
www.allitebooks.com

http://
http://www.allitebooks.org

Beginning WF
Windows Workflow in .NET 4.0

n n n

Mark J. Collins

www.allitebooks.com

http://
http://www.allitebooks.org

Beginning WF: Windows Workflow in .NET 4.0

Copyright © 2010 by Mark J. Collins

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2485-3

ISBN-13 (electronic): 978-1-4302-2486-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Jonathan Hassell
Technical Reviewer: Michael Mayberry
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Debra Kelly
Copy Editor: Nancy Sixsmith
Compositor: Laureltech
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

www.allitebooks.com

http://
http://www.allitebooks.org

Dedicated to my wife, Donna. Your worth is far above rubies (Prov 31:10). I love you!

www.allitebooks.com

http://
http://www.allitebooks.org

v

Contents at a Glance

Contents.. vii

About the Author.. xix

About the Technical Reviewer .. xx

Acknowledgments ... xxi

Introduction .. xxii

n Part 1: Introduction ..1

n Chapter 1: Building a Simple Workflow..3

n Chapter 2: Coded Workflows ..23

n Chapter 3: Flowchart Workflow..33

n Part 2: Designing Workflows ..43

n Chapter 4: Passing Arguments ...45

n Chapter 5: Replicated Activities ...59

n Chapter 6: Exception Handling ...69

n Chapter 7: Extending the Built-In Activities ...79

n Part 3: Communication ...93

n Chapter 8: Send and Receive ..95

n Chapter 9: Communicating with the Host Application..123

n Chapter 10: Web Services...151

www.allitebooks.com

http://
http://www.allitebooks.org

n CONTENTS AT A GLANCE

vi

n Part 4: Workflow Extensions ..175

n Chapter 11: SQL Persistence ..177

n Chapter 12: Custom Extensions..209

n Chapter 13: Tracking ..229

n Chapter 14: Transactions..255

n Chapter 15: Transactions with Persistence..277

n Chapter 16: WorkflowServiceHost ..289

n Part 5: Advanced Topics...317

n Chapter 17: Compensation, Confirmation, and Cancellation319

n Chapter 18: Collections...345

n Chapter 19: Interoperability with Workflow 3.5 ...361

n Chapter 20: Policy ..375

n Appendix: Sample Workflow Project ..405

n Index: ...439

www.allitebooks.com

http://
http://www.allitebooks.org

vii

Contents

About the Author.. xix

About the Technical Reviewer .. xx

Acknowledgments ... xxi

Introduction .. xxii

n Part 1: Introduction ..1

n Chapter 1: Building a Simple Workflow..3

A Simple Workflow ..4

Exploring the IDE .. 4

Designing the Workflow ... 5

Reviewing Program.cs.. 6

Running the Application ... 7

Adding Procedural Elements ...7

Using Variables... 8

If ... 10

Assign... 11

While... 12

Sequence.. 13

Delay... 13

More Embellishments... 14

Running the Application ... 15

www.allitebooks.com

http://
http://www.allitebooks.org

n CONTENTS

viii

Navigating the Designer ..15

Looking a Bit Deeper..17

Differences from Previous Versions...21

n Chapter 2: Coded Workflows ..23

Creating a Console Application..23

Defining the Workflow ...24

Implementing Level 1 ... 25

Implementing Level 2 ... 26

Implementing Level 3 ... 28

Running the Application...29

Review ...32

n Chapter 3: Flowchart Workflow..33

Creating a Flowchart Workflow ...33

Designing the Flowchart... 34

Defining Connections.. 34

FlowDecision .. 35

Running the Application ... 37

Flow Switch ...38

Adding a FlowSwitch Activity ... 38

Adding the FlowStep Activities... 39

Running the Application ... 40

Parallel...40

Adding a Parallel Activity.. 40

Adding the Branches .. 41

Running the Application ... 42

n Part 2: Designing Workflows ..43

n Chapter 4: Passing Arguments ...45

Creating a New Solution ..45

www.allitebooks.com

http://
http://www.allitebooks.org

n CONTENTS

ix

Defining the Order Class... 46

Implementing the Workflow ..48

Defining the Arguments.. 49

Designing the Workflow ... 51

Switch Activity.. 51

Expression Activities... 53

Invoking the Workflow...56

Running the Application...58

n Chapter 5: Replicated Activities ...59

Reusing the Chapter 4 Project ...59

Adding OrderItem Processing ..61

ForEach Activity.. 61

Adding Order Items... 65

Running the Application ... 66

ParallelForEach Activity.. 68

n Chapter 6: Exception Handling ...69

Reusing the Chapter 5 Project ...69

Adding the Check Stock Activity..70

TryCatch Activity... 70

Defining an Exception... 70

ForEach Activity.. 72

If Activity... 72

Throw Activity... 73

Catch Activity.. 74

Running the Application ... 76

Exceptions ...77

n Chapter 7: Extending the Built-In Activities ...79

Reusing the Chapter 6 Project ...79

www.allitebooks.com

http://
http://www.allitebooks.org

n CONTENTS

x

Using Custom Activities ...80

Implementing a Custom Activity... 80

Using the LookupItem Activity .. 82

Running the Application ... 85

InvokeMethod Activity ...86

Creating a Discount Class... 86

Using the InvokeMethod Activity .. 87

Adding the Discount ... 91

Running the Application ... 91

Summary ...92

n Part 3: Communication ...93

n Chapter 8: Send and Receive ..95

Creating the Project ...95

Define the Messages .. 96

Application Configuration ... 101

Defining the Workflows ...102

Client–SendRequest ... 102

Server–ProcessRequest ... 107

Implementing the Application..114

WorkflowServiceHost ... 114

WorkflowInvoker... 116

Running the Application...118

Configuring a Library Branch.. 118

Expected Results .. 120

n Chapter 9: Communicating with the Host Application..123

Creating a WPF Project ..123

Reusing the Classes from Chapter 8 .. 124

Defining the Window Form ... 125

www.allitebooks.com

http://
http://www.allitebooks.org

n CONTENTS

xi

Implementing a TextWriter ..127

Providing a Static Application Reference ... 128

Implementing ListBoxTextWriter .. 129

Implementing the Workflows...131

Listening for Messages .. 132

Bookmarks ... 135

Implementing the SendRequest Workflow ... 137

Implementing the ProcessRequest Workflow... 139

Implementing the Application..141

Maintaining Workflow Instances .. 141

Event Handlers ... 142

ApplicationInterface Methods... 143

Running the Application...148

n Chapter 10: Web Services...151

Creating a Workflow Service ...151

Defining the Service Contract... 152

Configuring Receive and SendReply... 155

Creating the PerformLookup Activity.. 158

Testing the Service... 161

Using Parameters ..162

Creating a Second Service ... 163

Creating a Modified PerformLookup Activity .. 166

Testing the Service... 167

Creating a Client Workflow ..168

Defining the Workflow .. 170

Implementing the Host Application .. 171

Running the Application ... 172

Using Pick ..173

Review ...174

http://

n CONTENTS

xii

n Part 4: Workflow Extensions ..175

n Chapter 11: SQL Persistence ..177

Creating the Application ..177

Renaming the Window.. 178

Defining the Window Form ... 178

Implementing a TextWriter ... 181

Setting Up the Database ..185

Creating a Database ... 185

Installing the Schema... 185

Creating the LINQ to SQL Classes... 188

Designing the Workflow...191

Custom CreateLead Activity.. 191

Custom WaitForInput Activity ... 193

Defining the Workflow Activities .. 193

Implementing the Application..195

Application Configuration File... 196

Configuring the Persistence Provider Factory .. 196

Creating Leads.. 197

Assigning Leads ... 198

Loading Existing Leads... 200

Running the Application...204

Digging a Bit Deeper..206

Persisting Arguments and Variables... 207

n Chapter 12: Custom Extensions..209

Setting Up the Solution ..209

Copy Solution from Chapter 11... 209

Setting Up the Database... 210

Implementing SetupInstance.. 210

Running the Application ... 211

http://

n CONTENTS

xiii

Extensions ...211
Implementing a Simple Extension .. 211

Configuring the Extension .. 212

Using the Extension in an Activity .. 213

Updating the Application .. 214

Participating in Persistence...215
Creating the Extension ... 215

PersistenceParticipant.. 216

AddComment Activity ... 216

Modifying the Workflow.. 218

Accessing the Extension from the Application ... 218

Event Handler Syntax ... 219

Running the Application...220

n Chapter 13: Tracking ..229

Setting Up the Solution ..229
Copy Solution from Chapter 12... 230

Setting Up the Database... 230

Tracking Participants.. 230

ListBoxTrackingParticipant..230
Overriding the Track() Method.. 232

Configuring a Tracking Participant ... 233

Configuring a Tracking Profile .. 234

CustomTrackingRecord .. 236

Running the Application ... 238

Event Tracing for Windows (ETW)..238
Setting Up the Extension .. 238

Configuring the TrackingProfile.. 239

Running the Application ... 239

SqlTrackingParticipant ..241
Setting up the Database ... 241

http://

n CONTENTS

xiv

Implementing the SqlTrackingParticipant .. 243

Configuring the Tracking Participant.. 245

Running the Application ... 247

n Chapter 14: Transactions..255

Setting Up the Solution ..255

Assignments ..256

Adding the LINQ to SQL Class... 256

AssignLead Activity .. 258

CreateAssignment Activity.. 260

Application Changes ..262

Updating the List of Leads.. 262

Removing Database Updates.. 263

Adding Workflow Event Handlers ... 264

Workflow Changes...272

TransactionScope... 273

InvokeMethod ... 273

Running the Application...276

n Chapter 15: Transactions with Persistence..277

Setting Up the Solution ..277

PersistenceParticipant...278

PersistLead Extension..278

Connecting to the Database ... 281

Performing the Updates.. 281

Using the PersistLead Extension ...281

Modifying the CreateLead Activity.. 282

Modifying the AssignLead Activity.. 283

PersistAssignment Extension ..284

Using the PersistAssignment Extension ..286

http://

n CONTENTS

xv

Application Changes ..287

Running the Application...287

n Chapter 16: WorkflowServiceHost ..289

Setting Up the Solution ..289

Adding LeadResponse ...290

Renaming the Window.. 291

Defining the Window Form ... 291

Copying Classes from LeadGenerator .. 294

Implementing the Application... 294

WorkflowService..300

Behaviors.. 301

DBExtensionBehavior ... 301

PersistAssignmentBehavior.. 303

Defining the Workflows ...304

CompleteAssignment.. 304

EnterLead Workflow Modifications... 305

WorkAssignment Workflow .. 308

Persist... 311

Final Application Changes ...311

ApplicationInterface ... 311

Adding the app.config File.. 312

LINQ Conflict ... 313

Running the Applications...314

Review ...316

n Part 5: Advanced Topics...317

n Chapter 17: Compensation, Confirmation, and Cancellation319

Designing the Workflow...320

Modifying the Application... 320

http://

n CONTENTS

xvi

Configuring a TryCatch Activity .. 322

Using a Parallel Activity .. 323

CompensableActivity .. 324

Designing the Wedding Activity.. 325

Designing the Reception Activity.. 327

Designing the Invitations Activity ... 328

Running the Application ... 330

Cancellation Handlers..331

More on the Parallel Activity... 331

Designing Compensation Handlers..332

Designing the Wedding Compensation... 332

Designing the Reception Compensation... 333

Running the Application ... 334

Customizing Compensation and Confirmation...337

Adding the Token Variables.. 337

Setting the Result Property... 349

Custom Confirmation.. 339

Custom Compensation.. 341

Rethrow Activity ... 342

n Chapter 18: Collections...345

Creating a Collection..345

Defining the Shopping List ... 346

Initial Workflow... 346

AddToCollection Activity ... 348

Invoking a Workflow... 348

Running the Application ... 349

Printing and Sorting...349

Printing the Collection .. 349

Sorting the Collection ... 351

http://

n CONTENTS

xvii

Searching the Collection..353

Overriding the Equals() Method .. 353

ExistsInCollection Activity... 354

RemoveFromCollection Activity .. 355

ClearCollection Activity ..355

n Chapter 19: Interoperability with Workflow 3.5 ...361

Creating a 4.0 Workflow ..361

Creating a 3.5 Workflow ... 362

Interop Activity.. 366

Running the Application ... 367

Executing a Custom 3.5 Activity ..367

Creating a Custom Activity ... 368

Throwing an Exception ... 370

Invoking the Custom Activity .. 371

Running the Application ... 374

n Chapter 20: Policy ..375

Creating a Custom Activity ..375

Defining the Data Structures .. 376

PolicyActivity .. 379

Adding Dependency Properties .. 380

Creating a Rule Set... 383

Defining the Rules .. 384

Understanding Rule Sets .. 387

Determining the Priority ... 390

Entering the Priority Rules.. 391

Creating a Workflow Application ...392

Creating a Custom Activity ... 393

Incrementing the Activity Counters .. 396

Creating the Main Workflow ... 400

http://

n CONTENTS

xviii

Configuring the Arguments... 400

Implementing the Console Application ... 402

Running the Application ... 403

Review ...403

n Appendix: Sample Workflow Project ..405

Project Overview..405

Configuring the Database ... 405

Running the Application ... 406

Generic Queue Logic..413

Database Design... 414

Activities ... 415

CompleteInstance... 415

QCPolicy.. 416

Tracking.. 418

Service Layer ...420

Service Contract ... 420

Database Design... 422

Activities ... 423

Workflow Design .. 424

Correlation .. 428

Using WorkflowServiceHost ... 430

Summary ...437

n Index: ...439

http://

xix

About the Author

n Mark Collins wrote his first software program using Basic on the TRS-80 in 1978.
As technology has evolved, so has his interest and enjoyment of this wonderful
world of software. Mark’s career has included many varied opportunities, including
being an electrical engineer for IBM, being a system acquisition officer for the U.S.
Air Force, spending 12 years designing and building world-class point-of-sale
solutions, spending a two-year stint in Engand, and (most recently) providing
donor management systems for two well-known nonprofit organizations. Mark has
also developed a CASE tool called Omega Tool (www.TheCreativePeople.com).

http://

n CONTENTS

xx

About the Technical Reviewer

n Michael Mayberry currently helps lead a software team for a nonprofit organization to build .NET
enterprise applications. He serves as a lead architect and focuses on adopting new technologies toward
solid solutions. Michael’s experience includes the development of web-based extranet solutions, along
with data collection and analysis applications within the auto industry. Michael moved to build CRM
and BI solutions for the nonprofit industry more than seven years ago.

www.allitebooks.com

http://
http://www.allitebooks.org

xxi

Acknowledgments

First of all, I want to acknowledge that anything that I have ever done that is of any value or significance
was accomplished through the blessings of my Lord and Savior, Jesus Christ. This book is a visible
demonstration of that fact. The challenges in a project such as this were beyond my own ability, and
God’s amazing grace carried me through. He is my strength, my vision, and my provider.

Next, I want to say a big “thank you” to my beautiful wife, Donna. You are an inspiration to me. You
selflessly took care of our household and encouraged me to focus on this book. I could not have done it
without you. You are the embodiment of a Proverbs 31 wife. I am truly blessed to be able to share my life
with you.

I am also very thankful for all the people at Apress who made this book possible and for all their hard
work that turned it into the finished product you see now. Through numerous rewrites and revisions you
were always helpful, patient, and encouraging. Thank you!

I also want to thank Kevin Belknap, who helped me with the web application for the sample solution in
the appendix. You always know how to make a site look great! Thank you for eagerly helping with this
project.

Finally, I want to thank Michael Mayberry for reviewing this book. Not only did you review this book, but
you also had to review several preliminary versions, which no one will probably ever see. I appreciate
your heart that strives for excellence, your humility, and your selflessness.

http://

n CONTENTS

xxii

Introduction

When I first started looking at Microsoft’s Workflow Foundation (WF) I had a sense that there was
something really useful there, but figuring out the right application of the technology seemed elusive.
The available code samples demonstrated some specific features, but there was no roadmap to help
bring it all together. So I started writing this book to help others who wanted to understand WF.

Along the way, the first beta release of WF 4.0 was made available, which was a complete departure from
the previous version. So the first book based on version 3.5 was shelved, and I started writing a new book
for WF 4.0. When the second Beta was released with significant changes, the book was once again
rewritten. Having watched WF evolve from version 3.5 to 4.0 B1 and then 4.0 B2, and finally 4.0 RC, I can
confidently say that these improvements will make your job as a workflow developer much easier.

How to Use This Book
An ancient proverb says, “Tell me and I’ll forget; show me and I may not remember; involve me and I’ll
understand.” Based on this truth, this book presents a series of workflow projects; starting with simple
solutions and gradually increasing in complexity. New concepts are introduced in each chapter. In each
project, I’ll show you step-by-step how to implement them for yourself. I recommend that you work
through each chapter in order because each chapter builds on both concepts and code that was
developed in previous chapters.

As an alternative, you can download the final implementation of each chapter from www.apress.com. You
can then read the book and follow along with the downloaded code. This approach is recommended for
more experienced developers who are looking for a quick tutorial or perhaps an explanation of specific
concepts.

In either case, once you have read the book and are starting to implement workflow in your own
solutions, the sample projects provided in this book make a handy reference guide. A topical reference is
provided to help you find the appropriate chapters to look at for each of the WF concepts.

Several of the projects require a SQL Server database. Just about any version will work, including the
Microsoft Data Engine (MSDE) provided with Visual Studio. You will need to create the databases and
configure the appropriate connection strings. You can download the database scripts from
www.apress.com, which provide everything you’ll need to create the schemas.

http://

n INTRODUCTION

xxiii

Chapter Outline
This book’s projects (chapters) are grouped into five sections. In many cases, the same solution is
provided in all chapters in that section, with each chapter providing new features to the project from the
previous chapter.

Section 1: Basic Concepts
In the first section, you’ll build three simple workflows. In Chapter 1, you’ll create a workflow using the
workflow designer and some of the basic built-in activities. In Chapter 2, you’ll re-create the same
workflow in code. This will give you an opportunity early on to see both designer workflows and coded
workflows. Both types will be demonstrated throughout the book. In Chapter 3, you’ll use the flowchart
activity, which provides the ultimate flexibility in designing complex workflows.

Section 2: Designing Workflows
In the second section, you’ll build a workflow that computes the cost of an order. Each chapter will add
additional features to the project from the previous chapter. The project in Chapter 4 demonstrates how
to pass data into and out of a workflow. In Chapter 5, you’ll interactively execute activities based on a
collection of objects. Chapter 6 will show you how to handle and throw exceptions. In Chapter 7, you’ll
explore the two main ways to extend the workflow activities: creating a custom activity and executing the
InvokeMethod activity.

Section 3: Communication
In the third section, you’ll build workflows that take advantage of the integration with the Windows
Communication Foundation (WCF). The project in Chapter 8 builds a console application that
communicates with other instances of the same application using WCF messages. In Chapter 9, the
console app is replaced with a Windows Presentation Foundation (WPF) application, which
demonstrates how the application and workflow can interact with each other. In Chapter 10, you’ll host
a workflow in a WCF web service. You’ll also consume that service using a workflow application.

Section 4: Workflow Extensions
A key component of workflow design is the use of extensions to configure the environment in which the
workflow activities operate. The project in Chapter 11, for instance, demonstrates how to use the
standard SQL persistence extension. This extension allows the state of the workflow to be written to a
SQL database and retrieved later, when the workflow is resumed. In Chapter 12, you’ll explore ways to
extend and customize the persistence operation. The project in Chapter 13 demonstrates how to track
the execution of a workflow in a variety of ways. In Chapter 14, you’ll use database transactions to ensure
data consistency across multiple activities. In Chapter 15, you’ll execute the application updates on the
same database transaction used to persist the workflow state. This will guarantee that the workflow state
and application data stay consistent. Finally, in Chapter 16, you’ll learn how to configure extensions
when the workflow is instantiated by a WorkflowServiceHost.

http://

n INTRODUCTION

xxiv

Section 5: Advanced Topics
Chapter 17 demonstrates how to include logic within the workflow design to handle abnormal
conditions such as compensation and cancellation. In Chapter 18, you’ll see how to use both built-in
and custom activities to support collections of objects. The project in Chapter 19 uses the Interop
activity to execute workflows and activities that were created using previous versions of WF. In Chapter
20, you’ll use the Policy activity from version 3.0 in a WF 4.0 workflow.

Appendix
The Appendix describes a sample workflow that demonstrates many of the concepts presented in this
book. It is designed as a review of the key concepts while providing another example of a workflow
implementation. This project is not described in a step-by-step fashion. Instead, the final code can be
downloaded from www.apress.com.

http://

PART 1

■ ■ ■

Introduction

The Workflow Foundation included in .Net 4.0 (referred to as WF 4.0) represents a whole

new paradigm for building workflow-based applications. It has been completely re-

engineered from the ground up. In this section, you’ll design some simple workflows and

learn the basic concepts. In subsequent sections, you’ll develop more complex solutions as

you explore the capabilities provided by WF 4.0.

http://

C H A P T E R 1

■ ■ ■

3

Building a Simple Workflow

Let’s start by building a simple workflow. Start Visual Studio (VS) 2010 and select the New Project link.
Under the Installed Templates, navigate to Visual C#, Workflow and you should see that four templates
have been provided. Select the Workflow Console Application, as shown in Figure 1-1. Enter the name as
Chapter01 and select a suitable location for this solution.

Figure 1-1. Creating a new workflow project

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

4

A Simple Workflow
The template generates a Program.cs file, which implements the console application. It also generates a
Workflow1.xaml file, which defines the activities in your workflow. If you’ve worked with Windows
Presentation Framework (WPF) applications, you’re probably familiar with xaml, which is an XML-like
syntax used for declaring programmatic elements. Instead of labels, text boxes, and grids, however, this
file will contain the activity-derived elements in your workflow definition. VS 2010 provides a designer
that allows you to graphically view and edit these activities.

Exploring the IDE
Figure 1-2 shows a typical layout of the Visual Studio 2010 integrated development environment (IDE).
The Toolbox on the left contains the built-in and custom activities that are available to you. I have expanded
some of the more common groups of activities. The Solution Explorer and the Properties window are on
the right. The bottom window contains a number of tabs including the Error List and Output window.

Figure 1-2. Typical Visual Studio 2010 IDE

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

5

The WF 4.0 designer is in the middle. At the bottom right, there are controls for zooming. Workflow
designs in version 4.0 tend to be somewhat long, and this is a handy feature to see the “big picture” or to
find a particular activity. There are three controls at the bottom left for displaying the variables,
arguments, and imported assemblies. When you click the Variables control, a window appears to show
the existing variables, as shown in Figure 1-3. To close this window, click the Variables control again.

Figure 1-3. Viewing workflow variables

If you think of your workflow as a class, variables are the class members. You can use them to store
data that must be shared between activities. You can define the scope of a variable—either the entire
workflow or just a specific activity (and its children). Arguments are similar to variables, but they are
intended for passing data in or out of the workflow. You can think of them as method parameters.

Figure 1-4 shows what the Arguments window looks like. Notice the Direction column; it defines
whether the data is passed in to the workflow or sent out of the workflow.

Figure 1-4. Viewing workflow arguments

Designing the Workflow
The initial workflow designer is empty. You will drag activities onto it to define the workflow behavior.
This project will initially just display the greeting “Hello, World!” Later, you’ll embellish it somewhat to
discover some of the procedural activities. To start, drag a Sequence activity onto the designer. Then drag
a WriteLine activity to the Sequence. The diagram should look like the one shown in Figure 1-5.

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

6

Figure 1-5. Adding a WriteLine activity

The Properties window is shown in Figure 1-6.

Figure 1-6. WriteLine Properties window

The DisplayName property is the text shown in the diagram. You should give this a more meaningful
name because when you have many WriteLine activities, it will help you remember what this is for.
Change this to Hello. Also, enter the Text property as the following literal string:

"Hello, World!"

The Text property can be any expression that results in a string. You can click the ellipses, which will

display a dialog in which you can enter an expression.
You can leave the TextWriter property blank. By default, the text will be written to the console. You

can specify a class derived from TextWriter (new for .Net 4.0) if you want to specify a different
implementation. This will be demonstrated in Chapter 9.

Reviewing Program.cs
Open the Program.cs file, which will implement the console application and launch the workflow. The
default implementation generated by the template is shown in Listing 1-1.

Listing 1-1. Default Program.cs Implementation

using System;

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

7

using System.Linq;
using System.Activities;
using System.Activities.Statements;

namespace Chapter01
{

 class Program
 {
 static void Main(string[] args)
 {
 WorkflowInvoker.Invoke(new Workflow1());

 Console.WriteLine("Press ENTER to exit");
 Console.ReadLine();

 }
 }
}

The static WorkflowInvoker class is used to start the workflow that is defined by the Workflow1 class.

The lines in bold are not in the default implementation:

Console.WriteLine("Press ENTER to exit");
Console.ReadLine();

I added these lines so the console app does not exit before you have a chance to see the output. You

should add this code to your project.

Running the Application
Now press F5 to run the application. The result should look like this:

Hello, World!
Press ENTER to exit

Adding Procedural Elements
WF 4.0 provides a number of procedural elements such as If, While, Assign, Sequence, and so on. To
demonstrate how they work, you’ll enhance this greeting. First, like some old-fashioned clocks, you’ll
sound a number of bells to indicate the time (one bell for each hour). Open the Workflow1.asmx file.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

8

Using Variables
With WF 4.0, you must declare all variables that are used by the workflow elements. You’ll need two
variables: one to indicate how many bells are needed and another to serve as a counter to keep track of
how many bells have been sounded so far. Click the Variables button. If the Variables window looks like
the one shown in Figure 1-3 (there are no variables and no way to add a variable), it means that no scope
has been defined.

Click the main Sequence activity, and the Variables window should look like the one shown in
Figure 1-7.

Figure 1-7. Variable window with a defined scope

Click the Create Variable link. Enter the name as counter and select Int32 as the variable type. You
can leave the scope as Sequence. This means that the variable is available to the Sequence activity and all
its descendants. Enter the Default as 1. The Variables window should now look like the one shown in
Figure 1-8.

Figure 1-8. Variable window with a new variable

The Properties window also has these same values (see Figure 1-9). You can enter the variable’s
properties in the Properties window or the Variables window.

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

9

Figure 1-9. Properties window of a selected variable

Click the Create Variable link again. This time, use the Properties window to enter the properties.
Enter the Name as numberBells and the Type as Int32. Leave the Scope as Sequence. For the Default
property, click the ellipses, which will display the Expression editor, as shown in Figure 1-10.

Figure 1-10. Expression editor

■ Tip One of the things you’ll notice about WF 4.0 is that it relies a lot on expressions. Many properties can be
defined using an expression. However, the form doesn’t usually leave enough room to write complex expressions.
To solve this, the expression editor can be used by clicking the ellipses next to any field that uses an expression.
Expressions can use variables, arguments, and system functions just as you would in code.

Enter the expression DateAndTime.Now.Hour for the Default property. This will set the numberBells
variable to the current hour of the day. The Variables window should now look like the one shown in
Figure 1-11.

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

10

Figure 1-11. Completed Variables window

If
The Hour member of the DateAndTime class returns the hour based on a 24-hour clock. For example, for 2
PM, it will return 14. So you’ll need to adjust for this because you should ring 2 bells, not 14. In code, you
would write this as follows:

if (numberBells > 12)
 numberBells -= 12;

However, in WF 4.0, you’ll need to use an If and an Assign activity to accomplish this. Drag an If

activity just below the Hello activity. The diagram should look like the one shown in Figure 1-12.

Figure 1-12. Adding an If activity

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

11

■ Tip Notice the red error circles on the diagram. If you hover the mouse over them, they will display the
associated warning/error. The error on the If activity lets you know that you haven’t specified the Condition
property. The warning on the Sequence activity simply indicates that one or more child activities have an error.

In the Properties window, change the DisplayName to Adjust for PM. The If activity consists of three
elements. The Condition specifies the logic that is evaluated. It should resolve to a Boolean (true or
false) value. Then contains the activities that are executed when the Condition is true, and Else contains
the activities that are executed when the Condition is false. You do not have to specify both Then and
Else; only one is required. If no activity is defined, then no activities are executed. Enter the Condition as
numberBells > 12.

Assign
Drag an Assign activity to the Then section. The Assign activity allows you to assign a value to a variable
or an argument. The activity should look like the one shown in Figure 1-13.

Figure 1-13. Defining an Assign activity

Both the To and Value properties accept an expression. You can either enter the expression directly
in the box provided or click the ellipses to use the Expression editor. For the To property, enter
numberBells. For the Value property, enter numberBells – 12. The Properties window should look like
the one shown in Figure 1-14.

Figure 1-14. Assign activity Properties window

Many activities are compound activities, meaning that they can contain other activities. The If
activity is a good example of this. As you design more complex workflows, you will be navigating through
several layers in the workflow design.

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

12

While
Now you’ll add a While activity to sound the bells. Drag a While activity just below “Adjust for PM”. Set
the DisplayName to Sound Bells. The diagram should look like the one shown in Figure 1-15.

Figure 1-15. Defining a While activity

In a While activity, the activity in the Body section is executed as long as the Condition is true. The
Condition is evaluated first and then, if true, the activities are executed. This is repeated until the
Condition is false.

■ Note The DoWhile activity is identical to While, except that the activities are executed first and then the
Condition is evaluated. This ensures that the activities are executed at least once. With a While activity, if the
Condition is initially false, the activities in the Body section will never be executed.

Enter the Condition as counter <= numberBells. Drag a Sequence activity to the Body section. Set
the DisplayName of the Sequence activity to Sound Bell. The diagram should look like the one shown in
Figure 1-16.

Figure 1-16. A While activity that contains a sequence

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

13

Sequence
You’ll drag three activities onto the “Sound Bell” Sequence. In this exercise, you won’t actually sound a
bell. Instead, you will write a line of text to the console that will count the bells (as if they were actually
sounding). Drag a WriteLine activity to the “Sound Bell” activity. In the Text property, enter the
following:

counter.ToString()

This will display the current value of the counter to the console. Then drag an Assign activity just

below the WriteLine activity. For the To property, enter counter; in the Value property, enter counter + 1.
This simply increments the counter.

Delay
Finally, drag a Delay activity just below the Assign activity. A Delay activity pauses a workflow for a
specified period of time. The only property of a Delay activity is the Duration, which indicates how long
to pause. This should be specified as a TimeSpan class. Enter the following expression:

TimeSpan.FromSeconds(1)

The diagram should look like the one shown in Figure 1-17.

Figure 1-17. Completed sequence diagram

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

14

More Embellishments
Click the Collapse link on the top-right corner of the “Sound Bells” While activity. The workflow diagram
should look like the one shown in Figure 1-18.

Figure 1-18. Collapsed While activity

Drag a WriteLine activity just below the Sound Bells activity. Change the DisplayName to Display
Time; for the Text property, enter the following expression:

"The time is: " + DateAndTime.Now.ToString()

Drag an If activity just below “Display Time” and set the DisplayName to Greeting. For the

Condition, enter the following expression:

DateAndTime.Now.Hour >= 18

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

15

Drag a WriteLine activity to both the Then and Else sections. For the Then section, enter the Text as
“Good Evening”; for the Else section, enter the Text as “Good Day”. The “Greeting” activity should look
like the one shown in Figure 1-19.

Figure 1-19. Greeting activity

Running the Application
Press F5 to run the application. Depending on the time of day, your results will be similar to this:

Hello, World!
1
2
The time is: 10/28/2009 2:26:02 PM
Good Day
Press ENTER to exit

Navigating the Designer
Even with this fairly simple workflow, you can see that it will be difficult to display the entire diagram.
Fortunately, the designer has some useful features to help you work on large workflows. At the top-right
corner of the designer, click the Collapse All link. The diagram should look similar to the one shown in
Figure 1-20.

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

16

Figure 1-20. Collapsed workflow diagram

This gives you a quick way to see the top-level activities. Now click the Expand All link. This expands
all the activities, but now you can see only part of the diagram. Click the Overview control at the bottom-
right corner of the designer, which displays a window that shows the entire diagram. The yellow box
indicates the viewable area. You can drag this around, which will pan the main window to the desired
area. Close the overview window and click the Fit to screen control. This will zoom in as far as possible
and still keep the entire diagram visible. Depending on your monitor size, this may be a little difficult to
read. The drop-down control will allow you to change the zoom level. Finally, if you click the magnifying
class, the zoom will return to the default 100 percent level.

Double-click the “Sound Bell” activity. This will display only that activity (and its child activities). To
help you know where you are in the overall workflow, a navigation bar is displayed like the one shown in
Figure 1-21.

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

17

Figure 1-21. Designer navigation bar

You can click any of the links on this navigation bar to display that level within the workflow design.
Click the Workflow1 link to display the top-level workflow.

Looking a Bit Deeper
Let’s take a brief look at what you just implemented. First, I mentioned earlier that the workflow was
defined by an .xaml file. So far, you have been using the designer to graphically define the workflow.
Now you’ll see what the designer actually generated for that design. In the Solution Explorer, right-click
the Sequence1.xaml file and choose Code View. You might get a warning that the file is already open. Just
click Yes to let it close the existing designer window. The .xaml code is shown in Listing 1-2.

Listing 1-2. Sequence1.xaml source code

<p:Activity mc:Ignorable="" x:Class="Chapter01.Sequence1"
 xmlns="http://schemas.microsoft.com/netfx/2009/xaml/activities/design"
 xmlns:__Sequence1="clr-namespace:Chapter01;"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:p="http://schemas.microsoft.com/netfx/2009/xaml/activities"
 xmlns:sad="clr-namespace:System.Activities.Debugger;assembly=System.Activities"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <p:Sequence sad:XamlDebuggerXmlReader.FileName=
 "C:\Documents\Books\WF40\Code\Chapter01\Chapter01\Sequence1.xaml">

 <p:Sequence.Variables>
 <p:Variable x:TypeArguments="x:Int32" Default="[1]" Name="counter" />
 <p:Variable x:TypeArguments="x:Int32" Default="[DateTime.Now.Hour]"
 Name="numberBells" />
 </p:Sequence.Variables>

 <p:WriteLine DisplayName="Hello">["Hello, World!"]</p:WriteLine>
 <p:If Condition="[numberBells > 12]" DisplayName="Adjust for PM">

 <p:If.Then>
 <p:Assign>
 <p:Assign.To>
 <p:OutArgument x:TypeArguments="x:Int32">[numberBells]</p:OutArgument>
 </p:Assign.To>
 <p:Assign.Value>
 <p:InArgument x:TypeArguments="x:Int32">[numberBells - 12]
 </p:InArgument>
 </p:Assign.Value>
 </p:Assign>

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

18

 </p:If.Then>
 </p:If>

 <p:While Condition="[counter <= numberBells]" DisplayName="Sound Bells">
 <p:Sequence DisplayName="Sound Bell">
 <p:WriteLine>[counter.ToString()]</p:WriteLine>
 <p:Assign>
 <p:Assign.To>
 <p:OutArgument x:TypeArguments="x:Int32">[counter]</p:OutArgument>
 </p:Assign.To>
 <p:Assign.Value>
 <p:InArgument x:TypeArguments="x:Int32">[counter + 1]</p:InArgument>
 </p:Assign.Value>
 </p:Assign>
 <p:Delay>[TimeSpan.FromSeconds(1)]</p:Delay>
 </p:Sequence>
 </p:While>

 <p:WriteLine DisplayName="Display Time">
 ["The time is: " + DateTime.Now.ToString()]</p:WriteLine>

 <p:If Condition="[DateTime.Now.Hour >= 18]" DisplayName="Greeting">
 <p:If.Else>
 <p:WriteLine>["Good Day"]</p:WriteLine>
 </p:If.Else>
 <p:If.Then>
 <p:WriteLine>["Good Evening"]</p:WriteLine>
 </p:If.Then>
 </p:If>
 </p:Sequence>
</p:Activity>

<Activity mc:Ignorable="sap" x:Class="Chapter01.Workflow1"
 mva:VisualBasic.Settings=
 "Assembly references and imported namespaces serialized as XML namespaces"
 xmlns="http://schemas.microsoft.com/netfx/2009/xaml/activities"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:mv="clr-namespace:Microsoft.VisualBasic;assembly=Microsoft.VisualBasic,
 Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
 xmlns:mv1="clr-namespace:Microsoft.VisualBasic;assembly=System"
 xmlns:mva="clr-namespace:Microsoft.VisualBasic.Activities;
 assembly=System.Activities"
 xmlns:s="clr-namespace:System;assembly=mscorlib, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"
 xmlns:s1="clr-namespace:System;assembly=mscorlib"
 xmlns:s2="clr-namespace:System;assembly=System"

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

19

 xmlns:s3="clr-namespace:System;assembly=System.Xml"
 xmlns:s4="clr-namespace:System;assembly=System.Core"
 xmlns:sa="clr-namespace:System.Activities;assembly=System.Activities,
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 xmlns:sad="clr-namespace:System.Activities.Debugger;assembly=System.Activities"
 xmlns:sap="http://schemas.microsoft.com/netfx/2009/xaml/activities/presentation"
 xmlns:scg="clr-namespace:System.Collections.Generic;assembly=System"
 xmlns:scg1="clr-namespace:System.Collections.Generic;
 assembly=System.ServiceModel"
 xmlns:scg2="clr-namespace:System.Collections.Generic;assembly=System.Core"
 xmlns:scg3="clr-namespace:System.Collections.Generic;assembly=mscorlib"
 xmlns:sd="clr-namespace:System.Data;assembly=System.Data"
 xmlns:sd1="clr-namespace:System.Data;assembly=System.Data.DataSetExtensions"
 xmlns:sl="clr-namespace:System.Linq;assembly=System.Core"
 xmlns:st="clr-namespace:System.Text;assembly=mscorlib"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <sap:WorkflowViewStateService.ViewState>
 <scg3:Dictionary x:TypeArguments="x:String, x:Object">
 <x:Boolean x:Key="ShouldExpandAll">False</x:Boolean>
 <x:Boolean x:Key="ShouldCollapseAll">True</x:Boolean>
 </scg3:Dictionary>
 </sap:WorkflowViewStateService.ViewState>
 <Sequence sad:XamlDebuggerXmlReader.FileName=
 "C:\Documents\Books\WF40\Code\Chapter01\Chapter01\Workflow1.xaml"
 sap:VirtualizedContainerService.HintSize="233.6,552">

 <Sequence.Variables>
 <Variable x:TypeArguments="x:Int32" Default="1" Name="counter" />
 <Variable x:TypeArguments="x:Int32" Default="[DateAndTime.Now.Hour]"
 Name="numberBells" />
 </Sequence.Variables>
 <sap:WorkflowViewStateService.ViewState>
 <scg3:Dictionary x:TypeArguments="x:String, x:Object">
 <x:Boolean x:Key="IsExpanded">True</x:Boolean>
 </scg3:Dictionary>
 </sap:WorkflowViewStateService.ViewState>

 <WriteLine DisplayName="Hello"
 sap:VirtualizedContainerService.HintSize="211.2,59.2"
 Text="Hello, World!" />

 <If Condition="[numberBells > 12]"
 sap:VirtualizedContainerService.HintSize="211.2,49.6">
 <sap:WorkflowViewStateService.ViewState>
 <scg3:Dictionary x:TypeArguments="x:String, x:Object">
 <x:Boolean x:Key="IsExpanded">True</x:Boolean>

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

20

 <x:Boolean x:Key="IsPinned">False</x:Boolean>
 </scg3:Dictionary>
 </sap:WorkflowViewStateService.ViewState>
 <If.Then>
 <Assign sap:VirtualizedContainerService.HintSize="289.6,100.8">
 <Assign.To>
 <OutArgument x:TypeArguments="x:Int32">[numberBells]</OutArgument>
 </Assign.To>
 <Assign.Value>
 <InArgument x:TypeArguments="x:Int32">[numberBells - 12]</InArgument>
 </Assign.Value>
 </Assign>
 </If.Then>
 </If>

 <While DisplayName="Sound Bells"
 sap:VirtualizedContainerService.HintSize="211.2,49.6">
 <sap:WorkflowViewStateService.ViewState>
 <scg3:Dictionary x:TypeArguments="x:String, x:Object">
 <x:Boolean x:Key="IsExpanded">False</x:Boolean>
 <x:Boolean x:Key="IsPinned">False</x:Boolean>
 </scg3:Dictionary>
 </sap:WorkflowViewStateService.ViewState>
 <While.Condition>[counter <= numberBells]</While.Condition>
 <Sequence DisplayName="Sound Bell"
 sap:VirtualizedContainerService.HintSize="438.4,100.8">
 <sap:WorkflowViewStateService.ViewState>
 <scg3:Dictionary x:TypeArguments="x:String, x:Object">
 <x:Boolean x:Key="IsExpanded">True</x:Boolean>
 </scg3:Dictionary>
 </sap:WorkflowViewStateService.ViewState>
 <WriteLine sap:VirtualizedContainerService.HintSize="243.2,59.2"
 Text="[counter.ToString()]" />
 <Assign sap:VirtualizedContainerService.HintSize="243.2,57.6">
 <Assign.To>
 <OutArgument x:TypeArguments="x:Int32">[counter]</OutArgument>
 </Assign.To>
 <Assign.Value>
 <InArgument x:TypeArguments="x:Int32">[counter + 1]</InArgument>
 </Assign.Value>
 </Assign>
 <Delay Duration="[TimeSpan.FromSeconds(1)]"
 sap:VirtualizedContainerService.HintSize="243.2,22.4" />
 </Sequence>

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

21

 </While>
 <WriteLine DisplayName="Display Time"

 sap:VirtualizedContainerService.HintSize="211.2,59.2"
 Text="["The time is: " + DateAndTime.Now.ToString()]" />

 <If Condition="[DateAndTime.Now.Hour >= 18]" DisplayName="Greeting"
 sap:VirtualizedContainerService.HintSize="211.2,49.6">
 <sap:WorkflowViewStateService.ViewState>
 <scg3:Dictionary x:TypeArguments="x:String, x:Object">
 <x:Boolean x:Key="IsExpanded">False</x:Boolean>
 <x:Boolean x:Key="IsPinned">False</x:Boolean>
 </scg3:Dictionary>
 </sap:WorkflowViewStateService.ViewState>
 <If.Then>
 <WriteLine sap:VirtualizedContainerService.HintSize="219.2,100.8"
 Text="Good Evening" />
 </If.Then>
 <If.Else>
 <WriteLine sap:VirtualizedContainerService.HintSize="219.2,100.8"
 Text="Good Day" />
 </If.Else>
 </If>
 </Sequence>
</Activity>

I made some lines bold to help you find the top-level activities. First, the Variables section defines

the two variables you created. Then there’s a WriteLine activity named “Hello” and an If activity named
“Adjust for PM”. This is followed by a While activity named “Sound Bells”, a WriteLine activity named
“Display Time”, and an If activity named “Greeting”.

One key point that I want you to see is that there is no executable code here. This file is just a nested
collection of properties. For example, to increment the counter, you would normally expect to see a line
of code like this:

counter = counter + 1;

Instead you have an Assign class with a counter expression and a counter + 1 expression. The

actual execution that makes the assignment of counter = counter + 1 is performed by the Assign
activity. Code is executed only in the Activity classes, and there is no code execution in the workflow
definition.

Differences from Previous Versions
If you have used previous versions of Workflow Foundation (version 3.0 or 3.5), you might be wondering
what happened here. WF 4.0 is a complete departure from previous versions of Workflow. Your previous
Workflow applications will run just fine under .Net 4.0 because the previous set of activities and services

http://

CHAPTER 1 ■ BUILDING A SIMPLE WORKFLOW

22

were carried forward with minimal changes. WF 4.0, however, is a completely new design. The activities
and services from WF 4.0 are not interchangeable with previous versions. So you can design, implement,
and maintain workflows using the WF 3.5 approach. Or you can choose to use the WF 4.0 paradigm;
either will work fine. But you cannot switch back and forth, except for a few scenarios that are described
later in this book.

In WF 3.5, there was a code class and a designer class. The code class contained the implementation
for the CodeActivity objects. It also contained the definition of the class members and the event handler
code. In WF 4.0, there is no code class. Probably the most notable effect of this is that there is no
CodeActivity object in WF 4.0. To compensate for this, WF 4.0 provides activities to accomplish some of
the common tasks previously performed by CodeActivity objects. WriteLine and Assign are two such
activities. If the built-in activities are not sufficient, you can create a custom activity to perform the task
you would have used a CodeActivity for.

Another key difference is the explicit use of variables and arguments. Again, because there is no
code file, you can’t simply add class members as you would with normal class development. Instead, you
have to define these using the “Workflow way.”

Finally, you may have noticed when looking at the Program.cs file that there is no WorkflowRuntime
class. Previously, you would have created the WorkflowRuntime class and then called its CreateWorkflow()
method. With WF 4.0, the code simply calls this:

WorkflowInvoker.Invoke(new Workflow1());

Throughout this document, you will undoubtedly notice other differences. For example, there is no

longer a state machine workflow. I won’t point these out because the purpose of this book is not to
illustrate the differences. However, I did want to note some of the obvious changes just in case, like me,
you had to scratch your head for a few minutes when looking at WF 4.0 for the first time.

http://

C H A P T E R 2

■ ■ ■

23

Coded Workflows

In Chapter 1, you implemented a fairly simple workflow using the workflow designer. Now you’ll
implement the same workflow using code instead. Any workflow can be implemented in code or with
the designer; the choice is simply a matter of preference. However, implementing a workflow in code
will help you gain a better sense of how workflow works.

Creating a Console Application
To start, create a simple console application (do not use a workflow template), as shown in Figure 2-1.

Figure 2-1. Creating a console application

http://

CHAPTER 2 ■ CODED WORKFLOWS

24

Add a reference to System.Activities. This will enable you to use the workflow activities in your
application. Then replace the set of namespaces in your Program.cs file with the following:

using System;
using System.Activities;
using System.Activities.Statements;
using System.Activities.Expressions;

To implement the main() function, enter the following code:

WorkflowInvoker.Invoke(CreateWorkflow());

Console.WriteLine("Press ENTER to exit");
Console.ReadLine();

Note that this is identical to the main() implementation from Chapter 1. If you want, you can simply

copy and paste from your previous application. There is one difference, however. The following line calls
CreateWorkflow() instead of new Workflow1():

WorkflowInvoker.Invoke(CreateWorkflow());

Workflow1 was defined in the Workflow1.xaml file, which was generated by the workflow designer.

CreateWorkflow() is a method that you’ll implement now.

Defining the Workflow
As I mentioned in the last chapter, a workflow is just a collection of nested properties. To be more
accurate, it is a collection of nested classes and their properties. To simplify this process, I’ll show you
the implementation to enter, one level at a time. I’ll explain what the code is doing as you go. Start by
adding the following method to the Program.cs file:

static Activity CreateWorkflow()
{
 Variable<int> numberBells = new Variable<int>()
 {
 Name = "numberBells",
 Default = DateTime.Now.Hour
 };
 Variable<int> counter = new Variable<int>()
 {
 Name = "counter",
 Default = 1
 };

http://

CHAPTER 2 ■ CODED WORKFLOWS

25

 return new Sequence()
 {
 };
}

The CreateWorkflow() method first creates two Variable<T> template classes of type int, called

numberBells and counter. These are the variables used by the various activities.
The CreateWorkflow() method is declared to return an Activity, which is what the WorkflowInvoker

class is expecting. It actually returns an anonymous instance of the Sequence class. The Activity class is
the base class from which all workflow activities are derived, including Sequence. So the compiler returns
the Sequence instance as its base class, Activity.

Implementing Level 1
So far, you have defined an empty Sequence activity. This is roughly equivalent to creating a new
workflow that has a Sequence with no activities. Now, define the activities on this Sequence by replacing
the call to return new Sequence() with the code shown in Listing 2-1.

Listing 2-1. Definition of the Sequence Activity

return new Sequence()
{
 DisplayName = "Main Sequence",
 Variables = { numberBells, counter },
 Activities =
 {
 new WriteLine()
 {
 DisplayName = "Hello",
 Text = "Hello, World!"
 },
 new If()
 {
 DisplayName = "Adjust for PM"
 // Code to be added here in Level 2
 },
 new While()
 {
 DisplayName = "Sound Bells"
 // Code to be added here in Level 2
 },
 new WriteLine()
 {
 DisplayName = "Display Time",

http://

CHAPTER 2 ■ CODED WORKFLOWS

26

 Text = "The time is: " + DateTime.Now.ToString()
 },
 new If()
 {
 DisplayName = "Greeting"
 // Code to be added here in Level 2
 }
 }
};

■ Note This implementation relies heavily on creating anonymous class instances. Classes such as Sequence,
WriteLine, and If are instantiated but never named. This approach is similar to the technique called
functional construction, which is used to build XML trees. If it seems strange to you, you might want to review
some of the documentation on functional construction on MSDN.

This code first defines the DisplayName and associates the Variable objects with this activity. It then
initializes the Activities member as a collection of activities. Specifically, it creates the activities shown
in Table 2-1.

Table 2-1. Activities

Type DisplayName

WriteLine “Hello”

If “Adjust for PM”

While “Sound Bells”

WriteLine “Display Time”

If “Greeting”

For the WriteLine activities, the Text property is defined. For the remaining activities, the

implementation of these will be defined in the next level.

Implementing Level 2
For the first If activity, enter the following code:

DisplayName = "Adjust for PM",

http://

CHAPTER 2 ■ CODED WORKFLOWS

27

// Code to be added here in Level 2
Condition = ExpressionServices.Convert<bool>
 (env => numberBells.Get(env) > 12),
Then = new Assign<int>()
{
 DisplayName = "Adjust Bells"
 // Code to be added here in Level 3
}

This code defines the Condition and the Then properties (there is no Else branch). The Assign

activity will be implemented in the next level. The definition of the Condition property, however,
probably needs some explanation.

Expressions
The static Convert<T>() method of the ExpressionServices class is used to create an InArgument<T> class,
which is what the Condition property is expecting. These classes and methods use the generic type (<T>)
so they can be used for any data type. In this case, we need to use type bool because the Condition
property of an If activity is expecting only true or false.

The expression is implemented by a lambda expression (similar to that used by LINQ syntax) to
extract the data from the workflow environment. In a lambda expression, the => is referred to as the
lambda operator. Parameters to the left are input parameters, and the actual expression is defined on
the right side of the lambda operator. The value of env is supplied by the runtime when it tries to
evaluate the Condition.

The workflow is actually stateless; it doesn’t store any data elements. The Variable classes are
simply data definitions. To get the actual data from a Variable class, you’ll use its Get() method. This
requires a token of sorts, which is an ActivityContext class. This is used to differentiate the values for
this particular workflow instance from others that might be running concurrently. The value returned
from Get(env) is then compared to see whether it’s greater than 12.

Enter the following code for the While activity:

DisplayName = "Sound Bells",
// Code to be added here in Level 2
Condition = ExpressionServices.Convert<bool>
 (env => counter.Get(env) <= numberBells.Get(env)),
Body = new Sequence()
{
 DisplayName = "Sound Bell"
 // Code to be added here in Level 3
}

The Condition property on the While activity is identical to the If activity. It also uses the

ExpressionServices class to create an InArgument<T> class, also of type bool. In this case, it is evaluating
whether count <= numberBells. For both of these variables, it uses the Get(env) method to obtain the
actual value.

For the second If activity (named “Greeting”), enter the following code:

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2 ■ CODED WORKFLOWS

28

DisplayName = "Greeting",
// Code to be added here in Level 2
Condition = ExpressionServices.Convert<bool>
 (env => DateTime.Now.Hour >= 18),
Then = new WriteLine() { Text = "Good Evening" },
Else = new WriteLine() { Text = "Good Day" }

For this Condition, the env input parameter is not used, but it must still be declared in the

expression. The logic uses the current time to see whether it is past 6:00 PM. For both the Then and Else
properties, a WriteLine activity is created. One says “Good Evening”; the other says “Good Day”.

Implementing Level 3
For the first If activity (named “Adjust for PM”), you created a blank Assign activity in the Then property.
Enter the following for its implementation:

DisplayName = "Adjust Bells",
// Code to be added here in Level 3
To = new OutArgument<int>(numberBells),
Value = new InArgument<int>(env => numberBells.Get(env) - 12)

Assign Activity
The Assign class is a generic, so it can support any data type. In this case, it is assigning integer values, so
it was created as Assign<int>. The To and Value properties also use template classes and should be
created with the same type (<int>). The To property is an OutArgument class, which takes a Variable class
in its constructor. The Value property uses an InArgument class. You used this before for the If and While
Condition property. For its constructor, it uses a lambda expression just as you did for the Condition
property.

Sequence
In the While activity, you created an empty Sequence for the Execute property. This defines the sequence
of activities that will be executed every time the while loop is iterated. Enter the following to populate the
Activities property:

DisplayName = "Sound Bell",
// Code to be added here in Level 3
Activities =
{
 new WriteLine()
 {
 Text = new InArgument<string>(env => counter.Get(env).ToString())
 },

http://

CHAPTER 2 ■ CODED WORKFLOWS

29

 new Assign<int>()
 {
 DisplayName = "Increment Counter",
 To = new OutArgument<int>(counter),
 Value = new InArgument<int>(env => counter.Get(env) + 1)
 },
 new Delay()
 {
 Duration = TimeSpan.FromSeconds(1)
 }
}

This code adds three activities to this Sequence:

• A WriteLine activity to display the counter

• An Assign activity to increment the counter

• A Delay activity to force a short pause between iterations

For this WriteLine activity, the Text property is not a literal string as the other ones were. In this
case, the value to be displayed is defined as an expression. The Text property is expecting a string, so it
creates an InArgument<string> class. By now, you’re probably getting used to these lambda expressions.
The Get(env) method of the Variable class provides the current value as an integer. The ToString()
method converts it to a string.

For the Delay activity, the Duration property is passed as a TimeSpan class, which is created by the
FromSeconds() static method.

Running the Application
Press F5 to run the application. Depending on the time of day, your results should look something like
this:

Hello, World!
1
2
3
4
5
6
7
The time is: 10/5/2009 7:02:41 PM
Good Evening
Press ENTER to exit

http://

CHAPTER 2 ■ CODED WORKFLOWS

30

The complete implementation of Program.cs is included in Listing 2-2.

Listing 2-2. Complete Solution Implementation (Program.cs)

using System;
using System.Activities;
using System.Activities.Statements;
using System.Activities.Expressions;

namespace Chapter02
{
 class Program
 {
 static void Main(string[] args)
 {
 WorkflowInvoker.Invoke(CreateWorkflow());

 Console.WriteLine("Press ENTER to exit");
 Console.ReadLine();
 }

 static Activity CreateWorkflow()
 {
 Variable<int> numberBells = new Variable<int>()
 {
 Name = "numberBells",
 Default = DateTime.Now.Hour
 };
 Variable<int> counter = new Variable<int>()
 {
 Name = "counter",
 Default = 1
 };

 return new Sequence()
 {
 DisplayName = "Main Sequence",
 Variables = { numberBells, counter },
 Activities =
 {
 new WriteLine()
 {
 DisplayName = "Hello",

http://

CHAPTER 2 ■ CODED WORKFLOWS

31

 Text = "Hello, World!"
 },
 new If()
 {
 DisplayName = "Adjust for PM",
 // Code to be added here in Level 2
 Condition = ExpressionServices.Convert<bool>
 (env => numberBells.Get(env) > 12),
 Then = new Assign<int>()
 {
 DisplayName = "Adjust Bells",
 // Code to be added here in Level 3
 To = new OutArgument<int>(numberBells),
 Value = new InArgument<int>
 (env => numberBells.Get(env) - 12)
 }
 },
 new While()
 {
 DisplayName = "Sound Bells",
 // Code to be added here in Level 2
 Condition = ExpressionServices.Convert<bool>
 (env => counter.Get(env) <= numberBells.Get(env)),
 Body = new Sequence()
 {
 DisplayName = "Sound Bell",
 // Code to be added here in Level 3
 Activities =
 {
 new WriteLine()
 {
 Text = new InArgument<string>
 (env => counter.Get(env).ToString())
 },
 new Assign<int>()
 {
 DisplayName = "Increment Counter",
 To = new OutArgument<int>(counter),
 Value = new InArgument<int>
 (env => counter.Get(env) + 1)
 },
 new Delay()
 {

http://

CHAPTER 2 ■ CODED WORKFLOWS

32

 Duration = TimeSpan.FromSeconds(1)
 }
 }
 }
 },
 new WriteLine()
 {
 DisplayName = "Display Time",
 Text = "The time is: " + DateTime.Now.ToString()
 },
 new If()
 {
 DisplayName = "Greeting",
 // Code to be added here in Level 2
 Condition = ExpressionServices.Convert<bool>
 (env => DateTime.Now.Hour >= 16),
 Then = new WriteLine() { Text = "Good Evening" },
 Else = new WriteLine() { Text = "Good Day" }
 }
 }
 };
 }
 }
}

Review
Some of the sample projects throughout this book will use the designer, whereas others will use a coded
workflow. Using the designer will probably be initially easier than coded workflows. However, as you
become more familiar with workflows, you might find that coded workflows are faster to write. The end
result is the same, and either approach works fine.

http://

C H A P T E R 3

n n n

33

Flowchart Workflow

In this chapter, you’ll create a workflow that uses the Flowchart activity. As its name suggests, a
Flowchart activity works just like a flowchart; activities are connected together by decision trees. Using
a Sequence activity, the child activities are executed in top-down (sequential) order. However, in a
Flowchart activity, the child activities can be executed in any order, based on the decision branches.

Creating a Flowchart Workflow
Start by creating a new project/solution. Choose the Workflow Console Application template, as shown
in Figure 3-1.

Figure 3-1. Creating a flowchart workflow project

http://

CHAPTER 3 n FLOWCHART WORKFLOW

34

Designing the Flowchart
Drag a Flowchart activity to the designer. The initial workflow diagram will be similar to the one shown
in Figure 3-2. The green circle represents the starting node of your flowchart, and the empty space
beneath it is where you will add the activities that make up your workflow.

Figure 3-2. Initial flowchart diagram

The primary difference between a Flowchart activity and a Sequence activity is in how the child
activities are connected. Recall from Chapter 1 that when you added activities to a Sequence, they were
always executed in top-down order. You could control the order by rearranging the activities, but they
were always aligned vertically and spaced evenly, and the arrows between the activities were drawn for
you automatically. With a Flowchart activity, you can place the activities anywhere on the palette. And
more importantly, you have to draw the arrows. But herein lies the power of the Flowchart activity; you
can draw a connection back to a previous activity.

In this application, you will display an appropriate greeting based on the time of day. Start by
displaying a standard greeting of “Hello, World!” To do this, drag a WriteLine activity below the green
circle. Set the DisplayName to Hello and the Text property to "Hello, World!".

Defining Connections
Roll the mouse over the green circle, and four gray connection points should appear (see Figure 3-3).

Figure 3-3. Finding the beginning connection points

http://

CHAPTER 3 n FLOWCHART WORKFLOW

35

Click one of these connection points and, holding the mouse button down, drag the mouse over the
“Hello” activity until you see its connection points appear, as shown in Figure 3-4.

Figure 3-4. Finding the ending connection points

You don’t have to select a connection point. As soon as you see the points appear, you’ll know that
the object has been selected. Let the mouse button up, and the two activities will be connected (see
Figure 3-5).

Figure 3-5. Completed connection

That’s how you establish the connections between two activities. Hover over the predecessor until
you see the connection points, click one, drag the mouse to the successor until you see its connection
points, and let the mouse button up.

FlowDecision
Drag a FlowDecision activity below the “Hello” activity. The FlowDecision activity looks like a yellow
diamond, much like a decision symbol in a normal flowchart diagram. In the Properties window, enter
the condition as DateTime.Now.Hour >= 12. If you hover the mouse over the FlowDecision activity, you
should see the connection points, as shown in Figure 3-6.

http://

CHAPTER 3 n FLOWCHART WORKFLOW

36

Figure 3-6. FlowDecision activity

There is a connection point on the left for the True branch and a connection point on the right for
the False branch. The Condition is also displayed. Notice the small yellow triangle at the top-right
corner. If you click it, the Condition property remains displayed, even when the mouse is not hovered
over the activity. You can change the text for the True and False branches. In the Properties window,
enter Morning for the FalseLabel property and Afternoon for the TrueLabel property. You should now
see Morning and Afternoon when you hover the mouse over this activity.

First, connect the “Hello” activity to the FlowDecision activity by selecting a connection point on the
“Hello” activity and dragging it to the FlowDecision. Then drag a WriteLine activity to the right of the
FlowDecision. Set the DisplayName to Morning and the Text to “Good Morning”. Then hover over the
FlowDecision and click the Morning connection point. Drag the mouse over the “Morning” activity until
you see its connection points and let the mouse up. Your diagram should look like the one shown in
Figure 3-7.

Figure 3-7. Connecting the Morning branch

n Note The DisplayName property is not available on a FlowDecision activity. However, with the ability to
display the Condition and to edit the True and False branches, the purpose of the activity should be evident in
the diagram.

http://

CHAPTER 3 n FLOWCHART WORKFLOW

37

Drag another FlowDecision to the left of the first one. Set the Condition as DateTime.Now.Hour >= 18.
Connect the Afternoon branch of the first FlowDecision to the new activity. Set the FalseLabel to
Afternoon and the TrueLabel to Evening. Drag two WriteLine activities onto the workflow and name
them Afternoon and Evening, and set the Text as “Good Afternoon” and “Good Evening”, respectively.
Connect the Evening branch of the second FlowDecision to “Evening” and the Afternoon branch to
“Afternoon”. Your flowchart should look like the one shown in Figure 3-8.

Figure 3-8. Completed flowchart

Running the Application
Before running the application, open the Program.cs file. This code is identical to the file generated in
Chapter 1. Add the following code after the call to WorkflowInvoker class:

Console.WriteLine("Press ENTER to exit");
Console.ReadLine();

This keeps the console app from exiting before you can read the results. Press F5. Depending on the
time of day, your results should be similar to the following:

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 3 n FLOWCHART WORKFLOW

38

Hello, World!

Good Evening

Press ENTER to exit

Flow Switch
A FlowSwitch activity works like a FlowDecision except instead of being restricted to a True and False
branch, you can define an unlimited number of branches. It is analogous to a switch statement in C#. A
FlowSwitch activity is shown in Figure 3-9.

Figure 3-9. A FlowSwitch activity

Adding a FlowSwitch Activity
Drag a FlowSwitch activity to the bottom of the workflow. The FlowSwitch activity is a template class
(notice the <T> in the toolbox) so you'll need to specify the data type. It will default to Int32, which it
what you'll need. Just click the OK button on the Select Types prompt. Draw a connection from the
“Morning”, “Afternoon”, and “Evening” activities to the FlowSwitch activity. A FlowSwitch activity has a
single property called Expression, which resolves to a set of values that define the branches. In this
project, you’ll display a different greeting depending on the season. In the Properties window, select the
Expression property and then click the ellipses. Enter the following in the Expression editor:

CInt(((DateTime.Now.Month Mod 12) + 1) / 4)

n Note The syntax of this expression might be surprising. All expressions in WF 4.0 use the Visual Basic syntax.
Expressions are not compiled; they are evaluated by the workflow activities. So the syntax of the expressions
is independent of the programming language used by the application. By convention, the VB syntax is used. To
help you remember this, the Expression properties display the text “Enter a VB expression”.

This expression approximates the season based on the current date. If the month is December,
January, or February, the expression evaluates to 0. Similarly March, April, and May evaluate to 1. You
will now create four branches; one for each season.

http://

CHAPTER 3 n FLOWCHART WORKFLOW

39

n Tip When you hover the mouse over a FlowSwitch activity, the Expression will be displayed as shown in
Figure 3-10. Just as with the FlowDecision activity, you can click on the yellow triangle and the Expression
will remain displayed.

Figure 3-10. Displaying the FlowSwitch expression

Adding the FlowStep Activities
Each branch of a FlowSwitch activity is called a FlowStep. Although there is no FlowStep activity in the
Toolbox, and you don’t explicitly add these branches to the workflow, they are created internally as you
draw connections from the FlowSwitch activity. Drag five WriteLine activities onto your workflow near
the FlowSwitch activity. Set the DisplayName on each of these to Winter, Spring, Summer, Autumn, and
Default. Draw a connection from the FlowSwitch to each of the WriteLine activities.

Click one of the connections. In the Properties window, you’ll enter the Case value that determines
when this case should be executed. For “Winter”, the value should be 1; for “Spring”, it should be 2, and
so on. For the “Default” activity, leave the Case value blank and check the IsDefaultCase check box.

Your workflow should look like the one shown in Figure 3-11.

Figure 3-11. FlowSwitch connections

http://

CHAPTER 3 n FLOWCHART WORKFLOW

40

Enter an appropriate Text property on each of the WriteLine activities, such as “Happy Summer”.
The “Default” activity should never be executed because you have defined a branch for each possible
value of the Expression. However, it is useful to have it here in case there are problems with the
Expression or any of the Case values. For the Text property on the “Default” activity, use the following:

"Season calculated as: " + CInt(((DateTime.Now.Month Mod 12) + 1) / 4).ToString()

Running the Application
Press F5 to run the application. Depending on the date and time, your results should be similar to these:

Hello, World!
Good Evening
Happy Summer!
Press ENTER to exit

Parallel
Before leaving this project, let me demonstrate the Parallel activity, which allows you to define a
number of activity sequences that run in parallel. For this project, each of the branches will display a
piece of information. The order that they are displayed is not important, so instead of executing them
sequentially, you’ll put them in a Parallel activity and execute them simultaneously.

Adding a Parallel Activity
Drag a Parallel activity to the bottom of your workflow. Draw a connection from each of the WriteLine
activities to the Parallel activity. Your workflow should look like the one shown in Figure 3-12.

http://

CHAPTER 3 n FLOWCHART WORKFLOW

41

Figure 3-12. Adding a Parallel activity

Adding the Branches
Double-click the Parallel activity and drag three WriteLine activities onto it. One of these activities will
display the date; another will display the time; and another will display the day of the week. Enter one of
these expressions for the Text property on each of the WriteLine activities:

"Time: " + DateTime.Now.TimeOfDay.ToString()
"Date: " + DateTime.Now.Date.ToShortDateString()
"Today is: " + DateTime.Now.ToString("dddd")

The diagram should look like the one shown in Figure 3-13.

Figure 3-13. Defining Parallel branches

n Tip The Parallel activity allows only a single activity in each branch. For this project, it works fine.
However, if you need multiple activities in each branch, use a Sequence activity. Then you can add any
number of activities onto it.

http://

CHAPTER 3 n FLOWCHART WORKFLOW

42

The final workflow should look like the one shown in Figure 3-14.

Figure 3-14. Final flowchart workflow

Running the Application
Press F5 to run the application. The results should be similar to the following:

Hello, World!
Good Evening
Happy Summer!
Time: 22:01:36.0594175
Date: 8/5/2009
Today is: Wednesday
Press ENTER to exit

http://

PART 2

■ ■ ■

Designing Workflows

So far, you have used the basic procedural and flowchart elements to design some simple

workflows. In this section, you will learn some useful techniques that will help you build

more complex workflows. You’ll build a workflow that computes the total amount of an

order. Each chapter will build upon the previous chapter and demonstrate new concepts

along the way.

http://

C H A P T E R 4

n n n

45

Passing Arguments

In Chapter 1, I showed you how to define variables and arguments that will be used by the workflow.
Using a coding analogy, variables are like class members, and arguments are similar to method
parameters. You used variables in the last three chapters. In this chapter, you’ll define both input and
output arguments and pass them between the workflow and the host application.

Creating a New Solution
Start by creating a new Workflow Console Application, as shown in Figure 4-1. Name the project
OrderProcess, and the solution Chapter04. You will be using the same project name in Chapters 5–7.

Figure 4-1. Creating a new sequential workflow project

http://

CHAPTER 4 n PASSING ARGUMENTS

46

In this project, you’ll define an order for some products and pass that order into the workflow. The
workflow will then compute the total cost of the order and return it to the application.

Defining the Order Class
The first step is to define the data structure that will contain the order details. In the Solution Explorer,
right-click the project and choose Add � Class, as shown in Figure 4-2.

Figure 4-2. Adding a class to the project

In the Add New Item dialog (see Figure 4-3), select the Class template (it should be selected by
default), specify the name as Order.cs, and click Add.

http://

CHAPTER 4 n PASSING ARGUMENTS

47

Figure 4-3. Defining a new class

The Solution Explorer should look like the one shown in Figure 4-4.

