important aspect to remember about SQL Server security is that SQL Server does not enforce logical 
combinations of permissions. For example, assume that user Paul is a member of a security role called 
Authors and the following DCL scripts are executed: 

GRANT UPDATE ON dbo.PublishedBooks TO Authors

DENY SELECT ON dbo.PublishedBooks TO Paul  

 Because Paul is a member of the Authors role, he inherits the  UPDATE  permission granted to that role. 
He was also specifically denied the  SELECT  permission on the table PublishedBooks. The logical 
assumption would be that Paul could not update the PublishedBooks table, but this assumption would 
be wrong. Paul cannot update any specific rows due to this permission combination so the following 
command would fail: 

UPDATE PublishedBooks 

 SET Author = ‘Paul Turley’ 

WHERE BookID = 222  

 However this command would succeed: 

UPDATE PublishedBooks 

 SET Author = ‘Paul Turley’  

c04.indd   125c04.indd   125 10/31/08   6:21:25 PM10/31/08   6:21:25 PM



Chapter 4: Introducing the T - SQL Language

126

 Because the  WHERE  expression is, in essence, a  SELECT  command that is processed prior to the update, 
Paul is prevented from making the change. Unfortunately, Paul is a savvy SQL user, and he knows that 
by updating all the rows in the table he circumvents the denied  SELECT  permission and changes all the 
published book records to show that he is the author. The moral to this story is to use care and planning 
when applying permissions. 

 This short discourse should have provided a cursory introduction to the concepts and practices of DCL. 
As previously mentioned, like database design, security is a matter that should be carefully planned and 
implemented in a uniform and standard approach. It ’ s usually best to have a small number of database 
administrators charged with the task of security to keep tight reins over how privileges are applied for 
users of a database.  

  Summary 
 By now, you should have a good understanding about what the T - SQL language is used for and how it is 
implemented with Microsoft SQL Server. You learned that T - SQL is a dialect of the Structured Query 
Language, based on the industry - wide ANSI SQL standard. 

 Three categories of statements within SQL are used to define and manage a database and the objects 
contained therein, to control access to data and database functionality, and to manage the data in a 
database. Data Definition Language (DDL) encompasses the  CREATE  and  ALTER  statements, used to 
define database objects. Data Control Language (DCL) is used to manage security access and user 
privileges to data and database objects. Finally, Data Manipulation Language (DML) is the subset of SQL 
you will typically use most often. DML contains the  SELECT ,  INSERT ,  UPDATE , and  DELETE  statements 
and several variations of these statements that you will use to populate tables with records, modify, 
remove, and read data values. The  SELECT  statement has several modifiers and additional commands 
and clauses you will use to do useful things with, and make sense of, the data stored in a database. 

 The SQL Server database engine uses intelligent logic to process queries as efficiently as possible. The 
query parser and optimizer translate a SQL query into distinct operations, which are then compiled into 
low - level machine instructions. This compiled execution plan is cached in memory and can be stored 
permanently within the database with database programming objects to run more efficiently. 

 You also learned about the proper way to write SQL script, using comments and naming standards. 
Script can be saved in script files for safekeeping and templates can be used to save time and effort when 
writing new queries. 

 This chapter, along with the first three chapters, is the foundation on which more specific topics are 
based. As you move forward, you will be using the scripting techniques discussed here and the tools you 
learned to use in Chapter  2 . The rest of the book focuses on specific types of queries and objects.  

c04.indd   126c04.indd   126 10/31/08   6:21:26 PM10/31/08   6:21:26 PM



Chapter 4: Introducing the T - SQL Language

127

  Exercises 
  Exercise 1 

 Use SQL Server Management Studio to create and execute a new query, and view the results: 

  1.   Open a connection to your local or remote test server.  

  2.   Indicate that you want to run queries against the AdventureWorks2008 database.  

  3.   Execute the following SQL statement: 

SELECT * FROM Production.Product   

  4.   Check the status bar for the numbers of rows returned by the query.  

  5.   Check the results with the solution.     

  Exercise 2 
 Insert a row using generated SQL script: 

  1. Using SQL Server Management Studio, expand the AdventureWorks2008 database in the object 
browser. Right - click the Production.ProductCategory table and select Script Table As    Insert 
to    New Query Editor Window.  

  2. With the new query opened, click on the Query menu and select the Specify Values for Template 
Parameters option. Specify  “ Widgets ”  as the value for Name (with single quotes), and the 
keyword DEFAULT for both the RowGuid and ModifiedDate values.  

  3. Execute the query.  

  4. Enter the following query to view the contents of the ProductCategory table: 

SELECT * FROM Production.ProductCategory    

  5. Highlight this statement and execute this query.  

  6. Verify that a new row was added to the results. Check the modified SQL expression that you 
generated with the solution.                       

c04.indd   127c04.indd   127 10/31/08   6:21:26 PM10/31/08   6:21:26 PM



c04.indd   128c04.indd   128 10/31/08   6:21:26 PM10/31/08   6:21:26 PM



                                        5
    Data Retrieval          

 In Chapter  4 , you learned that as the SQL language has evolved, it has expanded to add more 
capabilities. In this chapter you learn the fundamentals of the Data Manipulation Language (DML) 
aspects of T - SQL as they relate to retrieving data. Topics include filtering results with the  WHERE  
clause, limiting results to specific table attributes, and ordering results to conform to business 
requirements. Subsequent chapters build on these concepts as you learn about more advanced 
implementations of these DML components.  

  Storage and Retrieval 
 I ’ m not a particularly organized person by nature. When I am done using an item, my first impulse 
is to toss it on my dresser or a table. The workbench in my garage hasn ’ t seen the light of day for 
several months. I tell you this so you can understand my deep appreciation for the orderliness of a 
relational database. Perhaps this is the element in my life that helps me compensate for the lack of 
order in other areas. I also love containers of all kinds. The cool thing about having containers is 
that when you need to put something away, there ’ s always a place for it, but when it comes time to 
find it, that ’ s often another story. 

 Retrieving data through queries is really about finding stuff. SQL queries are used to reach into 
the database and pull out useful information; sometimes you need to get all of the details and 
sometimes you need only a subset of data based on common characteristics. At times, the value or 
values you ’ ll want to return are an aggregation of data that tell you something about the data, 
rather than just returning all of the data in raw form. 

 As you will see later on, queries can be nested within queries and can be saved as programming 
objects such as functions, stored procedures, and views. Queries can then get their data from 
these objects. Queries can be joined, nested, and compounded in many different ways. Just 
remember that it all boils down to the same basic components.  

c05.indd   129c05.indd   129 10/31/08   6:21:53 PM10/31/08   6:21:53 PM



Chapter 5:   Data Retrieval      

130

  The  SELECT  Statement 
 The  SELECT  statement consists of four clauses or components, as explained in the following table. 

     Clause      Explanation   

     SELECT     Followed by a list of columns or an asterisk, indicating that you want to return all 
columns  

     FROM     Followed by a table or view name, or multiple tables with join expressions  

     WHERE     Followed by filtering criteria  

     ORDER BY     Followed by a list of columns for sorting  

 The  SELECT  statement and  FROM  clause are required. The others are optional. Think of a table as a 
grid, like an Excel worksheet, consisting of cells arranged in rows and columns. Often, when you 
want to view the data in a table, you ’ re only interested in seeing some of the information. To control 
what data gets returned, you can either display a subset of the columns, a subset of the rows, or a 
combination of the two. In any case, the  result set  is a list of rows, each consisting of the same number 
of columns. 

 The first few examples in this chapter show you two different views of the same data. I have pasted the 
contents of the Product table into an Excel workbook. For each query, you will see the first 66 rows and 
all 10 columns. As I filter the rows and columns, I ’ ll highlight the selected rows and columns. This will 
provide a different perspective alongside the filtered result set. Keep in mind that Excel presents values a 
little differently than the results grid. For example, Null values are displayed as empty cells, whereas the 
results grid displays the text Null by default (this can be configured to display anything you like). 
Figure  5 - 1  shows a sampling of data from the Product table in an Excel worksheet.   

c05.indd   130c05.indd   130 10/31/08   6:21:54 PM10/31/08   6:21:54 PM



Chapter 5:   Data Retrieval      

131

  Choosing Columns 
 Specify the columns you want your query to return immediately after the  SELECT  statement. The 
following statement returns three columns and all records in the Product table: 

SELECT Name, StandardCost, Color

FROM Production.Product  

 Even though there may be dozens of columns of data in this table, you ’ re just returning data values for 
the Name, StandardCost, and Color columns. You ’ re still going to get all of the rows that exist in the 
table. Figure  5 - 2  shows the Excel worksheet with only the selected columns highlighted.   

 Figure 5 - 1 

c05.indd   131c05.indd   131 10/31/08   6:21:54 PM10/31/08   6:21:54 PM



Chapter 5:   Data Retrieval      

132

 If you want to return values for all available columns, you can either specify every column by name or 
use the asterisk (*) to indicate  “ all columns. ”  This query returns all of the columns in the table, as if 
you had listed every available column in the  SELECT  statement: 

SELECT * FROM Production.Product  

 Occasionally, I hear the asterisk in this context referred to as a  splat . So if you hear an old - timer DBA say 
 “ Select Splat From Products, ”  you ’ ll know what he ’ s talking about. 

 Using the  SELECT *  technique of returning rows is acceptable only in an ad   hoc query 
environment. Using this technique in an application environment will cause nothing but aggravation 
down the road. Data consumers such as ADO.NET or any other interface generally require column name 
mapping. As long as the number of columns and the names of the columns in your database will  never  
change, you can most likely get away with using  SELECT * . However, if there is any one constant in the 
universe, it ’ s change. Column names will invariably change and so will the number of columns in a 

 Figure 5 - 2 

c05.indd   132c05.indd   132 10/31/08   6:21:55 PM10/31/08   6:21:55 PM



Chapter 5:   Data Retrieval      

133

table. As a best practice avoid this technique for returning all rows. There are a number of reasons to 
explicitly list the columns in your query, including the following: 

  Including columns you don ’ t need may produce unnecessary disk I/O and network traffic.  

  Sensitive information may be available to unauthorized users.  

  In complex, multi - table queries, including all columns produces redundant column values, 
confusing users and complicating application development.  

  Results are more predictable and easier to manage.    

 Later on, you ’ ll learn about writing queries for multiple tables. However, in the following Try It Out, you 
take a quick look at such a query so that you can see how to address columns from more than one table 
with identical names. 

 Try It Out Multi - Table Query 

 Open SQL Server Management Studio and connect to your database server. Select the 
AdventureWorks2008 database from the selection list on the toolbar. Type the following query into the 
query editor and execute the query: 

SELECT ProductID

      ,Name

      ,Color

      ,StandardCost

      ,ListPrice

FROM Production.Product  

 In the results pane, you should see five columns of values representing Product records  —  all 504 of 
them. The record count is displayed in the lower status bar, near the right side. Your results should 
look something like those shown in Figure  5 - 3 .   

❑

❑

❑

❑

Figure 5-3

c05.indd   133c05.indd   133 10/31/08   6:21:56 PM10/31/08   6:21:56 PM



Chapter 5:   Data Retrieval      

134

 Expand the query to get model information from a related table. Amend the query as in the following 
example.   

SELECT ProductID

      ,Name

      ,Color

      ,StandardCost

      ,ListPrice

      ,ProductModelId

      ,Name

FROM Production.Product

INNER JOIN Production.ProductModel

ON Production.Product.ProductModelID = Production.ProductModel.ProductModelID  

 Now when you execute this query, what happens? You get an error that looks like that shown in 
Figure  5 - 4 .   

Figure 5-4

 The query parser is unhappy because you have referred to two different tables that contain columns 
with identical names. If you are using SQL Server 2008, the query window will tell you your query 
isn ’ t going to work before you ever execute it. It underlines the ambiguous column names and if you 
hover the mouse over the underlines text, it will tell you what the error is (refer to Figure  5 - 4 ). This 
feature is new to SQL Server 2008. Both the Product and ProductModel tables contain columns named 
Name and ProductModelID. This problem is easily remedied by prefixing the column names with the 
table name. The corrected query would look like this: 

SELECT ProductID

      ,Production.Product.Name

      ,Color

      ,StandardCost

      ,ListPrice

      ,Production.ProductModel.ProductModelId

      ,Production.ProductModel.Name

FROM Production.Product

INNER JOIN Production.ProductModel

ON Production.Product.ProductModelID = Production.ProductModel.ProductModelID  

c05.indd   134c05.indd   134 10/31/08   6:21:56 PM10/31/08   6:21:56 PM



Chapter 5:   Data Retrieval      

135

 However, as I mentioned in the previous chapter, this is still not the best way to format the query. It ’ s 
very advantageous to look at a query and know exactly which data is coming from which table, as the 
following example shows: 

SELECT Production.Product.ProductID

      ,Production.Product.Name

      ,Production.Product.Color

      ,Production.Product.StandardCost

      ,Production.Product.ListPrice

      ,Production.ProductModel.ProductModelId

      ,Production.ProductModel.Name

FROM Production.Product

INNER JOIN Production.ProductModel

ON Production.Product.ProductModelID = Production.ProductModel.ProductModelID  

 Now there is an additional issue with our query. It will work, but it will return two columns called 
Name. A database application attempting to consume this data is going to get very confused. When 
there are duplicate named columns it is very important to give one or both alias names. Column 
aliases are covered in detail later in this section, but for now take a look at the following example and 
how it alleviates the duplicate name problem: 

SELECT Production.Product.ProductID

      ,Production.Product.Name AS Product

      ,Production.Product.Color

      ,Production.Product.StandardCost

      ,Production.Product.ListPrice

      ,Production.ProductModel.ProductModelId

      ,Production.ProductModel.Name AS Model

FROM Production.Product

INNER JOIN Production.ProductModel

ON Production.Product.ProductModelID = Production.ProductModel.ProductModelID  

 You will also notice that when referencing the table, the schema name is also required. In database 
terminology, a schema is a namespace. It is a way you can group common objects together in a 
common namespace. A schema is also a securable object, so the DBA can grant explicit permissions to 
a schema. For example, a DBA can grant a user the  SELECT  permission to a schema. In that way the 
user will be allowed to select rows from any table or view that is in that schema. 

 Every object in a SQL Server database is identified with a four - part name. The name takes the form of 
 Server.Database.Schema.Object . In the case of the table columns, they are not really objects, but 
attributes of an object. In the  SELECT  clause, the server is not specified, only the database, schema, 
object, and attribute. The  FROM  clause is where the server may be specified. So, to select the ProductID 
attribute of the Product object from the Production schema in the AdventureWorks2008 database on 
the WoodVista server, I would write the query as follows: 

SELECT AdventureWorks2008.Production.Product.ProductID

FROM WoodVista.AdventureWorks2008.Production.Product  

 As you have seen previously, some parts of the four - part name are optional. If the server name is 
omitted, SQL Server assumes the query is being run on the server connection where the query is being 
run. The same is true for the database. SQL Server will assume that whatever database context is 
currently set is the database where the objects of interest reside. 

c05.indd   135c05.indd   135 10/31/08   6:21:56 PM10/31/08   6:21:56 PM



Chapter 5:   Data Retrieval      

136

 Things get more complicated when you get to the schema. In SQL Server, every user is assigned a 
default schema, or namespace. 

 If you have never used SQL Server before, or if you have used versions prior to SQL Server 2005, the 
schema object may need just a bit more explanation. 

 A  schema  is a named collection of database objects that forms a namespace. The namespace is owned 
by a single user. Within the namespace, objects cannot have duplicate names. However, objects can 
have the same name if they exist in different namespaces, or more specifically, different schemas. For 
instance, if a table called MyTable is created in the schema Sales on my server called AughtEight, its 
name becomes  AughtEight.Sales.MyTable . An additional table called MyTable can still be created 
in the Marketing schema and its name would be  AughtEight.Marketing.MyTable . Schemas also 
form a security scope, which can be used by the database administrator to control access to all objects 
within the schema namespace. 

  Schemas and Name Resolution 
 Because schemas are, in fact, namespaces, it is important to set the context of object references when 
calling on database objects in SQL Server. As I mentioned earlier, every user is assigned a default 
schema. When a user logs in to a SQL Server and calls on database objects, this default schema will play 
a distinct role in how the objects must be referenced. 

 Because SQL Server, as with many other database products, organizes objects in schemas, it is important 
to understand how to properly access these objects. 

 Here ’ s how it works: The database designer defines schemas, which are really just category names. 
These schema names can have associated ownership and permissions, which provides the same 
capabilities available in earlier SQL Server versions. 

 If you are using the AdventureWorks2008 database that installs with SQL Server and the login you are 
using has been assigned the default schema of DBO, you must use the following syntax to access the 
Product table: 

SELECT * FROM Production.Product  

 In earlier versions of SQL Server, objects were typically owned by a user called  DBO , and if you 
didn ’ t prefix an object reference with a username, the DBO user was just assumed. The same is true 
with schemas in SQL Server 2005 and 2008. Objects can belong to the DBO schema, and if you don ’ t use 
a schema name in an object reference, the DBO schema is assumed as long as it is your default schema. 
However, if your default schema has been changed to something other than DBO, then this is no longer 
true. If an object is part of any other schema, the schema name must be used in the expression. Here is an 
example to illustrate this feature. 

 User Fred connects to the AdventureWorks2008 database on a SQL Server instance called Bedrock1. 
Fred ’ s default schema has not been explicitly assigned, and so it is set to DBO by default. Fred then 
executes the following query: 

SELECT * FROM Product  

c05.indd   136c05.indd   136 10/31/08   6:21:57 PM10/31/08   6:21:57 PM



Chapter 5:   Data Retrieval      

137

 The query processor attempts to resolve the Product table name to  Bedrock1.AdventureWorks2008.dbo.
Product , but the query fails because the Product table exists in the Production schema and not the DBO 
schema. Now I change Fred ’ s default schema like this: 

ALTER USER Fred WITH DEFAULT_SCHEMA = Production  

 When Fred executes the product query again, the Query Processor resolves the product table to  Bedrock1.
AdventureWorks2008.Production.Product,  and the query succeeds. 

 Now take a look at an opposite example. User Barney, who is the assistant DBA, connects to the same 
instance that user Fred did, but he wants to retrieve the contents of the DBAudit table that exists in the 
DBO schema, but Barney ’ s default schema has also been set to Production. Barney runs the following 
query: 

SELECT * FROM DBAudit  

 The Query Processor first attempts to resolve the DBAudit table to Barney ’ s default schema,  Bedrock1.
AdventureWorks2008.Production.DBAudit , but the resolution fails. However, because the Query Processor 
started in a schema other than DBO, it then falls back to the DBO schema and attempts to resolve the 
table to  Bedrock1.AdventureWorks.dbo.DBAudit . This resolution succeeds, and the contents of the table are 
returned. 

 This fallback resolution works in two cases: if the object does not exist in the user ’ s default schema, but 
does in the DBO schema, or if the object does not exist in the user ’ s default schema, but does in the SYS 
schema. The SYS schema is reserved for system objects and contains system views that are very useful in 
the management of SQL Server databases. 

 One final point that is very important to understand is that a table can have the same name as another 
table in a different schema. So it is very possible to have a table called User in the Sales schema, the 
Production schema and the HumanResources schema. If this is true, it becomes even more important 
that the tables are referenced with their two - part name to ensure the correct data is returned.  “ Why 
would anyone do something like creating three tables all with the same name? ”  Good question. The 
answer is that a SQL Server schema is not only a namespace, it is also a security context. The DBA could 
grant permissions to the sales manager to add and delete users in the Sales.User table, but prevent her 
from having access to the Production.User table. It is just another way of managing security and 
application access.   

  Column Aliasing 
 You may want to change column names in a query for a variety of reasons. These may include changing 
a column name to make it easier to understand or to provide a more descriptive name. Changing a 
column name can also provide backward compatibility for application objects if column names were 
renamed after design. 

 In a previous example you saw that the Query Processor needs to know what table to retrieve a column 
from if the column exists in more than one referenced table. The same can also be true for the person 

c05.indd   137c05.indd   137 10/31/08   6:21:57 PM10/31/08   6:21:57 PM



Chapter 5:   Data Retrieval      

138

reading the results. They might need to know exactly what table the values were extracted from. The 
following example clarifies the source of an ambiguous column by using an alias: 

SELECT SalesOrderHeader.CustomerID AS SalesCustomerID

      ,SalesOrderHeader.SalesPersonID

      ,PurchaseOrderNumber 

FROM   Sales.Customer 

INNER JOIN Sales.SalesOrderHeader

   ON Customer.CustomerID = SalesOrderHeader.CustomerID  

 In the result set shown in Figure  5 - 5 , you can see that the first column now shows up as 
SalesCustomerID and not CustomerID.   

Figure 5-5

 Months later, this could save someone a lot of grief and aggravation. Imagine getting a call from the 
accounting department when they discover that they have been billing the wrong customer. 

 You can alias a column in three different ways. The technique used in the preceding example is 
probably the most descriptive. A popular technique leaves out the  AS  keyword so the actual column 
name simply precedes the alias. The following table shows each of these techniques. The last one isn ’ t 
common, but it can come in handy in limited situations. 

     Syntax      Description   

     Column  AS  Alias     Most readable technique, but not popular with SQL purists  

     Column Alias     Common technique, but not very readable  

     Alias  =  Column     Not common in T - SQL  

c05.indd   138c05.indd   138 10/31/08   6:21:57 PM10/31/08   6:21:57 PM



Chapter 5:   Data Retrieval      

139

 Here are examples of these three techniques: 

SELECT ListPrice - StandardCost AS Margin

FROM Production.Product

SELECT ListPrice - StandardCost Margin

FROM Production.Product

SELECT Margin = ListPrice - StandardCost

FROM Production.Product  

 As you can see, the first example, using the  AS  keyword is probably the most descriptive and easiest 
to read.  

  Calculated and Derived Columns 
 One of the most common types of column aliases is when a new column is created from an expression 
or calculation, such as in the previous example using the Product table. As you can see in Figure  5 - 6 , 
this produces a single column called Margin, which contains the difference between the products cost 
and price.   

Figure 5-6

 Following are a few examples using various functions and column data types. This first simple example 
uses the UnitPrice and OrderQty columns from the Sales.SalesOrderDetail to calculate the purchase 
amount for a line item by multiplying these two values. The resulting alias column is called 
PurchasePrice: 

SELECT SalesOrderID

      ,ProductID

      ,UnitPrice * OrderQty As PurchasePrice

FROM Sales.SalesOrderDetail  

 In the result set shown in Figure  5 - 7 , the PurchasePrice column shows the calculated figure.   

c05.indd   139c05.indd   139 10/31/08   6:21:58 PM10/31/08   6:21:58 PM



Chapter 5:   Data Retrieval      

140

Figure 5-7

 In the following scenario, you need to calculate each employee ’ s age based on their birth date and the 
current date. Using the  DATEDIFF  function, you ask SQL Server to calculate the number of years between 
the two dates to get the approximate result. The query would look like this: 

SELECT NationalIDNumber

      ,BirthDate

      ,DATEDIFF(YY, BirthDate, GETDATE()) As Age

FROM HumanResources.Employee  

 The result set should resemble that shown in Figure  5 - 8 .   

Figure 5-8

 In the next example, the Product ’ s table SubCategoryID, is related to a column in the 
ProductSubCategory table. Without using a join between these tables, I would like to see the subcategory 
name in the output from my query. Because I know that SubCategoryID 1 represents mountain bikes, 

c05.indd   140c05.indd   140 10/31/08   6:21:58 PM10/31/08   6:21:58 PM



Chapter 5:   Data Retrieval      

141

I can add this description using an alias column. In the  WHERE  clause, I filter product rows based on the 
subcategory and then add an alias column called SubCategoryName: 

SELECT Name, ListPrice, ‘Mountain Bike’ AS SubCategoryName 

FROM Production.Product WHERE ProductSubCategoryID = 1  

 Figure  5 - 9  shows the results from this query. Note the SubCategoryName column.   

Figure 5-9

 I ’ ll come back to this example and expand on it in Chapter  8  when you learn about multi - table queries.  

  Filtering Rows 
 It ’ s safe to say that most of the time you won ’ t want to return every record, especially from your largest 
tables. Many production databases in business are used to collect and store records for many years of 
business activity. For small to medium - sized businesses, this is a common practice. In larger - scale 
systems, data is usually archived yearly or monthly and useful, historical information may be moved 
into a data warehouse for reporting. Regardless, it often doesn ’ t make sense to return all rows in a table. 
Two basic techniques exist for returning some of the rows from a query: The  WHERE  clause is used to 
qualify each row based on filter criteria, and the  TOP  clause is used to limit the list to a defined number 
of rows.  

  The  WHERE  Clause 
 Filtering is largely the job of the  WHERE  clause, which is followed by some sort of filtering expression. 
The syntax of this statement is very natural and should be easy to translate to or from a verbal statement. 
I ’ ll continue to use the Excel worksheet example that I began using earlier in this chapter. In this 
example, all columns for products that are black are returned: 

SELECT * FROM Production.Product

WHERE Color = ‘Black’  

 I ’ m essentially asking SQL Server to filter the rows for the table only vertically, returning slices that meet 
only the specified color criteria, as reflected in Figure  5 - 10 .   

c05.indd   141c05.indd   141 10/31/08   6:21:59 PM10/31/08   6:21:59 PM



Chapter 5:   Data Retrieval      

142

Figure 5-10

Figure 5-11

 The result set shows only the matching rows (as much as you can see in the results grid), as shown in 
Figure  5 - 11 .   

c05.indd   142c05.indd   142 10/31/08   6:21:59 PM10/31/08   6:21:59 PM



Chapter 5:   Data Retrieval      

143

 It ’ s important to note that the  WHERE  clause is evaluated by SQL Server  before  the data is retrieved. 
SQL Server will find just the rows that match the filter criteria and return them. This conserves memory 
and I/O resources. In Chapter  14 , we look a little more closely at this aspect of queries and how to best 
write queries for optimal performance. 

 Recall that I used this workbook to demonstrate selecting specific columns to be returned from the query. 
So far, I ’ ve selected specific columns and specific rows. Now, I ’ ll combine the two to return a subset of 
both columns and rows using the following  SELECT  expressions: 

SELECT Name, StandardCost, Color

FROM Production.Product

WHERE Color = ‘Black’  

 Before you examine the results, refer to Figure  5 - 12  for another look at that workbook data with 
highlighted columns and rows. 

 The result set contains only the values in the intersection of the columns and rows. As you can see in 
Figure  5 - 13 , only the Name, StandardCost, and Color columns are included, and the only rows are those 
where the Color value is Black.   

Figure 5-12

c05.indd   143c05.indd   143 10/31/08   6:22:00 PM10/31/08   6:22:00 PM



Chapter 5:   Data Retrieval      

144

Figure 5-13

 For example, consider the following verbal request:  “ I would like to see a list of products, including the 
product name and price that have a price less than $5.00. ”  The SQL version of this request would look 
like this: 

SELECT Name, ListPrice

FROM Production.Product

WHERE ListPrice  <  5.00  

 Easy, right? Filtering statements should be very natural and easy to read. You just need to get used to 
the flow. 

  Comparison Operators 
 Qualifying values to match a set of criteria is a relatively straightforward proposition, especially when 
working with numeric and date/time types. Testing a numeric value to see if it is greater than 10 makes 
sense and there is little room for confusion. However, testing to see if the value Fred is greater than the 
value Bob may not seem to make much sense, but in reality you will likely find yourself using this 
technique while searching through character strings. 

 Comparing and qualifying values generally boils down to this: A value is either equal to, less than, or 
greater than another value. When matching character values, you can be a little more creative, looking 
for partial strings of characters to match a value that is  “ like ”  another value. Starting with the simplest 
comparisons, value - matching operators are described in the following table. 

c05.indd   144c05.indd   144 10/31/08   6:22:01 PM10/31/08   6:22:01 PM



Chapter 5:   Data Retrieval      

145

     Operator      Description   

    =    Equal to. Matches a value that is exactly equal to another value. Can be used with 
nearly all data types.  

     <  >  or !=    Not equal to.  

     <     Less than. Typically used with numeric and date/time data types.  

     >     Greater than.  

    ! <     Not less than.  

    ! >     Not greater than.  

     < =    Less than or equal to.  

     > =    Greater than or equal to.  

    Like    Used to perform wildcard matches with character values.  

 As you can see, most of the comparison operators are very straightforward. Here are just a couple of 
examples of their use: 

 To return the name and list price of all products that cost $75.00 or more, the query would look like this: 

SELECT Name, ListPrice

FROM Production.Product

WHERE ListPrice  > = 75.00  

 In a previous example we looked for all products with a list price less than $5.00 using the less than (  < )  
operator. We could also have written the query like this: 

SELECT Name, ListPrice

FROM Production.Product

WHERE ListPrice ! >  5.00  

 The  LIKE  operator is a bit more complicated than the rest of the comparison operators. The first thing to 
know is that "  like"   does not mean  “ similar ”  when it comes to SQL Server. It means  " exactly like."   The 
power that the  LIKE  operator brings is the ability to use wildcards for character string comparisons. For 
example, what if you know that a store ’ s name that sells AdventureWorks products begins with  “ Top, ”  
but you can ’ t remember the rest of the name. The  LIKE  operator enables you to search through the list of 
store names that begin with  “ Top, ”  as the following example demonstrates: 

SELECT Name FROM Sales.Store

WHERE Name LIKE ‘Top%’  

 The percent ( % ) character tells SQL Server that you want to return all rows where the first three letters are 
 “ Top ”  and zero or more characters follow. 

c05.indd   145c05.indd   145 10/31/08   6:22:01 PM10/31/08   6:22:01 PM



Chapter 5:   Data Retrieval      

146

 The following table lists the wildcards that may be used and their description:

     Wildcard      Description   

     %     Any string of zero or more characters  

     _     Any single character  

     []     Any single character within the specified range or set  

     [^]     Any single character not within the specified range or set  

 Following are some examples of how to use the  LIKE  expression to search character strings in a column, 
but first let ’ s create a simple table to practice on. 

 Begin by running the following SQL code to create and populate a table called SlateGravel. The first 
block will run in either SQL Server 2005 or 2008. The second block, however, is optimized using new 
SQL Server 2008 (only) syntax.   

--SQL Server 2005/2008 syntax:

USE AdventureWorks2008

GO

CREATE TABLE dbo.SlateGravel

(LastName varchar(25) NULL

,FirstName varchar(25) NULL

,Position varchar(25) NULL);

INSERT SlateGravel

VALUES

(‘Flintstone’, ‘Fred’, ‘Bronto Driver’)

INSERT SlateGravel

VALUES

(‘Rubble’, ‘Barney’, ‘Accountant’)

INSERT SlateGravel

VALUES

(‘Turley’, ‘Paul’, ‘Developer’)

INSERT SlateGravel

VALUES

(‘Wood’, ‘Dan’, ‘DBA’)

INSERT SlateGravel

VALUES

(‘Rockhead’, ‘Don’, ‘System Administrator’)

INSERT SlateGravel

VALUES

(‘Rockstone’, ‘Pauline’, ‘Manager’)

--SQL Server 2008 syntax:

USE AdventureWorks2008

GO

CREATE TABLE dbo.SlateGravel

(LastName varchar(25) NULL

,FirstName varchar(25) NULL

c05.indd   146c05.indd   146 10/31/08   6:22:01 PM10/31/08   6:22:01 PM



Chapter 5:   Data Retrieval      

147

,Position varchar(25) NULL);

INSERT SlateGravel

VALUES

 (‘Flintstone’, ‘Fred’, ‘Bronto Driver’)

,(‘Rubble’, ‘Barney’, ‘Accountant’)

,(‘Turley’, ‘Paul’, ‘Developer’)

,(‘Wood’, ‘Dan’, ‘DBA’)

,(‘Rockhead’, ‘Don’, ‘System Administrator’)

,(‘Rockstone’, ‘Pauline’, ‘Manager’)  

 As you have seen before, to return every string starting with a string of characters you use the 
following syntax: 

SELECT * FROM SlateGravel

WHERE LastName LIKE ‘Flint%’  

 Be aware that if the data is stored in a case - sensitive collation searching for  “ flint% ”  will not return 
strings beginning with  “ Flint. ”  

 To find strings ending with certain values simply place the wildcard at the beginning of the string.   

SELECT * FROM SlateGravel

WHERE LastName LIKE ‘%stone’  

 To find a value that that contains a certain string you can use both leading and trailing wildcards.   

SELECT * FROM SlateGravel

WHERE LastName LIKE ‘%sto%’  

 To find a value when only a single character is unknown, the underscore can be used.   

SELECT * FROM SlateGravel

WHERE LastName LIKE ‘_urley’  

 To find a value when a single character is within a specified range or set, square brackets are used. This 
example looks for first names of either Dan or Don.   

SELECT * FROM SlateGravel

WHERE FirstName LIKE ‘D[ao]n’  

 To search within a range, a dash is added between the letters.   

SELECT * FROM SlateGravel

WHERE FirstName LIKE ‘D[a-o]n’  

 Finally, to search for a value that does not contain specific characters, the caret symbol is used.   

SELECT * FROM SlateGravel

WHERE FirstName LIKE ‘D[^o]n’  

c05.indd   147c05.indd   147 10/31/08   6:22:02 PM10/31/08   6:22:02 PM



Chapter 5:   Data Retrieval      

148

 Another variation of the  LIKE  operator is to use the  NOT  keyword. So, instead of looking for all first 
names like  “ Dan, ”  you can search for all first names  not  like  “ Dan. ”    

SELECT * FROM SlateGravel

WHERE FirstName NOT LIKE ‘Dan’   

  Logical Comparisons 
 Using logical comparisons is how we make sense of things and it ’ s how we simplify matters. It ’ s how we 
dispel the gray area between  " yes "  and  " no "  or  " true"   and  " false. "  

 It would be convenient if all decisions were based on only one question, but this is rarely the case. Most 
important decisions are the product of many individual choices. It would also be convenient if each 
unique combination of decisions led to a unique outcome, but this isn ’ t true either. The fact is that, often, 
multiple combinations of individual decisions can lead to the same conclusion. This may seem to be very 
complicated. Fortunately for us, in the 1830s mathematician George Bool boiled all of this down to a few 
very simple methods for combining outcomes called  logical gates . There are only three of them:  AND ,  OR , 
and  NOT . 

 It ’ s important to realize that every SQL comparison and logical expression yields only one type of 
result: True or False. When combining two expressions, there are only three possible outcomes: they are 
both True, they are both False, or one is True and the other False. With the groundwork laid, let ’ s apply 
Bool ’ s rules of logic to the SQL  WHERE  clause and combine multiple expressions.   

The  AND  Operator 
 The  AND  operator simply states that for the entire expression to yield a True result, all individual 
statements must be true. For example, suppose you ’ re looking for product records where the 
SubCategoryID is 1 (mountain bikes) and the price is less than $1,000. You ’ re not interested in road 
bikes under $1,000, nor mountain bikes costing $1,000 or more. Both criteria must be met.   

SELECT ProductID, Name, ListPrice

FROM Production.Product 

WHERE ProductSubCategoryID = 1 AND ListPrice  <  1000  

 Assuming that there are records matching either criterion, the  AND  operator will always reduce the 
rows in the result set. For example, the Product table contains 32 mountain bikes and 418 rows of 
products with a list price under $1,000. However, as you can see in Figure  5 - 14 , only 14 rows match 
both of these filters.       

c05.indd   148c05.indd   148 10/31/08   6:22:02 PM10/31/08   6:22:02 PM



Chapter 5:   Data Retrieval      

149

Figure 5-14

Figure 5-15

The  OR  Operator 
 When statements are combined using the  OR  operator, rows are returned if they match any of the criteria. 
Using the previous statement, changing the  AND  to an  OR  produces a different result: 

SELECT ProductID, Name, ListPrice

FROM Production.Product 

WHERE ProductSubCategoryID = 1 OR ListPrice  <  1000  

 Rather than seeing only mountain bikes under $1,000, you see all mountain bikes, regardless of their 
price, and all products having a price under $1,000. This query returns 436 rows (14 of which are shown 
in Figure  5 - 15 ).      

c05.indd   149c05.indd   149 10/31/08   6:22:02 PM10/31/08   6:22:02 PM



Chapter 5:   Data Retrieval      

150

  The  NOT  Operator 
 The  NOT  operator doesn ’ t stand alone. It ’ s simply a modifier that can precede any logical expression. The 
job of this operator is to reverse the result. So, if an expression yields True, you get a False. If it ’ s False, you 
see True. Sometimes it ’ s easier to test for the opposite of what you are looking for. However, the  NOT  
operator is often less efficient because SQL Server actually processes the base expression first (perhaps 
returning all qualifying rows), and then fetches the rows that were not included in the original result. 
Depending on the complexity of the statement and the number of rows in the table, using  NOT  may still be 
more efficient than having to build an expression that selects everything but the records you want to ignore. 

 If you wanted to return all product records except for road bikes, you could use this expression: 

SELECT ProductID, Name, ListPrice

FROM production.Product 

WHERE NOT ProductSubCategoryID = 2   

 In the result set, shown in Figure  5 - 16 , all rows are returned except for those having a 
ProductSubCategoryID value of 2.   

Figure 5-16

 I ’ m not particularly fond of this syntax because it makes much more sense to write the expression as follows: 

SELECT ProductID, Name, ListPrice

FROM Production.Product

WHERE ProductSubCategoryID != 2  

 or this way: 

SELECT ProductID, Name, ListPrice

FROM Production.Product

WHERE ProductSubCategoryID  <  >  2  

 However, all three queries will return duplicate results and consume the same resources.  

c05.indd   150c05.indd   150 10/31/08   6:22:03 PM10/31/08   6:22:03 PM



Chapter 5:   Data Retrieval      

151

  The Mighty Null 
 In the earlier days of databases, designers often found it difficult to consistently express the concept of 
 “ no value. ”  For example, if a product invoice line is stored but you don ’ t have the price of the product at 
the time, do you store a zero? How would you differentiate this row from another where you intended 
not to charge for the product? 

 Character data can be particularly strange at times. Within program code, string variables initialize to an 
empty string. In older file - based databases, what would now be considered to be a field would consist of 
a designated number of characters in a specific position within the file. If a field wasn ’ t assigned a value, 
the file stored spaces in place of the data. Programs returned all of the characters including the spaces, 
which had to be trimmed off. If there wasn ’ t anything left after removing the spaces, the program code 
concluded that there was no value in the field. So, what if you had intended to store spaces? How would 
you differentiate between a space and no value at all? Numeric types initialize to zero. The Bit or 
Boolean data type in some programming languages initializes to zero or False. If you store this value, 
does this mean that the value is intentionally set to False, or is this just its default state? What about 
dates that haven ’ t been set to a value? As you can see, there is plenty of room for confusion regarding 
this topic. For this and other reasons, the ANSI SQL standard for representing the concept of  “ no value ”  
is to use a special value called  Null . Internally, Null is actually a real character (on the ANSI character 
chart, it ’ s character zero  —  not to be confused with the number zero). It means  “ nothing, ”  that this field 
doesn ’ t have a value. Every significant data type supports the use of the Null value. 

 The Null value has an interesting behavior  —  it never equals anything, not even itself. To make it stand 
out, a special operator distinguishes Null from all other values. To test for Null, use the  IS  operator. So, 
Null does not equal Null  …  Null  IS  Null. 

 Some of the products in the product table have a color value, and some don ’ t. To intentionally state that 
the product does not have a color (or, perhaps, that the color isn ’ t known), this column is set to Null. 
Now you ’ d like to return a list of products with no color attribute, so use the following query: 

SELECT ProductID, Name, Color

FROM Production.Product

WHERE Color IS NULL  

 As shown in Figure  5 - 17 , the results contain a list of products with no color attribute.   

Figure 5-17

c05.indd   151c05.indd   151 10/31/08   6:22:03 PM10/31/08   6:22:03 PM



Chapter 5:   Data Retrieval      

152

 To reverse the logic and return a list of products with known color attributes, you simply add the  NOT  
operator, as follows: 

SELECT ProductID, Name, Color

FROM Production.Product

WHERE Color IS NOT NULL  

 The result contains all of the rows from the table that were not listed in the previous result, some of 
which are shown in Figure  5 - 18 .    

Figure 5-18

  Extended Filtering Techniques 
 As you ’ ve seen, expressions using simple comparison operators can be combined to narrow down 
results and explicitly return the records you are looking for. Sometimes, even simple filtering expressions 
can get a little complicated. To simplify common expressions, operators were added to the SQL 
language. If nothing more, it makes expressions more natural and easier to read. One common example 
is a query for records in a date range. If you needed to return all employee records for employees born 
between 1962 and 1985, you would need to specify that the birth date should be greater than or equal to 
the first day of the first year in the range, January 1, 1962, and that the same column should also be less 
than or equal to the last day of the last year, December 31, 1985. This query would look like this: 

SELECT NationalIDNumber, LoginID

FROM HumanResources.Employee

WHERE BirthDate  > = ‘1962-1-1’

  AND BirthDate  < = ‘1985-12-31’  

 The results contain only Employee records where the birth date falls within the specified range.  

c05.indd   152c05.indd   152 10/31/08   6:22:04 PM10/31/08   6:22:04 PM



Chapter 5:   Data Retrieval      

153

  The  BETWEEN  Operator 
 Rather than managing the date range, the  BETWEEN  statement simplifies the range expression, helping 
state your intentions more explicitly: 

SELECT NationalIDNumber, LoginID

FROM HumanResources.Employee

WHERE BirthDate BETWEEN ‘1962-1-1’ AND ‘1985-12-31’  

 Granted, the first statement wasn ’ t really that complicated, but if you combine this expression with 
others in the same query, every attempt to simplify a query helps. Keep in mind that the definition of 
 BETWEEN  is actually between and including both extremes of the value range. 

 When the query is executed, SQL Server ’ s query processor parses the expression and reformats 
the query in more explicit, standardized form. If you wrote and executed the second query using the 
 BETWEEN  statement, the query that actually runs against the query engine would be exactly the same as 
the first.  BETWEEN  is really just a programming shortcut.  

  The  IN () Function 
 Another shortcut command is the  IN  function. This function is designed to match a field to any number 
of values in a list. This shortcut function saves effort and keeps your queries shorter and easier to read. 
For example, suppose that you ’ re interested in a list of just the bikes produced by AdventureWorks 
Cycles. The database identifies products by category and subcategory. To find a list of all the bikes from 
the Products table, you could use the following query: 

SELECT ProductID

      ,Name AS Product

FROM  Production.Product

WHERE ProductSubCategoryID IN (1,2,3)  

 As before with the  BETWEEN  operator, the  IN  function is a shortcut. The query could have been written as 
follows with the same results: 

SELECT ProductID

      ,Name AS Product

FROM  Production.Product

WHERE ProductSubCategoryID = 1

   OR ProductSubCategoryID = 2

   OR ProductSubCategoryID = 3  

 As the preceding example illustrates, when using a shortcut function, the query processor interprets the 
 IN  function as multiple  OR  statements. Functionally, there is no difference between the two queries, but 
the  IN  function makes it easier to write and easier to read. 

c05.indd   153c05.indd   153 10/31/08   6:22:04 PM10/31/08   6:22:04 PM



Chapter 5:   Data Retrieval      

154

 The  IN  function can also be used with subqueries, which you will learn more about in Chapter  8.  As an 
example, suppose you wanted to know all the bike - related products, not just bikes? You could use the 
following query: 

SELECT ProductID

      ,Name AS Product

FROM Production.Product

WHERE ProductSubCategoryID IN (SELECT ProductSubCategoryID 

                               FROM Production.ProductSubCategory

                               WHERE ProductCategoryID IN (1,2))   

  Operator Precedence 
 It ’ s important to consider the order in which multiple operations are carried out. If not, you may not get 
the results you ’ d expect. The precedence (order of operations) is determined by a few different factors. 
The first and most important is whether the precedence is explicitly stated. This is covered shortly. 
Operations involving different data types may be processed in a different order. Lastly, the operators are 
considered:  NOT  is processed first, then  AND , then  OR  operations. Before you look up this topic in Books 
Online and attempt to memorize the operator precedence for every data type, please read on. 

 Here ’ s an example. A user says that she would like a list consisting of mountain bikes and road bikes 
priced over $500 and under $1,000. You know that the product subcategories for mountain bikes and 
road bikes are 1 and 2, respectively. This query follows the logic of the stated requirement: 

SELECT  Name

       ,ProductNumber

       ,ListPrice

       ,ProductSubCategoryID

FROM Production.Product

WHERE ProductSubCategoryID = 1 

   OR ProductSubCategoryID = 2 

   AND ListPrice  >  500 

   AND ListPrice  <  1000  

 If you run this query, you see that it returns 48 records that appear to meet the requirements (see 
Figure  5 - 19 ).   

c05.indd   154c05.indd   154 10/31/08   6:22:04 PM10/31/08   6:22:04 PM



Chapter 5:   Data Retrieval      

155

 However, upon closer examination, you can see that you have mountain bikes on the list that cost over 
$1000.00. Why is that? Go back and take a look at the query. When the query parser has to contend with 
more than one logical operator, it has to decide how to process them. The order of precedence for logical 
operators is  NOT ,  AND , then  OR . So it will always process an  AND  expression before an  OR  expression. The 
mechanics of query processing are really up to the query optimizer, but the results for a given statement 
will always be the same. Later on you ’ ll learn how to find out what the query optimizer does when it 
breaks down and processes a query. Most likely, in this case, it took the first  AND  expression, 

ProductSubCategoryID = 2 AND ListPrice  >  500  

 processed and buffered the results, and then the next  AND  expression, 

AND  ListPrice  <  1000  

 and used this to filter the first set of results. So far, so good, but it ’ s the next step that gets you into 
trouble. Because the query parser processes an  OR  expression after all of the  AND  logic, it went back to the 
beginning of the  WHERE  clause and processed this statement: 

ProductSubCategoryID = 1  

 Because this statement preceded the  OR  operator, it found all of the mountain bike records in the table 
and appended these to the first set of results. So, the query processor did what you told it to do but not 
necessarily what you wanted it to do. 

Figure 5-19

c05.indd   155c05.indd   155 10/31/08   6:22:05 PM10/31/08   6:22:05 PM



Chapter 5:   Data Retrieval      

156

 Frankly, rearranging these statements will not give you the results you ’ re looking for. Unless you find a 
way to tell the query - processing engine the order in which you want it to process these operations, 
you ’ re not going to get a list of affordable bikes.   

  Using Parentheses 
 Filter expressions are often combined to return a very specific range and combination of records. 
When combining the individual expressions, it ’ s often necessary (or at least a good idea) to use 
parentheses to separate expressions and to specify the operation precedence and order. Making a point 
to use parentheses when multiple operations are processed makes it unnecessary to be concerned with 
the complexities of normal operator precedence. 

 For example, I would like a list consisting of mountain bikes priced over $1,000 and road bikes priced 
over $500. I know that the product subcategories for mountain bikes and road bikes are 1 and 2, 
respectively. My query looks like this: 

SELECT Name

       , ProductNumber

       , ListPrice

       , ProductSubCategoryID

FROM Production.Product

WHERE (ProductSubCategoryID = 1 AND ListPrice  >  1000)

   OR (ProductSubCategoryID = 2 AND ListPrice  >  500)   

 The parentheses in this example serve only to clarify the order of operations. Because the  AND  operator is 
processed before the  OR  operator, the parentheses are not actually necessary in this expression. 

 When combining  OR  operators with  AND  operators, a different combination of parenthetical and 
non - parenthetical comparisons would yield different results. The following queries exemplify this 
point. The previous example (with or without parentheses) returns 61 rows. 

 The following query is similar, but uses the  OR  operator. With the parentheses removed, it returns 136 
rows (a sampling of which is shown in Figure  5 - 20 ).   

SELECT   Name

       , ProductNumber

       , ListPrice

       , ProductSubCategoryID

FROM Production.Product

WHERE ProductSubCategoryID = 1 OR ListPrice  >  1000

  AND ProductSubCategoryID = 2 OR ListPrice  >  500    

c05.indd   156c05.indd   156 10/31/08   6:22:05 PM10/31/08   6:22:05 PM



Chapter 5:   Data Retrieval      

157

 With parentheses grouping the two  OR  operators and separating the  AND  operators, the same query 
returns only 100 rows: 

SELECT   Name

       , ProductNumber

       , ListPrice

       , ProductSubCategoryID

FROM Production.Product

WHERE (ProductSubCategoryID = 1 OR ListPrice  >  1000)

  AND (ProductSubCategoryID = 2 OR ListPrice  >  500)  

 The results are shown in Figure  5 - 21 .   

Figure 5-20

Figure 5-21

c05.indd   157c05.indd   157 10/31/08   6:22:05 PM10/31/08   6:22:05 PM



Chapter 5:   Data Retrieval      

158

 The bottom line is, whether or not parentheses are required, use them to state your intentions and to 
make your queries easier to read. When multiple operations are combined, it becomes increasingly 
important to group and separate operations using parentheses. Just as in mathematical expressions, 
parentheses can be nested any number of levels deep.  

  Sorting Results 
 Typically, you will want records to be returned in some sensible order. Rows can be sorted in order of 
practically any combination of columns. For example, you may want to see employee records listed in 
order of last name and then by first name. This means that for employees who have the same last name, 
records would be sorted by first name within that group. When writing and testing queries, you may see 
that some tables return rows in a specific order even if you don ’ t make it a point to sort them. This may 
be due to existing indexes on the table, or it may be that records were entered in that order. Regardless, 
as a rule, if you want rows to be returned in a specific order, you should use the  ORDER BY  clause to 
enforce your sorting requirements and guarantee that records are sorted correctly if things change in 
the table. 

 The  ORDER BY  clause is always stated after the  WHERE  clause (if used) and can contain one or more 
columns in a comma - delimited list. If not stated otherwise, values will be sorted in ascending order. You 
can optionally specify ascending order using the  ASC  keyword. This means that the following two 
statements effectively do the same thing: 

SELECT Name AS Product

      ,ListPrice

FROM Production.Product

WHERE ListPrice  >  0

ORDER BY ListPrice  

 Or   

SELECT Name AS Product

      ,ListPrice

      ,StandardCost

FROM Production.Product

WHERE ListPrice  >  0

ORDER BY ListPrice ASC  

 As you see, records are sorted by the ListPrice column in ascending order. In the result set shown in 
Figure  5 - 22 , I ’ ve scrolled down the list to view the products with a list price between 20 and 25.   

c05.indd   158c05.indd   158 10/31/08   6:22:06 PM10/31/08   6:22:06 PM



Chapter 5:   Data Retrieval      

159

 Note that the standard cost values are not sorted. As far as we ’ re concerned, this order is completely 
arbitrary. You can change this by adding the StandardCost column to the  ORDER BY  list, as follows: 

SELECT Name AS Product

      ,ListPrice

      ,StandardCost

FROM Production.Product

WHERE ListPrice  >  0

ORDER BY ListPrice, StandardCost  

 Now the results show the products sorted in order of ListPrice and then subsorted by StandardCost. 
The standard cost values for products with a list price of $24.99 are now also in ascending order, as 
shown in Figure  5 - 23 .   

Figure 5-22

Figure 5-23

c05.indd   159c05.indd   159 10/31/08   6:22:06 PM10/31/08   6:22:06 PM



Chapter 5:   Data Retrieval      

160

 One more example shows how rows can be sorted in descending order. Suppose that you want the list of 
company products listed from most expensive to least expensive. This is a simple task. Using the  ORDER 
BY  clause, indicate that the ListPrice column should be sorted in descending order: 

SELECT Name, ListPrice

FROM Production.Product

ORDER BY ListPrice DESC    

  Top Values 
 So far, you ’ ve seen that if you want to return a subset of the rows in a table, it ’ s necessary to filter the 
results based on some sort of criteria. In some cases, you will want to simply return a specific number of 
records regardless of the number of qualifying rows. You have two options for returning top values: 
including a fixed number of rows or a percentage of total rows. 

 This example also involves the products sold by the AdventureWorks Cycles Company. As with the 
previous example, the following query returns a list of all products sorted by their list price from most 
expensive to least expensive. However, the list is limited to the 10 most expensive products.   

SELECT TOP 10 Name, ListPrice

FROM Production.Product

ORDER BY ListPrice DESC  

 SQL Server doesn ’ t try to make much sense out of this data. It doesn ’ t even consider the sorted values 
when chopping off the list. It simply truncates the results after the tenth row has been returned, 
regardless of any values. 

 For the products that are bicycles, a unique product record represents a different color and frame size, so 
there are actually several rows for the same model. The most expensive bike, the road bike model 150, 
costs $3,578.27. Given all of the color and frame size combinations, there are five products at this price 
followed by five more Mountain Model 100 bikes in the TOP query. However in the example without the 
TOP statement you will notice that there were actually eight model 100 mountain bikes, but only five of 
them are returned with our TOP 10 query. The list is arbitrarily truncated after ten records. 

 Keep this in mind when asking for a  “ top ”  list. 

   WITH TIES  
 There is an easy way to solve the dilemma caused by tied values in the last position of your top list 
arbitrarily capping the results. First of all, you need to go back and clarify the business rule. Often, this 
means going back to your users or project sponsor to seek a restatement of requirements. That 
conversation might go something like this: 

  “ You said that you wanted a report showing the top 25 most expensive products. What if the price of the 
25th product were the same as one or more products down the list? Do you want to include other 
products that are tied for the same price as the item in the 25th position? ”  

 If the answer is  “ Yes, ”  the solution is quite simple. The  WITH TIES  statement simply continues to 
populate the list as long as subsequent rows ’  sorted values are the same as the last item in the Top list. 

c05.indd   160c05.indd   160 10/31/08   6:22:07 PM10/31/08   6:22:07 PM



Chapter 5:   Data Retrieval      

161

For example, the following requests a list of the top ten most expensive products using the same 
statement as before, except using  TOP 10 WITH TIES : 

SELECT TOP 10 WITH TIES Name, ListPrice 

FROM Production.Product 

ORDER BY ListPrice DESC  

 Figure  5 - 24  shows the complete results for this query.   

Figure 5-24

 As you can see, 13 rows are returned because rows 11 through 13 have the same ListPrice value as 
row 10.  

  Percent 
 Rather than specifying a number of records to be returned with the  TOP  statement, you can also specify a 
percentage of the entire result set. SQL Server will do the math for you and then round to the nearest 
whole number. It essentially performs this calculation and then issues a Top X clause in place of the Top 
X Percent. Do this using the list price example. If you were to select all products without using the  TOP  
statement, 504 rows would be returned. If you ask for the top 10 percent, a subset of rows is returned. 
Try it out: 

SELECT TOP 10 PERCENT Name, ListPrice

FROM Production.Product 

ORDER BY ListPrice DESC  

 As you can see in Figure  5 - 25 , 51 rows are returned because SQL Server rounds up to the nearest whole 
record.   

c05.indd   161c05.indd   161 10/31/08   6:22:07 PM10/31/08   6:22:07 PM



Chapter 5:   Data Retrieval      

162

 The same rules apply as if you had just used the Top X version of this statement. You can use  WITH TIES  
and sort the result in either ascending or descending order.    

  Summary 
 Although you haven ’ t seen a lot of complexity in this introduction to the  SELECT  statement and its 
fundamental nuances, it ’ s a very powerful tool. As you continue to build more complex statements, 
the  SELECT  statement will be center stage. This chapter started by explaining selecting all rows using the 
asterisk (*) to return values for all available columns in a table and then moved on to specify selected 
columns. It is more efficient to return only the columns needed. This is especially the case when standard 
queries will be called routinely by software code, a report, or an application component. You learned 
how columns can be aliased to either rename a column or return a new column from a literal value, 
calculation, or expression based on multiple column values. 

 Filtering rows is the function of the  WHERE  clause, using logical comparisons. Values may be equal to, 
less than, greater than, or the opposite of any of the above by using the  NOT  operator. Character data 
types can also be compared using the  LIKE  operator to perform partial matching, wildcard, and pattern 
matching. Using Null is the accepted method to indicate that a column value has not been set  —  and 
testing for Null gives you an exact method to test for this condition. When combining comparison 
operators, it ’ s often necessary to indicate the order of operations using parentheses. Not only does this 
ensure that operations are performed in the appropriate order, but it also makes queries much easier to 
read and maintain. 

Figure 5-25

c05.indd   162c05.indd   162 10/31/08   6:22:08 PM10/31/08   6:22:08 PM



Chapter 5:   Data Retrieval      

163

 Rows can be sorted on any number of columns and can be placed in ascending or descending order. 
Finally, this chapter discussed the use of the  TOP  keyword, used to truncate a result set either by a 
specific number of rows or by a percentage of the entire result set.  

  Exercises 
  Exercise 1 

 Using SQL Server Management Studio, write a query to return employee records from the 
AdventureWorks2008 database. Include the NationalIDNumber, LoginID, JobTitle, BirthDate, 
MaritalStatus, and HireDate columns in the result set. Execute this query and view the results.  

  Exercise 2 
 Modify the query from Exercise 1 so that a new column, called AgeAtHire, can be added to the results 
that is a result of an expression using the HireDate column and the Birthdate column. (Hint: Use the 
 DATEDIFF()  function.)  

  Exercise 3 
 Return all Product records from the Production.Product table in the AdventureWorks2008 database that 
take 3 days or longer to manufacture. Include the Name and ListPrice columns.  

  Exercise 4 
 Return a list of the 10 most expensive products from the Production.Product table in the 
AdventureWorks database that have a product number beginning with  “ BK. ”  Include only the 
ProductId, Name, ProductNumber, Color, and ListPrice columns. When complete, check to see if there 
are any products the same price as the number 10 product.                            

c05.indd   163c05.indd   163 10/31/08   6:22:08 PM10/31/08   6:22:08 PM



c05.indd   164c05.indd   164 10/31/08   6:22:08 PM10/31/08   6:22:08 PM



6 
                                                                                                                SQL  Functions          

 Now that you understand how to formulate SQL queries and return result sets, you need to do 
something useful with this data. Once you have successfully retrieved values from tables, it ’ s very 
common to further manipulate values to provide useful and meaningful results. This may involve 
performing calculations and mathematical operations, converting data, parsing values, combining 
values, and aggregating a range of values. 

 The purpose of this chapter is to help you learn the mechanics of using functions of all kinds. It 
introduces you to some of the more common value manipulation functions and some less - common 
functions to give a sample of these powerful capabilities. 

 At the end of the book, you ’ ll find a reference for most of the system - supplied functions and the 
syntax needed to use them. Additionally, subsequent chapters contain more detailed information 
about specific groups of functions. For example, Chapter  7  discusses specific uses for aggregate 
functions in more advanced SQL queries, and Chapter  11  shows you how to use functions to 
support full - text index searches. 

 T - SQL functions are grouped into the categories described in the following table. 

     Function Category      Purpose   

    Aggregation    Return a scalar value representing an aggregation over a range of 
values, applying a specific aggregate selection or summary.  

    Configuration 
variables  

  Return information about the SQL Server execution environment 
that may be useful in programming objects.  

    Conversion    Convert values of one data type to another. Also used to apply 
formatting characteristics to dates, times, and numeric values.  

    Cursor    Loop through the rows in a result set in a procedural manner 
when iterating through a cursor.  

(continued)

c06.indd   165c06.indd   165 10/31/08   6:22:52 PM10/31/08   6:22:52 PM



Chapter 6:                                                                                                                SQL  Functions        

166

  The Anatomy of a Function 
 The purpose of a function is to return a value. Most of the functions you will use return a  scalar value , 
meaning a single unit of data, or a simple value. However, functions can return practically any data type, 
and this includes types such as Table and Cursor, which could be used to return entire, multi - row result 
sets. I won ’ t take the discussion to that level in this chapter. Chapter  12  explains how to create and utilize 
user - defined functions to return more complex data. 

 Functions have been around for a long time, even long before SQL. The pattern used to call functions is 
the same in nearly all programming languages: 

Result = Function()  

 In T - SQL, values are typically returned using the  SELECT  statement. If you just want to return a value in 
a query, you treat  SELECT  as the output operator without using an equals sign: 

SELECT Function()  

  I ’ d Like to Have an Argument 
 When it comes to SQL functions, the term  argument  is used to mean an input variable or placeholder for 
a value. Functions can have any number of arguments and some arguments are required, whereas others 
are optional. Optional arguments are typically at the end of the comma - delimited argument list, making 
them easier to exclude if they are not to be provided in the function call. 

Function Category Purpose

Date and time Parse the date and time portions of a date value, as well as compare and 
manipulate date/time values.

Mathematical Perform a variety of common and specialized mathematical operations. 
Useful in performing algebraic, trigonometric, statistical, approximating, 
and financial operations.

Metadata Utility functions that return information about the SQL Server 
configuration details and details about the server and database settings.

Ranking Enumerate sorted and top-valued result sets.

Security Return role membership and privilege information for SQL Server users. 
Also include a set of functions to manage events and traces.

String manipulation Used to parse, replace, and manipulate character values.

System Utility functions used to perform a variety of tasks. These include value 
comparisons and value type testing. This category is also a catch-all for 
other functionality.

System statistical Administrative utilities used to discover database system usage and 
environment information.

c06.indd   166c06.indd   166 10/31/08   6:22:53 PM10/31/08   6:22:53 PM



Chapter 6:                                                                                                                SQL  Functions        

167

 When you read about functions in SQL Server Books Online or on - line help, you ’ ll see optional 
arguments denoted in square brackets. In this example for the  CONVERT()  function, both the 
 length  argument for the data type and the  style  argument for the  CONVERT()  function are optional: 

CONVERT ( data_type [ ( length ) ] , expression [ , style ] )  

 I ’ ll simplify this because we ’ re really not discussing how to use data types at the moment: 

CONVERT ( data_type, expression [ , style ] )  

 According to this, the  CONVERT()  function will accept either two or three arguments. So, either of these 
examples would be acceptable: 

SELECT CONVERT(varchar(20), GETDATE())

SELECT CONVERT(varchar(20), GETDATE(), 101)  

 The first argument for this function is the data type,  varchar(20) , and the second argument is another 
function,  GETDATE() . The  GETDATE()  function returns the current system date and time in the 
 datetime  data type. The third argument in the second statement determines the style for the date 
information returned. The 101 in this case returns the date in the  mm/dd/yyyy  format. The  GETDATE()  
function is described in more detail later in the chapter. Even if a function doesn ’ t take an argument, or 
doesn ’ t require an argument, it is called with a set of empty parentheses, like the  GETDATE()  function. 
Note that when a function is referred to by name throughout the book, the parentheses are included 
because this is considered standard form.  

  Deterministic Functions 
 Because of the inner - workings of the database engine, SQL Server has to separate functions into two 
different groups based on what ’ s called  determinism . This is not a new - age religion. It ’ s simply a 
statement about whether the outcome of a function can be predicted based on its input parameters or by 
executing it one time. If a function ’ s output is not dependent on any external factors, other than the 
value of input parameters, it is considered to be a deterministic function. If the output can vary based on 
any conditions in the environment or algorithms that produce random or dependent results, the function 
is  nondeterministic . For instance, the  GETDATE()  function is nondeterministic because it will never 
return the same value twice in a single batch. Why make a big deal about something that seems so 
simple? Well, nondeterministic functions and global variables can ’ t be used in some database 
programming objects, such as user - defined functions. This is due partially to the way SQL Server caches 
and precompiles executable objects. For simple, ad - hoc queries, knock yourself out and use any type of 
function you like; however, if you plan on building more advanced, reusable programming objects, it ’ s 
important to understand this distinction. 

 As a brief example, the following functions are deterministic: 

   AVG()  (all aggregate functions are deterministic)  

   CAST()   

   CONVERT()   

   DATEADD()   

❑

❑

❑

❑

c06.indd   167c06.indd   167 10/31/08   6:22:53 PM10/31/08   6:22:53 PM



Chapter 6:                                                                                                                SQL  Functions        

168

   DATEDIFF()   

   ASCII()   

   CHAR()   

   SUBSTRING()     

 These functions and variables are nondeterministic: 

   GETDATE()   

   @@ERROR   

   @@SERVICENAME   

   CURSORSTATUS()   

   RAND()      

  Using User Variables with Functions 
 Variables can be used for both input and output. In T - SQL, a user variable is prefixed with the  @  symbol, 
declared as a specific data type, and can then be assigned a value using either the  SET  or  SELECT  
statements. The following example shows the use of an integer ( int ) data type variable called  @
MyNumber , passed to the  SQRT()  function: 

DECLARE @MyNumber int

SET @MyNumber = 144

SELECT SQRT(@MyNumber)  

 The result of this call is 12, the square root of 144. 

  Using  SET  to Assign Variables 
 The following example uses another  int  type variable,  @MyResult , to capture the return value for the 
same function. This technique is most like the pattern used in procedural programming languages in 
which the  SET  statement is combined with an expression to assign a value to a parameter.   

DECLARE @MyNumber int, @MyResult int

SET @MyNumber = 144

-- Assign the function result to the variable:

SET @MyResult = SQRT(@MyNumber)

-- Return the variable value

SELECT @MyResult   

  Using  SELECT  to Assign Variables 
 You can achieve the same result of assigning values to a variable by using a variation of the  SELECT  
statement. A variable is declared prior to assigning a value. The chief advantage of using the 
 SELECT  statement instead of the  SET  command is that multiple variables can be assigned values in 

❑

❑

❑

❑

❑

❑

❑

❑

❑

c06.indd   168c06.indd   168 10/31/08   6:22:53 PM10/31/08   6:22:53 PM



Chapter 6:                                                                                                                SQL  Functions        

169

a single operation. The value is assigned using the  SELECT  statement and then can be used for any 
purpose after the  SELECT  statement has been executed: 

DECLARE @MyNumber1 int, @MyNumber2 int, @MyResult1 int, @MyResult2 int

SELECT @MyNumber1 = 144, @MyNumber2 = 121

-- Assign the function result to the variable:

SELECT @MyResult1 = SQRT(@MyNumber1), @MyResult2 = SQRT(@MyNumber2) 

-- Return the variable value

SELECT @MyResult1, @MyResult2  

 In the preceding example, the four variables are first declared, and then their values are assigned with 
two  SELECT  statements, instead of four separate  SET  statements. Functionally, these techniques are 
identical. However, populating multiple variables with a  SELECT  statement is generally more efficient in 
regards to server resources than multiple  SET  commands. The limitation of selecting multiple or even 
single values into parameters is that the population of variables cannot be combined with data retrieval 
operations. This is why the preceding example used a  SELECT  statement to populate the variables 
followed by a second  SELECT  statement to retrieve the data in the variables. For example, the following 
script will not work: 

DECLARE @RestockName varchar(50)

SELECT ProductId

      ,@RestockName = Name + ‘:’ + ProductNumber

FROM Production.Product  

 This script will generate the following error: 

Msg 141, Level 15, State 1, Line 2

A SELECT statement that assigns a value to a variable must not be combined 

with data-retrieval operations.    

  Using Functions in Queries 
 Functions are often combined with query expressions to modify column values. This is easily done by 
passing column names to function arguments. The function reference is inserted into the column list of a 
 SELECT  query, as follows: 

SELECT JobTitle, NationalIdNumber, YEAR(BirthDate) AS BirthYear

FROM HumanResources.Employee  

 In this example, the  BirthDate  column value is passed into the  YEAR()  function as an argument. The 
function ’ s result becomes the aliased column  BirthYear .  

  Nested Functions 
 Often, you will find that the functionality you need doesn ’ t exist in a single function. By design, 
functions are intended to be simple and focused on providing a specific feature. If functions did a lot of 
different things, they would be complicated and difficult to use (and some are, but fortunately, not 
many). For this and other reasons, each function simply does one thing. To get all of the functionality 
I need, I may pass the value returned from one function into another function. This is known as a  nested 
function call . 

c06.indd   169c06.indd   169 10/31/08   6:22:54 PM10/31/08   6:22:54 PM



Chapter 6:                                                                                                                SQL  Functions        

170

 Here ’ s a simple example: The purpose of the  GETDATE()  function is to return the current date and time. 
It doesn ’ t return elegantly formatted output; that ’ s the job of the  CONVERT()  function. To get the benefit 
of both functions, I pass the output from the  GETDATE()  function into the value argument of the 
 CONVERT()  function, like this: 

SELECT CONVERT(varchar(20), GETDATE(), 101)  

 You ’ ll see a few examples of this pattern throughout this chapter.   

  Aggregate Functions 
 The essence of reporting is typically to distill a population of data into a value or values representing a 
trend or summary. This is what aggregation is all about. Aggregate functions answer the questions asked 
by the consumers of data: 

   “ What were the total sales of chicken gizzard by - products for last month? ”   

   “ What is the average price paid for food condiments by male Brazilians between the ages of 
19 and 24? ”   

   “ What was the longest order - to - shipping time of all orders last quarter? ”   

   “ Who is the oldest employee still working in the mail room? ”     

 Aggregate functions return a scalar value (a single value) applying a specific aggregate operation. The 
return data type is comparable to that of the column or value passed to the function. Aggregates are 
often used along with grouping, rollup, and pivoting operations to produce results for data analysis. 
This is covered in greater detail in Chapter  7 . The focus here is on some of the more common functions in 
simple  SELECT  queries. 

 Aggregate functions can be used with scalar input values, rather than in a  SELECT  query, but what ’ s the 
point? I can pass the value 15 to each of these aggregate functions and each will return the same result: 

SELECT AVG(15)

SELECT SUM(15)

SELECT MIN(15)

SELECT MAX(15)  

 They all return 15. After all, the average, sum, smallest, and largest value in a range of one value is that 
value. What happens if I count one value?   

SELECT COUNT(15)  

 I get 1. I counted one value. 

 Now let ’ s do something useful. Aggregate functions really are valuable only when used with a range of 
values in a result set. Each function performs its magic on all non - null values of a column. Unless you 
are applying grouping (which you will see in Chapter  7 ) you cannot return both aggregated values and 
regular column values in the same  SELECT  statement. 

❑

❑

❑

❑

c06.indd   170c06.indd   170 10/31/08   6:22:54 PM10/31/08   6:22:54 PM



Chapter 6:                                                                                                                SQL  Functions        

171

  The  AVG () Function 
 The  AVG()  function returns the average for a range of numeric values, for all non - null values. For 
example, a table contains the following gymnastics meet scores:

     Gymnast      Event      Score   

    Sara    Vault    9.25  

    Cassie    Vault    8.75  

    Delaney    Vault    9.25  

    Sammi    Vault    8.05  

    Erika    Vault    8.60  

    Sara    Beam    9.70  

    Cassie    Beam    9.00  

    Delaney    Beam    9.25  

    Sammi    Beam    8.95  

    Erika    Beam    8.85  

 The following query is executed with these values: 

SELECT AVG(Score)  

 The result would be 8.965. 

 If three girls didn ’ t compete in some events and the table had some missing scores, these might be 
represented as NULLs:

     Gymnast      Event      Score   

    Sara    Vault    9.25  

    Cassie    Vault    8.75  

    Delaney    Vault    NULL  

    Sammi    Vault    8.05  

    Erika    Vault    8.60  

    Sara    Beam    9.70  

    Cassie    Beam    NULL  

    Delaney    Beam    9.25  

    Sammi    Beam    NULL  

    Erika    Beam    8.85  

c06.indd   171c06.indd   171 10/31/08   6:22:54 PM10/31/08   6:22:54 PM



Chapter 6:                                                                                                                SQL  Functions        

172

 In this case, the NULL values are not considered, and the average is calculated based on the existing 
numerical values. The result would be 8.921429. 

 However, if the missing scores were counted against the team, and the column contained zero values 
instead, this would seriously affect the overall score (6.245) and their chances of moving on to state 
competition.  

  The  COUNT () Function 
 The  COUNT()  function returns an integer value for the number of non - null values in the column 
range. For instance, if the gymnastics data in the previous example were in a table called GymEvent 
and I wanted to know the number of events that Sammi received a score on, I could execute the 
following query: 

SELECT COUNT(Score) FROM GymEvent WHERE Gymnast = ‘Sammi’  

 The result would be 1 because Sammi participated only in the vault event, which is indicated by the 
score for Sammi ’ s beam event being NULL. 

 If you need a count of all rows in a table, regardless of NULL values, use the following syntax: 

SELECT COUNT(*) FROM  table   

 Using the previous example with Sammi, a  COUNT(*)  query would look like this: 

SELECT COUNT(*) FROM GymEvent WHERE Gymnast = ‘Sammi’  

 Because the  COUNT(*)  function ignores NULL values, the result of this query would be 2.  

  The  MIN () and  MAX () Functions 
 The  MIN()  function returns the smallest (minimum) non - null value for a column range. The  MAX()  
function returns the largest (maximum) value. These functions can be used with most data types and 
work according to the sorting rules of the type. To make this point, suppose that a table contains the 
following values stored in two different columns, one as an integer type and the other as a character type:

     Column1 (int type)      Column2 (varchar type)   

      2      2  

      4      4  

    12    12  

    19    19  

c06.indd   172c06.indd   172 10/31/08   6:22:55 PM10/31/08   6:22:55 PM



Chapter 6:                                                                                                                SQL  Functions        

173

 What will the  MIN()  and  MAX()  functions return? You may be surprised. 

         Column1 (int type)      Column2 (varchar type)   

    MIN()      2    12  

    MAX()    19      4  

 Because values in Column2 are stored as characters rather than numbers, it is sorted according to the 
ASCII value of each character, from left to right. This is why 12 is less than any other value and 4 is 
greater than any other value.  

  The  SUM () Function 
 The  SUM()  function is one of the most commonly used aggregates and is fairly self - explanatory. As 
with the  AVG()  function, it works with numeric data types and returns the additive sum of all non - null 
values in a column range. 

 You ’ ll learn to use all of the aggregate functions in Chapter  7 , including statistical functions. You ’ ll also 
see how to create user - defined aggregates.   

  Configuration Variables 
 These aren ’ t really functions, but they can be used in much the same way as system functions. Each 
global variable returns scalar information about the SQL Server execution environment. Following are 
some common examples. 

  The @@ ERROR  Variable 
 This variable contains the last error number for the current connection. The value for  @@ERROR  is  0  when 
a statement is executed with no errors. Errors are raised by the database engine when standard error 
conditions occur. All the standard error numbers and messages are viewable from the  sys.messages  
system view and can be queried using the following script: 

SELECT * FROM sys.messages  

 Custom errors can be raised manually using the  RAISERROR  statement and can be added to the 
sysmessages table using the  sp_addmessage  system stored procedure. 

 Following is a simple example of the  @@ERROR  variable. First I try to divide a number by  0 . This causes 
the database engine to raise the standard error number 8134. Make sure to look at the Results tab to 
see the results of the query. By default, when an error occurs the Messages tab of Management studio is 
shown on top of the Results tab.   

SELECT 5 / 0

SELECT @@ERROR  

c06.indd   173c06.indd   173 10/31/08   6:22:55 PM10/31/08   6:22:55 PM



Chapter 6:                                                                                                                SQL  Functions        

174

 Successfully retrieving the value of  @@ERROR  causes the value of  @@ERROR  to return to  0  because 
 @@ERROR  holds only the error number for the previously executed statement. If I want to retrieve 
additional error information, I could get it from the  sys.messages  view using the following script: 

SELECT 5 / 0

SELECT * FROM master.dbo.sysmessages WHERE error = @@ERROR  

 Later in this section I ’ ll show you how to use error functions for a more efficient way of returning 
error data. 

 SQL Server is installed by default with languages in addition to U.S. English. Each language - specific 
error message has a language identifier (msglangid) that corresponds to a language in the syslanguages 
table, as shown in Figure  6 - 1 .   

Figure 6-1

 In case you were wondering, the attribute name msglangid has been unofficially defined as  “ Microsoft 
Global Language Identifier. ”  Microsoft uses this identifier to identify a language or a combination of a 
language and a country, which Microsoft defines as a  locale . For instance, the English language installed 
with SQL Server is United States English with a msglangid of 1033, as opposed to United Kingdom 
English with a msglangid of 2057. The following table describes the language identifiers installed by 
default with SQL Server 2008. The only difference in SQL Server 2005 is the absence of msglangid 1046 
(Portuguese). 

     Language      Msglangid   

    Chinese (Traditional/Taiwan)    1028  

    German (Germany)    1031  

    English (United States)    1033  

    French (France)    1036  

c06.indd   174c06.indd   174 10/31/08   6:22:55 PM10/31/08   6:22:55 PM



Chapter 6:                                                                                                                SQL  Functions        

175

     Language      Msglangid   

    Italian (Italy)    1040  

    Japanese    1041  

    Korean    1042  

    Portuguese (Brazil)    1046  

    Russian    1049  

    Chinese (Simplified/PRC)    2052  

    Spanish (International Sort)    3082  

 To retrieve a list of all installed and supported languages, execute the following query: 

SELECT alias, name, msglangid 

FROM sys.syslanguages   

  The @@ SERVICENAME  Variable 
 This is the name of the Windows service used to execute and maintain the current instance of SQL 
Server. This will typically return the value  MSSQLSERVER  for the default instance of SQL Server. 
However, named instances of SQL Server have uniquely named service names. For example, on my 
computer named WoodVista, I have two instances of SQL Server: a default instance and a named 
instance called AughtEight. Retrieving the contents of the  @@SERVICENAME  global variable on the 
default instance returns  MSSQLSERVER , but on the named instance it returns  AUGHTEIGHT   

  The @@ TOTAL_ERRORS  Variable 
 This is the total number of errors that have occurred since the current connection was opened. As with 
the  @@ERROR  variable, this is unique for each user session and is reset when each connection closes.  

  The @@ TOTAL_READ  Variable 
 This is a count of the total disk read operations that have occurred since the current connection was 
opened. This variable is interesting to the DBA to see disk read activity over time.  

  The @@ VERSION  Variable 
 This variable contains the complete version information for the current instance of SQL Server.   

SELECT @@VERSION  

c06.indd   175c06.indd   175 10/31/08   6:22:56 PM10/31/08   6:22:56 PM



Chapter 6:                                                                                                                SQL  Functions        

176

 For example, for an instance of SQL Server 2005 Developer Edition running on Windows XP, this script 
returns the following: 

Microsoft SQL Server 2005 - 9.00.3050.00 (Intel X86)   Mar  2 2007 20:01:28   

Copyright (c) 1988-2005 Microsoft Corporation  Developer Edition on Windows 

NT 5.1 (Build 2600: Service Pack 2)  

 For an instance of SQL Server 2008 (RTM) Developer Edition running on Windows Vista, the script 
returns the following: 

Microsoft SQL Server 2008 (RTM) - 10.0.1600.22 (Intel X86)   Jul  9 2008 

14:43:34   Copyright (c) 1988-2008 Microsoft Corporation  Developer Edition on 

Windows NT 6.0  < X86 >  (Build 6000: )   

 The actual version number, used internally at Microsoft, is a simple integer value, although released 
products may have other branded names. In this case, SQL Server 2005 is really version 9, and SQL 
Server 2008 is version 10. Windows XP Professional shows up as Windows NT version 5.1 and Vista 
shows up as 6.0. The build number is used for internal control and reflects changes made in beta and 
preview product releases, and post - release service packs.  

  Error Functions 
 Previously, you learned how to use the  @@ERROR  global variable to retrieve error information. However, 
a better way of returning all the available error data is by using error functions. The information 
returned by these functions can be returned and stored in an error tracking table for error auditing. The 
error functions are nested inside an error - handling routine. We ’ ll discuss error handling in more detail 
Chapter  11 , but it is implemented by using a block of code nested inside a  TRY  and  END TRY  statement, 
followed by a block of code inside a  CATCH  and  END CATCH  statement.   

--Try to do something

BEGIN TRY

   SELECT 5 / 0

END TRY

--If it causes an error, do this

BEGIN CATCH

   PRINT ERROR_MESSAGE()

END CATCH  

 Be advised that when we speak of error catching, that is exactly what is meant. Running the previous 
example causes no discernable error because the error was caught and  “ handled ”  within the catch block. 
It is imperative that when writing error handling code that the SQL programmer includes in the catch 
block code that will raise a system error, if that is appropriate. Error handling is covered in detail in 
Chapter  12 . 

c06.indd   176c06.indd   176 10/31/08   6:22:56 PM10/31/08   6:22:56 PM



Chapter 6:                                                                                                                SQL  Functions        

177

 There are several error functions that return specific information about the error: 

   ERROR_MESSAGE()   —  Returns the description of the error.  

   ERROR_NUMBER()   —  Returns the number of the error.  

   ERROR_SEVERITY()   —  Returns the error severity. Error severity is an integer value ranging 
from 0 to 25. The following table briefly describes the severity levels:    

     Severity Level      Description   

    0 through 10    Informational messages. Will not cause any system error flag to be raised.  

    11 through 16    User - correctable errors, such as a foreign key or primary key violation.  

    17    Non - fatal insufficient resource error  

    18    Non - fatal internal error  

    19    Fatal insufficient resource error  

    20    Fatal error in current process  

    21    Fatal database error in all processes  

    22    Fatal table integrity error  

    23    Fatal database integrity error  

    24    Fatal hardware error  

    25    Fatal system error  

   ERROR_STATE()   —  Returns the error state number. The error state is an integer value that can 
be used to uniquely identify the cause of a system error.  

   ERROR_LINE()   —  Returns the line number inside the routine that caused the error.  

   ERROR_PROCEDURE()   —  Returns the name of the stored procedure or trigger where the error 
occurred.    

 The following script uses T - SQL ’ s built - in error handling to capture and print the error data returned 
when a divide by 0 is encountered. The results of the  PRINT  command are shown in the Messages tab of 
Management Studio.   

BEGIN TRY

   SELECT 5/0

END TRY

BEGIN CATCH

   PRINT ‘Error Message=’

   PRINT ERROR_MESSAGE()

   PRINT ‘Error Number=’

   PRINT ERROR_NUMBER()

❑

❑

❑

❑

❑

❑

(continued)

c06.indd   177c06.indd   177 10/31/08   6:22:56 PM10/31/08   6:22:56 PM



Chapter 6:                                                                                                                SQL  Functions        

178

   PRINT ‘Error Severity=’

   PRINT ERROR_SEVERITY()

   PRINT ‘Error State=’

   PRINT ERROR_STATE()

   PRINT ‘Error Line=’

   PRINT ERROR_LINE()

   PRINT ‘Error Procedure=’

   PRINT ERROR_PROCEDURE()

END CATCH  

 As you can see, executing this script returns more detailed error information in the Messages tab than 
just the error number.   

(0 row(s) affected)

Error Message=

Divide by zero error encountered.

Error Number=

8134

Error Severity=

16

Error State=

1

Error Line=

2

Error Procedure=  

 The  ERROR_PROCEDURE()  function did not return the procedure name because the error was generated 
in an ad - hoc query.   

  Conversion Functions 
 Data type conversion can be performed using the  CAST()  and  CONVERT()  functions. For most purposes, 
these two functions are redundant and reflect the evolutionary history of the SQL language. The 
functionality may be similar, but the syntax is different. Not all values can be converted to other data 
types. Generally speaking, any value that can be converted can be done so with a simple function call. 

  The  CAST () Function 
 The  CAST()  function accepts one argument, an expression, which includes both the source value and a 
target data type separated by the word  AS . Here is an example, using the literal string   ‘ 123 ’   converted 
to an integer: 

SELECT CAST(‘123’ AS int)  

 The return value will be the integer value 123. However, what happens if you try to convert a string 
representing a fractional value to an integer?   

SELECT CAST(‘123.4’ AS int)  

(continued)

c06.indd   178c06.indd   178 10/31/08   6:22:57 PM10/31/08   6:22:57 PM



Chapter 6:                                                                                                                SQL  Functions        

179

 Neither the  CAST()  nor the  CONVERT()  functions will do any guessing, rounding, or truncation for you. 
Because the value 123.4 can ’ t be represented using the  int  data type, the function call produces an error: 

Server: Msg 245, Level 16, State 1, Line 1

Syntax error converting the varchar value ‘123.4’ to a column of data type int.  

 If you need to return a valid numeric equivalent value, you must use a data type equipped to handle the 
value. There are a few that would work in this case. If you use the  CAST()  function with your value to a 
target type of  decimal , you can specifically define the precision and scale for the decimal value. In this 
example, the precision and scale are 9 and 2, respectively. Precision is the total number of digits that can 
be stored to both the left and right of the decimal point. Scale is the number of digits that will be stored 
to the right of the decimal point. This means that the maximum whole number value would be 9,999,999 
and the smallest fractional number would be .01.   

SELECT CAST(‘123.4’ AS decimal(9,2))  

 The  decimal  data type displays the significant decimal positions in the results grid: 

123.40  

 The default values for precision and scale are 18 and 0 respectively. Without providing values for 
precision and scale of the  decimal  type, SQL Server effectively truncates the fractional part of the 
number without causing an error.   

SELECT CAST(‘123.4’ AS decimal)  

 The result looks like an integer value: 

123  

 Applying data type conversions to table data is very easy to do. The next example uses the Product table, 
and starts with the following query: 

SELECT ProductNumber, ProductLine, ProductModelID 

FROM Production.Product

WHERE ProductSubCategoryID  <  4  

 The production manager has been tasked with creating a system to uniquely identify each bike that is 
produced so that it is trackable as to model, type, and category. She has decided to combine the product 
number, product line identifier, and product model identifier, along with a sequential number, to create 
this unique serial number for every bike produced. In the first step of the process, she has asked that you 
provide a list of all the possible product root identities that include all the attributes except for the 
sequential number. 

c06.indd   179c06.indd   179 10/31/08   6:22:57 PM10/31/08   6:22:57 PM



Chapter 6:                                                                                                                SQL  Functions        

180

 If you use the following expression, you don ’ t get the result you ’ re looking for. In fact, as you can see in 
Figure  6 - 2 , you don ’ t get any result at all.   

SELECT ProductNumber 

       + ‘-’ 

       + ProductLine 

       + ‘-’ 

       + ProductModelID AS BikeSerialNum

FROM Production.Product

WHERE ProductSubCategoryID  <  4    

Figure 6-2

 Instead of retrieving the results you anticipated, you get the somewhat cryptic error message 
about converting an  nvarchar  value to an  int . Because you didn ’ t actually ask for any conversion, this 
error can be confusing. The problem with this query is that you ’ re trying to concatenate the character 
value ( ProductNumber ) with the first hyphen, and then another character value ( ProductLine ) with 
another character value (the second hyphen), and finally adding in the  ProductModelID , which is 
an  int . 

 The query engine perceives the hyphen to be a mathematical operator, rather than a character. 
Regardless of the outcome, you need to fix the expression and make sure you are working with the 
appropriate data types. This expression makes the necessary type conversions and returns a result, as 
shown in Figure  6 - 3 .   

SELECT ProductNumber 

       + ‘-’ 

       + ProductLine 

       + ‘-’ 

       + CAST(ProductModelID AS char(4)) AS BikeSerialNum

FROM Production.Product

WHERE ProductSubCategoryID  <  4    

c06.indd   180c06.indd   180 10/31/08   6:22:57 PM10/31/08   6:22:57 PM



Chapter 6:                                                                                                                SQL  Functions        

181

 Converting the integer values to character data types makes these character values without adding any 
extra spaces. These values are combined with the hyphen using the plus sign to concatenate string 
values rather than adding and subtracting the previous numeric values.  

  The  CONVERT () Function 
 For simple type conversion, the  CONVERT()  function does the same thing as the  CAST()  function, only 
with different syntax. The  CAST()  function is generally easier to use and is simple in its function. The 
chief advantage of the  CONVERT()  function is its capability to format dates as well as numeric data. It 
requires two arguments: the first for the target data type and the second for the source value. Here are a 
couple of quick examples similar to those used in the preceding section: 

SELECT CONVERT(int, ‘123’)

SELECT CONVERT(decimal(9,2), ‘123.4’)  

 The  CONVERT()  function ’ s enhanced features make it useful for returning formatted string values. Date 
values can be formatted in a variety of ways. There are 28 predefined date formats to accommodate 
international and special - purpose date and time output. The following table shows how these break 
down. 

     Format 
Number   

   Year 
Digits      Hour Format      Description      Example   

      0    2    12    Default    Apr 25 2005  1:05PM  

      1    2        US    04/25/05  

      2    2        ANSI    05.04.25  

      3    2        UK/French    25/04/05  

      4    2        German    25.04.05  

      5    2        Italian    25 - 04 - 05  

Figure 6-3

(continued)

c06.indd   181c06.indd   181 10/31/08   6:22:58 PM10/31/08   6:22:58 PM



Chapter 6:                                                                                                                SQL  Functions        

182

     Format 
Number   

   Year 
Digits      Hour Format      Description      Example   

      6    2        Custom  -  Date Only    25 Apr 05  

      7    2        Custom  -  Date Only    Apr 25, 05  

      8        24    Custom  -  Time Only    13:05:35  

      9    4    12    Default, milliseconds    Apr 25 2005  
1:05:35:123PM  

    10    2        US    04 - 25 - 05  

    11    2        Japan    05/04/25  

    12    2        ISO    050425  

    13    4    24    Europe    25 Apr 2005 
13:05:35:123  

    14        24    Custom Time, milliseconds    13:05:35:123  

    100    4    12    Default    Apr 25 2005  1:05PM  

    101    4        US    04/25/2005  

    102    4        ANSI    2005.04.25  

    103    4        UK/French    25/04/2005  

    104    4        German    25.04.2005  

    105    4        Italian    25 - 04 - 2005  

    106    4        Custom  -  Date Only    25 Apr 2005  

    107    4        Custom  -  Date Only    Apr 25, 2005  

    108        24    Custom  -  Time Only    13:05:35  

    109    4    12    Default, milliseconds    Apr 25 2005  
1:05:35:123PM  

    110    4        US    04 - 25 - 2005  

    111    4        Japan    2005/04/25  

    112    4        ISO    20050425  

    113    4    24    Europe    25 Apr 2005 
13:05:35:123  

    114        24    Custom Time, milliseconds    13:05:35:123  

c06.indd   182c06.indd   182 10/31/08   6:22:58 PM10/31/08   6:22:58 PM



Chapter 6:                                                                                                                SQL  Functions        

183

 The third argument to this function is optional and accepts the format number integer value. The 
examples provided in the grid apply to the  datetime  data type. When converting from the 
 smalldatetime  data type, the formatting remains the same but some elements will display 0 because it 
does not support milliseconds. Here are a few examples of some related script along with formatted date 
output: 

SELECT ‘Default Date: ‘  + CONVERT(varchar(50), GETDATE(), 100)

Default Date: Apr 25 2005 1:05PM

SELECT ‘US Date: ‘ + CONVERT(varchar(50), GETDATE(), 101)

US Date: 04/25/2005

SELECT ‘ANSI Date: ‘  + CONVERT(varchar(50), GETDATE(), 102)

ANSI Date: 2005.04.25

SELECT ‘UK/French Date: ‘ + CONVERT(varchar(50), GETDATE(), 103)

UK/French Date: 25/04/2005

SELECT ‘German Date: ‘ + CONVERT(varchar(50), GETDATE(), 104)

German Date: 25.04.2005  

 Format numbers 0, 1, and 2 also apply to numeric types and affect the format of decimal and thousand 
separators. The effect is different for different data types. In general, using the format number 0 (or no 
value for this argument) returns a formatted value in the data type ’ s most native form. Using 1 or 2 
generally displays a more detailed or precise value. The following example uses 0: 

DECLARE @Num Money

SET @Num = 1234.56

SELECT CONVERT(varchar(50), @Num, 0)  

 It returns the following: 

1234.56  

 Using 1 returns the following: 

1,234.56  

 And using 2 returns the following: 

1234.5600  

 This example does the same thing with a  float  type: 

DECLARE @Num float

SET @Num = 1234.56

SELECT CONVERT(varchar(50), @Num, 2)  

 Using the value 0 doesn ’ t change the format from what you ’ ve provided but using 1 or 2 returns the 
number expressed in scientific notation, the latter using 15 decimal positions: 

1.234560000000000e+003   

c06.indd   183c06.indd   183 10/31/08   6:22:59 PM10/31/08   6:22:59 PM



Chapter 6:                                                                                                                SQL  Functions        

184

  The  STR () Function 
 This is a quick - and - easy conversion function that converts a numeric value to a string. The function 
accepts three arguments: the numeric value, the overall length, and the number of decimal positions. If 
the integer part of the number and decimal positions is shorter than the overall length, the result is left -
 padded with spaces. In this first example, the value (including the decimal) is five characters long. I ’ ve 
made it a point to show the results in the grid so you can see any left padding. This call asks for an 
overall length of eight characters with four decimal positions: 

SELECT STR(123.4, 8, 4)  

 The result has the decimal value right - filled with 0s: 123.4000. 

 Here I ’ m passing in a ten - character value and asking for an eight - character result, with four decimal 
positions: 

SELECT STR(123.456789, 8, 4)  

 The result must be truncated to meet my requirements. The  STR()  function rounds the last digit: 
123.4568. 

 Now I ’ ll pass in the number 1 for the value and ask for a six - character result with four decimal positions. 
In this case, the  STR()  function right - fills the decimal value with zeros.   

SELECT STR(1, 6, 4)

1.0000  

 However, if I specify an overall length greater than the length of the value, decimal point, and the 
decimal value, the result will be left - padded with spaces.   

 SELECT STR(1, 12, 4)    

     1.0000   
SELECT STR(1, 6, 4)

1.0000

SELECT STR(1, 12, 4)

      ____  1.0000    

  Cursor Functions and Variables 
 Chapter  9 ,  “ Advanced Queries and Scripting, ”  discusses the use of cursors along with some of the pros 
and cons of using this technique. The short version of this topic is that cursors can provide the ability to 
process multiple rows of data, one row at a time, in a procedural loop. This ability comes at a cost when 
compared with more efficient, set - based operations. One function and two global variables are provided 
to help manage cursor operations. 

c06.indd   184c06.indd   184 10/31/08   6:22:59 PM10/31/08   6:22:59 PM



Chapter 6:                                                                                                                SQL  Functions        

185

  The  CURSOR_STATUS () Function 
 The  CURSOR_STATUS(  )  function returns an integer indicating the status of a cursor - type variable passed 
into the function. A number of different types of cursors can affect the behavior of this function. For 
simplicity, the return value typically will be one of those listed in the following table. 

     Return Value      Description   

    1    Cursor contains one or more rows (dynamic cursor contains 0 or more rows).  

    0    Cursor contains no rows.  

     � 1    Cursor is closed.  

�    2    Cursor is not allocated.  

     � 3    Cursor doesn ’ t exist.  

  The @@ CURSOR_ROWS  Global Variable 
 This variable is an integer value representing the number of rows in the cursor that are open in the 
current connection. Depending on the cursor type, this value may or may not represent the actual 
number of rows in the result set.  

  The @@ FETCH_STATUS  Global Variable 
 The  @@FETCH_STATUS  variable is a flag that indicates the state of the current cursor pointer. It is used 
primarily to determine whether a row still exists and when you have reached the end of the result set 
after executing a  FETCH NEXT  statement. When you open a cursor, the  @@FETCH_STATUS  value is   - 1 . 
Once the first value is fetched into the cursor, the  @@FETCH_STATUS  value changes to 0. It stays at  0  until 
there are no more rows to fetch, at which time it changes back to   - 1 . The use of this function is shown in 
Chapter  9 .   

  Date Functions 
 These functions are used for working with  datetime  and  smalldatetime  type values. Some are used 
for parsing the date and time portions of a date value and for comparing and manipulating date/time 
values. The difference between the  datetime  and  smalldatetime  types is shown in the following table:

     Data Type      Storage Requirement      Date Range   

     datetime     8 bytes    1/1/1753  –  12/31/9999  

     smalldatetime     4 bytes    1/1/1900  –  6/6/2079  

c06.indd   185c06.indd   185 10/31/08   6:23:00 PM10/31/08   6:23:00 PM



Chapter 6:                                                                                                                SQL  Functions        

186

  The  DATEADD () Function 
 The  DATEADD()  function adds a specific number of date unit intervals to a date/time value. For 
example, to determine the date 90 days after April 29, 1988, you could use the following statement: 

SELECT DATEADD(Day, 90, ‘4-29-2007’)  

 The answer is as follows: 

2007-07-28 00:00:00.000   

 Any of the values in the following table can be passed in the interval argument. 

     Interval      Interval Argument Values   

    Year    Year, yyyy, yy  

    Quarter    Quarter, qq, q  

    Month    Month, mm, m  

    Day of the year    DayOf Year, dy, y  

    Day    Day, dd, d  

    Week    Week, wk, ww  

    Hour    Hour, hh  

    Minute    Minute, mi, n  

    Second    Second, ss, s  

    Millisecond    Millisecond, ms  

 Using the same date as before, here are some more examples. This time, I ’ ll include the time as well. The 
results are on the following line: 

 18 years later: 

SELECT DATEADD(Year, 18, ‘4-29-1988 10:30 AM’)

2006-04-29 10:30:00.000  

 18 years before: 

SELECT DATEADD(yy, -18, ‘4-29-1988 10:30 AM’)

1970-04-29 10:30:00.000  

c06.indd   186c06.indd   186 10/31/08   6:23:00 PM10/31/08   6:23:00 PM



Chapter 6:                                                                                                                SQL  Functions        

187

 9,000 seconds after: 

SELECT DATEADD(Second, 9000, ‘4-29-1988 10:30 AM’)

1988-04-29 13:00:00.000  

 9,000,000 milliseconds before: 

SELECT DATEADD(ms, -9000000, ‘4-29-1988 10:30 AM’)

1988-04-29 08:00:00.000  

 You can combine the  CONVERT() and the  DATEADD()  functions to format a return date value nine months 
before September 8, 1989, as follows: 

SELECT CONVERT(varchar(20), DATEADD(m, -9, ‘9-8-1989’), 101)

12/08/1988  

 This returns a variable - length character value, which is a little easier to read than the default dates you 
saw in the previous results. This is a nested function call where the results from the  DATEADD()  function 
(a  datetime  type value) are fed to the value argument of the  CONVERT()  function.  

  The  DATEDIFF () Function 
 I think of the  DATEADD()  and  DATEDIFF()  functions as cousins  —  sort of like multiplication and 
division. There are four elements in this equation: the start date, the interval (date unit), the difference 
value, and the end date. If you have three, you can always figure out what the fourth one is. I use a start 
date, an integer value, and interval unit with the  DATEADD()  function to return the end date value 
relative to a starting date. The  DATEDIFF()  function returns the difference integer value if I provide the 
start and end dates and interval. Do you see the relationship? 

 To demonstrate, I simply choose any two dates and an interval unit as arguments. The function returns 
the difference between the two dates in the interval unit provided. I want to know what the difference is 
between the dates 9 - 8 - 1989 and 10 - 17 - 1991 in months: 

SELECT DATEDIFF(month, ‘9-8-1989’, ‘10-17-1991’)  

 The answer is 25 months. How about the difference in days?   

SELECT DATEDIFF(day, ‘9-8-1989’, ‘10-17-1991’)  

 It ’ s 769 days. 

 How about the difference in weeks between 7 - 2 - 1996 and 8 - 4 - 1997?   

SELECT DATEDIFF(week, ‘7-2-1996’, ‘8-4-1997’)  

 It ’ s 57 weeks. 

c06.indd   187c06.indd   187 10/31/08   6:23:00 PM10/31/08   6:23:00 PM



Chapter 6:                                                                                                                SQL  Functions        

188

 You can even figure out how old you are in seconds: 

DECLARE @MyBirthDate datetime

SET @MyBirthDate = ‘7-16-1962’

SELECT DATEDIFF(ss, @MyBirthDate, GETDATE())  

 Someone is almost 1.5 billion seconds old! 

 You can apply this function to a query by passing a column name to the value argument. First let ’ s build 
a simple table with some names and birthdates in it. We ’ ll use the same basic table structure that we 
used in Chapter  5 .   

--SQL Server 2005/2008 syntax:

USE AdventureWorks2008

GO

CREATE TABLE dbo.SlateGravelEmployee

(LastName varchar(25) NULL

,FirstName varchar(25) NULL

,Position varchar(25) NULL

,BirthDate datetime NULL);

INSERT SlateGravelEmployee

VALUES

(‘Flintstone’, ‘Fred’, ‘Bronto Driver’, ‘12-31-1960’)

INSERT SlateGravelEmployee

VALUES

(‘Rubble’, ‘Barney’, ‘Accountant’, ‘02-14-1964’)

INSERT SlateGravelEmployee

VALUES

(‘Turleyrock’, ‘Paul’, ‘Developer’, ‘03-24-1967’)

INSERT SlateGravelEmployee

VALUES

(‘Petriwood’, ‘Dan’, ‘DBA’, ‘07-16-1962’)

INSERT SlateGravelEmployee

VALUES

(‘Johnstone’, ‘Randy’, ‘System Administrator’, ‘03-14-1961’)

INSERT SlateGravelEmployee

VALUES

(‘Witherstone’, ‘Mark’, ‘Vice President’, ‘09-27-1967’)

                              

--SQL Server 2008 syntax:

USE AdventureWorks2008

GO

CREATE TABLE dbo.SlateGravelEmployee

(LastName varchar(25) NULL

,FirstName varchar(25) NULL

,Position varchar(25) NULL);

,BirthDate datetime NULL);

INSERT SlateGravelEmployee

VALUES

 (‘Flintstone’, ‘Fred’, ‘Bronto Driver’, ‘12-31-1960’)

,(‘Rubble’, ‘Barney’, ‘Accountant’, ‘02-14-1964’)

,(‘Turleyrock’, ‘Paul’, ‘Developer’, ‘03-24-1967’)

,(‘Petriwood’, ‘Dan’, ‘DBA’, ‘07-16-1962’)

,(‘Johnstone’, ‘Randy’, ‘System Administrator’, ‘03-14-1961’)

,(‘Witherstone’, ‘Mark’, ‘Vice President’, ‘09-27-1967’)  

c06.indd   188c06.indd   188 10/31/08   6:23:00 PM10/31/08   6:23:00 PM



Chapter 6:                                                                                                                SQL  Functions        

189

 The following query will return the name and birthdates from our table. The  DATEDIFF()  function is 
used to extract information from a column containing  datetime  data. This will tell you the approximate 
age of each Slate Gravel employee.   

SELECT LastName

      ,FirstName

      ,BirthDate

      ,DATEDIFF(YEAR, BirthDate, GETDATE()) AS ApproximateAge

FROM SlateGravelEmployee

ORDER BY LastName   

 Figure  6 - 4  shows the results.   

Figure 6-4

 This may look right at first glance, but it ’ s not accurate to the day. For example, according to the data, 
Fred ’ s birth date is on December 31 and he would be celebrating his 48th birthday this year (I ’ m running 
the query in July, 2008). If I were to use the previous calculation to determine when his age changes, I 
would be sending Fred a birthday card sometime in January, about eleven months early. 

 Unless you find the difference between these dates in a more granular unit and then do the math, the result 
will only be accurate within a year of the employee ’ s actual birth date. This example factors the number of 
days in a year (including leap year). Converting to an  int  type truncates, rather than rounds, the value: 

SELECT LastName

      ,FirstName

      ,BirthDate

      ,DATEDIFF(YEAR, BirthDate, GETDATE()) AS ApproximateAge

      ,CONVERT(int, DATEDIFF(day, BirthDate, GETDATE())/365.25) AS Age

FROM SlateGravelEmployee

ORDER BY LastName   

 Compare the results shown in Figure  6 - 5  with those of the previous example. 

 Now Fred is 47 and the rest of the employees ’  ages should be accurate within about a day. The BirthDate 
column in this table stores the employee ’ s birth date as of midnight (00:00:00 AM). This is the first second 
of a date. The  GETDATE()  function returns the current date and time. This means that I ’ m comparing 
two dates with a difference of about eight hours (it ’ s about 8:00 AM as I write this). If you want this 
calculation to be even more accurate, you need to convert the result of the  GETDATE()  function to a 
 datetime  value at midnight of the current date.    

c06.indd   189c06.indd   189 10/31/08   6:23:01 PM10/31/08   6:23:01 PM



Chapter 6:                                                                                                                SQL  Functions        

190

  The  DATEPART () and  DATENAME () Functions 
 These functions return the date part, or unit, for a  datetime  or  smalldatetime  value. The  DATEPART()  
function returns an integer value, and the  DATENAME()  function returns a string containing the 
descriptive name, if applicable. For example, passing the date 4 - 29 - 1988 to the  DATEPART()  function and 
requesting the month returns the number 4: 

SELECT DATEPART(month, ‘4-29-1988’)  

 Whereas, with the same parameters, the  DATENAME()  function returns April: 

SELECT DATENAME(month, ‘4-29-1988’)  

 Both of these functions accept values from the same list of date part argument constants as the 
 DATEADD()  function.  

  The  GETDATE () and  GETUTCDATE () Functions 
 Both of these functions return the current date and time as a DateTime type. The  GETUTCDATE()  function 
uses the time zone setting on the server to determine the equivalent Universal Time Coordinate time. 
This is the same as Greenwich Mean Time or what pilots call  “ Zulu Time. ”  Both functions are accurate to 
3.33 milliseconds: 

SELECT GETDATE()

SELECT GETUTCDATE()  

 Executing these functions returns the unformatted result shown in Figure  6 - 6 .   

Figure 6-6

 Because I ’ m in the Pacific time zone and currently in daylight savings time, there is a seven - hour 
difference between the current time and UTC. When in standard time, there would be an 
eight - hour difference. I can verify this using the following  DATEDIFF()  function call: 

SELECT DATEDIFF(hour, GETDATE(), GETUTCDATE())   

Figure 6-5

c06.indd   190c06.indd   190 10/31/08   6:23:01 PM10/31/08   6:23:01 PM



Chapter 6:                                                                                                                SQL  Functions        

191

  The  SYSDATETIME () and  SYSUTCDATETIME () Functions 
 These SQL Server 2008 functions are identical to  GETDATE()  and  GETUTCDATE()  functions, respectively, 
with the exception that instead of returning the results in the  datetime  data type, they return the results 
in the new SQL Server 2008 data type  datetime2 , which is accurate up to 100 nanoseconds, depending 
on the hardware the server is installed on.   

SELECT SYSDATETIME()

SELECT SYSUTCDATETIME()   

  The  DAY (),  MONTH (), and  YEAR () Functions 
 These three functions return an integer date part of a  datetime  or  smalldatetime  type value. They 
serve a variety of useful purposes, including the ability to create your own unique date formats. Suppose 
that you need to create a custom date value as a character string. By converting the output from each of 
these functions to character types and then concatenating the results, you can arrange them practically 
any way you want: 

SELECT ‘Year: ‘ + CONVERT(varchar(4), YEAR(GETDATE())) 

   + ‘, Month: ‘ + CONVERT(varchar(2), MONTH(GETDATE())) 

   + ‘, Day: ‘ + CONVERT(varchar(2), DAY(GETDATE()))  

 As I write this, the script produces the following: 

Year: 2008, Month: 2, Day: 20  

 The next section discusses string manipulation functions and uses a similar technique to build a compact 
custom time stamp.   

  String Manipulation Functions 
 String functions are used to parse, replace, and manipulate character values. One of the great challenges 
when working with quantities or raw character data is to reliably extract meaningful information. A number 
of string parsing functions are available to identify and parse substrings (a portion of a larger character type 
value). As humans, we do this all the time. When presented with a document, an invoice, or written text, we 
intuitively identify and isolate the meaningful pieces of information. Automating this process can be a 
cumbersome task when dealing with even moderately complex text values. These functions contain 
practically all the tools necessary. The challenge is to find the simplest and most elegant method. 

  The  ASCII(), CHAR(), UNICODE (), and  NCHAR () Functions 
 These four functions are similar because they all deal with converting values between a character and 
the industry standard numeric representation of a character. The American Standard Code for 
Information Interchange (ASCII) standard character - set includes 128 alpha, numeric, and punctuation 
characters. This set of values is the foundation of the IBM PC architecture, and although some of it is 
now somewhat antiquated, much remains and is still central to modern computing. If you use the 
English language on your computer, every character on your keyboard is represented in the ASCII 
character - set. This is great for English - speaking (or at least English - typing) computer users, but what 
about everyone else on the planet? 

c06.indd   191c06.indd   191 10/31/08   6:23:02 PM10/31/08   6:23:02 PM



Chapter 6:                                                                                                                SQL  Functions        

192

 In the evolution of the computer, it didn ’ t take long for the ASCII set to become obsolete. It was soon 
extended from a 128 to a 256 ANSI character - set which uses a single byte to store every character. Still an 
American standard (held by the American National Standards Institute), this extended list of characters 
meets the needs of many other users, supporting most western European language characters, but is still 
founded on the original English - language character - set. To support all printable languages, the Unicode 
standard was devised to support multiple language - specific character - sets. Each Unicode character 
requires 2 bytes of storage space, twice the space as ASCII and ANSI characters. However, with 2 bytes, 
more than 65,000 unique characters can be represented providing support for Eastern European and 
Asian characters. SQL Server supports both ASCII and Unicode standards. 

 The two ASCII - based functions are  ASCII()  and  CHAR() . The fundamental principle here is that every 
character used on the computer is actually represented as a number. To find out which number is used 
for a character, pass a single - character string to the  ASCII()  function, as follows: 

SELECT ASCII(‘A’)  

 This returns 65. 

 What if you know the number and want to convert it to a character? That ’ s the job of the  CHAR()  
function: 

SELECT CHAR(65)  

 This returns the letter A. 

 To get a complete list of ASCII character values, you can populate a temporary table with the values 
0 through 127 and then use the  CHAR()  function to return the corresponding characters. I ’ ll shorten the 
script but include the entire result set in multi - column format, to save space: 

-- Create temporary table for numbers:

Create Table #ASCIIVals (ASCIIValue smallint)

-- Insert numbers 0 - 127 into table:

Insert Into #ASCIIVals (ASCIIValue) Select 0

Insert Into #ASCIIVals (ASCIIValue) Select 1

Insert Into #ASCIIVals (ASCIIValue) Select 2

Insert Into #ASCIIVals (ASCIIValue) Select 3

Insert Into #ASCIIVals (ASCIIValue) Select 4

...

Insert Into #ASCIIVals (ASCIIValue) Select 123

Insert Into #ASCIIVals (ASCIIValue) Select 124

Insert Into #ASCIIVals (ASCIIValue) Select 125

Insert Into #ASCIIVals (ASCIIValue) Select 126

Insert Into #ASCIIVals (ASCIIValue) Select 127

-- Return all integer values and corresponding ASCII characters:

SELECT ASCIIValue, CHAR(ASCIIValue) AS Character FROM #ASCIIVals  

 Here are the results reformatted in a multi - column grid. Note that non - printable control characters show 
as small squares in the results grid. Depending on a number of factors, such as fonts or languages 
installed, these may be displayed a little differently. 

c06.indd   192c06.indd   192 10/31/08   6:23:02 PM10/31/08   6:23:02 PM



Chapter 6:                                                                                                                SQL  Functions        

193

     ASCII 
Value   

   Character      ASCII 
Value   

   Character      ASCII 
Value   

   Character      ASCII 
Value   

   Character   

      0        32        64    @    96     ‘   

      1        33    !    65    A    97    a  

      2        34     ''     66    B    98    b  

      3        35    #    67    C    99    c  

      4        36    $    68    D    100    d  

      5        37    %    69    E    101    e  

      6        38     &     70    F    102    f  

      7        39  '   71    G    103    g  

      8        40    (    72    H    104    h  

      9        41    )    73    I    105    i  

    10        42    *    74    J    106    j  

    11        43    +    75    K    107    k  

    12        44    ,    76    L    108    l  

    13        45     -     77    M    109    m  

    14        46    .    78    N    110    n  

    15        47    /    79    O    111    o  

    16        48    0    80    P    112    p  

    17        49    1    81    Q    113    q  

    18        50    2    82    R    114    r  

    19        51    3    83    S    115    s  

    20        52    4    84    T    116    t  

    21        53    5    85    U    117    u  

    22        54    6    86    V    118    v  

    23        55    7    87    W    119    w  

    24        56    8    88    X    120    x  

    25        57    9    89    Y    121    y  

(continued)

c06.indd   193c06.indd   193 10/31/08   6:23:03 PM10/31/08   6:23:03 PM



Chapter 6:                                                                                                                SQL  Functions        

194

     ASCII 
Value   

   Character      ASCII 
Value   

   Character      ASCII 
Value   

   Character      ASCII 
Value   

   Character   

    26        58    :    90    Z    122    z  

    27        59    ;    91    [    123    {  

    28        60     <     92    \    124    |  

    29        61    =    93    ]    125    }  

    30     -     62     >     94    ̂     126    ~  

    31        63    ?    95    _    127     �   

 The  UNICODE()  function is the Unicode equivalent of the  ASCII()  function, and the  NCHAR()  function 
does the same thing as the  CHAR()  function only with Unicode characters. SQL Server ’ s  nchar  and 
 nvarchar  types will store any Unicode character and will work with this function. For extremely large 
values, the  ntext  and  nvarchar(MAX)  types also support Unicode characters. 

 To return extended characters, you can execute the  NCHAR()  function with sample character codes, as 
follows: 

SELECT NCHAR(220)  

 This returns the letter  Ü .   

SELECT NCHAR(233)  

 This returns an accented lowercase e,  é .   

SELECT NCHAR(241)  

 This returns a Spanish  “ enya, ”  or n with a tilde,  ñ . 

 Of course, because the ASCII standard supports all the European characters, using the  CHAR()  function 
would work for these extended characters as well. However, things get interesting when you start using 
the  NCHAR()  function with values between 256 and 65536. For instance, the following query returns the 
Greek character Omega.   

SELECT NCHAR(433)  

 The Cyrillic letter Ya ( R ) is returned with the following query: 

SELECT NCHAR(1071)   

c06.indd   194c06.indd   194 10/31/08   6:23:04 PM10/31/08   6:23:04 PM



Chapter 6:                                                                                                                SQL  Functions        

195

  The  CHARINDEX () and  PATINDEX () Functions 
  CHARINDEX()  is the original SQL function used to find the first occurrence of a substring within another 
string. As the name suggests, it simply returns an integer that represents the index of the first character 
of the substring within the entire string. The following script looks for an occurrence of the string  ‘ sh ’  
within the string  ‘ Washington ’ : 

SELECT CHARINDEX(‘sh’, ‘Washington’)  

 This returns 3 to indicate that the  “ s ”  is the third character in the string  “ Washington. ”  Using two 
characters for the substring wasn ’ t particularly useful in this example but could be if the string contained 
more than one letter s. 

 The  PATINDEX()  function is the  CHARINDEX()  function on steroids. It will perform the same task in a 
slightly different way, but has the added benefit of supporting wildcard characters (such as those you 
would use with the  LIKE  operator). As its name suggests, it will return the index of a pattern of 
characters. This function also works with large character types such as  ntext ,  nchar(max) , and 
 nvarchar(max) . Note that if  PATINDEX()  is used with these large data types, it returns a  bigint  type 
rather than an  int  type. Here ’ s an example: 

SELECT PATINDEX(‘%M_rs%’, ‘The stars near Mars are far from ours’)  

 Note that both percent characters are required if you want to find a string with zero or more characters 
before and after the string being compared. The underscore indicates that the character in this position is 
not matched. The string could contain any character at this position. 

 Compare this to the  CHARINDEX()  function used with the same set of strings: 

SELECT CHARINDEX(‘Mars’, ‘ The stars near Mars are far from ours’)  

 Both of these functions return the index value 16. Remember how these functions work. I ’ ll combine this 
with the  SUBSTRING()  function in the following section to demonstrate how to parse strings using 
delimiting characters.  

  The  LEN () Function 
 The  LEN()  function returns the length of a string as an integer. This is a simple but useful function that is 
often used alongside other functions to apply business rules. The following example tests the Month and 
Day date parts integers, converted to character types, for their length. If just one character is returned, it 
pads the character with a zero and then assembles an eight - character date string in US format 
(MMDDYYYY): 

DECLARE @MonthChar varchar(2), @DayChar varchar(2), @DateOut char(8)

SET @MonthChar = CAST(MONTH(GETDATE()) AS varchar(2))

SET @DayChar = CAST(DAY(GETDATE()) AS varchar(2))

-- Make sure month and day are two char long:

IF LEN(@MonthChar) = 1

  SET @MonthChar = ‘0’ + @MonthChar

(continued)

c06.indd   195c06.indd   195 10/31/08   6:23:04 PM10/31/08   6:23:04 PM



Chapter 6:                                                                                                                SQL  Functions        

196

IF LEN(@DayChar) = 1

  SET @DayChar = ‘0’ + @DayChar

-- Build date string:

SET @DateOut = @MonthChar + @DayChar + CAST(YEAR(GETDATE()) AS char(4))

SELECT @DateOut AS OutputDate  

 The return value from this script will always be an eight - character value representing the current date. 
At this writing, the output is: 

07012008   

  The  LEFT () and  RIGHT () Functions 
 The  LEFT()  and  RIGHT()  functions are similar in that they both return a substring of a specified 
size. The difference between the two is what part of the character string is returned. The  LEFT()  function 
returns characters from the left - most part of the string, counting characters to the right. The  RIGHT()  
function does exactly the opposite. It starts at the right - most character and counts to the left, returning 
the specified number of characters. Take a look at an example that uses the string  “ George Washington ”  
to return substrings using these functions. 

 If you ask to return a five - character substring using the  LEFT()  function, as follows, the function locates 
the left - most character, counts five characters to the right, and returns the substring  “ Georg. ”    

DECLARE @FullName varchar(25)

SET @FullName = ‘George Washington’

SELECT LEFT(@FullName, 5)  

 If you ask to return a five - character substring using the  RIGHT()  function, the function locates the right -
 most character, counts five characters to the left, and returns the substring  “ ngton. ”    

DECLARE @FullName varchar(25)

SET @FullName = ‘George Washington’

SELECT RIGHT(@FullName, 5)  

 Neither of these functions is particularly useful for consistently returning a meaningful part of this 
string. What if you want to return the first name or last name portions of the full name? This takes just a 
little more work. The  LEFT()  function may be the correct method to use for extracting the first name if 
you can determine the position of the space in every name you might encounter. In this case, you can use 
either the  CHARINDEX()  function or the  PATINDEX()  function to locate the space, and then use the 
 LEFT()  function to return only these characters. The following example takes a procedural approach, 
breaking this process into steps: 

DECLARE @FullName varchar(25), @SpaceIndex tinyint

SET @FullName = ‘George Washington’

-- Get index of the delimiting space:

SET @SpaceIndex = CHARINDEX(‘ ‘ , @FullName)

-- Return all characters to the left of the space:

SELECT LEFT(@FullName, @SpaceIndex - 1)  

 I don ’ t want to include the space, so it ’ s necessary to subtract one from the  @SpaceIndex  value to 
include only the first name.  

