
www.allitebooks.com

http://www.allitebooks.org


 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 

www.allitebooks.com

http://www.allitebooks.org


 

iv 

 Contents at a Glance 

 About the Authors................................................................................................ xiii 
 About the Technical Reviewer ............................................................................. xiv 
 Acknowledgments ................................................................................................ xv 
 Introduction ......................................................................................................... xvi 
 Chapter 1: Introducing Windows Phone 7 and the Windows Phone Platform ........1 
 Chapter 2: Building Windows Phone 7 Applications.............................................15 
 Chapter 3: Building Windows Phone 7 Applications Using Cloud Services  As 
Data Stores ...............................................................................................................35 
 Chapter 4: Catching and Debugging Errors ..........................................................95 
 Chapter 5: Packaging, Publishing, and Managing Applications.........................119 
 Chapter 6: Working with the Accelerometer ......................................................139 
 Chapter 7: Application Bar..................................................................................159 
 Chapter 8: WebBrowser Control .........................................................................179 
 Chapter 10: Integrating Applications with the Windows Phone OS....................213 
 Chapter 11: Creating Trial Applications..............................................................239 
 Chapter 12: Internationalization.........................................................................261 
 Chapter 13: Isolated Storage ..............................................................................279 
 Chapter 14: Using Location Services ..................................................................297 
 Chapter 15: Media ..............................................................................................325 
 Chapter 16: Working with the Camera  and Photos............................................347 
 Chapter 17: Push Notifications ...........................................................................367 
 Chapter 18: Reactive Extensions for .NET...........................................................405 
 Chapter 19: Security ...........................................................................................439 
 Index ...................................................................................................................471 

www.allitebooks.com

http://www.allitebooks.org


xx 

Introduction 

This is the second edition of this book. We wanted to improve upon the first edition and become the 
market leader in providing practical knowledge on the fast-coming, latest-and-greatest technology of 
Windows Phone. 

While this second edition was being written, Microsoft and Nokia formally announced their 
partnership and signed mutual agreement to seal their commitment. It is expected that this partnership 
between Microsoft and Nokia will bring Windows Phone 7 into the major player arena. We hope that this 
book will provide developers with the practical knowledge that we gained by developing real world 
applications; we also hope it will inspire developers to seek growing markets with Windows Phone. 

Who This Book Is For 
This book assumes that you have basic C# and .NET knowledge. This book will provide you with basic 
fundamentals and skills that you need to be successful in developing a Windows Phone applications. 
You don’t need previous experience in developing a mobile application—the only thing you need is a 
desire to learn new technology. 

What You Need to Use This Book 
In order to write Windows Phone applications and to test out the examples in this book, you’ll need to 
download the tools listed here. All of these are available at no charge from Microsoft. You’ll find 
additional information on how to install and use these tools in Part 1 of this book. 

• Windows Phone Developer Tools RTW at 
http://download.microsoft.com/download/1/7/7/177D6AF8-17FA-40E7-AB53-
00B7CED31729/vm_web.exe  

• Zune Software at www.zune.net/en-us/products/software/download/  

• Windows Phone 7 UI Design and Interface Guide at 
http://go.microsoft.com/fwlink/?LinkID=183218 

• Windows Phone 7 Marketplace Certification Requirements at 
http://go.microsoft.com/?linkid=9730558 

• Microsoft SQL 2008 R2 Express at www.microsoft.com/express/Database/ 

• Azure Tools for Visual Studio 1.2 June 2010 at 
http://download.microsoft.com/DOWNLOAD/1/F/9/1F96D60F-EBE9-44CB-BD58-
88C2EC14929E/VSCLOUDSERVICE.EXE 

www.allitebooks.com

http://download.microsoft.com/download/1/7/7/177D6AF8-17FA-40E7-AB53-00B7CED31729/vm_web.exe
http://download.microsoft.com/download/1/7/7/177D6AF8-17FA-40E7-AB53-00B7CED31729/vm_web.exe
http://www.zune.net/en-us/products/software/download/
http://go.microsoft.com/fwlink/?LinkID=183218
http://go.microsoft.com/?linkid=9730558
http://www.microsoft.com/express/Database/
http://download.microsoft.com/DOWNLOAD/1/F/9/1F96D60F-EBE9-44CB-BD58-88C2EC14929E/VSCLOUDSERVICE.EXE
http://download.microsoft.com/DOWNLOAD/1/F/9/1F96D60F-EBE9-44CB-BD58-88C2EC14929E/VSCLOUDSERVICE.EXE
http://www.allitebooks.org


 INTRODUCTION 

xxi 

•  Azure SDK June 2010  at http://www.microsoft.com/windowsazure/sdk/ 

• Windows Azure Platform Training Kit September—for the latest update, please 
check at 
http://www.microsoft.com/downloads/en/details.aspx?familyid=413e88f8-5966-
4a83-b309-53b7b77edf78 

How This Book Is Organized 
The book contains 19 chapters broken into two major parts. In Part 1, we will walk you through the 
development life cycle of the application. You will go from coding the simplest possible “Hello World”–
style Windows Phone 7 application to building a full-blown, modern n-tier application that uses both 
the Windows Phone development platform and the unique cloud services that support it. The section 
concludes with step-by-step instructions on how to gain certification from Microsoft and offer an 
application to the public through the Windows Phone Marketplace.  

In Part 2, you will learn how to use specific features of Windows Phone devices in your applications, 
including the accelerometer, location service, application bar, reactive extensions, application hub 
integration, application life cycle events, isolated storage, Silverlight, XAML, skinning controls, web 
browser controls, media elements, photos, push notifications, internalization, and security. While each 
of its chapters is a tutorial, you can also use Part 2 as a reference. Each chapter focuses on a single phone 
feature and provides step-by-step instructions on how to incorporate it into your application. 

Where to Find Sources for the Examples  
The source code of all of the examples is available at www.apress.com/ and wp7apress.codeplex.com. 

Send Us Your Comments 
We value your input. We’d like to know what you like about the book and what you don’t like about it. 
When providing feedback, please make sure you include the title of the book in your note to us. 

We’ve tried to make this book as error-free as possible. However, mistakes happen. If you find any 
type of error in this book, whether it is a typo or an erroneous command, please let us know about it. 
Visit the book’s web site at www.apress.com/9781430235965 and click the Errata tab. Your information 
will be validated and posted on the errata page to be used in subsequent editions of the book.  

Contacting the Authors 
You can contact us directly at the following e-mail addresses: 

Henry Lee: Henry.Lee@NewAgeSolution.net 

Eugene Chuvyrov: echuvyrov@msn.com 

www.allitebooks.com

http://www.microsoft.com/windowsazure/sdk/
http://www.microsoft.com/downloads/en/details.aspx?familyid=413e88f8-5966-4a83-b309-53b7b77edf78
http://www.microsoft.com/downloads/en/details.aspx?familyid=413e88f8-5966-4a83-b309-53b7b77edf78
http://www.apress.com/
http://www.apress.com/9781430235965
mailto:Henry.Lee@NewAgeSolution.net
mailto:echuvyrov@msn.com
http://www.allitebooks.org


C H A P T E R  1 
 

      
 

1 
 

Introducing Windows Phone 7 and 
the Windows Phone Platform 

This is an exciting time for developers as the smartphone race heats up between major players Microsoft 
Windows Phone, Apple iPhone, and Google Android. As a developer, you are faced with an amazing 
opportunity to develop a mobile application that can be sold to millions of consumers worldwide using 
any of the platforms (Windows Phone, iPhone, and Android). By 2014 Gartner predicts that the 
smartphone market will boom and there will be billions of dollars at stake. This could well be the next 
big “dot com boom” that everyone’s been waiting for. 

Recently, Nokia, one of the largest mobile phone makers in the world, announced that it will replace 
its Symbian-based operating system (OS) with a Windows Phone 7 OS. The partnership between 
Microsoft and Nokia will potentially boost Windows 7’s global market share to 30 percent, making it 
even more attractive for Windows Phone 7 developers.  

The Marketplace for Windows Phone, where consumers can purchase applications, opened in 
November, 2010.  You might consider downloading Zune software from www.zune.net/en-
US/products/software/download/downloadsoftware.htm to view the current Marketplace. Once you have 
downloaded the Zune software and fired it up, click marketplace   APPS links, and you will be able to see 
all the Windows Phone applications currently published, as shown in Figure 1–1. You will learn more 
about the Marketplace in Chapter 5. 

www.allitebooks.com

http://www.zune.net/en-US/products/software/download/downloadsoftware.htm
http://www.zune.net/en-US/products/software/download/downloadsoftware.htm
http://www.allitebooks.org


CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

2 

 

Figure 1–1. Windows Phone Marketplace 

There are hundreds of ideas for applications still waiting to be discovered and developed by you. 
Take a look at QuotedSuccess, DuckCaller, and a MobileBaseball game, shown in Figure 1–2. Which of 
these will be among the first Windows Phone hits to catch fire with consumers and sell millions of units? 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

3 

   

 

Figure 1–2. Windows Phone applications 

What application will you be developing? We’ve written this book to guide you through the steps it 
takes to write and launch a successful application to the Marketplace. So what are you waiting for? Let’s 
get started by diving into what Windows Phone has to offer to developers like you.  

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

4 

Windows Phone Overview 
Microsoft Windows Phone is a great consumer phone because it has all of the features to which users 
have become accustomed thanks to the Apple iPhone and Android-powered smartphones like the 
Motorola Droid and HTC Incredible. These features include multitouch screen, a beautiful user interface 
(UI) that implements a new modern design named Metro, social networking services like Facebook, and 
support for popular e-mail accounts such as Yahoo, Hotmail, Google, AOL, and, if you’re a corporate 
user, Microsoft Exchange. Uniquely, the phone ships with a version of Microsoft Office that you can use 
to read, edit, save, and synch any Word files, Excel spreadsheets, and other Office formats, making it a 
great phone for those who use Office at home or in the office. Windows Phone can also integrate with 
Xbox LIVE, making it a great choice for gamers. 

Microsoft Windows Phone uses the Zune software to sync installed applications, pictures, music, 
and back up and flash OS updates. As a developer, you’ll also use Zune in conjunction with Visual Studio 
to debug your applications on a real device; more on that in Chapter 4. 

Microsoft also introduces the concept of a hub with the Windows Phone: a People hub where users 
can store all of their contacts and social networking connections; a Music hub where consumers can 
listen to, download, and purchase music; and an App Hub, also known as the Marketplace, which you 
will be most interested in since you will be publishing the application you create. 

Having a phone that’s a hit with consumers is important because the consumer marketplace is 
where the greatest opportunities lie. One of the great things about Windows Phone is that Microsoft 
imposes the hardware specifications on the phone manufacturer, making it easy for you to develop an 
application without worrying about writing special codes for the specific devices. For any future release 
of the phone, you are guaranteed that the application you write today will work regardless of the brand 
of the phone. 

Naturally, you want to know what language you’ll need to master for your work. For Windows 
Phone, the language of choice today is C# and Visual Basic (VB). As for an application development 
framework, you have two choices: Silverlight or XNA. Silverlight and XNA both use core .NET 
Framework. You will learn more about the two frameworks later in this chapter, but first let’s take a 
closer look at the hardware features you can expect on a Windows Phone. 

Windows Phone Hardware Specifications 
Knowing what’s included in the Microsoft Windows Phone hardware specifications will help you 
prepare for the special needs of the projects you’d like to attempt. Table 1–1 lists the minimum hardware 
requirements any Windows Phone manufacturer must meet and also includes suggestions as to how 
they can impact developers like you. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

5 

Table 1–1. Windows Phone Minimum Hardware Requirements 

Hardware Feature Description 

Must display at WVGA 
(800 x 480) 

Having to worry about only one screen resolution makes it easy to develop 
an application. 

Four-point multi-touch 
capable 

This is unique to the Windows Phone, and you can use this feature to create 
four-player games. There is definitely room for innovation for using this 
particular feature. 

DirectX 9 hardware 
acceleration 

This means the phone will have a graphical processing unit (GPU), allowing 
graphically intense tasks to be offloaded to the graphics chips of the phone. 
This will help you create very smooth and responsive applications and 
games. This also means 3D games are possible. 

GPS With this, you’ll be able to create location-aware applications. See Chapter 
14 to learn about location services, how to use Bing Maps, and how to plot 
GPS data on the map. 

Accelerometer This feature will measure the change of the acceleration in the phone. The 
accelerometer can be used in games or in creating utility applications, like a 
level. See Chapter 6 to learn more about this feature. 

Compass With this, you can find north, south, east, and west. 

Light This feature can be used as a flash for the camera. 

Digital Camera This allows you to take pictures and share them on Facebook and other 
social networking sites. Learn more about this feature in Chapter 16. 

Hardware controls: Back, 
Start, and Search buttons 

Every phone will have three buttons on the front of the phone. Keep in mind 
that you will be required to use Back buttons for going backward in your 
application, because having separate Back buttons in the application might 
confuse the user. Learn more about integrating the hardware buttons into the 
application in Chapter 10. 

Support data connections: 
cellular network and Wi-Fi 

This feature allows you to connect to the Internet. You can create web services 
and consume them from your applications, or you can consume third-party 
APIs like Twitter or Facebook in your application. 

256MB of RAM and 8GM 
flash storage 

Keep in mind that your application can use only 90MB of memory unless 
the device has more memory than 256MB. If your application does not 
respect this, it will not pass the Marketplace certification process. See 
Chapter 5 for more details. 

Also, the 8GB of flash memory used for storage is shared among other 
applications, so if you are saving any kind of static data into the Isolated 
Storage, you must check if the space is available and handle the exception 
appropriately. See more details on this in Chapter 13. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

6 

AT&T had announced it would carry Samsung’s Focus, LG’s Quantum, and HTC’s SurroundTM. 
And T-Mobile had announced it would carry HTC’s HD7. For those who have other cell phone providers, 
Dell ships its Venue Pro. You can find more information on the release of these phones at 
www.microsoft.com/windowsphone/en-us/buy/7/phones.aspx.  

In the next section, you will learn how the software behind these powerful consumer phones 
provides a great development platform for developers. 

Windows Phone Application Platform 
Microsoft did not invent any new languages or frameworks for the Windows Phone application platform. 
The company simply adapted its existing frameworks. This means that you will be able to program using 
C# and VB with the .NET Framework). What .NET provides is a common base class library that every 
Microsoft .NET programmer will be familiar with; it includes support for multithreading, XML, Linq, 
collections, events, data, exceptions, IO, service model, networking, text, location, reflection, 
globalization, resources, runtime, security, and diagnostics. 

On top of the core .NET Framework, the Windows Phone application platform consists of two major 
frameworks: Silverlight and XNA. You’ll use Silverlight primarily for business applications and simple 2D 
games. Silverlight uses the Extensible Application Markup Language (XAML), a declarative markup 
language for creating compelling UI. Designers will have tremendous flexibility in creating UIs for 
Windows Phone; by using familiar tools like Adobe Illustrator, Photoshop, and Microsoft Expression 
Design, they can create a vector-based UI that can be easily exported to XAML. XNA is primarily used for 
creating games; the framework comes with a game engine that allows you to create loop-based games 
and a 3D engine that allows you to create 3D games. 

In the following sections, you will learn more details about the main components of the Windows 
Phone application platform: Silverlight, XNA, tools, and cloud services. 

Silverlight for Windows Phone 
The interesting thing about Silverlight is that Silverlight is used in the web technology that is browser 
plug-in that enables rich Internet application, desktop application quality to be enabled in all major 
browsers. Silverlight provides you with a sandboxed experience that behaves and abides by the rules of 
the web browsers; in other words, within a Silverlight application, you can’t access the native OS unless 
you have the necessary APIs. This architecture makes Silverlight very compelling for use in Windows 
Phone from a security standpoint because Windows Phone provides the same restriction of providing 
APIs only to developers and limiting access to the native OS.  

Another plus is that Silverlight uses XAML, which can be used to declare vector-based graphics and 
create animations. Any designer familiar with vector-based applications like Adobe Illustrator and 
Microsoft Expression Design can easily create highly visual elements in vector that can be exported out 
to XAML. This means the designers have full control over the layout, look and feel, and graphical assets, 
making Silverlight an extremely powerful choice for creating consumer-oriented applications. Also 
XAML provides a powerful data binding feature to the controls, making it ideal for creating business 
oriented applications. 

http://www.microsoft.com/windowsphone/en-us/buy/7/phones.aspx


CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

7 

XNA for Windows Phone 
Like Silverlight, XNA is not a new technology. XNA is used in creating Xbox games via managed code. It is 
a natural choice for creating games since Windows Phone has Xbox LIVE integration, allowing XNA-
based Xbox games to be easily posted over to Windows Phone. The only thing Xbox game developers 
have to worry about is screen resolution, which can easily be adjusted and fixed. 

XNA provides a rich framework for game developments, including a game loop engine, 2D and 3D 
engines, and the ability to manage game assets like models, meshes, sprites, textures, effects, terrains, 
and animations. 

Tools 
You can download the tools you need for developing Windows Phone applications from 
http://create.msdn.com/en-us/home/getting_started. The Getting Started page also features rich 
documentation and tutorials. You should also consider downloading The UI Design and Interaction
Guide to understand the Metro design guidelines that Microsoft encourages you to follow when 
developing applications. 

Visual Studio 
If you don’t have a paid version of Visual Studio 2010 on your development machine, then the 
development tool that you have downloaded from Microsoft will install a free version of Visual Studio 
2010 Express for Windows Phone, as show in Figure 1–3. Visual Studio is absolutely necessary because it 
can be used to design, debug, create projects, package, and automatically generate package manifests. It 
also includes a phone emulator on which to test the results of your work. In Chapter 5, you will learn to 
debug and run the emulator from Visual Studio; you will also use Visual Studio to create a package for 
publication to the App Hub.  

http://create.msdn.com/en-us/home/getting_started


CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

8 

 

Figure 1–3. Microsoft Visual Studio 2010 Express for Windows Phone 

Expression Blend 
You will need Expression Blend if you want to develop compelling applications using Silverlight for 
Windows Phone, as shown in Figure 1–4. Typically Expression Blend is used by designers, and many of 
the Expression Blend functionalities are similar those in Adobe Illustrator, Photoshop, or Expression 
Design. Note that you can import any Illustrator and Photoshop files into Expression Blend; if you are 
using Expression Design, you can export Expression Design file directly to an XAML file. 

Expression Blend also provides a way to create animation sequences. Although you can create 
animation in Visual Studio using XAML, it would be very difficult to write complex XAML code to 
represent complex graphics or animation sequences. It is best to leave complex graphics and animations 
to Expression Blend. 



CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

9 

 

Figure 1–4. Microsoft Expresion Blend 4 for Windows Phone 

Windows Phone Emulator 
The Windows Phone emulator, seen in Figure 1–5, is integrated with Visual Studio and simulates a real 
device. However, there are things you can’t do in the emulator. For instance, you can’t test any features 
that require a physical device, such as the accelerometer, GPS, compass, FM radio, SMS, e-mail, phone 
calling, contact list, and camera.  

There is, however, a technique called Reactive Extensions that you can use to simulate the data feed 
from a real phone. In Chapter 18, you’ll learn how to use Reactive Extensions to simulate the 
accelerometer and GPS readings so that you can work with the emulator without the need of the device. 



CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

10 

 

Figure 1–5. Windows Phone emulator 

Documentation and Support 
There are many ways to get help if you get stuck on a problem while developing your application. The 
Windows Phone 7 Training Kit at http://create.msdn.com/en-us/home/getting_started contains how-
tos on specific technology. You can go to http://forums.silverlight.net/forums/63.aspx to ask 
Silverlight for Windows Phone–related questions; if you have other Windows Phone-related questions, 
you can visit http://social.msdn.microsoft.com/Forums/en-US/windowsphone7series. The Windows 
Phone development team puts out many useful blogs that you can follow at 
http://windowsteamblog.com/windows_phone/b/wpdev/. Of course, there is Windows Phone 
documentation at MSDN; go to http://msdn.microsoft.com/en-us/library/ff402535(VS.92).aspx.  

http://create.msdn.com/en-us/home/getting_started
http://forums.silverlight.net/forums/63.aspx
http://social.msdn.microsoft.com/Forums/en-US/windowsphone7series
http://windowsteamblog.com/windows_phone/b/wpdev/
http://msdn.microsoft.com/en-us/library/ff402535


CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

11 

Cloud Services 
Working with a Windows Phone application that requires saving data to a database is a tricky thing. The 
first big problem is that you don’t know how popular your application will be; if it becomes popular, you 
might suddenly find millions of users using your application and saving the data to its database at a rate 
that would require an enterprise-level solution. You also need to find a web service to provide APIs to 
your application to save to the database, because Windows Phone applications can’t directly connect to 
the database. 

This is where the Microsoft Azure cloud comes in. Microsoft Azure provides Windows Azure service 
for deploying services (WCF, Windows service) and SQL Azure for the database that allows you to  
scale infinitely as your demand grows larger. You will learn more about the Microsoft Azure cloud in 
Chapter 3. 

There are also Bing Maps services that you can use freely. Bing Maps is free only if you are 
developing a Windows Phone application. Along with Bing Maps services, Microsoft provides Bing Maps 
controls in Silverlight that you can use in Windows Phone. You will learn about Bing Maps and location 
services in Chapter 14. 

Push notification services are hosted in the cloud as well; these allow you to push messages to the 
phone—a very powerful messaging mechanism. You will learn more about this in Chapter 17. Xbox LIVE 
services also reside in the cloud, which you can take advantage of in your application; however, this 
topic will not be covered in this book. 

You learned a bit about Windows Phone and the Windows Phone platform in the previous sections. 
In the following sections, you will learn about Windows Phone application development from beginning 
to end. 

Metro Design  
Microsoft is targeting Windows Phone 7 toward busy professionals. In order to provide a compelling UI, 
Microsoft came up with the Metro design. The Metro design derives from the transportation industry 
typography and visual designs where busy professionals constantly scan and go; because of this, Metro 
design puts heavy emphasis on simple and clean designs. 

Metro design follows five principles. The first principle emphasizes ideas like clean, light, open, and 
clutter-free and attributes like simple-to-read typography because consumers will be using the phone to 
read e-mail, SMS, Facebook, and Twitter while on the go. The second principle of Metro design puts the 
focus on content, where the design premise is geared toward presenting the content. The third principle 
focuses on seamless integration of hardware and software. The fourth principle puts an emphasis on 
gestures, where the design enables a world-class multitouch user experience. Lastly, the Metro design 
concept focuses on an application that is soulful and alive, where information that matters most to the 
user is presented in a way that is easily accessible by a touch. You can find out more about Metro design 
by downloading the document provided by Microsoft at 
http://go.microsoft.com/fwlink/?LinkID=183218.  

Application Development Life Cycle 
Understanding the application life cycle will help you prepare for it. Much more in-depth discussion, 
including the certification process, is covered in Chapter 5. Figure 1–6 illustrates a high-level view of the 
life cycle of an application. 

http://go.microsoft.com/fwlink/?LinkID=183218


CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

12 

 

Figure 1–6. Application development life cycle 

As a developer, you will start out at the App Hub by registering your Windows Live ID (or you’ll 
create one). Once signed up at the App Hub, you register your physical device so you can debug in the 
real device. Remember that you can add up to three devices. Using Visual Studio and/or Expression 
Blend, you will be creating your application and debugging using the emulator or the device you 
registered. Once the application is created, you need to submit the application to the certification 
process. 

In order to ensure that your application will pass the Marketplace certification process, it’s a good 
idea to read and understand the application certification document found at 
http://go.microsoft.com/?linkid=9730558. As part of the certification process, your application will go 
through a series of validations against the application and content policies, packaging, code, phone 
feature disclosure, language, and images requirements. Your application will also get tested on 
reliability, performance, resource management, phone functionality uses, and security. The certification 
process is in place to help promote quality applications to consumers, to protect consumers from 
malware, and protect Microsoft services.  

Once the application passes the certification process, it will be deployed to the Marketplace and 
then downloaded and used by the consumer. The consumers who use your application will provide 
ratings and comments; reports can be generated from the App Hub for details on how your application 
is performing in the Marketplace. Based on the feedback you receive, you can choose to deploy an 
updated version with bug fixes and new features. Your ultimate goal is to create a compelling application 
that you know consumers will use and to publish this application to the Marketplace. The Marketplace 

http://go.microsoft.com/?linkid=9730558


CHAPTER 1  INTRODUCING WINDOWS PHONE 7 AND THE WINDOWS PHONE PLATFORM 

13 

costs $99 annually; this gives you access to the Windows Phone Marketplace and the Xbox 360 
Marketplace. In the Windows Phone Marketplace, you can submit an unlimited number of paid 
applications and five free applications; additional submissions cost $19.99. In the Xbox 360 Marketplace, 
you can submit up to ten games. 

You will be able to observe any Marketplace activities through the report provided, such as 
comments, ratings, and number of apps sold, so that you can effectively improve sales and marketing 
efforts. 

When your application is bought by consumers, Microsoft takes 30 percent of the app price; you get 
to keep 70 percent. You can choose direct deposit so that the money goes directly to your bank account; 
you will be receiving your payments every first day of the month from Microsoft. 

Summary 
You have embarked on the journey of developing an application for the Windows Phone Marketplace, 
which is ready to be explored by developers like yourself. You can be part of a billion-dollar global 
market; you have a chance to develop an application that can be sold to millions.  

This chapter provided a general overview of Windows Phone features, hardware specifications, the 
development platform, and the Marketplace. In later chapters, you will learn in greater detail about the 
features and the platform mentioned in this chapter. In Chapter 2, you will build your first Windows 
Phone application by using tools like Visual Studio, Expression Blend, and the Windows Phone controls. 



C H A P T E R  2 
 

      
 

15 

Building Windows Phone 7 
Applications 

This chapter will prepare you with everything you will need to get started with Windows Phone 7 
development. You will learn about the Windows Phone emulator, Visual Studio 2010, and Microsoft 
Expression Blend 4. You will use these tools to create your first Windows Phone application. 

Before you can write your first application, however, you need to download and install the tools. In 
the next section, we’ll show you how. 

Preparing Your Development Machine 
At the time of writing this book, Windows Phone 7 developer tool version 1.0 was used. The latest 
Windows Phone developer tool and patches can be downloaded from http://create.msdn.com/en-
us/home/getting_started. The Windows Phone developer tools (vm_web.exe) will install the following: 

• Free version of Visual Studio 2010 Express for Windows Phone: The programmer’s 
development IDE. 

• Windows Phone emulator: This is used to run and test the Windows Phone 
application. 

• Silverlight for Windows Phone: Silverlight Framework for Windows Phone based 
on Silverlight 3 technology. See Chapter 1 for the subtle difference between 
Silverlight 3 and Windows Phone Silverlight framework. 

• Microsoft Expression Blend for Windows Phone: This can be used to design user 
interfaces. 

• XNA Game Studio 4: Tools for developing games. 

Once you have installed Windows Phone developer tools, you can start to build your first Windows 
Phone application. 

Building Your First Windows Phone 7 Application 
In this section, you’ll build a simple “HelloWorld” application using Silverlight framework. Creating the 
application will provide you with an opportunity to use Visual Studio 2010 Express for Windows Phone, 
the Windows Phone 7 Emulator, and some Windows Phone Silverlight controls. Later in this chapter, 

http://create.msdn.com/en-us/home/getting_started
http://create.msdn.com/en-us/home/getting_started
http://create.msdn.com/en-us/home/getting_started


CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

16 

you will use Blend to design Silverlight controls. The final application is displayed in Figure 2–19 at the 
end of this chapter. A click of its OK button will display the words “Hello World” in a text box. But before 
you can get started, you must first create a Visual Studio 2010 project. 

Creating a Windows Phone Project 
To get started, fire up Visual Studio Express 2010 and create a project. 

1. To launch Visual Studio 2010 Express, select Windows Start  All Programs  
Microsoft Visual Studio 2010 Express  Microsoft Visual Studio 2010 Express 
for Windows Phone. 

2. Create a new project by selecting File  New  Project on the Visual Studio 
menu, as shown in Figure 2–1. 

 

Figure 2–1. Creating a new project 

3. From among the three C# templates that Visual Studio displays on its New 
Project dialog page, select the Windows Phone Application Visual C# template, 
as shown in Figure 2–2. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

17 

■ Note There are three different Windows Phone Visual Studio project templates. The Windows Phone 
Application template is a template for one-page applications. The Windows Phone List Application template uses 
ListBox control and page navigation framework to create applications with multiple pages. The Windows Phone 
Class Library template can be used to create a class library that can be referenced by other Windows Phone 
projects. 

4. For the purposes of this exercise, change the name of the new project to 
HelloWorld by changing the text in the Name box, as shown in Figure 2–2. Also 
you can change the location where the project will be saved by changing the 
path in the Location box. 

  

Figure 2–2. Creating a new Silverlight Windows Phone application 

5. Finally, select OK on the New Project dialog, and Visual Studio 2010 will build 
your project, the elements of which are displayed in Figure 2–3. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

18 

Figure 2–3. HelloWorld Silverlight Windows Phone project 

By default, two TextBlock controls will be placed on the screen; you can see this in the design view 
on the far left in Figure 2–3. 

With a phone project ready to roll, it’s time to bring the application to life by adding some 
functionality and creating a user interface. Let’s start with the interface, adding some controls to its 
blank design surface and some areas where it can display text. 

Using Your First Windows Phone Silverlight Controls 
The next step is to add Silverlight controls to the HelloWorld Windows Phone application created in the 
previous steps. You’ll be setting the properties of the controls so that the controls can size and position 
automatically in both Portrait and Landscape mode of Windows Phone. 

1. In the Windows Phone Design view window, click MY APPLICATION 
TextBlock. In the Properties windows at the lower right corner of the Visual 
Studio IDE, change the Text property from MY APPLICATION to HelloWorld 
App. Notice that the new text now appears on the Design surface, as shown in 
Figure 2–4. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

19 

 

Figure 2–4. Renaming application window title 

2. Now open the Visual Studio Toolbox, where you’ll find some controls for the 
HelloWorld user interface. If you can’t find the Toolbox, select View Toolbox 
on the Visual Studio menu. The result of either step, when successful, is to 
display a list of controls in a vertical panel on the left side of the Visual Studio 
IDE, as shown in Figure 2–5. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

20 

 

Figure 2–5. Visual Studio Toolbox containing Windows Phone controls 

The Visual Studio Toolbox contains Windows Phone controls that ship with the Windows Phone 
developer tools. You’ll be using them throughout the book to build increasingly sophisticated user 
interfaces. You can add any of these to your user interface by dragging it to the Windows Phone Design 
surface in Visual Studio.  

3. To create the interface for the HelloWorld application, let’s first add a TextBox 
to display some text. To do so, drag a TextBox control from the Toolbox to the 
designer surface directly below the page title TextBlock. When the TextBox 
control is successfully placed on the phone’s designer surface, the TextBox 
control will be automatically selected. In the Properties window (if you can’t 
find the Properties Window go to View  Properties Window), change the 
following TextBox properties: 

a. Set Width and Height to Auto. 

b. Set HorizontalAlignment to Stretch. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

21 

c. Set VerticalAlignment to Top. 

d. Resize the TextBox width so that there is enough room to its right for an OK 
button. 

e. Set Name to txtMessage. 

When you properly follow steps a, b, c, and d, you should see the following XAML in the XAML editor 
area: 

<TextBox Height="Auto" Margin="0,55,166,0" Name="txtMessage" Text="TextBlock"  
VerticalAlignment="Top" HorizontalAlignment="Right" Width="290" /> 
 

You set Horizontal Alignment to Stretch in step b because you want the TextBox to automatically 
stretch to fill the extra space created when you rotate the phone emulator to Landscape orientation. 
Width and Height are set to Auto because you want the TextBox to automatically change its size when 
Font size increases or decreases. Setting Vertical Alignment to Top will always position the TextBox 
aligned to the top. You will be able to access the TextBlock control in code by referring to its name, 
txtMessage. 

4. Now, let’s add the application’s OK button to the user interface. To do so, drag 
and drop a Button control from the Toolbox and drop it to the right of the 
TextBox. Change the following button properties in Properties Window: 

a. Set Button Content to OK. 

b. Set HorizontalAlignment to Right. 

c. Set VerticalAlignment to Top. 

d. Set Name to btnOk. 

e. When steps a, b, and c are properly followed, you should see the following 
XAML in the XAML editor area. Note that setting the button’s horizontal 
alignment to Right will always align button position to the right side.  

<Button Content="OK" Height="72" HorizontalAlignment="Right" Margin="308,31,0,0"  
Name="btnOk" VerticalAlignment="Top" Width="160" /> 

5. Your layout should be done. In XAML view, look for the grid containing the 
controls you just added. It should look similar to this: 

<Grid x:Name="ContentGrid" Grid.Row="1"> 
    <TextBox Height="Auto" Margin="0,55,166,0" Name="txtMessage" Text="TextBlock"  
VerticalAlignment="Top" HorizontalAlignment="Right" Width="290" /> 
    <Button Content="OK" Height="72" HorizontalAlignment="Right" Margin="308,31,0,0"  
Name="btnOk" VerticalAlignment="Top" Width="160" /> 
</Grid> 

6. Figure 2–6 shows the final layout after adding TextBox and Button controls. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

22 

 

Figure 2–6. Final layout of HelloWorld app 

Writing Your First Windows Phone Code 
In this section, you will be writing C# code that will handle the button click event that will populate the 
TextBlock named textBlock1 with “Hello World!” 