Figure 4-4. Solution Explorer

Enter the definition of the Order class, as shown in Listing 4-1.

Listing 4-1. Order class

using System;
using System.Collections.Generic;

namespace OrderProcess
{

http://

CHAPTER 4 n PASSING ARGUMENTS

48

 public class OrderItem
 {
 public int OrderItemID { get; set; }
 public int Quantity { get; set; }
 public string ItemCode { get; set; }
 public string Description { get; set; }
 }

 public class Order
 {
 public Order()
 {
 Items = new List<OrderItem>();
 }

 public int OrderID { get; set; }
 public string Description { get; set; }
 public decimal TotalWeight { get; set; }
 public string ShippingMethod { get; set; }

 public List<OrderItem> Items { get; set; }
 }
}

The Order class contains a few public members (OrderID, Description, TotalWeight, and

ShippingMethod) plus a collection of OrderItem classes. These are the details the workflow will need to
determine the cost of the order. Build the solution by pressing F6. This will compile the Order class so it
will be available for the next step.

Implementing the Workflow
The solution template created a workflow file named Workflow1.xaml. In the Solution Explorer, right-
click the Workflow1.xaml file and choose Rename, as shown in Figure 4-5. Change the name to
OrderWF.xaml.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 4 n PASSING ARGUMENTS

49

Figure 4-5. Renaming the workflow file

You will also need to open the OrderWF.xaml in code view. In the first line, change the Class attribute
to this:

x:Class="OrderProcess.OrderWF"

Defining the Arguments
Open the OrderWF.xaml file (in design mode). You will now define the arguments into and out of the
workflow. Click the Argument button at the bottom left of the workflow designer. An empty collection of
arguments should be displayed, as shown in Figure 4-6.

Figure 4-6. The initial (empty) Arguments list

http://

CHAPTER 4 n PASSING ARGUMENTS

50

n Tip You might recall from Chapter 1 that variables had a specified scope. They could be defined for the entire
workflow or for a specific activity (and its descendants). Arguments, however, are by definition, for the entire
workflow because they define data passed to and from the workflow. Therefore, there is no Scope property when
defining an argument.

Click the Create Argument link. Enter the Name as OrderInfo. The Direction should be In. Click the
ArgumentType and expand the drop-down menu, shown in Figure 4-7.

Figure 4-7. The ArgumentType drop-down menu

Select the last entry (Browse for Types). This will display the dialog shown in Figure 4-8.

Figure 4-8. Selecting the Order class for the ArgumentType

Expand the OrderProcess assembly, select the Order class, and click OK.

http://

CHAPTER 4 n PASSING ARGUMENTS

51

n Caution If the OrderProcess assembly is not shown or does not contain the Order class, you have to build the
solution first. Click the Cancel button and press F6 to build the solution. Then set up the ArgumentType.

Click the Create Argument link again to create another argument. Enter the Name as TotalAmount,
the Direction should be Out, and the ArgumentType should be Decimal. The Decimal type is not in the
drop-down list so you need to browse for the type (as you did for the first argument). The Decimal type
can be found in the mscorlib assembly in the System namespace.

n Tip You don’t have to browse through the assemblies and namespaces to find the type you’re looking for. You
can just type the namespace and the type at the top of the dialog. For example, to select the Decimal type, just
type System.Decimal. Actually, you don’t even need to specify the namespace. If you start typing Decimal, just
like IntelliSense, the types matching your input will appear.

Designing the Workflow
Now you’re ready to define the activities that will process the order that is passed in. Start by dragging a
Sequence activity to the workflow diagram. Then drag a WriteLine activity onto the Sequence. Set the Text
property to “Order Received”. Drag an Assign activity below the WriteLine activity. Set the DisplayName
to Initialize Total. For the To property, enter TotalAmount, and for the Value property enter 0. The
Properties window is shown in Figure 4-9.

Figure 4-9. The Assign activity’s Properties window

This activity simply initializes TotalAmount to 0.

Switch Activity
The Switch activity works like a switch statement in C#. It allows you to execute a sequence of activities
based on the expression being evaluated. You will use the Switch activity to evaluate the ShippingMethod
to determine the appropriate handling charge. In the Toolbox, the Switch activity is listed as Switch<T>.

http://

CHAPTER 4 n PASSING ARGUMENTS

52

This means it is defined as a template class and can operate on different data types. Drag a Switch
activity onto the workflow below the Assign activity. You should see the dialog box shown in Figure 4-10,
which requires you to specify the data type. The ShippingMethod is a string, so select the String type.

Figure 4-10. Dialog prompting for the specific data type

Click OK. In the Properties window, set the DisplayName to Handling Charges. The activity should
look like the one shown in Figure 4-11.

Figure 4-11. The initial Switch activity diagram

A Switch activity has an Expression property, a default case, and any number of user-specified cases.
Enter the expression as OrderInfo.ShippingMethod. Click the Add new case link at the bottom of the
diagram. Enter the case value as NextDay. Click the Add new case link again and enter the value as
2ndDay. The diagram should look like the one shown in Figure 4-12.

Figure 4-12. Switch activity with cases defined

http://

CHAPTER 4 n PASSING ARGUMENTS

53

The designer shows all the defined cases with one of them expanded so you can see the activity
associated with that case. You can click one of the Add an activity links to expand a collapsed case.

Expression Activities
So far, you have defined the NextDay and 2ndDay cases plus the default case, which is used when the
ShippingMethod value is not one of the defined cases. Now you’ll need to specify the activity (or sequence
of activities) that are to be executed for each case. For this project, you’ll use the Add activity.

n Tip The System.Activities.Expressions namespace contains a number of activities that you can use in your
workflow, including Add, Subtract, Multiply, and Divide. It also includes activities such as Equal,
GreaterThan, And, and Or that are used by the built-in activities to evaluate expressions. You can use them
directly in your workflow.

Unfortunately, the Add activity is not in the toolbox. You’ll need to enter this by editing the .xaml
code. Save the project. In the Solution Explorer, right-click OrderWF.xaml and choose View Code. It will
prompt you to close the existing designer window; just click Yes. The Switch activity is defined by the
following code:

<Switch x:TypeArguments="x:String" DisplayName="Handling Charges"
 Expression="[OrderInfo.ShippingMethod]">
 sap:VirtualizedContainerService.HintSize="473.6,257.6">
 <x:Null x:Key="NextDay" />
 <x:Null x:Key="2ndDay" />
</Switch>

Notice the x:Null attribute on the NextDay and 2ndDay cases. This indicates that no activity has

been defined for these cases. Replace these two lines of code with the following:

 <Add x:TypeArguments="s:Decimal, s:Decimal, s:Decimal" x:Key="NextDay"
 DisplayName="Add 15" Left="[TotalAmount]" Result="[TotalAmount]"
 Right="[15.0D]" />
 <Add x:TypeArguments="s:Decimal, s:Decimal, s:Decimal" x:Key="2ndDay"
 DisplayName="Add 10" Left="[TotalAmount]" Result="[TotalAmount]"
 Right="[10.0D]" />

Then add the following code just before the previous code to define the default case:

 <Switch.Default>
 <p:Add x:TypeArguments="s:Decimal, s:Decimal, s:Decimal" DisplayName="Add 5"
 Left="[TotalAmount]" Result="[TotalAmount]" Right="[5.0D]" />
 </Switch.Default>

http://

CHAPTER 4 n PASSING ARGUMENTS

54

The Add activity has three properties: Left, Right, and Result. The value of the Right property is
added to the Left, and the sum is stored in the Result property. The Left and Result properties are set to
the TotalAmount argument. The Right property is specified as a static value, which is different in each
case.

The complete definition of the Switch activity is shown in Listing 4-2.

Listing 4-2. Definition of the Switch activity

<Switch x:TypeArguments="x:String" DisplayName="Handling Charges"
 Expression="[OrderInfo.ShippingMethod]">
 sap:VirtualizedContainerService.HintSize="473.6,257.6">
 <Switch.Default>
 <Add x:TypeArguments="s:Decimal, s:Decimal, s:Decimal" DisplayName="Add 5"
 Left="[TotalAmount]" Result="[TotalAmount]" Right="[5.0D]" />
 </Switch.Default>
 <Add x:TypeArguments="s:Decimal, s:Decimal, s:Decimal" x:Key="NextDay"
 DisplayName="Add 15" Left="[TotalAmount]" Result="[TotalAmount]"
 Right="[15.0D]" />
 <Add x:TypeArguments="s:Decimal, s:Decimal, s:Decimal" x:Key="2ndDay"
 DisplayName="Add 10" Left="[TotalAmount]" Result="[TotalAmount]"
 Right="[10.0D]" />
</Switch>

Save the project, and from the Solution Explorer right-click the OrderWF.xaml file and choose View

Designer. The Switch activity should look like the one shown in Figure 4-13.

Figure 4-13. Completed Switch activity

When the ShippingMethod is NextDay, $15 is added to the TotalAmount; for 2ndDay, $10 is added. For
all other shipping methods, the default case adds $5. The diagram displays all the case values (including
the default case) and the DisplayName of the activity that is executed for that case value. If you click any of
these cases, the Switch activity is expanded to show the case activity (see Figure 4-14).

http://

CHAPTER 4 n PASSING ARGUMENTS

55

Figure 4-14. Expanded Switch activity

Click the Add activity, and its properties will be shown in the Properties window (see
Figure 4-15). You can update the properties here, if necessary.

Figure 4-15. Add activity Properties window

n Caution The decimal value is entered as 15.0D; this is the correct format for specifying Decimal constants in
Visual Basic. If you try to use the C# notation (15.0m) you will get a validation error. This is just another reminder
that expressions are entered using VB syntax.

Drag another Assign activity below the Switch activity and set the DisplayName to Freight Charges.
For the To property, enter TotalAmount. For the Value property, enter the following:

TotalAmount + (OrderInfo.TotalWeight * 0.50D)

http://

CHAPTER 4 n PASSING ARGUMENTS

56

This formula will add $.50 per pound for the freight charges. Finally, drag another WriteLine activity
after “Freight Charges” and set the Text property to the following:

"The total amount is: $" + TotalAmount.ToString()

This displays the calculated order total. The final workflow should look like the one shown in

Figure 4-16.

Figure 4-16. Final workflow diagram

Invoking the Workflow
In this project, the console application will invoke the workflow synchronously and display the results
when it completes. Replace the generated implementation of Program.cs using the code shown in
Listing 4-3.

http://

CHAPTER 4 n PASSING ARGUMENTS

57

Listing 4-3. Implementation of Program.cs

using System;
using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;

namespace OrderProcess
{

 class Program
 {
 static void Main(string[] args)
 {
 Order myOrder = new Order
 {
 OrderID = 1,
 Description = "Need some stuff",
 ShippingMethod = "2ndDay",
 TotalWeight = 100
 };

 // create dictionary with input arguments for the workflow
 IDictionary<string, object> input = new Dictionary<string, object>
 {
 { "OrderInfo" , myOrder }
 };

 // execute the workflow
 IDictionary<string, object> output
 = WorkflowInvoker.Invoke(new OrderWF(), input);

 // Get the TotalAmount returned by the workflow
 decimal total = (decimal)output["TotalAmount"];
 Console.WriteLine("Workflow returned ${0} for my order total", total);

 Console.WriteLine("Press ENTER to exit");
 Console.ReadLine();
 }
 }
}

http://

CHAPTER 4 n PASSING ARGUMENTS

58

This code creates an Order class and populates it with some test data. It then creates a Dictionary
object and stores the Order object in the dictionary. It calls the static Invoke() method of the
WorkflowInvoker class, passing in the Dictionary object. The Invoke() method creates and executes a
workflow instance on the application’s thread.

Passing the data in a Dictionary object allows for multiple parameters to be passed. It’s important
to ensure that the dictionary key (in this case, OrderInfo) matches the name of the argument defined in
the workflow and the type of object in the dictionary matches the specified ArgumentType in the
workflow.

The Invoke() method returns a Dictionary object, which contains all the workflow arguments with
the Out or In/Out Direction. The TotalAmount argument is extracted from the dictionary and written to
the console.

Running the Application
Press F5 to run the application. The results should look like these:

Order Received
The total amount is: $60
Workflow returned $60 for my order total
Press ENTER to exit

To verify that this total is correct, you can calculate it manually. The ShippingMethod was 2ndDay,
which adds a $10 charge. The TotalWeight was set to 100, and the freight charges were computed as $.50
per pound, for a total of $50. The combination of these two is $60.

http://

C H A P T E R 5

■ ■ ■

59

Replicated Activities

In Chapter 4, you created a workflow that calculates the order total of an order passed in as an argument.
So far, it includes only the handling and freight charges. In this chapter, you’ll add logic to add the cost of
each of the order items. To do that, you’ll need to perform a sequence of activities for each of the items.

Reusing the Chapter 4 Project
Start Visual Studio 2010 and create a new project. Choose the Blank Solution template, as shown in
Figure 5-1. Enter the solution name as Chapter05.

Figure 5-1. Creating a blank solution

http://

CHAPTER 5 ■ REPLICATED ACTIVITIES

Next, copy the OrderProcess subfolder from the Chapter04 folder to the Chapter05 folder, as shown
in Figure 5-2.

Figure 5-2. Copying the project from Chapter 4

In the Solution Explorer, right-click the Chapter05 solution and choose Add � Existing Project, as
shown in Figure 5-3.

Figure 5-3. Adding an existing project to this solution

The Add Existing Project dialog shown in Figure 5-4 will display. Select the OrderProcess.csproj file
from the Chapter05\OrderProcess folder.

60

http://

CHAPTER 5 ■ REPLICATED ACTIVITIES

Figure 5-4. Selecting the existing project

When you click the Open button, the project is loaded into this solution. The Solution Explorer
should look like the one shown in Figure 5-5.

Figure 5-5. Initial Solution Explorer view

Adding OrderItem Processing
Now you’re ready to add the step that calculates the cost of the order items.

ForEach Activity
The ForEach activity executes an activity (or a sequence of activities) for each item in a collection. This is
exactly what you need for this project.

Open the OrderWF.xaml file in the design view. Drag a ForEach<T> activity just below the “Initialize
Total” activity. Change the DisplayName to Accumulate Order Items. The activity may be collapsed. If it
is, click the expand link at the top-right corner of the activity. The diagram should look like the one
shown in Figure 5-6.

61

http://

CHAPTER 5 ■ REPLICATED ACTIVITIES

Figure 5-6. The initial ForEach activity

In the Expression field, enter the following:

OrderInfo.Items

The <T> in the activity name indicates that this is a generic class, and you’ll need to define the type
that is contained in the collection. Look in the Properties window and you’ll see that the default type is
Int32. You may have also noticed the red circle indicating that there is an error (see Figure 5-7). This is
letting you know the Expression you entered (OrderInfo.Items) does not contain a collection of integers.

Figure 5-7. The ForEach Properties window

OrderInfo.Items is a collection of OrderItem objects from the Order that was passed in to the
workflow. In the TypeArgument drop-down list, select Browse for Types. In the dialog box, expand the
OrderProcess assembly and select the OrderItem class, as shown in Figure 5-8.

62

http://

CHAPTER 5 ■ REPLICATED ACTIVITIES

Figure 5-8. Selecting the OrderItem class

For this project, you’ll simply charge a fixed amount for all items. In a real scenario, you would
probably look up the item properties from a database. For now, however, drag an Assign activity onto
the ForEach activity.

■ Tip You can drag only a single activity onto the ForEach activity. If you need more than one, just drag a
Sequence activity onto it. Then you can add any number of activities onto the Sequence activity.

For the To property, enter TotalAmount; for the Value property, enter this:

TotalAmount + (item.Quantity * 10.0D)

This adds $10 for every item included in the order. The diagram should look like the one shown in
Figure 5-9.

63

http://

CHAPTER 5 ■ REPLICATED ACTIVITIES

64

Figure 5-9. Completed ForEach activity

Replicator in WF 3.5

If you’ve used previous versions of WF, you might recognize this feature. In WF 3.5, it was provided by the
Replicator activity. The version 4.0 implementation is much more intuitive. One of the most significant
improvements is that the built-in activities can access your instance data. Because variables and arguments
are managed by the workflow runtime in version 4.0, the built-in activities can access them.
In this project, for example, the Assign activity could reference the item.Quantity property. In previous
versions, you had to create a custom activity and write code to copy the instance data to the custom activity.

Drag a WriteLine activity just below “Accumulate Order Items”. For the DisplayName, enter Display

Item Total and for Text property, enter the following:

"The item total is: $" + TotalAmount.ToString()

This will display the total of the order items before the workflow adds in the handling and freight
charges. The complete workflow should look like the one shown in Figure 5-10.

http://

CHAPTER 5 ■ REPLICATED ACTIVITIES

6

Figure 5-10. Complete workflow diagram

■ Tip I used the Collapse All link at the top right of the workflow designer to see all the activities and still be able
to read the diagram. Notice that the “Accumulate Order Items” and “Handling Charges” activities have the Expand
link at the top right. You can use these links to selectively expand each activity.

Adding Order Items
Before you can test this new feature, you’ll need to modify the application to add some OrderItem objects
to the Order class. Open the Program.cs file. Add the following code just after the Order class is created:

5

http://

CHAPTER 5 ■ REPLICATED ACTIVITIES

66

// Add some OrderItem objects
myOrder.Items.Add(new OrderItem
{
 OrderItemID = 1,
 Quantity = 1,
 ItemCode = "12345",
 Description = "Widget"
});

myOrder.Items.Add(new OrderItem
{
 OrderItemID = 2,
 Quantity = 3,
 ItemCode = "12346",
 Description = "Gadget"
});

myOrder.Items.Add(new OrderItem
{
 OrderItemID = 3,
 Quantity = 2,
 ItemCode = "12347",
 Description = "Super Widget"
});

Running the Application
Press F5 to run the application. Your results should look like the following:

Order Received
The item total is: $60
The total amount is: $120
Workflow returned $120 for my order total
Press ENTER to exit

The first OrderItem had a quantity of 1, the second was 3, and the third was 2. So there are a total of 6
items, and at $10 each, the item total should be $60. As was explained in the previous chapter, the
handling and freight charges is also $60. So the $120 order total is the correct amount.

The complete listing for the Program.cs class is shown in Listing 5-1.

Listing 5-1. Implementation of Program.cs

using System;

http://

CHAPTER 5 ■ REPLICATED ACTIVITIES

67

using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;

namespace OrderProcess
{
 class Program
 {
 static void Main(string[] args)
 {
 Order myOrder = new Order
 {
 OrderID = 1,
 Description = "Need some stuff",
 ShippingMethod = "2ndDay",
 TotalWeight = 100
 };

 // Add some OrderItem objects
 myOrder.Items.Add(new OrderItem
 {
 OrderItemID = 1,
 Quantity = 1,
 ItemCode = "12345",
 Description = "Widget"
 });

 myOrder.Items.Add(new OrderItem
 {
 OrderItemID = 2,
 Quantity = 3,
 ItemCode = "12346",
 Description = "Gadget"
 });

 myOrder.Items.Add(new OrderItem
 {
 OrderItemID = 3,
 Quantity = 2,
 ItemCode = "12347",
 Description = "Super Widget"
 });

http://

CHAPTER 5 ■ REPLICATED ACTIVITIES

6

 // create dictionary with input arguments for the workflow
 IDictionary<string, object> input = new Dictionary<string, object>
 {
 { "OrderInfo" , myOrder }
 };

 // execute the workflow
 IDictionary<string, object> output
 = WorkflowInvoker.Invoke(new OrderWF(), input);

 // Get the TotalAmount returned by the workflow
 decimal total = (decimal)output["TotalAmount"];
 Console.WriteLine("Workflow returned ${0} for my order total", total);

 Console.WriteLine("Press ENTER to exit");
 Console.ReadLine();
 }
 }
}

ParallelForEach Activity
Instead of the ForEach activity, you could have used the ParallelForEach activity. They are configured in
exactly the same way. The only difference is in how the activities are executed.

As its name suggests, the ParallelForEach activity executes the child activities simultaneously,
whereas the ForEach activity executes them sequentially. For this project, it really makes no difference
which one you use. For more complex activity sequences, running them in parallel might be more
appropriate. For example, if you were to send a message and wait for a response, you might want to run
them in parallel so the wait time is not compounded.

To test this, delete the ForEach activity and drag a ParallelForEach activity in its place. Configure it
just as you did the ForEach activity. Then run the application and verify that you get the same results.

8

http://

C H A P T E R 6

■ ■ ■

69

Exception Handling

In this chapter, you’ll add logic to verify that each of the order items is in stock. To do that, you’ll iterate
through each of the order items in the same way as you did in the previous chapter. If an item is out of
stock, you’ll throw an exception, which will be caught by your workflow.

Reusing the Chapter 5 Project
Start Visual Studio 2010 and create a new project. Choose the Blank Solution template, as shown in
Figure 6-1. Enter the solution name as Chapter06.

Figure 6-1. Creating a blank solution

http://

CHAPTER 6 ■ EXCEPTION HANDLING

Next, copy the OrderProcess subfolder from the Chapter05 folder to the Chapter06 folder. In the
Solution Explorer, right-click the Chapter06 solution and choose Add � Existing Project. The Add
Existing Project dialog will display. Select the OrderProcess.csproj file from the Chapter06\OrderProcess
folder. (This is the same procedure you used in the last chapter to copy the project from Chapter 4.)

Adding the Check Stock Activity
Now you’ll add logic to see whether there is sufficient stock for this order.

TryCatch Activity
Open the OrderWF.xaml file in design view. Drag a TryCatch activity onto your workflow just above the
“Handling Charges” activity. Change the DisplayName to Check Stock and click the expand link at the top
right. The designer diagram should look like the one shown in Figure 6-2.

Figure 6-2. An initial TryCatch activity

The TryCatch activity has three sections. In the Try section, you’ll place a sequence of activities that
could potentially generate exceptions. In the Catches section, you’ll define one or more Catch objects.
Each Catch object handles a specific exception, so you’ll need one for each type of exception that could
occur. The Finally section is optional. You can put a sequence of activities here that are executed after
the Try activities (and any Catch objects that may be invoked by an exception).

Defining an Exception
You will now define the exception that should be thrown when an item is out of stock. Open the
Order.cs file and add the following code to define the OutOfStockException class. It should be added

70

http://

CHAPTER 6 ■ EXCEPTION HANDLING

after the definition of the Order class but inside the OrderProcess namespace. The complete
implementation of Order.cs is shown in Listing 6-1.

//---
// Define the exception to be thrown if an item
// is out of stock
//---
public class OutOfStockException : Exception
{
 public OutOfStockException()
 : base()
 {
 }

 public OutOfStockException(string message)
 : base(message)
 {
 }
}

Now press F6 to build the application.

Listing 6-1. Complete Order.cs file

using System;
using System.Collections.Generic;

namespace OrderProcess
{
 public class OrderItem
 {
 public int OrderItemID { get; set; }
 public int Quantity { get; set; }
 public string ItemCode { get; set; }
 public string Description { get; set; }
 }

 public class Order
 {
 public Order()
 {
 Items = new List<OrderItem>();
 }

71

http://

CHAPTER 6 ■ EXCEPTION HANDLING

 public int OrderID { get; set; }
 public string Description { get; set; }
 public decimal TotalWeight { get; set; }
 public string ShippingMethod { get; set; }

 public List<OrderItem> Items { get; set; }
 }

 //---
 // Define the exception to be thrown if an item
 // is out of stock
 //---
 public class OutOfStockException : Exception
 {
 public OutOfStockException()
 : base()
 {
 }

 public OutOfStockException(string message)
 : base(message)
 {
 }
 }
}

ForEach Activity
Drag a ForEach activity to the Try section and set the DisplayName to Check Each Item. Click the expand
link. In the Expression field, enter the following:

OrderInfo.Items

This defines the property that contains the collection of items to be iterated and acted upon. (Refer

to Chapter 5 for more information about the ForEach activity.) In the Properties window, for the
TypeArgument property, select Browse for Types and then select the OrderItem class from the
OrderProcess assembly (as you did in Chapter 5).

If Activity
Drag an If activity onto the Try section, click the expand link, and set the DisplayName to If Out of Stock.
The diagram should look like the one shown in Figure 6-3.

72

http://

CHAPTER 6 ■ EXCEPTION HANDLING

Figure 6-3. The “If Out of Stock” activity

In the Condition property, enter the following expression:

item.ItemCode = "12346"

■ Note In a real application, you would check the existing stock availability from a database. In this example,
the out-of-stock condition is hard-coded based on the ItemCode to simplify the sample project.

Throw Activity
Drag a Throw activity in the Then section. In the Properties window, there are only two properties:
DisplayName and Exception. For the Exception property, enter the following expression:

New OrderProcess.OutOfStockException("Item Code: " + item.ItemCode)

This creates a new OutOfStockException and specifies the message text that indicates which item is

out of stock. The “If Out of Stock” activity should look like the one shown in Figure 6-4.

73

http://

CHAPTER 6 ■ EXCEPTION HANDLING

7

Figure 6-4. Final If activity diagram

Catch Activity
The “Check Stock” activity should look like the one shown in Figure 6-5.

Figure 6-5. Partially completed TryCatch activity

4

http://

CHAPTER 6 ■ EXCEPTION HANDLING

7

Click the Add new catch link. A drop-down will appear, listing the common exceptions. Choose Browse
for Types and select the OutOfStockException from the OrderProcess assembly, as shown in Figure 6-6.

Figure 6-6. Selecting the OutOfStockException

The diagram should now look like the one shown in Figure 6-7.

Figure 6-7. A partially completed Catch activity

5

http://

CHAPTER 6 ■ EXCEPTION HANDLING

76

For each exception that you’ll catch, you’ll need to define the activity(ies) that should be executed to
handle the exception. For this project, you’ll write a line to the console indicating which item is out of
stock. Drag a WriteLine activity to the Catches section and enter the following for the Text property:

"Item is out of stock - " + exception.Message

This code gets the message from the Exception, which contains the ItemCode of the out-of-stock

item. Collapse the “Check Stock” activity and then expand it. The final “Check Stock” activity is shown in
Figure 6-8.

Figure 6-8. The final “Check Stock” activity diagram

The default expanded view of a TryCatch activity looks like Figure 6-8. Each of the sections (Try,
Catches, and Finally) are summarized. In the Try section it tells you that there is an activity named
“Check Each Item”. The Catches section lists the exceptions that are handled; in this case, there is only
one—OutOfStockException and it is handled by a WriteLine activity. Because there is no activity defined
for the Finally section, there is an Add an activity link instead. You can click any of these links (Check
Each Item, WriteLine, or Add an activity), and that section will be expanded.

Running the Application
Now you’re ready to run the application. Press F5. The results should look similar to these:

Order Received

The item total is: $60

Item is out of stock - Item Code: 12346

The total amount is: $120

Workflow returned $120 for my order total

Press ENTER to exit

http://

CHAPTER 6 ■ EXCEPTION HANDLING

7

Exceptions
Just as with other exception handling that you may be familiar with, workflow exceptions bubble up the
hierarchy until they are caught. They can be re-thrown, which will cause them to continue up the chain
until caught again.

It is important to choose where to place the exception handling. For example, you could put your
entire workflow in the Try section of a TryCatch activity. Although this is a simple way to ensure all
exceptions are caught, it may not give you the ability to actually “handle” the exception. Let me explain.

When an exception is thrown, if not caught by the parent activity, the parent activity is aborted and
the remaining child activities are not executed. In this project, for example, the exception was thrown by
the Then branch of the If activity. The TryCatch was around the ForEach activity. Because the exception
was not caught earlier, when it bubbled up to the ForEach activity, the ForEach activity stopped iterating
any more items. This means that once an OutOfStockException is thrown, the workflow stops checking
any more items. That was how I intended for it to work. The requirement was to verify that we had all the
items needed to fulfill the order. So as soon as an out-of-stock item was found, we could stop checking.

The following pseudocode illustrates how this works:

Sequence
{
 CheckStock (Try)
 {
 Check Each Item (ForEach)
 {
 If Out of Stock (If)
 {
 Throw Exception (Then)
 }
 }
 }
 Catch
 {
 }

 Remaining Activities
}

When an exception is thrown, the execution will proceed directly to the Catch sequence. The

workflow then continues from there. With this design, it would execute the activities to calculate the
handling and freight charges. However, if you wanted it to keep checking the stock on the remaining
items, you would need to put the TryCatch activity around the If activity. That would handle the
exception before it reached the ForEach activity, as shown in the following pseudocode:

Sequence
{
 Check Each Item (ForEach)

7

http://

CHAPTER 6 ■ EXCEPTION HANDLING

7

 {
 (Try)
 {
 If Out of Stock (If)
 {
 Throw Exception (Then)
 }
 }
 Catch
 {
 }
 }
}

Because the Catch sequence is still inside the ForEach activity, once the Catch is executed, the

workflow would proceed to the next item in the ForEach activity after the Catch executes. If however, you
wanted the whole process to stop and not continue to process the order, you would want to put the
TryCatch around the main workflow sequence, as illustrated in this final pseudocode:

(Try)
{
 Sequence
 {
 Check Each Item
 {
 If Out of Stock
 {
 Throw Exception
 }
 }

 Remaining Activities
 }
}
Catch
{
}

Because the Catch sequence is outside the main sequence, the workflow is completed after the

Catch is executed.

8

http://

C H A P T E R 7

■ ■ ■

79

Extending the Built-In Activities

In this chapter, you’ll start with the project from Chapter 6 and refine the order pricing rules. In the
process, I’ll demonstrate two techniques for extending the built-in activities: creating custom activities
and using the InvokeMethod activity.

Reusing the Chapter 6 Project
Start Visual Studio 2010 and create a new project. Choose the Blank Solution template, as shown in
Figure 7-1. Enter the solution name as Chapter07.

Figure 7-1. Creating a blank solution

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

80

Copy the OrderProcess subfolder from the Chapter06 folder to the Chapter07 folder. In the Solution
Explorer, right-click the Chapter07 solution and choose Add � Existing Project. This will display the Add
Existing Project dialog. Select the OrderProcess.csproj file from the Chapter07\OrderProcess folder.

Using Custom Activities
The current project uses a fixed price of $10 for all items. You can refine it by creating a custom activity
that will “look up” the price of an item using the ItemCode property. Open the Order.cs file and add the
following class definition. This class defines the item properties that will be returned by the custom
activity:

//---
// Define the structure returned by the
// LookupItem custom activity
//---
public class ItemInfo
{
 public string ItemCode { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
}

■ Note WF 4.0 does not allow any executable code in your workflow definition. All code must be executed in
an activity. In previous versions, you could use a CodeActivity class and place your code in the code-beside
class. With WF 4.0, the CodeActivity class is now an abstract class that is used as a base class for many of
the built-in activities (and available as a base class for custom activities). But it cannot be used directly in a
workflow. In WF 4.0, you will find yourself writing a lot of custom activities. Fortunately, that’s fairly easy to
accomplish (as you’ll see in this chapter).

Implementing a Custom Activity
In the Solution Explorer, right-click the OrderProcess project and choose Add � New Item. In the Add
New Item dialog, select the Code Activity template, which can be found in the Workflow category. Enter
the class name as LookupItem.cs, as shown in Figure 7-2.

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

81

Figure 7-2. Creating a custom activity

The implementation of this class is shown in Listing 7-1.

Listing 7-1. LookupItem Class

using System;
using System.Activities;

namespace OrderProcess
{
 public sealed class LookupItem : CodeActivity
 {
 public InArgument<string> ItemCode { get; set; }
 public OutArgument<ItemInfo> Item { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 ItemInfo i = new ItemInfo();
 i.ItemCode = context.GetValue<string>(ItemCode);

 switch (i.ItemCode)
 {

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

82

 case "12345":
 i.Description = "Widget";
 i.Price = (decimal)10.0;
 break;
 case "12346":
 i.Description = "Gadget";
 i.Price = (decimal)15.0;
 break;
 case "12347":
 i.Description = "Super Gadget";
 i.Price = (decimal)25.0;
 break;
 }

 context.SetValue(this.Item, i);
 }
 }
}

Just as workflows can have input and output arguments (explained in Chapter 4), an activity can

also have input and output arguments. In fact, the properties you have been setting for the built-in
classes (such as the Text property on a WriteLine activity) are activity arguments. Your custom activity
(LookupItem) takes an ItemCode as an input argument and returns the ItemInfo class as an output
argument.

The LookupItem class is derived from the CodeActivity base class and overrides the Execute method.
This method creates an ItemInfo class and stores the ItemCode in it. Notice that it has to use the
context.GetValue() method to obtain the value of ItemCode because the argument data is maintained by
the workflow itself. The CodeActivityContext is provided to the Execute() method when it is called.

The Execute() method then specifies the Description and Price properties based on the ItemCode.
(In a real application, you would look them up in a database.) Finally, it calls the context.SetValue()
method to store the ItemInfo class in the output argument.

Press F6 to rebuild the application.

Using the LookupItem Activity
Open the OrderWF.xaml file in design mode. Notice that the LookupItem activity has been added to the
Toolbox (see Figure 7-3).

Figure 7-3. The LookupItem activity has been added to the Toolbox

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

83

Expand the “Accumulate Order Items” activity, if necessary. The diagram should look like the one
shown in Figure 7-4.

Figure 7-4. The initial design of the Accumulate Order Items activity

This simply enumerates each of the order items and executes an Assign activity, which adds $10 for
each item to the OrderTotal. Select the Assign activity and click the Delete key to remove this activity. In
its place, drag a Sequence activity onto the Body section. Set its DisplayName to Lookup Item and expand
it. Drag a LookupItem activity onto this the “Lookup Item” Sequence. Notice that the Properties window
(shown in Figure 7-5) contains the ItemCode and Item arguments that you defined for this activity. The
DisplayName argument was defined in the base CodeActivity class.

Figure 7-5. The Properties window of the LookupItem activity

For the ItemCode property, enter the following expression:

item.ItemCode

You have to define a variable to store the ItemInfo class that is returned. Click the Variables button

on the bottom left of the designer. Click the Create Variable link. Enter ItemDetails for the Name. For the
Variable type field, open the drop-down list and select Browse for Types.

The dialog shown in Figure 7-6 will display. Expand the OrderProcess assembly, select the ItemInfo
class, and click OK.

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

84

Figure 7-6. Selecting the class that defines the variable type

The Scope should default to the current Sequence activity (“Lookup Item”), which is the correct
scope. The variable definition should look like the one shown in Figure 7-7.

Figure 7-7. The definition for the ItemDetails variable

Now select the LookupItem activity and specify the Item property as ItemDetails. This will take the
ItemInfo class returned by the custom activity and store it in the ItemDetails variable. Drag an Assign
activity just below the LookupItem activity. For the To property, enter TotalAmount. For the Value
property, enter TotalAmount + (item.Quantity * ItemDetails.Price).

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

85

This expression takes the Price property from the ItemInfo class, multiplies it by the Quantity, and
adds the result to the TotalAmount variable. The ”Accumulate Order Items” activity should look like the
one shown in Figure 7-8.

Figure 7-8. The final Accumulate Order Items activity

Running the Application
Press F5 to run the application. Your results should be similar to these:

Order Received

The item total is: $105

Item is out of stock - Item Code: 12346

The total amount is: $165

Workflow returned $165 for my order total

Press ENTER to exit

You can verify that the item total of $105 is correct by computing it manually.

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

86

Table 7-1. Order Item Price Calculation

ItemCode Quantity Price Ext. Price

12345 1 $10 $10

12346 3 $15 $45

12347 2 $25 $50

Total $105

InvokeMethod Activity
The InvokeMethod activity is another useful way to implement code outside of the standard built-in
activities. You can use this activity to invoke a method of a class. The class does not need to be part of the
workflow or use any of the workflow base classes.

In this project, you will implement a class to calculate a discount amount based on a variety of rules.
This class will be invoked by the workflow to compute the discount of the specified order.

Creating a Discount Class
In the Solution Explorer, right-click the OrderProcess project and choose Add � Class. Enter the class
name as OrderDiscount.cs. The implementation of this class is shown in Listing 7-2.

Listing 7-2. OrderDiscount class

using System;
using System.Collections.Generic;

namespace OrderProcess
{
 public static class OrderDiscount
 {
 public static decimal ComputeDiscount(Order o, decimal total)
 {
 // Count the number of items ordered
 int count = 0;
 foreach (OrderItem i in o.Items)
 {
 count += i.Quantity;
 }

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

87

 // Determine the discount percentage
 decimal pct = 0;
 if (total > 500)
 pct = (decimal)0.20;
 if (total > 200)
 pct = (decimal)0.15;
 if (total > 100)
 pct = (decimal)0.10;

 // Calculate the discount amount
 decimal discount = total * pct;

 // Subtract a dollar for every item ordered
 discount -= (decimal)count;

 // Make sure it’s not less than zero
 if (discount < 0)
 discount = 0;

 Console.WriteLine("Discount computed: ${0}", discount.ToString());
 return discount;
 }
 }
}

The ComputeDiscount() method takes two parameters: an Order class and the item total. It returns

the discount amount that is applicable to this order. The discount logic I used is somewhat arbitrary and
not really important for our purposes. It first determines the discount percentage based on the total
amount of the order. It then subtracts $1 for every item ordered.

Press F6 to rebuild the application.

Using the InvokeMethod Activity
Now you’ll use the InvokeMethod activity to execute the ComputeDiscount() method. Drag an
InvokeMethod activity onto your workflow just before the “Check Stock” activity. Enter the DisplayName
property as Calculate Discount.

Specifying the Target Object
The TargetType property specifies the class that contains the method that is to be invoked. In the drop-
down list, select Browse for Types. In the dialog that appears, expand the OrderProcess assembly and
select the OrderDiscount class, as shown in Figure 7-9.

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

88

Figure 7-9. Selecting the OrderDiscount class

■ Tip You can use two methods to specify the object that contains the method to be invoked. If the method is
in a static class, you can simply specify the TargetType property, as we did in this project. If the class is not
static, you have to define the specific instance of that object. The best way to do that is to define a variable of
that class type. Then in the TargetObject property, specify that variable name. If there are multiple instances,
and you need to control which instance is used, you can set the variable through either an Assign activity or a
custom activity prior to executing the InvokeMethod activity. If you specify the TargetObject property, you
don’t have to specify the TargetType property.

For the MethodName property, enter ComputeDiscount.

Specifying the Parameters
If you hover the mouse over the error indicator next to the “Calculate Discount” activity, you’ll see an
error message similar to the one shown in Figure 7-10.

Figure 7-10. InvokeMethod error message

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

89

This message is displayed because you have not defined the parameters yet. In the Properties
window, select the Parameters property and click the ellipsis. The Parameters dialog shown in Figure 7-
11 will display.

Figure 7-11. An empty Parameters collection

This dialog is very similar to the Arguments control used for setting up input and output arguments
for the workflow. Click the Create Argument link. The Direction should be In. To select the Order class
for the Type property, you might have to select Browse for Types and then choose the Order class from
the OrderProcess assembly. The Value should be OrderInfo. It will use the existing OrderInfo variable,
which is a reference to the Order class being processed.

Click the Create Argument link again to add the second parameter. The Direction is In, the Type is
Decimal, and the Value should be TotalAmount. The completed collection should look like the one
shown in Figure 7-12.

Figure 7-12. The completed Parameters collection

Specifying the Result
The ComputeDiscount() method returns the discount amount as a decimal. Now you need to create a
variable to store the result that is returned. Click the Variables control at the bottom of the designer.
Click the Create Variable link. Enter the Name as Discount, the Variable type should be Decimal, and the
Scope should be Sequence. The variable list should look like the one shown in Figure 7-13.

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

90

Figure 7-13. Adding a Discount variable

Select the InvokeMethod activity. In the Properties window, select the Result property and enter
Discount. This will cause the results returned by the method to be stored in the Discount variable. The
completed Properties window should look like the one shown in Figure 7-14.

Figure 7-14. The completed Properties window

The “Calculate Discount” activity will look like the one shown in Figure 7-15.

Figure 7-15. The Calculate Discount activity

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

91

Adding the Discount
The last step is to subtract the discount from the current order total. To do this, drag an Assign activity to
the workflow just below the “Calculate Discount” activity. For the To property, enter TotalAmount. For
the Value property, enter TotalAmount – Discount.

The workflow diagram is too large to display here, but the three activities between “Accumulate
Order Items” and “Check Stock” are shown in Figure 7-16. This part of your workflow should look
similar.

Figure 7-16. Partial workflow diagram

Running the Application
Press F5 to run the application. Your results should be similar to the following:

Order Received

The item total is: $105

Discount computed: $4.5

Item is out of stock - Item Code: 12346

The total amount is: $160.5

Workflow returned $160.5 for my order total

Press ENTER to exit

http://

CHAPTER 7 ■ EXTENDING THE BUILT-IN ACTIVITIES

92

To confirm the discount of $4.50 is correct, calculate it manually. The item total is $105, which
qualifies for a 10 percent discount, which is $10.50. There are a total of 6 items, so $6 is subtracted. The
net discount is $4.50.

Summary
WF 4.0 can be used in a number of very different scenarios, and subsequent chapters will explore some
of them. Before we leave this section, however, I want you to understand this particular scenario. In the
last four chapters, you built a workflow that takes a data structure as an input, performs some complex
processing on it, and returns a value back to the application that invoked it. This might not be what you
would intuitively think of as a typical use of WF. There are no long-running processes or any human
interaction; it’s simply a collection of computational steps.

However, using this approach, each of the various steps is broken into concrete operations, and the
whole process can be viewed in a graphic representation. There is very little code written, and the code is
extremely modularized. For example, you could implement a different method for calculating the
discount; you simply have to modify the InvokeMethod and change the MethodName.

In these last four chapters, you also used some of the basic building blocks for designing more
complex workflows. Features such as passing arguments and using custom classes will be used
throughout the rest of this book.

http://

PART 3

■ ■ ■

Communication

One of the important aspects of many workflow solutions is the communication that occurs

between applications, between clients and servers, and between the workflow and the host

application. In this section, you’ll learn how to use workflow activities to simplify and

coordinate the various communication scenarios. For the sample application, you will build

a solution used by a public library to request a book to be transferred from another branch.

The same application will both send a request to another branch as well as respond to

requests from other branches.

http://

C H A P T E R 8

■ ■ ■

95

Send and Receive

The primary activities used for communication are the Send and Receive activities (and their variations
SendReply and ReceiveReply). These activities use the Windows Communication Foundation (WCF) to
transmit and listen for messages. In this chapter, you’ll build a simple console application that uses
workflow to communicate with another copy of the same application.

Creating the Project
Start by creating a new project using the Console Application template, as shown in Figure 8-1.

Figure 8-1. Creating a new console application

http://

CHAPTER 8 ■ SEND AND RECEIVE

96

This is a standard console application, not a workflow console application. Use LibraryReservation
as the project name and Chapter08 as the solution. In the Solution Explorer, right-click the
LibraryReservation project and choose Add Reference. From the .NET tab, add the following references:

• System.Activities

• System.Configuration

• System.ServiceModel

• System.ServiceModel.Activities

Define the Messages
You will start by creating the classes that will define the messages between the applications. In the
Solution Explorer, right-click the LibraryReservation project and choose Add ➤ Class. Enter the name as
Reservation.cs. In the Reservation.cs file, add the following namespaces:

using System.Runtime.Serialization;
using System.ServiceModel;

You will define three classes in this file:

• Branch: Defines the data elements for a library branch location.

• ReservationRequest: Defines a request from a branch to reserve a title.

• ReservationResponse: Defines the response sent back to the requesting branch.

The definition of the Branch class is shown in Listing 8-1. Enter it inside the LibraryReference
namespace. (Remove the blank Reservation class that was generated by the template.)

Listing 8-1. Branch Class Implementation

/***/
// Define the Branch data structure
/***/
public class Branch
{
 public String BranchName { get; set;}
 public String Address { get; set; }
 public Guid BranchID { get; set; }

 #region Constructors
 public Branch()
 {
 }

 public Branch(String name, String address)
 {
 BranchName = name;
 Address = address;

http://

CHAPTER 8 ■ SEND AND RECEIVE

97

 BranchID = Guid.NewGuid();
 }

 public Branch(String name, String address, Guid id)
 {
 BranchName = name;
 Address = address;
 BranchID = id;
 }

 public Branch(String name, String address, String id)
 {
 BranchName = name;
 Address = address;
 BranchID = new Guid(id);
 }
 #endregion Constructors
}

The Branch class has three members to store the branch name, network address, and unique

identifier. Several constructors are provided for ease of use. I added the region markers around the
constructors so they can be collapsed to make the code more readable.

Now add the definition of the ReservationRequest class, as shown in Listing 8-2.

Listing 8-2. ReservationRequest Class Implementation

/***/
// Define the request message, ReservationRequest
/***/
[MessageContract(IsWrapped = false)]
public class ReservationRequest
{
 private String _ISBN;
 private String _Title;
 private String _Author;
 private Guid _RequestID;
 private Branch _Requester;
 private Guid _InstanceID;

 #region Constructors
 public ReservationRequest()
 {
 }

 public ReservationRequest(String title, String author, String isbn,
 Branch requestor)
 {
 _Title = title;
 _Author = author;
 _ISBN = isbn;
 _Requester = requestor;

http://

CHAPTER 8 ■ SEND AND RECEIVE

98

 _RequestID = Guid.NewGuid();
 }

 public ReservationRequest(String title, String author, String isbn,
 Branch requestor, Guid id)
 {
 _Title = title;
 _Author = author;
 _ISBN = isbn;
 _Requester = requestor;
 _RequestID = id;
 }
 #endregion Constructors

 #region Public Properties
 [MessageBodyMember]
 public String Title
 {
 get { return _Title; }
 set { _Title = value; }
 }

 [MessageBodyMember]
 public String ISBN
 {
 get { return _ISBN; }
 set { _ISBN = value; }
 }

 [MessageBodyMember]
 public String Author
 {
 get { return _Author; }
 set { _Author = value; }
 }

 [MessageBodyMember]
 public Guid RequestID
 {
 get { return _RequestID; }
 set { _RequestID = value; }
 }

 [MessageBodyMember]
 public Branch Requester
 {
 get { return _Requester; }
 set { _Requester = value; }
 }

 [MessageBodyMember]

http://

CHAPTER 8 ■ SEND AND RECEIVE

99

 public Guid InstanceID
 {
 get { return _InstanceID; }
 set { _InstanceID = value; }
 }
 #endregion Public Properties
}

The ReservationRequest class contains the ISBN, Title, and Author members for defining the book

that is being requested. It also includes a Branch class that represents the branch that is requesting the
book.

MessageContract
Because the ReservationRequest class will be used to define the outgoing message, the MessageContract
attribute indicates that this class will be included in a SOAP envelope. When using SOAP, messages are
sent using an XML-like markup language. This allows for greater platform interoperability between
clients and servers. SOAP is a standard protocol supported by WCF.

There is also a MessageBodyMember attribute on each of the public properties. This is needed by the
WCF layer to properly format the SOAP message.

Now enter the implementation for the ReservationResponse class, as shown in Listing 8-3.

Listing 8-3. Implementation of the ReservationResponse class

/***/
// Define the request message, ReservationResponse
/***/
[MessageContract(IsWrapped = false)]
public class ReservationResponse
{
 private bool _Reserved;
 private Branch _Provider;
 private Guid _RequestID;

 #region Constructors
 public ReservationResponse()
 {
 }

 public ReservationResponse(ReservationRequest request, bool reserved,
 Branch provider)
 {
 _RequestID = request.RequestID;
 _Reserved = reserved;
 _Provider = provider;
 }
 #endregion Constructors

 #region Public Properties

http://

CHAPTER 8 ■ SEND AND RECEIVE

100

 [MessageBodyMember]
 public bool Reserved
 {
 get { return _Reserved; }
 set { _Reserved = value; }
 }

 [MessageBodyMember]
 public Branch Provider
 {
 get { return _Provider; }
 set { _Provider = value; }
 }

 [MessageBodyMember]
 public Guid RequestID
 {
 get { return _RequestID; }
 set { _RequestID = value; }
 }
 #endregion Public Properties
}

The ReservationResponse class includes a Boolean member (Reserved) that indicates whether the

book was available to be reserved. It also contains a Branch class that represents the branch that fulfilled
the request.

ServiceContract
To define a WCF endpoint, there are three pieces of information that must be specified: binding,
address, and contract. The binding indicates the protocol that is used (such as HTTP, TCP, and so on).
The address indicates where the endpoint can be found, and the type of address used will depend on the
binding. For example, with HTTP binding, you would specify a URL. For TCP, the address would be a
server name or an IP address.

The contract is specified by a ServiceContract, which is an interface that defines the methods that
are available at the endpoint. So far, you have defined the messages, which will be passed as parameters
in the service methods. Now add the interface definition shown in Listing 8-4 to the same
Reservation.cs file.

Listing 8-4. Definition of the Service Contract

/***/
// Define the service contract, ILibraryReservation
// which consists of two methods, RequestBook() and
// RespondToRequest()
/***/
[ServiceContract]
public interface ILibraryReservation
{

http://

CHAPTER 8 ■ SEND AND RECEIVE

101

 [OperationContract]
 void RequestBook(ReservationRequest request);
 [OperationContract]
 void RespondToRequest(ReservationResponse response);
}

The RequestBook() method will be called by the client to send a ReservationRequest message to the

server. Likewise, the RespondToRequest() method will send a ReservationResponse message back to the
client.

Press F6 to build the project and fix any compiler errors.

Application Configuration
As I mentioned earlier, you will run multiple copies of this application, each one representing a different
branch location. To make that work, the branch details will be stored in a configuration file. Each copy of
the application will have its own configuration file that contains its specific attributes.

In the Solution Explorer, right-click the LibraryReservation project and choose Add ➤ New Item. In
the New Item dialog, select the Application Configuration File template, which can be found in the
General group. You can use the default name of App.config for the file name. See Figure 8-2.

Figure 8-2. Adding an application configuration file

Enter the configuration details using the example shown in Listing 8-5.

http://

CHAPTER 8 ■ SEND AND RECEIVE

102

Listing 8-5. Setting Up the app.config file

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="Branch Name" value="Central Library"/>
 <add key="ID" value="{43E6DADD-4751-4056-8BB7-7459B5C361AB}"/>
 <add key="Address" value="8000"/>
 <add key="Request Address" value="8730"/>
 </appSettings>
</configuration>

The appSettings section has values for the Branch Name, ID (a unique identifier) and Address (which

defines the port number that this application will be listening on). The Request Address defines the port
number that requests will be sent to. There is nothing special about the port numbers used, and you are
free to use other ports if you wish.

Defining the Workflows
The next step is to define the client and server workflows. They will communicate with each other using
the Send and Receive activities. In this project, you’ll use a coded workflow instead of using the designer
to generate an .xaml file. You might want to refer to Chapter 2, in which I explained how coded
workflows are used.

In the Solution Explorer, right-click the LibraryReservation project and choose Add ➤ Class. Enter
the name as ReservationWF.cs. Add the following namespaces to this file:

using System.Activities;
using System.Activities.Statements;
using System.ServiceModel.Activities;
using System.ServiceModel;

Client–SendRequest
First, you’ll define the workflow used to send a request to another branch. Replace the ReservationWF
class that was generated by the template with the code shown in Listing 8-6.

Listing 8-6. Initial Implementation of the SendRequest Class

public sealed class SendRequest : Activity
{
 // Define the input and output arguments
 public InArgument<string> Title { get; set; }
 public InArgument<string> Author { get; set; }
 public InArgument<string> ISBN { get; set; }
 public OutArgument<ReservationResponse> Response { get; set; }

 public SendRequest()

http://

CHAPTER 8 ■ SEND AND RECEIVE

103

 {
 // Define the variables used by this workflow
 Variable<ReservationRequest> request =
 new Variable<ReservationRequest> { Name = "request" };
 Variable<string> requestAddress =
 new Variable<string> { Name = "RequestAddress" };

 // Define the Send activity
 Send submitRequest = new Send
 {
 ServiceContractName = "ILibraryReservation",
 EndpointAddress = new InArgument<Uri>
 (env => new Uri("http://localhost:" + requestAddress.Get(env) +
 "/LibraryReservation")),
 Endpoint = new Endpoint
 {
 Binding = new BasicHttpBinding()
 },
 OperationName = "RequestBook",
 Content = SendContent.Create
 (new InArgument<ReservationRequest>(request))
 };

 // Define the SendRequest workflow

 }
}

This workflow has three input arguments (Title, Author, and ISBN) that define the book being

requested. It also has an output argument (Response), which is the response message you defined earlier
(ReservationResponse class).

The constructor also defines some local variables. They are not passed in or out of the workflow;
they are used internally by the workflow activities. The request variable contains the outgoing message,
which is a ReservationRequest class. The requestAddress variable will hold the port number assigned to
the other branch that will receive the request.

■ Tip In the coded workflow that you created in Chapter 2, all the activities were created inline as anonymous
classes. This works well in most cases. The Send activity is created here as a named class because it will need to
be referenced by the ReceiveReply activity. This is really no different from the arguments and variables that you
created. They are created as named classes so you can reference them later.

http://

CHAPTER 8 ■ SEND AND RECEIVE

104

Send Activity
The submitRequest instance is defined as a Send activity. The Send activity uses WCF to send a message to
the specified endpoint. You probably recognized the three pieces of information needed to specify an
endpoint:

• ServiceContractName specified as ILibraryReservation

• EndpointAddress specified as a URL with a variable port number

• Binding specified with the BasicHttpBinding class

In addition, there are a few more properties that must be defined. OperationName indicates the
specific method of the service contract that should be called at the destination when the message is
received. The Content property stores a reference to the message (a ReservationRequest class) that is to
be sent.

Custom Activity—CreateRequest
You will now create a custom activity that will build the request message from the arguments passed in
to the workflow. In the Solution Explorer, right click the LibraryReservation project and choose Add ➤
Class. Enter the class name as CreateRequest.cs. The implementation of this class is shown in Listing 8-7.

Listing 8-7. Implementation of CreateRequest

using System;
using System.Activities;
using System.Configuration;

namespace LibraryReservation
{
 /***/
 // This custom activity creates a ReservationRequest
 // class using the input parameters (Title, Author and
 // ISBN). This is provided in the Request output
 // parameter. It also returns the network address of
 // the branch that the request should be sent to.
 /***/
 public sealed class CreateRequest : CodeActivity
 {
 public InArgument<string> Title { get; set; }
 public InArgument<string> Author { get; set; }
 public InArgument<string> ISBN { get; set; }
 public OutArgument<ReservationRequest> Request { get; set; }
 public OutArgument<string> RequestAddress { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 // Open the config file and get the Request Address
 Configuration config = ConfigurationManager
 .OpenExeConfiguration(ConfigurationUserLevel.None);

http://

CHAPTER 8 ■ SEND AND RECEIVE

105

 AppSettingsSection app =
 (AppSettingsSection)config.GetSection("appSettings");

 // Create a ReservationRequest class and populate
 // it with the input arguments
 ReservationRequest r = new ReservationRequest
 (
 Title.Get(context),
 Author.Get(context),
 ISBN.Get(context),
 new Branch
 {
 BranchName = app.Settings["Branch Name"].Value,
 BranchID = new Guid(app.Settings["ID"].Value),
 Address = app.Settings["Address"].Value
 }
);

 // Store the request in the OutArgument
 Request.Set(context, r);

 // Store the address in the OutArgument
 RequestAddress.Set(context, app.Settings["Request Address"].Value);
 }
 }
}

The Execute() method first opens the application configuration file to determine the branch details

that are needed to format the request. It then creates a ReservationRequest class using one of the
constructors you provided. The Branch class, which is one of the constructor parameters, is created as an
anonymous class by specifying the BranchName, BranchID, and Address properties. The
ReservationRequest class is then stored in the Request output parameter.

The Request Address in the configuration file contains the address (port number) of the branch that
will be receiving the request. It is stored in the RequestAddress output argument because it will be
needed by the workflow.

Go back to the ReservationWF.cs file. Add the workflow definition shown in Listing 8-8. This should
go where the placeholder is (// Define the SendRequest workflow).

Listing 8-8. Completed Implementation of the SendRequest workflow

// Define the SendRequest workflow
this.Implementation = () => new Sequence
{
 DisplayName = "SendRequest",
 Variables = { request, requestAddress},
 Activities =
 {
 new CreateRequest
 {

http://

CHAPTER 8 ■ SEND AND RECEIVE

106

 Title = new InArgument<string>(env => Title.Get(env)),
 Author = new InArgument<string>(env => Author.Get(env)),
 ISBN = new InArgument<string>(env => ISBN.Get(env)),
 Request = new OutArgument<ReservationRequest>
 (env => request.Get(env)),
 RequestAddress = new OutArgument<string>
 (env => requestAddress.Get(env))
 },
 new CorrelationScope
 {
 Body = new Sequence
 {
 Activities =
 {
 submitRequest,
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Request sent; waiting for response"),
 },
 new ReceiveReply
 {
 Request = submitRequest,
 Content = ReceiveContent.Create
 (new OutArgument<ReservationResponse>
 (env => Response.Get(env)))
 }
 }
 }
 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Response received from " +
 Response.Get(env).Provider.BranchName),
 },
 }
};

The Implementation property of an activity class (referred to as this.Implementation) contains the

child activity. In this case, it is defined as a Sequence activity that consists of a number of child activities.
The variables used by these activities must be declared. They are the request and
requestAddressvariables that were defined in the constructor.

The first activity is the custom CreateRequest activity that you just implemented. Notice that as
you’re specifying the properties, Intellisense knows the input and output arguments that you defined in
your class. The Title, Author, and ISBN arguments are set to the input arguments of the workflow. The
Request and RequestAddress output arguments are stored in the workflow variables.

A CorrelationScope activity is added next, which contains a sequence of activities. Specifically, it
contains the Send and the ReceiveReply activities. By placing them inside a CorrelationScope activity,
the workflow will correlate the response message with the correct workflow instance. A WriteLine
activity is added after the Send activity to indicate that the request has been sent.

http://

CHAPTER 8 ■ SEND AND RECEIVE

107

ReceiveReply Activity
The ReceiveReply activity must be associated with a Send activity. It listens for the response to the
message that was sent by the Send activity. To implement this, the Request property is set to the named
instance of the Send activity (submitRequest).

The Content property defines where the response message (a ReservationResponse class) is stored.
This is set to the Response output argument of the workflow. It will then be available to the host
application when the workflow completes.

Server–ProcessRequest
Now you’ll define the workflow that is executed to process a request from another branch. In the
ReservationWF.cs file, add the class definition shown in Listing 8-9.

Listing 8-9. Initial Implementation of ProcessRequest

public sealed class ProcessRequest : Activity
{
 public ProcessRequest()
 {
 // Define the variables used by this workflow
 Variable<ReservationRequest> request =
 new Variable<ReservationRequest> { Name = "request" };
 Variable<ReservationResponse> response =
 new Variable<ReservationResponse> { Name = "response" };
 Variable<bool> reserved = new Variable<bool> { Name = "reserved" };
 Variable<CorrelationHandle> requestHandle =
 new Variable<CorrelationHandle> { Name = "RequestHandle" };

 // Create a Receive activity
 Receive receiveRequest = new Receive
 {
 ServiceContractName = "ILibraryReservation",
 OperationName = "RequestBook",
 CanCreateInstance = true,
 Content = ReceiveContent.Create
 (new OutArgument<ReservationRequest>(request)),
 CorrelatesWith = requestHandle
 };

 // Define the ProcessRequest workflow
 }
}

This workflow does not have any input or output arguments. There are four variables that are defined.

The request variable stores the incoming message (a ReservationRequest class), and the response variable
stores the outgoing response (a ReservationResponse class). The reserved variable indicates whether the
title could be reserved or not. The requestHandle is used to correlate the response to the incoming request.

http://

CHAPTER 8 ■ SEND AND RECEIVE

108

Receive Activity
A named instance of a Receive activity (receiveRequest) is then defined. You don’t need to specify the
binding or address on the receiving end of a WCF message, but you do need to define the service
contract. The ServiceContractName indicates that the ILibraryReservation service contract should be
used, and the OperationName property specifies the RequestBook() method.

CanCreateInstance is set to true because when this activity is executed, it will create a new workflow
instance. It requires that this activity must be the first one in the workflow. The Content property will
contain the incoming message and is configured to store it in the request variable. The CorrelatesWith
property uses the requestHandle variable.

Custom Activity—CreateResponse
Before defining the workflow activities, you’ll need a custom activity to create the ReservationResponse
class. In the Solution Explorer, right click the LibraryReservation project and choose Add ➤ Class. Enter
the class name as CreateResponse.cs. The implementation of this class is shown in Listing 8-10.

Listing 8-10. Implementation of CreateResponse

using System;
using System.Activities;
using System.Configuration;

namespace LibraryReservation
{
 /***/
 // This custom activity creates a ReservationResponse
 // class. The original request is provided as an
 // InArgument as well as a boolean to indicate if the
 // request was satisfied or not. The class is provided
 // in the Response OutArgument.
 /***/
 public sealed class CreateResponse : CodeActivity
 {
 public InArgument<ReservationRequest> Request { get; set; }
 public InArgument<bool> Reserved { get; set; }
 public OutArgument<ReservationResponse> Response { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 // Open the config file
 Configuration config = ConfigurationManager
 .OpenExeConfiguration(ConfigurationUserLevel.None);
 AppSettingsSection app =
 (AppSettingsSection)config.GetSection("appSettings");

 // Create the ReservationResponse class and populate it
 ReservationResponse r = new ReservationResponse
 (

http://

CHAPTER 8 ■ SEND AND RECEIVE

109

 Request.Get(context),
 Reserved.Get(context),
 new Branch
 {
 BranchName = app.Settings["Branch Name"].Value,
 BranchID = new Guid(app.Settings["ID"].Value),
 Address = app.Settings["Address"].Value
 }
);

 // Store the Response in the OutArgument
 Response.Set(context, r);
 }
 }
}

The CreateResponse activity is very much like the CreateRequest activity. It first opens the

application configuration file to get the branch details. A ReservationResponse class is then created using
one of the supplied constructors and then stored in the Response output argument.

Go back to the ReservationWF.cs class and enter the workflow definition, as shown in Listing 8-11.
There is a placeholder (// Define the ProcessRequest workflow) that indicates where it should go.

Listing 8-11. Completed Implementation of ProcessRequest Workflow

// Define the ProcessRequest workflow
this.Implementation = () => new Sequence
{
 DisplayName = "ProcessRequest",
 Variables = { request, response, reserved, requestHandle },
 Activities =
 {
 receiveRequest,
 new WriteLine
 {
 Text = new InArgument<string>(
 env => "Got request from: " +
 request.Get(env).Requester.BranchName),
 },
 new WriteLine
 {
 Text = new InArgument<string>(env => "Requesting: " +
 request.Get(env).Title),
 },
 new Assign
 {
 To = new OutArgument<Boolean>(reserved),
 Value = new InArgument<Boolean>(env => true)
 },
 new Delay
 {
 Duration = TimeSpan.FromSeconds(2)

http://

CHAPTER 8 ■ SEND AND RECEIVE

110

 },
 new CreateResponse
 {
 Request = new InArgument<ReservationRequest>(env => request.Get(env)),
 Response = new OutArgument<ReservationResponse>
 (env => response.Get(env)),
 Reserved = new InArgument<bool>(env => reserved.Get(env)),
 },
 new WriteLine
 {
 Text = new InArgument<string>(env => "Sending response to: " +
 request.Get(env).Requester.BranchName),
 },
 new SendReply
 {
 Request = receiveRequest,
 Content = SendContent.Create
 (new InArgument<ReservationResponse>(response))
 }
 }
};

The four variables defined in the constructor are declared in the body of the workflow. As expected,

the Receive activity (receiveRequest) is the first activity in the workflow. It is followed by two WriteLine
activities: the first displays the name of the branch that is making the request, and the second shows the
title that is being requested.

The Assign activity simply sets the reserved variable to true. In this example, we will assume that
the title was available. The Delay activity will pause the workflow for two seconds, simulating some
processing that would normally occur to check their inventory. The custom CreateResponse activity is
then executed to create the ReservationResponse class, which will be stored in the response variable. A
final WriteLine activity indicates that the response is being sent.

SendReply Activity
A SendReply activity must be associated with a Receive activity. This is done by specifying the Request
property as a reference to the Receive activity (receiveRequest). The Content property defines the
message that will be sent back to the requester. This is set to the response variable.

Your workflows are now complete. The final implementation of ReservationWF.cs is provided in
Listing 8-12.

Listing 8-12. Complete Implementation of ReservationWF.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Activities;
using System.Activities.Statements;
using System.ServiceModel.Activities;

http://

CHAPTER 8 ■ SEND AND RECEIVE

111

using System.ServiceModel;

namespace LibraryReservation
{
 /***/
 // This file contains the definition of two workflows:
 //
 // SendRequest initiates a new request
 // ProcessRequest handles incoming requests
 //
 /***/
 public sealed class SendRequest : Activity
 {
 // Define the input and output arguments
 public InArgument<string> Title { get; set; }
 public InArgument<string> Author { get; set; }
 public InArgument<string> ISBN { get; set; }
 public OutArgument<ReservationResponse> Response { get; set; }

 public SendRequest()
 {
 // Define the variables used by this workflow
 Variable<ReservationRequest> request =
 new Variable<ReservationRequest> { Name = "request" };
 Variable<string> requestAddress =
 new Variable<string> { Name = "RequestAddress" };

 // Define the Send activity
 Send submitRequest = new Send
 {
 ServiceContractName = "ILibraryReservation",
 EndpointAddress = new InArgument<Uri>
 (env => new Uri("http://localhost:" + requestAddress.Get(env) +
 "/LibraryReservation")),
 Endpoint = new Endpoint
 {
 Binding = new BasicHttpBinding()
 },
 OperationName = "RequestBook",
 Content = SendContent.Create
 (new InArgument<ReservationRequest>(request)),
 };

 // Define the SendRequest workflow
 this.Implementation = () => new Sequence
 {
 DisplayName = "SendRequest",
 Variables = { request, requestAddress},
 Activities =
 {
 new CreateRequest
 {

http://

CHAPTER 8 ■ SEND AND RECEIVE

112

 Title = new InArgument<string>(env => Title.Get(env)),
 Author = new InArgument<string>(env => Author.Get(env)),
 ISBN = new InArgument<string>(env => ISBN.Get(env)),
 Request = new OutArgument<ReservationRequest>
 (env => request.Get(env)),
 RequestAddress = new OutArgument<string>
 (env => requestAddress.Get(env))
 },
 new CorrelationScope
 {
 Body = new Sequence
 {
 Activities =
 {
 submitRequest,
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Request sent; waiting for response"),
 },
 new ReceiveReply
 {
 Request = submitRequest,
 Content = ReceiveContent.Create
 (new OutArgument<ReservationResponse>
 (env => Response.Get(env)))
 }
 }
 }
 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Response received from " +
 Response.Get(env).Provider.BranchName),
 },
 }
 };
 }
 }

 public sealed class ProcessRequest : Activity
 {
 public ProcessRequest()
 {
 // Define the variables used by this workflow
 Variable<ReservationRequest> request =
 new Variable<ReservationRequest> { Name = "request" };
 Variable<ReservationResponse> response =
 new Variable<ReservationResponse> { Name = "response" };
 Variable<bool> reserved = new Variable<bool> { Name = "reserved" };

http://

CHAPTER 8 ■ SEND AND RECEIVE

113

 Variable<CorrelationHandle> requestHandle =
 new Variable<CorrelationHandle> { Name = "RequestHandle" };

 // Create a Receive activity
 Receive receiveRequest = new Receive
 {
 ServiceContractName = "ILibraryReservation",
 OperationName = "RequestBook",
 CanCreateInstance = true,
 Content = ReceiveContent.Create
 (new OutArgument<ReservationRequest>(request)),
 CorrelatesWith = requestHandle
 };

 // Define the ProcessRequest workflow
 this.Implementation = () => new Sequence
 {
 DisplayName = "ProcessRequest",
 Variables = { request, response, reserved, requestHandle },
 Activities =
 {
 receiveRequest,
 new WriteLine
 {
 Text = new InArgument<string>(
 env => "Got request from: " +
 request.Get(env).Requester.BranchName),
 },
 new WriteLine
 {
 Text = new InArgument<string>(env => "Requesting: " +
 request.Get(env).Title),
 },
 new Assign
 {
 To = new OutArgument<Boolean>(reserved),
 Value = new InArgument<Boolean>(env => true)
 },
 new Delay
 {
 Duration = TimeSpan.FromSeconds(2)
 },
 new CreateResponse
 {
 Request = new InArgument<ReservationRequest>
 (env => request.Get(env)),
 Response = new OutArgument<ReservationResponse>
 (env => response.Get(env)),
 Reserved = new InArgument<bool>(env => reserved.Get(env)),
 },
 new WriteLine

http://

CHAPTER 8 ■ SEND AND RECEIVE

114

 {
 Text = new InArgument<string>
 (env => "Sending response to: " +
 request.Get(env).Requester.BranchName),
 },
 new SendReply
 {
 Request = receiveRequest,
 Content = SendContent.Create
 (new InArgument<ReservationResponse>(response))
 }
 }
 };
 }
 }
}

Implementing the Application
The last step of building this solution is to implement the host application. You’ll use the console
application (Program.cs) that was generated by the template. The application both initiates and
processes requests, so you’ll need to supply the logic for both. First, you’ll set up the application to listen
for and process incoming requests. Then you’ll initiate a new request that is sent to another application
instance.