(continued)

c06.indd   196c06.indd   196 10/31/08   6:23:05 PM10/31/08   6:23:05 PM



Chapter 6:                                                                                                                SQL  Functions        

197

  The  SUBSTRING () Function 
 The  SUBSTRING()  function starts at a position and counts characters to the right, returning a substring 
of a specified length. Unlike the  LEFT()  function, you can tell it at what index position to begin 
counting. This allows you to extract a substring from anywhere within a character string. This function 
requires three arguments: the string to parse, the starting index, and the length of the substring to return. 
If you want to return all text to the end of the input string, you can use a length index larger than 
necessary. The  SUBSTRING()  function will return characters up to the last position of the string and will 
not pad the string with spaces. 

 The  SUBSTRING()  function can easily replace the  LEFT()  function by designating the left - most character 
of the string (1) as the starting index. 

 Continuing with the earlier example, you can set the starting position and length, returning a value from 
the middle of the name string. In this case, you ’ ll start at position 4 and return the 6 - character substring 
 “ rge Wa. ”    

DECLARE @FullName varchar(25)

SET @FullName = ‘George Washington’

SELECT SUBSTRING(@FullName, 4, 6)  

 Now, you can put it all together and parse the first name from the full name in a way that will work 
for any full name string formatted as FirstName � space � LastName. Using the same logic as before, 
you are going to nest the function calls to reduce the number of lines of script and get rid of the  
@SpaceIndex  variable. Instead of the  LEFT()  function, use  SUBSTRING() .   

DECLARE @FullName varchar(25)

SET @FullName = ‘George Washington’

-- Return first name:

SELECT SUBSTRING(@FullName, 1, CHARINDEX(‘ ‘, @FullName) - 1)  

 Similar logic is used to extract the last name. You simply have to change the start index argument to the 
position following the space. The space is at position seven, and the last name begins at position eight. 
This means that the start index will always be one plus the  CHARINDEX()  result: 

DECLARE @FullName varchar(25)

SET @FullName = ‘George Washington’

--Return last name:

SELECT SUBSTRING(@FullName, CHARINDEX(‘ ‘, @FullName) + 1, LEN(@FullName))  

 Putting it all together, you can run the following query to extract the first and last name from the full 
name variable: 

DECLARE @FullName varchar(25)

SET @FullName = ‘George Washington’

-- Return first name:

SELECT SUBSTRING(@FullName, 1, CHARINDEX(‘ ‘, @FullName) - 1) AS FirstName, 

       SUBSTRING(@FullName, CHARINDEX(‘ ‘, @FullName) + 1, LEN(@FullName)) 

       AS LastName  

c06.indd   197c06.indd   197 10/31/08   6:23:05 PM10/31/08   6:23:05 PM



Chapter 6:                                                                                                                SQL  Functions        

198

 The values passed into the  SUBSTRING()  function are the position of the space plus one as the start 
index. This will be the first letter of the last name. Because you won ’ t always know the length of the 
name, you can pass in the  LEN()  function for the length of the substring. The  SUBSTRING()  function will 
reach the end of the string when it reaches this position and simply include all characters after the space 
to the end of the string. 

 To set up an example, let ’ s create and populate a temporary table: 

CREATE TABLE #MyNames (FullName varchar(50))

GO

INSERT INTO #MyNames (FullName) SELECT ‘Fred Flintstone’

INSERT INTO #MyNames (FullName) SELECT ‘Wilma Flintstone’

INSERT INTO #MyNames (FullName) SELECT ‘Barney Rubble’

INSERT INTO #MyNames (FullName) SELECT ‘Betty Rubble’

INSERT INTO #MyNames (FullName) SELECT ‘George Jetson’

INSERT INTO #MyNames (FullName) SELECT ‘Jane Jetson’  

 Now execute a query using the function calls to parse the first name and last name values as one - line 
expressions. Note that references to the  @FullName  variable are replaced with the  FullName  column in 
the table: 

SELECT

    SUBSTRING(FullName, 1, CHARINDEX(‘ ‘ , FullName) - 1) AS FirstName

  , SUBSTRING(FullName, CHARINDEX(‘ ‘ , FullName) + 1, LEN(FullName)) AS LastName

FROM #MyNames  

 The results, shown in Figure  6 - 7 , display two distinct columns as if the first and last names were stored 
separately.    

Figure 6-7

  The  LOWER () and  UPPER () Functions 
 These functions are pretty easy to figure out. Each simply converts a character string to all lowercase or 
all uppercase characters. This is most useful when comparing user input or stored strings for 
comparison. String comparisons are typically case - insensitive, depending on settings chosen during SQL 
Server setup. Used along with other string manipulation functions, strings can be converted to use 
proper case for data storage and presentation. This example accounts for mixed - case last names, 
assuming the name contains a single space before the second capitalized substring. You could argue that 
some of these names normally wouldn ’ t contain spaces, and I agree. This demonstration could easily be 

c06.indd   198c06.indd   198 10/31/08   6:23:05 PM10/31/08   6:23:05 PM



Chapter 6:                                                                                                                SQL  Functions        

199

extended to include provisions for other mixed - case names (names beginning with Mc, hyphenated 
names, and so on).   

DECLARE @LastName varchar(25), @SpaceIndex tinyint

SET @LastName = ‘mc donald’              -- Test value

-- Find space in name:

SET @SpaceIndex = CHARINDEX(‘ ‘ , @LastName)

IF @SpaceIndex  >  0                       -- Space: Capitalize first  &  

substring

    SELECT UPPER(LEFT(@LastName, 1)) 

  + LOWER(SUBSTRING(@LastName, 2, @SpaceIndex - 1)) 

  + UPPER(SUBSTRING(@LastName, @SpaceIndex + 1, 1)) 

  + LOWER(SUBSTRING(@LastName, @SpaceIndex + 2, LEN(@LastName)))

ELSE                                     -- No space: Cap only first char.

    SELECT UPPER(LEFT(@LastName, 1))  

  + LOWER(SUBSTRING(@LastName, 2, LEN(@LastName)))  

 This script returns Mc Donald. You can also extend the example to deal with last names containing an 
apostrophe. The business rules in this case expect no space. If an apostrophe is found, the following 
character is to be capitalized. Note that to test an apostrophe in script, it must be entered twice (  ’  ’ )  to 
indicate that this is a literal, rather than an encapsulating single quote. Last name values are stored with 
only an apostrophe.   

DECLARE @LastName varchar(25), @SpaceIndex tinyint, @AposIndex tinyint

SET @LastName = ‘o’’malley’             -- Test value

-- Find space in name:

SET @SpaceIndex = CHARINDEX(‘ ‘, @LastName)

-- Find literal ‘ in name:

SET @AposIndex = CHARINDEX(‘’’’, @LastName)

IF @SpaceIndex  >  0                      -- Space: Capitalize first  &  substring

    SELECT UPPER(LEFT(@LastName, 1)) 

  + LOWER(SUBSTRING(@LastName, 2, @SpaceIndex - 1)) 

  + UPPER(SUBSTRING(@LastName, @SpaceIndex + 1, 1)) 

  + LOWER(SUBSTRING(@LastName, @SpaceIndex + 2, LEN(@LastName)))

ELSE IF @AposIndex  >  0                  -- Apostrophe: Cap first  &  substring

    SELECT UPPER(LEFT(@LastName, 1)) 

  + LOWER(SUBSTRING(@LastName, 2, @AposIndex - 1)) 

  + UPPER(SUBSTRING(@LastName, @AposIndex + 1, 1)) 

  + LOWER(SUBSTRING(@LastName, @AposIndex + 2, LEN(@LastName)))

ELSE                                     -- No space: Cap only first char.

    SELECT UPPER(LEFT(@LastName, 1))  

  + LOWER(SUBSTRING(@LastName, 2, LEN(@LastName)))  

 This script returns O ’ Malley. For this to be of use, you can wrap it into a user - defined function, as 
follows: 

CREATE FUNCTION dbo.fn_FixLastName ( @LastName varchar(25) )

RETURNS varchar(25)

AS

BEGIN

  DECLARE   @SpaceIndex tinyint

         , @AposIndex tinyint

(continued)

c06.indd   199c06.indd   199 10/31/08   6:23:06 PM10/31/08   6:23:06 PM



Chapter 6:                                                                                                                SQL  Functions        

200

         , @ReturnName varchar(25)

  -- Find space in name:

  SET @SpaceIndex = CHARINDEX(‘ ‘, @LastName)

  -- Find literal ‘ in name:

  SET @AposIndex = CHARINDEX(‘’’’, @LastName)

  IF @SpaceIndex  >  0             -- Space: Capitalize first  &  substring

           SET @ReturnName = UPPER(LEFT(@LastName, 1)) 

         + LOWER(SUBSTRING(@LastName, 2, @SpaceIndex - 1)) 

         + UPPER(SUBSTRING(@LastName, @SpaceIndex + 1, 1)) 

         + LOWER(SUBSTRING(@LastName, @SpaceIndex + 2, LEN(@LastName)))

  ELSE IF @AposIndex  >  0          -- Apostrophe: Cap first  &  substring

           SET @ReturnName =  UPPER(LEFT(@LastName, 1)) 

         + LOWER(SUBSTRING(@LastName, 2, @AposIndex - 1)) 

         + UPPER(SUBSTRING(@LastName, @AposIndex + 1, 1)) 

         + LOWER(SUBSTRING(@LastName, @AposIndex + 2, LEN(@LastName)))

  ELSE                            -- No space: Cap only first char.

           SET @ReturnName =  UPPER(LEFT(@LastName, 1))  

         + LOWER(SUBSTRING(@LastName, 2, LEN(@LastName)))

RETURN @ReturnName

END  

 To test the function, populate a temporary table with sample values so that you can query the names 
from this table: 

CREATE TABLE #MyIrishFriends (FirstName varchar(25), LastName varchar(25) )

INSERT INTO #MyIrishFriends (FirstName, LastName) SELECT ‘James’, ‘O’’grady’

INSERT INTO #MyIrishFriends (FirstName, LastName) SELECT ‘Nancy’, ‘o’’brian’

INSERT INTO #MyIrishFriends (FirstName, LastName) SELECT ‘George’, ‘MC kee’

INSERT INTO #MyIrishFriends (FirstName, LastName) SELECT ‘Jonas’, ‘mc intosh’

INSERT INTO #MyIrishFriends (FirstName, LastName) SELECT ‘Florence’, ‘MC BRIDE’  

 The results as they are stored are shown in Figure  6 - 8 .   

SELECT FirstName, LastName 

FROM #MyIrishFriends    

(continued)

Figure 6-8

 Using the custom function returns the results shown in Figure  6 - 9 .   

SELECT FirstName, dbo.fn_FixLastName(LastName) AS LastName 

FROM #MyIrishFriends     

c06.indd   200c06.indd   200 10/31/08   6:23:06 PM10/31/08   6:23:06 PM



Chapter 6:                                                                                                                SQL  Functions        

201

  The  LTRIM () and  RTRIM () Functions 
 The  LTRIM()  and  RTRIM()  functions simply return a string with white space (spaces) trimmed from 
either the left or right side of significant characters, respectively.   

DECLARE @Value1 char(10), @Value2 char(10)

SET @Value1 = ‘One’

SET @Value2 = ‘Two’

SELECT @Value1 + @Value2

SELECT CONVERT(varchar(5), LEN(@Value1 + @Value2)) + ‘ characters long. ‘

SELECT RTRIM(@Value1) + RTRIM(@Value2) 

SELECT CONVERT(varchar(5), LEN(RTRIM(@Value1) + RTRIM(@Value2))) 

       + ‘ characters long trimmed. ‘  

 The abbreviated results in text form follow: 

------------------------------ 

One       Two

------------------------------ 

13 characters long.

------------------------------ 

OneTwo 

------------------------------ 

6 characters long trimmed.   

  The  REPLACE () Function 
 The  REPLACE()  function can be used to replace all occurrences of one character or substring with 
another character or substring. This can be used as a global search and replace utility.   

DECLARE @Phrase varchar(1000)

SET @Phrase = ‘I aint gunna use poor grammar when commenting script and 

I aint gunna complain about it. ‘

SELECT REPLACE(@Phrase, ‘aint’, ‘am not’)  

 As you can see, this was quite effective (well, kind of): 

I am not gunna use poor grammar when commenting script and I am not gunna 

complain about it.  

 If your result line cuts off with  “ . . . “ , expand the column to the right until you can see the entire line.  

Figure 6-9

c06.indd   201c06.indd   201 10/31/08   6:23:06 PM10/31/08   6:23:06 PM



Chapter 6:                                                                                                                SQL  Functions        

202

  The  REPLICATE () and  SPACE () Functions 
  REPLICATE()  is a very useful function when you need to fill a value with repeating characters. I ’ ll use 
the same temporary table I created for the list of names in the  SUBSTRING()  example to pad each name 
value to 20 characters. I subtract the length of each value to pass the right value to the  REPLICATE()  
function: 

SELECT FullName + REPLICATE(‘*’, 20 - LEN(FullName))

FROM #MyNames  

 The result is a list of names padded with asterisk characters, each 20 characters in length: 

Fred Flintstone*****

Wilma Flintstone****

Barney Rubble*******

Betty Rubble********

George Jetson*******

Jane Jetson*********  

 The  SPACE()  function does the same thing, only with spaces. It simply returns a string of space 
characters of a defined length.   

SELECT FullName + SPACE(20 - LEN(FullName))

FROM #MyNames  

 If you get an error that the #MyNames table doesn ’ t exist, just re - run the  CREATE TABLE  script from the 
section  “ The SUBSTRING Function ”  earlier in this chapter.  

  The  REVERSE () Function 
 As its name implies, the  REVERSE()  function reverses the characters in a string. This might be useful if 
you need to work with single - character values in a concatenated list.   

SELECT REVERSE(‘The stars near Mars are far from ours. ‘)

.sruo morf raf era sraM raen srats ehT  

 I ’ m sure there ’ s a practical application for this.  

  The  STUFF () Function 
 The  STUFF()  function enables you to replace a portion of a string with another string. It essentially will 
stuff one string into another string at a given position and for a specified length. This can be useful for 
string replacements where the source and target values aren ’ t the same length. For example, I need to 
replace the price in this string, changing it from 99.95 to 109.95: 

Please submit your payment for 99.95 immediately.  

 The price value begins at position 32 and is five characters in length. It really doesn ’ t matter how 
long the substring is that I want to stuff into this position. I simply need to know how many characters 
need to be removed.   

c06.indd   202c06.indd   202 10/31/08   6:23:07 PM10/31/08   6:23:07 PM



Chapter 6:                                                                                                                SQL  Functions        

203

SELECT STUFF(‘Please submit your payment for 99.95 immediately. ‘, 32, 5, 

‘109.95’)  

 The resulting string follows: 

Please submit your payment for 109.95 immediately.   

  The  QUOTENAME () Function 
 This function is used with SQL Server object names so they can be passed into an expression. It simply 
returns a string with square brackets around the input value. If the value contains reserved delimiting or 
encapsulating characters (such as quotation marks or brackets), modifications are made to the string so 
SQL Server perceives these characters as literals, as you can see in the following example. The results of 
the query are shown in Figure  6 - 10 .   

SELECT QUOTENAME(COLUMN_NAME) AS ColumnName

FROM INFORMATION_SCHEMA.COLUMNS      

Figure 6-10

  Mathematical Functions 
 The functions listed in the following table are used to perform a variety of common and specialized 
mathematical operations and are useful in performing algebraic, trigonometric, statistical, 
approximating, and financial operations. 

     Function      Description   

     ABS()     Returns the absolute value for a numeric value.  

     ACOS()     Computes the arccosine (an angle) in radians.  

     ASIN()     Computes the arcsine (an angle) in radians.  

     ATAN()     Computes the arctangent (an angle) in radians.  

     ATN2()     Computes the arctangent of two values in radians.  

     CEILING()     Returns the smallest integer value that is greater than or equal to a number.  

(continued)

c06.indd   203c06.indd   203 10/31/08   6:23:07 PM10/31/08   6:23:07 PM



Chapter 6:                                                                                                                SQL  Functions        

204

     Function      Description   

     COS()     Computes the cosine of an angle in radians.  

     COT()     Computes the cotangent of an angle in radians.  

     DEGREES()     Converts an angle from radians to degrees.  

     EXP()     Returns the natural logarithm raised to a specified exponent.  

     FLOOR()     Returns the largest integer value that is less than or equal to a number.  

     LOG()     Calculates the natural logarithm of a number using base - 2 (binary) numbering.  

     LOG10()     Calculates the natural logarithm of a number using base - 10 numbering.  

     PI()     Returns the value for PI() as a float type.  

     POWER()     Raises a value to a specified exponent.  

     RADIANS()     Converts an angle from degrees to radians.  

     RAND()     Returns a fractional number based on a randomizing algorithm; accepts an 
optional seed value.  

     ROUND()     Rounds a fractional value to a specified precision.  

     SIGN()     Returns  � 1 or 1 depending on whether a single argument value is negative or 
positive.  

     SIN()     Computes the sine of an angle in radians.  

     SQRT()     Returns the square root of a value.  

     SQUARE()     Returns the square (n 2 ) of a value.  

     TAN()     Computes the tangent of an angle in radians.  

  Metadata Functions 
 These are utility functions that return information about the SQL Server configuration details and details 
about the server and database settings. This includes a range of general and special - purpose property -
 related functions that will return the state of various object properties. These functions wrap queries 
from the system tables in the Master database and a user database. It ’ s recommended that you use 
these and other system functions rather than creating queries against the system tables yourself, in 
case schema changes are made in future versions of SQL Server. Some of the information listed in the 
following table can also be obtained using the INFORMATION_SCHEMA views. These views are 
described in Appendix  D . 

c06.indd   204c06.indd   204 10/31/08   6:23:08 PM10/31/08   6:23:08 PM



Chapter 6:                                                                                                                SQL  Functions        

205

     Function      Description   

     COL_LENGTH()     Returns the length of a column from the column name.  

     COL_NAME()     Returns the name of a column from the object ID.  

     COLUMNPROPERTY()     Returns a flag to indicate the state of a column property. 
Properties include  AllowsNull ,  IsComputed , 
 IsCursorType ,  IsDeterministic ,  IsFulltextIndexed , 
 IsIdentity ,  IsIdNotForRepl ,  IsIndexable ,  IsOutParam , 
 IsPrecise ,  IsRowGuidCol ,  Precision ,  Scale , and 
 UsesAnsiTrim .  

     DATABASEPROPERTY()     This function is maintained for backward compatibility with 
older SQL Server versions. It returns a flag to indicate the 
state of a database property. Properties include 
 IsAnsiNullDefault ,  IsAnsiNullsEnabled , 
 IsAnsiWarningsEnabled ,  IsAutoClose , 
 IsAutoCreateStatistics ,  IsAutoShrink , 
 IsAutoUpdateStatistics ,  IsBulkCopy , 
 IsCloseCursorsOnCommitEnabled ,  IsDboOnly , 
 IsDetached ,  IsEmergencyMode ,  IsFulltextEnabled , 
 IsInLoad ,  IsInRecovery ,  IsInStandBy , 
 IsLocalCursorsDefault ,  IsNotRecovered , 
 IsNullConcat ,  IsOffline , 
 IsQuotedIdentifiersEnabled ,  IsReadOnly , 
 IsRecursiveTriggersEnabled ,  IsShutDown , 
 IsSingleUser ,  IsSuspect ,  IsTruncLog , and  Version .  

     DATABASEPROPERTYEX()     Returns a flag to indicate the state of a database property. 
Properties include  Collation ,  IsAnsiNullDefault , 
 IsAnsiNullsEnabled ,  IsAnsiPaddingEnabled , 
 IsAnsiWarningsEnabled ,  IsArithmeticAbortEnabled , 
 IsAutoClose ,  IsAutoCreateStatistics ,  IsAutoShrink , 
 IsAutoUpdateStatistics , 
 IsCloseCursorsOnCommitEnabled ,  IsFulltextEnabled , 
 IsInStandBy ,  IsLocalCursorsDefault , 
 IsMergePublished ,  IsNullConcat , 
 IsNumericRoundAbortEnabled , 
 IsQuotedIdentifiersEnabled , 
 IsRecursiveTriggersEnabled ,  IsSubscribed , 
 IsTornPageDetectionEnabled ,  Recovery ,  SQLSortOrder , 
 Status ,  Updateability ,  UserAccess , and  Version .  

     DB_ID()     Returns the database ID from the database name.  

     DB_NAME()     Returns the database name from the database ID.  

     FILE_ID()     Returns the file ID from the file name.  

     FILE_NAME()     Returns the file name from the file ID.  

(continued)

c06.indd   205c06.indd   205 10/31/08   6:23:08 PM10/31/08   6:23:08 PM



Chapter 6:                                                                                                                SQL  Functions        

206

     Function      Description   

     fn_listextendedproperty()     Returns a table object populated with extended property 
names and their settings.  

     FULLTEXTCATALOGPROPERTY()     Returns a flag to indicate the state of a full - text catalog 
property. Properties include  PopulateStatus ,  ItemCount , 
 IndexSize ,  UniqueKeyCount ,  LogSize , and 
 PopulateCompletionAge .  

     FULLTEXTSERVICEPROPERTY()     Returns a flag to indicate the state of a full - text service 
property. Properties include  ResourceUsage , 
 ConnectTimeout ,  IsFulltextInstalled , and 
 DataTimeout .  

     INDEX_COL()     Returns the name of a column contained in a specified index, 
by table, index, and column ID.  

     INDEXKEY_PROPERTY()     Returns a flag to indicate the state of an index key property. 
Properties are  ColumnId  and  IsDescending .  

     INDEXPROPERTY()     Returns a flag indicating the state of an index property. 
Properties include  IndexDepth ,  IndexFillFactor , 
 IndexID ,  IsAutoStatistics ,  IsClustered , 
 IsFulltextKey ,  IsHypothetical ,  IsPadIndex , 
 IsPageLockDisallowed ,  IsRowLockDisallowed , 
 IsStatistics , and  IsUnique .  

     OBJECT_ID()     Returns an object ID from the object name.  

     OBJECT_NAME()     Returns an object name from the object ID.  

     OBJECTPROPERTY()   Enables you to get property information from several 
different types of objects. It is advisable to use a function 
designed to query specific object types, if possible. Returns a 
flag indicating the state of an object property. Properties 
include  CnstIsClustKey ,  CnstIsColumn , 
 CnstIsDeleteCascade ,  CnstIsDisabled , 
 CnstIsNonclustKey ,  CnstIsNotRepl ,  CnstIsNotTrusted , 
 CnstIsUpdateCascade ,  ExecIsAfterTrigger , 
 ExecIsAnsiNullsOn ,  ExecIsDeleteTrigger , 
 ExecIsFirstDeleteTrigger , 
 ExecIsFirstInsertTrigger , 
 ExecIsFirstUpdateTrigger ,  ExecIsInsertTrigger , 
 ExecIsInsteadOfTrigger ,  ExecIsLastDeleteTrigger , 
 ExecIsLastInsertTrigger ,  ExecIsLastUpdateTrigger , 
 ExecIsQuotedIdentOn ,  ExecIsStartup , 
 ExecIsTriggerDisabled ,  ExecIsUpdateTrigger , 
 HasAfterTrigger ,  HasInsertTrigger , 
 HasInsteadOfTrigger ,  HasUpdateTrigger , 
 IsAnsiNullsOn ,  IsCheckCnst ,  IsConstraint ,  IsDefault ,

c06.indd   206c06.indd   206 10/31/08   6:23:08 PM10/31/08   6:23:08 PM



Chapter 6:                                                                                                                SQL  Functions        

207

     Function      Description   

   IsDefaultCnst ,  IsDeterministic ,  IsExecuted , 
 IsExtendedProc ,  IsForeignKey ,  IsIndexable , 
 IsIndexed ,  IsInlineFunction ,  IsMSShipped , 
 IsPrimaryKey ,  IsProcedure ,  IsQuotedIdentOn , 
 IsReplProc ,  IsRule ,  IsScalarFunction ,  IsSchemaBound , 
 IsSystemTable ,  IsTable ,  IsTableFunction ,  IsTrigger , 
 IsUniqueCnst ,  IsUserTable ,  IsView ,  OwnerId , 
 TableDeleteTrigger ,  TableDeleteTriggerCount , 
 TableFullTextBackgroundUpdateIndexOn , 
 TableFulltextCatalogId , 
 TableFullTextChangeTrackingOn , 
 TableFulltextKeyColumn , 
 TableFullTextPopulateStatus , 
 TableHasActiveFulltextIndex ,  TableHasCheckCnst , 
 TableHasClustIndex ,  TableHasDefaultCnst , 
 TableHasDeleteTrigger ,  TableHasForeignKey , 
 TableHasForeignRef ,  TableHasIdentity , 
 TableHasIndex ,  TableHasInsertTrigger , 
 TableHasNonclustIndex ,  TableHasPrimaryKey , 
 TableHasRowGuidCol, TableHasTextImage, 
TableHasTimestamp, TableHasUniqueCnst, 

TableHasUpdateTrigger, TableInsertTrigger, 

TableInsertTriggerCount, TableIsFake, 

TableIsPinned, TableTextInRowLimit, 

TableUpdateTrigger, and TableUpdateTriggerCount .  

  Ranking Functions 
 Ranking functions are used to enumerate sorted and top - valued result sets using a specified order, 
independent from the order of the result set. 

  The  ROW_NUMBER () Function 
 The  ROW_NUMBER()  function returns an integer with a running incremental value based on an  ORDER BY  
clause passed to this function. If the  ROW_NUMBER  ’ s  ORDER BY  matches the order of the result set, the 
values will be incremental and in ascending order. If the  ROW_NUMBER  ’ s  ORDER BY  clause is different than 
the order of the results, these values will not be listed in order but will represent the order of the  ROW_
NUMBER  function ’ s  ORDER BY  clause, as shown in the following examples and results.   

SELECT 

    ProductCategoryID

  , Name

  , ROW_NUMBER() OVER (ORDER BY Name) AS RowNum

FROM Production.ProductCategory

ORDER BY Name  

c06.indd   207c06.indd   207 10/31/08   6:23:09 PM10/31/08   6:23:09 PM



Chapter 6:                                                                                                                SQL  Functions        

208

 With the  ORDER BY  clause on the  ROW_NUMBER()  call matching the order of the query, these values are 
listed in order (see Figure  6 - 11 ).   

Figure 6-11

 However, when using a different  ORDER BY  clause in the function call, these values are not ordered.   

SELECT 

    ProductCategoryID

  , Name

  , ROW_NUMBER() OVER (ORDER BY Name) AS RowNum

FROM production.ProductCategory

ORDER BY ProductCategoryID  

 This provides an effective means to tell how the result would have been sorted using the other  ORDER 
BY  clause, as shown in Figure  6 - 12 .    

Figure 6-12

  The  RANK () and  DENSE_RANK () Functions 
 Both of these functions are similar to the  ROW_NUMBER()  function in that they return a value based on an 
 ORDER BY  clause, but these values may not always be unique. Ranking values are repeated for duplicate 
results from the provided  ORDER BY  clause, and uniqueness is only based on unique values in the  ORDER 
BY  list. Each of these functions takes a different approach to handling these duplicate values. The  RANK()  
function preserves the ordinal position of the row in the list. For each duplicate value, it skips the 
subsequent value so that the next non - duplicate value remains in its rightful position.   

SELECT 

    ProductID

   ,Name

   ,ListPrice

   ,RANK() OVER (ORDER BY ListPrice DESC) AS Rank

FROM Production.Product

ORDER BY Rank  

c06.indd   208c06.indd   208 10/31/08   6:23:09 PM10/31/08   6:23:09 PM



Chapter 6:                                                                                                                SQL  Functions        

209

 Note in the result set shown in Figure  6 - 13  that the values are repeated for duplicated price values and 
the skipped values following each tie. For example, rows for product name  “ Road - 150 Red, 52 ”  and 
 “ Road - 150 Red, 56 ”  are ranked number 1, and the following row,  “ Mountain - 100 Silver, 38 ”  is ranked 
number 6.   

Figure 6-13

 The  DENSE_RANK()  function works exactly the same way, but it doesn ’ t skip numbers after each tie. This 
way, no values are skipped, but the ordinal ranking position is lost whenever there are ties.   

SELECT 

    ProductID

   ,Name

   ,ListPrice

   ,DENSE_RANK() OVER (ORDER BY ListPrice DESC) AS Rank

FROM Production.Product

ORDER BY Rank  

 The result, shown in Figure  6 - 14 , repeats ranked values but doesn ’ t skip any numbers in this column.    

Figure 6-14

c06.indd   209c06.indd   209 10/31/08   6:23:10 PM10/31/08   6:23:10 PM



Chapter 6:                                                                                                                SQL  Functions        

210

  The  NTILE (n) Function 
 This function also ranks results, returning an integer ranking value. However, rather than enumerating 
the results into uniquely ranked order, it divides the result into a finite number of ranked groups. For 
example, if a table has 10,000 rows and the  NTILE()  function is called with an argument value of 1000, 
as  NTILE(1000) , the result would be divided into 1000 groups of 10, with each group being assigned the 
same ranking value. The  NTILE()  function also supports the  OVER (ORDER BY...)  syntax like the 
other ranking functions discussed in this section. The following example divides the product table into 
20 groups of products based on their price from highest to lowest. The partial results are shown in 
Figure  6 - 15 .   

SELECT 

    ProductID

   ,Name

   ,ListPrice

   ,NTILE(20) OVER (ORDER BY ListPrice DESC) AS GroupedProducts

FROM Production.Product

ORDER BY GroupedProducts      

Figure 6-15

  Security Functions 
 The security - related functions return role membership and privilege information for SQL Server 
users. This category also includes a set of functions to manage events and traces, as described in the 
following table. 

c06.indd   210c06.indd   210 10/31/08   6:23:11 PM10/31/08   6:23:11 PM



Chapter 6:                                                                                                                SQL  Functions        

211

     Function      Description   

     fn_trace_geteventinfo()     Returns a table type populated with event information for a 
specified trace ID.  

     fn_trace_getfilterinfo()     Returns a table type populated with information about filters 
applied for a specified trace ID.  

     fn_trace_getinfo()     Returns a table type populated with trace information for a 
specified trace ID.  

     fn_trace_gettable()     Returns a table type populated with file information for a 
specified trace ID.  

     HAS_DBACCESS()     Returns a flag indicating whether the current user has access 
to a specified database.  

     IS_MEMBER()     Returns a flag indicating whether the current user is a 
member of a Windows group or SQL Server role.  

     IS_SRVROLEMEMBER()     Returns a flag indicating whether the current user is a 
member of a database server role.  

     SUSER_SID()     Returns either the security ID for a specified user ’ s login name or 
(if the parameter is omitted) returns the security ID of the current 
user. Returns either the user ID for a specified username or (if the 
parameter is omitted) returns the user ID of the current user.  

     SUSER_SNAME()     Returns the login name for a specified security ID. If no security 
ID is provided it returns the login for the current connection.  

     USER_ID()     Returns either the user ID for a specified username or (if the 
parameter is omitted) returns the user ID of the current user.  

     USER_NAME()     Returns a username for a specified user ID.  

  System Functions and Variables 
 This section discusses utility functions used to perform a variety of tasks. These include value 
comparisons and value type testing. This category is also a catch - all for other functionality. 

     Function      Description   

     APP_NAME()     Returns the name of the application associated with the current 
connection.  

     COALESCE()     Returns the first non - null value from a comma - delimited list of 
expressions.  

(continued)

c06.indd   211c06.indd   211 10/31/08   6:23:11 PM10/31/08   6:23:11 PM



Chapter 6:                                                                                                                SQL  Functions        

212

     Function      Description   

     COLLATIONPROPERTY()     Returns the value of a specific property for a specified collation. 
Properties include  CodePage ,  LCID , and  ComparisonStyle .  

     CURRENT_TIMESTAMP()     Returns the current date and time and is synonymous with the 
 GETDATE()  function. It exists for ANSI - SQL compliance.  

     CURRENT_USER()     Returns the name of the current user and is synonymous with 
the  USER_NAME()  function.  

     DATALENGTH()     Returns the numbers of bytes used to store or handle a value. For 
ANSI string types, this will return the same value as the  LEN()  
function, but for other data types, the value may be different.  

     fn_helpcollations()     Returns a  table  type populated with a list of collations 
supported by the current version of SQL Server.  

     fn_servershareddrives()     Returns a  table  type populated with a list of drives shared by 
the server.  

     fn_virtualfilestats()     Returns a  table  type populated with I/O statistics for database 
files, including log files.  

     FORMATMESSAGE()     Returns an error message from the sysmessages table for a 
specified message number and comma - delimited list of 
parameters.  

     GETANSINULL()     Returns the nullability setting for the database, according to the 
 ANSI_NULL_DFLT_ON  and  ANSI_NULL_DFLT_OFF  database 
settings.  

     HOST_ID()     Returns the workstation ID for the current session.  

     HOST_NAME()     Returns the workstation name for the current session.  

     IDENT_CURRENT()     Returns the last identity value generated for a specified table 
regardless of the session and scope.  

     IDENT_INCR()     Returns the increment value specified in the creation of the last 
identity column.  

     IDENT_SEED()     Returns the seed value specified in the creation of the last 
identity column.  

     IDENTITY()     Used in a  SELECT ...  INTO  statement to insert an automatically 
generated identity value into a column.  

     ISDATE()     Returns a flag to indicate whether a specified value is or is not 
capable of being converted to a date value.  

     ISNULL()     Determines whether a specified value is null and then returns a 
provided replacement value.  

c06.indd   212c06.indd   212 10/31/08   6:23:11 PM10/31/08   6:23:11 PM



Chapter 6:                                                                                                                SQL  Functions        

213

     Function      Description   

     ISNUMERIC()     Returns a flag to indicate whether a specified value is or is not 
capable of being converted to a numeric value.  

     NEWID()     Returns a newly generated  uniqueidentifier  type value. This is 
a 128 - bit integer, globally unique value, usually expressed as an 
alpha - numeric hexadecimal representation (for example, 89DE6247 -
 C2E2 - 42DB - 8CE8 - A787E505D7EA). This type is often used for 
primary key values in replicated and semi - connected systems.  

     NULLIF()     Returns a NULL value when two specified arguments have 
equivalent values.  

     PARSENAME()     Returns a specific part of a four - part object name.  

     PERMISSIONS()     Returns an integer whose value is a bit - wise map indicating the 
permission or combination of permissions for the current user on 
a specified database object.  

     ROWCOUNT_BIG()     As with the  @@ROWCOUNT  variable, returns the number of rows 
either returned or modified by the last statement. Returns a 
 bigint  type.  

     SCOPE_IDENTITY()     As with the  @@IDENTITY  variable, this function returns the last 
Identity value generated but is limited to the current session and 
scope (stored procedure, batch, or module).  

     SERVERPROPERTY()     Returns a flag indicating the state of a server property. Properties 
include  Collation ,  Edition ,  Engine Edition ,  InstanceName , 
 IsClustered ,  IsFullTextInstalled , 
 IsIntegratedSecurityOnly ,  IsSingleUser , 
 IsSyncWithBackup ,  LicenseType ,  MachineName ,  NumLicenses , 
 ProcessID ,  ProductLevel ,  ProductVersion , and  ServerName .  

     SESSION_USER     Returns the current username. Note that this function is called 
without parentheses.  

     SESSIONPROPERTY()     Returns a flag indicating the state of a session property. 
Properties include  ANSI_NULLS ,  ANSI_PADDING ,  ANSI_
WARNINGS ,  ARITHABORT ,  CONCAT_NULL_YIELDS_NULL , 
 NUMERIC_ROUNDABORT , and  QUOTED_IDENTIFIER .  

     STATS_DATE()     Returns a date that statistics for a specified index were last updated.  

     SYSTEM_USER     Returns the current username. Note that this function is called 
without parentheses.  

     USER_NAME()     Returns the username for a specified user ID. If no ID number is 
provided, the function returns the current database user.  

 Some examples related to a few of the functions listed in the preceding table follow. 

c06.indd   213c06.indd   213 10/31/08   6:23:12 PM10/31/08   6:23:12 PM



Chapter 6:                                                                                                                SQL  Functions        

214

  The  COALESCE () Function 
 The  COALESCE()  function can be very useful in returning the first non - null value from a list of 
arguments, saving quite a lot of  IF  or  CASE  decision logic. The following example populates a table of 
products, showing up to three prices each: 

CREATE TABLE #ProductPrices (ProductName varchar(25), SuperSalePrice Money 

NULL, SalePrice Money NULL, ListPrice Money NULL)

GO

INSERT INTO #ProductPrices VALUES(‘Standard Widget’, NULL, NULL, 15.95)

INSERT INTO #ProductPrices VALUES(‘Economy Widget’, NULL, 9.95, 12.95)

INSERT INTO #ProductPrices VALUES(‘Deluxe Widget’, 19.95, 20.95, 22.95)

INSERT INTO #ProductPrices VALUES(‘Super Deluxe Widget’, 29.45, 32.45, 38.95)

INSERT INTO #ProductPrices VALUES(‘Executive Widget’, NULL, 45.95, 54.95)

GO  

 All products have a list price, some have a sale price, and others may have a super sale price. The current 
price of a product is going to be the lowest existing price, or the first non - null value when reading each 
of the price columns as they are listed: 

SELECT ProductName, COALESCE(SuperSalePrice, SalePrice, ListPrice) AS CurrentPrice

FROM #ProductPrices  

 This method is far more elegant than using multiple lines of branching and decision logic, and the result 
is equally simple, as illustrated in Figure  6 - 16 .    

Figure 6-16

  The  DATALENGTH () Function 
 The  DATALENGTH()  function returns the number of bytes used to manage a value. This can be used to 
reveal some interesting differences between data types. It ’ s probably no surprise that when a varchar 
type is passed to both the  DATALENGTH()  and  LEN()  functions, they return the same value: 

DECLARE @Value varchar(20)

SET @Value = ‘abc’

SELECT DATALENGTH(@Value)

SELECT LEN(@Value)  

c06.indd   214c06.indd   214 10/31/08   6:23:12 PM10/31/08   6:23:12 PM



Chapter 6:                                                                                                                SQL  Functions        

215

 These statements both return 3 because the varchar type uses three single - byte characters to store the 
three - character value. However, if an nvarchar type is used, it takes twice as many bytes to manage a 
value of the same length: 

DECLARE @Value nvarchar(20)

SET @Value = ‘abc’

SELECT DATALENGTH(@Value)

SELECT LEN(@Value)  

 The  DATALENGTH()  function returns 6 because 2 bytes are used to store each character using a Unicode 
character set. The  LEN()  function returns 3 because this function returns the number of characters, not 
the number of bytes. Here ’ s an interesting test. How many bytes does it take to store an integer variable 
set to the value 2? How about an integer variable set to 2 billion? Let ’ s find out: 

DECLARE @Value1 int, @Value2 int

SET @Value1 = 2

SET @Value2 = 2000000000

SELECT DATALENGTH(@Value1)

SELECT LEN(@Value1)

SELECT DATALENGTH(@Value2)

SELECT LEN(@Value2)  

 The  DATALENGTH()  function returns 4 in both cases because the  int  type always uses 4 bytes, regardless 
of the value. The  LEN()  function essentially treats the integer value as if it were converted to a character 
type, returning the number of digits, in this case, 1 and 10, respectively. 

 The following global system variables all return an  int  type. These may be useful in stored procedures 
and other programming objects to implement custom business logic. 

     Variable      Description   

     @@ERROR     Returns the last error number for the current session.  

     @@IDENTITY     Returns the last identity value generated in the current session.  

     @@ROWCOUNT     Returns the row count for the last execution in the current session that returned 
a result set.  

     @@TRANCOUNT     Returns the number of active transactions in the current session. This would 
result from multiple, nested  BEGIN TRANSACTION  statements before 
executing corresponding  COMMIT TRANSACTION  or  ABORT TRANSACTION  
statements.  

c06.indd   215c06.indd   215 10/31/08   6:23:13 PM10/31/08   6:23:13 PM



Chapter 6:                                                                                                                SQL  Functions        

216

  Global System Statistical Variables 
 The following table describes administrative utilities used to discover database system usage and 
environment information. 

     Variable      Description   

     @@CONNECTIONS     Returns the number of open connections.  

     @@CPU_BUSY     Returns the number of milliseconds that SQL Server has been working 
since the service was last started.  

     @@IDLE     Returns the number of milliseconds that SQL Server has been idle since the 
service was last started.  

     @@IO_BUSY     Returns the number of milliseconds that SQL Server has been processing 
I/O since the service was last started.  

     @@PACK_RECEIVED     Returns the number of network packets that SQL Server has received since 
the service was last started.  

     @@PACK_SENT     Returns the number of network packets that SQL Server has sent since the 
service was last started.  

     @@PACKET_ERRORS     Returns the number of network packet errors that SQL Server has received 
since the service was last started.  

     @@TIMETICKS     Returns the number of microseconds per tick.  

     @@TOTAL_ERRORS     Returns the number of disk I/O errors that SQL Server has received since 
the service was last started.  

     @@TOTAL_READ     Returns the number of physical disk reads since the SQL Server service 
was last started.  

     @@TOTAL_WRITE     Returns the number of physical disk writes since the SQL Server service 
was last started.  

  Summary 
 Functions do the heavy lifting of your business logic and can be used to apply programming 
functionality to queries. Several useful and powerful functions are standard features of T - SQL. You 
learned that SQL functions, like functions in procedural and object - oriented programming languages, 
encapsulate programming features into a simple and reusable package. This takes a lot of the work out 
of the query designer ’ s hands. You know that T - SQL is a task - oriented language rather than a procedural 
language. Although functions give you the option to tread the procedural line, building fairly complex 
logic into queries, the strength of the language is in allowing the designer to state his intentions rather 
than the exact steps and methods that must be used to perform a task. Used correctly, functions allow 
you to do just that. 

c06.indd   216c06.indd   216 10/31/08   6:23:13 PM10/31/08   6:23:13 PM



Chapter 6:                                                                                                                SQL  Functions        

217

 In T - SQL, arguments are used to pass values into a function and most functions return a scalar, or single -
 value, result. Functions are categorized as either deterministic or nondeterministic. A deterministic 
function will always return the same value when called with the same argument values. 
Nondeterministic functions depend on other resources to determine the return value; therefore SQL 
Server must execute the function explicitly. For this reason, there are some restrictions on the use of 
nondeterministic functions in custom SQL programming objects. 

 SQL functions perform a wide variety of important tasks including mathematical operations, 
comparisons, date parsing and manipulation, and advanced string manipulation. Several categories of 
specialized functions are introduced along with their related topics in following chapters. A complete 
function syntax reference is also provided in Appendix  B .  

  Exercises 
  Exercise 1 

 Write a query to return the average weight of all touring bikes sold by Adventure Works Cycles that list 
for more than $2,500. Use the ProductSubCategory table to determine how you should filter these 
products.  

  Exercise 2 
 Designate a variable called @ProCount to hold the number of product records on record. Execute a query 
to return this value and assign it to the variable. Use the variable in an expression to return the value in 
the phrase  “ There are X products on record. ”   

  Exercise 3 
 Calculate the square root of the absolute value of the cosine of PI.  

  Exercise 4 
 How many days has it been since the signing of the Treaty of Versailles on June 28, 1919, which ended 
World War 1? Calculate the answer using T - SQL functions.  

  Exercise 5 
 Using the SlateGravelEmployee table defined earlier in the chapter, return the FirstName, LastName, 
and the two - letter initials of all the employees.        

c06.indd   217c06.indd   217 10/31/08   6:23:13 PM10/31/08   6:23:13 PM



c06.indd   218c06.indd   218 10/31/08   6:23:13 PM10/31/08   6:23:13 PM



7                
Aggregation and Grouping          

 When creating reports or analyzing business data, viewing the individual records in a table can be 
like looking at a map through a microscope. It ’ s just a little too close to get the right perspective. 
Looking up a single record to find out when a customer bought a specific product may be valuable 
when that ’ s all you care about, but perhaps you ’ re more interested in how many products the 
customer bought during a period of time, or how much he or she spent on all purchases. Business 
leaders most often want to understand the bigger picture still  —  maybe they need to know how 
many products various customers in different geographic regions bought over a period of time. As 
you need to  “ zoom out ”  to view data from a larger point of view, you will inevitably need to group 
individual records together and then sum up, average, or count the details. This is called 
 aggregation . 

 The term  “ aggregation ”  refers to something that is a summary of something else. In this context, 
an aggregate function returns a single value for a group of records. You can use aggregate 
functions in two different ways. You can  “ roll up, ”  or summarize, all the rows returned by a query. 
Or, you also can apply aggregation at a group level, showing summarized values for the rows 
having the same values in the columns you designate for grouping. Remember that information is 
meaningful; data is little more than values stored in a table. Often, the information part of the 
equation comes from analyzing groups of records along with aggregated values, and then 
comparing how one range of records relates to another. 

 In this chapter, you learn how to use aggregate functions to summarize data and to perform 
statistical analysis. You also see how records can be grouped and aggregated into subtotals. Finally, 
you learn to use specialized grouping features to generate ad hoc grouped reports.  

  To Group or Not to Group 
 Before deciding if you should summarize data using aggregate functions, you need to determine if 
you should group these records by distinct value ranges. The criteria used for grouping may be the 
values in one column or a combination of multiple columns. More than likely, the results of a 
query will be handed off to some application code or a reporting tool. If this query client is going 

c07.indd   219c07.indd   219 10/31/08   6:23:47 PM10/31/08   6:23:47 PM



Chapter 7: Aggregation and Grouping

220

to show summarized data but will also need access to the detail records, then it will have to do the 
grouping and aggregating itself. If, however, it only needs to see grouped and summarized values, it 
makes sense to do the grouping in the query. 

 Grouping and aggregating data can provide a meaningful context for analyzing business information. 
It allows users to perform comparisons and to spot trends or anomalies in the data. Typically, we group 
data on  attribute  fields, which usually describe characteristics (for example, category, color, or a time 
period, such as  “ Month ” ). The fields used to aggregate are a type of field known as  measures  or  facts . 
These fields typically store numeric values that can be summed, averaged, or otherwise aggregated for 
reporting. One exception to this rule is that keys and attribute fields are often used for counting records, 
which is a form of aggregation. 

 If the data is grouped and then aggregated, the result will be a list of distinct grouped values along with 
an aggregated value for each group. If no grouping is performed, the results will simply be a single row 
containing the aggregated value(s) for all the records.  

  Using Aggregate Functions 
 Aggregate functions fall into two categories: simple aggregates and statistical functions. The simplest 
technique for using aggregate functions is aggregating all rows in a query. Aggregate functions include 
the means to summarize a range of values in a variety of ways. For example, you may simply want to 
count the rows that match certain criteria or get the sum for a range of numeric values. The following 
table contains all the system - supplied aggregate functions supported by T - SQL used to summarize 
column values. 

     Function      Description   

     COUNT()     Calculates the count of all non - null values for a specific column. Can also be 
used as  COUNT(*)  to return the absolute count of rows regardless of null 
values. Returns int data type.  

     COUNT_BIG()     Same as the  COUNT()  function but returns the bigint data type. This would be 
necessary only when the table contains more than two billion rows.  

     SUM()     Returns the sum of all non - null values in the range. The return data type is the 
same as the numeric column data type.  

     AVG()     Returns the average of all non - null values in the range. The return data type is 
the same as the numeric column data type.  

     MIN()     Returns the smallest non - null value in the range. Can be used with any 
sortable data type.  

     MAX()     Returns the largest non - null value in the range. Can be used with any sortable 
data type.  

     STDEV()     Returns the simple standard deviation for all non - null values in a numeric 
range. Returns a  float  data type, regardless of the column type.  

c07.indd   220c07.indd   220 10/31/08   6:23:48 PM10/31/08   6:23:48 PM



Chapter 7: Aggregation and Grouping

221

     Function      Description   

     STDEVP()     Returns the standard deviation for a population, for all non - null values in a 
numeric range. Returns a  float  data type, regardless of the column type.  

     VAR()     Returns the simple variance for all non - null values in a numeric range. 
Returns a  float  data type, regardless of the column type.  

     VARP()     Returns the variance for a population, for all non - null values in a numeric 
range. Returns a  float  data type, regardless of the column type.  

     CHECKSUM_AGG     Returns a checksum of values in an aggregate range. This is used to compare a 
range of values against another range to tell if they are the same. The resulting 
value is generally not useful except as a comparison to another checksum.  

 An aggregate function is called and applied to a specific column. The aggregate function is applied to the 
range of values in that column, either for the entire table or a group of rows when used along with a 
 GROUP BY  clause. Most aggregates work on numeric values, but some, such as the  COUNT ,  MIN , and  MAX  
functions, can work with other data types. The following sections break down each aggregate function, 
with examples and instructions for you to try it out for yourself. 

  The  COUNT () Function 
 When you just need to know how many records there are in a table, or how many records share common 
attribute values, use the  COUNT()  function. It simply counts rows or non - null values in a column ’ s value 
range. Because the data type of the column isn ’ t considered, it will work with columns of practically any 
type of data. 

 Consider the following two examples. If you execute this query against the Product table, the total 
number of rows is returned: 

SELECT COUNT(*) FROM Production.Product  

 As you can see, the Product table contains 504 rows (unless you ’ ve added or removed any rows). Now, 
count only the values in the Color column using the following expression: 

SELECT COUNT(Color) FROM Production.Product  

 Because 248 records don ’ t have a Color value (these rows contain the value NULL for this column), only 
256 rows get counted. Now add the word  DISTINCT  before the column reference and execute the query 
again: 

SELECT COUNT(DISTINCT Color) FROM Production.Product  

 Because so many of the products have the same prices, only nine records are counted. The  DISTINCT  
modifier can be used with any of the aggregate functions except when using the  CUBE  or  ROLLUP  
statements, which are discussed later in this chapter.  

c07.indd   221c07.indd   221 10/31/08   6:23:48 PM10/31/08   6:23:48 PM



Chapter 7: Aggregation and Grouping

222

  The  SUM () Function 
 The  SUM()  function simply returns the sum of a range of numeric column values. Like the others, this 
function only considers non - null values. A simple example returns the subtotal for a product order. This 
query adds up the UnitPrice for each detail line in the order whose SalesOrderID is 50189: 

SELECT SUM(UnitPrice)

FROM Sales.SalesOrderDetail 

WHERE SalesOrderID = 50189  

 The result is a single row with a single column just like the previous examples, as shown in Figure  7 - 1 . 
This is the sum of all UnitPrice values in the SalesOrderDetail table.   

 Figure 7 - 1 

 Figure 7 - 2 

 I have two issues with this result. The first is that the column doesn ’ t have a name. When applying 
aggregate functions, the resulting column won ’ t be named unless you specifically define an alias for the 
column name. If you use visual query design tools, such as Access or the T - SQL Designer (in Visual 
Studio or to create a view in SQL Server Management Studio), these tools will devise column aliases 
such as SumOfUnitPrice or Expr1. The first order of business is to assign an alias so that this column has 
a sensible name. The other problem with this simple example is that it assumes that the customer 
purchased one of each product. The fact is that there are three detail rows for this order with respective 
quantities 1, 3, and 4. To total the order accurately, you ’ ll have to do a little math. This query resolves 
both of these issues, calculating extended price and defining an alias for the column: 

SELECT SUM(UnitPrice * OrderQty) AS OrderTotalPrice

FROM Sales.SalesOrderDetail

WHERE SalesOrderID = 50189  

 The result shown in Figure  7 - 2  contains the correct amount (the total of all three order detail rows, 
considering the quantity for the product purchased), and the column has a name.    

  The  AVG () Function 
 The  AVG()  function returns the calculated average for a range of numeric values. Internally, the query 
processor calculates the sum of all the values and then divides by the number of rows in the range 
(containing non - null values). Optionally, the  AVG()  function can make a distinct selection of values and 

c07.indd   222c07.indd   222 10/31/08   6:23:48 PM10/31/08   6:23:48 PM



Chapter 7: Aggregation and Grouping

223

then perform the same calculation on this abbreviated set of values. Using a distinct selection can greatly 
affect the results and is not as common. 

 I ’ d like to use the product sales data in the AdventureWorks2008 database to demonstrate the practical 
application of these aggregate functions. In this scenario, the director of marketing has asked for an 
analysis of road bike sales in 2003. This information exists in three related tables. Pay no attention to the 
join statements for the time being; they are covered in Chapter  8 . The following query uses the 
SalesOrderHeader table to filter the sales order, the Product table to filter by ProductSubCategoryID (2 is 
road bikes), and the UnitPrice is retrieved from the SalesOrderDetail table. For simplicity, I ’ m not 
considering the quantity of bikes purchased. 

 I ’ ll start with the lowest price paid for a bike. Using the  MIN()  function should return only one value: 

SELECT   MIN(UnitPrice)

FROM     Sales.SalesOrderHeader 

         INNER JOIN Sales.SalesOrderDetail ON 

         SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

         INNER JOIN Production.Product 

          ON SalesOrderDetail.ProductID = Product.ProductID

WHERE    Product.ProductSubCategoryID = 2

         AND SalesOrderHeader.OrderDate BETWEEN ‘1-1-03’ And ‘12-31-03’  

 You can see that the lowest UnitPrice value in this range is $296.99. (I ’ ve rounded the results to the 
nearest penny.) Just modify the query, substituting the following functions in place of the  MIN()  function 
in the example. The following table shows the results. 

     Question      Function      Result   

    What was the lowest price paid?     MIN()     296.99  

    What was the highest price paid?     MAX()     2,443.35  

    What is the average price paid?     AVG()     1,019.98  

  Understanding Statistical Functions 
 The functions you ’ ve seen so far perform simple aggregation over a range of values. The following 
statistical functions apply more complex algorithms to a range of values. Fundamentally, the principle is 
the same, but the application is a little more specialized. 

 Statistics wasn ’ t my best subject in school. Although I understood the relevance and importance of 
statistics, my brain just wasn ’ t wired for it. Fortunately, now that I use these functions regularly in 
consulting and application development work, I no longer struggle with it, but I often need to jog my 
memory by looking at an example. This section explains these concepts in simple terms and provides 
some useful examples for those of us who don ’ t think statistically. 

c07.indd   223c07.indd   223 10/31/08   6:23:49 PM10/31/08   6:23:49 PM



Chapter 7: Aggregation and Grouping

224

  The  STDEV () Function 
 Have you ever taken a class where the teacher graded on a curve? If so, you were the victim of standard 
deviation (or, perhaps, the benefactor). 

 The standard deviation is a calculation based on the variance of a numeric range of values. Actually, it ’ s 
simply the square root of the variance. In a normal distribution, values can be plotted in a bell curve, 
with the mean value represented by the center of the curve. If you were to slice off the center of the 
curve, taking about 68% of the most common values, this would represent the standard deviation (or 
 “ first standard deviation ” ). If you were to move outward the same variation of values, you would take 
off another 27% (a total of 95%), leaving only 5%. 

 Standard deviation is an effective method for analyzing and making sense of large distributions of data. 
It is also a common method to calculate risk and probability. 

 To measure the standard deviation for your sample values table, simply use the following query: 

SELECT STDEV(MyValue) FROM MyValues  

 The result, 1.5811 …  , tells you that for the values in your table, those values that are in the range from 
2.4198 to 5.5811 (within 1.5811 of the mean) are in the first standard deviation. 

 Using the AdventureWorks or AdventureWorks2008 sales data, you can apply this analysis to bicycle 
sales. Suppose that the director of marketing asks  “ How much did most of our customers pay for road 
bikes in 2003? ”  Just modify the query you used before, using the  STDEV()  function like this: 

SELECT   STDEV(UnitPrice) 

FROM     Sales.SalesOrderHeader 

         INNER JOIN Sales.SalesOrderDetail ON 

         Sales.SalesOrderHeader.SalesOrderID = Sales.SalesOrderDetail

.SalesOrderID 

         INNER JOIN Production.Product ON Sales.SalesOrderDetail

.ProductID = Product.ProductID

WHERE    Production.Product.ProductSubCategoryID = 2 

         AND Sales.SalesOrderHeader.OrderDate BETWEEN ‘1-1-03’ 

And ‘12-31-03’  

 The result is 634.11. This means that most of your customers paid between $385.87 and $1,654.09 for their 
road bikes  —  at least those purchases in the first standard deviation (the average price: $1019.98  �  $634.11).  

  The  STDEVP () Function 
 This function calculates standard deviation based on the variance of a population. It ’ s a special - purpose 
function, generally used only in statistical analysis.  

  The  VAR () Function 
 The  VAR()  function returns the statistical variance for a range of values  —  that is, a value that indicates 
how  “ spread out ”  the values are in the range. The value returned by this function is actually the measure 
of how far the extreme low range or high range value is from the middle  —  or mean value of the range, 

c07.indd   224c07.indd   224 10/31/08   6:23:49 PM10/31/08   6:23:49 PM



Chapter 7: Aggregation and Grouping

225

weighted by the greatest concentration of similar values. For example, given the range of values on a 
number line, 2, 3, 4, 5, and 6, the number 4 is the mean  —  it ’ s in the middle of the range. 

 The variance is a calculation based on the standard deviation. In short, the variance is simply the 
standard deviation squared. This is useful because it defines a range of  “ normal ”  values within 
one standard deviation on both sides of the mean. In this simple example, the variance of this range is 2.5. 
This is very simple if you have a list of distinct, incremental values but it gets a little more complex as the 
values are less uniform. 

 You can do some simple experimenting with values in a single - column table created by running the 
following query: 

Create Table MyValues (MyValue Float)  

 Now, insert the values given in the previous example, using this query: 

Insert Into MyValues (MyValue) SELECT 2

Insert Into MyValues (MyValue) SELECT 3

Insert Into MyValues (MyValue) SELECT 4

Insert Into MyValues (MyValue) SELECT 5

Insert Into MyValues (MyValue) SELECT 6  

 To return the variance of this range, use this query: 

SELECT VAR(MyValue) FROM MyValues  

 The result is 2.5. If you insert more values close to the center of the range, you will see that this changes 
the outcome and returns a smaller variance. This is because the result is computed as the average 
squared deviation (difference) of each number from its mean. This is done so negative numbers behave 
appropriately and to weight the equation toward the center of the greatest concentration of values. 
Regardless, it ’ s a standard statistical function and, fortunately, you probably don ’ t need to concern 
yourself with the specifics of the internal calculation. Calculating variance is the first step in performing 
other statistical functions, such as standard deviation. 

 As you can see, using integer values to keep things simple, you ’ ve created a bell - curve around the mean 
value, 4: 

INSERT INTO MyValues (MyValue) SELECT 3

INSERT INTO MyValues (MyValue) SELECT 4

INSERT INTO MyValues (MyValue) SELECT 4

INSERT INTO MyValues (MyValue) SELECT 4

INSERT INTO MyValues (MyValue) SELECT 5  

 You then return the deviation for the range again: 

SELECT VAR(MyValue) FROM MyValues  

 The result should now be about 1.33333. This number is smaller because adding values closer to the 
mean reduces the value of the standard deviation to indicate that values, on average, are less spread out.  

225

c07.indd   225c07.indd   225 10/31/08   6:23:49 PM10/31/08   6:23:49 PM



Chapter 7: Aggregation and Grouping

226

  The  VARP () Function 
 The variance over a population is simply another indicator of the same variance principle, using a 
different formula. This formula is sometimes called  biased estimate of variance . Although this method is 
used in some complex calculations, the other form of variance is more common. (I ’ m sure I saw this used 
once in college, but, frankly, I ’ ve never seen it used. Please don ’ t tell anyone I ’ ve admitted to this.)  

  User - Defined Aggregate Functions 
 SQL Server 2005 and SQL Server 2008 allow application developers to add custom aggregate functions to 
a database. These functions are written in a .NET programming language, such as C# or Visual Basic 
.NET, and must be compiled into a .NET assembly using the Microsoft .NET Common Language 
Runtime. As a SQL query designer, all you need to know is that once aggregate functions are deployed 
and correctly configured, you can use them in your queries as you would any of the system - supplied 
aggregate functions.   

  Grouping Data 
 So far, your work with aggregate functions has been for a group of records that return a single value. An 
operation that returns a single value is known as a  scalar  result. Although this may be appropriate for 
very simple data analysis, aggregate functions can be used in far more sophisticated and useful ways. 
Groups are used to distill rows with common column values into one row. This gives you the 
opportunity to perform aggregated calculations on each of the groupings. There are some restrictions 
and it ’ s important to understand the rules regarding groups. Columns returned by a grouped query 
must either be referenced in the  GROUP BY  list or use an aggregate function. Other columns can be used 
for filtering or sorting but these column values cannot be returned in the result set. 

  The  GROUP BY  Clause 
 Often, you will need to distill all the rows in a table, or the results of a multi - table join, into summary 
rows with a grand total or subtotals for groups of rows. Grouping is the process of summarizing ranges 
of rows based on some kind of distinct match or similarity between common rows. Typically, all the rows 
within the group are aggregated into a single row using one or more of the aggregate functions we just 
looked at. 

 Grouping occurs after records are retrieved and then aggregated. The  GROUP BY  clause is added to the 
query after the  WHERE  and  ORDER BY  clauses. Consider that the query runs first without the aggregate 
functions and grouping to determine which rows will be considered for grouping. After these results are 
read into memory, SQL Server makes a pass through these records, applying groupings and aggregate 
calculations. 

 Consider the following example using the  SUM()  function: 

SELECT SalesOrderID, SUM(OrderQty) FROM Sales.SalesOrderDetail

GROUP BY SalesOrderID  

 The SalesOrderID value can be returned because it appears in the  GROUP BY  list. The query will return 
one distinct row for each SalesOrderID value. For each group of related records, all the OrderQty values 

c07.indd   226c07.indd   226 10/31/08   6:23:50 PM10/31/08   6:23:50 PM



Chapter 7: Aggregation and Grouping

227

are added together as the result of the  SUM()  function. The result should include two columns, the 
SalesOrderID and the sum of the OrderQty for the related detail rows, as shown in Figure  7 - 3 .   

Figure 7-3

 Because detail rows contain multiple quantities, you really can ’ t tell if these rows are aggregated. To get 
a better view, add another column to the previous query using the  COUNT()  function. Also, add column 
aliases to label these values: 

SELECT  SalesOrderID

      , SUM(OrderQty) AS QtySum

      , COUNT(SalesOrderID) AS DetailCount 

FROM Sales.SalesOrderDetail

GROUP BY SalesOrderID  

 Execute this query and check the result. 

 The result, displayed in Figure  7 - 4 , shows that all but two of the visible rows were grouped and the 
 SUM()  function was applied to the OrderQty column value.   

Figure 7-4

 If you were to view the ungrouped records in this table, you could clearly see what ’ s going on. The result 
shown in Figure  7 - 5  is just a simple  SELECT  query on the SalesOrderDetail table showing the first few 
rows.   

c07.indd   227c07.indd   227 10/31/08   6:23:50 PM10/31/08   6:23:50 PM



Chapter 7: Aggregation and Grouping

228

Figure 7-5

 Sales order 43659 has 12 detail rows, whose OrderQty values add up to 26, and order 43660 has two 
detail rows with a total quantity of 2. 

 When grouping on more than one column, every unique combination of grouped values produces a row 
in the result set. The following query demonstrates this scenario. Because the SalesOrderDetail table isn ’ t 
preordered by the two columns you want to group on, you ’ re explicitly ordering the results: 

SELECT ProductID

     , SpecialOfferID

FROM Sales.SalesOrderDetail

GROUP BY ProductID, SpecialOfferID

ORDER BY ProductID, SpecialOfferID  

 The query returns a distinct list of ProductID and SpecialOfferID values, as shown in Figure  7 - 6 .   

Figure 7-6

 Although this may be interesting, it ’ s not particularly useful information. Let ’ s find out how many rows 
are actually being used to produce this list of distinct values. I ’ m going to change up the query a bit 
because I want to introduce another element. In the following query, I group on the SalesOrderID and 

c07.indd   228c07.indd   228 10/31/08   6:23:51 PM10/31/08   6:23:51 PM



Chapter 7: Aggregation and Grouping

229

the CarrierTrackingNumber, and include a count aggregation for both of these columns. Note the alias 
columns defined for these two count aggregates.   

SELECT SalesOrderID, COUNT(SalesOrderID) AS SalesOrderIDCount

     , CarrierTrackingNumber, COUNT(CarrierTrackingNumber) AS 

CarrierTrackingNumberCount

FROM Sales.SalesOrderDetail

GROUP BY SalesOrderID, CarrierTrackingNumber

ORDER BY SalesOrderID, CarrierTrackingNumber  

 In the result set shown in Figure  7 - 7 , you can see that the results were similar to the previous query with 
the added counts.   

Figure 7-7

 It ’ s probably not a surprise that sales orders and the shipping tracking numbers usually correspond 
because all the items for an order typically would ship together. Because this is the case for most of the 
records, the counts are the same. However, if you scroll down in the results, you can see that the counts 
are not the same when there are Null values. These records might indicate orders that have not yet 
shipped, were cancelled, or where the customer picked up the items instead of having them shipped. 
Figure  7 - 8  shows that omitted CarrierTrackingNumber values are not processed by the aggregate 
function, resulting in a count of 0.   

Figure 7-8

c07.indd   229c07.indd   229 10/31/08   6:23:51 PM10/31/08   6:23:51 PM



Chapter 7: Aggregation and Grouping

230

 For more of a real - world example, because of the complexity of the AdventureWorks or 
AdventureWorks2008 database, it ’ s necessary to create a fairly complex query with several table joins. 
Again, don ’ t be concerned with the statements in the  FROM  clause, but do pay attention to the column list 
after the  SELECT  statement. You ’ ll see this query again in the next chapter. 

 The purpose of the following query is to find out what products your customers have purchased. The 
Individual table contains personal information about human being – type customers (rather than stores 
that buy wholesale products). You ’ ve already seen that sales orders have order details, and a sales order 
detail line is related to a product. 

 This query works with AdvertureWorks2008: 

SELECT     

        Store.Name AS StoreName

      , Product.Name AS ProductName

      , COUNT(SalesOrderDetail.ProductID) AS PurchaseCount

FROM         

      Sales.Customer INNER JOIN Sales.SalesOrderHeader 

       ON Customer.CustomerID = SalesOrderHeader.CustomerID 

      INNER JOIN Sales.SalesOrderDetail 

       ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID 

      INNER JOIN Production.Product 

       ON SalesOrderDetail.ProductID = Product.ProductID 

      INNER JOIN Sales.Store ON Customer.StoreID = Store.BusinessEntityID

GROUP BY Product.Name, Store.Name

ORDER BY Store.Name, Product.Name  

 This query works with AdventureWorks (for SQL Server 2005): 

SELECT     

        Store.Name AS StoreName

      , Product.Name AS ProductName

      , COUNT(SalesOrderDetail.ProductID) AS PurchaseCount

FROM         

      Sales.Customer INNER JOIN Sales.SalesOrderHeader 

       ON Customer.CustomerID = SalesOrderHeader.CustomerID 

      INNER JOIN Sales.SalesOrderDetail 

       ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID 

      INNER JOIN Production.Product 

       ON SalesOrderDetail.ProductID = Product.ProductID 

      INNER JOIN Sales.Store ON Customer.CustomerID = Store.CustomerID

GROUP BY Product.Name, Store.Name

ORDER BY Store.Name, Product.Name  

 Three columns are returned from the query: the StoreName, the ProductName, and the number of 
product records in each group (PurchaseCount), using the  COUNT()  function. This returns the number of 
times a store purchased the same product. You could use the product Name in the  COUNT()  function, but 
it ’ s usually more efficient to use primary key columns. Note that even though the StoreName and 
ProductName columns are aliased in the  SELECT  list, when used in the  GROUP BY  and  ORDER BY  
statements, the alias name is not used  —  only the qualified column names are used. 

 Figure  7 - 9  shows the first 35 rows in the result set.   

c07.indd   230c07.indd   230 10/31/08   6:23:52 PM10/31/08   6:23:52 PM



Chapter 7: Aggregation and Grouping

231

 Suppose that the purpose of this query was to locate stores that have purchased more than four of any 
product. Rather than scrolling through 20,501 rows, you can modify the query for rows with a count greater 
than four. This type of post aggregated filtering is performed with the  HAVING  clause, discussed next.  

  The  HAVING  Clause 
 If you need to filter the results of a grouped query based on the result of an aggregated value, then the 
aggregation must be performed first. You can ’ t use the  WHERE  clause because it is processed prior to 
grouping and aggregation; therefore, you need some way to filter the rows after the grouping has been 
completed. This is the job of the  HAVING  clause. 

 This technique is very similar to using the  WHERE  clause, but the  HAVING  clause is limited to those 
columns and aggregate expressions that have already been specified on the  SELECT  statement. Typically, 

Figure 7-9

c07.indd   231c07.indd   231 10/31/08   6:23:52 PM10/31/08   6:23:52 PM



Chapter 7: Aggregation and Grouping

232

you will refer to aggregate values simply by repeating the aggregate function expression in the  HAVING  
clause, just like you did in the  SELECT  statement. Here is the previous query with this expression added: 

 AdventureWorks2008: 

SELECT     

        Store.Name AS StoreName

      , Product.Name AS ProductName

      , COUNT(SalesOrderDetail.ProductID) AS PurchaseCount

FROM         

      Sales.Customer INNER JOIN Sales.SalesOrderHeader 

        ON Customer.CustomerID = SalesOrderHeader.CustomerID 

      INNER JOIN Sales.SalesOrderDetail 

        ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID 

      INNER JOIN Production.Product 

        ON SalesOrderDetail.ProductID = Product.ProductID 

      INNER JOIN Sales.Store ON Customer.StoreID = Store.BusinessEntityID

GROUP BY Product.Name, Store.Name

HAVING COUNT(SalesOrderDetail.ProductID)  >  4

ORDER BY Store.Name, Product.Name  

 AdventureWorks: 

SELECT     

        Store.Name AS StoreName

      , Product.Name AS ProductName

      , COUNT(SalesOrderDetail.ProductID) AS PurchaseCount

FROM         

      Sales.Customer INNER JOIN Sales.SalesOrderHeader 

        ON Customer.CustomerID = SalesOrderHeader.CustomerID 

      INNER JOIN Sales.SalesOrderDetail 

        ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID 

      INNER JOIN Production.Product 

        ON SalesOrderDetail.ProductID = Product.ProductID 

      INNER JOIN Sales.Store ON Customer.CustomerID = Store.CustomerID

GROUP BY Product.Name, Store.Name

HAVING COUNT(SalesOrderDetail.ProductID)  >  4

ORDER BY Store.Name, Product.Name  

 The result set is now reduced to 2,138 rows (about one - tenth of the original results), including only the 
store/product purchases. Examining the results reveals something very interesting. In the previous 
results, you saw that there appeared to be a lot of transactions for the store called A Bike Store. However, 
when you look at the results in this way, you see that this customer purchased only small quantities of 
each product. As such, they are not included in these results, as shown in Figure  7 - 10 .   

c07.indd   232c07.indd   232 10/31/08   6:23:53 PM10/31/08   6:23:53 PM



Chapter 7: Aggregation and Grouping

233

 This data makes sense because most of the products listed with higher product counts are lower - priced 
items, which tend to sell quickly. 

 Like the  WHERE  clause, you can use the  HAVING  clause with any combination of comparison expressions 
and logical operators. Just be mindful that it is processed after the initial record selection (which is 
filtered by the  WHERE  clause) and that you are limited to the columns and aggregate expressions in the 
 SELECT  statement. 

 I ’ ll use an example from the AdventureWorks or AdventureWorks2008 database so that you can follow 
along and work with the data yourself. 

 Grouping the Employee table on the FirstName and Gender columns will return all the combinations of 
these values. I ’ ll aggregate the Employee primary key column using the  COUNT()  function so that you 
can see how many records there are for each FirstName/Gender combination. 

 AdventureWorks2008: 

SELECT

    FirstName

  , Gender

  , COUNT(E.BusinessEntityID)

FROM HumanResources.Employee AS E INNER JOIN Person.Person AS P

 ON E. BusinessEntityID = P.BusinessEntityID

GROUP BY  FirstName, Gender

ORDER BY FirstName, Gender  

Figure 7-10

c07.indd   233c07.indd   233 10/31/08   6:23:53 PM10/31/08   6:23:53 PM



Chapter 7: Aggregation and Grouping

234

 AdventureWorks: 

SELECT

    FirstName

  , Gender

  , COUNT(E.EmployeeID)

FROM HumanResources.Employee AS E INNER JOIN Person.Contact AS C

 ON E.ContactID = C.ContactID

GROUP BY  FirstName, Gender

ORDER BY FirstName, Gender  

 Figure  7 - 11  shows the first few employee records grouped by name and gender with the count of names 
for that gender.   

Figure 7-11

 I ’ ve shown you a few examples of queries using grouping and filtering that use the  HAVING  clause. 
Here ’ s a simplified version to try out on your own. Before you look at the following query, cover it up or 
bookmark and close the book (after reading these instructions, of course). Your challenge is to return the 
average list price of mountain bike products, grouped by color only where the average price is greater 
than $1,200. Mountain bikes have a ProductSubcategoryID   =   2. 

 Try it out on your own and then compare your results with the following query: 

SELECT Color, AVG(ListPrice)

FROM Production.Product 

WHERE ProductSubcategoryID = 2

GROUP BY Color

HAVING AVG(ListPrice)  >  1200  

c07.indd   234c07.indd   234 10/31/08   6:23:53 PM10/31/08   6:23:53 PM



Chapter 7: Aggregation and Grouping

235

 You ’ ll recall that the  WHERE  clause filters rows before they get to the  GROUP BY  clause or aggregate 
function. The  HAVING  clause is processed after the grouping and aggregation have already taken place.    

 In the previous edition of this book, using the AdventureWorks database that had originally been created 
for SQL Server 2000, I pointed out that some of our friends at Microsoft had some fun when populating 
this table. Most of the names in the Employee table were actually Microsoft employees or friends and 
colleagues in the SQL Server community, and many of these names were strategically entered with the 
wrong gender. Apparently, someone had a sense humor, but all good things must come to an end and 
this table has since been  “ cleaned up. ”  Looks like the party ’ s over. As a result of the apparent cleansing 
of AdventureWorks, we ’ ve had to rework many of our demonstrations and sample queries to keep pace 
with these changes. Keep this in mind if you ’ ve read the previous edition of this book or if you are work-
ing with sample queries written for SQL Server 2000 or 2005.    

    Total and Subtotal Group Modifiers 
 The  GROUP BY  clause, along with aggregate functions, is useful in many common query scenarios. It 
offers a convenient way to reduce the number of rows returned by a query while continuing to return a 
uniform set of columns and rows that are easily consumed by applications and reporting tools. 

 Before getting into a discussion about the techniques available for totaling grouped aggregates and 
creating subtotal breaks, a discussion of how you will use this data is needed. SQL Server is typically 
used as the back - end data store for some type of application or data consumer product. Many data 
presentation and reporting tools exist that will take care of formatting and totaling values from your 
queries. The technique you choose will largely depend on the tool or application that will consume 
this data. 

 One important consideration is whether you want the data to be grouped, aggregated, and subtotaled by 
the database server or by the client application after results have been returned from the database. There 
is little doubt that it is more efficient to let the database server do the work and send less data across the 
network. However, consider the case where an application allows users to interact with data, choosing 
different sorting and grouping options. It might make more sense to send raw data to the application one 
time so it can be manipulated by the client rather than refreshing the result set and resending a different 
result each time the user chooses a grouping or sorting option. These are decisions that your solution 
designers might need to make on a larger scale. The purpose here is to discuss the options in SQL Server 
to do the grouping and subtotaling at the database server. 

  Old and New Subtotal Techniques 
 With SQL Server 2008, Microsoft released support for a new set of techniques for performing in - query 
subtotal breaks. These are new techniques that you will not see in existing queries created with previous 
product versions. The older techniques are  “ deprecated. ”  Get used to this term because we ’ re seeing it a 
lot lately.  “ Deprecated ”  means that there ’ s a newer, cooler way of doing something, and the old method, 
though it might still be supported, may not be sometime in the future. I ’ ll point out the old and new 
techniques in this section as we continue. 

 By introducing subgrouping and the related techniques introduced in the following section, you can 
enhance the functionality of data grouping and aggregation. However, you should carefully consider 
how you intend to use the results, as many tools may not be able to interpret the outcome. If you ’ re not 
careful, you could get inaccurate or confusing results. Reporting tools such as Access, Crystal Reports, 

c07.indd   235c07.indd   235 10/31/08   6:23:54 PM10/31/08   6:23:54 PM



Chapter 7: Aggregation and Grouping

236

or SQL Server Reporting Services are perfectly capable of producing breaks and calculating subtotals 
without any special provisions within the query. However, these features can be useful for creating 
breaks and totals in an ad   hoc query and without the aid of a reporting client. 

 Note that I use the terms  “ totaling ”  and  “ subtotaling ”  in a general sense to mean applying whatever 
aggregate functions you choose at various group levels. For example, if I were using the  AVG()  function 
to return the average purchase price per product, and per quarter at the quarter level, I would want to 
see the average calculation for all the product price averages. I ’ m using the term  “ subtotal ”  loosely, even 
though I expect to see an average calculation rather than a sum or total.   

  Subgrouping 
 With more than one column referenced in the  GROUP BY  clause, some interesting things happen. For the 
sake of simplicity, a hypothetical table follows with simplified values. 

     ID1      ID2      MyValue   

    A    X    2  

    A    X    1  

    A    Y    2  

    A    Y    1  

    B    X    3  

    B    Y    2  

    B    Y    2  

 In a query for my hypothetical table, I include the first two columns, ID1 and ID2, in the  GROUP BY  
clause, and then use the  SUM()  function to total the values in the third column: 

SELECT ID1, ID2, Sum(MyValue)

FROM MyHypotheticalTable

GROUP BY ID1, ID2  

 Multiple rows are returned, one for each unique combination of values, as shown in the following table. 

     ID1      ID2      MyValue   

    A    X    3  

    A    Y    3  

    B    X    3  

    B    Y    4  

c07.indd   236c07.indd   236 10/31/08   6:23:54 PM10/31/08   6:23:54 PM



Chapter 7: Aggregation and Grouping

237

 What I don ’ t have in this result set is the sum for all occurrences where ID1 is equal to A or where ID2 is 
equal to Y. To get the aggregate result of a grouped query, you can use the  ROLLUP  and  CUBE  statements, 
as described in the following sections. Essentially, these statements will take the results from the grouped 
query and apply the same aggregation to either the first column ’ s values or all combinations of values 
for each column that appears in the  GROUP BY  column list.  

  The  ROLLUP  Clause 
 This is the simplest option for calculating subtotals and totals on the first column in the  GROUP BY  column 
list. In the case of my hypothetical example, in addition to calculating the sum of each unique 
column value, totals would be tallied for the value A and B in the ID1 column only. 

 There are two different ways to apply  ROLLUP  in SQL Server 2008. The older method has you add  WITH 
ROLLUP  after the  GROUP BY  statement, like this: 

SELECT ID1, ID2, SUM(MyValue)

FROM MyHypotheticalTable

GROUP BY ID1, ID2

WITH ROLLUP  

 The newer technique, introduced with SQL Server 2008, uses  ROLLUP  as a modifier for the  GROUP BY  
clause: 

SELECT ID1, ID2, SUM(MyValue)

FROM MyHypotheticalTable

GROUP BY ROLLUP(ID1, ID2)  

 The results would look something like those shown in the following table. 

     ID1      ID2      MyValue   

    A    X    3  

    A    Y    3  

    B    X    3  

    B    Y    4  

    A    (null)    6  

    B    (null)    7  

 Null values are used to indicate that the corresponding column was ignored when calculating the 
aggregate value.  

c07.indd   237c07.indd   237 10/31/08   6:23:55 PM10/31/08   6:23:55 PM



Chapter 7: Aggregation and Grouping

238

  The  CUBE  Clause 
 The  CUBE  operator is an expanded version of the  ROLLUP  operator. Rather than just rolling up the 
aggregate values for the first column in the  GROUP BY  list,  CUBE  performs this rollup for every 
combination of grouped column values. In the case of the hypothetical tables used in the previous 
example, three additional rows are added to the result set. Here is the same query using  WITH CUBE  
rather than  WITH ROLLUP : 

SELECT ID1, ID2, SUM(MyValue)

FROM MyHypotheticalTable

GROUP BY ID1, ID2

WITH CUBE  

 And the following is the newer, recommended form that applies  CUBE  as a modifier to the  GROUP BY  
clause: 

SELECT ID1, ID2, SUM(MyValue)

FROM MyHypotheticalTable

GROUP BY CUBE(ID1, ID2)  

 The corresponding result set is shown in the following table. 

     ID1      ID2      MyValue   

    A    X    3  

    A    Y    3  

    B    X    3  

    B    Y    4  

    A    (null)    6  

    B    (null)    7  

    (null)    X    6  

    (null)    Y    7  

    (null)    (null)    13  

 Null values in the first column indicate that this is a rollup on the values in the second column. In this 
case, these rows contain subtotal values for all rows where ID2 is equal to X or Y. The last row has null 
values in both grouped columns. This indicates that it is a grand total, the sum of all rows.  

  The  GROUPING () Function 
 Let ’ s go back to the AdventureWorks Cycles Product table example used earlier. I made a point not to 
use this table for the  ROLLUP  and  CUBE  examples because it would throw a wrench into the works. 

c07.indd   238c07.indd   238 10/31/08   6:23:55 PM10/31/08   6:23:55 PM



Chapter 7: Aggregation and Grouping

239

Go back and take another look at Figure  7 - 8 , noting the null values in the CarrierTrackingNumber 
column. You ’ ll recall that when using the  ROLLUP  and  CUBE  modifiers, a null is used to indicate a rollup 
or subtotal row where that column ’ s value isn ’ t being considered. What if a column in the  GROUP BY  list 
actually contains null values? Here ’ s the earlier example again, with the added  ROLLUP  modifier that is 
now available in SQL Server 2008: 

SELECT SalesOrderID, COUNT(SalesOrderID) AS SalesOrderIDCount

     , CarrierTrackingNumber, COUNT(CarrierTrackingNumber) AS

       CarrierTrackingNumberCount

FROM Sales.SalesOrderDetail

GROUP BY ROLLUP(SalesOrderID, CarrierTrackingNumber)

ORDER BY SalesOrderID, CarrierTrackingNumber  

 In the result set shown in Figure  7 - 12 , additional rows are added with subtotals.   

Figure 7-12

 Looking at these results, you should see a pattern. For each set of distinct SalesOrderID values, there is a 
row with a NULL in the CarrierTrackingNumber column and a row with a legitimate value in this 
column. The NULL indicates that this row is a subtotal for the group. That ’ s great, but what if the 
CarrierTrackingNumber actually contains a NULL? This can be confusing and difficult to keep track of. 
Imagine the added confusion if you were grouping on more than two columns, or using the  CUBE  
operator rather than  ROLLUP . Imagine taking the results of this query to your software developer and 
asking him to create a custom report with subtotals and totals and then try to explain this grouping 
criterion. This is where the  GROUPING()  function comes in. 

c07.indd   239c07.indd   239 10/31/08   6:23:55 PM10/31/08   6:23:55 PM



Chapter 7: Aggregation and Grouping

240

 The  GROUPING()  function returns a bit value ( 1  or  0 ) to indicate that a row is a rollup. This makes it easy 
to separate the aggregation of null values. Any application or tool that consumes grouped data can easily 
distinguish the rolled - up subtotal rows from simple grouped rows. Here ’ s a better example of a query 
using the  GROUPING()  function: 

SELECT Color, Size

  , AVG(ListPrice) AS AvgPrice

  , GROUPING(Size) AS IsRollup

FROM Production.Product

GROUP BY ROLLUP(Color, Size)  

 In the results shown in Figure  7 - 13 , you can see that each individual rollup row is flagged with a 1. 
The NULL value for the Size column on line 3 is literal. This row shows the average price for all Black 
products that have no size specified. Line 18, however, is a rollup for all sizes that have Black for the 
color. So, what do the NULL values for both Color and Size represent on line 2? The rollup flag is 1, 
so this is a total  –  in fact, this row is the grand total for all colors and all sizes.   

Figure 7-13

 Because this is a  ROLLUP  query, only the Size values get rolled up into their respective Color combination 
counterparts. As such, this query doesn ’ t show grouped Size values for every combination of Color. If 
you substitute  CUBE  for the  ROLLUP  function, you will see additional Grouping flags for the Size and you 
will see all of the unique combinations for each. 

 Note that if the results of these grouped and aggregated queries will be fed to a custom reporting 
solution or a similar application, application developers will appreciate the output from the  GROUPING()  
function. This can make life much easier for a custom software developer or report designer.  

c07.indd   240c07.indd   240 10/31/08   6:23:56 PM10/31/08   6:23:56 PM



Chapter 7: Aggregation and Grouping

241

  The  COMPUTE  and  COMPUTE BY  Clauses 
 Regardless of the data you might work with, SQL Server was designed, and is optimized, to return rows 
and columns  —  two dimensions. Likewise, software designed to consume SQL data expects to receive 
two - dimensional data. All of the components, application programming interfaces (APIs), and 
connection utilities are engineered to work with two - dimensional result sets. For example, a 
programmer, using the .NET Framework, may populate a  DataTable  object from a T - SQL query, which 
builds a two - dimensional object in memory to be consumed by additional programming code. Standard 
user interface components, such as a grid or chart, are designed to consume data in this form. 

 Why am I making such a big deal out of this two - dimensional result set business? The  COMPUTE  clause is 
a very simple means for viewing data with totals and subtotals, but it breaks all the rules when it comes 
to standard results. It ’ s also important to note that this is a proprietary SQL Server feature and isn ’ t 
recognized by the ANSI SQL specification. It ’ s an effective technique for viewing summary data, but its 
usefulness may be somewhat limited in many real software solutions, and its usefulness is really limited 
to SQL Server Management Studio. If that isn ’ t a good enough reason to convince you not to use this 
feature in a production application, here ’ s an even better argument: SQL Server 2008 will most likely be 
the last version of SQL Server to support it. For years, the SQL Server team at Microsoft has been telling 
us that there may be limited future support, and they have finally decided to deprecate this feature 
altogether. Whether you plan to use it in the future or not, it ’ s important to realize its limitations. The 
bottom line is that you should be performing subtotal breaks in your reporting applications, rather than 
ad   hoc T - SQL queries. If you need to output the results of an ad   hoc query with subtotals and totals for 
your users to read in a quick - and - dirty report, you should use the  ROLLUP  or  CUBE  modifiers. You can 
paste the results into Excel and use colors, borders, and shading to indicate the rollups and subtotals to 
make the data easier to understand. 

 Because this feature is still supported in the current product version and you may encounter it in existing 
queries, I ’ ve provided a brief example to illustrate the application of the  COMPUTE  clause: 

 Suppose that the sales manager calls you on the phone and asks you to tell her what the total sales were 
for last month. She doesn ’ t need a formal report, and you ’ re not going to develop a custom application 
for users to do this themselves. She just wants a list of sales orders with the total. Using this technique 
may be the best choice. 

 Here ’ s a simple example of the  COMPUTE  clause: 

SELECT ProductID, SalesOrderID, OrderQty

FROM Sales.SalesOrderDetail

ORDER BY ProductID, SalesOrderID

COMPUTE SUM(OrderQty)  

 The query editor splits the result into two grids because the result doesn ’ t fit into a standard two -
 dimensional grid, as shown in Figure  7 - 14 . 

 I had asked for SQL Server to compute the sum of the OrderQty for the entire result set. This created a 
grand total for the entire range of data. Because of the formatting restrictions of viewing results in grid 
view, I ’ d like to show you the same result in text view.   

c07.indd   241c07.indd   241 10/31/08   6:23:56 PM10/31/08   6:23:56 PM



Chapter 7: Aggregation and Grouping

242

 This may be useful if you are interested in the grand total following the entire range of values. If you 
want to see grouped sections of rows with subtotals, it ’ s a simple matter to add the column name or list 
of columns to the end of the  COMPUTE  clause. Modify the previous query to group by the ProductID: 

SELECT ProductID, SalesOrderID, OrderQty

FROM Sales.SalesOrderDetail

WHERE SalesOrderID  >  75100

ORDER BY ProductID, SalesOrderID

COMPUTE SUM(OrderQty) BY ProductID  

 The result set shows the same list of SalesOrderDetail records with a subtotal break after each ProductID. 
(I ’ ve shortened the result and returned it in text format to save space.)   

ProductID   SalesOrderID OrderQty

----------- ------------ --------

707         75105        1

707         75121        1

sum

-----------

2

ProductID   SalesOrderID OrderQty

----------- ------------ --------

708         75103        1

708         75107        1

708         75111        1

sum

-----------

3

...

                  

Figure 7-14

c07.indd   242c07.indd   242 10/31/08   6:23:56 PM10/31/08   6:23:56 PM



Chapter 7: Aggregation and Grouping

243

ProductID   SalesOrderID OrderQty

----------- ------------ --------

931         75114        1

931         75115        1

sum

-----------

2

                  

(83 row(s) affected)  

 The  COMPUTE  clause is an easy and convenient technique for producing a detailed list of column values 
with total and grouped subtotal breaks. It doesn ’ t do grouping and aggregation on every row like the 
 GROUP BY  clause. Just keep in mind that the output isn ’ t compatible with most standard data consumer 
software and programming components. If you just need to view or print a quick, ad   hoc report, this 
may be the easiest way to get there. Otherwise, use the ANSI standard  GROUP BY  clause with the  ROLLUP  
or  CUBE  modifiers. Also, remember that the COMPUTE clause will no longer be supported in future 
versions of SQL Server. 

 From a database design standpoint, it is imperative that large tables are indexed on columns that will be 
used for grouping and aggregation. Few other functions and SQL statements will stress the database 
engine to the same degree. Consider using a clustered index on a column that is usually used in queries 
to join to another table or specify the usual sort order. You can find more information about indexing 
strategies in  Professional Microsoft SQL Server 2008 Programming , also from Wrox. 

 As previously mentioned, cube operations can be especially intensive. As you have run some of these 
queries, you ’ ve probably noticed that it takes a little while to perform calculations and return the 
aggregated results. It ’ s best to use the  ROLLUP  and  CUBE  modifiers with filtered data. If you do need to 
perform intensive grouping operations on a large volume of data, try to do this at a time when you 
won ’ t be competing with other large operations. 

 Although it usually makes sense to let SQL Server do a majority of the work, sometimes returning a 
larger volume of data that can be reused in the client application, rather than running numerous query 
operations, is best. This is especially true with dynamic reporting solutions. Make a point to understand 
your users ’  needs and try to strike a balance between the flexibility of an application or reporting 
solution and the efficiency of the whole system. As a rule, don ’ t return any more data than is necessary. 
Finally, make a point to order records explicitly using the  ORDER BY  clause. This will guarantee the sort 
order of your queries. Even if records in the table already exist in the correct order, using the  ORDER BY  
clause will not cause any processing overhead.   

  Summary 
 This chapter introduced nine aggregate functions that can be used in a simple  SELECT  statement to 
return summary values for the entire range or with the  GROUP BY  clause to roll up groups of rows with 
similar values. The aggregate functions include simple mathematical operations, such as Count and 
Sum, and statistical functions such as variance and standard deviation. 

 The  GROUP BY  clause can be used to reduce the results of a query to distinct combinations of grouped 
values. When used with aggregate functions, this produces value summaries within the grouping. 

c07.indd   243c07.indd   243 10/31/08   6:23:58 PM10/31/08   6:23:58 PM



Chapter 7: Aggregation and Grouping

244

 The  ROLLUP  and  CUBE  statements extend grouping functionality by adding summary rows. Adding  WITH 
ROLLUP  to a grouped query will produce summary rows for the first column in the  GROUP BY  list. 
Adding  WITH CUBE  will add summary rows for every possible combination of grouped column values. 
The  GROUPING()  function can be used along with these operators to flag summary rows and to avoid 
confusion. 

 Use the  COMPUTE  statement sparingly and only for quick reports in the Query Editor. Although it ’ s 
simple compared to using some of the other techniques discussed in this chapter, it is not ANSI 
SQL – compliant and doesn ’ t work with most software and programming tools. It is, however, a 
convenient method for viewing summary information quickly (but will not be supported in future 
versions of SQL Server).  

  Exercises 
  Exercise 1 

  For SQL Server 2008, using the AdventureWorks2008 database:  

 Write a query to return the JobTitle and lowest LoginID value for each group of employees. Include only 
employees with an OrganizationLevel of 0, 1, or 2. 

  For SQL Server 2005, using the AdventureWorks database:  

 Write a query to return the title, gender, and lowest LoginID value for each group of employees. Include 
only employees with a title of Buyer, Recruiter, or Stocker.  

  Exercise 2 
 Return a list of ProductSubCategoryID values from the Product table. Include only subcategories that 
occur more than 20 times. In addition to the ID value, also return the first product name in alphabetical 
order and the highest price for products in this subcategory.  

  Exercise 3 
  For SQL Server 2008, using the AdventureWorks2008 database:  

 Produce a list of organization levels from the Employee table. For each level, include the average 
vacation hours for all employees of each gender. Also produce an additional subtotaling row for each 
level that includes the average vacation hours for all employees of that level. This should be done using 
only one  SELECT  expression. 

  For SQL Server 2005, using the 2005 version of the AdventureWorks database:  

 Produce a list of employee titles and genders from the Employee table. For each title, include the average 
vacation hours for all employees of each gender. Also produce an additional subtotaling row for each 
title that includes the average vacation hours for all employees of that title. This should be done using 
only one  SELECT  expression.                          

c07.indd   244c07.indd   244 10/31/08   6:23:58 PM10/31/08   6:23:58 PM



                                                        8    
Multi - Table Queries          

 At the beginning of this book, we briefly discussed some of the concepts of database design. You ’ ll 
recall that information is often broken down into pieces and stored in several tables to improve 
accuracy and reduce redundancy. This leaves you with one of the greatest challenges in relational 
database work  —  putting the information back together. 

 In this chapter, you learn about 

  Combining columns from multiple tables using subqueries and joins  

  Using legacy and ANSI standard join syntax applied in the  FROM  and  WHERE  clauses  

  The difference between inner, outer, full, and cross joins  

  Applying the UNION operator to combine parallel result sets    

 A few years ago I rented a diesel front loader to level some property and put in a gravel driveway. 
I had never operated one before, but I figured that it couldn ’ t be too difficult. It was the kind with 
four wheels and big rubber tires with deep tread. It had a big lever on each side for each hand that 
controlled power to the wheels on the left and right sides of the vehicle. The hydraulics were 
controlled using foot pedals that swiveled in each direction. It really felt like a big video arcade 
game at first (you know, the big ones that cost a whole dollar per game). Needless to say, it took 
coordination that I had yet to develop when I started. It handled a little differently than my Ford 
Mustang. The first thing I did was ease the throttle forward and try to go up a slight incline. The 
clutches on the traction controls were very sensitive. I pushed the hand levers too quickly, and it 
lunged forward. I found myself heading nose - up, popping a wheelie on the rear wheels. The 
thought of rolling over backward in a five - ton, diesel - powered steel box was not very appealing. 

❑

❑

❑

❑

c08.indd   245c08.indd   245 10/31/08   6:24:35 PM10/31/08   6:24:35 PM



Chapter 8:                                                             Multi - Table Queries        

246

My wife was watching (and giggling) from a safe distance and suggested that perhaps she could do a 
better job. Not about to let my wife show me how to operate a big piece of machinery, I eventually got 
used to the controls and learned to work with it. By the end of the day, I was tearing up the woods like a 
five - year - old with a Tonka truck. 

 The key was to learn how this piece of machinery was engineered to work. Like a racehorse, I had to find 
that middle ground between what  it  wanted to do and what  I  wanted it to do. After I found that space, 
we got along just fine. Although it ’ s hard to get SQL Server to pop a wheelie, like any other industrial -
 strength tool, you have to work  with  it. One of the key factors to achieving this goal is to understand how 
the tool is designed to work. There are nearly always different ways to approach a problem and different 
techniques that will ultimately achieve the same end result, but the shortest path will usually be the most 
efficient. 

 To fully explain some concepts in this chapter, I ’ ll need to use some simple examples of some things we 
have yet to cover completely but will in later chapters. This is kind of a chicken and egg thing. For 
example, we discuss subqueries at length in Chapter  9 , but I ’ ll show you the basics of how to join a table 
to a subquery a little later in this chapter. 

 When a relational database is designed, tables are typically created with defined relationships between 
them. When the data is queried, join operations are often employed to utilize these relationships and 
 “ reassemble ”  the original information. Although it usually makes sense to join tables using predefined 
relationships, there are times when you will not use related columns to join tables. If your database has 
been designed correctly, this should be the rare exception to the rule. 

 Here ’ s a simple example. I have used the Database Diagram feature in SQL Server Management Studio 
to create an entity relation diagram for part of the AdventureWorks database (see Figure  8 - 1 ).   

 The lines interconnecting the tables represent  relationships  (also called  referential constraints ). These 
lines connect to each table in the diagram, and although they may represent associations between 
specific fields, relationship lines don ’ t necessarily point to the fields because some relationships may be 
based on multiple fields. You can see that relationships have been defined between these tables that are 
based on primary and foreign key columns. As you know, primary keys are used to uniquely identify 
rows in a table, and foreign keys are used to relate one table ’ s rows to another. For example, the 
Customer table ’ s designated primary key is the CustomerID column. Every customer record has a 
unique value assigned in this column. The SalesOrderHeader table also contains a CustomerID column, 
but values in this column are not necessarily unique because a single customer can have multiple orders. 
However, every SalesOrderHeader record with a CustomerID value must have a corresponding 
CustomerID value in the Customer table. This rule is enforced in the foreign key constraint rule defined 
in the SalesOrderHeader table.  

c08.indd   246c08.indd   246 10/31/08   6:24:36 PM10/31/08   6:24:36 PM



Chapter 8:                                                             Multi - Table Queries        

247

Figure 8-1

c08.indd   247c08.indd   247 10/31/08   6:24:36 PM10/31/08   6:24:36 PM



Chapter 8:                                                             Multi - Table Queries        

248

  Understanding Subqueries and Joins 
 There ’ s a right way and a wrong way to do everything, but unfortunately, there isn ’ t always just one 
right or wrong method. The subject of correct join syntax is debatable, and there are recommended 
methods for different products. In the material that follows, I will show you a few different techniques, 
all of which are currently supported in SQL Server 2005 and 2008. Read on as I describe the methods 
recommended and guaranteed to provide future support and optimal performance. 

 As the SQL language has evolved and as it has been implemented in different products, a few different 
techniques have been devised for joining tables to match up related records. Although there are a few 
variations of these techniques, there are essentially three different options to join records from two 
different tables. The first two are different forms of join operations within a single  SELECT  statement. 
You can either join tables in the  WHERE  clause or in the  FROM  clause. The third technique involves more 
than one  SELECT  statement, where one query encompasses a second  SELECT  statement. This is often 
called a  subquery   —  a query within a query. The tables in a subquery can be independent of each other or 
can be related through some kind of matching expression. One technique, used to match rows of the 
subquery to a row or rows of the main query, is often referred to as a  correlated subquery . Subqueries are 
covered in Chapter  9 . For now, I will concentrate on the bread and butter of SQL Server queries: the join 
operation. 

  Joining Tables in the  WHERE  Clause 
 If you work with long - time database professionals who cut their teeth on other products such as Oracle, 
Informix, or DB2, you are likely to encounter an older style of join syntax that is discouraged in SQL 
Server. In fact (since 1992 when the most accepted ANSI SQL standard was penned), the traditional form 
has been mildly discouraged by most of the database product vendors, but old - timers get down  right 
religious about continuing to use the old-school method. Because it ’ s an older technique, it is often 
referred to as a  legacy join . Although it is still partially supported by SQL Server, this is not the 
recommended approach for SQL Server 2008. You may encounter this syntax in existing code. In this 
example, both the Customer and SalesOrderHeader are referenced in the  FROM  clause, and the join 
operation is performed in the  WHERE  clause: 

SELECT Customer.AccountNumber, SalesOrderHeader.OrderDate

FROM Sales.Customer, Sales.SalesOrderHeader

WHERE Customer.CustomerID = SalesOrderHeader.CustomerID  

c08.indd   248c08.indd   248 10/31/08   6:24:36 PM10/31/08   6:24:36 PM



Chapter 8:                                                             Multi - Table Queries        

249

 The query returns 31,465 rows, comprised of a combination of records from the Customer and 
SalesOrderDetail tables. Figure  8 - 2  shows the first few of these rows. 

 This query implements an inner join, discussed shortly. The equal sign between each of the column 
references means that this query returns only rows where there are matching records in each of the 
tables. This is known as an  equijoin , meaning that the values in two tables compared in the join 
operation must be equal to one another. Microsoft is making good on its threat to deprecate this feature 
of T - SQL. As of SQL Server 2008, the outer join form is no longer supported. I ’ ll discuss this a little later 
in this chapter.    

Figure 8-2

  Joining Tables in the  FROM  Clause 
 The same operation can also be performed using the ANSI standard method. In the  FROM  clause, the two 
tables are referenced with a  JOIN  statement followed by the  ON  keyword and the same column references 
used in the preceding example: 

SELECT Customer.AccountNumber, SalesOrderHeader.OrderDate

FROM Sales.Customer INNER JOIN Sales.SalesOrderHeader

ON Customer.CustomerID = SalesOrderHeader.CustomerID  

 The result is the same. If you view the execution plan for both of these queries, you ’ ll note that they both 
cause SQL Server to perform exactly the same operations. There is no difference in time, cost, or 
efficiency. You can view the execution plan for a query by enabling this option in the Query menu. Run 
the query, and the Execution Plan tab appears below the results window, as shown in Figure  8 - 3 . Note 
that we ’ ve removed some of the irrelevant elements from the diagram to keep things simple. 

c08.indd   249c08.indd   249 10/31/08   6:24:36 PM10/31/08   6:24:36 PM



Chapter 8:                                                             Multi - Table Queries        

250

 Reading from right to left, each icon represents an operation. The records are retrieved from both tables 
and held in memory. Because each of the columns referenced in the  JOIN  statement are indexed, the 
query - processing engine chooses to scan and retrieve records using these indexes. Rows in the Customer 
table are retrieved using a separate, non - clustered index. Records in the SalesOrderDetail table are 
physically ordered by the CustomerID column based on a clustered index. The width of the arrows 
indicates the relative volume of data returned from the respective operation. The rows are combined 
using a hash join method to produce the final result. If you execute either of these two queries, you will 
see that the execution plans are the same. Float the mouse pointer over the left - most icon to see statistics 
for the finished product. The Subtree cost shows the total time in seconds for this and all operations that 
lead to it.   

SELECT
Cost: 0%

Hash Match
(Inner Join)
Cost: 54%

Index Scan
Cost: 10%

54% s/b 42%

10% s/b 5%

36% s/b 5% Clustered Index Scan
Cost: 36%

Figure 8-3

 So here ’ s the bottom line on this topic: In most cases, legacy joins, performed in the  WHERE  clause, and 
ANSI standard joins, performed in the  FROM  clause, will result in the same execution plan and achieve 
the same relative performance. However, this doesn ’ t guarantee that you will see the same effect when 
joins are combined in large, complex queries. Microsoft recommends that you use ANSI standard joins 
going forward. As of SQL Server 2008, some forms of non - ANSI standard joins are no longer supported. 
To keep things simple, just use the recommended syntax.  

  Types of Joins 
 Two major types of joins exist: inner joins, which return only corresponding records in two tables, and 
outer joins, which return all the rows in one table and then corresponding rows in a second table. 

 To demonstrate the behavior of different join types, keep the following facts in mind: The 
AdventureWorks2008 database contains 19,820 customer records. All but 701 customers have 
corresponding sales orders. These are corresponding rows in the SalesOrderHeader table, where the 
CustomerID column value is equal to an existing value in the Customer table ’ s CustomerID. There are 
31,465 rows in the SalesOrderHeader table. 

 The record counts in the SQL Server 2005 AdventureWorks database are different from these, but you 
should see the same general patterns and behavior when using the same queries.  

  Inner Joins 
 This is the most common type of join operation. The purpose of the inner join is to match up rows in one 
table with corresponding rows in another table where the associated columns contain the same value. If one 
of these tables ’  columns has a different value, or no value at all, these rows will not be returned by the query. 

c08.indd   250c08.indd   250 10/31/08   6:24:37 PM10/31/08   6:24:37 PM



Chapter 8:                                                             Multi - Table Queries        

251

 Before showing you an example, I ’ ll make this request using common language: I ’ d like to see all of the 
customers who have orders  —  and all of the orders that have corresponding customers. For each 
customer, show me the customer ’ s account number, and for each order, the order date. 

 Again, the SQL statement that makes this same request is as follows: 

SELECT Customer.AccountNumber, SalesOrderHeader.OrderDate

FROM Sales.Customer INNER JOIN Sales.SalesOrderHeader

ON Customer.CustomerID = SalesOrderHeader.CustomerID  

 You just saw the results from this query in Figure  8 - 2 , so I won ’ t show them to you again. Just remember 
that it returns 31,465 rows that consist of customers with orders as well as orders that have customers. 

 The  INNER JOIN  statement can also be abbreviated by simply using  JOIN . Although this is not as 
explicit, it works just as effectively as the earlier statement: 

SELECT Customer.AccountNumber, SalesOrderHeader.OrderDate

FROM Sales.Customer JOIN Sales.SalesOrderHeader

ON Customer.CustomerID = SalesOrderHeader.CustomerID   

  Outer Joins 
 The job of an outer join is to return all of the rows from one table and then to match those rows in a 
corresponding table where the joining column has the same value. The difference between this and an 
inner join is that the unmatched rows in the first table are still returned by the query. 

 In common language, an outer join request might look like this: I ’ d like to see all of the customers, and 
for the customers who have orders, I ’ d also like to see related order information. Show me the account 
number for every customer, and if the customer has orders, show me a row for each combination of 
customers and orders. 

 Here ’ s the SQL statement for this request: 

SELECT Customer.AccountNumber, SalesOrderHeader.OrderDate

FROM Sales.Customer LEFT OUTER JOIN Sales.SalesOrderHeader

ON Customer.CustomerID = SalesOrderHeader.CustomerID  

 Outer joins always favor one table — the table from which you choose all rows. In this case, the table 
on the left side of the  JOIN  statement From Customer  LEFT OUTER JOIN  SalesOrderHeader is the 
Customer table. This means that all customer rows will be returned from the query and then from 
the corresponding SalesOrderHeader rows. If you think about it, this makes sense because the 
SalesOrderDetail table has a foreign key constraint that requires a matching CustomerID value. Given 
the relationship between these tables, it wouldn ’ t make sense to join them the other way around. 

c08.indd   251c08.indd   251 10/31/08   6:24:37 PM10/31/08   6:24:37 PM



Chapter 8:                                                             Multi - Table Queries        

252

 When you execute this query, the results will initially look much the same as before. However, notice the 
row count: 32,166 rows  —  635 more than before. What ’ s going on here? Go back and look at the numbers 
I gave you just before I introduced inner joins. The Customer table contains 31,465 rows, including 701 
without any orders. The outer join returned the customers who don ’ t have orders. When an outer join 
doesn ’ t have matching rows in the outer table (in a left outer join, the table on the right is the outer 
table), NULL values are returned. To find customers without orders, look for a NULL in the OrderDate 
column. But can ’ t you use a query to do this? Rather than making you scroll through over 31,000 rows 
looking for those missing an order date, just alter the query, adding a  WHERE  clause: 

SELECT Customer.AccountNumber, SalesOrderHeader.OrderDate

FROM Sales.Customer LEFT OUTER JOIN Sales.SalesOrderHeader

ON Customer.CustomerID = SalesOrderHeader.CustomerID

WHERE SalesOrderHeader.OrderDate IS NULL  

 This query returns 701 rows, customers who have no orders, as shown in Figure  8 - 4 .   

Figure 8-4

 So, what is the purpose of a right outer join? Using a right in place of left in this expression would have 
the same effect as reversing the order of the tables and columns. In most cases, you could choose to use 
one or the other. However, if you have an outer join on both sides of a table, you may be constrained to 
use either a left or a right outer join. Fortunately, visual query design tools can be used to create complex 
queries. This is easy to do using the Transact SQL Query Builder.   

c08.indd   252c08.indd   252 10/31/08   6:24:38 PM10/31/08   6:24:38 PM



Chapter 8:                                                             Multi - Table Queries        

253

           Try It Out   

 Applying the following steps, you will use the graphic query editor feature in SQL Server 
Management Studio to build a simple inner join query. Before you begin, make sure you 
have Management Studio open with a connection to your database server instance.   

  1.   Open the Query Builder in SQL Server Management Studio.  

  2.   In the Object Browser, drill down into Databases. Right - click the AdventureWorks2008 (or 
AdventureWorks for SQL Server 2005) database and choose New Query.  

  3.   In the New Query window, right - click over the white space and choose Design Query in 
Editor. This opens the graphical query designer in a separate window with the Add Tables 
dialog on top.  

  4.   From the Add Table dialog window, select the  “ Customer (Sales) ”  table and click Add.  

  5.   Select the  “ SalesOrderHeader (Sales) ”  table (see Figure  8 - 5 ) and click Add. Click “Close” to close 
the Add Table dialog window.   

Figure 8-5

c08.indd   253c08.indd   253 10/31/08   6:24:38 PM10/31/08   6:24:38 PM



Chapter 8:                                                             Multi - Table Queries        

254

  The designer always assumes you will want an inner join. The diamond on the join line 
between these tables represents the join, and the logic is quite simple.  

  6.   Right - click the diamond icon to view a pop - up menu of join operations. From the menu, 
choose Select All Rows from Customer, as shown in Figure  8 - 6 .   

Figure 8-6

  The diagram adds a rectangular  “ cap ”  to the left side of the join to indicate that all rows will 
be returned from the table on the corresponding side of the join.  

  7.   Now scroll down or resize the Customer table window and check the box next to the 
AccountNumber column. Also, for the SalesOrderHeader table, check the OrderDate column 
(see Figure  8 - 7 ).      

c08.indd   254c08.indd   254 10/31/08   6:24:39 PM10/31/08   6:24:39 PM



Chapter 8:                                                             Multi - Table Queries        

255

 Take a look at the SQL statement in the third pane of the designer. It should look like this: 

SELECT  Sales.Customer.AccountNumber, Sales.SalesOrderHeader.OrderDate

FROM    Sales.Customer LEFT OUTER JOIN

         Sales.SalesOrderHeader ON Sales.Customer.CustomerID =

         Sales.SalesOrderHeader.CustomerID  

 This is a great tool for learning join syntax. When in doubt, build your queries this way and then 
examine the SQL. Rather than using the designer as a crutch so you don ’ t have to learn to do it the hard 
way, use it as a learning tool and then challenge yourself by rewriting the same queries in the Query 
Editor. As we mentioned earlier, there are those purists who refuse to use these design tools to create 
queries. In our opinion, it all comes down to time, money, and effort. If you can get the job done more 
effectively using a utility of some kind without sacrificing functionality, then by all means, do it. 

There is also shorthand syntax for outer joins. You can abbreviate the join statement by using  LEFT JOIN  
or  RIGHT JOIN  rather than  LEFT OUTER JOIN  and  RIGHT OUTER JOIN , respectively.

 

  Legacy Outer Joins 
 A little earlier in this chapter, I told you that support for legacy joins is going away. In the previous 
edition of this book, written for SQL Server 2000 and 2005, we showed you how to use a technique  — 
 common in other database products  —  that we refer to as  legacy join syntax . We also recommended that 
this technique not be used because Microsoft had threatened to stop supporting it. Well, guess what? 

Figure 8-7

c08.indd   255c08.indd   255 10/31/08   6:24:39 PM10/31/08   6:24:39 PM



Chapter 8:                                                             Multi - Table Queries        

256

They stopped supporting legacy outer joins in SQL Server 2008. You can still get away with 
implementing an inner join in the  WHERE  clause, but you can no longer perform outer joins in the  WHERE  
clause unless you set the compatibility of your database to emulate an older version of SQL Server. 

 In case you encounter this in existing, older queries, I ’ ll show you an example so that you can recognize 
queries that must be rewritten to work. A legacy outer join is performed in the  WHERE  clause by placing 
an asterisk next to the equal sign between the column references. Either precede the equal sign ( *= ) or 
proceed the equal sign ( =* ) to denote a left or right outer join, respectively. The asterisk points to the 
table that will return all rows regardless of matching rows in the other table. The most significant issue 
with this is that ambiguous results can be returned by a legacy outer join when an expression is placed 
on the side of the join where all records are to be returned (the  “ * ”  side). Under certain conditions, the 
query parser just can ’ t figure out how to build the right execution plan and doesn ’ t apply the correct 
execution logic. 

 Here is the same query as the previous example using the legacy join syntax in the  WHERE  clause: 

SELECT Customer.AccountNumber, SalesOrderHeader.OrderDate

FROM Sales.Customer, Sales.SalesOrderHeader

WHERE Customer.CustomerID *= SalesOrderHeader.CustomerID  

 Unless your database is in 8.0 or previous compatibility mode, this query will not run and will return 
an error. Because legacy inner joins are supported but outer joins are not, this leaves the door open for 
poor and inefficient query design. If any of these working old - school inner joins need to be converted to 
outer joins, I guess you ’ re stuck. Now it ’ s your job to convince the 25 year DB2 veteran, turned SQL 
Server DBA, to stop using them.   

  Multicolumn Joins 
 Some databases are designed with multicolumn keys and may require that you define multicolumn joins 
in your queries. There is no stated limit to the number of columns that can be used in a join. Typically, 
you would only need to use more than one joining column to support specific business rules (because 
joins are usually performed on primary and foreign key columns). The logic of a join expression is very 
similar to that of a  WHERE  clause. Multiple comparisons can be combined using the  AND  and  OR  operators. 

 Let ’ s use this technique to find product sales records (in the SalesOrderDetail table) for products sold at 
dealer cost. This involves matching the ProductID between the two tables and matching the ListPrice 
from the Product table to the UnitPrice from the SalesOrderDetail table: 

SELECT     Product.ProductID

         , Product.Name

         , Product.StandardCost

         , Product.ListPrice

         , SalesOrderDetail.UnitPrice

FROM       Production.Product 

           INNER JOIN Sales.SalesOrderDetail 

           ON  Product.ProductID = SalesOrderDetail.ProductID 

           AND Product.ListPrice = SalesOrderDetail.UnitPrice  

c08.indd   256c08.indd   256 10/31/08   6:24:41 PM10/31/08   6:24:41 PM



Chapter 8:                                                             Multi - Table Queries        

257

 57,949 transactions were recorded where the product was sold for the list price. The first few rows of this 
result are shown in Figure  8 - 8 . Of course, if you were to change any of the StandardCost or UnitPrice 
values (as we do in Chapter  10 ), your results will be a little different.    

Figure 8-8

  Non - Equijoins 
 So far, the join operations you ’ ve seen (in their various forms) have all used comparisons of equality. In 
other words, the values compared between two tables must be equal for the query to return matching 
records. Although far less common, joins can also be performed using any other valid method of 
comparison. This can include any of those listed in the following table.

    Operator    Comparison  

     <  >     Not equal to  

     <     Less than  

     >     Greater than  

     < =    Less than or equal to  

     > =    Greater than or equal to  

 I can modify the previous example to find sales orders for products that were sold at a discounted price: 

SELECT     Product.ProductID

         , Product.Name

         , Product.StandardCost

         , Product.ListPrice

         , SalesOrderDetail.UnitPrice

FROM       Production.Product 

           INNER JOIN Sales.SalesOrderDetail 

           ON  Product.ProductID = SalesOrderDetail.ProductID 

           AND Product.ListPrice  >  SalesOrderDetail.UnitPrice  

c08.indd   257c08.indd   257 10/31/08   6:24:41 PM10/31/08   6:24:41 PM



Chapter 8:                                                             Multi - Table Queries        

258

 This returns 63,368 rows of sales orders that weren ’ t sold at full list price, some of which are shown in 
Figure  8 - 9 .   

Figure 8-9

 Of course, I can easily turn this query around to show inflated sales by changing the comparison 
expression to read  Product.ListPrice  <  SalesOrderDetail.UnitPrice , then find that we haven ’ t 
jacked up the price above list for even one transaction. Wow! We ’ re running an honest business after all.  

  Special - Purpose Join Operations 
 I think it ’ s safe to say that you have seen 99 percent of the join operations you will use day - to - day. Two 
more types of joins are quite rare: full joins and cross joins. Unless you need to do some very unusual 
things, you will likely not use them. I can think of just three or four times I ’ ve used a full join or cross 
join in the past few years to solve unique problems. 

  Full Joins 
 A  full join  (or  full outer join ) is an outer join that doesn ’ t favor one of the two tables. The result set will 
return unmatched values on both sides of the join. 

 Consider the following hypothetical example. A Parent table contains parent names and a Child table 
contains child names and parent names. One Parent record doesn ’ t have a matching Child record, and 
one Child record doesn ’ t have a matching Parent. 

    Parent  

    ParentName  

    Fred  

    Wilma  

    Barney  

    Betty  

    Mr. Slate  

c08.indd   258c08.indd   258 10/31/08   6:24:41 PM10/31/08   6:24:41 PM



Chapter 8:                                                             Multi - Table Queries        

259

    Child  

    ChildName    ParentName  

    Pebbles    Fred  

    Pebbles    Wilma  

    Bam Bam    Barney  

    Bam Bam    Betty  

    Dino    NULL  

 If you were to join these two tables on the ParentName columns from both tables using a full outer join, 
as follows, all records would be returned, including the mismatched parent and the child.   

SELECT Child.ChildName, Parent.ParentName

FROM Child FULL OUTER JOIN Parent

  ON Child.ParentName = Parent.ParentName  

 The results would look like the following example. Note that Mr. Slate and Dino are both returned with 
NULL values in the joining columns. 

    ParentName    ChildName  

    Fred    Pebbles  

    Wilma    Pebbles  

    Barney    Bam Bam  

    Betty    Bam Bam  

    Mr. Slate    NULL  

    NULL    Dino  

 This hypothetical example demonstrates this point in its simplest form. The AdventureWorks database 
has a highly normalized design, and there aren ’ t many simple examples of related tables with 
unmatched records. The following real example requires some extra joins to present the necessary data. 
Wholesale customers (or stores) exist as records in both the Customer and Store tables. Store records 
have a corresponding SalesPersonID, which relates to an Employee. A left outer join between the Store 
and Customer tables is necessary to include mismatched SalesPersonID values (such as mismatched 
ParentName values in the previous example). 