1. To add behavior to the OK button, double-click the OK button on the Design 
surface of your project. Visual Studio will display MainPage.xaml.cs where you 
can see that the btnOk_Click method is automatically added (you will add 
proper code later to handle the button click event). 

using System.Windows; 
using Microsoft.Phone.Controls; 
 
namespace HelloWorld 
{ 
    public partial class MainPage : PhoneApplicationPage 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

23 

    { 
        public MainPage() 
        { 
            InitializeComponent(); 
     // Setting SupportOrientations will control the behavior 
     // of the page responding properly to the rotation of the  
            // phone. So if you rotate the phone to the landscape 
          // your page will change to landscape view. 
            SupportedOrientations = SupportedPageOrientation.PortraitOrLandscape 
; 
        } 
 
        private void btnOk_Click(object sender, RoutedEventArgs e) 
        { 
 
        } 
    } 
} 

2. In MainPage.xaml, you will notice that the button Click event handler is 
automatically added to OK button. 

<Button Content="OK" Height="70"  
            HorizontalAlignment="Right" Margin="0,155,-4,0"  
            Name="button1" VerticalAlignment="Top" Width="160" Click="button1_Click" /> 

3. In MainPage.xaml.cs replace the button1_click method with the following 
code: 

private void button1_Click(object sender, RoutedEventArgs e) 
{ 
    txtMessage.Text = "Hello World!"; 
} 

Running Your First Silverlight Windows Phone Application 
Your Hello World application is complete. Now it’s time to build the application and run it in the 
Windows Phone 7 emulator. 

1. To build the solution, select Build  Build Solution on the Visual Studio menu. 

2. To run the application, select Debug  Start Debugging. 

3. When the emulator appears, click OK and you will see “Hello World!” as shown 
in Figure 2–7. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

24 

 

Figure 2–7. Hello World in Windows Phone 7 Emulator 

4. Click the rotate control on the Windows Phone 7 emulator, as shown in Figure 
2–8. 

 

Figure 2–8. The rotate control 

Notice in the Landscape view that the TextBox is automatically resized, stretched out to make full use of 
the landscape orientation of the device, as shown in Figure 2–9. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

25 

 

Figure 2–9. Landscape view of Hello World 

5. Stop the application debugging by selecting Debug  Stop Debugging. 

■ Tip The Windows Phone 7 emulator can take a long time to start, so you want to avoid closing it down 
whenever possible. If you need to stop an application in the middle of a debugging run, it’s better to use the Visual 
Studio Debug  Stop Debugging command instead of completely closing down the Windows Phone 7 emulator. 
Using this technique, the next time the application debugging starts, the project will be loaded into the emulator 
without first waiting for the emulator to start. 

Customizing Your First Windows Phone Application 
In the following code walkthrough, you’ll learn how to customize the Windows Phone 7 application icon 
that is displayed to the user and how to change the application’s name. 

1. In the Solution Explorer, right-click the HelloWorld project and select Add  
Existing Item, as shown in Figure 2–10. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

26 

 

Figure 2–10. Adding a file to the Visual Studio project 

2. Go to where you unzipped the sample codes and choose 
\Codes\Ch01\Assets\HelloWorldIcon.png. The Windows Phone 7 application 
icon can be any .png file that is 62 x 62. By default, when the Windows Phone 
application project is created, the ApplicationIcon.png is used. 

3. Right-click the HelloWorld project  Choose Properties. 

4. Click the Application tab. 

5. In Deployment options  Change the Icon to HelloWorldIcon.png. 

6. Change the Title to HelloWorld. Changed properties can be seen in Figure  
2–11. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

27 

 

Figure 2–11. Changing the application title and icon 

7. Hit F5 to run the application. 

8. When the application starts in the Windows Phone 7 emulator, hit the back 
button on the emulator, as shown in Figure 2–12. 

 

Figure 2–12. Windows Phone 7 back button 

9. The list of applications installed on the emulator now includes HelloWorld, as 
shown in Figure 2–13. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

28 

Figure 2–13. Windows Phone 7 application list 

Styling Your Application  
Either Visual Studio or Microsoft Expression Blend 4 can be used to design XAML-based Silverlight 
interfaces. Microsoft Expression Blend 4 provides tools for graphical manipulations and animations, 
thus you can create more complex controls than are possible with Visual Studio. Let’s look at the basics 
of Blend and how Blend makes it easy to style controls. 

1. Open Microsoft Expression Blend 4, and select Windows Start  All Programs 
 Microsoft Expression Blend  Microsoft Expression Blend 4 for Windows 
Phone, as shown in Figure 2–14. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

29 

 

Figure 2–14. Microsoft Expression Blend 4 

2. Click Close when you are prompted with the project type selector. 

3. In Blend 4, go to File  Open Project/Solution. Browse to the HelloWorld 
solution you created in the previous steps, as shown in Figure 2–15. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

30 

 

Figure 2–15. Opening an existing project in Blend 4 

4. When the project opens, click the TextBox. In the Properties window, you will 
see various properties that can be changed, as shown in Figure 2–16. (If you do 
not see the Properties window, open it by going to Window  Properties.) 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

31 

 

Figure 2–16. Properties window in Blend 4 when the control is selected 

5. In the Properties window’s Brushes category, select Background  choose 
Gradient brush. Notice that the color editor now has ability to set the gradient 
color of the TextBox’s background color. 

6. Choose the first gradient color of blue at 21% and second color of yellow at 
64%, as shown in Figure 2–17. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

32 

 

Figure 2–17. Applying gradient background to TextBox in Blend 4 

7. Go to Project  Run Project. 

8. When Change Device Selection window shows, choose Windows Phone 7 
Emulator, as shown in Figure 2–18. 



CHAPTER 2   BUILDING WINDOWS PHONE 7 APPLICATIONS 

33 

 

Figure 2–18. Change Device Selection window in Blend 4 

9. Click OK and the HelloWorld application will start, as shown in Figure 2–19. 

 

Figure 2–19. HelloWorld after being stylized in Blend 4 

Summary 
In this chapter, you learned how to set up your Windows Phone development environment. You built a 
simple Windows Phone 7 application using Visual Studio 2010, interacted with the phone emulator, and 
used Microsoft Expression Blend to style the application.  

In the next chapter, you will build an application that can interact with Microsoft SQL Azure in order 
to store data. 

 



C H A P T E R  3 
 

35 

Building Windows Phone 7 
Applications Using Cloud Services  
As Data Stores 

There’s lots of buzz today about cloud computing technology. The cloud truly empowers you, as the 
developer, to focus on building an application and off-loading the infrastructure needs to the cloud. 

Suppose you have developed an application where businesses can take a picture of invoices and 
track the money spent, like QuickBooks. In Windows Phone, you can easily use the isolated storage 
covered in Chapter 13. The problem with isolated storage is that the storage space is tied to the phone; it 
can differ from manufacturer to manufacturer; and, most importantly, many users will store music, 
videos, and documents, which can quickly consume the storage space on the phone. A good solution 
would be to save the invoices information on the database; to do this, you would need a web service that 
can interact with the database so that the phone can save the invoices, as shown in Figure 3–1. 

 

Figure 3–1. Common 3–tier architecture 

In order to deploy the solution depicted in Figure 3–1, you need to solve a number of problems. 
First, you need to consider what type and how many servers to buy to host the web service and database. 
Once you do, you’ll have to purchase and maintain them yourself or pay a hosting service to do the job 
for you. But this doesn’t solve the problem of what you will do to scale up your application if it becomes 
so popular that millions of consumers want to use it, or if you experience periodic surges in use at, say, 
the end of each month. Finally, how will you provide for disaster recovery and backup of the database to 
ensure your service does not go down and disappoint users?  

To plan ahead for the huge number of users your application might attract, a more robust 
architecture must be considered. One example is shown in Figure 3–2, where the load balancer can help 
accommodate massive concurrent calls to the service; this way, if any of the service goes down, the load 
balancer will automatically point the request to an available service. On the database side, you have to 
provide both an active and a passive database in case the main database—the active one—goes down 
and a switch to the currently passive database becomes necessary. Then you have to worry about disk 

Web 
Service SQL 

Database 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

36 

space, so you will need a storage area network (SAN). Figure 3–2 is your typical Enterprise-grade 
deployment scenario that provides reliability, scalability, maintenance, and performance but is very 
expensive and complex. 

 
 

 

 

Figure 3–2. Enterprise-level n-tier deployment scenario 

The architecture in Figure 3-2 might be overkill for the tiny invoice application you’re creating, but 
you don’t want to lose the potential that it might be bought by millions of adoring customers. To resolve 
this dilemma, Microsoft provides Azure service to take care of every single detail of the infrastructure 
architecture, allowing you to concentrate on developing the best app you can. Microsoft Azure provides 
peace of mind with a Service Level Agreement of 99.95 uptime, which is equivalent to 4.38 hours 
downtime per year or 43.2 minutes of downtime per month. 

In the remaining sections of this chapter, you will learn to create a simple note-taking application. 
The application, named Notepad, will implement the n-tier architecture described in Figure 3–2. With 
the Notepad application, you will be able to create, read, update, and delete notes. The application will 
consist of three main components: a Windows Phone client (UI), a web service (middle tier) that 
provides the APIs the UI will use to access a central database, and finally the database itself, which will 
store the notes the user writes. 

Introducing the MVVM Pattern 
In developing the Notepad phone application, you will be using the increasingly popular Model-View-
ViewModel (MVVM) pattern. MVVM is a design pattern that provides a clear separation between the UI, 
the application logic, and the data of an application. The models maintain the data, the views display the 
data or provide the UI for user interaction, and the view-model acts as the controller, or brain, that 
handles the events that affect either the data or the view. Figure 3–3 illustrates the elements of the 
MVVM pattern and their relationships. 

SAN 
SQL 
Database 
A i

Web Service 
Web 
Service Web 

Service 

Load 
Balancer 

SQL 
Database 
Passive 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

37 

 

Figure 3–3. The MVVM pattern 

Introducing Microsoft Azure and SQL Azure 
Azure is the name of Microsoft’s cloud services, which developers can use to deliver applications at scale 
for various workloads and devices. Microsoft Azure provides a runtime framework for applications that 
currently supports .NET 3.5 and .NET 4.0, as well as load balancers, operating systems, servers, storage, 
and networking, leaving you free to build the application. 

Microsoft Azure provides three services: Windows Azure, SQL Azure, and Windows Azure 
AppFabric. For building a consumer-facing Windows Phone application, you will be more interested in 
Windows Azure, which can host web and web service applications, and SQL Azure for the database. 
Windows Azure AppFabric is more of an Enterprise solution that provides Enterprise Service Bus 
patterns typically popular in the business process application. 

In the following section, you will start first by learning to work with SQL Azure in order to save the 
notes in the database. 

Creating a Cloud Database 
The first step is to create an SQL Azure database to store the notes a user creates with this application. 
Think of SQL Azure as a hosted database in the cloud where you don’t have to worry about the 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

38 

infrastructure. If you’re familiar with a Microsoft SQL server, you’ll be able to work in SQL Azure. 
NotepadService, which you will be creating in the next section, will connect to this database by using 
Entity Framework to create, read, update, and delete records from the database. 

 

The Entity Framework 
The Entity Framework is an object-relational mapping (ORM) tool that allows you to generate 

objects based on the tables in a database, taking care of the interaction to the database that otherwise 
you have to code yourself; the Entity Framework will save you lots time. 

Creating an SQL Azure Database 
You will be creating a database in SQL Azure in order perform create, read, update, and delete 
operations for the Notepad application. 

Signing Up for SQL Azure  
You will create an SQL Azure account in the following steps: 

1. Open a browser of your choice. 

2. Go to www.microsoft.com/windowsazure/ to sign up and buy the Windows 
Azure service account. Follow the direction provided by Microsoft in order to 
purchase and acquire the service account. You can use Microsoft Azure each 
month for free (25 hours of computing time, 500MB storage, 10,000 storage 
transactions, 1GB database, and 500MB data transfer); this promotional offer 
might end soon, though. 

3. Go to http://sql.azure.com/ and sign in using the account you created in  
Step 1. 

4. Once signed in, click the SQL Azure menu tab on the left side. When the 
Windows Azure page loads, you will see the project that you created during the 
registration process in Step 1. Figure 3–4 corresponds to this step. 

http://www.microsoft.com/windowsazure/
http://sql.azure.com/


CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

39 

Figure 3–4. SQL Azure main screen 

Connecting to the SQL Azure Project 
After you register and purchase your Azure service account, you can log in to an SQL Azure portal. 

1. Click the project hyperlink NAS-DEV. In your case, you should click the name 
of the project that corresponds to the one you created in the “Signing up for 
SQL Azure” section. 

2. Click the I Accept button on the Terms of Use page, as shown in Figure 3–5. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

40 

 

Figure 3–5. SQL Azure Terms of Use screen 

Creating an SQL Azure Database 
Here you will be creating an SQL Azure database with a username and password. 

3. On the Create Server page, enter NotepadAdmin as the administrator 
username and P@ssword as the administrator password. Retype the password, 
and choose North Central US on the Location drop-down. See Figure 3–6 for 
the inputs. Note that for the location, you want to choose the region closest to 
you for optimal performance. If you are planning to deploy the application to a 
specific region, select the appropriate region here. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

41 

 

Figure 3–6. SQL Azure Create Server screen 

4. Click the Create Server button and you will see Figure 3–7. Take note of the 
server name assigned to your SQL Azure database as you will need this 
information to connect using SQL Server Management Studio. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

42 

 

Figure 3–7. SQL Azure Server Administration screen 

5. Click the Create Database button. When the pop-up window appears, enter 
NotepadDB as the name of your database, choose Web on the Specify an 
edition drop-down menu, and choose 1GB on the Specify the max size drop-
down menu, as shown in Figure 3–8. Then click the Create button. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

43 

 

Figure 3–8. SQL Azure Create Database screen 

Configuring the SQL Azure Firewall  
In the next steps, you will properly configure the SQL Azure firewall so you can connect to the database. 
By default, SQL Azure denies all access to the database until you add a specific IP. 

1. Notice that NotepadDB now appears in the list of databases on the Databases 
tab. Click the Firewall Settings tab, where you will add your IP to the firewall in 
order to access the SQL Azure database that you just created from the 
Microsoft SQL Management Console application to perform various database-
related tasks. 

2. Select “Allow Microsoft Services to access to this server” checkbox, which will 
allow programs like Microsoft SQL Management consoles to connect directly 
to the SQL Azure database, as shown in Figure 3–9. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

44 

  

Figure 3–9. SQL AzureFirewall settings 

3. Click the Add Rule button, and when the pop-up appears, enter MyComputer 
into the Name text box. The pop-up displays your IP address, which you 
should now copy and paste into the IP Range text boxes, as shown in Figure  
3–10.  



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

45 

 

Figure 3–10. SQL Azure Add Firewall Rule screen 

4. Click the Submit button. Note that firewall rules can take up to five minutes to 
go into effect. 

Testing the SQL Azure Database Connection 
In this section, you will test that all the configuration steps are performed properly and that you can 
connect to the database. 

1. Let’s test to see if you can properly connect. Click the Databases tab.  

2. From the list of databases, select NotepadDB. Click the Test Connectivity 
button, and the pop-up window in Figure 3-11 will appear. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

46 

 

Figure 3–11. SQL Azure Database Connectivity Test 

3. Enter NotepadAdmin and P@ssword (or your own versions of these) into the 
Username and Password boxes and click the Connect button.  

4. Click the Connect button and you will see a “Successfully connected to the 
database” message.  

5. Click the Close button to return to the main page. 

Creating a Database in SQL Azure 
In the following section, you will create database tables in NotepadDB, which is hosted directly in SQL 
Azure using the Microsoft SQL Server Management application. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

47 

Using SQL Server Management Studio to Connect to the Cloud Database 
You will be connecting directly to the SQL Azure database NotepadDB you created in the previous steps 
using the SQL Management application. 

1. You want to make sure that you can connect to SQL Azure directly from SQL 
Management Studio in order to perform various database operations. If you do 
not have SQL Management Studio installed, you can download the free SQL 
Server 2008 R2 Express (www.microsoft.com/express/database/). Open SQL 
Server Management Studio by going to Start  Programs  Microsoft SQL 
Server 2008 R2, as shown in Figure 3–12. 

 

Figure 3–12. SQL Server Management Studio from the Windows menu 

2. In the Connect to Server window, put the server name you obtained previously 
into the Server name text box, put NotepadAdmin and P@ssword into the 
Login and Password text box, and click the Connect button, as shown in Figure 
3–13. 

 

Figure 3–13. SQL Server Management Studio Connect to Server screen 

www.allitebooks.com

http://www.microsoft.com/express/database/
http://www.allitebooks.org


CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

48 

3. Once you are connected successfully to your SQL Azure database, SQL Server 
Management Studio will display an Object Explorer window on the left side of 
its IDE, as shown in Figure 3–14. Expand the Databases folder and you will find 
NotepadDB, which you just created, listed there (also shown in Figure 3–14). 

 

Figure 3–14. SQL Server Management Studio Object Explorer 

Creating SQL Azure Database Tables 
Once you are connected to NotepadDB, you can create the tables you’ll use to store and manage the 
notes your users will create and save. You will be creating the database schema shown in Figure 3–15. 

 

 

Figure 3–15. NotepadDB database schema 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

49 

4. Right-click NotepadDB from the Object Explorer window. From the context 
menu, choose New Query.  

5. You will be executing SQL scripts in the query window in order to create tables 
in NotepadDB. 

6. To the newly opened query window, enter or cut and paste the following 
database script: 

USE [NotepadDB]
GO 

CREATE TABLE [dbo].[User]
( 

[UserId] [uniqueidentifier] NOT NULL,
[Name] [nvarchar](50) NOT NULL, 

    CONSTRAINT [PK_User] PRIMARY KEY ( [UserId] )
) 
Go 

CREATE TABLE [dbo].[Note]
( 

[NoteId] [int] IDENTITY(1,1) NOT NULL,
[UserId] [uniqueidentifier] NOT NULL,
[NoteText] [nvarchar](max) NOT NULL,
[Description] [nvarchar](50) NOT NULL, 

    CONSTRAINT [PK_Note] PRIMARY KEY CLUSTERED ( [NoteId] )
) 
GO 

ALTER TABLE [dbo].[Note]   
WITH CHECK ADD CONSTRAINT [FK_Note_User] FOREIGN KEY([UserId])
REFERENCES [dbo].[User] ([UserId]) 

GO 

ALTER TABLE [dbo].[Note] CHECK CONSTRAINT [FK_Note_User]
GO 

7. Notice that when you expand the tables from NotepadDB in Object Explorer, 
you will see two tables: Note and User, as shown in Figure 3–16. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

50 

 

Figure 3–16. NotepadDB tables 

You now have a live database in SQL Azure! In the next section, you will be creating a web service using 
Windows Communication Foundation (WCF). The web service layer provides managed APIs the phone 
application can use to access the database. 

Creating a Cloud Service to Access the Cloud Database  
You will be creating a WCF service called NotepadService that will be consumed by the Windows Phone 
Notepad application. Think of NotepadService as the layer that provides managed APIs to the Notepad 
application. NotepadService will utilize the Entity Framework to generate object models based on the 
database tables, and it will also generate a persistence layer that performs the database operations, 
which otherwise you would have to code yourself. The following steps will provide you with instructions 
on creating and deploying NotepadService to Windows Azure. You will be creating a WCF Azure service 
and running it from your machine, and then you will package and deploy the project to the Azure cloud, 
where you will be able to configure it to have multiple services run if your application demand increases. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

51 

Creating a Windows Azure Project  
You will be creating a Windows Azure NotepadService project in Visual Studio in the following steps. In 
order to create Azure services, you would need to download Azure tools and SDK from 
www.microsoft.com/windowsazure/windowsazure/default.aspx.  

1. Create a new Windows Phone Application by selecting File  New Project on 
the Visual Studio command menu. Select the Cloud installed template on the 
left, and choose Windows Azure Cloud Service from the list on the left (see 
Figure 3–17). Name the Azure service NotepadService and click OK. 

 

Figure 3–17. Windows Azure Cloud Service project 

2. You will be prompted to select the type of role. Note here that if you want to 
host the web project, you need to select ASP.NET Web Role. For Notepad WCF 
service, select WCF Service Web Role, as shown in Figure 3–18, and click the 
arrow pointing to the left. In Cloud Service Solution, you will see 
WCFServiceWebRole; if you hover your mouse over the item, you will see that 
a little pencil icon appears. Click the pencil icon and change the name to 
NotepadServiceRole, also shown in Figure 3–18. 

http://www.microsoft.com/windowsazure/windowsazure/default.aspx


CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

52 

 

Figure 3–18. Selecting WCF Service Web Role 

Generating an Object Model to Access the Cloud Database 
Now that you have the basic plumbing for implementing a WCF service, it’s a good time to implement a 
persistence layer that allows you to interact with the database. The Entity Framework will act as an 
object-relational mapping tool that will take database tables and create equivalent object models and 
many of the tedious tasks of coding methods (like add, delete, update, and search). 

At the end of this section, you will have created two object models, User and Note, which you can 
work directly in the code. The Entity Framework provides the ability to save these models directly back 
to the database. 

In the following steps, you will add an Entity Framework item to the project and then connect to 
NotepadDB in SQL Azure and generate object models. 

3. Right-click the NotepadServiceRole project found in Solution Explorer and 
choose Add  New Item.  

4. Click the Data from Installed Templates list, choose ADO.NET Entity Data 
Model, and name the model NotepadService.edmx (see Figure 3–19). 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

53 

 

Figure 3–19. Adding Entity Framework 

5. You will be prompted with the Entity Data Model Wizard, as shown in Figure 
3–20. Click the Next button. 

 

Figure 3–20. Entity Data Model wizard 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

54 

6. Click the New Connection button. When Choose Data Source appears, select 
Microsoft SQL Server from the list, as shown in Figure 3–21. Click the Continue 
button. 

 

Figure 3–21. Choose Data Source window 

7. You will be prompted with a Connection Properties window. In the service 
name, put the SQL Azure server name that you acquired from the previous 
steps and enter NotepadAdmin and P@ssword as your username and 
password. From the Select or enter database name drop-down, select 
NotepadDB, as shown in Figure 3–22. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

55 

 

Figure 3–22. Connection Properties window 

8. Click the OK button, and you will return to the Entity Data Model wizard 
window. Select Yes, include the sensitive data in the connection string radio 
button, and click the Next button. 

9. If you expand the tables, you will see the two tables (Note and User) that you 
created previously. Select both of the tables, as shown in Figure 3–23. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

56 

  

Figure 3–23. Choosing the database objects 

10. Take the default option for everything else and click the Finish button. You will 
return to the Visual Studio project and see Notepad.edmx, which contains two 
object models: User and Note, as shown in Figure 3–24. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

57 

 

Figure 3–24. Entity model Notepad.edmx 

You now have User and Note object models that you can work with in your NotepadService. In the 
next section, you will be preparing NotepadService, which will implement simple create, read, update, 
and delete operations using the entity model that you generated in this section. 

Implementing a WCF Service to Access the SQL Azure Database 
Now that you have an entity model of User and Note, you can implement NotepadService, which will 
add, update, delete, and search notes. In this section, you will learn to implement a WCF service; you’ll 
also learn to use Entity Framework to interact with the SQL Azure database.  

Coding the WCF Contract 
In order to create a WCF service, you must first define a WCF service contract. If everything was done 
successfully, you’ll see a Solution Explorer in Visual Studio that resembles Figure 3–25. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

58 

 

 

Figure 3–25. NotepadService project in Solution Explorer 

Open IService.cs and replace the content with the following code. The WCF contract will contain a 
way to add, delete, update, and search the note in NotepadDB. The namespace System.ServiceModel 
allows you to add attributes ServiceContract and OperationContract, which must be defined in order to 
create a WCF service. 

using System.ServiceModel; 
using System.Collections.Generic; 
using System; 
  
namespace NotepadServiceRole 
{ 
    [ServiceContract] 
    public interface IService 
    { 
        [OperationContract] 
        Guid AddUser(Guid userId, string userName); 
  
        [OperationContract] 
        NoteDto AddNote(Guid userId, string notedescription, string noteText); 
  
        [OperationContract] 
        void UpdateNote(int noteId, string noteText); 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

59 

  
        [OperationContract] 
        void DeleteNote(Guid userId, int noteId); 

[OperationContract] 
       List<NoteDto> GetNotes(Guid userId); 

       [OperationContract] 
       NoteDto GetNote(Guid userId, int noteId); 

    }
} 

In the next section, you will create a data contract that will be sent to the client through the service.  

Coding the DataContract 
Before you implement the service contract, you will need to define two data transfer objects to map to 
the entity object. Although you can expose the entity generated by the Entity Framework directly to the 
WCF service, it is not a recommended practice because the Entity Framework exposes information not 
necessary for the client. For example, information like foreign key, primary key, and any Entity 
Framework–related information that is in the Note and User objects has no meaning to the client. Also, 
when the Entity Framework object is serialized, it will include all this unnecessary information, causing 
the serialized objects coming through the Internet to get huge; since you are working with the Windows 
Phone over wireless or Wi-Fi transmission, you will want information sent over the wireless to be small. 

11. To NotepadServiceRole add the UserDto.cs class with the following code. The 
namespace you will be using, System.Runtime.Serialization, lets you add 
DataContract and DataMember attributes that allow the WCF service to serialize 
this object to be sent over the service to the client. 

using System.Runtime.Serialization; 
  
namespace NotepadServiceRole
{ 
    [DataContract] 
    public class UserDto 
    { 
        [DataMember] 
        public int UserId { get; set; } 
  
        [DataMember] 
        public string Name { get; set; } 
    }
} 

12. Add the NoteDto.cs class to NotepadServiceRole with the following code: 

using System.Runtime.Serialization; 
  
namespace NotepadServiceRole
{ 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

60 

    [DataContract] 
    public class NoteDto 
    { 
        [DataMember] 
        public int NoteId { get; set; } 
  
        [DataMember] 
        public string Description { get; set; } 
  
        [DataMember] 
        public string NoteText { get; set; } 
  
    } 
} 

Coding the Service 
In the following steps, you will implement the NotepadService WCF contract defined in the previous 
section. You will be using the Entity Framework to access the SQL Azure database.  

Open Service1.svc.cs in the NotepadServiceRole project and add the code blocks spelled out in the 
following sections. 

Coding AddUser Method 

AddUser will add a new user to the database. Note that you are instantiating NotepadDBEntities, which is 
the Entity Framework–generated context that connects to the SQL Azure NotepadDB. 

 

        public Guid AddUser(Guid userId, string userName) 
        { 
            using (var context = new NotepadDBEntities()) 
            { 
                context.AddToUsers(new User() 
                    { 
                        UserId = userId, 
                        Name = userName, 
                    }); 
                context.SaveChanges(); 
 
                return userId; 
            } 
 } 

Coding AddNote Method 

Note in AddNote method, after instantiating NotepadDBEntities, you are creating the Note entity that you 
generated in the previous steps using the Entity Framework wizard. Once the note is saved, you are 
mapping to NoteDto to be sent to the client. 

        public NoteDto AddNote(Guid userId, string notedescription, string noteText) 
        { 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

61 

            using (var context = new NotepadDBEntities()) 
            { 
                Note note = new Note() 
                    { 
                        Description = notedescription, 
                        UserId = userId, 
                        NoteText = noteText, 
                    }; 
                context.AddToNotes(note); 
                context.SaveChanges(); 
 
                return new NoteDto()  
                    { 
                        NoteId = note.NoteId, 
                        Description = note.Description, 
                        NoteText = note.NoteText, 
                    }; 
            } 
        } 

Coding UpdateNote Method 

In order to update the note, first you need to instantiate the entity context that connects to NotepadDB, 
and then you must query for the note that you are going to update. Once the note is retrieved, you will 
then update the properties and save changes. 

        public void UpdateNote(int noteId, string noteText) 
        { 
            using (var context = new NotepadDBEntities()) 
            { 
                var note = context 
                                .Notes 
                                .Where(n => n.NoteId.Equals(noteId) 
                                      ).Single(); 
                note.NoteText = noteText; 
                context.SaveChanges(); 
            } 
        } 

Coding DeleteNote Method 

When deleting the note, the note must be retrieved first and then the retrieved note will be added to the 
DeleteObject of the Notes collection. Then you save the changes where the delete will be performed by 
the Entity Framework. 

        public void DeleteNote(Guid userId, int noteId) 
        { 
            using (var context = new NotepadDBEntities()) 
            { 
                var note = context 
                                .Notes 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

62 

                                .Where(n => n.NoteId.Equals(noteId)).Single(); 
                context.Notes.DeleteObject(note); 
                context.SaveChanges(); 
            } 
        } 

Coding GetNotes Method 

GetNotes will bring all the notes associated with the specific userId. You will be using a technique called 
Linq to Entity that closely resembles the SQL statement. And inside the Linq to Entity, you will be 
performing translation of the Note entity to NoteDto. This is a very useful technique for mapping an entity 
object to a data transfer object. 

        public List<NoteDto> GetNotes(Guid userId) 
        { 
            using (var context = new NotepadDBEntities()) 
            { 
                var notes = ( 
                                from eachNote in context.Notes 
                                where eachNote.UserId == userId 
                                orderby eachNote.Description ascending 
                                select new NoteDto 
                                { 
                                    NoteId = eachNote.NoteId, 
                                    Description = eachNote.Description, 
                                    NoteText = eachNote.NoteText, 
                                } 
                            ).ToList(); 
 
                return notes; 
            } 
        } 

Coding GetNote Method 

GetNote will query a single user note from the database. 
 

        public NoteDto GetNote(Guid userId, int noteId) 
        { 
            using (var context = new NotepadDBEntities()) 
            { 
                var notes = ( 
                                from eachNote in context.Notes 
                                where eachNote.NoteId == noteId   
                                        && eachNote.UserId == userId 
                                select new NoteDto 
                                { 
                                    NoteId = eachNote.NoteId, 
                                    Description = eachNote.Description, 
                                    NoteText = eachNote.NoteText, 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

63 

                                } 
                            ).SingleOrDefault(); 
 
                return notes; 
            } 

        } 

Testing Azure WCF NotepadService on Your Machine 
You will be testing NotepadService on your machine so that when you connect to NotepadService from 
the Windows Phone Notepad application, you will be able to debug and step through NotepadService 
when the service call is made from the Notepad application. 

Press F5 and you will notice that the Development Fabric window appears in Internet Explorer. 
Development Fabric simulates the Azure service environment in your machine. Note that when you 
expand NotepadService you see NotepadServiceRole, which is the WCF service that you coded in the 
previous steps. When NotepadService is deployed, you will see one instance of the service deployed, as 
shown in Figure 3–26. Don’t stop the service, as you will be referencing the service from the Notepad 
application. 

 

Figure 3–26. Development Fabric simulating the Azure Service environment 

In the previous steps, you created the NotepadDB database in SQL Azure and the NotepadService 
hosted locally using Development AppFabric to simulate Windows Azure. In the following section, you 
will be consuming NotepadService from the Notepad application; when the service works properly, you 
will be deploying NotepadService to Windows Azure. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

64 

Building a Phone Client to Access a Cloud Service 
The Notepad application will allow you to add notes and retrieve the notes that will be saved to the cloud 
database NotepadDB. You will be building the Notepad application that will consume NotepadService, 
the WCF Azure service that you created previously, and you will verify at the end that the notes are 
properly saved to SQL Azure NotepadDB. When it’s finished, the UI for the Notepad application will 
resemble Figure 3–27. 

 

Figure 3–27. Notepad application 

Creating a Windows Phone Project 
To set up the Notepad project, follow the steps you’ve used in previous examples in this book. 

1. Open Microsoft Visual Studio 2010 on your workstation. 

2. Create a new Windows Phone Application by selecting File  New Project on 
the Visual Studio command menu. Select Silverlight for Windows Phone from 
Installed Templates, and then select the Windows Phone Application template 
on the right when the list appears, as shown in Figure 3–28. Name the 
application Notepad and click OK. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

65 

 

Figure 3–28. Creating a Windows Phone Application project 

Building the User Interface 
You will be building the user interface using XAML in Visual Studio. For building simple controls, it’s 
faster to work with XAML code. First, you’ll build two user controls, NoteListUsercontrol, which will 
display the list of the notes that the user can select to display and edit, and UserRegistrationUserControl, 
where the user can register so that the notes can be saved to NotepadDb in the cloud. 

Building UserRegistrationUserControl 
UserRegistrationUserControl is displayed the first time when the user starts the Notepad application; 
thereafter, the user registration information will be saved to the isolated storage application settings 
(isolated storage will be covered in detail in Chapter 13). 

3. Right-click the Notepad project and choose Add  New Item. 

4. From the Add New Item window, choose Windows Phone User Control and 
name the control UserRegistrationUserControl.xaml, as shown in Figure 3–29. 
Click the Add button. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

66 

 

Figure 3–29. Creating UserRegistrationUserControl 

5. Open UserRegistrationUserControl.xaml, which you just added from Solution 
Explorer. Replace the content with the following XAML code, and you will see a 
control that will resemble Figure 3–30 in Visual Studio design view. 

 

Figure 3–30. UserRegistrationUserControl design view 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

67 

Declaring the UI Resources 

Take the default namespaces as shown in the following code: 

<UserControl x:Class="Notepad.NoteListUserControl" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    mc:Ignorable="d" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    d:DesignHeight="480" d:DesignWidth="480"> 

Adding Components for UserRegistrationUserControl 

You will be adding a Register button, a UserName label, and a TextBlock to capture the username. 