Add the following namespaces to the Program.cs file:

using System.ServiceModel;
using System.ServiceModel.Activities;
using System.ServiceModel.Activities.Description;
using System.ServiceModel.Description;
using System.Activities;
using System.Xml.Linq;
using System.Configuration;

WorkflowServiceHost
If you have used WCF before, you may be familiar with the ServiceHost class, which is used to listen for
incoming messages. WF 4.0 provides a WorkflowServiceHost class that implements a ServiceHost but
initiates a workflow when a message is received.

Enter the code in Listing 8-13 as the implementation of the main() function of the Program class.

Listing 8-13. Partial Implementation on the main() Function

// Open the config file and get the name for this branch
// and its network address
Configuration config = ConfigurationManager
 .OpenExeConfiguration(ConfigurationUserLevel.None);
AppSettingsSection app =

http://

CHAPTER 8 ■ SEND AND RECEIVE

115

 (AppSettingsSection)config.GetSection("appSettings");

string adr = app.Settings["Address"].Value;
Console.WriteLine(app.Settings["Branch Name"].Value);

// Create a service to handle incoming requests
WorkflowService service = new WorkflowService
{
 Name = "LibraryReservation",
 Body = new ProcessRequest(),
 Endpoints =
 {
 new Endpoint
 {
 ServiceContractName="ILibraryReservation",
 AddressUri = new Uri("http://localhost:" + adr +
 "/LibraryReservation"),
 Binding = new BasicHttpBinding(),
 }
 }
};

// Create a WorkflowServiceHost that listens for incoming messages
System.ServiceModel.Activities.WorkflowServiceHost wsh =
 new System.ServiceModel.Activities.WorkflowServiceHost(service);

wsh.Open();

This code first opens the application configuration file and retrieves the Address setting, which

specifies the port number that the application will listen on. It also gets the branch name, which is
displayed in the console window. Because you’ll have multiple applications running, this will help you
keep track of which one is which.

Service
It then creates a WorkflowService class . For the Body property, it uses a new instance of the
ProcessRequest class that defines the workflow used to process incoming requests.

Endpoint
The Service class also defines the endpoint using the ILibraryReservation service contract, a URI that
includes the variable port number and the BasicHttpBinding class.

Finally, a WorkflowServiceHost class is instantiated using the defined service class. It is then opened
by calling its Open() method. At this point, the application is listening for incoming messages. When one
is received, an instance of the ProcessRequest workflow is started to handle the request.

http://

CHAPTER 8 ■ SEND AND RECEIVE

116

WorkflowInvoker
Now you’ll need to add code to initiate a request. Enter the code shown in Listing 8-14 just after the call
to wsh.Open().

Listing 8-14. Remaining Implementation of the main() Function

Console.WriteLine
 ("Waiting for requests, press ENTER to send a request.");
Console.ReadLine();

// Create dictionary with input arguments for the workflow
IDictionary<string, object> input = new Dictionary<string, object>
{
 { "Title" , "Gone with the Wind" },
 { "Author", "Margaret Mitchell" },
 { "ISBN", "9781416548898" }
};

// Invoke the SendRequest workflow
IDictionary<string, object> output =
 WorkflowInvoker.Invoke(new SendRequest(), input);
ReservationResponse resp = (ReservationResponse)output["Response"];

// Display the response
Console.WriteLine("Response received from the {0} branch",
 resp.Provider.BranchName);

Console.WriteLine();
Console.WriteLine("Press ENTER to exit");
Console.ReadLine();

// Close the WorkflowServiceHost
wsh.Close();

This code waits for the user to press the Enter key, which will give you time to get multiple copies

running and listening for incoming messages. The remaining code should be familiar because it is very
similar to the code you wrote in Chapters 4–7. You first create a Dictionary to hold the input arguments.
It then uses the Invoke() method of the WorkflowInvoker class to start a new instance of the SendRequest
workflow.

The Response output argument is then extracted from the Dictionary that is returned when the
workflow completes. The name of the branch that responded to the request is displayed in the console.

Finally, the WorkflowServiceHost is closed before the application exits. The complete
implementation of Program.cs is provided in Listing 8-15.

Listing 8-15. Complete Implementation of Program.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

http://

CHAPTER 8 ■ SEND AND RECEIVE

117

using System.ServiceModel;
using System.ServiceModel.Activities;
using System.ServiceModel.Activities.Description;
using System.ServiceModel.Description;
using System.Activities;
using System.Xml.Linq;
using System.Configuration;

namespace LibraryReservation
{
 class Program
 {
 static void Main(string[] args)
 {
 // Open the config file and get the name for this branch
 // and its network address
 Configuration config = ConfigurationManager
 .OpenExeConfiguration(ConfigurationUserLevel.None);
 AppSettingsSection app =
 (AppSettingsSection)config.GetSection("appSettings");

 string adr = app.Settings["Address"].Value;
 Console.WriteLine(app.Settings["Branch Name"].Value);

 // Create a service to handle incoming requests
 WorkflowService service = new WorkflowService
 {
 Name = "LibraryReservation",
 Body = new ProcessRequest(),
 Endpoints =
 {
 new Endpoint
 {
 ServiceContractName="ILibraryReservation",
 AddressUri = new Uri("http://localhost:" + adr +
 "/LibraryReservation"),
 Binding = new BasicHttpBinding(),
 }
 }
 };

 // Create a WorkflowServiceHost that listens for incoming messages
 System.ServiceModel.Activities.WorkflowServiceHost wsh =
 new System.ServiceModel.Activities.WorkflowServiceHost(service);

 wsh.Open();

 Console.WriteLine
 ("Waiting for requests, press ENTER to send a request.");
 Console.ReadLine();

http://

CHAPTER 8 ■ SEND AND RECEIVE

118

 // Create dictionary with input arguments for the workflow
 IDictionary<string, object> input = new Dictionary<string, object>
 {
 { "Title" , "Gone with the Wind" },
 { "Author", "Margaret Mitchell" },
 { "ISBN", "9781416548898" }
 };

 // Invoke the SendRequest workflow
 IDictionary<string, object> output =
 WorkflowInvoker.Invoke(new SendRequest(), input);
 ReservationResponse resp = (ReservationResponse)output["Response"];

 // Display the response
 Console.WriteLine("Response received from the {0} branch",
 resp.Provider.BranchName);

 Console.WriteLine();
 Console.WriteLine("Press ENTER to exit");
 Console.ReadLine();

 // Close the WorkflowServiceHost
 wsh.Close();
 }
 }
}

Running the Application
Press F6 to rebuild the application. You have to start two instances of this application, and they need to
have different configuration files so you can specify different port numbers for each.

Configuring a Library Branch
Open Windows Explorer and navigate to your code directory. Add a Branch subfolder, as shown in
Figure 8-3.

http://

CHAPTER 8 ■ SEND AND RECEIVE

119

Figure 8-3. Creating a new branch folder

Then copy (not move) the files highlighted in Figure 8-4 from the Debug folder to the Branch folder.

Figure 8-4. Copying the application

http://

CHAPTER 8 ■ SEND AND RECEIVE

120

In the Branch folder, open the LibraryReservation.exe.config file. You can open it with any text
editor. If you right-click this file and select Open With, you should have an option for Visual Studio 2010.
Change the settings to the match the following:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="Branch Name" value="Southwest Regional"/>
 <add key="ID" value="{CA62F4ED-FACF-4835-8468-16CAAC298F4C}"/>
 <add key="Address" value="8730"/>
 <add key="Request Address" value="8000"/>
 </appSettings>
</configuration>

Notice that the port numbers for the Address and Request Address are reversed from the

configuration file in the main application folder. Double-click the .exe file; a console window should
appear with the following text:

Southwest Regional
Waiting for requests, press ENTER to send a request.

Expected Results
From Visual Studio, press F5 to start the application. This should start another console window with the
following text:

Central Library
Waiting for requests, press ENTER to send a request.

You might need to move the windows around so you can see both console windows at the same
time. Select one of the windows and press the Enter key. After a couple of seconds, you should see the
following text on that window:

Southwest Regional
Waiting for requests, press ENTER to send a request.

Request sent; waiting for response
Response received from Central Library
Response received from the Central Library branch

Press ENTER to exit

In the other window you should see the following:

http://

CHAPTER 8 ■ SEND AND RECEIVE

121

Central Library
Waiting for requests, press ENTER to send a request.
Got request from: Southwest Regional
Requesting: Gone with the Wind
Sending response to: Southwest Regional

Select the other window and press the Enter key. In that window, you should see the following:

Central Library
Waiting for requests, press ENTER to send a request.
Got request from: Southwest Regional
Requesting: Gone with the Wind
Sending response to: Southwest Regional

Request sent; waiting for response
Response received from Southwest Regional
Response received from the Southwest Regional branch

Press ENTER to exit

In the other window you should see the following:

Southwest Regional
Waiting for requests, press ENTER to send a request.

Request sent; waiting for response
Response received from Central Library
Response received from the Central Library branch

Press ENTER to exit
Got request from: Central Library
Requesting: Gone with the Wind
Sending response to: Central Library

You can press Enter in both windows to close the applications.

Allowing Port Access

Because of the enhanced security in Windows Vista and Windows 7, your application might generate an
exception that indicates you do not have access to the specified port. If you have this situation, the easiest way
to resolve it is to run the application with administrator privileges. For example, when starting Visual Studio
from the Start menu or desktop icon, right-click the menu or icon and choose “Run as administrator”, as
shown in Figure 8-5.

http://

CHAPTER 8 ■ SEND AND RECEIVE

122

Figure 8-5. Running with Administrator privileges

When starting the branch application, you can right-click the .exe file and also choose “Run as administrator”.

Another option is to grant your Windows login access to the desired ports. To do that, start a command
window (you must start it with administrator privileges) and execute the following command:

netsh http add urlacl url=http://+:8000/ user=Domain\UserName

Instead of 8000, you can enter whatever port you plan to use. You need to run this command for each port that
you want to grant access to. Replace Domain\UserName with the actual login that you use. Wherever possible,
in the sample projects I will use only 8000 and 8730 to minimize the number of ports you’ll need access to.
Although this might be a little more trouble to set up, you have to do it only once and it will save you time in
the long run.

http://

C H A P T E R 9

n n n

123

Communicating with

the Host Application

In this chapter, you’ll build a solution similar to the one from Chapter 8, except that you’ll replace the
console application with a Windows Presentation Foundation (WPF) application. In the projects you’ve
built so far, the host simply invoked the workflow and displayed the results upon completion. With this
project you’ll need a lot more communication between the workflow and the host application.
Fortunately, WF 4.0 provides the features you’ll need to accomplish this.

Creating a WPF Project
Open VS 2010 and create a new project using the WPF Application template, as shown in Figure 9-1. For
the project name, use LibraryReservation, and the solution should be Chapter09.

Figure 9-1. Creating a WPF application

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

124

In the Solution Explorer, right-click the LibraryReservation project and choose Add Reference. From
the .NET tab, add the following references:

• System.Activities

• System.Configuration

• System.ServiceModel

• System.ServiceModel.Activities

The template generates a window file named Window1.xaml. In the Solution Explorer, rename it to
Reservations.xaml. The App.xaml file defines the startup window; it is currently set to Window1. Open this
file and change the setting to the following:

StartupUri="Reservations.xaml"

Reusing the Classes from Chapter 8
Some of the classes from the Chapter 8 project can be reused in this project. Open Windows Explorer;
copy (not move) the files highlighted in Figure 9-2 from the LibraryReservation folder in the Chapter08
solution to the same folder in the Chapter09 solution.

Figure 9-2. Copying files from the Chapter 8 project

Back in Visual Studio, in the Solution Explorer, right-click the LibraryReservation project and
choose Add, Existing Item. In the Add Existing Item dialog, navigate to the
Chapter09/LibraryReservation folder. Select All Files (*.*) at the bottom right of the dialog. Select the
same files that you just copied (see Figure 9-3) and click the Add button.

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

125

Figure 9-3. Adding existing items to the project

The Solution Explorer should look like the one shown in Figure 9-4.

Figure 9-4. The Solution Explorer with the copied classes

Defining the Window Form
Open the Reservations.xaml file and select the XAML tab. Replace the generated code with the code
shown in Listing 9-1.

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

126

Listing 9-1. Reservations.xaml Implementation

<Window x:Class="LibraryReservation.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Reservations" Height="480" Width="650"
 Loaded="Window_Loaded" Unloaded="Window_Unloaded">
 <Grid>
 <Label Height="40" HorizontalAlignment="Left" Margin="12,0,0,0"
 Name="lblBranch" FontSize="24" VerticalAlignment="Top" Width="276"
 FontStretch="Expanded">Library Branch</Label>
 <ListView x:Name="requestList" Margin="12,42,12,5" Height="150"
 VerticalAlignment="Top" ItemsSource="{Binding}">
 <ListView.View>
 <GridView>
 <GridViewColumn Header="Request List" Width="610">
 <GridViewColumn.CellTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock
 Text="{Binding Requester.BranchName}"
 Width="100"/>
 <TextBlock Text="{Binding Author}" Width="95"/>
 <TextBlock Text="{Binding Title}" Width="180"/>
 <TextBlock Text="{Binding ISBN}" Width="90"/>
 <Button Content="Reserve"
 Tag="{Binding InstanceID}"
 Click="Reserve" Width="65"/>
 <Button Content="Cancel"
 Tag="{Binding InstanceID}"
 Click="Cancel" Width="60"/>
 </StackPanel>
 </DataTemplate>
 </GridViewColumn.CellTemplate>
 </GridViewColumn>
 </GridView>
 </ListView.View>
 </ListView>
 <Label Height="30" Margin="45,25,0,210" Name="label5"
 VerticalAlignment="Bottom" HorizontalAlignment="Left" Width="60"
 HorizontalContentAlignment="Right">Author:</Label>
 <Label Height="30" Margin="45,25,0,180" Name="label2"
 VerticalAlignment="Bottom" HorizontalAlignment="Left" Width="60"
 HorizontalContentAlignment="Right">Title:</Label>
 <Label Height="30" Margin="45,25,0,150" Name="label3"
 VerticalAlignment="Bottom" HorizontalAlignment="Left" Width="60"
 HorizontalContentAlignment="Right">ISBN:</Label>
 <TextBox Height="25" Margin="102,0,0,210" Name="txtAuthor"
 VerticalAlignment="Bottom" HorizontalAlignment="Left" Width="200" />
 <TextBox Height="25" Margin="102,25,0,180" Name="txtTitle"
 VerticalAlignment="Bottom" HorizontalAlignment="Left" Width="300" />

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

127

 <TextBox Height="25" Margin="102,25,0,150" Name="txtISBN"
 VerticalAlignment="Bottom" HorizontalAlignment="Left" Width="100" />
 <Button Height="23" Margin="250,25,12,150" Name="btnRequest"
 VerticalAlignment="Bottom" HorizontalAlignment="Left" Width="98"
 Click="btnRequest_Click">Send Request</Button>
 <Label Height="27" HorizontalAlignment="Left" Margin="15,0,0,137"
 Name="label4" VerticalAlignment="Bottom" Width="76">Event Log</Label>
 <ListBox Margin="12,0,12,12" Name="lstEvents" Height="130"
 VerticalAlignment="Bottom" FontStretch="Condensed" FontSize="10" />
 </Grid>
</Window>

Then select the Design tab. The form should look like the one shown in Figure 9-5.

Figure 9-5. The application window in design view

The Request List is at the top of the form and will display all the incoming requests that need to be
acted on. To send a request to another branch, use the fields in the middle of the form to specify the
Author, Title, and ISBN; then click the Send Request button. The Event Log at the bottom will display
messages from the workflow similar to the way the console app does.

Implementing a TextWriter
For the WriteLine activities that you have used so far, you have not set the TextWriter property. If no
TextWriter is specified, the default behavior is to write the specified text to the console. Now you will
implement a TextWriter class that will add this text to the Event Log at the bottom of your application
form.

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

128

Providing a Static Application Reference
First, you’ll create a static class that will provide access to the application window. From the Solution
Explorer, right-click the LibraryReservation project and choose Add, Class. For the class name, enter
ApplicationInterface.cs. The implementation for this class is shown in Listing 9-2.

Listing 9-2. Implementation of the ApplicationInterface Class

using System;
using System.Windows.Controls;
using System.Activities;
namespace LibraryReservation
{
 public static class ApplicationInterface
 {
 public static MainWindow _app { get; set; }

 public static void AddEvent(String status)
 {
 if (_app != null)
 {
 new ListBoxTextWriter(_app.GetEventListBox()).WriteLine(status);
 }
 }
 }
}

The ApplicationInterface class has a static reference (_app) to the application window (the

MainWindow class). The static AddEvent() method instantiates a ListBoxTextWriter class, which you’ll
implement later, and calls its WriteLine() method.

Now open the Reservations.xaml.cs file and add the following namespaces:

using System.ServiceModel;
using System.ServiceModel.Activities;
using System.ServiceModel.Activities.Description;
using System.ServiceModel.Description;
using System.ServiceModel.Channels;
using System.Activities;
using System.Xml.Linq;
using System.Configuration;

Add the following code to the constructor:

ApplicationInterface._app = this;

This will initialize the _app reference in the ApplicationInterface class. Because it is a static class,

there will be only a single instance, and this instance will now have a reference to the MainWindow class.
Add the following methods in the Reservations.xaml.cs file:

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

129

public ListBox GetEventListBox()
{
 return this.lstEvents;
}

private void AddEvent(string szText)
{
 lstEvents.Items.Add(szText);
}

The GetEventListBox() method returns a reference to the actual ListBox control that will display

these events. This method is used by the ApplicationInterface class. The AddEvent() method is used by
the application when it needs to add an event.

Implementing ListBoxTextWriter
From the Solution Explorer, right-click the LibraryReservation project and choose Add, Class. Enter
ListBoxTextWriter.cs for the class name. The implementation of this class is shown in Listing 9-3.

Listing 9-3. Implementation of ListBoxTextWriter

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Windows.Controls;

namespace LibraryReservation
{
 public class ListBoxTextWriter : TextWriter
 {
 const string textClosed = "This TextWriter must be opened before use";

 private Encoding _encoding;
 private bool _isOpen = false;
 private ListBox _listBox;

 public ListBoxTextWriter()
 {
 // Get the static list box
 _listBox = ApplicationInterface._app.GetEventListBox();
 if (_listBox != null)
 _isOpen = true;
 }

 public ListBoxTextWriter(ListBox listBox)
 {
 this._listBox = listBox;
 this._isOpen = true;

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

130

 }

 public override Encoding Encoding
 {
 get
 {
 if (_encoding == null)
 {
 _encoding = new UnicodeEncoding(false, false);
 }
 return _encoding;
 }
 }

 public override void Close()
 {
 this.Dispose(true);
 }

 protected override void Dispose(bool disposing)
 {
 this._isOpen = false;
 base.Dispose(disposing);
 }

 public override void Write(char value)
 {
 if (!this._isOpen)
 throw new ApplicationException(textClosed); ;

 this._listBox.Dispatcher.BeginInvoke
 (new Action(() => this._listBox.Items.Add(value.ToString())));
 }

 public override void Write(string value)
 {
 if (!this._isOpen)
 throw new ApplicationException(textClosed); ;

 if (value != null)
 this._listBox.Dispatcher.BeginInvoke
 (new Action(() => this._listBox.Items.Add(value)));
 }

 public override void Write(char[] buffer, int index, int count)
 {
 String toAdd = "";

 if (!this._isOpen)
 throw new ApplicationException(textClosed); ;

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

131

 if (buffer == null || index < 0 || count < 0)
 throw new ArgumentOutOfRangeException("buffer");

 if ((buffer.Length - index) < count)
 throw new ArgumentException("The buffer is too small");

 for (int i = 0; i < count; i++)
 toAdd += buffer[i];

 this._listBox.Dispatcher.BeginInvoke
 (new Action(() => this._listBox.Items.Add(toAdd)));
 }
 }
}

The ListBoxTextWriter class is derived from the abstract TextWriter class and provides an

implementation of the Write() method that adds the string to a ListBox control. (You’ll implement three
overloaded Write() methods to allow it to be passed in as a char, a string, or a char[] array.)

The default constructor uses the static ApplicationInterface class to get the lstEvents control of
the MainWindow. It also provides a constructor into which the ListBox can be passed. This constructor is
used by the AddEvent() method of the ApplicationInterface class.

The ListBox Add() method is executed on the application’s thread. It does this by using the
BeginInvoke() method of the Dispatcher associated with the lstEvents control. This enables the method
to work even when called from different threads.

Because the ListBoxTextWriter class is derived from TextWriter, you can specify it as the TextWriter
property on any WriteLine activity. And because of the static ApplicationInterface class, the
ListBoxTextWriter class can access the lstEvents control even from outside of the application.

So now you have three ways to add text to the lstEvents control:

• From inside the application, use the local AddEvent() method.

• From outside the application, use the AddEvent() method of the
ApplicationInterface class.

• From a WriteLine activity, set the TextWriter property to ListBoxTextWriter.

Implementing the Workflows
The overall logic and message flow is illustrated in Figure 9-6. I will explain some of the elements in this
diagram later, but I wanted to give you the basic concept before getting into the details.

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

132

Figure 9-6. Overall logic and message flow

This is quite a bit different from the workflows used in the previous chapter. The most notable
difference is that there are no Receive activities. Instead, the application will listen for the incoming
messages and then invoke (or resume) the workflow.

Listening for Messages
In Figure 9-6, the server application receives a message, and the associated element in the diagram is
labeled ILibrary.RequestBook. Likewise, the client application receives a message and that element is
labeled ILibrary.RespondToRequest. These are the methods in the service contract that you
implemented in Chapter 8. (To save space in the diagram, I abbreviated ILibraryReservation to just
ILibrary.)

Open the Reservation.cs file, and you should see the following interface definition:

[ServiceContract]
public interface ILibraryReservation
{
 [OperationContract]
 void RequestBook(ReservationRequest request);

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

133

 [OperationContract]
 void RespondToRequest(ReservationResponse response);
}

You’ll need to make a minor change to this contract. Modify the OperationContract attribute to add

the (IsOneWay = true) qualifier, as illustrated in the following code snippet:

[ServiceContract]
public interface ILibraryReservation
{
 [OperationContract(IsOneWay = true)]
 void RequestBook(ReservationRequest request);

 [OperationContract(IsOneWay = true)]
 void RespondToRequest(ReservationResponse response);
}

The message is being sent by the workflow, but the response is received by the ServiceHost within

the application. So this is not technically a two-way conversation. There are messages going in both
directions, but because the sending and receiving endpoints are different, WCF treats this as separate
one-way messages.

Implementing the Service Contract
This service contract only defines the available methods; it does not provide the implementation for
them. In Chapter 8, the workflow provided the implementation. For this project, you must provide it. In
the Solution Explorer, right-click the LibraryReservation project and choose Add, Class. For the class
name, enter ClientService.cs. The implementation for this class is shown in Listing 9-4.

Listing 9-4. Implementation of the ClientService Class

using System;
using System.ServiceModel;

namespace LibraryReservation
{
 public class ClientService : ILibraryReservation
 {
 public void RequestBook(ReservationRequest request)
 {
 ApplicationInterface.RequestBook(request);
 }

 public void RespondToRequest(ReservationResponse response)
 {
 ApplicationInterface.RespondToRequest(response);
 }
 }
}

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

134

This implementation takes advantage of the static ApplicationInterface class that you already
created. Each method simply calls the corresponding method in the ApplicationInterface class. Open
the ApplicationInterface.cs file and add the following methods to this class:

public static void RequestBook(ReservationRequest request)
{
 if (_app != null)
 _app.RequestBook(request);
}

public static void RespondToRequest(ReservationResponse response)
{
 if (_app != null)
 _app.RespondToRequest(response);
}

These methods, in turn, call the corresponding method in the application using the static reference.

You will need to implement these methods in the Reservation.xaml.cs file, but we’ll come back to that
later.

Implementing a ServiceHost
The application needs to implement a ServiceHost to listen for incoming messages. Open the
Reservation.xaml.cs file and add the following class member:

private ServiceHost _sh;

This should go just before the constructor. The first part of this file should look like this:

public partial class MainWindow : Window
{
 private ServiceHost _sh;

 public MainWindow()
 {
 InitializeComponent();

 ApplicationInterface._app = this;
 }

You will start the ServiceHost when the window is loaded and close it when the window is unloaded.

Add the methods shown in Listing 9-5 to the MainWindow class to implement the Loaded and Unloaded
event handlers.

Listing 9-5. The Loaded and Unloaded Event Handlers

private void Window_Loaded(object sender, RoutedEventArgs e)
{

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

135

 // Open the config file and get the name for this branch
 // and its network address
 Configuration config = ConfigurationManager
 .OpenExeConfiguration(ConfigurationUserLevel.None);
 AppSettingsSection app =
 (AppSettingsSection)config.GetSection("appSettings");
 string adr = app.Settings["Address"].Value;

 // Display the Branch name on the form
 lblBranch.Content = app.Settings["Branch Name"].Value;

 // Create the ServiceHost
 _sh = new ServiceHost(typeof(ClientService));

 // Add the Endpoint
 string szAddress = "http://localhost:" + adr + "/ClientService";
 System.ServiceModel.Channels.Binding bBinding = new BasicHttpBinding();
 _sh.AddServiceEndpoint(typeof(ILibraryReservation), bBinding, szAddress);

 // Open the ServiceHost to listen for messages
 _sh.Open();
}

private void Window_Unloaded(object sender, RoutedEventArgs e)
{
 // Terminate the service host
 _sh.Close();
}

The Loaded event handler opens the configuration file and puts the branch name in the lblBranch

control so the form will display the local branch name. It then creates a ServiceHost passing the
ClientService class that you just created as its implementation. It then configures an Endpoint for this
ServiceHost using the familiar address, binding, and contract trio. The Unloaded event handler simply
closes the ServiceHost so it will no longer listen for messages.

Bookmarks
Bookmarks allow you to suspend a workflow instance and save a marker so the instance can be resumed
exactly where it left off. They are designed to receive data upon resumption. In this project, for example,
when a request is received, the application will display the request and wait for the user to see whether
the item is available. The user then responds with a yes or no, and the workflow is resumed, passing in
this answer.

A bookmark is generally created in a custom activity. In this project, you’ll create a generic activity
that can be reused wherever a bookmark is required. In the Solution Explorer, right-click the

implementation for this class is shown in Listing 9-6.
LibraryReservation project and choose Add ➤ Class. Enter WaitForInput.cs as the class name. The

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

136

Listing 9-6. Implementation of the WaitForInput Class

using System;
using System.Activities;

namespace LibraryReservation
{
 public sealed class WaitForInput<T> : NativeActivity<T>
 {
 public WaitForInput()
 : base()
 {
 }

 public string BookmarkName { get; set; }
 public OutArgument<T> Input { get; set; }

 protected override void Execute(NativeActivityContext context)
 {
 context.CreateBookmark(BookmarkName,
 new BookmarkCallback(this.Continue));
 }

 void Continue(NativeActivityContext context, Bookmark bookmark,
 object obj)
 {
 Input.Set(context, (T)obj);
 }

 protected override bool CanInduceIdle { get { return true; } }
 }
}

This custom activity uses the NativeActivity base class (instead of CodeActivity) because this gives

it access to the NativeActivityContext, which is required when creating a bookmark. It also uses the
template version (note the <T> in the class name). The Input argument represents the data that is passed
into the workflow when it is resumed. By using the template version, this activity can be reused with any
data type.

The Execute() method calls the CreateBookmark() method of the NativeActivityContext, specifying
the bookmark name and a reference to the callback method named Continue(). When the workflow is
resumed, this callback method is executed. Notice that the callback method receives an object as the
third parameter. This is the data provided by the application. It is stored in the Input argument, making
it available to the workflow.

Activities that use bookmarks must override the CanInduceIdle property to return true. This allows
the workflow to enter the Idle state while waiting for the bookmark to resume.

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

137

Implementing the SendRequest Workflow
Now you’re ready to implement the workflows. From the Solution Explorer, right-click the

implementation for the SendRequest workflow is shown in Listing 9-7.

Listing 9-7. Implementation of the SendRequest Workflow

using System;
using System.Activities;
using System.Activities.Statements;
using System.ServiceModel.Activities;
using System.ServiceModel;
using System.ServiceModel.Channels;
using System.Runtime.Serialization;
using System.Xml.Linq using System.IO;

namespace LibraryReservation
{
 /***/
 // This file contains the definition of two workflows:
 //
 // SendRequest initiates a new request
 // ProcessRequest handles incoming requests
 //
 /***/
 public sealed class SendRequest : Activity
 {
 // Define the input and output arguments
 public InArgument<string> Title { get; set; }
 public InArgument<string> Author { get; set; }
 public InArgument<string> ISBN { get; set; } public InArgument<TextWriter> Writer {
 get; set; }
 public OutArgument<ReservationResponse> Response { get; set; }

 public SendRequest()
 {
 // Define the variables used by this workflow
 Variable<ReservationRequest> request =
 new Variable<ReservationRequest> { Name = "request" };
 Variable<string> requestAddress =
 new Variable<string> { Name = "RequestAddress" };
 Variable<bool> reserved = new Variable<bool> { Name = "Reserved" };

 // Define the SendRequest workflow
 this.Implementation = () => new Sequence
 {
 DisplayName = "SendRequest",
 Variables = { request, requestAddress, reserved },
 Activities =

LibraryReservation project and choose Add ➤ Class. For the class name, enter ReservationWF.cs. The

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

138

 {
 new CreateRequest
 {
 Title = new InArgument<string>(env => Title.Get(env)),
 Author = new InArgument<string>(env => Author.Get(env)),
 ISBN = new InArgument<string>(env => ISBN.Get(env)),
 Request = new OutArgument<ReservationRequest>
 (env => request.Get(env)),
 RequestAddress = new OutArgument<string>
 (env => requestAddress.Get(env))
 },
 new Send
 {
 OperationName = "RequestBook",
 ServiceContractName = "ILibraryReservation",
 Content = SendContent.Create
 (new InArgument<ReservationRequest>(request)),
 EndpointAddress = new InArgument<Uri>
 (env => new Uri("http://localhost:" +
 requestAddress.Get(env) + "/ClientService")),
 Endpoint = new Endpoint
 {
 Binding = new BasicHttpBinding()
 },
 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Request sent; waiting for response"),
 TextWriter = new InArgument<TextWriter>

 (env => Writer.Get(env))
 },
 new WaitForInput<ReservationResponse>
 {
 BookmarkName = "GetResponse",
 Input = new OutArgument<ReservationResponse>
 (env => Response.Get(env))
 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Response received from " +
 Response.Get(env).Provider.BranchName + " [" +
 Response.Get(env).Reserved.ToString() + "]"),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 },
 }
 };
 }
 }

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

139

 // Add the ProcessRequest workflow here
}

Much of this workflow is identical to the one you implemented in Chapter 8, so I won’t explain it in

detail. (Refer to the previous chapter if you need some review.) I will point out the differences, however.
Notice that each of the WriteLine activities has an extra property:

TextWriter = new ListBoxTextWriter()

This indicates that the new ListBoxTextWriter class that you implemented should be used when

displaying this text. It will cause this text to be displayed in the lstEvents control.
The other difference is that the custom WaitForInput activity is used instead of a Receive activity.

The application will be receiving the response message directly. When the response is received, the
application will resume the workflow, passing in the ReservationResponse class. Notice that the custom
activity is defined as WaitForInput<ReservationResponse>, indicating that the data passed in will be a
ReservationResponse class.

Implementing the ProcessRequest Workflow
The ProcessRequest workflow definition is shown in Listing 9-8. Add this code to the ReservationWF.cs file.

Listing 9-8. Implementation of the ProcessRequuest Workflow

public sealed class ProcessRequest : Activity
{
 public InArgument<ReservationRequest> request { get; set; } public
 InArgument<TextWriter> Writer { get; set; }

 public ProcessRequest()
 {
 // Define the variables used by this workflow
 Variable<ReservationResponse> response =
 new Variable<ReservationResponse> { Name = "response" };
 Variable<bool> reserved = new Variable<bool> { Name = "Reserved" };
 Variable<string> address = new Variable<string> { Name = "Address" };

 // Define the ProcessRequest workflow
 this.Implementation = () => new Sequence
 {
 DisplayName = "ProcessRequest",
 Variables = { response, reserved, address },
 Activities =
 {
 new WriteLine
 {
 Text = new InArgument<string>(env => "Got request from: " +
 request.Get(env).Requester.BranchName),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 },

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

140

 new InvokeMethod
 {
 TargetType = typeof(ApplicationInterface),
 MethodName = "NewRequest",
 Parameters =
 {
 new InArgument<ReservationRequest>(env => request.Get(env))
 }
 },
 new WaitForInput<bool>
 {
 BookmarkName = "GetResponse",
 Input = new OutArgument<bool>(env => reserved.Get(env))
 },
 new CreateResponse
 {
 Request = new InArgument<ReservationRequest>
 (env => request.Get(env)),
 Reserved = new InArgument<bool>(env => reserved.Get(env)),
 Response = new OutArgument<ReservationResponse>
 (env => response.Get(env))
 },
 new WriteLine
 {
 Text = new InArgument<string>(env => "Sending response to: " +
 request.Get(env).Requester.BranchName),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 },
 new Send
 {
 OperationName = "RespondToRequest",
 ServiceContractName = "ILibraryReservation",
 EndpointAddress = new InArgument<Uri>(
 env => new Uri("http://localhost:" +
 request.Get(env).Requester.Address + "/ClientService")),
 Endpoint = new Endpoint
 {
 Binding = new BasicHttpBinding()
 },
 Content = SendContent.Create
 (new InArgument<ReservationResponse>(response))
 }
 }
 };
 }
}

This workflow is different from the version implemented in Chapter 8. Instead of starting with a

Receive activity to get the incoming request, the ReservationRequest is passed in to the workflow using
an input argument. The WriteLine activity that follows it acknowledges the incoming request.

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

141

You used an InvokeMethod activity in Chapter 7 to call a method to compute the order discount. Now
you’ll use it to send data to the application. The ApplicationInterface class comes in really handy for
this purpose. It enables the workflow to make a call into the application. The InvokeMethod activity calls
the NewRequest() method of the ApplicationInterface class passing in the ReservationRequest class.
Open the ApplicationInterface.cs file and add the following method, which simply calls the
AddNewRequest() method in the application:

public static void NewRequest(ReservationRequest request)
{
 if (_app != null)
 _app.AddNewRequest(request);
}

The next activity is the custom WaitForInput activity that you used in the SendRequest workflow.
This time, it is expecting a bool input to indicate whether the title was reserved. The CreateResponse and
WriteLine activities are the same as was used in Chapter 8.

In Chapter 8, you used a SendReply activity because it was associated with the initial Receive activity.
In this project, because there is no Receive activity, you’ll use a Send activity. Notice that the
EndpointAddress is set up using the address (port number) provided in the input request.

Implementing the Application
The last step is to implement the application. There are several event handlers that must be
implemented as well as the methods invoked by the static ApplicationInterface class.

Maintaining Workflow Instances
The application has to keep track of the workflow instances so it can resume the correct instance. You
can accomplish this fairly easily by using a Dictionary object. Open the Reservations.xaml.cs file and
add the following class members just below the ServiceHost member:

private IDictionary<Guid, WorkflowApplication> _incomingRequests;
private IDictionary<Guid, WorkflowApplication> _outgoingRequests;

These use the workflow’s instance ID as the dictionary key and the WorkflowApplication object as

the value. Because the application handles both the SendRequest and ProcessRequest workflows, you’ll
need two Dictionary objects. Add the following code to the constructor to initialize these objects:

_incomingRequests = new Dictionary<Guid, WorkflowApplication>();
_outgoingRequests = new Dictionary<Guid, WorkflowApplication>();

There is also one small change that you’ll need to make to the custom CreateRequest activity. The

workflow instance ID must be used as the RequestID field of the ReservationRequest class. The
application will use this when resuming the workflow. Open the CreateRequest.cs file and modify the
call that creates the ReservationRequest class to use the alternate constructor that takes a fifth parameter
for the RequestID. Add the line in bold from the following code snippet:

// Create a ReservationRequest class and populate
// it with the input arguments

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

142

ReservationRequest r = new ReservationRequest
 (
 Title.Get(context),
 Author.Get(context),
 ISBN.Get(context),
 new Branch
 {
 BranchName = app.Settings["Branch Name"].Value,
 BranchID = new Guid(app.Settings["ID"].Value),
 Address = app.Settings["Address"].Value
 },
 context.WorkflowInstanceId
);

Event Handlers
To create a new request, the user will fill in the Author, Title, and ISBN; then click the Send Request
button. The implementation of the button’s Click event is shown in Listing 9-9.

Listing 9-9. Implementing the Click Event

private void btnRequest_Click(object sender, RoutedEventArgs e)
{
 // Setup a dictionary object for passing parameters
 Dictionary<string, object> parameters = new Dictionary<string, object>();
 parameters.Add("Author", txtAuthor.Text);
 parameters.Add("Title", txtTitle.Text);
 parameters.Add("ISBN", txtISBN.Text);
 parameters.Add("Writer", new ListBoxTextWriter(lstEvents));

 WorkflowApplication i =
 new WorkflowApplication(new SendRequest(), parameters);
 _outgoingRequests.Add(i.Id, i);
 i.Run();
}

The first part of this method should look familiar. It uses a Dictionary object to store the input

arguments, which will be passed in to the workflow. It then creates a WorkflowApplication. The
parameters passed to the WorkflowApplication constructor are the following:

The definition of the workflows

The Dictionary object containing the input arguments

The WorkflowApplication is then added to the _outgoingRequests collection. Finally, the instance is
started by calling it’s Run() method.

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

143

n Tip In previous projects, you used the Invoke() method of the WorkflowInvoker class to start a
WorkflowApplication. This approach starts the workflow synchronously; the workflow will execute on the
caller’s thread. This means that the application will be blocked until the workflow becomes idle. That’s not what
you want in this project. You want to start the workflow on its own thread while the application can continue to
respond to events (and incoming messages). Using the Run() method accomplishes this.

In the form’s Request List, there will be Reserve and Cancel buttons, which the users will use to
indicate whether the item was available. Listing 9-10 shows the implementation of event handlers for
these buttons. Add these methods to the Reservations class.

Listing 9-10. Implementing the Reserve and Cancel Buttons

// Handle the Reserve button click event
private void Reserve(object sender, RoutedEventArgs e)
{
 // Get the instanceID from the Tag property
 FrameworkElement fe = (FrameworkElement)sender;
 Guid id = (Guid)fe.Tag;
 ResumeBookmark(id, true);
}

// Handle the Cancel button click event
private void Cancel(object sender, RoutedEventArgs e)
{
 // Get the instanceID from the Tag property
 FrameworkElement fe = (FrameworkElement)sender;
 Guid id = (Guid)fe.Tag;
 ResumeBookmark(id, false);
}

private void ResumeBookmark(Guid id, bool bReserved)
{
 WorkflowApplication i = _incomingRequests[id];
 try
 {
 i.ResumeBookmark("GetResponse", bReserved);
 }
 catch (Exception e)
 {
 AddEvent(e.Message);
 }
}

These event handlers obtain the workflow’s instance ID from the Tag property of the Button control.

They then call the ResumeBookmark() method, passing in either true or false, depending on which Button
was clicked. The ResumeBookmark() method retrieves the WorkflowApplication from the
_incomingRequests collection and calls its ResumeBookmark() method. This is passed the bookmark name
and the value to be passed in when the instance is resumed.

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

144

ApplicationInterface Methods
You defined three methods in the ApplicationInterface class. Now you’ll provide the implementation
for these methods in the MainWindow class. The implementation for these methods is shown in Listing 9-11.

Listing 9-11. Implementing the Method Calls by the ApplicationInterface Class

public void RequestBook(ReservationRequest request)
{
 // Setup a dictionary object for passing parameters
 Dictionary<string, object> parameters = new Dictionary<string, object>();
 parameters.Add("request", request);
 parameters.Add("Writer", new ListBoxTextWriter(lstEvents));

 WorkflowApplication i =
 new WorkflowApplication(new ProcessRequest(), parameters);

 request.InstanceID = i.Id;
 _incomingRequests.Add(i.Id, i);
 i.Run();
}

public void RespondToRequest(ReservationResponse response)
{
 Guid id = response.RequestID;

 WorkflowApplication i = _outgoingRequests[id];
 try
 {
 i.ResumeBookmark("GetResponse", response);
 }
 catch (Exception e2)
 {
 AddEvent(e2.Message);
 }
}

public void AddNewRequest(ReservationRequest request)
{
 this.requestList.Dispatcher.BeginInvoke
 (new Action(() => this.requestList.Items.Add(request)));
}

The RequestBook() method is similar to the btnRequest_Click() method. It is called when an

incoming message is received by the ServiceHost and the RequestBook method of the service contract is
specified. It builds a Dictionary object to store the single input argument, creates the
WorkflowApplication, adds it to the _incomingRequests collection, and then starts the workflow.

The RespondToRequest() method is also called when a message is received by the ServiceHost. It is
called when the RespondToRequest method is specified. This happens when the other branch is sending
back a response to the original request. It gets the WorkflowApplication from the _outgoingRequests
collection and resumes the bookmark passing in the ReservationResponse class.

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

145

The AddNewRequest() method is called by the ProcessRequest workflow when a new message is
received. This is done through the InvokeMethod activity. It simply adds an entry to the RequestList
ListView control. Because this will be called on the workflow’s thread, the Dispatcher class is used to
execute the Add() method using the main window’s thread.

The complete implementation of Reservations.xaml.cs is shown in Listing 9-12.

Listing 9-12. Final Implementation of Reservations.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

using System.ServiceModel;
using System.ServiceModel.Activities;
using System.ServiceModel.Activities.Description;
using System.ServiceModel.Description;
using System.ServiceModel.Channels;
using System.Activities;
using System.Xml.Linq;
using System.Configuration;

namespace LibraryReservation
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 private ServiceHost _sh;
 private IDictionary<Guid, WorkflowApplication> _incomingRequests;
 private IDictionary<Guid, WorkflowApplication> _outgoingRequests;

 public MainWindow()
 {
 InitializeComponent();

 ApplicationInterface._app = this;

 _incomingRequests = new Dictionary<Guid, WorkflowApplication>();
 _outgoingRequests = new Dictionary<Guid, WorkflowApplication>();
 }

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

146

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 // Open the config file and get the name for this branch
 // and its network address
 Configuration config = ConfigurationManager
 .OpenExeConfiguration(ConfigurationUserLevel.None);
 AppSettingsSection app =
 (AppSettingsSection)config.GetSection("appSettings");
 string adr = app.Settings["Address"].Value;

 // Display the Branch name on the form
 lblBranch.Content = app.Settings["Branch Name"].Value;

 // Create the ServiceHost
 _sh = new ServiceHost(typeof(ClientService));

 // Add the Endpoint
 string szAddress = "http://localhost:" + adr + "/ClientService";
 System.ServiceModel.Channels.Binding bBinding = new BasicHttpBinding();
 _sh.AddServiceEndpoint(typeof(ILibraryReservation),
 bBinding, szAddress);

 // Open the ServiceHost to listen for messages
 _sh.Open();
 }

 private void Window_Unloaded(object sender, RoutedEventArgs e)
 {
 // Terminate the service host
 _sh.Close();
 }

 private void btnRequest_Click(object sender, RoutedEventArgs e)
 {
 // Setup a dictionary object for passing parameters
 Dictionary<string, object> parameters =
 new Dictionary<string, object>();
 parameters.Add("Author", txtAuthor.Text);
 parameters.Add("Title", txtTitle.Text);
 parameters.Add("ISBN", txtISBN.Text);

 WorkflowApplication i =
 new WorkflowApplication(new SendRequest(), parameters);

 _outgoingRequests.Add(i.Id, i);
 i.Run();
 }

 // Handle the Reserve button click event
 private void Reserve(object sender, RoutedEventArgs e)
 {

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

147

 // Get the instanceID from the Tag property
 FrameworkElement fe = (FrameworkElement)sender;
 Guid id = (Guid)fe.Tag;
 ResumeBookmark(id, true);
 }

 // Handle the Cancel button click event
 private void Cancel(object sender, RoutedEventArgs e)
 {
 // Get the instanceID from the Tag property
 FrameworkElement fe = (FrameworkElement)sender;
 Guid id = (Guid)fe.Tag;
 ResumeBookmark(id, false);
 }

 private void ResumeBookmark(Guid id, bool bReserved)
 {
 WorkflowApplication i = _incomingRequests[id];
 try
 {
 i.ResumeBookmark("GetResponse", bReserved);
 }
 catch (Exception e)
 {
 AddEvent(e.Message);
 }
 }

 public void RequestBook(ReservationRequest request)
 {
 // Setup a dictionary object for passing parameters
 Dictionary<string, object> parameters =
 new Dictionary<string, object>();
 parameters.Add("request", request);

 WorkflowApplication i =
 new WorkflowApplication(new ProcessRequest(), parameters);

 request.InstanceID = i.Id;
 _incomingRequests.Add(i.Id, i);
 i.Run();
 }

 public void RespondToRequest(ReservationResponse response)
 {
 Guid id = response.RequestID;
 WorkflowApplication i = _outgoingRequests[id];
 try
 {
 i.ResumeBookmark("GetResponse", response);
 }
 catch (Exception e2)

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

148

 {
 AddEvent(e2.Message);
 }
 }

 public void AddNewRequest(ReservationRequest request)
 {
 this.requestList.Dispatcher.BeginInvoke
 (new Action(() => this.requestList.Items.Add(request)));
 }

 public ListBox GetEventListBox()
 {
 return this.lstEvents;
 }

 private void AddEvent(string szText)
 {
 lstEvents.Items.Add(szText);
 }
 }
}

Running the Application
As with the solution from the last chapter, you’ll need to run multiple copies of the application; each
with its own version of the configuration file. First, press F6 to rebuild the solution and fix any compiler
issues. Create a new folder under the LibraryReservation folder called Branch. Then copy (not move) the
files highlighted in Figure 9-7 to the Branch folder.

Figure 9-7. Copying the executable files to the Branch folder

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

149

Open the LibraryReservation.exe.config file (from the Branch subfolder) and edit the contents to
match the following:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="Branch Name" value="Southwest Regional"/>
 <add key="ID" value="{CA62F4ED-FACF-4835-8468-16CAAC298F4C}"/>
 <add key="Address" value="8730"/>
 <add key="Request Address" value="8000"/>
 </appSettings>
</configuration>

n Note If you see any access denied errors, you might need to run the application with administrator privileges.
For more information, refer to the note at the end of Chapter 8.

Double-click the LibraryReservation.exe file (in the Branch folder). The application should look
like the one shown in Figure 9-8.

Figure 9-8. The initial application window

From Visual Studio, press F5 to debug the application. A similar window should display, but the
label should say Central Library. Rearrange the windows so you can see both applications at the same
time. In one of the applications, enter an Author, Title, and ISBN and then click the Send Request
button. You should see the request added to the Request List in the other application. Click the Reserve

http://

CHAPTER 9 n COMMUNICATING WITH THE HOST APPLICATION

150

button in the other application. You should see a message added to the Event Log, indicating that a
response was received. Your windows should look similar to the ones shown in Figures 9-9 and 9-10.

Figure 9-9. Sending a request from the Southwest Regional library

Figure 9-10. Processing a request by the Central Library

Try sending several requests from both windows. Also try the Cancel button and verify that the response
message in the Event Log (in the other application) says [False].

http://

C H A P T E R 1 0

■ ■ ■

151

Web Services

Workflows can be hosted in a web service, which provides an ideal way to expose workflow solutions to
non-workflow clients such as web applications. A web service receives a request, performs some
appropriate processing, and returns a response. This naturally translates to the Receive and Send
activities you used in the last two chapters. Because these activities are integrated with the Windows
Communication Foundation (WCF), you can easily create WCF services.

Creating a Workflow Service
Start Visual Studio 2010 and create a new project using the WCF Workflow Service Application template.
Enter the project name as BookInventory and the solution as Chapter10, as shown in Figure 10-1.

Figure 10-1. Creating a WCF Workflow Service Application

http://

CHAPTER 10 ■ WEB SERVICES

152

The template creates an initial workflow Sequence that contains a Receive and SendReply activity, as
shown in Figure 10-2.

Figure 10-2. The initial workflow sequence

You will first configure these activities to define the service contract that they will satisfy. Then you’ll
add the workflow processing that will take place between the Receive and SendReply activities.

The template generated this initial workflow in a file named Service1.xamlx. From the Solution
Explorer, rename this file to BookInventory.xaml. The service you will create looks up the specified
book and returns the status of each copy that the library owns.

Defining the Service Contract
In the Solution Explorer, right-click the BookInventory project and choose Add ➤ Class. Enter the class
name as BookInfo.cs. The implementation for this file is shown in Listing 10-1.

Listing 10-1. Service contract definition: BookInfo.cs

using System;
using System.Collections.Generic;
using System.Runtime.Serialization;
using System.ServiceModel;

namespace BookInventory
{
 /***/
 // Define the service contract, IBookInventory

http://

CHAPTER 10 ■ WEB SERVICES

153

 // which consists of a single method, LookupBook()
 /***/
 [ServiceContract]
 public interface IBookInventory
 {
 [OperationContract]
 BookInfoList LookupBook(BookSearch request);
 }

 /***/
 // Define the request message, BookSearch
 /***/
 [MessageContract(IsWrapped = false)]
 public class BookSearch
 {
 private String _ISBN;
 private String _Title;
 private String _Author;

 public BookSearch()
 {
 }

 public BookSearch(String title, String author, String isbn)
 {
 _Title = title;
 _Author = author;
 _ISBN = isbn;
 }

 #region Public Properties
 [MessageBodyMember]
 public String Title
 {
 get { return _Title; }
 set { _Title = value; }
 }

 [MessageBodyMember]
 public String Author
 {
 get { return _Author; }
 set { _Author = value; }
 }

 [MessageBodyMember]
 public String ISBN
 {
 get { return _ISBN; }
 set { _ISBN = value; }
 }

http://

CHAPTER 10 ■ WEB SERVICES

154

 #endregion Public Properties
 }

 /***/
 // Define the BookInfo class
 /***/
 [MessageContract(IsWrapped = false)]
 public class BookInfo
 {
 private Guid _InventoryID;
 private String _ISBN;
 private String _Title;
 private String _Author;
 private String _Status;

 public BookInfo()
 {
 }

 public BookInfo(String title, String author, String isbn,
 String status)
 {
 _Title = title;
 _Author = author;
 _ISBN = isbn;
 _Status = status;
 _InventoryID = Guid.NewGuid();
 }

 #region Public Properties
 [MessageBodyMember]
 public Guid InventoryID
 {
 get { return _InventoryID; }
 set { _InventoryID = value; }
 }

 [MessageBodyMember]
 public String Title
 {
 get { return _Title; }
 set { _Title = value; }
 }

 [MessageBodyMember]
 public String Author
 {
 get { return _Author; }
 set { _Author = value; }
 }

http://

CHAPTER 10 ■ WEB SERVICES

155

 [MessageBodyMember]
 public String ISBN
 {
 get { return _ISBN; }
 set { _ISBN = value; }
 }

 [MessageBodyMember]
 public String status
 {
 get { return _Status; }
 set { _Status = value; }
 }
 #endregion Public Properties
 }

 /***/
 // Define the response message, BookInfoList, which
 // is a list of BookInfo classes
 /***/
 [MessageContract(IsWrapped = false)]
 public class BookInfoList
 {
 private List<BookInfo> _BookList;

 public BookInfoList()
 {
 _BookList = new List<BookInfo>();
 }

 [MessageBodyMember]
 public List<BookInfo> BookList
 {
 get { return _BookList; }
 }
 }
}

The service contract, IBookInventory, contains a single method called LookupBook(). It is passed a
BookSearch class that has various properties that can be used to find the desired book, such as Author
and Title. It returns a BookInfoList class, which contains a collection of BookInfo classes. You can refer
to Chapter 8, in which I explain the use of the ServiceContract, MessageContract, and MessageBodyMember
attributes.

Press F6 to build the solution.

Configuring Receive and SendReply
Open the BookInventory.xamlx file and select the “ReceiveRequest” activity. In the Properties window,
the ServiceContract property has a default value of {http://tempuri.org/}IService. Change the
IService to IBookInventory. Enter the OperationName as LookupBook.

http://

CHAPTER 10 ■ WEB SERVICES

156

From the workflow designer, click the Variables control at the bottom left. You’ll notice that the
template created a couple of variables for you. The handle variable is used to correlate the response with
the same instance that sent the request. The data variable was set up as the data being passed in. Select
the data variable and press the Delete key to remove it. Create two new variables. For the first one, enter
the Name as search; for the Variable type, select Browse for Types. In the dialog that appears, expand the
BookInventory assembly and choose the BookSearch class (see Figure 10-3).

Figure 10-3. Selecting the BookSearch data type

For the second variable, enter the Name as result. For the Variable type property, choose Browse
for Types and then select the BookInfoList class. The variable list should look like the one shown in
Figure 10-4.

Figure 10-4. Variables defined for the workflow

http://

CHAPTER 10 ■ WEB SERVICES

157

On the workflow designer, the “ReceiveRequest” activity has a View message link for the Content
property. Click it to display the dialog that is used to define the incoming message. (You can also click
the ellipses next to the Content property in the Properties window.) The input can be defined in two
ways: a message or a collection of parameters. I will explain the parameter approach later in this chapter.
For now, make sure that the Message radio button is selected.

For the Message data property, enter search. It specifies that the incoming message should be
stored in the search variable. For the Message type, select BookInventory.BookSearch. The dialog should
look like the one shown in Figure 10-5.

Figure 10-5. Specifying the incoming message

The Properties window should look like the one shown in Figure 10-6.

http://

CHAPTER 10 ■ WEB SERVICES

158

Figure 10-6. The Receive activity Properties window

Select the “SendResponse” activity and click its View message link. Again, make sure that the
Message radio button is selected. For the Message data property, enter result; for the Message type
property, select the BookInfoList class.

Creating the PerformLookup Activity
For this project, you’ll create a custom activity to perform the “lookup.” Actually, it will simply return
some hard-coded data. In a real solution, it would probably execute a query against a database to
retrieve the requested data. From the Solution Explorer, right-click the BookInventory project and
choose Add ➤ New Item. In the Add New Item dialog, select the Code Activity template from the
Workflow category. Enter the Name as PerformLookup.cs as shown in Figure 10-7.

http://

CHAPTER 10 ■ WEB SERVICES

159

Figure 10-7. Creating a custom activity

Enter the implementation of the PerformLookup activity, as shown in Listing 10-2.

Listing 10-2. Implementation of the PerformLookup activity

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Activities;

namespace BookInventory
{
 /***/
 // This custom activity creates a BookInfoList class
 // which is a collection of BookInfo classes. It uses
 // the input parameters (BookSearch class) to "lookup"
 // the matching items. The BookInfoList class is
 // returned in the output parameter.
 /***/
 public sealed class PerformLookup : CodeActivity
 {
 public InArgument<BookSearch> Search { get; set; }
 public OutArgument<BookInfoList> BookList { get; set; }

 protected override void Execute(CodeActivityContext context)
 {

http://

CHAPTER 10 ■ WEB SERVICES

160

 string author = Search.Get(context).Author;
 string title = Search.Get(context).Title;
 string isbn = Search.Get(context).ISBN;

 BookInfoList l = new BookInfoList();

 l.BookList.Add(new BookInfo(title, author, isbn, "Available"));
 l.BookList.Add(new BookInfo(title, author, isbn, "CheckedOut"));
 l.BookList.Add(new BookInfo(title, author, isbn, "Missing"));
 l.BookList.Add(new BookInfo(title, author, isbn, "Available"));
 BookList.Set(context, l);
 }
 }
}

Press F6 to rebuild the application. Open the BookInventory.xamlx file. Notice that the custom
PerformLookup activity is now in your Toolbox (see Figure 10-8).

Figure 10-8. Toolbox with custom PerformLookup activity

Drag a PerformLookup activity between the “ReceiveRequest” and “SendResponse” activities. The
workflow should look like the one shown in Figure 10-9.

Figure 10-9. Completed service workflow

http://

CHAPTER 10 ■ WEB SERVICES

161

Select the PerformLookup activity. In the Properties window, for the BookList property enter result;
for the Search property, enter search.

Testing the Service
Press F5 to debug the service. Because this is a web service, Visual Studio automatically starts the WCF
Test Client. This is a very handy utility. It loads the web service and discovers the methods that are
provided. They are listed in the left pane, as shown in Figure 10-10.

Figure 10-10. The initial WCF Test Client window

Double-click the LookupBook() method and the upper portion of the right pane will provide a place
for you to enter the contents of the incoming message. This is able to handle even complex messages
containing collections of classes and properties. Enter an author, ISBN number, and title; then click the
Invoke button. You should see results similar to the ones shown in Figure 10-11.

http://

CHAPTER 10 ■ WEB SERVICES

162

Figure10-11. WCF Test Client showing service results

The service returned four BookInfo classes. In Figure 10-11, the third record is expanded to show an
example of the data returned. This particular item has a status of Missing.

■ Caution If the .xamlx file is the current file in Visual Studio when you press F5, the WCF Test Client is
launched, as demonstrated here. However, if you have some other file as the current file, when you press F5, you
will probably see a web page displayed that shows a directory listing of the current folder. If that happens, just
close the web page, which will stop the debugger. Then select the .xamlx file and press F5 again.

Using Parameters
In the previous project, the input into the web service was specified as a class with a MessageContract
attribute. This is the typical way of calling WCF services. However, instead of creating a single message
class that contains all the input data, you can pass them as individual parameters to the workflow

http://

CHAPTER 10 ■ WEB SERVICES

163

services. To demonstrate this, you’ll create a second identical service that uses parameters instead of
messages.

Creating a Second Service
From the Solution Explorer, right-click the BookInventory project and choose Add ➤ New Item. In the
Add New Item dialog, select the WCF Workflow Service template, which is found in the Workflow
category, as shown in Figure 10-12. For the Name, enter BookInventory2.xamlx.

Figure 10-12. Creating a WCF Workflow Service

In the workflow designer, click the Variables control at the bottom left. The same two initial
variables are created as they were with the first service. Delete the data variable and create a new
variable named result. For the Variable type, select ArrayOf<T>. A dialog will appear to select the type
represented by <T>. In the drop-down list, select Browse for Types; then select the BookInfo class from
the BookInventory assembly. Add three more String variables named author, title, and isbn. The
variable list should look like the one shown in Figure 10-13.

http://

CHAPTER 10 ■ WEB SERVICES

164

Figure 10-13. The variables list

In the Properties window, for the ServiceContract property, replace the IService contract with
Book. For the OperationName, enter LookupBook2.

■ Caution In the first service you created, the CanCreateInstance property was set to true by the template.
With the second one, however, it is set to false. Make sure that you set it to true for this one as well.

Select the “ReceiveRequest” activity and click the Content link. This time, select the Parameters
radio button. Parameters are set up similar to variables and arguments. Click the Add new parameter
link. Enter the Name as Author and set the Assign To property to author. Add another parameter with the
Name Title and Assign To as title. Add a third parameter named ISBN and enter the Assign To as isbn.
The completed list should look like the one shown in Figure 10-14.

http://

CHAPTER 10 ■ WEB SERVICES

165

Figure 10-14. The ReceiveRequest parameter list

Click the Content link of the “SendResponse” activity. Select the Parameters radio button and click
the Add new parameter link. Enter the Name as Result; for Type, select BookInventory.BookInfo[] from the
drop-down list. (This type is in the drop-down list because you just used it to define the result variable.)
The dialog should look like the one shown in Figure 10-15.

Figure 10-15. The SendResponse parameter list

http://

CHAPTER 10 ■ WEB SERVICES

166

Creating a Modified PerformLookup Activity
The custom PerformLookup activity that you created for the first service takes a BookSearch class as the
input argument and returns a BookInfoList class. Now you’ll need to create a different custom activity
that uses the separate parameters. From the Solution Explorer, right-click the BookInventory project and
select Add ➤ New Item. Select the Code Activity template and enter the Name as PerformLookup2.cs. The
implementation for this activity is shown in Listing 10-3.

Listing 10-3. Implementation of PerformLookup2

using System;
using System.Collections.Generic;
using System.Activities;

namespace BookInventory
{
 /***/
 // This custom activity creates a BookInfo array and
 // uses the input parameters to "lookup" the matching
 // items. The BookInfo array is returned in the output
 // parameter.
 /***/
 public sealed class PerformLookup2 : CodeActivity
 {
 public InArgument<String> Title { get; set; }
 public InArgument<String> Author { get; set; }
 public InArgument<String> ISBN { get; set; }
 public OutArgument<BookInfo[]> BookList { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 string author = Author.Get(context);
 string title = Title.Get(context);
 string isbn = ISBN.Get(context);

 BookInfo[] l = new BookInfo[4];

 l[0] = new BookInfo(title, author, isbn, "Available");
 l[1] = new BookInfo(title, author, isbn, "CheckedOut");
 l[2] = new BookInfo(title, author, isbn, "Missing");
 l[3] = new BookInfo(title, author, isbn, "Available");
 BookList.Set(context, l);
 }
 }
}

This code works just like the first one, except that the input arguments are passed individually, and
the results are returned in an array instead of a class. Press F6 to rebuild the solution.

Select the BookInventory2.xamlx file and drag a PerformLookup2 activity from the Toolbox between
the “ReceiveRequest” and “SendResponse” activities. In the Properties window, enter the appropriate
values, as shown in Figure 10-16.

http://

CHAPTER 10 ■ WEB SERVICES

167

Figure 10-16. Properties window of the PerformLookup2 activity

Testing the Service
Make sure that the BookInventory2.xamlx file is the current file in Visual Studio and press F5 to debug.
The WCF Test Client should start just like with the first service. Double-click the LookupBook2() method,
enter the request details, and click the Invoke button. Your results should look similar to what is shown
in Figure 10-17.

Figure 10-17. WCF Test Client

http://

CHAPTER 10 ■ WEB SERVICES

168

The format is slightly different from the first service, but it basically functions the same way. In the
figure, I expanded the second record to show that this particular copy is checked out. For the second
service, you did not create a service contract; you just defined the parameters that were passed in and
returned by the service. The service contract is automatically generated.

■ Caution When defining the Receive/SendReply pair, you have the option to use either messages or
parameters. However, you cannot mix the two options. If you use parameters for the Receive activity, you cannot
use a message for the SendReply activity. Also, when using parameters, the types must not have the
MessageContract attribute. If you violate either of these rules, you will get a rather lengthy runtime exception that
basically tells you what I just said.

Creating a Client Workflow
Now you’ll create client workflow that will invoke the web service. From the Solution Explorer, right-
click the Chapter10 solution and choose Add ➤ New Project. Select the Workflow Console Application
template; for the project name, enter BookLookup, as shown in Figure 10-18.

Figure 10-18. Adding a workflow console application

http://

CHAPTER 10 ■ WEB SERVICES

169

From the Solution Explorer, right-click the BookLookup project and choose Add Service Reference.
The dialog shown in Figure 10-19 will appear.

Figure 10-19. Finding the available services

Click the Discover drop-down link and choose Services in Solution. The dialog shown in
Figure 10-20 will list the two services you created in the BookInventory project.

Figure 10-20. Selecting the desired service

http://

CHAPTER 10 ■ WEB SERVICES

170

You can expand these services to see the methods provided in each. Select the second one
(BookInventory2.xamlx) and click OK. After a few seconds, you should see the dialog shown in
Figure 10-21.

Figure 10-21. Operation completed dialog

This lets you know that a reference to the service has been added to the project. Press F6 to rebuild
the solution. The Window1.xaml file should be displayed; if not, open it. The top portion of the Toolbox
should look like Figure 10-22.

Figure 10-22. The updated Toolbox, with the service wrapper

In the Toolbox, the BookLookup.ServiceReference1.Activities namespace contains a custom
activity for each method in the service. In this case, there is only one: LookupBook2. From the Solution
Explorer, right-click the BookLookup project and choose Set as Startup Project.

Defining the Workflow
Drag a LookupBook2 activity to the workflow. Now you’ll need to set up the arguments for passing the
search criteria into the workflow and to return the results. Click the Arguments control. Add three String
input arguments named Title, Author, and ISBN. Add an output argument named BookList. For the
Argument type, select Array Of[T]. In the dialog that appears, select Browse for Types and then select the
BookInfo class from the BookLookup.ServiceReference1.BookInventory assembly. The argument list
should look like the one shown in Figure 10-23.

http://

CHAPTER 10 ■ WEB SERVICES

171

Figure 10-23. The workflow arguments

Select the “LookupBook2” activity; in the Properties window, enter the property values as shown in
Figure 10-24.

Figure 10-24. LookupBook2 properties

Implementing the Host Application
Open the Program.cs file in the LookupBook project. The implementation for this file is shown in Listing 10-4.

Listing 10-4. Implementation of Program.cs

using System;
using System.Linq;
using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;
using BookLookup.ServiceReference1;

namespace BookLookup
{
 class Program
 {

http://

CHAPTER 10 ■ WEB SERVICES

172

 static void Main(string[] args)
 {
 // create dictionary with input arguments for the workflow
 IDictionary<string, object> input = new Dictionary<string, object>
 {
 { "Author" , "Margaret Mitchell" },
 { "Title" , "Gone with the Wind" },
 { "ISBN" , "1234567890123" }
 };

 // execute the workflow
 IDictionary<string, object> output =
 WorkflowInvoker.Invoke(new Workflow1(), input);

 BookInfo[] l = output["BookList"] as BookInfo[];
 if (l != null)
 {
 foreach (BookInfo i in l)
 {
 Console.WriteLine("{0}: {1}, {2}",
 i.Title, i.status, i.InventoryID);
 }
 }
 else
 Console.WriteLine("No items were found");

 Console.WriteLine("Press ENTER to exit");
 Console.ReadLine();
 }
 }
}

This code passes in the Author, Title, and ISBN arguments through a Dictionary object (as in
Chapter 4). The workflow returns an array of BookInfo objects. This code displays the contents of this
array.

Running the Application
Press F5 to run the application. Your results should be similar to these:

Gone with the Wind: Available, 58ab51cd-2796-4b32-a7be-21170f1e922b
Gone with the Wind: CheckedOut, 64406a94-a6ef-45a7-8373-066f5f991134
Gone with the Wind: Missing, a37186ec-faa7-4e6b-8226-484f17075998
Gone with the Wind: Available, e34d39e5-aafa-4fd3-8000-664809b7e98d
Press ENTER to exit

http://

CHAPTER 10 ■ WEB SERVICES

173

Using Pick
WF 4.0 provides an activity called Pick, which has multiple branches (called PickBranch). Each branch
contains a Trigger property and an Action property. Each of them executes an activity (or a sequence of
activities). When the Pick activity is executed, all the Trigger activities are started. As soon as one of
these activities completes, its corresponding Action is executed, and all other branches are cancelled.

This is useful for determining the appropriate action based on some event. For example, you could
use a Receive activity for the Trigger. Each branch could have a Receive activity that is waiting for a
different message. Based on which message is received, the corresponding action is taken. For this
project, you will use a Pick activity to provide a timeout feature to your workflow.

■ Tip If you are familiar with the previous versions of workflow, this is roughly equivalent to the Listen activity.

Open the Window1.xaml file, right-click the “LookupBook2” activity, and select Cut. Drag a Pick
activity onto the workflow. Right-click the Trigger section of the first branch and choose Paste. Drag a
Delay activity to the Trigger section of the second branch. Set its Duration property to
TimeSpan.FromSeconds(5). Drag a WriteLine activity to each of the Action sections and set their Text
properties to “The service completed” and “The service timed-out”. The workflow should look like the
one shown in Figure 10-25.