 Here ’ s a quick example using the AdventureWorks database in SQL Server 2005. Note that because the 
SQL Server 2008 sample data was  “ cleaned up, ”  this query no longer works with the newer sample 

c08.indd   259c08.indd   259 10/31/08   6:24:42 PM10/31/08   6:24:42 PM



Chapter 8:                                                             Multi - Table Queries        

260

database. Customer records exist that do not have an assigned sales person employee, and employee 
records exist that are not assigned to a customer as a sales person. This query will return customers and 
employees  —  and the combination of the two when they are related: 

SELECT Customer.CustomerID

     , EmployeeID

FROM Sales.Customer LEFT OUTER JOIN Sales.Store 

       ON Customer.CustomerID = Store.CustomerID

       FULL OUTER JOIN 

       HumanResources.Employee ON Store.SalesPersonID = Employee.EmployeeID

ORDER BY CustomerID, EmployeeID  

 In Figure  8 - 10 , you will notice NULL values in the CustomerID column returned from the Customer 
table. If you scroll - down, you will also see NULL values in the EmployeeID column returned from the 
Employee table.   

Figure 8-10

 This query returned 19,462 results. This is essentially every possible combination of distinct values for 
the two columns participating in the join, including NULL values. 

 The last time I used this type of join was for a medical patient scheduling application. Business 
requirements called for the user interface to display the available appointment blocks for all doctors in 
the clinic. Doctors with appointments scheduled were to be displayed in a different color. For example, 
each of three doctors in the clinic could see patients scheduled for appointments that could begin every 
15 minutes. An appointment slot table contained scheduling blocks beginning at 9:00 A.M. and ending 
at 4:45 P.M. Each row in this table represented a 15 - minute block (9:00, 9:15, 9:30, and so on). In the 
scheduling application, my client wanted to see every possible appointment for each doctor, including 
those that had no appointments scheduled. A full join between the appointment slot table and the 
appointment table did the trick.  

c08.indd   260c08.indd   260 10/31/08   6:24:42 PM10/31/08   6:24:42 PM



Chapter 8:                                                             Multi - Table Queries        

261

  Cross Joins 
 This is the granddaddy of all joins. When using a cross join, you don ’ t designate columns for the join to 
match values. The query will simply return every possible combination of rows for two tables without 
regard for matching column values. This produces what is known as a  Cartesian product . Needless to say, 
this can produce a large volume of rows and could be an effective way to populate a test database table 
with sample data. Frankly, I have yet to find a practical use for this technique in a production database. 

 If you were to create a cross join between the Customer and SalesOrderHeader tables, this is what you 
should expect to see: The Customer table contains 19,185 records, and the SalesOrderHeader table 
contains 31,465 records. This means that for every Customer row, 31,465 rows will be added to the result 
set. If you do the math, the result will contain 603,656,025 possible combinations. Please do not run this 
query on a production server in the middle of the day. If you do, please don ’ t tell your system 
administrator what book you were reading when you learned to do this. Joking aside, running this 
query would take several minutes and would consume a fair amount of server resources. 

 A somewhat more conservative example would be to cross join customers with employees. This query 
returns about five and a half million records: 

SELECT CustomerID, LoginID

FROM Sales.Customer CROSS JOIN HumanResources.Employee

ORDER BY CustomerID, LoginID  

 You can also simply omit the  CROSS JOIN  statement and separate the table references with commas: 

SELECT CustomerID, LoginID

FROM Sales.Customer, HumanResources.Employee

ORDER BY CustomerID, LoginID  

 In my experience cross joins are more often created by accident than by intent. This is especially true 
when using the Query Builder. If two tables are added to the diagram that do not have a relationship 
defined, the Query Builder will generate a cross join query automatically.  

  Filtering Records in the Join Clause Using a Predicate 
 This is a lesser - known technique that can be used to filter rows before a join operation is executed. 
When a traditional multi - table query is executed, the join is processed first and then filtering takes place 
afterward; at least this is what you ’ re telling SQL Server to do. Fortunately, SQL Server is smart enough 
to perform filtering ahead of time when it makes sense to do this (as long as indexes and column 
statistics are up - to - date, which they should be under normal conditions). Regardless, this technique 
guarantees that records not matching the filtering criteria will not be considered in the join operation. 

 Here is the example for the AdventureWorks2008 database in SQL Server 2008: 

SELECT Customer.CustomerID

     , LoginID

FROM   Sales.Customer INNER JOIN Sales.Store

        ON Customer.StoreID = Store.BusinessEntityID

       INNER JOIN HumanResources.Employee

        ON Store.SalesPersonID = Employee.BusinessEntityID

       AND Customer.CustomerID  <  10

ORDER BY CustomerID, LoginID  

c08.indd   261c08.indd   261 10/31/08   6:24:42 PM10/31/08   6:24:42 PM



Chapter 8:                                                             Multi - Table Queries        

262

 And here is the same query for the AdventureWorks database in SQL Server 2005: 

SELECT Customer.CustomerID

     , EmployeeID

     , CustomerType

FROM   Sales.Customer INNER JOIN Sales.Store

        ON Customer.CustomerID = Store.CustomerID

       INNER JOIN HumanResources.Employee

        ON Store.SalesPersonID = Employee.EmployeeID

       AND Customer.CustomerID  <  10

ORDER BY CustomerID, EmployeeID  

 However unconventional, this method would have the same effect as if the filter criteria ( Customer
.CustomerID  <  10 ) were specified in the  WHERE  clause. For readability, I believe that using the  WHERE  
clause is the preferred method.  

  Joining on an Expression 
 Chapter  9  discusses the idea of using an  AS  statement as a derived table. For the purpose of the current 
discussion, it ’ s good to know that joins can be used not only for tables, but also for any  SELECT  
expression. An example follows so that you can see how this works. 

 The director of marketing wants to reduce the cost of selling small - ticket items but doesn ’ t want to 
discontinue low - priced items that are selling well. The director would like to see the cumulative sales 
for the ten least - expensive products. This will require two separate  SELECT  expressions. The first will 
return the product rows for the ten least - expensive products, and the second will return the aggregate 
sales filtered by this product selection. 

 I ’ m working from the inside out, so the second expression will actually become the first part of the final 
query. I ’ ll start with the first step and then add the second expression to the beginning of the query 
filtering criteria. 

 The first query simply returns the ten least - expensive products: 

SELECT TOP 10

        ProductID

      , Name

      , ListPrice 

FROM Production.Product

WHERE ListPrice  <  >  0

ORDER BY ListPrice ASC  

 The ProductID column is essential, but the other two columns shown in Figure  8 - 11  are included just for 
reference in the results.   

c08.indd   262c08.indd   262 10/31/08   6:24:43 PM10/31/08   6:24:43 PM



Chapter 8:                                                             Multi - Table Queries        

263

 This expression must be given an alias so that I can refer to it in another  SELECT  expression. In the 
following example, I refer to the results of the first query by the alias  CheapProducts . The second step 
is to create another query for the aggregated sales orders. This becomes the outer query that refers to the 
first inner query by its alias, as if it were a physical table.   

SELECT 

       SalesOrderDetail.ProductID

     , CheapProducts.Name

     , CheapProducts.ListPrice

     , SUM(LineTotal) AS SalesTotal

FROM Sales.SalesOrderDetail

     INNER JOIN

        (SELECT TOP 10

              ProductID

            , Name

            , ListPrice 

         FROM Production.Product

         WHERE ListPrice  <  >  0

         ORDER BY ListPrice ASC) AS CheapProducts

     ON SalesOrderDetail.ProductID = CheapProducts.ProductID

GROUP BY 

       SalesOrderDetail.ProductID

     , CheapProducts.Name

     , CheapProducts.ListPrice  

 The alias I created for the derived table has a descriptive name. The traditional approach is to use a 
single letter for table aliases. Personally, I find this to be a bit cryptic. You will likely refer to the alias 
several times, so it ’ s a good idea to keep the name short  —  but also make it meaningful. To include 
columns from the inner products query in the outer result set, reference them by using the alias, as if this 
were just another table. Finally, because I ’ m aggregating the LineTotal column for records sharing the 
same product, all of the columns except for the aggregate must be included in the  GROUP BY  column list. 
This works because each of these column values is unique to a specific product. The results are displayed 
in Figure  8 - 12 .   

Figure 8-11

c08.indd   263c08.indd   263 10/31/08   6:24:43 PM10/31/08   6:24:43 PM



Chapter 8:                                                             Multi - Table Queries        

264

 I ’ ll take some more time to cover derived tables and other subquery techniques in the next chapter. This 
gives you an idea about using joins in creative ways to address unique business rules. What I ’ ve learned 
(and continue to learn) about using SQL to address unique challenges is that there is almost always a 
method to solve the problem  —  and there are often several options. The ideal solution is usually not all 
that complicated. However, the ideal and most elegant solution is often not the one we use on the first 
attempt.  

  Multi - Table Joins 
 Let ’ s put it all together. I need a list of all stores and, for those store/customers that have purchased 
products, details of the order and the product information. In this database, a store is a type of a 
customer, which requires a join between the Store and Customer tables. Because I want all stores 
regardless of matching orders, this will require an outer join to the SalesOrderHeader table. All other 
tables are included through inner joins. Figure  8 - 13  provides an illustration.   

Figure 8-12

Figure 8-13

 This query might be particularly tricky if you were to write it without the help of the designer. Because 
the SalesOrderHeader table participates in two joins, an inner join with SalesOrderDetail and an outer 
join with the Customer table, this breaks up the SQL syntax. Note the mispairing of  JOIN  and related  ON  
statements in the SQL statement for this query. 

c08.indd   264c08.indd   264 10/31/08   6:24:43 PM10/31/08   6:24:43 PM



Chapter 8:                                                             Multi - Table Queries        

265

 This query runs against the AdventureWorks2008 database in SQL Server 2008: 

SELECT     Store.Name AS StoreName

         , Customer.AccountNumber

         , SalesOrderHeader.OrderDate

         , ProductCategory.Name AS Category

         , ProductSubCategory.Name AS SubCategory

         , Product.Name AS ProductName

FROM       Sales.Store INNER JOIN Sales.Customer 

               ON Store.BusinessEntityID = Customer.StoreID 

           LEFT OUTER JOIN Sales.SalesOrderDetail 

           INNER JOIN Sales.SalesOrderHeader 

             ON Sales.SalesOrderDetail.SalesOrderID = SalesOrderHeader

.SalesOrderID 

           INNER JOIN Production.Product 

               ON SalesOrderDetail.ProductID = Product.ProductID 

           INNER JOIN Production.ProductSubCategory 

               ON Product.ProductSubCategoryID = 

                  ProductSubCategory.ProductSubCategoryID 

           INNER JOIN Production.ProductCategory 

               ON ProductSubCategory.ProductCategoryID = 

                  ProductCategory.ProductCategoryID

               ON Customer.CustomerID = SalesOrderHeader.CustomerID

ORDER BY Store.Name  

 This is the same query designed to work with the AdventureWorks database in SQL Server 2005: 

SELECT     Store.Name AS StoreName

         , Customer.AccountNumber

         , SalesOrderHeader.OrderDate

         , ProductCategory.Name AS Category

         , ProductSubCategory.Name AS SubCategory

         , Product.Name AS ProductName

FROM       Sales.Store INNER JOIN Sales.Customer 

               ON Store.CustomerID = Customer.CustomerID 

           LEFT OUTER JOIN Sales.SalesOrderDetail 

           INNER JOIN Sales.SalesOrderHeader 

             ON Sales.SalesOrderDetail.SalesOrderID = SalesOrderHeader

.SalesOrderID 

           INNER JOIN Production.Product 

               ON SalesOrderDetail.ProductID = Product.ProductID 

           INNER JOIN Production.ProductSubCategory 

               ON Product.ProductSubCategoryID = 

                  ProductSubCategory.ProductSubCategoryID 

           INNER JOIN Production.ProductCategory 

               ON ProductSubCategory.ProductCategoryID = 

                  ProductCategory.ProductCategoryID

               ON Customer.CustomerID = SalesOrderHeader.CustomerID

ORDER BY Store.Name  

 When you need to write a complex query, it may be a good idea to at least start with the graphical query 
designer. Figure  8 - 14  shows the result set for this query from the results pane of the SQL Query Designer. 
Note the NULL values in the first row indicating that the store/customer has no related order records.     

c08.indd   265c08.indd   265 10/31/08   6:24:44 PM10/31/08   6:24:44 PM



Chapter 8:                                                             Multi - Table Queries        

266

  Union Queries 
 Joins expand the result set horizontally. That is, columns are added to the results from multiple tables, 
essentially widening the result. A  UNION  query expands the results vertically as records are piled on top 
of one another. A simple example follows. The Employee table and the Individual table both contain 
records of people. To shorten the list, I ’ m just going to select the top five rows from each table: 

SELECT TOP 5 FirstName FROM Person.Person

SELECT TOP 5 Name FROM Purchasing.Vendor  

 These two queries, even if executed at the same time, return two different result sets, as shown in 
Figure  8 - 15 .   

Figure 8-14

Figure 8-15

 Now, I ’ ll put them together. A union combines multiple results with the same number of columns. 
Columns must have compatible data types. To keep things simple, I suggest that columns have the same 
names and the same data types. Actually, the column names don ’ t have to match. If the names are 
different for a corresponding column, the name from the last set will be used in the results. Because these 
two queries contain the same column names and types, combining them is simple.   

c08.indd   266c08.indd   266 10/31/08   6:24:44 PM10/31/08   6:24:44 PM



Chapter 8:                                                             Multi - Table Queries        

267

  Try It Out    

 Enter and execute the following query: 

 In SQL Server 2008: 

SELECT TOP 5 FirstName FROM Person.Person 

UNION

SELECT TOP 5 Name FROM Purchasing.Vendor  

 In SQL Server 2005: 

SELECT TOP 5 FirstName FROM Person.Contact 

UNION

SELECT TOP 5 Name FROM Purchasing.Vendor  

 Note that each  SELECT  statement could be executed as an independent query. Although not absolutely 
necessary, all of the columns have the same name. Figure  8 - 16  shows the results.   

Figure 8-16

 A potential problem with this result set is that you have no way of knowing what table each of the 
rows came from. Depending on what you intend to do with this data, this may or may not be 
important. In case it is, you need to tag each row with a value indicating its source. This is easily 
accomplished by adding an alias in the individual  SELECT  statements. I ’ ve also cleaned this query up 
a bit by naming the columns uniformly. You ’ ll recall that the column name returned by a  UNION  query 
is determined by the last query in the union. As a matter of standard convention, I would recommend 
that all columns have the same names and data types just to avoid surprises. This is the modified 
query for SQL Server 2008: 

SELECT TOP 5 FirstName AS Name, ‘Contact’ AS Source 

FROM Person.Person 

UNION

SELECT TOP 5 Name, ‘Vendor’ AS Source 

FROM Purchasing.Vendor  

 By creating a Source alias, you provide a literal value. In the results shown in Figure  8 - 17 , this 
indicates whether the person is an individual customer or an employee, as defined by each of the two 
queries.   

c08.indd   267c08.indd   267 10/31/08   6:24:45 PM10/31/08   6:24:45 PM



Chapter 8:                                                             Multi - Table Queries        

268

 The  UNION  operator when used by itself is actually a  UNION DISTINCT . This means that the two 
queries are merged and sorted and have any duplicates removed. Notice the FirstName column in 
Figure  8 - 16 . The values are in alphabetical order. This is the result of the implied  DISTINCT/SORT  
operation that accompanies the  UNION . On the surface this may seem like a good idea, and it may be, 
but the additional overhead of sorting and removing duplicates can be quite costly when used against 
large tables. For best performance, use the  UNION ALL  operator instead. The  UNION ALL  operator 
simply concatenates the two results. Just keep in mind that if the same first name – last name 
combination existed in both the Employee and Individual table, it would appear twice.     

 

  Partitioning and Federating Data 
 In the early days of client/server computing, there were two different approaches to managing data. 
A database was either managed centrally, in a mainframe- or midrange-hosted environment, or data was 
stored in small - scale, file - based data stores. There really wasn ’ t a middle ground between these two 
options. To compensate for the lack of desktop database scalability, programmers found creative ways to 
replicate and synchronize data, but none of these work - arounds provided true concurrency. In a large -
 scale, multi - regional business environment, it often makes sense to store the data that will be used by 
local users on a server relatively close to them. This approach may provide less network overhead and 
faster query performance. This provides for the needs of users in the region who need access to the 
region - specific data, but it also means that users who need access to data from another region must 
retrieve it from a remote server. 

 Here ’ s a scenario that nearly all of us can relate to: When you make a purchase with a credit card, the 
store uses a merchant service provider to authorize and transact the purchase. This could be a service 
offered by their bank, credit card company, or a third - party clearinghouse. Your card number is sent to a 
data center, a query is executed against a database to retrieve your account information, and then records 
are added to complete the transaction. Most likely, the bank doesn ’ t have one central data center. A data 
center is a facility housing a group of computer servers. PC - based servers are often clustered together to 
form a single, virtual server. Essentially, it ’ s a bunch of PCs lumped together, pretending to be a more 
powerful computer  —  almost like a mainframe. The bank probably has a few regional data centers, and 
merchants connect to one closest to them. For simplicity, assume that my bank has merchant services 
data centers in Seattle (west coast accounts) and Atlanta (east coast accounts). 

Figure 8-17

c08.indd   268c08.indd   268 10/31/08   6:24:45 PM10/31/08   6:24:45 PM



Chapter 8:                                                             Multi - Table Queries        

269

 I live, and my bank accounts are based, in Washington State. If I were to make a purchase at a local 
store  —  or a store anywhere in the western United States  —  the transaction would be processed in the 
Seattle data center. If someone whose bank account is managed in another data center were to make a 
purchase in the Seattle area, a connection from the local data center to the customer ’ s home data center 
would be used to retrieve their account information. Here ’ s how this might work. 

 If these accounts were managed in SQL Server, a remote server connection may be used to provide on -
 demand connectivity to a database in another regional data center. In this example, I use the server 
names EastCoastServer and WestCoastServer to represent the remote servers and LocalHost to represent 
the respective local server. At each data center, the local database contains a view (a stored  SELECT  
query) called vw_AllAccounts. In the Seattle regional center, the SQL script for the view looks like this: 

SELECT AccountNumber, Balance, CreditLimit, CustomerName

FROM LocalHost.dbo.AccountDatabase.WestCoastAccounts

UNION

SELECT AccountNumber, Balance, CreditLimit, CustomerName

FROM EastCoastServer.AccountDatabase.dbo.EastCoastAccounts  

 In Atlanta, a view with the same name looks like this: 

SELECT AccountNumber, Balance, CreditLimit, CustomerName

FROM LocalHost.dbo.AccountDatabase.EastCoastAccounts

UNION

SELECT AccountNumber, Balance, CreditLimit, CustomerName

FROM WestCoastServer.AccountDatabase.dbo.WestCoastAccounts  

 Of course, these are hypothetical examples that won ’ t run with our sample databases. 

 In each of the regional databases, the local accounts table (either WestCoastAccounts or 
EastCoastAccounts) is used to manage accounts in that region. The account lookup is performed using a 
stored procedure that accepts the account number as an input parameter and then looks up a record by 
matching this value to the AccountNumber column. Because there will only ever be one matching 
record, the stored procedure ’ s  SELECT  statement uses a  TOP 1  modifier that causes the database to stop 
searching for records after it locates one. The stored procedure script looks like this: 

CREATE PROCEDURE spGetAccount

       @AccountNumber Int

AS

       SELECT TOP 1 * FROM vw_AllAccounts  

 As you can see, this is just a simple  SELECT  statement with a parameterized value ( @AccountNumber ) 
that gets passed in when it is executed. Chapter  13  uses the views and stored procedure to discuss what 
happens when the credit card transaction is processed.  

  Performance and Scaling Considerations 
 Now, let ’ s look at a smaller - scale implementation to improve performance and efficiently manage a large 
volume of data. In this scenario, sales records are stored in a single table. Perhaps several thousand 
records are inserted each month. To report on this data over a period of years, it would be necessary to 
keep perhaps millions of rows in the sales table. Managing such a large volume of data in an active 
database will inevitably slow performance and raise administrative costs. At first glance this may seem 
like a perplexing challenge. 

c08.indd   269c08.indd   269 10/31/08   6:24:46 PM10/31/08   6:24:46 PM



Chapter 8:                                                             Multi - Table Queries        

270

 Let ’ s view the facts and consider the options to resolve this quandary. To effectively deal with 
performance issues, you must first identify the bottlenecks. What ’ s typically the slowest part of a 
computer system? Nearly all system components are solid - state, route electronic signals moving at 
nearly the speed of light and rely on transistors switching pulses at millions of times per second. 
Computers process data at incredible speeds but continue to store it on spinning disks, using mechanical 
armatures to write and read values. The hard disk is almost always the slowest part of a system. When 
retrieving data, other components wait while the disk controller finds and moves the read/write head to 
the right track and then waits for the disk to rotate to the sectors containing the data bits, assembling 
interlaced values as the disk rotates multiple times. The head is relocated again until all data is retrieved. 
You can ’ t speed up the disk, but you can spread data across multiple disks to speed up the overall 
process. 

 In a partitioned storage solution, data is split up onto multiple disks. This affords SQL Server the 
opportunity to retrieve data in parallel and make more efficient use of multiple disk drives. There are 
actually a few different approaches to multiple - disk storage. In this scenario, I ’ ll present an 
unsophisticated but very effective technique using multiple tables and a Union query. 

 At the end of every year, a routine removes year - old sales records from the current sales table and inserts 
them into a specific archive table containing only that year ’ s sales. Each of these tables is placed on a 
separate physical disk drive. Over a few years, there may be several tables. Suppose that this system has 
been in place for five years, and the disks and tables are set up as shown in Figure  8 - 18 .   

Result Set

Tables

Current Sales

2003 Sales

2002 Sales

2001 Sales

2000 Sales Disk 5

Disk 4

Disk 3

Disk 2

Disk 1

Figure 8-18

c08.indd   270c08.indd   270 10/31/08   6:24:46 PM10/31/08   6:24:46 PM



Chapter 8:                                                             Multi - Table Queries        

271

 For reporting, a view is created that contains a series of  UNION  statements: 

SELECT * From CurrentSales

UNION ALL

SELECT * From 2003Sales

UNION ALL

SELECT * From 2002Sales

UNION ALL

SELECT * From 2001Sales

UNION ALL

SELECT * From 2000Sales  

 When this query is executed, all of these disk drives may be accessed at the same time. Assuming there 
are no other performance barriers, this could theoretically improve performance by a factor of five. Not 
only is this query going to run faster, but it will also ease the burden on competing operations rather 
than blocking processes and other users ’  requests. You ’ ll see some more specific examples of this type of 
query in the discussion on creating database objects in Chapter  13 .    

  Summary 
 Dialects of SQL have evolved over the years, and SQL Server understands different expressions and 
techniques that do the same thing. The ANSI - 92 SQL standard helps to distill a variety of join techniques 
to a manageable number. This not only simplifies the choices, but it also provides some guidance when 
maintaining code and scripts written by others. Follow the ANSI standard and use the techniques 
promoted by SQL Server. This will ensure that your queries will continue to work most efficiently going 
forward. 

 Joins provide a means to reassemble data back into meaningful information. The inner join matches rows 
between two tables whereas the outer joins select all rows from one side of the join and only matching 
rows from the other. Cross joins and full joins, although less common in most applications, provide a 
means to match up combinations of rows from two tables that may not be related. 

 Union queries allow records from multiple tables to be combined rather than joined, bringing rows into a 
single result set. This is an effective technique for partitioning and federating data in archive tables and 
databases in different geographic locations. 

 It ’ s important to understand the impact of multi - table joins and unions. Query performance is 
significantly impacted by the use of indexes and data types. If done correctly, SQL Server can work very 
efficiently with a large volume of data. If not, complex queries can demand significant server resources 
and impede overall system performance and availability. Test your queries with real data, and analyze 
the execution plans to make sure your queries execute as you expect them to.  

c08.indd   271c08.indd   271 10/31/08   6:24:46 PM10/31/08   6:24:46 PM



Chapter 8:                                                             Multi - Table Queries        

272

  Exercises 
  Exercise 1 

 Create a list of vendors and the subtotal amounts for their purchase orders, sorted by vendor names. 
This list should include the vendor name and the subtotal amount for all vendors who have purchase 
orders recorded in the PurchaseOrderHeader table.  

  Exercise 2 
 Using either the AdventureWorksDW2008 or AdventureWorksDW sample database, write a query that 
returns a list of employees with their managers. It should return four aliased columns, including the 
ManagerTitle, ManagerName, EmployeeTitle, and EmployeeName. Using two aliased instances of 
the DimEmployee table, join the table to itself using the EmployeeKey and ParentEmployeeKey 
columns.  

  Exercise 3 
 Write a query that returns a list of product subcategories and related products that don ’ t have any sales 
order detail records. Include two columns, including the subcategory name labeled SubCategoryName 
and the product name labeled ProductName.        

c08.indd   272c08.indd   272 10/31/08   6:24:47 PM10/31/08   6:24:47 PM



                                                                9 
   Advanced Queries 

and Scripting         

 Writing queries is like driving to work. There are probably 18 different ways to get there, and most 
likely, some routes are clearly better than others. Under different conditions, different choices may 
be preferable. This might depend on variable traffic conditions, the time of day, or whether you 
need to stop by the grocery store to pick up milk and flowers. In my case, the route I choose 
depends largely on the ferry schedule. If I can ’ t make the ferry, I save time by driving a much 
greater distance rather than waiting for the next boat. Some opt for consistency, choosing to take 
the same route regardless of changing conditions, whereas others weave through traffic to find the 
fastest lane, and shave off a few seconds here and there. 

 Similarly, many queries can be written more than one way. Traditional SQL statements, written for 
other database products, often use subqueries, whereas SQL Server leans toward ANSI - standard 
join expressions. Most SQL Server professionals will tell you that if you have the option to choose 
between using a subquery and a join, the joins will execute faster. Generally speaking, I think this 
is true, but it depends on the expression and other conditions. Using joins gives the database 
engine more leeway to implement the best type of operations for a query, whereas subqueries may 
not afford SQL Server as many options. 

 An even more flexible option was introduced in SQL Server 2005 with  common table expressions  
(CTEs), a technique used to define a named  SELECT  statement that may later be referred to as a 
table. CTEs are a bit of a fence - sitter depending on how they are used. For more complex logic that 
can ’ t be handled in a join, the CTE may be the way to go. You ’ ll learn more about CTEs later in 
this chapter. 

 Depending on the query, the same results can be achieved using any one of these techniques. 
Graphical design tools, such as the Query Designer, build ANSI join statements. This is considered 
to be SQL Server ’ s native form for combining column data from more than one table. To 
implement some business logic, joins simply may not give you the flexibility you need and a 
subquery or CTE may be the only answer. We introduce CTE toward the end of this chapter 
because this feature builds on the concept of subqueries. CTEs offer far more flexibility than 
traditional subqueries, so we strongly recommend that you get through this section before you put 
your code into production. 

c09.indd   273c09.indd   273 10/31/08   6:25:14 PM10/31/08   6:25:14 PM



Chapter 9: Advanced Queries and Scripting

274

 A number of architectural improvements were made in SQL Server 2008 that may help with query 
performance. However, the language syntax covered in this chapter hasn ’ t changed since SQL 
Server 2005.  

  Subqueries 
 A subquery is simply a  SELECT  query within a  SELECT  query. Several forms of subqueries exist, ranging 
from expressions that return a single, or scalar, value to a multi - row result set. We are going to show you 
several examples of each type, beginning with scalar expressions. 

  Scalar Expressions 
 Within the column selection list of a  SELECT  statement, embedded  SELECT  statements can be used to 
return a single - column value, otherwise known as a  scalar valued expression . One of the most common 
examples of a scalar expression is to use an aggregate function to return a value based on the scope of 
multiple rows. 

 Consider this example. We would like to compare the price paid for a product with the average price of 
all product sales. This can be done by using a simple  SELECT  statement that uses the  AVG()  function to 
produce a column in the query ’ s result set given the alias AvgPrice: 

SELECT   ProductID

       , UnitPrice

       , (SELECT AVG(UnitPrice) FROM Sales.SalesOrderDetail)

    AS AvgPrice

FROM Sales.SalesOrderDetail  

 In the results shown in Figure 9 - 1, you can see that the values in this column are constant. This is because 
the subquery expression has no correlation or dependency on the outer query. It simply calculates the 
average price for all product sales again and again, and returns this value in every row of the result.   

Figure 9-1

 Fortunately, SQL Server is smart enough to perform the calculation once and then simply return a 
cached value for each request. Can you imagine how wasteful it would be to recalculate the average of 
121,317 values, and then repeat the same calculation 121,317 times? It ’ s important to note that the database 
engine doesn ’ t just do exactly what you ask it to. It has intelligence built in to find shortcuts like this one. 

c09.indd   274c09.indd   274 10/31/08   6:25:15 PM10/31/08   6:25:15 PM



Chapter 9: Advanced Queries and Scripting

275

 Speaking of intelligence, let ’ s do something a little more intelligent with this data. Rather than showing 
the average price of all sales on each row, we ’ ll use this value to calculate the difference between this 
row ’ s sale price and the average for all sales: 

SELECT   ProductID

       , UnitPrice

       , UnitPrice - (SELECT Avg(UnitPrice) FROM Sales.SalesOrderDetail)

    AS AvgPriceDifference

FROM Sales.SalesOrderDetail  

 Now the result shows the difference between the value returned by the subquery and the sale price in 
the UnitPrice column (see Figure 9 - 2).   

Figure 9-2

 As you can see, subqueries can be used to add dimension to data in flat tables. We are going to build on 
this query to show some variations.    

Try It Out   

 Rather than getting a scalar value from an aggregate on the same table, you can also use another table. 
Try out the following query. Use the ProductID value to join the SalesOrderDetail and Product tables 
and get the ListPrice for the corresponding product: 

SELECT   ProductID

       , UnitPrice AS SalePrice

       , (SELECT ListPrice FROM Production.Product 

          WHERE Product.ProductID = SalesOrderDetail.ProductID)

            AS ProductListPrice

FROM Sales.SalesOrderDetail  

 In Figure 9 - 3, the results show the list price in the third column.   

c09.indd   275c09.indd   275 10/31/08   6:25:15 PM10/31/08   6:25:15 PM



Chapter 9: Advanced Queries and Scripting

276

 Now take it one step further. Use this value to calculate the difference between the product ’ s list price 
and price charged. By adding the expression  UnitPrice —    before the subquery, you can tell whether 
the sale price is inflated or discounted from the list price: 

SELECT   ProductID

       , UnitPrice AS SalePrice

       , UnitPrice - (SELECT ListPrice FROM Production.Product 

          WHERE Product.ProductID = SalesOrderDetail.ProductID)

            AS PriceDifference

FROM Sales.SalesOrderDetail  

 The results are shown in Figure 9 - 4.   

Figure 9-3

Figure 9-4

 The negative values in the third column indicate that these products were sold for less than the list 
price in the product table. Apparently, Adventure Works Cycles makes it a point to sell all of its 
products below list price (too bad that this is a fictitious business).  

 

c09.indd   276c09.indd   276 10/31/08   6:25:16 PM10/31/08   6:25:16 PM



Chapter 9: Advanced Queries and Scripting

277

  Alternate Join Operations 
 Before we show you the following examples, we want to answer what may seem to be an obvious 
question: Why learn to use subqueries that do the same thing as join operations when joins are 
preferable? All by themselves, it probably doesn ’ t make sense to use subqueries in place of joins. So why 
take this route? As you will see, some business rules are best implemented using a subquery expression. 
Under the right conditions join - type subqueries used in concert with specialized business logic 
subqueries may be the right choice. Although the exception rather than the rule, sometimes you may 
need more flexibility than an ANSI join will offer. 

  Inner Join Subqueries 
 An inner join subquery is a simple expression. The main difference between this technique and the 
ANSI - SQL  INNER JOIN  statement is that this join is performed in the  WHERE  clause rather than the  FROM  
clause. Note that two tables are referenced in the  FROM  clause as a comma - delimited list: 

SELECT SOH.OrderDate

     , SOD.ProductID

     , SOD.UnitPrice

FROM Sales.SalesOrderHeader AS SOH, Sales.SalesOrderDetail AS SOD

WHERE SOH.SalesOrderID = SOD.SalesOrderID

ORDER BY SOH.OrderDate  

 There are no surprises in the result set shown in Figure 9 - 5. Just like an inner join, you will only see 
matching records between the SalesOrderHeader and SalesOrderDetail tables.   

Figure 9-5

 Before adding anything to the script in this example, we would like to compare this query to its ANSI -
 SQL equivalent: 

SELECT SOH.OrderDate

     , SOD.ProductID

     , SOD.UnitPrice

FROM Sales.SalesOrderHeader AS SOH INNER JOIN Sales.SalesOrderDetail AS SOD

ON SOH.SalesOrderID = SOD.SalesOrderID

ORDER BY SOH.OrderDate  

 There is no reason to show the result set because it is going to look exactly like that for the previous 
example. 

c09.indd   277c09.indd   277 10/31/08   6:25:16 PM10/31/08   6:25:16 PM



Chapter 9: Advanced Queries and Scripting

278

 You can compound join operations for more than two tables very easily. We ’ ll add the Product table 
so you can see the product name for each sales record: 

SELECT SalesOrderHeader.OrderDate

     , SalesOrderDetail.ProductID

     , SalesOrderDetail.UnitPrice

     , Product.Name

FROM   Sales.SalesOrderHeader, Sales.SalesOrderDetail, Production.Product

WHERE  SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

       AND SalesOrderDetail.ProductID = Product.ProductID

ORDER BY SalesOrderHeader.OrderDate  

 Using the  AND  operator, you can extend the  WHERE  clause with the join between the SalesOrderDetail and 
Product tables. The result shows the OrderDate column from the SalesOrderHeader table, the ProductID 
and UnitPrice from SalesOrderDetail, and the Name column from the table (see Figure 9 - 6).    

Figure 9-6

  Outer Join Subqueries 
 You ’ ll recall from Chapter  8  that in SQL Server 2008 legacy outer joins are now a thing of the past and are 
no longer supported. This simply means that if you need to match records between two tables and 
return non - matching rows from either of the tables, you ’ ll need to use a standard  LEFT  or  RIGHT OUTER 
JOIN  query rather than the old legacy  *=  or = *  column matching technique in a subquery, which is still 
common in some other database products. In the previous edition of this book, we provided examples in 
this section of old - school subqueries and discussed why they shouldn ’ t be used. Now that the technique 
is no longer supported, the point is moot. If you run into queries using the old syntax, please refer to 
Chapter  8  to learn how to convert these to proper ANSI standard outer joins.  

  Table Aliasing 101 
 The mechanics of subqueries are sometimes considerably different from standard join operations. The 
need to refer to columns from one table within an expression using a different table often requires that 
tables be aliased. In Chapter  5  you learned how to alias columns. This is the same concept but now 
you ’ re just giving a table an alternate name. Here ’ s a simple example to introduce the technique: 

SELECT ProductID, Name FROM Production.Product AS P  

c09.indd   278c09.indd   278 10/31/08   6:25:17 PM10/31/08   6:25:17 PM



Chapter 9: Advanced Queries and Scripting

279

 The word  AS  may also be omitted, as follows: 

SELECT ProductID, Name FROM Production.Product P  

 The alias in this query doesn ’ t really accomplish anything in its basic form, but it would be useful if this 
query were used as a nested subquery within another  SELECT  statement, or in a join. As queries become 
larger and more complex, the value of aliasing becomes more apparent. Rather than referring to long 
table names multiple times, it ’ s convenient to simply use a letter or short, abbreviated name. Personally, 
I ’ m a fan of using intuitive abbreviations in larger quantities rather than single letters, but this is purely a 
matter of preference. If you use the graphical query builder to design multi - table joins, you will not see 
this; however, as you become less dependent on automated tools to write your queries, aliasing becomes 
a powerful and important tool. 

 Some queries may reference the same table more than once in a different context. In this case, aliasing 
may become an absolute requirement. Here ’ s a hypothetical example where the ConsultingActivity is 
used in an inner subquery as well as the outer main query, referred to as  CA1  and  CA2 , respectively: 

SELECT CustProject, Hours

FROM ConsultingActivity as CA1

WHERE CustProject IN (SELECT CustProject

         FROM ConsultingActivity as CA2

         WHERE ActivityType = ‘Development’

         AND CA1.CustProject = CA2.CustProject)

ORDER BY CustProject     

  Try It Out    

 This is a simple concept but a very important technique to master as we prepare to raise the bar. 
To make sure you have the basics down, try out the following simple exercise. In a query window, 
connect to the AdventureWorks2008 database and then type the following: 

SELECT ProductID, Name, ListPrice 

FROM Production.Product 

WHERE ListPrice  >  0  

 Execute this script and note the results. 

 Now make the following modifications, execute the modified query, and note the results. Even though 
you used  SELECT *  to include all available columns, only three columns and a limited number of 
rows were returned.   

SELECT P.* FROM

(

   SELECT ProductID, Name, ListPrice 

   FROM Production.Product 

   WHERE ListPrice  >  0

) AS P  

 Throughout the rest of this book, you will see several multi - table queries used with aliases to shorten 
table name references and help make these queries easier to read and to follow their business logic.   

 

c09.indd   279c09.indd   279 10/31/08   6:25:18 PM10/31/08   6:25:18 PM



Chapter 9: Advanced Queries and Scripting

280

  Using Aggregate Functions in Subqueries 
 In Chapter  7 , you saw how aggregate functions are used to return summary values over a group of rows 
rolled up using the  GROUP BY  clause. In subqueries, a similar result can be achieved by using aggregate 
functions in a filtered  SELECT  expression. In a scalar expression, you use the  AVG()  function to return a 
single column value and then use that value to perform calculations with other column values. 

 In row set queries, aggregate functions can be used along with various filtering and matching techniques 
to achieve more flexible results. For example, we can simulate a top values query by using the  COUNT()  
function. We ’ ll introduce some other techniques first. Aggregate functions allow you to do some very 
powerful things in correlated subqueries, which are discussed later in the chapter.  

  The  HAVING  Clause 
 Chapter  7  also showed you how to use the  HAVING  clause to filter aggregated rows when using the 
 GROUP BY  statement. Similar results can be achieved using subquery techniques. Until we discuss the 
mechanics of correlated subqueries, it may not seem to make sense to use the  HAVING  clause without a 
 GROUP BY . For example, the following expression serves only to include or exclude all rows from 
this query: 

SELECT SUM(UnitPrice) FROM Sales.SalesOrderDetail

HAVING SUM(UnitPrice)  >  100000  

 In this example, one value is returned if the UnitPrice sum for the entire range meets this criterion; 
otherwise, the query returns nothing. In effect, the  HAVING  statement does the same thing as a  WHERE  
clause, but only after the aggregate value has been calculated. The  WHERE  clause is used to qualify 
records before they are fed to the aggregate  SUM()  function within the subquery. This query returns the 
name of products that have generated sales exceeding two million dollars: 

SELECT Name FROM Production.Product

WHERE EXISTS

   (

      SELECT SUM(UnitPrice) FROM Sales.SalesOrderDetail

      WHERE SalesOrderDetail.ProductID = Product.ProductID

      HAVING SUM(UnitPrice)  >  2000000

   )  

 When you need to use an aggregated value within a subquery, this technique can be quite useful.  

  Creating a Derived Table 
 Sometimes you may need to build values into a query that are not obtained from a table. You ’ ve seen 
that the  SELECT  statement allows you to return literal values that are just part of an expression. 
For example, the following statement returns a single row result as if it were read from a table: 

SELECT ‘Fred’ AS FirstName, ‘Flintstone’ AS LastName  

 Because tables can be aliased, an expression - type result set can also be aliased and then treated as if it 
were a table: 

SELECT * FROM (SELECT ‘Fred’ AS FirstName, ‘Flintstone’ AS LastName)

AS CartoonCharacter  

c09.indd   280c09.indd   280 10/31/08   6:25:18 PM10/31/08   6:25:18 PM



Chapter 9: Advanced Queries and Scripting

281

 Derived tables can be used in joins and subqueries. As far as the query processor is concerned, the 
CartoonCharacter alias is a table, like any other table, and can be joined or used in expressions like a 
physical table. If we extend the previous example, a  UNION  statement is used to create two records, 
returned as an aliased table. This table is then joined to the physical Department table: 

SELECT FirstName, LastName, Department.Name AS DeptName FROM 

 (SELECT ‘Fred’ AS FirstName, ‘Flintstone’ AS LastName, 1 AS DepartmentID

  UNION ALL

  SELECT ‘Barney’ AS FirstName, ‘Rubble’ AS LastName, 4 AS DepartmentID)

AS CartoonCharacter

INNER JOIN HumanResources.Department 

  ON CartoonCharacter.DepartmentID = Department.DepartmentID  

 The result, shown in Figure 9 - 7, returns the department name based on the join to the Department table 
and the DepartmentID provided for each of these records.    

Figure 9-7

  Using the  IN ( ) Function 
 In Chapter  5  you saw how the  IN()  function can be used to match a column to any value in a comma -
 delimited list of values. This function has a dual purpose in that it also knows how to match a column to 
the results of a  SELECT  statement when this statement returns a single column of values. Here ’ s a simple 
example that returns all products that have been used in orders: 

SELECT ProductID, Name

FROM Production.Product

WHERE ProductID IN

      (  SELECT ProductID

         FROM Sales.SalesOrderDetail )  

 Subqueries can be nested. Extending the previous example, we can return products that were ordered in 
March 2003. The OrderDate is stored in the SalesOrderHeader table, and the ProductID for the order is 
in the SalesOrderDetail table. This requires three expressions  —  a query within a query within a query, 
like this: 

SELECT ProductID, Name

FROM Production.Product

WHERE ProductID IN

      ( SELECT ProductID

        FROM Sales.SalesOrderDetail

        WHERE SalesOrderID IN

            (  SELECT SalesOrderID

               FROM Sales.SalesOrderHeader

               WHERE OrderDate BETWEEN ‘3-1-03’ AND ‘3-31-03’)

      )      

c09.indd   281c09.indd   281 10/31/08   6:25:18 PM10/31/08   6:25:18 PM



Chapter 9: Advanced Queries and Scripting

282

 Note that due to dependencies on records in other tables in the latest versions of the Adventure Works 
sample databases, the following sample may require other records to be deleted first. Doing so may 
 prevent other examples from working correctly. Therefore, this query is provided only as a hypothetical 
example and should be executed.   

 The first product/order example returns a large number of rows. Reversing the logic using the  NOT  
operator will return a list of all the products that haven ’ t sold: 

SELECT ProductID, Name

FROM Production.Product

WHERE ProductID NOT IN 

         (SELECT ProductID FROM Sales.SalesOrderDetail)  

 Perhaps our purpose is to clean up the product inventory and remove those product records that haven ’ t 
generated revenue. To this end, we can delete products that haven ’ t sold by applying the  DELETE  
command: 

DELETE FROM Production.Product

WHERE ProductID NOT IN 

         (SELECT ProductID FROM Sales.SalesOrderDetail)   

  Using the  EXISTS () Function 
 The  EXISTS()  function is used to return a row in the outer query when any records are returned by a 
subquery. The subquery can be any  SELECT  statement, directly related or not, to the main  SELECT  
statement. The  EXISTS()  function is often used in correlated subqueries to either mimic the behavior of 
a join or to implement business rules that wouldn ’ t be possible with a standard join. 

 It doesn ’ t really matter what column or columns are returned in the subquery because you don ’ t actually 
use these values. For this reason, it ’ s common to use the asterisk rather than column names. The asterisk 
is typically used to return all column values from a query but, in this case, it simply allows the query 
engine to test for the presence of any rows without unnecessarily wasting system resources. 

 Here ’ s a simple example of this type of subquery: 

SELECT SalesOrderID, LineTotal

FROM Sales.SalesOrderDetail

WHERE EXISTS

   (SELECT * FROM Production.Product

   WHERE ProductID = Sales.SalesOrderDetail.ProductID

  AND Color = ‘Blue’)  

 Note the correlation between the inner and outer query using a reference to the SalesOrderDetail table 
from the subquery based on the Product table. The results, shown in Figure 9 - 8, return only 
SalesOrderDetail records that have blue colored products.      

c09.indd   282c09.indd   282 10/31/08   6:25:19 PM10/31/08   6:25:19 PM



Chapter 9: Advanced Queries and Scripting

283

NOT EXISTS () 
 To reverse the logic for this query (to return all the unassigned employees), simply add the  NOT  operator 
before the  EXISTS  statement: 

SELECT SalesOrderID, LineTotal

FROM Sales.SalesOrderDetail

WHERE NOT EXISTS

   (SELECT * FROM Production.Product

    WHERE ProductID = Sales.SalesOrderDetail.ProductID

  AND Color = ‘Blue’)  

 The result set, shown in Figure 9 - 9, returns all the SalesOrderDetail that were excluded in the previous 
example, with products that are not blue in color.      

Figure 9-9

Figure 9-8

  Correlated Subqueries 
 You ’ ve just seen some examples of subqueries where the outer query refers to, and conditionally filters 
rows based on, the inner query. A  correlated subquery  is a subquery where the selection criterion of the 
inner query refers to values in the outer query. Correlated subqueries can be a bit tricky. One of the 
restrictions is that the inner query cannot return more than one row matching the outer row. In the 
following example, we are looking for mountain bike products (where the SubCategoryID is 1) that have 

c09.indd   283c09.indd   283 10/31/08   6:25:19 PM10/31/08   6:25:19 PM



Chapter 9: Advanced Queries and Scripting

284

been purchased (where there is an existing SalesOrderDetail record). This query contains the proper 
logic but returns an error because the inner query returns multiple results for some of the products: 

SELECT ProductID

  , Name

FROM Production.Product AS P

WHERE 1 = 

    (SELECT ProductSubCategoryID

     FROM Sales.SalesOrderDetail AS SD

     WHERE P.ProductID = SD.ProductID)  

 The problem is easily corrected by adding a  TOP 1  statement: 

-- Correlated subquery using TOP 1:

SELECT ProductID

  , Name

FROM Production.Product AS P

WHERE 1 = 

    (SELECT TOP 1 ProductSubCategoryID

     FROM Sales.SalesOrderDetail AS SD

     WHERE P.ProductID = SD.ProductID)  

 The first few rows of the result set are shown in Figure 9 - 10.   

Figure 9-10

 The same result could also be achieved using a  SELECT DISTINCT  statement in the inner query, 
as shown in the following example: 

-- Correlated subquery using Distinct:

SELECT ProductID

  , Name

FROM Production.Product AS P

WHERE 1 = 

    (SELECT DISTINCT ProductSubCategoryID

     FROM Sales.SalesOrderDetail AS SD

     WHERE P.ProductID = SD.ProductID)  

 One of the significant differences between the outer query value matching (using  IN  or  EXISTS ) and the 
correlated techniques is in how the query processor builds the execution plan. In the case of a correlated 

c09.indd   284c09.indd   284 10/31/08   6:25:20 PM10/31/08   6:25:20 PM



Chapter 9: Advanced Queries and Scripting

285

subquery, a row is selected from the outer query and then a row is selected from the inner query. Value 
comparisons are made to determine if an outer row should be output and, if so, the row is typically sent 
to an output buffer. This process is repeated, processing each of the inner rows for every one of the outer 
rows until all combinations have been considered. This process is more rigorous than subqueries that use 
the  IN  or  EXISTS  functions and don ’ t match outer query column values within the inner query. 

  Benchmarking and Best Practices 
 Several subquery techniques can be used to return the same kind of results you would get from an 
 INNER JOIN  or  OUTER JOIN  query. I don ’ t want to beat the proverbial dead horse, but I ’ ll say it one 
more time: Using ANSI standard join expressions gives the query processor the opportunity to make 
intelligent decisions about your stated intentions and then to build an optimal execution plan. Using 
explicit subquery expressions to achieve the same result doesn ’ t. 

 Don ’ t just take our word for it. Let ’ s test it out. Using SQL Server Management Studio, enable the feature 
to Include the Actual Execution Plan. You will find this option on the Query menu and the SQL Editor 
toolbar. Execute the  SELECT DISTINCT  correlated subquery example using the AdventureWorks2008 
database, and then view the execution plan (see Figure 9 - 11). You can do this by selecting the Execution 
Plan tab in the query results pane after the query has completely finished running.   

Figure 9-11

 The first thing to note is that this query was executed in nine steps. From right to left, you see all of the 
activities performed by the query - processing engine to process this query. The join was processed using 
an operation called a  nested loop inner join . This is exactly what you told the query processor to do: 
perform an inner join by matching records in two nested loops. Now, place the mouse pointer over 
and pause on each icon. A pop - up window displays statistical performance information about the 
execution. Take note of the Subtree Cost value, which will give you an idea about the proportional cost 
of each operation for the entire query. On the last step, this will also give you a baseline for comparing 
different queries. 

 Upon careful evaluation you will see that the majority of time was spent processing an Index Seek 
operation on the SalesOrderDetail table ’ s index. If you hover over this icon, labeled Index Seek 
(nonclustered), note that 121,317 total rows were scanned. Hover over the left - most icon and note the 
Estimated Subtree Cost. On my system, this is about 1.125. 

 Now, type the following ANSI join version of the same query, highlight the query text, and execute the 
query: 

-- ANSI Join:

SELECT DISTINCT Product.ProductID

     , Name

FROM Production.Product INNER JOIN Sales.SalesOrderDetail

      ON Product.ProductID = SalesOrderDetail.ProductID

WHERE ProductSubCategoryID = 1  

c09.indd   285c09.indd   285 10/31/08   6:25:20 PM10/31/08   6:25:20 PM



Chapter 9: Advanced Queries and Scripting

286

 Again, view the execution plan shown in Figure 9 - 12.   

Figure 9-12

 This time it took only four steps. Note the Estimated Subtree Cost in the statistics for the left - most icon. 
In my case, this is only about .022. Now hover over the index seek icon on the right and note that only 32 
rows were scanned. Because of this efficiency, it took nearly ¹/ı00 of the time to process this query as it did 
before. Note that instead of spending nearly all of this time reprocessing the same rows using the index 
scan, it scanned the index only once. The query optimizer decided that it made more sense to apply 
filtering at the source than to scan all 121,317 SalesOrderDetail rows. 

 The real question is: when do you really need to use a subquery instead of a join? So far you ’ ve seen that 
it usually makes sense to use a join wherever you can. However, business doesn ’ t always follow simple 
rules. The next section looks at some examples of unique business rules that can be solved using various 
forms of subqueries.   

  Business Cases for Subqueries 
 Creating subqueries to solve unique business problems is a fine art, and a source of pride among true 
database professionals. Often an evolutionary process, queries may progress from crude data selections 
based on other views or queries, or multi - step inserts and updates to populate temporary tables, finally 
arriving at a short and elegant solution. This process can take days to years in the life of a database 
solution. I ’ ve learned to think twice before making statements such as  “ that  can ’ t  be done in a single 
query, ”  only to later discover otherwise. The following examples, with one exception, use the 
AdventureWorks2008 database so you can follow along. 

  Top Sales by Territory 
 The Director of Sales at Adventure Works Cycles would like to see a report showing the top five sales in 
each sales territory and the salespeople responsible for those sales. The trick here is that we want to see 
five sales records in the result for every territory so a top values query won ’ t help unless it is nested in a 
subquery. We can use a different technique to achieve a similar result. This is done by ordering the 
SalesOrderHeader rows by the SubTotal column in descending order. This places the largest sales 
records at the top of the list. The  MIN()  function is just a trick used to enable the  HAVING()  function to 
work. The  HAVING  expression used in this correlated subquery essentially returns the top five values 
from matching records within the inner query: 

SELECT TerritoryID, SubTotal, SalesPersonID, SalesOrderID

FROM Sales.SalesOrderHeader AS SO1

WHERE SubTotal  > = 

 (

   SELECT Min(SubTotal)

   FROM Sales.SalesOrderHeader AS SO2

c09.indd   286c09.indd   286 10/31/08   6:25:21 PM10/31/08   6:25:21 PM



Chapter 9: Advanced Queries and Scripting

287

   WHERE SO1.TerritoryID = SO2.TerritoryID

   AND SO1.SubTotal  < = SO2.SubTotal

   HAVING Count(*)  < = 5

 )

ORDER BY TerritoryID, SubTotal Desc  

 Figure 9 - 13 shows the first few records in the result set.    

Figure 9-13

  Unshipped Product Orders 
 In this scenario, we want a list of sales order records and products where part of the order has been 
shipped and part has not been shipped. In the outer query, we ask for records from the SalesOrderDetail 
table (sales order line items) that don ’ t have a tracking number. This indicates that this item has not 
shipped. For these rows to be output, there must be records with the same SalesOrderID (related to the 
same SalesOrderHeader record) that do have a tracking number. Before this will work, we need to ship a 
few products to create partial orders. This script will do the trick: 

UPDATE Sales.SalesOrderDetail SET CarrierTrackingNumber = ‘Z987-1ACD-42’

WHERE SalesOrderDetailID = 94445

                   

UPDATE Sales.SalesOrderDetail SET CarrierTrackingNumber = ‘Z987-1ACD-43’

WHERE SalesOrderDetailID = 94441

                   

UPDATE Sales.SalesOrderDetail SET CarrierTrackingNumber = ‘Z987-1ACD-44’

WHERE SalesOrderDetailID = 94436  

 Now I have three orders with some products that have shipped and others that have not. The following 
query may be used to find these orders: 

SELECT SalesOrderID, ProductID 

FROM Sales.SalesOrderDetail AS SD1

WHERE CarrierTrackingNumber IS NULL 

AND SalesOrderID IN 

 (SELECT SalesOrderID FROM Sales.SalesOrderDetail AS SD2

  WHERE CarrierTrackingNumber IS NOT NULL

  AND SD1.SalesOrderID = SD2.SalesOrderID)  

 Figure 9 - 14 shows the results.    

c09.indd   287c09.indd   287 10/31/08   6:25:22 PM10/31/08   6:25:22 PM



Chapter 9: Advanced Queries and Scripting

288

  Consulting Billing Time 
 One of the quandaries in the software development consulting business is just what we should bill our 
customers for. Inevitably, projects require ramp - up time and, sometimes, projects get cancelled before 
they really get started. With new clients, the process usually progresses from the sales stage to initiation 
meetings, specification forming, requirement gathering, and then finally to the development work. We 
certainly can ’ t bill our customers for the sales calls and all the schmoozing that goes on when building a 
new business relationship, prior to getting started on a billable project. So, when does the billing clock 
actually begin to run? Customers want assurance that we can deliver results, and we don ’ t want to waste 
our time on dead - end projects that we won ’ t get paid for. 

 For this example, we ’ ve created a table called ConsultingActivity with columns containing a description 
of consulting activities, the number of hours, and the activity type. In a production solution, this data 
may exist in multiple tables but in this simplified example, we ’ ve used only one table. The data looks 
like that shown in Figure 9 - 15.   

Figure 9-14

Figure 9-15

 This is the only example in this chapter that doesn ’ t use the AdventureWorks2008 sample database. 
If you would like to see these results, you will need to create this table and populate it with these values. 
Otherwise, this example is provided as a hypothetical example. The ActivityType column may contain a 
number of different values. The business rule is that if your consultants have performed any 
development work, you will bill the customer for all activities. Otherwise, you don ’ t bill on this project 
at all.   

c09.indd   288c09.indd   288 10/31/08   6:25:23 PM10/31/08   6:25:23 PM



Chapter 9: Advanced Queries and Scripting

289

SELECT CustProject, Hours

FROM ConsultingActivity as CA1

WHERE CustProject IN (SELECT CustProject

         FROM ConsultingActivity as CA2

         WHERE ActivityType = ‘Development’

         AND CA1.CustProject = CA2.CustProject)

ORDER BY CustProject  

 Of the four projects in various stages of progress, only two have had any development consulting activity 
performed. The results of this query, shown in Figure 9 - 16, include all the activities for these two projects.      

Figure 9-16

  Common Table Expressions 
 Most SQL Server database professionals will agree that the addition of CTEs is one of the most 
significant improvements introduced in SQL Server 2005. Subqueries can be cumbersome to use at times 
because all filtering and matching logic must be integrated into the subquery expressions. This is fine 
when you have a single task to perform and need to use the query expression only once, but subqueries 
are not reusable and don ’ t support multiple requirements very well. A common work - around to this 
limitation was to populate a temporary table with the subquery contents. Joins and filter expressions 
may be applied to the temporary table but at the cost of poor performance and significant physical disk 
overhead. Using temporary tables also requires permission to create and use another table. The CTE is 
the best of both worlds: it is a subquery that exists only in memory, so it doesn ’ t require special 
permissions or unnecessary physical disk operations. Unlike a traditional subquery, the CTE is a named 
object that can be reused and referenced much like a table, enabling far greater flexibility. 

 A CTE is defined before it is used in the query script, beginning with the word  WITH  followed by a list of 
the output columns in parentheses, then the word  AS  followed by a complete  SELECT  statement in 
parentheses, like this: 

WITH BlueProducts (ProductID, Name) AS

(

   SELECT ProductID, Name

   FROM Production.Product

   WHERE Color = ‘Blue’

)  

 The previous script won ’ t run all by itself because the CTE must be used in a subsequent query. After the 
CTE is defined, any script using the same connection can simply refer to the CTE as if it were a table. 

c09.indd   289c09.indd   289 10/31/08   6:25:24 PM10/31/08   6:25:24 PM



Chapter 9: Advanced Queries and Scripting

290

Any columns that will be used for filtering, sorting. or joining outside of the CTE definition must be 
included in the column list. 

 Of course, a CTE is only useful if it ’ s followed by a query. The following query joins the CTE, named 
BlueProducts, with the SalesOrderDetail table and returns columns from both  “ tables “ : 

SELECT SalesOrderID, Name, UnitPrice

FROM Sales.SalesOrderDetail AS SOD INNER JOIN BlueProducts

   ON SOD.ProductID = BlueProducts.ProductID  

 To test this example, combine the two previous blocks for script and run them as one query. The result is 
a set of sales order records for only blue products, as shown in Figure 9 - 17.   

Figure 9-17

Figure 9-18

 Practically any subquery can be replaced with a CTE as long as all the rules are followed. Here ’ s an 
example based on a query we used earlier to demonstrate the use of the  HAVING  clause. Note that in the 
earlier example, it was permissible to omit the  GROUP BY  clause because the subquery didn ’ t actually 
return any rows. Here, with the same expression used as a CTE (named PriceyOrderDetails,) we must 
group by the ProductID because this query returns a complete set of rows prior to being consumed in 
the latter query.   

WITH PriceyOrderDetails (UnitPriceSum, ProductID)

AS

(

      SELECT SUM(UnitPrice), ProductID FROM Sales.SalesOrderDetail

      GROUP BY ProductID

      HAVING SUM(UnitPrice)  >  2000000

)

                   

SELECT Name FROM Production.Product

WHERE EXISTS

   (

      SELECT * FROM PriceyOrderDetails AS POD

      WHERE POD.ProductID = Product.ProductID

   )  

 The results are displayed in Figure 9 - 18.      

c09.indd   290c09.indd   290 10/31/08   6:25:25 PM10/31/08   6:25:25 PM



Chapter 9: Advanced Queries and Scripting

291

 Try It Out   

 To use a CTE in it simplest form, let ’ s convert the simple query we used to demonstrate a table alias to 
a CTE. To start, enter the same query as you did earlier: 

SELECT P.* FROM

(

   SELECT ProductID, Name, ListPrice 

   FROM Production.Product 

   WHERE ListPrice  >  0

) AS P  

 Now convert this query to a CTE using the following expression: 

WITH NonFreeProducts (ProductID, Name, ListPrice) AS

 (

   SELECT ProductID, Name, ListPrice 

   FROM Production.Product 

   WHERE ListPrice  >  0

)

                   

SELECT * FROM NonFreeProducts  

Execute this query and note that the results are the same as before. This is just to get you started. Your 
knowledge of this basic technique will prove to be very beneficial as you need to solve more intricate 
business problems with more complex queries.

  

  Cursors 
 The definition of the word  “ cursor ”  can actually be a little confusing. This is because there are several 
meanings that have similar context. Before going any further, we ’ d like to clarify our use of this word. 
If asked, most computer users would likely tell you that the little blinking bar in a text editor is a cursor. 
It ’ s a placeholder or position pointer. You could reason that after a SQL query is executed, the cursor 
would be a pointer to the current record. As much as this makes sense, this isn ’ t the definition of a cursor 
in the SQL world. In this context, the word  “ cursor ”  is an acronym for  CUR rent  S et  O f  R ows. A cursor is 
a set of records returned from a query. 

 Unfortunately, it can get a little more confusing than that. It is true that when a  SELECT  statement is 
executed, the database engine returns a cursor  —  or set of records  —  held in memory or streamed across 
a network connection. This type of cursor is the basis for programming objects such as recordsets and 
datasets. In Transact - SQL, when you declare a cursor - type variable, a result set is read into the memory 
managed by this object for the purpose of iterating through each record. We know  —  this actually takes 
us back to the original definition of a cursor as a single record pointer. The fact is that the cursor 
represents the entire set of records and supports navigation, one record at a time. 

c09.indd   291c09.indd   291 10/31/08   6:25:25 PM10/31/08   6:25:25 PM



Chapter 9: Advanced Queries and Scripting

292

  Rowset Versus Cursor Operations 
 Using a cursor to manage or manipulate a set of records is very different from the usual approach. 
It requires the query processing engine to give up a lot of its built - in optimizations and to hand over a 
set of data so that you can manage it yourself. Although this may afford you a little more flexibility, it 
usually comes at a cost of performance and efficiency. There are cases where using a cursor will solve an 
important business problem. However, it has been my experience that often when I thought I needed to 
use a cursor to solve a problem, there was a simpler and more efficient method using a standard 
set - based query. For example, the new  MERGE  command may eliminate a lot of older cursor code used to 
loop through records, performing related inserts, updates, and deletes. The  MERGE  command is 
introduced in Chapter  10 . 

 Probably one of the greatest challenges for programmers learning to use SQL is the different approach 
usually taken to handling data. In procedural and object - oriented programming, developers typically 
work with objects one at a time. Groups of objects are organized into collections, structures, or arrays 
that support looping and enumeration. So far, you ’ ve seen that SQL Server returns sets of rows, all at 
once, and is optimized to support this paradigm rather than one record at a time. SQL Server performs 
best when using native set - based operations. There may be times when you will need to loop through a 
set of individual records, but be forewarned that cursor operations are typically the worst performing 
operations that occur in T - SQL. If there is a set - based solution that can provide the same functionality as 
the cursor, you should choose the set - based solution. 

 T - SQL cursors ’  default behavior is  forward - only  and  updatable , unlike their counterparts used in other 
programming languages, which typically default to  forward - only read - only . This makes the T - SQL cursor 
even more expensive as far as performance is concerned. When a cursor is updatable it means that the 
cursor maintains a link to the underlying data from which it was built. If the underlying data changes, so 
will the contents of the cursor. To prevent this behavior, the cursor can be declared with an  INSENSITIVE  
option that makes it read - only and decreases the amount of resources needed to maintain it. Another 
method of mitigating the cost of a cursor is to mark only specific columns in the cursor as updatable 
rather than the default of all the columns. If you must use a cursor, keep this in mind and use the least 
expensive cursor possible. The examples used in this chapter follow these performance guidelines.  

  Creating and Navigating a Cursor 
 The first order of business is to declare a cursor - type variable. Because this is a special type of non - scalar 
object, the variable name isn ’ t prefixed with an at symbol (@). The cursor variable can be declared and 
defined on the same line with the  SELECT  statement used to populate the cursor: 

DECLARE curProduct INSENSITIVE CURSOR FOR SELECT ProductID, Name 

FROM Production.Product  

 To create a cursor that allows updates only to and from the Name column of the Product table, declare 
the cursor like this: 

DECLARE curProduct CURSOR FOR SELECT ProductID, Name 

FROM Production.Product

FOR UPDATE OF Name  

c09.indd   292c09.indd   292 10/31/08   6:25:26 PM10/31/08   6:25:26 PM



Chapter 9: Advanced Queries and Scripting

293

 The cursor isn ’ t actually populated until it is opened. Executing the  OPEN  command loads the cursor 
structure and data into memory: 

OPEN curProduct  

 At this point, the record pointer is positioned before the first row. The  FETCH NEXT  command navigates 
the pointer to the next record and returns a comma - delimited list of column values. In this case, the 
pointer is moved to the first row. Individual variables can be used to capture the values of the current 
row ’ s column values: 

DECLARE @ProdID Int

DECLARE @ProdName VarChar(100)

                   

FETCH NEXT FROM curProduct INTO @ProdID, @ProdName  

 After  FETCH NEXT  is executed, one of two things will happen: the record pointer will either be 
positioned on a valid record or it will navigate beyond the last row. The state of the pointer can be 
determined using the global variable  @@Fetch_Status . On a valid row, it returns  0 ; otherwise, it returns 
  – 1  or   – 2 . It returns   – 1  if there is no next row to fetch. If a   – 2  is returned, it means that the next row was 
deleted in the underlying table when using an updatable cursor. Using this variable, create a simple 
loop, navigating to the next record as long as  @@Fetch_Status  is equal to  0 : 

WHILE @@Fetch_Status = 0

   BEGIN

      PRINT @ProdName

      FETCH NEXT FROM curProduct INTO @ProdID, @ProdName

   END  

 In this example, you ’ re simply printing one of the variable values to the query results window. In 
production, you could use conditional statements to decide whether to perform related operations, such 
as inserting or deleting records. The real power of using cursors is in using them to conditionally call 
stored procedures. This way, you can use conditional logic to call different procedures under different 
conditions, and then a stored procedure can perform practically any combination of operations. 

 Finally, after navigating past the last record, it ’ s necessary to do some cleanup. Use the  CLOSE  command 
to close the cursor, and then use the  DEALLOCATE  command to recover the memory used by the cursor: 

CLOSE curProduct

DEALLOCATE curProduct  

 If we put it all together, here ’ s the entire script: 

DECLARE curProduct INSENSITIVE CURSOR 

FOR SELECT TOP 100 ProductID, Name FROM Production.Product

DECLARE @ProdID Int

DECLARE @ProdName VarChar(100)

                   

OPEN curProduct

FETCH NEXT FROM curProduct INTO @ProdID, @ProdName

WHILE @@Fetch_Status = 0

(continued)

c09.indd   293c09.indd   293 10/31/08   6:25:26 PM10/31/08   6:25:26 PM



Chapter 9: Advanced Queries and Scripting

294

   BEGIN

      PRINT @ProdName

      FETCH NEXT FROM curProduct INTO @ProdID, @ProdName

   END

CLOSE curProduct

DEALLOCATE curProduct  

 A list of product names is displayed in the query results pane for the first few products, as shown in 
Figure 9 - 19.   

Figure 9-19

Figure 9-20

 Just for kicks, display the actual execution plan and run this query again. This should shed some light on 
any questions of efficiency when using cursors. Each  FETCH NEXT  command causes a separate look 
operation, which is slow and resource intensive. Figure 9 - 20 shows only the first few of these operations. 
Cursors are powerful and give you procedural control over each row that T - SQL doesn ’ t otherwise allow. 
Using a cursor is the only way to loop through individual rows and execute explicit code for each. But if 
there is any other way to do the job, you should consider any alternative to using cursors, especially 
with large sets of data.     

(continued)

c09.indd   294c09.indd   294 10/31/08   6:25:26 PM10/31/08   6:25:26 PM



Chapter 9: Advanced Queries and Scripting

295

  Summary 
 There may be several ways to write some queries. Although there are some basic rules and guidelines to 
follow, the best approach will often depend on a number of factors including the volume of data, 
complexity of the database, and your business rules. Subqueries allow a  SELECT  statement to feed values 
or rows to another query. Subqueries can be scalar, single - value expressions, or nested rowset 
expressions. Joins can be implemented using subqueries rather than ANSI join syntax. Although often 
more complex and less efficient than standard joins, subquery joins can be used to process specialized 
business logic. If given the choice between standard join syntax and subqueries, you should typically 
favor standard joins. In any case, you can test your queries for performance and efficiency using 
graphical execution plans, SQL Profiler, System Monitor, and other benchmarking and tuning tools. The 
results are often surprising. Overall, be open to different ways to solve business problems. Try different 
forms of queries and explore various query expressions and techniques. Taking time to experiment, you 
will either confirm that you are using the best approach or find a better way to solve the problem.  

  Exercises 
 The following exercises will test your knowledge of advanced query techniques. To simplify the 
relationships and standardize differences between the 2005 and 2008 sample databases, you will create 
views to use in place of tables. 

 If you are using SQL Server 2008, run the following script: 

CREATE VIEW vw_Employee

AS

SELECT E.VacationHours, P.FirstName, P.LastName, E.BusinessEntityID AS 

EmployeeID

FROM HumanResources.Employee E INNER JOIN Person.Person P 

   ON E.BusinessEntityID = P.BusinessEntityID  

 If you are using SQL Server 2005, run the following script: 

CREATE VIEW vw_Employee

AS

SELECT E.VacationHours, C.FirstName, C.LastName, E.EmployeeID

FROM HumanResources.Employee AS E INNER JOIN Person.Contact AS C

  ON E.ContactID = C.ContactID  

  Exercise 1 
 Write a query to return a list of products in order of the product name, the list price, and the highest 
price for which that product has sold. Use an in - line, scalar query to calculate the highest sales price for 
the product. Columns in the result set should be labeled ProductName, ProductListPrice, and 
MaxSalesPrice.  

c09.indd   295c09.indd   295 10/31/08   6:25:27 PM10/31/08   6:25:27 PM



Chapter 9: Advanced Queries and Scripting

296

  Exercise 2 
 The following query returns the top 10 employees ’  accumulated vacation hours and employee names: 

SELECT TOP 10 

    FirstName + ‘ ‘ + LastName AS Name

  , VacationHours 

FROM vw_Employee AS E 

ORDER BY VacationHours DESC  

 This query returns the average vacation hours for all other employees as one summary row labeled 
 “ (other) ”  in - place of the employee ’ s name. A subquery is used to join the all employee rows to the results 
of the top 10 expression and then to eliminate these from the aggregated group: 

SELECT ‘(Other)’ AS Name, AVG(E1.VacationHours) AS VacationHours 

FROM vw_Employee AS E1

    LEFT OUTER JOIN 

    ( SELECT TOP 10 EmployeeID, VacationHours 

      FROM vw_Employee ORDER BY VacationHours DESC

    ) AS E2

    ON E1.EmployeeID = E2.EmployeeID

    WHERE E2.EmployeeID IS NULL  

 These two query results need to be combined into a  UNION  query to return a single result set. However, 
simply adding the  UNION  statement between them raises errors because of restrictions of the  UNION  
statement. You can work around these limitations by creating two alias tables similar to the one in the 
join statement of the second query, and selecting columns from them. Rewrite these statements so the 
final query has two alias table subqueries based on these two provided queries. Call them EMP1 and 
EMP2. Union the two subquery results together. Execute the query to verify that it returns 11 rows.  

  Exercise 3 
 Rewrite the first of these queries as a CTE named Top10VacHours. Select all records from this CTE.     

c09.indd   296c09.indd   296 10/31/08   6:25:28 PM10/31/08   6:25:28 PM



                                                        10    
Transactions          

 We live in a transactional world. In the not - too - distant future, some of us may be trying to explain 
the concept of using cash to our grandchildren:  “ Some people carried paper and small metal disks 
in their pockets. They had pictures of dead government leaders on them and each one was worth a 
different value. When you wanted to purchase something, you would hand the paper or metal 
money to a store clerk in exchange for the stuff you bought. ”  What a strange idea! 

 In the physical world, things move from one place to another. Like the money the customer hands 
to the store clerk, this transfer of ownership is a simple concept that even the least sophisticated 
members of the animal kingdom comprehend. In recent decades, however, mankind has managed 
to change the mechanics of moving things from one place to another within the information world. 
For example, on payday, chances are that you don ’ t actually receive real money directly from your 
employer. I haven ’ t seen a real paycheck for many years. My bank account balance is magically 
increased as my employer ’ s contracted payroll service provider posts a credit to my bank account. 
Of course, this happens right before the balance decreases due to a similar transaction performed 
by my mortgage company. 

 We perceive that things such as money, files, and data  move  from one place to another. Although 
the paradigm is the same  —  modeled after things in the physical world  —  it ’ s really all made up. 
We understand that data doesn ’ t  really  move. It gets copied from storage and the new copy is 
inserted into a new storage location, and then the original copy is deleted from its initial location. 
If you really want to get technical, the fact is that we ’ re not really moving, inserting, or deleting 
anything. We ’ re simply telling computers to transmit electronic pulses and then switch memory 
states and realign iron crystals on spinning hard drive platters. Was that too geeky? Sorry. 

 Anyone who has worked with computer files or a word processor understands these basic 
concepts. We think it ’ s important, occasionally, to revisit the facts and to fully understand what 
happens during this process of supposedly creating, copying, and moving things around within 
the computer space. Although we may or may not fully understand what happens at a low level 
within the system, as far as we ’ re concerned, records in databases are inserted, updated, deleted, 
and  “ moved ”  from one location to another.  

c10.indd   297c10.indd   297 10/31/08   6:26:12 PM10/31/08   6:26:12 PM



Chapter 10: Transactions

298

  Introducing Transactions 
 When we count money for a purchase and hand it to a store clerk, we have confidence that it ’ s all going 
to make it into the cash drawer. No matter what happens, we ’ re either going to leave that store with our 
money or the stuff we bought. If the power goes out or the cash register malfunctions, this shouldn ’ t 
greatly affect our transaction because one of us has the money physically in our hand. As data is 
processed and moved from one place to another, electronic impulses cause memory registers to 
 “ remember ”  our data. In simple computer processes, this exchange can take place thousands of times 
before a record reaches its destination. Until it is written to some form of permanent storage, the process 
can be easily interrupted and the data lost. Most of us have learned that the most effective way to 
prevent data loss is to make sure you always have at least two copies of your data. For example, if you 
intend to move an important file from one stand - alone computer ’ s hard disk to another, you copy it from 
the hard disk to a portable disk or memory device; but you leave the original copy on the source 
computer ’ s hard disk. Only after you verify that it has been copied to the target computer ’ s storage 
would you consider deleting it from the source. And, you always make a backup copy of important files 
from the hard disk in case it fails, right? Sure you do. 

 In a database, a transaction is simply a mechanism to ensure and verify that data gets to its intended 
destination. Just like a purchase or bank transaction, both parties must be satisfied with the results based 
upon some kind of pre - defined rule. They must agree on the anticipated outcome. After the transaction 
has been completed, they should agree that all of the conditions of the transaction have been met and 
that everything is in the proper place. After both parties agree that the transaction meets the pre - defined 
rules, they call it good and move on. 

 A transaction defines the scope or context of one or more database actions. SQL Server manages 
transactions in this manner: a T - SQL statement is used to state the intended outcome of a query. The 
relationships, constraints, and data types in the database define certain rules of behavior and the 
conditions for modifying data. The database engine must decide whether the query action can be 
conducted within these parameters before it inserts, deletes, or modifies any data within the 
transactional scope. Based on these conditions, the database engine decides to allow the operation to 
succeed or to fail, returning an error. 

  Transaction Types 
 All modifications to data take place in the context of a transaction. SQL Server is capable of using three 
types of optional transaction modes to manage data modification: 

   Explicit transaction   —  The explicit transaction is defined by the presence of an explicit  BEGIN 
TRANSACTION  statement followed by one or more dependent data modification statements and 
completed with an explicit  COMMIT TRANSACTION  statement. Error checking is added prior to 
the  COMMIT TRANSACTION  statement so that if an error occurred in any of the operations, the 
transaction can be reversed with a  ROLLBACK TRANSACTION  statement.  

   Implicit transaction   —  The implicit transaction follows the behavior of some other database 
products in that whenever a data modification is executed it  implicitly  begins a transaction. 
However, it does not complete the transaction and release the modified data until an explicit 
 COMMIT TRANSACTION  or  ROLLBACK TRANSACTION  statement is issued. Implicit transactions 
are enabled on a connection basis with the  SET IMPLICIT_TRANSACTIONS ON  command.  

❑

❑

c10.indd   298c10.indd   298 10/31/08   6:26:13 PM10/31/08   6:26:13 PM



Chapter 10: Transactions

299

   Auto - commit transaction   —  If a data modification statement is executed against the database 
without an explicit or implicit transaction, it is considered an auto - commit transaction. The 
modification contained in an auto - commit transaction follows the same pattern as other 
trans  actions as described in the next section. In short, it applies to only one operation at a time.    

 Which option is best? That depends on the application and whom you ask. Personally, we ’ re of the 
opinion that if you want SQL Server to behave a certain way, you should explicitly state this so there is 
no room for confusion. We are fans of explicit transactions. If we have five different operations that need 
to be performed as a unit, we can wrap them in an explicit transaction and we know they will either all 
succeed or fail as a unit. If we don ’ t want this behavior, we simply don ’ t define an explicit transaction 
and each statement will be performed separately, with no dependency on another. Anyone reading our 
code should be able to tell if multiple operations will behave within a transaction or not.  

  The  ACID  Test 
 Most of us have been burned by data loss problems enough times to realize that steps must be taken to 
ensure that data reliably gets from one place to another. Although there are a number of additional 
benefits, this is what transactions are all about. A bona fide transaction must meet the following criteria: 

   Atomic   —  All steps and operations that are part of a transaction are treated as an  atomic  unit. 
Either  all  succeed or  all  fail together.  

   Consistent   —  The outcome of any transaction is always predictable; all of the operations either 
fail or succeed. All operations abide by consistency rules and checks to ensure data integrity 
within the database.  

   Isolated   —  Any operations performed before, during, or after the transaction will see related 
data in a consistent state, rather than in a state of partial completion. Any user or operation that 
queries data affected by a transaction will perceive that the entire transaction was committed 
instantaneously.  

   Durable   —  If a transaction succeeds, data is written to disk and does not revert to its previous 
state. Data can survive system failure.     

  The Transaction Log 
 Meeting all of these criteria may seem like a rather tall order, but the way it works is actually quite 
elegant. SQL Server pulls this off by using redundancy. When a request is made to modify any data, the 
following actions take place: 

  1.   All data is managed in 8 kB storage units called  pages . The appropriate data pages, containing 
the records needing to be modified, are located in memory. If these pages are not yet in memory, 
they are placed in memory from the disk.  

  2.   The modifications (insert, update, or delete) are made to the applicable pages in memory.  

  3.   The modifications are written to the transaction log.  

  4.   The server issues a checkpoint that causes the changed (dirty) pages in memory to be written 
back to the hard disk. The pages in memory then have their  “ dirty ”  flag removed. If the 
transaction making the changes has been committed, the pages are released and other requests 
or transactions have access to them. If the checkpoint occurs prior to the transaction being 
committed, the pages are still locked until the transaction is committed.    

❑

❑

❑

❑

❑

c10.indd   299c10.indd   299 10/31/08   6:26:13 PM10/31/08   6:26:13 PM



Chapter 10: Transactions

300

 The transaction log is a separate file on disk, which is used to collect all successful data modification 
requests from all users and applications. During the execution of a data modification request, the 
transaction exists in the buffer cache and log cache. During the changes to the data pages in memory, the 
pages (and the pages on disk representing the data to be changed) are locked (or isolated) from access by 
other requests or transactions. The pages remain locked until they are released from the transaction. 
Figure  10 - 1  illustrates the transaction process.   

DML
Operations

DELETE . . .
INSERT . . .
UPDATE . . .
INSERT . . .
UPDATE . . .
UPDATE . . .
INSERT . . . Transactions

Rolled-Forward

Checkpoint

Transaction Log Relational Engine

 Figure 10 - 1 

 Depending on a database setting, the transaction log either continues to fill with archived transaction 
processes or gets truncated (removing all check - pointed transaction processes by setting the area of the 
transaction log up for overwrite). In a production database, the transaction log is typically allowed to 
grow until a scheduled backup cycle. This way, if the main database is damaged or lost, the transaction 
log becomes a short - term backup solution for new data.  

  Logged Operations 
 SQL Server ’ s default behavior is to log all insert, update, and delete operations. For the reasons we 
explained in the previous section, this generally makes sense. However, the transaction log and its 
related processes can burden the server with unnecessary work if you don ’ t need this level of protection. 
For example, if we had exported several thousand records to a text file, intending to load this data into 
our SQL Server database, this would be an exception to the day - to - day inserts normally performed by 
applications. Because we have a copy of the data in the export file and have backed up the data in our 
database, if this operation failed, we would simply correct the problem and try again. In this case, we 
could speed things up by performing a non - logged insert and bypass the transaction log. This is usually 
done using the Bulk Copy Task feature of SQL Server Integration Services (SSIS) or the Bulk Copy 
command - line utility, known as BCP. Non - logged operations are really the exception to the rule. Bulk 
operations are not a core feature of SQL and are beyond the scope of this book. For more information, 
use Books Online to read about the BCP utility and DTS.   

  Let ’ s Do  CRUD  with Data 
 As previously mentioned, you can really only do four things with data:  C reate it,  R ead it,  U pdate it, and 
 D elete it. These four operations form the basis of what is commonly called CRUD operations. So far, 
you ’ ve been doing a lot of reading using the  SELECT  statement. Now it ’ s time to work with data in a way 
that will affect the data in your database. 

c10.indd   300c10.indd   300 10/31/08   6:26:14 PM10/31/08   6:26:14 PM



Chapter 10: Transactions

301

  Adding Records 
 Adding rows is done using the  INSERT  statement. Inserts can be performed one row at a time or on 
multiple rows, depending on the technique, and target only one table. Before attempting to insert data 
into a table, it is important to know the following: 

  Which columns require values  

  Which columns have data - integrity constraints  

  Which columns are managed by the database through functions  

  Which columns have default values or allow null values  

  What the data types of the destination columns are    

 To get started, take a look at the Production.Product table in design view (see Figure  10 - 2 ). 

 This table has changed a little in the newer AdventureWorks2008 database, but we ’ re just using it as an 
example. The table shown has five columns, but only one column, the Name, requires a value because 
every other column either has a default value or accepts NULL. The LocationID column is the primary 
key. Because it is designated as an identity column, an incremental value will automatically be generated 
for this column by the database.   

❑

❑

❑

❑

❑

 Figure 10 - 2 

   INSERT  Statement 
 If you only need to provide a value for this column, the statement would be quite simple: 

INSERT INTO Production.Location ( Name ) 

SELECT ‘Secret Hiding Place’  

 The  INTO  keyword is optional and is often omitted. We like to include it because we think it reads more 
like natural language. Two different styles are used with the  INSERT  statement, and each has its own 
subtleties. Generally, you could select one technique and pretty much use it for all of your insert 
operations. We ’ ll show you some examples of each and let you decide when to use them.  

c10.indd   301c10.indd   301 10/31/08   6:26:14 PM10/31/08   6:26:14 PM



Chapter 10: Transactions

302

   INSERT     . . .  Values 
 The pattern of the  INSERT  statement is to provide a list of column names and then a list of values in 
parentheses. If values are provided for all columns or all columns with the exception of the identity 
column (only one identity column is allowed per table), the values are inserted in order, so no column 
name list is required. This technique is used to insert only one row into the table. 

 The Contact table is a good example going forward, but, like most of the tables in the new version of the 
AdventureWorks sample database, it includes some complicated features that will only get in the way 
right now. For the following examples, we will create a new table, similar to the Contact table, named 
MyContacts, by executing the following script. Note that the extra spaces and carriage returns are 
unnecessary and are added only to make this query more readable.   

CREATE TABLE MyContacts

    ( ContactID     int Identity(1, 1) NOT NULL

    , Title         nvarchar(8)   NULL

    , FirstName     nvarchar(50)  NOT NULL

    , MiddleName    nvarchar(50)  NULL

    , LastName      nvarchar(50)  NOT NULL

    , Suffix        nvarchar(10)  NULL

    , EMailAddress  nvarchar(50)  NULL

    , Phone         nvarchar(25)  NULL

    , IsActive      bit           DEFAULT 1

    )  

 The specific commands and options used to create this table will be covered in Chapter  13 . For now, just 
execute this script to help demonstrate how new records are inserted into this table. 

 For our first example, we are going to include values for only four of the columns. Note that we are 
skipping the ContactID column. If we were to include a value for the ContactID column, our  INSERT  
statement would fail because this column can only be managed by the  IDENTITY()  function of the 
database. In the  INSERT  statement itself, we include the column names and in the Values list, we provide 
a corresponding value: 

INSERT INTO MyContacts (Title, FirstName, LastName, Phone)

VALUES (‘Ms.’, ‘Pebbles’, ‘Flintstone’, ‘123-4567’)  

 Note the use of single quotes to denote literal values to be inserted into the table. If we had a numeric 
value to insert, we would not use the quotes. The order of the values must match the order of the 
columns in the table if no column list is provided, with the exception of any identity column that is 
omitted as the following example shows: 

INSERT INTO MyContacts 

VALUES ( ‘Mr.’, ‘Fred’, ‘Caveman’, ‘Flintstone’

        , ‘Phd’, ‘fredf@bedrock.com’, ‘(111) 123-4567’

        , DEFAULT)  

 There are a couple of things to think about in this query that we are not quite ready to cover. First, not all 
of the table columns are included in the query. Second, one of the columns has a  DEFAULT  rule defined 
for it. Because we are just working on the basics right now, don ’ t worry about this. It will be covered in 
the upcoming section  “ Inserting NULL, Defaults, and Other Column Considerations. ”   

c10.indd   302c10.indd   302 10/31/08   6:26:15 PM10/31/08   6:26:15 PM



Chapter 10: Transactions

303

   INSERT     …     SELECT  
 This form of the  INSERT  statement is similar to the previous values form except it uses a  SELECT  
statement to provide values. As discussed in earlier chapters, the  SELECT  statement can return scalar 
literal values, as well as sets of literal values, without even hitting a table in the database. Because 
 SELECT  can be used to include a variety of different types of values (from tables, joins, unions, groups, 
aggregates, and literals), this is a much more flexible technique. Practically anything can be inserted as 
long as the column count and data types match. Because a  SELECT  statement can return multiple rows, 
this would result in multiple rows being inserted into the destination table. The following is the 
equivalent of the previous example using this technique. In this example, columns and values for the 
MiddleName and NameStyle columns have been omitted. This insert is successful because NULL will 
automatically be inserted as needed (because these columns allow the NULL value): 

INSERT INTO MyContacts (Title, FirstName, LastName, Phone)

SELECT ‘Mr.’, ‘Bam Bam’, ‘Rubble’, ‘234-5678’  

 Because we ’ ve executed the previous two  INSERT  statements, we ’ ll just return all the records from the 
MyContacts table ( SELECT * FROM MyContacts ) and scroll down to view the last two rows, shown in 
Figure  10 - 3 .   

Figure 10-3

 You can see that the ContactID column contains an auto - generated, sequential identity value. The 
MiddleName column is set to NULL and the IsActive is set to its default value of 0.  

  Inserting Multiple Records 
 A convenient new addition to SQL Server 2008 T - SQL is the ability to insert multiple rows in one  INSERT  
statement. This is accomplished with a modified version of the  INSERT     . . .     VALUES  pattern. Just add each 
record to be inserted in a separate set of parentheses, each separated by a comma, as in the following 
example: 

INSERT INTO MyContacts (Title, FirstName, LastName, Phone)

VALUES

   ( ‘Mr.’, ‘Great’, ‘Gazoo’, ‘234-9999’ )

  ,( ‘Mr.’, ‘George’, ‘Slate’, ‘123-4567’ )  

 There is no limit to the number of new records that may be inserted in a single statement. This is a nice 
and simple addition to the SQL Server product.  

  Inserting  NULL , Defaults, and Other Column Considerations 
 A NULL is a special value that essentially means that we didn ’ t want to place any other value in a 
column. It ’ s the SQL standard way of saying  “ nothing. ”  Most common data types have a default value. 
For example, a  numeric  type by default is zero. The problem with this is that zero means something in 
the numerical world. If you are storing manufacturing unit records and a record stores the number of 

c10.indd   303c10.indd   303 10/31/08   6:26:15 PM10/31/08   6:26:15 PM



Chapter 10: Transactions

304

units produced, any number in that column would have meaning. But if your intention is to state that 
you don ’ t know what that value is, you don ’ t want to store zero because that means that you actually 
produced zero units. In the MyContacts example, we don ’ t have Bam Bam ’ s middle name. Frankly, we 
don ’ t even care what it is. Whether we don ’ t know or we don ’ t care, we use the value NULL to store a 
placeholder for this missing value. 

 Different settings at the server, database, and user session level for SQL Server can affect the way NULL 
is available for a particular column. Although not necessarily complicated, this can be a particularly 
confusing issue because there are a number of variable elements to be considered. Before you read on, 
please keep in mind that this only becomes an issue if the default settings are altered and, in any case, 
the situation can be remedied by explicitly defining columns in tables as NULL or NOT NULL. 

 You can modify database properties through SQL Server Management Studio or by using T - SQL script. 
To view or change this option, in the Management Studio Object Browser, right - click the name of the 
database and then choose Properties from the menu. Figure  10 - 4  shows the Properties dialog (Options 
tab) for SQL Server 2008 and as you can see, the ANSI NULL Default property is set to False.   

Figure 10-4

 The same settings can be applied using script similar to the following: 

sp_dboption ‘AdventureWorks2008’, ‘ANSI Null Default’, ‘False’  

c10.indd   304c10.indd   304 10/31/08   6:26:16 PM10/31/08   6:26:16 PM



Chapter 10: Transactions

305

 The following script will override the database default setting when executed prior to creating or 
altering a table: 

SET ANSI_NULL_DFLT_ON ON  

 When a table is created, the database settings apply unless they are explicitly overridden in the session. 
When  ANSI_NULL_DEFAULT  is set to  ON  (True), all user - defined columns and data types that have not 
explicitly been defined as NOT NULL during the creation or altering process of the table default to 
allowing NULL values. This is the opposite of the default setting for SQL Server when installed. It is 
good practice to explicitly define NULL and NOT NULL regardless of the current or eventual resetting 
of  ANSI_NULL_DEFAULT . If this setting has been altered, the  INSERT  statements assume that the opposite 
will fail. Note that Constraints (Check and Default) will apply before NULL. 

 The Contact table in AdventureWorks for SQL Server 2005 is roughly equivalent to the Person table in 
AdventureWorks2008. To keep things simple, we are only going to use a subset of the columns from 
these tables in the following examples. We will provide an example for each of the two product versions. 

 The AdventureWorks2008 Person table contains these columns that are explicitly NOT NULL: 

  BusinessEntityID  

  PersonType  

  NameStyle  

  FirstName  

  LastName  

  EmailPromotion  

  rowguid  

  ModifiedDate    

 The AdventureWorks Contact table contains these columns that are explicitly NOT NULL: 

  ContactID  

  NameStyle  

  FirstName  

  LastName  

  EmailPromotion  

  rowguid  

  PasswordHash  

  PasswordSalt  

  ModifiedDate    

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd   305c10.indd   305 10/31/08   6:26:17 PM10/31/08   6:26:17 PM



Chapter 10: Transactions

306

 Of these, the primary key (BusinessEntityID or ContactID) value is supplied by the  IDENTITY()  
function. The NameStyle, ModifiedDate, and rowguid are supplied by Default Constraints if no values 
are explicitly provided (the rowguid ’ s Default Constraint employs the  NEWID()  function, which can be 
used to generate a globally unique identifier [GUID]). All other columns, as previously stated, are 
explicitly defined to either prohibit or allow NULL values.  

  Inserting Rows from Another Table 
 Using the  INSERT     . . .     SELECT  pattern, we can bring data from another table or complex query. 
Conveniently, because we modeled the MyContacts table after the Contact table, we can use it to 
populate our table. Columns in our select list don ’ t have to have the same names but do have to be 
compatible data types. First, we ’ ll just use a  SELECT  statement to view the Person or Contact row we 
intend to insert: 

 AdventureWorks2008: 

SELECT FirstName, LastName, Title

FROM Person.Person

WHERE BusinessEntityID = ‘273’  

 AdventureWorks: 

SELECT FirstName, LastName, Title 

FROM Person.Contact

WHERE ContactID = ‘1010’  

 This returns one record, as shown in Figure  10 - 5 .   

Figure 10-5

 It is the best practice to always test the  SELECT  statements that will be used in transaction statements to 
prevent failures within the Insert, Update, or Delete statement. The second step is to add the  INSERT  
statement to the front of this query and make sure the columns match up between the two lists: 

 AdventureWorks2008: 

INSERT INTO MyContacts (FirstName, LastName, Title)

SELECT FirstName, LastName, Title 

FROM Person.Person

WHERE BusinessEntityID = ‘273’  

 AdventureWorks: 

INSERT INTO MyContacts (FirstName, LastName, Title)

SELECT FirstName, LastName, Title 

FROM Person.Contact

WHERE ContactID = ‘1010’  

c10.indd   306c10.indd   306 10/31/08   6:26:17 PM10/31/08   6:26:17 PM



Chapter 10: Transactions

307

 Finally, execute a  SELECT  statement against the MyContacts table and scroll to the bottom of the list to 
check the result, as shown in Figure  10 - 6 .   

Figure 10-6

 Great care should be taken to limit the size (rows returned) of the  SELECT  statement with a  WHERE  clause 
when querying another table. Each row requested in the  SELECT  statement will remain locked from 
changes during the Insert process. This will momentarily block other requests for operations performed 
on the same table. In an active, multi - user database, nearly every operation carries a statistical possibility 
of coinciding with a conflicting operation. Most of the time, these operations are simply queued to 
execute in turn. The database engine will retry a blocked transaction before it times out in error. 
However, if two competing operations happen to lock the same tables and are waiting for the availability 
of locked objects before they can continue, this could result in a deadlock situation in the database. The 
specific behavior will depend on transaction - level locking options and database settings.    

SELECT INTO  
 At times, you may want to populate a new or a temporary table with the results of a query, a technique 
that can be a real time - saver. Instead of creating a new table the old - fashioned way (by defining all of the 
columns and data types), and then using an  INSERT  statement to populate the new table from existing 
data, this statement simply creates the table on - the - fly using the output and data types from a  SELECT  
statement. Although we try to avoid storing duplicate data when it ’ s not necessary, sometimes it ’ s just 
easier to copy results into a table for temporary storage  —  sort of a snapshot of information that alleviates 
locking of the transactional table by read requests for reports and so on. This might be especially useful to 
support a complicated report. The results of a complex query may be written to a table either in the 
current database, a reporting database or warehouse, or the TempDB database, where the data can be 
reused in other queries. The  INSERT INTO  statement requires that you target an existing table. If you want 
to create a new table from the results of the query (from one or multiple tables), use the  SELECT INTO  
statement. In this example, we select a subset of contact records and create a new table called MyContacts: 

 AdventureWorks2008: 

SELECT FirstName, LastName, Title INTO MyOtherContacts 

FROM Person.Person WHERE Suffix = ‘Jr.’  

 AdventureWorks: 

SELECT FirstName, LastName, Title INTO MyOtherContacts 

FROM Person.Contact WHERE Suffix = ‘Jr.’  

 Keep in mind that the new table is a permanent member of the database like any other table, unless you 
have placed it in the TempDB database as a temporary table. Typically, in a production environment, a 
database administrator wouldn ’ t grant the privilege to create new tables to all users. If you only need to 
use the data for a short time, you can create a temporary table by starting the table name with a pound 
sign (#) or double pound sign (##). A single pound sign denotes a local temporary object that is only 
visible from the current connection. A double pound sign denotes a global temporary object that is 

c10.indd   307c10.indd   307 10/31/08   6:26:17 PM10/31/08   6:26:17 PM



Chapter 10: Transactions

308

visible to all connections as long as the connection that created it is still active. Here is the same 
statement that creates a temporary table: 

 AdventureWorks2008: 

SELECT FirstName, LastName, Title INTO #MyOtherContacts 

FROM Person.Person WHERE Suffix = ‘Jr.’  

 AdventureWorks: 

SELECT FirstName, LastName, Title INTO #MyOtherContacts 

FROM Person.Contact WHERE Suffix = ‘Jr.’  

 The difference between this and the previous example is that the table will be created in the TempDB 
database. When the connection used to create this table is closed, SQL Server automatically removes the 
table and reclaims the storage space. The local temporary table is often used in a stored procedure where 
cursors are inefficient. The stored procedure first creates the temporary table using a  SELECT INTO  
statement and then returns rows from this table as a result set. When the stored procedure completes and 
the connection is closed, the local temporary table in TempDB is dropped.    

Managing Inserts Using Stored Procedures 
 In a large - scale production environment, administrators often limit users ’  ability to insert, update, and 
delete records directly. Implementing such restrictions while accommodating all user and application 
needs requires careful planning and can be a lot of work. One popular approach is to deny users all 
transactional activity against tables and create stored procedures to manage the inserts, updates, and 
deletes. For each major entity in the database, there will typically be at least three stored procedures: to 
insert, update, and delete records in that table. Using stored procedures offers the added benefit of 
enforcing any special business rules, simplifying complex tables and returning custom error messages. 

 Chapter  13  takes a comprehensive look at stored procedures. For now, we ’ ll keep this simple by creating 
a stored procedure to insert rows into the MyContacts table. The input parameters are listed first. As you 
can see in the following code example, each of these parameters corresponds to a column in the table.   

CREATE PROCEDURE spIns_MyContacts

   @FirstName      nvarchar(50),

   @LastName       nvarchar(50),

   @Phone          nvarchar(25)

AS

   INSERT INTO MyContacts (FirstName, LastName, Phone)

   SELECT @FirstName, @LastName, @Phone

RETURN @@Identity  

 This procedure accepts three input parameters:  @FirstName ,  @LastName , and  @Phone . These 
parameters are used to pass values to the  INSERT  statement. The global constant  @@Identity  is used to 
obtain the last identity value  —  in this case, the new ContactID value generated by this  INSERT  
statement. To test this procedure, execute the following SQL statement: 

spIns_MyContacts ‘Betty’, ‘Rubble’, ‘(111) 234-9876’  

c10.indd   308c10.indd   308 10/31/08   6:26:18 PM10/31/08   6:26:18 PM



Chapter 10: Transactions

309

 And just to keep things real, here is an example of a more production - like stored procedure that will 
insert records into the AdventureWorks Product table. Note that the required (non null) parameters are 
listed first. This is to simplify the execution call so optional parameters may be omitted.   

CREATE PROCEDURE spIns_Product

  @ProductName           nVarChar(50)

, @StandardCost          Money

, @SafetyStockLevel      SmallInt

, @ReorderPoint          SmallInt

, @ListPrice             Money

, @DaysToManufacture     Int

, @SellStartDate         DateTime

, @DiscontinuedDate      DateTime = Null

, @MakeFlag              Bit = 1

, @FinishedGoodsFlag     Bit = 1

, @Color                 nVarChar(15) = Null

, @Size                  nVarChar(50) = Null

, @SizeUnitMeasureCode   nChar(3) = Null

, @WeightUnitMeasureCode nChar(3) = Null

, @Weight                Float = Null

, @ProductLine           nChar(2) = Null

, @Class                 nChar(2) = Null

, @Style                 nChar(2) = Null

, @ProductSubCategoryID  SmallInt = Null

, @ProductModelID        Int = Null

, @SellEndDate           DateTime = Null

AS

INSERT INTO Production.Product

 (

    Name

  , DiscontinuedDate

  , MakeFlag

  , StandardCost

  , FinishedGoodsFlag

  , Color

  , SafetyStockLevel

  , ReorderPoint

  , ListPrice

  , Size

  , SizeUnitMeasureCode

  , WeightUnitMeasureCode

  , Weight

  , DaysToManufacture

  , ProductLine

  , Class

  , Style

  , ProductSubCategoryID

  , ProductModelID

  , rowguid

  , SellStartDate

  , SellEndDate

 )

(continued)

c10.indd   309c10.indd   309 10/31/08   6:26:18 PM10/31/08   6:26:18 PM



Chapter 10: Transactions

310

SELECT

    @ProductName

  , @DiscontinuedDate

  , @MakeFlag

  , @StandardCost

  , @FinishedGoodsFlag

  , @Color

  , @SafetyStockLevel

  , @ReorderPoint

  , @ListPrice

  , @Size

  , @SizeUnitMeasureCode

  , @WeightUnitMeasureCode

  , @Weight

  , @DaysToManufacture

  , @ProductLine

  , @Class

  , @Style

  , @ProductSubCategoryID

  , @ProductModelID

  , NEWID()

  , @SellStartDate

  , @SellEndDate

-- Return the new ProductID key identity value --

RETURN @@IDENTITY     

  Modifying Records 
 When any data in a record or group of records is modified, the user or application making the changes 
must have exclusive access to the record or records for a short period of time. This locking mechanism is 
an important part of SQL Server ’ s transaction management model. So, what exactly gets locked? This 
depends on different factors. SQL Server supports row - level locking and, when feasible, will lock a 
single row so that neighboring rows don ’ t get locked, affecting other users. This was an issue in earlier 
versions of SQL Server that supported only page - level locking. In truth, SQL Server will sometimes lock 
all of the records in an 8KB page, SQL Server ’ s native storage allocation unit. It may do this because it 
deems this method to be faster or more efficient than locking individual records. Based on inter - table 
relationships, when a row is modified in one table, locks may be placed on dependent rows in the related 
table. It may also choose to lock an entire table, groups of tables, or even the entire database, under 
certain circumstances. 

 The database engine must make decisions about how it will process each transaction. Based on the scope 
or number of records involved in a transaction, different locking options may be invoked to manage the 
transaction as efficiently as possible. With rare exception, this should be completely transparent to all 
users and operations. Any concurrent or conflicting requests are simply queued and executed in turn. 
Only after a transaction request has waited several seconds will it time - out and return an error. 
Fortunately, SQL Server manages record - locking and data modification automatically. Understanding 
the fundamentals of SQL Server ’ s locking behavior will help you work with the database engine as you 
modify data. Multi - table updates and other conditions where you should be mindful of these issues are 
discussed at the end of this chapter. 

(continued)

c10.indd   310c10.indd   310 10/31/08   6:26:18 PM10/31/08   6:26:18 PM



Chapter 10: Transactions

311

   UPDATE  Command 
 Data is modified one table at a time. A single  UPDATE  statement can affect one, many, or all records in a 
table depending on filtering criteria. The syntax is uncomplicated. Column values are modified using the 
 SET  keyword.  

  Filtering Updates 
 There is no undo feature in T - SQL, short of restoring a backup. Because an update can affect many 
records, it is important to be absolutely sure of the records you intend to modify. To be cautious, a trial is 
advisable using only a  SELECT  query. Inspect the rows returned and then, after you verify that these are 
the rows you want to change and that the target values are correct, add the  UPDATE  command to your 
query. Here ’ s an example. Our objective is to raise the standard cost for all mountain bikes by 10 percent. 
We are going to break this down into steps to verify the records and our calculation before actually 
performing the update. 

 You may recall that we used a similar query in Chapter  4  to raise the StandardCost. If you have worked 
through either of these exercises, the StandardCost values in your Product table may be different than ours. 

 The first step is to perform a simple  SELECT  query. This query returns the product name and current 
cost: 

SELECT Name, StandardCost 

FROM Production.Product

WHERE ProductSubCategoryID = 1  

 In the results, shown in Figure  10 - 7 , we verify that these are all mountain bikes and that the 
StandardCost column contains the values we want to modify.   

Figure 10-7

 The next step is to calculate the new value for the StandardCost column. We ’ ll create an additional 
column with the calculated value: 

SELECT Name, StandardCost, StandardCost * 1.1 

FROM Production.Product

WHERE ProductSubCategoryID = 1  

c10.indd   311c10.indd   311 10/31/08   6:26:19 PM10/31/08   6:26:19 PM



Chapter 10: Transactions

312

 Now, we check the calculated value and take a quick look over the entire list to make sure everything is 
in order (see Figure  10 - 8 ).   

Figure 10-8

 The calculated value is correct  —  a 10 percent increase  —  and the row selection is correct, so we ’ ll move 
on to the next step and prepare to modify these rows. 

 The  FROM  clause gets moved to the top and becomes the  UPDATE  statement. We are dropping the Name 
column because it is not affected by this query, and then we are using the remaining two references to 
the StandardCost column to form the  SET  statement: 

UPDATE Production.Product

SET StandardCost = StandardCost * 1.1 

WHERE ProductSubCategoryID = 1  

 When this statement is executed in the Query Editor, no results are returned. The following message is 
displayed on the Messages tab after the name of your server and user name: 

(32 row(s) affected)  

 To verify the results, we ’ ll execute the first query again: 

SELECT Name, StandardCost 

FROM Production.Product

WHERE ProductSubCategoryID = 1  

 This time, the StandardCost values have increased by 10 percent, as shown in Figure  10 - 9 .   

Figure 10-9

c10.indd   312c10.indd   312 10/31/08   6:26:19 PM10/31/08   6:26:19 PM



Chapter 10: Transactions

313

 When working with important data, we try to make it a point to test our queries in this way before 
actually performing the update. Often, we won ’ t if it ’ s a simple query and we are certain that we have it 
right the first time. However, we have learned that it ’ s better to err on the side of caution. In any case, 
make sure you have a current backup copy of the data just in case things don ’ t go as planned. 

 Now, let ’ s look at some variations of the  UPDATE  statement. In the previous example, we updated one 
column value. Modifying multiple values is quite easy. You ’ ll perform this exercise with a little less hand-
holding. Begin by executing the following query to view all mountain bike products: 

SELECT ProductID, Name, StandardCost, Color

FROM Production.Product

WHERE ProductSubCategoryID = 1  

 Make note of the first record. Unless you ’ ve run the next query before, the name should be  Mountain - 100 
Silver, 38 . Also make note of the StandardCost and Color column values. We want to change the color, 
cost, and the name. The name value will reflect the new color and a more descriptive frame size. 
Figure  10 - 10  shows these records.   

Figure 10-10

 Now update this record. Each column value assignment is included in a comma - delimited list in the  SET  
statement. This statement shows how to update a product record with multiple column values: 

UPDATE Production.Product

SET  Name = ‘Mountain-100 Gold, 38mm’

   , StandardCost = 2200

   , Color = ‘Gold’

WHERE ProductID = 771  

 This, of course, modifies only the silver 100 model, 38mm mountain bike. If you run the first of these two 
queries, you should see that it is now a gold bike along with the other changes made to the cost and 
name. The results are shown in Figure  10 - 11 .     

Figure 10-11

c10.indd   313c10.indd   313 10/31/08   6:26:20 PM10/31/08   6:26:20 PM



Chapter 10: Transactions

314

Updating Rows Based on Multiple Tables 
 Sometimes you will need to modify records in one table based on conditions in another table. This can be 
accomplished using a join or subquery. The rule is that you can only update column values in one table. 
In the following example, we join the SalesOrderHeader and SalesOrderDetail tables. Based on criteria in 
the header table, we modify the order quantity value in the related detail row: 

UPDATE  SOD

SET     OrderQty = 10

FROM    Sales.SalesOrderDetail SOD

INNER JOIN Sales.SalesOrderHeader SOH

        ON SOD.SalesOrderID = SOH.SalesOrderID

WHERE   SOH.PurchaseOrderNumber = ‘PO29199294’  

 In this case, there is only one related detail row but there could be multiple detail rows related to the 
header row. 

 When setting values, it ’ s common to derive those values from various system functions. One of the 
simplest and most common of these functions is  GETDATE() , which returns the current date and time. 
Using this function, we ’ ll stamp an order record to indicate that it has been shipped. First, we ’ ll set the 
stage for this scenario. In the AdventureWorks2008 database, all the order records have already been 
marked as having been shipped. Suppose that a customer calls your customer service department asking 
about their order. You look up the order and see that it is marked as having been shipped to the 
customer. Upon careful investigation, you discover that the package was returned because the 
customer ’ s address was incorrect. Your first order of business is to update the record to indicate that it 
was not shipped (or at least not received by the customer). The order in question is SalesOrderID 5005. 
This statement will remove the ship date, setting it to NULL: 

UPDATE Sales.SalesOrderHeader

SET ShipDate = NULL

WHERE SalesOrderID = 43659  

 Now you obtain the correct address and schedule the package for shipment. Once confirmed, you 
update the order record with the current data and time using the  GETDATE()  function: 

UPDATE Sales.SalesOrderHeader

SET ShipDate = GETDATE()

WHERE SalesOrderID = 43659

     Updating Using Views 
 Most database professionals agree that the traditional purpose for views is to provide a read - only view 
of data from tables. One of the most compelling capabilities is that sensitive data can be secured and 
protected  —  both selected rows and columns hidden from the user ’ s view. Complicated queries and 
joins can be represented as if they were a single table. We don ’ t normally think of these  “ virtual tables ”  
as being updatable, but it is possible to update records through views under certain conditions. Updates 
can only affect the columns of one table at a time. Further, values created by grouping and aggregation 
cannot be updated. As a rule, if you intend to create a view to support updates, it should either reference 
only one table or multiple tables through inner joins. All required columns must be included, and update 
statements must include only references to a single table within the view. If you plan to perform updates 
through existing views, be prepared for a bumpy ride as there are very specific requirements about 
indexes and locking options that can make this practice quite restrictive. 

c10.indd   314c10.indd   314 10/31/08   6:26:21 PM10/31/08   6:26:21 PM



Chapter 10: Transactions

315

   Updating Records Using Stored Procedures 
 Probably the most comprehensive and secure method for managing record updates is to allow updates 
only through stored procedures. When this approach is taken, a separate stored procedure is typically 
used to modify the records for each major entity in the database. The following example is a stored 
procedure to modify a record in the MyContacts table we created earlier.   

CREATE PROCEDURE spUpd_MyContacts

    @ContactID      int

  , @FirstName      nvarchar(50)

  , @LastName       nvarchar(50)

  , @Phone          nvarchar(25)

AS

   UPDATE MyContacts 

   SET FirstName = @FirstName

     , LastName = @LastName

     , Phone = @Phone  

 Executing this procedure is simple. We just pass the ContactID used to identify the record we want to 
update along with the values for each column as parameters defined in the procedure script: 

spUpd_MyContacts 5, ‘Betrice’, ‘Rubble’, ‘(222) 234-7654’  

 Here ’ s an example of a slightly more sophisticated stored procedure that updates a record in the Product 
table. Note that the required parameters are listed first, followed by those with defaults that can be 
ignored when the procedure is called. We ’ ve made a point to include all of the columns in this table just 
to demonstrate what this would normally look like: 

CREATE PROCEDURE spUpd_Product

  @ProductID             Int

, @ProductName           nVarChar(50)

, @StandardCost          Money

, @SafetyStockLevel      SmallInt

, @ReorderPoint          SmallInt

, @ListPrice             Money

, @DaysToManufacture     Int

, @SellStartDate         DateTime

, @DiscontinuedDate      DateTime = Null

, @MakeFlag              Bit = 1

, @FinishedGoodsFlag     Bit = 1

, @Color                 nVarChar(15) = Null

, @Size                  nVarChar(50) = Null

, @SizeUnitMeasureCode   nChar(3) = Null

, @WeightUnitMeasureCode nChar(3) = Null

, @Weight                Float = Null

, @ProductLine           nChar(2) = Null

, @Class                 nChar(2) = Null

, @Style                 nChar(2) = Null

, @ProductSubCategoryID  SmallInt = Null

, @ProductModelID        Int = Null

, @SellEndDate           DateTime = Null

(continued)

c10.indd   315c10.indd   315 10/31/08   6:26:21 PM10/31/08   6:26:21 PM



Chapter 10: Transactions

316

AS

UPDATE Production.Product

SET 

  Name                   = @ProductName

, DiscontinuedDate       = @DiscontinuedDate

, MakeFlag               = @MakeFlag

, StandardCost           = @StandardCost

, FinishedGoodsFlag      = @FinishedGoodsFlag

, Color                  = @Color

, SafetyStockLevel       = @SafetyStockLevel

, ReorderPoint           = @ReorderPoint

, ListPrice              = @ListPrice

, Size                   = @Size

, SizeUnitMeasureCode    = @SizeUnitMeasureCode

, WeightUnitMeasureCode  = @WeightUnitMeasureCode

, Weight                 = @Weight

, DaysToManufacture      = @DaysToManufacture

, ProductLine            = @ProductLine

, Class                  = @Class

, Style                  = @Style

, ProductSubCategoryID   = @ProductSubCategoryID

, ProductModelID         = @ProductModelID

, rowguid                = NEWID()

, SellStartDate          = @SellStartDate

, SellEndDate            = @SellEndDate

WHERE ProductID = @ProductID  

 Note that most of the parameters in the list of input parameters (the variable names preceded with  @ ) 
are assigned default values. Some accept NULL whereas others, such as  @MakeFlag  and 
 @FinishedGoodsFlag , are set to the bit value  1 , or  True . This is so these parameters are optional when 
executing the procedure. The rowguid column is set using the  NEWID()  function to generate a unique 
value. This may or may not be appropriate logic in an update procedure and will depend on specific 
business requirements. We have included this just to demonstrate a variety of techniques for setting 
values. 

 This stored procedure is actually simplified. In production, procedures typically include some 
conditional business logic and error - handling code. These scripts can be time   consuming and 
cumbersome to write. However, once written and debugged, using stored procedures can significantly 
simplify data management going forward. Chapter  13  revisits this stored procedure when discussing the 
finer points of database programming.    

  Removing Records 
 Removing records from a table is very easy to do  —  maybe too easy. Depending on your viewpoint, this 
convenience could be a blessing or a curse. Take care before you start practicing your deleting skills on 
production data. Having said that, we are going to ask SQL Server to delete all of the product records in 
the AdventureWorks database. 

(continued)

c10.indd   316c10.indd   316 10/31/08   6:26:21 PM10/31/08   6:26:21 PM



Chapter 10: Transactions

317

   DELETE  Command 
 As you can see, this is a simple statement. There is no need to address specific columns because the 
 DELETE  statement removes entire rows of data: 

DELETE FROM Production.Product  

 The  FROM  clause is actually optional. Personally, we find it a little easier to read this statement with the 
 FROM  clause but that ’ s a minor point. This statement does the same thing: 

DELETE Production.Product  

 Did it work? No. SQL Server returned an error, fortunately: 

The DELETE statement conflicted with the REFERENCE constraint 

“FK_ProductInventory_Product_ProductID”. The conflict occurred in database 

“AdventureWorks”, table “Production.ProductInventory”, column ‘ProductID’.

The statement has been terminated.  

 Due to the foreign key constraint displayed in the error the statement failed. The database won ’ t allow 
rows to be deleted if there are related rows in another table. What about the product records that do not 
have related records in another table? That ’ s not going to happen either, because every Insert, Update, 
and Delete statement is automatically wrapped into a transaction. You ’ ll recall that transactions are an 
all - or - nothing proposition; either all the records are affected or none of them are. In this case, no records 
are affected.   

Embrace the  WHERE  Clause 
 Just as when updating records, it ’ s important to test the water and make sure you delete the records you 
intend to. The Product table has foreign key constraints defined with several tables, which make it 
difficult to delete existing records. For demonstration purposes, we ’ ll add a few products that we can 
play with: 

INSERT INTO Production.Product (Name, ProductNumber, StandardCost, ListPrice, 

SafetyStockLevel, ReorderPoint, DaysToManufacture, SellStartDate)

VALUES 

  ( ‘Widget 2002’, ‘wi002’, 50.05, 49.99, 10, 5, 2, GETDATE() )

 ,( ‘Widget 2003’, ‘wi003’, 55.97, 49.99, 10, 5, 2, GETDATE() )

 ,( ‘Widget 2004’, ‘wi004’, 42.97, 49.99, 10, 5, 2, GETDATE() )

 ,( ‘Widget 2005’, ‘wi005’, 45.97, 49.99, 10, 5, 2, GETDATE() )   

 Your objective is to remove all product records for products that would be unprofitable to sell, where the 
ListPrice is less than the StandardCost. Before actually deleting any records, test your criteria using a 
 SELECT  statement: 

SELECT ProductID, Name, ProductNumber, ListPrice, StandardCost

FROM Production.Product

WHERE StandardCost  >  ListPrice  

c10.indd   317c10.indd   317 10/31/08   6:26:22 PM10/31/08   6:26:22 PM



Chapter 10: Transactions

318

 Two rows meet these criteria, as shown in Figure  10 - 12 .   

Figure 10-12

 After verifying that these are the records you intend to delete, write the  DELETE  statement, appending 
this  WHERE  clause to the end to affect the same records: 

DELETE FROM Production.Product

WHERE StandardCost  >  ListPrice  

 These two records are deleted.    

Deleting Records Based on Another Table 
 You may need to remove records from one table based on conditions in another table. Usually there will 
be a relationship of some kind between these tables. Deletes can be facilitated using any type of join or 
subquery expression between multiple tables. 

 In this scenario, suppose that one of your salespeople, Amy Alberts, has left the company and you want 
to archive all of the related sales orders and detail records. You ’ ve already copied these records to their 
respective archive tables so now all you need to do is delete them. Amy was the salesperson for 39 sales 
order records with 586 related order detail records. 

 Before we continue, we would like to work with backup copies of the SalesOrderDetail and 
SalesOrderHeader tables. This will allow us to delete records without affecting the existing sample data 
already in the AdventureWorks database. Execute the following script to create a new copy of this table: 

SELECT * INTO MySalesOrderDetail FROM Sales.SalesOrderDetail

SELECT * INTO MySalesOrderHeader FROM Sales.SalesOrderHeader  

 The following queries will use the new MySalesOrderDetail and MySalesOrderHeader tables without 
removing any records from the existing tables. For the purpose of this exercise, assume that we are using 
the SalesOrderDetail and SalesOrderHeader tables instead of the copies we just created.  

  Try It Out 

 Figure  10 - 13  shows the relationship between the tables involved. By specifying an EmployeeID (on the 
left side of the diagram), you can delete related SalesOrderDetail rows. The SalesOrderHeader, which 
defines orders, is related to the SalesPerson table through the SalesPersonID foreign key. This is a 
many - to - many intersect table between Employee and SalesOrderHeader. Order details, in the 
SalesOrderDetail table, are related to orders through the SalesOrderID foreign key column. Because it 
is on the outer side of the relationships and nothing else depends on it, begin by deleting rows from 
this table first.   

c10.indd   318c10.indd   318 10/31/08   6:26:22 PM10/31/08   6:26:22 PM



Chapter 10: Transactions

319

Figure 10-13

 There are a few techniques and this is one of the easiest. Earlier you saw how the  IN()  function is 
used to compare a value to a comma - delimited list of values. The same function can be used to 
compare a value with a single - column result set. The mechanics are simple: create any  SELECT  query 
that returns a single column, and then pass the results of this query to the  IN()  function used in the 
 WHERE  clause of a  DELETE  statement. 