<Grid x:Name="LayoutRoot" Background="{StaticResource PhoneChromeBrush}"> 
        <Button Content="Register" Height="72" HorizontalAlignment="Left"  
                Margin="118,260,0,0" Name="btnSave" VerticalAlignment="Top"  
                Width="160" Click="btnSave_Click" /> 
        <TextBox Height="72" HorizontalAlignment="Left"  
                 Margin="118,154,0,0" Name="txtUserName" Text=""  
                 VerticalAlignment="Top" Width="337" /> 
        <TextBlock Height="30" HorizontalAlignment="Left"  
                   Margin="17,177,0,0" Name="textBlock1"  
                   Text="UserName: " VerticalAlignment="Top" /> 
</Grid> 

Building NoteListUserControl 
NoteListUserControl displays the list of notes that the user created. The control will be prompted when 
the user clicks the View/Edit button from the MainPage. 

6. Right-click the Notepad project and choose Add  New Item. 

7. From the Add New Item window, choose Windows Phone User Control and 
name the control NoteListUserControl.xaml. Click the Add button. 

8. Open NoteListUserControl.xaml, which you just added from Solution 
Explorer, replace the content with the following XAML code, and you will see a 
control that will resemble Figure 3–31 in Visual Studio design view. 

www.allitebooks.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://www.allitebooks.org


CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

68 

 

Figure 3–31. NoteListUserControl design view 

Declaring the UI Resources 

Take the default namespaces shown in the following code: 

<UserControl x:Class="Notepad.NoteListUserControl" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    mc:Ignorable="d" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    d:DesignHeight="480" d:DesignWidth="480"> 

Adding Components for NoteListUserControl 

You will be adding a ListBox control that will be bound to the Notes, which is a collection of NoteDto 
coming from the NotepadViewModel object you will be implementing later. Each ListBoxItem will contain 
a TextBlock that is bound to NoteDto’s Description property.  

    <Grid x:Name="LayoutRoot" Background="{StaticResource PhoneChromeBrush}"> 
        <ListBox Height="458" HorizontalAlignment="Left" Margin="10,10,0,0" Name="lstNotes"  
                 VerticalAlignment="Top" Width="460"  
 SelectionChanged="lstNotes_SelectionChanged" 
                 ItemsSource="{Binding Notes}"> 
            <ListBox.ItemTemplate> 
                <DataTemplate> 
                    <StackPanel> 
                        <TextBlock Text="{Binding Description}" /> 
                    </StackPanel> 
                </DataTemplate> 
            </ListBox.ItemTemplate> 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

69 

        </ListBox> 
    </Grid>
</UserControl> 

Building MainPage 
MainPage will contain the user controls NoteListUserControl and UserRegistrationUserControl (which 
you just created) and the buttons Add, AddNew, Delete, and View/Edit, which will allow the user to add, 
insert, and delete the notes. 

Declaring the UI Resources 
The namespaces you see in the following code snippet are typically declared by default when you first 
create a Windows Phone project. In particular, the namespaces xmlns:phone="clr-
namespace:Microsoft.Phone.Controls; assembly=Microsoft.Phone" allow you to add common Windows 
Phone controls to the application main page.  

You will also be adding xmlns:uc="clr-namespace:Notepad"; it allows you to add 
BooleanToVisibilityConverter, which implements converting value from the Boolean to Visibility that is 
set on the controls. 

<phone:PhoneApplicationPage  
    x:Class="Notepad.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 
    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    xmlns:uc="clr-namespace:Notepad" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    shell:SystemTray.IsVisible="True"> 

Building the Main Page and Adding Components 
In MainPage, you will be adding Add, Delete, AddNew, and View/Edit buttons to work with the notes. 
Two TextBlocks, txtNotes, and txtNoteName, are added to display the note name and the note content. 
txtNote and txtNoteName are bound to SelectedNote.NoteText and SelectedNote.Description. The 
SelectedNote property comes from the NotepadViewModel object, which gets bound to the context of 
MainPage so that any control in MainPage can bind to any properties of the NotepadViewModel object.  

There are two user controls that you will be adding: Visibility of these user controls is controlled by 
the ShowNoteList and NeedUserId properties found in NotepadViewModel. When the user clicks the 
View/Edit button, ShowNoteList will be set to true, causing NoteListUserControl, bound to the 
ShowNoteList property, to appear to the user.  

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

70 

When the user first starts the application and doesn’t have the user ID stored in the application 
settings, NeedUserId will be set to true in NotepadViewModel, causing the UserRegistrationUserControl to 
appear. 

Adding BoolToVisibilityConvert 

Note that you will be adding a custom converter that will convert the Boolean value received from 
NotepadViewModel to Visibility enumeration in order to hide and unhide the controls. You will be coding 
BoolToVisibilityConvert in later. 

    <UserControl.Resources> 
        <uc:BoolToVisibilityConverter x:Key="BoolToVisibilityConverter" /> 
    </UserControl.Resources> 
 
    <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28"> 
            <TextBlock x:Name="ApplicationTitle" Text="Notepad"  
                       Style="{StaticResource PhoneTextNormalStyle}"  
                       HorizontalAlignment="Left" Margin="12,0,0,0" Width="89"/> 
        </StackPanel> 
 
        <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"> 
            <Button Content="Add" Height="72" HorizontalAlignment="Left"  
                    Margin="-8,10,0,0" x:Name="btnSave" VerticalAlignment="Top" Width="99"  
                    Click="btnSave_Click" /> 
            <Button Content="Delete" Height="72" HorizontalAlignment="Left"  
             Margin="71,10,0,0" x:Name="btnDelete" VerticalAlignment="Top" Width="125"  
             Click="btnDelete_Click" /> 
            <Button Content="AddNew" Height="72"  
             Margin="176,10,128,0" x:Name="btnAddNew" VerticalAlignment="Top"  
             Click="btnAddNew_Click" /> 
            <Button Content="View/Edit" Height="72" HorizontalAlignment="Left"  
                    Margin="306,10,0,0" Name="btnEdit" VerticalAlignment="Top" Width="160"  
                    Click="btnViewEdit_Click" /> 
            <TextBox x:Name="txtNote" TextWrapping="Wrap"  
                     Margin="10,163,8,8" AcceptsReturn="True"  
                     Text="{Binding Path=SelectedNote.NoteText}"/> 
            <TextBlock x:Name="lblNoteName" HorizontalAlignment="Left" TextWrapping="Wrap"  
                       Text="Note Name:" VerticalAlignment="Top" Margin="32,114,0,0"/> 
            <TextBox x:Name="txtNoteName" TextWrapping="Wrap"  
                     VerticalAlignment="Top" Margin="143,91,8,0" 
                     Text="{Binding Path=SelectedNote.Description}"/> 
            <uc:NoteListUserControl x:Name="ucNoteList"  
              Visibility="{Binding ShowNoteList, Converter={StaticResource 
BoolToVisibilityConverter}}" d:IsHidden="True" /> 
            <uc:UserRegistrationUserControl x:Name="ucUserRegistration" 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

71 

                    Visibility="{Binding NeedUserId, Converter={StaticResource 
BoolToVisibilityConverter}}" d:IsHidden="True"  /> 
        </Grid> 
    </Grid> 
 

In the next section, you will be adding events for the controls that you built in previous steps. 

Coding MainPage 
In Solution Explorer, open MainPage.xaml.cs and replace the code there with the following C# code 
blocks to implement the UI interacting with the user to add, delete, view, and edit notes, and to register 
the user for the first time. 

Specifying the Namespaces 
Begin by listing the namespaces the application will use. 

using System.Windows; 
using Microsoft.Phone.Controls; 

Code Constructor 
In the constructor of MainPage, you will be setting DataContext of the user controls to the 
NotepadViewModel instance. When DataContext of ucNoteList and ucUserRegistraton is set to 
NotepadViewModel, the controls within the user controls’ values will be controlled by the properties of 
NotepadViewModel.  

        public MainPage() 
        { 
            InitializeComponent(); 
 
            this.DataContext = NotepadViewModel.Instance; 
            ucNoteList.DataContext = NotepadViewModel.Instance; 
            ucUserRegistration.DataContext = NotepadViewModel.Instance; 
        } 

Coding the Save Button Event 
When the user clicks the Add button, the SaveNote method from the NotepadViewModel instance will be 
called. Any direct calls to NotepadService will be handled from NotepadViewModel, leaving the handling 
of the web service call complexity centralized to NotepadViewModel. This is a great abstraction technique, 
allowing you to easily maintain the application.  

 

        private void btnSave_Click(object sender, RoutedEventArgs e) 
        { 
            if (!string.IsNullOrEmpty(txtNote.Text)) 
            { 
                NotepadViewModel.Instance.SaveNote(txtNoteName.Text, txtNote.Text); 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

72 

            } 
        } 

Coding the ViewEdit Button Event 
When the ViewEdit button is clicked, the ShowNoteList property in NotepadViewModel will be set to true, 
which will trigger NoteListUserControl to appear. ShowNoteList will be set to true only if there are Notes 
to be selected. 

        private void btnViewEdit_Click(object sender, RoutedEventArgs e) 
        { 
            if (!string.IsNullOrEmpty(txtNote.Text)) 
            { 
                NotepadViewModel.Instance.SaveNote(txtNoteName.Text, txtNote.Text); 
            } 
        } 

Coding the AddNew Button Event 
When the AddNew button is clicked, SelectedNode in NotepadViewModel will be set to null, triggering 

the txtNote and txtNoteName contents to be set to empty because they are bound to SelectedNote. 
Although you can directly set the text fields of txtNote and txtNoteName to an empty string, you are 
abstracting this particular task to NotepadViewModel because when the user selects the specific user note 
from NoteListUserControl, the txtNote and txtNoteName content will be automatically changed because 
they are bound to SelectedNote. 

        private void btnAddNew_Click(object sender, System.Windows.RoutedEventArgs e) 
        { 
            NotepadViewModel.Instance.SelectedNote = null; 
        } 

Coding the Delete Button Event 
When the Delete button is clicked, the DeleteNote method from the NotepadViewModel instance will 

be invoked, SelectedNode will be set to null, and txtNote and txtNoteName will be set to an empty string 
automatically because they are bound to SelectedNode. 

        private void btnDelete_Click(object sender, System.Windows.RoutedEventArgs e) 
        { 
            NotepadViewModel.Instance.DeleteNote(); 
        } 

Coding the BoolToVisibilityConvert 
You will create a custom converter that implements IValueConverter, which can be used during the 
binding in the control where the bound value can be converted to any value that the control will 
understand. BoolToVisibilityConvert will convert Boolean value bound to the control Visibility to 
Visibility enumeration so that the controls can hide and unhide. 

9. Right-click the Notepad project and choose Add  Add New Item. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

73 

10. When the Add New Item window pops up, choose Class and name the class 
BoolToVisibilityConvert, as shown in Figure 3–32. Click the Add button. 

 

Figure 3–32. Adding BoolToVisibility class to the project 

11. Open BoolToVisibilityConvert.cs and paste the code blocks spelled out in 
the following sections. 

Specifying the Namespaces and Applying IValueConverter Interface 
The namespace System.Windows.Data will allow you to declare the IValueConverted interface for the 
BoolToVisibilityConverter class. 

using System; 
using System.Windows; 
using System.Windows.Data; 
 
namespace Notepad 
{ 
    public class BoolToVisibilityConverter : IValueConverter 
    { 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

74 

Implementing IValueConvert 
In order to convert bound value to the control property or transform to other value, you need to 
implement the Convert and ConvertBack methods. 

        public object Convert(object value, Type targetType,  
object parameter, System.Globalization.CultureInfo culture) 
        { 
            bool boolValue; 
      
            if (bool.TryParse(value.ToString(), out boolValue)) 
            { 
                return boolValue ? Visibility.Visible : Visibility.Collapsed; 
            } 
            else 
            { 
                // By default it will always return Visibility.Collapsed 
                // even for the case where the value is not bool 
                return Visibility.Collapsed; 
            } 
 
        } 
 
        public object ConvertBack(object value, Type targetType,  
object parameter, System.Globalization.CultureInfo culture) 
        { 
            Visibility visibilityValue = Visibility.Collapsed; 
 
            try 
            { 
                visibilityValue = (Visibility)Enum.Parse(typeof(Visibility),  
(string)value, true); 
                return visibilityValue; 
            } 
            catch (Exception) 
            { 
                // if fails to conver the value to Visibility 
                // it will return Collapsed as default value 
                return visibilityValue; 
            } 
             
        } 
    } 

} 

Adding Reference to NotepadService 
Before you code NotepadViewModel, add a web service reference to the NotepadService WCF service that 
will be hosted in Azure. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

75 

12. Right-click the References folder found under the Notepad project in Solution 
Explorer, and choose Add Service Reference. 

13. You will be prompted with the Add Service Reference window. In Address, 
enter http://127.0.0.1/Service.svc, and enter NotepadServiceProxy in the 
Namespace text box. Click the Go button and NotepadService information is 
retrieved. You will see Service1 in the Services box.  

14. When you expand Service1, you will see IService. Click IService and the 
Operations box will be populated with NotepadService, as shown in Figure 3–
33. Click the OK button. 

  

Figure 3–33. Adding service reference to NotepadService 

Coding NotepadViewModel 
NotepadViewModel is considered the controller of this application, and it controls the events and the data 
that will manipulate the UI. You can think of it as the brain of the application. 

15. Right-click the Notepad project and choose Add  Add New Item. 

16. When the Add New Item window pops up, choose Class; name the class 
NotepadViewModel. Click the Add button. Your Solution Explorer should 
resemble Figure 3–34. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

76 

 

Figure 3–34. Notepad project items in Solution Explorer 

17. Open NotepadViewModel.cs, found under the Notepad project, and enter the 
following C# code. 

Specifying the Namespaces and Applying INotifyPropertyChanged 
The namespace Notepad.NotepadServiceProxy allows you to work with the web service NotepadService 
you referenced. System.IO.IsolatedStorage allows you to save the registered user ID so that the 
application will know what notes to work within the database. System.ComponentModel allows you to 
implement the INotifyChanged interface that can raise the property changed events, allowing the 
controls that are bound to properties like Notes, SelectedNotes, ShowNoteList, and NeedUserId to 
respond to the changes. System.Linq allows you to query to objects with syntax that resembles the SQL 
statement. 

using System; 
using System.Windows; 
using System.IO.IsolatedStorage; 
using System.ComponentModel; 
using Notepad.NotepadServiceProxy; 
using System.Collections.ObjectModel; 
using System.Linq; 
 
namespace Notepad 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

77 

{ 
    /// <summary> 
    /// Settings class is singleton instance that will contain various application 
    /// configuration that will be used by all the controls of the application. 
    /// </summary> 
    public sealed class NotepadViewModel : INotifyPropertyChanged 
    { 

Initializing the Variables 
There are many variables that will be added to NotepadViewModel that will control the behavior of the UI 
controls. Please refer to the comments in the following code for an explanation of what significance the 
properties have for the UI controls. 

 // For creating Singleton instance 
        public static NotepadViewModel Instance = new NotepadViewModel(); 
 
// For calling Notepad web service 
        private ServiceClient _svc; 
 
 // Populated when the user registers firstime 
        // and the value is saved to the isolated storage 
        public Guid UserId 
        { 
            get  
            { 
                if (IsolatedStorageSettings.ApplicationSettings.Contains("UserId")) 
                { 
                    return (Guid)IsolatedStorageSettings.ApplicationSettings["UserId"]; 
                } 
                else 
                { 
                    return Guid.Empty; 
                } 
            } 
            set 
            { 
                if (IsolatedStorageSettings.ApplicationSettings.Contains("UserId")) 
                { 
                    IsolatedStorageSettings.ApplicationSettings["UserId"] = value; 
                } 
                else 
                { 
                    IsolatedStorageSettings.ApplicationSettings.Add("UserId", value); 
                } 
 
                // Raise property changed event to alert user registration control 
                // so that if the UserId is empty user registration screen 
                // will be prompted for the user to register. 
                // 
                // To see how raise property changed event works with control Binding 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

78 

                // see Binding attributes on ucUserRegistration control in MainPage.xaml 
                this.RaisePropertyChanged("UserId"); 
                this.RaisePropertyChanged("NeedUserId"); 
            } 
        } 
// Checks to see if the UserId exist in the isolated storage 
        // and make sure UserId is not an empty Guid 
        public bool NeedUserId 
        { 
            get 
            { 
                return !IsolatedStorageSettings.ApplicationSettings.Contains("UserId")  
                  || (Guid)IsolatedStorageSettings.ApplicationSettings["UserId"]  
== Guid.Empty; 
            } 
        } 
 
 // ShowNoteList is bound to NoteListUserControl in the MainPage 
        // and it will hide if false and else unhide if true. 
        private bool _showNoteList = false; 
        public bool ShowNoteList 
        { 
            get 
            { 
                return _showNoteList; 
            } 
 
            set 
            { 
                _showNoteList = value; 
                this.RaisePropertyChanged("ShowNoteList"); 
            } 
        } 
 
 // SelectedNote is populated from NoteListUserControl  
 // when the user selects the note from the list box. 
// SelectedNote is then used in MainPage by txtNote and 
// txtNoteName to populate to textbox content. 
        private NoteDto _note; 
        public NoteDto SelectedNote 
        { 
            get 
            { 
                return _note; 
            } 
 
            set 
            { 
                _note = value; 
                this.RaisePropertyChanged("SelectedNote"); 
            } 
        } 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

79 

// Collection of NoteDto is populated by calling GetNotes service call 

// and all user notes will be contained in this collection. 
        private ObservableCollection<NoteDto> _notes; 
        public ObservableCollection<NoteDto> Notes 
        { 
            get 
            { 
                return _notes; 
            } 

            set 
            { 
                _notes = value; 
                this.RaisePropertyChanged("Notes"); 
            } 
        } 

Adding the Constructor 
In the constructor, you will be adding event handlers for the service calls. GetNotesCompleted will 
return all the user notes. AddNote, UpdateNote, and DeleteNote will add, update, and delete the note 
and return successfully if no error occurs, otherwise the error will be reported back to the callbacks. In 
the constructor ServiceClient, the web service proxy will be initialized and the RebindData method that 
makes the call to the GetNotes method will populate the Notes property. 

        private NotepadViewModel() 
        { 
            _svc = new ServiceClient(); 
            _svc.GetNotesCompleted += new 
EventHandler<GetNotesCompletedEventArgs>(_svc_GetNotesCompleted); 
            _svc.AddNoteCompleted += new 
EventHandler<AddNoteCompletedEventArgs>(_svc_AddNoteCompleted); 
            _svc.UpdateNoteCompleted += new 
EventHandler<AsyncCompletedEventArgs>(_svc_UpdateNoteCompleted); 
            _svc.AddUserCompleted += new 
EventHandler<AddUserCompletedEventArgs>(_svc_AddUserCompleted); 
            _svc.DeleteNoteCompleted += new 
EventHandler<AsyncCompletedEventArgs>(_svc_DeleteNoteCompleted); 

            if (this.NeedUserId) 
            { 
                this.Notes = new ObservableCollection<NoteDto>(); 
            } 
            else 
            { 
                this.RebindData(); 
            } 
        } 

        // To rebind the data GetNotes will be called to retrieve 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

80 

        // all the user notes and resetting Notes value. 
        public void RebindData() 
        { 
            _svc.GetNotesAsync(this.UserId); 
        } 

Adding SaveNote, AddUser, DeleteNote 
Here you will be using the Linq to Object technique to query the Notes property to check if noteName 
exists. If the note exists, UpdateNote will be called; otherwise AddNote will be called. The AddUser 
method will make a service call to add the user. DeleteNote will call the DeleteNote service. 

        public void SaveNote(string noteName, string noteText) 
        { 
            // Search the user notes and see if the note already exist 
            var note = (from eachNote in this.Notes 
                       where eachNote.NoteText.Equals(noteText,  
StringComparison.InvariantCultureIgnoreCase) 
                       select eachNote).SingleOrDefault(); 
 
            if (note == null) 
            { 
                _svc.AddNoteAsync(this.UserId, noteName, noteText); 
            } 
            else 
            { 
                _svc.UpdateNoteAsync(note.NoteId, noteText); 
            } 
 
            this.SelectedNote = note; 
        } 
 
        public void AddUser(Guid userId, string userName) 
        { 
            if (this.NeedUserId) 
            { 
                _svc.AddUserAsync(userId, userName); 
            } 
        } 
 
        public void DeleteNote() 
        { 
            _svc.DeleteNoteAsync(this.UserId, this.SelectedNote.NoteId); 
        } 

Adding NotepadService Eventhandlers 
The following code will handle callbacks for NotepadService calls. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

81 

AddNoteCompleted 

When the note is added successfully, SelectedNote will be set with the result returned from the call. 

        private void _svc_AddNoteCompleted(object sender, AddNoteCompletedEventArgs e) 
        { 
            if (e.Error == null) 
            { 
                this.SelectedNote = e.Result; 
                this.RebindData(); 
            } 
            else 
            { 
                MessageBox.Show("Failed to add the note. Please try again!"); 
            } 
        } 

GetNotesCompleted 

The returned result will contain all the user notes and will be set to the Notes property. 

        private void _svc_GetNotesCompleted(object sender, GetNotesCompletedEventArgs e) 
        { 
            if (e.Error == null) 
            { 
                this.Notes = e.Result; 
            } 
            else 
            { 
                MessageBox.Show("Failed to get the notes. Please try again!"); 
            } 
        } 

UpdateCompleted 

When the updated note is completed, RebindData is called, which will trigger the UI element txtNote, 
txtNoteName, to be updated in MainPage. 

        private void _svc_UpdateNoteCompleted(object sender, AsyncCompletedEventArgs e) 
        { 
            if (e.Error == null) 
            { 
                this.RebindData(); 
            } 
            else 
            { 
                MessageBox.Show("Failed to update the note. Please try again!"); 
            } 
        } 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

82 

AddUserCompleted 

If the user registration is successful, the UserId property will be set with the return result, saving it to the 
isolated storage. 

        private void _svc_AddUserCompleted(object sender, AddUserCompletedEventArgs e) 
        { 
            if (e.Error == null) 
            { 
                // Set the UserId only when AddUser service call  
                // was made successfully 
                this.UserId = e.Result; 
            } 
            else 
            { 
                this.UserId = Guid.Empty; 
                MessageBox.Show("Failed to add user please try again!"); 
            } 
        } 

DeleteNoteCompleted 

When the delete note call is successful, SelectedNote will be set to null so that txtNote and txtNoteName 
will be set with an empty string in MainPage, and RebindData is called to update the properties. 

        private void _svc_DeleteNoteCompleted(object sender, AsyncCompletedEventArgs e) 
        { 
            if (e.Error == null) 
            { 
                this.SelectedNote = null; 
                this.RebindData(); 
            } 
            else 
            { 
                MessageBox.Show("Failed to delete note please try again!"); 
            } 
        } 

Coding INotifyPropertyChanged Interface 
Here you will be coding the implementation of the INotifyPropertyChanged event that will be called 
whenever the Notes, ShowNoteList, NeedUserId, and SelectedNote properties are changed. 

        // Implement INotifyPropertyChanged interface 
        public event PropertyChangedEventHandler PropertyChanged; 
        private void RaisePropertyChanged(string propertyName) 
        { 
            PropertyChangedEventHandler propertyChanged = this.PropertyChanged; 
            if ((propertyChanged != null)) 
            { 
                propertyChanged(this, new PropertyChangedEventArgs(propertyName)); 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

83 

            } 
        } 
    } 

} 

Testing the Application Against NotepadService Deployed Locally 
Before you begin, make sure that NotepadService is running Development App Fabric; otherwise press 
F5 to start NotepadService as shown in the previous steps. Then press F5 on the Notepad Windows 
Phone project. You will see the application shown in Figure 3–27. Enter the username and register, and 
add some notes so that you can confirm that the notes are saved to NotepadDB in SQL Azure. 

Open up your SQL Server Management Studio by following the steps provided in the previous 
sections, type in the following SQL statement, press F5, and you will see the notes and the user data 
saved to NotepadDB. 

select * from [User] 
select * from Note 

When the SQL statement is executed, you should see the data you added in the Results window, as 
shown in Figure 3–35. 

 

 

Figure 3–35. Querying NotepadDB 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

84 

In the next section, you will deploy NotepadService directly to Windows Azure and modifying the 
Notepad application to consume the web service located in Windows Azure instead of from the local 
machine. 

Deploying the Service to Windows Azure 
By deploying to Windows Azure, you will have a redundant, fault-tolerant service that you can scale out 
if you need to meet the demands of heavy usage. You will see how simple it is to configure the service 
and deploy. 

Preparing for Windows Azure NotepadService 
You will be creating a Windows Azure service host in order to deploy WCF NotepadService to a Windows 
Azure platform. 

Signing Up for Windows Azure and Creating a Project 

1. Open the browser of your choice. 

2. Go to www.microsoft.com/windowsazure/ to sign up and buy the Windows 
Azure service account. Follow the directions provided by Microsoft in order to 
purchase and acquire the service account. 

3. Go to https://windows.azure.com/ and sign in using the account you created 
in Step 1. 

Connecting to the Windows Azure Project 

4. Once you’ve signed in, click the Windows Azure menu tab on the left side. 
When the Windows Azure page loads, you will see the project that you created 
during the registration process (see step 1). See Figure 3–36, which will 
correspond to this step. 

http://www.microsoft.com/windowsazure/
https://windows.azure.com/


CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

85 

 

Figure 3–36. Windows Azure project list 

5. Click the project hyperlink NAS-DEV. In your case, you should click the name 
of the project that corresponds to the one you created in Step 1. 

Create and Configuring Windows Azure NotepadService 

Now you’re ready to create and configure the service. 

6. Create a new service that will host your WCF service by clicking the New 
Hosted Service icon on the top left side of the page. You will see the form in 
Figure 3-37 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

86 

 

Figure 3–37. Adding a new Azure service to the project 

7. In the “Enter a name for your service” box, enter NotepadService; in the “Enter 
a URL prefix for your service” textbox, type NotepadServiceDemo. Note here 
that NotepadServiceDemo.cloudapp.net will become your production WCF 
endpoint that you will be using later in your Windows Phone application. 

8. In the “Choose a region or affinity group” section, you have two options. 
Typically, relating the affinity among other services allows you to run the 
services in the same region in order to optimize performance.  

9. If you are creating multiple services that will interact with other services in the 
same region, select “Create a new affinity group” or choose the existing Affinity 
Group from the “Create or choose an affinity group” drop-down.  

10. If you won’t be creating multiple services that require the services to be in the 
same region, then select the Anywhere US option from the Choose a Region 
drop-down.  

11. In the Deployment options section, select “Deploy to production 
environment” and make sure the “Start after successful deployment” checkbox 
is checked. 

12. For Deployment name, I recommend using the version number of your 
NotepadService, which would be 1.0.0.0. 

See Figure 3–38 for appropriately filled information. Keep this browser open as you will be coming 
back and deploying the packages. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

87 

 

Figure 3–38. Configuring the WCF Azure service 

Deploying NotepadService to Windows Azure 
In the previous steps, you prepared the NotepadService host; now it’s time for you to deploy 
NotepadService so that you can consume the Azure service from the phone. You will be deploying the 
service to staging first. Staging is where you test your service before going to production. This is a very 
convenient way of making sure your service works before going live. 

Compiling and Publishing NotepadService 

You will need a compiled binary so you can deploy to the Windows Azure host. 

1. Go to your NotepadService project, stop the project if it is running, right-click 
the NotepadService project, and choose Publish. 

2. The Publish Cloud Service window will appear. Choose “Create Service 
Package Only,” as shown in Figure 3–39.  



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

88 

 

Figure 3–39. Create a NotepadService package for Windows Azure 

3. Click the OK button. Windows Explorer will open with a directory where you 
will see two files: NotepadService.cspkg is the compiled binary of 
NotepadService and ServiceConfiguration.cscfg is the configuration file used 
by Windows Azure. Take note of the directory path as you will be uploading 
these files to Windows Azure. 

Deploying NotepadService.cspkg and ServiceConfiguration.cscfg to Windows Azure 

You will be deploying the packages created in the previous steps to Windows Azure. 

4. Go to your browser where the Create a New Hosted Service screen is, as shown 
in Figure 3–38. 

5. Click Browse Locally in the Package location section; browse to where you 
published compiled NotepadService in the previous section and choose 
NotepadService.cspkg. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

89 

6. In the Configuration file section, click the Browse Locally button; browse to 
where you published NotepadService and choose ServiceConfiguration.cscfg. 
You should see a screen that resembles Figure 3–40. 

Figure 3–40. Staging Deployment screen 

7. Click OK to deploy. You will see Warning screen as shown in Figure 3-41. Click 
Yes to ignore this warning. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

90 

 

Figure 3–41. Warning screen when creating a new hosted service 

8. You will be returned to the main screen of Hosted Service. Note that 
NotepadService is being created (see Figure 3-42). You will need to wait until 
the status changes to Ready. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

91 

 
Figure 3–42. NotepadService being created in Windows Azure Platform 

9. When the status changes to Ready, select NotepadService 1.0.0.0 and note the 
DNS name on the right. This is the WCF end URL that you will be using. Simply 
append “/Service.svc” to this DNS name on the browser. (for the demo, see  
(http://ef8c3aa169c04db99fbfb74616a0afd6.cloudapp.net/service1.svc) If 
everything was successful, you should see your NotepadService in the browser 
(see Figure 3-43). 

http://ef8c3aa169c04db99fbfb74616a0afd6.cloudapp.net/service1.svc


CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

92 

 

Figure 3–43. NotepadService WCF endpoint when deployed to Windows Azure staging 

In following section using you will consume NotepadService deployed to Windows Azure staging. 

Testing the Notepad Application Against NotepadService  
Azure Service 
In the previous steps, you deployed NotepadService to the Windows Azure host. You will be changing 
the Notepad phone configuration to point to the web service that is hosted in Windows Azure and test in 
the same way you tested when the service was deployed locally to your machine. 

10. Go to Visual Studio and open the Notepad project. 

11. In Solution Explorer under the Notepad project, open 
ServiceReferences.ClientConfig. Change the endpoint address from 127.0.0.1 
to the URL that you received when you deployed to staging in previous steps. 
See Figure 3–44 with the changed endpoint address. 



CHAPTER 3   BUILDING WINDOWS PHONE 7 APPLICATIONS USING CLOUD SERVICES AS DATA STORES 

93 

 

Figure 3–44. Changing the service endpoint to the Windows Azure address 

12. Make sure that NotepadService is in Ready status, and then press F5 to run 
your Notepad phone application in the emulator. Follow the previous steps to 
test the Notepad application. It should exhibit exactly the same behavior, 
except that now you are running your Notepad application against the 
Windows Azure service. 

Summary 
In this chapter, you build a Windows Phone application that makes use of Microsoft’s Windows Azure 
service to store data to an SQL server in the cloud. Your application is now scalable and fault-tolerant, 
and it can accommodate a large number of users. You learned how simple it is to create the service and 
the database in the Azure cloud and how Microsoft Azure gives you the power to build an application 
without having to worry about creating your own complex IT infrastructure to support it. 

In Chapter 4, you will learn to catch exceptions and debug and test Windows Phone applications. 
You will learn critical skills that will help you be successful in building a Windows Phone application. 



C H A P T E R  4 
 

      
 

95 

Catching and Debugging Errors 

As you develop Windows Phone applications, you must learn how to equip them to handle a number of 
exceptions that are unique to smartphones. Unlike a desktop computer, a Windows Phone is loaded 
with devices over which you have little direct control, including GPS, an accelerometer, Wi-Fi, isolated 
storage, and a radio. A user can decide to turn off an onboard device to save power at any time; isolated 
storage can run out of space; and a resource such as a cell tower, GPS satellite, or Wi-Fi router might not 
be available. To identify and fix unexpected exceptions in an application, you need to know how to use 
the powerful debugging facilities of Visual Studio. To assure yourself that you have dealt with all of the 
bugs your application is likely to encounter, you need to know how to test your applications on a real 
device. 

In this chapter, you will learn to master critical debugging and troubleshooting skills using Visual 
Studio IDE, which you can also use to debug any application, including web applications (ASP.NET) and 
Windows applications. 

The following sections are divided into three major topics. We’ll walk you through a series of 
tutorials covering general exception handling in Windows Phone, Visual Studio debugger features, and 
testing using the emulator and the real device. 

Debugging Application Exceptions 
In this section, you will learn how to find and deal with two exceptions that are common to Windows 
Phone applications. The first is the navigation failed exception, which can be thrown when a main page 
is loaded; the second deals with the web service call that is consumed by the application. 

The ErrorHandlingDemo application that you’ll use contains two projects: a Windows Phone 
project and the Calculator web service project, which has an Add method that adds two numbers and 
returns the result to the caller. Being able to debug and handle web service call exceptions will be 
critical, especially if you are planning to work with external services like Microsoft Bing Maps services 
(which are covered in Chapter 14). 

When you finally debug and fix all the issues in the application, you will see the result shown in 
Figure 4–1. 



CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

96 

 

Figure 4–1. ErrorHandlingDemo application 

Debugging Page Load Exceptions 
The ErrorHandlingDemo application contains bugs that will cause exceptions to be thrown when the 
application’s main page is loaded. In this section, you will learn how to find and fix such problems in 
Visual Studio.  

Catching an Exception  
Whenever an application throws an exception, Visual Studio will stop execution at the line where it’s 
thrown. To observe this behavior, let’s run the application and take a closer look using the Visual Studio 
IDE. 

Fire up Visual Studio, select File  Open, and browse to the following file, which you can download 
from the site for this book: 

{unzippeddirectory}\ch04\ErrorHandlingDemo\Start\ErrorHandlingDemo.sln. 



CHAPTER 4    CATCHING AND DEBUGGING ERRORS 

97 

Once the solution file is loaded, press F5 to run it. Notice the raised exception message in Figure 4–2, 
which points to the code that has caused ArgumentOutOfRangeException to be thrown. From 
DeviceExtendedProperties you can obtain Windows Phone 7 system information, and only the following 
keys—DeviceManufacturer, DeviceName, DeviceUniqueId, DeviceTotalMemory, 
ApplicationCurrentMemoryUsage, and ApplicationPeakMemoryUsage—will be available. And when you 
try to query the system information DName that does not exist, the application throws 
ArgumentOutOfException. 