Figure 10-25. Workflow with timeout logic

http://

CHAPTER 10 ■ WEB SERVICES

174

Press F5 to run the application. The results should be identical to the last time you ran it except for
the added message (“The service completed”). To test the timeout feature, open the
BookInventory2.xamlx file. Drag a Delay activity before the “SendResponse” activity and set its Duration
property to TimeSpan.FromSeconds(7). Press F5 to run the application. This time, after a five-second
delay, the results should look like these:

The service timed-out
No items were found
Press ENTER to exit

Review
Workflows are often distributed across multiple applications and even different servers, so
communication is an important part of workflow design. In the sample project, for example, different
library branches communicate with each other to request an item to be transferred. The Send and
Receive activities (and their counterparts, ReceiveReply and SendReply) provide a convenient way to
send and receive messages. These activities rely on WCF to transmit the messages and therefore can use
a number of protocols such as HTTP or TCP. However, the host application can also receive WCF
messages directly as was demonstrated in Chapter 9.

Although workflow activities do not have a user interface, they often need to communicate with a
host application, either to update the application or to request input from the user. In this section, you
used a Bookmark to pause a workflow while waiting for user input. The application can easily resume
the workflow from where it left off after the data has been provided. You have used the WriteLine activity
since Chapter 1 to write text to the console. In Chapter 9, you learned how to use this same activity to
write to a list box on the application.

The use of web services is becoming an increasingly popular design approach. You can either start
with a service contract or simply define the input and output parameters using the workflow designer.
Workflow can be used both to create services and to consume them. Methods provided by a web service
become a custom activity that you can drop onto your workflow.

http://

PART 4

n n n

Workflow Extensions

Using Persistence, Tracking and Transactions

In this section you’ll explore some of the standard Workflow extensions used for persisting

and tracking your workflow activities. You’ll also write some custom extensions and

discover the benefit of using extensions in simplifying your solutions. WF 4.0 also allows you

to use database transactions across activities and even applications to ensure your

application data is updated consistently.

All of these projects will require a SQL Server database. Just about any version will work

including the Microsoft Data Engine (MSDE 2000). You can download a SQL.zip file from

www.apress.com that contains a folder for each of these chapters. There are database scripts

inside these folders that you will use to create the database schema needed by the

applications. The instructions in each chapter will explain how to use this scripts.

The sample projects will build a solution to enter and manage sales leads. Leads can be

entered and later assigned to a sales agent. The agent can then update the lead when the

follow-up has been completed. Each chapter will add more features to the solution and

demonstrate new WF concepts in the process.

http://

C H A P T E R 1 1

■ ■ ■

177

SQL Persistence

In this chapter, you’ll build a simple WPF application that is used to enter sales leads. The leads will be
persisted to a SQL database, and any existing leads will be loaded from the database when the
application is restarted.

Creating the Application
Start by creating a Windows Presentation Foundation (WPF) project as shown in Figure 11-1. For the
project name, enter LeadGenerator, and for the solution enter Chapter11.

Figure 11-1. Creating a WPF application project

http://

CHAPTER 11 ■ SQL PERSISTENCE

178

Renaming the Window
The template will generate a window form named MainWindow.xaml. Rename this file to AddLead.xaml.
Open the App.xaml file and change the StartupUri attribute as follows:

StartupUri="AddLead.xaml"

Then open the AddLead.xaml.cs file and modify the class as follows (the modified lines are in bold):

namespace LeadGenerator
{
 /// <summary>
 /// Interaction logic for AddLead.xaml
 /// </summary>
 public partial class AddLead : Window
 {
 public AddLead()
 {
 InitializeComponent();
 }
 }
}

In the Solution Explorer, right-click the LeadGenerator project and choose Add Reference. From the

.NET tab, add the following references:

• System.Activities

• System.Activities.DurableInstancing

• System.Configuration

• System.Data.Linq

• System.Runtime.DurableInstancing

• System.ServiceModel

• System.ServiceModel.Activities

Defining the Window Form
Open the AddLead.xaml file. Click the XAML tab and enter the code shown in Listing 11-1.

Listing 11-1. Implementation of AddLead.xaml

<Window x:Class="LeadGenerator.AddLead"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

http://

CHAPTER 11 ■ SQL PERSISTENCE

179

 Title="Lead Generator" Height="518" Width="547"
 Loaded="Window_Loaded">
 <Grid MinWidth="300" MinHeight="100" Width="514">
 <Label Height="30" Margin="5,10,10,10" Name="lblName"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="90"
 HorizontalContentAlignment="Right">Contact Name:</Label>
 <Label Height="30" Margin="270,10,10,10" Name="lblPhone"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="90"
 HorizontalContentAlignment="Right">Phone Number:</Label>
 <Label Height="30" Margin="5,40,10,10" Name="lblInterest"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="90"
 HorizontalContentAlignment="Right">Interested in:</Label>
 <Label Height="30" Margin="5,70,10,10" Name="lblNotes"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="90"
 HorizontalContentAlignment="Right" Content="Notes:"></Label>
 <Label Height="30" Margin="430,70,10,10" Name="lblRating"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="20"
 HorizontalContentAlignment="Right" Content="$"></Label>
 <TextBox Height="25" Margin="100,10,10,10" Name="txtName"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="170" />
 <TextBox Height="25" Margin="365,10,10,10" Name="txtPhone"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="100" />
 <TextBox Height="25" Margin="100,40,10,10" Name="txtInterest"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="300" />
 <TextBox Height="45" Margin="100,70,10,10" Name="txtNotes"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="300"
 VerticalScrollBarVisibility="Auto" AcceptsReturn="True" />
 <TextBox Height="25" Margin="450,70,10,10" Name="txtRating"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="30" />
 <Button Height="23" Margin="410,40,10,10" Name="btnLead"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="70"
 Click="btnAddLead_Click">Add Lead</Button>

 <ListView x:Name="lstLeads" Margin="10,125,10,10" Height="145"
 VerticalAlignment="Top" ItemsSource="{Binding}"
 HorizontalContentAlignment="Center"
 SelectionChanged="lstLeads_SelectionChanged" >
 <ListView.View>
 <GridView>
 <GridViewColumn Header="Current Leads" Width="480">
 <GridViewColumn.CellTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding ContactName}"
 Width="110"/>
 <TextBlock Text="{Binding ContactPhone}"
 Width="70"/>
 <TextBlock Text="{Binding Interests}"
 Width="130"/>
 <TextBlock Text="{Binding Status}"
 Width="70"/>

http://

CHAPTER 11 ■ SQL PERSISTENCE

180

 <TextBlock Text="{Binding AssignedTo}"
 Width="100"/>
 </StackPanel>
 </DataTemplate>
 </GridViewColumn.CellTemplate>
 </GridViewColumn>
 </GridView>
 </ListView.View>
 </ListView>
 <Label Height="37" HorizontalAlignment="Stretch" Margin="10,272,5,10"
 Name="lblSelectedNotes" VerticalAlignment="Top" Visibility="Hidden" />

 <Label Height="30" Margin="10,0,0,140" Name="lblAgent"
 VerticalAlignment="Bottom" HorizontalAlignment="Left" Width="40"
 HorizontalContentAlignment="Left" Visibility="Hidden">Agent:</Label>
 <TextBox Height="25" Margin="60,0,0,140" Name="txtAgent"
 VerticalAlignment="Bottom" HorizontalAlignment="Left" Width="190"
 Visibility="Hidden" />
 <Button Height="25" Margin="270,0,0,140" Name="btnAssign"
 VerticalAlignment="Bottom" HorizontalAlignment="Left" Width="90"
 Click="btnAssign_Click" Visibility="Hidden">Assign Agent</Button>

 <Label Height="27" HorizontalAlignment="Left" Margin="10,0,0,110"
 Name="lblEvent" VerticalAlignment="Bottom" Width="76">Event Log</Label>
 <ListBox Margin="12,0,5,12" Name="lstEvents" Height="100"
 VerticalAlignment="Bottom" FontStretch="Condensed" FontSize="10" />
 </Grid>
</Window>

Then select the Design tab. The form should look like the one shown in Figure 11-2.

http://

CHAPTER 11 ■ SQL PERSISTENCE

181

Figure 11-2. Design of the window form

Implementing a TextWriter
In Chapter 9, you implemented a ListBoxTextWriter class that was used by the WriteLine activities to
display messages in the application. You will use the same approach in this project. First, you’ll need a
static class to provide access into the application. In the Solution Explorer, right-click the LeadGenerator
project and choose Add ➤ Class. Enter the class name as ApplicationInterface.cs. The implementation
for this class is shown in Listing 11-2.

■ Note I won’t elaborate here about the ApplicationInterface or ListBoxTextWriter classes. You might want
to refer to Chapter 9 if you have any questions.

http://

CHAPTER 11 ■ SQL PERSISTENCE

182

Listing 11-2. Initial Implementation of the ApplicationInterface Class

using System;
using System.Windows.Controls;
using System.Activities;

namespace LeadGenerator
{
 public static class ApplicationInterface
 {
 public static AddLead _app { get; set; }

 public static void AddEvent(String status)
 {
 if (_app != null)
 {
 new ListBoxTextWriter(_app.GetEventListBox()).WriteLine(status);
 }
 }
 }
}

Open the AddLead.xaml.cs file and add the following namespaces:

using System.Activities;
using System.Activities.DurableInstancing;
using System.Runtime.Persistence;
using System.Data.Linq;
using System.Configuration;

Then add the following code to the constructor:

ApplicationInterface._app = this;

Add the following methods to the AddLead.xaml.cs class:

// Add a line of text to the Event Log
private void AddEvent(string szText)
{
 lstEvents.Items.Add(szText);
}

public ListBox GetEventListBox()
{
 return this.lstEvents;
}

In the Solution Explorer, right-click the LeadGenerator project and choose Add ➤ Class. For the

class name, enter ListBoxTextWriter.cs. The implementation of this class is shown in Listing 11-3.

http://

CHAPTER 11 ■ SQL PERSISTENCE

183

■ Tip The implementation of the ListBoxTextWriter class is identical to the one you implemented in Chapter 9.
You can copy the ListBoxTextWriter.cs file from the Chapter09 folder to the Chapter11 folder. From the
Solution Explorer, right-click the LeadGenerator project and choose Add ➤ Existing Item and select this file. You
will need to change the namespace from LibraryReservation to LeadGenerator.

Listing 11-3. Implementation of ListBoxTextWriter

using System;
using System.Text;
using System.IO;
using System.Windows.Controls;

namespace LeadGenerator
{
 public class ListBoxTextWriter : TextWriter
 {
 const string textClosed = "This TextWriter must be opened before use";

 private Encoding _encoding;
 private bool _isOpen = false;
 private ListBox _listBox;

 public ListBoxTextWriter()
 {
 // Get the static list box
 _listBox = ApplicationInterface._app.GetEventListBox();
 if (_listBox != null)
 _isOpen = true;
 }

 public ListBoxTextWriter(ListBox listBox)
 {
 this._listBox = listBox;
 this._isOpen = true;
 }

 public override Encoding Encoding
 {
 get
 {
 if (_encoding == null)
 {
 _encoding = new UnicodeEncoding(false, false);
 }
 return _encoding;
 }
 }

http://

CHAPTER 11 ■ SQL PERSISTENCE

184

 public override void Close()
 {
 this.Dispose(true);
 }

 protected override void Dispose(bool disposing)
 {
 this._isOpen = false;
 base.Dispose(disposing);
 }

 public override void Write(char value)
 {
 if (!this._isOpen)
 throw new ApplicationException(textClosed); ;

 this._listBox.Dispatcher.BeginInvoke
 (new Action(() => this._listBox.Items.Add(value.ToString())));
 }

 public override void Write(string value)
 {
 if (!this._isOpen)
 throw new ApplicationException(textClosed); ;

 if (value != null)
 this._listBox.Dispatcher.BeginInvoke
 (new Action(() => this._listBox.Items.Add(value)));
 }

 public override void Write(char[] buffer, int index, int count)
 {
 String toAdd = "";

 if (!this._isOpen)
 throw new ApplicationException(textClosed); ;

 if (buffer == null || index < 0 || count < 0)
 throw new ArgumentOutOfRangeException("buffer");

 if ((buffer.Length - index) < count)
 throw new ArgumentException("The buffer is too small");

 for (int i = 0; i < count; i++)
 toAdd += buffer[i];

 this._listBox.Dispatcher.BeginInvoke
 (new Action(() => this._listBox.Items.Add(toAdd)));
 }
 }
}

http://

CHAPTER 11 ■ SQL PERSISTENCE

185

Setting Up the Database
If you haven’t already, download the SQL.zip file, which can be found on this book’s page at
http://www.apress.com. Unzip it to your local disk. This file contains a folder for each chapter with the
files you’ll need to configure the database.

Creating a Database
Create a database named Chapter11. You can use whatever SQL tools you’re familiar with or you can use
Visual Studio. To use Visual Studio, in the Server Explorer, right-click Data Connections and choose
Create New SQL Server Database. The dialog shown in Figure 11-3 will display.

Figure 11-3. Creating a new database

Enter localhost for the server name (or whatever is appropriate for your environment) and
Chapter11 for the database name, and then click OK.

Installing the Schema
Once you have a database created, you’ll need to create the tables and stored procedures used by the
persistence service. To do this, you’ll execute the scripts provided in the SQL.zip file. From the File
menu, choose Open ➤ File as shown in Figure 11-4.

http://

CHAPTER 11 ■ SQL PERSISTENCE

186

Figure 11-4. Opening the database script

Navigate to the Chapter11Data\Create Scripts folder where you have downloaded and unzipped the
SQL.zip file and open the SqlWorkflowInstanceStoreSchema.sql file. Then connect to the database
by right-clicking anywhere on this file and choosing Connection ➤ Connect as shown in Figure 11-5.

Figure 11-5. Connecting to the database

http://

CHAPTER 11 ■ SQL PERSISTENCE

187

The dialog shown in Figure 11-6 will be displayed. Enter the appropriate information to connect to
the database that you just created.

Figure 11-6. Entering your credentials

After you have connected, make sure you change the database to Chapter11 using the dropdown
near the top of the page (it will probably default to the master database, depending on your
permissions). Finally, execute this script by right-clicking anywhere on the file and choosing Execute
SQL as shown in Figure 11-7.

Figure 11-7. Executing the script

http://

CHAPTER 11 ■ SQL PERSISTENCE

188

Repeat this process to run the SqlWorkflowInstanceStoreLogic.sql script.

■ Caution It’s important that you run these scripts in this order. If you run the logic script first, it will fail because
the tables don’t exist yet.

In the same way, run the Lead.sql script to create the Lead table, which is used by the application.

Creating the LINQ to SQL Classes

LINQ to SQL

To access the Lead table, you’ll use LINQ to SQL, which is a relatively new technology that was introduced
by Microsoft with C# version 3.0. In fact, all the database work for the remainder of this book will use LINQ
instead of the more traditional approach of datasets and stored procedures.

If this is a bit foreign to you, you might want to read Pro LINQ in C# 2008, by Joseph C. Rattz, Jr. This book
does an excellent job of introducing the world of LINQ and provides a thorough review of the technology.
This is not necessary, however, and I’ll explain what you’ll need to know to work through these projects. I
think you’ll find it very easy to use.

Now you’ll need to provide the LINQ classes that will allow you to access this table. Right-click the

LeadGenerator project and choose Add ➤ New Item. In the Add New Item dialog (see Figure 11-8), select
the LINQ to SQL Classes template, which can be found in the Data category. Enter LeadData.dbml for
the file name and click Add.

http://

CHAPTER 11 ■ SQL PERSISTENCE

189

Figure 11-8. Adding the LINQ to SQL classes

The Object Relational Designer (O/R Designer) will display. In the Server Explorer, expand the
localhost.Chapter11.dbo data connection and then expand the Tables node. This will list the existing
tables in the Chapter11 database. In addition to the Lead table, there are several tables used by the
standard SQLWorkflowInstanceStore, which will be explained later in this chapter. You can expand the
Lead table to see the columns included (see Figure 11-9).

http://

CHAPTER 11 ■ SQL PERSISTENCE

190

Figure 11-9. Enumerating the tables in the Chapter11 database

Drag the Lead table to the O/R Designer. The designer should look like the one shown in
Figure 11-10.

Figure 11-10. Object Relational Designer with the Lead table included

The O/R Designer generates a number of files. You can see them listed in the Solution Explorer (see
Figure 11-11).

http://

CHAPTER 11 ■ SQL PERSISTENCE

191

Figure 11-11. Files generated by the O/R Designer

In particular, you might want to look at the LeadData.designer.cs class, which contains a class
derived from DataContext called LeadDataDataContext. You will use this class to connect to the database
and also to commit your updates. This file also contains a class for each table with the same name as the
table. For this project, there is only one class, named Lead. This class contains members for each of the
columns in the Lead table. If you look at the code, you’ll find that there is a lot of extra “stuff” that LINQ
uses to map the class to the table and to provide extensions for you to modify the LINQ functionality.
You will not need to modify this file; the default implementation works just fine for our purposes.

Designing the Workflow
You will need two custom activities for this workflow that are similar to the activities you implemented
in Chapter 9. In the Solution Explorer, right-click the LeadGenerator project; choose Add ➤ New Folder;
and enter the folder name as Activities.

Custom CreateLead Activity
The CreateLead activity will take several input arguments and create a Lead class, which is returned as an
output argument. This is just like you did with the CreateReservation or CreateResponse activities in
Chapter 8. CreateLead, however, will also insert a record into the Lead table. The connection string that it
will use will be passed in as another input argument.

From the Solution Explorer, right-click the Activities folder and choose Add ➤ New Item. Select the
Code Activity template from the Workflow category. Enter the name as CreateLead.cs. The
implementation is shown in Listing 11-4.

http://

CHAPTER 11 ■ SQL PERSISTENCE

192

Listing 11-4. Implementation of the CreateLead Activity

using System;
using System.Activities;

namespace LeadGenerator
{
 /***/
 // This custom activity creates a Lead class using
 // the input parameters (ContactName, ContactPhone,
 // Interests and Notes). A Lead record is inserted
 // into the database and then this is returned in
 // the Lead output parameter.
 /***/
 public sealed class CreateLead : CodeActivity
 {
 public InArgument<string> ContactName { get; set; }
 public InArgument<string> ContactPhone { get; set; }
 public InArgument<string> Interests { get; set; }
 public InArgument<string> Notes { get; set; }
 public InArgument<string> ConnectionString { get; set; }
 public OutArgument<Lead> Lead { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 // Create a Lead class and populate it with the input arguments
 Lead l = new Lead();
 l.ContactName = ContactName.Get(context);
 l.ContactPhone = ContactPhone.Get(context);
 l.Interests = Interests.Get(context);
 l.Comments = Notes.Get(context);
 l.WorkflowID = context.WorkflowInstanceId;
 l.Status = "Open";

 // Insert a record into the Lead table
 LeadDataDataContext dc =
 new LeadDataDataContext(ConnectionString.Get(context));
 dc.Leads.InsertOnSubmit(l);
 dc.SubmitChanges();

 // Store the request in the OutArgument
 Lead.Set(context, l);
 }
 }
}

The Execute() method creates a Lead class and sets its properties using the input arguments. It then

creates a LeadDataDataContext class, which was generated by the O/R Designer. The connection string is
passed in to the constructor. The instance of the Lead class is provided to the data context class using the
InsertOnSubmit() method. Finally, the SubmitChanges() method is called, which will cause the record to
be inserted into the database.

http://

CHAPTER 11 ■ SQL PERSISTENCE

193

Custom WaitForInput Activity
The WaitForInput activity is identical to the one you implemented in Chapter 9. You can copy this file
from the Chapter09\LibraryReservation folder to the Chapter11\LeadGenerator\Activities folder. Then
from the Solution Explorer, right-click the Activities folder and choose Add, Existing Item. Navigate to
the Activities folder and select the WaitForInput.cs file. You will need to change the namespace from
LibraryReservation to LeadGenerator. The complete implementation is shown in Listing 11-5.

Listing 11-5. Implementation of the WaitForInput Activity

using System;
using System.Activities;

namespace LeadGenerator
{
 public sealed class WaitForInput<T> : NativeActivity<T>
 {
 public WaitForInput()
 : base()
 {
 }

 public string BookmarkName { get; set; }
 public OutArgument<T> Input { get; set; }

 protected override void Execute(ActivityExecutionContext context)
 {
 context.CreateNamedBookmark(BookmarkName,
 new BookmarkCallback(this.Continue));
 }

 void Continue(ActivityExecutionContext context, Bookmark bookmark,
 object obj)
 {
 Input.Set(context, (T)obj);
 }

 protected override bool CanInduceIdle { get { return true; } }
 }
}

Defining the Workflow Activities
Now you’re ready to define the actual workflow. From the Solution Explorer, right-click the
LeadGenerator project and choose Add ➤ Class. For the class name, enter LeadGeneratorWF.cs. The
implementation is shown in Listing 11-6.

http://

CHAPTER 11 ■ SQL PERSISTENCE

194

Listing 11-6. Implementation of LeadGeneratorWF.cs

using System;
using System.Activities;
using System.Activities.Statements;
using System.IO;

namespace LeadGenerator
{
 /***/
 // This file contains the definition of the EnterLead
 // workflow
 /***/
 public sealed class EnterLead : Activity
 {
 // Define the input and output arguments
 public InArgument<string> ContactName { get; set; }
 public InArgument<string> ContactPhone { get; set; }
 public InArgument<string> Interests { get; set; }
 public InArgument<string> Notes { get; set; }
 public InArgument<string> ConnectionString { get; set; }
 public InArgument<int> Rating { get; set; }
 public InArgument<TextWriter> Writer { get; set; }

 public EnterLead()
 {
 // Define the variables used by this workflow
 Variable<Lead> lead = new Variable<Lead> { Name = "lead" };

 // Define the SendRequest workflow
 this.Implementation = () => new Sequence
 {
 DisplayName = "EnterLead",
 Variables = { lead },
 Activities =
 {
 new CreateLead
 {
 ContactName = new InArgument<string>
 (env => ContactName.Get(env)),
 ContactPhone = new InArgument<string>
 (env => ContactPhone.Get(env)),
 Interests = new InArgument<string>
 (env => Interests.Get(env)),
 Notes = new InArgument<string>(env => Notes.Get(env)),
 ConnectionString = new InArgument<string>
 (env => ConnectionString.Get(env)),
 Lead = new OutArgument<Lead>(env => lead.Get(env)),
 },
 new WriteLine
 {

http://

CHAPTER 11 ■ SQL PERSISTENCE

195

 Text = new InArgument<string>
 (env => "Lead received [" + Rating.Get(env).ToString()
 + "]; waiting for assignment"),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 },
 new InvokeMethod
 {
 TargetType = typeof(ApplicationInterface),
 MethodName = "NewLead",
 Parameters =
 {
 new InArgument<Lead>(env => lead.Get(env))
 }
 },
 new WaitForInput<Lead>
 {
 BookmarkName = "GetAssignment",
 Input = new OutArgument<Lead>(env => lead.Get(env))
 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Lead assigned [" + Rating.Get(env).ToString()
 + "] to " + lead.Get(env).AssignedTo),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 }
 }
 };
 }
 }
}

The EnterLead workflow takes a number of input arguments that define the sales lead including

contact info, interests, and notes. It also includes a rating that is a subjective evaluation of the potential
revenue from this lead. The first activity, CreateLead, takes these arguments and creates a Lead class. It
also inserts a record into the database. The WriteLine activity acknowledges that the Lead has been
created. The InvokeMethod activity uses the static ApplicationInterface class to call into the application.
It calls the NewLead() method, which will add an item to the ListView control. The WaitForInput activity
creates a bookmark and waits for the application to resume the workflow. The final WriteLine activity
acknowledges that the lead has been assigned to an agent.

Implementing the Application
Now you’ll implement the application. This will be very similar to the application you created in
Chapter 9.

http://

CHAPTER 11 ■ SQL PERSISTENCE

196

Application Configuration File
Visual Studio automatically created an app.config file that contains the connection string. Open the
app.config file and change the Name attribute to LeadGenerator. The file should look like this (the
modified line is shown in bold):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 </configSections>
 <connectionStrings>
 <add name="LeadGenerator"
 connectionString=
 "Data Source=localhost;Initial Catalog=Chapter11;Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
</configuration>

Open the AddLead.xaml.cs file and add the following class member, which will be used to hold the

connection string:

private string _connectionString = "";

Add the following method to handle the Loaded event. This code reads the app.config file and

obtains the connection string:

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 // Open the config file and get the connection string
 Configuration config =
 ConfigurationManager.OpenExeConfiguration
 (ConfigurationUserLevel.None);
 ConnectionStringsSection css =
 (ConnectionStringsSection)config.GetSection("connectionStrings");
 _connectionString =
 css.ConnectionStrings["LeadGenerator"].ConnectionString;
}

Configuring the Persistence Provider Factory
In the AddLead.xaml.cs file, add the following class member. This is a reference to the InstanceStore
class that will be used to persist and load the workflow instances:

private InstanceStore _instanceStore;

Then add the following code to the Loaded event handler; it configures the store:

_instanceStore = new SqlWorkflowInstanceStore(_connectionString);
InstanceView view = _instanceStore.Execute
 (_instanceStore.CreateInstanceHandle(),

http://

CHAPTER 11 ■ SQL PERSISTENCE

197

 new CreateWorkflowOwnerCommand(),
 TimeSpan.FromSeconds(30));
_instanceStore.DefaultInstanceOwner = view.InstanceOwner;

InstanceStore is an abstract class from which all persistence providers are derived. In this project,
you will use the SqlWorkflowInstanceStore class, which uses a SQL Server database. An instance of the
concrete class (SqlWorkflowInstanceStore) is created, passing the connection string in the constructor.
The parameters to the Execute() method are a handle (provided by InstanceStore), a command, and a
timeout value. It returns an InstanceView class, which is roughly analogous to a connection handle.

Creating Leads
To create a new lead, the user will fill in the fields on the form and then click the Add Lead button. Add a
method to implement the event handler when the Add Lead button is clicked using the code shown in
Listing 11-7.

Listing 11-7. Implementation of the btnAddLead_Click Event Handler

private void btnAddLead_Click(object sender, RoutedEventArgs e)
{
 // Setup a dictionary object for passing parameters
 Dictionary<string, object> parameters =
 new Dictionary<string, object>();
 parameters.Add("ContactName", txtName.Text);
 parameters.Add("ContactPhone", txtPhone.Text);
 parameters.Add("Interests", txtInterest.Text);
 parameters.Add("Notes", txtNotes.Text);
 parameters.Add("ConnectionString", _connectionString);
 parameters.Add("Rating", int.Parse(txtRating.Text));
 parameters.Add("Writer", new ListBoxTextWriter(lstEvents));

 WorkflowApplication i = new WorkflowApplication
 (new EnterLead(), parameters);

 // Setup persistence
 i.InstanceStore = _instanceStore;
 i.PersistableIdle = (waiea) => PersistableIdleAction.Unload;

 i.Run();
}

This code creates a Dictionary object and stores data in it for all the input arguments. It then creates

a WorkflowInstance. The constructor takes two parameters:

• workflow definition—an instance of the EnterLead class

• Dictionary object containing the input arguments

The code then configures the workflow instance to be persisted. First, it sets the InstanceStore
property using the reference created in the Loaded event handler. It then provides an event handler for

http://

CHAPTER 11 ■ SQL PERSISTENCE

198

the PersistableIdle event, which tells the instance to unload itself from memory. It is persisted to the
database prior to being unloaded.

■ Tip The syntax for the PersistableIdle event handler might seem strange. In the next chapter, you will
implement other event handlers, and I will explain this syntax. For now, just take it on faith that this is handling the
PersistableIdle event.

Finally, the btnAddLead_Click() method calls the instance’s Run() method, which starts the
workflow asynchronously. The workflow uses the InvokeMethod activity to tell the application about the
lead that has just been created. It does this by calling the NewLead() method in the static
ApplicationInterface class. Now you will implement this. Open the ApplicationInterface.cs file and
add the following method:

public static void NewLead(Lead l)
{
 if (_app != null)
 _app.AddNewLead(l);
}

This calls the AddNewLead() method in the application. Open the AddLead.xaml.cs file and add the

AddNewLead() method as follows:

public void AddNewLead(Lead l)
{
 this.lstLeads.Dispatcher.BeginInvoke
 (new Action(() => this.lstLeads.Items.Add(l)));
}

The code simply adds this Lead to the lstLeads ListView control. It uses the Dispatcher object to

invoke this method using the window’s thread.

Assigning Leads
The ListView control displays all the leads that have been entered. The user can click any one of these
leads, and more information is displayed about that lead. Specifically, the notes are displayed along with
the agent that it has been assigned to. If not yet assigned, a text box and button are displayed to allow the
user to assign the lead to an agent.

To allow this dynamic display, add the method shown in Listing 11-8. It implements the
SelectionChanged event handler.

Listing 11-8. Implementation of the SelectionChanged event

private void lstLeads_SelectionChanged(object sender, RoutedEventArgs e)
{

http://

CHAPTER 11 ■ SQL PERSISTENCE

199

 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 lblSelectedNotes.Content = l.Comments;
 lblSelectedNotes.Visibility = Visibility.Visible;
 if (l.Status == "Open")
 {
 lblAgent.Visibility = Visibility.Visible;
 txtAgent.Visibility = Visibility.Visible;
 btnAssign.Visibility = Visibility.Visible;
 }
 else
 {
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
 }
 else
 {
 lblSelectedNotes.Content = "";
 lblSelectedNotes.Visibility = Visibility.Hidden;
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
}

To enable a user to assign a lead to a sales agent, add an event handler for the Assign Agent button,

as shown in Listing 11-9.

Listing 11-9. Implementation of the btnAssign_Click event Handler

private void btnAssign_Click(object sender, RoutedEventArgs e)
{
 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 Guid id = l.WorkflowID;

 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 l = dc.Leads.SingleOrDefault<Lead>(x => x.WorkflowID == id);
 if (l != null)
 {
 l.AssignedTo = txtAgent.Text;
 l.Status = "Assigned";
 dc.SubmitChanges();

http://

CHAPTER 11 ■ SQL PERSISTENCE

200

 // Clear the input
 txtAgent.Text = "";
 }

 // Update the grid
 lstLeads.Items[lstLeads.SelectedIndex] = l;
 lstLeads.Items.Refresh();

 WorkflowApplication i = new WorkflowApplication(new EnterLead());
 i.InstanceStore = _instanceStore;
 i.PersistableIdle = (waiea) => PersistableIdleAction.Unload;
 i.Load(id);

 try
 {
 i.ResumeBookmark("GetAssignment", l);
 }
 catch (Exception e2)
 {
 AddEvent(e2.Message);
 }
 }
}

This code gets the WorkflowID from the selected Lead object. It uses the LINQ classes to retrieve this

Lead from the database. It updates the AssignedTo property, changes the Status to Assigned, and writes
the updates to the database. It then refreshes the lstLeads control so it will display the updated
information.

Finally, it creates a workflow instance. It is then configured for persistence, as in the
btnAddLead_Click() method. The Load() method retrieves the workflow from the database. The
workflow is then resumed using the GetAssignment bookmark.

Loading Existing Leads
Finally, add the following method to retrieve any existing leads and add them to the ListView control:

private void LoadExistingLeads()
{
 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 IEnumerable<Lead> q = dc.Leads
 .Where<Lead>(x => x.Status == "Open" || x.Status == "Assigned");
 foreach (Lead l in q)
 {
 AddNewLead(l);
 }
}

http://

CHAPTER 11 ■ SQL PERSISTENCE

201

This code uses LINQ to query the database for all leads in the Open or Assigned status. For each Lead
returned, the AddNewLead() method is called to add the Lead to the lstLeads control. Add the following
code to the Loaded event (it calls the LoadExistingLeads() method when the application is started):

LoadExistingLeads();

The complete implementation of AddLead.xaml.cs is shown in Listing 11-10.

Listing 11-10. Complete Implementation of AddLead.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

using System.Activities;
using System.Activities.DurableInstancing;
using System.Runtime.Persistence;
using System.Data.Linq;
using System.Configuration;

namespace LeadGenerator
{
 /// <summary>
 /// Interaction logic for AddLead.xaml
 /// </summary>
 public partial class AddLead : Window
 {
 private string _connectionString = "";
 private InstanceStore _instanceStore;

 public AddLead()
 {
 InitializeComponent();

 ApplicationInterface._app = this;
 }

 // Add a line of text to the Event Log
 private void AddEvent(string szText)
 {

http://

CHAPTER 11 ■ SQL PERSISTENCE

202

 lstEvents.Items.Add(szText);
 }

 public ListBox GetEventListBox()
 {
 return this.lstEvents;
 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 // Open the config file and get the connection string
 Configuration config =
 ConfigurationManager.OpenExeConfiguration
 (ConfigurationUserLevel.None);
 ConnectionStringsSection css =
 (ConnectionStringsSection)config.GetSection("connectionStrings");
 _connectionString =
 css.ConnectionStrings["LeadGenerator"].ConnectionString;

 _instanceStore = new SqlWorkflowInstanceStore(_connectionString);
 InstanceView view = _instanceStore.Execute
 (_instanceStore.CreateInstanceHandle(),
 new CreateWorkflowOwnerCommand(),
 TimeSpan.FromSeconds(30));
 _instanceStore.DefaultInstanceOwner = view.InstanceOwner;

 LoadExistingLeads();
 }

 private void btnAddLead_Click(object sender, RoutedEventArgs e)
 {
 // Setup a dictionary object for passing parameters
 Dictionary<string, object> parameters =
 new Dictionary<string, object>();
 parameters.Add("ContactName", txtName.Text);
 parameters.Add("ContactPhone", txtPhone.Text);
 parameters.Add("Interests", txtInterest.Text);
 parameters.Add("Notes", txtNotes.Text);
 parameters.Add("ConnectionString", _connectionString);
 parameters.Add("Rating", int.Parse(txtRating.Text));

 WorkflowApplication i = new WorkflowApplication
 (new EnterLead(), parameters);

 // Setup persistence
 i.InstanceStore = _instanceStore;
 i.PersistableIdle = (waiea) => PersistableIdleAction.Unload;

 i.Run();
 }

http://

CHAPTER 11 ■ SQL PERSISTENCE

203

 public void AddNewLead(Lead l)
 {
 this.lstLeads.Dispatcher.BeginInvoke
 (new Action(() => this.lstLeads.Items.Add(l)));
 }

 private void lstLeads_SelectionChanged(object sender, RoutedEventArgs e)
 {
 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 lblSelectedNotes.Content = l.Comments;
 lblSelectedNotes.Visibility = Visibility.Visible;
 if (l.Status == "Open")
 {
 lblAgent.Visibility = Visibility.Visible;
 txtAgent.Visibility = Visibility.Visible;
 btnAssign.Visibility = Visibility.Visible;
 }
 else
 {
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
 }
 else
 {
 lblSelectedNotes.Content = "";
 lblSelectedNotes.Visibility = Visibility.Hidden;
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
 }

 private void btnAssign_Click(object sender, RoutedEventArgs e)
 {
 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 Guid id = l.WorkflowID;

 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 l = dc.Leads.SingleOrDefault<Lead>(x => x.WorkflowID == id);
 if (l != null)
 {
 l.AssignedTo = txtAgent.Text;
 l.Status = "Assigned";
 dc.SubmitChanges();

http://

CHAPTER 11 ■ SQL PERSISTENCE

204

 // Clear the input
 txtAgent.Text = "";
 }

 // Update the grid
 lstLeads.Items[lstLeads.SelectedIndex] = l;
 lstLeads.Items.Refresh();

 WorkflowApplication i = new WorkflowApplication(new EnterLead());
 i.InstanceStore = _instanceStore;
 i.PersistableIdle = (waiea) => PersistableIdleAction.Unload;
 i.Load(id);

 try
 {
 i.ResumeBookmark("GetAssignment", l);
 }
 catch (Exception e2)
 {
 AddEvent(e2.Message);
 }
 }
 }

 private void LoadExistingLeads()
 {
 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 IEnumerable<Lead> q = dc.Leads
 .Where<Lead>(x => x.Status == "Open" || x.Status == "Assigned");
 foreach (Lead l in q)
 {
 AddNewLead(l);
 }
 }
 }
}

Running the Application
Press F5 to run the application. Enter a few leads (but do not assign them yet). Select one of the leads so
its details will be displayed. The form should look similar to the one shown in Figure 11-12.

http://

CHAPTER 11 ■ SQL PERSISTENCE

205

Figure 11-12. Application with unassigned leads

Close the application and press F5 to restart it. The leads should be redisplayed on the form. Select
one of the leads, enter an agent’s name, and click the Assign Agent button. The window should look like
the one shown in Figure 11-13.

http://

CHAPTER 11 ■ SQL PERSISTENCE

206

Figure 11-13. Restarted application with some leads assigned

Digging a Bit Deeper
So now you’ve implemented SQL persistence. Let’s look at how this works. The instance state
information is stored in the InstancesTable. Open the contents of this table using the Server Explorer. It
should be similar to the contents shown in Figure 11-14.

Figure 11-14. Contents of the InstanceData table

http://

CHAPTER 11 ■ SQL PERSISTENCE

207

Notice that there are only two records in the table. When an agent (Mr. Pete) was assigned to Mickey
Mouse, the workflow instance completed and was removed from this table. The InstancesTable only
contains records for active workflow instances.

Persisting Arguments and Variables
When the workflow instance is persisted, all the state information about what activities have been
executed is stored. In addition, all the arguments and variables that you have defined in your workflow
are persisted as well. To demonstrate this, I purposely did not include the rating information in the Lead
table. You can check the Lead table and verify that this column is not there. However, when the workflow
is loaded, the rating information has been restored. When the lead is assigned to an agent, the WriteLine
activity includes the rating in the output string, so you can verify that it is the same as you originally
entered.

http://

C H A P T E R 1 2

■ ■ ■

209

Extensions

In the previous chapter, you used a workflow extension to persist the workflow instance to a database. In
this chapter, I’ll explain what extensions are and how to use them. You will also develop some custom
extensions.

Setting Up the Solution
You will start with the project that you developed in Chapter 11 and then add some new features. Start
by creating a blank solution, as shown in Figure 12-1. For the solution name, enter Chapter12.

Figure 12-1. Creating a blank solution

http://

CHAPTER 12 ■ EXTENSIONS

210

Copy Solution from Chapter 11
From Windows Explorer, copy the LeadGenerator folder from the Chapter11 folder to the Chapter12
folder. Back in Visual Studio, from the Solution Explorer, right-click the Chapter12 solution and choose
Add ➤ Existing Project. Select the LeadGenerator project that you just copied to the Chapter12 folder.

Setting Up the Database
Create a Chapter12 database and run the following scripts to initialize the database schema:

• SqlWorkflowInstanceStoreSchema.sql

• SqlWorkflowInstanceStoreLogic.sql

• Lead.sql

■ Tip Refer to Chapter 11 if you have questions about setting up the database. There are more detailed
instructions in Chapter 11, and the steps are identical in both projects.

Open the app.config file and change the connectionString attribute to use the Chapter12 database.

Implementing SetupInstance
Generally, in a client application such as this one, the application that hosts the workflow is responsible
for creating and starting the WorkflowApplication class. Before the instance is started, the extensions
(such as the instance store) need to be configured, and the event handlers are added. When the workflow
becomes idle, the state information is persisted, and the instance of the WorkflowApplication class is
destroyed.

When the workflow is reloaded, a new instance of the WorkflowApplication class must be created
and configured all over again. Notice that the PersistableIdle event handler was added in two places:
when the workflow is first started in the btnAddLead_Click event handler and when the workflow is
reloaded in the btnAssign_Click event handler.

Because you will be adding more extensions and event handlers, it will simplify development to put
this code into a method that can be called from both places. Then, as you add more extensions and
event handlers, you need to make the change in only one place. Add the following method to the
AddLead.xaml.cs file:

private void SetupInstance(WorkflowApplication i)
{
 // Setup the instance store
 i.InstanceStore = _instanceStore;

 // Setup the PersistableIdle event handler
 i.PersistableIdle = (waiea) => PersistableIdleAction.Unload;
}

http://

CHAPTER 12 ■ EXTENSIONS

211

In the btnAddLead_Click() method, replace the code that adds the PersistableIdle event handler
with a call to the new SetupInstance() method, as shown in the following code snippet (the modified
line is shown in bold):

WorkflowApplication i = new WorkflowApplication
 (new EnterLead(), parameters);

SetupInstance(i);

i.Run();

Finally, in the btnAssign_Click() method, replace the PersistableIdle event handler code as

shown in this code snippet:

// Reload the workflow instance
WorkflowApplication i = new WorkflowApplication(new EnterLead());

SetupInstance(i);
i.Load(id);

Running the Application
At this point, it is good practice to run the application to make sure that the database is set up correctly
and the application is running properly. It should work just like the solution from the previous chapter.

Extensions
Extensions allow you to add configurable behavior to a workflow solution. The activities that you include
in your workflow define the steps that are performed, while the extensions provide the operating
environment that these activities are executed in. In our solution, for example, the persistence extension
is not aware of what activities are executed; the extension however, provides the ability to persist those
activities (whatever they might be) to a durable store.

There are two key aspects of extensions that make then extremely useful. First, as was inferred
earlier, they are configurable. For example, the persistence provider that was used
(SqlWorkflowInstanceStore) was designed to use a SQL Server database. Without changing the
application or the workflow definition, it could be replaced with a custom extension that uses an Oracle
database, or perhaps an XML file, or whatever is appropriate for the environment.

The second aspect of extensions is that they can be accessed both from the application as well as the
workflow activities. This provides a convenient tool for sharing information between the application and
the workflow, as you’ll see shortly.

Implementing a Simple Extension
In the Solution Explorer, right-click the LeadGenerator project and choose Add ➤ New Folder. Enter the
folder name as Extensions. You’ll be adding your custom extensions here. The first extension will be
used to store the connection string. Instead of passing the connection string as an input argument, any
activity that needs the connection string can access it from this extension.

http://

CHAPTER 12 ■ EXTENSIONS

212

First, you’ll define the extension. In the Solution Explorer, right-click the Extensions folder and
choose Add ➤ Class. Enter the class name as DBExtension.cs. The implementation of this class is shown
in Listing 12-1.

Listing 12-1. Implementation of the DBExtension Class

using System;

namespace LeadGenerator
{
 public class DBExtension
 {
 private string _connectionString = "";

 public DBExtension(string connectionString)
 {
 _connectionString = connectionString;
 }

 public string ConnectionString { get { return _connectionString; } }
 }
}

This class simply defines a private member that holds the connection string. The value of this string
is passed in the class constructor. A public property is provided for accessing this string.

Configuring the Extension
Open the AddLead.xaml.cs file and add the following class member. This will store a reference to this
custom extension:

private DBExtension _dbExtension;

Then add the following code to the Loaded event handler. This instantiates the DBExtension class,
passing in the connection string:

// Create the DBExtension
_dbExtension = new DBExtension(_connectionString);

Finally, in the SetupInstance() method, add the following code to add this extension to the
workflow instance:

// Setup the connection string
i.Extensions.Add(_dbExtension);

http://

CHAPTER 12 ■ EXTENSIONS

213

Using the Extension in an Activity
Open the CreateLead.cs file, which is in the Activities folder. Remove the input argument used to pass in
the connection string. Add the following code to the Execute() method to get the new DBExtension:

// Get the connection string
DBExtension ext = context.GetExtension<DBExtension>();
if (ext == null)
 throw new InvalidProgramException("No connection string available");

Change the call to the LeadDataDataContext constructor to pass ext.ConnectionString instead of the

connection string argument. The complete implementation of the CreateLead activity is shown in
Listing 12-2.

Listing 12-2. Implementation of the CreateLead Activity

using System;
using System.Activities;

namespace LeadGenerator
{
 /***/
 // This custom activity creates a Lead class using
 // the input parameters (ContactName, ContactPhone,
 // Interests and Notes). A Lead record is inserted
 // into the database and then this is returned in
 // the Lead output parameter.
 /***/
 public sealed class CreateLead : CodeActivity
 {
 public InArgument<string> ContactName { get; set; }
 public InArgument<string> ContactPhone { get; set; }
 public InArgument<string> Interests { get; set; }
 public InArgument<string> Notes { get; set; }
 public OutArgument<Lead> Lead { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 // Create a Lead class and populate it with the input arguments
 Lead l = new Lead();
 l.ContactName = ContactName.Get(context);
 l.ContactPhone = ContactPhone.Get(context);
 l.Interests = Interests.Get(context);
 l.Comments = Notes.Get(context);
 l.WorkflowID = context.WorkflowInstanceId;
 l.Status = "Open";

 // Get the connection string
 DBExtension ext = context.GetExtension<DBExtension>();
 if (ext == null)

http://

CHAPTER 12 ■ EXTENSIONS

214

 throw new InvalidProgramException("No connection string available");

 // Insert a record into the Lead table
 LeadDataDataContext dc = new LeadDataDataContext(ext.ConnectionString);
 dc.Leads.InsertOnSubmit(l);
 dc.SubmitChanges();

 // Store the request in the OutArgument
 Lead.Set(context, l);
 }
 }
}

Updating the Application
Now open the LeadGeneratorWF.cs class and remove the ConnectionString argument. You’ll also need to
delete the code that passes this to the CreateLead activity. In the code snippet shown in Listing 12-3, the
lines to be deleted are in bold.

Listing 12-3. Code Snippet from EnterLead

public sealed class EnterLead : Activity
 {
 // Define the input and output arguments
 public InArgument<string> ContactName { get; set; }
 public InArgument<string> ContactPhone { get; set; }
 public InArgument<string> Interests { get; set; }
 public InArgument<string> Notes { get; set; }
 public InArgument<string> ConnectionString { get; set; }
 public InArgument<int> Rating { get; set; }

 public EnterLead()
 {
 // Define the variables used by this workflow
 Variable<Lead> lead = new Variable<Lead> { Name = "lead" };

 // Define the SendRequest workflow
 this.Body = () => new Sequence
 {
 DisplayName = "EnterLead",
 Variables = { lead },
 Activities =
 {
 new CreateLead
 {
 ContactName = new InArgument<string>
 (env => ContactName.Get(env)),
 ContactPhone = new InArgument<string>

http://

CHAPTER 12 ■ EXTENSIONS

215

 (env => ContactPhone.Get(env)),
 Interests = new InArgument<string>
 (env => Interests.Get(env)),
 Notes = new InArgument<string>(env => Notes.Get(env)),
 ConnectionString = new InArgument<string>
 (env => ConnectionString.Get(env)),
 Lead = new OutArgument<Lead>(env => lead.Get(env)),
 },

Finally, in the AddLead.xaml.cs file, in the btnAddLead_Click() method, remove the following line
that adds the connection string to the Dictionary object:

parameters.Add("ConnectionString", _connectionString);

Run the application to make sure everything still works correctly. As you modify this application in

subsequent chapters, you’ll create other custom activities that will need to access the database. With this
simple extension, you now have a convenient way of providing it to any activity that needs it.

Participating in Persistence
The next custom extension that you’ll develop will be designed to participate in the persistence process.
You’ll create an extension called CommentExtension, which allows the workflow to log comments
throughout the processing of the workflow.

Creating the Extension
In the Solution Explorer, right-click the Extensions folder and choose Add ➤ Class. Enter the class name
as CommentExtension.cs. The implementation of this class is shown in Listing 12-4.

Listing 12-4. Implementation of CommentExtension.cs

using System;
using System.Activities.Persistence;
using System.Collections.Generic;
using System.Xml.Linq;

namespace LeadGenerator
{
 public class CommentExtension : PersistenceParticipant
 {
 private string _comments = "";

 public string Comments { get { return _comments; } }

 internal void AddComment(string s)
 {
 if (_comments.Length > 1)
 _comments += "\r\n";

http://

CHAPTER 12 ■ EXTENSIONS

216

 this._comments += s;
 }

 protected override void CollectValues
 (out IDictionary<XName, object> readWriteValues,
 out IDictionary<XName, object> writeOnlyValues)
 {
 readWriteValues = new Dictionary<XName, object>(1)
 {
 { "Comment", this._comments }
 };
 writeOnlyValues = null;
 }

 protected override void PublishValues
 (IDictionary<XName, object> readWriteValues)
 {
 object loadedData;
 if (readWriteValues.TryGetValue("Comment", out loadedData))
 {
 this._comments = (string)loadedData;
 }
 }
 }
}

This first part of this class is fairly straightforward. It has a single private class member to store the
comment and a public method to return the comment. The AddComment() method is used to append the
input string to the existing comment adding a carriage return/line feed to separate the comments.

PersistenceParticipant
The remaining methods are needed so this class can override the PersistenceParticipant methods.
These methods will be called by the WorkflowApplication when it is being persisted or loaded.

When the instance is being persisted, the CollectValues() method is called to obtain a Dictionary
object that contains the data that the extension wants persisted. When the workflow is loaded from the
database, this object is then provided back to this extension in the PublishValues() method. In this
class, the CollectValues() method returns a Dictionary with a single entry; the _comments string. When it
is passed to the PublishValues() method, it is extracted from the Dictionary and stored in the _comments
member.

AddComment Activity
You will now create a custom activity that will allow you to use the new CommentExtension from within
the workflow. From the Solution Explorer, right-click the Activities folder and choose Add ➤ Class. Enter
the class name as AddComment.cs. The implementation for this activity is shown in Listing 12-5.

http://

CHAPTER 12 ■ EXTENSIONS

217

Listing 12-5. Implementation of the AddComment Activity

using System.Activities;
using System.ComponentModel;

namespace LeadGenerator
{
 public sealed class AddComment : CodeActivity
 {
 public InArgument<string> Comment { get; set; }
 public OutArgument<string> Comments { get; set; }

 protected override void CacheMetadata(CodeActivityMetadata metadata)
 {
 base.CacheMetadata(metadata);
 metadata.AddDefaultExtensionProvider(() => new CommentExtension());
 }

 protected override void Execute(CodeActivityContext context)
 {
 CommentExtension ext = context.GetExtension<CommentExtension>();
 ext.AddComment(Comment.Get(context));

 Comments.Set(context, ext.Comments);
 }
 }

 public sealed class GetComments : CodeActivity
 {
 public OutArgument<string> Comments { get; set; }

 protected override void CacheMetadata(CodeActivityMetadata metadata)
 {
 base.CacheMetadata(metadata);
 metadata.AddDefaultExtensionProvider(() => new CommentExtension());
 }

 protected override void Execute(CodeActivityContext context)
 {
 CommentExtension ext = context.GetExtension<CommentExtension>();
 Comments.Set(context, ext.Comments);
 }
 }
}

This activity takes an input argument, which is the comment being added, and an output argument,
which is the current comment that includes all previous comments.

This activity overrides the CacheMetadata method. This implementation adds the CommentExtension
to the collection of default extensions. This will ensure that the CommentExtension is added to the
workflow (if it doesn’t already exist) when the AddComment activity is executed.

http://

CHAPTER 12 ■ EXTENSIONS

218

The Execute() method for this activity gets the CommentExtension and calls its AddComment() method
passing in the input comment argument. The complete comment string is then stored in the output
argument.

GetComments Activity
This file also implements the GetComments activity, which works just like the AddComment activity except it
returns only the existing comment without adding one.

Modifying the Workflow
Open the LeadGeneratorWF.cs file and add the following activity definition just after the InvokeMethod
activity:

new AddComment
{
 Comment = new InArgument<string>(env => "Lead has been created")
},

Add the following activity definition just after the WaitForInput activity:

new AddComment
{
 Comment = new InArgument<string>(env => "Lead is being assigned")
},

Accessing the Extension from the Application
Open the AddLead.xaml.cs file and add the following code to the SetupInstance() method:

// Display the accumulated comments
i.Completed = (wacea) =>
{
 // Get the CommentExtension
 IEnumerable<CommentExtension> q =
 wacea.GetInstanceExtensions<CommentExtension>();

 // Add the comments to the event log
 if (q.Count() > 0)
 {
 string comments = "Comments: \r\n" +
 q.First<CommentExtension>().Comments;
 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add(comments)));
 }

 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add

http://

CHAPTER 12 ■ EXTENSIONS

219

 ("\r\nThe workflow has completed")));
};

This code implements a handler for the Completed event. This event is raised when a workflow

instance completes. The code gets the CommentExtension from the WorkflowInstance and then adds an
event to the lstEvents control using the Comments property of the extension. This is done on the
window’s thread by using the Dispatcher object.

■ Note In this scenario, the extension was created by a workflow activity. It was then accessed by the application
when the instance was completed to extract any data stored by the workflow activities. The first extension you
developed worked just the opposite. The application created the extension, storing data in it. The workflow
activities then accessed the extension to get the data provided by the application. These two examples
demonstrate both the usefulness and flexibility of workflow extensions.

Event Handler Syntax
As I promised in the previous chapter, let me explain the syntax used to implement the workflow event
handlers. If you hover the mouse over the Completed property, the specific property prototype is
displayed, as shown in Figure 12-2.

Figure 12-2. Definition of the event handler

You can see that this property in an Action<T> class, <T> in this case, is a
WorkflowApplicationCompletedEventArgs class. Here is the definition of the Action<T> class:

public delegate void Action<T>(T obj)

This may look a bit more familiar. This is a delegate function that has no return value and accepts a

single parameter of type <T>, which is a WorkflowApplicationCompletedEventArgs class. In more
traditional syntax, the Completed property is looking for a delegate function with the following prototype:

void f(WorkflowApplicationCompletedEventArgs x)

The lambda expression is simply shorthand for declaring a function for this delegate. The input

parameter (declared as wacea) was not used. If you wanted to display the termination message, for
example, you could access it with the following code:

wacea.TerminationException.Message

http://

CHAPTER 12 ■ EXTENSIONS

220

Let’s go back to the PersistableIdle event handler. The code used to define this was this:

i.PersistableIdle = (waiea) => PersistableIdleAction.Unload;

In this case, the delegate function expects a return type of PersistableIdleAction. Because there is

no code being executed, you can simply provide the return value (PersistableIdleAction.Unload). If you
want to execute some code in this event handler, the syntax would be the following:

i.PersistableIdle = (waiea) =>
{
 // Do something
 return PersistableIdleAction.Unload;
}

Running the Application
Press F5 to start the application. Create a lead, but don’t assign it. Close the application. Press F5 to start
the application again. The lead you previously entered should be in the list. Select it and assign an agent.
The window should look like the one shown n Figure 12-3.

Figure 12-3. Sample application window

http://

CHAPTER 12 ■ EXTENSIONS

221

Notice the comments in the Event Log. The first one, “Lead has been created”, was added before the
application was closed. It was restored from the persistent store when the application was restarted.

The complete implementation of AddLead.xaml.cs is shown in Listing 12-6.

Listing12-6. Complete implementation of AddLead.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

using System.Activities;
using System.Activities.DurableInstancing;
using System.Runtime.DurableInstancing;
using System.Data.Linq;
using System.Configuration;

namespace LeadGenerator
{
 /// <summary>
 /// Interaction logic for AddLead.xaml
 /// </summary>
 public partial class AddLead : Window
 {
 private string _connectionString = "";
 private InstanceStore _instanceStore;
 private DBExtension _dbExtension;

 public AddLead()
 {
 InitializeComponent();

 ApplicationInterface._app = this;
 }

 // Add a line of text to the Event Log
 private void AddEvent(string szText)
 {
 lstEvents.Items.Add(szText);
 }

http://

CHAPTER 12 ■ EXTENSIONS

222

 public ListBox GetEventListBox()
 {
 return this.lstEvents;
 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 // Open the config file and get the connection string
 Configuration config =
 ConfigurationManager.OpenExeConfiguration
 (ConfigurationUserLevel.None);
 ConnectionStringsSection css =
 (ConnectionStringsSection)config.GetSection("connectionStrings");
 _connectionString =
 css.ConnectionStrings["LeadGenerator"].ConnectionString;

 _instanceStore = new SqlWorkflowInstanceStore(_connectionString);
 InstanceView view = _instanceStore.Execute
 (_instanceStore.CreateInstanceHandle(),
 new CreateWorkflowOwnerCommand(),
 TimeSpan.FromSeconds(30));
 _instanceStore.DefaultInstanceOwner = view.InstanceOwner;

 // Create the DBExtension
 _dbExtension = new DBExtension(_connectionString);

 LoadExistingLeads();
 }

 private void btnAddLead_Click(object sender, RoutedEventArgs e)
 {
 // Setup a dictionary object for passing parameters
 Dictionary<string, object> parameters =
 new Dictionary<string, object>();
 parameters.Add("ContactName", txtName.Text);
 parameters.Add("ContactPhone", txtPhone.Text);
 parameters.Add("Interests", txtInterest.Text);
 parameters.Add("Notes", txtNotes.Text);
 parameters.Add("Rating", int.Parse(txtRating.Text));
 parameters.Add("Writer", new ListBoxTextWriter(lstEvents));

 WorkflowApplication i = new WorkflowApplication
 (new EnterLead(), parameters);

 // Setup persistence
 SetupInstance(i);

 i.Run();
 }

http://

CHAPTER 12 ■ EXTENSIONS

223

 public void AddNewLead(Lead l)
 {
 this.lstLeads.Dispatcher.BeginInvoke
 (new Action(() => this.lstLeads.Items.Add(l)));
 }

 private void lstLeads_SelectionChanged(object sender, RoutedEventArgs e)
 {
 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 lblSelectedNotes.Content = l.Comments;
 lblSelectedNotes.Visibility = Visibility.Visible;
 if (l.Status == "Open")
 {
 lblAgent.Visibility = Visibility.Visible;
 txtAgent.Visibility = Visibility.Visible;
 btnAssign.Visibility = Visibility.Visible;
 }
 else
 {
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
 }
 else
 {
 lblSelectedNotes.Content = "";
 lblSelectedNotes.Visibility = Visibility.Hidden;
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
 }

 private void btnAssign_Click(object sender, RoutedEventArgs e)
 {
 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 Guid id = l.WorkflowID;

 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 l = dc.Leads.SingleOrDefault<Lead>(x => x.WorkflowID == id);
 if (l != null)
 {
 l.AssignedTo = txtAgent.Text;
 l.Status = "Assigned";
 dc.SubmitChanges();

http://

CHAPTER 12 ■ EXTENSIONS

224

 // Clear the input
 txtAgent.Text = "";
 }

 // Update the grid
 lstLeads.Items[lstLeads.SelectedIndex] = l;
 lstLeads.Items.Refresh();

 WorkflowApplication i = new WorkflowApplication(new EnterLead());

 SetupInstance(i);
 i.Load(id);

 try
 {
 i.ResumeBookmark("GetAssignment", l);
 }
 catch (Exception e2)
 {
 AddEvent(e2.Message);
 }
 }
 }

 private void LoadExistingLeads()
 {
 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 IEnumerable<Lead> q = dc.Leads
 .Where<Lead>(x => x.Status == "Open" || x.Status == "Assigned");
 foreach (Lead l in q)
 {
 AddNewLead(l);
 }
 }

 private void SetupInstance(WorkflowApplication i)
 {
 // Setup the instance store
 i.InstanceStore = _instanceStore;

 // Setup the PersistableIdle event handler
 i.PersistableIdle = (waiea) => PersistableIdleAction.Unload;

 // Setup the connection string
 i.Extensions.Add(_dbExtension);

 // Display the accumulated comments
 i.Completed = (wacea) =>
 {

http://

CHAPTER 12 ■ EXTENSIONS

225

 // Get the CommentExtension
 IEnumerable<CommentExtension> q =
 wacea.GetInstanceExtensions<CommentExtension>();

 // Add the comments to the event log
 if (q.Count() > 0)
 {
 string comments = "Comments: \r\n" +
 q.First<CommentExtension>().Comments;
 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add(comments)));
 }
 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add
 ("\r\nThe workflow has completed")));
 };
 }
 }
}

The complete implementation of LeadGeneratorWF.cs is shown in Listing 12-7.

Listing 12-7. Complete implementation of LeadGeneratorWF.cs

using System;
using System.Activities;
using System.Activities.Statements;
using System.IO;

namespace LeadGenerator
{
 /***/
 // This file contains the definition of the EnterLead
 // workflow
 /***/
 public sealed class EnterLead : Activity
 {
 // Define the input and output arguments
 public InArgument<string> ContactName { get; set; }
 public InArgument<string> ContactPhone { get; set; }
 public InArgument<string> Interests { get; set; }
 public InArgument<string> Notes { get; set; }
 public InArgument<int> Rating { get; set; }
 public InArgument<TextWriter> Writer { get; set; }

 public EnterLead()
 {
 // Define the variables used by this workflow
 Variable<Lead> lead = new Variable<Lead> { Name = "lead" };

http://

CHAPTER 12 ■ EXTENSIONS

226

 // Define the SendRequest workflow
 this.Implementation = () => new Sequence
 {
 DisplayName = "EnterLead",
 Variables = { lead },
 Activities =
 {
 new CreateLead
 {
 ContactName = new InArgument<string>
 (env => ContactName.Get(env)),
 ContactPhone = new InArgument<string>
 (env => ContactPhone.Get(env)),
 Interests = new InArgument<string>
 (env => Interests.Get(env)),
 Notes = new InArgument<string>(env => Notes.Get(env)),
 Lead = new OutArgument<Lead>(env => lead.Get(env)),
 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Lead received [" + Rating.Get(env).ToString()
 + "]; waiting for assignment"),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 },
 new InvokeMethod
 {
 TargetType = typeof(ApplicationInterface),
 MethodName = "NewLead",
 Parameters =
 {
 new InArgument<Lead>(env => lead.Get(env))
 }
 },
 new AddComment
 {
 Comment = new InArgument<string>
 (env => "Lead has been created")
 },
 new WaitForInput<Lead>
 {
 BookmarkName = "GetAssignment",
 Input = new OutArgument<Lead>(env => lead.Get(env))
 },
 new AddComment
 {
 Comment = new InArgument<string>
 (env => "Lead is being assigned")

http://

CHAPTER 12 ■ EXTENSIONS

227

 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Lead assigned [" + Rating.Get(env).ToString()
 + "] to " + lead.Get(env).AssignedTo),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 }
 }
 };
 }
 }
}

http://

C H A P T E R 1 3

■ ■ ■

229

Tracking

In this chapter, you’ll use extensions to track events as your workflow executes the defined activities.
This is useful for monitoring a workflow’s execution and for triggering external processing. It is also
helpful for leaving an audit trail for future diagnostics.

Setting Up the Solution
You will start with the project that you developed in Chapter 12. Start by creating a blank solution as
shown in Figure 13-1. For the solution name, enter Chapter13.

Figure 13-1. Creating a blank solution

http://

CHAPTER 13 ■ TRACKING

230

Copy Solution from Chapter 12
From Windows Explorer, copy the LeadGenerator folder from the Chapter12 folder to the Chapter13
folder. Back in Visual Studio, from the Solution Explorer, right-click the Chapter13 solution and choose
Add ➤ Existing Project. Select the LeadGenerator project that you just copied to the Chapter13 folder.

Setting Up the Database
Create a Chapter13 database and run the following scripts to initialize the database schema:

• SqlWorkflowInstanceStoreSchema.sql

• SqlWorkflowInstanceStoreLogic.sql

• Lead.sql

Open the app.config file and change the connectionString attribute to use the Chapter13 database.

■ Tip You might be familiar with the tracking mechanism provided by previous versions of WF. In version 3.0 and
3.5, tracking was implemented by writing the events to a database, which could then be queried by the application
or an external monitoring utility. The tracking provided in version 4.0 is designed with a whole new approach.

Tracking Participants
In WF 4.0, tracking is accomplished through tracking participants, which are extensions that are derived
from the TrackingParticipant abstract class. In this project, you will build three different tracking
participants that should give you a sense of the flexibility provided in the tracking architecture.

ListBoxTrackingParticipant
The first tracking participant will write the tracking records to the same list box that you have been using
for the WriteLine activities. In the Solution Explorer, right-click the Extension folder in the LeadGenerator
project and choose Add ➤ Class. For the class name, enter ListBoxTrackingParticipant.cs. The
implementation for this class is shown in Listing 13-1.

Listing 13-1. Implementation of the ListBoxTrackingParticipant class

using System;
using System.Activities.Tracking;
using System.Windows.Controls;
using System.Collections.Generic;
using System.Text;

http://

CHAPTER 13 ■ TRACKING

231

namespace LeadGenerator
{
 public class ListBoxTrackingParticipant : TrackingParticipant
 {
 private ListBox _eventLog;
 private const String participantName = "ListBoxTrackingParticipant";

 public ListBoxTrackingParticipant(ListBox listBox)
 {
 _eventLog = listBox;
 }

 private void AddEvent(String msg)
 {
 if (_eventLog != null)
 _eventLog.Dispatcher.BeginInvoke
 (new Action(() => _eventLog.Items.Add(msg)));
 }

 protected override void Track(TrackingRecord record, TimeSpan timeout)
 {
 // Log header information
 AddEvent(String.Format("Type: {0} Level: {1}, RecordNumber: {2}",
 record.GetType().Name, record.Level, record.RecordNumber));

 // If this is a instance record
 WorkflowInstanceRecord instance = record as WorkflowInstanceRecord;
 if (instance != null)
 {
 AddEvent(String.Format(" InstanceID: {0} State: {1}",
 instance.InstanceId, instance.State));
 }

 // If this is a bookmark record
 BookmarkResumptionRecord bookmark = record as BookmarkResumptionRecord;
 if (bookmark != null)
 {
 AddEvent(String.Format(" Bookmark {0} resumed",
 bookmark.BookmarkName));
 }

 // If this is an activity record
 ActivityStateRecord activity = record as ActivityStateRecord;
 if (activity != null)
 {
 IDictionary<String, object> variables = activity.Variables;
 StringBuilder s = new StringBuilder();

 if (variables.Count > 0)
 {
 s.AppendLine(" Variables:");

http://

CHAPTER 13 ■ TRACKING

232

 foreach (KeyValuePair<string, object> v in variables)
 {
 s.AppendLine(String.Format(" {0} Value: [{1}]",
 v.Key, v.Value));
 }
 }
 AddEvent(String.Format(" Activity: {0} State: {1} {2}",
 activity.Activity.Name, activity.State, s.ToString()));
 }

 // If this is a user record
 CustomTrackingRecord user = record as CustomTrackingRecord;
 if ((user != null) && (user.Data.Count > 0))
 {
 AddEvent(String.Format(" User Data: {0}", user.Name));
 foreach (string data in user.Data.Keys)
 {
 AddEvent(String.Format(" {0} : {1}", data, user.Data[data]));
 }
 }
 }
 }
}

The ListBoxTrackingParticipant class is derived from the abstract TrackingParticipant class. It

overrides the Track() method, which is where most of the work is done. When a trackable event occurs,
the workflow instance will enumerate all the extensions and will call the Track() method in any that are
derived from the TrackingParticipant base class. I’ll explain what a trackable event is later in this
chapter.

The ListBoxTrackingParticipant class has a private member, _eventLog, which is a reference to a
ListBox control. This is passed in the class constructor. There is also an AddEvent() method that adds a
string to the ListBox using the window’s main thread. This allows the tracking logic that runs in the
workflow’s thread to safely access the application controls.

Overriding the Track() Method
A TrackingRecord is passed into the Track() method. This is an abstract class; the actual instance passed
in will be one of the following classes, which are derived from the TrackingRecord class:

• WorkflowInstanceRecord contains data about the workflow instance.

• BookmarkResumptionRecord contains data about the bookmark being resumed.

• ActivityStateRecord contains data about a specific activity.

• CustomTrackingRecord contains user-defined data.

http://

CHAPTER 13 ■ TRACKING

233

■ Caution The second parameter is a TimeSpan object that specifies how long the caller will wait before aborting
this call to the Track() method. When implementing a tracking participant, you should never perform any long-
running operations. While the Track() method is executing, it is blocking the workflow from executing activities.
The workflow instance expects the Track() method to return quickly and will abort it if it thinks it is taking too
long. The default timeout is 30 seconds.

The Track() method first logs some generic information. It then determines what type of tracking
record it has received. It does this by essentially casting the parameter to one of the derived types. If the
cast was successful, it uses the derived type to log type-specific information. The pertinent information
is obtained, formatted, and written to the ListBox.