 For the SQL Server 2008 AdventureWorks2008 database: 

                   

DELETE FROM MySalesOrderDetail

WHERE SalesOrderID IN

          (

           SELECT MSOD.SalesOrderID

           FROM 

             MySalesOrderDetail AS MSOD INNER JOIN MySalesOrderHeader AS MSOH

c10.indd   319c10.indd   319 10/31/08   6:26:22 PM10/31/08   6:26:22 PM



Chapter 10: Transactions

320

               ON MSOD.SalesOrderID = MSOH.SalesOrderID

             INNER JOIN Sales.SalesPerson AS SP 

               ON MSOH.SalesPersonID = SP.BusinessEntityID 

             INNER JOIN HumanResources.Employee AS E 

               ON SP.BusinessEntityID = E.BusinessEntityID

             INNER JOIN Person.Person AS C 

               ON E.BusinessEntityID = C.BusinessEntityID

           WHERE C.FirstName = ‘Amy’ AND C.LastName = ‘Alberts’ 

           )  

 For the SQL Server 2005 AdventureWorks database: 

DELETE FROM MySalesOrderDetail

WHERE SalesOrderID IN

          (

           SELECT MSOD.SalesOrderID

           FROM 

             MySalesOrderDetail AS MSOD INNER JOIN MySalesOrderHeader AS MSOH

               ON MSOD.SalesOrderID = MSOH.SalesOrderID

             INNER JOIN Sales.SalesPerson AS SP 

               ON MSOH.SalesPersonID = SP.SalesPersonID 

             INNER JOIN HumanResources.Employee AS E 

               ON SP.SalesPersonID = E.EmployeeID

             INNER JOIN Person.Contact AS C 

               ON E.ContactID = C.ContactID

           WHERE C.FirstName = ‘Amy’ AND C.LastName = ‘Alberts’ 

          )  

 This deletes the 586 order detail records. Removing the sales order records is easy and requires only a 
simple change. Because the SalesOrderID is also the identifying column for records in the 
MySalesOrderHeader table, all you need to do is change the table name in the  DELETE  statement and 
the join. 

 For the SQL Server 2008 AdventureWorks2008 database: 

DELETE FROM MySalesOrderHeader

WHERE    SalesOrderID IN

         (

           SELECT MSOH.SalesOrderID

           FROM MySalesOrderHeader AS MSOH 

             INNER JOIN Sales.SalesPerson AS SP 

               ON MSOH.SalesPersonID = SP.BusinessEntityID 

             INNER JOIN HumanResources.Employee AS E

               ON SP.BusinessEntityID = E.BusinessEntityID

             INNER JOIN Person.Person AS C 

               ON E.BusinessEntityID = C.BusinessEntityID

           WHERE C.FirstName = ‘Amy’ AND C.LastName = ‘Alberts’ 

          )

 For the SQL Server 2005 AdventureWorks database:DELETE FROM 

MySalesOrderHeader

WHERE    SalesOrderID IN

c10.indd   320c10.indd   320 10/31/08   6:26:23 PM10/31/08   6:26:23 PM



Chapter 10: Transactions

321

         (

           SELECT MSOH.SalesOrderID

           FROM MySalesOrderHeader AS MSOH 

             INNER JOIN Sales.SalesPerson AS SP 

               ON MSOH.SalesPersonID = SP.SalesPersonID 

             INNER JOIN HumanResources.Employee AS E

               ON SP.SalesPersonID = E.EmployeeID

             INNER JOIN Person.Contact AS C 

               ON E.ContactID = C.ContactID

           WHERE C.FirstName = ‘Amy’ AND C.LastName = ‘Alberts’ 

          )  

 This deletes the 39 sales orders. If you were working with the original tables and not the backup 
copies, it would be necessary to delete the order detail rows first because these records depend on the 
existence of the sales order records in the SalesOrderHeader table.     

 

   TRUNCATE TABLE  
 The  DELETE  command is a logged operation. For deletes on a small number of rows or manual 
operations, there may be a negligible difference in performance. However, for repeated and automated 
deletes, or on a large volume of records, skipping the transaction logging can improve performance 
dramatically. 

 The  TRUNCATE TABLE  command does only one thing  —  it removes all of the records in a table without 
logging a transaction. It performs the deletes in a manner far more efficiently than the  DELETE  command. 
You cannot filter specific rows to delete or use any kind of selection criteria. This statement will very 
efficiently remove all order detail records from the backup copy of the table: 

TRUNCATE TABLE MySalesOrderDetail  

 We are going to do a performance test, comparing the  DELETE  and  TRUNCATE  techniques. We don ’ t 
intend for you to follow along because it would take a bit of work to set this up. Before running the 
following script, we have created two additional databases, called AW_1 and AW_2. Using an SSIS 
package, we copied all of the objects and data from AdventureWorks into each of these two identical 
databases. The following script gets the current time before and after performing each of these two 
operations. After each, we compare the two times and display the number of milliseconds that it took to 
complete the operation.   

DECLARE @starttime DateTime

DECLARE @endtime DateTime

DECLARE @totaltime Int

USE AW_1 -- Copy 1 of AdventureWorks DB:

SET @starttime = GetDate()

DELETE FROM Sales.SalesOrderDetail

SET @endtime = GetDate()

SET @totaltime = DateDiff(ms, @starttime, @endtime)

PRINT ‘Time to Delete:   ‘ + CONVERT(VarChar(10), @totaltime)

USE AW_2 -- Copy 2 of AdventureWorks DB:

(continued)

c10.indd   321c10.indd   321 10/31/08   6:26:24 PM10/31/08   6:26:24 PM



Chapter 10: Transactions

322

SET @starttime = GetDate()

TRUNCATE TABLE Sales.SalesOrderDetail

SET @endtime = GetDate()

SET @totaltime = DateDiff(ms, @starttime, @endtime)

PRINT ‘Time to Truncate: ‘ + CONVERT(VarChar(10), @totaltime)   

 The results are as follows: 

(121371 row(s) affected)

Time to Delete:   14030ms

Time to Truncate: 130ms  

 The Truncate technique takes less than 1 percent of the time it took to process the  DELETE  statement. The 
Delete operation took about 14 seconds and the Truncate operation took about ¹/7 of a second. That ’ s a 
big difference! This is because transactional operations are physically written to the transaction log and 
then rolled forward into the table, one row at a time. The  TRUNCATE  statement doesn ’ t do all of this. It 
simply deallocates all the data pages for a table. In reality, data in these pages is not actually changed, 
but the pointer entries in the index allocation map for these pages are removed. Eventually, data left in 
the pages gets overwritten but is not really removed. 

 The only limitation of the  TRUNCATE  command is that it is a privileged command and only database 
owners or system administrators can execute it, even if it is encapsulated in a stored procedure.   

  Automating Inserts, Updates, and Deletes with the 
 MERGE  Command 

 One of the classic challenges when loading a group of records into a table is how to identify and deal 
with existing records in the target table. A common scenario is to insert a record if it doesn ’ t exist, and 
update the existing record using the data in the source table if it does exist. In the past, it was necessary 
to write complex stored procedures to implement all of this logic and explicitly perform the  INSERT  or 
 UPDATE  commands for each record depending on whether certain columns in the source and destination 
matched up. This technique is commonly referred to as an  “ UPSERT ”  (Get it? Update  . . .  Insert. 
We guess it wasn ’ t that hard to figure out, huh?) 

 Thanks to our good friends at Microsoft, SQL Server 2008 now includes a new command called  MERGE  
that automatically implements this  “ upsert ”  logic and then performs the appropriate insert or update 
action based on the criteria provided. The  MERGE  command can also be used to completely synchronize 
two different sets of data by also deleting target records based on missing records or other criteria in the 
source. The language of the  MERGE  command is not a lot different than you would write yourself in a 
query using all of the component commands but because the logic is optimized and implemented at a 
lower level within the query processing engine, it should offer better performance than a custom - written 
stored procedure. To demonstrate, we will create a new table called MyOtherContacts and populate it 
with a few Contact records. 

(continued)

c10.indd   322c10.indd   322 10/31/08   6:26:24 PM10/31/08   6:26:24 PM



Chapter 10: Transactions

323

 For the SQL Server 2008 AdventureWorks2008 database: 

SELECT TOP 5 CONVERT(nvarchar(10), NULL) AS Title, FirstName, LastName INTO 

MyOtherContacts FROM Person.Person    

 For the SQL Server 2005 AdventureWorks database: 

SELECT TOP 5 CONVERT(nvarchar(10), NULL) AS Title, FirstName, LastName INTO 

MyOtherContacts FROM Person.Contact  

 The Title column is set with NULL values so we can update them later. We have made a point to use the 
 nvarchar  data type so it is compatible with any incoming Title values. Next, we ’ ll add some records 
that don ’ t match any existing Contact rows: 

INSERT INTO MyOtherContacts (FirstName, LastName) 

VALUES

    ( ‘George’, ‘Jetson’ )

  , ( ‘Jane’, ‘Jetson’ )  

 Figure  10 - 14  shows the target table before we make any changes to the data. Note the five records 
inserted from the Contact table and the two records we added.   

Figure 10-14

 Now, let ’ s review the business rules for the merge query: 

  If the MyOtherContacts table contains any records matching those in the Contact table, we want 
to update these rows with matching Title values.  

  If the Contact table contains records that don ’ t match any in the MyOtherContacts, they should 
be inserted into MyOtherContacts.  

  If the MyOtherContacts table contains records that don ’ t match any in the Contact, they should 
be deleted.    

 The following example performs these operations in one query. We are limiting the records from the 
Contact table to keep things manageable and because there are some duplicate FirstName and LastName 
values in the table that could complicate things. The MERGE statement specifies the table to be affected. 
The USING statement is used to specify a table or query to test for matching records with a special join 
operator in the ON clause. To make the updated records more obvious, we are converting the Title 
values to upper case. Note the matching logic in the qualifying statements; MATCHED, NOT 

❑

❑

❑

c10.indd   323c10.indd   323 10/31/08   6:26:24 PM10/31/08   6:26:24 PM



Chapter 10: Transactions

324

MATCHED, and SOURCE NOT MATCHED. These statements are used to determine whether rows in 
the first table (the source) match or don ’ t match records in the second table (the target) based on the logic 
in the ON clause.   

For the SQL Server 2008 AdventureWorks2008 database:MERGE MyOtherContacts AS 

MOC

USING 

   (SELECT TOP 10 Title, FirstName, LastName FROM Person.Person) AS C

   ON ( MOC.FirstName = C.FirstName AND MOC.LastName = C.LastName )

WHEN MATCHED THEN

   UPDATE SET MOC.Title = UPPER(C.Title)

WHEN NOT MATCHED THEN

   INSERT ( Title, FirstName, LastName ) 

   VALUES ( C.Title, C.FirstName, C.LastName )

WHEN NOT MATCHED BY SOURCE THEN

   DELETE

;

                     

 For the SQL Server 2005 AdventureWorks database: 

                   

MERGE MyOtherContacts AS MOC

USING 

   (SELECT TOP 10 Title, FirstName, LastName FROM Person.Contact) AS C

   ON ( MOC.FirstName = C.FirstName AND MOC.LastName = C.LastName )

WHEN MATCHED THEN

   UPDATE SET MOC.Title = UPPER(C.Title)

WHEN NOT MATCHED THEN

   INSERT ( Title, FirstName, LastName ) 

   VALUES ( C.Title, C.FirstName, C.LastName )

WHEN NOT MATCHED BY SOURCE THEN

   DELETE

;

                     

 Finally, take a look at the results in Figure  10 - 15 . Note that the five original contact records have titles in 
uppercase as a result of the  UPDATE  statement. The two records that didn ’ t exist in the Contact table have 
been deleted and an additional five contact records have been inserted.   

Figure 10-15

c10.indd   324c10.indd   324 10/31/08   6:26:25 PM10/31/08   6:26:25 PM



Chapter 10: Transactions

325

 A thorough discussion of the  MERGE  command would require this book to move from the beginning to 
advanced category. Suffice to say that there is much more you can do with this new product feature by 
combining the simple application you ’ ve seen here with complex joins and conditional logic.   

  Explicit Transactions 
 You saw how all insert, update, and delete statements are automatically wrapped into an auto - commit 
transaction. This means that each of these operations creates a unique entry in the transaction log. 

 With the exception of the  TRUNCATE  command, all data modifications are performed in two steps. The 
two steps are not necessarily sequential and in fact they occur independently of one another. One step is 
to write all transactions sequentially to the transaction log. This happens quickly because the disk heads 
don ’ t have to be repositioned and it ’ s not necessary to find free data pages as if writing to a table. The 
database engine then considers all of the constraints defined for the target table and simply checks to see 
if the operation would violate those constraints. If not, the transaction succeeds even though the data 
hasn ’ t been physically written to the table. Any operations that are waiting behind this one are allowed 
to proceed and users perceive that the database has completed their request. 

 The second step that occurs is completed by a background process called the  checkpoint . The checkpoint 
occurs at dynamic intervals depending on the amount of data modifications occurring in the database. 
The more modifications and thus transactions that occur, the more checkpoints are issued by the database 
engine. A checkpoint can occur anywhere in a transaction or at the end of a transaction. Whenever SQL 
Server detects that a predetermined number of data pages have been modified, it executes a checkpoint. 
This setting is adjustable but is beyond the scope of this book. It is the database server ’ s job to balance 
new transaction requests with pending transactions that have been committed but not yet written to disk 
by the checkpoint process. When the checkpoint runs, it writes all dirty pages (pages modified by 
transactions) to disk, but does not release them. The pages are freed when released by a completed 
transaction. Checkpoints are recorded in the transaction log so SQL Server knows where it left off. When 
SQL Server is restarted, such as in the case of a power failure or during a database restore, SQL Server 
finds the last checkpoint in the transaction log and rolls all transactions that committed after the 
checkpoint forward, writing them to disk. All incomplete transactions that were written to disk during 
the checkpoint are rolled back, or  “ undone ”  so that the database is in a consistent state. 

 Different operations that need to be processed as a unit should be executed within a stated transaction. 
For example, if you plan to move a group of records from one table to another, you don ’ t want to insert 
rows into one table if the corresponding delete doesn ’ t take place for the other table. To create an explicit 
transaction, begin the script with the  BEGIN TRANSACTION  statement. Any operations that follow will 
only be completed when the  COMMIT TRANSACTION  statement is issued. 

 Explicit transactions should be used whenever multiple modifications are dependent on each other. The 
chief advantage that explicit transactions bring to data modifications is that you can check for any errors 
in your operations prior to committing the transaction. If any errors are present you rollback the 
transaction. If no errors are detected, you commit the transactions. A common misconception is 
that transactions automatically supply this error detection. Nothing could be further from the truth. 

c10.indd   325c10.indd   325 10/31/08   6:26:25 PM10/31/08   6:26:25 PM



Chapter 10: Transactions

326

As an example, we will create a Savings account table and a Checking account table and then place a 
check constraint on the checking account table that enforces a minimum balance of $100.00. We will then 
populate the tables with data: 

CREATE TABLE MySavings

(AccountNum Int NOT NULL,

 Amount Money NOT NULL)

CREATE TABLE MyChecking

(AccountNum Int NOT NULL,

 Amount Money NOT NULL)

ALTER TABLE MyChecking ADD CONSTRAINT ckMinBalance

CHECK (Amount  >  $100.00)

INSERT MySavings

VALUES

  (12345, $1000.00)

 

INSERT MyChecking

VALUES

  (12345,  $1000.00)  

 Now that we have our two bank accounts set up, we will try to transfer $990.00 from our checking 
account to our savings account inside an explicit transaction: 

BEGIN TRANSACTION 

  

  UPDATE MyChecking SET Amount = Amount - $990.00

  WHERE AccountNum = 12345

  UPDATE MySavings SET Amount = Amount + $990.00

  WHERE AccountNum = 12345

COMMIT TRANSACTION   

 The result of this transaction looks like this: 

The UPDATE statement conflicted with the CHECK constraint “ckMinBalance”.

The conflict occurred in database “AdventureWorks2008”, table 

“dbo.MyChecking”,column ‘Amount’.  

 The message means that something unintended has happened. A query of the savings account and 
checking account table reveals an interesting outcome: 

SELECT Amount AS CheckingAmount FROM MyChecking WHERE AccountNum = 12345

SELECT Amount AS SavingsAmount FROM MySavings WHERE AccountNum = 12345

CheckingAmount

---------------------

1000.00

SavingsAmount

---------------------

1990.00  

 The checking account still has its original balance, but the savings account balance is now increased by 
$990.00. This is because the update to the checking account was aborted when it violated the minimum 
balance constraint. However, because we did not do anything about the error, SQL Server continued 

c10.indd   326c10.indd   326 10/31/08   6:26:25 PM10/31/08   6:26:25 PM



Chapter 10: Transactions

327

with the next update and obediently modified the savings account balance, and then committed the 
transaction, just like we told it to. Good for us, bad for the bank. To prevent this from happening you 
must add error checking to your transactions. 

 Chapter  13  covers error handling in greater detail, but for now it is important to see how error handling 
must be included in transactions to guarantee their consistency. Up to SQL Server 2000, there were very 
few options for effectively handling errors. This capability was improved considerably in SQL Server 
2005 and of course in the current product version. The technique involves the use of  TRY     . . .     CATCH  
blocks, similar to modern object - oriented programming languages. In T - SQL,  TRY  and  CATCH  are 
separate code blocks. The first code block starts with  BEGIN TRY  and concludes with  END TRY . If this 
code fails for any reason, execution is set to the first line of code under the  BEGIN CATCH  statement and 
then execution continues until the  END CATCH  statement is reached. In essence, we are saying  “ Try to run 
this block of code. If it fails, catch the error and send it to the error - handling code block. ”  Code in the 
 CATCH  block runs only if an error is caught within the  TRY  block. 

 Executing the following script simply returns an error and does not alter either of the records. This is 
because an error is thrown in the  TRY  block and then caught in the  CATCH  block, causing the entire 
transaction to be aborted and rolled back: 

BEGIN TRANSACTION 

  BEGIN TRY

    UPDATE MyChecking SET Amount = Amount - $990.00

    WHERE AccountNum = 12345

    UPDATE MySavings SET Amount = Amount + $990.00

    WHERE AccountNum = 12345

    COMMIT TRANSACTION

  END TRY

  

  BEGIN CATCH

    RAISERROR(‘Transaction Aborted’, 16, 1)

    ROLLBACK TRANSACTION

  END CATCH  

 You can also use the shorthand version of these statements, substituting  TRAN  for the word 
 TRANSACTION : 

BEGIN TRAN

COMMIT TRAN

ROLLBACK TRAN   

  Summary 
 Whether you explicitly declare a transaction or not, all data inserts, updates, and deletes are managed as 
transactional operations. SQL Server uses the transaction log to queue requested operations and to test 
validation rules prior to completing the physical operations on rows in the tables. Transactions provide 
the mechanism to guarantee that all operations either complete successfully or fail altogether. Multiple 
operations can be explicitly included in a single transaction to ensure that they are managed as an 
autonomous unit. 

c10.indd   327c10.indd   327 10/31/08   6:26:26 PM10/31/08   6:26:26 PM



Chapter 10: Transactions

328

 Chapter  13  discusses how inserts, updates, and deletes can be managed in secured stored procedures. 
The  INSERT  statement supports two different syntax forms, either using the  VALUES  keyword or  SELECT . 
Using  SELECT  is more flexible and allows values to be retrieved from other tables and sources. 

 When updating data, the database engine will lock data at various levels, depending on the scope of the 
operation and user concurrency. Locking may occur at the row, page, table, or database level. Updates 
and deletes should always be tested using a  SELECT  statement before they are performed. These 
operations may be irreversible without a backup of the database. 

 The  DELETE  command allows affected rows to be filtered, based on practically any criteria. For large - scale 
delete operations, this comes at the cost of transaction management. The  TRUNCATE  command offers a far 
more efficient method to effectively remove all rows in a table without the overhead of having to log and 
manage the deletions as transactions, but can only be executed by a user with elevated privileges.  

  Exercises 
  Exercise 1 

 Create a new product category for Snorkels. Demonstrate two methods to add a record to this table 
using the  SELECT  and  VALUES  statements.  

  Exercise 2 
 Populate a new table called RoadBikes with the contents of product records of this subcategory. Your 
query must filter on the value  Road Bike .  

  Exercise 3 
 Insert the entire contents of the Product table into a table called MyProducts. Write a query that will 
delete MyProducts records for products that do not have sales order detail records and where the 
SubCategoryID is 5. Also write a query that will add a new record to the ProductSubCategory table with 
the Name column value set to Accessory and ProductCategoryID set to 4. Include both of these 
statements in a single transaction and execute them in a batch. Check the row count of the MyProducts 
table before and after to determine whether records were deleted.                          

c10.indd   328c10.indd   328 10/31/08   6:26:26 PM10/31/08   6:26:26 PM



      11
    Advanced Capabilities          

 This chapter introduces you to a variety of technologies and features that go beyond standard 
queries and simple data manipulation. First, you learn to use the new  PIVOT  and  UNPIVOT  
operators to rotate and rearrange denormalized data structures for reporting and summarization. 
The next section explores a variety of tools designed to work with text matching and indexing 
large text fields. These include using the  SOUNDEX  and  DIFFERENCE  functions to compare text and 
to perform approximate phonetic matching. You will learn to use full - text indexes and a collection 
of functions specifically designed to find patterns and similarities between large text fields, 
comments, and notes stored in a database.  

  Pivoting Data 
 I have to say that this is one of the more interesting newer features in SQL Server. It is interesting 
for a variety of reasons. Back in 1970, when E. F. Codd first introduced the principles of relational 
database design in his paper,  “ A Relational Model of Data for Large Shared Data Banks, ”  for the 
Association of Computing Machinery, his principles became the foundation on which many of 
today ’ s fundamental, industry - wide database design patterns are based. The cornerstone of these 
paramount design rules is the first rule of normal form, which states that an entity shouldn ’ t 
contain duplicate types of attributes. This means that a table shouldn ’ t have more than one column 
that represents the same type of non - distinct value; or, in other words, like values shouldn ’ t be 
repeated across multiple columns in the same row. 

 Adhering to and practicing this belief is the cornerstone and premise for all our database work. 
I sincerely believe that rules are meant to be honored and that those who were insightful enough 
to put these rules into place should be respected and revered. However, I also believe that there 
is a time and a place where after careful consideration one may cautiously consider breaking 
certain rules. 

 So far, all the data we have worked with has been pretty much the same  —  in columnar structure, 
adhering to first normal form. Every column in the result set comes from a field in the underlying 
table and the rows in the results are copied directly from records in the table. Even when we used a 
 GROUP BY  clause, each resulting row was derived from a collection of rows having similar values. 
The structure of the result sets is still the same. Conversely, pivoting data modifies the structure of the 
underlying data source by repeating like values across rows  —  essentially breaking first normal form. 

c11.indd   329c11.indd   329 10/31/08   6:26:57 PM10/31/08   6:26:57 PM



Chapter 11: Advanced Capabilities

330

 Consider the following simple example in this hypothetical table:

     OrderYear      Category      SalesAmount   

    2004    Bikes    45,000  

    2004    Clothing    22,500  

    2005    Accessories    28,450  

    2005    Bikes    57,325  

    2005    Clothing    31,200  

    2006    Accessories    32,765  

    2006    Bikes    61,985  

    2006    Clothing    34,570  

    2007    Accessories    39,700  

    2007    Bikes    75,775  

    2007    Clothing    42,650  

 The business user who will use this data primarily for reporting and decision   making wants to see 
product sales by year and then by category. The most effective way to present these values to meet this 
requirement might be to place the distinct year values on the column headings and the categories in the 
row labels, with the aggregated sales amounts at the intersect point for each combination of the column 
and row axes. There are plenty of client tools that can do this within their interface. If you have used an 
Excel PivotTable, a Microsoft Access Cross Tab query, or the Reporting Services Matrix (or now the SSRS 
2008 Tablix in matrix view), you may be familiar with this type of data presentation. Columns are simply 
derived from groups of distinct values, obtained from one field in the source, just as rows are grouped 
together in a  GROUP BY  query. 

 Let ’ s take a look at a simple example, using Microsoft Office Excel 2007 to build a PivotTable with the 
values from the previous table. If you have Excel 2007, you are welcome to follow along, but this is not a 
requirement. Figure  11 - 1  shows the values from the table typed into a new Excel worksheet.   

 Figure 11 - 1 

c11.indd   330c11.indd   330 10/31/08   6:26:57 PM10/31/08   6:26:57 PM



Chapter 11: Advanced Capabilities

331

 I will select the cells in this range and then choose the menu option to insert a PivotTable. After I accept 
the selected cells as the default source range, a new PivotTable is inserted into a new worksheet. When 
any part of the PivotTable is selected in the worksheet, a design pane is displayed in a panel to the right. 
Using the Field List pane, I will drag the OrderYear into the Column Labels, the Category into Row 
Labels, and the SalesAmount into the Values list box. As shown in Figure  11 - 2 , this builds a PivotTable 
with summarized sales values at the intersection of each year and category heading.   

 Figure 11 - 2 

  The PIVOT Operator 
 When data is grouped on more than one set of values, it might be convenient to display grouped values 
as separate columns, rather than as rows. This might not be the optimal way to store this data, but it is 
how we may want to present it. A similar style of presentation to the PivotTable is now possible in a 
T - SQL query by using the  PIVOT  function. Pivoting data allows you to transform data stored in 
compliance with first normal form but displayed with repeating column attributes. 

 There is a catch, however. When the Excel PivotTable was applied to the range of SalesYear values, it 
automatically created a set of distinct column values based on the existing OrderYear values. If you were 
to modify the source table and add a set of records for 2008, these would simply show up as another 
column in the PivotTable. The  PIVOT  command doesn ’ t have this capability. You have to know ahead of 
time which values you want to include for the column headings, and then you must define static buckets 

c11.indd   331c11.indd   331 10/31/08   6:26:58 PM10/31/08   6:26:58 PM



Chapter 11: Advanced Capabilities

332

for grouping the data. You do this by providing a list of columns in your query with the values for 
column grouping. 

 This is best explained through an example. I ’ ll demonstrate this with a small set of sample records 
from the SalesOrderHeader table in the AdventureWorks database. The following T - SQL query 
approximates the PivotTable behavior: 

SELECT TerritoryID, [7-1-2001], [7-2-2001], [7-3-2001], [7-4-2001], [7-5-2001]

FROM

  (

     SELECT TOP 59

          TotalDue

        , OrderDate

        , TerritoryID

     FROM Sales.SalesOrderHeader

 )   AS Source

PIVOT

 (

     Sum(TotalDue) FOR OrderDate 

        IN ([7-1-2001], [7-2-2001], [7-3-2001], [7-4-2001], [7-5-2001])

 )   AS pvt  

 The result is a simple, well - organized matrix of date values along the columns with rows of TerritoryIDs 
and summed up monetary values at the intersection of each set of column/row headings. Figure  11 - 3  
shows the results  —  the total amount due for each sales territory and for each day, in the first five days 
of July, 2001.   

 Figure 11 - 3 

 I ’ ll break this query into pieces so that we can examine its components and the mechanics of how it 
works. There are three main sections that can be viewed as separate queries: the main  SELECT  list, an 
inner query, and the  PIVOT  operation. I ’ ll show them to you in logical order, beginning with each 
component. 

 The inner query 

SELECT TOP 59 TotalDue, OrderDate, TerritoryID FROM Sales.SalesOrderHeader  

c11.indd   332c11.indd   332 10/31/08   6:26:58 PM10/31/08   6:26:58 PM



Chapter 11: Advanced Capabilities

333

 simply returns 59 rows, including five distinct OrderDate values, ranging from July 1, 2001, through 
July 5, 2001. These rows also include ten distinct TerritoryID values, ranging from 1 through 10. 
This result is fed to the main  SELECT  statement: 

SELECT TerritoryID, [7-1-2001], [7-2-2001], [7-3-2001], [7-4-2001], [7-5-2001]

FROM

...  

 This is where the pivot columns are set up, providing a  “ shell ”  for the  PIVOT  operation to fill. The last 
section of the query is the actual  PIVOT  operation. This performs an aggregation (in this case, using the 
 SUM  function) that groups aggregated TotalDue values by distinct OrderDate values within the list 
provided to the  IN  function (this is the same list of OrderDate values I included earlier in the column list): 

PIVOT

 (

    Sum(TotalDue) FOR OrderDate 

    IN ([7-1-2001], [7-2-2001], [7-3-2001], [7-4-2001], [7-5-2001])

 ) AS pvt  

 Make sense? It didn ’ t to me when I started working with this. Honestly, I find this pattern a little 
confusing and, although I understand how it works and what the query engine is doing, it ’ s not 
particularly intuitive. Once you get over the fact that you must provide a static list of column group 
values, this may prove to be a very useful part of your T - SQL arsenal. 

 Can this limitation be worked around? Yes, but it requires a bit of creativity and, well, quite a bit of 
brute force, frankly. Because the static column list must be present at query time, the only way to build 
column groups on changing values is to run a different query to get the list of values and then use that to 
concatenate a string of these comma - delimited values into a variable. Explaining this technique in full 
goes well beyond the goals for this book and would use techniques we haven ’ t yet discussed. I offer the 
following example as, well, little more than an example. Using the inner query to populate a cursor 
allows me to loop through each row. In this loop, I compare the OrderDate with that of the previous row 
and concatenate together a comma - separated list of unique dates  —  just like the static list in the previous 
example. This date list is used to build a big string with the entire contents of the query held in a variable 
named  @Query . The  EXECUTE  statement is then used to run the whole thing.   

DECLARE @OrderDate datetime

DECLARE @TotalDue money

DECLARE @TerritoryID int

DECLARE @LastOrderDate datetime

DECLARE @DateList varchar(1000)

DECLARE @InnerQuery nvarchar(1000)

DECLARE @Query nvarchar(4000)

SET @InnerQuery =

‘         SELECT TOP 59 ‘ +

‘                   TotalDue ‘ +

‘                 , OrderDate ‘ +

‘                 , TerritoryID ‘ +

‘         FROM Sales.SalesOrderHeader ‘

EXEC(‘DECLARE Cur Cursor for ‘ + @InnerQuery)

(continued)

c11.indd   333c11.indd   333 10/31/08   6:26:58 PM10/31/08   6:26:58 PM



Chapter 11: Advanced Capabilities

334

OPEN Cur

FETCH NEXT FROM Cur INTO @TotalDue, @OrderDate, @TerritoryID

SET @LastOrderDate = @OrderDate

SET @DateList = ‘[‘ + CONVERT(varchar(20), @OrderDate, 110) + ‘]’

WHILE @@FETCH_STATUS = 0

 BEGIN

         IF @LastOrderDate  <  >  @OrderDate

           SET @DateList = @DateList + ‘, [‘ 

               + CONVERT(varchar(20), @OrderDate, 110) + ‘]’

         SET @LastOrderDate = @OrderDate

         FETCH NEXT FROM Cur INTO @TotalDue, @OrderDate, @TerritoryID

 END

CLOSE Cur

DEALLOCATE Cur

SET @Query = 

‘SELECT TerritoryID, ‘ + @DateList +

‘FROM ‘ +

‘  ( ‘ + @InnerQuery + ‘ )   AS Source ‘ +

‘PIVOT ‘ +

‘  ( ‘ +

‘         Sum(TotalDue) FOR OrderDate IN (‘ + @DateList + ‘) ‘ +

‘  )   AS pvt’

EXECUTE (@Query)  

 The results of this query are exactly the same as before. However, you could easily modify the number 
after the  TOP  statement or filter this query and get a different set of dates along the columns. I don ’ t 
expect you to pick this up and run with it. As I said, there are some things in this query we haven ’ t 
covered yet. The purpose of this example is just to show you that it ’ s possible to work around limitations 
by using some creative techniques.  

  The UNPIVOT Operator 
 As you may have guessed, the  UNPIVOT  operator does the exact opposite of the  PIVOT  operator. 
It enables you to pass it a denormalized set of data with repeating column values and transform it into a 
standard, columnar format. Because you ’ ll always know the number of columns and their respective 
header values,  UNPIVOT  is a little easier to use than the  PIVOT  operator. This useful tool allows you to 
take a set of data that breaks first normal form and transform it into a normalized, uniform table of 
ungrouped rows. 

 To create a set of unpivotable data, I ’ ll just modify the earlier  PIVOT  sample query to insert the results 
into a table named MyPivotData: 

SELECT TerritoryID, [7-1-2001], [7-2-2001], [7-3-2001], [7-4-2001], [7-5-2001]

INTO MyPivotData

FROM

 (

     SELECT TOP 59

        TotalDue

      , OrderDate

      , TerritoryID

    FROM Sales.SalesOrderHeader

(continued)

c11.indd   334c11.indd   334 10/31/08   6:26:59 PM10/31/08   6:26:59 PM



Chapter 11: Advanced Capabilities

335

 )   AS Source

PIVOT

 (

    Sum(TotalDue) FOR OrderDate 

       IN ([7-1-2001], [7-2-2001], [7-3-2001], [7-4-2001], [7-5-2001])

 )  AS pvt  

 Executing this query populates a table with the results you saw in Figure  11 - 3 . Transforming this data 
back into a flat table is somewhat similar to the  PIVOT  query, in that there are also three different 
sections. In the first section, you define the structure of the end result set: 

SELECT

   TerritoryID, OrderDate, DueDateTotal

FROM

...  

 The inner query, or second section, is a simple select from the source table. As a subquery, this  SELECT  
statement is wrapped in parentheses and given a table alias. In this case, the alias name is  pvt .   

 (

     SELECT

        TerritoryID

      , [7-1-2001], [7-2-2001], [7-3-2001], [7-4-2001], [7-5-2001]

     FROM MyPivotData

 )   AS pvt  

 This is followed by the  UNPIVOT  operator and a statement similar to that used in the  PIVOT  query. This 
statement deconstructs the aggregated values from the pivot structure into a column named 
DueDateTotal that will be grouped on the OrderDate value.   

UNPIVOT

 ( 

      DueDateTotal FOR OrderDate 

      IN ([7-1-2001], [7-2-2001], [7-3-2001], [7-4-2001], [7-5-2001])

 )

 AS unpvt  

 Finally, here is the entire query: 

SELECT

  TerritoryID, OrderDate, DueDateTotal

FROM

 (

    SELECT

      TerritoryID

    , [7-1-2001], [7-2-2001], [7-3-2001], [7-4-2001], [7-5-2001]

    FROM MyPivotData

 ) as pvt

UNPIVOT

 ( 

       DueDateTotal FOR OrderDate 

       IN ([7-1-2001], [7-2-2001], [7-3-2001], [7-4-2001], [7-5-2001])

 )

 AS unpvt  

c11.indd   335c11.indd   335 10/31/08   6:26:59 PM10/31/08   6:26:59 PM



Chapter 11: Advanced Capabilities

336

 The results of this query, shown in Figure  11 - 4 , are very similar to what we started with, prior to 
using the  PIVOT  operator.   

 The cycle of pivoting and then unpivoting a set of data will not always bring you back to exactly where 
you started. This is because detail rows in the original data source are grouped on the column values. 
After unpivoting this data, you will have exactly one row per unique column and row combination, with 
the aggregation of the original source rows.   

  Full - Text Queries and Approximation 
Matching 

 In the late 1980s, I worked as the Tech Support Manager for a growing medical billing software company. 
We had written most of our own internal support systems, accounting, payroll, and tech support 
incident management, not to mention our own software products. After a few years and hundreds 
of thousands of support calls later, we had accumulated what we considered to be a huge repository of 
support call notes and history. We found ourselves taking calls from customers whose issues seemed 
vaguely familiar. When a support technician received a call, he or she would page through support 
incident screens, looking for old records to help find resolutions to repeat problems, often to no avail. 
Our system didn ’ t store data in a relational database so we couldn ’ t use SQL or any other standard 
language to query data. All our data lived in flat text files. While attending the Comdex technology 
exhibition in Las Vegas, I found a company with an interesting product that did indexing over large 
volumes of text. This software could build searchable indexes for practically anything: encyclopedias, 
dictionaries, religious books, or hundreds of files in your file system. We quickly built this into our 
support system, and it changed everything. When a customer called and told one of our support 
technicians they were getting error 3204 when they entered a new patient diagnosis, the technician could 
instantly find all incidents related to the same problem by simply typing a few keywords. 

Figure 11-4

c11.indd   336c11.indd   336 10/31/08   6:26:59 PM10/31/08   6:26:59 PM



Chapter 11: Advanced Capabilities

337

 Free - form text indexing has been around for many years and has improved and matured since my 
experience as a Tech Support Manager. Relational databases have largely replaced old flat - file systems, 
but with that transition, we ’ ve actually lost some useful functionality  —  namely the ability to simply 
store a large volume of searchable text. Systems evolve to fill gaps and to meet users ’  needs. Today, most 
relational database products support the ability to store large volumes of data in a structure called  binary 
large objects     (BLOBs) . SQL Server offers three different implementations of BLOB types in the data types 
 text ,  ntext , and  image . When the  text  and  image t ypes were originally added to the SyBase and 
Microsoft SQL Server products in the early 1990s, they didn ’ t support indexing or ordering. Even today, 
you cannot use these columns with a standard  WHERE  or  ORDER BY  clause  —  and for good reason. 
Can you imagine sorting rows using all of the text in a 15 - page document? 

 T - SQL includes some simple tools for inexact text comparisons. This includes functionality such as 
Soundex phonetic and approximate word matching. By contrast, full - text indexing includes built - in 
logical operators,  “ near ”  matching, and ranked results. Whether you should choose to use full - text 
searches or standard SQL techniques depends on your specific needs.  

  Microsoft Search Service 
 To compensate for this shortcoming, Microsoft implemented a flexible, free - form text indexing 
technology very similar to the product I used to index our support call system. The Microsoft Search 
Service was originally adopted to index newsgroup servers and websites. Because it was capable of 
indexing practically any volume of text stored in files, it was integrated into SQL Server several versions 
ago. Today, any SQL data type capable of storing text characters can be indexed for free - form searches 
using full - text indexing and the Microsoft Search Service. Keep in mind that this is not a capability of 
SQL Server, but rather a separate service made accessible through extensions in both the SQL Server 
product and the T - SQL language. Because text in practically any form can be indexed, SQL Server can be 
used as a storage repository for content such as Office documents that can then be indexed and searched 
using full - text indexing. Word documents, for example, contain both text and binary markup 
information. This poses no problem because the non - textual data is simply ignored. 

 Full - text indexing works much differently than standard indexes in SQL Server. Indexed data is not 
stored in the database. Full - text catalogs store index data in separate catalog files on the server. When 
the index is populated, the search service weeds out all the noise words, such as  “ and ”  and  “ of. ”  All the 
remaining words are added to a table - specific index stored within a catalog. Multiple columns can be 
added to the same index within a catalog. 

 Most of us use full - text searching every day. Although the Microsoft Search Service is not implemented 
on the same scale as the Google and Yahoo web search engines, the fundamental technology is the same. 
If you have used any of the leading web search services online, then you ’ re already familiar with some of 
the things you can do with the Microsoft Search Service and full - text indexing. 

  Soundex Matching 
 One of the great challenges when mixing the nuance of language with the exactness of computing is to 
make sense of things that are similar to other things, but not exactly the same. My friend Steve, who 
writes a humorous newspaper column, says that there are people who like things to be black and white, 
and there are other people who are okay with things in that gray area in between. For the gray people, 
driving 70 on a 60 - mile - per - hour road is perfectly acceptable for the surgeon on his way to the hospital. 
This is not to say that the gray people are all about breaking rules and cheating their employers; they just 

c11.indd   337c11.indd   337 10/31/08   6:27:00 PM10/31/08   6:27:00 PM



Chapter 11: Advanced Capabilities

338

have a different way of looking at things. Likewise, at times you may need to match a word or phrase 
that is similar to another, in that gray area between equal to and not equal to. One of the great challenges, 
for those of us who spend our lives in the world of Boolean logic, is to cope with the concept of inexact 
comparisons. 

 Soundex, as applied in SQL Server, is a standard used to compare words based on their phonetic 
equivalents, using a mathematical algorithm. This standard is based on the  Consensus Soundex,  
developed by Robert Russell and Margaret Odell in the early 1900s. It was used by the United States 
Census in the 19th and early 20th centuries and in genealogical research to index and deal with spelling 
variations in surnames. Although the rules are based on English language phonetic rules, it does work 
with many words in different languages. Here ’ s something to keep in mind: Just as the rules of spoken 
language can be a bit arbitrary, so is this. Soundex matching is pretty accurate, most of the time, but on 
occasion some exceptions may occur. Use it for search and matching features to be validated by a user, 
but don ’ t bet the farm on every result. 

 The sound of a word is represented by a letter, representing the first sound, followed by a three - digit 
integer, each numeral representing adjacent consonant sounds. Before processing a word, the letters  A ,  E , 
 I ,  O ,  U ,  H ,  W , and  Y  are ignored unless they have a phonetic significance when combined with another 
letter. The first three prominent consonant sounds (after the first letter, if it ’ s a consonant) are translated 
as shown in the following table. 

     Letters      English Phonetic Description      Represented By   

    B, F, P, V    Labials and labio - dentals    1  

    C, G, J, K, Q, S, X, Z    Gutterals and sibilants    2  

    D, T    Dental - mutes    3  

    L    Palatal - fricative    4  

    M, N    Labio - nasal and lingua - nasal    5  

    R    Dental fricative    6  

 The resulting value is padded with zeros, if necessary. Here are some simple examples. The words 
 “ Two, ”     “ To, ”  and  “ Too ”  all have the same pronunciation. I ’ ll pass each to the Soundex function: 

SELECT SOUNDEX(‘Two’)

SELECT SOUNDEX (‘To’)

SELECT SOUNDEX (‘Too’)  

 The result is the same for each word, T000, as shown in Figure  11 - 5 .   

Figure 11-5

c11.indd   338c11.indd   338 10/31/08   6:27:00 PM10/31/08   6:27:00 PM



Chapter 11: Advanced Capabilities

339

 Because there are no consonants after the  “ T, ”  zeros are added. This happens to be the same value 
returned for Tea, Tee, Tow, Toe, and Toy. Using a more complex word, the result is more precise. For 
example, the Soundex value for the word  “ Microsoft ”  is M262: 2 for  C , 6 for  R , and 2 for  S . 

 Try a few different words. Generally, I ’ ve found this to work reasonably well for comparing the closeness 
of words, but using the Soundex function for this purpose is not an exact science. For example, the word 
 “ Seattle ”  has a Soundex value of S340, which is the same as for the word  “ Settle. ”  However, the word 
 “ Subtle ”  has a Soundex value of S134 because the algorithm missed the fact that the B is silent. This 
confirms what I ’ ve known all along, that people from Seattle are not very subtle. 

 The  SOUNDEX()  function returns a character string. With the exception of an exact match, you would 
need to parse this string and convert the numeric value to a numeric type. This would allow you to make 
quantitative comparisons. In this example, I use variables to hold the input and output values. The 
 SOUNDEX()  function output is parsed using the  SUBSTRING()  function to return only the numerical 
value. The difference is calculated and converted to a positive value using the ABS() function. Using this 
approach, I ’ ll compare Redmond and Renton, two neighboring Washington State cities that many people 
(including my wife) often confuse: 

DECLARE @Word1 VarChar(100)

DECLARE @Word2 VarChar(100)

DECLARE @Value1 Int

DECLARE @Value2 Int

DECLARE @SoundexDiff Int

SET @Word1 = ‘Redmond’

SET @Word2 = ‘Renton’

SELECT @Value1 = CONVERT(Int, SUBSTRING(SOUNDEX(@Word1), 2, 3))

SELECT @Value2 = CONVERT(Int, SUBSTRING(SOUNDEX(@Word2), 2, 3))

SET @SoundexDiff = ABS(@Value1 - @Value2)

PRINT @SoundexDiff  

 According to the  SOUNDEX()  function, these two words are quite different phonetically. My query 
returns a difference of 180. If you don ’ t want to go to this much work and don ’ t need such a granular 
comparison, all this effort isn ’ t necessary.  

  The DIFFERENCE() Function 
 The  DIFFERENCE()  function is really just a wrapper around two  SOUNDEX()  function calls and some 
business logic to compare the values. It simplifies the comparison, reducing the result to a scale from 
0 to 4, where the value 4 indicates a very close or exact match. 

 I ’ ll use the  DIFFERENCE()  function to compare the words  To  and  Two : 

SELECT DIFFERENCE(‘To’, ‘Two’)  

 The result is 4, indicating a very close or exact match. 

 Using the  DIFFERENCE()  function to compare  Redmond  with  Renton : 

SELECT DIFFERENCE (‘Redmond’, ‘Renton’)  

 returns 3, meaning a similar but not - so - close match.   

c11.indd   339c11.indd   339 10/31/08   6:27:01 PM10/31/08   6:27:01 PM



Chapter 11: Advanced Capabilities

340

  Managing and Populating Catalogs 
 Even though the task of managing full - text indexes belongs to the Microsoft Search Service rather than 
SQL Server, all the management work can be performed within SQL Server Management Studio. The 
underlying technology hasn ’ t changed significantly, but some architectural improvements have been 
made to full - text indexing in SQL Server 2005 and again in SQL Server 2008. Subsequently, the tools 
and methods used to create and manage the catalogs have changed slightly. For detailed information on 
managing full - text indexes and catalogs, please refer to  Professional Microsoft SQL Server 2008 
Programming  and  Professional SQL Server 2008  from Wrox. 

 Probably the most significant enhancement to full - text indexing introduced in SQL Server 2005 was that 
the database engine can update indexes as data changes. This can make full - text indexing behave more 
like standard indexing and greatly reduce data latency. Just keep in mind that this feature can have a 
significant impact on overall server performance. This may not be a wise option in a busy transactional 
database environment unless you have a very capable server. An enhancement to SQL Server 2008 
provides catalog storage in SQL Server rather than the file system. 

 The AdventureWorks2008 database already has full - text catalogs and indexes created, so the following 
steps are unnecessary. However, you will need to run the following script to generate a full - text index for 
the Product table. This index is created manually in the AdventureWorks2008 database using the steps 
that follow.   

CREATE FULLTEXT INDEX

ON Production.Product(Name, ProductNumber, Color)

KEY Index PK_Product_ProductID  

 The process for creating a catalog and indexes is the same for SQL Server 2008 as it is for SQL Server 
2005. So, even though this has already been done for you in the sample database, these steps will give 
you a reference point for any new databases you should need to configure in the future. 

 If you are using the AdventureWorks database for SQL Server 2005, use the following steps. Otherwise, 
skip ahead to the section  “ Creating an Index Manually. ”  

 Catalogs and indexes are implemented in SQL Server Management Studio. The Full - Text Indexing 
Wizard contains several pages. Begin by defining a new catalog for the AdventureWorks database. 
Under the database, expand the Storage node and right - click Full Text Catalogs. From the menu, select 
New Full - Text Catalog, as shown in Figure  11 - 6 .   

Figure 11-6

c11.indd   340c11.indd   340 10/31/08   6:27:01 PM10/31/08   6:27:01 PM



Chapter 11: Advanced Capabilities

341

 The New Full - Text Catalog dialog is used to name, specify a file location (unless you are using SQL 
Server 2008), and set options for the new catalog file, as shown in Figure  11 - 7 .   

Figure 11-7

 After you create a catalog, you can create indexes for tables. To create a new index, right - click a table 
icon and choose Full - Text Index    Define Full - Text Index, as shown in Figure  11 - 8 .   

c11.indd   341c11.indd   341 10/31/08   6:27:01 PM10/31/08   6:27:01 PM



Chapter 11: Advanced Capabilities

342

 When the Full - Text Indexing Wizard opens (see Figure  11 - 9 ), navigate past the opening page by clicking 
Next. Because the wizard was launched from the Product table, it polls the table for a list of indexes. 
A unique index must exist in order to build a full - text index. Accept the default selection, which is the 
primary key for this table, as shown in Figure  11 - 10 .   

Figure 11-8

c11.indd   342c11.indd   342 10/31/08   6:27:02 PM10/31/08   6:27:02 PM



Chapter 11: Advanced Capabilities

343

 Next, a list of columns is displayed. These are candidates for full - text indexing. Check any columns that 
you would like to have included in the full - text index, as demonstrated in Figure  11 - 11 .   

Figure 11-9

Figure 11-10

c11.indd   343c11.indd   343 10/31/08   6:27:02 PM10/31/08   6:27:02 PM



Chapter 11: Advanced Capabilities

344

 If you would like to have SQL Server track and automatically update this full - text index as data is 
modified, leave the Change Tracking option set to Automatically, as shown in Figure  11 - 12 .   

Figure 11-11

Figure 11-12

 The Select a Catalog page gives you the option to select an existing catalog or to create a new catalog. 
Because I created a catalog to store full - text indexes for this database, select the existing catalog, as 
shown in Figure  11 - 13 .   

c11.indd   344c11.indd   344 10/31/08   6:27:03 PM10/31/08   6:27:03 PM



Chapter 11: Advanced Capabilities

345

 The next page enables you to manage full - text catalog population schedules. Creating a schedule invokes 
the SQL Server Agent service, which must be running for this option to function properly. Click Next to 
skip this page. 

 The following page displays summary information (see Figure  11 - 14 ). Using this dialog, you can review 
your selections and options. Because no settings have yet been applied, you can use the Back and Next 
buttons to navigate to any page to make changes. Click the Finish button to apply your selections and 
build the next full - text index.   

Figure 11-13

Figure 11-14

c11.indd   345c11.indd   345 10/31/08   6:27:03 PM10/31/08   6:27:03 PM



Chapter 11: Advanced Capabilities

346

 The next wizard page, shown in Figure  11 - 15 , displays the progress of each step, as it is applied 
by the wizard.      

Figure 11-15

  Creating an Index Manually 
 Later in this chapter, I offer some examples of full - text queries on the ProductReview table. Rather than 
using the wizard, create this index using the following script: 

CREATE FULLTEXT INDEX 

ON Production.ProductReview(Comments, ReviewerName)

KEY Index PK_ProductReview_ProductReviewID  

 An optional statement can be used to explicitly control whether SQL Server tracks changes and whether 
it automatically populates and updates the index. You may want to disable change tracking to conserve 
server resources or to give yourself more control over this process. 

 To explicitly populate the index using change tracking, add this line to the end of the prior script: 

WITH Change_Tracking Auto  

 To explicitly turn off change tracking, use this option: 

WITH Change_Tracking OFF  

c11.indd   346c11.indd   346 10/31/08   6:27:04 PM10/31/08   6:27:04 PM



Chapter 11: Advanced Capabilities

347

 If you want to manually populate a full - text index that has not been set up for automatic population, use 
this option of the  sp_fulltext_table  system stored procedure: 

sp_fulltext_table ‘Production.ProductReview’, ‘start_full’  

 This stored procedure can be used in place of the Create Full - Text Index expression used previously and 
includes several related maintenance options.   

  Full - Text Query Expressions 
 Full - text indexing in SQL Server extends the T - SQL feature set by adding four language predicates: 

   CONTAINS   

   FREETEXT   

   CONTAINSTABLE   

   FREETEXTTABLE     

 You ’ ll recall that a predicate is simply a functional statement that yields a Boolean result. Predicates 
always return a true or false value. Functionally, there are really only two predicate statements with each 
having an alternate implementation that returns a SQL Server table object  —  rather than a standard 
result set  —  from the query. A predicate is simply an extension to the SQL language, used in a  WHERE  
clause, that provides a conduit from SQL Server to the Microsoft Search Service. As far as you are 
concerned, you are working with SQL and communicating to the database engine. The reality is that 
these statements take your request outside of SQL Server and make requests against the search service. 
The only real evidence of this is in the way you must pass string values. 

  Quotes in Quotes 
 This is an interesting idiosyncrasy of the full - text query syntax. As you know, when passing text string 
values to T - SQL, these values are encapsulated in single quotes. This is still the case when using full - text 
predicates; however, these string values are then passed from SQL to the search service, which requires 
that values be passed within double quotes. This means that when you need to pass values to a full - text 
query expression (if the value contains spaces) you must pass a double - quoted value within single 
quotes, like this: 

‘”My Value”’  

 T - SQL requires literal string values to be passed in single quotes. Before SQL Server reroutes the 
statement to the search service, it strips off the single quotes, passing values in the proper format for the 
search service, which requires literal values that include spaces to be enclosed in double quotes. When 
using logical operators within a full - text predicate call, you may need to pass multiple quoted values 
between operators, all of which are enclosed within single quotes for SQL to handle them, and each 
value in double quotes, as follows: 

‘”My Value” OR “Your Value”’  

 Examples of the entire call syntax follow shortly, but I want to make sure you ’ re comfortable with this 
requirement to pass double - quoted values (required by the Microsoft Search Service) within single 
quotes (required by SQL Server).  

❑

❑

❑

❑

c11.indd   347c11.indd   347 10/31/08   6:27:04 PM10/31/08   6:27:04 PM



Chapter 11: Advanced Capabilities

348

  The CONTAINS Predicate 
 The  CONTAINS  predicate lets you find and return rows where one or any combination of indexed column 
values contains a specified value, or optionally a form of a specified word. The features of this predicate 
are as follows: 

  Search criterion can apply to values in one or any number of specified column(s) contained in 
the full - text index.  

  Search criterion can apply to values in all columns contained in the full - text index.  

  The columns ’  text includes a word or string of characters located anywhere within the text. 
Matching text can include wildcards indicating that a word starts with, ends with, or contains a 
string of characters.  

  Match may be based on a form of a specified word. For example, the text may include a plural, 
singular, different gender form, or different tense of the word.    

 The full - text indexing engine includes a vast thesaurus of words in different forms and inflections. 
This supports multiple languages if different language packs have been installed. To be able to apply 
language rules to the text, the engine needs to know what language to use. The language parameter for 
all predicates will accept either the language alias (friendly name) or the LCID, an integer value used 
internally. Full - text indexing recognizes the languages listed in the following table. 

     Alias      LCID        Alias      LCID        Alias      LCID   

    Arabic    1025      French    1036      Portuguese    2070  

    Brazilian    1046      German    1031      Romanian    1048  

    British English    2057      Greek    1032      Russian    1049  

    Bulgarian    1026      Hungarian    1038      Simplified Chinese    2052  

    Croatian    1050      Italian    1040      Slovak    1051  

    Czech    1029      Japanese    1041      Slovenian    1060  

    Danish    1030      Korean    1042      Spanish    3082  

    Dutch    1043      Latvian    1062      Swedish    1053  

    English    1033      Lithuanian    1063      Thai    1054  

    Estonian    1061      Norwegian    2068      Traditional Chinese    1028  

    Finnish    1035      Polish    1045      Turkish    1055  

❑

❑

❑

❑

c11.indd   348c11.indd   348 10/31/08   6:27:04 PM10/31/08   6:27:04 PM



Chapter 11: Advanced Capabilities

349

 If the language parameter is omitted, the language will be derived from the column, table, or database. 

 I ’ ll start with a simple example. I ’ m interested in returning all Product records where any indexed 
column contains the value  “  Black ”  . The first parameter to this function - like statement indicates the 
indexed columns I want to include in the search. The asterisk ( * ) represents all available columns. 
The second parameter is my search criteria: 

SELECT * FROM Production.Product 

WHERE CONTAINS(*, ‘”Black”’)  

 The results are shown in Figure  11 - 16 .   

Figure 11-16

Figure 11-17

 As you can see, rows are returned where the word  “ Black ”  is contained in both the Name and Color 
columns. However, you may be wondering why the word  “ Black ”  was found in the middle of a field 
value when I didn ’ t use any wildcard characters. Something to get used to when using full - text queries 
is the differences in behavior from this and the SQL  LIKE  operator. Full - text queries match whole words 
anywhere within a field without using wildcards. Wildcard matching is performed to match a substring, 
or part of a word. For example, I ’ ll look for any rows that contain text beginning with the letters  “ crank ” : 

SELECT * FROM Production.Product 

WHERE CONTAINS(*, ‘”crank*”’)  

 Note that the wildcard character isn ’ t the percent symbol ( % ), as it is in T - SQL. It ’ s the asterisk ( * ). 
The results are shown in Figure  11 - 17 .   

c11.indd   349c11.indd   349 10/31/08   6:27:05 PM10/31/08   6:27:05 PM



Chapter 11: Advanced Capabilities

350

 You can also specify a list of columns you want to include in the search by specifying a comma - delimited 
column list within parentheses: 

SELECT * FROM Production.Product 

WHERE CONTAINS((ProductNumber, Name, Color), ‘”Black”’)  

 The full - text indexing engine includes an internal thesaurus of words and their variations. This 
enables the  CONTAINS  predicate to match different forms of a word. This might include past - , future - , or 
present - tense, or different gender inflections. For example, performing a full - text search on the Product 
table for the word  “ tour ”  returns records containing the word  “ touring, ”  as shown in Figure  11 - 18 .   

SELECT * FROM Production.Product 

WHERE CONTAINS(*, ‘FORMSOF(Inflectional, “Tour”)’)     

Figure 11-18

  Weighting Values 
 You can affect the outcome of word matching, and relative ranking of rows, by designating relative 
weight values for different words. A weight value is a numeric value between 0.0 and 1.0, accurate to one 
decimal position. Because these values are actually passed as a text string along with the rest of the 
search criteria, SQL Server doesn ’ t really see this as a numerical type. These values are used only for 
relative comparison, so it ’ s not necessary to make them add up to anything in particular. A weighted -
 value word list is passed to the  ISABOUT()  function, within the  CONTAINS  predicate expression: 

ISABOUT ( < word >  weight (.75),  < word >  weight (.25))  

 The result of this weighting will affect whether or not some rows are included in the result set but may 
not otherwise be apparent when using the  CONTAINS  predicate. This is apparent, however, in the value 
of the calculated Rank column returned by the  CONTAINSTABLE  and  FREETEXTTABLE  predicates.  

  Ranked Results 
 Internally, the  CONTAINS  predicate calculates a qualifying ranking value for each row, based on exact 
and approximate word matching, logical operators, and explicit weighting value factors. Because the 
 CONTAINS  and  FREETEXT  predicates are only used to qualify selected rows returned in the result set, 
these techniques can ’ t expose the ranking of each row. The  CONTAINSTABLE  and  FREETEXTTABLE  
predicates do create a new result set, returned as a SQL table object. A new column, called Rank, is 
added to the result with the relative ranking value of each row.  

c11.indd   350c11.indd   350 10/31/08   6:27:05 PM10/31/08   6:27:05 PM



Chapter 11: Advanced Capabilities

351

  The CONTAINSTABLE Predicate 
 Functionally, this is the  CONTAINS  predicate, wrapped by functionality that returns a SQL table object. 
Two additional columns are added to the result. The Key column is just a duplicate of the full - text index 
key column, which was specified when the full - text index was created. The Rank column appears, as 
I mentioned previously.   

SELECT ProductID, Name, ProductNumber, Color, Rank

FROM Production.Product INNER JOIN

CONTAINSTABLE(Production.Product, *

  , ‘ISABOUT (Black weight (.2), Blue weight (.8))’) AS ConTbl

    ON Product.ProductID = ConTbl.[Key]

ORDER BY Rank DESC  

 Take a look at another example. Full - text queries are ideal for searching large volumes of text. The first 
thing I ’ ll do is create a full - text index on the ProductReview table. This table contains a Comments 
column used to hold verbose text. After populating the index, the following query can be executed. 
Note the weight values for the two words: 

SELECT Comments, Rank

FROM Production.ProductReview INNER JOIN

CONTAINSTABLE(Production.ProductReview, Comments

   , ‘ISABOUT (terrible weight(.9), advertised weight(.1))’) AS ConTbl

    ON ProductReview.ProductReviewID = ConTbl.[Key]

ORDER BY Rank DESC  

 When the query is executed, a rank value is calculated based on these words found in the Comments 
column and the relative weight values. Note the values in the Rank column shown in Figure  11 - 19 .   

Figure 11-19

 Now I ’ ll change the weight values (reversing .9 and .1) and execute the query again: 

SELECT Comments, Rank

FROM Production.ProductReview INNER JOIN

CONTAINSTABLE(Production.ProductReview, Comments, 

  ‘ISABOUT (terrible weight(.1), advertised weight(.9))’) AS ConTbl

  ON ProductReview.ProductReviewID = ConTbl.[Key]

ORDER BY Rank DESC   

  The FREETEXT Predicate 
 Can a computer really understand what you want rather than simply give you exactly what you asked 
it for? The  FREETEXT  predicate attempts to do just that  —  to understand the meaning of a phrase or 
sentence. It does this by breaking a phrase down into individual words and then using the full - text 
indexing thesaurus to match all forms of these words, applying language rules. It may choose to return 
text that only contains forms of some of these words. As each row is considered for selection, an 
algorithm calculates a relative ranking value, used to qualify each record against the matching phrase. 

c11.indd   351c11.indd   351 10/31/08   6:27:06 PM10/31/08   6:27:06 PM



Chapter 11: Advanced Capabilities

352

 The  FREETEXT  predicate takes few parameters, and the only optional parameter is the language. As 
with the  CONTAINS  predicate, if omitted, the language will be derived from the database. The ranking is 
not exposed in the result, and the order of records is unaffected by the ranking.   

SELECT * FROM Production.Product

WHERE FREETEXT (*, ‘Yellow road bike’)  

 Not only are records returned where indexed columns contain the words  “ yellow, ”     “ road, ”  and  “ bike, ”  
but those records that contain any one of these words or forms of these words are also returned, as 
shown in Figure  11 - 20 .    

Figure 11-20

  Logical Operators 
 Multiple words or text strings can be specified by applying three different forms of logic, as explained in 
the following table. 

     Operator      Logic   

     AND     Criteria on both sides of the operator must match. If two values were provided 
with the  AND  operator, a single column value in each qualifying row must match 
both of the values.  

     OR     Criteria on either side of the operator must match. If two values were provided 
with the  OR  operator, a single column value in each qualifying row must match any 
provided value.  

     NEAR     Like the  AND  operator, both values must match text in a single column value for 
qualifying rows.  

  The FREETEXTTABLE Predicate 
 Like the  CONTAINSTABLE  predicate,  FREETEXTTABLE  is functionally the same as the  FREETEXT  predicate, 
but it returns a table with ranking values. Using the same technique as before, this table can be joined 
with the base table to return matching rows and the ranking values. 

c11.indd   352c11.indd   352 10/31/08   6:27:06 PM10/31/08   6:27:06 PM



Chapter 11: Advanced Capabilities

353

 In this example, I ’ ve used a phrase that doesn ’ t match any text exactly but several of the words may be 
found in the column text: 

SELECT Comments, Rank

FROM Production.ProductReview INNER JOIN

FREETEXTTABLE(Production.ProductReview, Comments

   , ‘mountain biking is new for me’) AS FtTbl

     ON ProductReview.ProductReviewID = FtTbl.[Key]

ORDER BY Rank DESC  

 The result returns two rows with one row ranked significantly higher than the other, as shown in 
Figure  11 - 21 .   

Figure 11-21

 The goal of free - text matching is to loosen the matching rules and provide some level of flexibility. 
Inevitably, this will return some rows that are simply not all that similar to the search text. To make the 
 FREETEXT  or  FREETEXTTABLE  predicate behave in a more predictable manner, you can force it to match 
the text exactly as it is presented by encapsulating the entire search text in double quotes. 

 Only one row matches this text exactly, as shown in Figure  11 - 22 .      

Figure 11-22

  Summary 
 The  PIVOT  and  UNPIVOT  operators transform data, either from a tabular structure into a cross - tabular 
structure (or  “ pivot ” ) or from a cross table into a columnar table. Like the  GROUP BY  clause, multiple 
rows may be combined and summarized when  PIVOT  is used along with aggregate functions such as 
 SUM  and  COUNT . The  PIVOT  operator is unique in that it combines results into predefined column groups, 
rather than rows. Although there are reporting tools that will do this in the presentation layer, such as 
Excel PivotTables, using this technique is a very powerful way to organize data the way users may need 
to see it presented. The  UNPIVOT  operator allows you to transform data that is in a cross - tabular, 
denormalized structure into standard, columnar form. This is a convenient way to take common 
spreadsheet data and organize it in a structure more appropriate to store in a relational table. 

 Often in our world of computer - managed precision and rigid logic, it ’ s important to see past exact 
values and look for information with similar meaning and context. The  SOUNDEX()  and  DIFFERENCE()  
functions were designed to help you make inexact comparisons, matching words with the same or 
similar phonetic patterns. Using the  SOUNDEX()  function is actually an older and fairly unsophisticated 
technique for matching words based on basic phonetic language rules. It ’ s simple and often useful for 
matching words that sound similar. 

c11.indd   353c11.indd   353 10/31/08   6:27:06 PM10/31/08   6:27:06 PM



Chapter 11: Advanced Capabilities

354

 Full - text indexing is a very capable resource for searching and matching content within any text, large or 
small. The  CONTAINS  and  FREETEXT  predicates work very effectively where you may be storing very 
large volumes of notes, comments, or document content. The  CONTAINS  predicate gives you fairly 
precise control over matching logic but will also let you find words, text, and phrases that are 
grammatically similar to the words you search for. The  FREETEXT  predicate is generally used for soft -
 matching a phrase when you don ’ t need text to match exactly, but to find text with similar meaning and 
content. The  CONTAINSTABLE  and  FREETEXTTABLE  predicates expand on their base predicates by 
returning SQL table types capable of presenting a ranked listing of qualifying values and integrating 
these features into more sophisticated queries.  

  Exercises 
  Exercise 1 

 Write a T - SQL script to create a new full - text index on the StateProvince table. The index should include 
all values in the StateProvinceCode, CountryRegionCode, and the Name columns. Execute this script 
and use SQL Server Management Studio to verify that the index exists.  

  Exercise 2 
 Write a query to return all records from the StateProvince table where any indexed columns contain the 
text  “ CA .”  Execute the query and verify the results. You should see the state of California and the 
country of Canada.  

  Exercise 3 
 Use the  FREETEXT  predicate to find instances of Victoria and BC in the StateProvince table. Is there a 
record in the table for the city of Victoria, British Columbia?                               

c11.indd   354c11.indd   354 10/31/08   6:27:07 PM10/31/08   6:27:07 PM



      12     
T  -  SQL  Programming Objects          

 SQL Server is an enormously capable and powerful relational data store. In general, SQL Server 
manages transactions and enforces checks and rules to protect the integrity of related records and 
values. You ’ ve seen how the query optimizer makes intelligent decisions and uses indexes to make 
queries run fast and efficiently. Now we ’ re going to take SQL Server to the next level. Most data is 
accessed through business applications. SQL Server can be more than just an idle medium for 
storing this data. A well - designed business solution uses the capabilities of an active database 
server, programming objects, and other components to distribute the workload and minimize 
unnecessary network traffic. 

 I want to take you on a brief tour of history so that you can appreciate the impact of the features 
we ’ re about to discuss. In the 1980s and early 1990s, PC - based applications ran only on desktops. 
If data could be shared across networks, it was simply stored in files managed by the file system. 
Applications supported a small number of users and quickly choked low - bandwidth networks as 
they moved all of their data to each desktop for processing. Desktop database applications sprang 
up like weeds in a new garden as inexpensive business applications became available  —  but the 
industry quickly hit the technology wall. In the past decade, the PC platform came of age with the 
advent of client/server database systems. In a nutshell, the enabling technology behind client/
server applications was the cutting - edge concept of running application code on a database server. 
Products such as SQL Server enabled this capability through the use of database programming 
objects such as views and stored procedures. 

 I could stop there and keep things quite simple, but the current state of the industry has moved 
forward in recent years. Most enterprise database solutions have progressed beyond simple client/
server technology. Now it ’ s easier than ever before to distribute program components across two, 
three, or more different computers. These may include desktop computers, Web servers, 
application servers, and database servers. 

 Sophisticated database applications use complicated queries. For this reason, it is important that 
queries and other SQL logic are protected and run as efficiently as possible. If SQL statements are 
managed in server - side database objects rather than in applications, this reduces the overall 
complexity of a solution. This separation of client - side applications and databases enables 
programmers and database professionals to each do what they do best, rather than having to write 

c12.indd   355c12.indd   355 10/31/08   6:27:45 PM10/31/08   6:27:45 PM



Chapter 12: T-SQL Programming Objects

356

both program code and complex SQL  —  not to mention the fact that application programmers, unless 
they have a background in database technologies, have traditionally written very bad SQL. 

 The very first rule of developing database applications is to avoid the ad - hoc query at all costs. Ad - hoc 
queries create great efficiency issues, and when it comes to Web applications, great security issues as 
well. The best practice when creating database - centric applications is to use database programming 
objects. In SQL Server, these objects include views, stored procedures, functions, and triggers. 
This chapter covers each of these objects in turn.  

  Views 
 A view is one of the simplest database objects. On the surface, a view is nothing more than a  SELECT  
query that is saved with a name in a database. Ask any modern - day programmer what they believe to be 
the most important and fundamental concept of programming. They will likely tell you that it is code 
reuse. Writing every line of code, every object, every script, and every query represents a cost or risk. 
One risk is that there could be a mistake (a bug) in the code. The cost of a bug is that it must be fixed 
(debugged) and tested. Buggy applications must be redeployed, shipped, installed, and supported. 
Undiscovered bugs pose a risk to productivity, business viability, and perhaps even legal exposure. One 
of the few constants in the software universe is change. Business rules will change, program logic will 
change, and the structure of your databases will also change. For all of these and other reasons, it just 
makes sense to reduce the number of objects that you create and use in your solutions. If you can create 
one object and reuse it in several places rather than duplicating the same effort, this limits your exposure 
to risk. Views promote this concept of code reuse by enabling you to save common queries into a 
uniform object. Rather than rewriting queries, complex queries can be created and tested and then 
reused without the added risk of starting over the next time you need to add functionality to an 
application. 

  Virtual Tables 
 One of the great challenges facing users is dealing with the complexity of large business databases. 
Many tools are available for use by casual database consumers for browsing data and building reports. 
Applications such as Microsoft Excel and Access are often used by information workers, rather than 
programmers, to obtain critical business management and operational information. A typical mid - scale 
database can contain scores of tables that contain supporting or special - purpose data. To reassemble the 
information stored in a large database, several tables must be joined in queries that take even skilled 
database professionals time and effort to create effectively. As you ’ ve seen in many examples, this is 
often not a trivial task. From the user ’ s perspective, views are tables. They show up in most applications 
connecting to a SQL Server, along with the tables. A view is addressed in a  SELECT  statement and 
exposed columns, just like a table. 

 From the developer or database designer ’ s perspective, a view can be a complex query that is exposed 
as if it were a simple table. This gives you an enormous amount of flexibility and the ability to hide all 
of the query logic, exposing a simple object. Users simply see a table - like object from which they can 
select data.  

c12.indd   356c12.indd   356 10/31/08   6:27:46 PM10/31/08   6:27:46 PM



Chapter 12: T-SQL Programming Objects

357

  Creating a View 
 Defining a view is quite simple. First of all, a database user must be granted permission to create a view. 
This is a task that you may want to have performed only by a database administrator or a select number 
of trusted users. Because creating a view isn ’ t particularly complicated, you may want certain users to be 
granted this ability. 

 Several simplified tools are available that you can use to create views. Microsoft Access, SQL Server 
Management Studio, and Visual Studio all leverage the T - SQL Query Designer interface to create and 
manage views. The process is just about the same in all of these tools because they all actually expose the 
same components. The following section steps through creating a view using Management Studio. I will 
not demonstrate each tool because the process is nearly identical. 

  Creating a View in Management Studio 
 Creating a view with Management Studio is very easy using the graphical query designer. It is basically 
the same designer used by Visual Studio and Microsoft Access. In Management Studio ’ s Object Explorer, 
navigate to the AdventureWorks2008 database and then expand the database to expose the Views folder. 
Right - click the Views folder and choose New View, as shown in Figure  12 - 1 .   

 Figure 12 - 1 

 Figure 12 - 2 

 After clicking New View, the Add Table dialog appears, as shown in Figure  12 - 2 . Add the Product, 
ProductCategory, and ProductSubcategory tables. Then click the Close button.   

c12.indd   357c12.indd   357 10/31/08   6:27:46 PM10/31/08   6:27:46 PM



Chapter 12: T-SQL Programming Objects

358

 After you close the Add Table dialog, the graphical query designer is displayed. It shows the three tables 
connected by relation links in the top Diagram pane. Because of the relationships that exist between 
these tables, inner joins are automatically defined in the query. Beneath the Diagram pane is the Criteria 
pane, SQL pane, and then the Show Results pane, as shown in Figure  12 - 3 .   

 Figure 12 - 3 

Show Grid
Pane

Show SQL
Pane

Show Diagram
Pane

Show Criteria
Pane

 Figure 12 - 4 

 Each one of the panes can be displayed or hidden by clicking on the associated button on the View 
Designer toolbar (see Figure  12 - 4 ).   

 Select the Name column from the ProductCategory table and the Name column from the 
ProductSubcategory table. Then select the ProductID, Name, ProductNumber and ListPrice columns 
from the Product table (using the checkboxes in the table windows). Using the Alias column in the 
columns grid, define aliases for the following three columns:

     Table.Column      Alias   

    ProductCategory.Name    Category  

    ProductSubcategory.Name    Subcategory  

    Product.Name    Product  

c12.indd   358c12.indd   358 10/31/08   6:27:46 PM10/31/08   6:27:46 PM



Chapter 12: T-SQL Programming Objects

359

 Also, designate these three columns for sorting in the order listed by dropping down and selecting the 
word Ascending in the Sort Type column. Check your results against Figure  12 - 5  and make any 
adjustments necessary.   

 Figure 12 - 6 

 Figure 12 - 5 

 Notice that something interesting happens to the SQL that is being written for you when you choose sort 
criteria: the query designer adds the  TOP 100 PERCENT  statement to your code. 

 Back when the original ANSI SQL specification was written, its authors wanted to ensure that database 
designers wouldn ’ t create SQL queries that would waste server resources. Keep in mind that this was at 
a time when production servers had 32MB of memory. One common memory - intensive operation is 
reordering a large result set. So, in their infinite wisdom, the authors imposed a rule that views cannot 
support the  ORDER BY  clause unless the results are restricted using a  TOP  statement. 

 If you close the window, using the Close button in the top - right corner, Management Studio prompts 
you to save the view. Click Yes to save the view and enter a name for the new view in the Choose Name 
dialog, as shown in Figure  12 - 6 . I ’ ve always made it a point to prefix view names with v, vw, or vw_ and 
to use Pascal case (no spaces, with the first letter of each word capitalized). This ensures that when you 
retrieve objects with older data access methods, the drivers rarely differentiated between tables and 
views. When creating a data application, it is generally pretty important to know if the object you ’ re 
referencing is a physical table or a view.   

c12.indd   359c12.indd   359 10/31/08   6:27:49 PM10/31/08   6:27:49 PM



Chapter 12: T-SQL Programming Objects

360

 After you save the view, it appears in the list of views in Object Explorer and can now be queried as you 
would query a table, as shown in Figure  12 - 7 .    

 Figure 12 - 7 

  Creating a View Using  SQL  Script 
 Regardless of the tool or product used to create a view, as you saw in the previous example, SQL script 
runs in the background and the result will be as varied as handwriting without the use of an automated 
tool. The syntax for creating a new view is quite simple. The pattern is the same whether the query is 
very simple or extremely complex. I ’ ll start with a simple view on a single table: 

CREATE VIEW vProductCosts

AS

SELECT ProductID, Name, StandardCost

FROM Production.Product  

 To continue working with this view and extend its capabilities, I can either use the  ALTER  command to 
make modifications to the existing view or drop and create it. Using the  ALTER  statement rather than 
dropping and re - creating a view has the advantage of keeping any existing properties and security 
permissions intact. 

 Here are examples of these two statements. The  ALTER  statement is issued with the revised view 
definition: 

ALTER VIEW vProductCosts

AS

SELECT ProductID, ProductSubcategoryID, Name, ProductNumber, StandardCost

FROM Production.Product  

c12.indd   360c12.indd   360 10/31/08   6:27:50 PM10/31/08   6:27:50 PM



Chapter 12: T-SQL Programming Objects

361

 Using the  DROP  statement will wipe the slate clean, so to speak, reinitializing properties and security 
permissions. But for the sake of the following example, don ’ t run this code just yet.   

DROP VIEW vProductCosts  

 What happens if there are dependencies on a view? I ’ ll conduct a simple experiment by creating another 
view that selects data from the view previously created: 

CREATE VIEW vProductCosts2

AS

SELECT Name, StandardCost FROM vProductCosts  

 For this view to work the first view has to exist and it must support the columns it references. Now, what 
happens if I try to drop the first view? I ’ ll execute the previous  DROP  command. Here ’ s what SQL Server 
returns: 

Command(s) completed successfully.  

 The view is gone? What happens if I execute a query using the second view?   

SELECT * FROM vProductCosts2  

 SQL Server returns this information: 

Msg 208, Level 16, State 1, Procedure vProductCosts2, Line 3

Invalid object name ‘vProductCosts’

Msg 4413, Level 16, State 1, Line 1

Could not use view or function ‘vProductCosts2’ because of binding errors.  

 Why would SQL Server allow something so silly? I may not be able to answer this question to your 
satisfaction because I can ’ t answer the question to my own satisfaction. This capability to drop an object 
and break something else is actually documented as a feature call  delayed resolution . It ’ s a holdover 
from the early days of SQL Server, but to a degree it makes sense. The perk of this feature is that if you 
needed to write script to drop all of the objects in the database and then create them again, this would be 
difficult to pull off with a lot of complex dependencies. If you ’ re uncomfortable with this explanation, 
there is good news. An optional directive on the  CREATE VIEW  statement called  SCHEMA BINDING  tells 
SQL Server to check for dependencies and disallow any modifications that would violate them. To 
demonstrate, the first thing I ’ ll do is drop both of these views and then re - create them: 

CREATE VIEW vProductCosts WITH SCHEMABINDING

AS

SELECT ProductID, ProductSubcategoryID, Name, ProductNumber, StandardCost

FROM Production.Product

GO

CREATE VIEW vProductCosts2 WITH SCHEMABINDING

AS

SELECT Name, StandardCost 

FROM dbo.vProductCosts  

c12.indd   361c12.indd   361 10/31/08   6:27:51 PM10/31/08   6:27:51 PM



Chapter 12: T-SQL Programming Objects

362

 Some unique requirements are apparent in the example script. First of all, for a view to be 
schema - bound, any objects it depends on must also be schema - bound. Tables inherently support schema 
binding, but views must be explicitly schema - bound. 

 Any dependent objects must exist in the database before they can be referenced. For this reason, it ’ s 
necessary to use batch delineation statements between dependent  CREATE  object statements. This 
example used the  GO  statement to finalize creating the first view. 

 When referring to a dependent view, you must use a two - part name. This means that you must use the 
schema name (which, as you can see in this example, is dbo). A schema - bound view also cannot use 
the  SELECT *  syntax. All columns must be explicitly referenced.  

  Ordering Rows 
 As mentioned earlier when working with the View designer, ordering rows in a view is not allowed 
without the  TOP  statement. 

 I run into this restriction all of the time. I ’ ll spend some time creating some big, multi - table join or 
subquery with ordered results. After it ’ s working, I think,  “ Hey, I ought to make this into a view. ”  So 
I slap a  CREATE VIEW vMyBigGnarlyQuery AS  statement on the front of the script and execute the 
script with this result: 

The ORDER BY clause is invalid in views, inline functions, derived tables, 

subqueries, and common table expressions, unless TOP or FOR XML is also 

specified.  

 Then I remember I have to use a  TOP  statement. This is a no - brainer and is easily rectified using the 
following workaround: 

CREATE VIEW vOrderedProductCosts

AS

SELECT TOP 100 PERCENT ProductID, Name, ProductNumber, StandardCost

FROM Production.Product

ORDER BY Name  

 Now that most database servers have 500 times the horsepower and 100 times the memory of those 
10 to 15 years ago, ordering a large result set is of much lesser concern.  

  Partitioned Views 
 Every system has its limits. Performance - tuning and capacity planning is the science of identifying 
these gaps and formulating appropriate plans to alleviate them. To partition data is to place tables or 
other objects in different files and on different disk drives to improve performance and organize data 
storage on a server. One of the most common methods to increase the performance and fault - tolerance 
of a database server is to implement RAID storage devices. Although this isn ’ t a book on server 
configuration, I bring this up for a good reason. In teaching classes on database design and talking about 
partitioning data across multiple hard disks, I ’ ve often heard experienced students ask,  “ Why don ’ t you 
just use a RAID device? Doesn ’ t it accomplish the same thing? ”  Yes, to a point. Disk arrays using RAID 
5 or RAID 10 simply spread data across an array of physical disks, improving performance and 

c12.indd   362c12.indd   362 10/31/08   6:27:51 PM10/31/08   6:27:51 PM



Chapter 12: T-SQL Programming Objects

363

providing fault - tolerance. However, data partitioning techniques and using RAID are not necessarily 
mutually exclusive. Categorically, there may be three scenarios for server size and scale: 

  Small - scale servers  

  Medium - scale servers  

  Large - scale servers    

 Small - scale servers will have system files and data on physical disks. You can implement data 
partitioning by placing objects in different database files residing on different disks, as depicted in 
Figure  12 - 8 .   

❑

❑

❑

Customer Table Sales Table

Database File A

E:Drive F:Drive

Database File B

Result Set

 Figure 12 - 8 

 Moderate - scale servers may implement a RAID device where an array of identical physical disk drives is 
treated by the operating system as a single, logical volume. From the database designer ’ s standpoint, the 
server has one disk, as illustrated in Figure  12 - 9 . The fact that what we perceive to be a single hard disk 
drive is actually a bank of parallel disks is completely transparent and may have little impact on how we 
design our database. You could argue that there is no need to be concerned with partitioning because the 
RAID device does this  —  as long as we have ample disk space.   

c12.indd   363c12.indd   363 10/31/08   6:27:51 PM10/31/08   6:27:51 PM



Chapter 12: T-SQL Programming Objects

364

 In a large - scale server environment, we generally take RAID technology for granted and may have 
several RAID devices, each acting as if it were an individual disk drive. This brings us back to the same 
scenario as the first example given where the server has a number of physical disks. In this case, we can 
partition our data across multiple disks, only each  “ disk ”  is actually a RAID device, as shown in 
Figure  12 - 10 .   

Customer Table Sales Table

Single Database File

RAID Device

Result Set

 Figure 12 - 9 

Customer Table Sales Table

Database File A Database File B

Result Set

RAID Device RAID Device

Figure 12-10

c12.indd   364c12.indd   364 10/31/08   6:27:52 PM10/31/08   6:27:52 PM



Chapter 12: T-SQL Programming Objects

365

 For this discussion, I ’ d like to put the RAID option aside and treat disks as if they are all physical disks, 
when in fact, each may be a RAID device. Keep in mind that the following SQL examples are given just 
to describe the methodology behind partitioned views. The code will not actually run on the 
AdventureWorks2008 database. 

 What does all this have to do with views? You ’ ll remember that one of the main reasons for views is to 
treat complex data as if it were a simple table. Partitioning takes this concept to the next level. Here ’ s an 
example: Suppose that your product marketing business has been gathering sales order data for five 
years. Business has been good and, on average, you ’ re storing 500,000 sales detail rows each year. At the 
end of each month your sales managers and executives would like to run comparative sales reports on 
all of this data but you certainly don ’ t want to keep nearly 3 million rows of data in your active table. 
When database performance began to slow down a couple of years ago, you decided to archive older 
records by moving them to a different table. This improved transactional performance because the active 
sales detail table stored less data. As long as you only accessed the most current records for reporting, 
performance was fine. However, when you combined the archive tables with the current detail, you were 
back to where you started. Once again, the server ground to a snail ’ s pace because all of these tables 
resided on the same physical disk. 

 Here ’ s a quick computer trivia question: What ’ s the slowest component of almost any computer system? 
The user? Okay, besides that. The memory? How about the CPU? No, it ’ s the hard disk. Aside from the 
cooling fans, the hard disk is the only critical component that is still mechanical. The industry hasn ’ t yet 
found a cost - effective replacement without moving parts. The platter can only spin so fast and the read/
write heads can only move back and forth so fast. In earlier chapters you learned that the greatest cost -
 affecting query performance is disk I/O  —  the time it takes for the system to position the heads and read 
data from a physical disk. If the system has one disk, it must find a page of data, reposition the heads, 
read the next page, and so on until it reads all of the data to return a complete result set. Because one 
disk has one set of heads, this happens in a linear fashion, one page at a time. If you were able to spread 
data across multiple disks, SQL Server could retrieve data from each disk simultaneously. The query 
execution plan makes this possible as it maps out those operations that are dependent and those that can 
be performed in parallel. This is depicted in Figure  12 - 11 .   

Result Set

Tables Disk 5

Disk 4

Disk 3

Disk 2

Disk 1

Figure 12-11

c12.indd   365c12.indd   365 10/31/08   6:27:53 PM10/31/08   6:27:53 PM



Chapter 12: T-SQL Programming Objects

366

 The view that makes all this possible is actually quite simple. Using your successful marketing business 
as an example, the view definition might look like this: 

SELECT * FROM SalesDetail_1993

UNION ALL

SELECT * FROM SalesDetail_2004

UNION ALL

SELECT * FROM SalesDetail_2005

UNION ALL

SELECT * FROM SalesDetail_2006

UNION ALL

SELECT * FROM SalesDetail_2007

UNION ALL

SELECT * FROM SalesDetail_Current  

 Because these tables are all addressable within the database, they can be referenced in joins, subqueries, 
or any type of SQL expression. It may not make sense to put every table on its own disk, but if you did, 
each of these  SELECT  statements could be processed in parallel. Assuming that each drive had its own 
independent controller, the data on each of these disks could be read simultaneously. 

 As you can see, many factors can contribute to the effectiveness of a partitioned view. You would likely 
choose this route when system performance became an issue. The best indicator that an approach solves 
a performance or resource problem would be to use performance - tuning tools such as analyzing query 
execution plans, using the Windows system monitor and SQL Server Profiler.  

  Federated Views 
 Federated views are close cousins of partitioned views. The term  federated  means working together, so a 
federated server solution consists of more than one independent database server working together to 
solve a business problem. This is not to be confused with a server cluster, where multiple servers appear 
as a single server on the network. Federated servers may be in close proximity or could be a great 
distance apart. In fact, one of the significant advantages to a federated server solution is that the 
database servers are geographically located in close proximity to the users and applications that will use 
them. With database servers in regional or satellite business locations, the majority of the region ’ s 
supporting data is typically stored on the local server. Federated views may be used to access data stored 
on remote servers and in exceptional cases, to connect over the Internet or corporate wide - area network 
(see Figure  12 - 12 ).   

c12.indd   366c12.indd   366 10/31/08   6:27:54 PM10/31/08   6:27:54 PM



Chapter 12: T-SQL Programming Objects

367

 You could take a few different approaches to make data accessible from one server to another. One of the 
most common choices is to configure a linked server connection. A linked server maintains a connection 
to a database on another server as if the remote database were local. Once a linked server connection is 
established, tables are referenced using a four - part name, as follows: 

 LinkedServer .SalesDatabase.Sales.SalesDetail  

 What does this accomplish? Suppose I have designed the database infrastructure for a banking system. 
Let ’ s say that credit card transactions may be processed in one of two data centers: one in Atlanta for 
East Coast accounts, and one in San Francisco for West Coast accounts. All U.S. customers have their 
account records managed in one of these two data centers. If I live in Seattle and make a purchase 
anywhere in the western United States, the merchant system sends my transaction to the San Francisco 
data center where it locates my account record and processes the transaction. However, the system must 
also be prepared to locate East Coast account records stored in the Atlanta data center. The view used to 
locate all accounts (from the West Coast server) may be defined like this: 

CREATE VIEW vAllAccounts

AS

SELECT * FROM Accounts     -- (local West coast)

UNION ALL

SELECT * FROM EastCoastServer.SalesDatabase.dbo.Accounts -- (remote East coast)  

 The query issued from the client would look like this: 

SELECT TOP 1 * FROM vAllAccounts WHERE CardNumber = @CardNumber  

Atlanta

San Francisco

Figure 12-12

c12.indd   367c12.indd   367 10/31/08   6:27:54 PM10/31/08   6:27:54 PM



Chapter 12: T-SQL Programming Objects

368

 The  TOP 1  statement tells the query - processing engine to stop looking after it finds one record. If the 
record is located in the first table (on the local server), no request is made on the remote server. 
Otherwise, the connection is used to pass the request to the other server, which processes the query until 
it locates the account record. Figure  12 - 13  demonstrates this scenario.   

Atlanta

Seattle

San Francisco

SELECT TOP 1 *
FROM WestCoast
Server.dbo.vAll

Accounts

Figure 12-13

 Now suppose that I travel to New York and buy a stuffed animal for my daughter ’ s birthday. I find a 
great deal on a teddy bear wearing a Yankees baseball cap and pay with my credit card, which sends 
a request to the Atlanta data center to Select Top 1 from a view defined as follows: 

CREATE VIEW vAllAccounts

AS

SELECT * FROM Accounts     -- (local East coast)

UNION ALL

SELECT * FROM WestCoastServer.SalesDatabase.dbo.Accounts -- (remote West coast)  

 In this example, the East Coast server doesn ’ t find my account record in the local Accounts table so it 
moves to the remote server, which begins searching in its Accounts table. This part of the query is 
actually processed on the West Coast server so data isn ’ t unnecessarily transferred across the network 
connection. After finding one record (my account), it stops looking and terminates the query execution. 
This scenario is depicted in Figure  12 - 14 .     

c12.indd   368c12.indd   368 10/31/08   6:27:55 PM10/31/08   6:27:55 PM



Chapter 12: T-SQL Programming Objects

369

  Securing Data 
 Another useful offering of views is to provide a layer for user data access without giving users access to 
sensitive data or other database objects. A common security practice is for the database administrator 
to lock down all of the tables, denying access to all regular users. Views are then created to explicitly 
expose selected tables, columns, and/or rows for all or selected users. When the select permission is 
granted on a view, users gain access to the view ’ s underlying data even if the same user is explicitly 
denied the select permission on the underlying table(s).  

  Hiding Complexity 
 One of the most common, and arguably one of the most important, reasons to use views is to simplify 
data access. In a normalized database, even the most basic queries can involve many different tables. 
Views make it possible for programmers, report writers, and users to gain access to data at a reasonably 
low level without having to contend with the complexities of relationships and database schema. 
A practical transactional database is broken down into many tables and related information is spread out 
across these tables to maintain data integrity and to reduce unnecessary redundancy. Reassembling all of 
these elements can be a headache for someone who doesn ’ t fully understand the data or who may not be 
versed in relational database design. Even for the experienced developer or DBA, using a view can save 
time and minimize errors. The following is an example to demonstrate this point. To do something as 
fundamental as return product inventory information can be a relatively complex proposition. 

 In this example, I want to return the category, subcategory, product, model, shelf location, inventory 
quantity, inventory cost, and inventory date for all products. Because this information could be common 
to more than one product, the category, subcategory, location cost, and inventory data is stored in 
separate tables. For operational reasons, I have decided to exclude the price information as well as other 
descriptive data for the products. Using a view, users are not even aware that the columns containing the 
omitted information exist.   

Atlanta

New YorkSan Francisco

SELECT TOP 1 *
FROM EastCoast
Server.dbo.vAll

Accounts

Figure 12-14

c12.indd   369c12.indd   369 10/31/08   6:27:55 PM10/31/08   6:27:55 PM



Chapter 12: T-SQL Programming Objects

370

CREATE VIEW vProductInventory

AS 

SELECT PC.Name AS Category

      ,SC.Name AS Subcategory

      ,P.Name AS Product

      ,P.ProductNumber

      ,PM.Name AS Model

      ,PN.Shelf

      ,PN.Quantity

      ,P.StandardCost

      ,P.StandardCost * PN.Quantity AS InventoryValue

      ,MAX(PN.ModifiedDate) AS InventoryDate

FROM   Production.Product P

INNER JOIN Production.ProductInventory PN

  ON P.ProductID = PN.ProductID 

INNER JOIN Production.ProductModel PM

  ON P.ProductModelID = PM.ProductModelID 

INNER JOIN Production.ProductSubcategory SC 

  ON P.ProductSubcategoryID = SC.ProductSubcategoryID 

INNER JOIN Production.ProductCategory PC

  ON SC.ProductCategoryID = PC.ProductCategoryID

GROUP BY PC.Name

        ,SC.Name

        ,P.Name

        ,P.ProductNumber

        ,PM.Name

        ,PN.Shelf

        ,PN.Quantity

        ,P.StandardCost

        ,P.StandardCost * PN.Quantity  

 Here ’ s one more example of a lengthy view. This view will be used a little later in the discussion on 
processing business logic in stored procedures. I like this view because it contains several columns that 
can easily be used for reporting purposes, and to sort, group, or filter the resulting data.   

CREATE VIEW vProductSalesDetail

AS

SELECT DISTINCT

       PC.Name AS Category

      ,PS.Name AS Subcategory

      ,P.Name AS Product

      ,ST.Name AS Territory

      ,SUM(SOD.OrderQty) AS TotalQuantity

      ,SUM(SOD.UnitPrice) AS TotalPrice

      ,SUM(SOD.UnitPriceDiscount) AS TotalDiscount

      ,SUM(SOD.LineTotal) AS LineTotals

      ,SOH.OrderDate

      ,SUM(SOH.SubTotal) AS SubTotal

      ,SUM(SOH.TaxAmt) AS TotalTax

      ,SUM(SOH.TotalDue) AS TotalDue

FROM   Production.ProductCategory PC

c12.indd   370c12.indd   370 10/31/08   6:27:56 PM10/31/08   6:27:56 PM



Chapter 12: T-SQL Programming Objects

371

INNER JOIN Production.ProductSubcategory PS

  ON PC.ProductCategoryID = PS.ProductCategoryID 

INNER JOIN Production.Product P

  ON PS.ProductSubcategoryID = P.ProductSubcategoryID 

INNER JOIN Sales.SalesOrderDetail SOD

  ON P.ProductID = SOD.ProductID 

INNER JOIN Sales.SalesOrderHeader SOH

  ON SOD.SalesOrderID = SOH.SalesOrderID 

INNER JOIN Sales.SalesTerritory ST

  ON ST.TerritoryID = SOH.TerritoryID

GROUP BY PC.Name

        ,PS.Name

        ,P.Name

        ,ST.Name

        ,SOH.OrderDate   

  Modifying Data Through Views 
 Can data be modified through a view? Perhaps a better question is  should  data be modified through 
a view? The definitive answer is maybe. Yes, you can modify some data through views. Because a 
view can expose the results of a variety of query techniques, some results may be updatable, some may 
not, and others may allow some columns to be updated. This all depends on various join types, 
record - locking conditions, and permissions on the underlying tables. 

 As a rule, I don ’ t think views are for updating records  —  that ’ s my opinion. After all, doesn ’ t the word 
view suggest that its purpose is to provide a read - only view of data? I think so, but I ’ ve also worked on 
enough corporate production databases where this was the only option. 

 The fact of the matter is that over time, databases evolve. Over the years, people come and go, policies 
are implemented with little evidence of their purpose, and political culture dictates the methods we use. 
If I ruled the world, no one would have access to data directly through tables; views would provide 
read - only data access and support all related application features, and stored procedures would be used 
to perform all transactional operations and filtered data retrieval. These are the guidelines I follow when 
designing a system from the ground up. However, I acknowledge that this is not always possible in the 
typical circumstance where one database designer isn ’ t given free license. 

 In simple terms, these are the most common rules governing the conditions for updating data through 
views: 

  In an inner join, columns from one table at a time may be modified. This is due to the record -
 locking restrictions on related tables. Updates generally cannot be performed on two related 
tables within the same transaction.  

  In an outer join, generally columns only for the inner table are updatable.  

  Updates can ’ t be performed through a view containing a  UNION  query.      

❑

❑

❑

c12.indd   371c12.indd   371 10/31/08   6:27:56 PM10/31/08   6:27:56 PM



Chapter 12: T-SQL Programming Objects

372

  Stored Procedures 
 If views raise the bar of database functionality, then stored procedures take it to the next level. Unlike 
views, stored procedures can be used for much more than reading data. They provide a wide range of 
programming functionality. Categorically, stored procedures can be used to do the following: 

  Implement parameterized views  

  Return scalar values  

  Maintain records  

  Process business logic    

  Stored Procedures as Parameterized Views 
 As with views, stored procedures can be used to return a result set based on a  SELECT  statement. 
However, I want to clarify an important point about the difference between views and stored 
procedures. A view is used in a  SELECT  statement as if it were a table. A stored procedure is executed, 
rather than selected from. For most programming APIs, this makes little difference. If a programmer 
needs to return a set of rows to an application or report, any data access layer such as ODBC, OLEDB, 
ADO.NET, or SQL Client can be used to obtain results from a table, a view, or a stored procedure. 

 A stored procedure can be used in place of a view to return a set of rows from one or more tables. Earlier 
in this chapter, I used a simple view to return selected columns from the Product table. Again, the script 
looks like this: 

CREATE VIEW vProductCosts

AS

SELECT ProductID, ProductSubcategoryID, Name, ProductNumber, StandardCost

FROM Production.Product  

 Contrast this with the script to create a similar stored procedure: 

CREATE PROCEDURE spProductCosts

AS

SELECT ProductID, ProductSubcategoryID, Name, ProductNumber, StandardCost

FROM Production.Product  

 To execute the new stored procedure, the name is preceded by the  EXECUTE  statement: 

EXECUTE spProductCosts   

 Although this is considered the most proper syntax, the  EXECUTE  command can be shortened to  EXEC : 

EXEC spProductCosts  

 In addition, when working with Management Studio, a stored procedure can be executed just by 
referencing its name: 

spProductCosts  

❑

❑

❑

❑

c12.indd   372c12.indd   372 10/31/08   6:27:57 PM10/31/08   6:27:57 PM



Chapter 12: T-SQL Programming Objects

373

 However, omitting the  EXEC  or  EXECUTE  command will not work when the stored procedure is 
referenced in other programming objects or programming interfaces. This abbreviated syntax is useful 
only in ad - hoc executions within Management Studio.  

  Using Parameters 
 A parameter is a special type of variable used to pass values into an expression. Named parameters are 
used for passing values into and out of stored procedures and user - defined functions. Parameters are 
most typically used to input, or pass values into, a procedure, but they can also be used to return values. 

 Parameters are declared immediately after the procedure definition and before the term AS. Parameters 
are declared with a specific data type and are used as variables in the body of a SQL statement. I will 
modify this procedure with an input parameter to pass the value of the  ProductSubcategoryID . This 
will be used to filter the results of the query. This example shows the script for creating the procedure. 
If the procedure already exists, the  CREATE  statement may be replaced with the  ALTER  statement: 

ALTER PROCEDURE spProductCosts

@SubCategoryID int

AS

SELECT ProductID, Name, ProductNumber, StandardCost

FROM Production.Product

WHERE ProductSubcategoryID = @SubCategoryID  

 To execute the procedure and pass the parameter value in SQL Query Analyzer or the Query Editor, 
simply append the parameter value to the end of the statement, like this: 

EXECUTE spProductCosts 1   

 Alternatively, the stored procedure can be executed with the parameter and assigned value like this: 

EXECUTE spProductCosts @SubCategoryID = 1   

 Stored procedures can accept multiple parameters and the parameters can be passed in either by position 
or by value, similar to the previous example. Suppose I want a stored procedure that filters products by 
subcategory and price. It would look something like this: 

CREATE PROCEDURE spProductsByCost

@SubCategoryID int, @Cost money

AS

SELECT ProductID, Name, ProductNumber, StandardCost

FROM Production.Product

WHERE ProductSubcategoryID = @SubCategoryID

AND StandardCost  >  @Cost  

 Using SQL, the multiple parameters can be passed in a comma - delimited list in the order they were 
declared: 

EXECUTE spProductsByCost 1, $1000.00   

c12.indd   373c12.indd   373 10/31/08   6:27:57 PM10/31/08   6:27:57 PM



Chapter 12: T-SQL Programming Objects

374

 Or the parameters can be passed explicitly by value. If the parameters are supplied by value, it doesn ’ t 
matter in what order they are supplied: 

EXECUTE spProductsByCost @Cost = $1000.00, @SubCategoryID = 1   

 If a programmer is using a common data access API, such as ADO or ADO.NET, separate parameter 
objects are often used to encapsulate these values and execute the procedure in the most efficient 
manner. 

 Although views and stored procedures do provide some overlap in functionality, they each have a 
unique purpose. The view used in the previous example can be used in a variety of settings where it may 
not be feasible to use a stored procedure. However, if I need to filter records using parameterized values, 
a stored procedure will allow this but a view will not. So, if the programmer building the product 
browse screen needs an unfiltered result set and the report designer needs a filtered list of products 
based on a subcategory parameter, do I create a view or a stored procedure? That ’ s easy, both. Use views 
as the foundation upon which to build stored procedures. Using the previous example, I select from the 
view rather than the table: 

ALTER PROCEDURE spProductCosts

@SubcategoryID int

As

SELECT ProductID, Name, ProductNumber, StandardCost

FROM vProductCosts

WHERE ProductSubcategoryID = @SubcategoryID  

 The benefit may not be so obvious in this simple, one - table example. However, if a procedure were based 
on the nine - table vEmployeeContactDetail view, the procedure call might benefit from optimizations in 
the view design and the lower maintenance cost of storing this complex statement in only one object.  

  Returning Values 
 The parameter examples shown thus far demonstrate how to use parameters for passing values into a 
stored procedure. One method to return a value from a procedure is to return a single - column, single -
 row result set. Although there is probably nothing grossly wrong with this technique, it ’ s not the most 
effective way to handle simple values. A result set is wrapped in a cursor, which defines the rows and 
columns, and may be prepared to deal with record navigation and locking. This kind of overkill reminds 
me of a digital camera memory card I recently ordered from a discount electronics supplier. A few days 
later, a relatively large box arrived and at first appeared to be filled with nothing more than foam 
packing peanuts. I had to look carefully to find the postage - size memory card inside. 

 In addition to passing values into a procedure, parameters can also be used to return values for output. 
Stored procedure parameters with an  OUTPUT  direction modifier are set to store both input and 
output values by default. Additionally, the procedure itself is equipped to return a single integer value 
without needing to define a specific parameter. The return value is also called the return code and 
defaults to the integer value of 0. Some programming APIs, such as ADO and ADO.NET, actually create 

c12.indd   374c12.indd   374 10/31/08   6:27:57 PM10/31/08   6:27:57 PM



Chapter 12: T-SQL Programming Objects

375

a special output parameter object to handle this return value. Suppose I want to know how many 
product records there are for a specified subcategory. I ’ ll pass the SubCategoryID using an input 
parameter and return the record count using an output parameter: 

CREATE PROCEDURE spProductCountBySubCategory

  @SubCategoryID int,

  @ProdCount int OUTPUT

AS

  SELECT @ProdCount = COUNT(*)

  FROM Production.Product

  WHERE ProductSubcategoryID = @SubCategoryID  

 To test a stored procedure with output parameters in Management Studio, it is necessary to explicitly use 
these parameters by name. Treat them as if they were variables, but you don ’ t need to declare them. 
When executing a stored procedure using SQL, the behavior of output parameters can be a bit puzzling 
because they also have to be passed in. In this example, using the same stored procedure, a variable is 
used to capture the output parameter value. The curious thing about this syntax is that the assignment 
seems backward. Remember that the  OUTPUT  modifier affects the direction of the value assignment  —  in 
this case, from right to left. The results are shown in Figure  12 - 15 .   

DECLARE @Out int

EXECUTE spProductCountBySubCategory

@SubCategoryID = 2,

@ProdCount = @Out OUTPUT

SELECT @Out AS ProductCountBySubCategory    

Figure 12-15

 It is critical that the  OUTPUT  modifier also be added to the output parameter when it is passed into the 
stored procedure. If you don ’ t, the stored procedure will still execute, but it will not return any data, as 
shown in Figure  12 - 16 .   

DECLARE @Out int

EXECUTE spProductCountBySubCategory

@SubCategoryID = 2,

@ProdCount = @Out --Missing the OUTPUT directional modifier

SELECT @Out AS ProductCountBySubCategory    

c12.indd   375c12.indd   375 10/31/08   6:27:57 PM10/31/08   6:27:57 PM



Chapter 12: T-SQL Programming Objects

376

 There is no practical limit to the number of values that may be returned from a stored procedure. The 
stated limit is 2,100, including input and output parameters. 

 If you need to return only one value from the procedure, you can do so without the use of an output 
parameter. You can use the return code of the procedure as long as the value being returned is an integer. 
Here is the same stored procedure showing this technique: 

ALTER PROCEDURE spProductCountBySubCategory

  @SubCategoryID int

AS

  DECLARE @Out int

  SELECT @Out = Count(*)

  FROM Production.Product

  WHERE ProductSubcategoryID = @SubCategoryID

RETURN @Out  

 The  RETURN  statement does two things: it modifies the return value for the procedure from the default 
value, 0, and it terminates execution so that any statements following this line do not execute. This is 
significant in cases where there may be conditional branching logic. Typically, the capture of the return 
value will be done with a programming API. However, you can also execute the return value using 
Management Studio by setting a variable to the return value of the stored procedure as shown in the 
following example: 

DECLARE @Return_Value AS int

EXECUTE @Return_Value = 

          spProductCountBySubCategory

                   @SubCategoryID = 2

SELECT @Return_Value   

  Record Maintenance 
 Using stored procedures to manage the insert, update, and delete operations for each major database 
entity can drastically reduce the cost of data maintenance tasks down the road. Any program code 
written to perform record operations should do so using stored procedures and not ad - hoc SQL 
expressions. As a rule of thumb, when I design a business application, every table that will have records 
managed through the application interface gets a corresponding stored procedure to perform each of 
these operations. These procedures are by far the most straightforward in terms of syntax patterns. 
Although simple, writing this script can be cumbersome due to the level of detail necessary to deal with 

Figure 12-16

c12.indd   376c12.indd   376 10/31/08   6:27:58 PM10/31/08   6:27:58 PM



Chapter 12: T-SQL Programming Objects

377

all of the columns. Fortunately, Management Studio includes scripting tools that will generate the bulk 
of the script for you. Beyond creating the fundamental  INSERT ,  UPDATE ,  DELETE , and  SELECT  
statements, you need to define and place parameters into your script. 

  Insert Procedure 
 The basic pattern for creating a stored procedure to insert records is to define parameters for all non -
 default columns. In the case of the Product table, the ProductID primary key column will automatically 
be incremented because it ’ s defined as an identity column. The rowguid and ModifiedDate columns 
have default values assigned in the table definition, so they will be set if values are not specified. The 
MakeFlag and FinishedGoodsFlag columns also have default values assigned in the table definition. 
It may be appropriate to set these values differently for some records. For this reason, these parameters 
are set to the same default values in the procedure. Several columns are nullable and the corresponding 
parameters are set to a default value of null. If a parameter with a default assignment isn ’ t provided 
when the procedure is executed, the default value is used, which is how you create a procedure with 
optional parameters. Otherwise, all parameters without default values must be supplied: 

CREATE PROCEDURE spProduct_Insert

       @Name                    nvarchar(50)

     , @ProductNumber           nvarchar(25)

     , @MakeFlag                bit            = 1

     , @FinishedGoodsFlag       bit            = 1

     , @Color                   nvarchar(15)   = Null

     , @SafetyStockLevel        smallint

     , @ReorderPoint            smallint

     , @StandardCost            money

     , @ListPrice               money

     , @Size                    nvarchar(5)    = Null

     , @SizeUnitMeasureCode     nchar(3)       = Null

     , @WeightUnitMeasureCode   nchar(3)       = Null

     , @Weight                  decimal        = Null

     , @DaysToManufacture       int

     , @ProductLine             nchar(2)       = Null

     , @Class                   nchar(2)       = Null

     , @Style                   nchar(2)       = Null

     , @ProductSubcategoryID    smallint       = Null

     , @ProductModelID          int            = Null

     , @SellStartDate           datetime

     , @SellEndDate             datetime       = Null

     , @DiscontinuedDate        datetime       = Null

AS

INSERT INTO Production.Product

  (    Name

     , ProductNumber

     , MakeFlag

     , FinishedGoodsFlag

     , Color

     , SafetyStockLevel

     , ReorderPoint

     , StandardCost

     , ListPrice

     , Size

(continued)

c12.indd   377c12.indd   377 10/31/08   6:27:58 PM10/31/08   6:27:58 PM



Chapter 12: T-SQL Programming Objects

378

     , SizeUnitMeasureCode

     , WeightUnitMeasureCode

     , Weight

     , DaysToManufacture

     , ProductLine

     , Class

     , Style

     , ProductSubcategoryID

     , ProductModelID

     , SellStartDate

     , SellEndDate

     , DiscontinuedDate  )

VALUES

     ( @Name

     , @ProductNumber

     , @MakeFlag

     , @FinishedGoodsFlag

     , @Color

     , @SafetyStockLevel

     , @ReorderPoint

     , @StandardCost

     , @ListPrice

     , @Size

     , @SizeUnitMeasureCode

     , @WeightUnitMeasureCode

     , @Weight

     , @DaysToManufacture

     , @ProductLine

     , @Class

     , @Style

     , @ProductSubcategoryID

     , @ProductModelID

     , @SellStartDate

     , @SellEndDate

     , @DiscontinuedDate)  

 It ’ s a lot of script but it ’ s not complicated. Executing this procedure in SQL is quite easy. This can be done 
in comma - delimited fashion or by using explicit parameter names. Because the majority of the fields and 
corresponding parameters are optional, they can be omitted. Only the required parameters need to be 
passed; the optional parameters are simply ignored: 

EXECUTE spProduct_Insert

    @Name               = ‘Widget’

  , @ProductNumber      = ‘987654321’

  , @SafetyStockLevel   = 10

  , @ReorderPoint       = 15

  , @StandardCost       = 23.50

  , @ListPrice          = 49.95

  , @DaysToManufacture  = 30

  , @SellStartDate      = ‘10/1/04’  

(continued)

c12.indd   378c12.indd   378 10/31/08   6:27:59 PM10/31/08   6:27:59 PM



Chapter 12: T-SQL Programming Objects

379

 The procedure can also be executed with parameter values passed in a comma - delimited list. 
Although the script isn ’ t nearly as easy to read, it is less verbose. Even though this may save you some 
typing, it often becomes an exercise in counting commas and rechecking the table ’ s field list in the Object 
Browser until the script runs without error.   

EXECUTE spProduct_Insert ‘Widget’, ‘987654321’, 1, 1, Null, 10, 15, 23.50, 

49.95, Null, Null, Null, Null, 30, Null, Null, Null, Null, Null, ‘10/1/04’  

 When using this technique, parameter values must be passed in the order they are declared. Values must 
be provided for every parameter up to the point of the last required value. After that, the remaining 
parameters in the list can be ignored. 

 A useful variation of this procedure may be to return the newly generated primary key value. The last 
identity value generated in a session is held by the global variable,  @@Identity . To add this feature, 
simply add this line to the end of the procedure. This would cause the Insert procedure to return the 
ProductID value for the inserted record.   

RETURN @@Identity  

 Of course, if you have already created this procedure, change the  CREATE  keyword to  ALTER , make 
changes to the script, and then re - execute it.  

  Update Procedure 
 The Update procedure is similar. Usually when I create these data maintenance stored procedures, 
I write the script for the Insert procedure and then make the modifications necessary to transform the 
same script into an Update procedure. As you can see, it ’ s very similar: 

CREATE PROCEDURE spProduct_Update

       @ProductID               int

     , @Name                    nvarchar(50)

     , @ProductNumber           nvarchar(25)

     , @MakeFlag                bit            

     , @FinishedGoodsFlag       bit            

     , @Color                   nvarchar(15)   

     , @SafetyStockLevel        smallint

     , @ReorderPoint            smallint

     , @StandardCost            money

     , @ListPrice               money

     , @Size                    nvarchar(5)    

     , @SizeUnitMeasureCode     nchar(3)       

     , @WeightUnitMeasureCode   nchar(3)       

     , @Weight                  decimal        

     , @DaysToManufacture       int

     , @ProductLine             nchar(2)       

     , @Class                   nchar(2)       

     , @Style                   nchar(2)       

     , @ProductSubcategoryID    smallint       

     , @ProductModelID          int            

     , @SellStartDate           datetime

     , @SellEndDate             datetime       

     , @DiscontinuedDate        datetime       

(continued)

c12.indd   379c12.indd   379 10/31/08   6:27:59 PM10/31/08   6:27:59 PM



Chapter 12: T-SQL Programming Objects

380

AS

UPDATE Product

SET    Name                  = @Name

     , ProductNumber         = @ProductNumber

     , MakeFlag              = @MakeFlag

     , FinishedGoodsFlag     = @FinishedGoodsFlag

     , Color                 = @Color

     , SafetyStockLevel      = @SafetyStockLevel

     , ReorderPoint          = @ReorderPoint

     , StandardCost          = @StandardCost

     , ListPrice             = @ListPrice

     , Size                  = @Size

     , SizeUnitMeasureCode   = @SizeUnitMeasureCode

     , WeightUnitMeasureCode = @WeightUnitMeasureCode

     , Weight                = @Weight

     , DaysToManufacture     = @DaysToManufacture

     , ProductLine           = @ProductLine

     , Class                 = @Class

     , Style                 = @Style

     , ProductSubcategoryID  = @ProductSubcategoryID

     , ProductModelID        = @ProductModelID

     , SellStartDate         = @SellStartDate

     , SellEndDate           = @SellEndDate

     , DiscontinuedDate      = @DiscontinuedDate

WHERE ProductID = @ProductID  

 The parameter list is the same as the insert procedure with the addition of the primary key, in this 
case, the ProductID column. However, the defaults have been removed. Defaults are dangerous to use 
with update procedures because if no value is provided, the procedure will overwrite what is in the 
table with the default. In our case, most of the defaults are NULL. This would cause any value in 
the database to be removed and replaced by a NULL if no value were provided.  

  Delete Procedure 
 In its basic form, the Delete procedure is very simple. The only necessary parameter for our example is 
the ProductID column value: 

CREATE PROCEDURE spProduct_Delete

     @ProductID    int

AS

     DELETE FROM Production.Product

     WHERE ProductID = @ProductID  

 In reality, what needs to be provided is whatever fields uniquely identify the row. This may be a single 
row, as in the case of the Product table, or a combination of columns in more complex tables. 

 Remember that deleting rows is not always as easy as it may seem. If the table is referenced with a 
foreign key constraint, all child records would have to be deleted prior to the deletion of the parent 
record. For example, the following script will not work: 

DELETE FROM Production.ProductCategory

WHERE ProductCategoryID = 1  

(continued)

c12.indd   380c12.indd   380 10/31/08   6:27:59 PM10/31/08   6:27:59 PM



Chapter 12: T-SQL Programming Objects

381

 This script results in the following error: 

WoodVista(WoodVista\DanW): Msg 547, Level 16, State 0, Line 2

The DELETE statement conflicted with the REFERENCE constraint 

“FK_ProductSubcategory_ProductCategory_ProductCategoryID”.

The conflict occurred in database “AdventureWorks2008”,

table “Production.ProductSubcategory”,

column ‘ProductCategoryID’.

WoodVista(WoodVista\DanW):

The statement has been terminated.  

 This leads us smoothly to the next topic, handling errors.   

  Handling and Raising Errors 
 In many data maintenance procedures, you may need to decide how to handle errors. Attempting to 
insert, update, or delete a record that violates constraints or rules will cause the database engine to raise 
an error. If this is acceptable behavior, you don ’ t need to do anything special in your procedure code. 
When the procedure is executed, an error is raised and the transaction is aborted. You simply need to 
handle the error condition in the client program code. Another, often more desirable, approach would be 
to proactively investigate the potential condition and then raise a custom error. This may have the 
advantage of offering the user or client application more useful error information or a more graceful 
method to handle the condition. In the case of the Delete procedure, I could check for existing dependent 
records and then raise a custom error without attempting to perform the delete operation. This also has 
the advantage of not locking records while the delete operation is attempted.  

  Error Messages 
 There are two general approaches to raising errors. One is to raise the error on - the - fly. This is done using 
a single statement. The other approach is to add custom error codes and message text to the system 
catalog. These messages can then be raised from script in any database on the server. Custom errors are 
added to the system catalog using the sp_addmessage system stored procedure. Here ’ s an example: 

sp_addmessage @msgnum = 50010

             ,@severity = 16

             ,@msgtext = ‘Cannot delete a category with existing sub-categories. ‘

             ,@with_log = ‘True’

             ,@replace = ‘Replace’

             ,@lang = ‘us_english’  

 Three parameters are required: the message number, message severity, and message text. There are also 
three additional optional parameters: one to specify logging the error in the server ’ s application log, one 
for replacing a current error with the same message number, and one to specify the language of the error 
if multiple languages are installed on the server. Custom error numbers begin at 50,001. This is user -
 assigned and has no special meaning. It ’ s just a unique value. The system recognizes severity values 
within specified numeric ranges and may respond by automatically logging the error or sending alerts. 
Alerts are configurable within the SQL Server Agent. Messages and errors are distinguished by the 
Severity Level flag. Those with a severity level from 0 to 10 are considered to be informational messages 
and will not raise a system exception. Those with a severity level from 11 to 18 are non - fatal errors, and 

c12.indd   381c12.indd   381 10/31/08   6:28:00 PM10/31/08   6:28:00 PM



Chapter 12: T-SQL Programming Objects

382

those 19 or above are considered to be the most severe, or fatal errors. This scale was devised for 
Windows service error logging. The following table shows the system - defined error severity levels. 

     Severity Level      Description   

    1    Misc. System Information  

    2 – 6    Reserved  

    7    Notification: Status Information  

    8    Notification: User Intervention Required  

    9    User Defined  

    10    Information  

    11    Specified Database Object Not Found  

    12    Unused  

    13    User Transaction Syntax Error  

    14    Insufficient Permission  

    15    Syntax Error in SQL Statements  

    16    Misc. User Error  

    17    Insufficient Resources  

    18    Non - Fatal Error in Resource  

    19 *    Fatal Error in Resource  

    20 *    Fatal Error in Current Process  

    21 *    Fatal Error in Database Processes  

    22 *    Fatal Error: Table Integrity Suspect  

    23 *    Fatal Error: Database Integrity Suspect  

    24 *    Fatal Error: Hardware Error  

    25 *    Fatal Error  

 This example demonstrates raising the error created in the previous example: 

RAISERROR (50010, 16, 1)  

c12.indd   382c12.indd   382 10/31/08   6:28:00 PM10/31/08   6:28:00 PM



Chapter 12: T-SQL Programming Objects

383

 The output from this expression returns the message defined earlier: 

Msg 50010, Level 16, State 1, Line 1

Cannot delete a product with existing sub-categories.  