 

Figure 4–2. A raised exception in Visual Studio 

Querying Exception Object Values with Immediate Window 
Whenever an application running in Visual Studio pauses at a line where an exception has been thrown, 
you always have an opportunity to observe its variables in Visual Studio’s Immediate Window. 

Immediate Window is a most useful debugging feature because it allows you to evaluate any 
statement when the code execution pauses at the breakpoint. If you do not see the immediate window 
when the breakpoint is hit, you can go to Debug  Windows  Immediate to bring up the Immediate 
Window, as shown in Figure 4–3. 



CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

98 

1. With ErrorHandlingDemo still paused in the debugger, go to the Immediate 
Window, type in DeviceExtendedProperties.GetValue("DeviceName") to query 
the object value, and press Enter. You will see the result printed in an 
Immediate Window, as shown in Figure 4–3. 

 

Figure 4–3. Query object value in Immediate Window 

In next section, you will learn to handle exceptions specific to Windows Phone 7. 

Catching an Unhandled Exception in RootFrame_NavigationFailed or 
Application_UnhandledException 
Unhandled exceptions in a Windows Phone application will be caught by one of two main methods: 
RootFrame_NavigationFailed and Application_UnhandledException. RootFrame_NavigationFailed 
catches unhandled exceptions thrown while a page is being loaded; Application_UnhandledException 
catches exceptions thrown in all other cases. 

2. Press F5 to continue debugging from the breakpoint in the previous section. 

The debugger will next break inside RootFrame_NavigationFailed in App.xaml.cs, as shown in Figure 
4–4. Notice that in App.xaml.cs you will find various Windows Phone application–related events such as 
Application_Launching, Application_Activated, Application_Deactivated, Application_Closing, 
RootFrame_NavigationFailed, and Application_UnhandledException. As far as exceptions are 
concerned, only two events will be of interest. RootFrame_NavigationFailed captures unhandled 
exceptions when the Windows Phone page fails to load. In ErrorHandlingDemo, unhandled exceptions 
occur when MainPage tries to load and throws ArgumentOutOfException. 



CHAPTER 4    CATCHING AND DEBUGGING ERRORS 

99 

 

Figure 4–4. Breakpoint at RootFrame_NavigationFailed  

3. With your mouse, hover over NavigationFailedEventArgs e; you will be able to 
drill into the object value and see the e.Uri that contains the page that caused 
the error during the load, as shown in Figure 4–5. 

 

Figure 4–5. NavigationFailedEventArgs.Uri 

4. Press F5 to continue debugging. You will notice that code execution next 
breaks in the Application_UnhandledException method. All exceptions that are 
not handled specifically by a try-catch-finally block will ultimately end up in 
this method. 



CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

100 

Handling an Exception RootFrame_NavigationFailed 
When an exception is thrown in the MainPage of an application, the exception will be caught by the 
RootFrame_NavigationFailed method, and this is where you want to handle it in order to stop the 
exception from bubbling up to the Application_UnhandledException method. 

In ErrorHandlingDemo, replace the RootFrame_NavigationFailed method with following code. 
Notice the use of MessageBox in the code to display the proper error with stack trace and set e.Handled 
to true, which will stop the breakpoint to move to the Application_UnhandledException method. 

 

        // Code to execute if a navigation fails 
        private void RootFrame_NavigationFailed(object sender, NavigationFailedEventArgs e) 
        { 
            if (System.Diagnostics.Debugger.IsAttached) 
            { 
                // A navigation has failed; break into the debugger 
                System.Diagnostics.Debugger.Break(); 
            } 

            MessageBox.Show( 
string.Format("Page {0} failed to load because of with error: {1}",  
e.Uri.ToString(), e.Exception.StackTrace)); 
            e.Handled = true; 
        } 

Fixing the Error in the Code 
In the previous section, you added a MessageBox display in case any other page fails to load. In the 
following steps, you will be fixing the actual cause of the exception in MainPage. But first, let’s fix the error 
in MainPage.xaml.cs. 

Fix the error in MainPage.xaml.cs by replacing  

txtDeviceName.Text = DeviceExtendedProperties.GetValue("DName").ToString() 

with 

txtDeviceName.Text = DeviceExtendedProperties.GetValue("DeviceName").ToString(). 

Debugging a Web Service Exception 
ErrorHandlingDemo contains the CalculatorService web service project where the service will be hosted 
locally and consumed by the demo application. The code is written so that the application will throw the 
exceptions that you will be fixing. 

Catching a Web Service Exception 
You will be stepping through the breakpoints in order to understand the behavior of the thrown 
exception. Before you begin, make sure that both the Windows Phone project and the web service 
project start simultaneously when you Press F5.  



CHAPTER 4    CATCHING AND DEBUGGING ERRORS 

101 

5. Right-click the ErrorHandlingDemo solution in Solution Explorer and choose 
the property. The solution property page window shown in Figure 4–6 will 
display. 

6. Select the Multiple startup projects option, and CalculatorService and 
ErrorHandlingDemo projects’ Actions are set to Start. 

7. Also, put two breakpoints in MainPage.xaml.cs at the line txtAnswer.Text = 
e.Result.ToString() and _svc.AddAsync(txtX.Text, txtY.Text), as shown in 
Figure 4–6. 

 

Figure 4–6. Breaking point to debug CalculatorService web service 

8. Press F5. You will see the application shown in Figure 4–1 in the emulator, and 
you will notice the WCF Test Client starts as well, as shown in Figure 4–7. The 
WCF Test Client will host the CalculatorService, allowing you to step into the 
web service call. 



CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

102 

 

Figure 4–7. WCF test client 

9. From the emulator, press the Call Calculator Service button. 

Notice that the Visual Studio catches InvalidCastException thrown from the CalculatorService 
project, as shown in Figure 4–8. 



CHAPTER 4    CATCHING AND DEBUGGING ERRORS 

103 

 

Figure 4–8. InvalidCastException in CalculatorService 

10. When you hover over x value you will notice that it contains Test, which can’t 
be converted to integer, thus causing InvalidCastException. 

11. Press F5 to continue. Visual Studio breaks at Reference.cs, which is the web 
service proxy class that was generated against WSDL from Visual Studio (see 
Chapter 3 for more detail on how to consume web services). 

12. Press F5 again. The execution will break on the line txtAnswer.Text = 
e.Result.ToString() found in MainPage.xaml.cs. 

13. In Immediate Window, type in e.Error. You will notice that e.Error is not 
empty. When the web service returns any kind of error, e.Error will not be 
empty, and when you try to access e.Result that contains web service call, the 
result will throw an exception. 

14. Press F5 again. Note the exception thrown in the e.Result property, as shown 
in Figure 4–9. 



CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

104 

 

Figure 4–9. Exception thrown in e.Result when the web service has an error 

15. Press F5. The exception will be finally caught in 
Application_UnhandledException. 

Fixing the CalculatorService Exception 
After stepping through the breakpoints, you now have enough information to fix the exception. 

First, let’s check the values received from the caller in CalculatorService. Replace Service1.svc.cs 
codes with the following snippet. The CheckValue method will make sure that the received value is not 
null and convert the value to the integer. 

        public int Add(object x, object y) 
        { 
            int xValue = CheckValue(x); 
            int yValue = CheckValue(y); 
 
            return xValue + yValue; 



CHAPTER 4    CATCHING AND DEBUGGING ERRORS 

105 

        } 
 
        private int CheckValue(object value) 
        { 
            int convertedValue = -1; 
            if (value == null) 
            { 
                throw new ArgumentNullException("value"); 
            } 
            else if (!int.TryParse(value.ToString(), out convertedValue)) 
            { 
                throw new ArgumentException( 
string.Format("The value '{0}' is not an integer.", value)); 
            } 
 
            return convertedValue; 
        } 

In MainPage.xaml.cs, replace the AddCompleted event delegate with following code. You will be 
checking to make sure e.Error is empty before retrieving e.Result; if e.Error is not empty, you will be 
throwing the proper error message. 

_svc.AddCompleted += (s, e) => 
            { 
                if (e.Error == null) 
                { 
                    txtAnswer.Text = e.Result.ToString(); 
                } 
                else 
                { 
                    MessageBox.Show( 
string.Format("CalculatorService return an error {0}",  
e.Error.Message)); 
                } 
            }; 

Testing the Application 
You’ve finished debugging and fixing the application exceptions, and now you’ll be able to properly run 
the application and handle exceptions. 

Press F5 and you will see Figure 4–1; notice now that txtDeviceManufacturer and txtDeviceName 
are properly populated during the MainPage load. When you change txtX to an integer and click the Call 
Calculator Service button, txtAnswer will be populated with the result received from the web service. 

Registering a Windows Phone Device for Debugging 
Testing an application on a Windows Phone device is a lot more work than using the Windows Phone 
emulator because it involves registering your device, physically connecting it to your computer via a USB 
cable, and running Zune software in the background on your workstation. Here are the steps you need to 
follow to set up a phone as your debugging platform. 

First, you must apply for a Windows Phone Marketplace account at the Windows Phone developer 
portal. 



CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

106 

1. If you don’t yet have a Windows Phone account, go to 
http://create.msdn.com/ and sign up. 

Microsoft will review your application and activate your account. If you have not 
yet installed Zune software, you can download the latest Zune software from 
www.zune.net/en-us/products/software/download/default.htm.  

2. Once you’re approved, click the Windows Start menu on your workstation and 
select All Programs  Zune to start the Zune software. The Welcome page is 
shown in Figure 4–10.  

 

Figure 4–10. The Zune software welcome page 

■ Note The Windows Phone 7 device is based on the Zune, which is a Microsoft product and iPod competitor for 
playing video and audio. A Windows Phone uses Zune software to update a Windows Phone 7 system, and Zune 
must be running in order to deploy an application to a device. You can also use Zune software to back up your 
device. 

http://create.msdn.com/
http://www.zune.net/en-us/products/software/download/default.htm


CHAPTER 4    CATCHING AND DEBUGGING ERRORS 

107 

3. Connect your Windows Phone device to your developer workstation using a 
USB cable. 

4. To confirm that your device is properly connected and recognized by the Zune 
software, click the phone icon at the bottom left corner of the Zune Welcome 
screen, as indicated by the arrow in Figure 4–11. 

 

Figure 4–11. Clicking the phone icon in Zune software 

5. When you click the phone icon, the Zune software will display detailed 
information about your device, as shown in Figure 4–12. 



CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

108 

 

Figure 4–12. Windows Phone device detail page in Zune 

Now you are ready to actually register your device.  

6. Go to the Windows Start menu, select All Programs  Windows Phone 
Developer Tools, and select Windows Phone Developer Registration, as shown 
in Figure 4–13. 

 

Figure 4–13. Windows Phone developer registration 

A Windows Phone developer registration form will display, as shown in Figure 4–14.  

7. Enter the ID and password you used to register for a Windows Phone 
Marketplace account in step 1. 



CHAPTER 4    CATCHING AND DEBUGGING ERRORS 

109 

 

Figure 4–14. Windows Phone developer registration 

To confirm that your phone is properly registered, go to http://create.msdn.com/ and log in. 
Once logged in, click My Dashboard   Windows Phone and then click my devices from the left 

menu, as shown in Figure 4–15.  

http://create.msdn.com/


CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

110 

Figure 4–15. My Windows Phone page 

Then click on from the left menu My Account   Devices, as shown in Figure 4-16. 



CHAPTER 4    CATCHING AND DEBUGGING ERRORS 

111 

 

Figure 4–16. Windows Phone registered devices page 

In the following section, you will learn tips and tricks to make your life easier when you begin to 
debug and test using a real device. 

TIPS AND TRICKS: DEBUGGING ON A DEVICE 

Here are a few things that you should keep in mind to make your life easier and save you time when 
you’re debugging an application on a live Windows Phone.  

o When debugging, it’s best to disable screen time-out, especially if you are 
debugging through a complex program that takes a long time. On the Windows 
Phone device, go to Settings  Lock & Wallpaper, and set the screen time-out 
to never. After debugging, remember to come back to reset the screen time-
out to other so you don’t waste your battery. 

o When you try to debug in the Windows Phone 7 device, you will get the error 
message shown here. And when you click No, you will see an “Access Denied” 
message in your Error List window. This is because your device is locked due 
to time-out. To avoid this problem during the debugging, disable time-out on 
the device by following step 1. To resolve this issue, simply unlock your device 
and restart in debug mode in Visual Studio. 

 



CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

112 

 
 

 
o When the Zune application is not started, you will receive the error “Zune 

software is not launched. Retry after making sure that Zune software is 
launched” in the Visual Studio Error List Window. 

 

Handling Device Exceptions 
In the following section, you will learn to capture device-specific exceptions. You will be using the 
accelerometer device as an example to properly handle unexpected exceptions by catching 
AccelerometerFailedException. AccelerometerFailedException can occur if the accelerometer device on 
the phone is broken. The exception can also occur if the device throws an unexpected error caused 
internally by Microsoft Window Phone framework. Figure 4–17 displays the basic UI of the 
CatchDeviceExceptionDemo project that you will be building. 



CHAPTER 4    CATCHING AND DEBUGGING ERRORS 

113 

 

Figure 4–17. CatchDeviceException UI 

Creating the CatchDeviceExceptionDemo Project 
To set up the CatchDeviceExceptionDemo project, follow the steps you’ve used for previous examples in 
this book. 

1. Open Microsoft Visual Studio 2010 Express for Windows Phone on your 
workstation. 

2. Create a new Windows Phone Application by selecting File  New Project on 
the Visual Studio command menu. Select the Windows Phone Application 
template, name the application CaptureAccelerometerData, and click OK.  



CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

114 

3. In order to use the accelerometer, add an assembly reference to 
Microsoft.Devices.Sensors by right-clicking the References folder in Solution 
Explorer, and choose Microsoft.Devices.Sensors from the Add Reference 
window, as shown in Figure 4–18. 

 

 

Figure 4–18. Adding reference to Microsoft.Devices.Sensors 

Building the User Interface 
You will be building the user interface using the XAML in the Visual Studio. For building simple controls, 
it’s faster to work with the XAML code. Go to Solution Explorer, open MainPage.xaml, and replace the 
XAML you find there with the code in the next section. 

Declaring the UI Resources 
The namespaces you see in the following code snippet are typically declared by default when you first 
create a Windows Phone project. In particular, namespaces xmlns:phone="clr-
namespace:Microsoft.Phone.Controls; assembly=Microsoft.Phone" allow you to add common 
Windows Phone controls to the application main page. 

<phone:PhoneApplicationPage  
    x:Class="CatchingDeviceExceptionsDemo.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 4    CATCHING AND DEBUGGING ERRORS 

115 

    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    shell:SystemTray.IsVisible="True"> 

Building the Main Page and Adding Components 
Create two buttons to start and stop the accelerometer.  

    <!--LayoutRoot is the root grid where all page content is placed--> 
    <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <!--TitlePanel contains the name of the application and page title--> 
        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28"> 
            <TextBlock x:Name="ApplicationTitle" Text="CatchingDeviceExceptionsDemo"  
Style="{StaticResource PhoneTextNormalStyle}"/> 
        </StackPanel> 
 
        <!--ContentPanel - place additional content here--> 
        <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"> 
            <Button Content="Start Accelerometer" Height="72" HorizontalAlignment="Left"  
Margin="84,45,0,0" Name="btnStartAcc" VerticalAlignment="Top"  
Width="284" Click="btnStartAcc_Click" /> 
            <Button Content="Stop Accelerometer" Height="72" HorizontalAlignment="Left"  
Margin="84,123,0,0" Name="btnStopAcc" VerticalAlignment="Top"  
Width="284" Click="btnStopAcc_Click" /> 
        </Grid> 
    </Grid> 
 
</phone:PhoneApplicationPage> 
 

Once you have loaded the XAML code, you should see the layout shown in Figure 4–19. In the next 
section, you will be coding the application. 

http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

116 

 

Figure 4–19. CatchDeviceExceptionDemo design view 

Coding the Application 
In Solution Explorer, open MainPage.xaml.cs and replace the code there with the following C# code 
blocks. 

Specifying the Namespaces 
Begin by listing the namespaces the application will use. Note that the inclusion of 
Microsoft.Devices.Sensors will allow you to start and stop Windows Phone’s accelerometer. 

using System.Windows; 
using Microsoft.Phone.Controls; 
using Microsoft.Devices.Sensors; 



CHAPTER 4    CATCHING AND DEBUGGING ERRORS 

117 

Initializing Variables 
The variable _acc, Accelerometer object, will be used to start and stop. 

 

Accelerometer _acc; 
 
        public MainPage() 
        { 
            InitializeComponent(); 
            _acc = new Accelerometer(); 
        } 

Implementing Accelerometer Start and Stop Behavior 
Implement a button event for stopping and starting the accelerometer. Note that you are catching 
AccelerometerFailedException, which can be raised during the start and stop of the accelerometer. In 
the exception property, you will find ErrorId and Message that contains specific error code and a 
description that could explain why the error was raised 

private void btnStartAcc_Click(object sender, RoutedEventArgs e) 
        { 
            try 
            { 
                _acc.Start(); 
 
                _acc.ReadingChanged += (s1, e1) => 
                    { 
                        // Do something with captured accelerometer data 
                    }; 
            } 
            catch (AccelerometerFailedException ex) 
            { 
                string errorMessage = string.Format(@" 
                            Accelerometer threw an error with ErrorId {0}  
    during the start operation 
                            with error message {1}                             
                            ", ex.ErrorId, ex.Message); 
                MessageBox.Show(errorMessage); 
            } 
        } 
 
        private void btnStopAcc_Click(object sender, RoutedEventArgs e) 
        { 
            try 
            { 
                 _acc.Stop(); 
            } 
            catch (AccelerometerFailedException ex) 
            { 
                string errorMessage = string.Format(@" 



CHAPTER 4  CATCHING AND DEBUGGING ERRORS 

118 

                            Accelerometer threw an error with ErrorId {0}  
    during the stop operation 
                            with error message {1}                             
                            ", ex.ErrorId, ex.Message); 
                MessageBox.Show(errorMessage); 
            } 
        } 

Testing the Finished Application 
To test the finished application, press F5. The result should resemble the screenshot shown in Figure 4–
16. The only thing you will not be able to test is being able to raise AccelerometerFailedException, which 
can be raised only if the accelerometer device fails. But the demo will give you a good idea of how you 
should be handling the device-related exception if it ever occurs. 

Summary 
In this chapter, you learned how catch and handle errors in an application and how to handle 
unexpected errors thrown by a Windows Phone. You also learned how to use Visual Studio’s powerful 
debugging features to troubleshoot and fix defects, regardless of whether you’re running an application 
in the emulator or on a real device.  

In Chapter 5, you will learn to package, publish, and manage a Windows Phone application for 
distribution through the Windows Phone Marketplace. 

 



C H A P T E R  5 
 

      
 

119 
 

Packaging, Publishing, and 
Managing Applications 

Every developer dreams of becoming an instant millionaire by creating an application that everyone 
loves to use. You will have that chance when you develop your own application and then package, 
distribute, and sell it to millions of Windows Phone users worldwide through the Windows Marketplace.  

There are three options for distributing your application through the Windows Phone Marketplace. 

• You can sell your application at fixed cost that you specify and earn 70% on each 
sale.  

• You can distribute your application for free (up to 100 free applications). If you 
decide to distribute your application for free, consider incorporating Windows 
Phone 7 Ad SDK so you can earn money from advertising. Using Microsoft 
Advertising service, you can produce targeted advertising for your application to 
display. For example, if you’re creating a health related application, you might 
choose advertising categories from sports, lifestyle, and/or health categories. Note 
that you are limited to three categories.  

• You can distribute your application as a trial application using the Market Trial 
API so that users can download the application and try it first before making a 
purchase. A trial application usually only includes a subset of features. 
 

To package and publish your application to the Windows Phone Marketplace, you must pay a yearly 
fee of US$99 and your application must abide by the rules of the Windows Phone Marketplace. In 
following sections, you will learn in great detail what you need to do in order to successfully deliver your 
application to the Windows Phone Marketplace. 

Windows Phone Application Publishing Lifecycle  
When you develop a Windows Phone application, you distribute it to Windows Phone Marketplace 
through the Windows Phone developer portal. Figure 5–1 shows the application publishing lifecycle 
from the developer to the developer portal to the Windows Phone Marketplace to the consumers. 



CHAPTER 5   PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

120 

Figure 5–1. Windows Phone application publishing lifecycle 

First (1) you must register as a developer with the Windows Phone portal and pay the US$99 fee. 
Your identity will be verified and you will be issued a certificate that the Windows Marketplace will use 
to sign your application. In addition, your bank account will be verified so that your earnings can be 
deposited there. Next (2), if you haven’t already done so, you’ll need to download the SDK tools for 
Visual Studio. After you’ve created your application (3), you will submit it to the portal for validation and 
certification (4) so Microsoft can assure the application abides by the Windows Phone Marketplace 
rules. Once your application becomes eligible, it will be signed using the certificate you received during 
registration (5), and then published to the Windows Phone Marketplace (6). 

Once the application is published, users will be able to buy, download, and install it from the 
Widows Phone Marketplace portal. There, users can also rate it and comment on its virtues and flaws, 
providing you with feedback that you can use for improvements. The Marketplace will provide you with 
downloads and sales information as well. 



CHAPTER 5    PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

121 

In the followings sections, you will learn a great deal about the certification requirements and the 
process so that your application can pass through and be submitted to the Windows Phone Marketplace. 

Windows Phone Application Certification Requirements  
In the battle between iPhone, Android, and Windows Phone, the applications available on each 
smartphone play a critical role in winning over consumers. Windows Phone Marketplace puts in place 
the rules and process to ensure that the published applications are of a high quality. You can download 
Windows Phone 7 application certification requirements from 
http://go.microsoft.com/?linkid=9730558. The following list describes the ideas behind the rules and 
the process imposed on publishing an application to Windows Phone Marketplace: 

1. Applications are reliable. You will be dealing with the consumer, who will be 
picky. Any hint of instability in the application will reflect negatively on the 
application and  the brand behind the phone. So Microsoft will enforce the 
best practices for creating reliable application. 

2. Applications make efficient use of resources. Your application must make 
efficient use of the phone resources while not adversely effecting performance. 
For example, the battery life can be drained quickly if the location service 
continues to run even after the user has left your application; your code needs 
to plan for such events.  

3. Applications do not interfere with the phone functionality. The user must be 
notified before modifying any phone settings or preferences. 

4. Applications are free of malicious software. The application must be safe to 
install and use. 

In following sections, the summary of main points will be presented so that you will be aware of the 
content of the certification documents. Remember that the following sections describing the 
certification requirements are based on version 1.3, and Microsoft could modify it or release a newer 
version, so check the developer portal frequently at http://create.msdn.com/.  

Application Policies 
This section covers the policies that protect the Windows Phone Marketplace and the consumers using 
any Windows Phone application bought from the marketplace.  

Windows Phone Application Binary (XAP File) 
You must compile your application in release mode from Visual Studio; this will produce a file with a 
.xap file extension. A XAP file is nothing more than a ZIP file with a different extension name. In fact, if 
you change the extension name of your XAP file from .xap to .zip, you will be able to extract its file 
content. You should be aware of following facts:  

 
1. For installation over the air, the XAP file must be no larger than 20MB. 

http://go.microsoft.com/?linkid=9730558
http://create.msdn.com/


CHAPTER 5   PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

122 

2. You must notify the user that there might be additional charges depending on 
how the data package is downloaded. Must disclose additional data package to 
be downloaded if greater than 50. 

3. The maximum size of a XAP is 400MB; a XAP greater than 20MB can only be 
installed through Zune or over Wi-Fi. 

Things Your Application Must Not Do 
Your application can’t do this following: 

 
1. Your application can’t sell, link, or promote mobile voice plans. 

2. It can’t distribute, link, or direct the users to an alternate marketplace. 

3. Your application can’t taint the security or functionality of Windows Phone 
devices or Windows Phone Marketplace. 

Things Your Application Must Do 
Your application must do the following things: 

1. Your application must be functional. 

2. If submitted as a trial application, it must include a reasonable feature subset 
of the fully functional application. 

3. If your application includes or displays advertising, the advertising must abide 
by the rules at http://advertising.microsoft.com/creative-specs.  

4. If your application enables chat, instant messaging, or person-to-person 
communication and allows the user to create account, the user must be 
verified of at least 13 years old. 

5. If your application sells music, the application must include Windows Phone 
music Marketplace (if available). If the content of the music is purchased 
elsewhere, the application must include its own playback media player. 

Location Service (GPS) 
The following requirements concern the location service (GPS): 

1. The location must be obtained using Microsoft Location Service API. 
(Notifications are the subject of Chapter 17). 

2. It can’t override, ignore, and circumvent Microsoft toast or prompts related to 
the Location Service API. (Location Services are covered in Chapter 14). 

3. It can’t override a user’s choice to disable location services on the phone. 

4. The application must have enable and disable options for the location service. 

http://advertising.microsoft.com/creative-specs


CHAPTER 5    PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

123 

5. If the location data is published to other services or other people, the 
application must fully disclose how the location service information will be 
used, obtain permission to use the location information, must provide the user 
with the option to opt in and out, and there must be a visual indicator 
whenever the information is transmitted. It must also provide a privacy policy 
statement regarding the location service information usage. 

6. Security must be in place to protect the location data obtained. 

Push Notification Service (PNS) 
The following points summarize the policies relating to the push notification: 

 
1. The application must provide opt in and out options to use the service. 

2. It can’t excessively use PNS, thereby causing a burden to the Microsoft 
network or the Windows Phone device. 

3. PNS can’t be used to send critical, life-or-death information. 

Content Policies 
Your application must conform to the content restrictions of the Windows Phone Marketplace. If your 
application already has ratings from ESRB, PEGI and USK, you need to submit the certificates of these 
ratings. Be mindful of licensed materials, logos, names, and trademarks. The content must not be illegal 
or suggest harm. Promotion of items that are illegal under local or federal laws (such as alcohol, tobacco, 
weapons and drugs) is not allowed. X-rated content, hate-related content, realistic violent content, and 
excessive use of profanity are not allowed. 

Keep in mind that these restrictions are highly subjective and Microsoft will have final ruling on any 
such content. We suggest that you take a practical approach: ask yourself if your application can safely 
be used and viewed by a minor. 

Application Submission Validation Requirements 
In order to package and submit an application for certification, you must make sure the requirements in 
the following sections are met. 

Packaging Requirements 
When you are getting ready to create a XAP, it’s best to use Visual Studio and compile the binaries in 
Release Mode, which will produce the XAP file and take care of the many requirements identified in the 
certification document. The following requirements are mentioned because they are easy to overlook: 

 
1. The XAP file can’t be greater 400MB. 

2. The application icon must be 62 x 62 of PNG file type. 

3. The application tile image must be 173 x 173 of PNG file type. 



CHAPTER 5   PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

124 

4. Submitted application must have the application title. 

Code Requirements 
Your application will be subjected to coding requirements. The application must use the documented 
APIs found only at http://msdn.microsoft.com/en-us/library/ff626516(VS.92).aspx. The following list 
described those requirements: 

1. PInvoker and COM interoperability is not allowed. 

2. The application must be compiled in release mode. 

3. Windows Phone assemblies can’t be redistributed. 

4. When using a method from System.Windows.Controls, APIs in 
Microsoft.Xna.Framework.Game or Microsoft.Xna.Framework.Graphics can’t be 
called. 

Using the Application Manifest File to Disclose Phone Features 
When the user purchases an application from the Windows Phone Marketplace, the Marketplace will 
display what phone features the application will use. This is done through submission of the application 
manifest file for Windows Phone (http://msdn.microsoft.com/en-us/library/ff769509(VS.92).aspx). 
The phone features added to application manifest are typically added and removed automatically by 
Visual Studio, so this is not something you would normally be concerned with. However, during your 
packaging process, you must make sure that the features listed in the application manifest are correctly 
represented. 

Language Validation 
The languages supported are English, French, Italian, German, and Spanish. Depending on where you 
are submitting your application, you must properly localize your application for at least one of the 
supported languages. 

Images for Windows Phone Marketplace 
Your application must be submitted with the images and screenshots that will be displayed in the 
Windows Phone Marketplace.  

 
1. Microsoft recommends that you use 262 DPI. 
2. The required small mobile application tile should be 99 x 99 (PNG); the large 

mobile application tile should be 173 x 173 (PNG). 

3. The required large PC application tile should be 200 x 200 (PNG). 

4. The optional background art should be 1000 x 800 (PNG). 

5. The required screenshot should be 400 x 800 (PNG). 

http://msdn.microsoft.com/en-us/library/ff626516
http://msdn.microsoft.com/en-us/library/ff769509


CHAPTER 5    PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

125 

Application Certification Requirements 
Once the application is submitted for the certification process, it will be tested against series of 
certification requirements. The following sections summarize these requirements. 

Application Reliability 
This section lists the certification requirements for application reliability. 

 
1. The application must run on all Windows Phone 7 devices. 

2. The application must handle all raised exceptions and must not crash the 
application unexpectedly. 

3. The application must not hang and become unresponsive to user input. If the 
application is processing, it must show a visual element (such as a progress 
bar) plus the ability to cancel the operation. 

Performance and Resource Management 
This section describes the requirements that deal with performance and resource management issues. 

 
1. The application must launch the first screen within 5 seconds of the 

application being launched. The 5 second rule also applies even after the 
application is closed or deactivated and then restarted. 

2. The application must respond to user input within 20 seconds after launch. 
The 20 second rule also applies even after the application is closed or 
deactivated and then restarted. 

3. When the Windows Phone Back button is pressed from first screen, it will exit 
the application. If the Back button is pressed from other then the first screen, it 
must return to the previous page. In games, if the Back button is pressed, it 
should pause the game with context menu displayed; if the Back button is 
pressed again, it will exit the pause. 

4. The application can’t use more than 90MB of RAM. If the device has more than 
256MB, then the application can use more than 90MB. 

Phone Functionality 
The application can’t prevent the use of the phone’s functionalities or hang when making a call, 
answering an incoming call, ending a call, or sending and receiving SMS or MMS messages.  

Security 
The application must not contain any viruses and malware. The application must implement type-safe 
code as described in “Unsafe Code and Pointers” (http://msdn.microsoft.com/en-us/library/ 



CHAPTER 5   PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

126 

t2yzs44b(v=VS.80).aspx). And finally the application must not run security critical code as described in 
“Security Changes in the .Net Framework 4” (http://msdn.microsoft.com/en-us/library/ 
dd233103(v=VS.100).aspx). Security is covered in greater detail in Chapter 19. 

Technical Support Information 
The application must include the application name, version, and technical support information. 

Submitting Your First Windows Phone Application to the Windows 
Phone Marketplace 
In the previous sections, you learned how to pass through the Windows Phone Marketplace’s validation 
and certification process by understanding the rules and process set forth to protect the consumer and 
the Marketplace. Now you will learn to deploy your first Windows Phone application to the Marketplace 
so you can start making millions. First, let’s learn how to package the application for submission. 

Packaging the Application 
To package the application, you will use Visual Studio. For this demo, you will use the Notepad project 
that you created in Chapter 3. 

 
1. Open the Notepad solution found in the directory where you unzipped the 

source code that accompanies this book; the solution is found at [unzipped 
directory]\Codes\ch03\Notepad\Notepad.sln. Double-click on the solution to 
open it. 

2. Click on Notepad solution found in the Solution Explorer and then select 
Release mode from the drop-down (see Figure 5-2).  

 

http://msdn.microsoft.com/en-us/library/dd233103
http://msdn.microsoft.com/en-us/library/dd233103


CHAPTER 5    PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

127 

 

Figure 5–2. Compiling the phone application in Release mode 

3. Press F6 to build the solution in Release mode. 

4. When the build is done, you’ll find the binaries under bin\release directory 
where the project file is located. To find out where the project file is, click on 
the Notepad project from the Solution Explorer. In the Properties window, you 
will see the project path (see Figure 5–3). 



CHAPTER 5   PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

128 

 

Figure 5–3. Project Folder property 

5. Inside of [your project folder]\bin\release, you will find Notepad.xap, 
which you will be using in next section to submit to the Windows Phone 
Marketplace. 

Submitting the Application  
In the previous sections, you compiled a Notepad application and created the Notepad.xap file. In this 
section you will be deploying the application. Open your browser of choice, go to 
http://developer.windowsphone.com, and sign into the portal. 

1. From the my dashboard menu, choose Windows Phone. If this is your first time 
submitting an application, you will see the page shown in Figure 5–4. 

http://developer.windowsphone.com


CHAPTER 5    PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

129 

 

Figure 5–4. The my apps page 

2. Click the submit new app button to get to the upload page shown in Figure 5–5. 



CHAPTER 5   PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

130 

Figure 5–5. The upload page 

3. From the upload page, enter the application name, choose Windows Phone 7 as 
the application platform, English as the default language, and the initial 
version. Then click on application package and browse to where Notepad.xap is 
and select the XAP file. Put a Developer note for yourself and a Tester note to 
provide special instructions. Click the Next button. 



CHAPTER 5    PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

131 

4. The description page shown in Figure 5–6 will load. Fill out the description 
dialogue  by completing the following steps: 

• From the Category drop-down, choose a category that is appropriate for 
your application.  

• Choose a sub-category.  

• Add a detailed description and a featured app description (a single 
sentence that will catch a user’s eye at the Marketplace).  

• Add keywords that will be used during a search by the user in the 
Marketplace.  

• Add a legal URL, if you have one, and a contact e-mail.  