Configuring a Tracking Participant
Open the AddLead.xaml.cs file and add the following namespace:
using System.Activities.Tracking;

Add the following class member to hold a reference to the tracking participant. It should go just

before the AddLead() constructor:

private ListBoxTrackingParticipant _tracking;

Add the following code to the Loaded event handler. This calls a method that you will implement to

set up the tracking participant.

// Set up the tracking participants
CreateTrackingParticipant();

Then add the following code to the SetupInstance() method, which will register the extension with

the WorkflowInstance class:

// Set up tracking
i.Extensions.Add(_tracking);

Finally, the implementation for the CreateTrackingParticipant() method is shown in Listing 13-2.

Add this method to the AddLead class.

Listing 13-2. Implementation of the CreateTrackingParticipant method

private void CreateTrackingParticipant()
{
 _tracking = new ListBoxTrackingParticipant(this.lstEvents)
 {
 TrackingProfile = new TrackingProfile()
 {

http://

CHAPTER 13 ■ TRACKING

234

 Name = "ListBoxTrackingProfile",
 Queries =
 {
 // For instance data, only track the started and completed events
 new WorkflowInstanceQuery()
 {
 States = { WorkflowInstanceStates.Started,
 WorkflowInstanceStates.Completed },
 },

 // For bookmark data, only track the GetAssignment event
 new BookmarkResumptionQuery()
 {
 Name = "GetAssignment"
 },

 // For activity data, track all states of the InvokeMethod
 new ActivityStateQuery()
 {
 ActivityName = "InvokeMethod",
 States = { "*" },
 },

 // For User data, track all events
 new CustomTrackingQuery()
 {
 Name = "*",
 ActivityName = "*"
 }
 }
 }
 };
}

The CreateTrackingParticipant() method creates a ListBoxTrackingParticipant class passing the

lstEvent control to the constructor. The rest of the code builds a TrackingProfile class.

Configuring a Tracking Profile
A TrackingProfile defines a collection of queries that specify which events are to be tracked by the
associated tracking participant. These queries are used to determine if an event is trackable. The queries
are stored in the Queries property, which is a collection of classes derived from the abstract
TrackingQuery class. There are four derived classes that correspond to the four types of tracking records:

• WorkflowInstanceQuery

• BookmarkResumptionQuery

• ActivityStateQuery

• CustomTrackingQuery

http://

CHAPTER 13 ■ TRACKING

235

■ Note In Listing 13-2, there is one of each type of query. That was done to demonstrate each type. You don’t
have to have a query for each type. You can have any number of queries of each type, including none.

WorkflowInstanceQuery
A WorkflowInstanceQuery is used to define the workflow instance events that should be tracked. These
are the process states that occur at the instance level such as Started, Completed, Unloaded, and so on.
When entering the desired states, type WorkflowInstanceStates; the complete list of possible events will
appear as shown in Figure 13-2.

Figure 13-2. List of workflow instance states

This tracking profile will record only the Started and Completed events.

BookmarkResumptionQuery
In a BookmarkResumptionQuery, you specify the name of the bookmark that you want to track whenever it
is resumed. You can specify only a single bookmark in a query. If you want to track multiple bookmarks,
you should create multiple queries—one for each bookmark. You could enter an asterisk (*) for the Name
property to specify that all bookmarks should be tracked.

ActivityStateQuery
An ActivityStateQuery class specifies both the Name of the activity and the State collection (events) that
should be tracked. You can specify an asterisk (*) for either, which indicates that all activities and/or
states should be tracked.

http://

CHAPTER 13 ■ TRACKING

236

CustomTrackingQuery
The CustomTrackingQuery specifies the ActivityName, which indicates the activity that generated the
CustomTrackingRecord and the Name property, which indicates the name given to the
CustomTrackingRecord. You can specify an asterisk for either (or both) as the example, above does. When
both are set to *, it indicates that all user events should be tracked.

CustomTrackingRecord
Now you will modify the workflow to generate a custom tracking event. Open the CreateLead.cs file and
add the following namespace:

using System.Activities.Tracking;

Then add the following code to the Execute() method:

// Add a custom track record
CustomTrackingRecord userRecord = new CustomTrackingRecord("New Lead")
{
 Data =
 {
 {"Name", l.ContactName},
 {"Phone", l.ContactPhone}
 }
};

// Emit the custom tracking record
context.Track(userRecord);

This code creates a new CustomTrackingRecord class, passing the name "New Lead" in the

constructor. It then defines some data elements. Finally, it calls the Track() method of the
CodeActivityContext class, which will forward this record to any tracking participant that has a
TrackingProfile with a query that matches this record.

■ Tip If you want to track only this specific record, in the TrackingProfile, add a CustomTrackingQuery where
the ActivityName is CreateLead and the Name is New Lead.

The complete implementation of CreateLead.cs is shown in Listing 13-3.

Listing 13-3. Complete Implementation of CreateLead.cs

using System;
using System.Activities;
using System.Configuration;
using System.Activities.Tracking;

http://

CHAPTER 13 ■ TRACKING

237

namespace LeadGenerator
{
 /***/
 // This custom activity creates a Lead class using
 // the input parameters (ContactName, ContactPhone,
 // Interests and Notes). A Lead record is inserted
 // into the database and then this is returned in
 // the Lead output parameter.
 /***/
 public sealed class CreateLead : CodeActivity
 {
 public InArgument<string> ContactName { get; set; }
 public InArgument<string> ContactPhone { get; set; }
 public InArgument<string> Interests { get; set; }
 public InArgument<string> Notes { get; set; }
 public InArgument<string> ConnectionString { get; set; }
 public OutArgument<Lead> Lead { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 // Create a Lead class and populate it with the input arguments
 Lead l = new Lead();
 l.ContactName = ContactName.Get(context);
 l.ContactPhone = ContactPhone.Get(context);
 l.Interests = Interests.Get(context);
 l.Comments = Notes.Get(context);
 l.WorkflowID = context.WorkflowInstanceId;
 l.Status = "Open";

 // Get the connection string
 DBExtension ext = context.GetExtension<DBExtension>();
 if (ext == null)
 throw new InvalidProgramException("No connection string available");

 // Insert a record into the Lead table
 LeadDataDataContext dc = new LeadDataDataContext(ext.ConnectionString);
 dc.Leads.InsertOnSubmit(l);
 dc.SubmitChanges();

 // Store the request in the OutArgument
 Lead.Set(context, l);

 // Add a custom track record
 CustomTrackingRecord userRecord = new CustomTrackingRecord("New Lead")
 {
 Data =
 {
 {"Name", l.ContactName},
 {"Phone", l.ContactPhone}
 }
 };

http://

CHAPTER 13 ■ TRACKING

238

 // Emit the custom tracking record
 context.Track(userRecord);
 }
 }
}

Running the Application
Press F5 to run the application. Enter a lead and then select it and assign an agent. A portion of the event
log is shown in Figure 13-3. You can scroll through the ListBox and view all the events listed. All the
tracking events start with Type:, and the type-specific data is found on subsequent lines and indented.

Figure 13-3. Sample tracking events

Event Tracing for Windows (ETW)
The next tracking participant that you’ll add writes the tracking events to the standard Windows Event
Log. WF 4.0 provides an EtwTrackingParticipant class that provides this capability.

Setting Up the Extension
Open the AddLead.xaml.cs file and add the following class member:

private EtwTrackingParticipant _etwTracking;

This stores a reference to the tracking participant. Add the following code to the Loaded event

handler. It calls a method that you’ll implement shortly, which creates an instance of the tracking
participant:

CreateETWTrackingParticipant();

Add the following code to the SetupInstance() method that adds this participant as an extension to

the workflow instance:

i.Extensions.Add(_etwTracking);

http://

CHAPTER 13 ■ TRACKING

239

Configuring the TrackingProfile
Finally, add the following method to the AddLead class. This creates the EtwTrackingParticipant class
and configures the TrackingProfile:

private void CreateETWTrackingParticipant()
{
 _etwTracking = new EtwTrackingParticipant()
 {
 TrackingProfile = new TrackingProfile()
 {
 Name = "EtwTrackingProfile",
 Queries =
 {
 new CustomTrackingQuery()
 {
 Name = "*",
 ActivityName = "*"
 }
 }
 }
 };
}

■ Tip To keep things simple, this participant tracks only the custom events. You can modify this code to track
additional events if you want. The previous TrackingProfile that you configured tracked all four types of events,
and I explained how to configure each of the corresponding queries. You could also copy and paste the code from
the previous sample. If you had multiple tracking participants and you wanted each of them to track the same
events, you could create a named instance of a TrackingProfile class and then reference the same instance for
each of the participants.

Running the Application
Press F5 to run the application and enter a lead and close the application. Now run the Event Viewer
application, which is usually under the Administrative Tools start menu. (You can usually find it in the
Administrative Tools section of the Control Panel as well.) In the Event Viewer, open the Applications and
Services Logs and then navigate to the Microsoft, Application Server-Applications, Analytic entry (see
Figure 13-4).

http://

CHAPTER 13 ■ TRACKING

240

Figure 13-4. The Event Viewer application

■Tip You may need to enable this log. In the Actions window (refer to Figure 13-4), if there is a link to Enable Log,
click it to allow entries into this log.

There should be a single event corresponding to the lead you just created. If you select this event
and click the Details tab, you should see a more readable view of this data, as shown in Figure 13-5.

http://

CHAPTER 13 ■ TRACKING

241

Figure 13-5. The Friendly view from the Details tab

Notice in the Data section that it includes the Name and Phone elements just like the
ListBoxTrackingParticipant did.

SqlTrackingParticipant
The last participant that you’ll implement will write the events to a database. The tracking participant
will receive the track events based on the queries defined in the TrackingProfile. The tracking
participant is responsible for performing the database updates, which gives you complete control of how
this is stored.

Setting up the Database
The first step is to create the tables in the database. To store the four types of tracking events, you will
use the following tables:

• TrackInstance

• TrackBookmark

• TrackActivity

• TrackCustom

Run the Tracking.sql script in the Create Scripts folder and these four tables will be created.

http://

CHAPTER 13 ■ TRACKING

242

Open the LeadData.dbml file, which should display the O/R Designer. In the Server Explorer, expand
the Chapter13 data connection to get the list of tables in the database. (If the tracking tables are not
listed, right-click the data connection and choose Refresh.) Drag these four tables to the O/R Designer.
The diagram should look like the one shown in Figure 13-6.

Figure 13-6. The O/R DesignerO/R Designer

■ Note You might get a warning telling you that the data connection you’re using is different from the one initially
used by the O/R Designer because you initially created the LeadData.dbml file in Chapter 11 and used the
Chapter11 data connection. The warning asks if you want to update the connection used by the designer. You
should choose Yes.

http://

CHAPTER 13 ■ TRACKING

243

Implementing the SqlTrackingParticipant
In the Solution Explorer, right-click the Extensions folder and choose Add ➤ Class. For the class name,
enter SqlTrackingParticipant.cs. The implementation for this class is shown in Listing 13-4.

Listing 13-4. Implementation of the SqlTrackingParticipant Class

using System;
using System.Activities.Tracking;
using System.Collections.Generic;
using System.Text;
using System.Data.Linq;

namespace LeadGenerator
{
 public class SqlTrackingParticipant : TrackingParticipant
 {
 private string _connectionString { get; set; }
 private const String participantName = "SqlTrackingParticipant";

 public SqlTrackingParticipant(string connectionString)
 {
 _connectionString = connectionString;
 }

 protected override void Track(TrackingRecord record, TimeSpan timeout)
 {
 WorkflowInstanceRecord instanceTrackingRecord =
 record as WorkflowInstanceRecord;
 if (instanceTrackingRecord != null)
 {
 TrackInstance t = new TrackInstance();

 t.WorkflowID = instanceTrackingRecord.InstanceId;
 t.Status = instanceTrackingRecord.State;
 t.EventDate = DateTime.UtcNow;

 // Insert a record into the TrackInstance table
 LeadDataDataContext dc =
 new LeadDataDataContext(_connectionString);
 dc.TrackInstances.InsertOnSubmit(t);
 dc.SubmitChanges();
 }

 BookmarkResumptionRecord bookTrackingRecord =
 record as BookmarkResumptionRecord;

 if (bookTrackingRecord != null)
 {
 TrackBookmark t = new TrackBookmark();

http://

CHAPTER 13 ■ TRACKING

244

 t.WorkflowID = bookTrackingRecord.InstanceId;
 t.BookmarkName = bookTrackingRecord.BookmarkName;
 t.EventDate = DateTime.UtcNow;

 // Insert a record into the TrackBookmark table
 LeadDataDataContext dc =
 new LeadDataDataContext(_connectionString);
 dc.TrackBookmarks.InsertOnSubmit(t);
 dc.SubmitChanges();
 }

 ActivityStateRecord activityStateRecord =
 record as ActivityStateRecord;
 if (activityStateRecord != null)
 {
 TrackActivity t = new TrackActivity();

 t.ActivityName = activityStateRecord.Activity.Name;
 t.WorkflowID = activityStateRecord.InstanceId;
 t.Status = activityStateRecord.State;
 t.EventDate = DateTime.UtcNow;

 // Concatenate all the variables into a string
 IDictionary<String, object> variables =
 activityStateRecord.Variables;
 StringBuilder s = new StringBuilder();

 if (variables.Count > 0)
 {
 foreach (KeyValuePair<string, object> v in variables)
 {
 s.AppendLine(String.Format("{0}: Value = [{1}]",
 v.Key, v.Value));
 }
 }

 // Store the variables string
 t.Variables = s.ToString();

 // Insert a record into the TrackActivity table
 LeadDataDataContext dc =
 new LeadDataDataContext(_connectionString);
 dc.TrackActivities.InsertOnSubmit(t);
 dc.SubmitChanges();
 }

 CustomTrackingRecord customTrackingRecord =
 record as CustomTrackingRecord;

 if (customTrackingRecord != null)
 {

http://

CHAPTER 13 ■ TRACKING

245

 TrackCustom t = new TrackCustom();

 t.WorkflowID = customTrackingRecord.InstanceId;
 t.CustomEventName = customTrackingRecord.Name;
 t.EventDate = DateTime.UtcNow;

 // Concatenate all the user data into a string
 string s = "";
 if ((customTrackingRecord != null) &&
 (customTrackingRecord.Data.Count > 0))
 {
 foreach (string data in customTrackingRecord.Data.Keys)
 {
 if (s.Length > 1)
 s += "\r\n";
 s += String.Format("{0}: Value = [{1}]", data,
 customTrackingRecord.Data[data]);
 }
 }
 t.UserData = s;

 // Insert a record into the TrackUser table
 LeadDataDataContext dc =
 new LeadDataDataContext(_connectionString);
 dc.TrackCustoms.InsertOnSubmit(t);
 dc.SubmitChanges();
 }
 }
 }
}

As with the ListBoxTrackingParticipant, this class overrides the Track() method. A generic

TrackingRecord is passed in to this method. It is then cast to the each of the four record types:
WorkflowInstanceRecord, BookmarkResumptionRecord, ActivityStateRecord, and CustomTrackingRecord. If
the cast succeeds, the subsequent code creates the corresponding LINQ class (TrackInstance,
TrackBookmark, TrackActivity, or TrackCustom, respectively) that is then inserted into the database.

Configuring the Tracking Participant
Open the AddLead.xaml.cs file and add the following class member, which will hold a reference to the
new tracking participant:

private SqlTrackingParticipant _sqlTracking;

Add the following code to the Loaded event handler. This calls the method that you will write to

create and configure the SqlTrackingParticipant:

CreateSqlTrackingParticipant();

http://

CHAPTER 13 ■ TRACKING

246

Now add the following code to the SetupInstance() method, which adds this extension to the
workflow instance:

i.Extensions.Add(_sqlTracking);

Finally, add the CreateSqlTrackingParticipant() method using the code shown in Listing 13-5.

Listing 13-5. Implementation of the CreateSqlTrackingParticipant() Method

private void CreateSqlTrackingParticipant()
{
 _sqlTracking = new SqlTrackingParticipant(_connectionString)
 {
 TrackingProfile = new TrackingProfile()
 {
 Name = "SqlTrackingProfile",
 Queries =
 {
 new WorkflowInstanceQuery()
 {
 States = { "*" },
 },

 new BookmarkResumptionQuery()
 {
 Name = "*"
 },
 new ActivityStateQuery()
 {
 // Subscribe for track records from all activities
 // for all states
 ActivityName = "*",
 States = { "*" },
 },
 // For User data, track all events
 new CustomTrackingQuery()
 {
 Name = "*",
 ActivityName = "*"
 }
 }
 }
 };
}

This code should be familiar to you. It first creates the SqlTrackingParticipant class, passing the

connection string to the constructor. It then creates a TrackingProfile and adds four queries to this
profile.

http://

CHAPTER 13 ■ TRACKING

247

■ Caution If you are using different tracking profiles in the same workflow instance (as you did in this project), it
is important that you give them different values for the Name property. When an event occurs, the workflow
instance will obtain the profile using the Name property. If there are two profiles with the same Name, it might not
use the one you expected.

Running the Application
Press F5 to run the application. Create a lead and close the application. Press F5 to restart the
application. Select this lead and assign it to an agent. Then close the application.

From the Server Explorer, right click the TrackInstance table and choose Show Table Data. The data
should look similar to Figure 13-7.

Figure 13-7. Contents of the TrackInstance table

■ Note This is a good opportunity to explain the life cycle of a persisted workflow. The workflow instance was
Started when the Add Lead button was clicked. It then started executing activities until it came to the
WaitForInput activity. The instance then became Idle because the bookmark was blocking it. The
PersistableIdle event handler instructed the workflow to be Unloaded from memory. Later, when an agent was
assigned, the workflow was Resumed. The remaining activities were executed and the instance Completed.
Because the instance was now complete, it was Deleted from the persistent store.

You should check the contents of the other tables as well. Also, there are scripts in the Change
Scripts folder that you can use if you want to clear the database of existing instances.
DeleteTracking.sql truncates all the tracking tables. Truncate.sql truncates the Lead table as well as the
persistent store (the InstanceData table).

The complete implementation of AddLead.xaml.cs is shown in Listing 13-6.

http://

CHAPTER 13 ■ TRACKING

248

Listing 13-6. Complete Implementation of AddLead.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

using System.Activities;
using System.Activities.DurableInstancing;
using System.Runtime.DurableInstancing;
using System.Data.Linq;
using System.Configuration;
using System.Activities.Tracking;

namespace LeadGenerator
{
 /// <summary>
 /// Interaction logic for AddLead.xaml
 /// </summary>
 public partial class AddLead : Window
 {
 private string _connectionString = "";
 private InstanceStore _instanceStore;
 private DBExtension _dbExtension;
 private ListBoxTrackingParticipant _tracking;
 private EtwTrackingParticipant _etwTracking;
 private SqlTrackingParticipant _sqlTracking;

 public AddLead()
 {
 InitializeComponent();

 ApplicationInterface._app = this;
 }

 // Add a line of text to the Event Log
 private void AddEvent(string szText)
 {
 lstEvents.Items.Add(szText);
 }

 public ListBox GetEventListBox()
 {

http://

CHAPTER 13 ■ TRACKING

249

 return this.lstEvents;
 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 // Open the config file and get the connection string
 Configuration config =
 ConfigurationManager.OpenExeConfiguration
 (ConfigurationUserLevel.None);
 ConnectionStringsSection css =
 (ConnectionStringsSection)config.GetSection("connectionStrings");
 _connectionString =
 css.ConnectionStrings["LeadGenerator"].ConnectionString;

 _instanceStore = new SqlWorkflowInstanceStore(_connectionString);
 InstanceView view = _instanceStore.Execute
 (_instanceStore.CreateInstanceHandle(),
 new CreateWorkflowOwnerCommand(),
 TimeSpan.FromSeconds(30));
 _instanceStore.DefaultInstanceOwner = view.InstanceOwner;

 // Create the DBExtension
 _dbExtension = new DBExtension(_connectionString);

 // Set up the tracking participants
 CreateTrackingParticipant();
 CreateETWTrackingParticipant();
 CreateSqlTrackingParticipant();

 LoadExistingLeads();
 }

 private void btnAddLead_Click(object sender, RoutedEventArgs e)
 {
 // Setup a dictionary object for passing parameters
 Dictionary<string, object> parameters =
 new Dictionary<string, object>();
 parameters.Add("ContactName", txtName.Text);
 parameters.Add("ContactPhone", txtPhone.Text);
 parameters.Add("Interests", txtInterest.Text);
 parameters.Add("Notes", txtNotes.Text);
 parameters.Add("Rating", int.Parse(txtRating.Text));
 parameters.Add("Writer", new ListBoxTextWriter(lstEvents));

 WorkflowApplication i = new WorkflowApplication
 (new EnterLead(), parameters);

 // Setup persistence
 SetupInstance(i);

 i.Run();
 }

http://

CHAPTER 13 ■ TRACKING

250

 public void AddNewLead(Lead l)
 {
 this.lstLeads.Dispatcher.BeginInvoke
 (new Action(() => this.lstLeads.Items.Add(l)));
 }

 private void lstLeads_SelectionChanged(object sender, RoutedEventArgs e)
 {
 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 lblSelectedNotes.Content = l.Comments;
 lblSelectedNotes.Visibility = Visibility.Visible;
 if (l.Status == "Open")
 {
 lblAgent.Visibility = Visibility.Visible;
 txtAgent.Visibility = Visibility.Visible;
 btnAssign.Visibility = Visibility.Visible;
 }
 else
 {
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
 }
 else
 {
 lblSelectedNotes.Content = "";
 lblSelectedNotes.Visibility = Visibility.Hidden;
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
 }

 private void btnAssign_Click(object sender, RoutedEventArgs e)
 {
 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 Guid id = l.WorkflowID;

 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 l = dc.Leads.SingleOrDefault<Lead>(x => x.WorkflowID == id);
 if (l != null)
 {
 l.AssignedTo = txtAgent.Text;
 l.Status = "Assigned";
 dc.SubmitChanges();

http://

CHAPTER 13 ■ TRACKING

251

 // Clear the input
 txtAgent.Text = "";
 }

 // Update the grid
 lstLeads.Items[lstLeads.SelectedIndex] = l;
 lstLeads.Items.Refresh();

 WorkflowApplication i = new WorkflowApplication(new EnterLead());

 SetupInstance(i);
 i.Load(id);

 try
 {
 i.ResumeBookmark("GetAssignment", l);
 }
 catch (Exception e2)
 {
 AddEvent(e2.Message);
 }
 }
 }

 private void LoadExistingLeads()
 {
 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 IEnumerable<Lead> q = dc.Leads
 .Where<Lead>(x => x.Status == "Open" || x.Status == "Assigned");
 foreach (Lead l in q)
 {
 AddNewLead(l);
 }
 }

 private void SetupInstance(WorkflowApplication i)
 {
 // Setup the instance store
 i.InstanceStore = _instanceStore;

 // Setup the PersistableIdle event handler
 i.PersistableIdle = (waiea) => PersistableIdleAction.Unload;

 // Setup the connection string
 i.Extensions.Add(_dbExtension);

 // Display the accumulated comments
 i.Completed = (wacea) =>
 {

http://

CHAPTER 13 ■ TRACKING

252

 // Get the CommentExtension
 IEnumerable<CommentExtension> q =
 wacea.GetInstanceExtensions<CommentExtension>();

 // Add the comments to the event log
 if (q.Count() > 0)
 {
 string comments = "Comments: \r\n" +
 q.First<CommentExtension>().Comments;
 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add(comments)));
 }

 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add
 ("\r\nThe workflow has completed")));
 };

 // Set up tracking
 i.Extensions.Add(_tracking);
 i.Extensions.Add(_etwTracking);
 i.Extensions.Add(_sqlTracking);
 }

 private void CreateTrackingParticipant()
 {
 _tracking = new ListBoxTrackingParticipant(this.lstEvents)
 {
 TrackingProfile = new TrackingProfile()
 {
 Name = "ListBoxTrackingProfile",
 Queries =
 {
 // For instance data, only track the started and
 // completed events
 new WorkflowInstanceQuery()
 {
 States = { WorkflowInstanceStates.Started,
 WorkflowInstanceStates.Completed },
 },

 // For bookmark data, only track the GetAssignment event
 new BookmarkResumptionQuery()
 {
 Name = "GetAssignment"
 },

 // For activity data, track all states of the InvokeMethod
 new ActivityStateQuery()
 {

http://

CHAPTER 13 ■ TRACKING

253

 ActivityName = "InvokeMethod",
 States = { "*" },
 },

 // For User data, track all events
 new CustomTrackingQuery()
 {
 Name = "*",
 ActivityName = "*"
 }
 }
 }
 };
 }

 private void CreateETWTrackingParticipant()
 {
 _etwTracking = new EtwTrackingParticipant()
 {
 TrackingProfile = new TrackingProfile()
 {
 Name = "EtwTrackingProfile",
 Queries =
 {
 new CustomTrackingQuery()
 {
 Name = "*",
 ActivityName = "*"
 }
 }
 }
 };
 }

 private void CreateSqlTrackingParticipant()
 {
 _sqlTracking = new SqlTrackingParticipant(_connectionString)
 {
 TrackingProfile = new TrackingProfile()
 {
 Name = "SqlTrackingProfile",
 Queries =
 {
 new WorkflowInstanceQuery()
 {
 States = { "*" },
 },

 new BookmarkResumptionQuery()
 {

http://

CHAPTER 13 ■ TRACKING

254

 Name = "*"
 },
 new ActivityStateQuery()
 {
 // Subscribe for track records from all activities
 // for all states
 ActivityName = "*",
 States = { "*" },
 },
 // For User data, track all events
 new CustomTrackingQuery()
 {

 Name = "*",
 ActivityName = "*"
 }
 }
 }
 };
 }
 }
}

http://

C H A P T E R 1 4

■ ■ ■

255

Transactions

In this chapter, you will learn how to enlist your workflow activities on the same database transaction to
ensure that updates are performed in a consistent manner.

Setting Up the Solution
You will reuse the project that you developed in Chapter 13. Start by creating a blank solution as shown
in Figure 14-1. For the solution name, enter Chapter14.

Figure 14-1. Creating a blank solution

http://

CHAPTER 14 ■ TRANSACTIONS

256

From Windows Explorer, copy the LeadGenerator folder from the Chapter13 folder to the Chapter14
folder. Back in Visual Studio, from the Solution Explorer, right-click the Chapter14 solution and choose
Add ➤ Existing Project. Select the LeadGenerator project that you just copied to the Chapter14 folder.

Create a Chapter14 database and run the following scripts to initialize the database schema:

• SqlWorkflowInstanceStoreSchema.sql

• SqlWorkflowInstanceStoreLogic.sql

• Lead.sql

• Tracking.sql

Open the app.config file and change the connectionString attribute to use the Chapter14 database.
Right-click the LeadGenerator project and choose Add Reference. In the .NET tab, add the
System.Transaction assembly.

Assignments
In the previous chapters, the user data consisted of a single table: Lead. When an agent was assigned to a
lead, the AssignedTo column was populated with the agent’s name. In this chapter you’ll add an
Assignment table so additional details about the assignment can be stored as well. The Lead.sql that you
just executed created both the Lead and Assignment tables. It also set up a foreign key relationship
between these two tables.

Adding the LINQ to SQL Class
Open the LeadData.dbml file, which should display the O/R Designer. In the Server Explorer, expand the
Chapter14 data connection. Drag the Assignment table to the design surface. The designer should look
like the one shown in Figure 14-2.

http://

CHAPTER 14 ■ TRANSACTIONS

257

Figure 14-2. O/R Designer with the added Assignment table

The connection between the Assignment and Lead tables is because of the foreign key relationship
that was set up in the database schema. By default, the O/R Designer creates a two-way association. The
Assignment class will have a property to reference the associated Lead object. The Lead class will also have
a property that is a collection of Assignment objects.

For this project you do not want the Lead class to have a collection of Assignment objects. Because
the Lead class is used as a variable in the workflow definition, when the workflow is persisted, the Lead
class will be serialized and written to the InstancesTable. The Assignment collection is not serializable,
and this will generate errors.

To resolve it, click the association link in the O/R Designer. In the Properties window, select the
Child Property and set its value to False, as shown in Figure 14-3.

http://

CHAPTER 14 ■ TRANSACTIONS

258

Figure 14-3. The Properties window of a LINQ Association

AssignLead Activity
In the current application, when an agent is assigned, the application updates the Lead table to store the
agent’s name. This is implemented in the btnAssign_Click event handler. Now you’ll move it to a
custom activity.

From the Solution Explorer, right-click the Activities folder of the LeadGenerator project and choose
Add ➤ Class. For the class name, enter AssignLead.cs. The implementation for this class is shown in
Listing 14-1.

Listing 14-1. Implementation of the AssignLead activity

using System;
using System.Activities;
using System.Configuration;
using System.Activities.Tracking;
using System.Linq;
using System.Data.Linq;
using System.Transactions;

namespace LeadGenerator
{
 /***/
 // This custom activity assigns Lead to the specified
 // person (AssignedTo parameter). The updated Lead is
 // returned in the output parameter.
 /***/
 public sealed class AssignLead : NativeActivity
 {
 public InArgument<string> AssignedTo { get; set; }
 public OutArgument<Lead> Lead { get; set; }

 protected override void Execute(NativeActivityContext context)
 {

http://

CHAPTER 14 ■ TRANSACTIONS

259

 // Get the connection string
 DBExtension ext = context.GetExtension<DBExtension>();
 if (ext == null)
 throw new InvalidProgramException("No connection string available");

 // Query the Lead table
 LeadDataDataContext dc = new LeadDataDataContext(ext.ConnectionString);
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 Lead l = dc.Leads.SingleOrDefault<Lead>
 (x => x.WorkflowID == context.WorkflowInstanceId);

 if (l == null)
 throw new InvalidProgramException
 ("The Lead was not found in the database");

 l.AssignedTo = AssignedTo.Get(context);
 l.Status = "Assigned";

 // Enlist on the current transaction
 RuntimeTransactionHandle rth = new RuntimeTransactionHandle();
 rth = context.Properties.Find(rth.ExecutionPropertyName)
 as RuntimeTransactionHandle;
 if (rth != null)
 {
 Transaction t = rth.GetCurrentTransaction(context);
 dc.Connection.EnlistTransaction(t);
 }

 dc.SubmitChanges();

 // Store the request in the OutArgument
 Lead.Set(context, l);
 }
 }
}

The AssignLead activity takes an input argument, AssignedTo that specifies the name of the agent

being assigned. It provides an output argument, Lead, which is the updated Lead record.
The Execute() method uses the DBExtension to get the correct connection string (refer to Chapter 12

for an explanation). It then queries the Lead table to get the current record. Notice that there is no input
argument to indicate which lead is being assigned. The query can obtain the correct record by using the
WorkflowInstanceID that is provided in the NativeActivityContext class.

■ Tip LINQ to SQL has a tendency to cache database records for better performance. To ensure that you get the
current data, the Refresh() method of the data context class is called.

http://

CHAPTER 14 ■ TRANSACTIONS

260

The AssignedTo and Status properties are then updated, and the changes are written to the
database.

RuntimeTransactionHandle
Before the changes are committed, however, the Execute() method checks to see whether there is a
transaction defined in this context. It does this by using the RuntimeTransactionHandle class. The
Properties property of the NativeActivityContext contains a collection of execution properties. If there
is an ambient transaction defined for this context, it will be included in this collection.

The ExecutionPropertyName property of the RuntimeTransactionHandle class defines the name of the
transaction handle. This is passed to the Find() method. The result from the Find() method is cast as a
RuntimeTransactionHandle.

If the RuntimeTransactionHandle was found, the transaction is obtained and passed to the data
context class using the Enlist() method. When this happens, the database changes are written to the
database but not committed yet. They will be committed when all the updates in this transaction have
completed. If there is a subsequent failure, the transaction, including these updates, will be rolled back.

CreateAssignment Activity
Now you’ll create a custom activity to create an Assignment class. This will be similar to the CreateLead
activity that you created in Chapter 11. In addition to creating the Assignment class, it will also insert a
record in the Assignment table.

From the Solution Explorer, right-click the Activities folder and choose Add ➤ Class. For the class
name, enter CreateAssignment.cs. The implementation for this activity is shown in Listing 14-2.

Listing 14-2. Implementation of the CreateAssignment Activity

using System;
using System.Activities;
using System.Activities.Tracking;
using System.Linq;
using System.Data.Linq;
using System.Transactions;

namespace LeadGenerator
{
 /***/
 // This custom activity creates an Assignment class
 // using the input parameters (LeadID and AsignedTo).
 /***/
 public sealed class CreateAssignment : NativeActivity
 {
 public InArgument<int> LeadID { get; set; }
 public InArgument<string> AssignedTo { get; set; }

 protected override void Execute(NativeActivityContext context)
 {

http://

CHAPTER 14 ■ TRANSACTIONS

261

 // Get the connection string
 DBExtension ext = context.GetExtension<DBExtension>();
 if (ext == null)
 throw new InvalidProgramException("No connection string available");

 // Create a data context
 LeadDataDataContext dc = new LeadDataDataContext(ext.ConnectionString);

 // Enlist on the current transaction
 RuntimeTransactionHandle rth = new RuntimeTransactionHandle();
 rth = context.Properties.Find(rth.ExecutionPropertyName)
 as RuntimeTransactionHandle;
 if (rth != null)
 {
 Transaction t = rth.GetCurrentTransaction(context);

 // Open the connection, if necessary
 if (dc.Connection.State == System.Data.ConnectionState.Closed)
 dc.Connection.Open();

 dc.Connection.EnlistTransaction(t);
 }

 // Create an Assignment class and populate its properties
 Assignment a = new Assignment();
 dc.Assignments.InsertOnSubmit(a);

 a.WorkflowID = context.WorkflowInstanceId;
 a.LeadID = LeadID.Get(context);
 a.DateAssigned = DateTime.Now;
 a.AssignedTo = AssignedTo.Get(context);
 a.Status = "Assigned";
 a.DateDue = DateTime.Now + TimeSpan.FromDays(5);

 dc.SubmitChanges();
 }
 }
}

The CreateAssignment activity takes two input arguments: LeadID, which defines the ID of the lead

being assigned, and AssignedTo, which is the name of the agent it is being assigned to. The Execute()
method gets the connection string from the DBExtension and creates a data context. It then enlists on the
ambient transaction if there is one, just as you did with the AssignLead activity.

■ Caution Before you can enlist a data context, the connection to the database must be opened first. In the
AssignLead activity, the Execute() method had to first query the database so the connection was already open.
In this activity, you’ll need to check and open the connection, if necessary, before calling the Enlist() method.

http://

CHAPTER 14 ■ TRANSACTIONS

262

The Execute() method then creates an Assignment class, populates its properties, and submits the
changes. Just like with the AssignLead activity, if there is a transaction in the context, these changes are
not committed until the whole transaction has finished.

Application Changes
Now you’ll need to make some adjustments to the application code to work correctly with this new design.

Updating the List of Leads
In the current application, when the Assign button is clicked, the application updates the list to indicate
an agent has been assigned. Now you’ll modify this so the form is not updated until the workflow
indicates the changes have been committed.

Open the AddLead.xaml.cs file and add the UpdateControls() and UpdateLead() methods using the
code shown in Listing 14-3.

Listing 14-3. Implementation of the UpdateControls() and UpdateLead() Methods

private void UpdateControls(Lead l)
{
 lblSelectedNotes.Content = l.Comments;
 lblSelectedNotes.Visibility = Visibility.Visible;
 if (l.Status == "Open")
 {
 lblAgent.Visibility = Visibility.Visible;
 txtAgent.Visibility = Visibility.Visible;
 btnAssign.Visibility = Visibility.Visible;
 }
 else
 {
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
}

public void UpdateLead(Lead lead)
{
 // Find the row that matches this record
 int nSelected = -1;
 for (int i = 0; i < lstLeads.Items.Count; i++)
 {
 Lead l = lstLeads.Items[i] as Lead;
 if (l.LeadID == lead.LeadID)
 {
 nSelected = i;
 break;
 }
 }

http://

CHAPTER 14 ■ TRANSACTIONS

263

 // Update the grid
 if (nSelected >= 0)
 {
 lstLeads.Items[nSelected] = lead;
 lstLeads.Items.Refresh();

 UpdateControls(lead);
 }
}

The UpdateControls() method updates the controls to reflect the item in the ListView control that is

being selected. The UpdateLead() method finds the associated entry in the lstLeads control and updates
it using the Lead class passed in.

The lstLeast_SelectionChanged() event handler can be simplified by calling the new
UpdateControls() method. Update this method using the following code:

private void lstLeads_SelectionChanged(object sender, RoutedEventArgs e)
{
 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 UpdateControls(l);
 }
 else
 {
 lblSelectedNotes.Content = "";
 lblSelectedNotes.Visibility = Visibility.Hidden;
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
}

Open the ApplicationInterface.cs file and add the following method, which will be used by the

workflow to call the UpdateLead() method:

public static void UpdateLead(Lead l)
{
 if (_app != null)
 _app.lstLeads.Dispatcher.BeginInvoke(new Action(() => _app.UpdateLead(l)));
}

Removing Database Updates
Now you must remove some code from the btnAssign_Click() event handler in the AddLead.xaml.cs file.
The final implementation of this method is shown in Listing 14-4. Remove all code not listed here. Also,
the ResumeBookmark() method should now pass the agent’s name instead of the Lead class.

http://

CHAPTER 14 ■ TRANSACTIONS

264

Listing 14-4. Final Implementation of btnAssign_Click

private void btnAssign_Click(object sender, RoutedEventArgs e)
{
 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 Guid id = l.WorkflowID;

 WorkflowApplication i = new WorkflowApplication(new EnterLead());

 SetupInstance(i);
 i.Load(id);

 try
 {
 i.ResumeBookmark("GetAssignment", txtAgent.Text);
 }
 catch (Exception e2)
 {
 AddEvent(e2.Message);
 }
 }
}

Adding Workflow Event Handlers
Add the following code to the SetupInstance() method. It displays any exceptions that might be
generated by the workflow, which will help if you need to troubleshoot any issues.

// Display any unhandled exceptions
i.OnUnhandledException = (waueea) =>
{
 this.lstEvents.Dispatcher.BeginInvoke(new Action(() =>
 this.lstEvents.Items.Add(waueea.UnhandledException.Message)));
 return UnhandledExceptionAction.Terminate;
};

// Display an error when an instance is aborted
i.Aborted = (waaea) =>
{
 this.lstEvents.Dispatcher.BeginInvoke(new Action(() =>
 this.lstEvents.Items.Add("Aborted: " + waaea.Reason.Message + "\n" +
 waaea.Reason.InnerException.Message)));
};

The complete implementation of AddLead.xaml.cs is shown in Listing 14-5.

http://

CHAPTER 14 ■ TRANSACTIONS

265

Listing 14-5. Complete Implementation of AddLead.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

using System.Activities;
using System.Activities.DurableInstancing;
using System.Runtime.DurableInstancing;
using System.Data.Linq;
using System.Configuration;
using System.Activities.Tracking;

namespace LeadGenerator
{
 /// <summary>
 /// Interaction logic for AddLead.xaml
 /// </summary>
 public partial class AddLead : Window
 {
 private string _connectionString = "";
 private InstanceStore _instanceStore;
 private DBExtension _dbExtension;
 private ListBoxTrackingParticipant _tracking;
 private EtwTrackingParticipant _etwTracking;
 private SqlTrackingParticipant _sqlTracking;

 public AddLead()
 {
 InitializeComponent();

 ApplicationInterface._app = this;
 }

 // Add a line of text to the Event Log
 private void AddEvent(string szText)
 {
 lstEvents.Items.Add(szText);
 }

 public ListBox GetEventListBox()

http://

CHAPTER 14 ■ TRANSACTIONS

266

 {
 return this.lstEvents;
 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 // Open the config file and get the connection string
 Configuration config =
 ConfigurationManager.OpenExeConfiguration
 (ConfigurationUserLevel.None);
 ConnectionStringsSection css =
 (ConnectionStringsSection)config.GetSection("connectionStrings");
 _connectionString
 = css.ConnectionStrings["LeadGenerator"].ConnectionString;

 _instanceStore = new SqlWorkflowInstanceStore(_connectionString);
 InstanceView view = _instanceStore.Execute
 (_instanceStore.CreateInstanceHandle(),
 new CreateWorkflowOwnerCommand(),
 TimeSpan.FromSeconds(30));
 _instanceStore.DefaultInstanceOwner = view.InstanceOwner;

 // Create the DBExtension
 _dbExtension = new DBExtension(_connectionString);

 // Set up the tracking participants
 CreateTrackingParticipant();
 CreateETWTrackingParticipant();
 CreateSqlTrackingParticipant();

 LoadExistingLeads();
 }

 private void btnAddLead_Click(object sender, RoutedEventArgs e)
 {
 // Setup a dictionary object for passing parameters
 Dictionary<string, object> parameters =
 new Dictionary<string, object>();
 parameters.Add("ContactName", txtName.Text);
 parameters.Add("ContactPhone", txtPhone.Text);
 parameters.Add("Interests", txtInterest.Text);
 parameters.Add("Notes", txtNotes.Text);
 parameters.Add("Rating", int.Parse(txtRating.Text));
 parameters.Add("Writer", new ListBoxTextWriter(lstEvents));

 WorkflowApplication i = new WorkflowApplication
 (new EnterLead(), parameters);

 // Setup persistence
 SetupInstance(i);

 i.Run();

http://

CHAPTER 14 ■ TRANSACTIONS

267

 }
 public void AddNewLead(Lead l)
 {
 this.lstLeads.Dispatcher.BeginInvoke
 (new Action(() => this.lstLeads.Items.Add(l)));
 }

 private void lstLeads_SelectionChanged(object sender, RoutedEventArgs e)
 {
 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 UpdateControls(l);
 }
 else
 {
 lblSelectedNotes.Content = "";
 lblSelectedNotes.Visibility = Visibility.Hidden;
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
 }

 private void btnAssign_Click(object sender, RoutedEventArgs e)
 {
 if (lstLeads.SelectedIndex >= 0)
 {
 Lead l = (Lead)lstLeads.Items[lstLeads.SelectedIndex];
 Guid id = l.WorkflowID;

 WorkflowApplication i = new WorkflowApplication(new EnterLead());

 SetupInstance(i);
 i.Load(id);

 try
 {
 i.ResumeBookmark("GetAssignment", txtAgent.Text);
 }
 catch (Exception e2)
 {
 AddEvent(e2.Message);
 }
 }
 }

 private void LoadExistingLeads()
 {
 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);

http://

CHAPTER 14 ■ TRANSACTIONS

268

 IEnumerable<Lead> q = dc.Leads
 .Where<Lead>(x => x.Status == "Open" || x.Status == "Assigned");
 foreach (Lead l in q)
 {
 AddNewLead(l);
 }
 }

 private void SetupInstance(WorkflowApplication i)
 {
 // Setup the instance store
 i.InstanceStore = _instanceStore;

 // Setup the PersistableIdle event handler
 i.PersistableIdle = (waiea) => PersistableIdleAction.Unload;

 // Setup the connection string
 i.Extensions.Add(_dbExtension);

 // Display the accumulated comments
 i.Completed = (wacea) =>
 {
 // Get the CommentExtension
 IEnumerable<CommentExtension> q =
 wacea.GetInstanceExtensions<CommentExtension>();

 // Add the comments to the event log
 if (q.Count() > 0)
 {
 string comments = "Comments: \r\n" +
 q.First<CommentExtension>().Comments;
 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add(comments)));
 }

 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add
 ("\r\nThe workflow has completed")));
 };

 // Display any unhandled exceptions
 i.OnUnhandledException = (waueea) =>
 {
 this.lstEvents.Dispatcher.BeginInvoke(new Action(() =>
 this.lstEvents.Items.Add(waueea.UnhandledException.Message)));
 return UnhandledExceptionAction.Terminate;
 };

 // Display an error when an instance is aborted
 i.Aborted = (waaea) =>
 {

http://

CHAPTER 14 ■ TRANSACTIONS

269

 this.lstEvents.Dispatcher.BeginInvoke(new Action(() =>
 this.lstEvents.Items.Add("Aborted: " +
 waaea.Reason.Message + "\n" +
 waaea.Reason.InnerException.Message)));
 };

 // Set up tracking
 i.Extensions.Add(_tracking);
 i.Extensions.Add(_etwTracking);
 i.Extensions.Add(_sqlTracking);
 }

 private void UpdateControls(Lead l)
 {
 lblSelectedNotes.Content = l.Comments;
 lblSelectedNotes.Visibility = Visibility.Visible;
 if (l.Status == "Open")
 {
 lblAgent.Visibility = Visibility.Visible;
 txtAgent.Visibility = Visibility.Visible;
 btnAssign.Visibility = Visibility.Visible;
 }
 else
 {
 lblAgent.Visibility = Visibility.Hidden;
 txtAgent.Visibility = Visibility.Hidden;
 btnAssign.Visibility = Visibility.Hidden;
 }
 }

 public void UpdateLead(Lead lead)
 {
 // Find the row that matches this record
 int nSelected = -1;
 for (int i = 0; i < lstLeads.Items.Count; i++)
 {
 Lead l = lstLeads.Items[i] as Lead;
 if (l.LeadID == lead.LeadID)
 {
 nSelected = i;
 break;
 }
 }
 // Update the grid
 if (nSelected >= 0)
 {
 lstLeads.Items[nSelected] = lead;
 lstLeads.Items.Refresh();

 UpdateControls(lead);
 }
 }

http://

CHAPTER 14 ■ TRANSACTIONS

270

 private void CreateTrackingParticipant()
 {
 _tracking = new ListBoxTrackingParticipant(this.lstEvents)
 {
 TrackingProfile = new TrackingProfile()
 {
 Name = "ListBoxTrackingProfile",
 Queries =
 {
 // For instance data, only track the started
 // and completed events
 new WorkflowInstanceQuery()
 {
 States = { WorkflowInstanceStates.Started,
 WorkflowInstanceStates.Completed },
 },

 // For bookmark data, only track the GetAssignment event
 new BookmarkResumptionQuery()
 {
 Name = "GetAssignment"
 },

 // For activity data, track all states of the InvokeMethod
 new ActivityStateQuery()
 {
 ActivityName = "InvokeMethod",
 States = { "*" },
 },

 // For User data, track all events
 new CustomTrackingQuery()
 {
 Name = "*",
 ActivityName = "*"
 }
 }
 }
 };
 }

 private void CreateETWTrackingParticipant()
 {
 _etwTracking = new EtwTrackingParticipant()
 {
 TrackingProfile = new TrackingProfile()
 {
 Name = "EtwTrackingProfile",
 Queries =
 {
 new CustomTrackingQuery()

http://

CHAPTER 14 ■ TRANSACTIONS

271

 {
 Name = "*",
 ActivityName = "*"
 }
 }
 }
 };
 }

 private void CreateSqlTrackingParticipant()
 {
 _sqlTracking = new SqlTrackingParticipant(_connectionString)
 {
 TrackingProfile = new TrackingProfile()
 {
 Name = "SqlTrackingProfile",
 Queries =
 {
 new WorkflowInstanceQuery()
 {
 States = { "*" },
 },

 new BookmarkResumptionQuery()
 {
 Name = "*"
 },
 new ActivityStateQuery()
 {
 // Subscribe for track records from all activities
 // for all states
 ActivityName = "*",
 States = { "*" },
 },
 // For User data, track all events
 new CustomTrackingQuery()
 {

 Name = "*",
 ActivityName = "*"
 }
 }
 }
 };
 }
 }
}

http://

CHAPTER 14 ■ TRANSACTIONS

272

Workflow Changes
Now you’ll modify the workflow to use the new AssignLead and CreateAssignment activities. Open the
LeadGeneratorWF.cs file and add the following Variable. It should go at the beginning of the EnterLead
constructor in which the other Variable objects are defined.

Variable<string> assignedTo = new Variable<string> { Name = "assignedTo" };

You will also need to add this to the variable list declared in the body of the workflow as

demonstrated in the following code:

Variables = { lead, assignedTo },

Then replace the existing WaitForInput activity with the code shown in Listing 14-6.

Listing 14-6. Additional Workflow Activities

new WaitForInput<string>
{
 BookmarkName = "GetAssignment",
 Input = new OutArgument<string>(env => assignedTo.Get(env))
},
new TransactionScope
{
 Body = new Sequence
 {
 Activities =
 {
 new AssignLead
 {
 AssignedTo = new InArgument<string>(env => assignedTo.Get(env)),
 Lead = new OutArgument<Lead>(env => lead.Get(env)),
 },
 new Delay
 {
 Duration = TimeSpan.FromSeconds(20)
 },
 new CreateAssignment
 {
 AssignedTo = new InArgument<string>(env => assignedTo.Get(env)),
 LeadID = new InArgument<int>(env => lead.Get(env).LeadID),
 }
 }
 },
},
new InvokeMethod
{
 TargetType = typeof(ApplicationInterface),
 MethodName = "UpdateLead",
 Parameters =

http://

CHAPTER 14 ■ TRANSACTIONS

273

 {
 new InArgument<Lead>(env => lead.Get(env))
 }
},

The WaitForInput activity was modified to expect the agent’s name as a string instead of a Lead class.
This was necessary because the application is no longer updating the Lead class. At the time the
workflow is resumed, the Lead class does not have the AssignedTo property populated. Instead, the
application will provide the agent’s name and let the workflow update the Lead.

TransactionScope
The first activity you added was a TransactionScope. It has a single child activity that is a Sequence
activity. The Sequence activity has three child activities: the AssignLead and CreateAssignment custom
activities separated by a Delay activity.

A TransactionScope creates a database transaction that is stored in the NativeActivityContext so it
is available to all the child activities. You already coded the AssignLead and CreateAssignment activities
to use this transaction when making the database updates. The transaction is committed when all child
activities have completed.

The Delay activity is added so you can verify that the first update (by AssignLead) is not committed
until the insert (by CreateAssignment) is finished.

InvokeMethod
You have used the InvokeMethod activity before. This is how the workflow will inform that application
that the lead has been updated. In this scenario, it calls the UpdateLead() method that you just
implemented, passing in the updated Lead class.

The complete implementation of the LeadGeneratorWF class is shown in Listing 14-7

Listing 14-7. Final Implementation of the LeadGeneratorWF Class

using System;
using System.Activities;
using System.Activities.Statements;
using System.IO;

namespace LeadGenerator
{
 /***/
 // This file contains the definition of the EnterLead
 // workflow
 /***/
 public sealed class EnterLead : Activity
 {
 // Define the input and output arguments
 public InArgument<string> ContactName { get; set; }
 public InArgument<string> ContactPhone { get; set; }
 public InArgument<string> Interests { get; set; }

http://

CHAPTER 14 ■ TRANSACTIONS

274

 public InArgument<string> Notes { get; set; }
 public InArgument<int> Rating { get; set; }
 public InArgument<TextWriter> Writer { get; set; }

 public EnterLead()
 {
 // Define the variables used by this workflow
 Variable<Lead> lead = new Variable<Lead> { Name = "lead" };
 Variable<string> assignedTo = new Variable<string>
 { Name = "assignedTo" };

 // Define the SendRequest workflow
 this.Implementation = () => new Sequence
 {
 DisplayName = "EnterLead",
 Variables = { lead, assignedTo },
 Activities =
 {
 new CreateLead
 {
 ContactName = new InArgument<string>
 (env => ContactName.Get(env)),
 ContactPhone = new InArgument<string>
 (env => ContactPhone.Get(env)),
 Interests = new InArgument<string>
 (env => Interests.Get(env)),
 Notes = new InArgument<string>(env => Notes.Get(env)),
 Lead = new OutArgument<Lead>(env => lead.Get(env)),
 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Lead received [" + Rating.Get(env).ToString()
 + "]; waiting for assignment"),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 },
 new InvokeMethod
 {
 TargetType = typeof(ApplicationInterface),
 MethodName = "NewLead",
 Parameters =
 {
 new InArgument<Lead>(env => lead.Get(env))
 }
 },
 new AddComment
 {
 Comment = new InArgument<string>
 (env => "Lead has been created")
 },

http://

CHAPTER 14 ■ TRANSACTIONS

275

 new WaitForInput<string>
 {
 BookmarkName = "GetAssignment",
 Input = new OutArgument<string>(env => assignedTo.Get(env))
 },
 new TransactionScope
 {
 Body = new Sequence
 {
 Activities =
 {
 new AssignLead
 {
 AssignedTo = new InArgument<string>
 (env => assignedTo.Get(env)),
 Lead = new OutArgument<Lead>
 (env => lead.Get(env)),
 },
 new Delay
 {
 Duration = TimeSpan.FromSeconds(20)
 },
 new CreateAssignment
 {
 AssignedTo = new InArgument<string>
 (env => assignedTo.Get(env)),
 LeadID = new InArgument<int>
 (env => lead.Get(env).LeadID),
 }
 }
 },
 },
 new InvokeMethod
 {
 TargetType = typeof(ApplicationInterface),
 MethodName = "UpdateLead",
 Parameters =
 {
 new InArgument<Lead>(env => lead.Get(env))
 }
 },
 new AddComment
 {
 Comment = new InArgument<string>
 (env => "Lead is being assigned")
 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Lead assigned [" + Rating.Get(env).ToString()
 + "] to " + lead.Get(env).AssignedTo),

http://

CHAPTER 14 ■ TRANSACTIONS

276

 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))

 }
 }
 };
 }
 }
}

Running the Application
Now you’re ready to run the application. Other than the 20-second delay when you assign an agent, it
should work just like the solution from Chapter 13. You can demonstrate that both updates are
committed as an atomic unit by closing the application after you click the Assign button.

The Lead record is updated before the delay, but not committed until after the delay. If you close the
application during the delay, this update should be rolled back. Look at the data in the Lead table and
verify that the Status is still Open and the AssignedTo field is null. If you restart the application, you
should be able to select this lead and assign an agent.

■ Caution When a workflow instance is created or loaded from the persistence store, it is locked to prevent other
users from accessing it. Under normal circumstances, it is unlocked when the instance becomes idle (and is
unloaded from memory). If you close the application when an activity is in progress, the normal unlock sequence is
skipped. When you shut down the application and restart it, it might look like a different user to the workflow and
when you try to reload it, you’ll get an InstanceLockedException. The instance store will eventually release the
lock; you might have to wait a minute or so.

http://

C H A P T E R 1 5

■ ■ ■

277

Transactions with Persistence

In this chapter, you will modify the application to coordinate the database updates with the workflow
persistence so they are performed on the same database transaction. This will ensure that your
application tables are consistent with the instance data. You will provide extensions that override the
PersistenceParticipant class and update your application data when the workflow is persisted.

Setting Up the Solution
You will reuse the project that you developed in Chapter 14. Start by creating a blank solution, as shown
in Figure 15-1. For the solution name, enter Chapter15.

Figure 15-1. Creating a blank solution

http://

CHAPTER 15 ■ TRANSACTIONS WITH PERSISTENCE

278

From Windows Explorer, copy the LeadGenerator folder from the Chapter14 folder to the Chapter15
folder. Back in Visual Studio, from the Solution Explorer, right-click the Chapter15 solution and choose
Add ➤ Existing Project. Select the LeadGenerator project that you just copied to the Chapter15 folder.

Create a Chapter15 database and run the following scripts to initialize the database schema:

• SqlWorkflowInstanceStoreSchema.sql

• SqlWorkflowInstanceStoreLogic.sql

• Lead.sql

• Tracking.sql

Open the app.config file and change the connection string to use the Chapter15 database.

PersistenceParticipant
In Chapter 12, you created a CommentExtension that allowed you to append a comment string. The
comment was persisted along with the workflow instance data by inheriting from the
PersistenceParticipant class and overriding the CollectValues() and PublishValues() methods. You
will now use a similar approach in this chapter, but first, let’s review.

Persistence providers perform two basic operations:

• Save—when a workflow instance is persisted to a durable store

• Load—when a workflow instance is reloaded into memory

When one of these operations is being performed, the extensions included on the instance are
enumerated. The corresponding methods are called in any extension that is derived from the
PersistenceParticipant class.

The CollectValues() method in the CommentExtension returned the comment string to the
persistence provider. This was then passed back to the CommentExtension when the PublishValues()
method was called. Although this is a convenient way to persist custom data, the data is persisted as part
of the workflow state data. Now I’ll show you how this technique can be used to update application
tables (such as the Lead and Assignment tables you’re using).

PersistLead Extension
You will create a custom extension that will perform updates to the Lead table when the workflow is
persisted. From the Solution Explorer, right-click the Extensions folder (under the LeadGenerator
project) and choose Add ➤ Class. For the class name, enter PersistLead.cs. The implementation of this
class is shown in Listing 15-1.

http://

CHAPTER 15 ■ TRANSACTIONS WITH PERSISTENCE

279

Listing 15-1. Implementation of PersistLead.cs

using System;
using System.Activities.Persistence;
using System.Collections.Generic;
using System.Linq;
using System.Data.Linq;
using System.Transactions;
using System.Xml.Linq;

namespace LeadGenerator
{
 public class PersistLead : PersistenceParticipant
 {
 private string _connectionString;
 private IDictionary<Guid, Lead> _object;
 private IDictionary<Guid, string> _action;

 public PersistLead(string connectionString)
 {
 _connectionString = connectionString;

 _object = new Dictionary<Guid, Lead>();
 _action = new Dictionary<Guid, string>();
 }

 internal void AddLead(Lead l, string action)
 {
 _object.Remove(l.WorkflowID);
 _action.Remove(l.WorkflowID);

 _object.Add(l.WorkflowID, l);
 _action.Add(l.WorkflowID, action);
 }

 protected override void CollectValues
 (out IDictionary<XName, object> readWriteValues,
 out IDictionary<XName, object> writeOnlyValues)
 {
 // We're not actually providing data to the caller
 readWriteValues = null;
 writeOnlyValues = null;

 // See if there is any work to do...
 if (_object.Count > 0)
 {
 // Get the current transaction
 Transaction t = System.Transactions.Transaction.Current;

 // Setup the DataContext

http://

CHAPTER 15 ■ TRANSACTIONS WITH PERSISTENCE

280

 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);

 // Open the connection, if necessary
 if (dc.Connection.State == System.Data.ConnectionState.Closed)
 dc.Connection.Open();

 if (t != null)
 dc.Connection.EnlistTransaction(t);

 // Process each object in our work queue
 foreach (KeyValuePair<Guid, Lead> kvp in _object)
 {
 Lead l = kvp.Value as Lead;
 string action = _action[l.WorkflowID];

 // Perform the insert
 if (action == "Insert")
 {
 dc.Leads.InsertOnSubmit(l);
 }

 // Perform the update
 if (action == "Update")
 {
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 Lead lTmp = dc.Leads.SingleOrDefault<Lead>
 (x => x.WorkflowID == l.WorkflowID);

 if (lTmp != null)
 {
 lTmp.AssignedTo = l.AssignedTo;
 lTmp.Status = l.Status;
 }
 }
 }

 // Submit all the changes to the database
 dc.SubmitChanges();

 // Remove all objects since the changes have been submitted
 _object.Clear();
 _action.Clear();
 }
 }
 }
}

The PersistLead class has two Dictionary objects: the first stores the Lead objects that represent

records that need to be persisted, and the second stores the action that is required (Insert, Update, or Delete).
Both will use the same key, which is the workflow instance ID. These dictionaries represent the work that
is needed to be done; we’ll call this the work queue. The connection string is passed in to the constructor.
The AddLead() method is used by the application or the workflow to place items in the work queue.

http://

CHAPTER 15 ■ TRANSACTIONS WITH PERSISTENCE

281

■ Note The AddLead() method first calls Remove() to make sure that there isn’t a work item for this instance. A
typical scenario might be that a Lead record was modified and the updated record was placed in the work queue.
Then another update was made before the workflow was persisted. The second update supersedes the first
update, so we need to remove the first one.

Connecting to the Database
The current transaction is obtained from the static Transaction class. This will be the transaction
currently being used by the SqlWorkflowInstanceStore class. Then a DataContext class is created, which
was generated by the O/R Designer in the previous chapter. The connection string is passed in to the
constructor. The connection to the database is opened if it was not already open. Finally, if there is a
current transaction, it is passed to the DataContext using the EnlistTransaction() method.

Performing the Updates
The CollectValues() method then iterates the items in the work queue, obtaining both the Lead object
and the action to be taken. For Insert, the code simply passes the Lead object to the DataContext using
the InsertOnSubmit() method. For updates, it has to first query the record from the database and then
apply the updates from the Lead object in the work queue. In this project, once a Lead is inserted, the
only changes that are allowed are to assign it, so the code updates only the Status and AssignedTo
columns.

Once all the items in the work queue have been completed, the SubmitChanges() method is called to
make the updates. They will not be committed, however, until the entire persistence operation has
completed. The last step is to remove all the items from the work queue. Now that the work is done, they
can be removed. You don’t want to take action on them again the next time the instance is persisted.

■ Tip You are not actually returning any data items for the workflow to persist. The readWriteValues and
writeOnlyValues are simply set to null. Also, notice that the PublishValues() method is not overridden here
because we don’t expect any data to be provided.

Using the PersistLead Extension
Now you’ll need to change every place where the Lead table is being modified directly and use the
PersistLead extension instead. There are two custom activities that will require modification:
CreateLead and AssignLead.

http://

CHAPTER 15 ■ TRANSACTIONS WITH PERSISTENCE

282

Modifying the CreateLead Activity
Currently, the CreateLead activity inserts a Lead record into the database. Now, you’ll modify this activity
to use the PersistLead extension instead. Open the CreateLead.cs class in the Activities folder. The
modified implementation is shown in Listing 15-2.

Listing 15-2. Modified Implementation of CreateLead.cs

using System;
using System.Activities;
using System.Activities.Tracking;

namespace LeadGenerator
{
 /***/
 // This custom activity creates a Lead class using
 // the input parameters (ContactName, ContactPhone,
 // Interests and Notes). A Lead record is inserted
 // into the database and then this is returned in
 // the Lead output parameter.
 /***/
 public sealed class CreateLead : CodeActivity
 {
 public InArgument<string> ContactName { get; set; }
 public InArgument<string> ContactPhone { get; set; }
 public InArgument<string> Interests { get; set; }
 public InArgument<string> Notes { get; set; }
 public InArgument<string> ConnectionString { get; set; }
 public OutArgument<Lead> Lead { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 // Create a Lead class and populate it with the input arguments
 Lead l = new Lead();
 l.ContactName = ContactName.Get(context);
 l.ContactPhone = ContactPhone.Get(context);
 l.Interests = Interests.Get(context);
 l.Comments = Notes.Get(context);
 l.WorkflowID = context.WorkflowInstanceId;
 l.Status = "Open";

 // Add this to the work queue to be persisted later
 PersistLead persist = context.GetExtension<PersistLead>();
 persist.AddLead(l, "Insert");

 // Store the request in the OutArgument
 Lead.Set(context, l);

 // Add a custom track record
 CustomTrackingRecord userRecord = new CustomTrackingRecord("New Lead")

http://

CHAPTER 15 ■ TRANSACTIONS WITH PERSISTENCE

283

 {
 Data =
 {
 {"Name", l.ContactName},
 {"Phone", l.ContactPhone}
 }
 };

 // Emit the custom tracking record
 context.Track(userRecord);
 }
 }
}

The class is changed to remove all the code that performed the database update and replace it with

the following code:

PersistLead persist = context.GetExtension<PersistLead>();
persist.AddLead(l, "Insert");

This code gets the PersistLead extension and calls its AddLead() method. This will place this Lead

object on the work queue to be inserted when the instance is persisted.

Modifying the AssignLead Activity
Now make similar changes to the AssignLead activity. The modified implementation is shown in
Listing 15-3.

Listing 15-3. Modified Implementation of AssignLead.cs

using System;
using System.Activities;

namespace LeadGenerator
{
 /***/
 // This custom activity assigns a Lead to the specified
 // person (AssignedTo parameter). The updated Lead is
 // returned in the output parameter.
 /***/
 public sealed class AssignLead : CodeActivity
 {
 public InArgument<string> AssignedTo { get; set; }
 public InOutArgument<Lead> Lead { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 Lead l = Lead.Get(context);
 l.AssignedTo = AssignedTo.Get(context);

http://

CHAPTER 15 ■ TRANSACTIONS WITH PERSISTENCE

284

 l.Status = "Assigned";

 PersistLead persist = context.GetExtension<PersistLead>();
 persist.AddLead(l, "Update");

 // Store the request in the OutArgument
 Lead.Set(context, l);
 }
 }
}

PersistAssignment Extension
Now you’ll provide an extension for persisting the Assignment table. The implementation is very similar
to PersistLead. From the Solution Explorer, right-click the Extensions folder and choose Add ➤ Class.
For the class name, enter PersistAssignment.cs. The implementation is shown in Listing 15-4.

Listing 15-4. Implementation of PersistAssignment.cs

using System;
using System.Activities.Persistence;
using System.Collections.Generic;
using System.Linq;
using System.Data.Linq;
using System.Transactions;
using System.Xml.Linq;

namespace LeadGenerator
{
 public class PersistAssignment : PersistenceParticipant
 {
 private string _connectionString;
 private IDictionary<Guid, Assignment> _object;
 private IDictionary<Guid, string> _action;

 public PersistAssignment(string connectionString)
 {
 _connectionString = connectionString;

 _object = new Dictionary<Guid, Assignment>();
 _action = new Dictionary<Guid, string>();
 }

 internal void AddAssignment(Guid id, Assignment a, string action)
 {
 // Make sure there isn't one already here
 _object.Remove(id);
 _action.Remove(id);

http://

CHAPTER 15 ■ TRANSACTIONS WITH PERSISTENCE

285

 _object.Add(id, a);
 _action.Add(id, action);
 }

 protected override void CollectValues
 (out IDictionary<XName, object> readWriteValues,
 out IDictionary<XName, object> writeOnlyValues)
 {
 // We're not actually providing data to the caller
 readWriteValues = null;
 writeOnlyValues = null;

 // See if there is any work to do...
 if (_object.Count > 0)
 {
 // Get the current transaction
 Transaction t = System.Transactions.Transaction.Current;

 // Setup the DataContext
 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);

 // Open the connection, if necessary
 if (dc.Connection.State == System.Data.ConnectionState.Closed)
 dc.Connection.Open();

 if (t != null)
 dc.Connection.EnlistTransaction(t);

 // Process each object in our work queue
 foreach (KeyValuePair<Guid, Assignment> kvp in _object)
 {
 Assignment a = kvp.Value as Assignment;
 string action = _action[kvp.Key];

 // Perform the insert
 if (action == "Insert")
 {
 dc.Assignments.InsertOnSubmit(a);
 }

 // Perform the update
 if (action == "Update")
 {
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 Assignment aTmp = dc.Assignments
 .SingleOrDefault<Assignment>
 (x => x.WorkflowID == kvp.Key);

 if (aTmp != null)
 {
 aTmp.DateCompleted = a.DateCompleted;

http://

CHAPTER 15 ■ TRANSACTIONS WITH PERSISTENCE

286

 aTmp.Remarks = a.Remarks;
 aTmp.Status = a.Status;
 }
 }
 }

 // Submit all the changes to the database
 dc.SubmitChanges();

 // Remove all objects since the changes have been submitted
 _object.Clear();
 _action.Clear();
 }
 }
 }
}

The only difference in the way this extension was implemented is that the workflow instance ID is

passed in to the AddAssignment() method. This is necessary because the Assignment class does not store
the workflow instance ID like the Lead class does.

Using the PersistAssignment Extension
Open the CreateAssignment.cs file (in the Activities folder). Make the same modifications to this file that
you did for the CreateLead and AssignLead activities. The modified code is shown in Listing 15-5.

Listing 15-5. Modified Implementation of CreateAssignment.cs

using System;
using System.Activities;

namespace LeadGenerator
{
 /***/
 // This custom activity creates an Assignment class
 // using the input parameters (LeadID and AsignedTo).
 /***/
 public sealed class CreateAssignment : CodeActivity
 {
 public InArgument<int> LeadID { get; set; }
 public InArgument<string> AssignedTo { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 // Create an Assignment class and populate its properties
 Assignment a = new Assignment();

 a.WorkflowID = context.WorkflowInstanceId;
 a.LeadID = LeadID.Get(context);
 a.DateAssigned = DateTime.Now;

http://

CHAPTER 15 ■ TRANSACTIONS WITH PERSISTENCE

287

 a.AssignedTo = AssignedTo.Get(context);
 a.Status = "Assigned";
 a.DateDue = DateTime.Now + TimeSpan.FromDays(5);

 PersistAssignment persist = context.GetExtension<PersistAssignment>();
 persist.AddAssignment(context.WorkflowInstanceId, a, "Insert");
 }
 }
}

Application Changes
Open the AddLead.xaml.cs file and, in the SetupInstance() method, add the following code to assign
these extensions to the workflow instances:

// Setup persistence
i.Extensions.Add(new PersistLead(_connectionString));
i.Extensions.Add(new PersistAssignment(_connectionString));

Open the LeadGeneratorWF.cs file. For the AssignLead activity, the Lead argument has been changed
to an InOutArgment. Make the same change here as well.