 The severity level is actually repeated in the call. This seems like a strange requirement, but that ’ s the 
way it works. It also does not have to be the same as the defined severity level. If I want to raise the error 
as a severity level 11 instead of 16, I can. The last parameter is the state. This value is user - defined and 
has no inherent meaning to the system, but it is a required argument. State can be a signed integer 
between  – 255 and +255. State can be used for internal tracking, for example, to track all  “ State 3 ”  errors. 

 Here is an example of an ad - hoc message that has not been previously defined: 

RAISERROR (‘The sky is falling’, 16, 1)  

 The resulting output is as follows: 

Msg 50000, Level 16, State 1, Line 1

The sky is falling  

 Note that ad - hoc messages use the reserved message id of 50000. Raising an ad - hoc message with a 
severity level of 19 or higher requires elevated privileges and must be performed with explicit logging 
such as the following: 

RAISERROR (‘The sky is falling’, 19, 1) WITH LOG  

 If you need to raise an error of this type, it ’ s advisable to define these messages ahead of time because a 
connection to SQL Server that is not authenticated as a System Administrator will be prevented from 
using the  WITH LOG  option. 

 When an error occurs, the global variable,  @@ERROR , changes from its default value of 0 to an integer 
type standard error number. SQL Server includes more than 6,800 unique errors. All these error numbers 
and messages are stored in the Master database. The error number can be retrieved by selecting the 
 @@ERROR  global variable or by selecting the  ERROR_NUMBER()  function. 

  Error Handling in  SQL  Server 
 For many years, the ability to handle errors in T - SQL script has been limited to the same type of pattern 
used in other scripting languages. The query - processing engine was not equipped to respond to error 
conditions in the same way that an event - driven run - time engine would. Thus, if you suspected that an 
error might be raised after a specific line of script, you would have to check for an error condition and 
respond to it. You had to do it for every line where an error could occur. The downside to this approach 
was that you had to be able to guess where an error might occur and then respond to it. 

 One of the most significant enhancements to T - SQL with the release of SQL Server 2005 was its new 
error - handling capability, which works like most true programming languages. Any statements that 
could possibly cause an error are wrapped within a  TRY  block. The error - handling script is located in a 
separate  CATCH  block. When an error condition occurs in the  TRY  block, execution is moved to the first 
line within the  CATCH  block. The limitation of SQL Server error handling is that it can ’ t always be used to 
truly  “ handle ”  errors. Once an error occurs inside a transaction, very often that transaction enters a 

c12.indd   383c12.indd   383 10/31/08   6:28:00 PM10/31/08   6:28:00 PM



Chapter 12: T-SQL Programming Objects

384

 “ doomed ”  state. There is no way to commit the transaction; it must be rolled back. However, logic 
can be added so that the transaction is retried. Other than that, the error can be recorded and maybe 
some other event code executed. The syntax is fairly straightforward: 

BEGIN TRY

   ... Transaction

END TRY

BEGIN CATCH

   ... error-handing script

END CATCH  

 If you have experience with other programming languages such as C# or VB.NET, you may be 
wondering about the  “ Finally ”  block that is supported by many programming languages. Sorry to say, 
it is not supported with T - SQL. To adequately describe the error - handling capabilities, we need to create 
a table that is used to track and catalog errors. The table is created with the following script: 

USE AdventureWorks2008

GO

CREATE TABLE ErrorTable

(ErrorID int IDENTITY(1,1) NOT NULL

,ErrorNumber int NOT NULL

,ErrorMessage nvarchar(4000) NOT NULL

,ErrorLine int NOT NULL

,ErrorTime datetime NOT NULL DEFAULT GETDATE())  

 This is an example using this form of error handling: 

CREATE PROCEDURE spDeleteProduct @Productid int

AS

SET NOCOUNT ON --Inhibits row counts

BEGIN TRY

  BEGIN TRANSACTION

    DELETE Production.Product WHERE ProductID = @ProductID

  COMMIT TRANSACTION

END TRY

BEGIN CATCH

  DECLARE @Err AS int

  DECLARE @Msg AS nvarchar(MAX)

  DECLARE @Line AS int

  SET @Err = ERROR_NUMBER()

  SET @Msg = ERROR_MESSAGE()

  SET @Line = ERROR_LINE() 

  ROLLBACK TRANSACTION

  INSERT ErrorTable

  (ErrorNumber,ErrorMessage,ErrorLine)

  VALUES (@err, @msg, @Line)

  RAISERROR(@Msg, 14,1)

END CATCH  

c12.indd   384c12.indd   384 10/31/08   6:28:01 PM10/31/08   6:28:01 PM



Chapter 12: T-SQL Programming Objects

385

 It is important to remember that the  CATCH  block does indeed catch and  “ handle ”  the error. If the 
previous procedure did not contain the  RAISERROR()  function, the calling application would never 
know that something bad happened. 

 For example, if you run the following script, it will appear to work just fine: 

BEGIN TRY

  BEGIN TRANSACTION

    DELETE Production.ProductCategory WHERE ProductCategoryID = 1

  COMMIT TRANSACTION

END TRY

BEGIN CATCH

--Do Nothing

END CATCH  

 However, if you query the ProductCategory table, you will find that the Bikes category is safe and 
has not been deleted because the ProductSubCategory table has a foreign key that references the 
ProductCategory table. If the logic is changed to raise an error, the application will be informed and can 
take appropriate action. Here is the same script with the  CATCH  block modified so that you can see what 
happened that aborted the delete: 

BEGIN TRY

  BEGIN TRANSACTION

    DELETE Production.ProductCategory WHERE ProductCategoryID = 1

  COMMIT TRANSACTION

END TRY

BEGIN CATCH

  DECLARE @Err AS int

  DECLARE @Msg AS nvarchar(MAX)

  DECLARE @Line AS int

  SET @Err = ERROR_NUMBER()

  SET @Msg = ERROR_MESSAGE()

  SET @Line = ERROR_LINE() 

  ROLLBACK TRANSACTION

  INSERT ErrorTable

  (ErrorNumber, ErrorMessage, ErrorLine)

  VALUES (@err, @msg, @Line)

  RAISERROR(@Msg, 14,1)

END CATCH  

 The drawback of this method is that the original error number (547) cannot be retrieved by the calling 
application and instead the number 50000 is returned. SQL Server does not allow the  RAISERROR()  
function to be called with values less than 13000 and messages between 13000 and 50000 are non -
 configurable. If the application programmer wanted to check for the error number 547, to perform some 
other logic, he or she would not see it for this procedure, which is where the custom error that was 
covered earlier can come in. 

 In some cases T - SQL ’ s error - handling capabilities can be used to handle errors and re - run transactions 
affected by the error. The following example uses conditional logic to check for an error and to rerun the 

c12.indd   385c12.indd   385 10/31/08   6:28:01 PM10/31/08   6:28:01 PM



Chapter 12: T-SQL Programming Objects

386

transaction in the case of that particular error. To set up the example, we must first add a user - defined 
error to the system catalog with the  sp_addmessage  stored procedure: 

sp_addmessage @msgnum = 50100

             ,@severity = 16

             ,@msgtext = ‘Testing of error handling capabilities’

             ,@with_log = ‘True’

             ,@replace = ‘Replace’

             ,@lang = ‘us_english’  

 Now that we have our error message, we will build a procedure to test the error - handling capabilities of 
SQL Server: 

CREATE PROC dbo.procTestErrorHandling

AS

DECLARE @retry AS int; --Declare retry variable for transaction resubmission

SET @retry = 1;

WHILE @retry BETWEEN 1 AND 3 --Procedure will retry transaction three times

BEGIN

   BEGIN TRY

      BEGIN TRAN

         INSERT Production.ProductCategory

         (Name)

         VALUES

         (‘Widgets’)

         RAISERROR(50100,16,1)

      COMMIT TRAN

      SET @retry = 0;

   END TRY

   BEGIN CATCH

    -- Output for debug

      PRINT ‘In CATCH block.

      Error number: ‘ + CAST(ERROR_NUMBER() AS nvarchar(10)) + ‘

      Error message: ‘ + ERROR_MESSAGE() + ‘

      Error severity: ‘ + CAST(ERROR_SEVERITY() AS nvarchar(10)) + ‘

      Error state: ‘ + CAST(ERROR_STATE() AS nvarchar(10))

      

    IF ERROR_NUMBER() = 50100  --If the error is 50100, resubmit the transaction.

      BEGIN

         ROLLBACK TRAN;

         SET @retry = @retry + 1;

         IF @retry  < = 3

            BEGIN

               WAITFOR DELAY ‘00:00:00:500’; 

              --If an error occurs wait a half a second then resubmit 

                PRINT ‘Error detected. Attempting try #’ + CAST(@retry AS 

varchar(10)) + ‘.’;

            END

      END

   ELSE

      BEGIN

         SET @retry = 5

         DECLARE @ErrorMsg nvarchar(MAX)

c12.indd   386c12.indd   386 10/31/08   6:28:01 PM10/31/08   6:28:01 PM



Chapter 12: T-SQL Programming Objects

387

         SET @ErrorMsg = ERROR_MESSAGE() + ‘ Error handling test complete

                                             aborting transaction.’

         ROLLBACK TRAN         

         RAISERROR(@ErrorMsg,16, 1)

         RETURN -1

      END

  END CATCH

END  

 Now execute the procedure and check the results.   

WoodVista(WoodVista\DanW): (1 row(s) affected)

WoodVista(WoodVista\DanW):

In CATCH block.

      Error number: 50100

      Error message: Testing of error handling capabilities

      Error severity: 16

      Error state: 1

WoodVista(WoodVista\DanW):

Error detected. Attempting try #2.

WoodVista(WoodVista\DanW): (1 row(s) affected)

WoodVista(WoodVista\DanW):

In CATCH block.

      Error number: 50100

      Error message: Testing of error handling capabilities

      Error severity: 16

      Error state: 1

WoodVista(WoodVista\DanW):

Error detected. Attempting try #3.

WoodVista(WoodVista\DanW): (1 row(s) affected)

WoodVista(WoodVista\DanW):

In CATCH block.

      Error number: 50100

      Error message: Testing of error handling capabilities

      Error severity: 16

      Error state: 1  

 A query of the ProductCategory table will confirm that the category Widgets was not added. 

 You are probably wondering what the practical application of this example is. I use this particular 
logic on production systems to detect modification errors due to a contention error called a  deadlock . 
A deadlock occurs when at least two processes are locking resources that each process needs to complete 
its transaction. This creates a process standoff where neither process can complete while the other 
process is running. SQL Server automatically detects and terminates deadlocks by selecting one of the 
processes and killing it. When it does this, it sends the system error 1205 to the associated application 
to inform the application that the process was selected as the deadlock victim and then terminated. The 
transaction will need to be resubmitted. Because deadlocks are transient in nature, it is possible that if 
we detected them, we could wait for a short period of time and resend the modification. That is why 
I included the  WAITFOR DELAY  statement in the example. To create a procedure that works for deadlocks 
or any other predictable error, you simply change the conditional logic of the procedure to look for the 
error number of interest. 

c12.indd   387c12.indd   387 10/31/08   6:28:01 PM10/31/08   6:28:01 PM



Chapter 12: T-SQL Programming Objects

388

 Another useful function that can be used in error handling is  XACT_STATE() .  XACT_STATE()  returns 
information about what effects an error has had on an associated transaction. The following table 
describes the possible values returned by  XACT_STATE() . 

     XACT_STATE() 
Return Value      Description   

    1    There is an active user transaction that is committable.  

    0    There are no active user transactions.  

     - 1    There is an active user transaction, but it is not committable. It is in a 
 “ doomed ”  state. It must be rolled back.  

 By using a modified version of the previous example, we can have the  CATCH  block check the return 
value of  XACT_STATE()  and perform the appropriate action: 

USE AdventureWorks2008

GO

CREATE PROC dbo.InsertCategory @CategoryName nvarchar(50)

AS

BEGIN TRY

   BEGIN TRAN

      INSERT Production.ProductCategory

      (Name)

      VALUES

      (@CategoryName)

      RAISERROR(50100,16,1)

   COMMIT TRAN

END TRY

BEGIN CATCH

 -- Output for debug

   PRINT ‘In CATCH block.

   Error number: ‘ + CAST(ERROR_NUMBER() AS nvarchar(10)) + ‘

   Error message: ‘ + ERROR_MESSAGE() + ‘

   Error severity: ‘ + CAST(ERROR_SEVERITY() AS nvarchar(10)) + ‘

   Error state: ‘ + CAST(ERROR_STATE() AS nvarchar(10)) + ‘

   Transact state: ‘ + CAST(XACT_STATE() AS nchar(2)) 

   IF XACT_STATE() = -1

      BEGIN

         DECLARE @ErrorMsg nvarchar(MAX)

         SET @ErrorMsg = ERROR_MESSAGE()

         PRINT ‘Transaction State Doomed, Transaction Rolled Back’

         ROLLBACK TRAN         

         RAISERROR(@ErrorMsg,16, 1)

         RETURN -1

      END

   IF XACT_STATE() = 1

      BEGIN

c12.indd   388c12.indd   388 10/31/08   6:28:02 PM10/31/08   6:28:02 PM



Chapter 12: T-SQL Programming Objects

389

          COMMIT TRAN

          PRINT ‘Transaction State Committable, Transaction Committed’

      END

   IF XACT_STATE() = 0

      BEGIN

          PRINT ‘No Transaction Present, Do nothing’

      END

END CATCH  

 Now that we have our new procedure, let ’ s execute it to see what happens: 

EXECUTE InsertCategory ‘Blue Widgets’  

 Here are the results: 

WoodVista(WoodVista\DanW): (1 row(s) affected)

WoodVista(WoodVista\DanW):

In CATCH block.

   Error number: 50100

   Error message: Testing of error handling capabilities

   Error severity: 16

   Error state: 1

   Transact state: 1 

WoodVista(WoodVista\DanW):

      Transaction State Committable, Transaction Committed  

 A query of the ProductCategory table will show that the Blue Widgets category was added. However, 
when the same procedure is executed again, a different error will occur: 

WoodVista(WoodVista\DanW): (0 row(s) affected)

WoodVista(WoodVista\DanW):

In CATCH block.

   Error number: 2601

   Error message: Cannot insert duplicate key row in object ‘Production

.ProductCategory’ with unique index ‘AK_ProductCategory_Name’.

   Error severity: 14

   Error state: 1

   Transact state: 1 

WoodVista(WoodVista\DanW):

Transaction State Committable, Transaction Committed  

 Even though a unique constraint violation error occurred, the transaction was still committable. This 
leads us to an important consideration to keep in mind when using this particular functionality. Should 
we commit a transaction just because it is committable? If the  CATCH  block was called because of an error, 
it may not be the wisest of courses to commit the transaction just because you can. Take the following 
example, for instance. Here we will create a checking account table and a savings account table. 
Then we will place a check constraint on the amount columns so that they must be greater than zero. 

c12.indd   389c12.indd   389 10/31/08   6:28:02 PM10/31/08   6:28:02 PM



Chapter 12: T-SQL Programming Objects

390

After that we will invoke some code that transfers $100.00 from the savings account to the checking 
account by updating both tables. Because the savings account currently has a balance of $100.00 this 
update should cause an error.   

USE AdventureWorks2008

GO

CREATE TABLE CheckingAccount

(AccountNo int NOT NULL

,Amount money NOT NULL)

ALTER TABLE CheckingAccount

ADD CONSTRAINT CK_CheckingAmount CHECK (Amount  >  0)

GO

CREATE TABLE SavingsAccount

(AccountNo int NOT NULL

,Amount money NOT NULL);

ALTER TABLE SavingsAccount

ADD CONSTRAINT CK_SavingsAmount CHECK (Amount  >  0)

GO

INSERT CheckingAccount

VALUES

(1111,100.00)

INSERT SavingsAccount

VALUES

(1112,100.00)

BEGIN TRY

   BEGIN TRAN

      UPDATE CheckingAccount 

      SET Amount = Amount + 100

      WHERE AccountNo = 1111

      UPDATE SavingsAccount

      SET Amount = Amount - 100

      WHERE AccountNo = 1112

   COMMIT TRAN

END TRY

BEGIN CATCH

 -- Output for debug

   PRINT ‘In CATCH block.

   Error number: ‘ + CAST(ERROR_NUMBER() AS nvarchar(10)) + ‘

   Error message: ‘ + ERROR_MESSAGE() + ‘

   Error severity: ‘ + CAST(ERROR_SEVERITY() AS nvarchar(10)) + ‘

   Error state: ‘ + CAST(ERROR_STATE() AS nvarchar(10)) + ‘

   Transact state: ‘ + CAST(XACT_STATE() AS nchar(2)) 

   IF XACT_STATE() = -1

      BEGIN

         DECLARE @ErrorMsg nvarchar(MAX)

         SET @ErrorMsg = ERROR_MESSAGE()

         PRINT ‘Transaction State Doomed, Transaction Rolled Back’

         ROLLBACK TRAN         

         RAISERROR(@ErrorMsg,16, 1)

      END

c12.indd   390c12.indd   390 10/31/08   6:28:02 PM10/31/08   6:28:02 PM



Chapter 12: T-SQL Programming Objects

391

   IF XACT_STATE() = 1

      BEGIN

          COMMIT TRAN

          PRINT ‘Transaction State Committable, Transaction Committed’

      END

   IF XACT_STATE() = 0

      BEGIN

          PRINT ‘No Transaction Present, Do nothing’

      END

END CATCH  

 Executing this code gives us the following results: 

WoodVista(WoodVista\DanW): (1 row(s) affected)

WoodVista(WoodVista\DanW): (1 row(s) affected)

WoodVista(WoodVista\DanW): (1 row(s) affected)

WoodVista(WoodVista\DanW):

In CATCH block.

   Error number: 547

   Error message: The UPDATE statement conflicted with the CHECK constraint 

“CK_SavingsAmount”. The conflict occurred in database “AdventureWorks2008”, 

table “dbo.SavingsAccount”, column ‘Amount’.

   Error severity: 16

   Error state: 0

   Transact state: 1 

WoodVista(WoodVista\DanW):

Transaction State Committable, Transaction Committed  

 However, if we query the two account tables, we will find that the checking account now has a balance 
of $200.00 and the savings account is still at $100.00  —  not the best of solutions, especially as far as the 
bank is concerned.   

  Processing Business Logic 
 Handling business rules is all about making decisions. The decision structures in T - SQL are 
uncomplicated. When writing a decision statement, the first thing I typically do is state the logic using 
natural language. The roots of T - SQL are in the English language. You ’ ll recall from Chapter 1 that IBM ’ s 
predecessor to SQL was actually called SEQUEL, which stood for Structured English Query Language. 
You should be able to break down any process into a decision tree. Even complex logic, once distilled 
into fundamental components, is just a series of simple logical combinations. This concept is what I call 
compounded simplicity  —  each individual piece is simple, there just may be a lot of pieces. 

 Using logical operators within SQL statements, you should be able to handle quite a lot of relatively 
complex business logic. I find that my first attempt to address a complex problem is usually a bit 
convoluted. After taking some time to approach the problem from different angles, I ’ m usually more 
successful in using a simpler technique. It takes a little patience and a few iterations to get to the optimal 
solution. 

c12.indd   391c12.indd   391 10/31/08   6:28:03 PM10/31/08   6:28:03 PM



Chapter 12: T-SQL Programming Objects

392

 In the previous section on views, I created a complex view called vProductSalesDetail. This view is an 
excellent example of the kind of data my sales manager may want to see in a report. Suppose I plan 
to use SQL Server Reporting Services to design a sales detail report. Users have asked for the ability to 
provide a variety of parameter values to be used for filtering. As a rule, if a parameter is provided, the 
report data is filtered accordingly. If the parameter value is not provided, the parameter is ignored and 
no related filtering takes place. The report parameters are listed in the following table. 

     Parameters      Logic   

    Sales Order From Date 
and Sales Order To 
Date  

  The user is prompted to type a date value for each of these parameters. 
If both parameters contain a value, the sales order data is filtered 
within the given range of order dates. If either of the parameters is not 
provided, this criterion is ignored.  

    Account Number    The user is prompted to type a customer ’ s account number. If this 
value is not provided, this criterion is ignored.  

    Product Category    The product category is selected from a drop - down list. The first item 
of the list displays the word  “ All. ”  If this value is selected, records are 
not filtered by the product category.  

 Combining logical operators may seem to be very complicated but it ’ s actually quite simple when 
broken down into core components. Each branch of logic must be isolated from others that it shouldn ’ t 
affect. Using parentheses, group these statements together. For example, if the account number 
parameter is not provided (the value is Null), you need not consider the value of the corresponding 
column. In SQL, this logic would look like this: 

((@ProductCategory IS NULL) OR (CategoryName = @ProductCategory))  

 The inner parentheses, surrounding each individual statement, just make this statement easier to read 
and could be omitted. The outer parentheses isolate this logic from any other statements. If the value of 
the parameter  @ProductCategory  is NULL, then it doesn ’ t matter whether the CategoryName column 
value matched the parameter value or not. One side of the OR expression has already been satisfied so 
the expression on other side need not be true as well. 

 If I want to filter the entire result set based on combinations of multiple parameters, then each group of 
parameters - related statements must be combined using the  AND  operator. This is because one of the two 
statements on the  OR  statement must be true to return any records for that part of the  WHERE  clause. 
Combining the logic for two parameters looks like this: 

((@ProductCategory IS NULL) OR (CategoryName = @ProductCategory)) 

AND

((@ProductCategory = ‘All’) OR (CategoryName = @ProductCategory))  

c12.indd   392c12.indd   392 10/31/08   6:28:03 PM10/31/08   6:28:03 PM



Chapter 12: T-SQL Programming Objects

393

 I changed the logic for the product category to check for the word  “ All ”  just to mix this up a little. 
It would be convenient if all parameters were compared in the same way, but this is a very realistic 
scenario. Putting it all together, the stored procedure might look like the following. Notice how the 
actual selection and column referencing is very simple because I ’ ve already handled the complexity of 
the query in the view. The procedure simply leverages this investment.   

CREATE PROCEDURE spProductSalesDetail

   @SalesOrderDateFrom  datetime = NULL

  ,@SalesOrderDateTo    datetime = NULL

  ,@Category            nvarchar(50) = ‘All’

AS

SELECT * FROM vProductSalesDetail

WHERE

  ((@SalesOrderDateFrom IS NULL) OR (@SalesOrderDateTo IS NULL))

  OR

  (OrderDate BETWEEN @SalesOrderDateFrom AND @SalesOrderDateTo)

  AND

  ((@Category = ‘All’) OR (Category = @Category))   

  Try It Out 

 Test this procedure by supplying some parameters and not others. You should be able to use any 
combination of parameters. You can even leave off the product category because this parameter 
defaults to the value  All . For example, all of the following will work: 

EXECUTE spProductSalesDetail

 @SalesOrderDateFrom     = ‘12-1-03’

,@SalesOrderDateTo       = ‘12-31-03’

,@Category        = ‘Bikes’

EXECUTE spProductSalesDetail

 @SalesOrderDateFrom     = ‘12-1-03’

,@Category        = ‘Bikes’

EXECUTE spProductSalesDetail

 @SalesOrderDateFrom     = ‘12-1-03’

,@SalesOrderDateTo       = ‘12-31-03’    

 

  Conditional Logic 
 At the very core of all logic is the simple word  “ If ”  in the English language. All other decision structures 
are variations or extensions of the same basic if concept. Before I show you the specific SQL syntax, take 
a look at some simple phrases that are examples of conditional logic: 

   If  a product record exists, update it.  

   If  a product record doesn ’ t exist, create one.  

   If  a backorder record exists  and  sufficient inventory exists, delete the backorder and ship the 
product.    

❑

❑

❑

c12.indd   393c12.indd   393 10/31/08   6:28:03 PM10/31/08   6:28:03 PM



Chapter 12: T-SQL Programming Objects

394

 What happens if this condition is not met? That ’ s easy. This is done using an  ELSE  statement: 

   If  an account balance is current, calculate the new total.  

   . . .  or  else if  the account balance is past due, add a late fee and calculate the new total.  

   . . .  or  else if  the account is seriously past due, add a late fee, close the account, and calculate the 
new total.    

 Most programming languages include some other forms of logical branching statements that extend the 
 If  statement paradigm. For example, the Visual Basic Select Case command just consolidates what 
would otherwise be several  IF     . . .     ELSE  statements. T - SQL contains a Select Case structure that is quite 
different, which will be introduced shortly.    

IF  
 In SQL, the  IF  statement is not followed by the word  “ Then. ”  If a condition is met (if the outcome is 
True), script beginning on the next line is simply executed. This stored procedure checks for the named 
table in the database catalog: 

CREATE PROCEDURE spTableExists

  @TableName varchar(128)

AS

  IF EXISTS(SELECT * FROM sysobjects WHERE name = @TableName)

    PRINT @TableName + ‘ exists’  

 The  ELSE  statement, in this case, simply allows me to execute another line of script when the condition is 
not met: 

CREATE PROCEDURE spTableExists

  @TableName varchar(128)

AS

  IF EXISTS(SELECT * FROM sysobjects WHERE name = @TableName)

    PRINT @TableName + ‘ exists’

  ELSE

    PRINT @TableName + ‘ doesn’’t exist’  

 When multiple lines of code follow an  IF  statement, it is best to wrap the lines in a  BEGIN     . . .     END  block. 
Although this is not strictly required, it makes the code much simpler to read and debug.  

❑

❑

❑

c12.indd   394c12.indd   394 10/31/08   6:28:04 PM10/31/08   6:28:04 PM



Chapter 12: T-SQL Programming Objects

395

  Try It Out 

 Using the 2008 database, create a stored procedure to return product information. An optional 
parameter will be used to determine when records will be filtered. The query uses the Product and 
ProductSubCategory tables so you can pass the subcategory name for filtering. This is a lot of script to 
type so you might consider using the Query Builder to create the basic  SELECT  statement. The input 
parameter,  @Category , is set to Null so it becomes optional.   

CREATE PROCEDURE spGetProductByCategory

 @Category nvarchar(50) = NULL

AS

IF @Category IS NULL

 BEGIN

    SELECT PC.Name AS ProductCategory

         , P.ProductID

         , P.Name AS ProductName

    FROM   Production.Product AS P

    INNER JOIN Production.ProductSubcategory AS PSC

      ON P.ProductSubcategoryID = PSC.ProductSubcategoryID 

    INNER JOIN Production.ProductCategory AS PC

      ON PSC.ProductCategoryID = PC.ProductCategoryID

 END

ELSE

 BEGIN

    SELECT PC.Name AS ProductCategory

         , P.ProductID

         , P.Name AS ProductName

    FROM   Production.Product AS P 

    INNER JOIN Production.ProductSubcategory AS PSC

      ON P.ProductSubcategoryID = PSC.ProductSubcategoryID 

    INNER JOIN Production.ProductCategory AS PC

      ON PSC.ProductCategoryID = PC.ProductCategoryID

    WHERE PC.Name = @Category

 END  

 If the procedure is executed without a category name value, all product records are returned. 
Otherwise, the results are filtered. Now, try this out. Execute the procedure with and without a 
category parameter value: 

EXECUTE spGetProductByCategory ‘Bikes’  

 By passing the category  ‘ Bikes, ’  only 97 product records are returned because the results are filtered 
by this category. 

 Now execute the procedure without a category value: 

EXECUTE spGetProductByCategory  

 This time, 295 rows (give or take a few depending on other sample queries you may have run) are 
returned because the products are unfiltered.       

c12.indd   395c12.indd   395 10/31/08   6:28:04 PM10/31/08   6:28:04 PM



Chapter 12: T-SQL Programming Objects

396

CASE  
 The purpose of the  CASE  statement is to return a specified value based on a set of business logic. 
A variety of useful applications for the  CASE  statement include translating abbreviations into descriptive 
values and simulating look - up table joins. 

 The syntax pattern looks like this: 

SELECT CASE  value to evaluate 

WHEN  literal value 1  THEN  return value 

WHEN  literal value 2  THEN  return value 

...

END  

 Here ’ s a simple example that could be applied to a status indicator value: 

DECLARE @Status int

SET @Status = 1

SELECT CASE @Status

  WHEN 1 THEN ‘Active’

  WHEN 2 THEN ‘Inactive’

  WHEN 3 THEN ‘Pending’

END  

 Now, I ’ ll plug the same logic into a query, replacing what would otherwise be an outer join to a related 
table, with a  CASE  expression: 

SELECT ProductID

     , Name

     , ListPrice

     , CASE ProductSubcategoryID

         WHEN 1 THEN ‘Mountain Bike’

         WHEN 2 THEN ‘Road Bike’

         WHEN 3 THEN ‘Touring Bike’

         WHEN NULL THEN ‘Something Else’

         ELSE ‘(No Subcategory)’

       END As SubCategory

FROM Production.Product  

 This script effectively creates an alias column called SubCategory. You can use it with a different aliasing 
technique, in this case, using the column =  . . .  syntax. Either way, the results are the same.   

SELECT ProductID

     , Name

     , ListPrice

     , SubCategory = 

         CASE ProductSubcategoryID

            WHEN 1 THEN ‘Mountain Bike’

            WHEN 2 THEN ‘Road Bike’

            WHEN 3 THEN ‘Touring Bike’

            WHEN NULL THEN ‘Something Else’

            ELSE ‘(No Subcategory)’

         END

FROM Production.Product     

c12.indd   396c12.indd   396 10/31/08   6:28:04 PM10/31/08   6:28:04 PM



Chapter 12: T-SQL Programming Objects

397

  Looping 
 Statements can be repeated in a conditional looping structure. Looping is performed with the 
 WHILE  statement and an expression returning a Boolean result. I used this technique in the previous 
example when describing error - handling techniques. In the following example, a separate  WHERE  
statement is executed for each iteration of the loop. It filters on the corresponding product subcategory ID.  

  Try It Out 

 Switch the query results from grid to text (by selecting Query    Results to    Results to Text, or by 
pressing Ctrl+T) and execute the following: 

DECLARE @Counter int

SET @Counter = 1

WHILE @Counter  <  4

  BEGIN

       PRINT ‘’

       PRINT ‘SubCategory ‘

            + CONVERT(varchar(10), @Counter) + ‘:’

       SELECT Name, ProductSubcategoryID, ListPrice 

       FROM Production.Product

       WHERE ProductSubcategoryID = @Counter

       SET @Counter = @Counter + 1

  END    

 The results show three separate lists for each of the subcategories: 

SubCategory 1:

Name                                          ProductSubcategoryID ListPrice

--------------------------------------------- -------------------- ----------

Mountain-100 Silver, 38                       1                    3399.99

Mountain-100 Silver, 42                       1                    3399.99

Mountain-100 Silver, 44                       1                    3399.99

...

Mountain-500 Silver, 52                       1                    564.99

Mountain-500 Black, 40                        1                    539.99

Mountain-500 Black, 42                        1                    539.99

Mountain-500 Black, 44                        1                    539.99

Mountain-500 Black, 48                        1                    539.99

Mountain-500 Black, 52                        1                    539.99

(32 row(s) affected)

 

SubCategory 2:

Name                                          ProductSubcategoryID ListPrice

--------------------------------------------- -------------------- ----------

Road-150 Red, 62                              2                    3578.27

Road-150 Red, 44                              2                    3578.27

Road-150 Red, 48                              2                    3578.27

...

Road-350-W Yellow, 44                         2                    1700.99

c12.indd   397c12.indd   397 10/31/08   6:28:05 PM10/31/08   6:28:05 PM



Chapter 12: T-SQL Programming Objects

398

Road-350-W Yellow, 48                         2                    1700.99

Road-750 Black, 58                            2                    539.99

Road-750 Black, 44                            2                    539.99

Road-750 Black, 48                            2                    539.99

Road-750 Black, 52                            2                    539.99

(43 row(s) affected)

 

SubCategory 3:

Name                                          ProductSubcategoryID ListPrice

--------------------------------------------- -------------------- ----------

Touring-2000 Blue, 60                         3                    1214.85

Touring-1000 Yellow, 46                       3                    2384.07

Touring-1000 Yellow, 50                       3                    2384.07

...

Touring-1000 Blue, 60                         3                    2384.07

Touring-2000 Blue, 46                         3                    1214.85

Touring-2000 Blue, 50                         3                    1214.85

Touring-2000 Blue, 54                         3                    1214.85

Touring-3000 Blue, 44                         3                    742.35

Touring-3000 Blue, 50                         3                    742.35

(22 row(s) affected)  

 During the loop, you may need to modify the logic of some operations. The  BREAK  statement exits 
the  WHILE  structure, resuming execution after the  END  statement. The  CONTINUE  statement doesn ’ t 
exit the loop but sends execution back up to the  WHILE  statement to repeat the loop: 

/* If the avg price for all products is below $1200,

   raise all prices by 25% until avg is $1200 or higher

   or highest price is over $4000.

*/

WHILE (SELECT AVG(ListPrice) FROM Production.Product)  <  $1200

BEGIN

   UPDATE Production.Product SET ListPrice = ListPrice * 1.25

   SELECT MAX(ListPrice) FROM Production.Product

   IF (SELECT MAX(ListPrice) FROM Production.Product)  >  $4000

      -- Greatest price is too high, quit.

      BREAK

   ELSE

      -- Prices are within range, continue to loop.

      CONTINUE

END

PRINT ‘Done.’    

c12.indd   398c12.indd   398 10/31/08   6:28:05 PM10/31/08   6:28:05 PM



Chapter 12: T-SQL Programming Objects

399

  User - Defined Functions 
 When user - defined functions were introduced in SQL Server 2000, this opened the door to a whole new 
level of functionality. Until then, nearly all business logic had to be in compound expressions with little 
opportunity to reuse code. In traditional programming languages, functions typically accept any number 
of values and then return a scalar (single) value. Functions are typically used to perform calculations, to 
compare, parse, and manipulate values. This describes one of the capabilities of user - defined functions 
(UDFs), but they can also be used to return sets of data. 

 Set - based functions can be parameterized such as a stored procedure but are used in a  SELECT  expression 
such as a view. In some ways this makes UDFs the best of both worlds. Three different categories of user -
 defined functions exist, two of which return result sets. These categories include the following: 

  Scalar functions  

  Multi - statement table - valued functions  

  Inline table - valued functions    

  Scalar Functions 
 A scalar function accepts any number of parameters and returns one value. The term  scalar  differentiates 
a single,  “ flat ”  value from more complex structured values, such as arrays or result sets. This pattern is 
much like that of traditional functions written in common programming languages. 

 The script syntax is quite simple. Input parameters are declared within parentheses followed by the 
return value declaration. All statements must be enclosed in a  BEGIN     . . .     END  block. In this simple 
example, I calculate the age by getting the number of days between the birth date and today ’ s date. 
Because the function can ’ t call the nondeterministic  GETDATE()  function, this value must be passed into 
the function using the  @Today  parameter. The number of days is divided by the average number of days 
in a year to determine the result: 

CREATE FUNCTION fnGetAge (@BirthDate datetime, @Today datetime)

 RETURNS int

AS

 BEGIN

     RETURN DateDiff(day, @BirthDate, @Today) / 365.25

 END  

 When a scalar function is called without specifying the owner or schema, SQL Server assumes it to be a 
built - in function in the system catalog. For this reason, user - defined scalar functions are always called 
using multi - part names, prefixed at least with the owner or schema name: 

SELECT dbo.fnGetAge(‘1/4/1962’, GetDate())  

 Before writing the next sample function, I ’ d like to create a set of data to use. Assume that you are 
in charge of preparing invitations to your annual company picnic. The HR department manager 
has exported a list of employees from the personnel system to a text file. You have used SQL 
Server Integration Services to import this data into SQL Server. Next, you need to format the data 
for the invitations. Names are in a single column in the form: LastName, FirstName. You need to 
separate the first name and last name values into two columns. 

❑

❑

❑

c12.indd   399c12.indd   399 10/31/08   6:28:05 PM10/31/08   6:28:05 PM



Chapter 12: T-SQL Programming Objects

400

 The business logic for parsing the last name and first name values is very similar. The logic for 
extracting the last name is as follows: 

  1.   Find the position of the delimiting comma.  

  2.   Identify the last name value from the first character through the character one position before 
the comma.  

  3.   Return this value from the function.    

 Translating this logic into SQL, the function definition looks like this: 

CREATE FUNCTION fnLastName (@FullName varchar(100))

 RETURNS varchar(100)

AS

 BEGIN

    DECLARE @CommaPosition int

    DECLARE @LastName varchar(100)

    SET @CommaPosition = CHARINDEX(‘, ‘, @FullName)

    SET @LastName = SUBSTRING(@FullName, 1, @CommaPosition - 1)

    RETURN @LastName

 END  

 Two built - in functions are used. The  CHARINDEX()  function returns the position of a character string 
within another character string, in this case, the position of the comma within the full name. The 
 SUBSTRING()  function returns part of a character string from one character position to another. This will 
be used to carve the last name value from the full name. Because the last name ends one position before 
the comma, you subtract one from the value returned by the  CHARINDEX()  function. 

 If you execute this script, only the last name is returned.   

SELECT dbo.fnLastName(‘Washington, George’)   

  Try It Out 

 Create two functions, one to parse the last name and another to parse the first name. Start by executing 
the script in the previous example. Next, create a new table and populate it with employee records: 

CREATE TABLE EmployeeList

  (EmployeeName varchar(100))

GO

INSERT INTO EmployeeList (EmployeeName) SELECT ‘Flintstone, Fred’

INSERT INTO EmployeeList (EmployeeName) SELECT ‘Flintstone, Wilma’

INSERT INTO EmployeeList (EmployeeName) SELECT ‘Flintstone, Pebbles’

INSERT INTO EmployeeList (EmployeeName) SELECT ‘Rubble, Barney’

INSERT INTO EmployeeList (EmployeeName) SELECT ‘Rubble, Betty’

INSERT INTO EmployeeList (EmployeeName) SELECT ‘Rubble, BamBam’  

c12.indd   400c12.indd   400 10/31/08   6:28:05 PM10/31/08   6:28:05 PM



Chapter 12: T-SQL Programming Objects

401

 The easiest way to create the first name function is to copy and paste the script and make a few 
modifications. The logic is similar to the first function but you want to start two characters after 
the comma to omit the space character. The  SUBSTRING()  function returns characters up to the end 
of the text. This means that if you provide a value greater than the remaining length of text, all 
characters to the right of the start position will be returned. The LEN() function ensures that this value 
always exceeds the number of available characters: 

CREATE FUNCTION fnFirstName (@FullName varchar(100))

 RETURNS varchar(100)

AS

 BEGIN

    DECLARE @CommaPosition int

    DECLARE @FirstName varchar(100)

    SET @CommaPosition = CHARINDEX(‘, ‘, @FullName)

    SET @FirstName = SUBSTRING(@FullName, @CommaPosition + 2, LEN(@FullName))

    RETURN @FirstName

 END  

 Test the new function as before: 

SELECT dbo.fnFirstName(‘Washington, George’)  

 Notice that only  “ George ”  is returned. 

 Finally, use both of these functions in a SQL statement, selecting rows from the table you already 
created. Remember that the table has only one column. Using each function, you will define two alias 
columns: 

SELECT dbo.fnLastName(EmployeeName) As LastName

  , dbo.fnFirstName(EmployeeName) As FirstName

FROM EmployeeList  

 In the result set shown in Figure  12 - 17 , the last and first names are separate and may be used in a 
form letter.     

Figure 12-17

c12.indd   401c12.indd   401 10/31/08   6:28:06 PM10/31/08   6:28:06 PM



Chapter 12: T-SQL Programming Objects

402

 Taking this example just one step further, these two functions can be combined into one by passing in 
a second parameter to indicate the name to extract: 

CREATE FUNCTION fnGetName (@FullName varchar(100)

                         , @FirstOrLast varchar(5))

 RETURNS varchar(100)

AS

 BEGIN

    DECLARE @CommaPosition int

    DECLARE @TheName varchar(100)

    IF @FirstOrLast = ‘First’

       BEGIN

          SET @CommaPosition = CHARINDEX(‘, ‘, @FullName)

          SET @TheName = SUBSTRING(@FullName, @CommaPosition + 2, 

LEN(@FullName))

       END

    ELSE IF @FirstOrLast = ‘Last’

       BEGIN

          SET @CommaPosition = CHARINDEX(‘, ‘, @FullName)

          SET @TheName = SUBSTRING(@FullName, 1, @CommaPosition - 1)

       END

     RETURN @TheName

 END  

 The new function is called just as before but with the addition of a second parameter, like this: 

SELECT dbo.fnGetName(‘Washington, George’, ‘First’)   

  Inline Table - Valued Functions 
 This type of function returns a result set, much like a view. However, unlike a view, functions can accept 
parameters. The inline function ’ s syntax is quite simple. In the function definition, the return type is set 
to a table. A  RETURN  statement is used with a  SELECT  query in parentheses: 

CREATE FUNCTION fnProductListBySubCategory (@SubCategoryID int)

 RETURNS Table

AS

 RETURN

 (

    SELECT ProductID, Name, ListPrice FROM Production.Product

    WHERE Production.Product.ProductSubcategoryID = @SubCategoryID

)  

 The function is treated almost like a table using the syntax  SELECT     . . .     FROM (   function name   ) : 

SELECT * FROM fnProductListBySubCategory(1)  

c12.indd   402c12.indd   402 10/31/08   6:28:06 PM10/31/08   6:28:06 PM



Chapter 12: T-SQL Programming Objects

403

 For returning a result set from a function, the inline table - valued function is likely the best choice. It ’ s the 
most elegant blend of  SELECT  - compatible syntax with stored procedure style input parameters. Aside 
from these powerful capabilities, the syntax is simple and easy to manage.  

  Multi - Statement Table - Valued Functions 
 Multi - statement functions can be used to do some very unique things outside the context of a standard 
 SELECT  statement. As with the preceding inline function, this type of function also returns a table - type 
result set, but the table is explicitly constructed in script. This can be used to accomplish one of two 
things: either to process some very unique business logic by assembling a virtual table on the fly, or to 
duplicate the functionality of an inline function in a more verbose and complicated way. In short, if you 
need to select records from an existing table to return a result set, use an inline table - valued function. 

 The following is an example of the same function demonstrated in the previous section, as a multi -
 statement function. In the declaration, a table - type variable is used to define the return structure. In this 
case, the variable  @ProdList  defines a virtual table with three columns. The fact that these columns are 
the same as the corresponding columns in the Product table is purely a matter of choice. You can see that 
in the body of the function, I ’ ve inserted rows into the variable as if it were a physical table. Finally, the 
 RETURN  statement terminates execution and returns the result set: 

CREATE FUNCTION fnProductListBySubcategory (@SubCategoryID int)

 RETURNS @ProdList Table

    (  ProductID int

     , Name nvarchar(50)

     , ListPrice money

    )

AS

 BEGIN

    IF @SubCategoryID IS NULL

      BEGIN

        INSERT INTO @ProdList (ProductID, Name, ListPrice)

        SELECT ProductID, Name, ListPrice 

        FROM Production.Product

      END

    ELSE

      BEGIN

        INSERT INTO @ProdList (ProductID, Name, ListPrice)

        SELECT ProductID, Name, ListPrice 

        FROM Production.Product

        WHERE ProductSubcategoryID = @SubcategoryID

      END

    RETURN

 END  

 Now, I ’ ll step out of the mainstream and show you a more unique application for this type of function. 
This function doesn ’ t select data from a table. The records returned by this function are entirely 
manufactured within the script contained by the function. The filtering logic, implemented by the  

c12.indd   403c12.indd   403 10/31/08   6:28:06 PM10/31/08   6:28:06 PM



Chapter 12: T-SQL Programming Objects

404

@Category  parameter, accepts three relevant values:  Mainframe ,  Micro , or  All . If the value  All  is 
passed, rows for both of the previous categories are returned.   

CREATE FUNCTION fnComputerTypes(@Category varchar(15)) 

 Returns @CompType Table

    (  Year int

     , BrandName varchar(50)

     , ModelName varchar(50)

     , Category varchar(25)

    )

AS

 BEGIN

    IF @Category IN (‘MainFrame’, ‘All’)

      BEGIN

        INSERT INTO @CompType (Year, BrandName, ModelName, Category)

        SELECT 1945, ‘US Ordinance Dept. ‘, ‘ENIAC’, ‘Mainframe’

        INSERT INTO @CompType (Year, BrandName, ModelName, Category)

        SELECT 1951, ‘Remington Rand’, ‘Univac’, ‘Mainframe’

        INSERT INTO @CompType (Year, BrandName, ModelName, Category)

        SELECT 1952, ‘IBM’, ‘701’, ‘Mainframe’

        INSERT INTO @CompType (Year, BrandName, ModelName, Category)

        SELECT 1964, ‘IBM’, ‘System/360’, ‘Mainframe’

        INSERT INTO @CompType (Year, BrandName, ModelName, Category)

        SELECT 1988, ‘IBM’, ‘AS/400’, ‘Mainframe’

      END

  IF @Category IN (‘Micro’, ‘All’)

      BEGIN

        INSERT INTO @CompType (Year, BrandName, ModelName, Category)

        SELECT 1977, ‘Tandy Radio Shack’, ‘TSR-80’, ‘Micro’

        INSERT INTO @CompType (Year, BrandName, ModelName, Category)

        SELECT 1981, ‘Commodore ‘, ‘VIC-20’, ‘Micro’

        INSERT INTO @CompType (Year, BrandName, ModelName, Category)

        SELECT 1982, ‘Commodore’, ‘Commodore 64’, ‘Micro’

        INSERT INTO @CompType (Year, BrandName, ModelName, Category)

        SELECT 1981, ‘IBM’, ‘PC’, ‘Micro’

        INSERT INTO @CompType (Year, BrandName, ModelName, Category)

        SELECT 2004, ‘Dell’, ‘PowerEdge 1855’, ‘Micro’

      END

RETURN

END  

 I ’ ll test the function using the value  All : 

SELECT * FROM dbo.fnComputerTypes(‘All’)  

 The result is shown in Figure  12 - 18 .   

c12.indd   404c12.indd   404 10/31/08   6:28:07 PM10/31/08   6:28:07 PM



Chapter 12: T-SQL Programming Objects

405

 As far as the consumer of this data is concerned, it behaves like, and appears to have been selected from, 
a table in the database.   

  Transaction Management 
 You ’ ll recall that in Chapter 10, you learned how to explicitly control transactions. I ’ ll briefly review this 
topic as it applies to database programming objects. Transaction statements ( BEGIN ,  ROLLBACK , and 
 COMMIT TRANSACTION ) are used to queue up a set of statements and control the sequence and 
dependency of a group of operations. For example, if a stored procedure or user - defined function were 
to update several sales records and then delete sales records based on some criteria that may have been 
modified in the  UPDATE  statement, it would be important to let the update operation finish before 
deleting any records. In its ever - zealous quest to be efficient, SQL Server may perform operations in 
parallel, thus working against important business logic. In such cases, it would be important to serialize 
these dependent operations into separate transactions. 

 Another important purpose for transactions is to manage the atomicity of a group of operations. 
If multiple operations are grouped into a single transaction, they are executed as a unit. The outcome of 
the entire transaction is dependent upon the success of all statements. If they all succeed, the transaction 
is rolled forward from the transaction log and succeeds. If any operations are unsuccessful, or an error 
is otherwise raised; the transaction is rolled back, and none of the operations result in committed 
(inserted, updated, or deleted) records. 

 Stored procedures are the ideal environment for transactional management. Using the techniques 
demonstrated in Chapter 10, it ’ s a simple matter to wrap groups of statements into a transactional batch. 
You can also use error - handling script with transaction management to make your procedures even 
more bulletproof. 

  Locking Options 
 One of the database engine ’ s important jobs is to balance the task of record locking (to protect data as 
it ’ s modified) and to present consistent result sets of data to queries. This behavior is performed 
automatically and usually requires no intervention. SQL Server implements locking at various levels 
based on requested operations and concurrent users sharing the same or adjacent data. On some 
occasions, it may be necessary to override the default locking behavior within a transaction. This can be 
done in a couple of different ways. The first is by changing the locking behavior for the entire process by 

Figure 12-18

c12.indd   405c12.indd   405 10/31/08   6:28:07 PM10/31/08   6:28:07 PM



Chapter 12: T-SQL Programming Objects

406

using the  SET TRANSACTION ISOLATION LEVEL  statement. The locking options described in the 
following table are supported by SQL Server. 

     Locking Option      Description   

     READ UNCOMMITTED     Records are read from the transaction log if they have been modified. 
This includes  “ dirty ”  records that have yet to be rolled forward into 
table data pages.  

     READ COMMITTED     This is the default behavior. Records are read only from data pages after 
newly committed rows have been rolled forward into the database. This 
option prevents inaccurate dirty reads of data within the context of the 
current transaction. However, concurrent statements could modify 
records between operations creating an anomaly known as a  phantom 
read . This typically only happens in cases where multiple users are 
frequently modifying multiple records.  

     REPEATABLE READ     This option locks the transaction unconditionally so that no other 
operations can modify records. This is an extreme measure that can 
cause increased locking contention, and is recommended only in rare 
cases.  

     SERIALIZABLE     This option serializes transactions so that no concurrent operations can 
be performed that would affect the state of records within the current 
transaction. This is done by locking records within a range of key values 
or other search criteria. This has the advantage of simplifying locking 
contention problems; however, it can impair functionality and 
performance.  

     SNAPSHOT     Snapshot isolation allows users to access the last committed version of 
data even if that data is undergoing modification. With Snapshot 
isolation, when data is modified, a copy of the data is written to 
TempDB. Any other transaction that attempts to read the data being 
modified will be redirected automatically to the copy stored in TempDB.  

 The behavior of these options may appear to be easily predictable. However, the actual locking behavior 
of individual rows, tables, and other objects is a result of the locking options specified by the combined 
transactions as multiple operations are performed on the same data. The following example serializes 
these other operations of users on the same data. This way, no modifications would be allowed to these 
records between the two  UPDATE  statements: 

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

GO

BEGIN TRANSACTION

    UPDATE Production.Product SET StandardCost = StandardCost * 1.15

    WHERE ProductSubcategoryID = 1

    UPDATE Production.Product SET ListPrice = ListPrice * 1.15

    WHERE ProductSubcategoryID = 1

      AND StandardCost  <  1000

COMMIT TRANSACTION  

c12.indd   406c12.indd   406 10/31/08   6:28:07 PM10/31/08   6:28:07 PM



Chapter 12: T-SQL Programming Objects

407

 The second way to alter the default locking behavior is to use table hints. Table hints are applied at the 
statement level, not at the connection level. For instance, suppose you wanted to retrieve a list of all the 
data in the SalesOrderHeader table, but you didn ’ t want your query to prevent sales from being inserted 
into the table while you were running your query. This could happen because a  SELECT  query is granted 
a shared lock on the data while an  INSERT  is granted an exclusive lock. Because exclusive locks are not 
compatible with shared locks, the  INSERT  would have to wait until such time as the  SELECT  query was 
complete. To avoid this, you can use the  (NOLOCK)  hint with our query. The  (NOLOCK)  hint tells SQL 
Server to read the data but not to issue any shared locks.   

SELECT * 

FROM Sales.SalesOrderHeader WITH (NOLOCK)  

 The  (NOLOCK)  hint is essentially the same as the  READ UNCOMMITTED  isolation level, in that it will be 
possible to read dirty, or uncommitted, data. So in our case, if a sale was inserted and we ran our query, 
we would see the new sale. However, if the transaction that inserted the sales was rolled back instead of 
being committed, we might make a bad decision based on inaccurate data. 

 On the other hand, you may want to apply changes to a table and keep everyone else out of the table 
while you make the update. To do this, you could use the  (TABLOCKX)  hint.   

BEGIN TRANSACTION

    UPDATE Production.Product WITH (TABLOCKX)

    SET StandardCost = StandardCost * 1.15

    WHERE ProductSubcategoryID = 1

COMMIT TRANSACTION  

 There are several more table hints that you can use. For more information, check out the SQL Server 
Books Online article titled  “ Table Hints (Transact - SQL). ”  

 Always use caution when using table hints and when changing the default isolation level, and always 
make sure you fully understand the repercussions of your actions.   

  Summary 
 When designing a database solution, it is important to see the bigger picture. Ideally, queries and other 
database operations should be contained in manageable database objects. In the long run, views, stored 
procedures, and user - defined functions provide improved security, performance, and simplicity. In most 
databases, this is a significant investment and may take time and considerable effort. 

 Views are  SELECT  statements that can be treated as a table. By organizing complex queries into views, 
users and programmers don ’ t have to contend with the complexities of a database design and can focus 
on their pertinent data and business problems. Federated and partitioned views allow data to be 
stored on different physical media and in different locations, all of which may be transparent to the 
consumer. 

 Stored procedures can simplify common operations, providing a standard approach for managing 
records and high - level data entities. Complex business logic can be processed in a stored procedure, 
complete with decision branching and error handling. Stored procedures are reusable objects that run 
efficiently because the SQL script is compiled and optimized. 

c12.indd   407c12.indd   407 10/31/08   6:28:08 PM10/31/08   6:28:08 PM



Chapter 12: T-SQL Programming Objects

408

 User - defined functions can provide the same functionality as views and have many of the same 
capabilities as stored procedures. In some ways, UDFs are the best of both approaches because they 
support the more common  SELECT  statement rather than having to be executed like a stored procedure. 

 Each of these three objects still has its place in SQL programming. Views are far more common than 
UDFs and under certain conditions may be more efficient. Stored procedures can use nondeterministic 
functions, which are not allowed in UDFs. The one thing that functions provide that views and 
procedures do not is the ability to encapsulate the logic to return scalar values. Use UDFs to simplify 
parsing, calculations, and value manipulation.  

  Exercises 
  Exercise 1 

 Create a new view called vBikePriceSheet. The view should return the product name, subcategory name, 
model name, color, list price, standard cost, and a calculated column of margin using the price and cost 
columns. The view should restrict the products to just bikes.  

  Exercise 2 
 Create a stored procedure called spAddDepartment. This procedure accepts two parameters: department 
name and group name. Define logic in the procedure to check for an existing department with the same 
name. If the department exists and the group name is different, update the group name. If not, insert 
the new department.  

  Exercise 3 
 Add a comment header block and error - handling logic to the procedure you created in Exercise 2. The 
block should contain a description of the procedure, parameters, your contact information, the date 
created, and revision information. 

 Add error - handling logic to catch any errors that may occur. If an error is caught, raise a custom error 
message.                                                             

c12.indd   408c12.indd   408 10/31/08   6:28:08 PM10/31/08   6:28:08 PM



      13 
   Creating and Managing 

Database Objects          

 No book about T - SQL would be complete without spending some time talking about how to create 
and manage database objects. As a development DBA, I work predominantly with application 
developers, who believe that creating and managing databases is boring and strictly for uptight 
DBA types. However, anyone who works with T - SQL, whether a DBA or a developer, will 
invariably find themselves having to create and sometimes manage database objects. It may be just 
a temporary object inside a stored procedure, or a new object to support an application change, but 
it will happen, so you should probably learn how to do it correctly. 

 Anything you can do with SQL Server ’ s graphical tools you can do with script. The opposite, 
however, is not true. Most of the menu options in Management Studio actually create and use 
T - SQL script to perform changes. Because this is a book about T - SQL, we will not spend any time 
explaining how to use the graphical tools. Instead, we will concentrate on how to use the T - SQL 
language to create and manage database objects. For many of the examples in this section I am 
going to use a table called MyTable. In order to duplicate the examples in this chapter, you will 
need to drop the MyTable table repeatedly, because the table can exist only once. To drop a table, 
simply run the command  DROP TABLE tablename .  

  Data Definition Language 
 You can do only three things with any database object, other than actually use it: you can create it, 
alter it, or drop it. Every type of database object at least supports the  CREATE  and  DROP  statements. 
Of course, there is actually a lot more to this story. Depending on the object type, a number of 
options affect certain capabilities and settings. You ’ ve already seen a number of these statements 
because it would have been difficult to cover earlier topics without showing you how to create 
some objects. 

c13.indd   409c13.indd   409 10/31/08   6:29:10 PM10/31/08   6:29:10 PM



Chapter 13: Creating and Managing Database Objects

410

 Unless permissions are explicitly assigned, only members of the following roles can execute these 
statements: 

   sysadmin   

   dbcreator   

   db_ddladmin   

   db_owner     

 It ’ s a good idea to use role assignments rather than changing permissions for individual users. In the 
long run, this creates a more manageable environment. 

 SQL Server has myriad objects that have corresponding  CREATE  and  DROP  statements. Many of these 
objects also have a corresponding  ALTER  statement. Managing all of these special - purpose objects is 
beyond the scope of this book. This chapter is limited to the use of T - SQL as related to tables, views, 
stored procedures, and user - defined functions. 

  Creating Objects 
 The basic pattern of the  CREATE  statement is the same for all objects. However, due to the unique 
characteristics of different objects, each statement may have a number of different options. To keep 
things simple, this chapter does not include examples of every incarnation of  CREATE  statements, but it 
does includes the most common.  

  Altering Objects 
 Generally, any options or changes that can be applied with the  CREATE  statement can be applied to an 
existing object using the  ALTER  statement. If security permissions have been granted or denied for an 
object, it ’ s a good idea to use the  ALTER  statement to make changes to an object rather than dropping and 
re - creating it. This way, the security settings are preserved. A consequence of dropping and re - creating 
some objects is that this may affect related dependencies. For example, dropping a table with indexes is a 
cumbersome task and any dependent objects created with schema binding will cause errors to be raised. 
Altering tables instead wouldn ’ t have the same impact, especially if you didn ’ t make changes to columns 
that would affect other objects.  

  Dropping Objects 
 The syntax for dropping most any object is pretty much the same. You cannot drop objects that would 
render schema - bound dependencies invalid. For example, you cannot drop a table if it is referenced in a 
dependent foreign key constraint. In this case, you must either drop the related table or alter the table 
and remove the constraint.  

  Naming Objects 
 The rules for naming objects in SQL Server are extraordinarily flexible. In fact, they are so flexible that it 
becomes very easy to create objects with names that will cause pain and suffering from the moment you 
create them. The following sections explain two naming guidelines. The first is more a set of rules than a 

❑

❑

❑

❑

c13.indd   410c13.indd   410 10/31/08   6:29:11 PM10/31/08   6:29:11 PM



Chapter 13: Creating and Managing Database Objects

411

guideline, and the second is strictly a naming convention. You can disagree with it if you like, but 
examine the merits of the convention and then come up with your own. 

  Naming Rules 
 SQL Server limits the maximum number of characters in any object ’ s name to 128, with the exception of 
local temporary tables, which are limited to 116 characters. If you choose to create data objects in SQL 
Server that push this limitation, I can guarantee that you will not be very popular with anyone who must 
write queries against your objects. For maximum compatibility, all permanent SQL objects should begin 
with a letter, should not contain any embedded spaces, and should not use any reserved words. After the 
first letter, the name can contain any combination of numbers and letters. It can also contain some special 
characters, but these should be avoided like the plague. SQL Server ’ s loose naming rules actually enable 
you to create an object with the same name as a reserved word. However, you will have to use delimiter 
characters. If, for some reason, you actually wanted to create a table called Select with columns called 
From, Insert, and Delete, SQL Server would let you as long as you delimit the names so that SQL Server 
does not recognize the reserved words as reserved words, as the following example illustrates: 

CREATE TABLE [Select]

([From] Int,

[Insert] nvarchar(50),

[Delete] nvarchar(50))  

 There are two different delimiter characters: the square bracket and the double quote. The square bracket 
delimiter is the default in SQL Server, as illustrated in the previous example. The ANSI standard, 
however, designates the double quote as the standard delimiter. To use double quotes as delimiters, 
you must set the database or connection - specific  QUOTED_IDENTIFIER  option to  ON . The .NET Native 
SQL Client, Microsoft OLE DB Provider for SQL Server, and the SQL Server ODBC driver set the 
 QUOTED_IDENTIFIER  option to  ON  by default when they connect: 

SET QUOTED_IDENTIFIER ON

CREATE TABLE “Select”

(

“From” int,

“Insert” nvarchar(50),

“Delete” nvarchar(50)

)  

 An object ’ s name should be as short as possible but still identify what the object is all about. A table that 
is used to store data about an employee could simply be called Employee. It ’ s simple and descriptive. 

 Here is a simple and effective way of checking your names: If you type the name in Management Studio 
and it shows up blue, you should probably not use it as an object name. As mentioned in Chapter 3, 
Management Studio automatically changes the color of any reserved word to blue by default. 
Management Studio is a bit aggressive on what it considers a reserved word because it includes SQL, 
ODBC, and  “ Future ”  keywords, but discretion is not just the better part of valor, it is also the better part 

c13.indd   411c13.indd   411 10/31/08   6:29:11 PM10/31/08   6:29:11 PM



Chapter 13: Creating and Managing Database Objects

412

of SQL programming. If it turns blue and you don ’ t have a very good reason to keep that name, choose a 
different one. When it comes to embedded spaces, they are not prohibited; they are just, in the opinion of 
these authors, stupid. Remember that database object names are limited to 128 characters, so you could 
conceivably create a table using the following script: 

CREATE TABLE [This is my table that contains employee data]

(

[My primary key to uniquely track employees] int,

[The employee’s last name goes here] nvarchar(50),

[The employee’s first name goes here] nvarchar(50)

)  

 However, you would not want to write queries against a database that adhered to this type of naming, 
and in fact, many database and database application tools do not support embedded spaces. 

 Sometimes I want to give an object a name that contains more than one word. So, as with many database 
developers, I avoid the embedded space problem by using either underscores or what is known as 
 “ Pascal case, ”  which was introduced in Chapter 4. If you choose underscores, just replace the embedded 
spaces with an underscore. For example, the table  “ Order Detail ”  would end up as Order_Detail. I prefer 
Pascal case, probably because I am not a very good typist and having to use the Shift key unnecessarily 
causes me discomfort. My reason for using Pascal case is that underscores disappear in hyperlinks. Even 
though object names probably won ’ t ever show up in a hyperlink, that ’ s my story and I ’ m sticking to it. 
Pascal case comes in handy by avoiding both spaces and underscores by pushing multiple words 
together and capitalizing each individual word. Order Detail becomes OrderDetail. There is no hard and 
fast rule concerning underscores and Pascal case, so it really comes down to personal preference or 
company coding guidelines. The most important aspect of naming objects is to avoid reserved words, 
embedded spaces, and most importantly, to be consistent.  

  Naming Guidelines 
 The basic rules outlined previously will prevent a large amount of pain and frustration. The following 
naming guideline is just one of many. While I prefer it, many developers do not. Naming guidelines, or 
conventions, boil down to naming rules, best practices, and personal preference. As a general rule, when 
I name a table or view, I express it in the singular. A view and table represent a single instance of the 
entity described by the table. Therefore, the table that describes an employee is called Employee, not 
Employees. This may seem a bit picky, but when you do a great deal of data modeling with Entity 
Relationship Diagram (ERD) tools, Object Relational Modeling (ORM) tools, or United Modeling 
Language (UML), it becomes rather significant. These tools typically enforce singularity for the object 
and plurality with the relationship. 

 Most of the organizations I have worked with have had some sort of established naming convention that 
dictated the use of a prefix on some objects so that they were identifiable in their own right without 
database context. This is another one of those areas where some developers cringe and others celebrate. 
The following table is an example of a typical naming convention. 

c13.indd   412c13.indd   412 10/31/08   6:29:11 PM10/31/08   6:29:11 PM



Chapter 13: Creating and Managing Database Objects

413

     Object Type      Name   

    Table    Employee  

    View    vwOpsEmployee  

    Stored Procedure    spInsertEmployee  

    Function    fnNewEmployees  

    Trigger    trVerifyEmployee  

    Check Constraint    ckPhoneNumber  

    Foreign Key Constraint    fkSalesEmployeeLink  

    Primary Key Constraint    pkEmployeeID  

    Default    dfRegion  

    Clustered Index    clRegionID  

    Non - Clustered Index    ncLastName  

 As the table illustrates, data objects take on the name of a single instance of their data. Programming 
objects, such as stored procedures, triggers, and functions, take on the name of what they do.   

  Creating  DDL  Scripts 
 A common error when creating scripts that create database objects is trying to combine multiple non -
 combinable  CREATE  statements. The following  CREATE  statements must be the first statement in any 
batch, which means that they must either be the first statement in the script or be preceded by a  GO  batch 
delimiter command: 

   CREATE PROCEDURE   

   CREATE VIEW   

   CREATE TRIGGER   

   CREATE RULE   

   CREATE DEFAULT     

 The following example will fail if it executes, resulting in the error message shown in Figure  13 - 1 .   

CREATE TABLE MyTable

(MyID Int NOT NULL

,MyDescription nvarchar(50) NULL)

CREATE VIEW MyView

AS

SELECT MyDescription

FROM MyTable    

❑

❑

❑

❑

❑

c13.indd   413c13.indd   413 10/31/08   6:29:11 PM10/31/08   6:29:11 PM



Chapter 13: Creating and Managing Database Objects

414

 In order to get this code to run, a  GO  command needs to be placed before the  CREATE VIEW  statement, as 
the following example depicts: 

CREATE TABLE MyTable

(MyID Int NOT NULL

,MyDescription nvarchar(50) NULL)

GO

CREATE VIEW MyView

AS

SELECT MyDescription

FROM MyTable   

   CREATE TABLE  
 In its simplest form, the  CREATE TABLE  statement contains the name of the new table followed by its 
column definitions in parentheses. For each column, a name, data type specification, and NULL 
specification are provided, as in the following example: 

CREATE TABLE MyTable

(MyID Int NOT NULL

,MyDescription nvarchar(50) NULL)  

 This example script creates a table called MyTable that is made up of two columns. The first column is 
called MyID, which has a data type of integer and cannot hold a NULL. The second column is called 
MyDescription. It has a Unicode variable character data type and can be NULL. This may be sufficient to 
get started, but it certainly isn ’ t comprehensive. Tables are typically a little more sophisticated than this. 
Several options are available to us as this partial syntax for  CREATE TABLE  suggests: 

 CREATE TABLE 

    [ database_name.[ owner ] . | owner. ] table_name 

    ( {  <  column_definition  >  

        | column_name AS computed_column_expression 

        |  <  table_constraint  >  ::= [ CONSTRAINT constraint_name ] }

            | [ { PRIMARY KEY | UNIQUE } [ ,...n ] 

    )  

 Most of the time, when a table is created the options that are defined are the table name, the column 
names, whether or not the columns are nullable, and what column is the primary key. Chapters 1 and 2 

 Figure 13 - 1 

c13.indd   414c13.indd   414 10/31/08   6:29:12 PM10/31/08   6:29:12 PM



Chapter 13: Creating and Managing Database Objects

415

reviewed all the possible data types that can be assigned to a column and briefly explained the concept 
of NULLs and primary keys, so I won ’ t repeat them here except as it applies to the  CREATE TABLE  
statement. 

  Nullability 
 You can enable a column to optionally not require a value by designating it as a nullable column. This 
simply means that if no value is provided it defaults to NULL. NULL is defined as the absence of data, 
so it does not have any real value. To enable a column to be nullable, the NULL keyword is added 
immediately after the data type. To prevent nulls, the NOT NULL keywords are added. NOT NULL is 
actually considered a column constraint, which is covered later in this chapter. If NULL or NOT NULL is 
not specified, the default setting is to allow nulls, as the next two examples show. This behavior is 
controlled with the connection option settings  ANSI_NULL_DFLT_ON  and  ANSI_NULL_DFLT_OFF . 
However, it is a best practice to always designate the nullability of a column when creating or altering a 
table and not rely on the connection setting.   

--Relying on the Connection Settings

CREATE TABLE MyTable 

     ( Category nvarchar(50) NOT NULL

     , MyDescription nvarchar(50) 

)

                  

--Explicitly specifying the nullability

CREATE TABLE MyTable 

     ( Category nvarchar(50) NOT NULL

     , MyDescription nvarchar(50) NULL

)  

 With either of the two preceding examples, the MyTable table requires only the value for Category to be 
provided for an insert operation. Figure  13 - 2  shows the results of the query after inserting the new row.   

INSERT MyTable (Category)

VALUES (‘Category1’)

SELECT * FROM MyTable     

 Figure 13 - 2 

  Identity 
 Very often the database developer will want to have a numerical value automatically assigned to a row 
any time a new row is added. This is the purpose of a column assigned the  IDENTITY  property. It is very 
similar to the AutoNumber feature of Microsoft Access, which automatically assigns an integer to every 

c13.indd   415c13.indd   415 10/31/08   6:29:14 PM10/31/08   6:29:14 PM



Chapter 13: Creating and Managing Database Objects

416

new row. However, the  IDENTITY  property is much more powerful and flexible. Typically what happens 
is that a table is created with the default values, which is equivalent to how Access functions: 

CREATE TABLE MyTable (MyID int IDENTITY(1, 1) NOT NULL

                    , MyDescription nvarchar(50) NOT NULL)

                      

CREATE TABLE MyTable (MyID int IDENTITY NOT NULL

                    , MyDescription nvarchar(50) NOT NULL)  

 Both of the preceding examples cause an incremental value to be assigned starting at 1 and incrementing 
by 1. The actual syntax for the  IDENTITY  property is as follows: 

IDENTITY [ (seed , increment ) ]  

 As the syntax infers, the seed and increment values are not restricted to 1, and they are not strictly 
limited to integers. Supported data types for the  IDENTITY  property are  tinyint ,  smallint ,  int , 
 bigint ,  decimal , and  numeric . However, the  decimal  and  numeric  data types are of limited 
usefulness because they can only be assigned a scale of 0. The scale of these data types defines how 
many digits are supported to the right of the decimal point. Specifying a  decimal  or  numeric  data type 
with a scale of 0 makes the data type behave like an integer. 

 The increment value of the  IDENTITY  property is restricted to whole numbers regardless of the data type 
used, but it is not limited to a value of 1 or even to positive numbers. A table could be created with an 
 IDENTITY  property that is set to start at 1,000,000 and decrement by 100 for every row added. The 
 CREATE  statement would look like this: 

CREATE TABLE MyTable (MyID int IDENTITY(1000000, -100) NOT NULL

                     ,MyDescription nvarchar(50) NOT NULL )  

 If you were designing a database that tracked ticket sales for a venue that could seat 3000 people, you 
could conceivably seed a tracking table at 3000 with an incremental value of  – 1 and not allow the 
number to go negative (through the use of a constraint). This way, every sale could also return 
the number of tickets remaining without writing an expression to calculate the value. 

 A table could also be created so that the seed value was negative and the increment was positive: 

CREATE TABLE MyTable 

(MyID int IDENTITY(-1000000, 100) NOT NULL

,MyDescription nvarchar(50) NOT NULL)  

 A column with an  IDENTITY  property is probably the most common form of primary key value, but be 
aware that the  IDENTITY  property by itself does not guarantee uniqueness. If a value is explicitly inserted 
in the  IDENTITY  column, SQL Server will not prevent a duplicate unless a constraint has been added to the 
column to prevent duplicates. Also, keep in mind that a table can have only one  IDENTITY  column defined. 

 By default, once a column has been assigned the  IDENTITY  property, SQL Server does not allow explicit 
values to be inserted into it. Any attempt to manually enter a value will result in the error shown in 
Figure  13 - 3 .   

INSERT MyTable (MyID, MyDescription)

VALUES (5, ‘This will not work’)    

c13.indd   416c13.indd   416 10/31/08   6:29:15 PM10/31/08   6:29:15 PM



Chapter 13: Creating and Managing Database Objects

417

 Although SQL Server by default doesn ’ t allow explicit values to be inserted into an IDENTITY column, 
there may well be times when you need to do exactly that. As the error message infers, this is done 
through the  IDENTITY_INSERT  property on the table. The  IDENTITY_INSERT  property defines whether 
a value is automatically generated for new rows. To change the value of  IDENTITY_INSERT,  use the SET 
command, as follows: 

SET IDENTITY_INSERT MyTable ON

INSERT MyTable (MyID, MyDescription)

VALUES (5, ‘This will work’)

SET IDENTITY_INSERT MyTable OFF  

 It is very important to turn  IDENTITY_INSERT  off after the transaction is complete because any normal 
insertions into the table (by not specifying the  INDENTITY  value) within the same connection context will 
fail if the IDENTITY column is not explicitly identified. Only one table at a time can have  IDENTITY_
INSERT  set to  ON  for a single connection. The  SET IDENTITY_INSERT  option is also effective only on the 
connection on which it is used and will be terminated if the connection is closed, even if the option is not 
reset. Best practices in database design, however, are a lot like the rules our parents tried to teach us: 
If you use or borrow something, put it back where you found it. So, if you alter a database or connection 
setting and you do not intend for the change to be permanent, put it back the way you found it. All other 
connections will continue to work normally by having the  IDENTITY  value automatically supplied. 

 It may be a goofy way of remembering how the  IDENTITY  property works, but for me, I just make a 
mental note to remember that it is the opposite of what it sounds like.  SET IDENTITY_INSERT 
tablename ON  actually turns the  IDENTITY  property off.  SET IDENTITY_INSERT tablename OFF  
turns the  IDENTITY  property back on. 

 Another aspect of explicitly entering a value into an IDENTITY column is the impact on the  IDENTITY  
property ’ s current value. For instance, you create a table with the following script: 

CREATE TABLE MyTable 

(MyID Int IDENTITY(1, 10) NOT NULL

, MyDescription nvarchar(50) NOT NULL)  

 After the table is created, you add two records: 

INSERT MyTable (MyDescription)

VALUES (‘Auto Record 1’)

INSERT MyTable (MyDescription)

VALUES (‘Auto Record 2’)  

 Figure 13 - 3 

c13.indd   417c13.indd   417 10/31/08   6:29:15 PM10/31/08   6:29:15 PM



Chapter 13: Creating and Managing Database Objects

418

 A query of the table reveals the data shown in Figure  13 - 4 .   

 Figure 13 - 4 

 Figure 13 - 5 

 Now you explicitly enter a  MyID  value with the following script: 

SET IDENTITY_INSERT MyTable ON

INSERT MyTable (MyID, MyDescription)

VALUES (5, ‘Manual Record 1’)

SET IDENTITY_INSERT MyTable OFF  

 What is the next value that SQL Server will automatically assign for  MyID ? Will it be 15 (incrementing 10 
from 5) or will it be 21? The answer is that SQL Server will always choose the highest number as its 
current seed for a positive increment value or the lowest for a negative increment value. So, the results 
will look like those shown in Figure  13 - 5 .   

INSERT MyTable (MyDescription)

VALUES (‘Auto Record 3’)

SELECT * FROM MyTable    

 Often, when working with IDENTITY values, you will want to know what the last value supplied 
was. SQL Server provides the  @@IDENTITY  global variable to hold that value as well as the function 
 SCOPE_IDENTITY() . Retrieving the  IDENTITY  value is as simple as selecting the variable using one of 
the available methods, as shown in Figure  13 - 6 .   

INSERT MyTable (MyDescription)

VALUES (‘Auto Record 4’)

SELECT * FROM MyTable

SELECT @@IDENTITY AS LastIdentity

INSERT MyTable (MyDescription)

VALUES (‘Auto Record 5’)

SELECT * FROM MyTable

SELECT SCOPE_IDENTITY() AS LastIdentity    

c13.indd   418c13.indd   418 10/31/08   6:29:16 PM10/31/08   6:29:16 PM



Chapter 13: Creating and Managing Database Objects

419

 Because  @@IDENTITY  is a global variable, it will work on every connection, but it will only return 
the last  IDENTITY  value issued on the connection that the variable is retrieved. The same goes for the 
 SCOPE_IDENTITY()  function. If you need to discover what the last  IDENTITY  value for a table is 
regardless of your current scope, you can use the  IDENT_CURRENT  function. So opening a different 
connection from that used in the previous example would return the results shown in Figure  13 - 7 .   

SELECT @@IDENTITY AS LastIdentity

      ,SCOPE_IDENTITY() AS LastScopeIdentity

      ,IDENT_CURRENT(‘MyTable’) AS CurrentIdentity    

 Figure 13 - 7 

 Figure 13 - 6 

 Notice that the values for  @@IDENTITY  and  SCOPE_IDENTITY  are  NULL  because no identity value was 
generated on the new connection.  

  Defaults 
 In its simplest form, a default is simply a hard - coded value that is assigned to a column if it isn ’ t 
specified in an  INSERT  statement. In Chapter 1, I mentioned a deep - rooted prejudice against NULL. 
Whenever possible I avoid allowing nulls in my table designs. However, there are many times when I 
need to allow for a value not to be provided by a calling application in a table insert. In these instances, a 
default is very handy. For example, let ’ s go back to my MyTable example. This time I will add a new 

c13.indd   419c13.indd   419 10/31/08   6:29:16 PM10/31/08   6:29:16 PM



Chapter 13: Creating and Managing Database Objects

420

column called Region. This column will contain a three - character region code. Because I live in the 
Seattle area, I want this value to be PNW, for Pacific Northwest, if no value is provided. 

 There are three different ways to create a default for a column. The first two use the  CREATE TABLE  
statement. In this first example the default is added without a name, which tells SQL Server to give the 
default a system - generated name: 

CREATE TABLE MyTable1 (MyID Int IDENTITY(1, 1) NOT NULL

            ,MyDescription nvarchar(50) NOT NULL

            ,MyRegion nchar(3) NOT NULL DEFAULT ‘PNW’)  

 I prefer to explicitly name all my objects. Using this technique, a search of the system view  sys
.default_constraints  shows us the name SQL Server picked for our default, as shown in Figure  13 - 8 .   

SELECT name 

FROM sys.default_constraints

WHERE parent_object_id = OBJECT_ID(N’MyTable’)    

 Figure 13 - 8 

 A more structured way of adding a default is by explicitly giving the default a name. In this way, the 
database is more defined and easier to script.   

CREATE TABLE MyTable (MyID Int IDENTITY(1, 1) NOT NULL

            ,MyDescription nvarchar(50) NOT NULL

            ,MyRegion nchar(3) NOT NULL CONSTRAINT dfMyRegion DEFAULT ‘PNW’)  

 Now you know the exact name of the default, in case you need to drop it later or script it out for a new 
database. 

 The third way of creating a column default is by using the  ALTER TABLE  command. If you need to add a 
constraint after it has been created, this is how you would do it: 

ALTER TABLE MyTable 

ADD CONSTRAINT dfMyTableMyRegion 

DEFAULT ‘PNW’ FOR MyRegion   

 Keep in mind that this example will not work if you have already created the table with the default 
defined. A column can only have one default. 

 Now if an insert is made to MyTable and a region is not provided, the value PNW will automatically 
be used. 

c13.indd   420c13.indd   420 10/31/08   6:29:17 PM10/31/08   6:29:17 PM



Chapter 13: Creating and Managing Database Objects

421

 This is the preferred method for using defaults, but it is not the only way. A default can also be created as 
a stand - alone object in the database and then bound to any number of columns in any number of tables 
in the database: 

CREATE DEFAULT db_df_Region AS ‘PNW’

GO

CREATE TABLE MyTable2 (MyID int IDENTITY(1, 1) NOT NULL

             , MyDescription nvarchar(50) NOT NULL

             , MyRegion nchar(3) NOT NULL)

GO

sp_bindefault db_df_Region, MyTable2.MyRegion  

 The use of the database default object has been deprecated by Microsoft and will be removed in a future 
release. Microsoft recommends that you do not use these anymore, but use the table defaults instead.   

  Unique Identifiers 
 A problem with using an auto - incrementing IDENTITY is that this system only works when users or 
clients are creating records and they are concurrently connected to the same database server and a single 
table contains the values. This introduces problems for replicated systems or off - line applications that 
need to synchronize data from other sources. For example, I was recently involved with a project where 
user data needed to be joined from a SQL Server database and an Active Directory domain. Microsoft ’ s 
Active Directory uniquely identifies all of its resident objects with a Globally Unique Identifier (GUID, 
pronounced  “ goo - id ” ). As a result, a column needed to be defined in the database that could hold this 
GUID. To complicate matters even more, part of the application design specified that not all of the 
system ’ s users would reside in Active Directory. Some would exist only in SQL Server. A method was 
needed to either use existing GUIDs or to generate new ones. That is where SQL Server ’ s 
 uniqueIdentifier  data type and  NEWID()  function come into play. The  uniqueIdentifier  type 
stores a 128 - bit integer value that is usually displayed as an alpha - numeric representation of its 
hexadecimal form. These values are not intended for human consumption because they are quite large 
and fairly random in composition. 

 In SQL Server,  uniqueidentifier  values are either explicitly provided or they are generated by the 
 NEWID()  system function. To define a new table with an ID of this type, I ’ ll use the following script: 

CREATE TABLE MyTable 

(MyID uniqueidentifier NOT NULL DEFAULT NEWID()

, MyDescription nvarchar(50) NOT NULL)  

 Once the table is created I can either specify a GUID to be inserted or allow a new GUID to be generated 
by the  NEWID()  function, which has been specified as the default value. The  NEWID()  function only 
works as a default value for a table ’ s UniqueIdentifier column when no value is provided, as 
demonstrated in the following: 

INSERT MyTable (MyID, MyDescription)

VALUES (‘2BD9307D-5AAD-417C-AE3A-C1ACDCA0F6C9’, ‘Explicitly provided GUID’)

                   

INSERT MyTable (MyID, MyDescription)

VALUES (DEFAULT, ‘SQL Server generated GUID’)

SELECT * FROM MyTable  

c13.indd   421c13.indd   421 10/31/08   6:29:17 PM10/31/08   6:29:17 PM



Chapter 13: Creating and Managing Database Objects

422

 The results of the query are shown in Figure  13 - 9 .   

 Figure 13 - 9 

 Keep in mind that as with the  IDENTITY  property, the  uniqueidentifier  type does not in and of itself 
guarantee uniqueness. A unique constraint, index, or primary key constraint must be used in conjunction 
with the  uniqueidentifier  data type. The  NEWID()  function, however, will never generate the same 
value twice on any database server in the world (at least that is the theory).  

  Constraints 
 SQL Server constraints fall into one of five categories, as described in the following table. 

     Constraint Type      Description   

    Not Null    Ensures that the column has a defined non - null value.  

    Primary Key    Enforces uniqueness for the purpose of identifying a row. Doesn ’ t accept 
Null values.  

    Check    Validates a row based on the value of a column. Uses a clause, similar to 
that following a  WHERE  statement, to identify acceptable values.  

    Unique    Requires each value in a column to have a unique value. Column will 
accept a single Null value unless used in conjunction with Not Null.  

    Foreign Key    Enforces referential integrity rules by checking the value of a column 
against that of the primary key value in a related table. Null values are 
allowable unless explicitly restricted.  

  Primary Key Constraint 
 The Primary Key object was introduced in Chapter 1, but I will review it here in more detail. A table ’ s 
primary key is the primary value that is used to uniquely identify every row in the table. The primary 
key designation is specified as a constraint on the table. Although we often think of constraints as being 

c13.indd   422c13.indd   422 10/31/08   6:29:18 PM10/31/08   6:29:18 PM



Chapter 13: Creating and Managing Database Objects

423

applied to a specific column, they are defined at the table level and really apply to each row. Constraints 
can be created during the initial  CREATE TABLE  statement or can be added later with an  ALTER TABLE  
statement. A couple of different ways exist to designate a primary key during the table creation process: 

CREATE TABLE MyTable 

(MyID Int IDENTITY(1,1) NOT NULL CONSTRAINT pkMyTable PRIMARY KEY

,Description nvarchar(50) NOT NULL

,MyRegion nchar(3) NOT NULL CONSTRAINT dfMyRegion DEFAULT ‘PNW’) 

                      

CREATE TABLE MyTable 

(MyID Int IDENTITY(1,1) NOT NULL

,Description nvarchar(50) NOT NULL

,MyRegion nchar(3) NOT NULL CONSTRAINT dfMyRegion DEFAULT ‘PNW’

,CONSTRAINT pkMyTable PRIMARY KEY (MyID))  

 In the preceding examples,  pkMyTable  is the name of the constraint and  PRIMARY KEY  is the type of 
constraint. You can omit the name attribute of the constraint for a primary key constraint if the constraint 
is defined in the column definition. As with the default constraint explained previously, SQL Server will 
automatically assign the primary key constraint the name  PK_TableName_xxxxxxxx . However, giving 
constraints a user - friendly name is still a best practice. 

 To enforce uniqueness, SQL Server builds an index on the key column. This makes perfect sense if you 
think about it. If you were handed a deck of cards and told to ensure that there were no duplicate cards 
in the deck, what would you do? Most likely you would sort the cards so that you could easily identify if 
any duplicates existed. SQL Server does the same thing, except it keeps the column values sorted to 
prevent a duplicate from occurring in the first place. The index that SQL Server creates to support a 
primary key will be either a clustered or non - clustered index. If you do not specify one way or the other, 
SQL Server will create the index as a clustered index if one does not already exist. This is by no means a 
recommendation that all of your primary key columns also be the clustered index column. The decision 
on which column to define as the primary key and which column a clustered index is ordered on are 
very separate design decisions that are beyond the scope of this book. To specify a non - clustered index, 
add the keyword  NONCLUSTERED  to the constraint definition immediately following the  PRIMARY KEY  
keywords: 

CREATE TABLE MyTable 

(MyID Int IDENTITY(1,1) NOT NULL CONSTRAINT pkMyTable PRIMARY KEY NONCLUSTERED

,Description nvarchar(50) NOT NULL

,MyRegion nchar(3) NOT NULL CONSTRAINT dfMyRegion DEFAULT ‘PNW’)

                   

                   

CREATE TABLE MyTable

(MyID Int IDENTITY(1,1) NOT NULL

,Description nvarchar(50) NOT NULL

,Region nvarchar(10) NOT NULL CONSTRAINT dfMyRegion DEFAULT ‘PNW’

,CONSTRAINT pkMyTable PRIMARY KEY NONCLUSTERED (MyID))  

c13.indd   423c13.indd   423 10/31/08   6:29:19 PM10/31/08   6:29:19 PM



Chapter 13: Creating and Managing Database Objects

424

 You can also apply the primary key constraint to multiple columns by including the columns in a 
comma - delimited list. This is often the case for bridge tables used to join two tables and form a many - to -
 many relationship. A multi - column primary key constraint is defined using similar syntax: 

CREATE TABLE MyTable 

(MyID Int IDENTITY(1,1) NOT NULL

,CategoryID Int NOT NULL

,Description nvarchar(50)

,Region nvarchar(10)NOT NULL CONSTRAINT dfMyRegion DEFAULT ‘PNW’

,CONSTRAINT pkMyTable PRIMARY KEY NONCLUSTERED (MyID,CategoryID))  

 If the table has already been created without a primary key, the table will have to be altered to add the 
constraint, as shown in the following example: 

ALTER TABLE MyTable 

ADD CONSTRAINT pkMyTable PRIMARY KEY NONCLUSTERED (MyID))  

 The syntax is fairly straightforward.   

  1.   After the  ALTER  statement, you specify what it is you want to add: a constraint.  

  2.   Specify the name of what you want to add: PK_ID.  

  3.   Specify what type of constraint it is: Primary Key.  

  4.   Specify what column the constraint is being applied to: MyID.    

 The syntax is the same regardless of which type of constraint you add.  

  Unique Constraint 
 Primary keys enforce uniqueness and are very often used to manage relationships, as briefly explained 
in Chapter 1. Sometimes, however, you need to enforce uniqueness on a column that is not the column 
used to primarily identify each row. Chapter 1 used the Employee table as an example, so let ’ s return to 
that. In the following example the script creates a table called Employee. The table ’ s primary key is an 
integer that is automatically generated by the  IDENTITY  function, but the table also contains the 
employee ’ s Social Security number: 

CREATE TABLE Employee (

       EmployeeID Int IDENTITY(1,1) NOT NULL

     , LastName nvarchar(50) NOT NULL

     , FirstName nvarchar(50) NOT NULL

     , SSN Char(9) NOT NULL)  

 It will probably be very important for the company not to have any duplicate Social Security numbers, 
so you need to find a way to enforce that uniqueness without making the column your primary key. The 
answer is the unique constraint. Unique constraints are very similar to primary keys with a couple of 
distinct differences. A unique constraint also requires an index to enforce the uniqueness so SQL Server 
automatically creates one, but it doesn ’ t create a clustered index by default. Unique constraints will also 

c13.indd   424c13.indd   424 10/31/08   6:29:19 PM10/31/08   6:29:19 PM



Chapter 13: Creating and Managing Database Objects

425

allow one NULL, whereas primary keys will not. If a NULL is not appropriate, a NOT NULL constraint 
must be added to the column. Unique constraints, as with all other constraints, can be created when 
initially creating the table or added after, as the following two examples show: 

CREATE TABLE Employee (

       EmployeeID Int IDENTITY(1,1) NOT NULL

     , LastName nvarchar(50) NOT NULL

     , FirstName nvarchar(50) NOT NULL

     , SSN Char(9) NOT NULL

     , CONSTRAINT ukEmployeeSSN UNIQUE NONCLUSTERED (SSN))

                      

ALTER TABLE Employee 

ADD CONSTRAINT ukEmployeeSSN UNIQUE NONCLUSTERED (SSN)   

  Check Constraint 
 A  check constraint  uses an expression to qualify records that are acceptable for any inserts or updates 
performed on the table: 

CREATE TABLE MyTable 

     (MyID Int IDENTITY(1, 1) NOT NULL

     ,MyDescription nvarchar(50) NOT NULL

     ,Region nvarchar(10) NOT NULL CONSTRAINT dfMyRegion DEFAULT ‘PNW’

     ,CONSTRAINT pkMyTable PRIMARY KEY CLUSTERED (MyID)

     ,CONSTRAINT ckMyTableRegion CHECK 

     (Region IN(‘PNW’, ‘SW’, ‘MT’, ‘CENTRAL’, ‘EAST’, ‘SOUTH’)))  

 If a proof were inserted with a Region value other than those in the list, an error would be raised and the 
insert would be aborted. If an update were performed on the table that attempted to modify the value of 
Region and make it any value other than those on the list, it would also fail. 

 Check constraints, as with primary key constraints, can be added to a table after the table is created. 
Unlike primary key constraints, the data in the table does not have to conform to the check constraint. 
For example, I create the table MyTable with the following script: 

CREATE TABLE MyTable 

     (MyID Int IDENTITY(1, 1) NOT NULL

     ,MyDescription nvarchar(50) NOT NULL

     ,Region nvarchar(10) NOT NULL CONSTRAINT dfMyRegion DEFAULT ‘PNW’

     ,CONSTRAINT pkMyTable PRIMARY KEY CLUSTERED (MyID)

     )  

 Shortly after creating the table, I find that rows are being added with Region values that were not 
expected or wanted, like those shown in the following INSERT: 

INSERT MyTable

(MyDescription,Region)

VALUES

(‘A Bad Region’, ‘BadRegion’)  

c13.indd   425c13.indd   425 10/31/08   6:29:19 PM10/31/08   6:29:19 PM



Chapter 13: Creating and Managing Database Objects

426

 I want to add a check constraint to the table to prevent additional rows being added that don ’ t conform 
to my business rules, but when I try to add a constraint I get the following error: 

ALTER TABLE MyTable

ADD CONSTRAINT ckRegion CHECK 

(REGION IN (‘PNW’, ‘SW’, ‘MT’, ‘CENTRAL’, ‘EAST’, ‘SOUTH’))

                   

                   

Server: Msg 547, Level 16, State 1, Line 1

ALTER TABLE statement conflicted with COLUMN CHECK constraint ‘ckRegion’.

The conflict occurred in database ‘AdventureWorks’, table ‘MyTable’,

column ‘Region’.  

 When I tried to add the constraint, there were already records that did not conform to the constraint, so 
the  ALTER TABLE  command failed. However, if I modify my  ALTER  statement to specify that SQL Server 
should not check existing data, I can add the constraint and prevent any additional bad rows from being 
added: 

ALTER TABLE MyTable WITH NOCHECK

ADD CONSTRAINT ckRegion CHECK 

(REGION IN (‘PNW’, ‘SW’, ‘MT’, ‘CENTRAL’, ‘EAST’, ‘SOUTH’))    

  Foreign Key Constraint 
 Foreign key constraints are used to enforce relationships between tables. Chapters 1 and 2 explained 
one - to - many, one - to - one, and many - to - many relationships. These relationships between tables can exist 
without the use of foreign key constraints, and I have seen many databases where this was the case. In 
my experience, the reason for not using foreign key constraints is for one of two reasons. The first is to 
optimize performance on a table that is heavily inserted into and that there is a very low probability that 
an invalid record would be inserted. The second is because the database design was intentionally made 
complex to prevent organizations from developing internal tools to examine the data. Both cases are 
fairly common. The database I most often use comprises several tables that contain almost a billion rows. 
Foreign keys linking tables of this size can have a very negative impact on performance, so we decided 
to omit them between very large tables. I also must manage a database created by a third party in which 
the designers intentionally confused the design in order to make it difficult for anyone to create tools 
that could extract data from it. Columns in this database that linked tables would have different names 
and sometimes even different data types. This process is euphemistically called  obfuscation  ,  which is a 
developer ’ s way of saying  “ made confusing on purpose. ”  The problem with this approach is that 
inconsistencies in the data can appear because of an application bug or the data being manipulated 
outside of the application. As long as performance allows, the preferred method of managing table 
relationships is through Declarative Relational Integrity (DRI). Foreign keys are an implementation of 
DRI. The  Declarative  part means that the constraint is a declared part of the table ’ s structure. As a DRI 
object, foreign keys are a part of the child table ’ s structure. 

 Let ’ s return to the employee example. I have two tables for this example, as shown in Figure  13 - 10 : 
Employee and Department.   

c13.indd   426c13.indd   426 10/31/08   6:29:19 PM10/31/08   6:29:19 PM



Chapter 13: Creating and Managing Database Objects

427

 I want to ensure that I can identify every employee by the department they work in, so I add the 
department ID to my employee table. I also want to ensure that when an ID for a department is added 
to my employee table that the department ID actually exists. I can do this declaratively through the use 
of a foreign key constraint when creating the employee table or after the creation by altering the 
employee table: 

CREATE TABLE Department

            (DepartmentID int NOT NULL 

            ,DepartmentName nvarchar(50) NOT NULL 

            ,CONSTRAINT pkDepartment PRIMARY KEY CLUSTERED (DepartmentID))

GO

                   

CREATE TABLE Employee 

            (EmployeeID Int IDENTITY(1,1) NOT NULL 

            ,LastName nvarchar(50) NOT NULL 

            ,FirstName nvarchar(50) NOT NULL

            ,SSN Char(9) NOT NULL

            ,DepartmentID Int NOT NULL

            ,CONSTRAINT pkEmployee PRIMARY KEY CLUSTERED (EmployeeID)

            ,CONSTRAINT fkEmployeeDepartment FOREIGN KEY (DepartmentID)

                        REFERENCES Department (DepartmentID))

                      

CREATE TABLE Employee 

            (EmployeeID Int IDENTITY(1,1) NOT NULL 

            ,LastName nvarchar(50) NOT NULL 

            ,FirstName nvarchar(50) NOT NULL

            ,SSN Char(9) NOT NULL

            ,DepartmentID Int NOT NULL

            ,CONSTRAINT pkEmployee PRIMARY KEY CLUSTERED (EmployeeID))

                   

ALTER TABLE Employee

ADD CONSTRAINT fkEmployeeDepartment FOREIGN KEY (DepartmentID)

REFERENCES Department (DepartmentID)  

 Figure 13 - 10 

c13.indd   427c13.indd   427 10/31/08   6:29:20 PM10/31/08   6:29:20 PM



Chapter 13: Creating and Managing Database Objects

428

 Foreign key constraints also prevent the parent record from being modified or deleted if it is referenced 
by a child record. For example, it is decided to change a department ’ s identifier. If the foreign key has 
been created in the default manner and employees exist that are in the respective department, the update 
will fail: 

INSERT Department

VALUES

(1,’Operations’)

                   

INSERT Employee

VALUES

(‘Rubble’,’Betty’,’123456789’,1)

                   

UPDATE Department

SET DepartmentID = 25 

WHERE DepartmentID = 1

                   

Server: Msg 547, Level 16, State 1, Line 1

UPDATE statement conflicted with COLUMN REFERENCE constraint 

‘fkEmployeeDepartment’.

 The conflict occurred in database ‘ AdventureWorks2008’, table ‘Employee’, 

 column ‘DepartmentID’.

The statement has been terminated.  

 SQL Server allows for the creation of the constraint in such a way that any changes to the parent table, 
instead of causing an error, will make the same changes to the child table. All that is required is to create 
the foreign key constraint with the  CASCADE  option. The  CASCADE  option can be configured so that an 
update, and/or delete, made to the parent table is reflected in the child table, as shown in the following 
example: 

ALTER TABLE Employee

DROP CONSTRAINT fkEmployeeDepartment

GO

ALTER TABLE Employee

ADD CONSTRAINT fkEmployeeDepartment FOREIGN KEY (DepartmentID)

REFERENCES Department (DepartmentID) ON DELETE CASCADE ON UPDATE CASCADE  

 Now if we try to make the change to the Department table, the update will not fail: 

UPDATE Department

SET DepartmentID = 25 

WHERE DepartmentID = 1   

  Overriding Constraints 
 Foreign key and check constraints are very effective at maintaining data in a consistent state by enforcing 
all insert and update operations to conform to a set of rules. However, they do not come without cost. 
Any insert or update must be compared to the rules that were established for the constraint, and that 
takes time and CPU resources, especially for large inserts. I often load a large number of rows into an 

c13.indd   428c13.indd   428 10/31/08   6:29:20 PM10/31/08   6:29:20 PM



Chapter 13: Creating and Managing Database Objects

429

existing table with a check or foreign key constraint and I know that the data being loaded already 
conforms to the constraint. In these instances I will disable the constraint before I add the data and then 
re - enable the constraint after the load is complete. An example of this is provided here: 

ALTER TABLE Employee 

NOCHECK CONSTRAINT fkEmployeeDepartment 

INSERT Employee 

SELECT LastName, FirstName, SSN, DepartmentID

FROM NewEmployee

ALTER TABLE Employee 

CHECK CONSTRAINT fkEmployeeDepartment    

   CREATE VIEW  
 Views are the simplest of all the SQL programming objects and were covered in detail in Chapter 12. 
However, let ’ s review the basics. The syntax for a view is little more than that of a query preceded by an 
object definition: 

CREATE VIEW  view_name  [ (  column  [ ,... n  ] ) ] 

[ WITH [ENCRYPTION | SCHEMABINDING | VIEW_METADATA] ] 

AS 

 select_statement  

[ WITH CHECK OPTION ]   

 To create a view, simply write a query that returns the data you want to expose with the view: 

SELECT P.Name AS ProductName

      ,S.Name AS SubCategoryName

      ,P.ProductNumber

      ,P.ListPrice

FROM Production.Product P 

INNER JOIN Production.ProductSubCategory S 

   ON P.ProductSubCategoryID = S.ProductSubCategoryID 

INNER JOIN Production.ProductCategory C 

   ON S.ProductCategoryID = C.ProductCategoryID

WHERE P.FinishedGoodsFlag = 1  

 Then insert the object definition before the  SELECT  statement: 

CREATE VIEW vwFinishedProductsAndCategories

AS 

SELECT P.Name AS ProductName

      ,S.Name AS SubCategoryName

      ,P.ProductNumber

      ,P.ListPrice

FROM Production.Product P 

INNER JOIN Production.ProductSubCategory S 

   ON P.ProductSubCategoryID = S.ProductSubCategoryID 

INNER JOIN Production.ProductCategory C 

   ON S.ProductCategoryID = C.ProductCategoryID

WHERE P.FinishedGoodsFlag = 1  

c13.indd   429c13.indd   429 10/31/08   6:29:21 PM10/31/08   6:29:21 PM



Chapter 13: Creating and Managing Database Objects

430

 If the column names are not defined in the  SELECT  statement or if different column names are desired 
and aliases in the SQL statement are not desired, then the column names can be defined in the  CREATE  
statement: 

CREATE VIEW vwFinishedProductsAndCategories

(ProductName, CategoryName, ProductNumber, ListPrice)

As

SELECT P.Name AS ProductName

      ,S.Name AS SubCategoryName

      ,P.ProductNumber

      ,P.ListPrice

FROM Production.Product P 

INNER JOIN Production.ProductSubCategory S 

   ON P.ProductSubCategoryID = S.ProductSubCategoryID 

INNER JOIN Production.ProductCategory C 

   ON S.ProductCategoryID = C.ProductCategoryID

WHERE P.FinishedGoodsFlag = 1  

 Four common options are used to modify the default behavior of views in the  CREATE VIEW  statement: 

   WITH CHECK OPTION   

   WITH SCHEMABINDING   

   WITH ENCRYPTION   

   WITH VIEW_METADATA     

 The last option is used by programming components to return information about the view. 

   WITH CHECK OPTION  
 In Chapter 12, you learned that data can be modified through a view using an  UPDATE  statement, just as 
you would with a table. For views that filter results, the  WITH CHECK OPTION  keeps the results 
synchronized with the table(s). This line of script is added to the end of the view definition. To 
demonstrate with the same view I just created, I can either drop the view and re - create it or use the 
 ALTER  statement, like so: 

ALTER VIEW vwFinishedProductsAndCategories

AS

SELECT P.Name AS ProductName

      ,S.Name AS SubCategoryName

      ,P.ProductNumber

      ,P.ListPrice

FROM Production.Product P 

INNER JOIN Production.ProductSubCategory S 

   ON P.ProductSubCategoryID = S.ProductSubCategoryID 

INNER JOIN Production.ProductCategory C 

   ON S.ProductCategoryID = C.ProductCategoryID

WHERE P.FinishedGoodsFlag = 1

WITH CHECK OPTION  

 The rest of the options are specified immediately after the view name, in the  CREATE VIEW  statement.  

❑

❑

❑

❑

c13.indd   430c13.indd   430 10/31/08   6:29:21 PM10/31/08   6:29:21 PM



Chapter 13: Creating and Managing Database Objects

431

   WITH SCHEMABINDING  
 By default, views employ a feature called  delayed name resolution . This means that any changes to 
an object that other objects depend on are allowed. Of course, this means that it ’ s possible to create 
problems that won ’ t be revealed until later. When I first learned about delayed name resolution, 
I thought it was a bit silly to promote this as a feature rather than a shortcoming of SQL Server; but the 
reason for it is to enable you to make changes to a database design. As with trying to delete a record in a 
highly normalized database, it is difficult to make changes or delete objects in a large database when so 
many objects (typically views, functions, and stored procedures) are dependent on each other. 

 After the database design has been stabilized, you can consider altering views so that the database 
engine prevents changes to underlying tables or other dependent objects, which would break the view: 

CREATE VIEW vwFinishedProductsAndCategories 

 (ProductName, CategoryName, ProductNumber, ListPrice)

WITH SCHEMABINDING

AS

SELECT P.Name       ,S.Name

      ,P.ProductNumber

      ,P.ListPrice

FROM Production.Product P 

INNER JOIN Production.ProductSubCategory S 

   ON P.ProductSubCategoryID = S.ProductSubCategoryID 

INNER JOIN Production.ProductCategory C 

   ON S.ProductCategoryID = C.ProductCategoryID

WHERE P.FinishedGoodsFlag = 1  

 This view is created using the  WITH SCHEMABINDING  option. If I were to try to make changes to the 
dependent table, an error would be raised and the action would be aborted. To schemabind a view, the 
objects referenced in the  SELECT  statement must be referenced with their two - part name. 

 The  SCHEMABINDING  option is also required to support indexed views.  

   WITH ENCRYPTION  
 When a view is created using the  WITH ENCRYPTION  option, the view is defined and stored in encrypted 
form. This would make it impossible, even for a system administrator, to see the syntax of the view. 
Encrypted objects cannot be decrypted by anyone, regardless of their permissions. If you decide to 
encrypt a view, you should probably save the script in a safe place so you can make changes or 
regenerate the view later on. Encrypting a view doesn ’ t affect performance to any noticeable degree 
because the views are generally compiled and stored when referenced.  

   WITH VIEW_METADATA  
 The  VIEW_METADATA  option specifies that client applications will not see the view ’ s underlying table 
structure. Instead, they will see the view essentially as a table. The reason for this is that some 
applications try to be smart and expose the underlying table objects so that changes are directed to the 
tables instead of the view. If that is not a desired configuration, the  VIEW_METADATA  option can be used 
to return just the view metadata and not the underlying structure.  

c13.indd   431c13.indd   431 10/31/08   6:29:21 PM10/31/08   6:29:21 PM



Chapter 13: Creating and Managing Database Objects

432

  Try It Out 

 The following examples show the effects of definition encryption. The first example shows the result 
of an  sp_helptext  stored procedure on a view created in the clear. The  sp_helptext  procedure 
returns the statement used to create the object. The second example shows the result of encryption on 
the availability of the definition information. 

 To see the effects of encryption on an object ’ s definition, first create a view without the encryption 
option: 

CREATE VIEW vwProductList

AS

SELECT ProductID, Name AS ProductName

FROM Production.Product  

 Next, use the system stored procedure  sp_helptext  to retrieve the views definition: 

EXEC sp_helptext vwProductList  

 Notice that the results are the same as the original statement used to create the view. 

 Now alter the view to add the encryption option to the view definition: 

ALTER VIEW vwProductList

WITH ENCRYPTION

AS

SELECT ProductID, Name AS ProductName

FROM Production.Product  

 Run the system stored procedure  sp_helptext  again to retrieve the view definition. Observe that no 
results are returned other than a statement letting you know that the object was encrypted.     

 

  Indexed Views 
 At first, the idea of indexing views may seem to be a bit unusual. After all, isn ’ t a view just a  SELECT  
query on one or more tables, and don ’ t indexes really just apply to a table? From a performance and 
efficiency standpoint, designing a relational database is about finding the right balance between 
optimizing for transactional performance and data retrieval queries. This feature tips the scales heavily 
into the data retrieval camp. 

 I ’ d like to revisit the topic of indexes briefly. An index is more than just something you tack onto a table to 
make it find data more efficiently. Indexes contain the actual values for one or more specific columns, 
stored in presorted order. If an index were to contain all of the column values to support a query, there 
would be no need for SQL Server to read data from the table pages. All of the necessary data already exists 
in the data pages allocated to the index. This condition is known as  “ covering a query ”  with an index. 

c13.indd   432c13.indd   432 10/31/08   6:29:21 PM10/31/08   6:29:21 PM



Chapter 13: Creating and Managing Database Objects

433

 If a covering index could be associated with a view, the query optimizer would not only benefit from the 
caching and stored execution plan for the view, but it wouldn ’ t need to analyze the query to decide 
which indexes should be used. Such is the case with indexed views. This is by far the most efficient 
method for returning a subset of sorted data from one or more large tables. The trade - off is that for every 
insert, update, or delete operation performed on related rows, values in the index must be maintained in 
real time. In highly transactional systems on a busy server, this performance cost can be quite significant. 

 A view is indexed using a unique clustered index, which actually creates an index object that is not very 
different than a clustered index defined for a table. The underlying tables aren ’ t modified, but the index 
itself contains a separate copy of all the data.  

  Try It Out 

 The first order of business in creating an indexed view is to create (or alter) a view using the  WITH 
SCHEMABINDING  option: 

CREATE VIEW vwFinishedProductsAndCategories 

 (ProductName, CategoryName, ProductNumber, ListPrice)

WITH SCHEMABINDING

                   

AS

SELECT P.Name 

      ,S.Name

      ,P.ProductNumber

      ,P.ListPrice

FROM Production.Product P 

INNER JOIN Production.ProductSubCategory S 

   ON P.ProductSubCategoryID = S.ProductSubCategoryID 

INNER JOIN Production.ProductCategory C 

   ON S.ProductCategoryID = C.ProductCategoryID

WHERE P.FinishedGoodsFlag = 1    

 After the view has been schema bound, to index the view, a unique clustered index is created on the 
view. Remember that a clustered index is the actual data organized in the order of the column the 
index is created on. A unique clustered index is pretty much the same as a primary key constraint with 
a clustered index on a table; each row must be uniquely identifiable and stored in the order of that 
unique column.   

CREATE UNIQUE CLUSTERED INDEX clFinishedProducts

ON vwFinishedProductsAndCategories (ProductID)  

 Additional non - clustered indexes can then be created on additional columns of the view, if desired.  

 

c13.indd   433c13.indd   433 10/31/08   6:29:22 PM10/31/08   6:29:22 PM



Chapter 13: Creating and Managing Database Objects

434

   CREATE PROCEDURE  
 Procedures were covered in Chapter 12, but in the spirit of thoroughness, a brief description is given 
here. The basic syntax for creating a stored procedure looks like this: 

CREATE PROCEDURE procedure_name 

    [ { @parameter data_type }[ OUTPUT ] 

    ] [ ,...n ] 

[ WITH 

    { RECOMPILE | ENCRYPTION } ] 

AS  sql_statement  [ ... n  ]  >   

 Stored procedures are the principle method by which changes are made to the database. Any time you 
want to insert, update, or delete rows in a table you should use a stored procedure. Stored procedures 
are also very useful for filtering tables or views by limiting the rows returned through the use of 
parameters. There are two primary reasons why stored procedures are the preferred method for making 
changes to a database. The first is security. When a stored procedure is created to make changes, only 
the changes programmed into the procedure can be executed. Users or even application developers do 
not need to have any permission granted to the underlying table or tables to make changes to them. The 
second reason you always want to use stored procedures is efficiency. Stored procedures are compiled 
and cached on the server upon initial execution. Subsequent executions will be very fast because the 
compiled version of the stored procedure is being used. The compiled plan stays in cache until SQL 
Server ages it out or SQL Server is restarted. Typically, SQL Server will leave an active stored procedure 
in cache indefinitely unless SQL Server runs out of available memory. 

  Using Parameters 
 Input and output parameters are declared after the  CREATE PROCEDURE  statement. Parameter names 
begin with the  @  symbol and are followed by any number of spaces and then the data type. The Input or 
Output keywords can be used to designate the direction for each parameter. If not specified otherwise, 
it ’ s assumed that parameters are used for input. 

 In this SQL script fraction, all four parameters are used for input. The third and fourth parameters are 
optional because default values are provided: 

    @WidgetID       int

   ,@Description    nvarchar(100)

   ,@Category       varchar(20) = Null

   ,@StatusCode     char(2) = Null  

 If a procedure is to return one single (scalar) value, whether you should use an output parameter or the 
return value of the procedure may just be a matter of preference. However, there is one argument for 
using the return value rather than an output parameter. Because all stored procedures are equipped to 
return a value by default, using an output parameter can add a slight degree of additional overhead. The 
following examples demonstrate both of these techniques: 

/************************************* 

      Stored procedure returning value 

      using an Output parameter

**************************************/

CREATE PROCEDURE spCalculateOutput

c13.indd   434c13.indd   434 10/31/08   6:29:22 PM10/31/08   6:29:22 PM



Chapter 13: Creating and Managing Database Objects

435

    @Value1      float

   ,@Value2      float

   ,@Operator    char(10)

   ,@Result      float     Output

AS

  IF @Operator = ‘Add’

        SET @Result = @Value1 + @Value2

  ELSE IF @Operator = ‘Subtract’

        SET @Result = @Value1 - @Value2

  ELSE IF @Operator = ‘Multiply’

        SET @Result = @Value1 * @Value2

  ELSE IF @Operator = ‘Divide’

        SET @Result = @Value1 / @Value2  

 To test this procedure in Management Studio, first declare a variable to hold the output value. This value 
is assigned in reverse order compared to a typical value assignment statement (remember, you ’ ve 
changed the direction using the Output statement). After executing the procedure, print the result using 
the variable: 

-- Declare a variable for the result value

Declare @Out float

-- Execute the procedure  &  assign the result

Execute spCalculateOutput 123, 456, ‘Add’, @Result = @Out Output

-- Print the result value

Print @Out  

 The logic for the return - value technique is the same but the syntax varies slightly. Instead of declaring an 
output parameter, a private variable is declared after the  AS  keyword. This variable simply holds the 
calculated value until it is returned at the end of the procedure script. Another valid technique would be 
to use the Return keyword in each of the branch expressions (that is, Return @Value1 + @Value2), rather 
than using the variable at all.   

/************************************* 

      Stored procedure returning value 

      using Return value

**************************************/

CREATE PROCEDURE spCalculateReturn

  @Value1      float

 ,@Value2      float

 ,@Operator    char(10)

AS

 Declare @Result float

 IF @Operator = ‘Add’

        SET @Result = @Value1 + @Value2

 ELSE IF @Operator = ‘Subtract’

        SET @Result = @Value1 - @Value2

 ELSE IF @Operator = ‘Multiply’

        SET @Result = @Value1 * @Value2

 ELSE IF @Operator = ‘Divide’

        SET @Result = @Value1 / @Value2

RETURN @Result  

c13.indd   435c13.indd   435 10/31/08   6:29:22 PM10/31/08   6:29:22 PM



Chapter 13: Creating and Managing Database Objects

436

 To test the return value procedure the syntax is slightly different: 

-- Declare a variable for the result value

Declare @Out AS float

-- Execute the procedure by assigning it to the variable

EXECUTE @Out = spCalculateReturn 123, 456, ‘Add’

-- Print the result value

Print @Out  

 The ability to capture the value of a stored procedure ’ s return value is built into Visual Studio, but to 
capture it with T - SQL you must again declare a variable to hold the output, in this case, the return value: 

DECLARE @Result AS float

exec @Result = spCalculateReturn 10,10, ‘Add’

SELECT @Result AS ‘spCalculateReturn Return Value’   

   WITH ENCRYPTION  
 The definition of a stored procedure can be encrypted, just like the view definition, by using the  WITH 
ENCRYPTION  option. Remember that an encrypted procedure cannot be decrypted, so it is advisable to 
keep a copy of the script used to create it for safekeeping.  

   WITH RECOMPILE  
 The first time a stored procedure executes, the query optimizer builds an execution plan based on the 
conditions present in the database. This means that decisions are made based upon the volume, 
selectivity, density, and distribution of data values in tables accessed by the stored procedure. This 
execution plan is compiled and then cached with the stored procedure. Rather than repeating the process 
when the procedure is subsequently called, the same execution plan is used to save time and resources. 
However, as the data changes in the tables, the efficiency of the execution plan also changes. Over a 
period of time, the execution plan of a stored procedure could become very inefficient, especially if 
indexes are added to the tables to optimize data access after the stored procedure is created. A stored 
procedure execution plan does not become invalid if an index is added because the original plan will still 
work. However, if an index that is referenced by a query plan is dropped, SQL Server will invalidate the 
execution plan and cause the stored procedure to be recompiled. 

 If the database has been optimized with additional indexes after the creation of the stored procedures or 
a lot of changes have occurred to indexed values, it is generally a good idea to recompile the affected 
stored procedures or to clear out the procedure cache. Stored procedures can be recompiled in one of 
three ways. One way is to use the  WITH RECOMPILE  statement when executing the procedure, like this: 

EXECUTE spDeleteCreditCard @CreditCardId = 15 WITH RECOMPILE  

 This method really isn ’ t that useful in a production environment because the stored procedures are 
almost always called from an application. It generally wouldn ’ t make much sense to redesign your 

c13.indd   436c13.indd   436 10/31/08   6:29:23 PM10/31/08   6:29:23 PM



Chapter 13: Creating and Managing Database Objects

437

applications to force procedure recompilation. The second way is to create or alter the stored procedure 
so that a compiled plan is never cached: 

CREATE PROC spDeleteCreditCard 

 @CreditCardID Int

WITH RECOMPILE

AS

DELETE Sales.CreditCard

WHERE CreditCardID = @CreditCardID  

 Every time this stored procedure is executed a new plan will be compiled and used and then 
immediately discarded. This method is also of limited usefulness and would be implemented in an 
environment where the database structure was expected to change frequently. 

 The last and most frequently used method is to execute the  sp_recompile  stored procedure against any 
stored procedure or table. This system stored procedure marks the cached plan of the stored procedure, 
or all the stored procedures that reference the table if run with the table name invalid, which causes them 
to be recompiled at their next execution: 

EXECUTE sp_recompile ‘spDeleteCreditCard’

EXECUTE sp_recompile ‘Sales.CreditCard’  

 When a table or view is specified as the object in  sp_recompile , only those compiled plans that 
reference the table or view are affected. 

 To globally clear all cached plans, you can either restart SQL Server or execute the DBCC 
 FREEPROCCACHE  command.  

   EXECUTE AS  
 This feature in SQL Server allows a stored procedure to be executed within an explicit security context. 
Regardless of the user or login used to execute the procedure, all contained script will execute with the 
permissions provided in this statement. 

 Valid options for this statement are described in the following table. 

     Option      Description   

    Caller    Executes all code or objects called by the procedure in the context of the user 
executing the procedure.  

    Self    Executes all code or objects called by the procedure with default permissions.  

    Owner    Executes all code or objects called by the procedure in the context of the owner 
of the procedure.  

     ‘ user_name ’     Executes all code or objects called by the procedure in the context of a specific 
user or login.  

 When using the EXECUTE AS option, it is very important to control access to the procedure. This could 
enable users to execute statements that they would otherwise not be granted the ability to execute.   

c13.indd   437c13.indd   437 10/31/08   6:29:23 PM10/31/08   6:29:23 PM



Chapter 13: Creating and Managing Database Objects

438

   CREATE FUNCTION  
 User - defined functions are built using the  CREATE FUNCTION  statement, much as with any other type of 
object. In Chapter 12, you looked at the syntax for creating each of the three different types of UDFs. As 
with views and procedures, the  CREATE FUNCTION  statement accepts the  WITH ENCRYPTION ,  WITH 
SCHEMABINDING , and  EXECUTE AS  options. 

 Remember that a function cannot call any nondeterministic functions. This means that any function that 
doesn ’ t consistently return the same value every time can ’ t be used in the body of a user - defined 
function.   

   IF EXISTS  
 In my job I have to write scripts that can be run repeatedly, even if those scripts create objects. As 
mentioned in the introduction of this chapter, if you try to create an object that already exists, you will 
receive an error. So, how do you create an object that already exists? Easy, you either drop the object first, 
or you place conditional logic around the creation of the object so that it will only be created if it doesn ’ t 
exist already. 