 

Figure 5–6. The description page 



CHAPTER 5   PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

132 

5. The artwork page will load. You will be uploading a large and small application 
tile, a large PC application tile, and screenshots. The screen resolution is 
defined in the certification requirements document. Your screen should 
resemble Figure 5–7. The images for this step can be found in [directory 
where source code is unzipped]\Codes\ch05. Click the Next button to 
continue. 

 

Figure 5–7. The artwork page 

6. The pricing page shown in Figure 5–8 will load. Choose a currency and select 
the application price. If you are targeting the worldwide market, select 
Worldwide distribution. If the application is trial application, select Trial 
supported. Click the Next button to continue. 



CHAPTER 5    PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

133 

 

Figure 5–8. The pricing page 

7. The submit page shown in Figure 5–9 will load. Check the checkbox labeled 
“Automatically publish to Marketplace after passing certification” and click the 
Submit for certification button.  



CHAPTER 5   PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

134 

 

Figure 5–9. The submit page 

8. You will be returning to the my apps page where you will see the application 
that you just submitted with a status of testing in progress, as show in Figure 
5–10. 



CHAPTER 5    PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

135 

 

Figure 5–10. Submitted application with Testing in progress status 

Congratulations! You have successfully submitted your Windows Phone application to the 
worldwide market of Windows Phone users for the price of 99 cents. If your application successfully 
passes through the certification process, you will be notified by e-mail. If your application fails the 
certification process, you will be able to see the report of why your application failed and you will have 
the option to resubmit. 

Updating Your Application 
In this section, you will learn to redeploy your application with a newer version that might contain new 
features or fixes to the bugs users have reported.  

When you log in to App Hub and go to the my apps page, you will see your published application, 
similar to that in Figure 5–11. 



CHAPTER 5   PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

136 

 

Figure 5–11. Updating an application published to the Marketplace 

1. Click on the View Details link, as show in Figure 5–11. You will find this link next 
to the application that you want to redeploy. 

2. On the next screen, you will see the Action drop-down; from it, select Submit 
application update, as show in Figure 5–12. Note the other Action drop-down 
options, like being able to change the price, removing the application from the 
Marketplace, and adding completely different version of the same application 
(which the consumers must buy—unlike with an update, which they get for 
free). 



CHAPTER 5    PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

137 

 

Figure 5–12. Submit application update 

3. The remaining steps are exactly the same as those for submitting a new 
application to the Marketplace, as described in the previous section. An 
update must go through the certification process again. 

Finding Your Application in the Marketplace 
In this section, you will learn to find your application and view ratings and comments. You will be using 
the Zune software that you downloaded from http://www.zune.net/en-US/products/software/ 
download/downloadsoftware.htm. 

1. Install your downloaded Zune software. 

2. Open up your Zune software (found at Start  All Programs  Zune). Follow 
the steps to configure Zune if it’s the first time you’re using it. 

http://www.zune.net/en-US/products/software/


CHAPTER 5   PACKAGING, PUBLISHING, AND MANAGING APPLICATIONS 

138 

3. Once you are on the main page of Zune, click on the Marketplace link and then 
click on the APPS link, as shown in Figure 5–13. 

 

 

Figure 5–13. Finding your application in the Marketplace using Zune 

4. You can either search for your application or navigate to a category to look for 
your application. 

Summary 
In this chapter, you learned a great deal about the Windows Phone Marketplace’s certification 
requirements. Then you learned how to package the application in Visual Studio to produce the XAP file 
and how to submit the application through the Windows Phone development portal for the certification 
process. 

In the following chapters, you will learn about the specific features of the Windows Phone. Chapter 
6 covers the accelerometer, which can be used in games to use the phone like steering wheel. You will 
use the accelerometer to detect the orientation of the phone and capture phone shakes. 

 
 



C H A P T E R  6 
 

      
 

139 

Working with the Accelerometer 

An accelerometer has many practical uses for applications that depend on the movements of a Windows 
Phone in three-dimensional space. With data from an accelerometer, you can steer a simulated car in a 
driving game or fly a plane in a flight simulator. Capturing a motion such as a shake, a punch, a swing, or 
a slash and mixing this accelerometer data with a physics engine can be used to create Wii-like games. 
Just for fun, you can build novelty applications to amaze your friends, such as a light saber simulation 
that makes Star Wars–like sounds as you swing your phone in the air. An accelerometer can even be used 
for business applications, like a level to use when you hang a picture frame. Under the covers, the 
controllers for games that run on consoles like the Wii remotes are nothing more than accelerometers 
wrapped in buttons and plastic. 

The accelerometer in a Windows Phone measures the device’s movements in space, or more 
precisely its acceleration along three axes (x, y, and z)relative to the Earth’s gravitational pull, which is 
perpendicular to the ground (9.8 m/sec2). Think of Newton’s apple. When you drop an apple, it will fall 
toward the earth, and the force that pulls it can be calculated using that well-known high school science 
formula, force = mass × acceleration. In a Windows Phone, the accelerometer can tell you the 
orientation of the phone with respect to the earth’s gravitational force. 

In this chapter, you will learn how to use the Windows Phone accelerometer to write applications 
that respond to the phone’s orientation and movement. In the first example, you will capture data from 
the accelerometer and interpret the x, y, and z values. In a second demo, you will use readings from the 
accelerometer to move a ball in a 2D space. 

Understanding Orientation and Movement 
When you hold a Windows Phone in your hand with its display facing you, think of it as occupying the 
origin of a three-dimensional graph with its z axis pointing toward you (a positive direction), its y axis 
pointing down (a negative direction), and its x axis pointing toward the right (a positive direction). 
Figure 6–1 shows how these three axes are positioned relative to the device as you hold it facing toward 
you in your hand. 



CHAPTER 6   WORKING WITH THE ACCELEROMETER 

140 

 

Figure 6–1. Accelerometer axis directions when you hold it in your hand facing toward you  

To illustrate the accelerometer reading of the (x, y, z) = (0, -1, 0) means standing the phone up on the 
table with the front of the phone facing toward you and the phone buttons facing downwards, as shown 
in Figure 6–2. 

If you were to rotate the phone in Figure 6–2 to the right 90 degrees, so that the Windows Phone 
control buttons are to the right, as shown in Figure 6–3, the expected accelerometer readings would be 
(x, y, z) = (-1, 0, 0). 

If you took the phone in Figure 6–2 and rotated it 180 degrees, (x, y, z) would be (0, 1, 0), as shown in 
Figure 6–4. 

If you were to rotate the phone in Figure 6–4 to the left 90 degrees, as shown in Figure 6–5, (x, y, z) 
would be (1, 0, 0). 

If you were to put the phone flat on the table with the phone facing up, as shown in Figure 6–6, (x, y, z) 
would be (0, 0, -1). 

If you put the phone facing down on the table, as shown in Figure 6–7, (x, y, z) would be (0, 0, 1). 
 



CHAPTER 6    WORKING WITH THE ACCELEROMETER 

141 

   

Figure 6–2. (x, y, z) = (0, -1, 0) Figure 6–3. (x, y, z) = (-1, 0, 0) Figure 6–4. (x, y, z) = (0, 1, 0) 

   

Figure 6–5. (x, y, z) = (1, 0, 0) Figure 6–6. (x, y, z) = (0, 0, -1) Figure 6–7. (x, y, z) = (0, 0, 1) 



CHAPTER 6   WORKING WITH THE ACCELEROMETER 

142 

Calculating Distance 
The Euclidean distance algorithm is a useful way to calculate a distance between two points in three-
dimensional space. This equation allows you to detect sudden movements such as the shaking of the 
phone. 

If (Ox, Oy, Oz) is a previous accelerometer value and (Nx, Ny, Nz) is a new one, you can calculate 
Euclidean distance as follows: 

 

EuclideanDis ce Nx Ox Ny Oy Nz Oztan = − + − + −( ) ( ) ( )2 2 2

 
 

Calculating Pitch, Roll, and Yaw 
With obtained accelerometer readings you will have a pretty good understanding of the current 
orientation of the phone, but using the accelerometer data will tell you how far the phone is tilted on the 
x, y, and z axes. This information can be very useful if you are planning to create airplane simulation 
games or racing games that use the accelerometer to control the direction of moving objects. Think of it 
as using a phone like joystick by detecting the tilt motions known as pitch, roll and yaw. 

When you hold the phone vertically, with the screen facing you, both the pitch and roll angles are 0 
degrees, as shown in Figure 6–8. 

 

Figure 6–8. Pitch and roll angles of 0 degrees 



CHAPTER 6    WORKING WITH THE ACCELEROMETER 

143 

Now if you tilt the phone slightly to the right, you will be able to calculate the pitch (ρ) and roll (φ) 
angles shown in Figure 6–9. There’s another angle of interest, yaw, which is the angle respective to the z 
axis (not shown in Figure 6–9); think of yaw as phone being tilted towards you or away from you into the 
page. 

 

Figure 6–9. Pitch and roll angles 

In order to calculate pitch (ρ), roll (φ), and yaw (theta) angles you will need the following equations, 
where Ax, Ay, and Az are the accelerometer values for x, y, and z. 

ρ =
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

arctan
Ax

Ay2 2Az
 

 

ϕ =
+

⎛

⎝
⎜

⎞

⎠
⎟arctan

Ay

Ax2 2Az  
 

θ =
+⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

arctan
Ax

Az

2 2Ay

 
You’ll use Euclidean distance and pitch, roll, and yaw calculations in the examples that follow. 

3



CHAPTER 6   WORKING WITH THE ACCELEROMETER 

144 

Introducing SDK Support for Accelerometers 
In order to use the Windows Phone accelerometer, you’ll need to reference the 
Microsoft.Devices.Sensors namespace, which contains the Accelerometer class. Among its members 
is the ReadingChanged event, which constantly updates the x, y, and z coordinates of the device as event 
arguments e.X, e.Y, and e.Z, with a Timestamp that can be used to calculate velocity, acceleration, and 
other values. 

There are two things that you must remember about the accelerometer device. First is that heavy 
use of the accelerometer will use up the battery of the phone, and thus you must remember to turn it on 
only when it’s needed and turn it off when done. Second, the accelerometer runs on a thread that is 
completely separate from the thread on which the current UI runs. This means that you must use 
Deployment.Current.Dispatcher.BeginInvoke to update the UI; otherwise you will receive an invalid 
cross thread exception. 

Retrieving Accelerometer Data 
You will begin by building a simple application that captures the accelerometer data. The accelerometer 
data consist of acceleration data in x, y, and z directions plus the time in which the acceleration data was 
captured. Figure 6–10 displays the basic UI of the accelerometer data. In order for this demo to work, 
you must deploy the project to an actual Windows Phone device (please refer to Chapter 4 for deploying 
to the device). If you don’t have a Windows Phone device, you might consider using Reactive Extension 
to simulate the accelerometer behavior. Reactive Extension will not be covered in this chapter, but you 
can refer to Chapter 18 for more detail on how to create simulation in order to work with the 
accelerometer in the emulator. 

 

 

Figure 6–10. CaptureAccelerometerData demo 



CHAPTER 6    WORKING WITH THE ACCELEROMETER 

145 

You will build the demo in three steps. First, you’ll create a Visual Studio project. Next, you’ll build 
the project’s user interface, and then you’ll finish up by adding the code the application needs to retrieve 
and display data from the accelerometer. 

Creating the CaptureAccelerometerData Project 
To set up the CaptureAccelerometerData project, follow the steps you’ve used for previous examples in 
this book. 

1. Open Microsoft Visual Studio 2010 Express for Windows Phone on your 
workstation. 

2. Create a new Windows Phone Application by selecting File  New Project on 
the Visual Studio command menu. Select the Windows Phone Application 
template, name the application CaptureAccelerometerData, and click OK.  

3. In order to use the accelerometer, add an assembly reference to 
Microsoft.Devices.Sensors by right-clicking the References folder in Solution 
Explorer and choose Microsoft.Devices.Sensors from the Add Reference 
window, as shown in Figure 6–11. 

 

Figure 6–11. Adding a reference to Microsoft.Devices.Sensors 

Building the User Interface 
You will be building the user interface using the XAML in the Visual Studio (for building simple controls, 
it’s faster to work with the XAML code). Go to Solution Explorer, open MainPage.xaml, and replace the 
XAML you find there with the code in the following sections. 



CHAPTER 6   WORKING WITH THE ACCELEROMETER 

146 

Declaring the UI Resources 
The namespaces you see in the following code snippet are typically declared by default when you first 
create a Windows Phone project. In particular, the namespace xmlns:phone="clr-
namespace:Microsoft.Phone.Controls; assembly=Microsoft.Phone" allows you to add common 
Windows Phone controls to the application main page. 

 

<phone:PhoneApplicationPage  
    x:Class="CaptureAccelerometerData.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 
    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    shell:SystemTray.IsVisible="True"> 

Building the Main Page and Adding Components 
Now, create the components you need to display the x, y, and z values plus the time reading that your 
application captures from the accelerometer. You’ll also want to add components to display the pitch, 
roll, and yaw values of the device, which you will calculate and use to understand how the phone is 
oriented. Finally, you also need buttons to start and stop the accelerometer, which are also specified 

 

   <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12"> 
            <TextBlock x:Name="ApplicationTitle" Text="CaptureAccelerometer Data" 
Style="{StaticResource PhoneTextNormalStyle}"/> 
        </StackPanel> 
 
        <Grid x:Name="ContentGrid" Grid.Row="1"> 
            <TextBlock Name="txtX" Text="TextBlock"  
                       Margin="160,56,12,0" FontSize="20"  
                       Height="31" VerticalAlignment="Top" /> 
            <TextBlock Name="txtY" Text="TextBlock"  
                       Margin="160,119,12,556" FontSize="20" /> 
            <TextBlock Name="txtZ" Text="TextBlock"  
                       Margin="155,181,12,490" FontSize="20" /> 
            <TextBlock Name="txtTime" Text="TextBlock"  
                       Margin="155,244,12,427" FontSize="20" /> 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 6    WORKING WITH THE ACCELEROMETER 

147 

            <Button Content="Start" Height="72"  
                    Name="btnStart" Width="160"  
                    Margin="36,514,284,119" Click="btnStart_Click" /> 
            <Button Content="Stop" Height="72"  
                    Name="btnStop" Width="160"  
                    Margin="207,514,113,119" Click="btnStop_Click" /> 
            <TextBlock FontSize="40" Margin="66,34,331,614"  
                       Name="lblX" Text="X" /> 
            <TextBlock FontSize="40" Margin="66,97,331,552"  
                       Name="lblY" Text="Y" /> 
            <TextBlock FontSize="40" Margin="66,159,346,489"  
                       Name="lblZ" Text="Z" /> 
            <TextBlock FontSize="40" Margin="12,222,331,422"  
                       Name="lblTime" Text="Time" /> 
            <TextBlock FontSize="20" Margin="160,285,7,386"  
                       Name="txtPitch" Text="TextBlock" /> 
            <TextBlock FontSize="22" Margin="0,283,370,365"  
                       Name="lblPitch" Text="Pitch" TextAlignment="Right" /> 
            <TextBlock FontSize="20" Margin="160,345,7,326"  
                       Name="txtRoll" Text="TextBlock" /> 
            <TextBlock FontSize="22" Margin="0,343,370,305"  
                       Name="lblRoll" Text="Roll" TextAlignment="Right" /> 
            <TextBlock FontSize="20" Margin="160,408,7,263"  
                       Name="txtYaw" Text="TextBlock" /> 
            <TextBlock FontSize="22" Margin="0,406,370,242"  
                       Name="lblYaw" Text="Yaw" TextAlignment="Right" /> 
        </Grid> 
     
</phone:PhoneApplicationPage> 

 
Once you have loaded the XAML code, you should see the layout shown in Figure 6–12. In the next 

section, you will be adding events to the updating of the UI with captured accelerometer data. 



CHAPTER 6   WORKING WITH THE ACCELEROMETER 

148 

 

Figure 6–12. CaptureAccelerometerData demo design view 

Coding the Application 
In Solution Explorer, open MainPage.xaml.cs and replace the code there with the following C# code 
blocks that will implement the UI updates using accelerometer data. 

Specifying the Namespaces 
Begin by listing the namespaces the application will use. The inclusion of Microsoft.Devices.Sensors 
will allow you to start and stop Windows Phone’s accelerometer.  

 

using System; 
using System.Windows; 
using Microsoft.Phone.Controls; 
using Microsoft.Devices.Sensors; 
namespace CaptureAccelerometerData 
{ 
    public partial class MainPage : PhoneApplicationPage 
    { 



CHAPTER 6    WORKING WITH THE ACCELEROMETER 

149 

Initializing Variables 
The variable _ac, an Accelerometer object, will be used to start and stop the accelerometer and to 
retrieve x, y, z, and time. Also notice the inclusion of the ReadingChanged event, which you’ll draw on to 
send captured accelerometer data to your UI. 

 

Accelerometer _ac; 
 
        public MainPage() 
        { 
            InitializeComponent(); 
 
            _ac = new Accelerometer(); 
            _ac.ReadingChanged += new  
EventHandler<AccelerometerReadingEventArgs>(_ac_ReadingChanged); 
        } 

Capturing and Displaying Accelerometer Data 
Note here that you can’t directly change the UI elements upon receiving the accelerometer data because 
the accelerometer data comes from a different thread than the current UI thread. If you try to change the 
UI elements directly here, you’ll get an invalid cross-thread access error, as shown in Figure 6–13. In 
order to overcome this problem, you must use the Dispatcher in the current UI thread, as shown in the 
following code. 

 

Figure 6–13. Invalid cross-thread access error 

     private void ProcessAccelerometerReading(AccelerometerReadingEventArgs e) 
        { 
            txtTime.Text = e.Timestamp.ToString(); 
            txtX.Text = e.X.ToString(); 
            txtY.Text = e.Y.ToString(); 



CHAPTER 6   WORKING WITH THE ACCELEROMETER 

150 

            txtZ.Text = e.Z.ToString(); 
            txtPitch.Text = RadianToDegree((Math.Atan(e.X / Math.Sqrt(Math.Pow(e.Y, 2) +
Math.Pow(e.Z, 2))))).ToString(); 
            txtRoll.Text = RadianToDegree((Math.Atan(e.Y / Math.Sqrt(Math.Pow(e.X, 2) +
Math.Pow(e.Z, 2))))).ToString(); 
            txtYaw.Text = RadianToDegree((Math.Atan(Math.Sqrt(Math.Pow(e.X, 2) + Math.Pow(e.Y, 
2))/ e.Z))).ToString(); 
        } 

Implementing Start and Stop of Accelerometer 
Implement the button event for stopping and starting the accelerometer. Note here that you must 
anticipate the possible error that might occur when you are trying to start or stop the accelerometer. 

 

private void btnStart_Click(object sender, RoutedEventArgs e) 
        { 
            try 
            { 
                _ac.Start(); 
            } 
            catch (AccelerometerFailedException) 
            { 
                MessageBox.Show("Acceleromter failed to start."); 
            } 
        } 

        private void btnStop_Click(object sender, RoutedEventArgs e) 
        { 
            try 
            { 
                _ac.Stop(); 
            } 
            catch (AccelerometerFailedException) 
            { 
                MessageBox.Show("Acceleromter failed to stop."); 
            } 
        } 
    } 

} 

Testing the Finished Application 
To test the finished application, press F5. The result should resemble the screenshot in Figure 6–10; you 
will see that the x, y, z, and time text blocks are constantly being updated each time you click the Start 
button. Remember that to run the application on a Windows Phone 7 device, you must choose the 
Windows Phone 7 Device option shown in Figure 6–14. 



CHAPTER 6    WORKING WITH THE ACCELEROMETER 

151 

 

Figure 6–14. Choose a Windows Phone 7 device before running the application. 

Using Accelerometer Data to Move a Ball 
In this demo, you will use the captured accelerometer data to do something more useful: move the 
image of a ball as you tilt the phone left, right, forward, and back. This demo will help you understand 
how to translate the user input of the accelerometer data and apply it to UI elements. Figure 6–15 
displays the basic UI of the MoveBallDemo. 



CHAPTER 6   WORKING WITH THE ACCELEROMETER 

152 

 

Figure 6–15. MoveBallDemo UI 

Creating the MoveBall Project 
To set up the CaptureAccelerometerData project, follow the steps you’ve used for previous examples in 
this book. 

1. Open Microsoft Visual Studio 2010 Express for Windows Phone on your 
workstation. 

2. Create a new Windows Phone Application by selecting File  New Project in 
the Visual Studio command menu. Select the Windows Phone Application 
template, name the application MoveBallDemo, and click OK.  

3. In order to use the accelerometer, add an assembly reference to 
Microsoft.Devices.Sensors by right-clicking the References folder in Solution 
Explorer and choose Microsoft.Devices.Sensors from the Add Reference 
window, as shown previously in Figure 6–11. 



CHAPTER 6    WORKING WITH THE ACCELEROMETER 

153 

Building the User Interface 
You will be building the user interface using the XAML in Visual Studio (for building simple controls, it’s 
faster to work with the XAML code). Go to Solution Explorer, open MainPage.xaml, and replace the XAML 
you find there with the code in the following sections. 

Declaring the UI Resources 
The namespaces you see here are typically declared by default when you first create the Windows Phone 
project, and the namespaces like xmlns:phone="clr-
namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" will allow you to add common 
Windows Phone controls. 

 

<phone:PhoneApplicationPage  
    x:Class="MoveBallDemo.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 
    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    shell:SystemTray.IsVisible="True"> 

Building the Main Page and Adding Components 
The UI consists of Start and Stop buttons for stopping and starting the accelerometer and a ball that 
moves as the Windows Phone is tilted left, right, forward, and backward. 

 

    <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12"> 
            <TextBlock x:Name="ApplicationTitle" Text="MoveBallDemo"  
Style="{StaticResource PhoneTextNormalStyle}"/> 
        </StackPanel> 
        <Button Content="Start" Height="72"  
                HorizontalAlignment="Left" x:Name="btnStart"  
                VerticalAlignment="Top" Width="160"  
                Click="btnStart_Click" Margin="8,537,0,0"  
                Grid.Row="1" d:LayoutOverrides="HorizontalAlignment" /> 
        <Button Content="Stop" Height="72"  

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 6   WORKING WITH THE ACCELEROMETER 

154 

                HorizontalAlignment="Left" x:Name="btnStop"  
                VerticalAlignment="Top" Width="160"  
                Click="btnStop_Click" Margin="168,537,0,0"  
                Grid.Row="1" /> 
 
        <Canvas x:Name="ContentGrid" Margin="0,8,8,0"  
                Grid.Row="1" HorizontalAlignment="Right"  
                Width="472" Height="479" VerticalAlignment="Top"> 
            <Ellipse x:Name="ball" Canvas.Left="126"  
                     Fill="#FF963C3C" HorizontalAlignment="Left"  
                     Height="47" Stroke="Black" StrokeThickness="1"  
                     VerticalAlignment="Top" Width="46"  
                     Canvas.Top="222"/> 
        </Canvas> 
    </Grid> 
     
</phone:PhoneApplicationPage> 
 

Once you’ve loaded the XAML code, you should see the layout shown in Figure 6–16. Now it’s time 
to animate the ball and add the sound effect by wiring up some events. 

 

Figure 6–16. MoveBall demo design view 



CHAPTER 6    WORKING WITH THE ACCELEROMETER 

155 

Coding the Application 
In Solution Explorer, open MainPage.xaml.cs and replace the code there with the following C# code 
blocks. 

Specifying the Namespaces 
Begin by listing the namespaces the application will use. The inclusion of Microsoft.Devices.Sensors 
will allow you to start and stop Windows Phone’s accelerometer.  

 

using System; 
using System.Windows; 
using System.Windows.Controls; 
using Microsoft.Phone.Controls; 
using Microsoft.Devices.Sensors; 
 
namespace MoveBallDemo 
{ 
    public partial class MainPage : PhoneApplicationPage 
    { 

Initializing Variables 
The variable _ac, an Accelerometer object, will be used to start and stop the sensor and retrieve the x, y, 
z, and time values. The ReadingChanged event sends the captured accelerometer data to be displayed 
in the UI. Finally, the starting position of the ball is set to the center of the canvas where the ball is 
placed. 

 

        private Accelerometer _ac; 
 
        public MainPage() 
        { 
            InitializeComponent(); 
 
            SupportedOrientations = SupportedPageOrientation.Portrait; 
 
            ball.SetValue(Canvas.LeftProperty, ContentGrid.Width / 2); 
            ball.SetValue(Canvas.TopProperty, ContentGrid.Height / 2); 
 
            _ac = new Accelerometer(); 
            _ac.ReadingChanged += new  
EventHandler<AccelerometerReadingEventArgs>(ac_ReadingChanged); 
        } 

Handling Captured Accelerometer Data 
Here, as in the previous demo, you can’t directly change the UI elements upon receiving the 
accelerometer data because the accelerometer data comes from a different thread than the current UI 
thread. If you try to change the UI elements directly here, you will get an invalid cross-thread access 



CHAPTER 6   WORKING WITH THE ACCELEROMETER 

156 

error, as shown previously in Figure 6–13. In order to overcome this problem, you must use the 
Dispatcher in the current UI thread, as shown in the following code: 

 

        private void ac_ReadingChanged(object sender, AccelerometerReadingEventArgs e) 
        { 
            Deployment.Current.Dispatcher.BeginInvoke(() => MyReadingChanged(e)); 
        } 

Applying Captured Accelerometer Data to the Ball 
The following code achieves the behavior where if the phone is tilted vertically with the display facing 
toward you, based on the algorithm specified in the method, the ball will fall straight very fast. But if you 
tilt the phone slightly while the display is facing up, the ball will slowly slide to the direction in which the 
phone is tilted. 

 

        private void MyReadingChanged(AccelerometerReadingEventArgs e) 
        { 
            double distanceToTravel = 2; 
            double accelerationFactor = Math.Abs(e.Z) == 0 ? 0.1 : Math.Abs(e.Z); 
            double ballX = (double)ball.GetValue(Canvas.LeftProperty) +  
distanceToTravel * e.X / accelerationFactor; 
            double ballY = (double)ball.GetValue(Canvas.TopProperty) –  
distanceToTravel * e.Y / accelerationFactor; 
 
            if (ballX < 0) 
            { 
                ballX = 0; 
            } 
            else if (ballX > ContentGrid.Width) 
            { 
                ballX = ContentGrid.Width; 
            } 
 
            if (ballY < 0) 
            { 
                ballY = 0; 
            } 
            else if (ballY > ContentGrid.Height) 
            { 
                ballY = ContentGrid.Height; 
            } 
 
            ball.SetValue(Canvas.LeftProperty, ballX); 
            ball.SetValue(Canvas.TopProperty, ballY); 
        } 

Adding Start and Stop Button Events  
Implement the button event for stopping and starting the accelerometer. 



CHAPTER 6    WORKING WITH THE ACCELEROMETER 

157 

        private void btnStart_Click(object sender, RoutedEventArgs e) 
        { 
            if (_ac == null) 
            { 
                _ac = new Accelerometer(); 
            } 
            _ac.Start(); 
        } 
 
        private void btnStop_Click(object sender, RoutedEventArgs e) 
        { 
            if (_ac == null) 
            { 
                _ac = new Accelerometer(); 
            } 
            _ac.Stop(); 
        } 
    } 

} 

Testing the Finished Application 
To test the finished application, press F5 (remember to choose to run the application on a Windows 
Phone 7 device, as shown previously in Figure 6–15). Once the application runs on the Windows Phone, 
click the Start button. Tilt the phone and watch the ball move in the direction the phone is being tilted. 

Summary 
In this chapter, you learned about the fundamentals of the accelerometer. In the first demo, you 
captured the accelerometer data and displayed it by updating UI elements on the currently executing UI 
thread. In the second demo, you moved a ball on the phone screen by using captured accelerometer 
data to calculate its speed and position. 

In Chapter 7, you will create an application bar to display shortcuts for the most commonly used 
tasks in the application and design it to be a compelling application. 



C H A P T E R  7 
 

      
 

159 
 

Application Bar 

When you’re ready to program your Windows Phone 7 application in Visual Studio, you’ll know what 
general features your application will provide. Each of the major application features will need to be 
accessible via a shortcut or some form of a navigation menu. For Windows Phone 7 applications, 
Microsoft recommends that you use a standard Windows Phone 7 Application Bar to provide shortcuts 
for most common tasks within the application. Metro UI design concepts for Windows Phone 7 were 
covered in Part 1 of this book. The use of an Application Bar within the application helps ensure that 
these guidelines are properly observed. 

An Application Bar is essentially a Windows Phone 7 menu system with clickable icons that conform 
to the general Metro UI guidelines provided by Microsoft. For example, take a look at the Windows 
Phone 7 version of the popular social networking application Foursquare (one place you can find its 
screenshots is http://4square.codeplex.com). At the bottom of the screen, you will see an Application 
Bar with shortcuts to most common features of the application. Another example is Graphic.ly 
(www.pcworld.com/article/191549/graphicly.html), an application that uses Deep Zoom capabilities of 
Silverlight to provide an immersive comic book reading experience. On its Application Bar, Graphic.ly 
naturally has shortcuts to zoom into and zoom out of the comic book contents, since those features are 
the most important ones for that application.  

In this chapter, you will learn how to create an Application Bar in your programs and the 
specifications for various elements within the Application Bar. You will also learn about the two types of 
Application Bars and you will program them both. Within each Windows Phone 7 application, two types 
of Application Bars can be present: a global Application Bar and a local one. If a global Application Bar is 
defined, it can be added to any .xaml page within the application via a single XAML statement. 
Alternately, a local Application Bar would be local to a single application page and must be defined for 
each .xaml page separately. You will create both global and local Application Bars in this chapter.  

The position of the Application Bar on the screen varies with the phone orientation. When the 
phone is in default portrait orientation, an Application Bar is displayed as a single row of icons at the 
bottom of the screen. Figure 7–1 shows an example of an Application Bar with three icons for Add, Save, 
and Delete. The ellipsis to the right of the Delete button signifies the presence of additional shortcuts in 
the Application Bar (called menu items) that will become visible to you when you click that ellipsis 
button. In this chapter, you’ll learn how to create visually appealing Application Bars that conform to the 
best practices published by Microsoft. 

http://4square.codeplex.com
http://www.pcworld.com/article/191549/graphicly.html


CHAPTER 7  APPLICATION BAR 

160 

 

Figure 7–1. An Application Bar with Add (+ icon), Save (disk icon), and Delete (trash can icon) on 

Windows Phone 7 

Introducing the Application Bar 
The contents of an Application Bar are limited to a maximum of four elements. The elements are added 
and automatically centered in the Application Bar from left to right. Additional application shortcuts can 
be added to the Application Bar via text-based menu items and are hidden from view by default. The 
presence of an ellipsis to the right of the main Application Bar icons hints that, in addition to the main 
icons, there are text-based menu items in the Application Bar. These items serve as additional shortcuts 
and slide up as a list when the user clicks the ellipsis or the empty space right underneath the ellipsis. An 
example of what the phone screen looks like when there are menu items present in the application and 
the ellipsis is pressed is shown in Figure 7–2. 



CHAPTER 7   APPLICATION BAR 

161 

 

Figure 7–2. Application Bar with menu items shown. Note how menu items appear in lowercase,
regardless of the letter casing when they were created. 

There is good news and bad news when it comes to working with the Application Bar. The good 
news is that an Application Bar is easy to create and comes with a lot of built-in functionality. For 
example, when the phone changes orientation from portrait to landscape, the Application Bar 
automatically moves to the left side of the phone screen. In addition, there is a default animation for 
showing text-based menu items (shown in Figure 7–2) that didn’t fit in the four main icon slots on the 
Application Bar. Finally, a minor but handy feature that ensures consistent user experience is the 
automatic addition of a circle around each Application Bar icon (i.e., you as the developer do not have to 
draw it) and the conversion of textual menu items to lowercase text. 

The bad news is that there is little flexibility in creating icons and menus for the Application Bar. The 
height of the Application Bar is fixed and can’t be changed. The size of the icons in the Application Bar is 
48 pixels wide and 48 pixels high (generally expressed as 48x48); icons of other sizes will be scaled to fit 
that size, which results in distortion and thus is not recommended. The actual graphic within the icon 
has to be 26x26 pixels to properly fit within the circle that the Application Bar automatically draws for 
each icon. In addition, Microsoft recommends that you always try to use default system theme colors for 
the Application Bar because the use of custom colors can lead to unpredictable and potentially 
unfavorable effects on display quality, menu animations, and power consumption. 

In the following section, you will create an Application Bar that looks like the one in Figure 7–2. 
Later in this chapter, you will write code to react to Application Bar events and access different features 
of your application. 



CHAPTER 7  APPLICATION BAR 

162 

Adding an Application Bar to a Windows Phone 7 Application 
Windows Phone 7 provides two types of Application Bars for use with phones apps: a global bar and a 
local bar. The only way to define a global Application Bar is inside the App.xaml; once defined, it can be 
added to any page within the Windows Phone 7 application with a single line of XAML code. On the 
other hand, there are two ways to define a local Application Bar and add it to a particular application 
page. 

1. Using XAML 

2. Using Managed Code (i.e., C#, or Visual Basic) 

You’ll get to try both methods in this chapter when you’ll build an Application Bar that provides 
simple functionality and asks for a person’s name, then acts like that name has been saved to the 
database or the cloud storage. Regardless of the approach you choose and regardless of whether you are 
building a local or a global Application Bar, there is a preparatory step you should take before you can 
properly display and use it. That step involves adding images for your Application Bar buttons to project 
resources. 