Running the Application
Now you’re ready to run the application. It should work just like the application from the previous
chapter. There is one minor difference, however. There should be a 20-second delay between the
AssignLead and CreateAssignment activities. In the implementation used in Chapter 14, the Lead table is
updated before the delay but not committed until after. This means that the record is locked; if you try to
query the table, the query will wait until the lock is released.

You can try this by starting Visual Studio and opening the Chapter14 solution and starting the
application. Create a lead and assign it. During the 20-second delay, try running a query against the Lead
table. The query will wait until the application has committed the update before returning the data.

Now try the same thing with the Chapter 15 implementation. You’ll see that it returns right away; it
doesn’t reflect the assignment yet, but the record is not locked. This is because the database operation is
not actually performed until the workflow is persisted, which isn’t until after TransactionScopeActivity
has completed.

The obvious advantage of using this approach is that the application updates are consistent with the
workflow. This eliminates the possibility of the workflow marking an activity complete but the
application data not actually being saved (or vice versa). Another advantage is that the application
updates are all done at the same time. If there are multiple updates spread throughout the workflow, this
could lock the database while waiting for the other updates to be completed. With this approach, the
updates are queued up in the workflow and not actually applied until all processing has completed.

One aspect that is particularly nice about this approach is that all the database work is done in a
separate class. The workflow activities such as CreateLead and AssignLead do not perform any database
persistence. This allows you to focus on the business requirements when designing the workflow
without being concerned about database updates. The database updates are now logically and
physically attached to the process of persistence, rather than the workflow logic.

http://

C H A P T E R 1 6

■ ■ ■

289

WorkflowServiceHost

So far in this section, you built an application that is used to enter sales leads and assign them to a sales
agent. For the final chapter in this section, you’ll create a separate application that the agents can use to
view and update their leads.

Setting Up the Solution
You will reuse the solution that you developed in Chapter 15. Start by creating a blank solution, as shown
in Figure 16-1. For the solution name, enter Chapter16.

Figure 16-1. Creating a blank solution

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

290

From Windows Explorer, copy the LeadGenerator folder from the Chapter15 folder to the Chapter16
folder. In Visual Studio, from the Solution Explorer, right-click the Chapter16 solution and choose
Add ➤ Existing Project. Select the LeadGenerator project that you just copied to the Chapter16 folder.

Create a Chapter16 database and run the following scripts to initialize the database schema:

• SqlWorkflowInstanceStoreSchema.sql

• SqlWorkflowInstanceStoreLogic.sql

• Lead.sql

• Tracking.sql

Open the app.config file and change the connection string to use the Chapter16 database.

Adding LeadResponse
You’ll start by creating the new application called LeadResponse. From the Solution Explorer, right-click
the Chapter16 solution and choose Add ➤ New Project. In the Add New Project dialog, select the WPF
Application template and enter LeadResponse for the Name, as shown in Figure 16-2.

Figure 16-2. Adding the LeadResponse project

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

291

Renaming the Window
The template will generate a window form named MainWindow.xaml. Rename this file to
FollowUpLead.xaml. Open the App.xaml file and change the StartupUri attribute as follows:

StartupUri="FollowUpLead.xaml"

Then open the FollowUpLead.xaml.cs file and modify the class as follows (the modified lines are in bold):

namespace LeadResponse
{
 /// <summary>
 /// Interaction logic for FollowUpLead.xaml
 /// </summary>
 public partial class FollowUpLead : Window
 {
 public FollowUpLead()
 {
 InitializeComponent();
 }
 }
}

In the Solution Explorer, right-click the LeadResponse project and choose Add Reference. From the

.NET tab, add the following references:

• System.Activities

• System.Activities.DurableInstancing

• System.Configuration

• System.Data.Linq

• System.Runtime.DurableInstancing

• System.ServiceModel

• System.ServiceModel.Activities

• System.Transactions

You’ll also need to add a reference to the LeadGenerator project, which you’ll find in the Projects tab.

Defining the Window Form
Open the FollowUpLead.xaml file. Double-click the XAML tab and enter the code shown in Listing 16-1.

Listing 16-1. Implementation of FollowUpLead.xaml

<Window x:Class="LeadResponse.FollowUpLead"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

292

 Title="Lead Follow-Up" Height="518" Width="547"
 Loaded="Window_Loaded" Unloaded="Window_Unloaded">
 <Grid MinWidth="300" MinHeight="100" Width="514">
 <ListView x:Name="lstLeads" Margin="10,12,10,0" Height="145"
 VerticalAlignment="Top" ItemsSource="{Binding}"
 HorizontalContentAlignment="Center"
 SelectionChanged="lstLeads_SelectionChanged" >
 <ListView.View>
 <GridView>
 <GridViewColumn Header="Current Leads" Width="480">
 <GridViewColumn.CellTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Lead.ContactName}"
 Width="110"/>
 <TextBlock Text="{Binding Lead.ContactPhone}"
 Width="70"/>
 <TextBlock Text="{Binding Lead.Interests}"
 Width="130"/>
 <TextBlock Text="{Binding Status}"
 Width="70"/>
 <TextBlock Text="{Binding AssignedTo}"
 Width="100"/>
 </StackPanel>
 </DataTemplate>
 </GridViewColumn.CellTemplate>
 </GridViewColumn>
 </GridView>
 </ListView.View>
 </ListView>
 <Label Height="37" Margin="12,163,3,0"
 Name="lblSelectedNotes" VerticalAlignment="Top" Visibility="Hidden" />

 <Label Height="28" Margin="12,190,0,0" Width="60" Content="Assigned:"
 Name="lblAssigned" VerticalAlignment="Top"
 HorizontalAlignment="Left" HorizontalContentAlignment="Right" />
 <Label Height="28" Margin="12,220,0,0" Width="60" Content="Due:"
 Name="lblDue" VerticalAlignment="Top"
 HorizontalAlignment="Left" HorizontalContentAlignment="Right" />
 <Label Height="28" Margin="12,250,0,0" Width="60" Content="Complete:"
 Name="lblComplete" VerticalAlignment="Top"
 HorizontalAlignment="Left" HorizontalContentAlignment="Right" />

 <Label Height="28" Margin="82,190,0,0" Width="100"
 Name="lblDateAssigned" VerticalAlignment="Top"
 HorizontalAlignment="Left" />
 <Label Height="28" Margin="82,220,0,0" Width="100"
 Name="lblDateDue" VerticalAlignment="Top"
 HorizontalAlignment="Left" />
 <Label Height="28" Margin="82,250,0,0" Width="100"
 Name="lblDateCompleted" VerticalAlignment="Top"
 HorizontalAlignment="Left" />

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

293

 <Label Height="28" Margin="200,200,0,0" Width="60" Content="Remarks:"
 Name="lblRemarks" VerticalAlignment="Top" HorizontalAlignment="Left" />
 <TextBox Height="100" HorizontalAlignment="Stretch" Margin="200,220,10,0"
 Name="txtRemarks" VerticalAlignment="Top" />
 <Button Height="25" Margin="100,290,0,0" Name="btnComplete"
 VerticalAlignment="Top" HorizontalAlignment="Left" Width="90"
 Click="btnComplete_Click" >Complete</Button>

 <Label Height="27" HorizontalAlignment="Left" Margin="10,0,0,140"
 Name="lblEvent" VerticalAlignment="Bottom" Width="76">Event Log</Label>
 <ListBox Margin="12,0,5,12" Name="lstEvents" Height="135"
 VerticalAlignment="Bottom" FontStretch="Condensed" FontSize="10"
 FontFamily="Tahoma" />
 </Grid>
</Window>

Click the Design tab; the form should look like the one shown in Figure 16-3.

Figure 16-3. FollowUpLead form layout

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

294

Copying Classes from LeadGenerator
From Windows Explorer, copy the ListBoxTextWriter.cs file from the LeadGenerator folder to the
LeadResponse folder. Because this class relies on static properties, each application will need its own
copy. From the Solution Explorer, right-click the LeadResponse project and choose Add ➤ Existing Item.
Select this file from the LeadResponse folder (make sure that you do not use the file in the
LeadGenerator folder). Open the ListBoxTextWriter.cs file and change the Namespace to LeadResponse.

From Windows Explorer, move the CreateAssignment.cs file from the LeadGenerator\Activities
folder to the LeadResponse folder. Also, move the PersistAssignment.cs class from the
LeadGenerator\Extensions to the LeadResponse folder.

From the Solution Explorer, right-click the CreateAssignment.cs file in the Activities folder of the
LeadGenerator project and choose Delete. Do the same for the PersistAssignment.cs file in the
Extensions folder. Right-click the LeadResponse project and choose Add ➤ Existing Item. Then select the
CreateAssignment.cs and PersistAssignment.cs files from the LeadResponse folder. Open both files and
change the namespace from LeadGenerator to LeadResponse. Add the following namespace at the top of
each file:

using LeadGenerator;

The CreateAssignment activity will also need an additional output argument so the Assignment class
can be returned. Add the following code after the input arguments are defined:

public OutArgument<Assignment> Assignment { get; set; }

Then add the following code at the end of the Execute() method:

// Store the request in the OutArgument
Assignment.Set(context, a);

Open the AddLead.xaml.cs class on the LeadGenerator project. At the end of the SetupInstance()
method, remove the following code:

i.Extensions.Add(new PersistAssignment(_connectionString));

Implementing the Application
Listing 16-2 shows the complete implementation of the FollowUpLead.xaml.cs class. This follows the
same approach explained in the previous chapters, so I won’t go into much detail.

Listing 16-2. Implementation of FollowUpLead.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

295

using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

using System.Activities;
using System.Activities.DurableInstancing;
using System.Runtime.DurableInstancing;
using System.Data.Linq;
using System.Configuration;
using System.ServiceModel;
using System.ServiceModel.Activities;
using System.ServiceModel.Activities.Description;

using LeadGenerator;

namespace LeadResponse
{
 /// <summary>
 /// Interaction logic for FollowUpLead.xaml
 /// </summary>
 public partial class FollowUpLead : Window
 {
 private string _connectionString = "";
 private InstanceStore _instanceStore;
 private DBExtension _dbExtension;
 private System.ServiceModel.Activities.WorkflowServiceHost _wsh;

 public FollowUpLead()
 {
 InitializeComponent();

 LeadResponse.ApplicationInterface._app = this;
 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 // Open the config file and get the connection string
 Configuration config =
 ConfigurationManager.OpenExeConfiguration
 (ConfigurationUserLevel.None);
 ConnectionStringsSection css =
 (ConnectionStringsSection)config.GetSection("connectionStrings");
 _connectionString =
 css.ConnectionStrings["LeadResponse"].ConnectionString;

 _instanceStore = new SqlWorkflowInstanceStore(_connectionString);
 InstanceView view = _instanceStore.Execute
 (_instanceStore.CreateInstanceHandle(),

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

296

 new CreateWorkflowOwnerCommand(),
 TimeSpan.FromSeconds(30));
 _instanceStore.DefaultInstanceOwner = view.InstanceOwner;

 // Create the DBExtension
 _dbExtension = new DBExtension(_connectionString);

 // Create a service to handle incoming requests
 SetupHost();

 LoadExistingLeads();
 }

 private void SetupHost()
 {
 WorkflowService service = new WorkflowService
 {
 Name = "LeadResponse",
 Body = new WorkAssignment(),
 Endpoints =
 {
 new Endpoint
 {
 ServiceContractName="CreateAssignment",
 AddressUri = new Uri("http://localhost/CreateAssignment"),
 Binding = new BasicHttpBinding(),
 }
 }
 };

 // Create a WorkflowServiceHost that listens for incoming messages
 _wsh = new System.ServiceModel.Activities.WorkflowServiceHost(service);

 SqlWorkflowInstanceStoreBehavior instanceStoreBehavior
 = new SqlWorkflowInstanceStoreBehavior(_connectionString);
 instanceStoreBehavior.InstanceCompletionAction
 = InstanceCompletionAction.DeleteAll;
 instanceStoreBehavior.InstanceLockedExceptionAction
 = InstanceLockedExceptionAction.AggressiveRetry;
 _wsh.Description.Behaviors.Add(instanceStoreBehavior);

 WorkflowIdleBehavior wib = new WorkflowIdleBehavior();
 wib.TimeToUnload = TimeSpan.FromMilliseconds(100);
 _wsh.Description.Behaviors.Add(wib);

 _wsh.Description.Behaviors.Add
 (new DBExtensionBehavior(_connectionString));
 _wsh.Description.Behaviors.Add
 (new PersistAssignmentBehavior(_connectionString));

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

297

 // Open the service so it will listen for messages
 _wsh.Open();
 }

 private void Window_Unloaded(object sender, RoutedEventArgs e)
 {
 // Close the WorkflowServiceHost
 _wsh.Close();
 }

 private void LoadExistingLeads()
 {
 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);
 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Assignments);
 IEnumerable<Assignment> q = dc.Assignments
 .Where<Assignment>(x => x.Status == "Assigned" ||
 x.Status == "Completed");
 foreach (Assignment a in q)
 {
 AddAssignment(a);
 }
 }

 public void AddAssignment(Assignment a)
 {
 LeadDataDataContext dc = new LeadDataDataContext(_connectionString);

 dc.Refresh(RefreshMode.OverwriteCurrentValues, dc.Leads);
 Assignment aTmp = dc.Assignments
 .SingleOrDefault<Assignment>
 (x => x.AssignmentID == a.AssignmentID);

 if (aTmp != null)
 this.lstLeads.Items.Add(aTmp);
 }

 private void btnComplete_Click(object sender, RoutedEventArgs e)
 {
 if (lstLeads.SelectedIndex >= 0)
 {
 Assignment a
 = lstLeads.Items[lstLeads.SelectedIndex] as Assignment;
 a.Remarks = txtRemarks.Text;
 Guid id = a.WorkflowID;

 // Reload the workflow instance
 WorkflowApplication i
 = new WorkflowApplication(new WorkAssignment());

 SetupInstance(i);
 i.Load(id);

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

298

 // Resume the instance from the last bookmark
 try
 {
 i.ResumeBookmark("GetCompletion", a);
 }
 catch (Exception e2)
 {
 AddEvent(e2.Message);
 }
 }
 }

 private void lstLeads_SelectionChanged(object sender, RoutedEventArgs e)
 {
 if (lstLeads.SelectedIndex >= 0)
 {
 Assignment a
 = lstLeads.Items[lstLeads.SelectedIndex] as Assignment;
 UpdateControls(a);
 }
 else
 {
 lblSelectedNotes.Content = "";
 lblSelectedNotes.Visibility = Visibility.Hidden;
 btnComplete.Visibility = Visibility.Hidden;
 txtRemarks.Visibility = Visibility.Hidden;
 }
 }

 public void UpdateAssignment(Assignment assignment)
 {
 // Find the row that matches this record
 int nSelected = -1;
 for (int i = 0; i < lstLeads.Items.Count; i++)
 {
 Assignment a = lstLeads.Items[i] as Assignment;
 if (a.AssignmentID == assignment.AssignmentID)
 {
 nSelected = i;
 break;
 }
 }

 // Update the grid
 if (nSelected >= 0)
 {
 lstLeads.Items[nSelected] = assignment;
 lstLeads.Items.Refresh();

 UpdateControls(assignment);
 }
 }

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

299

 private void UpdateControls(Assignment a)
 {
 lblSelectedNotes.Content = a.Lead.Comments;
 lblSelectedNotes.Visibility = Visibility.Visible;

 lblDateAssigned.Content = a.DateAssigned.ToShortDateString();

 if (a.DateDue.HasValue)
 lblDateDue.Content = a.DateDue.Value.ToShortDateString();
 else
 lblDateDue.Content = "";

 if (a.DateCompleted.HasValue)
 lblDateCompleted.Content
 = a.DateCompleted.Value.ToShortDateString();
 else
 lblDateCompleted.Content = "";

 txtRemarks.Visibility = Visibility.Visible;
 txtRemarks.Text = a.Remarks;

 if (a.Status == "Assigned")
 {
 btnComplete.Visibility = Visibility.Visible;
 txtRemarks.IsReadOnly = false;
 }
 else
 {
 btnComplete.Visibility = Visibility.Hidden;
 txtRemarks.IsReadOnly = true;
 }
 }

 private void SetupInstance(WorkflowApplication i)
 {
 // Setup the instance store
 i.InstanceStore = _instanceStore;

 // Setup the PersistableIdle event handler
 i.PersistableIdle = (waiea) => PersistableIdleAction.Unload;

 // Setup the connection string
 i.Extensions.Add(_dbExtension);

 i.Aborted = (waaea) =>
 {
 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add
 ("Aborted: " + waaea.Reason.Message)));
 };

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

300

 i.OnUnhandledException = (waueea) =>
 {
 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add
 (waueea.UnhandledException.Message)));
 return UnhandledExceptionAction.Terminate;
 };

 // Display the accumulated comments
 i.Completed = (wacea) =>
 {
 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add
 ("\r\nThe workflow has completed")));
 };

 i.Unloaded = (waea) =>
 {
 this.lstEvents.Dispatcher.BeginInvoke
 (new Action(() => this.lstEvents.Items.Add
 ("Workflow unloaded")));
 };

 i.Extensions.Add(new PersistAssignment(_connectionString));
 }

 // Add a line of text to the Event Log
 private void AddEvent(string szText)
 {
 lstEvents.Items.Add(szText);
 }

 public ListBox GetEventListBox()
 {
 return this.lstEvents;
 }
 }
}

WorkflowService
One part of this implementation is new: the SetupHost() method. The LeadResponse application will be
receiving messages from the LeadGenerator application. A special type of ServiceHost (called a
WorkflowServiceHost) is needed to listen for the WCF messages. When a message is received, a
WorkflowServiceHost initiates a workflow instance by using a WorkflowService. The implementation of
the WorkflowService should look familiar to you. The Body property specifies that the WorkAssignment
workflow should be started. (You will implement this a little later.) The Endpoint property indicates the
address, binding, and contract that define WCF endpoint.

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

301

■ Note The SetupInstance() method is still needed. When a lead is completed, the instance is loaded from the
instance store and resumed, just like the LeadGenerator application. So both methods must be supported.

Behaviors
In Chapters 11–15, you created a WorkflowApplication, configured the necessary extensions such as the
InstanceStore, and then started the workflow. With the LeadResponse application, the workflow
instance will be created by the WorkflowServiceHost in response to incoming messages. This brings up
an interesting question: how do you configure the extensions?

Fortunately, the answer is fairly simple. It is done by defining behaviors and adding them to the
WorkflowServiceHost. You can think of a behavior as a sort of extension factory. When a new workflow
instance is created, the WorkflowServiceHost goes through all its defined behaviors, generates and
configures the associated extension, and then adds it to the WorkflowApplication before it is started.

The standard extensions such as SqlWorkflowInstanceStore will provide the behavior
class—SqlWorkflowInstanceStoreBehavior in this case. Notice in the SetupHost() method, after the
SqlWorkflowInstanceStoreBehavior class is created, several of its properties are configured. The behavior
class should provide all the same configuration options as the extension itself.

You need to provide a behavior class for your custom extensions such as DBExtension and
PersistAssignment. By convention, the name of the behavior class should be the same as the extension
with the Behavior suffix added. The last part of the SetupHost() method is configuring behaviors for your
custom extensions. You will create them now.

DBExtensionBehavior
Open the DBExtension.cs file in the Extensions folder of the LeadGenerator project. You will now add the
behavior class. The complete implementation of this file is shown in Listing 16-3.

Listing 16-3. DBExtension and its Behavior Class

using System;
using System.ServiceModel;
using System.ServiceModel.Activities;
using System.ServiceModel.Channels;
using System.ServiceModel.Description;
using System.Collections.ObjectModel;

namespace LeadGenerator
{
 public class DBExtension
 {
 private string _connectionString = "";

 public DBExtension(string connectionString)
 {
 _connectionString = connectionString;
 }

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

302

 public string ConnectionString { get { return _connectionString; } }
 }

 public class DBExtensionBehavior : IServiceBehavior
 {
 private string _connectionString;

 public DBExtensionBehavior(string connectionString)
 {
 _connectionString = connectionString;
 }

 public virtual void ApplyDispatchBehavior
 (ServiceDescription serviceDescription, ServiceHostBase serviceHostBase)
 {
 WorkflowServiceHost workflowServiceHost
 = serviceHostBase as WorkflowServiceHost;
 if (null != workflowServiceHost)
 {
 DBExtension db = new DBExtension(_connectionString);
 workflowServiceHost.WorkflowExtensions.Add(db);
 }
 }

 public virtual void AddBindingParameters
 (ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase,
 Collection<ServiceEndpoint> endpoints,
 BindingParameterCollection bindingParameters)
 {
 }

 public virtual void Validate
 (ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase)
 {
 }
 }
}

The DBExtensionBehavior class implements the IServiceBehavior interface. It has three methods
that must be provided: ApplyDispatchBehavior(), AddBindingParameters(), and Validate(). The only
method we use in this scenario is ApplyDispatchBehavior(). (The other two are used for configuring and
validating the WCF endpoint.)

You can provide additional properties and methods that can be used to configure the behavior. In
this case, there is a _connectionString member that is passed in the constructor. When a DBExtension
class is created, this _connectionString is passed into its constructor.

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

303

PersistAssignmentBehavior
Open the PersistAssignment.cs file from the LeadResponse project. Add the following namespaces:

using System.ServiceModel;
using System.ServiceModel.Activities;
using System.ServiceModel.Channels;
using System.ServiceModel.Description;
using System.Collections.ObjectModel;

Add the PersistAssignmentBehavior class to this file using the code shown in Listing 16-4.

Listing 16-4 Implementation of the PersistAssignmentBehavior Class

public class PersistAssignmentBehavior : IServiceBehavior
{
 private string _connectionString;

 public PersistAssignmentBehavior(string connectionString)
 {
 _connectionString = connectionString;
 }

 public virtual void ApplyDispatchBehavior
 (ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase)
 {
 WorkflowServiceHost workflowServiceHost
 = serviceHostBase as WorkflowServiceHost;
 if (null != workflowServiceHost)
 {
 PersistAssignment persist
 = new PersistAssignment(_connectionString);
 workflowServiceHost.WorkflowExtensions.Add(persist);
 }
 }

 public virtual void AddBindingParameters
 (ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase,
 Collection<ServiceEndpoint> endpoints,
 BindingParameterCollection bindingParameters)
 {
 }

 public virtual void Validate
 (ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase)
 {
 }
}

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

304

The PersistAssignmentBehavior class works just like the DBExtensionBehavior class. The only
configurable property, the connection string, is passed in through the constructor.

Defining the Workflows
Next you will make some adjustments to the workflow to call the LeadResponse application. You will
also design another workflow for this application.

CompleteAssignment
You will need an additional custom activity to update an assignment to mark it complete. From the
Solution Explorer, right-click the LeadResponse project and choose Add ➤ Class. Enter the name as
CompleteAssignment.cs. The implementation of this class is shown in Listing 16-5.

Listing 16-5. Implementation of CompleteAssignment.cs

using System;
using System.Activities;
using LeadGenerator;

namespace LeadResponse
{
 /***/
 // This custom activity completes an Assignment.
 /***/
 public sealed class CompleteAssignment : CodeActivity
 {
 public InOutArgument<Assignment> Assignment { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 Assignment a = Assignment.Get(context);
 a.Status = "Completed";
 a.DateCompleted = DateTime.Now;

 PersistAssignment persist = context.GetExtension<PersistAssignment>();
 persist.AddAssignment(context.WorkflowInstanceId, a, "Update");

 // Store the request in the OutArgument
 Assignment.Set(context, a);
 }
 }
}

This activity uses the PersistAssignment extension to perform the actual database update.

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

305

EnterLead Workflow Modifications
Open the LeadGeneratorWF.cs file in the LeadGenerator project. You will add activities this to send a
message to the LeadResponse application. The modified implementation is shown in Listing 16-6; the
new or modified lines are shown in bold.

Listing 16-6. Implementation of LeadGeneratorWF.cs

using System;
using System.Activities;
using System.Activities.Statements;
using System.IO;
using System.ServiceModel;
using System.ServiceModel.Activities;

namespace LeadGenerator
{
 /***/
 // This file contains the definition of the EnterLead
 // workflow
 /***/
 public sealed class EnterLead : Activity
 {
 // Define the input and output arguments
 public InArgument<string> ContactName { get; set; }
 public InArgument<string> ContactPhone { get; set; }
 public InArgument<string> Interests { get; set; }
 public InArgument<string> Notes { get; set; }
 public InArgument<int> Rating { get; set; }
 public InArgument<TextWriter> Writer { get; set; }

 public EnterLead()
 {
 // Define the variables used by this workflow
 Variable<Lead> lead = new Variable<Lead> { Name = "lead" };
 Variable<string> assignedTo = new Variable<string>
 { Name = "assignedTo" };

 Send send = new Send
 {
 OperationName = "Assign",
 ServiceContractName = "CreateAssignment",
 Content = new SendParametersContent
 {
 Parameters =
 {
 {
 "leadID",
 new InArgument<int> (env => lead.Get(env).LeadID)
 },
 {

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

306

 "assignedTo",
 new InArgument<string>(env => assignedTo.Get(env))
 }
 }
 },
 EndpointAddress = new InArgument<Uri>
 (env => new Uri("http://localhost/CreateAssignment")),
 Endpoint = new Endpoint
 {
 Binding = new BasicHttpBinding()
 }
 };

 // Define the LeadGenerator workflow
 this.Implementation = () => new Sequence
 {
 DisplayName = "EnterLead",
 Variables = { lead, assignedTo },
 Activities =
 {
 new CreateLead
 {
 ContactName = new InArgument<string>
 (env => ContactName.Get(env)),
 ContactPhone = new InArgument<string>
 (env => ContactPhone.Get(env)),
 Interests = new InArgument<string>
 (env => Interests.Get(env)),
 Notes = new InArgument<string>(env => Notes.Get(env)),
 Lead = new OutArgument<Lead>(env => lead.Get(env)),
 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Lead received [" + Rating.Get(env).ToString()
 + "]; waiting for assignment"),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 },
 new InvokeMethod
 {
 TargetType = typeof(ApplicationInterface),
 MethodName = "NewLead",
 Parameters =
 {
 new InArgument<Lead>(env => lead.Get(env))
 }
 },
 new AddComment
 {
 Comment = new InArgument<string>

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

307

 (env => "Lead has been created")
 },
 new WaitForInput<string>
 {
 BookmarkName = "GetAssignment",
 Input = new OutArgument<string>(env => assignedTo.Get(env))
 },
 new AssignLead
 {
 AssignedTo = new InArgument<string>
 (env => assignedTo.Get(env)),
 Lead = new InOutArgument<Lead>(env => lead.Get(env)),
 },
 new CorrelationScope
 {
 Body = new Sequence
 {
 Activities =
 {
 send,
 new ReceiveReply
 {
 Request = send
 }
 }
 }
 },
 new InvokeMethod
 {
 TargetType = typeof(ApplicationInterface),
 MethodName = "UpdateLead",
 Parameters =
 {
 new InArgument<Lead>(env => lead.Get(env))
 }
 },
 new AddComment
 {
 Comment = new InArgument<string>
 (env => "Lead has been assigned")
 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Lead assigned [" + Rating.Get(env).ToString()
 + "] to " + lead.Get(env).AssignedTo),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 }
 }
 };

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

308

 }
 }
}

The Send activity is defined as a named class so it can be referenced by the corresponding ReceiveReply
activity. (You might want to refer to Chapter 8 for an explanation of Send and Receive activities.) It includes
two parameters, leadID and assignedTo, that are needed to create the Assignment record.

In the previous chapter, the AssignLead and CreateAssignment activities were included in a
TransactionScope activity. In this solution, the CreateAssignment activity will be performed by the
LeadResponse application and was removed from this workflow. The Send and ReceiveReply activities
are contained in a CorrelationScope activity (explained in Chapter 8).

■ Note The ReceiveReply activity has neither a Content nor a Parameters property. The purpose of this activity
is to wait for acknowledgment that the message was received. It does not expect any data to be provided. You
could remove this activity, and this workflow would complete without waiting for a response. Depending on your
design, it might be an appropriate solution.

WorkAssignment Workflow
Now you will define the workflow used by the LeadResponse application. From the Solution Explorer,
right-click the LeadResponse project and choose Add ➤ Class. For the Name, enter AssignmentWF.cs. The
implementation of this workflow is shown in Listing 16-7.

Listing 16-7. Implementation of AssignmentWF.cs

using System;
using System.Activities;
using System.Activities.Statements;
using System.IO;
using System.ServiceModel.Activities;
using System.ServiceModel;

using LeadGenerator;

namespace LeadResponse
{
 /***/
 //
 /***/
 public sealed class WorkAssignment : Activity
 {

 public InArgument<TextWriter> Writer { get; set; }

 public WorkAssignment()
 {

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

309

 // Define the variables used by this workflow
 Variable<int> leadID = new Variable<int> { Name = "leadID" };
 Variable<string> assignedTo = new Variable<string>
 { Name = "assignedTo" };
 Variable<Assignment> assignment = new Variable<Assignment>
 { Name = "assignment" };

 Receive receive = new Receive
 {
 OperationName = "Assign",
 ServiceContractName = "CreateAssignment",
 CanCreateInstance = true,
 Content = new ReceiveParametersContent
 {
 Parameters =
 {
 { "leadID", new OutArgument<int>(leadID) },
 { "assignedTo", new OutArgument<string>(assignedTo) }
 }
 }
 };

 // Define the Assignment workflow
 this.Implementation = () => new Sequence
 {
 DisplayName = "WorkAssignment",
 Variables = { assignment, leadID, assignedTo },
 Activities =
 {
 receive,
 new Delay
 {
 Duration = TimeSpan.FromSeconds(5)
 },
 new CreateAssignment
 {
 LeadID = new InArgument<int>(env => leadID.Get(env)),
 AssignedTo = new InArgument<string>
 (env => assignedTo.Get(env)),
 Assignment = new OutArgument<Assignment>
 (env => assignment.Get(env)),
 },
 new SendReply
 {
 Request = receive
 },
 new Persist
 {
 },
 new WriteLine
 {

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

310

 Text = new InArgument<string>
 (env => "Lead has been assigned to " +
 assignment.Get(env).AssignedTo),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 },
 new InvokeMethod
 {
 TargetType = typeof(ApplicationInterface),
 MethodName = "AddAssignment",
 Parameters =
 {
 new InArgument<Assignment>(env => assignment.Get(env))
 }
 },
 new WaitForInput<Assignment>
 {
 BookmarkName = "GetCompletion",
 Input = new OutArgument<Assignment>
 (env => assignment.Get(env))
 },
 new CompleteAssignment
 {
 Assignment = new InOutArgument<Assignment>
 (env => assignment.Get(env))
 },
 new InvokeMethod
 {
 TargetType = typeof(ApplicationInterface),
 MethodName = "UpdateAssignment",
 Parameters =
 {
 new InArgument<Assignment>(env => assignment.Get(env))
 }
 },
 new WriteLine
 {
 Text = new InArgument<string>
 (env => "Assignment has been completed"),
 TextWriter = new InArgument<TextWriter>
 (env => Writer.Get(env))
 },
 }
 };
 }
 }
}

The Receive activity is defined as a named class, so it can be referenced by the SendReply activity. As
expected, it has the same two parameters that were defined in the Send activity from the previous

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

311

workflow. The CanCreateInstance property is set to true; this is important because it allows the workflow
to start a new instance when the message is received.

I added a five-second delay after the Receive activity so you can verify that the LeadGenerator
application will wait for the response before completing. The CreateAssignment activity is then executed.
This is the same activity that you used in Chapter 15, except now it is executed from the LeadResponse
application. After the Assignment has been created, the reply is sent, and the first workflow can complete.

Persist
Next, the Persist activity is executed. Normally, the workflow is persisted when it becomes idle.
However, you can also use the Persist activity to force persistence to occur at other points in the
workflow. With this design, the application tables are updated only when the workflow is persisted. So
the CreateAssignment activity doesn’t actually insert into the Assignment table; the record won’t exist
until the workflow is persisted. The Persist activity is used here to ensure that the data is written to the
database before the remaining activities are executed.

■ Note There are places in the workflow where the Persist activity is not allowed. For example, you can’t use it
inside of a TransactionScope activity. If you try to execute a Persist activity in one of these places, an exception
will be thrown. Also, the NoPersistScope activity can be used to contain a sequence of activities. The workflow
will prevent persistence until the scope has been completed. This is useful if you have several activities that need
to be completed as a single unit and you don’t want anything persisted until they all complete. Obviously, if you
put a Persist activity inside a NoPersistScope activity, an exception will be thrown.

The remaining activities are similar to the approach used in the previous chapters. The
InvokeMethod activity is used to update the form to show the new assignment and the WaitForInput
activity waits for the agent to update it.

Final Application Changes
There are a few more changes that you’ll need to make before the application is ready.

ApplicationInterface
You will now add a static ApplicationInterface class to the LeadResponse application, which will be
similar to the one used in the LeadGenerator application. From the Solution Explorer, right-click the
LeadResponse project and choose Add ➤ Class. For the Name, enter ApplicationInterface.cs. The
implementation of this class is shown in Listing 16-8.

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

312

Listing 16-8. Implementation of ApplicationInterface

using System;
using System.IO;
using System.Windows.Controls;
using System.Activities;

namespace LeadResponse
{
 public static class ApplicationInterface
 {
 public static FollowUpLead _app { get; set; }

 public static void AddAssignment(LeadGenerator.Assignment a)
 {
 if (_app != null)
 _app.lstLeads.Dispatcher.BeginInvoke
 (new Action(() => _app.AddAssignment(a)));
 }

 public static void UpdateAssignment(LeadGenerator.Assignment a)
 {
 if (_app != null)
 _app.lstLeads.Dispatcher.BeginInvoke
 (new Action(() => _app.UpdateAssignment(a)));
 }

 public static TextWriter GetStatusWriter()
 {
 if (_app != null)
 return new ListBoxTextWriter(_app.GetEventListBox());
 else
 return null;
 }

 public static void AddEvent(String status)
 {
 if (_app != null)
 {
 GetStatusWriter().WriteLine(status);
 }
 }
 }
}

Adding the app.config File
From the Solution Explorer, right-click the LeadResponse project and choose Add ➤ New Item. Select
the Application Configuration File template from the General category. Enter the name as app.config, as
shown in Figure 16-4.

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

313

Figure 16-4. Adding the app.config file

Enter the following code in this file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 </configSections>
 <connectionStrings>
 <add name="LeadResponse"
 connectionString=
 "Data Source=localhost;Initial Catalog=Chapter16;Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
</configuration>

LINQ Conflict
When a workflow is persisted, the arguments and variables are serialized and then they are deserialized
when the workflow instance is loaded. The deserialization process can cause conflicts with the LINQ
classes when there are associated classes. In this case, the Assignment class has an associated Lead object
that is bound to the LeadID property. When the Assignment class is deserialized, an exception is thrown
because there is already an associated Lead object.

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

314

The easiest way around this is to simply comment out the line of code that throws the exception.
Open the LeadData.Designer.cs file in the LeadGenerator project. At the top of the code window, select
the LeadGenerator.Assignment class and the LeadID property. Comment out the throw statement as
shown in Figure 16-5.

Figure 16-5. Modifying the LeadID property

Running the Applications
From the Solution Explorer, right-click the Chapter16 solution and choose Set StartUp Projects. Select
the Multiple startup projects radio button and set the Action for both the LeadGenerator and
LeadResponse projects to be Start. Press F5 to start both applications.

In the LeadGenerator application, enter a lead and then assign it just as you did in the previous
chapters. An entry should appear in the LeadResponse application, as shown in Figure 16-6.

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

315

Figure 16-6. A new entry display in LeadResponse

Select this lead, and details such as the assigned and due dates will be displayed. Enter some notes
in the Remarks section and click the Complete button. The lead will be marked complete, and the form
should look like the one shown in Figure 16-7.

http://

CHAPTER 16 ■ WORKFLOWSERVICEHOST

316

Figure 16-7. Completed lead in LeadResponse

In the Solution Explorer, expand the Chapter16Data project, right-click the Assignment.dtq query, and
choose Open and Run. This should list the contents of the Assignment table, as shown in Figure 16-8.

Figure 16-8. The contents of the Assignment table

Review
In working through the projects in this section, you should have a good sense of how you can use
workflow extensions. Extensions provide the operating environment in which the activities are executed
in. Extensions can be created by the host application, the workflow activities, or (as you saw in this
chapter) by the WorkflowServiceHost. They provide a mechanism for sharing data with all the activities,
as was demonstrated by the DBExtension you developed in Chapter 12. Extensions usually provide the
mechanics of persisting and tracking, freeing up the workflow activities to focus on the business process.

http://

PART

■ ■ ■

Advanced Topics

In this section I’ll demonstrate some advanced features of WF such as Compensation,

Collections, and Policy. I will also show you how to use the Interop activity to execute

activities and workflows developed in previous versions of WF. As with the other projects in

this book, I’ll show you step by step how to create the applications using the tools provided

in Visual Studio 2010.

The implementation for some of these projects may seem a bit tedious because I wanted to

provide a significant enough solution for you to see the usefulness and application of the

feature. All the projects presented in this book are available for you to download by going to

this book’s page on http://www.apress.com. If you prefer, you can download the code instead of

entering it yourself.

Either way, I encourage you to work through these sample projects. If you’re like me, you

may be thinking that you now have the basics down and you’ll read these chapters later,

when you have a specific need. I think you’ll find them to be interesting and valuable for

developing enterprise-class solutions. Understanding how these features work will help you

design your next workflow-based solution.

5

http://

C H A P T E R 1 7

■ ■ ■

319

Compensation, Confirmation, and

Cancellation

When working with long-running workflows that can take hours or even days to complete, you often
need to handle the scenario in which something goes wrong and the workflow cannot be completed.
The activities that have already executed may need to be “undone” in some fashion. As part of the
workflow design, you should plan for these situations. In this chapter, you’ll use the techniques provided
by WF to incorporate the necessary cleanup activities into your workflow design.

The sample project will model the activities performed in planning a typical wedding such as
scheduling the church, reserving the reception facility, and sending the invitations. When the wedding is
called off, you’ll also execute the appropriate activities depending on the current progress of the event.
Open Visual Studio and create a new project, as shown in Figure 17-1. Use the Workflow Console
Application template. For the project name, enter Wedding, and use Chapter17 for the solution.

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

320

Figure 17-1. Creating a new workflow project

■ Note To save you some time, you can download a partial implementation of this solution from this book’s page
on the http://www.apress.com web site. Download the Chapter17_Partial.zip file, unzip it, and open the
Chapter17.sln file. Then follow along with the first part of this chapter. I’ll tell you where you’ll need to add the
remaining portions of this project.

Designing the Workflow
You’ll start by defining the normal workflow activities and add the error-handling logic later.

Modifying the Application
Open the Program.cs file and replace the generated code with the implementation shown in Listing 17-1.

Listing 17-1. Implementation of Program.cs

using System;
using System.Activities;

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

321

using System.Threading;

namespace Wedding
{

 class Program
 {
 static void Main(string[] args)
 {
 AutoResetEvent syncEvent = new AutoResetEvent(false);

 WorkflowApplication i = new WorkflowApplication(new Workflow1());

 i.OnUnhandledException = (waueea) =>
 {
 Console.WriteLine("{0} - {1}", waueea.UnhandledException.GetType(),
 waueea.UnhandledException.Message);
 return UnhandledExceptionAction.Cancel;
 };

 i.Completed = (wacea) => { syncEvent.Set(); };

 i.Run();

 syncEvent.WaitOne();

 Console.WriteLine("Press ENTER to exit");
 Console.ReadLine();
 }
 }

 public class CallItOffException : Exception
 {
 public CallItOffException()
 : base()
 {
 }

 public CallItOffException(string message)
 : base(message)
 {
 }
 }
}

The default action when an unhandled exception is thrown is to terminate the workflow. When this
occurs, the cancellation or compensation handlers are not executed. For this project, you must return
the Cancel action. This will stop the normal workflow processing, but will allow the cancellation and
compensation handlers to perform their defined activities. The WorkflowInvoker class does not give you
the ability to override the default action, so you must use the WorkflowApplication class. This file also
defines the CallItOffException class that will be used later when the wedding is cancelled:

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

322

Configuring a TryCatch Activity
Open the Workflow1.xaml file in design view. Drag a TryCatch activity onto the sequence. The designer
should look like the one shown in Figure 17-2. (You used the TryCatch activity in Chapter 6 if you want to
refer to it for more information.)

Figure 17-2. An empty TryCatch activity

Drag a Sequence activity to the Try section and set the DisplayName to Wedding Preparations. Click
the link that says “Add new catch” and then select “Browse for types” in the drop-down list. In the dialog,
expand the Wedding assembly and choose the CallItOffException class, as shown in Figure 17-3.

Figure 17-3. Selecting the exception to be caught

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

323

Drag a WriteLine activity to the Catches section where it says “Drop activity here”. For the Text property,
enter “Catch: ” + exception.Message. The designer should look like the one shown in Figure 17-4.

Figure 17-4. Completed TryCatch activity

■ Tip For the Text properties, you will begin the output text with a word that indicates where the activity was
executed from. In this case, it was the Catch activity. The remainder of the WriteLine activities will indicate
whether the activity was in the Body, Compensation, Confirmation, or Cancellation section. This will help you
analyze the results because there are numerous messages being generated.

Using a Parallel Activity
Expand the “Wedding Preparations” activity and drag a Parallel activity onto it. Set its DisplayName
property to Planning Activities. In this workflow, you’ll design three sequences of activities that will
execute simultaneously. Drag three CompensableActivity objects onto the Parallel activity and set their
DisplayName property to Wedding, Reception, and Invitation. The designer should look like the one
shown in Figure 17-5.

Figure 17-5. A Parallel activity with three CompensableActivity objects

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

324

CompensableActivity
Double-click the “Wedding” activity. You should have four sections, as shown in Figure 17-6.

Figure 17-6. An empty CompensableActivity

As you can see from Figure 17-6, a CompensableActivity allows you to define handlers for
compensation, confirmation, and cancellation. The Body section is the normal activity (or sequence of
activities) that are executed. If the Body activity must be cancelled before it has completed, the activity in
the Cancellation Handler section is executed. The activity in the Compensation Handler section is
executed, if necessary, to undo the work of the Body section if the Body has completed. The
Compensation Handler section is where you’ll define the activity (or sequence of activities) that should
be executed if subsequent workflow activities fail and the workflow is aborted. The activity in the
Confirmation Handler section is executed when the activity has been confirmed. By default,
confirmation happens automatically when the workflow instance has completed. You can place any
finalization activities here.

The following set of rules may help you remember when these handlers are executed:

• An activity can be compensated only if it has completed; in-process activities
cannot be compensated.

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

325

• The Cancellation Handler is automatically called if an activity must be cancelled
before it has completed.

• Completed activities are confirmed automatically when the workflow completes.

• Once confirmed, an activity cannot be compensated.

Designing the Wedding Activity
Drag a Sequence activity onto the Body section. Drag a WriteLine activity onto the sequence. Set the
DisplayName to Reserve Church and enter the Text property as “Body: The church has been reserved”.
Drag a Delay activity below “Reserve Church” and set the Duration to TimeSpan.FromSeconds(2). Next,
drag a WriteLine activity and set the DisplayName to Schedule Rehearsal and the Text property to “Body:
The rehearsal has been scheduled”. Drag a Delay activity below “Schedule Rehearsal” and set the
Duration to TimeSpan.FromSeconds(5). Finally, drag a WriteLine activity, set the DisplayName to Order
Flowers, and set the Text property to “Body: The flowers have been ordered”. The sequence should look
like the one shown in Figure 17-7.

Figure 17-7. Body sequence of the Wedding activity

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

326

In workflows like this, in which the activities are nested, the navigation bar at the top of the designer
is quite helpful. Your navigation bar should look similar to the one shown in Figure 17-8. Each of the
activities listed is a link that will expand the selected activity.

Figure 17-8. Workflow designer navigation bar

Collapse the Body section so you can see the overall CompensableActivity. So far, you have specified
the sequence for the Body section. Now drag a WriteLine activity to the Confirmation Handler section.
Set the Text property to “Confirmation: The wedding plans have been confirmed”. Drag a WriteLine
activity to the Cancellation Section and set the Text property to “Cancellation: The church reservation
has been released”. You’ll implement the Compensation Handler section later. The “Wedding” activity
should look like the one shown in Figure 17-9.

Figure 17-9. Partially completed CompensableActivity

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

327

Designing the Reception Activity
Click the “Planning Activities” activity on the navigation bar. Then double-click the “Reception” activity.
You should see an empty CompensableActivity. Drag a Sequence activity to the Body section.

Drag a WriteLine activity onto the Sequence. Set the DisplayName to Reserve Facility and enter the
Text property as “Body: The reception facility has been reserved”. Drag a Delay activity below “Reserve
Facility” and set the Duration property to TimeSpan.FromSeconds(3). Drag a WriteLine activity below
this, set the DisplayName to Menu, and enter the Text property as “Body: The menu has been decided”.
Drag another Delay activity below the “Menu” activity and set the Duration property to
TimeSpan.FromSeconds(1). Finally, drag a WriteLine activity below this, set the DisplayName to Pay
Deposit and enter the Text property as “Body: The reception deposit has been paid”. The designer
should look like the one shown in Figure 17-10.

Figure 17-10. Body sequence of the Reception activity

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

328

Designing Confirmation Activities
Collapse the Body section and drag a Sequence activity onto the Confirmation Handler section. Drag a
WriteLine activity onto the Sequence, set the DisplayName to Pay for Facility, and enter the Text property
as “Confirmation: The reception facility has been paid for”. Drag another WriteLine activity below “Pay
for Facility”, set the DisplayName to Display Confirmation, and enter the Text property as
“Confirmation: The reception activities have been confirmed”. The designer should look like the one
shown in Figure 17-11.

Figure 17-11. Confirmation sequence of the Reception activity

Notice in the “Reception” activity, you put a work item in the Confirmation Handler section (“Pay
for Facility”). By putting this here, it will not be executed until the workflow has completed. Should
something happen in the “Wedding” or “Invitations” activities and the workflow must be aborted, the
facility will not be paid for. This will delay the execution of the activity until everything else has
completed successfully and prevent paying for the facility when the event is called off.

Collapse the Confirmation section. Drag a WriteLine activity to the Cancellation Handler section
and enter the Text property as “Cancellation: The reception has been cancelled”.

Designing the Invitations Activity
Click “Planning Activities” in the navigation bar, which should display the Parallel activity that contains
the “Wedding”, “Reception”, and “Invitations” activities. Double-click the “Invitations” activity. Drag a
Sequence activity onto the Body section.

Drag a Delay activity onto the Sequence and set the Duration property to
TimeSpan.FromSeconds(4). Drag a WriteLine activity below this, set the DisplayName as Order
Stationary, and enter the Text property as “Body: The stationary has been ordered”. Drag another
Delay activity and set the Duration property to TimeSpan.FromSeconds(2). Drag a WriteLine activity

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

329

below this, set the DisplayName as Finalize List, and enter the Text property as “Body: The invite list has
been agreed to”. The designer should look like the one shown in Figure 17-12.

Figure 17-12. Body sequence of the Invitations activity

Designing the Confirmation Activities
Collapse the Body section and drag a Sequence activity to the Confirmation Handler section. Drag a
WriteLine activity to the Sequence, set the DisplayName as Mail Invitations, and enter the Text property
as “Confirmation: The invitations have been sent”. Drag another WriteLine activity below “Mail
Invitations”, set the DisplayName as Display Confirmation, and enter the Text property as
“Confirmation: The invitations activities have been confirmed”.

Notice that the invitations are not actually mailed until the workflow completes. Like paying for the
facility, you want to wait to mail the invitations until you know that the workflow activities have
completed successfully.

Collapse the Confirmation section and drag a WriteLine activity to the Cancellation Handler section
and enter the Text property as “Cancellation: The invitation activity has been cancelled”.

Click the “Wedding Preparations” activity in the navigation bar. This Sequence contains only the
“Planning Activities” activity. Drag a WriteLine activity below it and enter the Text property as “Main:
Congratulations! The wedding preparations are complete.”. The designer should look like the one
shown in Figure 17-13.

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

330

Figure 17-13. The Wedding Preparation activity

Running the Application
Press F5 to run the application. You should see results similar to the following:

Body: The reception facility has been reserved

Body: The church has been reserved

Body: The rehearsal has been scheduled

Body: The menu has been decided

Body: The reception deposit has been paid

Body: The stationary has been ordered

Body: The invite list has been agreed to

Body: The flowers have been ordered

Main: Congratulations! The wedding preparations are complete.

Confirmation: The wedding plans have been confirmed

Confirmation: The invitations have been sent

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

331

Confirmation: The invitation activities have been confirmed

Confirmation: The reception facility has been paid for

Confirmation: The reception activities have been confirmed

Press ENTER to exit

This represents the normal processing without any errors. Notice that the Body activities complete
first, followed by the Congratulations line, which is the last of the regular activities to execute. The
confirmation handlers are then executed.

■ Note If you started with the partial solution that is available from the website, you’ll need to make the rest of the
changes yourself.

Cancellation Handlers
Now, you’ll make some changes to cause the workflow to fail and see how the handlers are executed.
First, you’ll exercise the cancellation handlers.

More on the Parallel Activity
The Parallel activity has a CompletionCondition property, as shown in Figure 17-14.

Figure 17-14. The Properties window of a Parallel activity

When a Parallel activity is executed, it starts all its child activities simultaneously. As each branch
completes, it evaluates the CompletionCondition property, if specified. If it evaluates to True, all branches
still executing are aborted. If they are a CompensableActivity, as in this case, the cancellation handler will
be executed.

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

332

Click the “Wedding Preparations” activity in the navigation bar and select the “Planning Activities”
activity. In the Properties window, set the CompletionCondition property to True. Press F5 to run the
application. Your results should be similar to the following:

Body: The reception facility has been reserved

Body: The church has been reserved

Body: The rehearsal has been scheduled

Body: The menu has been decided

Body: The reception deposit has been paid

Cancellation: The church reservation has been released

Cancellation: The invitation activities have been cancelled

Main: Congratulations! The wedding preparations are complete.

Confirmation: The reception facility has been paid for

Confirmation: The reception activities have been confirmed

Press ENTER to exit

The “Reception” activity is the first to complete and the cancellation handler was executed for the
“Wedding” and “Invitations” activities. This is not considered an error condition, however, and the
workflow completed. Notice that the confirmation handler was NOT executed for the “Wedding” and
“Invitations” activities because they did not complete.

This, obviously, is not how you want the workflow to function. Set the CompletionCondition property
to False or just clear the property as it was originally.

Designing Compensation Handlers
Now you’ll add the compensation handlers. Navigate to Workflow1 > Sequence > TryCatch > Wedding
Preparations > Planning Activities > Wedding. The designer should display the CompensableActivity.

Designing the Wedding Compensation
Drag a Sequence activity to the Compensation Handler section. Drag three WriteLine activities onto this
Sequence and set the DisplayName to Starting, Church, and Flowers. Enter the Text property for
“Starting” as “Compensation: The wedding compensation is starting”. Enter the Text for the “Church”
activity as “Compensation: The church reservation was released”. Set the Text property for “Flowers”

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

333

to “Compensation: The flowers have been cancelled”. The designer should look like the one shown in
Figure 17-15.

Figure 17-15. Compensation sequence for the Wedding activity

Recall that the compensation handler is called only if the activity has completed. When designing a
compensation handler, you can therefore assume that the normal activities were executed. You should
then decide what the appropriate actions are if the overall workflow is aborted after this activity has
completed. In this case, you should cancel the flowers and let the church know so someone else can
schedule for that date.

Designing the Reception Compensation
The appropriate actions to compensate for the “Reception” activity are to release the facility and to
request a deposit refund. (It can’t hurt to ask, right?)

Click “Planning Activities” on the navigation bar, which should display the Parallel activity.
Double-click the “Reception” activity. Drag a Sequence activity to the Compensation Handler section.
Drag three WriteLine activities onto this Sequence and set the DisplayName to Starting, Facility, and
Deposit. Enter the Text property for “Starting” as “Compensation: The reception compensation is
starting”. Enter the Text for the “Facility” activity as “Compensation: The reception reservation was
released”. Set the Text property for “Deposit” to “Compensation: A refund of the deposit was
requested”. The designer should look like the one shown in Figure 17-16.

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

334

Figure 17-16. Compensation sequence for the Reception activity

Click “Planning Activities” on the navigation bar and double-click the “Invitations” activity. Drag a
WriteLine activity to the Compensation Handler section and set the Text property as “Compensation:
The invitations compensation handler was called – nothing to do”. Nothing needs to be done to
compensate for the “Invitations” activity. The order was placed for stationary, but there’s probably no
recourse because they are usually fulfilled quickly. Fortunately, the invitations were not actually mailed
because that activity is not done until the activity is confirmed.

Running the Application
Now you’ll throw an exception to see the compensation handlers at work. Click the “Wedding
Preparations” activity on the navigation bar. Drag a Throw activity below “Planning Activities”. For the
Exception property, enter New Exception(“Calling it off”). Press F5 to run the application. Your results
should be similar to these:

Body: The reception facility has been reserved

Body: The church has been reserved

Body: The rehearsal has been scheduled

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

335

Body: The menu has been decided

Body: The reception deposit has been paid

Body: The stationary has been ordered

Body: The invite list has been agreed to

Body: The flowers have been ordered

System.Exception - Calling it off

Compensation: The wedding compensation is starting

Compensation: The church reservation was released

Compensation: The flowers were cancelled

Compensation: The invitations compensation handler was called - nothing to do

Compensation: The reception compensation is starting

Compensation: The reception reservation was released

Compensation: A refund of the deposit was requested

Press ENTER to exit

After the Body activities were executed, the exception was displayed and then the compensation
handlers were executed. Because the exception was thrown after all the activities were completed, all the
compensation handlers were executed.

Now we’ll try throwing the exception earlier in the workflow. Navigate to the “Wedding” branch of
“Planning Activities” and expand the Body sequence. Drag a Throw activity after the “Schedule
Rehearsal” activity. For the Exception property, enter New Exception(“The wedding is cancelled”).

Press F5 to run the application. Your results should look like these:

Body: The reception facility has been reserved

Body: The church has been reserved

Body: The rehearsal has been scheduled

System.Exception - Wedding is cancelled

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

336

Cancellation: The reception has been cancelled

Cancellation: The invitation activities have been cancelled

Cancellation: The church reservation has been released

Press ENTER to exit

This time, the exception occurred before any of the activities had completed so, as expected, instead
of executing the compensation handlers, the cancellation handlers were called. Now move the Throw
activity to after the Delay activity (just before the “Order Flowers” activity). Press F5 to run the
application. Your results should look like these:

Body: The reception facility has been reserved

Body: The church has been reserved

Body: The rehearsal has been scheduled

Body: The menu has been decided

Body: The reception deposit has been paid

Body: The stationary has been ordered

Body: The invite list has been agreed to

System.Exception - Wedding is cancelled

Cancellation: The church reservation has been released

Compensation: The invitations compensation handler was called - nothing to do

Compensation: The reception compensation is starting

Compensation: The reception reservation was released

Compensation: A refund of the deposit was requested

Press ENTER to exit

The “Wedding” activity did not complete, and its cancellation handler was called. The
compensation handler was called for the other two activities (“Reception” and “Invitations”). Delete the
Throw activity that you just created.

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

337

Customizing Compensation and Confirmation
So far, you have been using the default logic for executing the confirmation and compensation handlers.
To summarize, confirmation handlers are called on completed activities when the workflow completes
successfully, and compensation handlers are called when the workflow is cancelled. Now I’ll show you
how to manually call these handlers so you can customize when they are used.

Adding the Token Variables
In order to confirm or compensate an activity you’ll need a handle to it, which is referred to as a token.
Click the Variables link at the bottom left of the designer. You should see an empty collection of
variables, as shown in Figure 17-17.

Figure 17-17. An empty Variables collection

Click the Create variable link and enter the Name as weddingToken. In the Variable type drop-down
list, select “Browse for types”. In the dialog that displays, expand the System.Activities assembly and
select the CompensationToken class, as shown in Figure 17-18.

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

338

Figure 17-18. Selecting the CompensationToken class

The Scope should be the TryCatch activity. You can leave the Default property blank. Click the Create
variable link again and enter the Name as receptionToken. The CompensationToken class should be in the
Variable type drop-down list; select it and set the Scope property as TryCatch. In a similar fashion,
create an invitationsToken variable. The Variables list should look like the one shown in Figure 17-19.

Figure 17-19. The completed Variables collection

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

339

Setting the Result Property
Close the Variables window and navigate to “Planning Activities”. Select the “Wedding” activity (you
don’t have to double-click to expand it; just click it to select it). In the Properties window, enter
weddingToken for the Result property, as shown in Figure 17-20.

Figure 17-20. Property window for a CompensableActivity

The Result property is used to indicate the variable that will hold the token for this activity. The
token is not set until the activity is completed. (Remember, you can’t confirm or compensate an activity
unless it has completed.) Now select the “Reception” activity and enter receptionToken for its Result
property. Finally, select the “Invitations” activity and enter invitationsToken for the Result property.
Now as each of these activities is completed, the appropriate token is set, which you can use to call its
confirmation and compensation handlers.

Custom Confirmation
This workflow covers only the activities of planning a wedding. If you were to design one that included
all the activities performed up to and including the actual wedding, the workflow would not complete
until the wedding was over. It would not be appropriate to wait to send the invitation until then, for
obvious reasons. So you’ll need to confirm the Invitations activity manually, before the workflow
completes. This could be triggered by the completion of some other activity, perhaps requiring a user
input or based on a Delay activity.

Navigate to the “Wedding Preparations” activity. Drag a Confirm activity just before the Throw
activity and set the DisplayName to Confirm Invitations. For the Target property, enter
invitationsToken. The designer should look like the one shown in Figure 17-21.

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

340

Figure 17-21. The main sequence including the Confirm activity

Press F5 to run the application and your results should be like these:

Body: The reception facility has been reserved

Body: The church has been reserved

Body: The rehearsal has been scheduled

Body: The menu has been decided

Body: The reception deposit has been paid

Body: The stationary has been ordered

Body: The invite list has been agreed to

Body: The flowers have been ordered

Confirmation: The invitations have been sent

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

341

Confirmation: The invitation activities have been confirmed

System.Exception - Calling it off

Compensation: The wedding compensation is starting

Compensation: The church reservation was released

Compensation: The flowers were cancelled

Compensation: The reception compensation is starting

Compensation: The reception reservation was released

Compensation: A refund of the deposit was requested

Press ENTER to exit

Notice that the “Invitations” confirmation handler was executed before the exception was
generated. Then because it had already been confirmed, it was not compensated.

Custom Compensation
The last thing I want to show you is how to manually control the compensation processing. In some
situations, you might want to specify the order in which activities are compensated. Or perhaps you
need to conditionally execute the compensation. To do that, you’ll add logic to the exception handler in
your workflow to perform the compensation logic.

First, navigate to the “Wedding Preparations” activity and select the Throw activity. Change the
Exception property by entering the following code (it will use the new exception class that your TryCatch
activity is configured to receive):

New Wedding.CallItOffException("The wedding has been cancelled")

Navigate to the TryCatch activity. Right-click the WriteLine activity in the Catches section and
choose Cut. Drag a Sequence activity in its place; then double-click it to expand the Sequence. Right-click
inside the Sequence and choose Paste. The WriteLine activity should now be included in the new
Sequence.

Drag an If activity below the WriteLine activity and set the DisplayName as Compensate Reception.
For the Condition property, enter Not receptionToken Is Nothing. Drag a Compensate activity to the
Then section. For the Target property, enter receptionToken. Press F5 to run the application and you
should see the following results:

Body: The reception facility has been reserved

Body: The church has been reserved

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

342

Body: The rehearsal has been scheduled

Body: The menu has been decided

Body: The facility deposit has been paid

Body: The stationary has been ordered

Body: The invite list has been agreed to

Body: The flowers have been ordered

Confirmation: The invitations have been sent

Confirmation: The invitation activities have been confirmed

Catch: The wedding has been cancelled

Compensation: The reception compensation is starting

Compensation: The reception reservation was released

Compensation: A refund of the deposit was requested

Confirmation: The wedding plans have been confirmed

Press ENTER to exit

After the exception was caught, the “Reception” was compensated as expected, but the “Wedding”
activity was confirmed. You probably didn’t expect that. Because your workflow handled the exception,
the workflow could continue. Since the “Wedding” activity had completed, the workflow confirmed it.

Rethrow Activity
To resolve this, you will re-throw the exception. Go back to the Catch sequence and drag a Rethrow
activity after the Compensate activity. The Rethrow activity doesn’t have any properties; it simply rethrows
the current exception. For this reason, a Rethrow activity can be used only in a Catch section of a
TryCatch activity.

Press F5 to run the application. This time, the results should look like these:

Body: The reception facility has been reserved

Body: The church has been reserved

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

343

Body: The rehearsal has been scheduled

Body: The menu has been decided

Body: The facility deposit has been paid

Body: The stationary has been ordered

Body: The invite list has been agreed to

Body: The flowers have been ordered

Confirmation: The invitations have been sent

Confirmation: The invitation activities have been confirmed

Catch: The wedding has been cancelled

Compensation: The reception compensation is starting

Compensation: The reception reservation was released

Compensation: A refund of the deposit was requested

Wedding.CallItOffException - The wedding has been cancelled

Compensation: The wedding compensation is starting

Compensation: The church reservation was released

Compensation: The flowers were cancelled

Press ENTER to exit

Your exception handler compensated the “Reception” activity. The rethrown exception was caught
by the application and the remaining activity (“Wedding”) was also compensated. (Because the
“Invitations” activity was explicitly confirmed previously, it was not compensated.)

http://

CHAPTER 17 ■ COMPENSATION, CONFIRMATION, AND CANCELLATION

344

■ Caution When using the Confirm or Compensate activities, you should include them in a TryCatch activity
because they can throw exceptions. If you try to confirm an activity that has already been confirmed, for example,
it will throw an exception. You can test for a non-null token, as we did in this project to verify that the activity has
completed. However, you can’t test to see whether it has already been confirmed or compensated. Because we
had a controlled environment and were throwing the exception, you knew what the state of the activity would be.
In a real scenario, you can’t predict when an exception might be thrown. In more complicated workflows, it’s not
easy to know what other processing may have already confirmed or compensated the activity. So to be safe,
always wrap the Confirm and Compensate activity in a TryCatch activity. You can usually ignore the exception;
you just don’t want it to terminate your workflow.

http://

C H A P T E R 1 8

■ ■ ■

345

Collections

WF 4.0 provides some built-in activities that enable you to manipulate a collection in your workflow. In
this chapter, you’ll build a console application that demonstrates these activities using a shopping list
application.

Creating a Collection
Start by creating a console application project in Visual Studio. For the project name, use ShoppingList;
for the solution name, enter Chapter18, as shown in Figure 18-1.

Figure 18-1. Creating a console application

http://

CHAPTER 18 ■ COLLECTIONS

346

From the Solution Explorer, right-click the ShoppingList project and choose Add Reference. From
the .NET tab, add a reference to System.Activities.

Defining the Shopping List
First, you’ll start by implementing the class that defines an item in your shopping list. Open the
Program.cs file and add the ListItem class using the code in Listing 18-1.

Listing 18-1. Implementation of the ListItem Class

public class ListItem
{
 public string Description { get; set; }
 public int Quantity { get; set; }
 public decimal UnitPrice { get; set; }
 public int Priority { get; set; }
 public string Comments { get; set; }

 public ListItem(string description, int quantity, decimal unitPrice,
 int priority, string comments)
 {
 Description = description;
 Quantity = quantity;
 UnitPrice = unitPrice;
 Priority = priority;
 Comments = comments;
 }

 public ListItem(string description)
 {
 Description = description;
 }
}

The ListItem class contains a few public properties that store information about an item to be

purchased. The Priority property will be used later to determine which items are most important. The
class contains a couple of constructors. The first populates all the properties, while the second sets only
the Description.

Initial Workflow
Add the following namespace to the Program.cs file:

using System.Activities.Expressions;

http://

CHAPTER 18 ■ COLLECTIONS

347

Add a CollectionWF() method to the Program class, which defines the initial workflow. The
implementation is shown in Listing 18-2.

Listing 18-2. Initial Workflow Definition

private static WorkflowElement CollectionWF()
{
 // myList is a collection of ListItem objects
 Variable<ICollection<ListItem>> myList =
 new Variable<ICollection<ListItem>>()
 {
 Name = "MyList",
 Default = new LambdaValue<ICollection<ListItem>>
 (env => new List<ListItem>())
 };

 return new Sequence
 {
 Variables = { myList },
 Activities =
 {
 new WriteLine
 {
 Text = "Workflow starting..."
 },
 new AddToCollection<ListItem>
 {
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Milk", 1, 3.99m, 2, ""))
 },
 new AddToCollection<ListItem>
 {
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Bread", 2, 2.95m, 1,
 "Get 100% Whole Wheat, if possible"))
 },
 new AddToCollection<ListItem>
 {
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Cheese", 1, 1.75m, 4, ""))
 },

http://

CHAPTER 18 ■ COLLECTIONS

348

 new AddToCollection<ListItem>
 {
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Ice Cream", 4, 5.75m, 5, ""))
 },
 new WriteLine
 {
 Text = "Workflow ended"
 }
 }
 };
}

■Tip You might have noticed some new syntax here. When passing in a value as an argment to an activity the
value needs to be a workflow variable or argument or a literal value (such as “Workflow starting...”). Otherwise,
you need to wrap it inside of a LambdaValue<> class. When passing in a ListItem or an
ICollection<ListItem>, they are wrapped inside of a LambdaValue<> class. Notice that the env parameter is
specified even though it is not used.

This workflow defines a variable that is a collection of ListItem classes. The variable can be any type
of collection that supports the ICollection interface. That actual collection object is created by the
Default property as a List<ListItem> class.

AddToCollection Activity
The workflow has four instances of the AddToCollection activity. Each one adds an object to the
collection. This is a template class and you must declare the type of object that is stored in the collection.
In this case, the ListItem data type is specified. The AddToCollection activity has two properties:
Collection specifies the variable that holds the collection, and Item is the object that is to be added. For
the Item property, it creates a new instance of the ListItem class using the constructor that populates all
the class members.

Invoking a Workflow
Implement the main() method using the following code:

static void Main(string[] args)
{

http://

CHAPTER 18 ■ COLLECTIONS

349

 WorkflowInvoker.Invoke(CollectionWF());

 Console.WriteLine("Press ENTER to exit");
 Console.ReadLine();
}

■ Tip This method illustrates just how easy it is to start a workflow. Just call the Invoke() method of the static
WorkflowInvoker class, passing in a workflow definition.

Running the Application
Now you’re ready to execute the application. Press F5 to run it. Your results should look like these:

Workflow starting...
Workflow ended
Press ENTER to exit

Printing and Sorting
So far, you have created a collection of items; now you’ll create some custom activities that operate on
this collection.

Printing the Collection
First, you will provide a way to display the contents of the shopping list. From the Solution Explorer,
right-click the ShoppingList project and choose Add ➤ Class. For the class name, enter PrintList.cs. The
implementation of this class is shown in Listing 18-3.

Listing 18-3. Implementation of PrintList.cs

using System;
using System.Activities;
using System.Collections.Generic;

namespace ShoppingList
{
 public sealed class PrintList : CodeActivity
 {
 public InArgument<ICollection<ListItem>> Collection { get; set; }
 public InArgument<decimal> Budget { get; set; }

http://

CHAPTER 18 ■ COLLECTIONS

350

 protected override void Execute(CodeActivityContext context)
 {
 ICollection<ListItem> list =
 this.Collection.Get<ICollection<ListItem>>(context);

 if (list.Count == 0)
 {
 Console.WriteLine("The list is empty");
 }
 else
 {
 decimal total = 0m;
 decimal budget = Budget.Get(context);

 foreach (ListItem l in list)
 {
 // See if this item will put us over budget
 if (budget > 0 && total + (l.Quantity * l.UnitPrice) > budget)
 break;

 total += l.Quantity * l.UnitPrice;

 Console.WriteLine("{0}: {1}, {2} @ ${3} [{4}]",
 l.Priority.ToString(), l.Description,
 l.Quantity.ToString(), l.UnitPrice, l.Comments);
 }

 Console.WriteLine("Total cost: ${0}", total.ToString());
 Console.WriteLine();
 }
 }
 }
}

This custom activity receives the collection as an input argument. It expects a collection of ListItem

classes. It also has a second input argument that specifies the budget amount. If a non-zero value is
supplied for the budget argument, it will stop printing items after the budget has been reached.