 In the first scenario, I want to drop any object that exists first because the new object may have the same 
name, but behave differently. In this scenario we use the  IF EXISTS  statement to test if an object exists 
and if so, we drop it before we create the new object as the following example illustrates: 

IF EXISTS 

(SELECT * 

 FROM sys.objects 

 WHERE name = ‘spDeleteCreditCard’

   AND type_desc = ‘SQL_STORED_PROCEDURE’)

DROP PROCEDURE spDeleteCreditCard

GO

CREATE PROCEDURE spDeleteCreditCard 

 @CreditCardID Int

AS

DELETE Sales.CreditCard

WHERE CreditCardID = @CreditCardID  

 The second way of using the  EXISTS  keyword is by using the  IF NOT EXISTS  statement. In this way, 
you can check to see if the object exists and if it does, skip trying to create it, as shown in the following 
example: 

IF NOT EXISTS

(SELECT * 

 FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_NAME = ‘CreditCard’

   AND TABLE_SCHEMA = ‘Sales’

   AND TABLE_TYPE = ‘BASE TABLE’)

CREATE TABLE Sales.CreditCard

(CreditCardID int IDENTITY(1,1) NOT NULL,

c13.indd   438c13.indd   438 10/31/08   6:29:23 PM10/31/08   6:29:23 PM



Chapter 13: Creating and Managing Database Objects

439

 CardType nvarchar(50) NOT NULL,

 CardNumber nvarchar(25) NOT NULL,

 ExpMonth tinyint NOT NULL,

 ExpYear smallint NOT NULL,

 ModifiedDate datetime NOT NULL,

 CONSTRAINT PK_CreditCard_CreditCardID 

 PRIMARY KEY CLUSTERED (CreditCardID))  

 The limitation of the  IF NOT EXISTS  statement is that when working with some objects, such as stored 
procedures, the  CREATE object  statement must be the first command in the batch, so the  IF NOT 
EXIST  will not work. However, it works great with tables, views, and constraints.  

  Securing Database Objects 
 SQL Server ’ s security mechanism is both elegant and flexible. When SQL Server first came to be, it 
included a role - based security model where all roles and logins were defined within the database server. 
Users are similar to logins but defined at the database level. Users could be made members of a role and 
then permissions for various database objects could be assigned at the individual or role level. This 
approach met all of the necessary requirements except that it duplicated much of the security 
assignments managed by the network system. As SQL Server was integrated into the Windows platform, 
it made sense to integrate the existing Windows security model. Today, you have the option to use either 
Windows Integrated Security or both Windows and SQL Server security mechanisms to secure database 
objects. Whether or not you choose to utilize the Windows security integration is up to you, but this 
option is always enabled. 

 Typically, it makes sense to use Windows Integrated Security if you have the luxury of managing the 
network security as well. This is convenient considering you don ’ t have to create duplicate login names 
and groups. In some situations, it may not be feasible to use integrated security. On a departmental 
database server, where the server is managed separately from the corporate network, this can be a 
challenge. Another common exception is the Internet service provider that creates accounts for its 
customers to manage their databases on a common server. In this scenario, there may be no reason to 
allow access to any other network resources. 

 The coverage of this topic focuses on the language rather than the administrative tasks and practices. In 
brief, SQL Server defines eight fixed server roles that can be used to map various server and database 
object permissions. Logins defined at the server level may have membership in these roles. Logins can be 
defined using the SQL Server security model or can map to a user or group in Windows. At the database 
level, custom roles can be defined that may also be used to grant or deny object permissions. Users are 
defined at the database level that map to a login at the server level. This may seem a little complicated at 
first, but it really isn ’ t. The short version is that users, in one form or another, are grouped into roles so 
that you don ’ t have to assign permissions for every individual user. Ideally, all permissions are assigned 
to a role with the occasional exception for the user who needs to have special permissions or restrictions. 

 SQL Server also provides the ability to enforce complex passwords and password expiration on SQL 
Server logins. SQL Server retrieves the password policy from the local security policy on the server and 
uses it. If complex passwords are required on the server, then, by default, they will also be required for 
SQL Server logins. The same goes for password expirations. 

c13.indd   439c13.indd   439 10/31/08   6:29:24 PM10/31/08   6:29:24 PM



Chapter 13: Creating and Managing Database Objects

440

  Managing Security Objects 
 SQL Server logins, users, and roles have their own corresponding  CREATE  and  DROP  statements. The 
syntax for creating a new login is slightly different depending on whether the new login is a Windows 
login or a SQL Server login. This first example shows how to create a SQL Server login: 

/**************************************************

* Creates a new SQL Server login and then maps 

* that login to a new database user

***************************************************/

USE Master

GO

CREATE LOGIN Paul WITH Password = ‘P@ssword1’ 

USE AdventureWorks2008

GO

CREATE USER Paul FOR Login Paul  

 And the following example shows how to create a login for a Windows account: 

/**************************************************

* Creates a new Windows login and then maps 

* that login to a new database user

***************************************************/

USE Master

GO

CREATE LOGIN [AdventureWorks\Paul] 

USE AdventureWorks2008

GO

CREATE USER WindowsPaul FOR Login [AdventureWorks\Paul]  

 The syntax for dropping users or logins is simple. Just use the  DROP USER  or  DROP LOGIN  statement: 

/**************************************************

* Drops SQL Server login and user

***************************************************/

USE AdventureWorks2008

GO

DROP USER Paul

GO 

USE Master

GO

DROP LOGIN Paul   

  Data Control Language 
 Three SQL statements are used to control permission to all database objects and securable user resources 
(that is, users and roles). Each statement accepts the permission type (select, insert, update, delete, 
execute, and so on), the object name, and the user or role to which the setting applies. 

c13.indd   440c13.indd   440 10/31/08   6:29:24 PM10/31/08   6:29:24 PM



Chapter 13: Creating and Managing Database Objects

441

   GRANT  
 To  grant  permission is to give or allow permission to perform a type of operation on an object. The 
following are examples: 

USE AdventureWorks2008

GO

GRANT INSERT ON Production.Product TO Paul

GRANT EXECUTE ON dbo.uspGetBillOfMaterials TO Paul   

   DENY  
 The  DENY  statement is used to explicitly prohibit a user or role members from performing a specific 
action on an object. Even if a user is a member of a role or is otherwise granted permission, they will not 
be able to perform the action if they are denied permission explicitly or through any role membership: 

USE AdventureWorks2008

GO

DENY INSERT ON Production.Product TO Paul

DENY EXECUTE ON dbo.uspGetBillOfMaterials TO Paul    

   REVOKE  
 This statement is often misunderstood, as the term revoke means to take away. Revoking a permission 
doesn ’ t necessarily mean that a user loses the ability to perform an action. To revoke permission means 
to remove the current set of permissions for an object and user or role. This could have the effect of 
removing an explicit  GRANT  or  DENY , if either exists. This would cause the permission set for a user to 
revert to those applied through a role membership or to the default permissions.   

USE AdventureWorks2008

GO

REVOKE INSERT ON production.Product TO Paul

REVOKE EXECUTE ON dbo. uspGetBillOfMaterials TO Paul      

  Summary 
 After you get past the fine points, managing all database objects is a fairly simple matter of using the 
 CREATE ,  ALTER , and  DROP  statements for each type of object. These three SQL statements comprise Data 
Definition Language (DDL), which is the most common method used by administrative tools to design a 
database and its objects. 

 Many types of database objects exist, some of which are specialized, and others are more common. In 
this chapter, you learned to create and manage tables, views, stored procedures, and user - defined 
functions. 

 Security permissions are applied for a combination of an object and a user or role. Roles allow groups of 
users with similar requirements to be managed as a cohesive unit, rather than as individuals. Because 
SQL Server lets you define logins and users separately or integrated with existing Windows users and 
groups, security can be managed at a very granular level. This provides a great deal of flexibility for both 
simple database applications and complex enterprise solutions. Applicable, object - specific actions can be 

c13.indd   441c13.indd   441 10/31/08   6:29:24 PM10/31/08   6:29:24 PM



Chapter 13: Creating and Managing Database Objects

442

enabled or restricted on each object for individual users or those belonging to a defined role. Permissions 
to perform an action (such as insert, update, delete, select, or execute) may be explicitly granted or 
denied, and revoking a permission removes that permission, whether it be a grant or deny. 

 There is much to consider when planning the security requirements for your system. This is one of a 
database administrator ’ s most important tasks. This chapter just scratched the surface of this important 
topic in focusing only on the SQL language related to this topic.  

  Exercises 
  Exercise 1 

 Write the SQL script to define two tables to track customers buying wristbands from an on - line store. 
Decide on an appropriate name, data type, and nullability option for each column. Due to strict storage 
requirements, use the most conservative data types possible. Guidelines for the columns in the tables 
are as follows: 

 For the customer table, define a column to be used to uniquely identify each customer. Create two 
columns for the customer ’ s first and last name. The columns should allow between 1 and 50 characters 
and are required entries. Four columns are needed to store the customer ’ s address: a street address, city, 
state, and zip code. All addresses and cities will contain only U.S. domestic names, and none of these 
columns require a value. The address column should allow up to 200 characters, the city should allow up 
to 100 characters, the state will always be a two - character abbreviation, and the postal code will be 
between five and ten characters in length. 

 The sales data should be recorded in a table that identifies the product number, the price of the product, 
who purchased it, and when it was purchased.  

  Exercise 2 
 Wristbands are sold on two separate websites that use two copies of the database. Sales records will be 
merged together on occasion into one database. 

 Using the query you created in Exercise 1, add a column to serve as a primary key and to uniquely 
identify each sales record across multiple databases. Records should not be stored in physical order 
using this value. 

 Also, we ’ re currently licensed to sell wristbands in only three countries. Add a constraint to the 
customer table so that it accepts customers only in the United States (US), United Kingdom (UK), and 
Canada (CA).                                                               

c13.indd   442c13.indd   442 10/31/08   6:29:24 PM10/31/08   6:29:24 PM



      14    
Analyzing and Optimizing 

Query Performance          

 I hope you have seen that writing T - SQL is straightforward and fairly easy to learn. However, 
writing T - SQL is different from writing  efficient  T - SQL. Making sure that the code you write 
executes quickly and efficiently is very important. Too many times, I have seen developers create a 
very large and complex script with absolutely no thought to what the impact of the code will be 
on the database engine. This can lead to complicated, hard - to - diagnose performance problems 
down the road, especially if the inefficient code is encapsulated in one or more programming 
objects, such as stored procedures and functions. 

 This chapter will only scratch the surface of the massive topic of optimizing query performance 
because the primary focus is to teach you how to write good queries in the first place. Optimizing 
query performance also includes many other facets of database technologies, such as table 
indexing and statistics. 

 The best approach to writing efficient T - SQL is to understand how SQL Server retrieves data, 
and then writing your code to match the technology. This chapter provides a brief description 
of how the database engine processes queries and retrieves data, as well as some basic 
recommendations on which techniques to avoid and which techniques to leverage in your quest to 
write good queries. I won ’ t go into low - level specifics here; the goal is for you to understand the 
basics of data retrieval so that you can leverage this knowledge to write good queries.  

  Data Retrieval 
 In previous chapters, you learned how to create a query with the  SELECT  statement and to filter 
the data returned with the  WHERE  clause. It is natural to think of the query in those terms, selecting 
columns from a table or tables where the rows meet a certain criteria. However, the database 
engine doesn ’ t process the queries in the same way that you write them. Let ’ s take a look at a 
simple two - table join query and break down how SQL server processes the query.   

c14.indd   443c14.indd   443 10/31/08   6:30:12 PM10/31/08   6:30:12 PM



Chapter 14: Analyzing and Optimizing Query Performance

444

SELECT P.Name AS Product

      ,SUM((S.OrderQty * S.UnitPrice)) AS MountainBikeSales2004 

FROM Production.Product P

INNER JOIN Sales.SalesOrderDetail S

  ON P.ProductID = S.ProductID

WHERE YEAR(S.ModifiedDate) = 2004

  AND P.ProductSubCategoryID = 1 --Mountain Bikes

GROUP BY P.Name

HAVING SUM((S.OrderQty * S.UnitPrice))  >  $1000.00

ORDER BY MountainBikeSales2004 DESC  

 It would be grossly inefficient for the database engine to retrieve all the product names, their price, and 
the quantity of products purchased for all products, and then filter out the values that didn ’ t meet the 
criteria of the  WHERE  clause. So, the query processor was designed to retrieve the data in the most 
efficient way possible. The following table breaks the query down in the steps that the query processor 
takes to execute the query. Notice that the query is not processed in the same order we wrote it in order 
to retrieve the requested data efficiently. 

     Order      Statement   

     4      SELECT P.Name AS Product    ,SUM((S.OrderQty * S.UnitPrice)) AS 
MountainBikeSales2004   

     1      FROM       Production.Product P    INNER JOIN Sales.SalesOrderDetail S   

     2      ON P.ProductID = S.ProductID   

     3      WHERE YEAR(S.ModifiedDate) = 2004    AND P.ProductSubCategoryID = 1 
 -  - Mountain Bikes   

     5      GROUP BY P.Name   

     6      HAVING SUM((S.OrderQty * S.UnitPrice))  >  $1000.00   

     7      ORDER BY MountainBikeSales2004 DESC   

 As shown in the preceding table, the first operation to occur in this query is the  FROM  statement. 
Included in this first phase is the table referenced by the  JOIN  clause. In our case, that means that the 
query processor has determined that it must retrieve data from the Production.Product and Sales.
SalesOrderDetail tables. However, it does not retrieve any data yet. It simply creates a virtual table that 
has the potential of holding all the possible combinations of rows from both tables. The next phase of 
query processing is the  ON  clause. The  ON  clause tells the query processor how to combine the rows from 
the tables. In this example, it is the products that exist in both the Product table and the SalesOrderDetail 
table. The virtual table that was initially created by the  FROM  and  INNER JOIN  statements is now further 
limited by this additional criteria. Once again, no data has been physically retrieved from disk or 
memory. The query processor is simply creating a plan to retrieve data based on the query. 

 The next step is the application of any filter, as specified in the  WHERE  clause. The filter statement 
limits the rows from the SalesOrderDetail table to the ones that have a modified date in the year 2004 
and products with a SubCategoryID of 1, which equates to the subcategory of Mountain Bikes. Keep in 
mind that we have already limited the results to those products that exist in both the Product and 

c14.indd   444c14.indd   444 10/31/08   6:30:13 PM10/31/08   6:30:13 PM



Chapter 14: Analyzing and Optimizing Query Performance

445

SalesOrderDetail tables with the  ON  clause, so only mountain bikes that have a sales history in 2004 will 
be returned by the query processor. 

 Now that the query processor has limited the rows to a specific subset of data, the database engine will 
identify the location of the rows needed to satisfy the query and retrieve the data from the tables that 
matches the criteria established by the  FROM ,  INNER JOIN ,  ON , and  WHERE  statements. In this way, no 
extra data is retrieved, which makes the query more efficient. 

 The first set of data the database engine retrieves in this example is the product name and the product ID 
for every row in the Product table that has a product subcategory ID of 1. This data is placed in a memory 
location to be compared to the next set of data retrieved from the SalesOrderDetail table. The query 
processor retrieves the product ID, unit price, and order quantity of every row from the SalesOrderDetail 
table where the year of the modified date value is 2004. It also performs the mathematical operation 
specified in the  SELECT  statement (Order Quantity * Unit Price) by multiplying the order quantity by the 
unit price for each sales record returned. At this point, the query processor places all the product ID and 
expression results in another memory location. It then matches every record from the first operation to 
every record in the second operation by comparing the product ID values. Rows from the second 
operation that do not have a matching product ID are discarded, and matching rows are combined with 
the associated product name in a new memory location that contains only the product name and the 
associated expression value. This last memory location is sorted by the expression from highest value to 
lowest. As a last step before the data is returned by the query processor, all the rows that have an 
expression value less than $1000.00 are discarded.  

  Analyzing Queries 
 As you can see, the process of running a query can be a bit more complicated than it appears. The 
query processor does its best to create the most efficient query plan and then to execute that plan 
systematically. Understanding the process will help you write queries that run efficiently. In the previous 
section, I explained the basic process of building and executing a query plan, but how can we look into 
the query to identify the steps described? The answer is by using various T - SQL commands and tools 
included with Management Studio. This section explores in more depth how to analyze queries for 
optimization using the tools provided with SQL Server. 

 Before I describe the techniques for analyzing queries, it is important to review the process that 
SQL Server uses to execute a query and return the results. This process is essentially broken down into 
six steps: 

  1.    Parsing   —  In the parsing phase, the query processor simply ensures that the query meets 
 syntactic requirements.  

  2.    Resolution   —  In the resolution phase, the query processor ensures that all the object names 
specified in the query actually exist and are accessible.  

  3.    Optimization   —  During the optimization phase, the query processor evaluates a number of 
 possible execution plans to determine which plan would cost the least. It will evaluate whether 
a single - processor or multiple - processor query would be the most efficient, as well as whether to 
use any existing indexes or column statistics. The query processor will not always choose the 
fastest plan. Sometimes it chooses a slower query plan because it costs less as far as CPU 
expenditures.  

c14.indd   445c14.indd   445 10/31/08   6:30:13 PM10/31/08   6:30:13 PM



Chapter 14: Analyzing and Optimizing Query Performance

446

  4.    Compilation   —  The optimized query plan is then compiled into a small executable during the 
compilation phase.  

  5.    Caching   —  This compiled plan is placed in cache during the caching phase.  

  6.    Execution   —  The compiled plan is executed during the execution phase.    

 There are two caches that concern us when dealing with query analysis and optimization: the buffer 
cache and the procedure cache. When the compiled plan is cached, it is placed in the procedure cache. 
Data from tables and indexes are placed in the buffer cache. During the execution phase, the query 
processor looks first in the buffer cache to locate the specified data. If it cannot find the data in the cache, 
it will read the data from disk and place it in cache for future reference. Query plans and data will stay in 
the respective caches until they are either  “ aged out ”  or SQL Server removes the cache entries to make 
room for new plans or data. 

 When analyzing queries, it is important to understand the mechanics of query plan caching and data 
caching. It ’ s important to compare  “ apples to apples ”  when analyzing queries. For this reason, it is often 
desirable to clear out the cached values before executing the queries. Be very careful if you decide to 
clear the cache. Clearing either the procedure or buffer cache on a production system will severely 
degrade performance until the cache is refilled. 

 The following command is used to empty the buffer cache: 

DBCC DROPCLEANBUFFERS  

 This command clears out of the cache all data pages that have not been modified or have been 
committed to disk after a write operation. 

 The following command is used to empty the procedure cache: 

DBCC FREEPROCCACHE  

 This command clears out all the stored plans, including those associated with programming objects such 
as stored procedures, functions, views, and so on. Individual query plans cannot be removed from the 
procedure cache. However, individual object plans can be removed. To remove a plan associated with a 
programming object, use the system stored procedure  sp_recompile . For example, the following query 
marks the stored procedure  uspGetBillOfMaterials  for recompilation: 

USE AdventureWorks2008;

GO

sp_recompile ‘dbo.uspGetBillOfMaterials’;  

 Running  sp_recompile  on an object does not actually recompile it at that moment. It marks the object 
for recompilation, which means it will be recompiled and re - cached the next time it is executed or 
referenced. 

 To get consistent results while analyzing queries, it will often be useful to start from a common point by 
clearing the caches prior to executing the query. 

c14.indd   446c14.indd   446 10/31/08   6:30:14 PM10/31/08   6:30:14 PM



Chapter 14: Analyzing and Optimizing Query Performance

447

  Session Options 
 SQL Server provides several session options that you can use to return information about the query 
being executed. 

     Session Option      Description   

     STATISTICS IO     Returns the number of read and scan operations required to run the 
query.  

     STATISTICS TIME     Returns the number of milliseconds required to parse, compile, and 
execute a query.  

     STATISTICS PROFILE     Returns a textual showplan and query statistics.  

     STATISTICS XML     Returns an XML document that contains a query plan and query statistics.  

     SHOWPLAN_TEXT     Returns an estimated textual showplan. Does not actually run the query.  

     SHOWPLAN_ALL     Returns an estimated textual showplan and query statistics. Does not 
actually run the query.  

     SHOWPLAN_XML     Returns an XML document that contains an estimated query plan and 
query statistics. Does not actually run the query.  

 We haven ’ t yet discussed   showplans,   so a little background is in order. Showplans come in three forms: 
XML showplans, text showplans, and graphical showplans. Each form will be described later in this 
chapter. What they all share in common is a human - friendly way to represent and describe the steps that 
the query processor takes to return or manipulate data. 

   STATISTICS IO  
  STATISTICS IO  is one of the most useful session options. It returns information about the number of 
scans and reads the query processor needed to perform to retrieve the query results. The following table 
describes the information that  STATISTICS IO  returns. 

     Output      Description   

    Scan count    The number of table or index scans performed.  

    Logical reads    The number of pages read from the buffer cache.  

    Physical reads    The number of pages read from disk.  

    Read - ahead reads    The number of pages read into the buffer cache from disk to be 
available for logical reads.  

    LOB logical reads    The number of large - object data pages read from the cache.  

    LOB physical reads    The number of large - object pages read from disk.  

    LOB read - ahead reads    The number of large - object pages read into the buffer cache from disk to 
be made available for logical reads.  

c14.indd   447c14.indd   447 10/31/08   6:30:14 PM10/31/08   6:30:14 PM



Chapter 14: Analyzing and Optimizing Query Performance

448

 The scan count details how many table or index scans were required to execute the query. A scan is the 
reading of every row in the table or index, as opposed to a seek operation, which reads only a subset of 
an index ’ s rows. Generally speaking, seeks are more efficient than scans because less data is read to 
retrieve the desired data. 

 Logical reads occur when the query processor is able to find the data it needs in the buffer cache. Logical 
reads typically are a 100 times faster than physical reads because the data is being read from memory 
and not from a physical disk. 

 Physical reads occur when the data needed to process the query isn ’ t in the cache. The query processor is 
forced to go to the disk to get the data. When it does, it also caches it for future use. 

 Read - ahead reads, like physical reads, also occur when the data required to satisfy a query is not 
available in the buffer cache. What makes them different from physical reads is how the data is retrieved. 
A physical read is a page read. Remember that a SQL Server data page is an 8KB storage object. So, a 
physical read retrieves data 8KB at a time. A read - ahead read is an extent read. SQL Server extents 
comprise eight 8KB data pages for a total of 64KB. A read - ahead read quickly reads an entire data extent 
and places it in the cache so that the data is available to logical reads. 

 LOB logical reads, physical reads, and read - ahead reads are conceptually the same as their regular - sized 
counterparts. The difference is that the data retrieved is specifically for the storage of large - object data 
types, such as  text  and  image , or for  varbinary(MAX) ,  varchar(MAX) , and  nvarchar(MAX)  values 
exceeding 8KB (or a specified in - row limit). 

 Before we get started with table structuring, we need to level the playing field between SQL Server 2005 
and 2008 so that we can use one set of examples, not two, to explain the coming topics. While your 
results might be slightly different, that would be true regardless of the database version. 

 In the following results, I will be omitting the messages returned when running DBCC commands. As 
long as no errors are encountered, DBCC commands return the following message on the message tab, 
which is not pertinent to our discussion: 

DBCC execution completed. If DBCC printed error messages, contact your system 

administrator.  

 This message has always amused me. Most DBCC commands can be run only by a user with very elevated 
permissions, such as the system administrator. But who are the system administrators supposed to contact? 

 Run the following script on either the SQL Server 2008 or 2005 version of AdventureWorks database: 

USE AdventureWorks2008 --(or AdventureWorks)

GO

CREATE TABLE MyContact

(ContactID int IDENTITY(1,1) NOT NULL

,Title nvarchar(8) NULL

,FirstName nvarchar(50) NOT NULL

,LastName nvarchar(50) NOT NULL

,EmailAddress nvarchar(50) NULL

,Phone nvarchar(25) NULL)

CREATE CLUSTERED INDEX IX_MyContact

ON MyContact(ContactId)  

c14.indd   448c14.indd   448 10/31/08   6:30:15 PM10/31/08   6:30:15 PM



Chapter 14: Analyzing and Optimizing Query Performance

449

 Now that we have our table, let ’ s populate it with contact data. On SQL Server 2008, run the 
following script: 

USE AdventureWorks2008

GO

INSERT MyContact

(Title, FirstName, LastName, EmailAddress, Phone)

SELECT PP.Title

      ,PP.FirstName

      ,PP.LastName

      ,PE.EmailAddress

      ,PH.PhoneNumber AS Phone

FROM Person.Person PP

JOIN Person.EmailAddress PE

ON PE.BusinessEntityID = PP.BusinessEntityID

JOIN Person.PersonPhone PH

ON PH.BusinessEntityID = PP.BusinessEntityID

ORDER BY PP.Lastname  

 On the SQL Server 2005 version of AdventureWorks, run the following: 

USE AdventureWorks

GO

INSERT MyContact

(Title, FirstName, LastName, EmailAddress, Phone)

SELECT Title

      ,FirstName

      ,LastName

      ,EmailAddress

      ,Phone

FROM Person.Contact

ORDER BY Lastname  

 Now let ’ s take a look at a simple query and see what kind of information we can learn from the 
 STATISTICS IO  session option.   

DBCC DROPCLEANBUFFERS;

DBCC FREEPROCCACHE;

SET STATISTICS IO ON;

GO

USE AdventureWorks2008;

GO

SELECT LastName

      ,FirstName

      ,EmailAddress

FROM MyContact

WHERE LastName = ‘Ayers’;

GO

SET STATISTICS IO OFF;

GO  

c14.indd   449c14.indd   449 10/31/08   6:30:15 PM10/31/08   6:30:15 PM



Chapter 14: Analyzing and Optimizing Query Performance

450

 This query returns the following results: 

LastName            FirstName               EmailAddress

------------------- ----------------------- -----------------------

Ayers               Stephen                 stephen1@adventure-works.com

(1 row(s) affected)

Table ‘MyContact’. Scan count 1, logical reads 341, physical reads 4,

read-ahead reads 42, lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.  

 As you can see from the results, the retrieval of a single row required a scan, 341 logical page reads, 
4 physical page reads, and 42 read - ahead page reads, which are primarily in the form of 64KB extent 
reads. There were no large - object reads because none of the data for the MyContact table is stored as 
large objects. 

 If you were to change the query to filter on ContactID instead of LastName, as follows, the results would 
be quite different: 

DBCC DROPCLEANBUFFERS;

DBCC FREEPROCCACHE;

SET STATISTICS IO ON;

GO

USE AdventureWorks2008;

GO

SELECT LastName

      ,FirstName

      ,EmailAddress

FROM MyContact

WHERE ContactID = 911;

GO

SET STATISTICS IO OFF;

GO  

 And the results would be: 

LastName            FirstName               EmailAddress

------------------- ----------------------- -----------------------

Ayers               Stephen                 stephen1@adventure-works.com

(1 row(s) affected)

Table ‘MyContact’. Scan count 1, logical reads 2, physical reads 0, read-ahead 

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.  

 We get the same data results, but the work that SQL Server had to perform is dramatically reduced 
because the MyContact table is built on a clustered index ordered by ContactID. The query processor 
could just seek out the corresponding key and find all the data it needed. However, there may very 

c14.indd   450c14.indd   450 10/31/08   6:30:15 PM10/31/08   6:30:15 PM



Chapter 14: Analyzing and Optimizing Query Performance

451

well be a legitimate need to search on the Contact table by last name. The amount of work could 
again be reduced significantly by placing an index on the LastName column, as the following example 
shows: 

USE AdventureWorks2008;

GO

CREATE NONCLUSTERED INDEX IX_LastName 

ON MyContact (LastName);

GO

DBCC DROPCLEANBUFFERS;

DBCC FREEPROCCACHE;

SET STATISTICS IO ON;

GO

USE AdventureWorks2008;

GO

SELECT LastName

      ,FirstName

      ,EmailAddress

FROM MyContact

WHERE LastName = ‘Ayers’;

GO

SET STATISTICS IO OFF;

GO  

 Here are the results with an index on the LastName column: 

LastName            FirstName               EmailAddress

------------------- ----------------------- -----------------------

Ayers               Stephen                 stephen1@adventure-works.com

Table ‘MyContact’. Scan count 1, logical reads 4, physical reads 3, read-ahead 

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.  

 The performance isn ’ t as good as when using ContactId, but it is much better than the original query 
without a supporting index. Now you may be thinking  “ I ’ m a developer, not a DBA. I will not be 
building indexes. ”  You may be right. However, it is very important for the SQL developer to understand 
where a new index would be beneficial to the database performance. Specific recommendations can be 
given to the DBA to make your queries perform better.  

   STATISTICS TIME  
  STATISTICS TIME  returns how long the query processor takes to parse and compile a query and then 
the total execution time for a query. This session option is useful for creating query baselines. The 
duration of queries can be recorded and compared over time to evaluate ongoing performance. 

c14.indd   451c14.indd   451 10/31/08   6:30:16 PM10/31/08   6:30:16 PM



Chapter 14: Analyzing and Optimizing Query Performance

452

 Let ’ s take a look at our original mountain bike query from earlier in the chapter, but with some session 
settings added to analyze the query performance.   

USE AdventureWorks2008;

GO

DBCC DROPCLEANBUFFERS;

DBCC FREEPROCCACHE;

SET STATISTICS TIME ON;

GO

SELECT P.Name AS Product

      ,SUM((S.OrderQty * S.UnitPrice)) AS MountainBikeSales2004

FROM Production.Product P

INNER JOIN Sales.SalesOrderDetail S

  ON P.ProductID = S.ProductID

WHERE YEAR(S.ModifiedDate) = 2004

  AND P.ProductSubCategoryID = 1 --Mountain Bikes

GROUP BY P.Name

HAVING SUM((S.OrderQty * S.UnitPrice))  >  $1000.00

ORDER BY MountainBikeSales2004 DESC;

GO

SET STATISTICS TIME OFF;

GO  

 Here are the message results: 

SQL Server parse and compile time: 

   CPU time = 47 ms, elapsed time = 141 ms.

 SQL Server Execution Times:

   CPU time = 94 ms,  elapsed time = 317 ms.  

 In this case the query consumed 47 milliseconds of CPU time and a total server time of 141 milliseconds 
just on the parse and compile phases of query execution. Total query execution consumed 
62 milliseconds of CPU time and a total of 317 milliseconds. Keep in mind that these times are on my 
server. Your times will vary. 

 Remember that SQL Server caches a query plan and the data pages associated with a query. So what 
happens if we run the query again, as follows, without clearing these caches?   

USE AdventureWorks2008;

GO

SET STATISTICS TIME ON;

GO

SELECT P.Name AS Product

      ,SUM((S.OrderQty * S.UnitPrice)) AS MountainBikeSales2004

FROM Production.Product P

INNER JOIN Sales.SalesOrderDetail S

  ON P.ProductID = S.ProductID

WHERE YEAR(S.ModifiedDate) = 2004

c14.indd   452c14.indd   452 10/31/08   6:30:16 PM10/31/08   6:30:16 PM



Chapter 14: Analyzing and Optimizing Query Performance

453

  AND P.ProductSubCategoryID = 1 --Mountain Bikes

GROUP BY P.Name

HAVING SUM((S.OrderQty * S.UnitPrice))  >  $1000.00

ORDER BY MountainBikeSales2004 DESC;

GO

SET STATISTICS TIME OFF;

GO  

 Now look at the results: 

SQL Server parse and compile time: 

   CPU time = 0 ms, elapsed time = 0 ms.

 SQL Server Execution Times:

   CPU time = 72 ms,  elapsed time = 118 ms.  

 Notice that the parse and compile times are now zero, and the total CPU and execution times are less 
than before. This will not always be the case. Because the CPU time is based on several variables, you 
may encounter times when the CPU time is the same or even more than when running the query with a 
clean cache. The total elapsed time, however, will almost always be less.  

   STATISTICS PROFILE  
  STATISTICS PROFILE  returns a query  “ profile. ”  The profile consists of a textual showplan along with 
several statistics about the query. The textual showplan details the steps taken by the query processor to 
retrieve the data. The statistics detail information about the cost of the query. 

 Let ’ s re - examine the query from the MyContact table with  STATISTICS PROFILE  turned on.   

USE AdventureWorks2008;

GO

DBCC DROPCLEANBUFFERS;

DBCC FREEPROCCACHE;

SET STATISTICS PROFILE ON;

SELECT LastName

      ,FirstName

      ,EmailAddress

FROM MyContact

WHERE LastName = ‘Ayers’;

GO

SET STATISTICS PROFILE OFF;

GO  

c14.indd   453c14.indd   453 10/31/08   6:30:16 PM10/31/08   6:30:16 PM



Chapter 14: Analyzing and Optimizing Query Performance

454

 The first thing that is returned is the results of the query,  “ Stephen Ayers, ”  which we have seen before. 
After that is the query profile. The columns of the output are described briefly in the following table. 

     Column      Description   

    Rows    The number of rows returned by the query processor.  

    Executes    How many times the query is executed in the batch.  

    Stmt Text    The first row is generally the text of the T - SQL statement. The 
remaining rows contain a description of an operation performed to 
process the query. The rows in the Stmt Text column are divided into 
two different types. They are either of the type of the query operation, 
such as  SELECT ,  UPDATE ,  INSERT , or  DELETE , or they are of the  
PLAN_ROW  type, which described the operation being performed, such 
as an index seek.  

    StmtId    An integer representing the number of the statement in the query 
batch.  

    NodeId    The number of the node of the query. Each query has a number of 
nodes, or sub - steps, that were executed to perform the action.  

    Parent    The steps of a query are hierarchical, with the Parent value identifying 
the hierarchy of the nodes.  

    PhysicalOp    The physical operation associated with the step  —  for instance, an 
index scan or index seek.  

    LogicalOp    The logical operation associated with the step  —  for instance, an index 
scan or index seek.  

    Argument    Information about the operation, such as the key being searched for in 
an index seek.  

    DefinedValues    A comma - separated list of values being used for the operation  —  for 
instance, LastName, Firstname, and EmailAddress for the MyContact 
table query.  

    EstimateRows    The estimated number of rows output from the operation.  

    EstimateIO    The estimated IO cost for the operation.  

    EstimateCPU    The estimated CPU cost for the operation.  

    AvgRowSize    The average size of the row (in bytes) being processed by the operation.  

    TotalSubTreeCost    The estimated cost of the operation and any child operations.  

    OutputList    A comma - separated list of fields returned by the operation.  

c14.indd   454c14.indd   454 10/31/08   6:30:16 PM10/31/08   6:30:16 PM



Chapter 14: Analyzing and Optimizing Query Performance

455

     Column      Description   

    Warnings    A comma - separated list of warnings associated the operation, such as 
Missing Index or No Stats.  

    Type    Either the type of operation ( SELECT ,  UPDATE ,  INSERT ,  DELETE , 
 EXECUTE ) or  PLAN_ROW .  

    Parallel    Indicates whether the operation will be run on multiple processors 
(O for no parallelism; 1 for parallel).  

    EstimateExecutions    The number of times the operator will be executed for the current 
batch.  

 Now that we know what we ’ re looking at, let ’ s take a look at the query profile. In each of the following 
tables, I will describe the column of interest and also return the Logical Operation column to make it 
easier to follow. The first column of interest is the statement text. 

     LogicalOp      StmtText   

    NULL     SELECT [LastName],[FirstName],[EmailAddress] FROM 
[MyContact] WHERE [LastName]=@1   

    Inner Join     | -  - Nested Loops(Inner Join, OUTER REFERENCES:    ([Uniq1002], 
[AdventureWorks2008].[dbo].[MyContact].[ContactID]))   

    Index 
Seek  (NonClustered)  

      | -  - Index Seek(OBJECT:    ([AdventureWorks2008].[dbo]
.[MyContact].[IX_LastName]), SEEK:([AdventureWorks2008]

.[dbo].[MyContact].[LastName]=N’Ayers’) ORDERED FORWARD)   

    Clustered Index Seek        | -  - Clustered Index Seek(OBJECT:([AdventureWorks2008]
.[dbo].[MyContact].[IX_MyContact]), SEEK:([AdventureWorks

2008].[dbo].[MyContact].[ContactID]=[AdventureWorks2008]

.[dbo].[MyContact].[ContactID] AND [Uniq1002]=[Uniq1002]) 

LOOKUP ORDERED FORWARD)   

 The rows of the StmtText column are not listed top to bottom in the order of execution; instead, they are 
listed from right to left, top to bottom. The pipe ( | ) symbol separates the operations and indicates their 
hierarchy. In the above example you will notice that the index seek and clustered index seek operations 
are indented identically and are the operations most  “ to the right ”  in the query, indicating that they are 
the first operations. The first operation executed is the index seek on the LastName index we created 
earlier. We know this because it is the topmost operation of the two right operations. Immediately after 
the index seek is the clustered index seek. After that is a nested loop, where the output of the index seek 
is joined with the output of the clustered index seek, and then lastly the data is returned by the  SELECT  
statement. 

c14.indd   455c14.indd   455 10/31/08   6:30:17 PM10/31/08   6:30:17 PM



Chapter 14: Analyzing and Optimizing Query Performance

456

 After the StmtText column, the next column that provides detailed information about the query is the 
Argument column, which is described in the following table:

     LogicalOp      Argument   

    Inner Join     OUTER REFERENCES:([Uniq1002], [AdventureWorks2008]
.[dbo].[MyContact].[ContactID])   

    Index Seek  
(NonClustered)  

   OBJECT:    ([AdventureWorks2008].[dbo].[MyContact]
.[IX_LastName]), SEEK:    ([AdventureWorks2008].[dbo]
.[MyContact].[LastName]=    N’Ayers’) ORDERED FORWARD   

    Clustered Index Seek     OBJECT:    ([AdventureWorks2008].[dbo].[MyContact]
.[IX_MyContact]), SEEK:    ([AdventureWorks2008].[dbo]
.[MyContact].[ContactID]=[AdventureWorks2008].[dbo]

.[MyContact].[ContactID] AND [Uniq1002]=[Uniq1002]) 

LOOKUP ORDERED FORWARD   

 Notice that the index seek operation is searching for the LastName of  “ Ayers ”  and the clustered index 
seek is looking for a ContactID because the MyContact table is built on a clustered index on the 
ContactID column. When the LastName value of  “ Ayers ”  is found in the non - clustered index, 
its corresponding value is that of the ContactID. Therefore, the clustered index seek is looking for the 
ContactID value returned from the seek of the non - clustered index on the LastName column. We can 
confirm this by looking at the DefinedValues column. 

     LogicalOp      DefinedValues   

    Inner Join    NULL  

    Index Seek  
(NonClustered)  

   [Uniq1002], [AdventureWorks2008].[dbo].[MyContact]
.[ContactID], [AdventureWorks2008].[dbo].[MyContact]

.[LastName]   

    Clustered Index Seek     [AdventureWorks2008].[dbo].[MyContact].[FirstName], 
[AdventureWorks2008].[dbo].[MyContact].[EmailAddress]   

 Notice that the ContactID and LastName values are listed for the non - clustered index operation. It is 
also interesting that the clustered index seek has the defined values of FirstName and EmailAddress. 
This is because the non - clustered index seek has already identified the other two required values for the 
query. This is further confirmed by the OutputList column, which lists all the values returned by each 
operation. 

c14.indd   456c14.indd   456 10/31/08   6:30:17 PM10/31/08   6:30:17 PM



Chapter 14: Analyzing and Optimizing Query Performance

457

     LogicalOp      OutputList   

    Inner Join     [AdventureWorks2008].[dbo].[MyContact].[FirstName], 
[AdventureWorks2008].[dbo].[MyContact].[LastName], 

[AdventureWorks2008].[dbo].[MyContact].[EmailAddress]   

    Index Seek  
(NonClustered)  

   [Uniq1002], [AdventureWorks2008].[dbo].[MyContact]
.[ContactID], [AdventureWorks2008].[dbo].[MyContact]

.[LastName]   

    Clustered Index Seek     [AdventureWorks2008].[dbo].[MyContact].[FirstName], 
[AdventureWorks2008].[dbo].[MyContact].[EmailAddress]   

 Notice that the inner join operation passes all the columns in our select list out because the bottom two 
outputs are combined by the join.  

   STATISTICS XML  
  STATISTICS XML , like the  STATISTICS PROFILE  option, returns a query  “ profile. ”  However, in this 
case, the data is returned as an XML document. Running the MyContact table query with this session 
option, as shown in Figure  14 - 1 , causes an XML document to be returned by the query processor.   

 What occurs when you click the XML document link in the Results pane depends on whether you are 
running SQL Server 2005 or SQL Server 2008. SQL Server 2005 will open the XML document in 
Management Studio. Figure  14 - 2  shows a partial result set.   

Figure 14-1

c14.indd   457c14.indd   457 10/31/08   6:30:17 PM10/31/08   6:30:17 PM



Chapter 14: Analyzing and Optimizing Query Performance

458

 The XML document contains the same data as the profile data, but in XML format. This ability makes it 
very handy to programmatically process the results, which several third - party software vendors have 
done when building tools to help with the analysis of SQL queries. 

 In SQL Server 2008, Management Studio interprets the XML and displays it as a graphical execution 
plan, which will be described later. The source XML can be viewed by right - clicking the graphical plan 
and selecting the Show Execution Plan XML choice in the resulting context menu, as shown in 
Figure  14 - 3 .    

Figure 14-2

Figure 14-3

c14.indd   458c14.indd   458 10/31/08   6:30:22 PM10/31/08   6:30:22 PM



Chapter 14: Analyzing and Optimizing Query Performance

459

   SHOWPLAN_TEXT  
 The  SHOWPLAN_TEXT  option, as shown in Figure  14 - 4 , returns the same type of textual showplan 
that the  STATISTICS PROFILE  option returns. However, it does not return any information other than 
the showplan. When this option is on, executing a query will not actually run the query. Instead, the 
query processor calculates a query plan and returns the plan to the results window. No data is actually 
retrieved.    

   SHOWPLAN_ALL  
 The  SHOWPLAN_ALL  option, as shown in Figure  14 - 5 , is identical to the  STATISTICS PROFILE  
option except that it, like  SHOWPLAN_TEXT , does not actually run the query.  SHOWPLAN_TEXT  and 
 SHOWPLAN_ALL  are good ways of returning query information without the cost of actually running the 
query. This can be very handy when analyzing a query that takes a very long time to run.    

Figure 14-4

Figure 14-5

c14.indd   459c14.indd   459 10/31/08   6:30:23 PM10/31/08   6:30:23 PM



Chapter 14: Analyzing and Optimizing Query Performance

460

   SHOWPLAN_XML  
 The  SHOWPLAN_XML  option is identical to the  STATISTICS XML  option except that it, like the other 
showplan options, does not actually run the query, but instead returns an XML document that contains 
the operations that would be performed if the query were actually run.   

  Graphical Execution Plans 
 The information returned with the session options can also be returned in a graphical format. As 
with the session options, the graphical execution plans can be created as the corresponding query is run 
(actual execution plan), or created without running the query (estimated execution plan). The only real 
difference between the two methods is that the estimated execution plan does not return the actual row 
count affected by the query or the value of rebinds and rewinds, which I ’ ll explain later in this section. 

 You can launch or configure graphical execution plans with a button on the SQL Editor toolbar of 
Management Studio (see Figure  14 - 6 ) or with keyboard hotkeys (Ctrl+L for an estimated execution plan 
and Ctrl+M for an actual execution plan).   

Figure 14-6

 The graphical execution plans can get very large and complicated, but they all build on some basic 
operations. For the purpose of this book, we will keep to fairly basic plans. 

 For the first example, let ’ s go back to the simple query on the MyContact table. To set up for the 
example, however, we need to drop the index on the LastName column we created earlier by running 
the following script: 

USE AdventureWorks2008;

GO

IF EXISTS(SELECT * 

          FROM sys.indexes

          WHERE name = ‘IX_LastName’

            AND OBJECT_NAME([object_id]) = ‘MyContact’)

   DROP INDEX MyContact.IX_LastName;  

c14.indd   460c14.indd   460 10/31/08   6:30:24 PM10/31/08   6:30:24 PM



Chapter 14: Analyzing and Optimizing Query Performance

461

 Now that we have put the table back to its original state, we ’ ll analyze the query to see which steps the 
query processor executes to run the query. Open a new query window and make sure that the database 
context is set to AdventureWorks2008 on the SQL Editor toolbar, and then type the following query in 
the new window: 

SELECT ContactID

      ,LastName

      ,FirstName

      ,EmailAddress

FROM MyContact

WHERE LastName = ‘Ayers’;  

 Now either press Ctrl+L or click the Display Estimated Execution Plan button on the SQL Editor 
toolbar. 

 Figure  14 - 7  shows a simple execution plan. To retrieve the row for the contact with a last name of 
 “ Ayers, ”  the query processor performs a clustered index scan. Remember that a scan of a clustered index 
is the same as a table scan because a clustered index is essentially all the rows of a table sorted by the 
index key. You ’ ll also recall that in order to retrieve this one row, SQL Server had to read every row of 
the table.   

 Placing the mouse cursor over the clustered index scan icon on the execution plan displays a window 
that contains information about the operation (see Figure  14 - 8 ).   

Figure 14-7

c14.indd   461c14.indd   461 10/31/08   6:30:24 PM10/31/08   6:30:24 PM



Chapter 14: Analyzing and Optimizing Query Performance

462

 As we did earlier in the chapter, replace the LastName search criteria with ContactID, as shown in the 
following query, and then regenerate the execution plan.   

SELECT ContactID

      ,LastName

      ,FirstName

      ,EmailAddress

FROM MyContact

WHERE ContactID = 911;  

 Figure  14 - 9  shows that in order to return the row for the contact with a search criteria of ContactID, a 
clustered index seek is performed instead of a clustered index scan. Comparing the cost of the two 
queries shows that the query using LastName is more than 100 times more expensive in CPU and IO cost 
than the query using ContactID.   

Figure 14-8

c14.indd   462c14.indd   462 10/31/08   6:30:25 PM10/31/08   6:30:25 PM



Chapter 14: Analyzing and Optimizing Query Performance

463

 Earlier in the chapter when analyzing this query, we added an index to the LastName column and 
reduced the number of page reads from 341 to 2. To further analyze the impact of adding the index on 
the query, let ’ s re - add the index on the LastName column and analyze the query again. 

 First, open a new query window and create the index by running the following script: 

USE AdventureWorks2008;

GO

CREATE NONCLUSTERED INDEX IX_LastName

ON MyContact(LastName);  

 Now go back to the query window with the Contact table query and change it back so that it is searching 
on the LastName column again. Once that is done, regenerate the execution plan. 

 As you can see in Figure  14 - 10 , the plan now contains three different operators: a non - clustered index 
seek, a key lookup, and a join. These are the same operations we saw when examining the textual 
showplans; however, the graphical execution plan can make it a little easier to analyze.   

Figure 14-9

Figure 14-10

c14.indd   463c14.indd   463 10/31/08   6:30:25 PM10/31/08   6:30:25 PM



Chapter 14: Analyzing and Optimizing Query Performance

464

 In this particular case, we see that the non - clustered index seek searches for the LastName value of 
 “ Ayers ”  and returns both the value of LastName and the value of the corresponding ContactID to the 
nested loop operator (see Figure  14 - 11 ). This occurs because all non - clustered indexes are mapped to 
the table ’ s clustered index, if one exists. As a result, the row in the index IX_LastName that contains the 
last name of  “ Ayers ”  also has a column with the corresponding clustered index key, which happens to be 
the ContactID for the MyContact table.   

 The nested loop operator takes the ContactID key value and looks for the associated value from the 
clustered index in the form of a key lookup, as shown in Figure  14 - 12 . Looking at the associated CPU 
and IO cost from the original query and comparing it to the same query when an index on the LastName 
column exists shows again a significant decrease in cost, even though more steps are necessary to 
perform the operation.   

Figure 14-11

c14.indd   464c14.indd   464 10/31/08   6:30:26 PM10/31/08   6:30:26 PM



Chapter 14: Analyzing and Optimizing Query Performance

465

 As you can see using these very basic examples, the graphical execution plan can be very helpful in 
analyzing queries in order to provide optimization recommendations, whether those recommendations 
are for new indexes or a change in search criteria. Let ’ s take a look at our other example query looking 
for mountain bike sales totals that occurred in the year 2004.   

USE AdventureWorks2008;

GO

SELECT P.Name AS Product

      ,SUM((S.OrderQty * S.UnitPrice)) AS MountainBikeSales2004

FROM Production.Product P

INNER JOIN Sales.SalesOrderDetail S

  ON P.ProductID = S.ProductID

WHERE P.ProductSubCategoryID = 1 --Mountain Bikes

  AND YEAR(S.ModifiedDate) = 2004

GROUP BY P.Name

HAVING SUM((S.OrderQty * S.UnitPrice))  >  $1000.00

ORDER BY MountainBikeSales2004 DESC;  

 This time we ’ ll create the execution plan along with executing the query by either typing the hotkey 
Ctrl+M and then executing the query or by clicking the Display Actual Execution Plan button on the SQL 
Editor toolbar and then executing the query. As shown in Figure  14 - 13 , an Execution Plan tab is 

Figure 14-12

c14.indd   465c14.indd   465 10/31/08   6:30:26 PM10/31/08   6:30:26 PM



Chapter 14: Analyzing and Optimizing Query Performance

466

displayed, along with the usual Results and Messages tabs. You will also notice that I moved things 
around a little bit so that the execution plan would fit on a single page.   

Figure 14-13

 Once again, hovering the mouse cursor over an operator icon will display detailed information about 
that operation. The following table describes the information returned by an actual execution plan. As 
previously mentioned, the information displayed is identical to that of an estimated execution plan, with 
the exception of those attributes that specify  “ Actual. ”  The  “ Cost ”  metrics are  not  representative of time 
or any other concrete metric. Instead, they are an internally generated metric provided by the query 
processor to enable comparisons when examining different plans. 

     Attribute      Description   

    Physical Operation    The physical operation executed by the query processor.  

    Logical Operation    A conceptual description about the operation performed. For 
instance, a physical hash - match join is conceptually described as 
an inner join. (For more information about different types of 
physical joins, consult SQL Server Books Online.)  

    Actual Number of Rows    The actual number of rows returned by the operation.  

    Estimated IO Cost    The estimated IO cost of the operation.  

    Estimated CPU Cost    The estimated CPU cost of the operation.  

    Estimated Operator Cost    The total cost associated with the operation.  

    Estimated Subtree Cost    The cumulative cost of the entire subtree up to the current node. 
For instance, if you examine the subtree cost value in the 
mountain bike sales query, you will notice that it continues to 
increase from the right - most operation to the final  SELECT  
operation. Large, complex queries may have multiple subtrees 
that are merged as they move from right to left.  

    Estimated Number of Rows    The number of rows the query optimizer estimated would be 
affected by the operation. The estimated number is based on 
column or index statistics and may not match the actual number 
because statistics are updated dynamically.  

c14.indd   466c14.indd   466 10/31/08   6:30:27 PM10/31/08   6:30:27 PM



Chapter 14: Analyzing and Optimizing Query Performance

467

     Attribute      Description   

    Estimated Row Size    The estimated size of each row that passes through the operation. 
Because row size can be affected by variable - length columns in the 
row, only an estimate is provided.  

    Actual Rebinds    The number of rebinds executed in a join or spool operator 
(a spool operator saves an intermediate query result to the 
tempdb database). A rebind occurs when one or more of 
the values being joined by the join operator changed during 
execution and the join required re - initialization.  

    Actual Rewinds    The number of rewinds executed in a join or spool operator. 
A rewind occurs when a join or spool is reinitialized but no 
changes occurred to the join value.  

    Ordered    Indicates that the index scan or seek was ordered (ascending or 
descending) by the query processor.  

    Node ID    The integer identity of the query node (step).  

 Examining the execution plan shown in Figure  14 - 13 , you can see the exact steps that the query 
processor took in retrieving our result set. Notice that the lines moving from operator to operator vary in 
thickness. The thickness of the line indicates the amount of data being passed. The right - most operator, 
which is the clustered index scan of the SalesOrderDetail table, returns more than 45,000 rows, as you 
can see in Figure  14 - 14 , which is the number of sale detail records in 2004.   

Figure 14-14

c14.indd   467c14.indd   467 10/31/08   6:30:28 PM10/31/08   6:30:28 PM



Chapter 14: Analyzing and Optimizing Query Performance

468

 But let ’ s not get ahead of ourselves. Remember that the logical order of operation for the execution plans 
is essentially right to left, top to bottom. With multiple processors and multiple threads processing a 
query, the logical order will not always match the actual order, but when the query processor puts 
everything together, the logical sequence is met. With this in mind, we see in Figure  14 - 13  that the first 
operation performed by the query processor is a scan of the clustered index on the Product table. The 
query processor is scanning every row in the Product table to look for those with a 
ProductSubCategoryID of 1. 

 At first glance it may seem that a non - clustered index on the ProductSubCategoryID column could 
reduce the cost of this query. After all, why should the query processor scan all the rows of the Product 
table if it could just look up the products by ProductSubCategoryID instead? In reality, a non - clustered 
index on the ProductSubCategoryID column would not change the execution plan at all. The query 
processor would completely ignore it. It will ignore it for a couple of reasons. The first is that there are 
not that many rows in the Product table, and spending time correlating an index with a row ’ s location 
when there are only 505 rows in the table is a waste of time. The second and most significant reason is 
that the ProductSubCategoryID column is not the only value that is needed from the Product table. The 
query also needs the Product ’ s name. Looking up the clustered index key value in a non - clustered index 
built on the ProductSubCategoryID column, only to return to the Product table to retrieve the Name 
column, would be inefficient. 

 Looking at the execution plan, we can see that the output of the clustered index scan of the Product table 
is both the ProductID and the Product Name (see Figure  14 - 15 ).   

Figure 14-15

c14.indd   468c14.indd   468 10/31/08   6:30:29 PM10/31/08   6:30:29 PM



Chapter 14: Analyzing and Optimizing Query Performance

469

 The next logical operation that occurs is the clustered index scan of the SalesOrderDetail table, and as 
mentioned earlier, the output of this operator is wider than the previous operation because this one 
passes 45,576 rows to the scalar operator. As you can see in Figure  14 - 16 , the scalar operation takes 
the rows and creates the value of Expr1005 (MountainBikeSales2004) by executing the expression 
(S.OrderQty * S.UnitPrice). It then passes all 45,576 rows of ProductID and Expr1005 to the hash match 
operator.   

 The bottom hash match operator is identified as a logical aggregate. The purpose of this hash match 
operator is to sum the results of the previous expression and group that sum by ProductID. This 
information isn ’ t readily available with the usual mouse - over window, but it can be seen when 
launching the Properties window by pressing F4 or selecting the Properties window in the View 
menu (see Figure  14 - 17 ). The hashing algorithm builds a table of all the ProductID  s and then 
summarizes the expression  Expr1005 (S.OrderQty * S.UnitPrice)  for each of the distinct 
ProductID  s that have a sales order detail record in 2004. The aggregate hash match outputs all the 
identified product records and the expression Expr1004, which equates to  SUM(Expr1005)  or  
SUM((S.OrderQty * S.UnitPrice))  to the top hash match operator, which is identified as logical 
inner join.   

Figure 14-16

c14.indd   469c14.indd   469 10/31/08   6:30:29 PM10/31/08   6:30:29 PM



Chapter 14: Analyzing and Optimizing Query Performance

470

 The inner join hash match has inputs from the two subtrees. The top input is the ProductID and Name 
values extracted by the clustered index scan, and the bottom is the ProductID and Expr1004 values from 
the aggregate hash match, as shown in Figure  14 - 18 . The job of the inner join hash match is to match the 
ProductID values from the top subtree to the ProductID values of the bottom subtree, and then pass only 
the ones that match to the sort operator.   

Figure 14-17

c14.indd   470c14.indd   470 10/31/08   6:30:30 PM10/31/08   6:30:30 PM



Chapter 14: Analyzing and Optimizing Query Performance

471

 The sort operator implements the  ORDER BY  clause in our query and sorts the expression Expr1004, 
which is our column alias MountainBikeSales2004. The sort operator passes the final sorted rows to the 
Select operator, which returns the rows to the query processor. 

 The two execution plans we have examined are fairly basic, but they have demonstrated the 
fundamentals of execution plan analysis. There are a few more operators that we have not covered, but a 
detailed description of them is, unfortunately, beyond the scope of this book. Fortunately, SQL Server 
Books Online gives adequate coverage of the different operators in the topic titled  “ Graphical Execution 
Plan Icons (SQL Server Management Studio). ”    

  Writing Efficient T -  SQL  (Best Practices) 
 The true secret to writing good T - SQL is a simple equation and it goes something like this: 
Understanding of how SQL Server processes T - SQL, combined with good logic, multiplied by good 
testing, raised to the power of the number of people reviewing the code. Simple, right? The point is this: 
Almost anybody can learn to write T - SQL. It ’ s fun and it is relatively easy to learn, especially when 
compared to programming languages such as C or heaven forbid, PERL, which is (in our opinion) more 

Figure 14-18

c14.indd   471c14.indd   471 10/31/08   6:30:31 PM10/31/08   6:30:31 PM



Chapter 14: Analyzing and Optimizing Query Performance

472

like a mystic art than a language. However, just like everyone who learns how to drive doesn ’ t end up 
racing in the Daytona 500, everyone who learns T - SQL is not going to write good T - SQL. Writing good, 
efficient T - SQL takes experience. One of my favorite modern - day proverbs is this:  “ Good judgment 
comes from experience. A great deal of experience comes from bad judgment. ”  The same can be said 
for writing T - SQL. Writing good T - SQL comes from experience. A great deal of experience comes from 
writing bad T - SQL. 

 I am not encouraging you to write bad T - SQL in order to write good T - SQL. To be frank, you will 
probably do that without any help from me, but so did I and so did everyone I know who writes great 
T - SQL, and many of those write better T - SQL than I do now. So, take every opportunity to learn from 
other people ’ s mistakes. One of my father ’ s favorite sayings as I grew up was  “ Smart people learn from 
their mistakes; smarter people learn from other people ’ s mistakes. ”  In light of that, every time you look 
at other people ’ s code, ask yourself,  “ Can I learn something from this code? Is it efficient? Is it logical? 
Are they implementing their logic in a new way? If it is a new way, is it innovative and cool? Or is it just 
new? ”  Many times I have seen a T - SQL developer get enamored with a new capability or function and 
work very hard to introduce the new capability even when it doesn ’ t make sense. In SQL Server 2000 
this was most evident in the new capabilities created with user - defined functions, which are immensely 
powerful but can introduce significant performance issues if used indiscriminately. With SQL Server 
2005, the new Common Language Runtime (CLR) programming objects and XML support saw a 
massive increase in both capabilities and potential for abuse. SQL Server 2008 also provides some very 
powerful enhancements that can be used very effectively, but new features should not be introduced to a 
data application without fully understanding the ramifications of the technology. I work with many 
databases that are beyond the terabyte size with tables that have billions of rows. Experimenting with 
and deploying code that runs on a database that is only a few gigabytes in size may be acceptable, but 
when writing code for a large database that impacts thousands of customers and millions of dollars, you 
better make sure that your code does not bring the server to its knees. Doing so becomes a singular 
episode that I, and my colleagues, have come to call an RGE, or  “ r é sum é  generating event. ”  To avoid 
RGEs, don ’ t get in a hurry to deploy new code. Test your code, then test it again to make sure it does 
exactly what you want it to do and nothing else. When you get done, have someone else test it as well. 
The extra effort will be worth it. 

  Writing Efficient Filters 
 The single most important part of any query is the  WHERE  clause, followed closely by any join criteria 
when multiple tables are referenced. The primary goal of the  WHERE  clause is to limit the amount of rows 
that the query processor must read to return the desired results. In light of this fact, we can establish 
some basic search criteria. 

  Positive Searches 
 The first general guideline for writing efficient filters is to remain positive. Too many times developers 
go out of their way to use negative search criteria. Although this can be the most efficient way to write 
equations in a true programming language, doing so in a set - based data manipulation language is not 
always a good idea. With large result sets, doing a negative search by using the  NOT  operator can force 
the query processor to do a table scan, whereas doing a positive search allows the query processor to 
find just the desired rows. This is not always the case, of course, and there are many variables, such as 
the existence of indexes and the percentage of rows excluded by the negative criteria. Sometimes logic 
dictates that a negative criterion be used and there is nothing wrong with that, but to use a negative 
criterion when a positive one would work just as well can lead to performance issues.  

c14.indd   472c14.indd   472 10/31/08   6:30:31 PM10/31/08   6:30:31 PM



Chapter 14: Analyzing and Optimizing Query Performance

473

  Wildcards 
 Using the  LIKE  operator and available wildcard operators is a flexible and powerful method of searching 
for character data. However, care should be taken to avoid using them excessively or unnecessarily. For 
example, the two following queries, shown in Figures 14 - 19 and 14 - 20, return identical results. However, 
the query shown in Figure  14 - 20  is much less efficient. 

 As you can see in Figure  14 - 19 , this first query takes advantage of the index we created previously on 
the LastName column. The query processor completes a seek operation on the index to retrieve the row 
we want.   

Figure 14-19

Figure 14-20

 The same execution plan would be created even if we changed the search criteria to  LIKE  ‘ Ay% ’  . 
Trailing wildcards can be optimized by the query processor and take advantage of existing indexes. 

 Now take a look at Figure  14 - 20 , which shows the query and execution plan with a leading wildcard.   

c14.indd   473c14.indd   473 10/31/08   6:30:31 PM10/31/08   6:30:31 PM



Chapter 14: Analyzing and Optimizing Query Performance

474

 Even though both queries return identical results, the query with a leading wildcard is much less 
efficient. The leading wildcard forces the query processor to complete an index scan instead of an index 
seek, resulting in increased IO and CPU cost. 

 Why would a developer write a query like the one shown in Figure  14 - 20  unless he or she needed to 
search for a string of characters inside a string of characters? The answer in this case is that the developer 
was implementing logic whereby the value of last name could be omitted and all contacts returned. 
Consider the following code: 

CREATE PROCEDURE uspGetContacts @LastName nvarchar(50) = ‘’

AS   

SELECT ContactID

      ,FirstName

      ,LastName

      ,EmailAddress

FROM MyContact 

WHERE LastName LIKE ‘%’ + @LastName + ‘%’;  

 Setting the  @LastName  variable to an empty string allows the stored procedure to run with a specified 
last name value or with no last name value specified. As a result, the stored procedure will only return 
matching rows or all rows. Pretty cool, right? No, actually it ’ s wrong. Every time this query runs, a scan 
will occur, even when one is not necessary. I discovered code very much like this in a production system 
that scanned more than 65 million rows. The answer to this problem is to write a bit more code and save 
the database system a significant amount of processing. Here is a better solution to the previous stored 
procedure: 

CREATE PROCEDURE uspGetContacts @LastName nvarchar(50) = ‘’

AS   

IF @LastName = ‘’

   BEGIN

      SELECT ContactID

            ,FirstName

            ,LastName

            ,EmailAddress

      FROM MyContact 

   END

ELSE

   BEGIN

      SELECT ContactID

            ,FirstName

            ,LastName

            ,EmailAddress

      FROM MyContact 

      WHERE LastName = @LastName

   END;  

 Using some conditional logic in the stored procedure saves a large amount of overhead any time the 
procedure is run with a specific last name value.  

c14.indd   474c14.indd   474 10/31/08   6:30:34 PM10/31/08   6:30:34 PM



Chapter 14: Analyzing and Optimizing Query Performance

475

  Logic Operators 
 I previously mentioned the possible pitfalls in using the  NOT  operator, but what about the other 
logic operators,  AND  and  OR ? The bottom line when using logic operators is to keep in mind that the  OR  
operator increases the amount of data that must be read, whereas the  AND  operator limits the amount 
of data processed. While this sounds obvious, it isn ’ t always. The  OR  operator is useful, but ask yourself 
if the logic can be handled without the  OR  operator. It might be that a few more lines of conditional logic 
in the stored procedure will eliminate the need for the  OR  operator and make the overall execution time 
more efficient.  

  Join Operators 
 Be aware that how you join your tables is just as important as how you filter the rows with the  WHERE  
clause. The join criteria of a multi - table query is very much like the  WHERE  clause. The join criteria 
specifies which rows from each table are retrieved, just as a  WHERE  statement does. In fact, you may often 
encounter developers who use the  WHERE  clause to join their tables, as the following example illustrates: 

SELECT P.Name AS Product

      ,SC.Name AS SubCategory

FROM Production.Product P

    ,Production.ProductSubcategory SC

WHERE P.ProductSubcategoryId = SC.ProductSubcategoryId

;  

 There is nothing inherently wrong with using the  WHERE  clause to join the tables, but it does make the 
code a bit more complicated when using additional filter criteria. Here is the same query using the more 
accepted ANSI syntax: 

SELECT P.Name AS Product

      ,SC.Name AS SubCategory

FROM Production.Product P

INNER JOIN Production.ProductSubcategory SC

ON P.ProductSubcategoryId = SC.ProductSubcategoryId

;  

 Again, there is no real difference between these two queries. If you look at the execution plan for each 
one, you will see that they are identical. This suggests that the equality operator is not the only operator 
that can be used in a join. Because the  WHERE  clause supports a variety of logic and comparison 
operators, can ’ t we assume that the  JOIN  operator also supports them? The answer is a conditional yes. 
While it is possible to use a variety of operators in the joining of tables, chances are that you will not 
retrieve the results that you initially believed you would. For example, suppose that you wanted to 
return a list of all subcategories for which there were no products. At first glance, the following query 
would seem to do the trick: 

SELECT SC.Name AS SubCategory

FROM Production.ProductSubcategory SC

INNER JOIN Production.Product P

ON SC.ProductSubcategoryID != P.ProductSubcategoryID

;  

 However, if you actually run this query, you will find that it returns more than 10,000 rows when there 
are only 37 subcategories. What happened? Essentially, this query performs a cross join. That is, it takes 

c14.indd   475c14.indd   475 10/31/08   6:30:34 PM10/31/08   6:30:34 PM



Chapter 14: Analyzing and Optimizing Query Performance

476

the first row from the ProductSubcategory table with a ProductSubcategoryID of 1 and matches it with 
all the products in the Product table that do not have a ProductSubcategoryID of 1. It then does the same 
thing with the next subcategory, and the next. The end result is that each subcategory is matched with 
503 products  —  not exactly what we had in mind. The moral to this story is this: Think your logic all the 
way through and make sure the results are what you expected them to be.    

  Summary 
 A great deal more could be written about analyzing and optimizing T - SQL code  —  enough to fill a 
couple of books. However, almost all of it would be beyond the scope of this particular  beginning  book 
on T - SQL. This chapter introduced you to the main concepts regarding T - SQL analysis and optimization, 
but I will be the first to admit that there is much more to be learned. I hope this chapter encourages you 
to look critically at your own code and any code you may be called upon to return. While there isn ’ t 
always room for improvement, very often there is.  

  Exercises 
  Exercise 1 

 Analyze the execution plan of the  uspGetInvoice  stored procedure. Identify inefficiencies in the code 
and re - write the stored procedure to reduce the amount of CPU and IO cost associated with it.   

USE AdventureWorks2008

GO

CREATE PROCEDURE uspGetInvoice

   @SalesOrderNumber nvarchar(25) = ‘’

  ,@PurchaseOrderNumber nvarchar(25) = ‘’

AS

IF @SalesOrderNumber = ‘’ AND @PurchaseOrderNumber = ‘’

   BEGIN

      RAISERROR(‘Must provide PurchaseOrder or SalesOrder number’, 14,1)

      RETURN

   END

ELSE

   BEGIN   

      SELECT SalesOrderNumber

            ,OrderDate

            ,ShipDate

            ,SubTotal

            ,TaxAmt

            ,Freight

            ,TotalDue

      FROM Sales.SalesOrderHeader

      WHERE SalesOrderNumber LIKE ‘%’ + @SalesOrderNumber + ‘%’

         OR PurchaseOrderNumber LIKE ‘%’ + @PurchaseOrderNumber + ‘%’

   END;                 

c14.indd   476c14.indd   476 10/31/08   6:30:34 PM10/31/08   6:30:34 PM



      15     
T  -  SQL  in Applications and 

Reporting          

 I ’ ve always been a firm believer in the principle that any learning experience should lead to a 
tangible and usable end product. I remember taking a Visual Basic 3.0 programming class at a local 
college. It was a daytime class so most of the students were typical first - year college kids, just 
trying to pass the class and get their credits. I, on the other hand, was working in the industry as a 
database programmer with Hewlett-Packard and was in need of a particular skill. Students would 
raise their hands and ask questions like,  “ Will this be on the test? ”  When I asked questions about 
user - input validation and concurrent database access, others would grimace because these topics 
weren ’ t covered in the textbook. 

 This chapter is all about turning theory into reality. I would like to share some experience (and the 
experience of others) with you about building applications and database solutions on the concepts 
you ’ ve learned in previous chapters. Throughout this book, I ’ ve mentioned that T - SQL isn ’ t really a 
programming language, although in many ways it acts like one. SQL is best suited for returning and 
manipulating data and database objects. When it comes to processing complex business logic 
and interacting with users, the SQL language usually doesn ’ t do the job  —  that ’ s not what it ’ s for. 
Fortunately, SQL Server 2008 integrates extremely well with many programming languages 
and application development environments. It ’ s probably more accurate to say that a number of 
application development environments work well with SQL Server and other database products 
that use the SQL query language.  

  Application Programming Models 
 An application programming model is a high - level guide, the foundation upon which all of the 
components of a solution rest. It ’ s also a set of standards and practices that apply to the finer 
points of application design. This encompasses the concept of  design patterns , which are 
repeatable practices and methods for building solutions. There really isn ’ t one application 
programming model that fits all user and business needs. In fact, it ’ s really hard to say that any 
one approach is typical. Every software developer, over time, adopts their own toolkit of coding 

c15.indd   477c15.indd   477 10/31/08   6:31:30 PM10/31/08   6:31:30 PM



Chapter 15: T-SQL in Applications and Reporting

478

habits, naming conventions, and program code and script snippets to reuse in subsequent projects. This 
is great for small projects architected and built by one developer. However, larger projects need a more 
disciplined approach requiring standards applied across the project team or organization. 

 To appreciate this idea of design patterns, you need only to look around and make some observations. 
Have you ever noticed how so many cars from different manufacturers are so similar? Why do you think 
this is? Likely, it ’ s because each company has fed off of the other ’ s success. For example, in the 1980s, the 
Honda Accord became an icon of style and efficiency. In the 1990s, several competing models suddenly 
became very similar, including the Toyota Camry, the Nissan Maxima, and others. Someone found a 
design that worked well, and the industry followed. Innovation is occasionally the result of starting over 
and applying a pattern radically different than the status quo, but is more often obtained through a 
series of incremental improvements. In simple terms, the software industry, although relatively young, 
has matured quickly over the past few decades. Developing software and database solutions is arduous 
and expensive. The best approach is to build upon the experiences and success of others with a cautious 
eye toward improvement. 

 The business of defining usable software programming and design models is not a lightweight topic by 
any means. Many large businesses have invested millions in defining their own strategies, and a number 
of industry - wide standards have evolved. The need for reliable and auditable processes has spawned 
many related, industry, and project type - specific standards. In manufacturing and production, the 
ISO - 9000:9002 standards have prompted businesses of all kinds to maintain specific standards of quality 
control. Information Technology – related industries have adopted methodologies for better understanding 
requirements, deliverables, and project lifecycles. Specific methodologies exist for this purpose. These 
include the Unified Modeling Language (UML) for object - oriented application design and modular 
solution architecture, and Object Role Modeling (ORM) for high - level data entity modeling and database 
design. Software project management approaches vary from high - level, principle - centered strategies such 
as the Microsoft Solutions Framework (MSF) to more rigid, rules - based standards rooted in the top - down 
waterfall approach. Fully engaged project management deals with core issues and challenges people 
across different areas of business. For a methodology to work, it requires participants to share a unified 
belief system. This treads on culture, communication, and trust. It ’ s hard to get two people outside of the 
same organization to agree on some specifics, but there are a number of principles and practices most of 
us who have been down this bumpy road can agree upon.  

  Selecting a Model 
 The selection of a programming model should be driven by the user and system requirements. When 
I am enlisted to design and implement a new system, I often go in with preconceived ideas about the 
size and scope of the final solution. Although it ’ s important to start somewhere, I ’ ve learned to keep an 
open mind. Projects that start small can soon reveal a much larger scope and growth potential, and 
problems that seemed expansive might be easily solved with small, simple solutions. Likewise, 
shrink - wrapped commercial applications often need to be customized to such a degree that it is most 
cost - effective to build the system from scratch; and large, expensive custom applications can sometimes 
be replaced with off - the - shelf software. In short, an ounce of careful planning and design can be far more 
beneficial than a pound of brute - force application development. 

c15.indd   478c15.indd   478 10/31/08   6:31:31 PM10/31/08   6:31:31 PM



Chapter 15: T-SQL in Applications and Reporting

479

 Database application programming models roughly fall into the following categories: 

  Desktop database applications  

  Client/server database solutions  

  Three - tier component solutions  

  Web server applications  

  Multi - tier Web service solutions  

  Multi - system integrated solutions    

 Additionally, database systems generally fall into these categories: 

  Online transaction processing databases  

  Online analytical processing databases  

  Hybrid database systems    

 A database solution is going to involve some combination of application model and database system. 
Before discussing the finer points of each of these models, I ’ d like to put some questions in your head. In 
many database applications, the business requirements aren ’ t always cut - and - dried. You can reason that 
there may be some opportunity to incorporate pieces of these different models and that a system may 
need to evolve from one type to another. That ’ s the beautiful thing about modern tools. If you design a 
system correctly, it can grow and evolve. Ask yourself the following questions about your project or 
application: 

   How many users need access to data?  How many users do you have now and how many users 
will you have in a year, or in five years? Are they employees, customers, or vendors? The 
volume of concurrent users is a significant factor. After you establish the answer to this question, 
you also need to know something about the needs of these users. For example, ten users who 
will consistently enter and modify records can be far more demanding than a thousand users 
who will occasionally browse data or view reports. It ’ s often difficult to predict the size or 
profile of your user base years into the future, but this will have a large bearing on your 
scalability needs  —  how much the system will need to grow in the future.  

  Modular, multi - tier applications are more scalable but also more complex and expensive to 
build.  

   Where are users located?  Are users situated in the same building or on the local - area network 
(LAN)? Perhaps they are at multiple sites or they need access to the system when they travel. 
Geographic boundaries have typically been one of the most significant factors in overall solution 
design.  

   What is your current infrastructure investment?  Implementing a new software solution 
involves more than installing a database and writing software. Any solution requires a 
significant investment in server and network infrastructure. Many companies have already 
made a sizable investment and are committed to a specific platform, operating system, and 
maybe even the database product.  

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c15.indd   479c15.indd   479 10/31/08   6:31:31 PM10/31/08   6:31:31 PM



Chapter 15: T-SQL in Applications and Reporting

480

  Does your company currently manage database servers, Web servers, component hosting 
services, and a corporate network? Do you have available bandwidth for the increased load? Do 
you use server clustering or replication? Not only do these services and the related hardware 
represent a cost, but so do trained and capable personnel. It ’ s important to consider the existing 
infrastructure and to decide whether you can design a compatible system, or whether it makes 
sense to take on this additional investment.  

   What are your security requirements and restrictions?  How sensitive is the data you are 
managing? How costly would a security breach be to your business? Consider the legal and 
regulatory risks and restrictions. If you need a high level of security protection, this represents a 
greater cost in terms of coding standards, auditing, and testing. Encryption components and 
certificates are reasonably affordable, but encrypted data slows the system and requires more 
bandwidth.  

   How current does the data need to be?  It ’ s not particularly difficult for a simple database 
system to let all users see and manipulate current data, but this becomes an issue when 
the system approaches its capacity limits. If data won ’ t change that often or if data concurrency 
isn ’ t a big issue, one database may suffice for both data entry and reporting applications. 
Otherwise, it may be necessary to use two separate databases: one for entry and another for 
reporting and analysis.  

   What data volumes do you anticipate?  Databases grow. That ’ s inevitable. How much storage 
space will your database require in the next year, or five years? Very large databases have a 
higher maintenance overhead and need a more capable server. Historical data can be managed 
by archiving or partitioning portions of the database.  

   What are the system availability requirements?  Although allowing a database server to run 
around the clock isn ’ t very expensive, guaranteeing that it will always be running can be very 
expensive. When does the data need to be available? During business hours? Week days? 24/7? 
Unless you invest in redundant, fail - over systems, you must plan for some downtime   —   both 
scheduled and unscheduled. A data maintenance and recovery plan will help but cannot 
guarantee 100 percent uptime unless you have redundancy and measures to mitigate every risk 
of failure.  

   What are your delivery time constraints?  Writing software and building a solution takes time, 
typically months to years. Usually 20 – 30 percent of the total time will be spent gathering 
requirements and designing the system. Another 20 – 30 percent is required for testing and 
debugging. After installation, deployment, and training, this leaves only 30 – 50 percent of the 
time for the actual system development. Many projects fail because of unexpected schedule 
overruns because these factors aren ’ t considered or estimated realistically. Pre - built, shrink -
 wrapped systems can usually be delivered faster, but custom - built solutions often offer greater 
flexibility.  

   What are your budget constraints?  The more complex the project, the more difficult it may be to 
estimate the final cost. Custom solutions are often budgeted based on the return on investment 
(ROI) rather than the initial cost because, quite frankly, it ’ s often difficult to justify the cost 
without considering the long - term benefit.    

❑

❑

❑

❑

❑

❑

❑

c15.indd   480c15.indd   480 10/31/08   6:31:31 PM10/31/08   6:31:31 PM



Chapter 15: T-SQL in Applications and Reporting

481

  Desktop Database Applications 
 This is the most traditional type of database application. Several file - based database products have been 
around for many years. When I began working with medical billing software in the late 1980s, our 
application stored data in flat text files and the programmers wrote code that did a lot of the low - level 
work performed by database engines today. Most desktop database applications, even as early as the 
1980s, used integrated database tools such as dBase, Clipper, Clarion, Paradox, FileMaker, and FoxPro. 
The most popular desktop database for Windows is Microsoft Access. Most modern database products, 
such as Access, support variations of the SQL language. 

 Access will support a handful of concurrent network users. Because the database engine doesn ’ t run as a 
server - hosted service, large data volumes and complex queries can easily create excessive network 
traffic. Even if the database file is located on a server, data is processed on the user ’ s computer. The 
advantage of this option is its simplicity and low initial cost. The disadvantage is its lack of scalability 
and less - efficient query processing. 

 Microsoft Access includes a forms design environment to create data - centric user interfaces. More 
sophisticated and lighter - weight applications can also be created using Microsoft Visual Studio or other 
application development suites. 

 The Access database engine incorporates an application programming interface (API) called Data Access 
Objects (DAO). In recent years, Microsoft has all but discouraged the use of the Access JET database 
engine and DAO for programming. In its place, it has promoted SQL Server 2008 Express Edition. Even 
though the use of the traditional Access database is being de-emphasized, the fact remains that it can 
actually be simpler and easier to use for creating small database solutions. Figure  15 - 1  shows an Access 
form opened from the Access database window. This form can be used for data entry, viewing, or 
modifying existing records.    

 Figure 15 - 1 

  Client/Server Database Solutions 
 The most significant difference between a client/server database and a desktop database is that the 
client/server database engine runs as a service on a file server. Requests sent to the database are 
processed on the server, and only results are returned from queries. All query and database processing 
occurs on the database server. As previously mentioned, the SQL Server 2008 Express Edition is an 
inexpensive option for getting started and running a small database on a desktop computer. 

c15.indd   481c15.indd   481 10/31/08   6:31:31 PM10/31/08   6:31:31 PM



Chapter 15: T-SQL in Applications and Reporting

482

 When client/server databases came onto the scene in the mid 1990s, it was a common practice to pass 
ad   hoc SQL strings from the client application to the server. Although this practice causes a significant 
performance improvement over the client - side processing of desktop databases, it doesn ’ t take 
advantage of some of SQL Server ’ s query execution optimizations. By using stored procedures with 
views and user - defined functions, applications benefit from improved security and compiled execution 
plan caching. 

 This model takes advantage of the processing capabilities of two computers: the client and server. That ’ s 
why it is also known as a  two - tier solution . This is typically an effective solution for mid - size applications 
with users connected to a LAN. The client - side application is installed entirely on each user ’ s desktop 
computer. Data access code routines connect directly to the back - end database server through an API 
layer, such as ActiveX Data Objects (ADO) or ADO.NET. The first native API for SQL Server was 
introduced for SQL Server 6.0. Roughly modeled after the existing DAO object model designed for 
Access/JET databases, Remote Data Objects (RDO) was built on top of Open Database Connectivity 
(ODBC), Microsoft ’ s first database connectivity and driver standard. In the late 1990s, Microsoft 
introduced ADO, an upgraded API engineered to work more efficiently with SQL Server 7.0 and above, 
using the OLEDB connectivity standard. DAO, RDO, and ADO, along with their corresponding 
connectivity components, implemented Microsoft ’ s original object - oriented programming and execution 
standard, known as the Component Object Model (COM). Microsoft ’ s latest program execution model is 
the .NET Common Language Runtime (CLR). This supports updated objects used to connect through 
ODBC, OLEDB, and the .NET native SQL Server data provider (for SQL Server 7.0 and up). 

 Client/server applications exist at the entry - level of distributed solution models and have limited 
scalability. One common practice today is to design the system with three tiers and then deploy the 
middle - tier components on either the client or server computers, as illustrated in Figure  15 - 2 . This way, if 
the solution needs to be scaled into a larger environment, it may simply be a matter of reconfiguring 
existing components to run on three computers. Although this option comes at an elevated initial cost, it 
may spare the additional cost of rewriting large portions of the application if the solution needs to be 
scaled up.   

Processing on
the Client

Processing on the
Database server

SQL/Data Access

Figure 15-2

 The client application contains the user interface. Figure  15 - 3  shows a Windows form in design view. 
Using Visual Studio, a variety of application types can be created to be used on the Windows desktop, in 
a Web browser, at the command prompt, or on portable mobile devices.   

c15.indd   482c15.indd   482 10/31/08   6:31:32 PM10/31/08   6:31:32 PM



Chapter 15: T-SQL in Applications and Reporting

483

 Specialized user interface controls give users a rich, interactive experience for entering and modifying 
record data. In this example, you can see a variety of controls that may be appropriate for different data 
types and fields. These include the following: 

  Drop - down list combo boxes  

  Check boxes  

  Masked currency text boxes  

  A color - picker drop - down list box  

  Date - picker drop - down list boxes    

 Some of these controls have associated event - handling code, which runs when certain activities are 
performed by the user. The most common example is the click event of a button. Programmers can write 
program logic using a programming language of their preference, such as C#, Visual C++, or 

❑

❑

❑

❑

❑

Figure 15-3

c15.indd   483c15.indd   483 10/31/08   6:31:33 PM10/31/08   6:31:33 PM



Chapter 15: T-SQL in Applications and Reporting

484

Visual Basic.NET. The following simplified Visual Basic code might run when the Save button is clicked 
after a user enters or modifies a product record: 

Private Sub btnSave_Click(ByVal sender As System.Object, _

                              ByVal e As System.EventArgs) Handles 

btnSave.Click

     ‘** Determine whether new or existing record

     If bNewRecord Then

         ‘** New record is being added

         ‘** Define and open a connection:

         Dim cn As New SqlClient.SqlConnection(“Data Source= “ _

                &  “Corp_DatabaseServer;Initial Catalog=AdventureWorks”)

         cn.Open()

         ‘** define a command object for the Insert SQL:

         Dim cm As New SqlClient.SqlCommand

         cm.Connection = cn

         cm.CommandType = CommandType.Text

         cm.CommandText = “INSERT INTO Product (Name, ProductNumber, “ _

                          &  “DiscontinuedDate, MakeFlag, StandardCost) “ _

              &  “SELECT ‘” _

              &  Me.txtName.Text  &  “’, ‘” _

              &  Me.txtProductNumber.Text  &  “’, ‘” _

              &  Me.dtpkDiscontinuedDate.Value  &  “’, “ _

              &  Me.chkMakeFlag.Checked.ToString  &  “, “ _

              &  Me.txtcurStandardCost.Value.ToString

         ‘** Execute the SQL:

         cm.ExecuteNonQuery()

         ‘** Close the connection

         cn.Close()

     Else

         ‘** Existing record is being updated

         ‘** Define and open a connection:

         Dim cn As New SqlClient.SqlConnection(“Data Source= “ _

                &  “Corp_DatabaseServer;Initial Catalog=AdventureWorks”)

         cn.Open()

         ‘** define a command object for the Insert SQL:

         Dim cm As New SqlClient.SqlCommand

         cm.Connection = cn

         cm.CommandType = CommandType.Text

         cm.CommandText = “UPDATE Product SET “ _

              &  “Name = ‘”  &  Me.txtName.Text  &  “’ ,’” _

              &  “ProductNumber = ‘”  &     &  Me.txtProductNumber.Text _

              &  “’, ‘” _

              &  “DiscontinuedDate = ‘”  &  Me.dtpkDiscontinuedDate.Value _

              &  “’, “  &  “MakeFlag = “  &  Me.chkMakeFlag.Checked.ToString _

              &  “’, “ _

              &  “StandardCost = “  &  Me.txtcurStandardCost.Value.ToString _

              &  “WHERE ProductID = “  &  me.lblProductID.Text

         ‘** Execute the SQL:

         cm.ExecuteNonQuery()

         ‘** Close the connection

         cn.Close()

     End If

 End Sub  

c15.indd   484c15.indd   484 10/31/08   6:31:33 PM10/31/08   6:31:33 PM



Chapter 15: T-SQL in Applications and Reporting

485

 In this example, the actual T - SQL statements are assembled in the client code. This may seem to have the 
advantage of keeping all of the business logic in one place. However, this approach passes uncached, 
ad   hoc SQL statements to the database server that will likely not perform as well as precompiled stored 
procedures. Allowing queries to be passed to the server on external connections can also be a security 
risk. This code is simple and relatively easy to maintain, but it may not be a very scalable solution.  

  n - tier Component Solutions 
 As two - tier solutions grew and began to run out of steam, many software designers looked for a way to 
take their applications to the next level. The great challenge was that Windows was designed to 
primarily run user - interactive applications on the desktop. Developing server - based components has 
long been difficult and expensive, using capabilities in the hands of large product vendors, not IT 
application developers. It took a few years for that to change. Visual Basic version 5.0 and 6.0 used COM 
and ActiveX technology, enabling software developers to create middle - tier components. Although 
writing components is pretty easy, configuring them to run on a server was quite a hassle in the 
beginning. 

 At first, software systems with this added component layer were known as  three - tier solutions  because 
the entire solution runs on three different physical layers: the database on the database server, middle -
 tier components on an application server, and the client application running on the desktop. Along 
with the capability to distribute the workload beyond two layers came the ability to extend the solution 
to four, five, or more separate computers (thus the term  n - tier , rather than  three - tier ). One could 
argue that regardless of the number of servers or desktop computers, there are still conceptually only 
three tiers. Figure  15 - 4  depicts an n - tier component solution.   

Client Application Database ServerComponent Server

SQL/Data AccessComponent/Object Calls

Figure 15-4

  Service Oriented Architecture 
 As application and solution architectures have continued to mature and evolve, standards have been 
defined to allow component vendors and service providers to formalize the way these middle - tier services 
are implemented and secured. Proprietary component technologies have given way to platform - agnostic 
Web services that can allow applications hosted anywhere and developed using practically any toolset to 
communicate with and use these services. Today the fashionable term for this approach is  SOA , or Service 
Oriented Architecture. 

 The basic tenants of SOA are that different application components, whether developed and maintained 
within the corporate firewall or hosted by a third   party, are segregated by business function. The 
components participating in an SOA - enabled solution are defined as service providers, services brokers, 
and service requestors. Industry leaders have defined technical legal standards for the methods used to 
develop, utilize, and obtain access to SOA components and services. 

c15.indd   485c15.indd   485 10/31/08   6:31:33 PM10/31/08   6:31:33 PM



Chapter 15: T-SQL in Applications and Reporting

486

 Database technology plays an important role in a business solution based on any technology or 
architecture. As information is exchanged between these service components, many of these processes 
will require data to be read from, modified, or inserted into a database. 

 Compared with the client/server example we looked at previously, the following demonstrates a more 
elegant solution. The three following samples are code snippets from a three - tier application. Using 
Figure  15 - 4  as a reference, we ’ ll move from right to left. Note that not all fields are used just to keep these 
examples small and simple. I ’ ve made it a point to simplify this code to make it more readable.  

  Server - Side SQL Objects 
 In this model, all T - SQL is isolated to the database server as stored procedures, user - defined functions, 
and views. This provides a layer of security, keeps business logic close to the data, and is a very efficient 
use of database services and network resources.   

/**************************************************************

Adds new product record and returns new ProductID

     3-21-06, Paul Turley

Revisions:

     3-23-06   Added error-handling script

**************************************************************/

CREATE PROCEDURE spAddProduct

  @Name                 nvarchar(50)

, @ProductNumber        nvarchar(25)

, @DiscontinuedDate     datetime

, @MakeFlag             bit

, @StandardCost         money

, @FinishedGoodsFlag    bit

, @Color                nvarchar(15)

, @SafetyStockLevel     int

, @ReorderPoint         int

, @ListPrice            money

, @Size                 nvarchar(50)

AS

 INSERT INTO Product

   ( Name

   , ProductNumber

   , DiscontinuedDate

   , MakeFlag

   , StandardCost

   , FinishedGoodsFlag

   , Color

   , SafetyStockLevel

   , ReorderPoint

   , ListPrice

   , Size )

 SELECT

    @Name

  , @ProductNumber

  , @DiscontinuedDate

  , @MakeFlag

  , @StandardCost

c15.indd   486c15.indd   486 10/31/08   6:31:34 PM10/31/08   6:31:34 PM



Chapter 15: T-SQL in Applications and Reporting

487

  , @FinishedGoodsFlag

  , @Color

  , @SafetyStockLevel

  , @ReorderPoint

  , @ListPrice

  , @Size

 IF @@ERROR = 0

  RETURN @@IDENTITY

  ELSE

 RETURN -1   

  Middle - Tier Component 
 The component code, written in Visual Basic .NET in this example, serves as a broker between the 
presentation layer and the database objects. In this layer, I focus entirely on business logic and don ’ t 
concern myself with the details of the user interface or the implementation of data storage. Programming 
objects provide an abstract representation for data access objects such as connections, queries, 
parameters, and results. This way, application programmers don ’ t concern themselves with different 
dialects of SQL or other specific requirements of any single data provider.   

‘*************************************************************

     Product class provides object definition to work with

     product records and product-related maintenance.

     Methods: 

              AddProduct()

              UpdateProduct()

              DeleteProduct()

              GetProductList()

              GetProductsByType()

              GetProducts()

     3-23-06, Paul Turley

     Revisions:

‘*************************************************************

Public Class Product    

    Public Function AddProduct(ByVal Name As String, _

                            ByVal ProductNumber As String, _

                            ByVal DiscontinuedDate As Date, _

                            ByVal MakeFlag As Boolean, _

                            ByVal StandardCost As Decimal, _

                            ByVal FinishedGoodsFlag As Boolean, _

                            ByVal Color As Color, _

                            ByVal SafetyStockLevel As Integer, _

                            ByVal ReorderPoint As Integer, _

                            ByVal ListPrice As Decimal, _

                            ByVal Size As String) As Boolean

        Dim cn As New SqlClient.SqlConnection(sConnectionString)

        Dim cm As New SqlClient.SqlCommand

        Dim Param As SqlClient.SqlParameter

        Dim iProdID As Integer

        cm.Connection = cn

        cm.CommandType = CommandType.StoredProcedure

        cm.CommandText = “spAddProduct”

(continued)

c15.indd   487c15.indd   487 10/31/08   6:31:34 PM10/31/08   6:31:34 PM



Chapter 15: T-SQL in Applications and Reporting

488

        ‘ ** Pass the function arguments/field values to proc. parameters:

        Param = New SqlClient.SqlParameter(“Name”, Name)

        Param.DbType = DbType.AnsiString

        cm.Parameters.Add(Param)

        Param = New SqlClient.SqlParameter(“ProductNumber”, ProductNumber)

        Param.DbType = DbType.AnsiString

        cm.Parameters.Add(Param)

        Param = New SqlClient.SqlParameter(“DiscontinuedDate”, 

DiscontinuedDate)

        Param.DbType = DbType.Date

        cm.Parameters.Add(Param)

        ‘ ** The rest of the parameters are handled here - abbreviated for 

demo**

        ‘ ** Execute the command/stored proc:

        iProdID = cm.ExecuteScalar

        ‘ ** Return True if successful:

        If iProdID  >  0 Then Return True

        cn.Close()

    End Function

    ‘*** Other Functions to Update, Delete, Get products, etc.:

        Function UpdateProduct() As Boolean

        ‘***

    End Function

    ‘*** DeleteProduct()

    ‘*** GetProductList()

    ‘*** GetProductsByType()

    ‘*** GetProducts()

End Class   

  Presentation Layer 
 Compare the following code sample with that from the client/server sample. Rather than handling all of 
the data access and business logic in one chunk, I simply create objects based on the class defined in my 
middle - tier component. Using this object, I call methods (defined in Visual Basic as  “ functions “ ) and 
pass the necessary values. The class method code performs data access and executes stored procedures 
in the database.   

    Private Sub btnSave_Click(ByVal sender As System.Object, _

                              ByVal e As System.EventArgs) Handles 

btnSave.Click

        ‘*** Create new instance of an object based on my custom Product class:

        Dim prod As New Product

        If bNewRecord Then

            ‘** New record is being added

            prod.AddProduct(Me.txtName.Text, Me.txtProductNumber.Text, _

                   Me.dtpkDiscontinuedDate.Value, Me.chkMakeFlag.Checked, ...)

        Else

            ‘** Existing record is being updated

            prod.UpdateProduct(Me.lblProductID.Text, Me.txtName.Text, _

                   Me.txtProductNumber.Text, Me.dtpkDiscontinuedDate.Value, ...)

        End If

    End Sub  

(continued)

c15.indd   488c15.indd   488 10/31/08   6:31:35 PM10/31/08   6:31:35 PM



Chapter 15: T-SQL in Applications and Reporting

489

 Overall, it takes a little more work to design a multi - tier application, but the result is a flexible, scalable 
solution that is easier to maintain as it grows.  

  Resource Pooling 
 Why is a three - tier solution so much more capable than a client/server application? If you have the same 
number of users running just about the same desktop application connected to the same database, 
what ’ s the big advantage of having this middle layer? Adding the middle - tier doesn ’ t just raise system 
capacity by one - third. The middle - tier becomes a broker for pooling and recycling resources. Between 
the database server and component layer, it enables  connection - pooling , a feature that was built into 
ODBC years ago (but largely unused until component technology matured). The database server - side 
network library keeps a pool of connections active. Each connection will stay open, unused, for a few 
minutes at a time. When a client or component makes a new connection request, it simply recycles one of 
the existing idle connections in the pool. Because most operations only take a few seconds at most, this is 
an effective way to allow lots of clients to utilize a relatively small number of database connections. The 
catch is that every client has to use the same connection settings and security credentials. 

 Between the client and component layer, the application server enables  object - pooling . In a similar way 
to connection - pooling, after a call is made to run the code (known as a  method call  ) in a hosted business 
object component, a cached copy of the executable code remains in the application server ’ s memory. 
There it waits for additional requests. Between object - pooling on the application server and connection -
 pooling on the database server, it ’ s all just a matter of timing. As thousands of users use a few hundred 
pooled business objects, the business object code uses just a few dozen connections  . . .  You do the math.  

  Component Transaction Management 
 Large - scale applications not only use multiple components but may also use data stored in multiple 
databases. The ADO and ADO.NET programming objects contain hooks to SQL Server ’ s Distributed 
Transaction Coordinator (DTC) service. This lets programmers manage and synchronize transactions 
between different data sources. The benefit is that even with data in separate databases, on separate 
servers, and even using different database products, application code can have transactional control over 
multiple operations. Imagine an application that manages the transfer of funds between two different 
banking systems. After verifying that the interrelated debits and credits are all successfully processed on 
each separate system, either all operations are explicitly rolled forward or all operations are rolled back. 

 With the capability to take advantage of this computer horsepower, one significant barrier remained. 
COM technology (extended in the network - capable implementations, DCOM and COM+) was designed 
to run only on Microsoft Windows servers and Windows - based networks. These applications would 
support any number of users, so long as they were all clients on the same network, running Windows 
applications and components. 

 Today, both component development and component hosting are much easier than ever before. 
Microsoft ’ s .NET Framework, integrated server, and development environments have improved upon all 
the original features of COM and COM+. Though it ’ s true that this style of large - scale application 
development takes a fair amount of application development expertise, now it ’ s fairly easy to deploy 
and configure an enterprise - class component server.  

c15.indd   489c15.indd   489 10/31/08   6:31:35 PM10/31/08   6:31:35 PM



Chapter 15: T-SQL in Applications and Reporting

490

  LINQ: .NET Standard Query Operators 
 In the Microsoft .NET Common Language Specification, Microsoft has added a set of language 
extensions to interface directly with the SQL Server 2008 relational engine through compiled program 
code, called Language Integrated Query, or LINQ. These extensions can be used in applications 
developed using Microsoft Visual Studio 2008 for the .NET CLR 3.5. LINQ gives object - oriented 
programmers a familiar set of programming tools to work with database objects and data without 
wrapping T - SQL statements into their code. 

 There are more than 50 operators in the  System.Linq  namespace that translate roughly to equivalent 
T - SQL commands. LINQ commands include support for Insert, Update, and Delete operations. 
Variations of  SELECT  query operators are applied using several object methods to order, filter, and find 
records  —  functionally similar to corresponding SQL clauses. In the Common Language Runtime, LINQ 
commands are translated to parameterized SQL statements. This occurs at the API level to prevent SQL 
injection attacks. Although LINQ code essentially executes SQL script against the database engine, this 
functionality is provided by specific data provider extensions rather than through simple language 
translation provisions. Using this approach, LINQ code should be able to work on different database 
platforms without any program code modifications. 

 LINQ object code generates efficient SQL commands behind the scenes using sophisticated algorithms, 
reducing the risk of poorly written queries. The same code and LINQ programming techniques used for 
SQL tables will also work with XML structures, in - memory objects, and other data sources. It fully 
integrates with any .NET programming language and supports all the coding and debugging tools built 
into Microsoft Visual Studio.   

  Web Server Applications 
 Desktop applications give users tactile control of data. Generally, applications respond quickly, and users 
can see an immediate response when they perform an action. We ’ ve become accustomed to a variety of 
sophisticated user interface controls that are relatively universal across different systems. For example, 
most users know what to do when they are presented with a list box, drop - down combo box, a scroll bar, 
or grill control. However, one of the significant limitations to building custom Windows desktop 
applications is they must be preinstalled on each user ’ s Windows computer. To share data, they must be 
connected through a LAN. 

 Web server applications can make data accessible to users across the Internet. User interface options 
include Web pages or custom Windows components. Web services make data and application 
functionality available to custom applications from server to server or desktop to server, across the 
Internet. Web - based applications have improved significantly over the past few years, and although 
desktop applications continue to be more responsive and flexible than browser - based solutions, this gap 
continues to narrow as the Web has become a common medium for business applications. The unique 
characteristic of a Web server application is that it runs on a Web server, rather than on the user ’ s 
desktop computer. All, or at least the vast majority, of the processing takes place on a central server 
running Web server components. The user sees data and changing options as they interact with a user 
interface that is dynamically regenerated on the Web server and sent back down to the user ’ s Web 
browser. 

 The advantage is that users need only a Web browser and a connection to the Internet to use the 
application. Several challenges continue to be somewhat costly for solution developers. Compared to 
desktop solutions, performance and response time is slow. Web server applications typically display Web 

c15.indd   490c15.indd   490 10/31/08   6:31:35 PM10/31/08   6:31:35 PM



Chapter 15: T-SQL in Applications and Reporting

491

pages using HTML, the mark - up language displayed by Web browsers such as Microsoft Internet 
Explorer. When a user clicks a button on a Web page to retrieve a record, for example, this request is sent 
across the Internet to the Web server, where code interacts with the database and server - side 
components. Code on the server modifies the HTML tags for the copy of the user ’ s Web page in the 
server ’ s memory and then sends it back across the Internet to the user ’ s browser, displaying a response 
to the user ’ s request. 

 Programming Web solutions is still a little more cumbersome than traditional applications, but this has 
improved in recent years. Microsoft ’ s Web application programming standard matured significantly in 
2001 when Active Server Pages (ASP) graduated to ASP.NET. Now using Visual Studio.NET, creating 
Web server - based applications is a matter of dragging and dropping controls on a design surface and 
writing event code much like we ’ ve been doing to create desktop application interfaces using products 
such as Access and Visual Basic. 

 Data - bound Web server components do much of the work of transforming data into an HTML - based 
user interface. To create a simple data sheet page to display records in a table format, the developer 
needs only to set properties for a few components and write a minimal amount of code. More 
sophisticated Web applications may require more advanced - level coding. ASP.NET Web components 
offer developers the flexibility of working at a lower level when they need to have more control or at a 
higher level to let the components do more of the work, to develop common applications rapidly. Many 
of the data access components generate volumes of T - SQL script for common operations. For example, 
when using drag - and - drop tools to generate a DataAdaptor object, a wizard dialog prompts the 
developer for a database table. From this, T - SQL script is generated to manage Select, Insert, Update, and 
Delete operations that are implemented using auto - generated programming code. The DataAdaptor 
wizard will also generate parameterized stored procedures in the database for managing these 
operations.  

  Multi - Tier Web Service Solutions 
 In a Web server model, the Web server application really becomes the client to the database. As with a 
desktop application, the client can participate in a number of different application models. Simple Web 
server applications may use a file - based database or a client/server database. A Web server application 
can also execute code and use the features exposed by middle - tier components, making it a true three -
 tier application, with the client code running on the Web server. Additionally, Web applications can run 
script or separate components in the Web browser, adding yet another layer to the model. To some 
degree it doesn ’ t make a lot of sense to run custom components in the browser because this really defeats 
the core objectives of a browser - based solution. However, using common client - side components can 
enhance the user experience and add more compelling content to Web pages. It ’ s common for Web 
applications to make use of preinstalled client components such as Macromedia Flash, Windows Media 
Player, and the Adobe Reader. 

 Web servers can also act as application servers to host middle - tier components. One of the most exciting 
recent developments in component technology is the XML Web Service. As with a COM - based 
component, a Web service can expose functionality for network clients. It can be used as a data source 
broker to route database requests and return results. The most compelling feature that makes this option 
so unique is that requests and results are sent as text using the Hypertext Transfer Protocol (HTTP). This 
means that a Web service can be hosted by a Web server and can communicate with different types of 
clients using the plumbing of the World Wide Web. Web services are based on industry - wide standards 
that finally make it a simple matter for applications running on one platform, or type of computer 
system, to work with those on a different platform. 

c15.indd   491c15.indd   491 10/31/08   6:31:36 PM10/31/08   6:31:36 PM



Chapter 15: T-SQL in Applications and Reporting

492

 The magic behind Web services is a programming abstraction layer called  Simple Object Application 
Protocol  (SOAP). SOAP ’ s job is to provide a standard for translating programming object calls into 
XML - formatted data on one end of the conversation and then back into objects on the other end. 
This means that programmers just write program code to work with objects. From a programmer ’ s 
perspective, working with Web services is much like working with earlier types of components.  

  Multi - System Integrated Solutions 
 In a perfect world (at least from a software architect and developer ’ s point of view), all of our business 
systems should be designed from the ground up to integrate with each other, to exchange information 
efficiently, and to provide a seamless, unified experience for business users. This just doesn ’ t happen in 
most businesses. Different systems serve different business users and processes. As business grows and 
processes evolve, users eventually need to access applications and systems designed for different groups 
in the organization. This leads to requirements for these systems to interoperate. The almost inevitable 
outcome is the realization that similar data stored in disparate systems is not stored or used in the same 
way. This presents a situation common in nearly all large businesses today: To support isolated users and 
processes, data gets transformed and reshaped in very specific ways, eventually creating scores of 
special - purpose and incompatible data stores and systems designed to meet some unique business need. 

 This organic growth of data - related systems can be better managed if database system architects can 
create flexibly designed databases that can serve multiple business applications. Applications may be 
designed to share functionality and data through standardized data interfaces and components. 
Application functionality and data can now be shared by different systems using data - exchange 
standards such as SOAP, RSS, and XML Web services. Architecting an enterprise - wide application 
architecture may seem to be a daunting task, especially when integrating commercial application 
packages, but there are many options today that can make this much easier than before. If applications 
can ’ t use shared data from a single database, moving and synchronizing copies of similar data can be 
achieved using resources such as SQL Server 2008 Integration Services. 

 Database professionals should keep a tight reign on systems that transform multiple copies of the same 
data for application and reporting use. Remember that information is the context of data   —   it ’ s what it 
means and its significance to the business. When people start pushing copies of this data around, it will 
be easy to lose that context as this data is transformed back into information. This process should be 
carefully controlled and managed. The control and limitation of access to information is one thing. Every 
business has to have its own standards regarding information access (that are hopefully not 
unnecessarily restrictive). However, controlling the ability to change data and information is an entirely 
different matter. Ensuring that nothing is lost in the translation as data moves around the business will 
only serve to empower informed information users. This is often best achieved through IT - managed data 
marts and data warehouse databases that are accessible to all systems and users, who would otherwise 
be granted access to isolated data sources. 

  System Integration and Data Exchange 
 Large organizations manage lots of data. One common reason that large solutions may comprise 
different databases and applications is that each serves a specific purpose. Dividing data stores between 
transactional and decision - support systems is a common practice in large business environments. 
Different systems, each with its own databases, are designed to perform different business functions. 
Applications may use different database products. 

c15.indd   492c15.indd   492 10/31/08   6:31:36 PM10/31/08   6:31:36 PM



Chapter 15: T-SQL in Applications and Reporting

493

 Unfortunately, for system integrators, most specialized business systems aren ’ t intended to integrate or 
share data with others. In a perfect world, all software would be designed to work together and share 
common data sources. The reality is that this ideal continues to be a far - off dream in most businesses. As 
we continue to reengineer disparate systems, we may inch a little closer to this objective in each iteration. 
For now, the best most of us can hope for are methods to ease the burden of exchanging data between 
systems. 

 In recent years, eXtensible Markup Language (XML) has evolved to become a common medium to help 
connect different databases and applications. XML is not a standard structure for data but a flexible set of 
standards to define almost any type of data. Unlike rigid data formatting standards of the past (such as 
EDS) XML allows data to be defined, stored, and documented in the same structure. This makes the data 
highly portable and easier to transform into that of another system. A number of supporting standards 
and products are now available to connect systems and synchronize data through the use of XML. 
Microsoft BizTalk Server allows multiple systems to easily interconnect and exchange data. Databases 
and specialized business systems can be integrated without cumbersome, manual intervention.  

  Project Management Challenges 
 A few years ago, I read that the FBI had commissioned a project to consolidate its many disparate 
databases and computer systems. After more than a billion dollars in expenses and consulting fees, the 
project was in shambles. Many business requirements had been revised, and the project scope has been 
adjusted and expanded to accommodate changing needs and business practices. Budget constraints 
threaten efforts to complete the work. Fingers were being pointed, and bureaucrats were covering their 
tracks to avoid blame. Under public scrutiny and executive control, dark clouds of failure were looming. 

 On a slightly smaller scale, this is all too common. One of the greatest threats to the success of an IT 
project is time. The larger the scope of the project, the more time it takes to complete. This allows more 
opportunity for business rules to change. Even if a project is completed to the satisfaction of the original 
requirements, if it takes too long, requirements will have changed, and the product may not address the 
current needs of the business. 

 On a recent consulting assignment, I experienced numerous challenges due to ever - changing scope and 
requirements. The client was a large technology company with plenty of project experience. In the grand 
scheme of the product, my component was consistently put on hold as requirements changed in other 
areas. Although beyond my control, the lack of finite deliverables can be a bit disconcerting. 

 The ideal solution for managing larger - scale projects is to break them down into manageable pieces with 
a manageable - sized project team. According to the Microsoft Solutions Framework, Microsoft ’ s internal 
project management guidelines, teams should consist of no more than eight individuals. If a project 
requires more people than this, it should be broken down into smaller components. Teams may be 
divided by features, discipline, or release versions. The larger the project, often the less decision - making 
control each team member will have over individual components and requirements. This can be 
demoralizing and frustrating   —   all the more reason to establish clear requirements and avoid making 
changes until completing each stage.    

c15.indd   493c15.indd   493 10/31/08   6:31:36 PM10/31/08   6:31:36 PM



Chapter 15: T-SQL in Applications and Reporting

494

   SQL  Server 2008 Reporting Services 
 Database reporting solutions are really applications with a user interface, query components, and a data 
source. Generally speaking, these fit into the client/server application model. Until recently, enterprise -
 level reporting products were only offered by third - party companies such as Crystal Reports and 
Business Objects. A number of specialized reporting products, such as Brio and Hyperion, are also 
available for multi - dimensional, decision - support databases. Microsoft has offered desktop reporting 
capabilities in Access and Excel, but it wasn ’ t until 2003 that Microsoft released a serious, enterprise -
 ready reporting extension for SQL Server 2000 called SQL Server Reporting Services. It was originally 
intended to ship with SQL Server 2005 (which it does) but was completed ahead of the rest of the SQL 
Server 2005 components. Reporting Services is for serious reporting but it ’ s pretty easy to use. Reporting 
Services is now a component of both the SQL Server 2005 and 2008 product suites. 

 A brief tour of SQL Server Reporting Services is provided here. Because the report design experience has 
changed, two sections follow to demonstrate the report design experience for SQL Server 2008 and then 
for SQL Server 2005. You ’ ll see how to use some of the query techniques you ’ ve learned to support 
report features. This will be an opportunity to apply some of the techniques and practices you ’ ve learned 
earlier in this book. I ’ ll use Reporting Services to show you how to create and use parameterized queries. 

  Reporting Services Architecture 
 Reporting Services is really quite different from other products for a number of significant reasons. The 
reporting engine runs as a Windows service on a computer configured as a Web server. The core 
component is an XML Web service sitting on top of ASP.NET and the .NET Common Language Runtime 
(CLR). This is a highly scalable and extensible architecture, meaning that features and additional 
capabilities can be added and that it can be expanded to more capable hardware and to multiple servers 
to handle increased workload. Reports can be integrated into a variety of application types and viewers, 
but it is most commonly used from a Web browser. Out of the box, Reporting Services can render reports 
to different formats including variations of the following: 

  HTML  

  Adobe PDF  

  Microsoft Office Excel  

  Microsoft Office Word (SQL Server 2008)  

  Bitmaps (including TIFF, PNG, GIF, JPG, and BMP)  

  XML  

  CSV text    

 Reports can be viewed on demand or saved to a file. User can subscribe to reports, resulting in the report 
being sent by email or to a file share at scheduled intervals. 

 In addition to these standard features, Reporting Services is programmable. Application developers can 
add additional capabilities for report rendering, data access, security, and delivery. They can also 
programmatically manage the report server and render reports, embedding report content into custom 
applications. In a nutshell, Reporting Services has an enormous feature set and with a little custom 
programming, can be made to do most anything imaginable. 

❑

❑

❑

❑

❑

❑

❑

c15.indd   494c15.indd   494 10/31/08   6:31:37 PM10/31/08   6:31:37 PM



Chapter 15: T-SQL in Applications and Reporting

495

 To acquaint you with the Reporting Services design environment, I will walk you through the steps to 
create a simple report with basic features. 

 Because our focus is using SQL queries to drive reports, you will create two queries that utilize a 
parameter to filter report data. Before getting started, here is a quick disclaimer. The book you are 
reading is not a book on Reporting Services or Visual Studio, so I will not provide an in - depth 
explanation of all the features you ’ re about to see. Because Visual Studio and Reporting Services are 
large, complex products, I can ’ t guarantee that I can cover every detail in this short tutorial to get you 
completely up - to - speed on designing reports with Reporting Services.  

   SQL  Server 2008 Report Design 
 The report designer comes in two flavors, intended for two different types of users. For the application 
developer, the integrated report designer is still part of the Business Intelligence Development Studio or 
Visual Studio. For the information worker, a simplified report design tool is available, called  Report 
Builder 2.0 . This is the report designer you will use to construct a simple report of product catalog 
information.   

Report Builder 2.0 Updates
The Report Builder 2.0 tool is a new addition to the SQL Server product suite and has 
undergone several changes since SQL Server 2008 was released.  You may notice some 
minor differences between the screen capture images in this section and the latest 
edition of the Report Builder 2.0 tool you are using. This is due to the ongoing 
development of this product. As of this printing, we expect another update to be 
released shortly. Although the dialog window captions may have changed and there 
may be other subtle differences in the user interface, the core functionality is 
unchanged.

 Report authoring consists of three general steps. First, you design a data source and then write the query 
to return a set of data. A query or data command (depending on the specific data provider) is called a 
 dataset . Additional dataset queries may be used to feed data to multiple data ranges or report items. 
Datasets are also used to populate parameter lists for user selection. 

 Report design is the second step. The report is stored as a single XML file with an RDL file extension. The 
report definition uses the Report Definition Language XML grammar. This definition is created using 
graphical design tools that involve dragging - and - dropping items to the report design surface and using 
menus and toolbar options to set properties. 

 After testing and validating the design, the last step is to deploy the report to a central report server. This 
can be performed in the report designer, from SQL Server Management Studio, using automation script, 
or from the Report Manager Web interface. 

 In the following exercise, you will create a simple, grouped columnar report using a table data range. It 
will use one query to populate the table and another query to provide a list of product category values to 
a parameter drop - down list. After you design the queries, the report layout, and formatting, you will 
deploy this report to your local report server for users to view in their Web browser. 

c15.indd   495c15.indd   495 10/31/08   6:31:37 PM10/31/08   6:31:37 PM



Chapter 15: T-SQL in Applications and Reporting

496

 Open Report Builder 2.0 from the Windows Start menu. Use the shortcut in the SQL Server 2008 Report 
Builder program group.. This is shown in Figure  15 - 5 .   

Figure 15-5

 The report designer opens to create a new report, as shown in Figure  15 - 6 . The first step is to define a 
data source and dataset. A dataset is a command string or query used to retrieve records from a data 
source.   

Figure 15-6

c15.indd   496c15.indd   496 10/31/08   6:31:37 PM10/31/08   6:31:37 PM



Chapter 15: T-SQL in Applications and Reporting

497

  Designing the Data Source and Dataset 
 One of the nice things about the report designer is that there are a few different ways to create these 
objects. For example, if you place a table data range object on the report, the designer will prompt you to 
create a data source and then a dataset. If you choose to create a new dataset, you ’ re prompted to create 
a data source for it. The method we will use is more explicit but a little more logical then either of these. 
You will define these objects in their natural order. 

 To get started, in the Report Data pane on the left side of the report designer window, click the New 
drop - down button and then choose Data Source  . . .  from the menu. This opens the Data Source 
Properties dialog. 

 A data source requires a name containing no spaces. Replace the default data source name with AW2008 
in the Name box. This window should look like Figure  15 - 7 .   

Figure 15-7

 This will be an embedded data source, meaning that the connection information will be embedded into a 
single report and not shared by multiple reports. Shared data sources are generally preferred but require 
a little more planning. A report can always be directed to a shared data source after it has been designed, 
tested, and deployed to the report server. Leave the Embedded Connection radio button as it is. 

 The default connection type is Microsoft SQL Server. This list contains any Reporting Services data 
processing extensions that are installed and configured for use. Leave this default setting, as you will be 
connecting to a local SQL Server instance. 

 To add connection information, click the Edit button on the right side of this page. 

 The Connection Properties dialog opens, as shown in Figure  15 - 8 . The Data Source type is set 
automatically based on the Microsoft SQL Server type specified in the previous selection. For reporting 

c15.indd   497c15.indd   497 10/31/08   6:31:38 PM10/31/08   6:31:38 PM



Chapter 15: T-SQL in Applications and Reporting

498

on data from different sources, this setting includes access to various .NET native data providers, 
OLEDB providers, and ODBC drivers that may be available for use on your system. Keep in mind that 
any data provider you select when you design a report must be available on the report server for use 
with deployed reports.   

Figure 15-8

 For the Server Name setting, you can select or type the name or address of a database server. If your 
development SQL Server instance is on the same computer as your report design environment, you can 
use any of the standard local connection aliases, such as  (local) ,  LocalHost  or a single period character. Just 
enter the word  LocalHost  in this box to continue with this exercise. A word of caution here: if you drop 
down the Server Name list, a process will explore all available network resources for database server 
names. If you work in a large, corporate network environment, this may be time - consuming. To avoid 
this delay, simply type a local alias or the server name rather than selecting it from the list. 

 After the server name is resolved, all databases on that server are added to the first list in the Connect to 
a Database section, labeled Select or Enter a Database Name. 

 Select the AdventureWorks2008 database form this list and then click OK. 

 Back on the Data Source Properties dialog box, shown in Figure  15 - 9 , you can see the connection string 
information generated from these selections.   

c15.indd   498c15.indd   498 10/31/08   6:31:38 PM10/31/08   6:31:38 PM



Chapter 15: T-SQL in Applications and Reporting

499

 Click OK to accept these changes and save the new data source. 

 A dataset is added by right - clicking the data source in the Report Data pane. On the drop - down menu, 
select Add Dataset, as shown in Figure  15 - 10 .   

Figure 15-9

Figure 15-10

 The Dataset Properties dialog opens. Leave the default properties and click the Query Designer button. 
Simple queries can just be typed directly into this window. For more complex queries, I prefer to write 
the query script in the SSMS Query Designer and then paste the text into this window, although this is 
only a matter of preference. Keep in mind that even though the SSMS query will give you more options 
with TSQL query scripting, some report - specific features such as query parameters are only supported in 
the report designer ’ s query design window. 

c15.indd   499c15.indd   499 10/31/08   6:31:39 PM10/31/08   6:31:39 PM



Chapter 15: T-SQL in Applications and Reporting

500

 Enter the following query into the Query Designer: 

SELECT

     Production.ProductCategory.Name AS Category

   , Production.ProductSubcategory.Name AS Subcategory

   , Production.Product.Name AS Product

   , Production.Product.Color

   , Production.Product.ListPrice

FROM

   Production.Product INNER JOIN Production.ProductSubcategory ON

     Production.Product.ProductSubcategoryID = 

     Production.ProductSubcategory.ProductSubcategoryID

   INNER JOIN Production.ProductCategory ON 

     Production.ProductSubcategory.ProductCategoryID = 

     Production.ProductCategory.ProductCategoryID

ORDER BY

   Category, Subcategory, Product

;  

 Remember that tabs and carriage returns are optional; I ’ ve added them only for readability. 