Adding Images for Use with Application Bar Buttons 
Because the maximum size of each Application Bar icon is 48x48 pixels, the size of each image you add 
to the Application Bar is limited to 26x26 pixels so that a circle can be also properly drawn around it. 
Since Windows Phone 7 supports the concept of themes, the background of an icon has to match the 
rest of the theme, and therefore should be made transparent (for more information on working with 
different themes, please refer to Chapter 9). On this transparent background, the actual graphic should 
have white foreground color using an alpha channel. You will walk through creating images for the 
Application Bar using Microsoft Expression Design later in this chapter. Fortunately, in many cases, you 
won’t have to create icons yourself, since Microsoft has released a set of commonly used images for 
Windows Phone 7 Application Bar, all properly sized and formatted in Microsoft’s approved style. These 
icons are automatically installed for you as part of Windows Phone Developer Tools installation and 
their default location is in the %Program Files\Microsoft SDKs\Windows Phone\v7.0\Icons folder.  

1. Start off by creating a new Visual Studio Project and naming it 
ApplicationBarSample. 

2. Next, organize the project for easier readability by creating a folder for the icon 
images you’ll use in the ApplicationBarSample project. Right-click the project 

name in the Solution Explorer, select Add ➤ New Folder. Name it Images. 

3. Next, copy the icon images to the newly created folder within your project. Using 
Windows Explorer, copy the image files you need from there to the Images folder 
of your project. In the example that follows, you will be using the images located 
in the dark subfolder of the icon archive. Make sure to copy the *.png files only, 
without any folder structure. 

4. Now the images are copied, but Visual Studio still needs to make them a part 

of the project. Right-click Solution Explorer, then select Add ➤ Existing Item. 
Select all images by clicking each one while holding the Ctrl key down, or 
(quicker) by clicking the first image, holding down the Shift key, and then 
clicking the last image in the set. 



CHAPTER 7   APPLICATION BAR 

163 

5. Finally, you need to instruct Visual Studio to include new images in every build 
of an application. For each image, right-click the image in the Solution 
Explorer and choose Properties (you can also press F4 to bring up the 
Properties dialog). In the Properties dialog box, set the Build action to Content 
and set the Copy to Output property to Copy Always, as shown in Figure 7–3. 
 

 

Figure 7–3. For each image, set Build Action to Content and Copy to Output Directory to Copy Always. 

Now that the project knows where to find the icon images for an Application Bar, it’s time to add 
code to showcase the Application Bar’s features. 

Adding a Global Application Bar Using XAML 
A global Application Bar is created as an application resource in the section of an App.xaml configuration 
file. Follow these steps to create and add a global Application Bar: 

1. In Solution Explorer, right-click the App.xaml file for the ApplicationBarSample 
project and select Open. This action causes Visual Studio to display the XAML 
code for the application’s resource and configuration page. 

2. Next, paste the complete XAML definition of the Application Bar with three 
icons and two menu items into the Application Resources section. Locate the 
<Application.Resources> section of the App.xaml and paste the following code 



CHAPTER 7  APPLICATION BAR 

164 

within that section. Note that setting the Text property for each control is 
required. 

        <shell:ApplicationBar x:Key="GlobalAppMenuBar" Opacity="1" IsVisible="True" 
IsMenuEnabled="True"> 
            <shell:ApplicationBar.Buttons> 
                <shell:ApplicationBarIconButton IconUri="/Images/appbar.add.rest.png" 
Text="add"> 
                </shell:ApplicationBarIconButton> 
                <shell:ApplicationBarIconButton IconUri="/Images/appbar.save.rest.png" 
Text="save"> 
                </shell:ApplicationBarIconButton> 
                <shell:ApplicationBarIconButton IconUri="/Images/appbar.delete.rest.png" 
Text="delete"> 
                </shell:ApplicationBarIconButton> 
            </shell:ApplicationBar.Buttons> 
            <shell:ApplicationBar.MenuItems> 
                <shell:ApplicationBarMenuItem Text="Menu Item 1" IsEnabled="True"> 
                </shell:ApplicationBarMenuItem> 
                <shell:ApplicationBarMenuItem Text="Menu Item 2" IsEnabled="True"> 
                </shell:ApplicationBarMenuItem> 
            </shell:ApplicationBar.MenuItems> 
        </shell:ApplicationBar> 

3.  With the global Application Bar defined, you are ready to add it to the pages 
within your application. Open MainPage.xaml and add the following attribute 
within the <phone:PhoneApplicationPage> node: 

ApplicationBar="{StaticResource GlobalAppMenuBar}" 

4. Press F5 to run the application. You should see an Application Bar identical to 
the one shown in Figure 7–2. Note that if you see grey “x” symbols instead of 
expected Application Bar icons, the application can’t locate the image files to 
use inside its Application Bar. Make sure the names and paths to those files are 
spelled correctly and that the Build action of the images is set to Content and 
the Copy to Output property is set to Copy Always, as shown in Figure 7–3. 

Before moving onto the next section and taking a look at a local Application Bar, let’s clean up the 
MainPage.xaml code by removing the ApplicationBar="{StaticResource GlobalAppMenuBar}" XAML. If 
you don’t do that, you will get an application exception in the next section after you add a local 
Application Bar. 

Adding a Local Application Bar Using XAML 
Creating a global Application Bar provides an easy way to add the same exact Application Bar to all pages 
or screens within your program. In cases where you want to make an Application Bar different for a 
given page, you would need to create a local Application Bar. One of the two ways to add a local 
Application Bar to a Windows Phone 7 application is to use XAML markup. Using XAML markup 
wherever possible is considered best practice since it allows for the separation of design (XAML) and 
logic (C#) of an application. The following steps show the XAML you need to add to 
ApplicationBarSample to construct a local Application Bar for the app: 



CHAPTER 7   APPLICATION BAR 

165 

5. In Solution Explorer, right-click the MainPage.xaml and select Open. This 
action causes Visual Studio to display the XAML code for the application’s 
main page. Make sure you have removed the global Application Bar reference 
from the MainPage.xaml, as mentioned at the end of the previous section. 

6. You must define a PhoneNavigation element within XAML before adding a 
local Application Bar. To accomplish that, inside the 
phone:PhoneApplicationPage, add a 
phone:PhoneApplicationPage.ApplicationBar element. Notice how this 
element is automatically available for selection via Visual Studio IntelliSense 
once you start typing the first few characters—an excellent way to ensure that 
there are no spelling errors. 

<phone:PhoneApplicationPage.ApplicationBar> 
</phone:PhoneApplicationPage.ApplicationBar> 

7. It is now time to add the Application Bar XAML to the page. Inside the 
phone:PhoneApplicationPage.ApplicationBar element, add a 
shell:ApplicationBar element. Set the IsVisible and the IsMenuEnabled 
properties to True, and set the Opacity property to 1, like so: 

<shell:ApplicationBar Opacity="1" IsVisible="True" IsMenuEnabled="True">             
        </shell:ApplicationBar> 

8. Now that you have defined an Application Bar in XAML, you are ready to 
create buttons for it. The buttons you add are a part of the 
shell:ApplicationBar.Buttons element, so go ahead and add that element now 
inside the shell:ApplicationBar element. 

<shell:ApplicationBar.Buttons>                              
</shell:ApplicationBar.Buttons> 

9. Inside the shell:ApplicationBar element, you will create three 
shell:ApplicationBarIconButton XAML elements to add three button 
definitions: one each for Add, Save, and Delete. These buttons will show up 
with images you will define for them. If you had any text-based menu items to 
add to the Application Bar, the ellipsis in the right corner of the Application 
Bar would be created automatically for you by Windows Phone 7. The ellipsis 
is not counted as one of the buttons on the Application Bar; therefore you 
could have a maximum of four buttons plus an ellipsis. The XAML markup to 
add three buttons is shown here: 

<shell:ApplicationBarIconButton IconUri="/Images/appbar.add.rest.png" Text="add"> 
</shell:ApplicationBarIconButton> 

       <shell:ApplicationBarIconButton IconUri="/Images/appbar.save.rest.png" Text="save"> 
        </shell:ApplicationBarIconButton> 
        <shell:ApplicationBarIconButton IconUri="/Images/appbar.delete.rest.png"    
Text="delete"> 
        </shell:ApplicationBarIconButton> 

10. Note that the IconUri properties in this code snippet refer to the default names 
of the images that come as part of the Windows Phone 7 Tools installation. If 
you have changed default names of those images, make sure to properly edit 
the reference used in IconUri as well. Also note the Text element—it’s a 
required element and it can’t be an empty string. This text will be visible if you 



CHAPTER 7  APPLICATION BAR 

166 

click the ellipsis in the right corner of the Application Bar, as shown in Figure 
7–2. 

11. At this point, you are done creating Icon buttons and should make sure that 
the shell:ApplicationBar.Buttons element is properly closed. Press F5 to view 
the results of your work—you should see the Application Bar containing three 
items at the bottom of the phone screen. 

The full XAML for a local Application Bar is shown in Listing 7-1, together with text-based menu 
items for the Application Bar, which you will be adding in the next section. Since menu items are text-
based, they are useful in cases where text conveys a better meaning of the shortcut than an icon in the 
Application Bar. Of course, if you need more than four items to be present in the Application Bar, your 
only choice is to resort to menu items. In the next section, you will enhance an Application Bar with 
menu items. 

Adding Menu Items 
Let’s add two menu items, Menu Item 1 and Menu Item 2, to the ApplicationBarSample app. 

1. All menu items are a part of shell:ApplicationBar.MenuItems element, so add 
that element now inside the shell:ApplicationBar element. 

<shell:ApplicationBar.MenuItems> 
</shell:ApplicationBar.MenuItems> 

2. Finally, you will define MenuItems themselves by adding 
shell:ApplicationBarMenuItems inside the shell:ApplicationBar.MenuItems 
element. 

      <shell:ApplicationBarMenuItem Text="Menu Item 1" IsEnabled="True">                     
       </shell:ApplicationBarMenuItem>                 

<shell:ApplicationBarMenuItem Text="Menu Item 2" IsEnabled="True"> 
       </shell:ApplicationBarMenuItem> 

If you run the application now, you will now see an Application Bar displayed by the Windows 
Phone emulator that is identical to the one shown in Figure 7–1. If you click the ellipsis to the right of the 
icons, the application bar slides up, revealing the two menu items, identical to Figure 7–2. Try it by 
pressing F5. 

Let’s talk briefly about the Opacity property of an Application Bar you used in this example. Even 
though its values can range from 0 to 1, Microsoft recommends that developers use only three values for 
this property: 0, 0.5, and 1. If the Opacity is set to anything less than 1, the Application Bar will overlay 
the displayed page of an application. In other words, the contents of that page will extend to the area 
underneath the Application Bar, which is seldom desirable. If Opacity is set to 1, however, the 
Application Bar will have a dedicated region at the bottom of the screen and will not be overlaying any 
portion of an application. 

The full XAML markup for creating an Application Bar with three main icons and two menu items is 
shown in Listing 7-1.  

Listing 7–1. XAML Code to Implement an Application Bar 

<phone:PhoneApplicationPage.ApplicationBar> 
<shell:ApplicationBar Opacity="1" IsVisible="True" IsMenuEnabled="True">             
            <shell:ApplicationBar.Buttons> 



CHAPTER 7   APPLICATION BAR 

167 

               <shell:ApplicationBarIconButton IconUri="/Images/appbar.add.rest.png" 
Text=”add”>                     
               </shell:ApplicationBarIconButton> 
               <shell:ApplicationBarIconButton IconUri="/Images/appbar.save.rest.png" 
Text=”save”> 
               </shell:ApplicationBarIconButton> 
               <shell:ApplicationBarIconButton IconUri="/Images/appbar.delete.rest.png" 
Text=”delete”> 
               </shell:ApplicationBarIconButton> 
            </shell:ApplicationBar.Buttons> 
            <shell:ApplicationBar.MenuItems> 
                <shell:ApplicationBarMenuItem Text="Menu Item 1" IsEnabled="True">                     
                </shell:ApplicationBarMenuItem> 
                <shell:ApplicationBarMenuItem Text="Menu Item 2" IsEnabled="True"> 
                </shell:ApplicationBarMenuItem> 
            </shell:ApplicationBar.MenuItems>             
        </shell:ApplicationBar> 
</phone:PhoneApplicationPage.ApplicationBar> 
 

Adding an Application Bar via XAML is pretty straightforward thanks to all the powerful and easy-to-
use tooling provided by Visual Studio 2010. Using XAML allows you to separate presentation from logic, 
which is a very good practice. We recommend you use XAML wherever possible. Sometimes, however, 
XAML alone is not sufficient for the task. Luckily, it is perhaps even easier to work with the Application 
Bar from managed code, especially if you have a little bit of programming experience. The next section 
will show you how to do that. 

Adding an Application Bar Using Managed Code 

The second way to create an Application Bar for a Windows Phone 7 application is to use one of the .NET 
languages. Both C# and VB.NET are supported, and there are even templates available online for writing 
Windows Phone 7 applications with F#! It is simply astounding that we have the power of functional 
programming with F# available to us on a mobile platform. 

The steps necessary to create an Application Bar using C# are described here. But first, be sure to 
remove all of the Application Bar XAML code you wrote for the previous demos. 

1. You will be editing the MainPage code of your application. To accomplish this, 
locate the MainPage.xaml.cs file by expanding the MainPage.xaml file in the 
Solution Explorer. Right-click MainPage.xaml.cs and select View Code. 

2. For easier reference to an Application Bar component inside the 
Microsoft.Phone assembly (i.e., to avoid typing 
Microsoft.Phone.Shell.ApplicationBar before each component name), add the 
following using directive to the top of the MainPage.xaml.cs file: 

using Microsoft.Phone.Shell; 

3. Inside the constructor for the page (i.e., inside the public MainPage() code 
block), right after InitializeComponent(), initialize the Application Bar and set 
its IsVisible and IsMenuEnabled properties, as shown in the following code: 

ApplicationBar = new ApplicationBar(); 
ApplicationBar.IsVisible = true; 
ApplicationBar.IsMenuEnabled = true; 



CHAPTER 7  APPLICATION BAR 

168 

4. Initialize Application Bar buttons, providing the relative URI to the image that 
will be used for each button. Note that you must set the Text property of each 
button; otherwise you will cause an exception. 

ApplicationBarIconButton btnAdd = new ApplicationBarIconButton(new  
Uri("/Images/appbar.add.rest.png", UriKind.Relative)); 
btnAdd.Text = "add"; 
ApplicationBarIconButton btnSave = new ApplicationBarIconButton(new  
Uri("/Images/appbar.save.rest.png", UriKind.Relative)); 
btnSave.Text = "save"; 
ApplicationBarIconButton btnDelete = new ApplicationBarIconButton(new  

Uri("/Images/appbar.delete.rest.png", UriKind.Relative)); 
btnDelete.Text = "delete"; 

5. Add the buttons to the Application Bar via the following code: 

ApplicationBar.Buttons.Add(btnAdd);             
ApplicationBar.Buttons.Add(btnSave); 
ApplicationBar.Buttons.Add(btnDelete); 

6. Next, you will create two menu items that will appear as text when the ellipsis 
button is clicked in the Application Bar. Very similar to adding icons, there are 
initialization and addition steps for each menu item. The initialization code for 
the menu items looks like this: 

ApplicationBarMenuItem menuItem1 = new ApplicationBarMenuItem("Menu Item 1"); 
ApplicationBarMenuItem menuItem2 = new ApplicationBarMenuItem("Menu Item 2"); 

The strings “Menu Item 1” and “Menu Item 2” are the text for the two menu items; in your 
application, you will certainly change that text to something much more meaningful and fun. 

7. Add menu items to the Application Bar. 

ApplicationBar.MenuItems.Add(menuItem1); 
ApplicationBar.MenuItems.Add(menuItem2); 

8. Finally, you are ready to test the Application Bar. Save your work and press F5 
to start debugging the application using Windows Phone 7 emulator. You 
should see an Application Bar identical to the one shown in Figure 7–1. If you 
click the ellipsis to the right of the icons, the Application Bar slides up, revealing 
two menu items, identical to Figure 7–2. 

The full code for adding the Application Bar using managed C# code is in Listing 7-2.  Note that the 
full MainPage() constructor is included for readability purposes.  

Listing 7–2. C# Code to Implement an Application Bar 

public MainPage() 
{ 

InitializeComponent(); 
SupportedOrientations = SupportedPageOrientation.Portrait |  
SupportedPageOrientation.Landscape; 

 
      ApplicationBar = new ApplicationBar(); 
       ApplicationBar.IsVisible = true; 
       ApplicationBar.IsMenuEnabled = true; 



CHAPTER 7   APPLICATION BAR 

169 

ApplicationBarIconButton btnAdd = new ApplicationBarIconButton(new  
Uri("/Images/appbar.add.rest.png", UriKind.Relative)); 

btnAdd.Text = "add"; 
ApplicationBarIconButton btnSave = new ApplicationBarIconButton(new  

Uri("/Images/appbar.save.rest.png", UriKind.Relative)); 
btnSave.Text = "save"; 
ApplicationBarIconButton btnDelete = new ApplicationBarIconButton(new  

Uri("/Images/appbar.delete.rest.png", UriKind.Relative)); 
btnDelete.Text = "delete"; 

  
      ApplicationBarMenuItem menuItem1 = new ApplicationBarMenuItem("Menu Item 1"); 
  ApplicationBarMenuItem menuItem2 = new ApplicationBarMenuItem("Menu Item 2"); 
 
        ApplicationBar.Buttons.Add(btnAdd); 
       ApplicationBar.Buttons.Add(btnSave); 
      ApplicationBar.Buttons.Add(btnDelete); 
 
    ApplicationBar.MenuItems.Add(menuItem1); 
       ApplicationBar.MenuItems.Add(menuItem2); 
 
} 
 

While adding the Application Bar to Windows Phone 7 is cool in itself, you can’t do much with that 
Application Bar right now. You can push buttons a few hundred times, but nothing changes on the 
phone screen or inside the application. To react to button press events, you need to write some 
managed (C# in this case) code, also called the event handler code. In the next section, you’ll learn how 
to write code that processes and reacts to the button press events. 

Wiring Up Events to an Application Bar 
There are two steps to writing code that reacts to Application Bar events. 

1. Writing a small snippet of glue code that links Application Bar button or menu 
item click to the function that does all the processing (let’s call this function 
the worker function). 

2. Writing a worker function that performs all the heavy lifting—i.e., rearranges UI 
elements on the screen, saves data, prompts the user for input, or anything 
else that the developer decides to do in response to the button or the menu 
item click event. 

Let’s start with the Add button, which you’ll wire up in the next section. 

Adding Glue Code and a Worker Function to the Add Button 
Visual Studio has made adding both glue code and a worker function virtually a two-keystroke 
procedure. Let’s see how easy it is to create an event handler for the Add button on your Application Bar 
using a couple of Visual Studio shortcuts. This demo assumes that you have already created the 
Application Bar via managed code (not XAML) by following the steps in the “Adding an Application Bar 
Using Managed Code” section earlier in the chapter.  



CHAPTER 7  APPLICATION BAR 

170 

1. Once again, you will be editing the code of the MainPage of your application. 
To accomplish this, locate the MainPage.xaml.cs file by expanding the 
MainPage.xaml file in the Solution Explorer. Right-click MainPage.xaml.cs and 
select View Code. 

2. At the very end of the MainPage() constructor, type the following code: 

btnAdd.Click+= 

3. Notice the appearance of a small pop-up window to the right of the = sign as 
you type it. You should see the following message: 

 new EventHandler(btnAdd_Click); (Press TAB to insert) 

4. Press the Tab key and notice how a line of code is automatically added after the 
= sign. This one line of code is the glue code you need to tie together user 
interaction with the Add button. 

 btnAdd.Click+=new EventHandler(btnAdd_Click); 

5. Now press the Tab key again, and Visual Studio automatically creates a skeleton 
for the worker function for you. This may not seem like a big deal at first, but 
it’s usually a challenge to remember exactly what parameter types this worker 
function must have. This shortcut is just one example of how Visual Studio 
really enhances developer productivity. 

6. The worker code that Visual Studio adds to your application looks like this: 

 void btnAdd_Click(object sender, EventArgs e)       
 { 
   throw new NotImplementedException(); 
 } 

Now you’re ready to add a bit of interactivity to your Application Bar, which you’ll do in the next 
section. 

 Tip You are certainly not required to use the shortcut just described to generate event handler code for the 
Application Bar or for any other event for that matter. You can write all of the previous code by hand, but be very 
careful to pass the proper parameter types and the proper number of parameters to the event handler. 

Reacting to Add Button Events 
With a worker function in place for the Add button, let’s expand it to accommodate a simplified real-
world scenario: when a user clicks the Add button (the button with the + icon on the Application Bar), 
you will show a text box on the screen that is ready and waiting for user input. You will also add 
functionality to the Save button (the button with a floppy disk icon) that will display the thank-you 
message and hide the text box. Of course, in the real world, you would want to store the values entered 
by the user and react on the user input in some fashion, but that is slightly beyond the scope of this 
chapter. 

Follow these steps to add interactivity to the Application Bar events: 



CHAPTER 7   APPLICATION BAR 

171 

1. Locate MainPage.xaml in the Solution Explorer and double-click that file to 
bring up XAML designer. Click the View menu  Other Windows  Toolbox. 
You should see XAML designer (not code) and a toolbox side-by-side, as shown 
in Figure 7–4.  

 Tip If you see the toolbox, Windows Phone 7 design surface, and XAML code on the screen side-by-side, as
in Figure 7–4, click the Collapse Pane (>> icon) in the area between the design surface and XAML to hide the
XAML code, as illustrated in Figure 7–4. 

  Tip If you do not see the XAML view, click the Expand Pane (<< icon) to bring that view back, as shown in
Figure 7–5. 

 

Figure 7–4. Click the Collapse button to hide the XAML. 



CHAPTER 7  APPLICATION BAR 

172 

 

Figure 7–5. Click the Expand button to show the XAML for the current page. 

2. From the Toolbox, click and drag the text box to the Windows Phone 7 design 
surface, as shown in Figure 7–6. Right-click the Text item, and select Properties 
to show the Properties window in the right corner of the screen. 

3.  Set the Text property to blank and set the Visibility property to Collapsed. 



CHAPTER 7   APPLICATION BAR 

173 

 

Figure 7–6. Adding a text box to the application  

4. In the Toolbox, click and drag the TextBlock to the Windows Phone 7 design 
surface and place it right underneath the text box. Right-click the TextBlock 
and select Properties to show the Properties window in the right corner of the 
screen. 

5. Set the Text property to “Please enter your name” and set the Visibility property 
to Collapsed. 

6. Now edit the worker function that was created for you by Visual Studio 2010 in 
the previous section. Right-click the MainPage.xaml.cs file and select View 
Code. Remove the following line from the btnAdd_Click function: 

throw new NotImplementedException(); 

7. Edit the btnAdd_Click function to match the following code: 

void btnAdd_Click (object sender, EventArgs e) 
{  

 textBox1.Visibility = Visibility.Visible; 
 textBlock1.Visibility = Visibility.Visible; 

} 

8. Press F5 to view the results of your work. 



CHAPTER 7  APPLICATION BAR 

174 

Now, when you click the + icon on the Application Bar, the text box is ready to accept user input. 

Reacting to Save Button Events 
Continuing the demo, let’s now add an event handler to the Save button of the Application Bar. You’ll 
write code so that when the user clicks the Save button, the application will hide the text box and change 
the text of the textblock to thank the user for entering a name.  

1. Locate MainPage.xaml in the Solution Explorer, right-click and select View Code. 
Add the following line of code to the MainPage() constructor code. Don’t forget 
to use the Tab+Tab trick to let Visual Studio automatically generate skeleton 
code for you (described in the previous section). 

btnSave.Click += new EventHandler(btnSave_Click); 

2. Add the following code to the btnSave_Click function: 

 void btnSave_Click(object sender, EventArgs e) 
         { 

textBlock1.Text = "Thank you, "+ textBox1.Text; 
 

textBox1.Visibility = Visibility.Collapsed; 
         } 

3. Press F5 to see the results of your work. When you click the + icon, you will be 
prompted to enter your name. Once you enter your name and press the Save 
button on the Application Bar, the application displays a simple thank-you 
message. If, for some reason, the full text of the message doesn’t fit within the 
textblock you created, you can increase both the width and the height of the 
textblock by setting the TextWrapping property of the textblock to Wrap. 

Now you’re ready to enhance the Application Bar even further by writing code for your menu items 
to do some meaningful work. 

Reacting to Menu Events 

The code you write to react to menu click events is almost identical to the code for Application Bar 
button events, with the glue code attached to the menu item instead of the Application Bar button. The 
block of code shown next displays a simple text message when the user clicks on the first menu item in 
the Application Bar that you created previously. Note that only a portion of the MainPage() constructor is 
shown, since the rest of it remains unchanged from the prior demo. 

menuItem1.Click+=new EventHandler(menuItem1_Click); 
} 
 
void menuItem1_Click(object sender, EventArgs e) 
{ 

textBlock1.Visibility = Visibility.Visible; 
textBlock1.Text = "You just clicked on Menu Item 1"; 

} 
Press F5 to run the application now. You should see an Application Bar with an ellipsis in the right 

corner. If you press the ellipsis, two menu items become visible. Once clicked, the text on the phone 
screen changes to reflect the name of the menu item clicked. 



CHAPTER 7   APPLICATION BAR 

175 

In the real application, you will certainly want to do something more meaningful than what you did 
here. For instance, you may have Help and About menu items. If the user clicks Help, a Web Browser 
control (discussed in the next chapter) could be programmed to display a set of application help files. If 
the About menu item is clicked, you can use the Web Browser control to show your company’s web page 
or some basic contact information. 

One final thing you need to look at before leaving this chapter is how to use XAML to link event 
handling code to XAML elements. 

 

Adding Event Handlers with XAML 
It is also possible to write the necessary code that attaches (or glues) a certain event to a managed code 
in XAML. In other words, using this approach, you would define an Application Bar in XAML following 
the guidelines in the previous section, but write managed C# code to react to events when the user 
presses Application Bar buttons. For code readability and understandability purposes, this approach 
may be preferable to the purely managed code approach (where you define Application Bar from 
managed code) already discussed. Imagine that you are trying to maintain an application that someone 
else wrote—it would be easier for you to understand and trace application behavior by starting with the 
XAML design elements and following their  glue code into the event handlers. The steps you follow to 
wire up events in XAML are pretty straightforward, as illustrated here: 

1. Locate MainPage.xaml in the Solution Explorer and double-click that file to 
bring up XAML designer. 

2. If only the Windows Phone 7 design surface is shown and no XAML code is 
visible, click the Expand Pane (<<) button in the lower right portion of the 
screen, as shown in Figure 7–5. 

3. Paste the following XAML in MainPage.xaml (it’s identical to XAML from the 
“Adding a Local Application Bar Using XAML” section of this chapter): 

    <phone:PhoneApplicationPage.ApplicationBar> 
        <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True"> 
            <shell:ApplicationBar.Buttons> 
                <shell:ApplicationBarIconButton IconUri="/Images/appbar.add.rest.png" 
Text="add"> 
                </shell:ApplicationBarIconButton> 
                <shell:ApplicationBarIconButton IconUri="/Images/appbar.save.rest.png" 
Text="save"> 
                </shell:ApplicationBarIconButton> 
                <shell:ApplicationBarIconButton IconUri="/Images/appbar.delete.rest.png" 
Text="delete"> 
                </shell:ApplicationBarIconButton> 
            </shell:ApplicationBar.Buttons> 
            <shell:ApplicationBar.MenuItems> 
                <shell:ApplicationBarMenuItem Text="Menu Item 1" IsEnabled="True"> 
                </shell:ApplicationBarMenuItem> 
                <shell:ApplicationBarMenuItem Text="Menu Item 2" IsEnabled="True"> 
                </shell:ApplicationBarMenuItem> 
            </shell:ApplicationBar.MenuItems> 
        </shell:ApplicationBar> 
    </phone:PhoneApplicationPage.ApplicationBar> 



CHAPTER 7  APPLICATION BAR 

176 

4. Locate the <shell:ApplicationBarIconButton 
IconUri="/Images/appbar.add.rest.png" Text="add”> statement in XAML and 
add Click=” to the end of that statement, so that it resembles the code here: 

<shell:ApplicationBarIconButton IconUri="/Images/appbar.add.rest.png" Text="add”  
Click=”> 

 
Note how Visual Studio automatically shows a choice of New Event Handler right after the double 

quotes. If you press the Tab key now, the skeleton code for the worker function will be automatically 
inserted in the MainPage.xaml.cs file and it will have a default name of ApplicationBarMenuItem_Click. 
To add functionality to the Application Bar button click event, open MainPage.xaml.cs (by right-clicking 
the MainPage.xaml file and selecting View Code) and edit that function in a way similar to what you did in 
the “Reacting to Button Events” and “Reacting to Menu Click Events” sections. There is also another way 
to glue XAML code with codebehind by using an ApplicationBar class, as you will see in the next section. 

Using the ApplicationBar class to glue XAML and Managed Code 
Once you create an Application Bar in XAML, you can use the ApplicationBar class and its Buttons and 
MenuItems properties to glue managed code to defined XAML elements within that Application Bar. The 
Buttons property provides access to all the buttons created for the application bar, in the order that they 
were added to the Application Bar. For example, the following code references the Add, Save and Delete 
buttons created in the previous section and then programmatically disables the Delete button. Notice 
how since the Add button was added first in your XAML code, it has an index of 0, and the Delete button, 
which was added third, has an index of 2 within the Buttons list. 

 

            ApplicationBarIconButton btnAdd = ApplicationBar.Buttons[0] as 
ApplicationBarIconButton; 
            ApplicationBarIconButton btnSave = ApplicationBar.Buttons[1] as 
ApplicationBarIconButton; 
            ApplicationBarIconButton btnDelete = ApplicationBar.Buttons[2] as 
ApplicationBarIconButton; 
 
            btnDelete.IsEnabled = false; 

Obtaining programmatic references to Application Bar buttons from code may be desirable where you 
want to manipulate certain properties of the button, such as its Enabled/Disabled state, in response to 
some event triggered by the user. As you can see, you can easily obtain those references using properties 
of the ApplicationBar class. 



CHAPTER 7   APPLICATION BAR 

177 

Summary 

In this chapter, you learned how to add an Application Bar with buttons and menu items to your 
Windows Phone 7 application using either XAML or managed (C#) code. You also learned basic 
guidelines for Application Bar development and wrote code to react to Application Bar button and menu 
item events. The presence of an Application Bar is certainly an expected behavior for any mobile 
application today, and Visual Studio has made the process of adding one easy and straightforward. 

In the next chapter, you will learn about the Web Browser control on Windows Phone 7. The Web 
Browser control helps you provide professional-looking application Help files and aids in navigating the 
billions of web pages. You will also learn how to dynamically generate HTML content and show it in a 
web browser. 



C H A P T E R  8 
 

      
 

179 
 

WebBrowser Control 

It felt like false advertising when, just a short ten years ago, cellular phone companies began to promote 
Internet access as a feature of their devices. As customers quickly learned when they tried to get online, 
their phones could only properly display web pages written in Wireless Markup Language (WML) and 
not the traditional HyperText Markup Language (HTML) used by the vast majority of the web sites. Very 
few sites could afford to build and maintain code in two separate languages—HTML for desktop and 
WML for mobile phones—and, as a result, web browsing on mobile phones did not take off until fairly 
recently. 

But we live in much more progressive times now. The first release of Windows Phone 7 OS shipped 
with Internet Explorer 7 installed, which meant that any content that could be viewed in the desktop 
version of Internet Explorer 7 could be viewed on the phone as well. By the time you read this, Internet 
Explorer 9 should already have made its way onto Windows Phone 7 devices as part of the OS release 
codenamed Mango. With IE 9, you can construct very rich user interfaces within the browser with the 
help of HTML5. The Windows Phone 7 SDK includes a WebBrowser control that you can use to embed 
one or more instances of a small but fully capable browser inside your applications. In this chapter, 
you’ll learn how and when to use it. But first, let’s look at three common scenarios where you would 
want to use the WebBrowser control. 

 Note The WebBrowser control on Windows Phone 7 is very similar to the WebBrowser control you would use if 
you were creating a full-blown Silverlight application (not the phone version of it)—with few notable differences. 
Certain features, such as the ability to download and install ActiveX controls, have been disabled to prevent 
security risks originating from such components. Other differences, such as the ability to access local storage and 
the absence of cross-domain restrictions in the Windows Phone 7 WebBrowser control, allow for a more flexible 
behavior of the browser on Windows Phone 7 as compared to Silverlight. 

Introducing the WebBrowser Control 
The most obvious reason to use the WebBrowser control is to display web content within the page of a 
Windows Phone 7 application. For instance, if you’re developing an application that shows Twitter feeds 
in a portion of the screen, the easiest way to do this would be to create a WebBrowser control in the 
application and navigate to a given Twitter page from within that control. 

Another reason to use the WebBrowser control is to show HTML-formatted content that resides 
locally on Windows Phone 7. For example, if you decide to include help files with your application, the 



CHAPTER 8  WEBBROWSER CONTROL 

180 

easiest way to create those files would be in the form of HTML web pages. Then, you can load those web 
pages in Windows Phone 7 and display them in the WebBrowser control. 

Finally, you can use the WebBrowser control to show content that Windows Phone 7 application 
generates on the fly. That means that you can compose an HTML page dynamically in code and, without 
first writing that web page out to disk, display it. This is certainly a handy feature that avoids the 
intermediate steps of first writing an HTML file to local storage and then reading it. This feature is 
important when the HTML pages you want to show the user are context-sensitive: for instance, if you are 
developing an application that tracks basketball teams and you want to provide links to information 
about each individual player on the team, you will want to build your list of players based on the name of 
the team the user selects. Dynamic content generation allows you to do just that. 