Open the Program.cs file and add the following activity definition to the CollectionWF() method
(add it just before the final WriteLine activity):

new PrintList()
{
 Budget = 15m,
 Collection = myList
},

http://

CHAPTER 18 ■ COLLECTIONS

351

Press F5 to run the application. Your results should look like these:

Workflow starting...
2: Milk, 1 @ $3.99 []
1: Bread, 2 @ $2.95 [Get 100% Whole Wheat, if possible]
4: Cheese, 1 @ $1.75 []
Total cost: $11.64

Workflow ended
Press ENTER to exit

Notice that the Ice Cream you added was not displayed. That’s because 4 cartons at $5.75 each
would have put you over your $15 budget. Change the Budget property to 0m and re-run the application.
This time, the Ice Cream will be displayed, and the order total should be $34.64.

Sorting the Collection
Next, you’ll provide a custom activity that will sort the shopping list, putting the higher-priority items
first. If you want to limit the items based on a budget, you’ll want to make sure to get the most important
items first.

From the Solution Explorer, right-click the ShoppingList project and choose Add ➤ Class. For the
class name, enter SortCollection.cs. The implementation for this class is shown in Listing 18-4.

Listing 18-4. Implementation of SortCollection.cs

using System;
using System.Activities;
using System.Collections.Generic;

namespace ShoppingList
{
 public sealed class SortCollection : CodeActivity
 {
 public InOutArgument<ICollection<ListItem>> Collection { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 ICollection<ListItem> tempList =
 this.Collection.Get<ICollection<ListItem>>(context);

 if (tempList.Count > 0)
 {

 List<ListItem> sortedList = new List<ListItem>(tempList);

http://

CHAPTER 18 ■ COLLECTIONS

352

 ItemComparer c = new ItemComparer();
 sortedList.Sort(c as IComparer<ListItem>);

 Collection.Set(context, sortedList as ICollection<ListItem>);
 }
 }
 }

 public class ItemComparer : IComparer<ListItem>
 {
 public int Compare(ListItem x, ListItem y)
 {
 // Handle null arguments
 if (x == null && y == null)
 return 0;
 if (x == null)
 return -1;
 if (y == null)
 return 1;

 // Perform comparison based on the priority
 if (x.Priority == y.Priority)
 return 0;
 if (x.Priority > y.Priority)
 return 1;
 else
 return -1;
 }
 }
}

The Execute() method of this activity takes a collection as both an input and output argument. A

collection is passed in to the activity, and the collection is sorted and returned using the same argument.
The collection is provided as an ICollection interface, so it must be copied to a List object.

The Sort() method of the List class is used to perform the sort, but you must supply a class that
implements the IComparer interface because the standard implementation will not know how to sort
ListItem objects. The IComparer interface provides a single method called Compare(), which receives two
objects (x and y) as input parameters. It returns 0 if the two objects are equal, 1 if x is greater than y, and
-1 if x is less than y.

Open the Program.cs file and add the following activities to the CollectionsWF() method just before
the final WriteLine activity:

new SortCollection
{
 Collection = myList

http://

CHAPTER 18 ■ COLLECTIONS

353

},
new PrintList()
{
 Budget = 0m,
 Collection = myList
},

Press F5 to run the application. The output should look like this:

Workflow starting...
2: Milk, 1 @ $3.99 []
1: Bread, 2 @ $2.95 [Get 100% Whole Wheat, if possible]
4: Cheese, 1 @ $1.75 []
5: Ice Cream, 4 @ $5.75 []
Total cost: $34.64

1: Bread, 2 @ $2.95 [Get 100% Whole Wheat, if possible]
2: Milk, 1 @ $3.99 []
4: Cheese, 1 @ $1.75 []
5: Ice Cream, 4 @ $5.75 []
Total cost: $34.64

Workflow ended
Press ENTER to exit

Notice that when it is printed the second time, the items are in priority order.

Searching the Collection
Next, you’ll use some built-in activities to find items in a collection and remove them.

Overriding the Equals() Method
For the remaining features that you’ll add, the built-in activities must be able to find an item in the
collection. They do this by iterating through the objects in the collection, calling their Equals() method
until one returns True. The default implementation of the Equals() method in the base Object class
compares the object references to determine equality. For our purposes, we want to consider two items
equal if they have the same description.

Open the Program.cs file and add two methods shown in Listing 18-5 to the ListItem class.

Listing 18-5. Adding the Equals() Method

public override bool Equals(object obj)
{
 ListItem i = obj as ListItem;

http://

CHAPTER 18 ■ COLLECTIONS

354

 if (i == null)
 return false;
 else
 {
 if (i.Description == this.Description)
 return true;
 else
 return false;
 }
}

public override int GetHashCode()
{
 return base.GetHashCode();
}

The Equals() method cast the input object to a ListItem and returns True if the Description

property matches. When overriding the Equals() method, the compiler expects you to also override the
GetHashCode() method. This implementation simply calls the base method.

ExistsInCollection Activity
Add the following activities to the CollectionsWF() method just before the final WriteLine activity:

new If
{
 Condition = new ExistsInCollection<ListItem>()
 {
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Ice Cream"))
 },
 Then = new WriteLine
 {
 Text = "You don't really need Ice Cream?"
 }
},

This adds an If activity, and the Condition property is an ExistsInCollection activity. The

ExistsInCollection activity expects two input arguments—the collection to be searched and the item
you’re looking for—and returns a Boolean to indicate whether the item was found. A new ListItem
object is created and passed in. Notice, however, that only the Description is specified. This is because
that’s the only property used for making the comparison.

http://

CHAPTER 18 ■ COLLECTIONS

355

RemoveFromCollection Activity
Add the following activities just before the final WriteLine activity:

new WriteLine
{
 Text = "Removing Ice Cream..."
},
new RemoveFromCollection<ListItem>()
{
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Ice Cream"))
},
new PrintList()
{
 Budget = 0m,
 Collection = myList
},

The RemoveFromCollection activity removes the specified item from the collection, if found. If there

is more than one activity in the collection that matches the specified item, only the first is removed.
Again, only the Description property is specified since that is all that is needed.

ClearCollection Activity
Finally, to remove all items from your collection, add the following activities to your workflow:

new ClearCollection<ListItem>()
{
 Collection = myList
},
new PrintList()
{
 Budget = 0m,
 Collection = myList
}

Press F5 to run the application. Your results should look like these:

Workflow starting...
2: Milk, 1 @ $3.99 []
1: Bread, 2 @ $2.95 [Get 100% Whole Wheat, if possible]

http://

CHAPTER 18 ■ COLLECTIONS

356

4: Cheese, 1 @ $1.75 []
5: Ice Cream, 4 @ $5.75 []
Total cost: $34.64

1: Bread, 2 @ $2.95 [Get 100% Whole Wheat, if possible]
2: Milk, 1 @ $3.99 []
4: Cheese, 1 @ $1.75 []
5: Ice Cream, 4 @ $5.75 []
Total cost: $34.64

You don't really need Ice Cream?
Removing Ice Cream...
1: Bread, 2 @ $2.95 [Get 100% Whole Wheat, if possible]
2: Milk, 1 @ $3.99 []
4: Cheese, 1 @ $1.75 []
Total cost: $11.64

The list is empty
Workflow ended
Press ENTER to exit

The complete implementation of Program.cs is shown in Listing 18-6.

Listing 18-6. Implementation of Program.cs

using System;
using System.Collections.Generic;
using System.Activities;
using System.Activities.Statements;
using System.Activities.Expressions;

namespace ShoppingList
{
 class Program
 {
 static void Main(string[] args)
 {
 WorkflowInvoker.Invoke(CollectionWF());

 Console.WriteLine("Press ENTER to exit");
 Console.ReadLine();
 }

 private static Activity CollectionWF()
 {

http://

CHAPTER 18 ■ COLLECTIONS

357

 // myList is a collection of ListItem objects
 Variable<ICollection<ListItem>> myList =
 new Variable<ICollection<ListItem>>()
 {
 Name = "MyList",
 Default = new LambdaValue<ICollection<ListItem>>
 (env => new List<ListItem>())
 };

 return new Sequence
 {
 Variables = { myList },
 Activities =
 {
 new WriteLine
 {
 Text = "Workflow starting..."
 },
 new AddToCollection<ListItem>
 {
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Milk", 1, 3.99m, 2, ""))
 },
 new AddToCollection<ListItem>
 {
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Bread", 2, 2.95m, 1,
 "Get 100% Whole Wheat, if possible"))
 },
 new AddToCollection<ListItem>
 {
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Cheese", 1, 1.75m, 4, ""))
 },
 new AddToCollection<ListItem>
 {
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Ice Cream", 4, 5.75m, 5, ""))
 },

http://

CHAPTER 18 ■ COLLECTIONS

358

 new PrintList()
 {
 Budget = 0m,
 Collection = myList
 },
 new SortCollection
 {
 Collection = myList
 },
 new PrintList()
 {
 Budget = 0m,
 Collection = myList
 },
 new If
 {
 Condition = new ExistsInCollection<ListItem>()
 {
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Ice Cream"))
 },
 Then = new WriteLine
 {
 Text = "You don't really need Ice Cream?"
 }
 },
 new WriteLine
 {
 Text = "Removing Ice Cream..."
 },
 new RemoveFromCollection<ListItem>()
 {
 Collection = myList,
 Item = new LambdaValue<ListItem>
 (env => new ListItem("Ice Cream"))
 },
 new PrintList()
 {
 Budget = 0m,
 Collection = myList
 },
 new ClearCollection<ListItem>()

http://

CHAPTER 18 ■ COLLECTIONS

359

 {
 Collection = new myList
 },
 new PrintList()
 {
 Budget = 0m,
 Collection = myList
 },
 new WriteLine
 {
 Text = "Workflow ended"
 }
 }
 };
 }
 }

 //---
 // The ListItem class defines the items that
 // are stored in the collection
 //---
 public class ListItem
 {
 public string Description { get; set; }
 public int Quantity { get; set; }
 public decimal UnitPrice { get; set; }
 public int Priority { get; set; }
 public string Comments { get; set; }

 public ListItem(string description, int quantity, decimal unitPrice,
 int priority, string comments)
 {
 Description = description;
 Quantity = quantity;
 UnitPrice = unitPrice;
 Priority = priority;
 Comments = comments;
 }

 public ListItem(string description)
 {
 Description = description;
 }

http://

CHAPTER 18 ■ COLLECTIONS

360

 // The Equals() method must be overridden
 // to enable a search using the description
 public override bool Equals(object obj)
 {
 ListItem i = obj as ListItem;
 if (i == null)
 return false;
 else
 {
 if (i.Description == this.Description)
 return true;
 else
 return false;
 }
 }

 public override int GetHashCode()
 {
 return base.GetHashCode();
 }
 }
}

http://

C H A P T E R 1 9

■ ■ ■

361

Interoperability with Workflow 3.5

I stated in Chapter 1 that activities created in WF 4.0 are not interchangeable with WF 3.5 activities.
However, as promised, I’ll now show you how you can execute workflows and activities created in WF
3.5 from within a WF 4.0 workflow. This will allow you to do the following:

• Continue to use third-party activities that you cannot port to WF 4.0

• Delay porting parts of your solution to WF 4.0

• Use 3.0 and 3.5 activities not yet provided in WF 4.0

Creating a 4.0 Workflow
Start by creating a Workflow Console Application as shown in Figure 19-1. For the project name, enter
SampleInterop, and for the solution use Chapter19.

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

362

Figure 19-1. Creating a WF 4.0 application

Drag a Sequence onto the workflow, drag a WriteLine activity onto this Sequence, and enter the Text
property as “Workflow has started…”. Open the Program.cs file and add the following code at the end of
the Main() method:

Console.WriteLine("Press ENTER to exit");
Console.ReadLine();

Creating a 3.5 Workflow
From the Solution Explorer, right-click the Chapter19 solution and choose Add ➤ New Project. In the
Add New Project dialog, change the .NET version to 3.5. The list of available templates should change as
shown in Figure 19-2. Select the Sequential Workflow Library template. For the project name, enter
Workflow35.

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

363

Figure 19-2. Creating a WF 3.5 project

The 3.5 workflow designer should be displayed, which is shown in Figure 19-3.

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

364

Figure 19-3. The WF 3.5 designer

Drag a CodeActivity to the workflow and then double-click it, which will open the code-behind file.
Enter the following implementation:

Console.WriteLine("The 3.5 Workflow has started...");

Go back to the 3.5 designer and drag another CodeActivity to the workflow. Double-click it and

enter the following implementation:

Console.WriteLine("The 3.5 Workflow has finished");

The completed workflow should look like the one shown in Figure 19-4.

Figure 19-4. The completed 3.5 workflow design

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

365

From the Solution Explorer, right-click the SampleInterop project and choose Add Reference. From
the Projects tab, select the Workflow35 project. Press F6 to rebuild the solution.

From the Solution Explorer, right-click the SampleInterop project and choose properties. The
project’s Property window will be displayed. Make sure that the target framework is the full .NET 4.0
version, not the client profile as shown in Figure 19-5. The Interop activity is not currently available in
the client profile.

Figure 19-5. Selecting the full .NET 4.0 profile

You also need to add a reference to System.Workflow.ComponentModel assembly in the
SampleInterop project.

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

366

Interop Activity
Open the 4.0 workflow (Workflow1.xaml file) and drag an Interop activity below the existing WriteLine
activity. You should find the Interop activity in the Migration tab of the toolbox. The design should look
like the one shown in Figure 19-6.

Figure 19-6. An Interop activity in the workflow designer

Click the link where it says “Click to browse”. This will display the dialog shown in Figure 19-7.
Expand the Workflow35 assembly and select Workflow1.

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

367

Figure 19-7. Selecting the workflow to execute

Drag a WriteLine activity below the Interop activity and enter the Text property as “Workflow has
finished”.

Running the Application
Press F5 to run the application. Your results should look like this:

Workflow has started...
The 3.5 Workflow has started...
The 3.5 Workflow has finished
Workflow has finished.
Press ENTER to exit

Executing a Custom 3.5 Activity
The Interop activity can also be used to execute a single activity. You will now create a custom activity in
the WF 3.5 project and execute it from the 4.0 workflow.

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

368

Creating a Custom Activity
From the Solution Explorer, right-click the Workflow35 project and choose Add ➤ New Item. This will
display the Add New Item dialog shown in Figure 19-8.

Figure 19-8. Adding a custom activity (WF 3.5)

Select the Activity template and enter the name as CustomActivity.cs. The activity designer shown
in Figure 19-9 should be displayed.

Figure 19-9. Custom activity designer (WF 3.5)

Drag a CodeActivity onto this designer and double-click it which should display the code-behind
file. Before entering the code for this activity, add the code shown in Listing 19-1 just after the class
constructor.

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

369

Listing 19-1. Adding a public property

public static DependencyProperty MessageProperty =
 DependencyProperty.Register("Message", typeof(string), typeof(CustomActivity));

[DescriptionAttribute("Message")]
[BrowsableAttribute(true)]
[DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.Visible)]
public string Message
{
 get
 {
 return ((string)(base.GetValue(MessageProperty)));
 }
 set
 {
 base.SetValue(MessageProperty, value);
 }
}

This code defines a string property named Message, which can be accessed from outside the

workflow. Now enter the following implementation for the CodeActivity to display the Message property:

Console.WriteLine(this.Message);

The complete implementation of CustomActivity.cs is shown in Listing 19-2.

Listing 19-2. Implementation of CustomActivity.cs

using System;
using System.ComponentModel;
using System.ComponentModel.Design;
using System.Collections;
using System.Drawing;
using System.Linq;
using System.Workflow.ComponentModel;
using System.Workflow.ComponentModel.Design;
using System.Workflow.ComponentModel.Compiler;
using System.Workflow.ComponentModel.Serialization;
using System.Workflow.Runtime;
using System.Workflow.Activities;
using System.Workflow.Activities.Rules;

namespace Workflow35
{
 public partial class CustomActivity : SequenceActivity
 {
 public CustomActivity()
 {
 InitializeComponent();
 }

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

370

 public static DependencyProperty MessageProperty =
 DependencyProperty.Register("Message", typeof(string),
 typeof(CustomActivity));

 [DescriptionAttribute("Message")]
 [BrowsableAttribute(true)]
 [DesignerSerializationVisibilityAttribute
 (DesignerSerializationVisibility.Visible)]
 public string Message
 {
 get
 {
 return ((string)(base.GetValue(MessageProperty)));
 }
 set
 {
 base.SetValue(MessageProperty, value);
 }
 }

 private void codeActivity1_ExecuteCode(object sender, EventArgs e)
 {
 Console.WriteLine(this.Message);
 }
 }
}

Throwing an Exception
Open the WF 3.5 designer (CustomActivity.cs[Design] tab) and drag a ThrowActivity below the
CodeActivity. The Properties window for a ThrowActivity is shown in Figure 19-10.

Figure 19-10. ThrowActivity Properties window

Select the FaultType property and click the ellipsis beside it. In the dialog that is displayed, expand
the mscorlib assembly and select the System namespace. Then scroll down and select the
InvalidProgramException, as shown in Figure 19-11.

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

371

Figure 19-11. Select the exception to throw

The diagram of the custom activity should look like the one shown in Figure 19-12.

Figure 19-12. Final custom activity design

Invoking the Custom Activity
Press F6 to rebuild the solution. Go back to the WF 4.0 workflow (Workflow1.xaml). Drag a TryCatch
activity onto the workflow just below the Interop activity. Drag an Interop activity to the Try section.

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

372

Click the link to browse for the workflow to be invoked. Expand the Workflow35 assembly and select the
CustomActivity, as shown in Figure 19-13.

Figure 19-13. Selecting the CustomActivity

Notice that there is a Message property in the Properties window as well as a MessageOut property
(see Figure 19-14). Because you created a public property in the custom activity, it is available to the WF
4.0 workflow.

Figure 19-14. Properties window showing the Message property

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

373

You can bind the data passed in and the data returned to different variables. This will allow you to
bind a literal string for input and store the resulting data in an argument or variable. For the Message
property, enter “Called from a 4.0 workflow”. Leave the MessageOut property blank because you are not
expecting returned data.

Click the Add new catch link and choose “Browse for types”. Expand the mscorlib assembly and
select the InvalidProgramException, as shown in Figure 19-15.

Figure 19-15. Selecting the InvalidProgramException

Drag a WriteLine activity onto the Catch section and enter the Text property as “Custom 3.5 activity
threw an exception”. The completed TryCatch activity should look like the one shown in Figure 19-16.

http://

CHAPTER 19 ■ INTEROPERABILITY WITH WORKFLOW 3.5

374

Figure 19-16. Completed TryCatch activity

Running the Application
Press F5 to run the application. Your results should look like this:

Workflow has started...
The 3.5 Workflow has started...
The 3.5 Workflow has finished
Called from a 4.0 workflow
Custom 3.5 activity threw an exception
Workflow has finished.
Press ENTER to exit

http://

C H A P T E R 2 0

■ ■ ■

375

Policy

In this chapter, you’ll use a PolicyActivity to determine whether a particular workflow activity needs to
be reviewed. Here’s the scenario: a workflow has some type of data entry activity, and you want to
perform a quality control review of the output from that step. It might be a call center taking an order
over the phone or a request placed from the Web or from a self-service kiosk. You don’t want to review
that step every time, however. You might want to review only those orders that exceed a certain value or
when the operator who performed that step is being evaluated for some reason. Maybe you just want to
check every tenth transaction.

What I’ve just listed are rules; a rule specifies the appropriate action to a defined condition. A policy
is a set of rules. As you might imagine, rules can overlap and even contradict each other, so a policy also
specifies the priority of rules and allows for re-evaluation if one rule changes the conditions that affect
other rules.

Creating a Custom Activity
The PolicyActivity is not currently available in WF 4.0, so you’ll need to use version 3.5. Start by
creating a workflow activity library using .NET 3.5, as shown in Figure 20-1.

http://

CHAPTER 20 ■ POLICY

376

Figure 20-1. Creating a Workflow Activity Library (in version 3.5)

For the project name, enter QCPolicy; for the solution, enter Chapter20. The workflow designer
should be displayed and look similar to Figure 20-2.

Figure 20-2. Initial workflow designer

Defining the Data Structures
The rules that you will define are based on properties of the operator, customer, transaction, and so on.
So you’ll first define the structure of the data elements that will be used. From the Solution Explorer,
right-click the QCPolicy project and choose Add ➤ Class. For the name, enter DataElements.cs. The
implementation of this file is shown in Listing 20-1.

http://

CHAPTER 20 ■ POLICY

377

Listing 20-1. Implementation of DataElements.cs

using System;
using System.Collections.Generic;

namespace QCPolicy
{
 /***/
 // Configuration options for a specific activity
 /***/
 public class ActivityConfig
 {
 public decimal MinimumAmount { get; set; }
 public decimal ThresholdAmount { get; set; }
 public int Frequency { get; set; }
 public int NumberSinceLastEval { get; set; }

 public ActivityConfig (decimal min, decimal max, int freq)
 {
 this.MinimumAmount = min;
 this.ThresholdAmount = max;
 this.Frequency = freq;
 this.NumberSinceLastEval = 0;
 }

 public int IncrementEvalCount()
 {
 this.NumberSinceLastEval++;
 return this.NumberSinceLastEval;
 }

 public void ResetEval()
 {
 this.NumberSinceLastEval = 0;
 }
 }

 /***/
 // Details about the operator
 /***/
 public class OperatorConfig
 {
 public bool UnderEvaluation { get; set; }
 public int Frequency { get; set; }
 public int NumberSinceLastEval { get; set; }

 public OperatorConfig (bool eval, int freq)
 {
 this.UnderEvaluation = eval;
 this.Frequency = freq;
 this.NumberSinceLastEval = 0;
 }

http://

CHAPTER 20 ■ POLICY

378

 public int IncrementEvalCount()
 {
 this.NumberSinceLastEval++;
 return this.NumberSinceLastEval;
 }

 public void ResetEval()
 {
 this.NumberSinceLastEval = 0;
 }
 }

 /***/
 // Properties of the customer needed fot processing
 /***/
 public class CustomerConfig
 {
 public string Category { get; set; }

 public CustomerConfig(string cat)
 {
 this.Category = cat;
 }
 }

 /***/
 // Details needed to process a transaction
 /***/
 public class TransactionConfig
 {
 public decimal Amount { get; set; }

 public TransactionConfig(decimal amt)
 {
 this.Amount = amt;
 }
 }

 /***/
 // Contains a list of transaction to be processed
 /***/
 public class TransactionList
 {
 public List<TransactionConfig> List { get; set; }

 public TransactionList()
 {
 this.List = new List<TransactionConfig>();
 }
 }
}

http://

CHAPTER 20 ■ POLICY

379

These classes contain public properties that will be used when defining the rules. The
ActivityConfig class contains a MinimumAmount property; transactions below this amount do not need to
be reviewed. The ThresholdAmount defines the level at which all transactions must be reviewed.
Frequency specifies how often the activity should be reviewed. The NumberSinceLastEval keeps track of
how many instances were not reviewed so you’ll know when a review is required.

The OperatorConfig class has a Boolean property named UnderEvaluation. This is set for operators
that are being evaluated. The Frequency and NumberSinceLastEval are used just as they are for the
ActivityConfig class. The CustomerConfig class has a Category property, which is used to indicate
whether this is a major account or some other classification. The TransactionConfig class has an Amount
property that specifies the total amount of the transaction. Finally, the TransactionList class holds a
collection of TransactionConfig objects.

PolicyActivity
The project template created a custom activity file named Activity1. From the Solution Explorer,
rename this file as QCPolicy.cs. Visual Studio will prompt you to ask whether you want all references to
this class changed (see Figure 20-3); choose Yes.

Figure 20-3. Modifying references to a renamed file

Now open the QCPolicy.cs file; it should open in design mode by default. Drag a PolicyActivity
onto the QCPolicy activity. In the Properties window, change the name of this activity to ReviewPolicy.
The designer should now look like the one shown in Figure 20-4. The red circle with an exclamation
point indicates that the ruleset has not been defined yet. You’ll take care of that now.

Figure 20-4. ReviewPolicy activity

http://

CHAPTER 20 ■ POLICY

380

Adding Dependency Properties
In WF 3.5 arguments and variables are implemented differently than they are in WF 4.0. Properties that
are passed into or out of an activity are declared as a DependencyProperty. You’ll need to define these so
the input data (that the rules are based on) can be passed in and the policy result can be made available.

Right-click anywhere in the workflow designer and choose View Code. In the QCPolicy.cs class add
the code shown in Listing 20-2 just after the constructor.

Listing 20-2. Declaring the Dependency properties

public static DependencyProperty ActivityDataProperty =
 DependencyProperty.Register("ActivityData", typeof(ActivityConfig),
 typeof(QCPolicy));

[DescriptionAttribute("ActivityData")]
[CategoryAttribute("Input Category")]
[BrowsableAttribute(true)]
[DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.Visible)]
public ActivityConfig ActivityData
{
 get
 {
 return ((ActivityConfig)(base.GetValue(QCPolicy.ActivityDataProperty)));
 }
 set
 {
 base.SetValue(QCPolicy.ActivityDataProperty, value);
 }
}

public static DependencyProperty OperatorDataProperty =
 DependencyProperty.Register("OperatorData", typeof(OperatorConfig),
 typeof(QCPolicy));

[DescriptionAttribute("OperatorData")]
[CategoryAttribute("Input Category")]
[BrowsableAttribute(true)]
[DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.Visible)]
public OperatorConfig OperatorData
{
 get
 {
 return ((OperatorConfig)(base.GetValue(QCPolicy.OperatorDataProperty)));
 }
 set
 {
 base.SetValue(QCPolicy.OperatorDataProperty, value);
 }
}

http://

CHAPTER 20 ■ POLICY

381

public static DependencyProperty CustomerDataProperty =
 DependencyProperty.Register("CustomerData", typeof(CustomerConfig),
 typeof(QCPolicy));

[DescriptionAttribute("CustomerData")]
[CategoryAttribute("Input Category")]
[BrowsableAttribute(true)]
[DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.Visible)]
public CustomerConfig CustomerData
{
 get
 {
 return ((CustomerConfig)(base.GetValue(QCPolicy.CustomerDataProperty)));
 }
 set
 {
 base.SetValue(QCPolicy.CustomerDataProperty, value);
 }
}

public static DependencyProperty TransactionDataProperty =
 DependencyProperty.Register("TransactionData", typeof(TransactionConfig),
 typeof(QCPolicy));

[DescriptionAttribute("TransactionData")]
[CategoryAttribute("Input Category")]
[BrowsableAttribute(true)]
[DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.Visible)]
public TransactionConfig TransactionData
{
 get
 {
 return ((TransactionConfig)
 (base.GetValue(QCPolicy.TransactionDataProperty)));
 }
 set
 {
 base.SetValue(QCPolicy.TransactionDataProperty, value);
 }
}

public static DependencyProperty ReviewProperty =
 DependencyProperty.Register("Review", typeof(bool), typeof(QCPolicy));

[DescriptionAttribute("Review")]
[CategoryAttribute("Output Category")]
[BrowsableAttribute(true)]
[DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.Visible)]
public bool Review
{

http://

CHAPTER 20 ■ POLICY

382

 get
 {
 return ((bool)(base.GetValue(QCPolicy.ReviewProperty)));
 }
 set
 {
 base.SetValue(QCPolicy.ReviewProperty, value);
 }
}

public static DependencyProperty PriorityProperty =
 DependencyProperty.Register("Priority", typeof(string), typeof(QCPolicy));

[DescriptionAttribute("Priority")]
[CategoryAttribute("Output Category")]
[BrowsableAttribute(true)]
[DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.Visible)]
public string Priority
{
 get
 {
 return ((string)(base.GetValue(QCPolicy.PriorityProperty)));
 }
 set
 {
 base.SetValue(QCPolicy.PriorityProperty, value);
 }
}

After entering this code, right-click anywhere on the code file and choose View Designer. This will
display the workflow designer. The Properties window of a PolicyActivity is shown in Figure 20-5.

Figure 20-5. Properties window of a PolicyActivity

http://

CHAPTER 20 ■ POLICY

383

Creating a Rule Set
The RuleSetReference defines the set of rules (called a ruleset) for this policy, which is implemented by a
RuleSet class. Select this property and click on the ellipses. The dialog shown in Figure 20-6 is displayed.

Figure 20-6. Creating a new RuleSet

There are no existing rulesets, so click the New link to create a new RuleSet. This will display the
Rule Set Editor ((see Figure 20-7).

http://

CHAPTER 20 ■ POLICY

384

Figure 20-7. An empty ruleset editor

Defining the Rules
Let’s start by entering a few rules and then I’ll explain how the PolicyActivity uses them. For each Rule,
you’ll need to give it a Name (which is just used for display purposes), a Condition, and Then and Else
actions (Else actions are optional).

Click the Add Rule link. Enter the Name as Operator Eval, the Priority as 6, and the Condition as
this.OperatorData.UnderEvaluation. Enter the following code for the Then action:

this.Review = True
Halt

This Rule states that if the operator is being evaluated, the activity should be reviewed. The Halt

command indicates that no further rules need to be checked. Now define a Rule that says if the
transaction is less than the minimum amount, no review is necessary. Click the Add Rule link. Enter the
Name as Minimum Amount, the Priority as 5, and the Condition as the following:

this.TransactionData.Amount < this.ActivityData.MinimumAmount

http://

CHAPTER 20 ■ POLICY

385

For the Then action, enter this.Review = False. The Halt command is not used because the activity
might require a review for other reasons.

Now add a Rule to ensure that if the customer is coded as a Major account, the activity will be
reviewed. Click the Add Rule link and enter the Name as Major Account and enter 4 for the Priority.
Enter the following code for the Condition:

this.CustomerData.Category == "Major" &&
this.TransactionData.Amount >= this.ActivityData.MinimumAmount

For the Then action, enter the following code:

this.Review = True
Halt

This Rule was coded so transactions for Major accounts that are below the minimum amount do not
need to be reviewed. Now add another Rule so activities over the threshold amount are reviewed. Click
the Add Rule link. Enter the Name as Over Limit, the Priority as 3, and the Condition as

this.TransactionData.Amount >= this.ActivityData.ThresholdAmount

Enter the following code for the Then action:

this.Review = True
Halt

The last two rules that you’ll add are used to ensure that even if none of the previous rules require a
review, the activity is still reviewed periodically. The properties that you created for both the activity and
operator, include a Frequency property to specify how often a review is required. For example, if the
Frequency is set to 10, a review is performed at least every tenth time. These classes also have a
NumberSinceLastEval property that keeps track of how many activities have been executed without a
review. This is verified for both the operator and activity because if there are multiple operators
performing the same activities, it’s possible that while every tenth activity is reviewed, a particular
operator might never have its work reviewed.

Click the Add Rule link. Enter the Name as Operator Frequency, the Priority as 2, and the Condition
as

this.OperatorData.NumberSinceLastEval >= this.OperatorData.Frequency

For the Then action, enter this.Review = True. Click the Add Rule link. Enter the Name as Activity
Frequency, the Priority as 1, and the Condition as

this.ActivityData.NumberSinceLastEval >= this.ActivityData.Frequency

For the Then action, enter this.Review = True. The completed RuleSet should look like the one
shown in Figure 20-8.

http://

CHAPTER 20 ■ POLICY

386

Figure 20-8. The completed RuleSet

Click OK. The Select Rule Set dialog will now show the new RuleSet. Click Rename and enter the
Name as Review Policy. The dialog should look like the one shown in Figure 20-9.

http://

CHAPTER 20 ■ POLICY

387

Figure 20-9. Select Rule Set dialog with the new RuleSet

Understanding Rule Sets
Now let’s look into some of the details of how a RuleSet works.

Rules
As I already mentioned, the basic elements of a Rule are the Condition and the Then and Else actions.
These work just like an if-then-else statement. In both the Condition and Then and Else actions, you
can access the workflow class members and static members in referenced assemblies (such as
DateTime.Now). You do not need to specify both Then and Else actions.

In the Then and Else actions, you can write code to do things such as the following:

• Update workflow members

• Call workflow methods

• Call static methods from referenced assemblies

• Execute a Halt or Update command (explained later)

http://

CHAPTER 20 ■ POLICY

388

■ Caution The conditions and actions are written in typical C# syntax except that there are no semi-colons at the
end of each statement. This might seem strange because all the expressions you’ve written so far have been using
Visual Basic syntax. In this chapter, you have been using WF 3.5 instead of 4.0. This is just one of the differences
between the two versions.

Rule instances are executed in priority order with higher priorities executed first. Rule instances with
the same priority are executed in alphabetical order based on the Name property. By default, a Rule has a
priority of 0. Priorities can be negative.

Chaining
When a RuleSet is executed, each Rule is evaluated one by one, starting with the highest priority. It is
possible that the Then or Else action of a Rule modifies a property used in a condition of a previous Rule.
If that happens, the feature referred to as chaining means that the previous rules would be re-evaluated
(and its Then or Else action executed as appropriate). Rule evaluations would then continue from where
it left off.

Let me give you a scenario to help illustrate this. Suppose that we had the following rules in priority
order:

1. if nTotal > 10 && bSuccess Then nResult = 5 Else nResult = -1

2. if nTotal > 20 Then bSuccess = True

3. if nResult > 3 Then bSuccess = False

4. if nTotal > 20 Then bSuccess = False

And the initial values of the properties are the following:

• nTotal = 15

• bSuccess = True

• nResult = 0

The rules will be executed as follows:

• Rule #1 will set nResult to 5.

• Rule #2 is executed but because the condition is false, no action is taken.

• Rule #3 will set bSuccess to False.

• Rule #1 will set nResult to -1 (#1 is re-executed because bSuccess was modified).

• Rule #2 is not re-executed because none of its dependencies changed.

• Rule #3 is re-executed because nResult was changed; however, its condition is
false, so no action is taken.

http://

CHAPTER 20 ■ POLICY

389

• Rule #4 is executed, but no action is taken.

The final results will be the following:

• nTotal = 15

• bSuccess = False

• nResult = -1

For each Rule, the Reevaluation property can be set to either Always (the default value) or Never.
Always doesn’t actually mean always; it means to re-evaluate if a member in the condition is modified
(as described previously). Never means the Rule is evaluated only once, even if a member has been
changed. The Never option turns off chaining for that Rule.

The RuleSet has a Chaining property, which also controls if/how chaining is applied. The default
value is Full Chaining, which re-evaluates rules as defined previously. The Sequential option turns off
chaining. It is equivalent to setting the Reevaluate property to Never for all rules. The Explicit Update
Only option performs re-evaluation only when specifically directed to with the Update action.

Halt and Update
In addition to setting properties and calling workflow methods, you can also use the Halt and Update
commands in the Then and Else actions. The Halt command causes all rule evaluation to stop
immediately, and the activity is completed. You used it on several of the Rule instances in the previous
RuleSet.

If the Chaining option is set to Explicit Update Only, you must use the Update command to force
any necessary rule re-evaluations. The Update command specifies a single property. Any previous rule
that uses that property is re-evaluated. If you need to check for multiple properties, you can call the
Update command multiple times. The property is generally specified using the this. notation. For
example, the Update command could be this:

Update(this.Review)

This is also an acceptable form:

Update("this/Review")

Rules File
The actual Rule definition is stored in the QCPolicy.rules file. You can select this from the Solution
Explorer, as shown in Figure 20-10.

http://

CHAPTER 20 ■ POLICY

390

Figure 20-10. Selecting the rules file

If you double-click this file, you can see the actual contents. It uses an XML structure to store the
various parts of the RuleSet and each of the Rule objects.

Determining the Priority
If you determine that this activity should be reviewed, now you’ll also decide what priority should be
given to the review. For example, we might want higher value transactions to move to the top of the list.

Open the QCPolicy.cs file in design mode and drag an IfElseActivity below the ReviewPolicy
activity. Click the left branch, and in the Properties window set the Name property to IfReview. For the
Condition property, select Declarative Rule Condition. Expand the Condition property; for the
ConditionName, enter Review; for the Expression property, click the ellipsis and enter this.Review. This
branch will be executed only when the Review property is True. The Properties window should look like
the one shown in Figure 20-11.

Figure 20-11. Properties windows of an IfElseBranch activity

Drag a PolicyActivity onto the ifReview branch and set the Name property to PriorityPolicy. The
workflow diagram should look like the one shown in Figure 20-12.

http://

CHAPTER 20 ■ POLICY

391

Figure 20-12. Workflow diagram for the QCPolicy custom activity

Entering the Priority Rules
Select the PriorityPolicy activity. In the Properties window, select the RuleSetReference property and
click the ellipses. The Select Rule Set dialog should show the RuleSet that you just created. Click the New
link to create a different RuleSet for this PolicyActivity.

Click the Add Rule link. Enter the Name as Major Account, the Priority as 3, and the Condition as:

this.CustomerData.Category == "Major"

For the Then action, enter this.Priority = "High"; for the Else action, enter this.Priority = "Normal".
This will set the Priority to High for major accounts and Normal for everyone else.

Add another Rule to handle transactions that exceed the ThresholdAmount. Enter the Name as Over
Limit, the Priority as 2, and the Condition as:

this.TransactionData.Amount >= this.ActivityData.ThresholdAmount

For the Then action, enter this.Priority = "High"; there is no Else action. Add a final Rule named
Minimum. For the Condition, enter:

this.TransactionData.Amount < this.ActivityData.MinimumAmount

For the Then action, enter this.Priority = "Low". The completed RuleSet should look like the one
shown in Figure 20-13.

http://

CHAPTER 20 ■ POLICY

392

Figure 20-13. Completed RuleSet for PriorityPolicy

After clicking OK in the Rule Set Editor, rename the RuleSet to Priority Policy, as you did with the
first RuleSet. You have completed the implementation of your custom policy activity. Press F6 to build
the solution.

Creating a Workflow Application
Now you’ll build a workflow that will use the new custom activity. From the Solution Explorer, right-click
the Chapter20 solution and choose Add ➤ New Project. Make sure you change the .NET version to 4.0
and select the Workflow Console Application template, as shown in Figure 20-14. Enter the project name
as PolicySample.

http://

CHAPTER 20 ■ POLICY

393

Figure 20-14. Completed RuleSet for PriorityPolicy

This application will need to use the QCPolicy activity as well as the data structures defined in
DataElements.cs. From the Solution Explorer, right-click the PolicySample project and choose Add
Reference. From the Projects tab, select QCPolicy and click OK. Press F6 to rebuild the solution. Right-
click the PolicySample project and choose Set as Startup Project. When you’re ready to run the
application, you’ll need to start this application, not the QCPolicy project.

From the Solution Explorer, right-click the PolicySample project and choose properties. The
project’s Property window will be displayed. Just as you did in the previous chapter, make sure that the
target framework is the full .NET 4.0 version, not the client profile. Add a reference to the
System.Workflow.ComponentModel assembly.

Creating a Custom Activity
Start by creating a custom activity that will perform the activity and then use the QCPolicy activity to
determine whether this work needs to be reviewed. Right-click the PolicySample project and choose
Add ➤ New Item. In the Add New Item dialog, select the Activity template in the Workflow category (see
Figure 20-15). Enter the name as MyActivity.xaml.

http://

CHAPTER 20 ■ POLICY

394

Figure 20-15. Adding a custom activity to the project

This will display a blank designer for the custom activity, as shown in Figure 20-16.

Figure 20-16. A blank custom activity designer

You will first need to define the arguments that will be passed in to this activity. These are the data
structures for the operator, customer, activity, and transaction. Click the Arguments button at the
bottom left of the designer. Click the Create Argument link and enter the Name as customerData. For the
Argument type, select Browse for Types. In the dialog that is displayed, expand the QCPolicy assembly
and select the CustomerConfig class.

Add another argument named transactionData and use the TransactionConfig class for the
Argument type. Add two more arguments named operatorData and activityData using the

http://

CHAPTER 20 ■ POLICY

395

OperatorConfig and ActivityConfig classes, respectively. The list of arguments should look like the one
shown in Figure 20-17.

Figure 20-17. Arguments defined for this activity

You will also need a couple of variables. Click the Variable button and you’ll notice that there are no
variables defined yet and also no link to create a variable. That’s because variables need be scoped to a
specific activity, and so far there are no activities. Drag a Sequence activity to the designer. The Create
Variable link should appear; click it, enter review for the Name property, and enter Boolean for the
Variable type. Add another variable named priority and leave the Variable type as String. The
variables should look like the ones shown in Figure 20-18.

Figure 20-18. Variables defined for this activity

Close the variables section. Drag a WriteLine activity to the Sequence, enter the DisplayName as
Execute Activity, and enter “The activity is executing…” for the Text property. This simulates the
normal execution of the workflow activity. Drag another WriteLine activity to the Sequence; for the Text
property; enter the following code, which displays some information about the transaction to help with
debugging:

"Amount = $" + transactionData.Amount.ToString() +
", # since oper eval = " + operatorData.NumberSinceLastEval.ToString() +
", # since activity eval = " + activityData.NumberSinceLastEval.ToString()

Now you’ll check to see if the activity needs to be reviewed. Drag an Interop activity to the Sequence

and set the DisplayName to QCPolicy. For the Body property, select “Browse for types”, expand the
QCPolicy assembly, and select the QCPolicy activity. All the DependencyProperty objects that you defined
for the QCPolicy activity should now show as properties of the Interop activity. There will also be an
output property used for passing the updated data back. There is a corresponding argument or variable

http://

CHAPTER 20 ■ POLICY

396

with the same name (except lowercase). Enter the appropriate argument or variable for each property.
For the properties in the Output category, you will use the output properties. The Properties window
should look like the one shown in Figure 20-19.

Figure 20-19. Interop Properties window

The QCPolicy is executed passing in the various data structures that contain the information used to
determine whether a review is required. The review and priority variables are set by the QCPolicy
activity and passed back through the output properties. Now you’ll use those variables to execute a
review step if appropriate.

Drag an If activity just below the QPolicy activity, and enter the Condition property as review.
Double-click the If activity to expand it and drag a WriteLine to the Then section. Enter the Text
property as

"Activity is being reviewed; priority is " + priority

Incrementing the Activity Counters
Two of the rules that you entered were based on the number of activities that have been executed since
the last review. Both the OperatorConfig and ActivityConfig classes contain a NumberSinceLastEval

http://

CHAPTER 20 ■ POLICY

397

property. You will need to either increment this property (if the activity is not reviewed) or reset it to zero
(if the activity was reviewed). To do that, you’ll need a custom activity.

From the Solution Explorer, right-click the PolicySample project and choose Add ➤ New Item.
Select the Code Activity template, and enter the name as UpdateCounter.cs, as shown in Figure 20-20.

Figure 20-20. Creating a custom activity

■ Tip You created two types of custom activities in this WF 4.0 project. The first used the workflow designer, in
which you could drag activities onto the new activity. This created a sequence of activities that is actually a mini-
workflow. The template for this type is called Activity. The second type creates a code file in which you can
override the Execute() method. This allows you to define a new activity, not a sequence of existing activities. The
template for this is called Code Activity. To help you remember which to use, look at the default file extension
when you select the template. The first creates a .xaml file while the second creates a .cs file. The .xaml file is
used by the workflow designer, while the .cs file is a code file where you override the Execute() method.

The implementation of UpdateCounters.cs is shown in Listing 20-3.

http://

CHAPTER 20 ■ POLICY

398

Listing 20-3. UpdateCounter.cs implementation

using System;
using System.Collections.Generic;
using System.Activities;
using QCPolicy;

namespace SamplePolicy
{

 public class UpdateCounters : CodeActivity
 {
 public InOutArgument<ActivityConfig> ActivityData { get; set; }
 public InOutArgument<OperatorConfig> OperatorData { get; set; }
 public InArgument<bool> Review { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 // Get the current data structures
 ActivityConfig a = ActivityData.Get(context);
 OperatorConfig o = OperatorData.Get(context);

 if (Review.Get(context))
 {
 a.ResetEval();
 o.ResetEval();
 }
 else
 {
 a.IncrementEvalCount();
 o.IncrementEvalCount();
 }

 // Return the updated data
 ActivityData.Set(context, a);
 OperatorData.Set(context, o);
 }
 }
}

If the activity is being reviewed, this method calls the ResetEval() method of both the
ActivityConfig and OperatorConfig classes. If not being reviewed, the IncrementEvalCount() method
is called instead. Press F6 to rebuild the solution.

Open the MyActivity.xaml file (in design mode) and drag the UpdateCounters activity from the
toolbox to below the If activity. For the ActivityData property, enter activityData; for the OperatorData
property, enter operatorData; and for the Review property, enter review. The Properties window should
look like the one shown in Figure 20-21.

http://

CHAPTER 20 ■ POLICY

399

Figure 20-21. Setting the properties of the UpdateCounters activities

The custom activity is ready and the complete sequence of MyActivity should look like Figure 20-22.
Press F6 to rebuild the solution.

Figure 20-22. Completed MyActivity sequence

http://

CHAPTER 20 ■ POLICY

400

Creating the Main Workflow
Now you’re ready to create the main workflow that will use the custom activity, MyActivity, which you
just implemented. The application will pass in the OperatorConfig, CustomerConfig, and ActivityConfig
data structures along with a collection of TransactionConfig objects. For each transaction, MyActivity
will be executed to perform the action as well as a QC step, if appropriate.

Configuring the Arguments
Open the Workflow1.xaml file (in design mode) and drag a Sequence activity to the workflow. Click the
Argument button and then click the Create Argument link. For the Name, enter customerData; for the
Argument type, use the CustomerConfig class. You will need to select Browse for Types, expand the
QCPolicy assembly, and select the CustomerConfig class as you did before. Add another argument named
activityData using the ActivityConfig class for the Argument type. Add a third argument named
operatorData using the OperatorConfig class. For the final argument, use the TransactionList class; for
the Name property, enter transactionList. The argument list should look like the one shown in
Figure 20-23.

Figure 20-23. Argument list

Close the Arguments window and drag a WriteLine activity to the Sequence. For the Text property,
enter “The workflow is starting…”.

Drag a ForEach activity below the WriteLine activity. Enter Process Transactions for the DisplayName
property. For the TypeArgument property, select Browse for Types and choose the TransactionConfig
class from the QCPolicy assembly. For the Values property, enter transactionList.List.

Drag a MyActivity from the toolbox to where it says “Drop activity here”. In the Properties window,
enter the appropriate argument for each input argument that MyActivity is expecting. For the
transactionData argument, enter item. This is the name given to the element of the Values property of
the ForEach activity. For the remaining arguments, enter the same name as the argument. The
completed Property window should look like the one shown in Figure 20-24.

http://

CHAPTER 20 ■ POLICY

401

Figure 20-24. MyActivity Properties window

The final workflow should look like the one shown in Figure 20-25.

Figure 20-25. Final application workflow

http://

CHAPTER 20 ■ POLICY

402

Implementing the Console Application
Open the Program.cs file and replace the code that was generated for this file with the code shown in
Listing 20-4.

Listing 20-4. Implementation of Program.cs

using System;
using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;
using QCPolicy;

namespace PolicySample
{
 class Program
 {
 static void Main(string[] args)
 {
 TransactionList l = new TransactionList();
 l.List.Add(new TransactionConfig(500.00m));
 l.List.Add(new TransactionConfig(300.00m));
 l.List.Add(new TransactionConfig(250.00m));
 l.List.Add(new TransactionConfig(1200.00m));
 l.List.Add(new TransactionConfig(2100.00m));
 l.List.Add(new TransactionConfig(1100.00m));

 IDictionary<string, object> input = new Dictionary<string, object>
 {
 { "operatorData", new OperatorConfig(false, 2) },
 { "customerData", new CustomerConfig("Prospect") },
 { "activityData", new ActivityConfig(800, 2000, 3) },
 { "transactionList", l }
 };

 IDictionary<string, object> output
 = WorkflowInvoker.Invoke(new Workflow1(), input);

 Console.WriteLine();
 Console.WriteLine("Press ENTER to exit");
 Console.ReadLine();
 }
 }
}

This creates a TransactionList class and adds a few TransactionConfig objects to it. It then creates a

Dictionary object that contains the OperatorConfig, CustomerConfig, and ActivityConfig objects as well
as the TransactionList object. Finally, it invokes the workflow passing in this Dictionary.

http://

CHAPTER 20 ■ POLICY

403

Running the Application
Press F5 to run the applications. The results should look like this:

The workflow is starting...
The activity is executing.
Amount = $500.00, # since oper eval = 0, # since activity eval = 0
The activity is executing.
Amount = $300.00, # since oper eval = 1, # since activity eval = 1
The activity is executing.
Amount = $250.00, # since oper eval = 2, # since activity eval = 2
Activity is being reviewed; priority is Low
The activity is executing.
Amount = $1200.00, # since oper eval = 0, # since activity eval = 0
The activity is executing.
Amount = $2100.00, # since oper eval = 1, # since activity eval = 1
Activity is being reviewed; priority is High
The activity is executing.
Amount = $1100.00, # since oper eval = 0, # since activity eval = 0

Press ENTER to exit

After two transactions that were not reviewed, the third one was because of the Frequency rule.
Because the transaction was only $250, it was given a low priority in the QC review. The fifth transaction
was reviewed because it had a total of $2,100. Try changing the configuration values by editing the
Program.cs file, and verify that the results are as you would expect. For example, change the Category
property of the CustomerConfig class to “Major” and you should see that all transactions are reviewed.

Review
The solution in this chapter is a good example of creating reusable building blocks. This is the
recommended approach for designing workflows. The QCPolicy activity can be reused with any activity
that might need a review process. Then MyActivity implements the activity and handles the review step,
if appropriate, using QCPolicy to make that determination.

The main workflow then simply calls MyActivity. In a large workflow, this will greatly simplify the
design. Each activity provides its own QC process. The activity designer would be responsible for
designing the QC step as well. This is similar to the compensation model you implemented in Chapter 17.
The compensation, confirmation, and cancellation actions were all implemented by the activity
designer. The main workflow just adds the activity to the overall process and can assume that the activity
itself knows how to handle these conditions.

http://

CHAPTER 20 ■ POLICY

404

This chapter also uses some of the concepts that you learned throughout this book. If you want to
review some of these principles, you can refer to the appropriate chapter as follows:

• Passing Arguments: Chapter 4

• ForEach: Chapter 5

• Custom Activities: Chapter 7

• Interop: Chapter 19

A very brief description of using WF 3.5 was provided in both this chapter and Chapter 19. I was not able
to adequately cover WF 3.5 in this book so if you will be using WF 3.5 for parts of your solution, you
might want to read a book that provides more information about WF 3.5.

http://

A P P E N D I X

■ ■ ■

405

Sample Workflow Project

The sample project provided in the appendix is designed as a review of many of the concepts discussed
in this book. It also demonstrates how the techniques you’ve learned can be combined to build a full-
featured application. Instead of giving you step-by-step instructions for building the solution, the
complete project is available for you to download from http://www.apress.com. As you’ll see, this project
is fairly extensive and this will save you quite a bit of time (and typing).

Project Overview
The application provides a web page in which end users can enter requests, comments, or questions.
Based on the topic selected, the request is placed in one of several queues for individuals to view and
respond to. A second web page is provided to show the contents of these queues. Once a queue is
selected, items are presented to be worked. Each queue can be configured in one of two modes: either
the oldest request is automatically presented to be worked or all requests are displayed for the user to
select one.

After a request has been worked, it might require a QC review step based on rules defined in a
Policy object. (The implementation is very similar to one you created in Chapter 20.) Requests can also
be rerouted to a different queue if necessary. A tracking extension is used to record the various events
(started, assigned, reviewed, rerouted, and so on) so you can see how a particular request made its way
through the workflow.

All the workflow functionality is provided through a web service. The web site uses the native .Net
membership services, which gives the site the capability to “log in.” The operator information is
provided to the workflow so it can track which users worked on each request. Finally, the generic
workflow features and queue logic is provided by a set of workflow activities and extensions that are
implemented in a separate library project. This allows you to reuse this code in other applications.

I’ll explain the solution in more detail later, but first, let’s run the application so you can see what it
does. You’ll need to download the Appendix.zip file and extract this to an appropriate location.

Configuring the Database
The AppendixData folder contains the scripts you’ll need to set up the database schema. First, create a
SQL Server database for this solution. Expand the Create Scripts folder and run the included scripts in
the following order:

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

406

• SqlWorkflowInstanceStoreSchema.sql

• SqlWorkflowInstanceStoreLogic.sql

• Config.sql

• Request.sql

• Tracking.sql

The scripts used to create the membership tables and procedures assume that there is a database
named aspnetdb on the server that the connection string is referencing. This is the default database that
the ASP.Net services use. If you do not already have this setup, create a database called aspnetdb and
then run the InstallCommon.sql and InstallMembership.sql scripts (in that order).

■ Caution If you need to modify the database connection for your environment, make sure that you make the
change to the configuration files; there are two places. The web.config file in the root folder of the web site
project defines the connection string for the aspnetdb database used by the .Net services. There is also a
web.config file in the root folder of the ServiceLayer project. This is used to configure the workflow persistence
store as well as the application data that your custom activities will use.

Running the Application
Once your database has been configured, from Visual Studio, press F5 to start the application. The initial
page should look like the one shown in Figure A-1.

Figure A-1. Initial web page

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

407

Logging In
Click the Log In link at the top-right corner of the page. The first time you log in, you’ll need to create a
new account by clicking the register link. This will display the page shown in Figure A-2.

Figure A-2. Creating a new account

Enter your name, e-mail address, and a password (the e-mail address is not actually used to send e-
mails so you can enter any text here that you want.) The next time you log in, you’ll want to check the
“Keep me logged in” check box, as shown in Figure A-3. If you do, you won’t need to log in again even if
you restart the application.

Figure A-3. Using the “Keep me logged in” option

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

408

Submitting a Request
Click the Submit link at the top of the page. This will display the page used for entering a new
request/comment, which is shown in Figure A-4.

Figure A-4. Entering a new request

If you’ve logged in, the name and e-mail address will be filled in for you. Select the Feedback
category and enter a comment. Then click the Add Item link. Figure A-5 shows a completed submit page.
The comment field is cleared and the unique identifier assigned to this request is displayed at the top of
the page. Enter a couple more requests using the same Feedback category.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

409

Figure A-5. The completed submit page

Processing Requests
Click the Process link at the top of the page. This will display the Process page that is shown in
Figure A-6.

Figure A-6. Displaying the available queues

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

410

The grid on this page lists the queues that have requests that need to be responded to. The Feedback
category was assigned to the Marketing queue so all the requests you entered are in this queue. This grid
indicates how many requests are in this queue and the date of the oldest request. Click the Select link
and the page should look like the one shown in Figure A-7.

Figure A-7. Selecting a request

The Marketing queue is configured to allow selection. This means that instead of automatically
assigning the oldest request in the queue, all the requests are listed, and you are allowed to select the
one you want to work on. Click one of the Select links and the request will be displayed, as shown in
Figure A-8.

Figure A-8. Responding to a request

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

411

Below the request there is a place to enter the action that was taken. You can also select a queue to
route this request to. You could click the Cancel button if you decided not to work on this request. That
will unassign the request and put it back in the queue for someone else to work. Enter some notes in the
Action Taken field, select the Product queue, and click the Complete button. The page should now look
like the one shown in Figure A-9.

Figure A-9. The updated queue list

Notice that the Product queue is now displayed in the queue list, and there are only two requests to
choose from in the Marketing queue. Click the Select link next to the Product queue. The page should
look like the one shown in Figure A-10.

Figure A-10. Working the request in the Product queue

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

412

Because there is only one item in the Product queue, it was automatically assigned. You can edit or
append to the Action Taken field. You can also reroute this request to another queue, if necessary. For
this request, append a note to the Action Taken field and leave the Route Next field blank. Click the
Complete button. The page should look like the one shown in Figure A-11.

Figure A-11. Request moved to QC mode

Notice that this request is still in the Product queue, but the QC column shows “True”. The Product
queue is configured so that all requests in the Product queue must go through a QC review.
Consequently, the request is put back into the queue in QC mode. Select the Product queue again and
the request should be displayed; this time in QC mode, as shown in Figure A-12.

Figure A-12. Performing QC review

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

413

In QC review, you can view and modify the Action Taken. Edit this field and click the Complete
button. The request is now complete. Figure A-13 shows the updated queue list with only the remaining
items in the Marketing queue.

Figure A-13. Updated queue list

Tracking the Workflow
Close the web application and go back to Visual Studio. From the Server Explorer, open the contents of
the QueueTrack table. The results should be similar to those shown in Figure A-14.

Figure A-14. Showing the tracking results

The QueueTrack table records the various events that occurred on each of the requests: Started,
Assigned, Route, QC, and so on. The request that you just worked was started in the Marketing queue. It
was then assigned to an operator and then routed to the Product queue. It was again assigned to the
same operator and then put into QC mode. Finally, it was assigned to the operator for a third time this
time in QC mode.

Generic Queue Logic
Using queues for managing human tasks is a common practice that can be used in many applications. I
designed this solution to encapsulate the generic activities in a separate project called UserTasks. This
should help you to reuse this logic more easily in your own applications.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

414

Database Design
Figure A-15 shows the tables used by the UserTasks project. You can also view this diagram by opening
the UserTasks.dbml file in the UserTasks project.

Figure A-15. Database design for the UserTasks project

The database contains both a Queue and a SubQueue table. The queues that you used, such as
Marketing and Product, are really subqueues, and this solution uses a single queue called Request. This
approach allows you to reuse the same tables (and workflow activities) for any number of human-centric
workflow tasks.

The Queue and SubQueue tables provide configuration options such as SupportsQC (at the queue level)
and AllowSelection (at the subqueue level). The SubQueue table includes the Frequency column, which
defines how often requests in this subqueue need to be reviewed. The NumberSinceLastEval is used to
keep track of this to know when it’s time to force another review. The OperatorConfig table provides
other QC-related options (see Chapter 20 for more details.)

The QueueInstance table is the main table that drives the queue logic. A record is created for every
request. It keeps track of what subqueue the request is currently in, whether it’s in QC mode, and who it
is currently assigned to. The QueueTrack table is populated by the tracking extension in response to user-
defined tracking events.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

415

Activities
The UserTasks project is an activity library project that provides activities that can be dropped onto
other workflows. The included activities are listed in Table A-1.

Table A-1. Activities provided in the UserTasks project

Activity Name Description

AssignQueue Moves a QueueInstance to the specified subqueue.

AssignQueueInstance Assigns a QueueInstance to the specified operator.

CompleteInstance Provides QC and rerouting logic.

CreateQueueInstance Creates a new QueueInstance record.

GetQueueInstances Returns the available QueueInstance records in the specified subqueue (if
allow selection is turned off, it returns only the oldest record).

LoadQueueInstance Loads the specified QueueInstance.

LookupQueueStats Returns the number of records in each queue/subqueue.

RequestQC Moves the specified QueueInstance into QC mode.

UnAssignQueueInstance Unassigns the current operator and makes this QueueInstance available to be
assigned to another operator.

All these activities, with the exception of CompleteInstance, are implemented as coded activities. I

won’t take the time to list all the source code here; you can browse the code in Visual Studio. They use a
DBConnection extension to obtain the connections string (see Chapter 12) and use a
PersistQueueInstance extension to save the changes as part of the workflow persistence (see Chapter
15). As with all the other projects in this book, they use LINQ to SQL to access the database tables.

CompleteInstance
The CompleteInstance activity is provides as a designed activity. The workflow design for it is shown in
Figure A-16.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

416

Figure A-16. Design of the CompleteInstance activity

After loading the QueueInstance record, it then checks to see whether this queue supports QC or
whether the QueueInstance is already in QC mode. If not, it invokes the QCPolicy activity, which
determines whether this record should be QC’ed. If QC is required, the RequestQC activity is executed to
update the QueueInstance. The Complete output argument is passed back to the calling workflow to
indicate whether the QueueInstance was actually completed or whether it requires a QC step.

QCPolicy
The QCPolicy activity is an Interop activity that invokes a QCPolicy activity, which is implemented in .Net
3.5. (You might want to refer to Chapter 20 for more details on using the Policy activity.) The design of
the QCPolicy activity is shown in Figure A-17.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

417

Figure A-17. QCPolicy Design (.Net 3.5)

Unlike the implementation in Chapter 20, this QCPolicy activity reads and updates the configuration
data from the database. Because the Policy activity uses the .Net 3.5 version of workflow, it cannot
access the DBConnection extension. Instead, the connection string is passed in as a DependencyProperty.

The ReviewPolicy activity is a Policy that determines whether the QueueInstance needs to be
reviewed. The rule set used is shown in Figure A-18.

Figure A-18. ReviewPolicy rule set

If QC is needed, the PriorityPolicy is executed to determine what priority it should be given. Its
rule set is shown in Figure A-19.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

418

Figure A-19. PriorityPolicy rule set

The Hardcode activity is used for testing only and is normally disabled. It overrides the Review and
Priority properties that were set by the Policy activities. This was provided to make it easier to test both
QC and non-QC scenarios.

■ Note WF 3.0/3.5 provided the ability to disable an activity. When the workflow is executed, disabled activities
are ignored. This feature had limited usefulness and is not provided in WF 4.0. This particular scenario was one of
the useful applications of this feature.

To test the actual Policy implementation, a separate TestQC application is provided. This is a
simple workflow application with the QCPolicy activity dropped onto it.

Tracking
The ability to track workflow events was described in Chapter 13. This project relies on custom tracking
events. The following code (or something similar) is included in several of the custom activities:

CustomTrackingRecord userRecord = new CustomTrackingRecord("Route")
{
 Data =
 {
 {"QueueInstanceKey", qi.QueueInstanceKey},
 {"SubQueueID", qi.CurrentSubQueueID}
 }
};

// Emit the custom tracking record
context.Track(userRecord);

This causes a custom tracking event to be generated, which is received and processed by the

QueueTracking extension. The implementation of the Track method of this extension is shown in
Listing A-1.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

419

Listing A-1. Implementation of the Track Method

protected override void Track(TrackingRecord record, TimeSpan timeout)
{
 CustomTrackingRecord customTrackingRecord =
 record as CustomTrackingRecord;

 if (customTrackingRecord != null)
 {
 if (customTrackingRecord.Name == "Start" ||
 customTrackingRecord.Name == "Route" ||
 customTrackingRecord.Name == "Assign" ||
 customTrackingRecord.Name == "UnAssign" ||
 customTrackingRecord.Name == "QC")
 {
 QueueTrack t = new QueueTrack();

 // Extract all the user data
 if ((customTrackingRecord != null) &&
 (customTrackingRecord.Data.Count > 0))
 {
 foreach (string key in customTrackingRecord.Data.Keys)
 {
 switch (key)
 {
 case "QueueInstanceKey":
 if (customTrackingRecord.Data[key] != null)
 t.QueueInstanceKey =
 (Guid)customTrackingRecord.Data[key];
 break;
 case "SubQueueID":
 if (customTrackingRecord.Data[key] != null)
 t.SubQueueID = (int)customTrackingRecord.Data[key];
 break;
 case "QC":
 if (customTrackingRecord.Data[key] != null)
 t.QC = (bool)customTrackingRecord.Data[key];
 break;
 case "OperatorKey":
 if (customTrackingRecord.Data[key] != null)
 t.OperatorKey =
 (Guid)customTrackingRecord.Data[key];
 break;
 }
 }
 }

 if (t.SubQueueID != null && t.QC == null)
 t.QC = false;

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

420

 t.EventType = customTrackingRecord.Name;
 t.EventDate = DateTime.UtcNow;

 // Insert a record into the TrackUser table
 UserTasksDataContext dc =
 new UserTasksDataContext(_connectionString);
 dc.QueueTracks.InsertOnSubmit(t);
 dc.SubmitChanges();
 }
 }
}

This first checks to see whether this is one of the events that should be processed. Specifically, it is

looking for the following:

• Start: A new QueueInstance is created.

• Route: A QueueInstance is placed in a queue.

• Assign: The QueueInstance is assigned to a specific operator.

• UnAssign: The QueueInstance is unassigned.

• QC: The QueueInstance is placed to QC mode.

■ Note As I demonstrated in Chapter 13, the events that should be tracked can be configured instead of written in
code. This is the preferred approach. However, this tracking extension is writing to a database table specifically
designed for these events. It doesn’t know how to track other events. In this case, it is appropriate to put the filter
in code. This still allows you to configure the events that are actually tracked within this set of supported events.

The various data records are extracted from the event to populate the corresponding columns in the
table.

Service Layer
As I mentioned previously, all the workflow functionality is provided by a web service. You created a
fairly simple web service in Chapter 10. This implementation is significantly more complex.

Service Contract
In Chapter 10, you used both the traditional method of defining a service contract and a declarative style
provided by WF. In this project, I used the later method exclusively. On each of the Receive activities, the
OperationName and appropriate input parameters are defined. Similarly, on the SendReply activities the
output parameters are defined.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

421

Also, on the Receive activities, the interface name is specified. You don’t have to define this
interface; just specify the name to use when one is created for you. If you want all the methods on the
same interface, use the same interface name on all the Receive activities. You can also use different
names, which will result in multiple interfaces. For this project, I used IProcessRequest for all the
methods. Figure A-20 shows the methods that are implemented in the IProcessRequest interface.

Figure A-20. Web service methods

When a service reference is added to the web application, all the necessary web service details are
generated for you, including the Web Service Definition Language (.wsdl) file that explicitly defines the
web service and the methods provided. You can open Service1.wsdl and see what this looks like. It’s a
little cryptic for the human reader. It also generates several .xsd files that define the data types and data
contracts that are used in the input and output messages. Figure A-21 shows one of these files displayed
in the XML Schema Explorer.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

422

Figure A-21. XML Schema Explorer

Database Design
Because the queue logic is provided by the UserTasks project, the service layer can focus on request-
specific design elements. Consequently, the data model is quite simple, as shown in Figure A-22.

Figure A-22. Service layer data model

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

423

The Request table contains the data, such as name, e-mail, and comment, entered by the user who
submitted the request. It also records the action taken, which is entered by the operator who worked the
request. It has a reference to a QueueInstance record. The QueueInstance record handles all the queue
details such as the current queue, to whom it’s assigned, and so on. This design keeps the Request table
clear of all these “plumbing” details.

Activities
The ServiceLayer project implements some custom activities, which are listed in Table A-2.

Table A-2. Activities provided in the ServiceLayer project

Activity Name Description

BuildRequestList Maps the data returned by GetQueueInstances into a list of Request objects.

CreateRequest Creates a new Request record.

LoadRequest Load the specified Request from the database.

UpdateRequest Updates a Request.

The CreateRequest and UpdateRequest use the PersistRequest extension to perform the database

update when the workflow is persisted. The BuildRequestList activity is the only one that is particularly
interesting. The GetQueueInstances activity (provided in the UserTasks project) handles all the logic to
determine which records are available to be worked, but it knows nothing about requests. It uses only
the QueueInstance table as well as the Queue and SubQueue setup tables. BuildRequestList takes the list of
QueueInstance objects returned by GetQueueInstances and maps them to a list of Request objects. The
implementation is shown in Listing A-2.