 Click the Run button, as shown in Figure  15 - 11 , to view a sample of the results. Use this to check the 
column headings and sort order of the first three columns and verify the results of your query output.    

Figure 15-11

c15.indd   500c15.indd   500 10/31/08   6:31:41 PM10/31/08   6:31:41 PM



Chapter 15: T-SQL in Applications and Reporting

501

  Adding a Parameter to the Query 
 After verifying that the query runs correctly and returns these results, you will make a change to filter 
records using a parameter. A query parameter named  @CategoryID  will be used to either filter the 
query results for a specific category or to indicate that all records should be returned. If a valid 
 ProductCategoryID  value is passed in, records are filtered accordingly, but if the parameter value is
   - 1 , the filter should be ignored. 

 In the Report Data pane, right - click the dataset and select Query from the menu. 

 Add the following  WHERE  clause in the Query Designer and use the following sample script to validate 
the syntax.   

WHERE ProductCategory.ProductCategoryID = @CategoryID 

OR CategoryID = -1  

 The query script should now read: 

SELECT

     Production.ProductCategory.Name AS Category

   , Production.ProductSubcategory.Name AS Subcategory

   , Production.Product.Name AS Product

   , Production.Product.Color

   , Production.Product.ListPrice

FROM

   Production.Product INNER JOIN Production.ProductSubcategory ON

     Production.Product.ProductSubcategoryID = 

     Production.ProductSubcategory.ProductSubcategoryID

   INNER JOIN Production.ProductCategory ON 

     Production.ProductSubcategory.ProductCategoryID = 

     Production.ProductCategory.ProductCategoryID

WHERE

   ProductCategory.ProductCategoryID = @CategoryID OR @CategoryID = -1

ORDER BY

   Category, Subcategory, Product

;  

 Now run the query again, and you should see a dialog displayed, like the one in Figure  15 - 12 , titled 
Define Query Parameters.   

c15.indd   501c15.indd   501 10/31/08   6:31:41 PM10/31/08   6:31:41 PM



Chapter 15: T-SQL in Applications and Reporting

502

 Enter   - 1  for the @CategoryID parameter value, and then click OK. The results, shown in Figure  15 - 13 , 
should return all records.   

Figure 15-12

Figure 15-13

c15.indd   502c15.indd   502 10/31/08   6:31:41 PM10/31/08   6:31:41 PM



Chapter 15: T-SQL in Applications and Reporting

503

 Try it again and enter the values 1, 2, 3, or 4 for the parameter value. You should see only records for one 
product category at a time. 

 Click OK on the Query Designer to wrap up this part of the process. Our report now has a working 
dataset with a parameter used for filtering the data at the data source. This is the most efficient method 
from the data source perspective because the filtered query is processed at the data source rather than on 
the report server. In a production reporting solution, this would return only the filtered results over the 
network from the database server to the report server. When this query was parsed, the report designer 
actually created a separate report definition element, corresponding to the @CategoryID query 
parameter and added it to a collection of report parameters. The new CategoryID report parameter is 
visible in the Data utility window on the left side of the designer. When the report runs, users will be 
prompted to enter a value for this parameter.  

  Adding a Parameter List Query 
 I would like to provide a drop - down list of product category values from the ProductCategory table for 
users to select from. Additionally, I ’ d also like to add an item to this list prompting users to return the 
products for all categories. We will add a new dataset to contain this query. 

 In the Data utility window, right - click the AW2008 data source and select Add Dataset from the menu, as 
shown in Figure  15 - 14 .   

Figure 15-14

 The Dataset Properties dialog is displayed. Enter Category_List for the Name, and the data source 
defaults to the AW2008 data source you defined earlier. 

 You ’ ll recall that earlier you used the Query Designer to build the last dataset ’ s query. This query is 
simple enough that you can just type the T - SQL script in the query box. Enter the following script into 
this box and then check it with Figure  15 - 15 .   

SELECT  -1 AS ProductCategoryID, ‘(All Categories)’ AS Name

UNION   ProductCategoryID, NAME

FROM    Production.ProductCategory

ORDER BY Name  

c15.indd   503c15.indd   503 10/31/08   6:31:42 PM10/31/08   6:31:42 PM



Chapter 15: T-SQL in Applications and Reporting

504

 This query returns a static row that will be used to prompt the user to return all categories. The 
remaining rows will be read from the ProductCategory table and will supply key values used to filter 
rows based on a selected category. 

 Click OK to continue.    

Figure 15-15

  Designing the Report Layout 
 Now that the dataset design is complete, you will design the report body. In the report designer, you can 
add visual elements to the report by inserting report items from the Insert ribbon to the Data window on 
the left side of the designer window. 

 Start by adding the report name to the header of the report. Expand the Built - in Fields branch of the tree 
in the Report Data pane and drag the ReportName to the top - left corner of the report body, as shown in 
Figure  15 - 16 .   

c15.indd   504c15.indd   504 10/31/08   6:31:43 PM10/31/08   6:31:43 PM



Chapter 15: T-SQL in Applications and Reporting

505

 A textbox is added with the ReportName expression. With this textbox selected, use the formatting 
features on the Home ribbon to restyle this text to your liking. You can make it bold, use a larger font, 
and change the font color. Figure  15 - 17  shows the textbox with a bold and larger - than - default font.   

Figure 15-16

Figure 15-17

c15.indd   505c15.indd   505 10/31/08   6:31:43 PM10/31/08   6:31:43 PM



Chapter 15: T-SQL in Applications and Reporting

506

 Report items and data ranges are added from the Insert ribbon, as shown in Figure  15 - 18 . Choose the 
Insert tab and then click the Table icon to add a new table to the top - left corner of the report body.   

Figure 15-18

 To move the table from its inserted position (on top of the report name textbox,) grab it by the selector 
handle and move it down and just below the textbox. Figure  15 - 19  shows the automatic snap - to align 
behavior of the designer, automatically left - aligning the textbox and table items.   

Figure 15-19

 The purpose of a table is to repeat rows from a dataset and to group these rows for totaling and 
navigation. We want to group the product information on a distinct product category and then by 
subcategory values. The first order of business is to define a row group on the Category field.  

  Adding Groups and Fields 
 Groups are managed using the grouping pane below the report designer. First, you can click anywhere 
within the table to show existing groups. 

 Drag and drop the Category field from the first dataset to the Row Groups list below the report design 
pane, shown in Figure  15 - 20 . Because we want this to be the first group, place it above the DetailsGroup 
item in this list.   

c15.indd   506c15.indd   506 10/31/08   6:31:44 PM10/31/08   6:31:44 PM



Chapter 15: T-SQL in Applications and Reporting

507

 Next, drag the Subcategory field from the dataset field list to the Row Groups list and drop it below the 
Category group, as shown in Figure  15 - 21 .   

Figure 15-20

Figure 15-21

 Note in Figure  15 - 22  that row headers and corresponding column headers were added to the table when 
this new group was defined. This new style of row heading is an improvement from earlier Reporting 
Services versions that takes advantage of a new data range item called the  tablix . As the name suggests, 
the table and matrix are combined into a more capable design element. When adding a table, matrix, or 
list to a report, you are actually adding a tablix with a template of predefined property settings. Now it ’ s 
unnecessary to add individual group header rows to a table. As with the matrix in Reporting Services for 
SQL Server 2000 and 2005, the row headings don ’ t take up extra vertical space. 

c15.indd   507c15.indd   507 10/31/08   6:31:44 PM10/31/08   6:31:44 PM



Chapter 15: T-SQL in Applications and Reporting

508

 You don ’ t need to define a row group for products because this is at the detail level of the result set. 
Simply drag and drop the Product field to the third column detail row.   

Figure 15-22

 Repeat this process for the Color and ListPrice fields, dropping them into the fourth and fifth columns, 
respectively. This defines an expression in the detail row bound to the field value and adds a textbox 
value to the header cell with the friendly name of the field.  

  Formatting a Number Field 
 Numeric reporting data (called  measures  in the Business Intelligence community) are unformatted by 
default. Typically, you should display these values using standard formatting such as currency, 
percentage, thousand separators, and fixed decimals. 

 To define formatting characteristics for the List Price field cell, right - click the ListPrice detail cell, as 
shown in Figure  15 - 23 . Select Textbox Properties from the menu.   

c15.indd   508c15.indd   508 10/31/08   6:31:45 PM10/31/08   6:31:45 PM



Chapter 15: T-SQL in Applications and Reporting

509

 Figure  15 - 24  shows the Text Box Properties dialog box. Use this window to set the format property for 
the ListPrice numeric field value. On the left side, choose Number to display the numeric formatting 
page. Select Currency for the Category and check the box labeled Use 1000 Separator (,). Click OK when 
completed.    

Figure 15-23

Figure 15-24

c15.indd   509c15.indd   509 10/31/08   6:31:45 PM10/31/08   6:31:45 PM



Chapter 15: T-SQL in Applications and Reporting

510

  Setting Up the Parameter Drop - Down List 
 Now you ’ ll set - up the CategoryID parameter list. You ’ ll recall that you defined a dataset to return a set 
of product category keys and names along with an item to select all categories. You need to associate this 
dataset with the parameter used to filter the first dataset. This is done on the properties for the 
CategoryID report parameter. 

 Make sure the Parameters node is expanded, right - click the CategoryID parameter in the Data utility 
window, and then choose Parameter Properties from the menu (see Figure  15 - 25 ).   

Figure 15-25

 The Report Parameter Properties dialog is shown in Figure  15 - 26 . Three pages on this window are used 
to manage common parameter settings. You will configure the parameter list to display only friendly 
values, so even though the dataset query will see numeric CategoryID key values, the user will only see 
descriptive category values.   

Figure 15-26

c15.indd   510c15.indd   510 10/31/08   6:31:46 PM10/31/08   6:31:46 PM



Chapter 15: T-SQL in Applications and Reporting

511

 On the General page, change the Prompt field to read Category. 

 Click Available Values to switch to the page shown in Figure  15 - 27 . You will specify that you want to 
display a list of values from a query and then provide field mapping for values and list labels.   

Figure 15-27

 Under the heading labeled Select from One of the Following Options, select the radio button labeled Get 
Values from a Query. 

 The three drop - down lists are used to bind the dataset supplying parameter values and the 
corresponding fields.   

  For the Dataset, select the Category_List dataset, which you defined earlier.  

  For the Value Field property, select the ProductCategoryID field.  

  For the Label Field property, select the Name field.    

 When finished, click OK to close this dialog. 

 Now to dress up this report and add some chrome to the table, let ’ s start with the table header. 

❑

❑

❑

c15.indd   511c15.indd   511 10/31/08   6:31:47 PM10/31/08   6:31:47 PM



Chapter 15: T-SQL in Applications and Reporting

512

  Saving the Report 
 One lesson I learned long ago was to save my work at regular intervals. This is probably a good time to 
practice this important life skill. Just click the save button (blue floppy disk icon) on the Quick Access 
toolbar. 

Figure 15-28

 Click the table header row selection handle. This is the small, gray box to the left of the first cell in the 
table when the table has focus. If this isn ’ t visible, click somewhere in the table and then click the 
selection handle. 

 Use the format property icons on the Home ribbon to set the text to bold. Use the background color 
bucket icon to change the background color to a light color, as shown in Figure  15 - 28 .    

c15.indd   512c15.indd   512 10/31/08   6:31:47 PM10/31/08   6:31:47 PM



Chapter 15: T-SQL in Applications and Reporting

513

Figure 15-29

 When prompted, name the report  “ Product List Report ”  and save the RDL file to your Documents folder 
or another location of your choice. In production, I like to save my reports to project -  and client - specific 
folders on my local hard drive. 

 Preview the report by clicking the Preview button on the Home ribbon. A smaller version of this button 
is also accessible on the window frame, just to the left of the zoom slider control. 

 The CategoryID parameter (labeled Category) drop - down list is displayed above the report toolbar. 
Drop this list down and select (All Categories), and then click the View Report button. 

 The animated  “ spinny ”  icon will be displayed as the report renders, followed by the report output, as 
displayed in Figure  15 - 29 . Compare your results with this preview and then review any necessary 
adjustments to the report design.    

c15.indd   513c15.indd   513 10/31/08   6:31:48 PM10/31/08   6:31:48 PM



Chapter 15: T-SQL in Applications and Reporting

514

  Adding Group Totals 
 So far, the report includes a table header with titles for each column and row headers for each of the two 
groups. Each row in the table will show the List Price measure value. It might be useful to get this value 
summarized for each of the groups. Totals can be added to the end of the table, and subtotals can be 
added to a row at the end of each group. To add a subtotal for the Subcategory group, use the steps 
illustrated in Figure  15 - 30 .   

 Right - click the Subcategory row header. This cell represents the row group and provides access to a 
menu with several features. From the menu, select Add Total    After. 

 This menu action inserts a new row below the details, within the Subcategory group. Note that an 
aggregate expression for the ListPrice field is automatically added to this row. 

 Use the format settings on the Home ribbon to set the background color and font to bold for this group 
of cells. If you don ’ t find the color you ’ re looking for on the fill color drop - down pallet, click the More 
Colors link to reveal a list of named Web colors and the custom color mixer tools. 

Figure 15-30

c15.indd   514c15.indd   514 10/31/08   6:31:48 PM10/31/08   6:31:48 PM



Chapter 15: T-SQL in Applications and Reporting

515

Figure 15-31

Figure 15-32

 Figure  15 - 31  shows the selected range of cells with the font set to bold and the background color set to 
white smoke, a light shade of gray.   

 Adding a total to the Category group is similar. Right - click this cell and choose Add Total    After from 
the menu (see Figure  15 - 32 ).   

c15.indd   515c15.indd   515 10/31/08   6:31:48 PM10/31/08   6:31:48 PM



Chapter 15: T-SQL in Applications and Reporting

516

 Figure  15 - 33  shows the new group footer row cells set to a slightly darker shade of gray and bold font. 

 Select all of the cells in this row and use the formatting tools on the Home ribbon to set these properties 
as you did in the previous step.   

Figure 15-33

 The report is done! Before you preview the results, save your changes using the Save icon in the Quick 
Access toolbar at the top of the designer window. 

 Click the Preview button on the ribbon and take a look at the results shown in Figure  15 - 34 . If your 
report looks like the one in this figure, the next step is to take your right hand, place it behind your left 
shoulder, and pat yourself on the back. Good job!   

c15.indd   516c15.indd   516 10/31/08   6:31:49 PM10/31/08   6:31:49 PM



Chapter 15: T-SQL in Applications and Reporting

517

 As you can see from this short exercise, using Reporting Services you can easily transform practically 
any T - SQL query into presentable information for the benefit of business information workers and 
company leaders.   

Figure 15-34

c15.indd   517c15.indd   517 10/31/08   6:31:51 PM10/31/08   6:31:51 PM



Chapter 15: T-SQL in Applications and Reporting

518

  Deploying the Report 
 Deploying a report is a simple matter of saving the report to the report server. Click the Office Pearl 
button in the top - left corner of the designer and select Save As from the menu, as shown in Figure  15 - 35 .    

Figure 15-35

Figure 15-36

 In Report Builder 2.0, there is really no difference between saving a report to the file system or to the 
report server. In the Name box, type the address of your report server in the form of http:// < server 
name > /ReportServer into the Name box and press Enter. Enter a name for the report (see Figure 15-36) 
and then click the Save button to deploy the report to the server.    

c15.indd   518c15.indd   518 10/31/08   6:31:51 PM10/31/08   6:31:51 PM



Chapter 15: T-SQL in Applications and Reporting

519

  Viewing the Report with Report Manager 
 After Reporting Services is installed, a shortcut is created in the SQL Server group for the Report Manager 
Web application. This shortcut can be found under Start    All Programs    Microsoft SQL Server 2008   
 Reporting Services    Report Manager. This opens a page located at  http://localhost/Reports . 

 Open Internet Explorer and enter the Web address for the Report Manager application on your report 
server. The default address on a local server is  http://localhost/reports . 

 Figure  15 - 37  shows the local Report Manager with no previous folders or reports prior to the 
deployment of this report. The newly deployed report is displayed as a link in the Home folder. Simply 
click this link to view the report.   

Figure 15-37

 The report appears exactly as it did in Figure  15 - 34 , only this time within a frame in the Report Manager 
Web page.  

  Report Data Caching 
 Possibly one of the most compelling features of Reporting Services is its ability to cache report data so 
that subsequent requests don ’ t require the database to be re - queried. There are a number of ways that 
reports can be cached and that parameters can be used in combination to refresh cached data and filter 
cached results. 

c15.indd   519c15.indd   519 10/31/08   6:31:52 PM10/31/08   6:31:52 PM



Chapter 15: T-SQL in Applications and Reporting

520

 Report snapshots are a form of cached reports that are completely static. Snapshots are lightweight and 
simple. This may be an appropriate option for common reports that are produced at regular intervals 
and usually don ’ t contain parameterized options. Snapshots can be placed into history so that one 
snapshot doesn ’ t overwrite a previously cached rendering of the same report. Each snapshot is marked 
with a date and time stamp, and a specific number are typically held in history before they are 
overwritten. Snapshots typically are generated on a predefined schedule, and users don ’ t need to wait 
while queries run against live data. 

 Cached - instance reports are more flexible than snapshots but take a little planning and design effort. 
When a report is configured for instance caching, each unique combination of query parameters causes a 
separate cached copy of the report data to be stored in the report server database. Further, non - query 
report parameters can be used to filter the data stored in the cache. A cached instance can be configured 
to  “ live ”  for a specific period of time or to expire on a regular schedule. Because the cache is populated 
when a report is requested, the first user who views the report must wait for the query to run. 
Subsequent users or requests run against the cache until it expires.  

  Business Intelligence and Business Reporting 
 One of the inevitable facts about business reporting solutions is that the complexity of reports tends to 
grow over time   —   usually just a short period of time. Deriving meaningful information from a large, 
transactional database often requires the use of several tables that may be joined together in a query, 
view, or stored procedure. 

 An unfortunate side effect is that large queries tend to run slowly and demand server resources at the 
cost of other concurrent processes and applications. When reporting requirements reach this level, it ’ s 
usually necessary to copy data into a separate database   —   a data warehouse or data mart with the data 
stored in simplified tables optimized to support reports rather than online transactions. 

 You already know how to join tables together, define subqueries, use groups, and aggregate functions. 
The purpose of the following exercise is to demonstrate how to design a report, so I ’ m going to keep the 
T - SQL query very simple. Once you have mastered the report design basics, you can write more complex 
queries to add additional functionality to your reports. Note, however, that a discussion of data 
warehouse concepts is beyond the scope of this book. 

 A sample data warehouse database is available from Microsoft, based on the data in the 
AdventureWorks2008 and AdventureWorks databases we ’ ve used throughout this book. For your 
reference, the following query uses the AdventureWorksDW2008 data warehouse database. This 
example is borrowed from the Wrox book  Professional SQL Server 2008 Reporting Services .   

SELECT

    D.CalendarYear

  , D.CalendarQuarter

  , ST.SalesTerritoryCountry

  , ST.SalesTerritoryRegion

  , SUM(F.OrderQuantity) AS QtySum

  , SUM(F.SalesAmount) AS AmtSum

FROM 

  DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey

  INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey

c15.indd   520c15.indd   520 10/31/08   6:31:52 PM10/31/08   6:31:52 PM



Chapter 15: T-SQL in Applications and Reporting

521

  INNER JOIN DimProduct P ON F.ProductKey = P.ProductKey

WHERE

  D.CalendarYear = @Year AND P.ProductSubcategoryKey = @SubcatKey

GROUP BY

    D.CalendarYear

  , D.CalendarQuarter

  , ST.SalesTerritoryCountry

  , ST.SalesTerritoryRegion

ORDER BY

    D.CalendarYear

  , D.CalendarQuarter

  , ST.SalesTerritoryCountry

  , ST.SalesTerritoryRegion

;  

 This query contains attribute fields from two different dimensional hierarchies: Sales Territory and Order 
Date. These values are stored in the dimension table fields. For report users who want to see these 
measure values, the ideal presentation for this data is a matrix (also called a PivotTable), where the two 
dimension levels are grouped on both the rows and columns axes. The measure values are expressed as 
aggregated numeric values at the intersect point of each row and group dimension level. To summarize 
the same data in summary form, a chart is often the appropriate medium. 

 Figure  15 - 38  shows a report containing both a chart and matrix based on the same query results.    

Figure 15-38

c15.indd   521c15.indd   521 10/31/08   6:31:53 PM10/31/08   6:31:53 PM



Chapter 15: T-SQL in Applications and Reporting

522

  Report Application Integration 
 Reporting Services can be integrated into applications in several ways. These range from a simple 
hyperlink to fully embedded reports within custom and commercial applications. Using a hyperlink to 
open a report is uncomplicated. The following URL opens a report in a Web browser window: 

http://localhost/ReportServer?/FarmAnimal_Reports/Farm Animal Sales_BW & rs:

Command=Render  

 Parameters can either be left to be filled with default values, be provided by users, or may be provided 
in the URL request: 

http://localhost/ReportServer?/FarmAnimal_Reports/Farm Animal 

Sales_BW & rs:Command=Render & DateFrom=’1/1/2005` & DateTo=’3/5/2005` & GroupBy=

AnimalName & Animals=’Cow’,’Horse’,’Chicken’,’Llama’  

 This URL opens a browser with the report displayed below a parameter bar, pre - filled with the 
parameter values supplied in the URL string, as shown in Figure  15 - 39 .   

Figure 15-39

c15.indd   522c15.indd   522 10/31/08   6:31:53 PM10/31/08   6:31:53 PM



Chapter 15: T-SQL in Applications and Reporting

523

 This approach is simple and provides a great deal of functionality. However, this may not be an ideal 
interface for all reporting solutions. A more customized approach uses an ASP.NET Web Form, such as 
that shown in Figure  15 - 40 . Sophisticated Web controls may be used to prompt users for parameter 
values.   

Figure 15-40

 Parameter values are gathered from these controls and then concatenated into a URL like the previous 
example. A hyperlink control uses this URL to target an HTML frame on the Web Form. After using the 
custom parameter interface to choose a user ’ s selection criteria, the link renders the report to the in - line 
frame embedded in the Web page. As far as the user is concerned, this is simply a feature of a Web 
browser - based custom business application (see Figure  15 - 41 ).     

c15.indd   523c15.indd   523 10/31/08   6:31:54 PM10/31/08   6:31:54 PM



Chapter 15: T-SQL in Applications and Reporting

524

  Summary 
 This chapter demonstrated how T - SQL is used in common applications and reporting solutions. A wide 
range of options are available for architecting and building database application solutions. Programming 
models vary in purpose and complexity. It ’ s senseless to over - engineer a solution with capabilities that 
won ’ t ever be used   —   but it ’ s also important to plan for future requirements. Striking the appropriate 
balance between these two principles is often the greatest challenge in database solution design. 

 Scalable solutions can accommodate a larger number of users without redesigning the fundamental 
application architecture. Scalable solutions make appropriate use of program components to separate the 
user interface from business logic and data access. How you implement T - SQL in an application plays an 
important role in its ability to handle whatever requirements may be discovered or imposed after the 
fact. Isolating database connections to separate reusable application components can simplify ongoing 
application design. Keeping SQL queries in database server objects, such as views, stored procedures, 
and user - defined functions, not only offers improved performance, but is also much more secure. 

Figure 15-41

c15.indd   524c15.indd   524 10/31/08   6:31:54 PM10/31/08   6:31:54 PM



Chapter 15: T-SQL in Applications and Reporting

525

 Finding the optimal balance between an application architecture that just gets the job done quickly and 
being able to adapt to any needs that could potentially arise is often a challenge. Ultimately, it is the 
long - term business requirements and objectives that should lead to choosing an application model that 
meets these needs. Fortunately, building scalable solutions is less costly using more capable 
programming objects and development tools. 

 You were introduced to the new report design experience in SQL Server 2008 Reporting Services. 
Reporting is an important part of many business applications. SQL Server Reporting Services makes use 
of ad   hoc TSQL statements, views, and stored procedures. These queries can include parameters to filter 
results and modify business logic. Reporting Services takes this concept to a level beyond SQL queries by 
allowing reports to filter cached data results and to provide rich, dynamic reporting capabilities, using 
report parameters and other advanced Reporting Services features.                

c15.indd   525c15.indd   525 10/31/08   6:31:54 PM10/31/08   6:31:54 PM



c15.indd   526c15.indd   526 10/31/08   6:31:54 PM10/31/08   6:31:54 PM



A
Command Syntax 

Reference

SQL Server 2005 and SQL Server 2008 recognize up to four parts of object names. Depending on 
the context of an expression, some parts may or may not be necessary when referencing an object. 
When a script runs on a different server or when you are using a different database, related object 
names may be required. Note that both SQL Server 2005 and SQL Server 2008 recognize the 
schema name in the third position, whereas SQL Server 2000 and earlier versions recognized the 
object owner name in the third position. The following table summarizes valid syntax for 
referencing database objects.

Object Reference Use and Context

object Used in the context of the local database, on the 
same server. Object is part of the dbo schema 
and there are no duplicate object names.

schema.object Used in the context of the local database, on the 
same server. Duplicate object names that have 
schema names (and subsequently, different 
owners) are permitted. Also uses a standard 
convention for clarity.

database..object Used in the context of the same or different 
database on the same server. If you haven’t 
specified the owner or schema, assumes the 
dbo schema.

database.schema.object A three-part name fully describes an object on 
the same server, in the same or different 
database.

(Continued)

bapp01.indd   527bapp01.indd   527 10/31/08   6:12:01 PM10/31/08   6:12:01 PM



Appendix A: Command Syntax Reference

528

T-SQL Commands, Clauses, and Predicates
Following are the core components of the T-SQL language. New commands for SQL Server 2008 are 
explicitly called out in this section.

WITH
Introduced in SQL Server 2005, this method is used to define an alias for the result set returned by a 
SELECT expression.

WITH MyCTE 

AS

( SELECT * FROM Product WHERE ListPrice < 1000 )

Optionally, column aliases can be defined in parentheses following the Common Table Expression (CTE) 
name:

WITH MyCTE ( ID, ProdNumber, ProdName, Price )

AS

( SELECT 

    ProductID

  , ProductNumber

  , Name

  , ListPrice 

  FROM Product WHERE ListPrice < 1000

)

SELECT
To return all columns from a table or view:

SELECT * FROM table_name

Object Reference Use and Context

server.database.schema.object A four-part name is valid in the context of a remote 
server or the local server, in the local or a different 
database, and for any schema.

server.database..object The database owner or schema in the third position 
can be omitted to use the default dbo schema.

server..schema.object The database name can be omitted to use the default 
database on that server. This is not a typical practice.

server...object Omitting the database and owner or schema name 
causes the default database and the default dbo 
schema to be used. This is valid syntax but not a 
typical practice.

bapp01.indd   528bapp01.indd   528 10/31/08   6:12:02 PM10/31/08   6:12:02 PM



Appendix A: Command Syntax Reference

529

To return specific columns from a table or view:

SELECT Column1, Column2, Column3 FROM table_name

Column alias techniques:

SELECT Column1 AS Col1, Column2 AS Col2 FROM table_name

SELECT Column1 Col1, Column2 Col2 FROM table_name

SELECT Col1 = Column1, Col2 = Column2 FROM table_name

To return literal values:

SELECT ‘Some literal value’

SELECT ‘Some value’ AS Col1, 123 AS Col2

To return an expression value:

SELECT (1 + 2) * 3

To return the result of a function call:

SELECT CONVERT( varchar(20), GETDATE(), 101 )

SELECT TOP
To return a fixed number of rows:

SELECT TOP 10 * FROM table_name ORDER BY Column1

SELECT TOP 10 Column1, Column2 FROM table_name ORDER BY Column2

To return a fixed number of rows with the ties for last position:

SELECT TOP 10 WITH TIES Column1, Column2 FROM table_name ORDER BY Column2

To return a percentage of all available rows:

SELECT TOP 25 PERCENT * FROM table_name ORDER BY Column2

SELECT TOP 25 PERCENT Column1, Column2 FROM table_name ORDER BY Column2

To substitute a variable or expression for a top values number:

DECLARE @TopNumber Int

SET @TopNumber = 15

SELECT TOP @ TopNumber * FROM table_name ORDER BY Column2

To return top values based on an expression:

SELECT TOP (SELECT a_column_value FROM some_table) * FROM another_table

bapp01.indd   529bapp01.indd   529 10/31/08   6:12:02 PM10/31/08   6:12:02 PM



Appendix A: Command Syntax Reference

530

SELECT INTO
To create and populate a table from a result set:

SELECT Column1, Column2 INTO new_table_name FROM existing_table_or_view_name

FROM
Single table query:

SELECT * FROM table_name

Multi-table join query:

SELECT * 

FROM table1.key_column INNER JOIN table2 ON table1.key_column = 

table2.key_column

Derived table:

SELECT DerTbl.Column1, DerTbl.Column2

FROM 

    ( SELECT Column1, Column2 FROM some_table ... ) AS DerTbl

WHERE
Exact match:

SELECT ... FROM ...

WHERE Column1 = ‘A literal value’

Not NULL:

SELECT ... FROM ...

WHERE Column1 IS NOT NULL

Any trailing characters:

SELECT ... FROM ...

WHERE Column1 LIKE ‘ABC%’

Any leading characters:

SELECT ... FROM ...

WHERE Column1 LIKE ‘%XYZ’

Any leading or trailing characters:

SELECT ... FROM ...

WHERE Column1 LIKE ‘%MNOP%’

bapp01.indd   530bapp01.indd   530 10/31/08   6:12:02 PM10/31/08   6:12:02 PM



Appendix A: Command Syntax Reference

531

Placeholder wildcard:

SELECT ... FROM ...

WHERE Column1 LIKE ‘_BC_EF’

Criteria using parentheses to designate order:

SELECT ... FROM ...

WHERE 

    (Column1 LIKE ‘ABC%’ AND Column2 LIKE ‘%XYZ’)

    OR

    Column3 = ‘123’

GROUP BY
All non-aggregated columns in the SELECT list must be included in the GROUP BY list:

SELECT COUNT(Column1), Column2, Column3

FROM ... WHERE ...

GROUP BY Column2, Column3

Designating order:

SELECT COUNT(Column1), Column2, Column3

FROM ... WHERE ...

GROUP BY Column2, Column3

ORDER BY Column2 DESC, Column3 ASC

WITH ROLLUP
Legacy method to implement a rollup subtotal break:

Note that ROLLUP and CUBE operators cause SQL Server to return a non–two-dimensional result set 
that is not supported by many APIs and client interfaces.

SELECT Column1, Column2, SUM(Column3)

FROM table_name

GROUP BY Column1, Column2

WITH ROLLUP

This syntax is still supported in SQL Server 2008, but the new BY ROLLUP syntax is preferred.

BY ROLLUP
New syntax introduced in SQL Server 2008 for implementing a rollup subtotal break:

SELECT Column1, Column2, SUM(Column3)

FROM table_name

GROUP BY ROLLUP(Column1, Column2)

bapp01.indd   531bapp01.indd   531 10/31/08   6:12:03 PM10/31/08   6:12:03 PM



Appendix A: Command Syntax Reference

532

WITH CUBE
Legacy method to implement a cube subtotal break:

SELECT Column1, Column2, SUM(Column3)

FROM table_name

GROUP BY Column1, Column2

WITH CUBE

This syntax is still supported in SQL Server 2008 but the new BY CUBE syntax is preferred.

BY CUBE
New syntax introduced in SQL Server 2008 for implementing a cube subtotal break.

SELECT Column1, Column2, SUM(Column3)

FROM table_name

GROUP BY CUBE(Column1, Column2)

HAVING
To filter results based on values available after the aggregations and groupings are performed:

SELECT COUNT(Column1), Column2, Column3

FROM ... WHERE ...

GROUP BY Column2, Column3

HAVING COUNT(Column1) > 5

UNION
To combine multiple results with the same column count:

SELECT Column1, Column2 FROM table1_name

UNION

SELECT Column1, Column2 FROM table2_name

To combine literal values and query results:

SELECT -1 AS Column1, ‘A literal value’ AS Column2

UNION

SELECT Column1, Column2 FROM table1_name

To include non-distinct selection (UNION performs SELECT DISTINCT by default):

SELECT Column1, Column2 FROM table1_name

UNION ALL

SELECT Column1, Column2 FROM table2_name

bapp01.indd   532bapp01.indd   532 10/31/08   6:12:03 PM10/31/08   6:12:03 PM



Appendix A: Command Syntax Reference

533

EXCEPT and INTERSECT
To select the differences (EXCEPT) or common values (INTERSECT) between two queries:

SELECT * FROM TableA EXCEPT SELECT * FROM TableB

SELECT * FROM TableA INTERSECT SELECT * FROM TableB

ORDER BY
To order a result set by one or more column values:

SELECT * FROM table_name ORDER BY Column1

SELECT * FROM table_name ORDER BY Column1 DESC, Column2 ASC

The default order is ascending. If ordering by more than one column, each column can have a different 
order.

COMPUTE and COMPUTE BY Clauses
To generate totals that are appended to the end of an aggregate query result set:

SELECT Column1, Column2, Column3 

FROM table_name

ORDER BY Column1, Column2

COMPUTE SUM(Column3)

The COMPUTE and COMPUTE BY clauses are not very useful in applications because the aggregated results 
are not in relational form and cannot be utilized in a dataset.

As of SQL Server 2008, the CUBE and ROLLUP operators are appended to the COMPUTE BY clause 
(see CUBE and ROLLUP.)

FOR Clause
The FOR clause is used with either the XML or BROWSE option in a SELECT statement. However, the 
BROWSE and XML options are completely unrelated. FOR XML specifies that the result set is returned in 
XML format. FOR BROWSE is used when accessing data through the DB-Library so that rows can be 
browsed and updated one row at a time in an optimistic locking environment. There are several 
requirements when using the FOR BROWSE option. For more information, consult SQL Server Books 
Online, under the topic “Browse Mode.”

SELECT * FROM table_name FOR XML {XML Option}

SELECT * FROM table_name FOR BROWSE

OPTION Clause
The OPTION clause is used in a SELECT statement to provide a query hint that will override the query 
optimizer and specify an index or specific join mechanism to be used along with other hint options.

bapp01.indd   533bapp01.indd   533 10/31/08   6:12:03 PM10/31/08   6:12:03 PM



Appendix A: Command Syntax Reference

534

CASE
To evaluate one or more expression and return one or more specified values based on the evaluated 
expression:

SELECT expression = CASE Column

WHEN value THEN resultant_value

WHEN value2 THEN resultant_value2

... 

ELSE alternate_value 

END

FROM table

SELECT value = 

        CASE 

        WHEN column IS NULL THEN value

        WHEN column {expression true} THEN different_value

        WHEN column {expression true} and price {expression true} THEN 

other_value

        ELSE different_value

        END,

       column2

FROM table

INSERT
To add a new row to a table:

INSERT table (column list)

VALUES

(column values)

INSERT table 

SELECT columns FROM source expression

INSERT table

EXEC stored_procedure

The following is new, multi-table INSERT syntax introduced in SQL Server 2008:

INSERT table (column list)

VALUES

(column values),

(column values),

(column values)

Note that column values are comma-separated and must appear in the same order as in the column list 
or in the same order as they are defined in the table.

UPDATE
To update selected columns in a table:

UPDATE table SET column1 = expression1, column2 = expression2

WHERE filter_expression

bapp01.indd   534bapp01.indd   534 10/31/08   6:12:04 PM10/31/08   6:12:04 PM



Appendix A: Command Syntax Reference

535

To update a table based on the contents of another table:

UPDATE table SET column1 = expression

FROM table INNER JOIN table2

ON table.column = table2.column

WHERE table.column = table2.column

DELETE
To delete selected rows from a table:

DELETE table 

WHERE filter_expression

To delete rows from a table based on the contents of a different table:

DELETE table 

FROM table INNER JOIN table2

ON table.column = table2.column

WHERE column = filter_expression

DECLARE @local_variable
This creates a named object that temporarily holds a value with the data type defined in the declaration 
statement. Local variables have scope only within the calling batch or stored procedure. The value of a 
local variable can be set with either a SET or SELECT operation. SELECT is more efficient than SET and 
has the advantage of populating multiple variables in a single operation, but the SELECT operation 
cannot be confined with any data retrieval operation.

DECLARE @local_variable AS int

SET @local_variable = integer_expression

DECLARE @local_variable1 AS int, @local_variable2 AS varchar(55)

SELECT @local_variable1 = integer_column_expression, @local_variable2 = 

character_column_expression FROM table

SET
The SET operator has many functions, from setting the value of a variable to setting a database or 
connection property. The SET operator is divided into the categories listed in the following table.

Category Alters the Current Session Settings For

Date and time Handling date and time data

Locking Handling SQL Server locking

Miscellaneous Miscellaneous SQL Server functionality

Query execution Query execution and processing

SQL-92 settings Using the SQL-92 default settings

Statistics Displaying statistics information

Transactions Handling SQL Server transactions

bapp01.indd   535bapp01.indd   535 10/31/08   6:12:04 PM10/31/08   6:12:04 PM



Appendix A: Command Syntax Reference

536

LIKE
LIKE is a pattern-matching operator for comparing strings or partial strings.

To compare a string value where the compared string is anywhere in the string:

SELECT * FROM table WHERE column1 LIKE ‘%string%’

To compare a string value where the compared string is at the beginning of the string:

SELECT * FROM table WHERE column1 LIKE ‘string%’

To compare a string value where the compared string is at the end of the string:

SELECT * FROM table WHERE column1 LIKE ‘%string’

To compare a string value where a specific character or character range is in the string:

SELECT * FROM table WHERE column1 LIKE ‘[a-c]’

SELECT * FROM table WHERE column1 LIKE ‘[B-H]olden’

To compare a string value where a specific character or character range is not in the string:

SELECT * FROM table WHERE column1 LIKE ‘[M^c]%’ -Begins with M but not Mc

ALTER TABLE
To alter the structure of a table by adding or removing table objects such as columns, constraints, and 
partitions, or by enabling and disabling triggers:

ALTER TABLE table_name ADD new_column int NULL;

ALTER TABLE table_name ADD CONSTRAINT new_check CHECK (check expression) ;

ALTER TABLE table_name DROP COLUMN existing_column;

ALTER TABLE table_name ENABLE TRIGGER trigger_name;

ALTER TABLE table_name DISABLE TRIGGER trigger_name;

PIVOT Operator
To cause a normalized columnar set to be transformed and restructured with repeating column values 
according to a predefined column list specification:

SELECT Column3, [Col2_List_Val1], [Col2_List_Val2], [Col2_List_Val3]... FROM

 (

     SELECT 

          Column1  -- Value to aggregate as measure value in pivot cells

        , Column2  -- Value for column headers as column list

        , Column3  -- Value for row headers

     FROM source_table_name

 )   AS Source

PIVOT

 (

     Sum(Column1) FOR MeasureValue 

        IN ([Col2_List_Val1], [Col2_List_Val2], [Col2_List_Val3]...)

 )   AS pvt

bapp01.indd   536bapp01.indd   536 10/31/08   6:12:04 PM10/31/08   6:12:04 PM



Appendix A: Command Syntax Reference

537

UNPIVOT Operator
To cause a pivoted result set to be transformed into a normalized, columnar table structure:

SELECT

 Column3, Column2, Column1  -- columns same as pivot source above

FROM

 (

    SELECT

      Column1

    , [Col2_List_Val1], [Col2_List_Val2], [Col2_List_Val3]... FROM

    FROM pivot_source_table_name

 ) AS pvt

UNPIVOT

 ( 

      Column1 FOR MeasuresValue 

       IN ([Col2_List_Val1], [Col2_List_Val2], [Col2_List_Val3]...)

 )

 AS unpvt

CREATE DATABASE
To create a database and all associated files:

CREATE DATABASE new_database

ON ( 

   NAME = ‘logical_name’,

   FILENAME = ‘physical_file_location’,

   SIZE = initial_size_in_MB,

   MAXSIZE = max_size_in_MB, --If no MAXSIZE specified unlimited growth 

is assumed

   FILEGROWTH = percentage_OR_space_in_MB)

LOG ON

( NAME = ‘logical_log_name’,

   FILENAME = ‘physical_file_location’,

   SIZE = initial_size_in_MB,

   MAXSIZE = max_size_in_MB, --If no MAXSIZE specified unlimited growth 

is assumed

   FILEGROWTH = percentage_OR_space_in_MB)

COLLATE database_collation

CREATE DEFAULT
To create a database-wide default value that can then be bound to columns in any table to provide a 
default value:

CREATE DEFAULT default_name AS default_value

--bind the default to a table column

sp_bindefault default_name, ‘table.column’

bapp01.indd   537bapp01.indd   537 10/31/08   6:12:05 PM10/31/08   6:12:05 PM



Appendix A: Command Syntax Reference

538

CREATE PROCEDURE
To create a new stored procedure:

CREATE PROCEDURE proc_name @variable variable_data_type ...n

AS

...procedure code

or

CREATE PROC proc_name @variable variable_data_type ...n

AS

...procedure code

CREATE RULE
To create a database-wide rule, much like a check constraint, that can then be bound to individual 
columns in tables throughout the database:

CREATE RULE rule_name AS rule_expression

--bind the rule to a table column

sp_bindrule rule_name, ‘table.column’

CREATE TABLE
To create a new table:

CREATE TABLE table_name (

Column1 data_type nullability column_option,

Column2 data_type nullability column_option,

Column3 data_type nullability column_option,

--Column_option = Collation, IDENTITY, KEY...

To create a new, partitioned table:

CREATE TABLE partitioned_table_name (Column1 int, Column2 char(10))

Column1 data_type nullability column_option,

Column2 data_type nullability column_option,

Column3 data_type nullability column_option

ON partition_scheme_name (column) 

CREATE TRIGGER
To create a new trigger on a table that fires after a DML event:

CREATE TRIGGER trigger_name

ON table_name FOR dml_action -INSERT, UPDATE or DELETE

AS

...trigger_code

bapp01.indd   538bapp01.indd   538 10/31/08   6:12:05 PM10/31/08   6:12:05 PM



Appendix A: Command Syntax Reference

539

And to create a new trigger on a table that fires instead of a DML event:

CREATE TRIGGER trigger_name

ON view_or_table_name INSTEAD OF dml_action -INSERT, UPDATE or DELETE

AS

...trigger_code

CREATE VIEW
To create a new view:

CREATE VIEW view_name

AS 

...Select Statement

CREATE SCHEMA
To create a new database schema with the option of specifying a non-dbo owner with the 
AUTHORIZATION clause:

CREATE SCHEMA schema_name AUTHORIZATION user_name

CREATE PARTITION FUNCTION
To create a partition function to use when physically partitioning tables and indexes:

CREATE PARTITION FUNCTION partition_function_name ( input_parameter_type )

AS RANGE LEFT --or RIGHT 

FOR VALUES (value1, value2, value3, ...n)

CREATE PARTITION SCHEME
To create a partition scheme to use when physically partitioning tables and indexes:

CREATE PARTITION SCHEME partition_scheme_name

AS PARTITION partition_function_name

TO (filegroup1, filegroup2, filegroup3, ...n)

Script Comment Conventions
In-line comment:

SELECT ProductID, Name AS ProductName   -- Comment text

Single-line comment:

/* Comment text */ 

or

-- Comment text

bapp01.indd   539bapp01.indd   539 10/31/08   6:12:05 PM10/31/08   6:12:05 PM



Appendix A: Command Syntax Reference

540

Comment block:

/***************************************************

     spProductUpdateByCategory

     Created by Paul Turley, 5-21-08

     nospam@sqlreportservices.com

     Updates product price info for a category

     Revisions:

     5-22-08 - Fixed bug that formatted C: 

               drive if wrong type was passed in.

****************************************************/

Reserved Words
Chapter 13 gave some recommendations and guidance about the naming of objects in SQL Server. One of 
the recommendations was that reserved words should not be used as names of objects. Reserved words 
typically are easy to see in SQL Server Management Studio, which changes the color of reserved words to 
blue. If the object names are delimited with double quotes or square brackets, which they often are if you 
are using a graphical tool to create queries, then they may not show up as being color-coded.

The following keywords have significant meaning within T-SQL and should be avoided in object names 
and expressions. If any of these words must be used in a SQL expression, they must be contained within 
square brackets [ ].

ADD

ALL

ALTER

AND

ANY

AS

ASC

AUTHORIZATION

BACKUP

BEGIN

BETWEEN

BREAK

BROWSE

BULK

BY

CASCADE

CASE

CHECK

CHECKPOINT

CLOSE

CLUSTERED

COALESCE

COLLATE

COLUMN

COMMIT

COMPUTE

CONSTRAINT

CONTAINS

CONTAINSTABLE

CONTINUE

CONVERT

CREATE

CROSS

CURRENT

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_USER

CURSOR

DATABASE

DBCC

DEALLOCATE

DECLARE

DEFAULT

DELETE

bapp01.indd   540bapp01.indd   540 10/31/08   6:12:05 PM10/31/08   6:12:05 PM



Appendix A: Command Syntax Reference

541

DENY

DESC

DISK

DISTINCT

DISTRIBUTED

DOUBLE

DROP

DUMMY

DUMP

ELSE

END

ERRLVL

ESCAPE

EXCEPT

EXEC

EXECUTE

EXISTS

EXIT

FETCH

FILE

FILLFACTOR

FOR

FOREIGN

FREETEXT

FREETEXTTABLE

FROM

FULL

FUNCTION

GOTO

GRANT

GROUP

HAVING

HOLDLOCK

IDENTITY

IDENTITY_INSERT

IDENTITYCOL

IF

IN

INDEX

INNER

INSERT

INTERSECT

INTO

IS

JOIN

KEY

KILL

LEFT

LIKE

LINENO

LOAD

NATIONAL

NOCHECK

NONCLUSTERED

NOT

NULL

NULLIF

OF

OFF

OFFSETS

ON

OPEN

OPENDATASOURCE

OPENQUERY

OPENROWSET

OPENXML

OPTION

OR

ORDER

OUTER

OVER

PERCENT

PIVOT

PLAN

PRECISION

PRIMARY

PRINT

PROC

PROCEDURE

PUBLIC

RAISERROR

READ

READTEXT

RECONFIGURE

REFERENCES

REPLICATION

RESTORE

(Continued)

bapp01.indd   541bapp01.indd   541 10/31/08   6:12:06 PM10/31/08   6:12:06 PM



Appendix A: Command Syntax Reference

542

ODBC Reserved Words
Although the ODBC keywords in the following table are not strictly prohibited, as a best practice to 
prevent driver inconsistencies, they should be avoided.

RESTRICT

RETURN

REVOKE

RIGHT

ROLLBACK

ROWCOUNT

ROWGUIDCOL

RULE

SAVE

SCHEMA

SELECT

SESSION_USER

SET

SETUSER

SHUTDOWN

SOME

STATISTICS

SYSTEM_USER

TABLE

TEXTSIZE

THEN

TO

TOP

TRAN

TRANSACTION

TRIGGER

TRUNCATE

TSEQUAL

UNION

UNIQUE

UNPIVOT

UPDATE

UPDATETEXT

USE

USER

VALUES

VARYING

VIEW

WAITFOR

WHEN

WHERE

WHILE

WITH

WRITETEXT

ABSOLUTE

ACTION

ADA

ADD

ALL

ALLOCATE

ALTER

AND

ANY

ARE

AS

ASC

ASSERTION

AT

AUTHORIZATION

AVG

BEGIN

BETWEEN

BIT

BIT_LENGTH

BOTH

BY

CASCADE

CASCADED

CASE

CAST

CATALOG

CHAR

CHAR_LENGTH

CHARACTER

bapp01.indd   542bapp01.indd   542 10/31/08   6:12:06 PM10/31/08   6:12:06 PM



Appendix A: Command Syntax Reference

543

CHARACTER_LENGTH

CHECK

CLOSE

COALESCE

COLLATE

COLLATION

COLUMN

COMMIT

CONNECT

CONNECTION

CONSTRAINT

CONSTRAINTS

CONTINUE

CONVERT

CORRESPONDING

COUNT

CREATE

CROSS

CURRENT

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_USER

CURSOR

DATE

DAY

DEALLOCATE

DEC

DECIMAL

DECLARE

DEFAULT

DEFERRABLE

DEFERRED

DELETE

DESC

DESCRIBE

DESCRIPTOR

DIAGNOSTICS

DISCONNECT

DISTINCT

DOMAIN

DOUBLE

DROP

ELSE

END

END-EXEC

ESCAPE

EXCEPT

EXCEPTION

EXEC

EXECUTE

EXISTS

EXTERNAL

EXTRACT

FALSE

FETCH

FIRST

FLOAT

FOR

FOREIGN

FORTRAN

FOUND

FROM

FULL

GET

GLOBAL

GO

GOTO

GRANT

GROUP

HAVING

HOUR

IDENTITY

IMMEDIATE

IN

INCLUDE

INDEX

INDICATOR

INITIALLY

INNER

INPUT

INSENSITIVE

INSERT

INT

INTEGER

INTERSECT

INTERVAL

(Continued)

bapp01.indd   543bapp01.indd   543 10/31/08   6:12:07 PM10/31/08   6:12:07 PM



Appendix A: Command Syntax Reference

544

INTO

IS

ISOLATION

JOIN

KEY

LANGUAGE

LAST

LEADING

LEFT

LEVEL

LIKE

LOCAL

LOWER

MATCH

MAX

MIN

MINUTE

MODULE

MONTH

NAMES

NATIONAL

NATURAL

NCHAR

NEXT

NO

NONE

NOT

NULL

NULLIF

NUMERIC

OCTET_LENGTH

OF

ON

ONLY

OPEN

OPTION

OR

ORDER

OUTER

OUTPUT

OVERLAPS

PAD

PARTIAL

PASCAL

POSITION

PRECISION

PREPARE

PRESERVE

PRIMARY

PRIOR

PRIVILEGES

PROCEDURE

PUBLIC

READ

REAL

REFERENCES

RELATIVE

RESTRICT

REVOKE

RIGHT

ROLLBACK

ROWS

SCHEMA

SCROLL

SECOND

SECTION

SELECT

SESSION

SESSION_USER

SET

SIZE

SMALLINT

SOME

SPACE

SQL

SQLCA

SQLCODE

SQLERROR

SQLSTATE

SQLWARNING

SUBSTRING

SUM

SYSTEM_USER

TABLE

TEMPORARY

THEN

TIME

bapp01.indd   544bapp01.indd   544 10/31/08   6:12:07 PM10/31/08   6:12:07 PM



Appendix A: Command Syntax Reference

545

TIMESTAMP

TIMEZONE_HOUR

TIMEZONE_MINUTE

TO

TRAILING

TRANSACTION

TRANSLATE

TRANSLATION

TRIM

TRUE

UNION

UNIQUE

UNKNOWN

UPDATE

UPPER

USAGE

USER

USING

VALUE

VALUES

VARCHAR

VARYING

VIEW

WHEN

WHENEVER

WHERE

WITH

WORK

WRITE

YEAR

ZONE

Future Reserved Words
The following table contains keywords that may be reserved in future editions of SQL Server.

ABSOLUTE

ACTION

ADMIN

AFTER

AGGREGATE

ALIAS

ALLOCATE

ARE

ARRAY

ASSERTION

AT

BEFORE

BINARY

BIT

BLOB

BOOLEAN

BOTH

BREADTH

CALL

CASCADED

CAST

CATALOG

CHAR

CHARACTER

CLASS

CLOB

COLLATION

COMPLETION

CONNECT

CONNECTION

CONSTRAINTS

CONSTRUCTOR

CORRESPONDING

CUBE

CURRENT_PATH

CURRENT_ROLE

CYCLE

DATA

DATE

DAY

DEC

DECIMAL

(Continued)

bapp01.indd   545bapp01.indd   545 10/31/08   6:12:08 PM10/31/08   6:12:08 PM



Appendix A: Command Syntax Reference

546

DEFERRABLE

DEFERRED

DEPTH

DEREF

DESCRIBE

DESCRIPTOR

DESTROY

DESTRUCTOR

DETERMINISTIC

DICTIONARY

DIAGNOSTICS

DISCONNECT

DOMAIN

DYNAMIC

EACH

END-EXEC

EQUALS

EVERY

EXCEPTION

EXTERNAL

FALSE

FIRST

FLOAT

FOUND

FREE

GENERAL

GET

GLOBAL

GO

GROUPING

HOST

HOUR

IGNORE

IMMEDIATE

INDICATOR

INITIALIZE

INITIALLY

INOUT

INPUT

INT

INTEGER

INTERVAL

ISOLATION

ITERATE

LANGUAGE

LARGE

LAST

LATERAL

LEADING

LESS

LEVEL

LIMIT

LOCAL

LOCALTIME

LOCALTIMESTAMP

LOCATOR

MAP

MATCH

MINUTE

MODIFIES

MODIFY

MODULE

MONTH

NAMES

NATURAL

NCHAR

NCLOB

NEW

NEXT

NO

NONE

NUMERIC

OBJECT

OLD

ONLY

OPERATION

ORDINALITY

OUT

OUTPUT

PAD

PARAMETER

PARAMETERS

PARTIAL

PATH

POSTFIX

PREFIX

PREORDER

bapp01.indd   546bapp01.indd   546 10/31/08   6:12:09 PM10/31/08   6:12:09 PM



Appendix A: Command Syntax Reference

547

PREPARE

PRESERVE

PRIOR

PRIVILEGES

READS

REAL

RECURSIVE

REF

REFERENCING

RELATIVE

RESULT

RETURNS

ROLE

ROLLUP

ROUTINE

ROW

ROWS

SAVEPOINT

SCROLL

SCOPE

SEARCH

SECOND

SECTION

SEQUENCE

SESSION

SETS

SIZE

SMALLINT

SPACE

SPECIFIC

SPECIFICTYPE

SQL

SQLEXCEPTION

SQLSTATE

SQLWARNING

START

STATE

STATEMENT

STATIC

STRUCTURE

TEMPORARY

TERMINATE

THAN

TIME

TIMESTAMP

TIMEZONE_HOUR

TIMEZONE_MINUTE

TRAILING

TRANSLATION

TREAT

TRUE

UNDER

UNKNOWN

UNNEST

USAGE

USING

VALUE

VARCHAR

VARIABLE

WHENEVER

WITHOUT

WORK

WRITE

YEAR

ZONE

bapp01.indd   547bapp01.indd   547 10/31/08   6:12:09 PM10/31/08   6:12:09 PM



bapp01.indd   548bapp01.indd   548 10/31/08   6:12:10 PM10/31/08   6:12:10 PM



      B    
System Variables and 
Functions Reference          

 Variables and functions are often used interchangeably. SQL Server Books Online documents 
some variables as though they were functions. However, it ’ s important to note that variables are 
used in expressions to obtain a value, whereas functions process specific business logic and may 
return a value. Many functions accept input arguments. 

 This appendix, specific for SQL Server 2008, is not meant to be a comprehensive reference, but to 
provide a convenient guide to many functions and variables. For complete details and samples of 
usage, consult Books Online.  

  System Global Variables 
 The system - supplied global variables are organized into the following categories: 

  Configuration  

  Cursor  

  System  

  System Statistics    

❑

❑

❑

❑

bapp02.indd   549bapp02.indd   549 10/31/08   6:12:46 PM10/31/08   6:12:46 PM



Appendix B:        System Variables and Functions Reference  

550

  Configuration 

     Variable   
   Return 
Type      Description   

     @@DATEFIRST      tinyint     The system setting for the first day of the week.   

1  = Monday   
2  = Tuesday   
3  = Wednesday   
4  = Thursday   
5  = Friday
   6  = Saturday   
7  = Sunday  

U.S. default is  7 .  

     @@DBTS      varbinary     The last assigned unique TimeStamp value.  

     @@LANGID      smallint     The current language ID for the server.
  0 = US English  
1 = German
  2 = French  . . .  and so on.  

     @@LANGUAGE      nvarchar     The current language string for the server. Returns 
the language name in the native language form 
(us_english, Deutsch, Fran ç ais, Dansk, Espa ñ ol, 
Italiano, and so on).  

     @@LOCK_TIMEOUT      int     Lock time - out setting for the current session in 
milliseconds.  

     @@MAX_CONNECTIONS      int     The maximum concurrent connections setting for the 
server.  

     @@MAX_PRECISION      tinyint     The maximum precision setting for  decimal  and 
 numeric  types. Default is 38 significant digits (total to 
the left and right of the decimal point).  

     @@MICROSOFTVERSION      int     An internal tracking number used by product 
development and support groups at Microsoft.  

     @@NESTLEVEL      int     The current number of nested stored procedure or 
trigger calls. This may be used to limit cascading and/
or recursive calls prior to reaching the system limit of 
32 recursive calls.  

bapp02.indd   550bapp02.indd   550 10/31/08   6:12:47 PM10/31/08   6:12:47 PM



Appendix B:        System Variables and Functions Reference  

551

     Variable   
   Return 
Type      Description   

     @@OPTIONS      int     The set of query - processing options for the current 
user session. Multiple options are combined 
mathematically using bitwise addition (that is,   
If SELECT @@OPTIONS  &  (512 + 8192)  >  0  . . .).  

Any combination of option values can be added to 
determine whether all these options are enabled.  

Option values:   

1 = DISABLE_DEF_CNST_CHK

    2 = IMPLICIT_TRANSACTIONS    
4 = CURSOR_CLOSE_ON_COMMIT    
8 = ANSI_WARNINGS    
16 = ANSI_PADDING    
32 = ANSI_NULLS    
64 = ARITHABORT    
128 = ARITHIGNORE    
256 = QUOTED_IDENTIFIER    
512 = NOCOUNT    
1024 = ANSI_NULL_DFLT_ON    
2048 = ANSI_NULL_DFLT_OFF

    4096 = CONCAT_NULL_YIELDS_NULL    
8192 = NUMERIC_ROUNDABORT    
16384 = XACT_ABORT   

     @@REMSERVER      nvarchar     Name of the remote server if executing remote 
procedures.  

     @@SERVERNAME      nvarchar     Name of the current server.  

     @@SERVICENAME      nvarchar     Name of the Windows service for the current SQL 
Server instance.  

     @@SPID      int     The process/session ID assigned to the current user ’ s 
connection.  

     @@TEXTSIZE      int     The current value of the  TEXTSIZE  option for a query 
returning data from a  text ,  ntext , or  image  type. The 
default setting is  4096  (4KB).  

     @@VERSION      nvarchar     A text string with detailed information about the 
current version of SQL Server. This includes the major 
version, build number, service pack, and copyright 
information.  

bapp02.indd   551bapp02.indd   551 10/31/08   6:12:47 PM10/31/08   6:12:47 PM



Appendix B:        System Variables and Functions Reference  

552

  Cursor 

     Variable      Return Type      Description   

     @@CURSOR_ROWS      int     The row count for the currently open cursor. Used for 
explicit cursor processing following an  OPEN  command. 
If an asynchronous cursor is opened, the row count will 
not be known and this variable returns   – 1 .  

     @@FETCH_STATUS      int     Used as a flag to indicate whether the open cursor has 
navigated past the last row (EOF).  

Status values include:

   0  = Normal fetch operation    
– 1  = Fetch past last row or unsuccessful    
– 2  = Fetched row has been removed  

  System 

     Variable      Return Type      Description   

     @@ERROR      int     Value of the most recent error within the current user session. 
Error numbers (from the sysmessages table) are used to 
determine the status of an error condition.  

     @@IDENTITY      numeric     Value of the most recently generated identity value. This is 
typically the result of an identity column insert.  

     @@ROWCOUNT      int     Number of rows affected by, or returned by, the last 
operation.  

     @@TRANCOUNT      int     Number of currently active transactions. Used to determine 
the number of nested transactions. The maximum number of 
nested transactions is 11.  

bapp02.indd   552bapp02.indd   552 10/31/08   6:12:47 PM10/31/08   6:12:47 PM



Appendix B:        System Variables and Functions Reference  

553

  System Statistical 

     Variable      Return Type      Description   

     @@CONNECTIONS      int     The total connects that have been opened or attempted 
since the SQL Server service was last started.  

     @@CPU_BUSY      int     The total time in milliseconds that the server has not 
been idle since the SQL Server service was last started.  

     @@IDLE      int     The total time in milliseconds that the server has been 
idle since the SQL Server service was last started.  

     @@IO_BUSY      int     The total time in milliseconds that the server has 
performed physical disk I/O operations since the SQL 
Server service was last started.  

     @@PACK_RECEIVED      int     The total number of network packets received by the 
server since the SQL Server service was last started.  

     @@PACK_SENT      int     The total number of network packets sent by the server 
since the SQL Server service was last started.  

     @@PACKET_ERRORS      int     The total number of network packet errors that have 
occurred since the SQL Server service was last started.  

     @@TIMETICKS      int     The number of milliseconds per CPU tick. Each tick 
takes 1/32 of a second.  

     @@TOTAL_ERRORS      int     The total number of disk read/write errors that have 
occurred, while performing physical disk I/O, since the 
SQL Server service was last started.  

     @@TOTAL_READ      int     The total number of physical disk reads that have 
occurred since the SQL Server service was last started.  

     @@TOTAL_WRITE      int     The total number of physical disk writes that have 
occurred since the SQL Server service was last started.  

  System Functions 
 The system functions are organized into the following categories: 

  Aggregation  

  Checksum  

  Conversion  

  Cursor  

❑

❑

❑

❑

bapp02.indd   553bapp02.indd   553 10/31/08   6:12:48 PM10/31/08   6:12:48 PM



Appendix B:        System Variables and Functions Reference  

554

  Date and Time  

  Image/text  

  Mathematical  

  Metadata  

  Ranking  

  Security  

  System  

  System statistics    

  Aggregation 

     Function      Return Type      Description   

     AVG()     ( numeric   —   
depends on input)  

  Calculates the arithmetic average for a range of 
column values. Internally, this function counts rows 
and calculates the sum for all non - null values in the 
column and then divides the sum by the count. 
Returns the same  numeric  data type as the column.  

     COUNT()      int     Counts all non - null values for a column. The row 
count is returned using  COUNT(*)  regardless of null 
values.  

     COUNT_BIG()      bigint     Same as  COUNT()  but returns a  bigint  type rather 
than an  int  type.  

     GROUPING()      int     Used in conjunction with  ROLLUP  and  CUBE  
operations in a  GROUP BY  query, this function returns 
 0  to indicate that it is on a detail row and  1  to 
indicate a summary row.  

     MAX()     ( numeric  or  date   — 
 depends on input)  

  Returns the largest value in a range of column 
values.  

     MIN()     ( numeric  or  date   — 
 depends on input)  

  Returns the smallest value in a range of column 
values.  

     STDEV()      float     Calculates the standard deviation for a range of non -
 null column values.  

     STDEVP()      float     Calculates the standard deviation over a population 
for a range of non - null column values.  

❑

❑

❑

❑

❑

❑

❑

❑

bapp02.indd   554bapp02.indd   554 10/31/08   6:12:48 PM10/31/08   6:12:48 PM



Appendix B:        System Variables and Functions Reference  

555

     Function      Return Type      Description   

     SUM()     ( numeric   —   
depends on input)  

  Calculates the arithmetic sum for a range of non - null 
column values. If all values are NULL, returns 
NULL.  

     VAR()      float     Calculates the statistical variance for a range of non -
 null column values. If all values are NULL, returns 
NULL.  

     VARP()      float     Calculates the statistical variance over a population 
for a range of non - null column values. If all values 
are NULL, returns NULL.  

  Checksum 

     Function      Return Type      Description   

     CHECKSUM()      int     Calculates a checksum value for a row or range of 
column values. This function accepts a single column 
name, a comma - delimited list of columns, or an 
asterisk (*) to use the entire row. Accepts columns of 
all types except  text ,  ntext ,  image ,  cursor , and 
 sql_variant . The returned value itself is 
meaningless but will consistently yield the same result 
for a column or row unless a value changes. String 
comparisons are case - insensitive.  

     BINARY_CHECKSUM()      int     Calculates a checksum value for a row or range of 
column values. This function accepts a single column 
name, a comma - delimited list of columns, or an 
asterisk (*) to use the entire row. Accepts columns of 
all types except  text ,  ntext ,  image ,  cursor , and 
 sql_variant . The returned value itself is 
meaningless but will consistently yield the same result 
for a column or row unless a value changes. String 
comparisons are case - sensitive.  

     CHECKSUM_AGG()      int     Calculates a single checksum value for a range of  int  
type column values. When applied to the result of the 
 CHECKSUM()  or  BINARY_CHECKSUM()  functions, 
returns a scalar (single value) checksum value for the 
entire range of values. Can be used to detect value 
changes over a table or range of column values.  

bapp02.indd   555bapp02.indd   555 10/31/08   6:12:49 PM10/31/08   6:12:49 PM



Appendix B:        System Variables and Functions Reference  

556

  Conversion 

     Function      Return Type      Description   

     CAST()     (Returns a specified type)    Converts a value to a specified data type.   

CAST(the_value AS the_type)   

     CONVERT()     (Returns a specified type)    Converts (and optionally formats) a value to a 
specified data type. Formatting can be applied to 
 numeric  and  date  types.   

CONVERT(the_type, the_value)   or

   CONVERT(the_type, the_value, 
format_number)   

  Cryptographic 

     Function      Return Type      Description   

     AsymKey_ID()      int     Returns the ID of an asymmetric key.  

     Cert_ID      int     Returns the ID of a certificate.  

     CertProperty()      sql_variant     Returns the value of a specified 
certificate property.  

     DecryptByAsmKey()      varbinary     Decrypts data with an asymmetric key.  

     DecryptByCert()      varbinary     Decrypts data with the private key of a 
certificate.  

     DecryptByKey()      varbinary     Decrypts data by using a symmetric key.  

     DecryptByKeyAutoCert()      varbinary     Decrypts by using a symmetric key that 
is automatically decrypted with a 
certificate.  

     DecryptByPassPrase()      varbinary     Decrypts data that was encrypted with 
a passphrase.  

     EncryptByAsmKey()      varbinary     Encrypts data with an asymmetric key.  

bapp02.indd   556bapp02.indd   556 10/31/08   6:12:49 PM10/31/08   6:12:49 PM



Appendix B:        System Variables and Functions Reference  

557

     Function      Return Type      Description   

     EncryptByCert()      varbinary     Encrypts data with the public key of a 
certificate.  

     EncryptByKey()      varbinary     Encrypts a string of text using a 
uniqueidentifier key.  

     EncryptByPassPhrase()      varbinary     Encrypts a string of text using a 
passphrase.  

     Key_GUID()      uniqueidentifier     Returns the global unique identifier of a 
named encryption key.  

     Key_ID()      int     Returns the integer ID of a named 
symmetric key.  

     SignByAsymKey()      varbinary     Applies a digital signature generated by 
an asymmetrical key to a block of plain 
text.  

     SignByCert()      varbinary     Applies a digital signature generated by 
a certificate key to a block of plain text.  

     VerifySignedByAsmKey()      int     Verifies that text signed by an 
asymmetrical key has not been altered.  

     VerifySignedByCert()      int     Verifies that text signed by a certificate 
has not been altered.  

  Cursor 

     Function      Return Type      Description   

     CURSOR_STATUS()      smallint     Returns the status of a previously opened cursor.   

1  = Open and populated   
0  = Contains no records    
– 1  = Closed    
– 2  = No cursor or deallocated    
– 3  = Doesn ’ t exist  

bapp02.indd   557bapp02.indd   557 10/31/08   6:12:49 PM10/31/08   6:12:49 PM



Appendix B:        System Variables and Functions Reference  

558

  Date and Time 

     Function      Return Type      Description   

     CURRENT_TIMESTAMP()      datetime     Returns the current date and time and is 
synonymous with the  GETDATE()  
function. It exists for ANSI - SQL 
compliance.  

     DATEADD()      datetime  or 
 smalldatetime  
(depending on input 
type)  

  Returns a date value ( datetime  or 
 smalldatetime ) from a date value 
added by  X  number of date interval 
units. Units may be  Year ,  Quarter , 
 Month ,  DayOfYear ,  Day ,  Hour ,  Minute , 
 Second , or  Millisecond .  

     DATEDIFF()      int     Returns an integer representing the 
difference between two date values 
( datetime  or  smalldatetime ) in 
specified date interval units. Units may 
be  Year ,  Quarter ,  Month ,  DayOfYear , 
 Day ,  Hour ,  Minute ,  Second , or 
 Millisecond .  

     DATENAME()      nvarchar     Similar to  DATEPART() . Returns a 
character string representing the 
specified  datepart  for a date value. The 
 datepart  parameter is the same as the 
 DATEDIFF()  interval and includes  Year , 
 Quarter ,  Month ,  DayOfYear ,  Day ,  Hour , 
 Minute ,  Second , or  Millisecond .  

     DATEPART()      int     Similar to  DATENAME() . However, it 
returns the integer value representing the 
specified  datepart  for a date value. 
The  datepart  parameter is the same 
as the  DATEDIFF()  interval and includes 
 Year ,  Quarter ,  Month ,  DayOfYear ,  Day , 
 Hour ,  Minute ,  Second , or  Millisecond .  

     DAY()      int     Returns the day date part for a date as an 
integer.  

     GETDATE()      datetime     Returns the current date and time value.  

     GETUTCDATE()      datetime     Returns the current date and time value 
for the Universal Time Zone (UTC), 
based on the server ’ s time zone settings. 
UTC is the same as Greenwich Mean 
Time (GMT).  

bapp02.indd   558bapp02.indd   558 10/31/08   6:12:50 PM10/31/08   6:12:50 PM



Appendix B:        System Variables and Functions Reference  

559

     Function      Return Type      Description   

     ISDATE()      int     Returns a flag to indicate whether a 
specified value is, or is capable of being 
converted to, a date value.  

     MONTH()      int     Returns the month part for a date as an 
integer.  

     SWITCHOFFSET      datetimeoffset 
(Date)   

  Returns and/or modifies the UTC offset 
for a time zone.  

     SYSDATETIME      datetime     Returns the current database system 
timestamp.  

     SYSDATETIMEOFFSET      datetimeoffset 
(Date)   

  Returns the current database time offset.  

     SYSUTCDATETIME      datetime2     Returns the current database system 
UTC timestamp.  

     TODATETIMEOFFSET      datetimeoffset     Modifies the time zone offset for a date 
and time.  

     YEAR()      int     Returns the year part for a date as an 
integer.  

  Image/Text 

     Function      Return Type      Description   

     PATINDEX()      bigint  or  int  
(depending on input 
type)  

  Returns the character index (first position) for 
a character string pattern occurring within another 
character string. Similar to  CHARINDEX()  but 
supports wildcards. Returns  bigint  for 
 varchar(max)  and  nvarchar(max)  type strings; 
otherwise, returns  int .  

     TEXTPTR()      varbinary     Returns a  varbinary  text pointer handle to be used 
with the  READTEXT() ,  WRITETEXT() , and 
 UPDATETEXT()  functions. Used for performing 
special operations on  text ,  ntext , and  image  type 
column data.  

     TEXTVALID()      int     Verifies a  varbinary  text pointer value, obtained 
from the  TEXTPTR()  function.  

bapp02.indd   559bapp02.indd   559 10/31/08   6:12:50 PM10/31/08   6:12:50 PM



Appendix B:        System Variables and Functions Reference  

560

  Error Handling 

     Function      Return Type      Description   

     ERROR_LINE      int     Returns the line number of the last error when called in 
a  CATCH  block.  

     ERROR_MESSAGE      nvarchar     Returns the full error text for the last error when called 
in a  CATCH  block.  

     ERROR_NUMBER      int     Returns the system -  or user - defined error number for 
the last error when called in a  CATCH  block.  

     ERROR_PROCEDURE      nvarchar     Returns the name of the stored procedure or function 
that raised the last error when called in a  CATCH  block.  

     ERROR_SEVERITY      int     Returns the system -  or user - defined severity value for 
the last error when called in a  CATCH  block.  

     ERROR_STATE      int     Returns the state number for the last error when called 
in a  CATCH  block.  

     XACT_STATE()      smallint     Tests the commitability of the current transaction within 
a  CATCH  block. Returns   - 1  if the transaction is 
uncommittable.  

  Mathematical 

     Function      Return Type      Description   

     ABS()     ( numeric   —  same type as 
input)  

  Returns the absolute value for a numeric value.  

     ACOS()      float     Computes the arccosine (an angle) in radians.  

     ASIN()      float     Computes the arcsine (an angle) in radians.  

     ATAN()      float     Computes the arctangent (an angle) in radians.  

     ATN2()      float     Computes the arctangent of two values in radians.  

     CEILING()     ( numeric   —  same type as 
input)  

  Returns the smallest integer value that is greater 
than or equal to a number.  

     COS()      float     Computes the cosine of an angle in radians.  

bapp02.indd   560bapp02.indd   560 10/31/08   6:12:51 PM10/31/08   6:12:51 PM



Appendix B:        System Variables and Functions Reference  

561

     Function      Return Type      Description   

     COT()      float     Computes the cotangent of an angle in radians.  

     DEGREES()     ( numeric   —  same type as 
input)  

  Converts an angle from radians to degrees.  

     EXP()      float     Returns the natural logarithm raised to a specified 
exponent. Result is in exponential form.  

     FLOOR()     ( numeric   —  same type as 
input)  

  Returns the largest integer value that is less than or 
equal to a number.  

     LOG()      float     Calculates the natural logarithm of a number using 
base - 2 (binary) numbering.  

     LOG10()      float     Calculates the natural logarithm of a number using 
base - 10 numbering.  

     PI()      float     Returns the value for PI.  

     POWER()      float     Raises a value to a specified exponent as 
 FLOAT(the_value, the_exponent) .  

     RADIANS()     ( numeric   —  same type as 
input)  

  Converts an angle from degrees to radians.  

     RAND()      float     Returns a fractional number based on a 
randomizing algorithm. Accepts an optional seed 
value.  

     ROUND()     ( numeric   —  same type as 
input)  

  Rounds a fractional value to a specified precision.  

     SIGN()      float     Returns   – 1  or  1  depending on whether a single 
argument value is negative or positive.  

     SIN()      float     Computes the sine of an angle in radians.  

     SQRT()      float     Returns the square root of a value.  

     SQUARE()      float     Returns the square (n 2 ) of a value.  

     TAN()      float     Computes the tangent of an angle in radians.  

bapp02.indd   561bapp02.indd   561 10/31/08   6:12:51 PM10/31/08   6:12:51 PM



Appendix B:        System Variables and Functions Reference  

562

  Metadata 

     Function      Return Type      Description   

     ASSEMBLYPROPERTY()      sql_variant     Returns descriptive information about a 
specified assembly property.  

     COL_LENGTH()      int     Returns the length of a column from the 
column name.  

     COL_NAME()      sysname 
(nvarchar)   

  Returns the name of a column from the 
object ID.  

     COLUMNPROPERTY()      int     Returns a flag to indicate the state of a 
column property.  

     DATABASEPROPERTY()      int     This function is maintained for 
backward compatibility with older SWL 
Server versions. Returns a flag to 
indicate the state of a database 
property.  

     DATABASEPROPERTYEX()      sqlvariant     Returns a numeric flag or string to 
indicate the state of a database 
property.  

     DB_ID()      smallint     Returns the database ID from the 
database name.  

     DB_NAME()      nvarchar     Returns the database name from the 
database ID.  

     FILE_ID()      smallint     Returns the file ID from the file name.  

     FILEGROUP_ID()      int     Returns the ID for a file group name.  

     FILEGROUP_NAME()      nvarchar(128)     Returns the file group name for a file 
group ID.  

     FILEGROUPPROPERTY()      int     Returns a specified file group property 
value for a file group name and 
property name.  

     FILEPROPERTY()      int     Returns a specified file property value 
for a filename and property name.  

     FILE_NAME()      nvarchar     Returns the filename from the file ID.  

     fn_listextendedproperty()      table     Returns a table object populated with 
extended property names and their 
settings.  

bapp02.indd   562bapp02.indd   562 10/31/08   6:12:52 PM10/31/08   6:12:52 PM



Appendix B:        System Variables and Functions Reference  

563

     Function      Return Type      Description   

     FULLTEXTCATALOGPROPERTY()      int     Returns a flag to indicate the state of a 
full - text catalog property.  

     FULLTEXTSERVICEPROPERTY()      int     Returns a flag to indicate the state of a 
full - text service property.  

     INDEX_COL()      nvarchar     Returns the name of a column 
contained in a specified index, by table, 
index, and column ID.  

     INDEXKEY_PROPERTY()      int     Returns a flag to indicate the state of an 
index key property.  

     INDEXPROPERTY()      int     Returns a flag indicating the state of an 
index property.  

     OBJECT_ID()      int     Returns an object ID from the object 
name.  

     OBJECT_NAME()      nchar     Returns an object name from the 
object ID.  

     OBJECTPROPERTY()      int     Returns property information from 
several different types of objects. It is 
advisable to use a function designed to 
query specific object types, if possible. 
Returns a flag indicating the state of an 
object property.  

     OBJECTPROPERTYEX()      sql_variant     Similar to  OBJECTPROPERTY()  but 
returns descriptive property values.  

     SCHEMA_ID()      int     Returns the schema ID for a schema 
name.  

     SCHEMA_NAME()      sysname 
(nvarchar)   

  Returns the schema name for a 
schema ID.  

     SQL_VARIANT_PROPERTY()      sql_variant     Returns the base data type and other 
information about a sql_variant value.  

     TYPE_ID()      int     Returns the ID for a specified data type 
name.  

     TYPE_NAME()      sysname     Returns the data type name of a 
specified type ID.  

     TYPEPROPERTY()      int     Returns information about data type 
properties.  

bapp02.indd   563bapp02.indd   563 10/31/08   6:12:52 PM10/31/08   6:12:52 PM



Appendix B:        System Variables and Functions Reference  

564

  Ranking 

     Function      Return Type      Description   

     DENSE_RANK()      bigint     Returns a running incremental value based on an  ORDER BY  
clause passed into the function. Doesn ’ t preserve the ordinal 
position of the row in the list if there are ties.  

     NTILE(n)      bigint     Returns an evenly distributed ranking value, dividing the 
result into a finite number of ranked groups.  

     RANK()      bigint     Returns a running incremental value based on an  ORDER BY  
clause passed into the function. Preserves the ordinal 
position of the row in the list with duplicate values for ties 
followed by subsequent skips.  

     ROW_NUMBER()      bigint     Returns a running incremental value based on an  ORDER BY  
clause passed into the function.  

  Rowset 

     Function      Return Type      Description   

     CONTAINSTABLE()      table     Returns a table object that can be used in a join 
operation. Each row in this table contains a Key column 
value, which is the primary key value for qualifying 
rows of the queried table. This key value is useful for 
joining the resulting table object back to the physical 
table to obtain column values. Two arguments are 
passed: the name of the indexed table and a search 
string containing words to be matched.  

     FREETEXTTABLE()      table     Similar to  CONTAINSTABLE()  but the search condition 
can match inexact phrasing rather than exact words.  

     OPENDATASOURCE()      table     Used to open an ad - hoc connection to a remote OLE DB 
data source and return a table reference to a database 
object. Arguments include the name of a registered OLE 
DB provider, a connection string and the four - part 
name of a database object.  

     OPENQUERY()      table     Used to reference an existing linked server and return 
the results of a query. Arguments include the name 
of the linked server and a query string.  

bapp02.indd   564bapp02.indd   564 10/31/08   6:12:52 PM10/31/08   6:12:52 PM



Appendix B:        System Variables and Functions Reference  

565

     Function      Return Type      Description   

     OPENROWSET()      table     Used to connect to a remote OLE DB data source and 
return the results of a query. Arguments include the 
name of a registered OLE DB provider, a connection 
string, and a query string.  

     OPENXML()      table     Transforms an XML document string into a rowset 
table. The table structure conforms to the standard 
 “ edge ”  table format. The  sp_xml_preparedocument  
system stored procedure must be called first to obtain a 
document handle ID, which is then passed to this 
function, along with the document text.  

  Security 

     Function      Return Type      Description   

     fn_trace_
geteventinfo()   

   table     Returns a  table  type populated with event 
information for a specified trace ID.  

     fn_trace_
getfilterinfo()   

   table     Returns a  table  type populated with information 
about filters applied to a trace, for a specified 
trace ID.  

     fn_trace_getinfo()      table     Returns a  table  type populated with trace 
information for a specified trace ID.  

     fn_trace_gettable()      table     Returns a  table  type populated with file 
information for a specified trace ID.  

     HAS_DBACCESS()      int     Returns a flag indicating whether the current user 
has access to a specified database.  

     IS_MEMBER()      int     Returns a flag indicating whether the current user 
is a member of a Windows group or SQL Server 
role.  

     IS_SRVROLEMEMBER()      int     Returns a flag indicating whether the current user 
is a member of a database server role.  

     ORIGINAL_LOGIN()     sysname 
( varchar )  

  Returns the first user or login name for the first 
system login in the current session context.  

     SUSER_SID()      varbinary     Returns the security ID for a specified username.  

     SUSER_SNAME()      nvarchar     Returns the username for a specified security ID.  

     USER_ID()      int     Returns a username for a specified user ID.  

     fn_trace_
geteventinfo()   

   table     Returns a  table  type populated with event 
information for a specified trace ID.  

bapp02.indd   565bapp02.indd   565 10/31/08   6:12:53 PM10/31/08   6:12:53 PM



Appendix B:        System Variables and Functions Reference  

566

  String Manipulation 

     Function      Return Type      Description   

     ASCII()      int     Returns the numeric ASCII character value 
for a standard character.  

     CHAR()      char     Returns the ASCII character for a numeric 
ASCII character value.  

     CHARINDEX()      int     Similar to  PATINDEX() , returns the index 
(character position) of the first occurrence 
of a character string within another 
character string.  

     DIFFERENCE()      int     Returns the numeric difference between 
two character strings based on the 
consensus Soundex values.  

     LEFT()      varchar  or  nvarchar     Returns the left - most X characters from a 
character string.  

     LEN()      int     Returns the length of a character string.  

     LOWER()      varchar  or  nvarchar     Converts a character string to all lowercase 
characters.  

     LTRIM()      varchar  or  nvarchar     Removes leading spaces from the left side 
of a character string.  

     NCHAR()      nchar     As with the  CHAR()  function, returns the 
Unicode character for a numeric character 
value.  

     PATINDEX()      int  or  bigint     Returns the index (first character position) 
for the first occurrence of characters 
matching a specified pattern within 
another character string. Wildcard 
characters may be used.  

     QUOTENAME()      nvarchar     Returns a character string with square 
brackets around the input value. Used 
with SQL Server object names so they can 
be passed into an expression.  

     REPLACE()      varchar  or  nvarchar     Returns a character string with all 
occurrences of one character or substring 
replaced with another character or 
substring.  

bapp02.indd   566bapp02.indd   566 10/31/08   6:12:53 PM10/31/08   6:12:53 PM



Appendix B:        System Variables and Functions Reference  

567

     Function      Return Type      Description   

     REPLICATE()      varchar  or  nvarchar     Returns a character string consisting of a 
specified number of repeated characters.  

     REVERSE()      varchar  or  nvarchar     Returns a character string with all 
characters in reverse order.  

     RIGHT()      varchar  or  nvarchar     Returns a specific number of characters 
from the right - most side of a character 
string.  

     RTRIM()      varchar  or  nvarchar     Removes trailing spaces from the right 
side of a character string.  

     SOUNDEX()      varchar     Returns a four - character alphanumeric 
string representing the approximate 
phonetic value of a word, based on the 
U.S. Census Soundex algorithm.  

     SPACE()      char     Returns a character string consisting of a 
specified number of spaces.  

     STR()      char     Returns a character string value that 
represents a converted  numeric  data type. 
Three arguments include the value, the 
overall length, and the number of decimal 
positions.  

     STUFF()     (character or binary types  — 
 depending on input)  

  Returns a character string with one string 
placed into another string at a given 
position and for a specified length.  

     SUBSTRING()     (character or binary types  — 
 depending on input)  

  Returns a portion of a character string 
from a specified position and for a 
specified length.  

     UNICODE()      int     Returns the numeric Unicode character 
value for a specified character.  

     UPPER()      varchar  or  nvarchar     Converts a character string to all 
uppercase characters.  

bapp02.indd   567bapp02.indd   567 10/31/08   6:12:54 PM10/31/08   6:12:54 PM



Appendix B:        System Variables and Functions Reference  

568

  System 

     Function      Return Type      Description   

     APP_NAME()      nvarchar     Each session is associated with an 
application name, passed to the database 
server by explicit program code or by the 
driver or data provider.  

     COALESCE()     (same type as 
input)  

  Returns the first non - null value from a 
comma - delimited list of expressions.  

     COLLATIONPROPERTY()      sql_variant     Returns the value of a specific property 
for a specified collation. Properties 
include  CodePage ,  LCID , and 
 ComparisonStyle .  

     COLUMNS_UPDATED      varbinary     Used only within an Insert or Update 
trigger. Returns a bitmap of modified 
column flags for the current table. Bytes 
are left - to - right with the bits in each byte 
ordered right - to - left, representing the 
state (0=unmodified, 1=modified) of each 
column.  

     CURRENT_USER()     sysname ( varchar )    Returns the name of the current user and 
is synonymous with the  USER_NAME()  
function.  

     DATALENGTH()      int     Returns the number of bytes used to 
store or handle a value. For ANSI string 
types, this will return the same value as 
the  LEN()  function, but for other data 
types, the value may be different.  

     fn_Get_SQL()      table     Returns a  table  type populated with the 
full text of a query based on a process 
handle. This value is stored in the 
sysprocesses table referencing a SPID. 
This function was introduced with SQL 
Server 2000 SP3.  

     fn_HelpCollations()      table     Returns a  table  type populated with a 
list of collations supported by the current 
version of SQL Server.  

     fn_ServerSharedDrives()      table     Returns a  table  type populated with a 
list of drives shared by the server.  

     fn_VirtualFileStats()      table     Returns a  table  type populated with 
I/O statistics for database files, including 
log files.  

bapp02.indd   568bapp02.indd   568 10/31/08   6:12:54 PM10/31/08   6:12:54 PM



Appendix B:        System Variables and Functions Reference  

569

     Function      Return Type      Description   

     FORMATMESSAGE()      nvarchar     Returns an error message from the 
sysmessages table for a specified message 
number and comma - delimited list of 
parameters.  

     GETANSINULL()      int     Returns the nullability setting for the 
database, according to the  ANSI_NULL_
DFLT_ON  and  ANSI_NULL_DFLT_OFF  
database settings.  

     HOST_ID()      char     Returns the workstation ID for the 
current session.  

     HOST_NAME()      nchar     Returns the workstation name for the 
current session.  

     IDENT_CURRENT()      sql_variant     Returns the last identity value generated 
for a specified table regardless of the 
session and scope.  

     IDENT_INCR()      numeric     Returns the increment value specified in 
the creation of the last identity column.  

     IDENT_SEED()      numeric     Returns the seed value specified in the 
creation of the last identity column.  

     IDENTITY()     (same as input)    Used in a  SELECT     . . .     INTO  statement to 
insert an explicitly generated identity 
value into a column.  

     ISNULL()     (same as input)    Determines whether a specified value is 
null and then returns a provided 
replacement value.  

     ISNUMERIC()      int     Returns a flag to indicate whether a 
specified value is, or is capable of being 
converted to, a numeric value.  

     NEWID()      uniqueidentifier     Returns a newly generated 
 uniqueidentifier  type value. This is a 
128 - bit integer, globally unique value, 
usually expressed as an alphanumeric 
hexadecimal representation (such as 
89DE6247 - C2E2 - 42DB - 8CE8 -
 A787E505D7EA). This type is often used 
for primary key values in replicated and 
semi - connected systems.  

(continued)

bapp02.indd   569bapp02.indd   569 10/31/08   6:12:54 PM10/31/08   6:12:54 PM



Appendix B:        System Variables and Functions Reference  

570

     Function      Return Type      Description   

     NULLIF()     (same as input)    Returns a NULL value when two specified 
arguments have equivalent values.  

     PARSENAME()      nchar     Returns a specific part of a four - part 
object name.  

     ROWCOUNT_BIG()      bigint     Like the  @@ROWCOUNT  variable, returns 
the number of rows either returned by or 
modified by the last statement. Returns a 
 bigint  type.  

     SCOPE_IDENTITY()      sql_variant     Like the  @@IDENTITY  variable, returns 
the last Identity value generated but is 
limited to the current session and scope 
(stored procedure, batch, or module).  

     SERVERPROPERTY()      sql_variant     Returns a flag indicating the state of a 
server property. Properties include 
 Collation ,  Edition ,  Engine Edition , 
 InstanceName ,  IsClustered , 
 IsFullTextInstalled , 
 IsIntegratedSecurityOnly , 
 IsSingleUser ,  IsSyncWithBackup , 
 LicenseType ,  MachineName , 
 NumLicenses ,  ProcessID , 
 ProductLevel ,  ProductVersion , and 
 ServerName .  

     SESSION_USER      nchar     Returns the current username. Function 
is called without parentheses.  

     SESSIONPROPERTY()      sql_variant     Returns a flag indicating the state of a 
session property. Properties include 
 ANSI_NULLS ,  ANSI_PADDING ,  ANSI_
WARNINGS ,  ARITHABORT ,  CONCAT_NULL_
YIELDS_NULL ,  NUMERIC_ROUNDABORT , 
and  QUOTED_IDENTIFIER .  

     STATS_DATE()      datetime     Returns the date that statistics for a 
specified index were last updated.  

     SYSTEM_USER      nvarchar     Returns the current username. Function 
is called without parentheses.  

     USER_NAME()      nvarchar     Returns the username for a specified 
User ID.  

bapp02.indd   570bapp02.indd   570 10/31/08   6:12:55 PM10/31/08   6:12:55 PM



Appendix B:        System Variables and Functions Reference  

571

  System Statistical 

     Function      Return Type      Description   

     sys.dm_io_virtual_file_stats()      table     Returns a  table  type 
populated with I/O statistics 
for database files, including 
log files.  

     sys.dm_db_index_operational_stats()      table     Returns current I/O, locking, 
latching, and access method 
activity for each table or index 
in the database.  

     sys.dm_db_index_physical_stats()      table     Returns size and 
fragmentation information for 
the data and indexes of a 
specified table or view.  

     sys.dm_db_index_usage_stats()      rowset     Returns counts of different 
types of index operations and 
the time each type of 
operation was last performed.  

     sys.dm_db_missing_index_columns()      table     Returns information about 
database table columns that 
are missing an index.  

bapp02.indd   571bapp02.indd   571 10/31/08   6:12:55 PM10/31/08   6:12:55 PM



bapp02.indd   572bapp02.indd   572 10/31/08   6:12:56 PM10/31/08   6:12:56 PM



      C 
   System Stored Procedure 

Reference          

 This appendix is not meant to be all - inclusive. There are a few types of system stored procedures 
that are very rarely used in an ad   hoc fashion and then only by senior database administrators or 
programmers. As a result, this appendix intentionally omits inclusion of stored procedures 
affecting replication data warehouse data collection, notification services (2005 only), and spatial 
indexes. 

 SQL Server 2005 and SQL Server 2008 support the following system and extended stored 
procedures except where indicated.  

  Active Directory 
     Procedure      Description   

     sp_ActiveDirectory_Obj     Adds, updates, or removes the registration record of a 
SQL Server database in the Active Directory.  

     sp_ActiveDirectory_SCP     Adds, updates, or removes the registration record of a 
SQL Server instance in the Active Directory.  

bapp03.indd   573bapp03.indd   573 10/31/08   6:13:17 PM10/31/08   6:13:17 PM



Appendix C: System Stored Procedure Reference

574

  Catalog 
     Procedure      Description   

     sp_column_privileges     Returns column privileges for a table in the current session.  

     sp_column_privileges_ex     Returns column privileges for a table on a linked or remote 
server.  

     sp_columns     Returns column information for a table or view.  

     sp_columns_ex     Returns column information for a table or view on a linked or 
remote server.  

     sp_databases     Returns information about databases on the local server.  

     sp_fkeys     Returns foreign key information for a table.  

     sp_pkeys     Returns primary key information for a table.  

     sp_server_info     Returns server attributes for the server on a specified 
connection.  

     sp_special_columns     Returns columns used to uniquely identify a row (that is, 
primary key and unique constraints) and columns with 
programmatically updated values and defaults.  

     sp_sproc_columns     Returns column information for a stored procedure or user -
 defined function.  

     sp_statistics     Returns information about indexes and statistics for a table.  

     sp_stored_procedures     Returns information about all stored procedures matching a 
name or wildcard pattern.  

     sp_table_privileges     Returns information about permissions for a table or tables 
matching a wildcard pattern in the current session.  

     sp_table_privileges_ex     Returns information about permissions for a table or tables 
matching a wildcard pattern on a linked or remote server.  

     sp_tables     Returns information about all tables matching a name or 
wildcard pattern.  

bapp03.indd   574bapp03.indd   574 10/31/08   6:13:17 PM10/31/08   6:13:17 PM



Appendix C: System Stored Procedure Reference

575

  Change Data Capture (2008) 
     Procedure      Description   

    sp_cdc_add_job    Creates a change data capture cleanup or capture job in 
the current database.  

    sp_cdc_generate_wrapper_function    Generates scripts to create wrapper functions for the 
change data capture query functions that are available in 
SQL Server.  

    sp_cdc_change_job    Modifies the configuration of a change data capture 
cleanup or capture job in the current database.  

    sp_cdc_get_captured_columns    Returns change data capture metadata information for 
the captured source columns tracked by the specified 
capture instance.  

    sp_cdc_cleanup_change_table    Removes rows from the change table in the current 
database based on the specified  low_water_mark  value.  

    sp_cdc_get_ddl_history    Returns the data definition language (DDL) change history 
associated with the specified capture instance since change 
data capture was enabled for that capture instance.  

    sp_cdc_disable_db    Disables change data capture for the current database.  

    sp_cdc_help_change_data_capture    Returns the change data capture configuration for each 
table enabled for change data capture in the current 
database.  

    sp_cdc_disable_table    Disables change data capture for the specified source 
table and capture instance in the current database.  

    sp_cdc_help_jobs    Reports information about all change data capture 
cleanup or capture jobs in the current database.  

    sp_cdc_drop_job    Removes a change data capture cleanup or capture job 
from the current database.  

    sp_cdc_scan    Executes the change data capture log scan operation.  

    sp_cdc_enable_db    Enables change data capture for the current database.  

    sp_cdc_start_job    Starts a change data capture cleanup or capture job in the 
current database.  

    sp_cdc_enable_table    Enables change data capture for the specified source table 
in the current database.  

    sp_cdc_stop_job    Stops a change data capture cleanup or capture job in the 
current database.  

bapp03.indd   575bapp03.indd   575 10/31/08   6:13:18 PM10/31/08   6:13:18 PM



Appendix C: System Stored Procedure Reference

576

  Cursor Management 
     Procedure      Description   

     sp_cursor_list     Returns attributes and information about currently open 
cursor(s).  

     sp_describe_cursor     Returns attributes and information about a specific cursor.  

     sp_describe_cursor_columns     Returns information about columns used to populate a 
cursor.  

     sp_describe_cursor_tables     Returns information about tables used to populate a 
cursor.  

  Database Engine 
     Procedure      Description   

     sp_add_data_file_recover_
suspect_db   

  Adds a database file to a file group after a disk full error. 
Similar to  ALTER     DATABASE     ADD     FILE .  

     sp_add_log_file_recover_
suspect_db   

  Adds a transaction log file to a file group after a disk full 
error. Similar to  ALTER     DATABASE     ADD     LOG     FILE .  

     sp_addextendedproc     Adds and registers an extended stored procedure to the 
server metadata.  

     sp_addextendedproperty     Adds an extended property to the server metadata.  

     sp_addmessage     Adds a custom error message to the server messages 
metadata.  

     sp_addtype     Adds a user - defined data type to a database.  

     sp_addumpdevice     Adds a backup device (file, tape drive, or other device) to the 
server.  

     sp_altermessage     Modifies an existing error message (number, severity, 
category, or message text).  

     sp_attach_db     Attaches a database file to a SQL Server instance and makes 
it available as an active database.  

     sp_attach_single_file_db     Similar to  sp_attach_db  but only for single - file databases. 
Builds a new transaction log file.  

     sp_autostats     Returns or modifies the  UPDATE STATISTICS  setting for a 
table ’ s index or statistics in the current database.  

bapp03.indd   576bapp03.indd   576 10/31/08   6:13:18 PM10/31/08   6:13:18 PM



Appendix C: System Stored Procedure Reference

577

     Procedure      Description   

     sp_bindefault     Associates a defined default with a table ’ s column as a 
shared default.  

     sp_bindrule     Associates a defined rule with a table ’ s column as a default 
check constraint.  

     sp_bindsession     Allows multiple connections to participate in a single 
transaction by associating them to an established session.  

     sp_certify_removable     Verifies (certifies) that a database may be actively used on 
removable media.  

     sp_configure     Returns or modifies server configuration settings.  

     sp_create_removable     Creates a set of files and a new database to be used on 
removable media.  

     sp_createstats     Generates statistics for all tables and candidate columns in 
the current database.  

     sp_cycle_errorlog     Closes the current error log and initiates a new error log with 
a default name and settings (as if for a server restart).  

     sp_datatype_info     Returns detailed information about all current data types or 
information for a specific data type (system and user - defined 
data types).  

     sp_dbcmptlevel     Sets the SQL Server version database compatibility level. 
Setting the level to an older version number disables certain 
product features to emulate the capabilities of an older SQL 
Server version.  

     sp_dboption     Sets user database options similar to those set using  ALTER 
DATABASE .  

     sp_dbremove     Removes a database and associated files.  

     sp_delete_backuphistory     Removes backup history information for a database.  

     sp_depends     Lists the dependent objects for a database object.  

     sp_detach_db     Detaches a database ’ s file(s) from the server.  

     sp_dropdevice     Removes a database or backup device record from the server.  

     sp_dropextendedproc     Drops an extended stored procedure from the server.  

     sp_dropextendedproperty     Drops an extended property from the server.  

     sp_dropmessage     Removes an error message record from the server.  

     sp_droptype     Removes a user - defined data type from the server.  

(continued)

bapp03.indd   577bapp03.indd   577 10/31/08   6:13:18 PM10/31/08   6:13:18 PM



Appendix C: System Stored Procedure Reference

578

     Procedure      Description   

     sp_executesql     Executes a parameterized Transact - SQL statement.  

     sp_getapplock     Places a lock on an application or system resource outside of 
SQL Server for the duration of a transaction or session.  

     sp_getbindtoken     Uses a  varchar  type output parameter to return a unique ID 
for a transaction.  

     sp_help     Returns descriptive help information specific to a database 
object.  

     sp_helpconstraint     Returns help information for a specified constraint.  

     sp_helpdb     Returns help information for a specified database.  

     sp_helpdevice     Returns help information for a specified device.  

     sp_helpextendedproc     Returns help information for a specified extended stored 
procedure.  

     sp_helpfile     Returns help information for a specified database file.  

     sp_helpfilegroup     Returns help information for a specified database file group.  

     sp_helpindex     Returns help information for a specified index.  

     sp_helplanguage     Returns help information for a specified server language.  

     sp_helpserver     Returns help information for a specified server (local or 
remote).  

     sp_helpsort     Returns a description of the server ’ s collation and sort order.  

     sp_helpstats     Returns help information regarding the statistics associated 
with the indexes for a specified table.  

     sp_helptext     Returns the definition of a rule, default, stored procedure, 
user - defined function, trigger, or view.  

     sp_helptrigger     Returns information about the triggers associated with a 
specified table.  

     sp_indexoption     Allows default level - locking options (that is, row, page, 
table) to be overridden for a specified index.  

     sp_invalidate_textptr     Invalidates a specified in - row text pointer, or all in - row text 
pointers in a transaction.  

bapp03.indd   578bapp03.indd   578 10/31/08   6:13:19 PM10/31/08   6:13:19 PM



Appendix C: System Stored Procedure Reference

579

     Procedure      Description   

     sp_lock     Returns information about all active locks.  

     sp_monitor     Returns the results from several system functions to show 
the status of server and system resources.  

     sp_procoption     Enables one of several procedure options to be set.  

     sp_recompile     Recompiles a stored procedure or trigger.  

     sp_refreshview     Updates the metadata for a specified view.  

     sp_releaseapplock     Removes a lock set on an application or external system 
resource that may have been set using  sp_getapplock .  

     sp_rename     Renames a database object.  

     sp_renamedb     Renames a database.  

     sp_resetstatus     Resets the suspect status of a database back to normal status.  

     sp_serveroption     Sets specified server options for a remote and linked server.  

     sp_setnetname     Sets the network name for a linked or remote server.  

     sp_settriggerorder     Sets a specified trigger for a table to execute first or last.  

     sp_spaceused     Returns information about the disk space used by rows, 
table, and a database.  

     sp_tableoption     Sets one of several table options.  

     sp_unbindefault     Removes a specified default from a column or user - defined 
data type.  

     sp_unbindrule     Removes a specified rule from a column or user - defined 
data type.  

     sp_updateextendedproperty     Updates the value of a specified extended property.  

     sp_updatestats     Updates all index statistics in the database.  

     sp_validname     Checks a specified character string for validity as an object 
name. If invalid, raises an option error.  

     sp_who     Returns information about current connections and user 
sessions on a server.  

bapp03.indd   579bapp03.indd   579 10/31/08   6:13:19 PM10/31/08   6:13:19 PM



Appendix C: System Stored Procedure Reference

580

  Database Maintenance Plan 
     Procedure      Description   

     sp_add_maintenance_plan     Adds a maintenance plan to the server and returns the 
plan ID.  

     sp_add_maintenance_plan_db     Associates a database with a maintenance plan. 
(A maintenance plan is added using 
 sp_add_maintenance_plan .)  

     sp_add_maintenance_plan_job     Associates a maintenance plan with an existing job.  

     sp_delete_maintenance_plan     Deletes a maintenance plan based in the specified 
plan ID.  

     sp_delete_maintenance_plan_db     Removes an associated maintenance plan from the 
specified database.  

     sp_delete_maintenance_plan_job     Removes an associated maintenance plan from the 
specified job.  

     sp_help_maintenance_plan     Returns information about maintenance plans on 
the server.  

  Distributed Queries 
     Procedure      Description   

     sp_addlinkedserver     Adds a linked server to the current server, allowing persistent 
access to a remote SQL Server from the current server.  

     sp_addlinkedsrvlogin     Adds the association of a local login to a linked server login for 
user connectivity to a linked server.  

     sp_catalogs     Returns the list of databases on a linked server.  

     sp_column_privileges_ex     Returns column - level security access privilege information for 
a specified table on a linked server.  

     sp_columns_ex     Returns column information for a table or view on a linked 
server.  

     sp_droplinkedsrvlogin     Removes the association of a local login to the login on a linked 
server.  

     sp_foreignkeys     Returns information about foreign key columns related to a 
specified primary key for tables on a linked server.  

bapp03.indd   580bapp03.indd   580 10/31/08   6:13:19 PM10/31/08   6:13:19 PM



Appendix C: System Stored Procedure Reference

581

     Procedure      Description   

     sp_indexes     Returns index information for a remote or linked server table.  

     sp_linkedservers     Returns information about all linked servers.  

     sp_primarykeys     Returns information about primary key columns for a specified 
remote or linked server table.  

     sp_serveroption     Sets server options for remote servers and linked servers.  

     sp_table_privileges_ex     Returns information about column and table - level security 
privileges for a specified remote or linked table.  

     sp_tables_ex     Returns information about tables on a remote or linked server.  

  External Systems and Extended Procedures 
     Procedure      Description   

     xp_cmdshell     Executes an operating system shell command, as if entered at the 
command prompt on the server.  

     xp_enumgroups     Returns information about Windows domain groups.  

     xp_findnextmsg     Uses an output parameter to return a MAPI message ID from the SQL 
Server Inbox.  

     xp_grantlogin     Calls  sp_grantlogin  for backward compatibility. Creates a SQL Server 
login for an associated Windows user or group.  

     xp_logevent     Logs a message to the SQL Server log file without raising a SQL Server error.  

     xp_loginconfig     Returns SQL Server security configuration information.  

     xp_logininfo     Returns detailed information about a SQL Server login and related 
privileges.  

     xp_msver     Returns detailed information about the instance of SQL Server and the 
operating system environment.  

     xp_revokelogin     Calls  sp_revokelogin  for backward compatibility. Revokes permissions 
of a SQL Server login.  

     xp_sprintf     Uses an output parameter to return a character string. Used to assemble a 
character string from parameterized values.  

     xp_sqlmaint     Calls the  SQLMAIN  command - line tool to set SQL Server maintenance options.  

     xp_sscanf     Uses an output parameter to return a character string. Used to disassemble 
a character string into corresponding parameterized values. This is the 
converse of the  xp_sprintf  procedure.  

bapp03.indd   581bapp03.indd   581 10/31/08   6:13:20 PM10/31/08   6:13:20 PM



Appendix C: System Stored Procedure Reference

582

  Full - Text Index/Search 
     Procedure      Description   

     sp_fulltext_catalog     Creates or maintains a full - text catalog to be used to 
store and maintain full - text indexes.  

     sp_fulltext_column     Indicates whether a specified column should be 
included in a full - text index.  

     sp_fulltext_database     Enables or disables full - text indexing for a database.  

     sp_fulltext_service     Used to manage full - text indexing services on a 
server.  

     sp_fulltext_table     Manages and enables actions for full - text indexing 
on a specific table.  

     sp_help_fulltext_catalogs     Returns information about the tables and attributes 
for a full - text catalog.  

     sp_help_fulltext_catalogs_cursor     Returns information about the tables and attributes 
for a full - text catalog.  

     sp_help_fulltext_columns     Returns information about the columns contained in 
a full - text index for a table.  

     sp_help_fulltext_columns_cursor     Returns information about the columns contained in 
a full - text index for a table.  

     sp_help_fulltext_tables     Returns information about the tables contained in a 
full - text catalog.  

     sp_help_fulltext_tables_cursor     Returns information about the tables contained in a 
full - text catalog.  

  Log Shipping 
 Log shipping is most easily configured through Management Studio, which in turn calls the various 
stored procedures listed. However, configuration can be completed directly with the procedures. 
For more information on these stored procedures, consult Books Online. 

     Procedure      Description   

     sp_add_log_shipping_alert_job     Checks to see if an alert job has been created on 
this server. If an alert job does not exist, this stored 
procedure creates the alert job and adds its job ID 
to the  log_shipping_monitor_alert  table.  

     sp_delete_log_shipping_secondary_
database   

  Removes a secondary database and removes the 
local history and remote history.  

bapp03.indd   582bapp03.indd   582 10/31/08   6:13:21 PM10/31/08   6:13:21 PM



Appendix C: System Stored Procedure Reference

583

     Procedure      Description   

     sp_add_log_shipping_primary_
database   

  Sets up the primary database for a log shipping 
configuration, including the backup job, local 
monitor record, and remote monitor record.  

     sp_delete_log_shipping_secondary_
primary   

  Removes the information about the specified 
primary server from the secondary server, and 
removes the copy job and restore job from the 
secondary.  

     sp_add_log_shipping_primary_
secondary   

  Adds an entry for a secondary database on the 
primary server.  

     sp_help_log_shipping_alert_job     Returns the job ID of the alert job from the log 
shipping monitor.  

     sp_add_log_shipping_secondary_
database   

  Sets up a secondary databases for log shipping.  

     sp_help_log_shipping_monitor     Returns a result set containing status and other 
information for registered primary and secondary 
databases on a primary, secondary, or monitor 
server.  

     sp_add_log_shipping_secondary_
primary   

  Sets up the primary information, adds local and 
remote monitor links, and creates copy and restore 
jobs on the secondary server for the specified 
primary database.  

     sp_help_log_shipping_monitor_
primary   

  Returns information regarding a primary database 
from the monitor tables.  

     sp_change_log_shipping_primary_
database   

  Changes the primary database settings.  

     sp_help_log_shipping_monitor_
secondary   

  Returns information regarding a primary database 
from the monitor tables.  

     sp_change_log_shipping_secondary_
database   

  Sets up a secondary databases for log shipping.  

     sp_help_log_shipping_primary_
database   

  Retrieves primary database settings.  

     sp_change_log_shipping_secondary_
primary   

  Changes secondary database settings.  

     sp_help_log_shipping_primary_
secondary   

  Returns information regarding all the secondary 
databases for a given primary database.  

     sp_cleanup_log_shipping_history     Cleans up history locally and on the monitor server 
based on retention period.  

(continued)

bapp03.indd   583bapp03.indd   583 10/31/08   6:13:21 PM10/31/08   6:13:21 PM



Appendix C: System Stored Procedure Reference

584

     Procedure      Description   

     sp_help_log_shipping_secondary_
database   

  Retrieves the settings for one or more secondary 
databases.  

     sp_delete_log_shipping_alert_job     Removes an alert job from the log shipping 
monitor server if the job exists and there are no 
more primary or secondary databases to be 
monitored.  

     sp_help_log_shipping_secondary_
primary   

  Retrieves the settings for a given primary database 
on the secondary server.  

     sp_delete_log_shipping_primary_
database   

  Removes log shipping of primary database 
including backup job as well as local and remote 
history.  

     sp_refresh_log_shipping_monitor     Refreshes the remote monitor tables with the latest 
information from a given primary or secondary 
server for the specified log shipping agent.  

     sp_delete_log_shipping_primary_
secondary   

  Removes the entry for a secondary database on the 
primary server.  

  Database Mail 
 Database Mail is most easily configured through Management Studio, which in turn calls the various 
stored procedures listed. However, configuration can be completed directly with the procedures. For 
more information on these stored procedures, consult Books Online. 

     Procedure      Description   

     sp_send_dbmail     Sends an e - mail message to the specified recipients. 
The message may include a query result set, file 
attachments, or both.  

     sysmail_help_configure_sp     Displays configuration settings for Database Mail.  

     sysmail_add_account_sp     Creates a new Database Mail account holding 
information about an SMTP account.  

     sysmail_help_principalprofile_sp     Lists information about associations between 
Database Mail profiles and database principals.  

     sysmail_add_principalprofile_sp     Grants permission for a database user or role to use a 
Database Mail profile.  

     sysmail_help_profile_sp     Lists information about one or more mail profiles.  

     sysmail_add_profile_sp     Creates a new database mail profile.  

bapp03.indd   584bapp03.indd   584 10/31/08   6:13:21 PM10/31/08   6:13:21 PM



Appendix C: System Stored Procedure Reference

585

     Procedure      Description   

     sysmail_help_profileaccount_sp     Lists the accounts associated with one or more 
Database Mail profiles.  

     sysmail_add_profileaccount_sp     Adds a Database Mail account to a Database Mail 
profile.  

     sysmail_help_queue_sp     There are two queues in Database Mail: the mail 
queue and status queue. The mail queue stores mail 
items that are waiting to be sent. The status queue 
stores the status of items that have already been sent. 
This stored procedure allows viewing the state of the 
mail or status queues.  

     sysmail_configure_sp     Changes configuration settings for Database Mail.  

     sysmail_help_status_sp     Displays the status of Database Mail queues.  

     sysmail_delete_account_sp     Deletes a Database Mail SMTP account.  

     sysmail_start_sp     Starts Database Mail by starting the Service Broker 
objects that the external program uses.  

     sysmail_delete_log_sp     Deletes events from the Database Mail log. Deletes all 
events in the log or those events meeting a date or 
type criteria.  

     sysmail_stop_sp     Stops Database Mail by stopping the Service Broker 
objects that the external program uses.  

     sysmail_delete_mailitems_sp     Permanently deletes e - mail messages from the 
Database Mail internal tables.  

     sysmail_update_account_sp     Changes the information in an existing Database Mail 
account.  

     sysmail_delete_
principalprofile_sp   

  Removes permission for a database user or role to use 
a public or private Database Mail profile.  

     sysmail_update_
principalprofile_sp   

  Updates the information for an association between a 
principal and a profile.  

     sysmail_delete_profile_sp     Deletes a mail profile used by Database Mail.  

     sysmail_update_profile_sp     Changes the description or name of a Database Mail 
profile.  

     sysmail_delete_profileaccount_sp     Removes an account from a Database Mail profile.  

     sysmail_update_profileaccount_sp     Updates the sequence number of an account within a 
Database Mail profile.  

     sysmail_help_account_sp     Lists information (except passwords) about Database 
Mail accounts.  

bapp03.indd   585bapp03.indd   585 10/31/08   6:13:22 PM10/31/08   6:13:22 PM



Appendix C: System Stored Procedure Reference

586

   OLE  Automation 
 If you use these OLE automation stored procedures, it ’ s possible to execute certain application code from 
SQL queries to perform actions and automate applications outside of SQL Server. With custom - created 
COM components, practically any programmatic interaction is possible. 

     Procedure      Description   

     sp_OACreate     Instantiates an OLE object from a specified class using either the 
ProgID or CLSID. If stopped, starts the OLE automation execution 
process on the server.  

     sp_OADestroy     Destroys a previously instantiated OLE object.  

     sp_OAGetErrorInfo     Returns the error information associated with an OLE object instance 
and actions.  

     sp_OAGetProperty     Uses either an output parameter or a result set to return the value(s) or 
structured information for a specified object property.  

     sp_OAMethod     Calls a method of an OLE object. Uses either an output parameter or a 
result set to return the value(s) or structured information returned by 
the method call.  

     sp_OASetProperty     Sets an object property to a specified value.  

     sp_OAStop     Stops the OLE automation execution process environment on 
the server. Immediately terminates all OLE automation activity for 
all sessions.  

   SQL  Server Profiler 
     Procedure      Description   

     sp_trace_create     Creates a new Profiler trace.  

     sp_trace_generateevent     Creates a new Profiler event.  

     sp_trace_setevent     Adds an existing event to a trace. These items may be created 
using the  sp_trace_create  and  sp_trace_generateevent  
procedures.  

     sp_trace_setfilter     Adds a filter to an existing trace.  

     sp_trace_setstatus     Modifies an existing trace.  

bapp03.indd   586bapp03.indd   586 10/31/08   6:13:22 PM10/31/08   6:13:22 PM



Appendix C: System Stored Procedure Reference

587

  Security 
 Stored Procedures marked as  “ Obsolete ”  are deprecated and will be removed in a future release. 

     Procedure      Description   

     sp_addalias     Matches a server login to a database user. This is an older 
alternative to using role - based security.  

     sp_addapprole     Adds an application role to a database to be used for 
programmatic access from an application component.  

     sp_addgroup     Adds a user group to a database. This is an older alternative 
to using role - based security.  

     sp_addlinkedsrvlogin     Matches a local server login to a linked server login for access 
to a remote database server.  

     sp_addlogin     Adds a new server login.  

     sp_addremotelogin     Adds a login to the local server for use by remote users.  

     sp_addrole     Adds a new database role.  

     sp_addrolemember     Adds a SQL Server user, role, Windows user, or group to a 
SQL Server role.  

     sp_addserver     Obsolete. Similar to  sp_addlinkedserver , adds the 
metadata representing a registered linked server with 
persistent access from the local server.  

     sp_addsrvrolemember     Adds a server login to a server role.  

     sp_adduser     Obsolete. Similar to  sp_grantdbaccess , adds a SQL Server 
user, role, Windows user, or group to a database.  

     sp_approlepassword     Modifies the password for an application role.  

     sp_change_users_login     Modifies the association between a server login and a 
database user.  

     sp_changedbowner     Modifies the owner of a database.  

     sp_changegroup     Obsolete. Similar to  sp_addrolemember , modifies the role 
membership for a user.  

     sp_changeobjectowner     Modifies the owner of any database object.  

     sp_dbfixedrolepermission     Returns permission information for all fixed database roles.  

     sp_defaultdb     Modifies the default database setting for a login.  