In this chapter, you’ll learn how to use these capabilities in an application by building a simple car 
browser application that can search the web for photos of popular car models and display them. To get 
started, you first must create a main page and add some UI, including a WebBrowser control to display 
web and HTML content, as illustrated in the next section. 

Adding a WebBrowser Control  
Before you can use the WebBrowser control to browse for the images of cars online, you need to first 
add the control to your application. Follow these steps to place the WebBrowser control inside your 
application: 

1. Create a new Windows Phone 7 Application project. Launch Visual Studio 2010 
Express and select the Windows Phone Application template, then change the 
Project name to WebBrowserSample, select OK, and Visual Studio will set up a 
new project. 

2. Click the View menu  Other Windows  Toolbox (alternately, you can also 
click the Toolbox icon in the Visual Studio application bar) to show the 
Toolbox with the list of controls available for use. 

3. From the Toolbox window on the left, select the WebBrowser control, click it, 
and drag it onto the Windows Phone 7 design surface, as shown in Figure 8–1.  

4. Position and resize the control as needed. In Figure 8–1, the WebBrowser 
control is positioned to take the upper third of the phone screen. 

5. Finally, change the name of the application from My Application to My Car 
Browser and change the name of the page to Car Explorer. You can do that by 
double-clicking MainPage.xaml and editing the ApplicationTitle and PageTitle 
elements accordingly. 

■ Note You can set the Height and the Width properties to Auto (this is the default when the control is first 
dropped on the Windows Phone design surface and is not resized). You can also set the Horizontal Alignment and 
Vertical Alignment properties to Stretch. All these settings in combination will allow the browser window to expand 
as much as possible on the phone without covering other visible elements on the phone screen. 



CHAPTER 8   WEBBROWSER CONTROL 

181 

With the WebBrowser control in place, you are now ready to look at how to use this control for each 
of the scenarios previously described. 

 

 

Figure 8–1. To add the WebBrowser control to the application, drag it from the Toolbox and drop it onto 

MainPage.xaml on the Windows Phone 7 design surface. 

Using a WebBrowser Control to Display Web Content 
In the first of the WebBrowser demos, you will use this control to display the contents of the web site—
you will show a list of photos of the most beautiful car in the world, the Lamborghini Gallardo. 

1. With the WebBrowser control in place, it’s time to add code to initialize its 
content when it loads work. First, right-click MainPage.xaml in Solution 
Explorer and select View Code (or go directly to the MainPage.xaml.cs file). 

2. Whenever the My Car Browser application loads the WebBrowser control, it 
fires off a Loaded event. By creating a Loaded event handler, you can write 
code to display a web page with car photos. Add the following code to the 
MainPage() constructor to create the handler: 

webBrowser1.Loaded += new RoutedEventHandler(webBrowser1_Loaded); 



CHAPTER 8  WEBBROWSER CONTROL 

182 

Note how the same Visual Studio shortcuts you used for the Application Bar code in the 
previous chapter apply here as well: namely, right after typing “+=” Visual Studio hints that if 
you press the Tab key twice, it will create all of the necessary code stubs you need for a handler. 

3. Next, let’s code the event handler. To the webBrowser1_Loaded() function, add 
the following code, which will navigate to Microsoft Bing’s image search page 
and pass the phrase “cars Lamborghini Gallardo” to it: 

webBrowser1.Navigate(new  
  Uri("http://www.bing.com/images/search?q=cars+Lamborghini+Gallardo"",
UriKind.Absolute)); 

4. This code creates a new Uri object and specifies that the Uri is not local to your 
application (that would be UriKind.Relative), but rather a location on the 
Internet (UriKind.Absolute). 

Press F5 to debug your application and see the results so far. You should now see Lamborghini 
photos, courtesy of the Microsoft Bing engine. You can easily extend this example to respond to user 
input. For example, you could use the Bing image search to show photos of any car whose name a user 
enters. Here’s how: 

5. Add a text box to the page so the user can change the name of the car for which 
Bing searches. To do that, go to MainPage.xaml and display the page in the 
Designer (either by double-clicking MainPage.xaml or by right-clicking 
MainPage.xaml and selecting View Designer). If the Toolbox is not visible, go to 
View menu  Other Windows  Toolbox or click the Toolbox icon in the 
Visual Studio application bar. Click and drag the Textbox from the Toolbox, 
and position it below the WebBrowser control. Next, click and drag the Button, 
and position it next to the text box. 

6. Right-click the text box and select Properties. Delete everything from the Text 
property. Next, right-click the button and change the value of its Content 
property to “Show It!” (without the double quotes). The end result should 
resemble Figure 8–2. 

http://www.bing.com/images/search?q=cars+Lamborghini+Gallardo


CHAPTER 8   WEBBROWSER CONTROL 

183 

 

Figure 8–2. Adding a text box and a button to interact with the WebBrowser control 

7. It’s time to add some interactivity to your application. With MainPage.xaml still 
open in Designer view, double-click the button. Notice how the method 
button1_Click opens by default when you do that, ready for your code. Place 
the following code in the body of that method: 

webBrowser1.Navigate(new Uri  
("http://www.bing.com/images/search?q=cars " + textBox1.Text,  
UriKind.Absolute)); 

8. Press F5 to run the application. Initially, you should see the photos of the 
Lamborghini Gallardo added in the first part of this demo. Go ahead and type 
“Ford Mustang” in the text box, and press the Show It! button. In the 
WebBrowser control, you should now see a set of photos of this great American 
muscle car. 

But there’s more. You can also use a WebBrowser control to display HTML files—and even strings—
that have been stored locally. You’ll use that capability to add Help functionality to the Car Browser 
application in the next section. 

http://www.bing.com/images/search?q=cars


CHAPTER 8  WEBBROWSER CONTROL 

184 

Using a WebBrowser Control to Display Local HTML Content 
Frequently, you will want to include documentation with your application to advertise its features to 
users and answer their most common questions. Because of its simplicity and ubiquity, HTML, the same 
language used to create web pages, has become the default format for such documentation. In this 
section, you’ll create a simple HTML page describing how to work with the car photo application that 
you created in the previous section. Follow these steps to create and show HTML content on Windows 
Phone 7: 

1. Because adding an HTML file is currently not an option in Visual Studio 
Express for Windows Phone 7, you will need to add a new XML file to the 
project. XML files support automated syntax verification features, making it 
harder for you to make accidental mistakes than if you were creating a text file. 
Right-click the WebBrowserSample project in the Solution Explorer and select 
Add  New Item. Then, select XML File from the list of available item types. 

2. Type the following in the newly created file (you can also copy and paste this 
code from the files available for download for this book): 

<html> 
<title>Web Browser Help File</title> 
<body> 
 <h1>Welcome to the Windows Phone 7 Car Browser Application!  
  To view the car photos, type the name of the car in the textbox and press "Show 
It!" 
  <br/><br/>For example, "Ford Mustang"</h1> 
</body> 
</html> 

3. Save the file by pressing the Save button in Visual Studio. Next, right-click 
XMLFile1.xml in the Solution Explorer and click Rename. Change the name of 
that file to Help.htm and make sure that the Build action for that file is set to 
Content (by right-clicking and selecting Properties to bring up the Properties 
window). 

4. Now you will need to jump slightly ahead to the material covered in Chapter 
13. Here’s why: while you would expect the Help.htm file to be automatically 
available to the application running on Windows Phone 7, it isn’t. Before it is 
available to your application, the Help.htm file created in the previous step 
needs to be available to your application in Isolated Storage, which you can 
think of as disk space reserved for use by your application on Windows Phone 
7. As your application loads, you’ll need to copy Help.htm to an Isolated 
Storage location first, and then retrieve it from there for display by the 
WebBrowser control. For the time being, simply add the following using 
directives to the top of the code page and then copy into your code the 
SaveHelpFileToIsoStore method shown in Listing 8–1:  

using System.IO.IsolatedStorage; 
using System.Windows.Resources; 
using System.IO; 



CHAPTER 8   WEBBROWSER CONTROL 

185 

Listing 8–1. SaveHelpFiletoIsoStore Method 

private void SaveHelpFileToIsoStore() 
        { 
            string strFileName = "Help.htm"; 
            IsolatedStorageFile isoStore = 
IsolatedStorageFile.GetUserStoreForApplication(); 
 
            //remove the file if exists to allow each run to independently write to 
            // the Isolated Storage 
            if (isoStore.FileExists(strFileName) == true) 
            { 
                isoStore.DeleteFile(strFileName); 
            } 
            StreamResourceInfo sr = Application.GetResourceStream(new Uri(strFileName, 
UriKind.Relative)); 
            using (BinaryReader br = new BinaryReader(sr.Stream)) 
            { 
                byte[] data = br.ReadBytes((int)sr.Stream.Length); 
                //save file to Isolated Storage 
                using (BinaryWriter bw = new 
BinaryWriter(isoStore.CreateFile(strFileName))) 
                { 
                    bw.Write(data); 
                    bw.Close(); 
                } 
            } 
        } 

5. Finally, you will invoke the SaveHelpFileToIsoStore method to display the 
contents of Help.htm in the web browser when the browser first loads. Add the 
call to SaveHelpFileToIsoStore in the webBrowser1_Loaded method and set the 
webBrowser URL to navigate to the Help.htm file, as shown here: 

        void webBrowser1_Loaded(object sender, RoutedEventArgs e) 
        { 
            SaveHelpFileToIsoStore(); 
            webBrowser1.Navigate(new Uri("Help.htm", UriKind.Relative)); 
        } 

 

6. Press F5 to run the application. You should see the simple HTML Help page 
displayed in the WebBrowser control. 

In your application, you can use the technique shown previously to provide documentation or Help 
files, as well as contact information about your company. Sometimes, however, all you want to show is a 
short, nicely formatted HTML message, and it’s somewhat tedious to write and include all the code to 
save HTML files to Isolated Storage and such, as shown in the previous section. Fortunately, the 
WebBrowser control has a solution for scenarios like this. In the next section, you will learn how to bypass 
Isolated Storage and show HTML generated directly by code. 



CHAPTER 8  WEBBROWSER CONTROL 

186 

Using a WebBrowser Control to Display Dynamic Content 
Suppose a user enters “Ford” in the text box of your photo browsing application. Unless you query the 
user, you won’t know whether the user meant “Ford Mustang” or “Ford F-150.” One way to find out 
would be to create a page with HTML markup and display it to the user, asking for more information. 
You could then save the generated file to Isolated Storage, and load it using the technique described in 
the previous section. But that would certainly be a cumbersome approach for such a simple task. 
Luckily, there’s a much easier way to show a dynamically generated HTML page: using the 
NavigateToString method of the WebBrowser control. This method takes a single argument—a string—
that contains the complete HTML code needed to display the page you have in mind in the WebBrowser 
control. The next demo shows just how easy it is to use this method. 

1. Bring up the MainPage.xaml.cs file in the code editor (either by double-clicking 
it or clicking the MainPage.xaml file in the Solution Explorer and choosing View 
Code). 

2. Next, you will construct the HTML code to display to the user. Make the 
button1_Click method look identical to the following code—notice how 
NavigateToString loads up what amounts to a basic HTML page directly into 
the WebBrowser control, without your having to save this HTML to the 
Isolated Storage. Also note that building an HTML string in code becomes a bit 
ugly very quickly, so NavigateToString should not be abused for large HTML 
messages/files. 

webBrowser1.NavigateToString(@"<html> 
<body><center><div style='font: Arial 12px;'> 
Which Ford model would you like to see?<br><br> 
         <a 
href='http://www.bing.com/images/search?q=cars+Ford+Mustang'>Ford  
Mustang</a> or <a href='http://www.bing.com/images/search?q=cars+Ford+F150'>Ford F-
150</a></div></center></body></html>");  

3. Press F5 to run the application. If you type “Ford” in the text box and press the 
Show It! button, you should see a dynamically generated HTML message with 
hyperlinks asking you to clarify which Ford model you would like to see, just 
like Figure 8–3. Note that “Ford” is currently case-sensitive; in other words, 
you don’t get the prompt if you type “ford.” Refactoring this code to be case-
insensitive is left as an exercise for the reader. 

■ Note Of course, users will get this response no matter what they type, but delving into more complex search 
logic is not the purpose of this chapter.  

http://www.bing.com/images/search?q=cars+Ford+Mustang
http://www.bing.com/images/search?q=cars+Ford+F150


CHAPTER 8   WEBBROWSER CONTROL 

187 

 

Figure 8–3. Showing dynamically generated HMTL content 

Many web-based applications have been built, from translators to elaborate e-commerce systems, 
and all of them are easily accessible and could even be enhanced with the use of the WebBrowser 
control on Windows Phone 7. But the WebBrowser control can do even more: in the next section, you 
will learn how to save the web pages locally so that you can potentially parse certain information or 
search within them. 

Saving Web Pages Locally 
You can also save the contents of web sites and web pages to a Windows Phone 7 as strings of HTML 
code, using Isolated Storage and the SaveToString method of the WebBrowser control. This approach 
saves only the HTML on a page (of course, you probably already guessed that from the name of the 
method!) and ignores its images and CSS files. After saving HTML to Isolated Storage, you can load it on 
demand. Before doing that, however, make sure to read the security considerations at the end of this 
chapter. 

This demo will show you how to save an HTML web page locally and then load it at a later time. 

1. Open the WebBrowserSample project and bring up MainPage.xaml in the 
design window. 



CHAPTER 8  WEBBROWSER CONTROL 

188 

2. Add two buttons to the Windows Phone 7 design surface, as shown in Figure 8–
4.  Change the Content property of the top button to “Save to local 
storage.”Change the Content property of the bottom button to “Load saved 
content. 

”  

Figure 8–4. Adding the buttons to persist web content to Isolated Storage 

3. Make sure to change the names of both buttons, as shown in Figure 8–4. You 
can change the name in the Properties window by clicking next to the Button 
text at the very top of the Properties window. Name the top button btnSave 
and name the bottom button btnLoad. 

4. Next, write the event handler code for the Save button click. Double-click the 
top button to bring up MainPage.xaml.cs in the code view. Change the 
btnSave_Click method to be identical to the following: 

        private void btnSave_Click(object sender, RoutedEventArgs e) 
        { 
     string strWebContent = webBrowser1.SaveToString(); 

SaveStringToIsoStore(strWebContent); 
        } 

5. Next is the event handler code to load the previously saved web page. Double-
click the bottom button and make the btnLoad_Click method look like the 
code block here: 

        private void btnLoad_Click(object sender, RoutedEventArgs e) 
        { 
            webBrowser1.Navigate(new Uri("web.htm", UriKind.Relative)); 
        } 



CHAPTER 8   WEBBROWSER CONTROL 

189 

6. Jumping ahead again to what will be covered in Chapter 13, you need to add 
the implementation of the SaveStringToIsoStore method that will perform the 
actual save of the HTML string to a file in the local storage. 

        private void SaveStringToIsoStore(string strWebContent) 
        { 
            IsolatedStorageFile isoStore = 
IsolatedStorageFile.GetUserStoreForApplication(); 
 
            //remove the file if exists to allow each run to independently write to 
            // the Isolated Storage 
            if (isoStore.FileExists("web.htm") == true) 
            { 
                isoStore.DeleteFile("web.htm"); 
            } 
            StreamResourceInfo sr = new StreamResourceInfo(new 
MemoryStream(System.Text.Encoding.UTF8.GetBytes(strWebContent)), "html/text"); 
            using (BinaryReader br = new BinaryReader(sr.Stream)) 
            { 
                byte[] data = br.ReadBytes((int)sr.Stream.Length); 
                //save file to Isolated Storage 
                using (BinaryWriter bw = new 
BinaryWriter(isoStore.CreateFile("web.htm"))) 
                { 
                    bw.Write(data); 
                    bw.Close(); 
                } 
            } 
        } 

7. Make sure the button1_Click event looks identical to the one here: 

private void button1_Click(object sender, RoutedEventArgs e) 
{ 
   webBrowser1.Navigate(new Uri  
    ("http://www.bing.com/images/search?q=cars " + textBox1.Text,  
    UriKind.Absolute)); 
} 
  

8. You are now ready to test the application. Press F5 to run it, type “Ford 
Mustang” in the text box, and press the Show It! button. Photos of the Ford 
Mustang should appear in the browser window. Next, press the “Save Content 
to Isolated Storage” button. Then, erase the word “Mustang” from the text box, 
leaving only “Ford” and press the Show It! button. A friendly reminder that you 
need to provide more information pops up. Finally, press “Load Saved 
Content” to show the (distorted) thumbnails of the Ford Mustang. 

The content is distorted because only the HTML of the web page is saved. Many CSS stylesheets that 
control positioning of the elements and their look are not persisted as part of the SaveToString method. 
Images may be missing as well, since the absolute paths to those images are no longer valid. 

http://www.bing.com/images/search?q=cars


CHAPTER 8  WEBBROWSER CONTROL 

190 

Choosing Display and Security Settings  
Usually, you can safely assume that web sites and web pages will look the same in both the desktop 
version of Internet Explorer and the Windows Phone 7 Internet Explorer Mobile browser, on which the 
WebBrowser control is based. There are a few cases, however, where special considerations apply to the 
WebBrowser control running on Windows Phone 7. The next few sections will go over those special 
cases. 

Viewport  
In Internet Explorer Mobile (which is the version of Internet Explorer running on Windows Phone 7), the 
viewport is a rectangular region that controls where text will wrap on the page. At the time of this 
writing, only three properties are supported for the viewport: height, width, and user-scalable. Height 
and width properties control the height and the width of the viewport accordingly, with values ranging 
between 480 and 10,000 for the height and between 320 and 10,000 for the width. The user-scalable 
property controls whether a user can zoom in and out of the content of the viewport. This property has 
two possible values: yes and no. The default (and recommended) setting for this property is yes. You set 
the properties of the viewport inside the meta tag, as shown in the example in the next section. 

CSS 
There is also a CSS property, -ms-text-size-adjust, that controls the size of the text displayed on the 
screen. When Windows Phone 7 renders text in the browser (and the WebBrowser control), it adjusts the 
size of that text based on this -ms-text-size-adjust property. If this CSS property is set to auto for a 
given element, Windows Phone 7 tries to determine the text size that will be most readable on a given 
screen. If that property is set to none, Windows Phone 7 does not make any adjustments to text. There is 
also a third option for this property: a numeric percentage value, which will scale the text from its 
original size according to the percentage specified. Just as any other CSS property, -ms-text-size-adjust 
can be set for the whole page or any portion of the page. Let’s take a look at an example that will help 
you visualize this property. 

1. Refer to the Help.htm file you created for showing static HTML content in the 
WebBrowser control. Edit that file to make it look like the following HTML 
block; in essence, you are simply adding a CSS DIV element and introducing -
ms-text-size-adjust around one of the elements: 

<html> 
  <head> 
    <title>Web Browser Help File</title> 
    <meta id="viewport" name="viewport" content="width=900;" /> 
  </head> 
<body> 
 <h1>Welcome to the Windows Phone 7 Car Browser Application!  
  To view car photos, type the name of the car in the textbox and press "Show It!" 
  <br/><br/>For example, <div style= "-ms-text-size-adjust:250%">"Ford Mustang"</div> 
</h1> 
</body> 
</html> 

2. Press F5 to run the application. You should see the text “Ford Mustang” two 
and half times (250%) larger than the rest of the text on this page. 



CHAPTER 8   WEBBROWSER CONTROL 

191 

Early documentation from Microsoft stated that Internet Explorer Mobile also supports the -
webkit-text-size-adjust property, used by other mobile browsers to control text size, in place of –ms-
text-size-adjust. However, support for the –webkit-text-size-adjust property has been withdrawn 
since then. 

Security  
With phones becoming “smarter and smarter” what seems like every hour, there’s always the danger of 
mobile applications behaving badly, whether intentionally or not. To help protect phone users from the 
most common types of security problems plaguing desktop computers connected to the Internet, 
Microsoft introduced a set of security rules for loading web content onto the phone. All Windows Phone 
7 applications must observe these rules if they are to run on Windows Phone 7 devices.  

As Windows Phone 7 developers, we must be aware of these security restrictions to ensure the 
smoothest possible performance of our applications. The following list summarizes items that are either 
disabled or just different in the Internet Explorer Mobile version compared to its desktop counterpart: 

1. Script is disabled by default in the WebBrowser control. To enable it, the 
developer must explicitly set the IsScriptEnabled property of the control. 

2. Internet Explorer Mobile does not allow users to download and install third-
party plug-ins, such as ActiveX controls and Adobe Flash plug-ins. Sites that 
rely on such plug-ins for their functionality will not work properly on Windows 
Phone 7. 

3. Within the WebBrowser control, users cannot navigate from https:// (secure) 
to http:// (unsecure) Internet locations. 

4. Applications cannot share cookies with Internet Explorer Mobile. 

In addition to this list, there are special cross-site considerations applicable just to the WebBrowser 
control. When a web page loads into the Windows Phone 7 WebBrowser control from the network 
location (i.e., the Internet), it is prohibited from making web service calls into the domain other than the 
one from which it has been loaded. This is done to prevent unauthorized access to sensitive information 
without a user’s knowledge. This behavior is identical to the behavior of a standard Silverlight 
application restricted to web service calls into its own domain unless a special crossdomain.xml file is 
present at the root of another domain, allowing remote calls. 

However, on Windows Phone 7, content loaded from Isolated Storage or via the NavigateToString 
method is not subject to cross-domain restrictions. This also includes content previously loaded from 
the network location and saved to the Isolated Storage via the SaveToString method, as you have seen 
illustrated in this chapter. It is therefore extremely important to consider the possible cross-domain 
consequences of saving web pages into the local storage and then re-loading them. 



CHAPTER 8  WEBBROWSER CONTROL 

192 

Summary 
In this chapter, you learned to use the WebBrowser control for Windows Phone 7 to search for and 
display web content in an application. You created a simple Car Browser application using the 
WebBrowser control and displayed local static and dynamically generated HTML pages. You also 
learned how to store and retrieve web and HTML content from local storage on the phone itself. You’ll 
explore local storage in greater depth in Chapter 13. Finally, you should now have a basic understanding 
of the viewport and custom Internet Explorer Mobile CSS elements, and an appreciation of the security 
issues you’ll encounter when you use the WebBrowser control. 

In the next chapter, you’ll explore what is perhaps the most important aspect of any modern 
application: its styling. We will go over general principles of appealing layouts and themes, as well as 
delve into the specifics of visually engaging controls within applications. 
 



C H A P T E R  9 
 

      
 

193 

Working with Controls and Themes 

Every time you pass through an airport or a train station, you expect to see myriad signs directing you to 
points of interest, such as  connecting gates, luggage pickup, or a taxi line. And while the words on these 
signs are certainly important, perhaps just as important are the accompanying visual symbols. Our 
minds become so accustomed to visual elements that often we don’t even need to read the words to 
understand a sign’s meaning, and the presence of visual elements certainly helps when we’re in another 
country where we don’t speak the local language.  

This universal visual language of signs is the main idea behind the user interface system in Windows 
Phone 7. Microsoft designers want the elements in the Windows Phone 7 UI to direct users to the 
content that they want, just as airport signs direct people where they need to go. Within Microsoft, this 
contemporary UI has been code-named Metro and, per the UI Design and Interaction Guide for 
Windows Phone 7, elements of Metro UI are meant to be visually appealing and to encourage 
exploration of the applications you build. 

In this chapter, you will explore the most important design principles at the heart of Metro UI and 
learn how to ensure that your application conforms to them. You will also gain an understanding of 
themes on the Windows Phone 7 device and learn how to make your application theme-aware. Finally, 
you will take a look at the controls that are available to you for use in Windows Phone 7 applications, 
especially the innovative Panorama and Pivot controls that are unique to Windows Phone 7. You have 
already used many of the controls within Windows Phone 7 in the previous chapters of this book, so this 
chapter will recap and introduce you to the less common controls. 

Introducing the Metro Design System 
The big idea behind the Windows Phone 7 design system (Metro) is to direct users to the content they 
want using design elements that are both effective in conveying their message and attractive. The UI 
Design and Interaction Guide for Windows Phone 7 (available as a PDF download from 
http://go.microsoft.com/fwlink/?LinkID=183218) specifically states that visual elements within 
applications “should encourage playful exploration so that the user feels a sense of wonder and 
excitement” when using your application. Microsoft strongly encourages all application developers to 
adopt Metro design principles in their applications. Fortunately, to help those who may not be 
particularly strong in graphic design, Microsoft has ensured that all application controls (i.e., text box, 
button, etc.) are Metro-compliant by default. The controls that ship with Windows Phone 7 development 
tools already have the look and feel dictated by Metro UI guidelines, so it’s your job as a developer to 
preserve that look and feel throughout your applications. 

http://go.microsoft.com/fwlink/?LinkID=183218


CHAPTER 9  WORKING WITH CONTROLS AND THEMES 

194 

■ Note An open source project, Silverlight for Windows Phone Toolkit, contains many additional controls that are 
ready to use inside your application and that conform to Metro design guidelines as well. This Toolkit is also 
constantly being updated with new controls and features; make sure to check it out at 
http://silverlight.codeplex.com/. Perhaps it already contains that cool control that you were considering 
building yourself (Date or Time Picker, for example). 

When you first start working with standard controls within Windows Phone 7 applications, you may 
be surprised by their minimalistic, two-dimensional look. That appearance, however, emphasizes 
another one of the main principles of Metro UI design: “Delight through content instead of decoration.” 
Microsoft encourages developers to reduce the complexity of visual elements that are not part of content 
and to communicate with users of their applications as directly as possible. According to the Metro 
designers, the content and functionality of the application should be the most engaging factor of the 
Windows Phone 7 application. 

Another pillar of Metro UI is the use of a standard contemporary-looking font. Segoe WP is the 
standard system font on Windows Phone 7 devices and it is a Unicode font. It is available in the 
following five styles: 

• Regular 

• Bold 

• Semi-bold 

• Semi-light 

• Black 
 

You can also embed your own fonts in any application you write, but they will be available for use 
only within your application and not outside of it. To conform to the Metro guidelines, however, it’s 
probably wise to stick with the standard fonts that ship with the tools. 

Windows Phone Chrome 
The term Windows Phone Chrome refers to two areas on the device screen, one at the top and the other 
at its bottom, as illustrated in Figure 9–1. The System Tray is one of two primary components of Windows 
Phone Chrome; the Application Bar is the other. 

The System Tray is the top portion of Windows Phone Chrome and contains several indicators that 
display system-level status information. The System Tray displays the following icons, left to right, in the 
order listed here: 

• Signal strength 

• Data connection  

• Call forwarding  

• Roaming 

• Wireless network signal strength 

http://silverlight.codeplex.com/


CHAPTER 9   WORKING WITH CONTROLS AND THEMES 

195 

• Bluetooth status  

• Ringer mode 

• Input status  

• Battery power level  

• System clock 

■ Note The screen shown in Figure 9–1 is the emulator screen, and it does not include all of the items 
mentioned in the preceding list. 

 

Figure 9–1. Windows Phone 7 Chrome 



CHAPTER 9  WORKING WITH CONTROLS AND THEMES 

196 

By default, only the system clock is visible at all times. To make other items visible, you need to 
double-tap (double-click in the emulator) in the System Tray area. These indicators slide into view for 
approximately eight seconds before sliding out of view. Note that although you can programmatically 
hide the System Tray, it is not a recommended practice under Metro guidelines. 

In Chapter 7, you learned how to work with the Application Bar, the second part of Windows Phone 
7 Chrome. To quickly recap, the Application Bar is limited to four icons; if there are more navigational 
items to display, they should be put inside the menu items. There is a set of default Application Bar icons 
included with each distribution of Windows Phone 7 tools, and it can be used to build basic Application 
Bars quickly. 

Screen Orientations 
Windows Phone 7 supports three screen orientations: portrait, landscape left, and landscape right. In 
portrait orientation, the page is vertically oriented with hardware buttons appearing at the bottom of the 
device. Portrait orientation is the default orientation of the device, and the Start screen is always shown 
in portrait orientation. In landscape left, the System Tray appears on the left of the device, and in 
landscape right, the System Tray appears on the right. 

Your application can’t switch the orientation of its screen by itself, since the Orientation property is 
read-only. You can, however, set a fixed orientation where you disallow application support for certain 
screen orientations. Some system components can adjust to changes in orientation. For example, 
application bar icons automatically rotate when the device changes from portrait to landscape mode. 
Other components with similar orientation-aware behaviors include the System Tray, Application Bar 
Menu, Volume/Ring/Vibrate Display, Push Notifications, and Dialogs. 

Having discussed some of the principles and components of Metro UI, it’s time to turn your 
attention to the support for themes on Windows Phone 7 devices. Themes make the phone more 
personal, which goes hand in hand with the Metro guideline that the experience of using the phone 
should be an engaging one. 

Themes on Windows Phone 7 Devices 
A Windows Phone 7 theme is a combination of a background and an accent color. Users can select from 
themes that ship with the phone, developers can access them in their code, and companies can alter 
them to match their own branding colors. Themes are set in the Settings  Themes portion of the 
Windows Phone 7 device or the emulator.  

Themes can also be applied dynamically during the runtime of an application by overwriting or 
injecting the custom themes into Resources.MergedDictionaries found in Application.Current, as 
shown in the following code snippet: 

ResourceDictionary res = new ResourceDictionary(); 
res.Source =  
   new Uri("/MyApplication;component/Assets/MyStyles.xaml", UriKind.RelativeOrAbsolute); 
Application.Current.Resources.MergedDictionaries.Add(res); 
 

Currently, there are two possible background settings—Dark (default) and Light. There are ten 
accent colors to choose from, starting with a Microsoft-ish blue (the default) and ranging all the way to a 
decidedly 70s lime green. 



CHAPTER 9   WORKING WITH CONTROLS AND THEMES 

197 

■ Note Microsoft recommends you use as little white color as possible (especially in backgrounds), since 
excessive use of white color may have a negative impact on battery life. 

The combination of two background colors and ten accent colors provides the user with a total of 
twenty possible themes, delivering on the engagement and personalization promise of Metro design 
principles. Applications automatically adjust to the selected theme and ensure that all UI elements 
appear consistently across the platform. A quick walk-through demonstrates theme-awareness of 
Windows Phone 7 controls and UI elements. 

Applying a Theme 
In this walk-through, you will add a set of Windows Phone 7 controls to an application, creating some of 
them with XAML and some through managed code. You will change the theme in the emulator and 
observe the effect this change has on the controls. Follow these steps to get a better understanding of 
theming support in Windows Phone 7. 

Creating a User Interface 
First, you will add a set of standard controls to a Windows Phone 7 application. 

1. Launch Visual Studio 2010 Express and select the Windows Phone Application 
template. Change the Project Name to Theming, select OK, and Visual Studio 
will set up a new project. 

2. Open MainPage.xaml in Design mode and add a text box, textblock, check box, 
button, and a black rectangular shape to the page. Your end goal is a simple 
interface that resembles the one in Figure 9–2. Here’s the XAML: 

    <!--LayoutRoot is the root grid where all page content is placed--> 
    <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 

 
        <!--TitlePanel contains the name of the application and page title--> 
        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28"> 
            <TextBlock x:Name="ApplicationTitle" Text="THEMES AND COLORS"  

Style="{StaticResource PhoneTextNormalStyle}"/> 
<TextBlock x:Name="PageTitle" Text="THEMES" Margin="9,-7,0,0" 
Style="{StaticResource PhoneTextTitle1Style}"/> 

        </StackPanel> 
 

        <!--ContentPanel - place additional content here--> 
        <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"> 
            <TextBox Height="72" HorizontalAlignment="Left" Margin="-4,6,0,0" 
Name="textBox1" Text="TextBox" VerticalAlignment="Top" Width="454" /> 



CHAPTER 9  WORKING WITH CONTROLS AND THEMES 

198 

<TextBlock Height="30" HorizontalAlignment="Left" Margin="11,80,0,0" 
Name="textBlock1" Text="TextBlock" VerticalAlignment="Top" Width="329" /> 

<CheckBox Content="CheckBox" Height="72" HorizontalAlignment="Left" 
Margin="12,116,0,0" Name="checkBox1" VerticalAlignment="Top" /> 

<Button Content="Button" Height="72" HorizontalAlignment="Left" 
Margin="9,194,0,0" Name="button1" VerticalAlignment="Top" Width="160" /> 

<Rectangle Height="110" HorizontalAlignment="Left" Margin="249,137,0,0" 
Name="rectangle1" Stroke="Black" StrokeThickness="1" VerticalAlignment="Top" 
Width="156" /> 
        </Grid> 
    </Grid> 

Adding Code to Draw an Elliptical Shape  
In addition to using the powerful Visual Designer to add controls to Windows Phone 7 pages, as you just 
did, you can add controls programmatically. The steps here show you how to do that. 

1. Go to the Theming project in Solution Explorer and open MainPage.xaml.cs 
(right-click MainPage.xaml and choose View Code). 

2. To add a white ellipse to the page, paste the following code inside the MainPage 
constructor:  

             Ellipse e = new Ellipse(); 
             e.Width = 100.0; 
             e.Height = 120.0; 
             e.StrokeThickness = 2.0; 
 
           e.HorizontalAlignment = HorizontalAlignment.Left; 
             e.VerticalAlignment = VerticalAlignment.Top; 
 
             Color backgroundColor = Color.FromArgb(255, 255, 255, 255); 
             e.Fill = new SolidColorBrush(backgroundColor); 
             e.Margin = new Thickness(10, 300, 10, 10); 
 
             ContentPanel.Children.Add(e); 



CHAPTER 9   WORKING WITH CONTROLS AND THEMES 

199 

 

Figure 9–2. Theming application UI layout 

Press F5 to run the application. The application screen should now display all of the controls you’ve 
added, including a white ellipse. 

Changing the Theme 
In this part of the walk-through, you will change the emulator’s theme to observe the effect it has on the 
Theming application. 