Listing A-2. BuildRequestList Implementation

using System;
using System.Collections.Generic;
using System.Linq;
using System.Activities;
using UserTasks;
using UserTasks.Extensions;

namespace ServiceLayer.Activities
{

 public sealed class BuildRequestList : CodeActivity
 {

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

424

 public InArgument<UserTasks.QueueInstance[]> QueueInstanceList { get; set;}
 public OutArgument<Request[]> RequestList { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 // Get the connection string
 DBConnection ext = context.GetExtension<DBConnection>();
 if (ext == null)
 throw new InvalidProgramException("No connection string available");

 RequestDataContext dc = new RequestDataContext(ext.ConnectionString);

 // Get the list of QueueInstances
 UserTasks.QueueInstance[] qiList = QueueInstanceList.Get(context);
 if (qiList != null && qiList.Count() > 0)
 {
 // Build a list of Request objects
 Request[] rList = new Request[qiList.Count()];
 int i = 0;
 foreach (UserTasks.QueueInstance qi in
 QueueInstanceList.Get(context))
 {
 Request r = dc.Requests.SingleOrDefault
 (x => x.QueueInstanceKey == qi.QueueInstanceKey);
 rList[i++] = r;
 }

 RequestList.Set(context, rList);
 }
 }
 }
}

Workflow Design
This web service is implemented using the workflow designer, which produces an .xamlx file. Figure A-23
shows the overall design with some of the activities collapsed to fit the diagram on a page.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

425

Figure A-23. Overall workflow design

The workflow uses the Pick activity that was introduced in Chapter 10. To review, a Pick activity
contains one or more PickBranch activities, in which each contains a Trigger activity and an Action
sequence. When the Trigger is executed, the associated Action sequence is started, and all other
PickBranch activities are cancelled. In this case there are four branches; the Trigger for each one contains
a Receive activity that waits for a specific web service method.

The four methods are as follows:

• SubmitRequest: Initiates a new request.

• GetQueueStats: Gets the number of request in each queue.

• GetRequest: Gets the available request(s) from the specified queue.

• LoadRequest: Returns the request details of the specified request.

The last three are fairly straightforward. They perform a database operation and return the
appropriate results back to the caller using a SendReply activity. When the application wants to get the
current statistics about the queues, it calls the GetQueueStats() method of the web service. This will
create a new workflow instance that is completed as soon as the response is sent back to the application.
This workflow is very short-lived. The instance store is configured to remove the record from the
InstancesTable when the workflow is completed. So using a workflow instance to perform a simple task
does not leave any artifacts behind.

SubmitRequest
When SubmitRequest is called, it first determines the correct subqueue using a Switch activity (see
Chapter 4 for details). It then creates a QueueInstance record and a Request record and returns data back

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

426

to the caller using SendReply. So far, this is similar to the other branches. However, the workflow
continues after the SendReply activity. It is followed by a While activity; the design of this is shown in
Figure A-24.

Figure A-24. While activity

The Condition on the While activity is as follows:

queueName <> "None"

This means that the While activity will continue to execute as long as the request is assigned to a

queue. When the request is completed, without forwarding the request to another queue, the queueName
is set to “None”, causing the While activity to complete. The logic inside the While activity starts with a
Receive activity that waits for the AssignOperator method. A request must be assigned to an operator
before it can be worked. This helps ensure that two people are not working on the same request.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

427

Processing a Request
When the AssignOperator() method is called, the QueueInstance associated with that request is updated
to record the assignment and the response is sent back. The workflow then continues with another Pick
activity that is shown in Figure A-25.

Figure A-25. The final Pick activity

When a request has been assigned to an operator, one of three things can happen:

• The request is completed.

• The page is cancelled forcing the request to be unassigned.

• Neither.

The three branches represent these scenarios. The first branch completes the request, and the
second branch unassigns the request so someone else can work it. The third branch uses a Delay activity
to wait for five minutes. If nothing has been done within that time, the request is automatically
unassigned. If an operator has a request assigned to them and they decide to leave for the day and
simply close their browser, the request would be left assigned to them. This means that no one else
could work that request. This third branch was added to take care of that scenario.

If the CompleteRequest() method is called, the first branch updates the request with the data
provided. It then executes the CompleteInstance activity that was described earlier. This activity

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

428

determines whether the item in the queue needs to be reviewed in QC mode. It outputs a Complete
argument to indicate whether the item is complete or whether it needs to be reviewed. Figure A-26
shows the sequence that is executed if the request is complete.

Figure A-26. The sequence for completed requests

■ Note When I say the request is complete, I’m referring to that particular task for that request is complete. The
request might need to be worked in other queues before the workflow is completed.

The routeNext variable is specified in the CompleteRequest() method; it is determined by the
operator working the request. This is copied to the queueName variable. If no queue was selected, this will
signal that the workflow is done, and the While activity will complete. The AssignQueue activity is called
to update the current subqueue for the QueueInstance. The UpdateRequest activity will clear the
RouteNext field.

Correlation
The concept of correlation was introduced briefly in Chapter 8. A typical workflow will have hundreds,
perhaps thousands, of workflow instances executing simultaneously. When a workflow design includes
sending messages to (and between) instances, correlation provides the mechanism to ensure that
messages are sent to the correct instance. There are three types of correlation provided by WF 4.0.

The first (and probably easiest) correlation is called request reply correlation. It is used when you
have a two-way communication between workflow activities. For example, you send a request and wait
for the response. You used this in Chapter 8 (and others). By placing the Send and ReceiveReply activities
within a CorrelationScope activity, the workflow took care of the details for you. In this case, correlation
was accomplished through the communication channel that was established between the sender and
the receiver.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

429

The other two types support more complex scenarios in which there are multiple messages between
the workflows. The first is referred to as context correlation. In this case, the client sends a request, and
the server includes a context ID with the response. This context ID must be included with all subsequent
messages from the client. This is used by the server to associate the same instance that responded to the
first message. This approach requires logic on both the client and server. This approach also requires
that the first message be a two-way message; the server has to send back a response that includes the
context ID.

The last approach, query correlation, is accomplished on the server side only. In a sense, this is
actually very similar to context correlation. There is some sort of key that is included with each request
that identifies the corresponding workflow instance. With context correlation, this key is generated by
the server on the initial request. However, with query correlation, this key is based on data included in
the message.

This project uses query correlation and the common key is the RequestKey, which is a Guid
generated by the application. The RequestKey is provided as one of the parameters on every call to the
service. When the first message is received, the RequestKey is mapped to that workflow instance. This is
done through a correlation initializer, which sets up the mapping between the RequestKey and the
associated workflow instance. On subsequent calls, this is extracted (queried) from the data in the
incoming message and the mapping is used to determine the workflow instance.

Query correlation is accomplished through the Receive activity. There are three properties on the
Receive activity that support correlation, as shown in Figure A-27.

Figure A-27. Properties of a Receive activity

The CorrelatesWith property defines the handle, which is specified as a CorrelationHandle type.
This is a workflow variable that is persisted with the workflow. A CorrelationInitializer is then added
to the first Receive activity, as shown in Figure A-28.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

430

Figure A-28. A correlation initializer

The XPath query might seem a little cryptic, but don’t worry; the Visual Studio takes care of this for
you. You only need to select the appropriate property from the drop-down menu. The drop-down menu
lists all the parameters in the incoming message. When the RequestKey is chosen, the query is generated
automatically.

On subsequent Receive activities, instead of setting the CorrelationInitializer, the CorrelatedOn
property is set. This is done by selecting the correct parameter; a query is then generated for you, as
shown in Figure A-29.

Figure A-29. The CorrelatesOn property

Using WorkflowServiceHost
This project uses several workflow extensions that were introduced in previous chapters (persistence in
Chapter 11, sharing configuration data in Chapter 12, tracking in Chapter13, and custom persistence in
Chapter 14). In those projects there was a console or WPF application that configured these extensions
and added them to the workflow instances as they were created. In this project, this is done by the
WorkflowServiceHost.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

431

Writing Extensions
To add extensions when using the WorkflowServiceHost, they must be configured in the web.config or
app.config file. This requires some extra steps when writing the extensions. The modified
implementation of DBConnection.cs is shown in Listing A-3.

Listing A-3. Implementation of the DBConnection Extension

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using System.Configuration;
using System.Web.Configuration;
using System.ServiceModel;
using System.ServiceModel.Activities;
using System.ServiceModel.Channels;
using System.ServiceModel.Configuration;
using System.ServiceModel.Description;

namespace UserTasks.Extensions
{
 /***/
 // The extension class is used to define the behavior
 /***/
 public class DBConnectionExtension : BehaviorExtensionElement
 {
 public DBConnectionExtension()
 {
 Console.WriteLine("Behavior extension started");
 }

 [ConfigurationProperty("connectionStringName", DefaultValue = "",
 IsKey = false, IsRequired = true)]
 public string ConnectionStringName
 {
 get { return (string)this["connectionStringName"]; }
 set { this["connectionStringName"] = value; }
 }

 public string ConnectionString
 {
 get
 {
 ConnectionStringSettingsCollection connectionStrings =
 WebConfigurationManager.ConnectionStrings;
 if (connectionStrings == null) return null;
 string connectionString = null;
 if (connectionStrings[ConnectionStringName] != null)
 {

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

432

 connectionString =
 connectionStrings[ConnectionStringName].ConnectionString;
 }
 if (connectionString == null)
 {
 throw new ConfigurationErrorsException
 ("Connection string is required");
 }
 return connectionString;
 }
 }

 public override Type BehaviorType
 {
 get { return typeof(DBConnectionBehavior); }
 }
 protected override object CreateBehavior()
 {
 return new DBConnectionBehavior(ConnectionString);
 }
 }

 /***/
 // The behavior class is used to create an extension
 // for each new instance
 /***/
 public class DBConnectionBehavior : IServiceBehavior
 {
 string _connectionString;

 public DBConnectionBehavior(string connectionString)
 {
 this._connectionString = connectionString;
 }

 public virtual void ApplyDispatchBehavior
 (ServiceDescription serviceDescription, ServiceHostBase serviceHostBase)
 {
 WorkflowServiceHost workflowServiceHost
 = serviceHostBase as WorkflowServiceHost;
 if (null != workflowServiceHost)
 {
 string workflowDisplayName
 = workflowServiceHost.Activity.DisplayName;

 workflowServiceHost.WorkflowExtensions.Add(()
 => new DBConnection(_connectionString));
 }
 }

 public virtual void AddBindingParameters

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

433

 (ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase,
 Collection<ServiceEndpoint> endpoints,
 BindingParameterCollection bindingParameters)
 {
 }

 public virtual void Validate
 (ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase)
 {
 }
 }

 /***/
 // This is the actual extension class
 /***/
 public class DBConnection
 {
 private string _connectionString = "";

 public DBConnection(string connectionString)
 {
 _connectionString = connectionString;
 }

 public string ConnectionString { get { return _connectionString; } }
 }
}

There are three classes implemented in this file:

• DBConnectionExtension

• DBConnectionBehavior

• DBConnection

DBConnectionExtension is derived from the BehaviorExtensionElement class. It specifies the
configuration values that are supported. In this case, there is only one: connectionStringName. It also
provides a ConnectionString() method that obtains the connection string from the configuration file
using the connsctionStringName parameter. Finally, it overrides the CreateBehavior() method, which
creates a DBConnectionBehavior object passing in the connection string to the constructor.

The DBConnectionBehavior class implements the IServiceBehavior interface. This interface defines
an ApplyDispatchBehavior() method that creates an extension and adds it to a workflow instance. This is
roughly equivalent to the SetupInstance() method you wrote in Chapter 12. When the
WorkflowServiceHost is started, it looks for all the configured extensions and obtains an
IServiceBehavior interface for each. As each workflow instance is created, it calls the
ApplyDispatchBehavior() method on each of the IServiceBehavior interfaces. The
ApplyDispatchBehavior() method creates a DBConnection class, passing in the connection string to the
constructor and then adds it to the WorkflowExtensions collection.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

434

The DBConnection class in same implementation you created in Chapter 12. It provides a
ConnectionString property that supplies the connection string to any activity that needs it.

Configuring Extensions
A subset of the web.config file is shown in Listing A-4.

Listing A-4. A Portion of the web.config file

<configuration>
 <connectionStrings>
 <add name="Request" connectionString=
 "Data Source=localhost;Initial Catalog=Appendix;Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
 <system.serviceModel>
 <extensions>
 <behaviorExtensions>
 <add name="dbConnection"
 type="UserTasks.Extensions.DBConnectionExtension, UserTasks,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 </behaviorExtensions>
 </extensions>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <dbConnection connectionStringName="Request"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

First, a connection string named “Request” is defined in the connectionStrings section. This allows

you to reference it by name in various places in the web.config file. The advantage to this approach is
that the actual connection string is specified only once. If you need to modify it later, you have to change
it in only one place.

Next, an extension named “dbExtension” is added to the behaviorExtensions section. Note that the
actual class that is referenced is the DBConnectionExtension class, not the DBConnectionBehavior or
DBConnection classes. This extension is then configured in the behaviors section. The extension is
specified by name, dbConnection, and its configuration values are defined. There is only one,
connectionStringName and it is set to “Request” to use the connection string defined earlier.

Configuring Persistence
The persistence extension, SqlWorkflowInstanceStore, is configured in the behavior section as well. You
do not need to add anything to the behaviorExtensions section. The subset of the web.config file is
shown in Listing A-5.

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

435

Listing A-5. Configuring Persistence

<behaviors>
 <serviceBehaviors>
 <behavior>
 <sqlWorkflowInstanceStore
 connectionStringName="Request"
 instanceCompletionAction="DeleteAll"
 instanceLockedExceptionAction="NoRetry"
 instanceEncodingOption="GZip"
 hostLockRenewalPeriod="00:00:30" />
 <workflowIdle
 timeToUnload="00:00:10"
 timeToPersist="00:00:05" />
 </behavior>
 </serviceBehaviors>
</behaviors>

Notice that is uses the same connectionStringName. The code in Listing A-5 also configures the

workflowIdle behavior. The timeToUnload property is set to 10 seconds. This will keep the instance in
memory for 10 seconds after it has entered the Idle state.

Configuring Tracking
To add the tracking extension QueueTracking, the entries are added to extensions and behavior sections
just as it was for the DBExtension discussed previously. In addition, a tracking section is added to specify
queries used to define the tracking events that are to be included. Refer to Chapter 13 for more
information about tracking queries. The web.config entries are shown in Listing A-6.

Listing A-6. Configuring Tracking

<configuration>
 <system.serviceModel>
 <extensions>
 <behaviorExtensions>
 <add name="tracking"
 type="UserTasks.Extensions.QueueTrackingExtension, UserTasks,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 </behaviorExtensions>
 </extensions>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <tracking connectionStringName="Request"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <tracking>
 <profiles>

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

436

 <trackingProfile name="Queue_Tracking">
 <workflow>
 <customTrackingQueries>
 <customTrackingQuery name="*" activityName="*" />
 </customTrackingQueries>
 </workflow>
 </trackingProfile>
 </profiles>
 </tracking>
 </system.serviceModel>
</configuration>

The complete web.config file is shown in Listing A-7.

Listing A-7. Complete web.config File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <add name="Request" connectionString=
 "Data Source=localhost;Initial Catalog=Appendix;Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
 <system.web>
 <compilation debug="true" targetFramework="4.0" />
 </system.web>
 <system.serviceModel>
 <extensions>
 <behaviorExtensions>
 <add name="persistRequest"
 type="ServiceLayer.Extensions.PersistRequestExtension, ServiceLayer,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 <add name="persistQueueInstance"
 type="UserTasks.Extensions.PersistQueueInstanceExtension, UserTasks,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 <add name="dbConnection"
 type="UserTasks.Extensions.DBConnectionExtension, UserTasks,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 <add name="tracking"
 type="UserTasks.Extensions.QueueTrackingExtension, UserTasks,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 </behaviorExtensions>
 </extensions>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <!-- To avoid disclosing metadata information, set the value below to
 false and remove the metadata endpoint above before deployment -->
 <serviceMetadata httpGetEnabled="True"/>
 <!-- To receive exception details in faults for debugging purposes,
 set the value below to true. Set to false before deployment to

http://

APPENDIX ■ SAMPLE WORKFLOW PROJECT

437

 avoid disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults="True"/>
 <!-- This line configures the persistence service -->
 <sqlWorkflowInstanceStore
 connectionStringName="Request"
 instanceCompletionAction="DeleteAll"
 instanceLockedExceptionAction="NoRetry"
 instanceEncodingOption="GZip"
 hostLockRenewalPeriod="00:00:30" />
 <workflowIdle
 timeToUnload="00:30:00"
 timeToPersist="00:00:05" />
 <!-- Configure the connection string for the persistence extensions-->
 <dbConnection connectionStringName="Request"/>
 <persistRequest connectionStringName="Request"/>
 <persistQueueInstance connectionStringName="Request"/>
 <tracking connectionStringName="Request"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <tracking>
 <profiles>
 <trackingProfile name="Queue_Tracking">
 <workflow>
 <customTrackingQueries>
 <customTrackingQuery name="*" activityName="*" />
 </customTrackingQueries>
 </workflow>
 </trackingProfile>
 </profiles>
 </tracking>
 </system.serviceModel>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests="true"/>
 </system.webServer>
</configuration>

Summary
This sample project is just one way workflow can be used to implement a solution. There are other
approaches, such as the one described in Chapter 7 in which workflow was used to organize a
processing algorithm. My goal throughout this book was to give you a variety of applications. Hopefully
one or more of these will resemble a project you are currently working on.

You now have the tools to use the capabilities provided by Workflow Foundation. I wish you great
success as you add this to your repertoire of software design patterns.

http://

■ ■ ■

439

Index

�A
Action property, 173
Action Taken field, 411, 412, 413
Action<T> class, 219
activities

compound, 11
PerformLookup, 158—161
Pick, 173—174
QCPolicy, 416—418
ReceiveRequest, 155—158
SendResponse, 155—158

Activities member, 26
Activities property, 28
Activity class, 21, 25
activity counters, incrementing, 396—399
Activity template, 397
Activity1 file, 379
ActivityConfig class, 379, 395, 396, 398,

400, 402
ActivityContext class, 27
ActivityData property, 398
ActivityName property, 236
ActivityStateQuery class, 235
ActivityStateRecord class, 232, 245
Add activity, 53, 54
Add Existing Item dialog, 124, 125
Add Existing Project dialog, 60, 61, 70, 80
Add Item link, 408
Add new catch link, 322, 373
Add New Item dialog, 46, 47, 368
Add new parameter link, 164

Add New Project dialog, 362, 363
Add Rule link, 385, 391
AddAssignment() method, 286
AddBindingParameters() method, 302
AddComment activity, 216—218
AddComment class, 216
AddComment() method, 216, 218
AddEvent() method, 128, 131, 232
AddLead class, 239
AddLead() method, 233, 280, 281, 283
AddLead.xaml file, 178
AddLead.xaml.cs, 247, 264, 265, 294
AddNewRequest() method, 141, 145
AddToCollection activity, 348
AllowSelection option, 414
Always value, 389
Amount property, TransactionConfig

class, 379
anonymous class instances, 26
app.config file, 290, 312—313, 431
AppendixData folder, 405
Appendix.zip file, 405
application configuration (app.config) file,

196
Application Configuration File template,

101, 312
ApplicationInterface class, 131, 134, 141,

181, 311
methods, 144—148
static reference, 128—129

http://

■INDEX

440

applications, running in client workflow,
172

ApplyDispatchBehavior() method, 302,
433

appSettings section, 102
App.xaml file, 291
Argument type, 170
arguments

configuring, 400
persisting, 207

arguments, passing, 45—58
creating new solution, 45—48
implementing workflow, 48—56

defining arguments, 49—51
designing workflow, 51
expression activities, 53—56
Switch activity, 51—52

invoking workflow, 56—58
running application, 58

Arguments window, VS 2010 IDE, 5
ArgumentType drop-down menu, VS 2010,

50
aspnetdb database, 406
Assign activity, 11, 21, 22, 28, 83, 110
Assign class, 21, 28
Assign To property, 164
AssignedTo argument, 259, 261
AssignedTo property, 260, 273
AssignLead activity, 259, 261, 262, 273, 283,

287, 308
AssignLead class, 258—260
Assignment class, 257, 262, 294, 313
Assignment record, 308
Assignment table, 256—262, 311, 316

adding LINQ to SQL class, 256—258
AssignLead class, 258—260
CreateAssignment class, 260—262

Assignment.dtq query, 316
AssignOperator() method, 426, 427—428
AssignQueue activity, 415, 428
AssignQueueInstance activity, UserTasks

project, 415
asterisk (*), 235

�B
BeginInvoke() method, 131
BeginOnSave() method, 278, 281
behavior section, 434
BehaviorExtensionElement class, 433
behaviorExtensions section, 434
behaviors, 301
binding WCF endpoint, 100
Blank Solution template, 59, 69, 79, 209
Body activity, 324
Body property, 300, 395
Body section, 12, 323, 324, 325, 326, 327,

329
Body sequence, 325, 327
BookInfo classes, 162
BookInfo objects, 172
BookInfo.cs class, 152
BookInfoList class, 155, 156, 158, 166
BookInventory assembly, 156, 163
BookInventory project, 152, 158, 169
BookInventory2.xamlx file, 163, 166, 167,

174
BookInventory.BookSearch property, 157
BookInventory.xaml file, 152
BookInventory.xamlx file, 155, 160
BookList property, 161
BookLookup class, 168
BookLookup.ServiceReference1.Activities

namespace, 170
BookLookup.ServiceReference1.BookInve

ntory assembly, 170
BookmarkResumptionQuery class, 235
BookmarkResumptionRecord class, 232,

245
BookSearch class, 155
bool type, 27
Branch class, 96, 97, 99, 100, 105
Browse and Select a .Net type dialog, 366,

367
btnAddLead_Click event handler, 210
btnAddLead_Click() method, 211, 215
btnAssign_Click event handler, 210
btnAssign_Click() method, 211, 263, 264
Budget property, 351

http://

■INDEX

441

BuildRequestList activity, ServiceLayer
project, 423

built-in activities, extending, 79—92
custom activities, 80—85

implementing, 80—82
LookupItem activity, 82—85
running application, 85

InvokeMethod activity, 86—92
adding discount, 91
OrderDiscount class, 86—87
Parameters property, 89
Result property, 89—90
running application, 91—92
TargetObject property, 88

reusing chapter 6 project, 79

�C
CacheMetadata method, 217
CallItOffException class, 321, 322
cancellation handler, 336
Cancellation Handler section, 324, 325,

328, 329
Cancellation section, 323
CanCreateInstance property, 108, 164, 311
Catch activity, 76, 323, 373
Catch section, 342
Catches section, TryCatch activity, 70
Category property, CustomerConfig class,

379, 403
chaining feature, 388
Chaining option, 389
Chaining property, 389
CheckStock activity, 70—76

Catch activity, 76
defining exceptions, 70—72
ForEach activity, 72
If activity, 72—73
running application, 76
Throw activity, 73
TryCatch activity, 70

classes
adding to projects, 46
copying from LeadGenerator, 294

defining, 47
ClearCollection activity, 355—360
Click event, 142
_Click event handler, 258
"Click to browse" link, 366
client workflow, 168—172

defining, 170—171
implementing host application, 171—

172
running application, 172

ClientService class, 133—134
Code Activity template, 166, 397
CodeActivity class, 22, 80, 364, 368
CodeActivityContext class, 236
coded workflows, 23—32

creating console application, 23—24
defining workflow, 24—29
running application, 29

Collection property, AddToCollection
activity, 348

collections, 345—360
ClearCollection activity, 355—360
creating, 345—349

AddToCollection activity, 348
defining, 346
initial workflow, 347—348
invoking workflow, 348
running application, 349

printing, 349—351
searching, 353—355

ExistsInCollection activity, 354
overriding Equals() method, 353—

354
RemoveFromCollection activity, 355

sorting, 351—353
CollectionsWF() method, 352, 354
CollectionWF() method, 347, 348, 350
CollectValues() method, 216
CommentExtension class, 215, 216, 278
Comments property, 219
Compare() method, IComparer interface,

352
CompensableActivity object, 323, 324
Compensate activity, 341, 342, 344
compensation

http://

■INDEX

442

customizing, 337—342
handlers, 332—336

Compensation Handler section, 324, 326,
333, 334

Compensation section, 323
CompensationToken class, 337, 338
Complete argument, 428
Complete button, 315, 411, 412, 413
Complete output argument, 416
CompleteAssignment class, 304
Completed event, 219
Completed property, 219
CompleteInstance activity, 427
CompleteInstance activity, UserTasks

project, 415—416
CompleteRequest() method, 427, 428
CompletionCondition property, 331, 332
compound activities, 11
ComputeDiscount() method, 87, 89
Condition action, 384, 387
Condition element, If activity, 11
Condition property, 27, 36, 73, 341, 354,

390
Confirm activity, 339, 340, 344
confirmation

activities, 328—329
customizing, 337—342

Confirmation Handler section, 324, 326,
328, 329

Confirmation section, 323, 328, 329
ConnectionString argument, 214
connectionString attribute, 210, 256
_connectionString member, 302
ConnectionString() method, 433
ConnectionString property, 434
connectionStrings section, 434
connsctionStringName parameter, 433
console application, implementing, 402
Console Application template, 95
Content link, 165
Content property, 104, 107, 108, 110, 157,

308
context correlation, 429
Continue() method, 136
CorrelatedOn property, 430

CorrelatesOn property, 430
CorrelatesWith property, 108, 429
correlation, in workflow project, 428—430
correlation initializer, 429, 430
CorrelationHandle type, 429
CorrelationScope activity, 106, 308, 428
counter variable, 25
Create Argument link, 394
Create New SQL Server Database dialog,

185
Create Scripts folder, 405
Create variable link, 337, 338, 395
CreateAssignment activity, 261, 273, 287,

294, 308, 311
CreateAssignment class, 260—262, 286, 287
CreateAssignment.cs file, 294
CreateBehavior() method, 433
CreateBookmark() method, 136
CreateLead activity, 191—192, 213, 214,

282—283
CreateLead class, 236, 238
CreateQueueInstance, activity, UserTasks

project, 415
CreateRequest activity, 104—106, 141, 423
CreateRequest class, 104
CreateResponse activity, 108—110
CreateSqlTrackingParticipant() method,

246
CreateTrackingParticipant() method, 233,

234
CreateWorkflow() method, 22, 24, 25
custom activities, 80—85

creating workflow application, 393—396
executing (3.5), 367—374

creating custom activity, 368—370
invoking custom activity, 371—373
running application, 374
throwing exception, 370—371

implementing, 80—82
LookupItem activity, 82—85
running application, 85

CustomActivity class, 369, 370
CustomerConfig class, 379, 394, 400, 402
CustomTrackingQuery class, 236

http://

■INDEX

443

CustomTrackingRecord class, 232, 236—
238, 245

�D
data context class, 260
data structures, defining, 376—379
data, using parameters to pass, 162—168

modified PerformLookup activity, 166
second workflow service, 163—165
testing, 167—168

database design, UserTasks project, 414
database, in workflow project

configuring for, 405—406
design of service layer, 422—423
design of UserTasks project, 414

DataContext class, 281
DataElements.cs file, 376, 393
DateTime class, 10
DateTime.Now assembly, 387
DBConnection class, 433, 434
DBConnection extension, 415, 417, 431
dbConnection extension, 434
DBConnectionBehavior class, 433, 434
DBConnection.cs, 431
DBConnectionExtension class, 433, 434
DBExtension class, 212, 259, 302
dbExtension extension, 434
DBExtensionBehavior class, 301—302, 304
DBExtension.cs file, 301
Default property, 9, 338
Delay activity, 13, 110, 173, 174, 273, 325,

327, 328, 336, 339, 427
dependency properties, adding, 380—382
DependencyProperty object, 395
Deposit activity, 333
Design tab, 293
Details tab, Event Viewer application, 240,

241
determining priority, 390
Dictionary object, 58, 141, 172, 197, 215,

216, 402
DisplayName argument, 83
DisplayName property, 6, 323, 400

DoWhile activity, 12
Duration property, 13, 29, 173, 327, 328

�E
Else action, 384, 387, 388, 391
Else element, of If activity, 11
Endpoint property, 300
Enlist() method, 260, 261
EnlistTransaction() method, 281
EnterLead workflow modifications activity,

304—308
Equals() method, overriding, 353—354
Error List, VS 2010 IDE, 4
ETW. See Event Tracing for Windows
EtwTrackingParticipant class, 238—241

running application, 239—241
setting up extension, 238
TrackingProfile class, 239

event handlers, 142—143, 219—220
Event Tracing for Windows (ETW), 238—

241
configuring TrackingProfile class, 239
running application, 239—241
setting up extension, 238

Event Viewer application, running, 239,
240

_eventLog private member, 232
exception handling, 69—78

CheckStock activity, 70—76
Catch activity, 76
defining exceptions, 70—72
ForEach activity, 72
If activity, 72—73
running application, 76
Throw activity, 73
TryCatch activity, 70

exceptions, 77—78
reusing chapter 5 project, 69—70

Exception property, 334, 335, 341
Execute() method, 82, 105, 136, 192, 213,

218, 259, 260, 261, 262, 294, 352,
397

ExecutionPropertyName property, 260

http://

■INDEX

444

ExistsInCollection activity, 354
Explicit Update Only option, 389
Explicit Update Only value, 389
expression activities, 53—56
Expression editor, 9
Expression property, 38, 390
expressions, 9, 27—28
ExpressionServices class, 27
eXtensible Application Markup Language

(xaml), 4
extensions, 209—221

configuring, 212
implementing simple, 211—212
persistence, 215—220

accessing extension from
application, 218—219

AddComment activity, 216—218
creating extension, 215—216
event handler syntax, 219—220
IPersistenceParticipant interface,

216
modifying workflow, 218

running application, 220—221
setting up solution, 209—211

running application, 211
setting up database, 210
SetupInstance class, 210

updating application, 214—215
using in activities, 213—214
in workflow project

configuring, 434
persistence extension, 434—435
tracking extension, 435—437
writing, 431—434

Extensions folder, 294

�F
Facility activity, 333
False branch, FlowDecision activity, 36
FalseLabel property, 36
FaultType property, 370
Feedback category, 408, 410
Finally section, TryCatch activity, 70

Find() method, 260
Flowchart activity, 34
flowchart workflow, 33—42

creating, 33—37
defining connections, 34—35
designing flowchart, 34
FlowDecision activity, 35—37
running application, 37

FlowSwitch activity, 38—40
adding, 38
adding FlowStep activities, 39—40
running application, 40

Parallel activity, 40—42
adding, 40
adding branches, 41—42
running application, 42

Flowchart Workflow Console Application
template, Visual Studio 2010, 33

Flowers activity, 332
FlowStep activities, 39—40
FlowSwitch activity, 38—40
FollowUpLead.xaml.cs file, 291, 294
ForEach activity, 61—64, 72, 77, 78, 400
Frequency column, 414
Frequency property, 385
Frequency rule, 403
FromSeconds() method, 29
Full Chaining value, 389
functional construction, 26

�G
Get() method, Variable class, 27
GetComments activity, 218
Get(env) method, 27, 29
GetEventListBox() method, 129
GetHashCode() method, 354
GetQueueInstances activity, UserTasks

project, 415, 423
GetQueueStats() method, 425
GetRequest method, 425
GetValue() method, 82
Greeting activity, 15

http://

■INDEX

445

�H
Halt command, 384, 385, 389
Hardcode activity, 418
host application

communicating with, 123—150
creating WPF project, 123—127
implementing application, 141—148
implementing workflows, 131—141
running application, 148—150
TextWriter class, 127—131

implementing in client workflow, 171—
172

Hour member, DateTime class, 10

�I, J
IActivityExtensionProvider interface, 218
IBookInventory class, 155
ICollection interface, 352
IComparer interface, 352
Idle state, 435
If activity, 10—11, 72—73, 77, 341, 354, 396,

398
ifReview branch, 390
IfReview value, Name property, 390
if-then-else statement, 387
Implementation property, 106
implementing console application, 402
in FlowDecision activity, 36, 38, 39
InArgument class, 28
InArgument<string> class, 29
InArgument<T> class, 27
IncrementEvalCount() method, 398
InsertOnSubmit() method, 192, 281
InstallCommon.sql, 406
InstallMembership.sql, 406
InstanceData table, 206, 257
InstanceStore extension, 301
integrated development environment

(IDE), VS Studio 2010, 4—5
Interop activity, 365, 366—367, 371, 395, 416
Interop Properties window, 396
interoperability with Workflow 3.5, 361

4.0 Workflow, 361—367

creating 3.5 workflow, 362—365
Interop activity, 366—367
modifying Program class, 362
running application, 367

executing custom 3.5 activity, 367—374
creating custom activity, 368—370
invoking Custom Activity, 371—373
running application, 374
throwing exception, 370—371

InvalidProgramException, 370, 371, 373
Invitations activity, 328—329, 332, 334, 339,

343
invitationsToken variable, 338
Invoke () method, WorkflowInvoker class,

58, 349
InvokeMethod activity, 86—92, 141, 195,

198, 218, 273, 311
adding discount, 91
OrderDiscount class, 86—87
Parameters property, 89
Result property, 89—90
running application, 91—92
TargetObject property, 88

IPersistenceParticipant interface, 216, 278
IProcessRequest interface, 421
ISBN argument, 172
IServiceBehavior interface, 302, 433
Item property, AddToCollection activity,

348

�K
Keep me logged in check box, 407

�L
lambda expressions, 27, 28
lambda operator, 27
Language-Integrated Query (LINQ), 313—

314
Lead class, 257, 263, 273
Lead object, 313
LeadDataDataContext class, 191
LeadDataDataContext constructor, 213

http://

■INDEX

446

LeadData.Designer.cs file, 314
Lead.dtq query, 276
LeadGenerator project, 177, 207, 209—221,

229, 255, 276, 277—287
application changes, 262—264

adding workflow event handlers,
264

removing database updates, 263—
264

updating list of leads, 262—263
Assignment table, 256—262

adding LINQ to SQL class, 256—258
AssignLead class, 258—260
CreateAssignment class, 260—262

configuring, 212
creating application, 177—184

defining window form, 178—180
renaming window, 178
TextWriter class, 181—184

designing workflow, 191—195
CreateLead activity, 191—192
defining workflow activities, 193—

195
WaitForInput activity, 193

EtwTrackingParticipant class, 238—241
running application, 239—241
setting up extension, 238
TrackingProfile class, 239

implementing application, 195—200
app.config file, 196
assigning leads, 198—200
creating leads, 197—198
loading existing leads, 200

implementing simple, 211—212
IPersistenceParticipant interface, 278
ListBoxTrackingParticipant class, 230—

238
configuring, 233—234
CustomTrackingRecord class, 236—

238
overriding Track() method, 232—233
running application, 238
TrackingProfile class, 234—236

PersistAssignment extension, 284—286
persistence, 215—220

accessing extension from
application, 218—219

AddComment activity, 216—218
creating extension, 215—216
event handler syntax, 219—220
IPersistenceParticipant interface,

216
modifying workflow, 218

persisting arguments and variables, 207
PersistLead extension, 278—284

connecting to database, 281
modifying AssignLead activity, 283
modifying CreateLead activity, 282—

283
updates, 281

running application, 204—205, 220—221,
276, 287

setting up database, 185—191
installing schema, 185—188
LINQ to SQL classes, 188—191

setting up solution, 209—211, 229—230,
255—256, 277—278

running application, 211
setting up database, 210, 230
SetupInstance class, 210
tracking participants, 230

SqlTrackingParticipant class, 241—247
configuring, 245—246
implementing, 243—245
running application, 247
setting up database, 241—242

updating application, 214—215
using in activities, 213—214
workflow changes, 272—273

LeadGenerator\Activities folder, 294
LeadGenerator.Assignment class, 314
LeadGeneratorWF class, 193, 273
LeadGeneratorWF.cs file, 214, 305
LeadID argument, 261
leadID parameter, 308
LeadID property, 313, 314
LeadResponse application, 305
LeadResponse folder, 294
LeadResponse project

adding app.config file to, 312—313

http://

■INDEX

447

adding to WorkflowServiceHost, 290—
294

Left property, Add activity, 54
LibraryReservation project, 95—122, 123—

150
creating, 95—102

application configuration, 101—102
defining messages between

applications, 96—101
creating WPF, 123—127
defining workflows, 102—107
implementing application, 114—118,

141—148
ApplicationInterface class methods,

144—148
event handlers, 142—143
maintaining workflow instances,

141—142
WorkflowInvoker class, 116—118
WorkflowServiceHost class, 114—115

implementing workflows, 131—141
bookmarks, 135—136
listening for messages, 132—135
ProcessRequest workflow, 139—141
SendRequest workflow, 137—139

running application, 118—122, 148—150
configuring library branch, 118—120
expected results, 120—122

TextWriter class, 127—131
ListBoxTextWriter class, 129—131
providing static reference, 128—129

LINQ (Language-Integrated Query), 313—
314

LINQ to SQL
classes, 188—191
LINQ to SQL class, 256—258

List class, 352
ListBox control, 232
ListBoxTextWriter class, 128, 129—131, 139,

183
ListBoxTextWriter.cs file, 294
ListBoxTrackingParticipant class, 230—238

configuring, 233—234
CustomTrackingRecord class, 236—238
overriding Track() method, 232—233

running application, 238
TrackingProfile class, 234—236

ListItem class, 346, 348, 353, 354
ListItem object, 354
ListView control, 198, 200, 263
Load operation, 278
Loaded event handler, 135, 212, 233, 238,

245
LoadQueueInstance activity, UserTasks

project, 415
LoadRequest activity, ServiceLayer project,

423
LoadRequest method, 425
Log In link, 407
LookupBook class, 155
LookupBook() method, 155, 161
LookupBook2 activity, 170
LookupBook2() method, 167
LookupItem activity, 82—85
LookupItem class, 82
LookupItem.cs class, 80
LookupQueueStats activity, UserTasks

project, 415
lstEvents control, 131
lstLeads control, 263
lstLeast_SelectionChanged() event

handler, 263

�M
MainWindow.xaml file, 291
Marketing queue, 410, 411, 413
Menu activity, 327
Message data property, 157
Message property, 369, 372, 373
Message type property, 158
MessageBodyMember attribute, 99, 155
MessageContract attribute, 99—100, 155,

162, 168
MessageOut property, 372, 373
MinimumAmount property, ActivityConfig

class, 379
mscorlib assembly, 51, 370, 373
Multiple startup projects radio button, 314

http://

■INDEX

448

MyActivity Properties window, 401
MyActivity sequence, 399
MyActivity.xaml file, 398

�N
Name property, 235, 236, 390, 395, 400
NativeActivity base class, 136
NativeActivityContext class, 259, 260
navigation bar, Workflow, 326
Never value, 389
NewRequest() method, 141
NoPersistScope activity, 311
numberBells variable, 25
NumberSinceLastEval property, 385, 397

�O
Object Relational Designer (O/R

Designer), 189, 190, 242, 256, 257
OnIdle event handler, 198
OperationName class, 164
OperationName property, 104
OperatorConfig class, 379, 395, 396, 398,

400, 402
OperatorConfig table, 414
OperatorData property, 398
O/R Designer (Object Relational

Designer), 189, 190, 242, 256, 257
Order class, 47, 48, 50, 58
Order Flowers activity, 336
Order object, 58
OrderDiscount class, 86—87
OrderItem object processing, 61—68

adding OrderItem object, 65
ForEach activity, 61—64
ParallelForEach activity, 68
running application, 66—68

OrderProcess assembly, 50, 51
OrderProcess project, 59—92

CheckStock activity, 70—76
Catch activity, 76
defining exceptions, 70—72
ForEach activity, 72

If activity, 72—73
running application, 76
Throw activity, 73
TryCatch activity, 70

custom activities, 80—85
implementing, 80—82
LookupItem activity, 82—85
running application, 85

exceptions, 77—78
InvokeMethod activity, 86—92

adding discount, 91
OrderDiscount class, 86—87
Parameters property, 89
Result property, 89—90
running application, 91—92
TargetObject property, 88

OrderItem object processing, 61—68
adding OrderItem object, 65
ForEach activity, 61—64
ParallelForEach activity, 68
running application, 66—68

passing arguments, 45—58
creating new solution, 45—48
implementing workflow, 48—56, 49—

51, 51, 51—52, 53—56
invoking workflow, 56—58
running application, 58

reusing chapter 4 project, 59—61
reusing chapter 5 project, 69—70
reusing chapter 6 project, 79

OutArgument class, 28

�P
Parallel activity, 40—42, 323—332, 333

adding, 40
adding branches, 41—42
running application, 42

ParallelForEach activity, 68
Parameters dialog, 89
Parameters property, 89, 308
parameters, using to pass data, 162—168

modified PerformLookup activity, 166
second workflow service, 163—165

http://

■INDEX

449

testing, 167—168
PerformLookup activity, 158—161, 166
PerformLookup2 activity, 166
PerformLookup2.cs class, 166
PerformLookup.cs class, 158
Persist activity, 311
PersistableIdle event handler, 210, 211,

220, 247
PersistAssignment extension, 284—286, 304
PersistAssignmentBehavior class, 303—304
PersistAssignment.cs class, 294
PersistAssignment.cs file, 294, 303
persisted workflow, lifecycle of, 247
persistence, 277—287. See also SQL

persistence
IPersistenceParticipant interface, 278
LeadGenerator project, 215—220

accessing extension from
application, 218—219

AddComment activity, 216—218
creating extension, 215—216
event handler syntax, 219—220
IPersistenceParticipant interface,

216
modifying workflow, 218

PersistAssignment extension, 284—286
PersistLead extension, 278—284

connecting to database, 281
modifying AssignLead activity, 283—

284
modifying CreateLead activity, 282—

283
updates, 281

running application, 287
setting up solution, 277—278

PersistQueueInstance extension, 415
PersistRequest extension, 423
Pick activity, 173, 425, 427
PickBranch activities, 425
Policy object, 405
PolicyActivity

adding dependency properties, 380—
382

defining data structures, 376—379
defining rules, 384—386

overview, 375—379, 392—404
priority, 390—392
rule sets

chaining, 388—389
creating, 383
Halt, 389
overview, 387—390
rules, 387—388
rules file, 389—390
Update, 389

port access, allowing, 121, 122
printing collections, 349—351
PrintList class, 349, 350
priority

determining, 390
entering rules, 391—392

Priority property, 418
priority variable, 396
PriorityPolicy activity, 391, 417, 418
procedural elements, adding, 7—15

Assign activity, 11
Delay activity, 13
If activity, 10—11
Sequence activity, 13
variables, 8—9
While activity, 12

Process link, 409
Process page, 409
ProcessRequest class, 107—115

CreateResponse activity, 108—110
Receive activity, 108
SendReply activity, 110—114

Product queue, 411, 412, 413
Program class, modifying, 362
Projects tab, 291
Properties property, 260
Properties window, VS 2010 IDE, 4—11

for Assign activity, 11
defining If activity in, 11
entering properties in, 9
of selected variable, 8—9

properties windows, If ElseBranch activity,
390

Propertiew window, VS 2010 IDE, 6
Property window, MyActivity, 400

http://

■INDEX

450

PublishValues() method, 216

�Q
QC column, 412
QC mode, 412, 413
QC review, 412, 413
QCPolicy activity, 379, 393, 395, 396, 403,

416—418
QCPolicy assembly, 395, 400
QCPolicy custom activity, 391
QCPolicy.cs file, 379, 380, 390
QCPolicy.rules file, 389
QPolicy activity, 396
Queries property, 234
query correlation, 429
queue list, 411, 413
Queue table, 414, 423
QueueInstance objects, 423
QueueInstance record, 416, 417, 423, 425
QueueInstance table, 414, 423
queueName variable, 428
queues, displaying, 409
QueueTrack table, 414
QueueTracking extension, 418, 435

�R
Receive activity, 95—122, 168, 310, 311, 425,

426, 429
creating project, 95—102

application configuration, 101—102
defining messages between

applications, 96—101
defining workflows, 102—114

ProcessRequest class, 107—114
SendRequest class, 102—107

implementing application, 114—118
WorkflowInvoker class, 116—118
WorkflowServiceHost class, 114—115

ProcessRequest class, 108
running application, 118—122

configuring library branch, 118—120
expected results, 120—122

ReceiveReply activities, 428
ReceiveReply activity, 107, 308
ReceiveRequest activity, 155—158
Reception activity, 327, 328, 332, 333, 334,

339, 343
Reception compensation, 334
Reevaluate property, 389
Reevaluation property, 389
Refresh() method, 259
Remarks section, 315
RemoveFromCollection activity, 355
renaming workflow files, 49
replicated activities, 59—68

OrderItem object processing, 61—68
adding OrderItem object, 65
ForEach activity, 61—64
ParallelForEach activity, 68
running application, 66—68

Replicator activity, 64
Request objects, 423
Request property, 107
Request queue, 414
Request record, 425
request reply correlation, 428
Request table, 423
request variable, 107
requestAddress variable, 103
RequestBook() method, 101
requestHandle variable, 107, 108
RequestKey, 429, 430
RequestQC activity, 415, 416
requests in workflow project

processing, 409—413
submitting, 408

ReservationRequest class, 96, 97, 99, 103,
105

ReservationResponse class, 96, 99, 100
reserved variable, 107
ResetEval() method, 398
RespondToRequest() method, 101, 144
response variable, 107
Result property, 54, 89—90, 339
ResumeBookmark() method, 143, 263
Rethrow activity, 342
rethrown exception, 343

http://

■INDEX

451

Review property, 390, 398, 418
review variable, 396
ReviewPolicy activity, 390, 417
Right property, Add activity, 54
RouteNext field, 412, 428
Rule Set Editor, 383
rule sets

chaining, 388—389
creating, 383
Halt, 389
overview, 387—390
rules file, 389—390
Update, 389

rules, 387—388
defining, 384—386
priority, 391—392

RuleSet class, 383, 385, 386
ruleset editor, 384
RuleSetReference property, 391
Run as administrator option, 121, 122
RuntimeTransactionHandle class, 260

�S
Save operation, 278
Schedule Rehearsal activity, 335
Schema Explorer, XML, 421, 422
Scope property, 50, 338
Search property, 161
searching collections, 353—355

ExistsInCollection activity, 354
overriding Equals() method, 353—354
RemoveFromCollection activity, 355

Select links, 410, 411
Select Rule Set dialog, 386, 387, 391
SelectionChanged event handler, 198
Send activity, 95—122, 103, 141, 174, 308,

310, 428
creating project, 95—102

application configuration, 101—102
defining messages between

applications, 96—101
defining workflows, 102—114

ProcessRequest class, 107—114

SendRequest class, 102—107
implementing application, 114—118

WorkflowInvoker class, 116—118
WorkflowServiceHost class, 114—115

running application, 118—122
configuring library branch, 118—120
expected results, 120—122

SendRequest class, 104
SendReply activity, 110—114, 152, 168, 310,

420, 425, 426
SendRequest class, 102—107

CreateRequest activity, 104—106
ReceiveReply activity, 107
Send activity, 104

SendResponse activity, 155—158
Sequence activity, 5, 8, 13, 25, 63, 84, 273,

322, 325, 327, 328, 329, 333, 341,
395, 400

in coded workflows, 28—29
difference from Flowchart activity, 34

Sequence class, 25
Sequence workflow, 152
Sequence1.xaml file, 17
Sequential option, 389
sequential workflow, 3, 22

adding procedural elements, 7—15
Assign activity, 11
Delay activity, 13
If activity, 10—11
Sequence activity, 13
using variables, 8—9
While activity, 12

simple workflow, 4—7
designing, 5—6
IDE, 4—5
Program.cs file, 6—7
running application, 7

Sequential Workflow Console Application,
creating, 361, 362

Sequential Workflow Console Application
template, VS2010, 3

Service class, 115
service contract, defining for workflow

service, 152—155
service layer, in workflow project, 420—437

http://

■INDEX

452

activities, 423
AssignOperator method, 427—428
correlation, 428—430
database design, 422—423
service contract, 420—421
SubmitRequest method, 425—426
using WorkflowServiceHost, 430—437
workflow design, 424—428

Service1.wsdl file, 421
Service1.xamlx file, 152
ServiceContract attribute, 155
ServiceContract interface, 100—101
ServiceContract property, 155
ServiceHost class, 114, 134—135
SetupHost() method, 300, 301
SetupInstance class, 210
SetupInstance() method, 211, 212, 218,

233, 238, 246, 264, 294, 301, 433
SetValue() method, 82
ShoppingList project, 345—360

ClearCollection activity, 355—360
creating, 345—349

AddToCollection activity, 348
defining, 346
initial workflow, 347—348
invoking workflow, 348
running application, 349

printing, 349—351
searching, 353—355

ExistsInCollection activity, 354
overriding Equals() method, 353—

354
RemoveFromCollection activity, 355

sorting, 351—353
Solution Explorer, VS 2010 IDE, 4
Sort() method, List class, 352
SortCollection class, 351, 352
sorting collections, 351—353
SQL persistence, 177—207

creating application, 177—184
defining window form, 178—180
renaming window, 178
TextWriter class, 181—184

designing workflow, 191—195
CreateLead activity, 191—192

defining workflow activities, 193—
195

WaitForInput activity, 193
implementing application, 195—200

application configuration
(app.config) file, 196

assigning leads, 198—200
creating leads, 197—198
loading existing leads, 200

persisting arguments and variables, 207
running application, 204—205
setting up database, 185—191

installing schema, 185—188
LINQ to SQL classes, 188—191

SqlPersistenceProvider class, 281
SqlTrackingParticipant class, 241—254

configuring, 245—246
implementing, 243—245
running application, 247—254
setting up database, 241—242

SqlWorkflowInstanceStore extension, 434
SqlWorkflowInstanceStore extention, 301
SqlWorkflowInstanceStoreBehavior class,

301
Starting activity, 332, 333
StartupUri attribute, 291
static Create<T>() method,

ExpressionServices class, 27
static reference, ApplicationInterface class,

128—129
static WorkflowInvoker class, 7
Status property, 260
String input arguments, 170
Submit link, 408
submit page, 409
SubmitChanges() method, 192, 281
SubQueue table, 414, 423, 425—426
SupportsQC option, 414
Switch activity, 51—52, 54, 425
System namespace, 370
System.Activities assembly, 337
System.Activities.Expressions namespace,

53
System.Workflow.ComponentModel

assembly, 365, 393

http://

■INDEX

453

�T
Target property, 339
TargetObject property, 88
TargetType drop-down list, 88
TargetType property, 88
Text property, 6, 323, 325, 326, 327, 328,

329, 332, 333, 334, 362, 373, 395
TextWriter class, 127—131, 181—184

ListBoxTextWriter class, 129—131
providing static reference, 128—129

TextWriter property, 6
Then action, 384, 385, 387, 388, 391
Then element, of If activity, 11
Then property, 27
Then section, 11, 73, 341
Throw activity, 73, 334, 335, 336, 339, 341
throw statement, 314
ThrowActivity, 370
TimeSpan class, 13, 29, 233
timeToUnload property, 435
Title argument, 172
To property, 11, 28
token variables, 337—338
Toolbox, VS 2010 IDE, 4
ToString() method, 29
TotalAmount argument, 54
Track() method, 232—233, 236, 245, 418,

419
tracking events, 229

EtwTrackingParticipant class, 238—241
running application, 239—241
setting up extension, 238
TrackingProfile class, 239

ListBoxTrackingParticipant class, 230—
238

configuring, 233—234
CustomTrackingRecord class, 236—

238
overriding Track() method, 232—233
running application, 238
TrackingProfile class, 234—236

setting up solution, 229—230
setting up database, 230
tracking participants, 230

SqlTrackingParticipant class, 241—247

configuring, 245—246
implementing, 243—245
running application, 247
setting up database, 241—242

tracking extension, 435—437
tracking participants

EtwTrackingParticipant class, 238—241
running application, 239—241
setting up extension, 238
TrackingProfile class, 239

ListBoxTrackingParticipant class, 230—
238

configuring, 233—234
CustomTrackingRecord class, 236—

238
overriding Track() method, 232—233
running application, 238
TrackingProfile class, 234—236

overview, 230
SqlTrackingParticipant class, 241

configuring, 245—246
implementing, 243—245
running application, 247
setting up database, 241—242

tracking workflow
in UserTasks project, 418—420
in workflow project, 413

Tracking.dtq query, 413
TrackingParticipant class, 230, 232
TrackingProfile class, 234—236

ActivityStateQuery class, 235
BookmarkResumptionQuery class, 235
CustomTrackingQuery class, 236
Event Tracing for Windows, 239
WorkflowInstanceQuery class, 235

TrackingQuery class, 234
TrackingRecord class, 232, 245
TransactionConfig class, 379, 394, 400
TransactionConfig object, 379, 402
transactionData argument, 394, 400
TransactionList class, 379, 400, 402
TransactionList object, 402
transactions, 255—276

application changes, 262—264

http://

■INDEX

454

adding workflow event handlers,
264

removing database updates, 263—
264

updating list of leads, 262—263
Assignment table, 256—262

adding LINQ to SQL class, 256—258
AssignLead class, 258—260
CreateAssignment class, 260—262

running application, 276
setting up solution, 255—256
workflow changes, 272—273

TransactionScope activity, 308, 311
TransactionScopeActivity class, 273
Trigger activities, 173
Trigger property, 173
True branch, FlowDecision activity, 36
TrueLabel property, 36
Try section, 70, 72, 77, 322
TryCatch activity, 70, 77, 78, 322—323, 338,

341, 342, 344, 371, 373, 374
TypeArgument property, 400

�U
UnAssignQueueInstance activity,

UserTasks project, 415
UnderEvaluation property,

OperatorConfig class, 379
Unloaded event handler, 135
Update command, 389
UpdateControls() method, 262, 263
UpdateCounter.cs file, 397
UpdateCounters activity, 398
UpdateCounters.cs file, 397
UpdateLead() method, 262, 263, 273
UpdateRequest activity, 423, 428
UserTasks project, 413—420

activities, 415
CompleteInstance activity, 415—416
database design, 414
QCPolicy activity, 416—418
tracking workflow events, 418—420

UserTasks.dbml file, UserTasks project,
414

�V
Validate() method, 302
Value property, 11, 28, 55
Values property, 400
Variable class, 28

getting data from, 27
Variable type, 156, 163
Variable type drop-down list, 337, 338
Variable type field, 83
Variable type property, 156
variables, 5, 8—9

persisting, 207
Variables button, 8
Variables collection, 337, 338
Variables control, 156
Variables link, 337
Variables list, 338
Variables window, VS 2010 IDE, 8—10
versions of WF, 21—22
View message link, 157, 158

�W
WaitForInput activity, 139, 141, 193, 195,

218, 247, 272, 273, 311
WaitForInput class, 135
WCF (Windows Communication

Foundation), 95, 151
WCF Test Client, 161
WCF Workflow Service Application

template, 151
WCF Workflow Service template, 163
Web Service Definition Language (.wsdl)

file, 421
web services, 151—174

client workflow, 168—172
defining, 170—171
implementing host application, 171,

172
running application, 172

http://

■INDEX

455

Pick activity, 173—174
using parameters to pass data, 162—168

modified PerformLookup activity,
166

second workflow service, 163—165
testing, 167—168

workflow service, 151—162
defining service contract, 152—155
PerformLookup activity, 158—161
ReceiveRequest activity, 155—158
SendResponse activity, 155—158
testing, 161—162

web.config file, 406, 431, 434, 435, 436
Wedding project

cancellation handlers, 331—332
CompensableActivity, 324
configuring TryCatch activity, 322—323
customizing compensation and

confirmation, 337—342
designing compensation handlers, 332—

336
designing Invitations activity, 328—329
designing Reception activity, 327—328
designing Wedding activity, 325—326
modifying application, 320—321
running application, 330
using Parallel activity, 323

WF (Workflow Foundation) 3.5. See
workflow 3.5

WF (Workflow Foundation) 4.0, 21—22. See
also workflow 4.0

WF 3.5 workflow designer, 363, 364
WF 4.0 designer, VS 2010 IDE, 5
While activity, 12, 426, 428
Window1.xaml file, 170, 173
Windows Communication Foundation

(WCF), 95, 151
Windows Presentation Foundation (WPF)

project, 123—127
defining window form, 125—127
reusing classes from Chapter 8, 124—125

WorkAssignment workflow class, 308—311
workflow 3.5, creating, 362—365
workflow 4.0

creating, 366—367

interoperability with workflow 3.5, 361—
374

creating 4.0 workflow, 361—367
executing custom 3.5 activity, 367—

374
workflow application

creating
configuring arguments, 400
custom activity, 393—396
implementing console application,

402
incrementing activity counters, 396—

399
main workflow, 400
overview, 392—404

running, 403—404
Workflow Console Application template,

168
Workflow Foundation (WF) 3.5. See

workflow 3.5
Workflow Foundation (WF) 4.0, 21—22. See

also workflow 4.0
workflow project, 405—437

configuring database, 405—406
running application, 406—413

logging in, 407
processing requests, 409—413
submitting request, 408
tracking workflow, 413

service layer, 420—437
activities, 423
correlation, 428—430
database design, 422—423
service contract, 420—421
using WorkflowServiceHost, 430—

437
workflow design, 424—428

UserTasks project, 413—420
activities, 415
CompleteInstance activity, 415—416
database design, 414
QCPolicy activity, 416—418
tracking, 418—420

workflow service, 151—162
defining service contract, 152—155

http://

■INDEX

456

PerformLookup activity, 158—161
ReceiveRequest activity, 155—158
SendResponse activity, 155—158
testing, 161—162

Workflow1 class, 7
Workflow1.asmx file, 7
Workflow1.xaml file, 4, 48, 322, 400
Workflow35 assembly, 372
WorkflowApplication class, 210, 321
WorkflowApplicationCompletedEventArgs

class, 219
WorkflowExtensions collection, 433
WorkflowID, 200
workflowIdle behavior, 435
WorkflowInstance class, 233
WorkflowInstance constructor, 142
WorkflowInstanceID, 259
WorkflowInstanceQuery class, 235
WorkflowInstanceRecord class, 232, 245
WorkflowInvoker class, 25, 58, 116—118,

143, 321, 349
WorkflowRuntime class, 22
WorkflowService, 300—304
WorkflowServiceHost

adding app.config file, 312—313
adding LeadResponse project, 290—294
ApplicationInterface class, 311
defining workflows

CompleteAssignment class, 304
EnterLead workflow modifications,

304—308
Persist activity, 311
WorkAssignment workflow class,

308—311
Language-Integrated Query (LINQ)

conflict, 313—314
running applications, 314
setting up solution, 289—290

in workflow project, 430—437
configuring extensions, 434
persistence extension, 434—435
tracking extension, 435—437
writing extensions, 431—434

WorkflowService, 300—304
WorkflowServiceHost class, 114—115
WorkflowServiceImplementation, 115
WPF (Windows Presentation Foundation)

project, 123—127
defining window form, 125—127
reusing classes from Chapter 8, 124—125

WPF Application template, 123, 177
Write() method, 131
WriteLine activity, 5, 6, 22, 76, 110, 140,

173, 195, 323, 325, 326, 327, 328,
329, 332, 333, 334, 341, 362, 366,
367, 373, 395, 400

WriteLine() method, 128
.wsdl (Web Service Definition Language)

file, 421

�X, Y
xaml (eXtensible Application Markup

Language), 4
.xaml file, 17
XAML tab, 291
.xamlx file, 162, 424
x:Null attribute, 53
XPath query, 430

�Z
zoom control, VS 2010 IDE, 5

http://

	1430224851
	Beginning WF:Windows Workflow in .NET 4.0
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	How to Use This Book
	Chapter Outline
	Section 1: Basic Concepts
	Section 2: Designing Workflows
	Section 3: Communication
	Section 4: Workflow Extensions
	Section 5: Advanced Topics
	Appendix

	Part 1: Introduction
	CHAPTER 1 Building a Simple Workflow
	A Simple Workflow
	Exploring the IDE
	Designing the Workflow
	Reviewing Program.cs
	Running the Application

	Adding Procedural Elements
	Using Variables
	Assign
	While
	Sequence
	Delay
	More Embellishments
	Running the Application

	Navigating the Designer
	Looking a Bit Deeper
	Differences from Previous Versions

	CHAPTER 2 Coded Workflows
	Creating a Console Application
	Defining the Workflow
	Implementing Level 1
	Implementing Level 2
	Expressions

	Implementing Level 3
	Assign Activity
	Sequence

	Running the Application
	Review

	CHAPTER 3 Flowchart Workflow
	Creating a Flowchart Workflow
	Designing the Flowchart
	Defining Connections
	FlowDecision
	Running the Application

	Flow Switch
	Adding a FlowSwitch Activity
	Adding the FlowStep Activities
	Running the Application

	Parallel
	Adding a Parallel Activity
	Adding the Branches
	Running the Application

	Part 2: Designing Workflows
	CHAPTER 4 Passing Arguments
	Creating a New Solution
	Defining the Order Class

	Implementing the Workflow
	Defining the Arguments
	Designing the Workflow
	Switch Activity
	Expression Activities

	Invoking the Workflow
	Running the Application

	CHAPTER 5 Replicated Activities
	Reusing the Chapter 4 Project
	Adding OrderItem Processing
	ForEach Activity
	Adding Order Items
	Running the Application
	ParallelForEach Activity

	CHAPTER 6 Exception Handling
	Reusing the Chapter 5 Project
	Adding the Check Stock Activity
	TryCatch Activity
	Defining an Exception
	ForEach Activity
	If Activity
	Throw Activity
	Catch Activity
	Running the Application

	Exceptions

	CHAPTER 7 Extending the Built-In Activities
	Reusing the Chapter 6 Project
	Using Custom Activities
	Implementing a Custom Activity
	Using the LookupItem Activity
	Running the Application

	InvokeMethod Activity
	Creating a Discount Class
	Using the InvokeMethod Activity
	Specifying the Target Object
	Specifying the Parameters
	Specifying the Result

	Adding the Discount
	Running the Application

	Summary

	Part 3: Communication
	CHAPTER 8 Send and Receive
	Creating the Project
	Define the Messages
	MessageContract
	ServiceContract

	Application Configuration

	Defining the Workflows
	Client–SendRequest
	Send Activity
	Custom Activity—CreateRequest
	ReceiveReply Activity

	Server–ProcessRequest
	Receive Activity
	Custom Activity—CreateResponse
	SendReply Activity

	Implementing the Application
	WorkflowServiceHost
	Service
	Endpoint

	WorkflowInvoker

	Running the Application
	Configuring a Library Branch
	Expected Results

	CHAPTER 9 Communicating withthe Host Application
	Creating a WPF Project
	Reusing the Classes from Chapter 8
	Defining the Window Form

	Implementing a TextWriter
	Providing a Static Application Reference
	Implementing ListBoxTextWriter

	Implementing the Workflows
	Listening for Messages
	Implementing the Service Contract
	Implementing a ServiceHost

	Bookmarks
	Implementing the SendRequest Workflow
	Implementing the ProcessRequest Workflow

	Implementing the Application
	Maintaining Workflow Instances
	Event Handlers
	ApplicationInterface Methods

	Running the Application

	CHAPTER 10 Web Services
	Creating a Workflow Service
	Defining the Service Contract
	Configuring Receive and SendReply
	Creating the PerformLookup Activity
	Testing the Service

	Using Parameters
	Creating a Second Service
	Creating a Modified PerformLookup Activity
	Testing the Service

	Creating a Client Workflow
	Defining the Workflow
	Implementing the Host Application
	Running the Application

	Using Pick
	Review

	Part 4: Workflow Extensions
	CHAPTER 11 SQL Persistence
	Creating the Application
	Renaming the Window
	Defining the Window Form
	Implementing a TextWriter

	Setting Up the Database
	Creating a Database
	Installing the Schema
	Creating the LINQ to SQL Classes

	Designing the Workflow
	Custom CreateLead Activity
	Custom WaitForInput Activity
	Defining the Workflow Activities

	Implementing the Application
	Application Configuration File
	Configuring the Persistence Provider Factory
	Creating Leads
	Assigning Leads
	Loading Existing Leads

	Running the Application
	Digging a Bit Deeper
	Persisting Arguments and Variables

	CHAPTER 12 Extensions
	Setting Up the Solution
	Copy Solution from Chapter 11
	Setting Up the Database
	Implementing SetupInstance
	Running the Application

	Extensions
	Implementing a Simple Extension
	Configuring the Extension
	Using the Extension in an Activity
	Updating the Application

	Participating in Persistence
	Creating the Extension
	PersistenceParticipant
	AddComment Activity
	GetComments Activity

	Modifying the Workflow
	Accessing the Extension from the Application
	Event Handler Syntax

	Running the Application

	CHAPTER 13 Tracking
	Setting Up the Solution
	Copy Solution from Chapter 12
	Setting Up the Database
	Tracking Participants

	ListBoxTrackingParticipant
	Overriding the Track() Method
	Configuring a Tracking Participant
	Configuring a Tracking Profile
	WorkflowInstanceQuery
	BookmarkResumptionQuery
	ActivityStateQuery
	CustomTrackingQuery

	CustomTrackingRecord
	Running the Application

	Event Tracing for Windows (ETW)
	Setting Up the Extension
	Configuring the TrackingProfile
	Running the Application

	SqlTrackingParticipant
	Setting up the Database
	Implementing the SqlTrackingParticipant
	Configuring the Tracking Participant
	Running the Application

	CHAPTER 14 Transactions
	Setting Up the Solution
	Assignments
	Adding the LINQ to SQL Class
	AssignLead Activity
	RuntimeTransactionHandle

	CreateAssignment Activity

	Application Changes
	Updating the List of Leads
	Removing Database Updates
	Adding Workflow Event Handlers

	Workflow Changes
	TransactionScope
	InvokeMethod

	Running the Application

	CHAPTER 15 Transactions with Persistence
	Setting Up the Solution
	PersistenceParticipant
	PersistLead Extension
	Connecting to the Database
	Performing the Updates

	Using the PersistLead Extension
	Modifying the CreateLead Activity
	Modifying the AssignLead Activity

	PersistAssignment Extension
	Using the PersistAssignment Extension
	Application Changes
	Running the Application

	CHAPTER 1 6 WorkflowServiceHost
	Setting Up the Solution
	Adding LeadResponse
	Renaming the Window
	Defining the Window Form
	Copying Classes from LeadGenerator
	Implementing the Application

	WorkflowService
	Behaviors
	DBExtensionBehavior
	PersistAssignmentBehavior

	Defining the Workflows
	CompleteAssignment
	EnterLead Workflow Modifications
	WorkAssignment Workflow
	Persist

	Final Application Changes
	ApplicationInterface
	Adding the app.config File
	LINQ Conflict

	Running the Applications
	Review

	Part 5: Advanced Topics
	CHAPTER 17 Compensation, Confirmation, and Cancellation
	Designing the Workflow
	Modifying the Application
	Configuring a TryCatch Activity
	Using a Parallel Activity
	CompensableActivity
	Designing the Wedding Activity
	Designing the Reception Activity
	Designing Confirmation Activities

	Designing the Invitations Activity
	Designing the Confirmation Activities

	Running the Application

	Cancellation Handlers
	More on the Parallel Activity

	Designing Compensation Handlers
	Designing the Wedding Compensation
	Designing the Reception Compensation
	Running the Application

	Customizing Compensation and Confirmation
	Adding the Token Variables
	Setting the Result Property
	Custom Confirmation
	Custom Compensation
	Rethrow Activity

	CHAPTER 18 Collections
	Creating a Collection
	Defining the Shopping List
	Initial Workflow
	AddToCollection Activity
	Invoking a Workflow
	Running the Application

	Printing and Sorting
	Printing the Collection
	Sorting the Collection

	Searching the Collection
	Overriding the Equals() Method
	ExistsInCollection Activity
	RemoveFromCollection Activity

	ClearCollection Activity

	CHAPTER 19 Interoperability with Workflow 3.5
	Creating a 4.0 Workflow
	Creating a 3.5 Workflow
	Interop Activity
	Running the Application

	Executing a Custom 3.5 Activity
	Creating a Custom Activity
	Throwing an Exception
	Invoking the Custom Activity
	Running the Application

	CHAPTER 20 Policy
	Creating a Custom Activity
	Defining the Data Structures
	PolicyActivity
	Adding Dependency Properties
	Creating a Rule Set
	Defining the Rules
	Understanding Rule Sets
	Rules
	Chaining
	Halt and Update
	Rules File

	Determining the Priority
	Entering the Priority Rules

	Creating a Workflow Application
	Creating a Custom Activity
	Incrementing the Activity Counters
	Creating the Main Workflow
	Configuring the Arguments
	Implementing the Console Application
	Running the Application

	Review

	APPENDIX Sample Workflow Project
	Project Overview
	Configuring the Database
	Running the Application
	Logging In
	Submitting a Request
	Processing Requests
	Tracking the Workflow

	Generic Queue Logic
	Database Design
	Activities
	CompleteInstance
	QCPolicy
	Tracking

	Service Layer
	Service Contract
	Database Design
	Activities
	Workflow Design
	SubmitRequest
	Processing a Request

	Correlation
	Using WorkflowServiceHost
	Writing Extensions
	Configuring Extensions
	Configuring Persistence
	Configuring Tracking

	Summary

	Index