(continued)

bapp03.indd   587bapp03.indd   587 10/31/08   6:13:22 PM10/31/08   6:13:22 PM



Appendix C: System Stored Procedure Reference

588

     Procedure      Description   

     sp_defaultlanguage     Modifies the default language setting for a login.  

     sp_denylogin     Denies access to the server for a Windows user or group.  

     sp_dropalias     Obsolete. Drops an alias associated with a database user. This 
is an older technique used before SQL Server role - based 
security.  sp_droprolemember  provides similar functionality 
as a recommended practice.  

     sp_dropapprole     Drops an application role.  

     sp_dropgroup     Removes a database role. This is an older procedure provided 
for compatibility.  

     sp_droplinkedsrvlogin     Removes the association between a local server login and a 
linked server login.  

     sp_droplogin     Drops a local server login.  

     sp_dropremotelogin     Drops a remote login from the local server.  

     sp_droprolemember     Removes a user, login, Windows user, or group from a 
database role.  

     sp_dropserver     Removes the record of a linked or remote server from a local 
server.  

     sp_dropsrvrolemember     Removes a server login, Windows user, or group from a 
server role.  

     sp_dropuser     Obsolete. Similar to  sp_revokedbaccess , removes access to 
a database for a SQL Server user, Windows user, or group.  

     sp_grantdbaccess     Adds access to a database for a server login, Windows user, 
or group.  

     sp_grantlogin     Adds access for a Windows user of group to the database 
server using Windows integrated Security.  

     sp_helpdbfixedrole     Returns information about fixed database roles.  

     sp_helpgroup     Obsolete. Returns information about database groups.  

     sp_helplinkedsrvlogin     Returns information about linked server logins.  

     sp_helplogins     Returns information about local server logins.  

     sp_helpntgroup     Returns information about Windows groups.  

bapp03.indd   588bapp03.indd   588 10/31/08   6:13:23 PM10/31/08   6:13:23 PM



Appendix C: System Stored Procedure Reference

589

     Procedure      Description   

     sp_helpremotelogin     Returns information about remote logins registered with the 
local server.  

     sp_helprole     Returns information about fixed database roles.  

     sp_helprolemember     Returns information about the roles for a database.  

     sp_helprotect     Returns permissions information related to a specified 
database object.  

     sp_helpsrvrole     Returns information about server roles.  

     sp_helpsrvrolemember     Returns information about the logins, Windows user, and 
groups that are members of a specified server role.  

     sp_helpuser     Returns information about database users, Windows users, 
groups, and database roles in a database.  

     sp_MShasdbaccess     Returns database information accessible to a user.  

     sp_password     Adds or modifies the password for a login.  

     sp_remoteoption     Returns or modifies option settings for a remote login.  

     sp_revokedbaccess     Removes a database user, Windows user, or group from a 
database.  

     sp_revokelogin     Removes a login associated with a Windows user or group.  

     sp_setapprole     Enables an application role for a database. Used to allow 
programmatic access from an application component.  

     sp_srvrolepermission     Returns permission information for a server role.  

     sp_validatelogins     Returns Windows user and group entries in the database 
server that no longer exist in the operating system or 
Windows domain.  

bapp03.indd   589bapp03.indd   589 10/31/08   6:13:23 PM10/31/08   6:13:23 PM



Appendix C: System Stored Procedure Reference

590

   SQL  Server Agent 
     Procedure      Description   

     sp_add_alert     Creates a new alert.  

     sp_add_category     Creates a new category that may be associated with jobs, 
operators, and so on.  

     sp_add_job     Creates a new job to contain steps.  

     sp_add_jobschedule     Creates a new schedule for an existing job.  

     sp_add_jobserver     Changes the server that will run a job.  

     sp_add_jobstep     Adds a step to an existing job.  

     sp_add_notification     Creates and adds a notification for an alert.  

     sp_add_operator     Creates an operator associated with a job and an alert.  

     sp_add_proxy     Creates a proxy account for users and roles to execute 
jobs with elevated permissions, without administrative 
role membership.  

     sp_add_schedule     Creates a schedule for use with a job.  

     sp_add_targetservergroup     Creates a server group to associate a job with a group of 
servers.  

     sp_add_targetsvrgrp_member     Adds a server to a target server group.  

     sp_apply_job_to_targets     Associates a job with one or more target servers.  

     sp_attach_schedule     Associates a schedule with a job.  

     sp_cycle_agent_errorlog     Closes the agent error log and initializes a new log file.  

     sp_cycle_errorlog     Closes the current error log and starts a new log file.  

     sp_delete_alert     Deletes an alert.  

     sp_delete_category     Deletes a category.  

     sp_delete_job     Deletes a job.  

     sp_delete_jobschedule     Deletes the schedule for a job.  

     sp_delete_jobserver     Deletes the association between a job and a server.  

     sp_delete_jobstep     Deletes a specified job step.  

     sp_delete_jobsteplog     Deletes a specified job step, all job steps for a specified 
job, or those that meet other criteria.  

bapp03.indd   590bapp03.indd   590 10/31/08   6:13:23 PM10/31/08   6:13:23 PM



Appendix C: System Stored Procedure Reference

591

     Procedure      Description   

     sp_delete_notification     Deletes notifications for an operator and an alert.  

     sp_delete_operator     Deletes a specified operator.  

     sp_delete_proxy     Removes a user proxy.  

     sp_delete_schedule     Deletes a job schedule.  

     sp_delete_targetserver     Removes a target server designation for a job.  

     sp_delete_targetservergroup     Deletes a target server group.  

     sp_delete_targetsvrgrp_member     Removes a target server from a group.  

     sp_detach_schedule     Associates a schedule to a job.  

     sp_enum_login_for_proxy     Returns logins associated with a proxy.  

     sp_enum_proxy_for_subsystem     Returns proxy users that have access to a specified 
subsystem.  

     sp_enum_sqlagent_subsystems     Returns the subsystems (process threads) for SQL Agent.  

     sp_grant_login_to_proxy     Grants a login, user, Windows user, or group access to a 
proxy.  

     sp_grant_proxy_to_subsystem     Assigns a DTS/integration Services subsystem to a 
proxy user.  

     sp_help_alert     Returns information about an alert or alerts.  

     sp_help_category     Returns information about a category or categories.  

     sp_help_downloadlist     Returns information about queued target server 
download instructions.  

     sp_help_job     Returns information about a job or jobs.  

     sp_help_jobactivity     Returns information about job activities.  

     sp_help_jobcount     Returns the count of jobs for an associated schedule.  

     sp_help_jobhistory     Returns information about jobs for associated servers.  

     sp_help_jobs_in_schedule     Returns the information about jobs for an associated 
schedule.  

     sp_help_jobschedule     Returns information about automated job scheduling.  

     sp_help_jobserver     Returns information about a server associated with a job.  

     sp_help_jobstep     Returns information about the steps for a job.  

(continued)

bapp03.indd   591bapp03.indd   591 10/31/08   6:13:24 PM10/31/08   6:13:24 PM



Appendix C: System Stored Procedure Reference

592

     Procedure      Description   

     sp_help_notification     Returns information about notifications.  

     sp_help_operator     Returns information about an operator or operators.  

     sp_help_proxy     Returns information about a proxy user or proxies.  

     sp_help_schedule     Returns information about a schedule or schedules.  

     sp_help_targetserver     Returns information about a job target server or servers.  

     sp_help_targetservergroup     Returns information about a job target server group or 
groups.  

     sp_manage_jobs_by_login     Removes or modifies jobs for a specified login.  

     sp_msx_defect     Modifies the system registry to remove the server from 
target multiserver operations.  

     sp_msx_enlist     Modifies the system registry to add the server to the 
available multiserver target list.  

     sp_msx_get_account     Returns credentials information for a target server, used 
to log into a master server.  

     sp_msx_set_account     Sets credentials for a target server to log into a master 
server.  

     sp_notify_operator     Sends an e - mail message to an operator by using 
SQLiMail.  

     sp_post_msx_operation     Inserts job information into the  sysdownloadlist  table 
for target servers to execute.  

     sp_purge_jobhistory     Removes history metadata associated with a job.  

     sp_remove_job_from_targets     Removes the association between a job and a target 
server.  

     sp_resync_targetserver     Synchronizes all job metadata from remote servers to the 
target server.  

     sp_revoke_login_from_proxy     Removes access to a proxy for a security principal.  

     sp_revoke_proxy_from_
subsystem   

  Removes access to a subsystem for a proxy.  

     sp_start_job     Starts executing a job regardless of its schedule.  

     sp_stop_job     Stops executing a job.  

     sp_update_alert     Modifies the settings for an alert.  

     sp_update_category     Modifies the name of a category.  

bapp03.indd   592bapp03.indd   592 10/31/08   6:13:24 PM10/31/08   6:13:24 PM



Appendix C: System Stored Procedure Reference

593

     Procedure      Description   

     sp_update_job     Modifies the settings for a job.  

     sp_update_jobschedule     Modifies the settings for a job ’ s schedule.  

     sp_update_jobstep     Modifies the settings for a step.  

     sp_update_notification     Modifies the settings for a notification.  

     sp_update_operator     Modifies the information for an operator.  

     sp_update_proxy     Modifies the information for a proxy user.  

     sp_update_schedule     Modifies an agent schedule.  

     sp_update_targetservergroup     Modifies the name of a target server group.  

   XML  
     Procedure      Description   

     sp_xml_preparedocument     Uses an output parameter to return a numeric handle to a cached 
copy of a well-formed and prepared XML document structure. 
The initial XML document is passed into this procedure as a 
 varchar  type.  

     sp_xml_removedocument     Removes data from the server ’ s XML cache.  

bapp03.indd   593bapp03.indd   593 10/31/08   6:13:25 PM10/31/08   6:13:25 PM



bapp03.indd   594bapp03.indd   594 10/31/08   6:13:25 PM10/31/08   6:13:25 PM



      D
    Information Schema Views 

Reference          

 The following views can be used in any database to obtain metadata about database objects. Select 
from each view as if it were a table in the database, prefixing the view with  INFORMATION_
SCHEMA. , as in the following example: 

SELECT * FROM INFORMATION_SCHEMA.CHECK_CONSTRAINTS  

 Information schema views are stored in the Master database. Note that the  sysname  user - defined 
data type that is preconfigured and used in instances of SQL Server is functionally equivalent to 
 nvarchar(128) .  

   CHECK_CONSTRAINTS  
 Returns one row for each  CHECK  constraint in the current database. This information schema view 
returns information about the objects to which the current user has permissions. 

     Column Name      Data Type   

     CONSTRAINT_CATALOG      nvarchar(128)   

     CONSTRAINT_SCHEMA      nvarchar(128)   

     CONSTRAINT_NAME      sysname   

     CHECK_CLAUSE      nvarchar(4000)   

bapp04.indd   595bapp04.indd   595 10/31/08   6:13:53 PM10/31/08   6:13:53 PM



Appendix D:   Information Schema Views Reference      

596

   COLUMN_DOMAIN_USAGE  
 Returns one row for each column in the current database that has an  alias  data type. This information 
schema view returns information about the objects to which the current user has permissions. 

     Column Name      Data Type   

     DOMAIN_CATALOG      nvarchar(128)   

     DOMAIN_SCHEMA      nvarchar(128)   

     DOMAIN_NAME      sysname   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      sysname   

     COLUMN_NAME      sysname   

   COLUMN_PRIVILEGES  
 Returns one row for each column that has a privilege that is either granted to or granted by the current 
user in the current database. 

     Column Name      Data Type   

     GRANTOR      nvarchar(128)   

     GRANTEE      nvarchar(128)   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      sysname   

     COLUMN_NAME      sysname   

     PRIVILEGE_TYPE      varchar(10)   

     IS_GRANTABLE      varchar(3)   

bapp04.indd   596bapp04.indd   596 10/31/08   6:13:53 PM10/31/08   6:13:53 PM



Appendix D:   Information Schema Views Reference      

597

   COLUMNS  
 Returns one row for each column that can be accessed by the current user in the current database. 

     Column Name      Data Type   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      nvarchar (128)   

     COLUMN_NAME      nvarchar (128)   

     ORDINAL_POSITION      int   

     COLUMN_DEFAULT      nvarchar(4000)   

     IS_NULLABLE      varchar(3)   

     DATA_TYPE      nvarchar (128)   

     CHARACTER_MAXIMUM_LENGTH      int   

     CHARACTER_OCTET_LENGTH      int   

     NUMERIC_PRECISION      tinyint   

     NUMERIC_PRECISION_RADIX      smallint   

     NUMERIC_SCALE      int   

     DATETIME_PRECISION      smallint   

     CHARACTER_SET_CATALOG      nvarchar(128)   

     CHARACTER_SET_SCHEMA      nvarchar(128)   

     CHARACTER_SET_NAME      nvarchar(128)   

     COLLATION_CATALOG      nvarchar(128)   

     COLLATION_SCHEMA      nvarchar(128)   

     COLLATION_NAME      nvarchar(128)   

     DOMAIN_CATALOG      nvarchar(128)   

     DOMAIN_SCHEMA      nvarchar(128)   

     DOMAIN_NAME      nvarchar(128)   

bapp04.indd   597bapp04.indd   597 10/31/08   6:13:54 PM10/31/08   6:13:54 PM



Appendix D:   Information Schema Views Reference      

598

   CONSTRAINT_COLUMN_USAGE  
 Returns one row for each column in the current database that has a constraint defined on the column. 
This information schema view returns information about the objects to which the current user has 
permissions. 

     Column Name      Data Type   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      nvarchar(128)   

     COLUMN_NAME      nvarchar(128)   

     CONSTRAINT_CATALOG      nvarchar(128)   

     CONSTRAINT_SCHEMA      nvarchar(128)   

     CONSTRAINT_NAME      nvarchar(128)   

   CONSTRAINT_TABLE_USAGE  
 Returns one row for each table in the current database that has a constraint defined on the table. This 
information schema view returns information about the objects to which the current user has 
permissions. 

     Column Name      Data Type   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      sysname   

     CONSTRAINT_CATALOG      nvarchar(128)   

     CONSTRAINT_SCHEMA      nvarchar(128)   

     CONSTRAINT_NAME      sysname   

bapp04.indd   598bapp04.indd   598 10/31/08   6:13:54 PM10/31/08   6:13:54 PM



Appendix D:   Information Schema Views Reference      

599

   DOMAIN_CONSTRAINTS  
 Returns one row for each  alias  data type in the current database that has a rule bound to it and that can 
be accessed by the current user. 

     Column Name      Data Type   

     CONSTRAINT_CATALOG      nvarchar(128)   

     CONSTRAINT_SCHEMA      nvarchar(128)   

     CONSTRAINT_NAME      sysname   

     DOMAIN_CATALOG      nvarchar(128)   

     DOMAIN_SCHEMA      nvarchar(128)   

     DOMAIN_NAME      sysname   

     IS_DEFERRABLE      varchar(2)   

     INITIALLY_DEFERRED      varchar(2)   

   DOMAINS  
 Returns one row for each  alias  data type that can be accessed by the current user in the current 
database. 

     Column Name      Data Type   

     DOMAIN_CATALOG      nvarchar(128)   

     DOMAIN_SCHEMA      nvarchar(128)   

     DOMAIN_NAME      sysname   

     DATA_TYPE      sysname   

     CHARACTER_MAXIMUM_LENGTH      int   

     CHARACTER_OCTET_LENGTH      int   

     COLLATION_CATALOG      varchar (6)   

     COLLATION_SCHEMA      varchar (3)   

     COLLATION_NAME      nvarchar (128)   

     CHARACTER_SET_CATALOG      varchar (6)   

(continued)

bapp04.indd   599bapp04.indd   599 10/31/08   6:13:55 PM10/31/08   6:13:55 PM



Appendix D:   Information Schema Views Reference      

600

     Column Name      Data Type   

     CHARACTER_SET_SCHEMA      varchar (3)   

     CHARACTER_SET_NAME      nvarchar(128)   

     NUMERIC_PRECISION      tinyint   

     NUMERIC_PRECISION_RADIX      smallint   

     NUMERIC_SCALE      tinyint   

     DATETIME_PRECISION      smallint   

     DOMAIN_DEFAULT      nvarchar(4000)   

   KEY_COLUMN_USAGE  
 Returns one row for each column that is constrained as a key in the current database. This information 
schema view returns information about the objects to which the current user has permissions. 

     Column Name      Data Type   

     CONSTRAINT_CATALOG      nvarchar(128)   

     CONSTRAINT_SCHEMA      nvarchar(128)   

     CONSTRAINT_NAME      nvarchar(128)   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      nvarchar(128)   

     COLUMN_NAME      nvarchar(128)   

     ORDINAL_POSITION      int   

   PARAMETERS  
 Returns one row for each parameter of a user - defined function or stored procedure that can be accessed 
by the current user in the current database. For functions, this view also returns one row with return 
value information. 

bapp04.indd   600bapp04.indd   600 10/31/08   6:13:55 PM10/31/08   6:13:55 PM



Appendix D:   Information Schema Views Reference      

601

     Column Name      Data Type   

     SPECIFIC_CATALOG      nvarchar(128)   

     SPECIFIC_SCHEMA      nvarchar(128)   

     SPECIFIC_NAME      nvarchar(128)   

     ORDINAL_POSITION      int   

     PARAMETER MODE      nvarchar(10)   

     IS_RESULT      nvarchar(10)   

     AS_LOCATOR      nvarchar(10)   

     PARAMETER_NAME      nvarchar (128)   

     DATA_TYPE      nvarchar (128)   

     CHARACTER_MAXIMUM_LENGTH      int   

     CHARACTER_OCTET_LENGTH      int   

     COLLATION_CATALOG      nvarchar (128)   

     COLLATION_SCHEMA      nvarchar (128)   

     COLLATION_NAME      nvarchar (128)   

     CHARACTER_SET_CATALOG      nvarchar (128)   

     CHARACTER_SET_SCHEMA      nvarchar (128)   

     CHARACTER_SET_NAME      nvarchar (128)   

     NUMERIC_PRECISION      tinyint   

     NUMERIC_PRECISION_RADIX      smallint   

     NUMERIC_SCALE      tinyint   

     DATETIME_PRECISION      smallint   

     INTERVAL_TYPE      nvarchar (30)   

     INTERVAL_PRECISION      smallint   

     USER_DEFINED_TYPE_CATALOG      nvarchar (128)   

     USER_DEFINED_TYPE_SCHEMA      nvarchar (128)   

     USER_DEFINED_TYPE_NAME      nvarchar (128)   

     SCOPE_CATALOG      nvarchar (128)   

     SCOPE_SCHEMA      nvarchar (128)   

     SCOPE_NAME      nvarchar (128)   

bapp04.indd   601bapp04.indd   601 10/31/08   6:13:55 PM10/31/08   6:13:55 PM



Appendix D:   Information Schema Views Reference      

602

   REFERENTIAL_CONSTRAINTS  
 Returns one row for each  FOREIGN KEY  constraint in the current database. This information schema 
view returns information about the objects to which the current user has permissions. 

     CONSTRAINT_CATALOG      nvarchar(128)   

     CONSTRAINT_SCHEMA      nvarchar(128)   

     CONSTRAINT_NAME      sysname   

     UNIQUE_CONSTRAINT_CATALOG      nvarchar(128)   

     UNIQUE_CONSTRAINT_SCHEMA      nvarchar(128)   

     UNIQUE_CONSTRAINT_NAME      sysname   

     MATCH_OPTION      varchar(7)   

     UPDATE_RULE      varchar(11)   

     DELETE_RULE      varchar(11)   

   ROUTINE_COLUMNS  
 Returns one row for each column returned by the table - valued functions that can be accessed by the 
current user in the current database. 

     Column Name      Data Type   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      nvarchar (128)   

     COLUMN_NAME      nvarchar (128)   

     ORDINAL_POSITION      int   

     COLUMN_DEFAULT      nvarchar(4000)   

     IS_NULLABLE      varchar(3)   

     DATA_TYPE      nvarchar (128)   

     CHARACTER_MAXIMUM_LENGTH      int   

     CHARACTER_OCTET_LENGTH      int   

     NUMERIC_PRECISION      tinyint   

     NUMERIC_PRECISION_RADIX      smallint   

bapp04.indd   602bapp04.indd   602 10/31/08   6:13:56 PM10/31/08   6:13:56 PM



Appendix D:   Information Schema Views Reference      

603

     Column Name      Data Type   

     NUMERIC_SCALE      tinyint   

     DATETIME_PRECISION      smallint   

     CHARACTER_SET_CATALOG      varchar (6)   

     CHARACTER_SET_SCHEMA      varchar (3)   

     CHARACTER_SET_NAME      nvarchar(128)   

     COLLATION_CATALOG      varchar (6)   

     COLLATION_SCHEMA      varchar (3)   

     COLLATION_NAME      nvarchar (128)   

     DOMAIN_CATALOG      nvarchar(128)   

     DOMAIN_SCHEMA      nvarchar(128)   

     DOMAIN_NAME      nvarchar(128)   

   ROUTINES  
 Returns one row for each stored procedure and function that can be accessed by the current user in the 
current database. The columns that describe the return value apply only to functions. For stored 
procedures, these columns will be NULL. 

     Column Name      Data Type   

     SPECIFIC_CATALOG      nvarchar(128)   

     SPECIFIC_SCHEMA      nvarchar(128)   

     SPECIFIC_NAME      nvarchar(128)   

     ROUTINE_CATALOG      nvarchar(128)   

     ROUTINE_SCHEMA      nvarchar(128)   

     ROUTINE_NAME      nvarchar(128)   

     ROUTINE_TYPE      nvarchar(20)   

     MODULE_CATALOG      nvarchar(128)   

     MODULE_SCHEMA      nvarchar(128)   

     MODULE_NAME      nvarchar(128)   

(continued)

bapp04.indd   603bapp04.indd   603 10/31/08   6:13:56 PM10/31/08   6:13:56 PM



Appendix D:   Information Schema Views Reference      

604

     Column Name      Data Type   

     UDT_CATALOG      nvarchar(128)   

     UDT_SCHEMA      nvarchar(128)   

     UDT_NAME      nvarchar(128)   

     DATA_TYPE      nvarchar(128)   

     CHARACTER_MAXIMUM_LENGTH      int   

     CHARACTER_OCTET_LENGTH      int   

     COLLATION_CATALOG      nvarchar(128)   

     COLLATION_SCHEMA      nvarchar(128)   

     COLLATION_NAME      nvarchar(128)   

     CHARACTER_SET_CATALOG      nvarchar(128)   

     CHARACTER_SET_SCHEMA      nvarchar(128)   

     CHARACTER_SET_NAME      nvarchar(128)   

     NUMERIC_PRECISION      smallint   

     NUMERIC_PRECISION_RADIX      smallint   

     NUMERIC_SCALE      smallint   

     DATETIME_PRECISION      smallint   

     INTERVAL_TYPE      nvarchar(30)   

     INTERVAL_PRECISION      smallint   

     TYPE_UDT_CATALOG      nvarchar(128)   

     TYPE_UDT_SCHEMA      nvarchar(128)   

     TYPE_UDT_NAME      nvarchar(128)   

     SCOPE_CATALOG      nvarchar(128)   

     SCOPE_SCHEMA      nvarchar(128)   

     SCOPE_NAME      nvarchar(128)   

     MAXIMUM_CARDINALITY      bigint(8)   

     DTD_IDENTIFIER      nvarchar(128)   

     ROUTINE_BODY      nvarchar(30)   

bapp04.indd   604bapp04.indd   604 10/31/08   6:13:57 PM10/31/08   6:13:57 PM



Appendix D:   Information Schema Views Reference      

605

     Column Name      Data Type   

     ROUTINE_DEFINITION      nvarchar(4000)   

     EXTERNAL_NAME      nvarchar(128)   

     EXTERNAL_LANGUAGE      nvarchar(30)   

     PARAMETER_STYLE      nvarchar(30)   

     IS_DETERMINISTIC      nvarchar(10)   

     SQL_DATA_ACCESS      nvarchar(30)   

     IS_NULL_CALL      nvarchar(10)   

     SQL_PATH      nvarchar(128)   

     SCHEMA_LEVEL_ROUTINE      nvarchar(10)   

     MAX_DYNAMIC_RESULT_SETS      smallint   

     IS_USER_DEFINED_CAST      nvarchar(10)   

     IS_IMPLICITLY_INVOCABLE      nvarchar(10)   

     CREATED      datetime   

     LAST_ALTERED      datetime   

   SCHEMATA  
 Returns one row for each schema in the current database. 

     Column Name      Data Type   

     CATALOG_NAME      sysname   

     SCHEMA_NAME      nvarchar(128)   

     SCHEMA_OWNER      nvarchar(128)   

     DEFAULT_CHARACTER_SET_CATALOG      varchar (6)   

     DEFAULT_CHARACTER_SET_SCHEMA      varchar (3)   

     DEFAULT_CHARACTER_SET_NAME      sysname   

bapp04.indd   605bapp04.indd   605 10/31/08   6:13:57 PM10/31/08   6:13:57 PM



Appendix D:   Information Schema Views Reference      

606

   TABLE_CONSTRAINTS  
 Returns one row for each table constraint in the current database. This information schema view returns 
information about the objects to which the current user has permissions. 

     Column Name      Data Type   

     CONSTRAINT_CATALOG      nvarchar(128)   

     CONSTRAINT_SCHEMA      nvarchar(128)   

     CONSTRAINT_NAME      sysname   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      sysname   

     CONSTRAINT_TYPE      varchar(11)   

     IS_DEFERRABLE      varchar(2)   

     INITIALLY_DEFERRED      varchar(2)   

   TABLE_PRIVILEGES  
 Returns one row for each table privilege that is granted to or granted by the current user in the current 
database. 

     Column Name      Data Type   

     GRANTOR      nvarchar(128)   

     GRANTEE      nvarchar(128)   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      sysname   

     PRIVILEGE_TYPE      varchar(10)   

     IS_GRANTABLE      varchar(3)   

bapp04.indd   606bapp04.indd   606 10/31/08   6:13:58 PM10/31/08   6:13:58 PM



Appendix D:   Information Schema Views Reference      

607

   TABLES  
 Returns one row for each table in the current database for which the current user has permissions. 

     Column Name      Data Type   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      sysname   

     TABLE_TYPE      varchar(10)   

   VIEW_COLUMN_USAGE  
 Returns one row for each column in the current database that is used in a view definition. This 
information schema view returns information about the objects to which the current user has permissions. 

     Column Name      Data Type   

     VIEW_CATALOG      nvarchar(128)   

     VIEW_SCHEMA      nvarchar(128)   

     VIEW_NAME      sysname   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      sysname   

     COLUMN_NAME      sysname   

bapp04.indd   607bapp04.indd   607 10/31/08   6:13:58 PM10/31/08   6:13:58 PM



Appendix D:   Information Schema Views Reference      

608

   VIEW_TABLE_USAGE  
 Returns one row for each table in the current database that is used in a view. This information schema 
view returns information about the objects to which the current user has permissions. 

     Column Name      Data Type   

     VIEW_CATALOG      nvarchar(128)   

     VIEW_SCHEMA      nvarchar(128)   

     VIEW_NAME      sysname   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      sysname   

   VIEWS  
 Returns one row for views that can be accessed by the current user in the current database. 

     Column Name      Data Type   

     TABLE_CATALOG      nvarchar(128)   

     TABLE_SCHEMA      nvarchar(128)   

     TABLE_NAME      nvarchar(128)   

     VIEW_DEFINITION      nvarchar(4000)   

     CHECK_OPTION      varchar(7)   

     IS_UPDATABLE      varchar(2)   

bapp04.indd   608bapp04.indd   608 10/31/08   6:13:58 PM10/31/08   6:13:58 PM



      E 
   FileStream Objects 

and Syntax          

 The  filestream  data type, introduced in SQL Server 2008, provides a mechanism for storing and 
synchronizing content in the server file system. This is ideal for managing large volumes of 
unstructured data, typically stored in documents and other application - specific file types. Data for 
 filestream  type columns is inserted into a database table but actually stored in separate files 
outside the database  —  in the NTFS file system, instead of the SQL Server database files. All T - SQL 
query actions (i.e.,  INSERT ,  UPDATE ,  DELETE , and  SELECT ) interact with the externally stored data 
that is managed by the SQL Server database engine. 

 This feature is disabled by default and must be enabled using the  sp_filestream_configure  
system stored procedure. 

 A database is filestream - enabled by defining a filegroup based on a file system folder, called a  file 
container . The database file for this filegroup stores metadata, settings, and header information 
used to manage the external data. 

 A table is filestream - enabled by defining a column with the  FILESTREAM  keyword when the table 
is created. Data may be written to the filestream type column and subsequently stored in the NTFS 
file system, using a standard T - SQL  INSERT  statement for the filestream - enabled table, or by using 
managed or unmanaged program code. 

 Because the original content for filestream data will often be contained in source document files, 
inserting or modifying this data will need to be performed with external program code instead of 
T - SQL. This typically requires advanced file management and streaming code that cannot be 
performed with T - SQL queries alone. Programming support is provided by the 
OpenSQLFileStream API contained in the SQL Server Native Client 10.0 (sqlncli10.dll) library. This 
is an extension to the Win32 API, and functions may be called from managed .NET code (such as 
C# or Visual Basic.NET) or unmanaged code (such as C++ or Visual Basic 6).  

bapp05.indd   609bapp05.indd   609 10/31/08   6:14:18 PM10/31/08   6:14:18 PM



610

Appendix E:   FileStream Objects and Syntax      

  FileStream Objects 
 The following table shows system programming objects used to manage filestream types. 

    Object Name    Return Type    Description  

     sp_filestream_configure     N/A    Values for the  
@enable_level  return 
parameter:

   0     -  Disabled (default)

   1     -  T - SQL access only

   2     -  T - SQL and local file 
system access

   3     -  T - SQL, local, and 
remote file system access  

     PATHNAME()      nvarchar(max)     Returns the file system 
path for a FileStream 
type column.  

     GET_FILESTREAM_TRANSACTION_CONTEXT()      varbinary(max)     Returns a token to 
coordinate the 
transactional context of 
database objects or 
queries and external 
program code.  

  Sample  T  -  SQL  Scripts 
 The following are simple examples of T - SQL scripts to create a database with filestream storage, define 
a table with a filestream - enabled column, and use an  INSERT  statement to store column text in an 
external file. 

  To Create a Database with FileStream Storage   
CREATE DATABASE SalesDB ON PRIMARY

  ( NAME = SalesDB_data,

    FILENAME = N’C:\Databases\MyFSDB_data.mdf’,

    SIZE = 10MB,

    MAXSIZE = 200MB,

    FILEGROWTH = 10%),

 ---------------------------------------------------

 -- Define a file group for standard data storage --

 ---------------------------------------------------

bapp05.indd   610bapp05.indd   610 10/31/08   6:14:18 PM10/31/08   6:14:18 PM



611

Appendix E:   FileStream Objects and Syntax      

 FILEGROUP SalesDBData

  ( NAME = SalesData_Group,

    FILENAME = ‘C:\Databases\SalesDB_FileStream.ndf’,

    SIZE = 10MB,

    MAXSIZE = 200MB,

    FILEGROWTH = 5MB),

 ------------------------------------------------

 -- Define a file group for filestream storage --

 ------------------------------------------------

 FILEGROUP SalesDB_FileStream_Group CONTAINS FILESTREAM

  ( NAME = SalesDB_FileStream,

    FILENAME = ‘C:\Databases\SalesDB_FileStreamData’)

 ----------------------------------

 -- Define standard database log --

 ----------------------------------

 LOG ON

  ( NAME = ‘SalesDB_log’,

    FILENAME = ‘C:\Databases\SalesDB_log.ldf’,

    SIZE = 5MB,

    MAXSIZE = 30MB,

    FILEGROWTH = 5MB);   

  To Create a Table with a FileStream - Enabled Column   
 USE SalesDB

 CREATE TABLE DocumentData

  (

    DocID UNIQUEIDENTIFIER ROWGUIDCOL

      NOT NULL UNIQUE,                   -- Standard key column

    DocData varbinary(MAX) FILESTREAM    -- filestream type column

  );   

  To Store Column Text in an External File   
 USE SalesDB

 INSERT INTO DocumentData

 VALUES(NEWID(), CONVERT(varbinary(MAX), ‘Sample document content’))              

bapp05.indd   611bapp05.indd   611 10/31/08   6:14:19 PM10/31/08   6:14:19 PM



bapp05.indd   612bapp05.indd   612 10/31/08   6:14:19 PM10/31/08   6:14:19 PM



      F    
Answers to Exercises       

  Chapter 3 
  Exercise 1 Solution   

SELECT ProductID, Name, ListPrice

FROM   Production.Product

ORDER BY Name    

  Exercise 2 Solution   
SELECT Production.ProductSubcategory.Name AS SubCategory

      ,Production.Product.Name AS ProductName

      ,Production.Product.ListPrice

FROM   Production.Product 

INNER JOIN Production.ProductSubcategory 

ON Production.Product.ProductSubcategoryID = 

Production.ProductSubcategory.ProductSubcategoryID

ORDER BY SubCategory, ProductName   

  Exercise 3 Solution   
SELECT * FROM Production.Product WHERE ListPrice  >  4000  

 Rowcount = 13  

  Exercise 4 Solution   
SQLCMD /S localhost /E

 > 1 USE AdventureWorks2008

 > 2 GO

 > 1 SELECT ProductCategoryID, Name FROM Production.ProductCategory

 > 2 GO    

bapp06.indd   613bapp06.indd   613 10/31/08   6:14:44 PM10/31/08   6:14:44 PM



Appendix F:  Answers to Exercises

614

  Chapter 4 
  Exercise 1 Solution      

Figure F-1

  Exercise 2 Solution       

Figure F-2

  Chapter 5 
  Exercise 1 Solution   

SELECT NationalIDNumber

      ,LoginID

      ,JobTitle

bapp06.indd   614bapp06.indd   614 10/31/08   6:14:45 PM10/31/08   6:14:45 PM



Appendix F:  Answers to Exercises

615

      ,BirthDate

      ,MaritalStatus

      ,HireDate

FROM HumanResources.Employee   

  Exercise 2 Solution   
SELECT NationalIDNumber

      ,LoginID

      ,JobTitle

      ,BirthDate

      ,MaritalStatus

      ,HireDate

      ,DATEDIFF(YY,BirthDate,HireDate) AS AgeAtHire

FROM HumanResources.Employee   

  Exercise 3 Solution   
SELECT Name, ListPrice

FROM Production.Product

WHERE DaysToManufacture  > = 3   

 or   

SELECT Name, ListPrice

FROM Production.Product

WHERE DaysToManufacture  >  2    

  Exercise 4 Solution   
SELECT TOP 10

       ProductId

      ,Name

      ,ProductNumber

      ,Color

      ,ListPrice

FROM Production.Product

WHERE ProductNumber LIKE ‘BK%’

ORDER BY ListPrice DESC

SELECT TOP 10 WITH TIES

       ProductId

      ,Name

      ,ProductNumber

      ,Color

      ,ListPrice

FROM Production.Product

WHERE ProductNumber LIKE ‘BK%’

ORDER BY ListPrice DESC    

bapp06.indd   615bapp06.indd   615 10/31/08   6:14:45 PM10/31/08   6:14:45 PM



Appendix F:  Answers to Exercises

616

  Chapter 6 
  Exercise 1 Solution   

SELECT AVG(Weight)

FROM Production.Product

WHERE ProductSubcategoryID = 3   

  Exercise 2 Solution   
DECLARE @ProdCount AS char(3)

SELECT @ProdCount = CAST(COUNT(ProductID) AS char(3))

FROM Production.Product

SELECT ‘There are ‘ + @ProdCount + ‘ products on record’   

  Exercise 3 Solution   
SELECT SQRT(ABS(COS(PI())))   

  Exercise 4 Solution   
SELECT DATEDIFF(dd,’06-28-1919’,GETDATE())   

  Exercise 5 Solution   
SELECT FirstName

      ,LastName

      ,LEFT(FirstName,1) + LEFT(Lastname,1) AS Initials

FROM SlateGravelEmployee    

  Chapter 7 
  Exercise 1 Solution 

 For SQL Server 2008, using the AdventureWorks2008 database: 

SELECT JobTitle, MIN(LoginID)

FROM HumanResources.Employee

WHERE OrganizationLevel IN(0, 1, 2)

GROUP BY JobTitle  

 For SQL Server 2005, using the AdventureWorks database: 

SELECT Title, MIN(LoginID)

FROM HumanResources.Employee

WHERE Title IN(‘Buyer’, ‘Recruiter’, ‘Stocker’)

GROUP BY Title   

bapp06.indd   616bapp06.indd   616 10/31/08   6:14:46 PM10/31/08   6:14:46 PM



Appendix F:  Answers to Exercises

617

  Exercise 2 Solution   
SELECT ProductSubCategoryID, MIN(Name) AS Name, MAX(ListPrice)

FROM Production.Product

GROUP BY ProductSubCategoryID

HAVING COUNT(ProductSubCategoryID)  >  20

ORDER BY Name   

  Exercise 3 Solution 
 For SQL Server 2008, using the AdventureWorks2008 database: 

SELECT OrganizationLevel, Gender, AVG(VacationHours)

FROM HumanResources.Employee

GROUP by OrganizationLevel, Gender

WITH ROLLUP  

 For SQL Server 2005, using the AdventureWorks database: 

SELECT Title, Gender, AVG(VacationHours)

FROM HumanResources.Employee

GROUP by Title, Gender

WITH ROLLUP    

  Chapter 8 
  Exercise 1 Solution 

 SQL Server 2008 using the AdventureWorks2008 database: 

SELECT Name, SubTotal 

FROM Purchasing.Vendor INNER JOIN Purchasing.PurchaseOrderHeader

ON Vendor.BusinessEntityID = PurchaseOrderHeader.VendorID

ORDER BY Name  

 SQL Server 2005 using the AdventureWorks database: 

SELECT Name, SubTotal 

FROM Purchasing.Vendor INNER JOIN Purchasing.PurchaseOrderHeader

ON Vendor.VendorID = PurchaseOrderHeader.VendorID

ORDER BY Name   

  Exercise 2 Solution   
SELECT

      Manager.Title AS ManagerTitle

    , Manager.FirstName + ‘ ‘ + Manager.LastName AS ManagerName

    , Employee.Title AS EmployeeTitle

    , Employee.FirstName + ‘ ‘ + Employee.LastName AS EmployeeName

FROM DimEmployee AS Manager INNER JOIN DimEmployee AS Employee

      ON Manager.EmployeeKey = Employee.ParentEmployeeKey   

bapp06.indd   617bapp06.indd   617 10/31/08   6:14:46 PM10/31/08   6:14:46 PM



Appendix F:  Answers to Exercises

618

  Exercise 3 Solution   
SELECT 

     ProductSubCategory.Name AS SubCategoryName

   , Product.Name AS ProductName

FROM Production.ProductSubCategory

     INNER JOIN Production.Product

        ON ProductSubCategory.ProductSubCategoryID = Product

.ProductSubCategoryID

     LEFT OUTER JOIN Sales.SalesOrderDetail

        ON Product.ProductID = SalesOrderDetail.ProductID

WHERE SalesOrderDetail.ProductID IS NULL    

  Chapter 9 
  Exercise 1 Solution   

SELECT

      Name AS ProductName

    , ListPrice AS ProductListPrice

    , (SELECT MAX(UnitPrice) AS MaxSalesPrice 

       FROM Sales.SalesOrderDetail

       WHERE ProductID = Product.ProductID

       GROUP BY ProductID) AS MaxSalesPrice

FROM Production.Product

ORDER BY Name   

  Exercise 2 Solution   
SELECT Emp1.* FROM

(

  SELECT TOP 10 

     FirstName + ‘ ‘ + LastName AS Name

   , VacationHours 

  FROM vw_Employee AS E 

  ORDER BY VacationHours DESC

) AS Emp1

UNION

SELECT Emp2.* FROM

(

  SELECT ‘(Other)’ AS Name, AVG(E1.VacationHours) AS VacationHours 

  FROM vw_Employee AS E1

         LEFT OUTER JOIN 

         ( SELECT TOP 10 EmployeeID, VacationHours 

           FROM vw_Employee ORDER BY VacationHours DESC

         ) AS E2

    ON E1.EmployeeID = E2.EmployeeID

    WHERE E2.EmployeeID IS NULL

) AS Emp2   

bapp06.indd   618bapp06.indd   618 10/31/08   6:14:46 PM10/31/08   6:14:46 PM



Appendix F:  Answers to Exercises

619

  Exercise 3 Solution   
WITH Top10VacHours (VacationHours, Name, EmployeeID)

AS

(

  SELECT TOP 10 

     FirstName + ‘ ‘ + LastName AS Name

   , VacationHours

   , EmployeeID

  FROM vw_Employee AS E 

  ORDER BY VacationHours DESC

)

SELECT * FROM Top10VacHours    

  Chapter 10 
  Exercise 1 Solution   

INSERT INTO Production.ProductCategory (Name) SELECT ‘Snorkels’

INSERT INTO Production.ProductCategory (Name) VALUES (‘Snorkels’)   

  Exercise 2 Solution   
SELECT Product.* INTO RoadBikes 

FROM Production.Product

   INNER JOIN Production.ProductSubCategory

     ON Product.ProductSubCategoryID = ProductSubCategory

.ProductSubCategoryID

WHERE ProductSubCategory.Name = ‘Road Bikes’   

  Exercise 3 Solution   
BEGIN TRANSACTION

DELETE FROM Production.Product

WHERE ProductID IN

 (

     SELECT Product.ProductID

     FROM Production.Product LEFT OUTER JOIN Sales.SalesOrderDetail

        ON Product.ProductID = SalesOrderDetail.ProductID

     WHERE SalesOrderDetail.ProductID IS NULL

     AND Product.ProductSubCategoryID = 5

  )

INSERT INTO Production.ProductCategory (Name) SELECT ‘Accessory’

COMMIT TRANSACTION  

 No product records were deleted because the second query raised an error, causing the transaction to 
roll back.   

bapp06.indd   619bapp06.indd   619 10/31/08   6:14:46 PM10/31/08   6:14:46 PM



Appendix F:  Answers to Exercises

620

  Chapter 11 
  Exercise 1 Solution   

CREATE FULLTEXT INDEX

ON Person.StateProvince(StateProvinceCode, CountryRegionCode, Name)

KEY INDEX PK_StateProvince_StateProvinceID   

  Exercise 2 Solution   
SELECT * 

FROM Person.StateProvince

WHERE CONTAINS(*, ‘”CA”’)   

  Exercise 3 Solution   
SELECT * 

FROM Person.StateProvince

WHERE FREETEXT(‘”Victoria BC”’)  

 There is not a record for Victoria, BC. The only city on record for British Columbia is Vancouver, and the 
only record for Victoria is the province in Australia.   

  Chapter 12 
  Exercise 1 Solution   

CREATE VIEW vBikePriceSheet

AS

SELECT P.Name AS Product      

      ,PM.Name AS Model

      ,PS.Name AS Subcategory

      ,P.Color

      ,P.ListPrice

      ,P.StandardCost

      ,P.ListPrice - P.StandardCost AS Margin

FROM   Production.Product P

INNER JOIN Production.ProductSubcategory PS

  ON P.ProductSubcategoryID = PS.ProductSubcategoryID 

INNER JOIN Production.ProductModel PM 

  ON P.ProductModelID = PM.ProductModelID

WHERE PS.ProductCategoryID = 1   

bapp06.indd   620bapp06.indd   620 10/31/08   6:14:47 PM10/31/08   6:14:47 PM



Appendix F:  Answers to Exercises

621

  Exercise 2 Solution   
CREATE PROCEDURE spAddDepartment

 @Name nvarchar(50)

,@GroupName nvarchar(50)

AS

IF EXISTS (SELECT * 

           FROM HumanResources.Department

           WHERE Name = @Name

             AND GroupName != @GroupName)

   BEGIN

      UPDATE HumanResources.Department

      SET GroupName = @GroupName

      WHERE Name = @Name

   END

ELSE

   IF EXISTS(SELECT * 

             FROM HumanResources.Department

             WHERE Name = @Name

               AND GroupName = @GroupName)

   BEGIN

      RAISERROR(‘Duplicate Department Name!’, 14,1)

      RETURN

   END

ELSE

   BEGIN

      INSERT HumanResources.Department

      (Name, GroupName)

      VALUES

      (@Name, @Groupname)

   END   

  Exercise 3 Solution   
/****************************************************************************

* spAddDepartment.sql

* 2008/07/01 Created (D.Wood) dan.wood@adventureworkscycles.com

* Adds or updates department information in the HumanResources.Department 

table

* If a department name exists, it will update the groupname if different

* If the name and group name are new it will be added

* Accepts two parameters: @Name = Department Name 

*                         @GroupName = Department Group

* 2008/07/10 Modified (P.Turley) paul.turley@adventureworks.com

* Added error checking

****************************************************************************/

CREATE PROCEDURE spAddDepartment

 @Name nvarchar(50)

,@GroupName nvarchar(50)

AS

BEGIN TRY

   IF EXISTS (SELECT * 

(continued)

bapp06.indd   621bapp06.indd   621 10/31/08   6:14:47 PM10/31/08   6:14:47 PM



Appendix F:  Answers to Exercises

622

              FROM HumanResources.Department

              WHERE Name = @Name

                AND GroupName != @GroupName)

      BEGIN

         BEGIN TRAN

            UPDATE HumanResources.Department

            SET GroupName = @GroupName

            WHERE Name = @Name

         COMMIT TRAN

      END

   ELSE

      IF EXISTS(SELECT * 

                FROM HumanResources.Department

                WHERE Name = @Name

                  AND GroupName = @GroupName)

         BEGIN

            RAISERROR(‘Duplicate Department Name!’, 14,1)

            RETURN

         END

      ELSE

         BEGIN

            BEGIN TRAN

               INSERT HumanResources.Department

               (Name, GroupName)

               VALUES

               (@Name, @Groupname)

            COMMIT TRAN

         END

END TRY

BEGIN CATCH

   DECLARE @ErrorMsg nvarchar(MAX)

   SET @ErrorMsg = ERROR_MESSAGE()

   IF XACT_STATE() != 0

      BEGIN

         ROLLBACK TRAN         

         RAISERROR(@ErrorMsg,16, 1)

         RETURN -1

      END

   ELSE

      BEGIN

         RAISERROR(@ErrorMsg,16, 1)

         RETURN -1

      END

END CATCH    

(continued)

bapp06.indd   622bapp06.indd   622 10/31/08   6:14:47 PM10/31/08   6:14:47 PM



Appendix F:  Answers to Exercises

623

  Chapter 13 
  Exercise 1 Solution   

CREATE TABLE Customer

(CustomerId int IDENTITY(1,1) NOT NULL

,Lastname varchar(50) NOT NULL

,FirstName varchar(50) NOT NULL

,StreetAddress1 varchar(200)

,StreetAddress2 varchar(200)

,City varchar(100)

,StateProvince varchar(100)

,PostalCode varchar(20)

,Country char(2))

                   

CREATE TABLE WristbandSales

(SaleId int IDENTITY(1,1) NOT NULL

,ProductId int NOT NULL

,SalesPrice money NOT NULL

,Quantity int NOT NULL

,CustomerId int NOT NULL

,Salesdate datetime NOT NULL)   

  Exercise 2 Solution   
ALTER TABLE Wristbandsales

DROP COLUMN SaleId

ALTER TABLE Wristbandsales

ADD SalesId UNIQUEIDENTIFIER NOT NULL DEFAULT NEWID()

ALTER TABLE Customer ADD CONSTRAINT

CK_Country CHECK (Country IN (‘US’,’UK’,’CA’))    

  Chapter 14 
  Exercise 1 Solution   

USE AdventureWorks2008

GO

CREATE PROCEDURE uspGetInvoice

   @SalesOrderNumber nvarchar(25) = ‘’

  ,@PurchaseOrderNumber nvarchar(25) = ‘’

AS

IF @SalesOrderNumber = ‘’ AND @PurchaseOrderNumber = ‘’

   BEGIN

      RAISERROR(‘Must provide PurchaseOrder or SalesOrder number’, 14,1)

      RETURN

   END

IF @SalesOrderNumber = ‘’

   BEGIN   

      SELECT SalesOrderNumber

(continued)

bapp06.indd   623bapp06.indd   623 10/31/08   6:14:47 PM10/31/08   6:14:47 PM



Appendix F:  Answers to Exercises

624

            ,OrderDate

            ,ShipDate

            ,SubTotal

            ,TaxAmt

            ,Freight

            ,TotalDue

      FROM Sales.SalesOrderHeader 

      WHERE PurchaseOrderNumber = @PurchaseOrderNumber

   END

IF @PurchaseOrderNumber = ‘’

   BEGIN   

      SELECT SalesOrderNumber

            ,OrderDate

            ,ShipDate

            ,SubTotal

            ,TaxAmt

            ,Freight

            ,TotalDue

      FROM Sales.SalesOrderHeader 

      WHERE SalesOrderNumber = @SalesOrderNumber

   END;                        

(continued)

bapp06.indd   624bapp06.indd   624 10/31/08   6:14:48 PM10/31/08   6:14:48 PM



In
de

x

Symbols
 ( ) (parentheses), 156–158
= (equal to), 145
› (greater than), 145
›= (greater than or equal to), 145
— (in-line comments), 112, 113, 114, 539
‹ (less than), 145
‹= (less than or equal to), 145
!= (not equal to), 145
‹› (not equal to), 145
!› (not greater than), 145
!‹ (not less than), 145
* (SELECT * technique), 132
/* */ block comments, 113
“ “ delimiting, 111, 411
[ ] (delimiting), 111, 411
[_] (wildcard), 146
[ ] (wildcard), 146
- (wildcard), 146
% (wildcard), 146

A
ABS() function, 203
Access (Microsoft), 21–22, 24, 481

Auto-Number field, 31
Cross Tab query, 330
DAO, 481, 482
Jet and, 21, 481
SQL Server and, 24
T-SQL v., 21

ACID test (atomic, consistent, isolated, 
durable), 299

ACOS() function, 203
active directory stored procedures, 573
Active Server Pages (ASP), 491
ActiveX Data Objects (ADO), 482, 489
Add Table dialog, 84, 253, 357, 358
adding rows, 301–310
ad-hoc queries, 356

administrative tasks, SQL Server, 49
ADO (ActiveX Data Objects), 482, 489
Adobe Reader, 491
ADO.NET, 482, 489
advanced capabilities, 329–354. See also 

DIFFERENCE(); full text indexing; 
PIVOT operator; SOUNDEX(); UNPIVOT 
operator

advanced queries, 273–296. See also common 
table expressions; subqueries

AdventureWorks databases, 47, 80, 103
cleaning up, 235
data warehouse, 520
ERD for, 246–247
GROUP BY clause and, 230–231
HAVING clause and, 231–235
Product table. See Product table

aggregation, 219
aggregation functions, 165, 170–173, 

220–226, 554–555
AVG(), 171–172, 220, 222–223, 554
CHECKSUM_AGG(), 221
COUNT(), 172, 220, 221, 554
COUNT_BIG(), 220
MAX(), 172–173, 220, 554
MIN(), 172–173, 220, 554
reference list, 554–555
statistical, 223–226
STDEV(), 220, 224
STDEVP(), 221, 224
in subqueries, 280
SUM(), 173, 220, 222, 555
VAR(), 221, 224–225
VARP(), 221

aliases, 106–107
column, 137–139, 278
table, 106–107, 277–278

ALTER, 103, 122–123, 126
ALTER TABLE, 536
alternate join operations, 277–283
American National Standards Institute. 

See ANSI

Index

bindex.indd   625bindex.indd   625 10/31/08   6:15:17 PM10/31/08   6:15:17 PM



626

American Standard Code for Information 
Interchange. See ASCII

Analysis Services Editor toolbar, 70
Analysis Services Project, 75
analyzing queries, 445–471

graphical execution plans, 460–471
session options, 447–460

anatomy, of functions, 166–170
AND operator, 148–149, 352, 475
ANSI (American National Standards Institute)

ANSI SQL standards, 2, 101–102, 126
compliance levels, 2, 102
ISO ANSI SQL-92, 102, 271

answers to exercises. See exercises and solutions
applications. See database applications
APP_NAME(), 211
approximation matching. See SOUNDEX()
architectural design. See conceptual design
arguments, 77, 166–167, 217
AS keyword, 107, 138, 139, 262, 435
ASCII (American Standard Code for Information 

Interchange) character values, 191–194
ASCII() function, 191–194
ASIN(), 203
ASP (Active Server Pages), 491
ASP.NET, 491
ASP.NET Web components, 491
asterisk, SELECT * technique and, 132
ATAN(), 203
ATN2(), 203
Atomic, Consistent, Isolated, Durable 

(ACID test), 299
atomic unit, 299
atomicity, transactions and, 405
attribute fields, 220
attributes, 28
auto-commit transactions, 299
automating inserts/updates/deletes. 

See MERGE command
Auto-Number field, 31
AVG() function, 171–172, 220, 222–223, 554

B
Ballmer, Steve, 24
BCNF (Boyce-Codd normal form), 35–36
BCP (Bulk Copy) utility, 76, 300
Beginning SQL Server 2005 Administration 

(Wrox), 76

benchmarking
queries, 295
subqueries, 285–286

best practices (writing efficient T-SQL), 443, 
471–476

BETWEEN operator, 153
BI Studio (Business Intelligence Development 

Studio), 75. See also Visual Studio
biased estimate of variance, 226
big ugly number, 31
bigint, 9
binary, 12
binary data types, 12–13
binary large objects (BLOBs), 337
bit, 9
BLOBs (binary large objects), 337
block comments (/* */ ), 112–113, 540
Bookmark window, 62–63
Bool, George, 148
bottlenecks, hard disks and, 270, 365
Boyce, Raymond F., 33
Boyce-Codd normal form (BCNF), 35–36
Break All button, 93
BREAK statement, 398
breakpoints, 93, 94, 95
BreakPoints button, 93
bridge table, 36, 42
Brooks, Frederick P., 29
buffer cache, 46
bugs, 356
Bulk Copy Task feature, 300
Bulk Copy (BCP) utility, 76, 300
bulk update locks, 20
business intelligence, 520–521
Business Intelligence Development Studio 

(BI Studio), 75. See also Visual Studio
Analysis Services Project, 75
Import Analysis Services 9.0 Database, 75
Integration Services Project, 75
project templates, 75
Report Model Project, 75
Report Server Project, 75
Report Server Project Wizard, 75

business logic, stored procedures and, 
391–396

business reporting, 520–521
business rules. See normalization rules
business users, SQL Server and, 24–25, 48
BY CUBE, 532
BY ROLLUP, 531

American Standard Code for Information Interchange

bindex.indd   626bindex.indd   626 10/31/08   6:15:18 PM10/31/08   6:15:18 PM



627

In
de

x

C
cached reports, 519–520
caching (query processing stage), 47, 446
calculated columns, 139–141
Caller option, 437
camel case, 110
candidate keys, 35
capacity planning, 362
cardinality, 30–31
Cartesian product, 261
CASCADE option, 428
case

camel case, 110
lower-case, delimited, 110
Pascal case, 110, 412
upper/lower, code and, 105–106

CASE statement, 396, 534
CAST() function, 178–181, 556
catalog stored procedures, 574
catalogs, managing/populating, 340–353
CATCH block, 176, 327, 385
CEILING(), 203
change data capture stored procedures, 575
char, 11
character data types, 11–12
character values (ASCII), 191–194
CHAR() function, 191–194
CHARINDEX() function, 195, 400
check constraints, 422, 425–426
CHECK OPTION, 430
CHECK_CONSTRAINTS, 595
Checking account table, 326
checkpoints, 325
checksum functions, 555
CHECKSUM_AGG(), 221
Choose Name dialog, 359
Clarion, 24, 481
clauses. See specific clauses
client/server database solutions, 355, 

481–485
Clipper, 24, 481
CLR (Common Language Runtime), 3, 4, 

472,  482
COALESCE(), 211, 214
Codd, E. F., 4, 33, 329
code

pseudo, 114
reuse, 356
testing /retesting, 472

Code Editor, 59
COLLATIONPROPERTY(), 212
COL_LENGTH(), 205
COL_NAME(), 205
COLUMN_DOMAIN_USAGE, 596
COLUMN_PRIVILEGES, 596
COLUMNPROPERTY(), 205
COLUMNS, 597
columns (fields), 8–14

aliases, 137–139, 278
calculated, 139–141
choosing, SELECT statement and, 131–137
data types for, 8–13
derived, 139–141
fields as, 27
multicolumn joins, 256–257
multi-valued, 43–44
names for, 8
NULL values and, 14, 303–306

COM+, 489
COM (Component Object Model), 482, 489
commas, 108
comment out, 114
comments, 112–114

block (/* */ ), 112–113, 540
conventions, 539–540
in-line (—), 112, 113, 114, 539
script, conventions for, 539–540
single-line, 539

Common Language Runtime (CLR), 3, 4, 472, 482
common table expressions (CTEs), 273, 

289–291
subqueries v., 273, 289

Compact Edition (SQL Server), 25
Compact Edition toolbar, 70
comparison operators, 144–148

equal to (=), 145
greater than (›), 145
greater than or equal to (›=), 145
joins and, 257
less than (‹), 145
less than or equal to (‹=), 145
Like, 145, 473, 536
not equal to (!=, or ‹› ), 145
not greater than (!›), 145
not less than (!‹), 145

comparisons, logical, 148. See also logical 
operators

compilation (query processing stage), 46, 446
Component Object Model (COM), 482, 489

Component Object Model (COM)

bindex.indd   627bindex.indd   627 10/31/08   6:15:18 PM10/31/08   6:15:18 PM



628

component transaction management, 489
compounded simplicity, 104
COMPUTE BY clause, 241–243, 533
COMPUTE clause, 241–243, 533

example, 241–243
limitations of, 241

conceptual design, 28–29
conditional logic, 393–394
configuration, Management Studio, 71–74

Designers section, 74
Environment section, 72
Object Explorer section, 73–74
Query Execution section, 73
Query Results section, 73
Source Control section, 74
Text Editor section, 72–73

Configuration Manager (SQL Server), 76
configuration variables, 165, 173–176, 550–553

categories, 549
@@ERROR, 173–175, 552
functions and, 173
reference list, 550–553
@@SERVICENAME, 175, 551
@@TOTAL_ERRORS, 175, 553
@@TOTAL_READ, 175, 553
@@VERSION, 175–176, 551

Connection Properties dialog, 497, 498
connection-pooling, 489
connections, 17
@@CONNECTIONS, 216
Consensus Soundex, 338. See also SOUNDEX()
consistent (in ACID test), 299
CONSTRAINT_COLUMN_USAGE, 598
constraints, 32, 422–429

categories of, 422
check, 422, 425–426
foreign key, 32, 422, 426–428
naming, 413
not null, 422
overriding, 428–429
primary key, 422–424
referential, 246
unique, 32, 422, 424–425

CONSTRAINT_TABLE_USAGE, 598
consulting billing time, subqueries and, 288–289
Contact table, 302, 304
containers, file, 609
CONTAINS predicate, 347, 348–350
CONTAINSTABLE predicate, 351
Continue button, 93

CONTINUE statement, 398
controls, user interface, 483
conventions

naming. See names/naming
script comment, 539–540

conversion functions, 165, 178–184, 556
CAST(), 178–181, 556
CONVERT(), 178, 181–183, 556
STR(), 184

CONVERT() function, 178, 181–183, 556
correlated subqueries, 248, 283–285
COS(), 204
COT(), 204
COUNT(), 172, 220, 221, 554
COUNT_BIG(), 220
@@CPU_BUSY, 216
CREATE, 103, 126, 410
CREATE DATABASE, 537
CREATE DEFAULT, 537
CREATE FUNCTION, 438
CREATE PARTITION FUNCTION, 539
CREATE PARTITION SCHEME, 539
CREATE PROCEDURE, 434–437, 538

WITH ENCRYPTION, 436
WITH RECOMPILE, 436–437
using parameters, 434–436

Create Read Update Delete (CRUD), 103–104, 
300–325

CREATE RULE, 538
CREATE SCHEMA, 539
CREATE TABLE, 414–421, 538
CREATE TRIGGER, 538–539
CREATE VIEW, 429–432, 539

WITH CHECK OPTION, 430
WITH ENCRYPTION, 431
WITH SCHEMABINDING, 431
WITH VIEW_METADATA, 431

credit card transaction scenario, 268–269
cross joins, 258, 261
Cross Tab query, 330
CRUD (Create Read Update Delete), 

103–104, 300–325. See also inserting; 
updating

cryptographic functions, 556–557
CTEs. See common table expressions
CUBE clause, 238

BY CUBE, 532
WITH CUBE, 532

CURrent Set Of Rows. See cursors
CURRENT_TIMESTAMP(), 212

component transaction management

bindex.indd   628bindex.indd   628 10/31/08   6:15:19 PM10/31/08   6:15:19 PM



629

In
de

x

CURRENT_USER(), 212
cursor management stored procedures, 576
cursor processing

row-based operations, 105
set-based operations, 104

@@CURSOR_ROWS, 185, 552
cursors (CURrent Set Of Rows), 104, 184, 

291–294
behavior

forward-only, 292
udatable, 292

creating, 292–293
data type, 14
definition of, 291
functions, 165, 184–185, 557
global variables, 185, 552
navigating, 293–294
rowsets v., 292

CURSOR_STATUS() function, 185, 557

D
DAO (Data Access Objects), 481, 482
data

CRUD and, 103–104, 300–325
defined, 27–28
federating, 268–269
grouping. See grouping data
information v., 27–28, 36–37
metadata, 120–121
moving, 297. See also transactions
partitioning, 268–269
pivoting, 329–336
relational

SQL Server and, 23
T-SQL and, 102

scalar, 102, 166, 226, 274–276
Data Access Objects (DAO), 481, 482
Data Control Language (DCL), 103, 124–126, 

440–441
DENY, 103, 124–126, 441
GRANT, 103, 124–126, 441
REVOKE, 103, 124–126, 441

Data Definition Language (DDL), 103, 
116–124, 126, 409–438. See also ALTER; 
CREATE; DROP

CREATE TABLE, 414–421, 538
objects, altering, 122–123
objects, dropping, 123–124

scripts
creating, 413–414
guidelines, 120–122

stored procedure creation, 118
table creation, 117
trigger creation, 118–119
user-defined function creation, 119–120
view creation, 117–118

data exchange, system integration and, 492–493
data integrity, RDBMS and, 17–20
Data Manipulation Language (DML), 103–116, 

126. See also DELETE; INSERT; SELECT; 
UPDATE

commenting script, 112–114
CRUD and, 103–104
data retrieval, 129–163
naming conventions, 108–110
object delimiting, 111–112, 411
query layers, 104
query syntax, 105–108
row-based operations, 105
script, generating/managing, 115
set-based operations, 104
templates and, 114–115
version control and, 115–116

data marts, 24
data modeling. See normalization rules
data operations tasks, SQL Server, 50
data retrieval, 129–163. See also SELECT 

statement
mechanics of, 443–445

data retrieval language, T-SQL as, 2, 4, 129
data silos, 24
Data Source Properties dialog, 497, 499
data sources

designing, 497–499
embedded, 497

Data Transformation Services (DTS), 300, 591
data types, 8–14. See also specific data types

binary, 12–13
character, 11–12
for columns, 8–13
conversion. See conversion functions
date and time, 10–11
filestream, 5, 609
integers, 9
numerics (approximate), 10
numerics (exact), 9–10
other, 13–14
rule for, 8

data types

bindex.indd   629bindex.indd   629 10/31/08   6:15:19 PM10/31/08   6:15:19 PM



630

data warehouse, 520
databases. See also specific databases

AdventureWorks, 47, 80, 103
file-based, RDBMSs v., 27
filestream-enabled, 609
hybrid systems, 479
online analytical processing, 479
online transaction processing, 479
reporting solutions. See Reporting Services

database application programming models, 
477–493

categories, 479
client/server database solutions, 355, 481–485
design patterns and, 477–478
multi-system integrated solutions, 492–493
multi-tier Web service solutions, 491–492
n-tier component solutions, 485–490
project/applications, questions/guidelines for, 

479–480
scalable solutions, 479, 485, 489, 494, 

524, 525
selecting, 478–480, 525
Web server applications, 490–491

database applications
ad-hoc queries and, 356
client/server solutions, 355, 481–485
creating

best practices, 356
database programming objects and, 356

desktop, 481. See also Access
Clarion, 24, 481
Clipper, 24, 481
dBase, 23, 481
FileMaker, 24, 481
FoxPro, 21, 23, 481
Paradox, 23, 481

evolution of, 355
Web server, 490–491

database design. See normalization rules
Database Diagram toolbar, 64–65
database engine stored procedures, 576–579
Database Mail stored procedures, 584–585
database maintenance plan stored procedures, 580
database management systems (DBMSs), 4–5
database management tasks , SQL Server, 50
Database Tuning Advisor (DTA), 76
database..object, 527
DATABASEPROPERTY(), 205
DATABASEPROPERTYEX(), 205
database.schema.object, 527

DATALENGTH(), 212, 214–215
Dataset Properties dialog, 499, 503
datasets, 495, 496

defined, 495
designing, 499–504

date (data type), 10
date and time

data types, 10–11
functions, 166, 185–191, 558–559

Date, Chris, 33
DATEADD() function, 186–187, 558
DATEDIFF() function, 187–190, 558
DATENAME() function, 190, 558
DATEPART() function, 190, 558
datetime, 10, 185
datetime2, 10
datetimeoffset, 11
DAY() function, 191, 558
dBase, 23, 481
DB_ID(), 205
DBMSs. See database management systems
DB_NAME(), 205
DCL. See Data Control Language
DDL. See Data Definition Language
deadlocks, 18–19, 387
death, of T-SQL, 3–4
debug feature, 91–96
Debug toolbar, 93
debugging, 356
decimal (data type), 9
decision structures, in T-SQL, 391
Declarative Relational Integrity (DRI), 426
DECLARE @local_variable, 535
defaults, 419–421

defined, 419
naming, 413
NULL and, 419

Define Query Parameters dialog, 502
definition encryption, 432
DEGREES(), 204
delayed name resolution, 431
delayed resolution, 361
DELETE command, 103, 126, 317–322, 535
Delete stored procedure, 381
deleting rows, 316–322

automating. See MERGE command
based on another table, 318–321
WHERE clause and, 317–318

delimiting, 111–112, 411
“ ,” 111, 411

data warehouse

bindex.indd   630bindex.indd   630 10/31/08   6:15:19 PM10/31/08   6:15:19 PM



631

In
de

x

[ ], 111, 411
embedded spaces, 109, 111
reserved words, 111

denormalization, 44, 48. See also normalization 
rules

DENSE_RANK(), 208–209
DENY, 103, 124–126, 441
deprecated, 235
derived columns, 139–141
derived tables, 280–281
design. See also normalization rules

conceptual, 28–29
logical, 29
physical, 29–30

design patterns, 477–478
Designers configuration section, 74
desktop database applications, 481

Access. See Access
Clarion, 24, 481
Clipper, 24, 481
dBase, 23, 481
FileMaker, 24, 481
FoxPro, 21, 23, 481
Paradox, 23, 481

determinism, 167
deterministic functions, 167–168
dialog

Add Table, 84, 253, 357, 358
Choose Name, 359
Connection Properties, 497, 498
Data Source Properties, 497, 499
Dataset Properties, 499, 503
Define Query Parameters, 502
File Download, 47
New Full-Text Catalog, 341
New Project, 60
Options, 71
Properties, 304
Report Parameter Properties, 510
Specify Values for Template Parameters, 63, 90
Text Box Properties, 509

diesel front loader example, 245–246
DIFFERENCE(), 329, 339, 353
distributed queries stored procedures, 580–581
Distributed Transaction Coordinator (DTC) 

service, 489
DML. See Data Manipulation Language
docking/undocking windows, 53–54
DOMAIN_CONSTRAINTS, 599
DOMAINS, 599–600

DRI (Declarative Relational Integrity), 426
DROP, 103, 123–124
DTA (Database Tuning Advisor), 76
DTC (Distributed Transaction Coordinator) 

service, 489
DTS (Data Transformation Services), 300, 591
durable (in ACID test), 299

E
/E switch (trusted connection), 77, 78
efficient T-SQL (best practices), 443, 471–476
ELSE statement, 394
embedded data source, 497
embedded spaces, 109, 111
EmployeeKey, 39–40
Employees table (example), 36–44

EmployeeKey and, 39–40
1NF and, 37–41
multiple associations in, 42–43
multi-valued columns in, 43–44
name-based keys and, 39
SupervisorName in, 40–41

ENCRYPTION option, 431
Enterprise Edition (SQL Server), 26–27
Enterprise Manager, 51. See also 

Management Studio
entities, 28
entity-relationship diagrams (ERDs), 40, 412

for AdventureWorks database, 246–247
Environment configuration section, 72
equal to (=), 145
equijoin, 249
ERDs. See entity-relationship diagrams
@@ERROR, 173–175, 177, 215, 383, 552
error handling

CATCH block and, 176, 327, 385
error handling functions and, 176
in SQL Server, 383–391
stored procedures and, 381–391
transactions and, 327
TRY block and, 176, 327, 383

error handling functions, 176–178, 560
@@ERROR and, 176
error handling and, 176
reference list, 560

Error List window, 63–64
error messages, 381–383

severity levels, 382

error messages

bindex.indd   631bindex.indd   631 10/31/08   6:15:20 PM10/31/08   6:15:20 PM



632

error raising, 381–383
Excel (Microsoft), 24, 25

PivotTable, 330–331
EXCEPT, 533
exclusive locks, 19
EXECUTE AS, 437

options
Caller, 437
Owner, 437
Self, 437
‘user_name,’ 437

Execute button, 81
execution (query processing stage), 47, 446
execution plans, 45
exercises and solutions. See also Try It Out

chapter 3, 98–99, 613
chapter 4, 97–99, 127, 614
chapter 5, 163, 614–615
chapter 6, 217, 616
chapter 7, 244, 616–617
chapter 8, 272, 617–618
chapter 9, 295–296, 618–619
chapter 10, 328, 619
chapter 11, 354, 620
chapter 12, 408, 620–622
chapter 13, 442
chapter 14, 476, 623–624

EXISTS(), 282–283
EXISTS keyword, 438, 439
EXIT command, 79
EXP(), 204
explicit transactions, 298, 325–327
Express Edition (SQL Server), 22, 25–26

Jet v., 22, 481
expressions, joins on, 262–264
extended stored procedures, 581
eXtensible Markup Language. See XML
external systems stored procedures, 581

F
facts (measures), 220
federated, 366
federated views, 366–369
federating data, 268–269
@@FETCH_STATUS, 185, 552
fields. See columns
fifth normal form (5NF), 35, 36
5NF (fifth normal form), 35, 36

file containers, 609
File Download dialog, 47
file-based databases, RDBMSs v., 27
FILE_ID(), 205
FileMaker, 24, 481
FILE_NAME(), 205
filestream data type, 5, 609
filestream objects, 610

GET_FILESTREAM_TRANSACTION_CONTEXT(), 
610

PATHNAME(), 610
sp_filestream_configure, 610

filestream-enabled
databases, 609

T-SQL scripts (examples), 610–611
tables, 609

T-SQL scripts (examples), 611
filtering. See also WHERE clause

extended, 152
rows, 141

in join clause using a predicate, 261–262
updates, 311–313

‘Finally’ block, 384
first normal form (1NF), 31, 34–35, 37–41, 329
1NF (first normal form), 31, 34–35, 37–41, 329
Flash (Macromedia), 491
float, 10
FLOOR(), 204
fn_helpcollations(), 212
fn_listextendedproperty(), 206
fn_servershareddrives(), 212
fn_trace_geteventinfo(), 211
fn_trace_getfilterinfo(), 211
fn_trace_getinfo(), 211
fn_trace_gettable(), 211
fn_virtualfilestats(), 212
FOR clause, 533
foreign key constraints, 32, 422, 426–428
foreign keys, 14, 32
FORMATMESSAGE(), 212
formatting queries, 105–108

aliases and, 106–107
commas and, 108
indenting and, 108
upper/lower case and, 105–106

forward-only cursor behavior, 292
four-part names, for objects, 135, 527, 528
fourth normal form (4NF), 35, 36
4NF (fourth normal form), 35, 36
FoxPro, 21, 23, 481

error raising

bindex.indd   632bindex.indd   632 10/31/08   6:15:20 PM10/31/08   6:15:20 PM



633

In
de

x

FREETEXT predicate, 347, 351–352
FREETEXTTABLE predicate, 349, 352–353
FROM clause, 130, 530
full joins, 258–260
full-text indexing, 329, 337, 340–353, 354

CONTAINS predicate, 347, 348–350
FREETEXT predicate, 347, 351–352
FREETEXTTABLE predicate, 349, 352–353

Full-Text Indexing Wizard, 340, 342–346
full-text index/search stored procedures, 582
full-text queries, 336–337, 347–353
FULLTEXTCATALOGPROPERTY(), 206
FULLTEXTSERVICEPROPERTY(), 206
functions, 165–217. See also specific functions

aggregation, 165, 220–226, 554–555
anatomy of, 166–170
arguments in, 77, 166–167, 217
categories, 165–166
checksum, 555
configuration variables and. See configuration 

variables
conversion, 165, 178–184, 556
cryptographic, 556–557
cursor, 165, 557
date and time, 166, 185–191, 558–559
defined, 91
deterministic, 167–168
error, 176–178
error handling, 560
grouping(), 238–240
image/text, 559
mathematical, 166, 203–204, 560–561
metadata, 166, 204–207, 562–563
naming, 413
nested, 169–170
nondeterministic, 167, 168, 408
purpose of, 166
in queries, 169
ranking, 166, 207–210, 564
reference list, 549, 553–571
rowset, 564–565
security, 166, 210–211, 565
statistical, 223–226
string manipulation, 191–203, 566–567
system, 568–570
system statistical, 166, 571
user variables and, 168–169
user-defined, 119–120, 166, 226, 

399–405, 408
utility. See system functions

variables v., 549
future reserved words, 109, 545–547

G
Gates, Bill, 24
GETANSINULL(), 212
GETDATE() function, 190, 558
GET_FILESTREAM_TRANSACTION_CONTEXT(), 610
GETUTCDATE() function, 190, 558
global variables, 216, 549–553. See also specific 

variables
globally unique identifiers (GUIDs), 31
GO command, 79
GRANT, 103, 124–126, 441
graphical execution plans, 460–471
Graphical Query Designer. See Query Designer
greater than (›), 145
greater than or equal to (›=), 145
GROUP BY clause, 226–231, 531

BY CUBE, 532
WITH CUBE, 532
BY ROLLUP, 531
WITH ROLLUP, 531

grouping data, 219–220, 226–241
CUBE clause, 238, 532
HAVING clause, 231–235, 532
ROLLUP clause, 237, 531
subgrouping, 236–237
subtotal group modifiers, 235–236
total group modifiers, 235–236

grouping() function, 238–240
GUIDs. See globally unique identifiers

H
hard disks, bottlenecks and, 270, 365
HAS_DBACCESS(), 211
HAVING clause, 231–235, 532

subqueries and, 280
HDBMS (hierarchical database management 

systems), 4
Help toolbar, 66
hierarchical database management systems 

(HDBMS), 4
hierarchyid, 13
HOST_ID(), 212
HOST_NAME(), 212

HOST_NAME()

bindex.indd   633bindex.indd   633 10/31/08   6:15:21 PM10/31/08   6:15:21 PM



634

HTTP (Hypertext Transfer Protocol), 491
Hungarian Notation, 110
hybrid database systems, 479
Hypertext Transfer Protocol (HTTP), 491

I
IBM DB2, 21
IDENT_CURRENT(), 212
IDENT_INCR(), 212
IDENTITY(), 212
identity, 39, 40
@@IDENTITY, 215, 418, 419
IDENTITY property, 31, 415–419
IDENTITY() function, 31
IDENT_SEED(), 212
@@IDLE, 216
IF EXISTS, 438–439
‘If,’ logic and, 393
IF NOT EXISTS, 438–439
IF statement, 394
image (data type), 13, 337
image/text functions, 559
implicit transactions, 298
Import Analysis Services 9.0 Database, 75
INDENT_CURRENT(), 419
indenting, 108
INDEX_COL(), 206
indexed views, 432–433
indexes, 243

full-text, 329, 337, 340–353, 354
managing/populating, 340–353
naming, 413

INDEXKEY_PROPERTY(), 206
INDEXPROPERTY(), 206
information, 27–28

data v., 27–28, 36–37
defined, 27

information schema views, 121–122, 204, 
595–608

CHECK_CONSTRAINTS, 595
COLUMN_DOMAIN_USAGE, 596
COLUMN_PRIVILEGES, 596
COLUMNS, 597
CONSTRAINT_COLUMN_USAGE, 598
CONSTRAINT_TABLE_USAGE, 598
DOMAIN_CONSTRAINTS, 599
DOMAINS, 599–600
KEY_COLUMN_USAGE, 600

PARAMETERS, 600–601
reference list, 595–608
REFERENTIAL_CONSTRAINTS, 602
ROUTINE_COLUMNS, 602–603
ROUTINES, 603–605
SCHEMATA, 605
TABLE_CONSTRAINTS, 606
TABLE_PRIVILEGES, 606
TABLES, 607
VIEW_COLUMN_USAGE, 607
VIEWS, 608
VIEW_TABLE_USAGE, 608

Informix, 21
IN() function, 153–154, 281–282
in-line comments (—), 112, 113, 114, 539
inline table-valued functions, 402–403
inner join subqueries, 277–278
inner joins, 250–251

legacy, 256
nested loop, 285

INSERT ... SELECT, 303
INSERT ... values, 302
INSERT statement, 103, 126, 301, 534
Insert stored procedure, 377–379
inserting

automating. See MERGE command
multiple rows, 303
NULL, 303–306
rows from another table, 306–307
stored procedures and, 308–310

instance, 29
int, 9
integers data types, 9
Integrated Security, Windows, 124, 439
Integration Services Project, 75
intent locks, 19
intermediary tables, 36
International Organization for Standardization 

(ISO), 102
INTERSECT, 533
@@IO_BUSY, 216
ISDATE(), 212
IS_MEMBER(), 211
ISNULL(), 212
ISNUMERIC(), 213
ISO (International Organization for 

Standardization), 102
ISO ANSI SQL-92, 102, 271
isolated (in ACID test), 299
IS_SRVROLEMEMBER(), 211

HTTP (Hypertext Transfer Protocol)

bindex.indd   634bindex.indd   634 10/31/08   6:15:21 PM10/31/08   6:15:21 PM



635

In
de

x

J
Jet Database Engine, 21, 22

Access and, 21, 481
SQL Server Express v., 22

joining tables, 42
in FROM clause, 249–250
in WHERE clause, 248–249

joins, 248, 271
alternate operations, 277–283
comparison operators and, 257
cross, 258, 261
equijoin, 249
on expressions, 262–264
filtering rows in, with predicate, 261–262
full, 258–260
inner, 250–251, 256, 285
legacy, 248, 250, 278
multicolumn, 256–257
multi-table, 264–266, 271
non-equijoins, 257–258
outer, 251–256

full, 258–260
special purpose, 258
subqueries v., 273, 277, 285–286
types of, 250
usage guidelines, 475–476

K
key range locks, 20
KEY_COLUMN_USAGE, 600
keys, 14, 37

candidate, 35
foreign, 14, 32
name-based, 39
primary, 6–7, 14, 31–32
relationships and, 14
surrogate, 31, 39–40

keywords. See reserved words
knowledge workers, 24

L
Language Integrated Query. See LINQ
languages. See also programming languages

data retrieval, T-SQL as, 2, 4, 129
set manipulation, T-SQL as, 2, 4

large-scale servers, 364
layers

in permissions, 124
in queries, 104

LEFT() function, 196
legacy joins, 248, 250, 278

inner, 256
outer, 255–256
syntax, 255–256

LEN() function, 195–196, 401
less than (‹), 145
less than or equal to (‹=), 145
Like operator, 145, 473, 536
linked server, 367
linking table, 16, 35
LINQ (Language Integrated Query), 490

in SQL Server 2008, 3–4, 490
locking options, 307, 310, 314, 328, 405–407

READ COMMITTED, 406
READ UNCOMMITTED, 406
REPEATABLE READ, 406
SERIALIZABLE, 406
SNAPSHOT, 406
table hints and, 407

locks, 17–20
bulk update, 20
deadlocks and, 18–19, 387
exclusive, 19
intent, 19
key range, 20
permissions as, 124
schema, 19
schema modification, 19
schema stability, 19
shared, 18
update, 18–19

LOG(), 204
log shipping stored procedures, 582–584
LOG10(), 204
logic

business, stored procedures and, 391–396
conditional, 393–394
‘If’ and, 393

logical comparisons, 148
logical design, 29
logical gates, 148
logical operators

AND, 148–149, 352, 475
OR, 149, 352, 475
guidelines for usage, 475

logical operators

bindex.indd   635bindex.indd   635 10/31/08   6:15:22 PM10/31/08   6:15:22 PM



636

logical operators (continued)
NEAR, 352
NOT, 150, 475

logs, transaction, 299–300, 327
long names, 109, 110
looping, 397–398
lower-case, delimited, 110
LOWER() function, 198–201
LTRIM() function, 201

M
Macromedia Flash, 491
Management Studio (SQL Server), 51–74

Bookmark window, 62–63
Code Editor, 59
configuration, 71–74

Designers section, 74
Environment section, 72
Object Explorer section, 73–74
Query Execution section, 73
Query Results section, 73
Source Control section, 74
Text Editor section, 72–73

debug feature, 91–96
Error List window, 63–64
Object Browser, 253, 304, 379
Object Explorer, 56–58
Object Explorer Details pane, 63
Properties window, 61
query creation, 79–96

Query Designer, 83–88
script templates, 88–90
scripting options, 81–83

Registered Servers window, 62
Solution Explorer, 60–61
Template Explorer, 63
templates, 114–115
tool windows, 56–64
toolbars, 64–71

Analysis Services Editor, 70
Compact Edition, 70
Database Diagram, 64–65
Help, 66
Query Designer, 66–67
Source Control, 67–68
SQL Editor, 68–69
Standard, 70
Table Designer, 70

Text Editor, 70–71
View Designer, 71

Toolbox, 63
Visual Studio IDE and, 51–55

The Mythical Man-Month (Brooks), 29
many-to-many relationships, 16, 30–31
mathematical functions, 166, 203–204, 

560–561
MAX() function, 172–173, 220, 554
measures, 220
Media Player, Windows, 491
medium-scale servers, 363–364
MERGE command, 292, 322–325
metadata, 120–121
metadata functions, 166, 204–207, 562–563
method call, 489
Microsoft Access. See Access
Microsoft Management Console (MMC) 

snap-in, 76
Microsoft Search Service, 337
Microsoft Solutions Framework (MSF), 

478, 493
Microsoft SQL Desktop Engine (MSDE), 

22, 26
Microsoft SQL Server. See SQL Server
MIN() function, 172–173, 220, 554
MMC (Microsoft Management Console) 

snap-in, 76
modifying rows, 310–316
money (data type), 9
MONTH() function, 191, 558
moving data, 297. See also transactions
MSDE (Microsoft SQL Desktop Engine), 22, 26
MSF (Microsoft Solutions Framework), 

478, 493
multiplicity, 30. See also relationships
multi-statement table-valued functions, 

403–405
multi-system integrated solutions, 492–493

data exchange in, 492–493
system integration in, 492–493

multi-table joins, 264–266, 271
multi-table queries, 245–272

exercise, 133–136
multi-tier Web service solutions, 491–492
multi-valued columns, 43–44
MyContacts table, 302, 303, 304
MyOtherContacts table, 322–323
MyPivotData table, 334–335
MySQL, 22

logical operators (continued)

bindex.indd   636bindex.indd   636 10/31/08   6:15:22 PM10/31/08   6:15:22 PM



637

In
de

x

N
name resolution

delayed, 431
schemas and, 136–137

names/naming
aliases. See aliases
column, 8
constraints, 413
conventions, 108–110, 412–413

camel case, 110
Hungarian Notation, 110
long names, 109, 110
lower-case, delimited, 110
Pascal case, 110, 412
reserved words and, 109, 540

defaults, 413
four-part, 135, 527, 528
functions, 413
indexes, 413
name-based keys, 39
rules, 411–412
stored procedures, 413
tables, 413
triggers, 413
views, 413

namespaces, 135, 136. See also schemas
nchar, 12
NCHAR() function, 191–194
NDBMS (network database management 

system), 4
NEAR logical operator, 352
nested function calls, 169–170
nested functions, 169–170
nested loop inner join, 285
.NET Common Language Runtime (CLR), 3, 4, 

472, 482
.NET Common Language Specification, 490
.NET Framework, in SQL Server 2008, 3–4
network database management system 

(NDBMS), 4
New Full-Text Catalog dialog, 341
New Project dialog, 60
New Query button, 79
NEWID(), 213, 421
no value. See NULL values
NOLOCK hint, 407
NONCLUSTERED, 423
nondeterministic functions, 167, 168, 408
non-equijoins, 257–258

normalization rules, 33–45, 48
1NF, 31, 34–35, 37–41, 329
2NF, 35
3NF, 35
4NF, 35, 36
5NF, 35, 36
applying, 37–45
BCNF, 35–36
breaking, 44
interrelatedness of, 34
objectives of, 34
ORB and, 36
questioning, 44–45
UML and, 36
what if questions and, 36

not equal to (!=, or ‹› ), 145
NOT EXISTS(), 283
not greater than (!›), 145
not less than (!‹), 145
not null constraints, 422
NOT NULL keywords, 415. See also NULL 

values
NOT operator, 150, 475
ntext, 12, 337
n-tier component solutions, 485–490

middle-tier component, 487–488
presentation layer, 488–489
resource pooling in, 489
server side SQL objects in, 486–487
SOA and, 485–486

NTILE(n) function, 210
NULL values, 14, 37, 151–152, 303–304, 415

avoidance of, 419
defaults and, 419
inserting, 303–306
NOT NULL keywords, 415

NULLIF(), 213
numeric (data type), 9
numerics data types (category)

approximate, 10
exact, 9–10

nvarchar, 12

O
Object Browser, 253, 304, 379
Object Explorer, 56–58

configuration section, 73–74
Details pane, 63

Object Explorer

bindex.indd   637bindex.indd   637 10/31/08   6:15:22 PM10/31/08   6:15:22 PM



638

Object Linking and Embedding, Data Base 
(OLE DB), 76, 482

object pooling, 489
Object Role Modeling (ORM), 36, 412, 478
OBJECT_ID(), 206
OBJECT_NAME(), 206
object-oriented database management system 

(ODBMS), 4–5
object-oriented programming languages, 102
OBJECTPROPERTY(), 206–207
object-relational database management system 

(ORDBMS), 5
objects (database), 355–408, 540. See also 

stored procedures; user-defined functions; 
views

altering, 122–123, 410
creating, 410
DDL and, 409–438
delimiting, 111–112, 411

“ ,” 111, 411
[ ], 111, 411

dropping, 123–124, 410
names, four-part, 135, 527, 528
naming conventions, 108–110, 412–413

camel case, 110
Hungarian Notation, 110
long names, 109, 110
lower-case, delimited, 110
Pascal case, 110, 412
reserved words and, 109, 540

naming rules, 411–412
reference, 528–529

database..object, 527
database.schema.object, 527
object, 527
schema.object, 527
server.database..object, 528
server.database.schema.object, 528
server...object, 528
server..schema.object, 528

reserved words and, 109, 111, 540
securing, 439–441
types of, 413, 441

ODBC (Open Database Connectivity), 482
OLE DB and, 76, 482
reserved words, 109, 542–545

ODBMS (object-oriented database management 
system), 4–5

Odell, Margaret, 338
ofuscation, 426

OLE automation stored procedures, 586
OLE DB (Object Linking and Embedding, Data 

Base), 76, 482
one-to-exactly-one relationships, 16
one-to-many relationships, 15, 16, 30–31
one-to-one or more relationships, 16, 30–31
one-to-zero or more relationships, 15, 16
online analytical processing databases, 479
online transaction processing databases, 479
Open Database Connectivity. See ODBC
operator precedence, 154–156. See also 

parentheses
operators. See comparison operators; logical 

operators; specific operators
optimization (query processing stage), 46, 445
OPTION clause, 533
Options dialog, 71
OR operator, 149, 352, 475
Oracle, 20–21
ORDBMS. See object-relational database 

management system
ORDER BY clause, 130, 158, 533
ORM (Object Role Modeling), 36, 412, 478
orphaned rows, 38
OSQL utility, 76. See also SQLCMD utility
outer join subqueries, 278
outer joins, 251–256

full, 258–260
legacy, 255–256
Query Builder and, 252–255

OUTPUT modifier, 375
overriding constraints, 428–429
Owner option, 437

P
@@PACKET_ERRORS, 216
@@PACK_RECEIVED, 216
@@PACK_SENT, 216
pages, 299
Paradox, 23, 481
parameterized views, 372–373
PARAMETERS, 600–601
parameters

CREATE PROCEDURE using, 434–436
defined, 373
stored procedures and, 373–374

parent-child relationships, 15
parentheses [( )], 156–158

Object Linking and Embedding, Data Base (OLE DB)

bindex.indd   638bindex.indd   638 10/31/08   6:15:23 PM10/31/08   6:15:23 PM



639

In
de

x

PARSENAME(), 213
parsing (query processing stage), 46, 445
partitioned views, 362–366
partitioning data, 268–269
Pascal case, 110, 412
PATHNAME(), 610
PATINDEX() function, 195
PC platform, 355. See also client/server 

database solutions
performance, 269–271, 362

bottlenecks, 270, 365
hard disks and, 270, 365
query, 443–476
UDFs and, 472

PERMISSIONS(), 213
permissions, 124, 125, 126, 440, 441
Person table, 305
phantom read, 406
physical design, 29–30
physical world, transactions and, 297
PI(), 204
pinned/unpinned windows, 52
PIVOT operator, 329, 331–334, 353, 536
pivoting data, 329–336
PivotTable, 330–331
PL-SQL (Procedure Language/Structured Query 

Language), 21
POWER(), 204
precedence (operator), 154–156. See also 

parentheses
predicates

CONTAINS, 347, 348–350
CONTAINSTABLE, 351
filtering rows in joins with, 261–262
FREETEXT, 347, 351–352
FREETEXTTABLE, 349, 352–353

primary key constraints, 422–424
primary keys, 6–7, 14, 31–32, 422
procedural programming languages, T-SQL and, 

102, 216
procedure cache, 46
Procedure Language/Structured Query Language 

(PL/SQL), 21
Product table (AdventureWorks)

AVG(), 222–223
calculated/derived columns, 139–141
choosing columns, 131–137
column aliasing, 137–139
COUNT(), 221
in Excel worksheet, 130–131

filtering rows, 141
grouping() and, 238–240
SELECT statement and, 130–163
SUM(), 222
WHERE clause, 141–156

Professional Microsoft SQL Server 2008 
Programming (Wrox), 243, 340

Professional SQL Reporting Services 
(Wrox), 520

Professional SQL Server 2008 (Wrox), 340
Profiler (SQL Server), 76

stored procedures, 586
programming languages

object-oriented, 102
procedural, 102, 216
task-oriented, 216
T-SQL v., 2–3, 102, 216, 477

programming objects. See objects
project management

challenges, 493
questions/guidelines for, 479–480
time and, 493

project teams, 493
Properties dialog, 304
Properties window, 61
prototyping, 29
pseudo code, 114

Q
queries

ad-hoc, 356
advanced, 273–296
analyzing, 445–471

graphical execution plans, 460–471
session options, 447–460

benchmarking, 295
creation, with Management Studio, 79–96
Cross Tab, 330
formatting, 105–108
full-text, 336–337, 347–353
functions in, 169
layers in, 104
multi-table. See multi-table queries
performance, 443–476
processing mechanics, 45–47, 445–446

caching, 47, 446
compilation, 46, 446
execution, 47, 446

queries

bindex.indd   639bindex.indd   639 10/31/08   6:15:23 PM10/31/08   6:15:23 PM



640

queries (continued)
optimization, 46, 445
parsing, 46, 445
resolution, 46, 445

as sentences, 105
subqueries. See subqueries
syntax, 105–108
union, 266–268, 271
WHERE clause and, 472
writing, similar ways for, 273, 295

Query Analyzer, 51. See also Management Studio
Query Builder, 252

outer joins and, 252–255
Query Designer, 83–88, 273

interface, tools for accessing, 357
toolbar, 66–67

Query Execution configuration section, 73
Query Results configuration section, 73
questions, project/application, 479–480
QUOTENAME() function, 203

R
RADIANS(), 204
RAID storage devices, 362

data partitioning techniques and, 363, 364, 365
RAISERROR(), 385
raising errors. See error raising
RAND(), 204
RANK(), 208–209
ranking functions, 166, 207–210, 564
RDBMSs. See relational database management 

systems
RDO (Remote Data Objects), 482
READ COMMITTED locking option, 406
READ UNCOMMITTED locking option, 406
real (data type), 10
records. See rows
redundancy, 299
referential constraints, 246. See also 

relationships
REFERENTIAL_CONSTRAINTS, 602
Registered Servers window, 62
relational data

SQL Server and, 23
T-SQL and, 102

relational database management systems 
(RDBMSs), 4

Access and, 21–22

data integrity and, 17–20
file-based databases v., 27
IBM DB2, 21
Informix, 21
MySQL, 22
Oracle, 20–21
SQL Server, 5–20
Sybase SQLAnywhere, 21

relational databases
design. See normalization rules
orderliness of, 129

“A Relational Model of Data for Large Shared 
Data Banks” (Codd), 33, 329

relationships, 14–16, 30–31, 246
cardinality of, 30–31
foreign key constraints and, 32, 422, 426–428
keys and, 14
many-to-many, 16, 30–31
one-to-exactly-one, 16
one-to-many, 15, 16, 30–31
one-to-one or more, 16, 30–31
one-to-zero or more, 15, 16
parent-child, 15
referential constraints as, 246

Remote Data Objects (RDO), 482
removing rows. See deleting rows
REPEATABLE READ locking option, 406
REPLACE() function, 201
REPLICATE() function, 202
reports

authoring, 495
business, designing, 520–521
cached, 519–520
snapshots, 520

report (Report Builder example)
body design, 504–517

adding groups/fields, 506–508
number field formatting, 508–509
parameter drop-down list, 510–512

completed, 516–517
data source design, 497–499
dataset design, 499–504
deploying, 518
group totals in, 514–516
parameter list query in, 503–504
query in, 500–504

parameter and, 501–503
saving, 512–513
viewing, with Report Manager, 519

Report Builder 2.0, 495–518

queries (continued)

bindex.indd   640bindex.indd   640 10/31/08   6:15:23 PM10/31/08   6:15:23 PM



641

In
de

x

report designer, 495
Report Manager, 519
Report Model Project, 75
Report Parameter Properties dialog, 510
report parameters, 392, 503, 520, 525
Report Server Project, 75
Report Server Project Wizard, 75
Reporting Services (SSRS), 494–524, 525

application integration, 522–524
architecture, 494–495
Professional SQL Reporting Services

(Wrox), 520
report designer. See Report Builder 2.0
report formats, 494

Reporting Services Matrix, 330
reserved words (keywords), 540–542. 

See also specific keywords
delimiting, 111
future, 109, 545–547
objects and, 109, 111, 540
ODBC, 109, 542–545

resolution
delayed, 361
in query processing, 46, 445

resource pooling, 489
résumé generating events (RGEs), 472
retesting code, 472
RETURN statement, 376
reusing code, 356
REVERSE() function, 202
REVOKE, 103, 124–126, 441
RGEs (résumé generating events), 472
RIGHT() function, 196
ROLLUP clause, 237

BY ROLLUP, 531
WITH ROLLUP, 531

ROUND(), 204
ROUTINE_COLUMNS, 602–603
ROUTINES, 603–605
row-based cursor operations, 105
@@ROWCOUNT, 215
ROWCOUNT_BIG(), 213
ROW_NUMBER(), 207–208
rows (records), 5, 27

adding, 301–310
cursors. See cursors
deleting, 316–322
filtering, 141

in join clause using a predicate, 261–262
inserting, 303, 306–307

maintenance, stored procedures for, 376–381
modifying, 310–316
ordering, in views, 362
orphaned, 38
records as, 27
sorting, 158–160
updating, with stored procedures, 315–316

rowset functions, 564–565
rowsets, cursors v., 292
RTRIM() function, 201
rules of normal form. See normalization rules
Russell, Robert, 338

S
Savings account table, 326
scalable solutions, 479, 485, 489, 494, 524, 525
scalar user-defined functions, 399–402
scalar valued expressions, 102, 166, 226, 

274–276
scaling considerations, 269
schema binding, 124
schema locks, 19
schema modification locks, 19
schema stability locks, 19
SCHEMABINDING option, 431
schema.object, 527
schemas, 135, 136

defined, 136
name resolution and, 136–137
as namespaces, 136

SCHEMATA, 605
SCOPE_IDENTITY(), 213, 418
scripts

comment conventions, 539–540
defined, 115
generating, 115
managing, 115
query creation and, 81–83
templates, 88–90
version control and, 115–116

search criteria
positive searches, 472
wildcards, 473–474

search engines
Google, 337
Microsoft Search Service, 337
Yahoo!, 337

Search Service, Microsoft, 337

Search Service, Microsoft

bindex.indd   641bindex.indd   641 10/31/08   6:15:24 PM10/31/08   6:15:24 PM



642

second normal form (2NF), 35
2NF (second normal form), 35
securing database objects, 439–441
security

DCL, 103, 124–126, 440–441
DENY, 103, 124–126, 441
GRANT, 103, 124–126, 441
REVOKE, 103, 124–126, 441

importance of, 442
models (SQL Server), 124–126, 439–441
PERMISSIONS(), 213
permissions, 124, 125, 126, 440, 441
Windows Integrated Security, 124, 439

security functions, 166, 210–211, 565
security stored procedures, 587–589
SELECT * technique, 132
Select a Catalog page, 344–345
SELECT clause, 130
SELECT INTO, 307–308, 530
Select New Statement button, 93
SELECT statement, 79, 104, 105, 126, 

130–163, 528–529
calculated/derived columns, 139–141
choosing columns, 131–137
column aliasing, 137–139
components, 130
filtering rows, 141
parentheses and, 156–158
sorting rows, 158–160
variable assignment with, 168–169
WHERE clause. See WHERE clause

SELECT TOP, 529
Self option, 437
SEQUEL (Structured English Query Language), 

1, 101, 391
SERIALIZABLE locking option, 406
server.database..object, 528
server.database.schema.object, 528
server...object, 528
SERVERPROPERTY(), 213
servers

client/server technology, 355
large-scale, 364
linked, 367
medium-scale, 363–364
small-scale, 363

server..schema.object, 528
Service Oriented Architecture (SOA), 

485–486
@@SERVICENAME, 175, 551

session options, 447–460
SHOWPLAN_ALL, 447, 459
SHOWPLAN_TEXT, 447, 459
SHOWPLAN_XML, 447, 460
STATISTICS IO, 447–451
STATISTICS PROFILE, 447, 453–457
STATISTICS TIME, 447, 451–453
STATISTICS XML, 447, 457–458

SESSIONPROPERTY(), 213
SESSION_USER, 213
set manipulation language, T-SQL as, 2, 4
SET operator, 535

variable assignment with, 168
set-based cursor operations, 104
SETVAR commands, 77, 78
severity levels, error message, 382
shared locks, 18
SHOWPLAN_ALL, 447, 459
showplans, 447
SHOWPLAN_TEXT, 447, 459
SHOWPLAN_XML, 447, 460
SIGN(), 204
similar ways, writing queries in, 273, 295
Simple Object Application Protocol 

(SOAP), 492
simplicity, compounded, 104
SIN(), 204
single-line comments, 539
smalldatetime, 10, 185
smallint, 9
smallmoney, 10
small-scale servers, 363
SNAPSHOT locking option, 406
snapshots, report, 520
SOA (Service Oriented Architecture), 485–486
SOAP (Simple Object Application Protocol), 492
Solution Explorer, 60–61
solutions to exercises. See exercises and solutions
sorting rows, 158–160
SOUNDEX(), 329, 337–339, 353
Source Control configuration section, 74
Source Control toolbar, 67–68
SourceSafe, Visual, 116
SPACE() function, 202
sp_addmessage system stored procedure, 

381, 386
special-purpose joins, 258
Specify Values for Template Parameters dialog, 

63, 90
sp_filestream_configure, 610

second normal form (2NF)

bindex.indd   642bindex.indd   642 10/31/08   6:15:24 PM10/31/08   6:15:24 PM



643

In
de

x

sp_filestream_configure system stored 
procedure, 606

sp_helptext, 432
splat, 132
SQL (Structured Query Language), 1

ANSI SQL standard, 2, 101–102, 126
development of, 1
SEQUEL and, 1, 101, 391
subsets

DCL, 103, 124–126
DDL, 103, 116–124, 126
DML, 103–116, 126

T-SQL and, 1, 102–103, 126
SQL Editor toolbar, 68–69
SQL Server, 5–20

2008
LINQ in, 3–4, 490
.NET Framework in, 3–4
Reporting Services. See Reporting Services

Access and, 24
Beginning SQL Server 2005 Administration 

(Wrox), 76
Business Intelligence Development Studio, 75
business users and, 24–25, 48
command-line tools, 76–79
Configuration Manager, 76
editions, 25–27

Compact, 25
Enterprise, 26–27
Express, 22, 25–26
Standard, 26
Workgroup, 26

error handling in, 383–391
Excel and, 24, 25
fundamentals, 23–48
history, 20
knowledge workers and, 24
Management Studio. See Management Studio
Profiler, 76
query processing mechanics in, 45–47, 

445–446
as RDBM, 5–20
relational data and, 23
security mechanism, 124–126, 439–441
tasks

administrative, 49
data operations, 50
database management, 50

tools, 49–99
uses for, 23

Vista and, 50–51
Visual Basic and, 24
working with, 246
XML support and, 23, 472

SQL Server Agent stored procedures, 590–593
SQL Server Security, 124
SQL Trace, 76
SQLAnywhere (Sybase), 21
SQLCMD utility, 76–79

arguments, 77
EXIT command, 79
GO command, 79
SELECT command, 79
SETVAR commands, 77, 78

sql_variant, 13
SQRT(), 204
SQUARE(), 204
SSRS. See Reporting Services
Standard Edition (SQL Server), 26
Standard toolbar, 70
statistical functions, 223–226

STDEV(), 220, 224
STDEVP(), 221, 224
VAR(), 221, 224–225
VARP(), 221, 226

STATISTICS IO, 447–451
STATISTICS PROFILE, 447, 453–457
STATISTICS TIME, 447, 451–453
STATISTICS XML, 447, 457–458
STATS_DATE(), 213
STDEV(), 220, 224
STDEVP(), 221, 224
Step Into button, 93
Step Out button, 93
Step Over button, 93
Stop button, 93
stored procedures (system), 118, 372–398, 

407, 434
active directory, 573
catalog, 574
change data capture, 575
CREATE PROCEDURE, 434–437, 538

WITH ENCRYPTION, 436
WITH RECOMPILE, 436–437
using parameters, 434–436

creating, 118
cursor management, 576
database engine, 576–579
Database Mail, 584–585
database maintenance plan, 580

stored procedures (system)

bindex.indd   643bindex.indd   643 10/31/08   6:15:25 PM10/31/08   6:15:25 PM



644

stored procedures (system) (continued)
Delete, 380–381
distributed queries, 580–581
error handling and, 381–391
EXECUTE AS feature and, 437
extended, 581
external systems, 581
full text index/search, 582
Insert, 377–379
inserts and, 308–310
log shipping, 582–584
looping and, 397–398
naming, 413
OLE automation, 586
as parameterized views, 372–373
parameters and, 373–374
processing business logic with, 391–396
Profiler, 586
reference list, 573–593
returning values from, 374–376
row maintenance with, 376–381
security, 587–589
SQL Server Agent, 590–593
syntax, 434
transaction management and, 405
UDFs v., 408
Update, 379–380
updating rows with, 315–316
views and, 372
XML, 593

STR() function, 184
string manipulation functions, 191–203, 

566–567
Structured English Query Language (SEQUEL), 1, 

101, 391
Structured Query Language. See SQL
STUFF() function, 202–203
subgrouping, 236–237
subqueries, 246, 248, 274–289

aggregation functions in, 280
benchmarking, 285–286
business cases for, 286–289

consulting billing time, 288–289
top sales by territory, 286–287
unshipped product orders, 287–288

correlated, 248, 283–285
CTEs v., 273, 289
defined, 274
HAVING clause and, 280
inner join, 277–278

joins v., 273, 277, 285–286
outer join, 278

SUBSTRING() function, 197–198, 400, 401
subtotal techniques, 235–236
SUM() function, 173, 220, 222, 555
SupervisorName, 40–41
surrogate keys, 31, 39–40
SUSER_SID(), 211
SUSER_SNAME(), 211
Sybase SQLAnywhere, 21
SYSDATETIME() function, 191, 559
system functions, 211–215, 568–570
system global variables, 216, 552
system integration, data exchange and, 

492–493
System Monitor, 295
system statistical functions, 166, 571
system statistical global variables, 216, 553
system stored procedures. See stored 

procedures
system views, 121
SYSTEM_USER, 213
SYSUTCDATETIME() function, 191, 559

T
table (data type), 14
Table Designer toolbar, 70
table hints, 407
TABLE_CONSTRAINTS, 606
TABLE_PRIVILEGES, 606
TABLES, 607
tables, 5–6. See also columns; rows; specific 

tables
aliases, 106–107, 278–279
bridge, 36, 42
creating, 117
derived, 280–281
filestream-enabled, 609
intermediary, 36
joining. See joining tables
linking, 16, 35
naming, 413
Product table example. See Product table
views v., 117
virtual, 356

tablix, 330, 507
Tabular Data Stream (TDS), 46
TAN(), 204

stored procedures (system) (continued)

bindex.indd   644bindex.indd   644 10/31/08   6:15:25 PM10/31/08   6:15:25 PM



645

In
de

x

task-oriented programming language, T-SQL 
as, 216

TDS (Tabular Data Stream), 46
teams, project, 493
Template Explorer, 63
templates

BI Studio, 75
Analysis Services Project, 75
Import Analysis Services 9.0 Database, 75
Integration Services Project, 75
Report Model Project, 75
Report Server Project, 75
Report Server Project Wizard, 75

creating, 115
defined, 114
Management Studio, 114–115
script, 88–90

testing/retesting code, 472
text (data type), 12, 337
Text Box Properties dialog, 509
Text Editor configuration section, 72–73
Text Editor toolbar, 70–71
text/image functions, 559
third normal form (3NF), 35
3NF (third normal form), 35
three-tier solutions. See n-tier component 

solutions
time (data type), 10. See also date and time
time, project management and, 493
timestamp, 13
@@TIMETICKS, 216
tinyint, 9
Toggle Breakpoint, 93
tool windows (Management Studio), 56–64

Bookmark window, 62–63
Code Editor, 59
Error List window, 63–64
Object Explorer, 56–58
Object Explorer Details pane, 63
Properties window, 61
Registered Servers window, 62
Solution Explorer, 60–61
Template Explorer, 63
Toolbox, 63

toolbars (Management Studio), 64–71
Analysis Services Editor, 70
Compact Edition, 70
Database Diagram, 64–65
Debug, 93
Help, 66

Query Designer, 66–67
Source Control, 67–68
SQL Editor, 68–69
Standard, 70
Table Designer, 70
Text Editor, 70–71
View Designer, 71

Toolbox, 63
tools (SQL Server), 49–99

BCP utility, 76, 300
Business Intelligence Development Studio, 75
command-line tools, 76–79
Configuration Manager, 76
Management Studio. See Management Studio
Profiler, 76
SQLCMD utility, 76–79

TOP keyword, 141, 160
top sales by territory, subqueries and, 286–287
top values, 160
top-down waterfall approach, 478
total group modifiers, 235–236
@@TOTAL_ERRORS, 175, 216, 553
@@TOTAL_READ, 175, 216, 553
@@TOTAL_WRITE, 216
Trace, SQL, 76
@@TRANCOUNT, 215
transaction logs, 299–300, 327
transaction statements, 405
transactions, 17, 297–328

ACID test for, 299
atomicity and, 405
auto-commit, 299
defined, 298
error handling and, 327
explicit, 298, 325–327
implicit, 298
management, 405–407
physical world and, 297
purposes for, 405
types, 298–299

Transact-SQL. See T-SQL
triggers, 118

creating, 118–119
naming, 413

TRUNCATE TABLE command, 321–322
trusted connection (/E switch), 77, 78
TRY block, 176, 327, 383
Try It Out (exercises)

CTE, 291
definition encryption, 432

Try It Out (exercises)

bindex.indd   645bindex.indd   645 10/31/08   6:15:25 PM10/31/08   6:15:25 PM



646

Try It Out (exercises) (continued)
deleting rows based on another table, 318–321
indexed views, 433
looping, 397–398
multi-table query, 133–136
outer joins, Query Builder and, 252–255
Query Designer, 83–88
scalar values, 275–276
scripting options, 81–82
stored procedure for returning product 

information, 395
table aliasing, 279
union queries, 267–268

T-SQL (Transact-SQL)
Access v., 21
as data retrieval language, 2, 4, 129
database objects. See objects
death of, 3–4
decision structures in, 391
efficient (best practices), 443, 471–476
functions. See functions
programming languages v., 2–3, 102, 216, 477
scalar data and, 102
as set manipulation language, 2, 4
SQL and, 1, 102–103, 126
SQLCMD utility, 76–79
as task-oriented language, 216

two-tier solution, 482

U
UDFs. See user-defined functions
UML (Unified Modeling Language), 36, 412, 478
undocking/docking windows, 53–54
UNICODE() function, 191–194
Unified Modeling Language (UML), 36, 412, 478
UNION, 268, 532
UNION ALL, 268
UNION DISTINCT, 268
union queries, 266–268, 271
unique constraints, 32, 422, 424–425
unique identifiers, 31, 421–422
uniqueIdentifier (data type), 13, 421, 422
unpinned/pinned windows, 52
UNPIVOT operator, 329, 334–336, 353, 537
unshipped product orders, subqueries and, 

287–288
updatable cursor behavior, 292
UPDATE, 103, 126, 311–316, 534–535

update locks, 18–19
Update stored procedure, 379–380
updating

automating. See MERGE command
filtering, 311–313
rows, based on multiple tables, 314
rows, with stored procedures, 315–316
with views, 314, 371

UPPER() function, 198–201
upper/lower case, 105–106
UPSERT, 322
USE (database_name) command, 80
user interface controls, 483
user variables. See variables
user-defined functions (UDFs), 119–120, 166, 

399–405, 408
aggregate, 226
categories of, 399
CREATE FUNCTION and, 438
creating, 119–120
inline table-valued, 402–403
multi-statement table-valued, 403–405
performance and, 472
scalar, 399–402
stored procedures v., 408
views v., 408

USER_ID(), 211
USER_NAME(), 211, 213
‘user_name’ option, 437
utility functions. See system functions

V
VALUES keyword, 328
VAR(), 221, 224–225
varbinary, 13
varchar, 11
variables, 549–553. See also configuration 

variables; specific variables
cursor, 552
functions and, 168–169
functions v., 549
global, 216, 549–553
reference list, 549–553
SELECT and, 168–169
SET and, 168
system, 552
system statistical, 216, 553

variance, biased estimate of, 226

Try It Out (exercises) (continued)

bindex.indd   646bindex.indd   646 10/31/08   6:15:26 PM10/31/08   6:15:26 PM



647

In
de

x

VARP(), 221, 226
version control, 115–116
@@VERSION variable, 175-176, 551
Vieira, Rob, 33
View Designer toolbar, 71
VIEW_COLUMN_USAGE, 607
VIEW_METADATA option, 431
VIEWS, 608
views, 356–371, 407, 429. See also information 

schema views
CREATE VIEW, 429–432, 539

WITH CHECK OPTION, 430
WITH ENCRYPTION, 431
WITH SCHEMABINDING, 431
WITH VIEW_METADATA, 431

creating, 117–118, 429
in Management Studio, 357–360
with SQL script, 360–362

data access and, 369
data security and, 369
data updating through, 314, 371
federated, 366–369
hiding complexity with, 369–371
indexed, 432–433
naming, 413
ordering rows in, 362
parameterized, 372–373
partitioned, 362–366
stored procedures and, 372
system, 121
tables v., 117
UDFs v., 408
virtual tables and, 356

VIEW_TABLE_USAGE, 608
virtual tables, 356
Vista (Windows), SQL Server on, 

50–51
Visual Basic, SQL Server and, 24
Visual SourceSafe, 116
Visual Studio, 75

BI Studio as, 75
Management Studio and, 51–55

W
warehouse, data, 520
waterfall approach, 478
Web components, ASP.NET, 491
Web server applications, 490–491

Web services, 491–492
multi-tier solutions, 491–492
SOAP and, 492
XML, 491

what if questions, 36
WHERE clause, 126, 130, 141–156, 530–531

deleting rows and, 317–318
goal of, 472
joining tables in, 248–249
queries and, 472

WHILE statement, 397
wildcards, 146, 473–474

%, 146
-, 146
[ ], 146
[^], 146
unnecessary use of, 473

windows. See tool windows; specific windows
Windows Integrated Security, 124, 439
Windows Media Player, 491
WITH, 528
WITH CUBE, 532
WITH ROLLUP, 531
WITH TIES statement, 160–161
Workgroup Edition (SQL Server), 26
writing efficient T-SQL (best practices), 443, 

471–476
Wrox

Beginning SQL Server 2005 Administration, 76
Professional Microsoft SQL Server 2008 

Programming, 243, 340
Professional SQL Reporting Services, 520
Professional SQL Server 2008, 340

X
XACT_STATE(), 388
XML (eXtensible Markup Language)

data exchange and, 493
SHOWPLAN_XML option, 447, 460
STATISTICS XML option, 447, 457–458
stored procedures, 593
support, SQL Server and, 23, 472
Web service, 491
xml (data type), 13

Y
YEAR() function, 191, 558

YEAR() function

bindex.indd   647bindex.indd   647 10/31/08   6:15:26 PM10/31/08   6:15:26 PM



Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description, 
screen capture, and code sample is available with your 
subscription to the Wrox Reference Library. For answers when 
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd   648badvert.indd   648 10/31/08   6:11:07 PM10/31/08   6:11:07 PM



Beginning
T-SQL
with Microsoft® SQL Server® 2005 and 2008

www.wrox.com

$39.99 USA
$43.99 CAN

Wrox Beginning guides are crafted to make learning programming languages and technologies easier than you think, providing 
a structured, tutorial format that will guide you through all the techniques involved.

Recommended 
Computer Book 

Categories

Database Management

General

ISBN: 978-0-470-25703-6

Nearly all business applications read, store, and manipulate data stored in 
relational databases. If you use Microsoft SQL Server in any way, you need to 
learn and use T-SQL, Microsoft’s powerful implementation of the ANSI-standard 
SQL database query language. 

This book teaches all of the basics of T-SQL as it’s used with SQL Server 2005 
and 2008 databases. The authors, leading T-SQL experts, begin with the 
essentials of SQL Server that are needed to get the most from T-SQL. They then 
quickly move on to introduce T-SQL itself, including the core elements of data 
retrieval, SQL functions, aggregation and grouping, and multi-table queries, and 
they fully explain transaction processing and data manipulation using T-SQL.

The authors also show you how to create and manage T-SQL programming 
objects, including views, functions, and stored procedures. They detail how to 
optimize T-SQL query performance and design queries for real-world business 
applications. All of the methods and techniques in this book can be used with 
both Microsoft SQL Server 2005 and 2008 databases.

In addition, the book includes a comprehensive set of reference appendices, 
including T-SQL command syntax, system variables and functions, system stored 
procedures, information schema views, and FileStream objects.

What you will learn from this book
● How to add, modify, and remove records
● How to query multiple tables
● Ways to use views to modify data
● How to create tools for managing databases using T-SQL
● T-SQL programming techniques using views, user-defined functions, and stored 

 Enhance Your Knowledge
Advance Your Career

procedures
● Methods for optimizing query performance
● How to use SQL Server Reporting Services to visualize T-SQL query results

Who this book is for
This book is for beginning SQL Server developers and administrators who need to learn how to use T-SQL. Basic familiarity with 
relational databases and a general understanding of basic SQL functions is necessary.

T-S
Q

L
w

ith M
icrosoft

® S
Q

L S
erver

® 2005 and 2008

Turley, Wood

Beginning

spine=1.344"

Updates, source code, and Wrox technical support at www.wrox.com

Beginning

T-SQL
with Microsoft® SQL Server® 2005 and 2008

Paul Turley, Dan Wood

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM


	Beginning T-SQL with Microsoft® SQL Server® 2005 and 2008
	About the Authors
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Introducing T-SQL and Data Management Systems
	T-SQL Language
	SQL Server as a Relational Database Management System
	SQL Server and Other Products
	Summary

	Chapter 2: SQL Server Fundamentals
	Who Uses SQL Server?
	SQL Server Editions and Features
	Semantics
	Normalization Rules
	Applying Normalization Rules
	The Mechanics of Query Processing
	The AdventureWorks Databases
	Summary

	Chapter 3: SQL Server Tools
	Common SQL Server Tasks
	SQL Server Management Studio
	SQL Server Business Intelligence Development Studio
	SQL Server Profiler
	Database Tuning Advisor
	SQL Server Configuration Manager
	Command-Line Tools
	Writing Queries
	Summary
	Exercises

	Chapter 4: Introducing the T-SQL Language
	The Nature of SQL
	Where to Begin?
	Data Manipulation Language
	Data Definition Language
	Data Control Language
	Summary
	Exercises

	Chapter 5: Data Retrieval
	Storage and Retrieval
	The SELECT Statement
	Summary
	Exercises

	Chapter 6: SQL Functions
	The Anatomy of a Function
	Aggregate Functions
	Configuration Variables
	Conversion Functions
	Cursor Functions and Variables
	Date Functions
	String Manipulation Functions
	Mathematical Functions
	Metadata Functions
	Ranking Functions
	Security Functions
	System Functions and Variables
	Global System Statistical Variables
	Summary
	Exercises

	Chapter 7: Aggregation and Grouping
	To Group or Not to Group
	Using Aggregate Functions
	Understanding Statistical Functions
	Grouping Data
	Summary
	Exercises

	Chapter 8: Multi-Table Queries
	Understanding Subqueries and Joins
	Summary
	Exercises

	Chapter 9: Advanced Queries and Scripting
	Subqueries
	Common Table Expressions
	Cursors
	Summary
	Exercises

	Chapter 10: Transactions
	Introducing Transactions
	Let’s Do CRUD with Data
	Explicit Transactions
	Summary
	Exercises

	Chapter 11: Advanced Capabilities
	Pivoting Data
	Full-Text Queries and Approximation Matching
	Microsoft Search Service
	Managing and Populating Catalogs
	Summary
	Exercises

	Chapter 12: T-SQL Programming Objects
	Views
	Stored Procedures
	User-Defined Functions
	Transaction Management
	Summary
	Exercises

	Chapter 13: Creating and Managing Database Objects
	Data Definition Language
	IF EXISTS
	Securing Database Objects
	Summary
	Exercises

	Chapter 14: Analyzing and Optimizing Query Performance
	Data Retrieval
	Analyzing Queries
	Writing Efficient T-SQL (Best Practices)
	Summary
	Exercises

	Chapter 15: T-SQL in Applications and Reporting
	Application Programming Models
	Selecting a Model
	SQL Server 2008 Reporting Services
	Summary

	Appendix A: Command Syntax Reference
	T-SQL Commands, Clauses, and Predicates
	Script Comment Conventions
	Reserved Words

	Appendix B: System Variables and Functions Reference
	System Global Variables
	System Functions

	Appendix C: System Stored Procedure Reference
	Active Directory
	Catalog
	Change Data Capture (2008)
	Cursor Management
	Database Engine
	Database Maintenance Plan
	Distributed Queries
	External Systems and Extended Procedures
	Full-Text Index/Search
	Log Shipping
	Database Mail
	OLE Automation
	SQL Server Profiler
	Security
	SQL Server Agent
	XML

	Appendix D: Information Schema Views Reference
	CHECK_CONSTRAINTS
	COLUMN_DOMAIN_USAGE
	COLUMN_PRIVILEGES
	COLUMNS
	CONSTRAINT_COLUMN_USAGE
	CONSTRAINT_TABLE_USAGE
	DOMAIN_CONSTRAINTS
	DOMAINS
	KEY_COLUMN_USAGE
	PARAMETERS
	REFERENTIAL_CONSTRAINTS
	ROUTINE_COLUMNS
	ROUTINES
	SCHEMATA
	TABLE_CONSTRAINTS
	TABLE_PRIVILEGES
	TABLES
	VIEW_COLUMN_USAGE
	VIEW_TABLE_USAGE
	VIEWS

	Appendix E: FileStream Objects and Syntax
	FileStream Objects
	Sample T-SQL Scripts

	Appendix F: Answers to Exercises
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	Index