1. Press the Windows button on the emulator to bring up the Start screen. Then 
press the  key (the arrow in the upper right corner of the emulator screen) 
and select Settings  Themes to bring up the Themes dialog. 

2. Change the background to Light, and change the accent color to Red (note that 
you may have to scroll to locate the red accent color). 

3. Press the Windows button again to go back to the Start screen. Note that your 
application is no longer running (it stopped when you pressed the Windows 
button), so go back to Visual Studio 2010 Express and press F5 to re-launch 
your application. 



CHAPTER 9  WORKING WITH CONTROLS AND THEMES 

200 

4. Note that you can see the same controls as before, except the ellipse that you 
drew from code is nowhere to be found. Figure 9–3 shows two versions of the 
same application side by side, each with a different theme. 

 

Figure 9–3. Two themes applied to the same Theming application example 

By now, you have probably guessed that the reason the ellipse is not visible is that the application 
paints it white and then displays it on a white background. But how did the other controls manage to 
show up on the white background when they originally were white themselves? And how can you make 
the ellipse behave the same way? 

The answers lie in a Windows Phone 7 concept known as theme awareness. By default, Windows 
Phone 7 controls are theme-aware and adjust their appearance based on the theme selected on the 
device. Problems arise when the color values are hardcoded in the control, as you have done for the 
ellipse and the rectangle border. In the next few steps, you’ll correct the issue of hardcoded colors, first 
with a designer and the second in code. 

5. If it’s still running, stop the application. Open MainPage.xaml in the Design 
view, and select the rectangular shape. Press F4 to bring up the Properties 



CHAPTER 9   WORKING WITH CONTROLS AND THEMES 

201 

window, and then click the diamond symbol to the right of the Stroke 
property. 

6. From the pop-up dialog, click Apply Resource. From the next dialog, double-
click the PhoneAccentBrush setting to use the currently selected accent color 
to draw a rectangle.  

7. Now, adjust the color of the ellipse to the currently selected accent color. Since 
you drew the ellipse from code, open the MainPage.xaml.cs file and change the 
following line of code from 

         Color backgroundColor = Color.FromArgb(255, 255, 255, 255); 
 to 

         Color backgroundColor = 
(Color)Application.Current.Resources["PhoneAccentColor"]; 
 

Press F5 to run your application. You should see both the rectangle and ellipse appear in red (or the 
currently selected accent color). 

■ Note Avoid using hardcoded values for color if possible. It’s hard to predict what combination of themes a user 
will choose, so your visual elements may not show up as desired. Instead, use one of the predefined theme 
resources (a full list of resources is available at http://msdn.microsoft.com/en-
us/library/ff769552%28VS.92%29.aspx) to ensure that your application is fully theme-aware in accordance with 
Metro design principles. 

Now that you know how to ensure your application is theme-aware, in the next section you will 
learn how to approach cases where you absolutely must customize your application based on the 
currently selected theme. 

Detecting the Currently Selected Theme 
Sooner or later, you’ll want to customize your application depending on whether a dark or a light theme 
is currently active. For example, you may have a beautiful custom graphic within your application that 
simply does not render well when the background theme colors are changed; instead, you would like to 
show a different graphic depending on the currently active theme. The following walk-through shows 
you how to accomplish just that: it detects the currently selected theme and adjusts the message based 
on whether the current theme has a light or dark background. 

1. Launch Visual Studio 2010 Express and select the Windows Phone Application 
template. Change the Project Name to DetectTheme, select OK, and Visual 
Studio will set up a new project. 

2. Open MainPage.xaml in Design  mode, and add a TextBlock to the page. For 
this walk-through, you will simply modify the message within this TextBlock; 
for real-world applications, you will probably choose to do something a bit 
more exotic than this, such as show a different image. 

http://msdn.microsoft.com/en-us/library/ff769552%28VS.92%29.aspx
http://msdn.microsoft.com/en-us/library/ff769552%28VS.92%29.aspx
http://msdn.microsoft.com/en-us/library/ff769552%28VS.92%29.aspx


CHAPTER 9  WORKING WITH CONTROLS AND THEMES 

202 

3. Open MainPage.xaml.cs (right-click MainPage.xaml in Solution Explorer and 
choose View Code) and add the following code to the MainPage constructor, 
right below the InitializeComponent() method: 

      Visibility v = (Visibility)Resources["PhoneLightThemeVisibility"]; 
         if (v == System.Windows.Visibility.Visible) 
         { 
         textBlock1.Text = "Let there be light!"; 
         } 
         else 
         { 
          textBlock1.Text = "It's dark!"; 
         } 

Note that you are using the Visibility property to determine whether the light theme is visible and to 
take action accordingly. 

Press F5 to run the application. If you still have a light background selected from the previous walk-
through, you will see a “Let there be light!” message. Otherwise, an “It’s dark!” message will be displayed. 

So far, you’ve touched on the basics of theming and looked at how to make your application theme-
aware and how to customize its behavior based on the theme selected. Next, you’ll look at the controls 
provided as part of Windows Phone 7 Developer tools, since it’s these controls that really make the 
Metro experience complete. 

Panorama and Pivot Controls 
In earlier chapters, you used of several base controls that ship with the Windows Phone 7 development 
tools, including text boxes, textblocks, and buttons—the kinds of controls you’d expect within any UI 
framework. But the Windows Phone developer tools include a number of unique controls as well, 
including a web browser and a Bing maps control, both of which will be covered in later chapters. Two 
others are the Panorama and Pivot controls, which are integral to Metro and the Windows Phone user 
experience. 

The Panorama and Pivot controls offer two ways to develop an application that requires page 
navigation. With a Panorama control, you can present the UI of an application on one horizontal canvas 
that extends beyond the left and right boundaries of the device screen and can be flicked to the left and 
right with touch gestures. With a Pivot, you can present the UI of an application as a series of pages, 
much like tabbed pages, by touching its header or flicking through the pages. A Panorama is like a scroll; 
a Pivot is more like a series of cards laid down from left to right. 

In the following section, you’ll learn how to use a Panorama control to create some engaging UI for 
an airport application that displays arrivals and departures. You’ll also take a brief look at the Pivot 
control, whose outfitting and use is nearly identical to the Panorama control, though its effects are quite 
different. 

Using the Panorama Control  
In every video ad for a Windows Phone 7 device, the scrollable UI of the Panorama control is usually the 
first thing that people notice. The People hub on the Start screen of Windows Phone 7 is implemented 
using this control. So is the Music + Videos hub. These interactions essentially involve the ability to keep 
scrolling horizontally far past the end of the screen. The Panorama control allows for a unique 
experience that is associated with the native Windows Phone 7 look and feel. 



CHAPTER 9   WORKING WITH CONTROLS AND THEMES 

203 

A Panorama control can be thought of as a long, horizontal canvas. A secondary control called a 
PanoramaItem serves as a container that hosts content and other controls such as text blocks, buttons, 
and links. There are three ways to incorporate Panorama behavior into your application: 

1. Create a new Windows Phone project and choose Windows Phone Panorama 
Application as the template to use for the application. While this is an 
extremely powerful approach, this type of template creates a Model-View-
ViewModel (MVVM)–based project, which has a significant learning curve and 
is quite different from the way you have developed Windows Phone 7 
applications so far in this book (for an example of an MVVM application, see 
Chapter 3). 

2. Add the Panorama control to the Visual Studio Toolbox (via right-clicking the 
Toolbox and navigating to the assembly containing this control) and then drag 
and drop it to your application. 

3. Add a new page to your application that contains a Panorama control. This is 
perhaps the easiest way to quickly incorporate the Panorama control inside 
our application; this is the approach you will pursue in this section. 

In the following walk-through, you will create an application to display the arrival and departures of 
flights at a fictional airport. In addition, you will add a search capability (or just the user interface 
elements of it) to this application. You will use the Panorama control to implement this functionality 
where the long background gives you the feeling that you are inside the airport as you navigate left or 
right to the pages. 

Your application will not contain any code, since your primary goal in this chapter is to explore the 
controls available for Windows Phone 7, and in this section you are exploring the Panorama control. To 
create Panorama control, you will use Option 3 from the list in the previous section and use XAML to 
build a new page with a Panorama control. 

1. Launch Visual Studio 2010 Express and select the Windows Phone Application 
template. Change the Project Name to Panorama, select OK, and Visual Studio 
will set up a new project. 

2. Right-click the project name in Solution Explorer and select Add  New Item  
Windows Phone Panorama Page. Accept the default name of 
PanoramaPage1.xaml for the file, and press the OK button. 

3. You now have a page with the Panorama control in it within the application, 
but there is no way to get to it. You could either add navigation from 
MainPage.xaml or simply make PanoramaPage1.xaml the main page within the 
application. To implement the second choice, rename the current 
MainPage.xaml to MainPage1.xaml and then rename PanoramaPage1.xaml to 
MainPage.xaml. Now the Panorama page should be the default page that comes 
up when the application is launched. 

4. It is time to customize and add content to the Panorama control. Go ahead and 
change the <controls:Panorama... element to the following: 

             <controls:Panorama Title="airport" Foreground="Red"> 

5. To add new tabs or containers to the Panorama control, you would use the 
<controls:PanoramaItem... XAML element. Go ahead and add a third 
PanoramaItem that will contain a text box and a button to search for departures 
to a specific city right above the closing tag for the Panorama control 



CHAPTER 9  WORKING WITH CONTROLS AND THEMES 

204 

</controls:Panorama>. Notice that as you add PanoramaItem, your designed 
view reflects the changes. 

                <!--Panorama item three--> 
                <controls:PanoramaItem Header="search" Foreground="{StaticResource  

PhoneAccentBrush}"> 
                 <Grid> 
                       <TextBox Height="72" HorizontalAlignment="Left" Margin="-12,-2,0,0"  

Name="textBox1" Text="TextBox" VerticalAlignment="Top" Width="271" /> 
                       <Button Content="Search" Height="72" HorizontalAlignment="Left"  

Margin="242,-4,0,0" Name="button1" VerticalAlignment="Top" Width="160" 
/> 

                 </Grid> 
                </controls:PanoramaItem> 

■ Note The use of Foreground="{StaticResource PhoneAccentBrush}” binding allows the foreground color of 
the text to be the current theme’s accent color. 

6. Make some minor adjustments to the first two Panorama items to bring them in 
line with the rest of the UI layout. Replace the top two <controls:PanoramaItem… 
elements with the following XAML: 

               <!--Panorama item one--> 
               <controls:PanoramaItem Header="arrivals" Foreground="{StaticResource 
PhoneAccentBrush}"> 
                 <Grid> 
                 </Grid> 
               </controls:PanoramaItem> 
 
               <!--Panorama item two--> 

  <controls:PanoramaItem Header="departures" Foreground="{StaticResource  
PhoneAccentBrush}"> 

                <Grid/> 
               </controls:PanoramaItem> 

7. Finally, add a background image to the Panorama control. The recommended 
size for the background image is 800 pixels high (of course, that’s the standard 
resolution of Windows Phone 7 devices) and 2,000 or fewer pixels wide. To 
specify the background image, add the following XAML tag right below the 
<controls:Panorama … tag: 

               <controls:Panorama.Background> 
                 <ImageBrush ImageSource="PanoramaBackground.jpg"></ImageBrush> 
               </controls:Panorama.Background> 

8. Press F5 to run the application. You should see a screen that looks very similar 
to Figure 9–4 (minus the background image, perhaps). Flicking the Panorama 
control from right to left should allow you to see Arrivals and Departures plus a 
separate tab designated for searching airport schedules. 



CHAPTER 9   WORKING WITH CONTROLS AND THEMES 

205 

 

Figure 9–4. Panorama control example 

As you can see, it is pretty easy to use a Panorama control, and you can place different contents 
within the PanoramaItem tag. Using the Panorama control, together with the Pivot control discussed 
next, provides a very easy way to impress your users with cool designs, layouts, and coding techniques. 
Considering that you didn’t have to hire a graphics designer to get here, this is a very powerful weapon in 
the Windows Phone 7 developer arsenal.  

■ Note Microsoft recommends limiting the number of PanoramaItems to a maximum of four to ensure smooth 
application performance. In addition, it is considered best practice to hide PanoramaItem until it has content to 
display. 



CHAPTER 9  WORKING WITH CONTROLS AND THEMES 

206 

Using the Pivot Control  
The Pivot control is a close cousin of the Panorama control. The basic premise of having multiple pages 
easily accessible is preserved; however, the ability to click the header to show the contents of a new page 
is not possible with a Panorama control. A screenshot of a simple Pivot control is shown in Figure 9–5. A 
user can tap (or click in the emulator) the word “departures” and be immediately presented with the 
portion of the application dealing with airport departures. 

Creating a Pivot control is very much like creating a Panorama control; there are still three possible 
ways of adding it to your application (except you would add a Windows Phone Pivot Page, of course). 
Within the control itself, you would work with PivotItems, not PanoramaItems, but the rest of the design 
approaches are almost identical. If you feel uncertain about how to work with Pivot controls on 
Windows Phone 7, you can download a Pivot project available for this book. In addition, you can visit 
MSDN instructions on working with the Pivot control located at http://msdn.microsoft.com/en-
us/library/ff941123(v=VS.92).aspx for a quick reference. 

 

 

Figure 9–5. Pivot control example 

Understanding Frame and Page Navigation 
To navigate from screen to screen in a Windows Phone 7 application, an understanding of the 
PhoneApplicationFrame and PhoneApplicationPage controls is important. There is only one 
PhoneApplicationFrame available to a Windows Phone 7 application; this frame reserves space for the 
System Tray and the Application Bar, as well as the content area where PhoneApplicationPage controls 
live. You can create as many different pages as needed and then navigate to those pages from the frame. 
Refer to Figure 9–6 to see how the controls are placed in the phone. 

http://msdn.microsoft.com/en-us/library/ff941123
http://msdn.microsoft.com/en-us/library/ff941123
http://msdn.microsoft.com/en-us/library/ff941123


CHAPTER 9   WORKING WITH CONTROLS AND THEMES 

207 

 

Figure 9–6. PhoneApplicationFrame and PhoneApplicationPage 

To navigate from page to page within your application, use the NavigationService class. This class 
exposes methods to navigate to pages given a URI, as well as to go back to the previous page. The 
following walk-through illustrates the use of the NavigationService class. 

Creating a User Interface for NavigationTest Project 
The NavigationTest project will contain two XAML pages (MainPage.xaml and Page1.xaml) and will 
navigate between the two. 

1. Launch Visual Studio 2010 Express and select the Windows Phone Application 
template. Change the Project Name to NavigationTest, select OK, and Visual 
Studio will set up a new project. 

2. Right-click the project name in Solution Explorer and select Add  New Item  
Windows Phone Portrait Page. Accept the default name of Page1.xaml and press 
OK. 

3. Open MainPage.xaml in Design view. From the toolbox, drag and drop the 
HyperlinkButton control. With that control selected, press F4 to display its 
properties and change the contents say “Go to Page1.” 



CHAPTER 9  WORKING WITH CONTROLS AND THEMES 

208 

4. Open Page1.xaml in the Design view, and add a button to that page from the 
toolbox. Edit the contents of the button to say “Go Back to Main Page.” 

5. Add a TextBlock underneath the button on Page1.xaml. This TextBlock will be 
used to show the parameters passed in to this page. 

In the next section, you will use NavigationService to navigate between pages. 

Adding Navigation Code 
When the user clicks the “Go to Page 1” hyperlink, you will be using NavigationService to move to 
Page1. 

1. Open MainPage.xaml and double-click the hyperlink on that page. Implement 
the hyperlinkButton1_Click event handler with the following code: 

            private void hyperlinkButton1_Click(object sender, RoutedEventArgs e) 
            { 
                 NavigationService.Navigate(new Uri("/Page1.xaml", UriKind.Relative)); 
 
            } 

2. Open Page1.xaml and double-click the button on that page. Implement the 
button1_Click event handler with the following code: 

            private void button1_Click(object sender, RoutedEventArgs e) 
            { 
              NavigationService.GoBack(); 
            } 

3. Press F5 to run the application. Now when you click the hyperlink on 
MainPage.xaml, you are taken to Page1.xaml. When you click the button on 
Page1.xaml, you are taken back to MainPage.xaml. In the next section, you will 
enhance this application slightly to pass parameters between the pages. 

Adding Code to Pass Parameters Between Pages 
In the previous section, you learned how to successfully navigate from page to page. In this section, you 
will see how to pass parameters from one page to another. 

1. Open MainPage.xaml.cs and change the hyperlinkButton1_Click event handler 
to the following: 

            private void hyperlinkButton1_Click(object sender, RoutedEventArgs e) 
            { 
              NavigationService.Navigate(new Uri("/Page1.xaml?message=Hello,World",  

UriKind.Relative)); 
            } 

Here, you are passing the hard-coded string “Hello, world” to Page1.xaml for processing. 

2. In Page1.xaml, you will try to read the query string passed from the prior pages 
to see if there are non-empty values. Open Page1.xaml.cs and add the following 
code to that file: 

   protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs  



CHAPTER 9   WORKING WITH CONTROLS AND THEMES 

209 

e) 
            { 
              base.OnNavigatedTo(e); 
              string msg = ""; 
              if (NavigationContext.QueryString.TryGetValue("message", out msg)) 
                  textBlock1.Text = msg; 
            } 

3. Press F5 to run the application. Now, if you press the hyperlink from 
MainPage.xaml, you should see the “Hello, world” message displayed on Page1. 

Having talked about controls, let’s close out this chapter with a neat effect you can add to your 
application to increase the buzz about it. 

Adding Transition Effects  
To spice up your application, you can add what is called a “tilt” effect to the visual elements. The tilt 
effect provides visual feedback to the user of the Windows Phone 7 application during manipulation of 
visual elements within the application. So, instead of just “pressed” and “unpressed” states, elements 
can also have “being pressed” and “being unpressed” states. The integration of tilt is pretty 
straightforward, and in the end it will certainly be completely up to you whether you would like to use it 
within your application. But if you do decide to give this effect a try, follow this walk-through. 

Creating a User Interface  
The user interface for the test application will be composed of four controls within the page: ListBox, 
Button, Hyperlink, and a Checkbox. 

1. Launch Visual Studio 2010 Express and select the Windows Phone Application 
template. Change the Project Name to  TiltableTest, select OK, and Visual 
Studio will set up a new project. 

2. Open MainPage.xaml in Design  mode, and add a ListBox with four items, a 
Button, a Hyperlink, and a Checkbox to the page, with the end goal of creating a 
user interface like the one shown in Figure 9–7. 



CHAPTER 9  WORKING WITH CONTROLS AND THEMES 

210 

 

Figure 9–7. TiltableTest UI layout 

3. You can also paste the following XAML code to get the same interface depicted 
in Figure 9–7: 

            <!--ContentPanel - place additional content here--> 
            <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"> 
 

<ListBox Height="110" HorizontalAlignment="Left" Margin="6,47,0,0" 
Name="listBox1"  

VerticalAlignment="Top" Width="460" ItemsSource="{Binding}" > 
                 <ListBoxItem Content="ListBoxItem 1" ></ListBoxItem> 

                  <ListBoxItem Content="ListBoxItem 2" ></ListBoxItem> 
                 <ListBoxItem Content="ListBoxItem 3" ></ListBoxItem> 

                  <ListBoxItem Content="ListBoxItem 4" ></ListBoxItem> 
              </ListBox> 
              <HyperlinkButton Content="HyperlinkButton" Height="30" 
HorizontalAlignment="Left"  

Margin="-109,185,0,0" Name="hyperlinkButton1" VerticalAlignment="Top"  
Width="409" /> 

 
<Button Width="186" Height="85" Content="Button" HorizontalAlignment="Left"  
VerticalAlignment="Top" Margin="9,234,0,0" /> 

              <CheckBox Content="CheckBox" Height="72" HorizontalAlignment="Left"  



CHAPTER 9   WORKING WITH CONTROLS AND THEMES 

211 

Margin="12,325,0,0" Name="checkBox1" VerticalAlignment="Top" /> 
 
         </Grid> 
 

Now that you’ve added controls to the MainPage, you’ll add Tilt effects to the controls. 

Downloading TiltEffect.cs and Applying Dependency Properties 
To integrate the Tilt effect into your application, you will need to download TiltEffect.cs and properly 
integrate it into your project. 

1. Download the Tilt Effect Control Sample from 
http://go.microsoft.com/fwlink/?LinkId=200720, and extract the contents of 
the .zip file to a known location. 

2. From within the TiltableTest project you created previously, right-click the Add 
 Existing Item, navigate to the location from Step 1, and find the 
TiltEffect.cs file. 

3. With TitlEffect.cs now a part of your project, double-click that file to open it. 
Change the following statement  

namespace ControlTiltEffect 

to 

namespace TiltableTest 
Essentially, you just changed the namespace of this file so that it now belongs to your application. 

4. Now you need to add the IsTiltEnabled dependency property to the 
MainPage.xaml page. Open MainPage.xaml in a XAML view and, at the very top of 
the page, right below the xmlnss:mc=… add the following statement: 

xmlns:local="clr-namespace:TiltableTest" 

5. You’re almost done1 At the top of the page, beneath the statement 

shell:System Tray.IsVisible="True" 

add  

local:TiltEffect.IsTiltEnabled="True"> 

6. Right-click the project and select Build. After the project builds, you are ready 
to run the application. 

Press F5 to run the application. Now when you click the button or the items in the ListBox, you 
should see an animation in which these items first contract and then expand. This is another element of 
interactivity that you can use to further enhance user experience of your application and add to that 
Wow factor. 

■ Note You can suppress the Tilt effect on any control by adding the local:TiltEffect.SuppressTilt="True" 
attribute to that control. 

http://go.microsoft.com/fwlink/?LinkId=200720


CHAPTER 9  WORKING WITH CONTROLS AND THEMES 

212 

Summary 
In this chapter, you learned the basic concepts of the Metro design system and theme support on 
Windows Phone 7 devices. You learned how to detect which theme is being used, how to create theme-
aware applications, and how to navigate between the pages within Windows Phone 7 application. You 
also learned how to work with Panorama, Pivot, PhoneApplicationFrame, and PhoneApplicationPage 
controls. Finally, you learned how to further enhance user interaction via the introduction of Tilt effects 
in your applications. The next chapter covers the integration options available on Windows Phone OS 
7.0. 



C H A P T E R  10 
 

      
 

213 

Integrating Applications 
with the Windows Phone OS 

When a third-party application runs on a Windows Phone, it runs in an execution environment that is 
highly restricted. The Windows Phone OS must be restrictive in order to protect unsuspecting users of 
mobile devices from potential malicious application behavior, which may include stealing personal data 
stored on the phone, dialing phone numbers without users’ knowledge, or corrupting other 
applications’ data stores. One of the major restrictions that Windows Phone OS places on mobile 
applications is limiting them to their own execution environment, or sandbox, and not allowing them 
access to other applications’ space or the internals of the operating system. Sandboxing and other 
Windows Phone security features are covered in great detail in Chapter 19. 

Yet many applications need to access the system features of the phone to play a music file in the 
media library, for example, or to take a photo, or to send a text message. Windows Phone 7 OS enables 
such application interactions with the device via a set of Application Programming Interface (API) tasks 
referred to as launchers and choosers. Some launchers and choosers may be invoked via hardware 
buttons on the phone, such as using a camera button to take photos. It is also relatively easy to use 
launchers and choosers from within your application, but when one is invoked or when a user presses 
hardware buttons on the phone while your application is running, managing your application state does 
get a little tricky. 

This chapter covers the launchers and choosers available on the Windows Phone 7 platform, as well 
as various states an application can enter when you invoke them. You will also learn about integrating 
your applications with popular external services such as Facebook. Finally, you’ll take a quick look at 
Windows Phone 7 hubs, which bring many applications found on desktop devices and in the cloud to 
the palm of your hand. 

Introducing Windows Phone 7 Launchers and Choosers 
When an application executes, the Windows Phone 7 OS confines it to its own space, or sandbox. Both 
memory and file storage are isolated within that sandbox—one application can’t access or alter 
another’s memory or file storage. Neither can one application directly call another or access a shared 
data store, such as a list of contacts, for example. There are obvious reasons for this behavior; Microsoft 
must ensure that the Windows Phone 7 platform is as secure and stable as possible, and isolating 
applications is one giant step toward getting there. 

There is a set of built-in APIs that provides access to the most common features of Windows Phone 
7. These APIs help you perform tasks, such as saving a contact’s e-mail address or phone number or 
placing a phone call (with the mandatory prior user authorization, of course), that require access to 
shared resources on the phone.  



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

214 

Launchers and choosers, which can be thought of as system functions provided by the Windows 
Phone OS, provide you with the means to call into these applications. The difference between a launcher 
and a chooser is small but important: choosers provide a return value into the calling application, 
whereas launchers do not. If you think about a task of composing an e-mail message, for example, then 
it is sufficient to “fire and forget” an e-mail application, allowing users to create and send an e-mail. A 
launcher is an ideal solution for this task. On the other hand, an application allowing you to select a 
photo from the photo library on the phone needs to pass the selected photo to your application. 
Windows Phone 7 provides a chooser to perform such a task. 

An important concept to remember is that launchers and choosers are separate applications. Since 
one of the core design principles behind Windows Phone 7 is to maximize battery life, only one 
application is allowed to execute on the phone at any time. Therefore, if you invoke a launcher or 
chooser from within your application, that launcher or chooser will replace your application and 
become the running application. Depending on the circumstances, your application may enter one of 
several states when that happens. We will cover these possible states when we cover the application life 
cycle in depth later in this chapter, but in the meantime, Tables 10–1 and 10–2 list the launchers and 
choosers available on the Windows Phone 7 platform today. You’ll find all of them in the 
Microsoft.Phone.Tasks namespace; therefore, to use any of them, be sure to import that namespace into 
your application via the following standard directive at the very top of the code page: 

 

using Microsoft.Phone.Tasks; 

 

Launchers 
Table 10–1 lists the launchers offered on the Windows Phone 7 platform with a brief description of 
functionality offered by each. 

Table 10–1. Windows Phone 7 Launchers and Their Functions 

Launcher Function 
EmailComposeTask Launch the e-mail application with a new message 

displayed.  

MarketplaceDetailTask Launch the Windows Phone Marketplace client 
application and display the details page for the 
specified product. 

MarketplaceHubTask Launch the Windows Phone Marketplace client 
application. 

MarketplaceReviewTask Launch the Windows Phone Marketplace client 
application and display the review page for the 
specified product.  

MarketplaceSearchTask Launch the Windows Phone Marketplace client 
application and display the search results from the 
specified search terms. 



CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

215 

Launcher Function 
MediaPlayerLauncher Launch the media player. 

PhoneCallTask Launch the Phone application; use this to allow 
users to make a phone call from your application.  

SaveEmailAddressTask Launch the Contacts application; use this to allow 
users to save an e-mail address from your 
application to a new or existing contact.  

SavePhoneNumberTask Launch the Contacts application; use this to allow 
users to save a phone number from your 
application to a new or existing contact.  

SearchTask Launch the Web Search application.  

SmsComposeTask Launch the SMS application. 

WebBrowserTask Launch the Web Browser application. 

Choosers 
Table 10–2 lists and describes the choosers available on the Windows Phone 7 platform. 

Table 10–2. Windows Phone Choosers and Their Functions 

Chooser Function 

EmailAddressChooserTask Launch the Contacts application and obtain the e-
mail address of a contact selected by the user.  

CameraCaptureTask Launch the Camera application and allow users to 
take a photo from your application (for more 
information and in-depth examples, please refer 
to Chapter 16). 

PhoneNumberChooserTask Launch the Contacts application and obtain the 
phone number of a contact selected by the user.  

PhotoChooserTask Launch the Photo Chooser application and select a 
photo (refer to Chapter 16 for more information 
and a detailed demo using this Chooser). 

 



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

216 

Working with Launchers and Choosers 
In this section, you will explore how to work with launchers and choosers from within your application. 
You will use PhoneNumberChooserTask and SmsComposeTask to create an application that selects a 
contact from the shared list of contacts on the phone and then composes a text message to that contact’s 
phone number. 

Creating the User Interface 
The user interface for this sample consists of a single button; when the user clicks this button, a list of 
contacts will be displayed, allowing the user to pick one. 

1. Launch Visual Studio 2010 Express, and select the Windows Phone Application 
template. Change the project name to Tasks, select OK, and Visual Studio will 
set up a new project. 

2. Open MainPage.xaml in design mode, and add a button to the page. Change the 
button’s caption to “Send SMS.” 

Coding Application Logic 
When the user clicks the Send SMS button of your application, she should be presented with a list of 
contacts available on your device. Conveniently for you, even on the emulator, Microsoft has included a 
sample list of contacts for you to test an application with. 

3. Open MainPage.xaml.cs (right-click MainPage.xaml and select View Code). At 
the top of the page, add the following using statement: 

using Microsoft.Phone.Tasks; 

4. Declare the following module-level variable for the 
PhoneNumberChooserTask chooser (insert it right above the MainPage() 
constructor): 

            private PhoneNumberChooserTask _choosePhoneNumberTask;  

5. Instantiate a new PhoneNumberChooserTask object within the MainPage() 
constructor, and associate a method to invoke when the user selects a contact 
from the list. The method to call upon the chooser’s return will accept the 
phone number selected as one of the parameters. Use the following two lines 
of code to accomplish that: 

      _choosePhoneNumberTask = new PhoneNumberChooserTask(); 
       _choosePhoneNumberTask.Completed += new  

EventHandler<PhoneNumberResult>(ChoosePhoneNumberTaskCompleted); 

6. Code the ChoosePhoneNumberTaskCompleted method that will be invoked upon 
selection of a contact from the list. Note the use of an SmsComposeTask 
launcher to create a new text message to the person you have selected from the 
contact list. 

            private void ChoosePhoneNumberTaskCompleted(object sender, 
PhoneNumberResult e)  



CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

217 

            {  
              new SmsComposeTask() { Body = "SMS using Windows Phone 7 Chooser", To 
=  

e.PhoneNumber }.Show();  
            } 

7. Finally, add code to react to the button-click event by opening the 
PhoneNumberChooser launcher. The easiest way to accomplish this is to 
double-click the button with MainPage.xaml open in design view and make the 
button-click event look like the following: 

            private void button1_Click(object sender, RoutedEventArgs e) 
            { 
              _choosePhoneNumberTask.Show(); 
            } 

8. Press F5 to run your application. Click the Send SMS button, and select 
Andrew R. (Andy) Hill from the list of contacts that comes up on the emulator. 
Immediately after selecting Andy, you should see a screen similar to Figure 10–
1, where the SMS message has been composed and is ready to be sent to 
Andrew. 

To summarize what you have learned so far, your application integrates with the Windows Phone 
OS via a set of API methods referred to as launchers and choosers. Working with launchers and choosers 
is fairly straightforward, as illustrated by the previous example. If that was all there was to application 
integration, it would have made for a very brief chapter. But there’s more. 

One major limitation of mobile platforms is their inherently short battery life. This limitation causes 
OS designers and phone manufacturers to come up with various techniques to balance short battery life 
with positive user experience. One such technique is to allow only one application to run on the phone 
at any given time. You may be wondering then, what happens when your application yields execution to 
the built-in Windows Phone OS application invoked with the launcher? That brings us to the important 
Windows Phone concept of application tombstoning, a subject you’ll explore along with the Windows 
Phone application life cycle in the next section. 



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

218 

 

Figure 10–1. SMS is composed and ready to go to Andrew. 

Working with the Windows Phone 7 Application Life Cycle 
To program responsive applications on a Windows Phone 7 device, you must be familiar with the 
concept of tombstoning on that platform. The simplest way to explain tombstoning is to describe it as an 
event that happens when your application loses focus on the Windows Phone 7 device, such as when a 
user invokes a launcher or a chooser, or presses the hardware Start button. When your application loses 
focus, the Windows Phone OS realizes that there is a good chance that the user will want to come back to 
or reactivate your application shortly, and he or she will expect to find it in its previous state. Therefore, 
instead of simply terminating your application as soon as it loses focus, the Windows Phone OS 
remembers its state and provides developers with a means to save session-related information to a 
custom State dictionary object. However, with tombstoning, there is always a chance that your 
application may never be reactivated. So, if there is data that needs to be permanently preserved within 
your application, you should save it to the isolated storage instead of the transient State object. 

You will get to observe tombstoning at work shortly, but before that, you need to examine a typical 
life cycle of a Windows Phone 7 application. Table 10–3 summarizes the application events that can 
occur during the execution of a typical Windows Phone 7 application. The table also describes the 
actions you as a developer should take when each of those events occurs. 

x



CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

219 

Table 10–3. Applications Events, Triggers, and Actions 

Application Event Occurs When Your Actions 

Application_Launching The user taps the entry for an application 
on the installed applications screen, and a 
new instance of an application is created. 

Do not read application 
settings from the isolated 
storage as this will slow down 
the loading process; do not 
attempt to restore transient 
state. When an application 
launches, it should always 
appear as a new instance. 

Application_Activated 

 

For this event to occur, two conditions 
must be met: (1) the user navigates away 
from your application, either by using a 
launcher or a chooser, or by starting 
another application and (2) the user then 
comes back to your application by either 
completing the launcher or chooser or 
using the hardware Back button. This 
event is not raised when an application is 
first launched. 

The application should allow 
the user to continue 
interaction as if she had never 
left the application; transient 
state information should be 
restored, but the application 
should not attempt to read the 
contents of the isolated 
storage to avoid potential 
slowdown. 

Application_Deactivated 

 

The user navigates away from your 
application either by invoking a launcher 
or a chooser, or by launching another 
application. This event is not raised when 
your application is closing. 

 

You should save all transient 
(i.e., related to the current 
application session) state into 
the State dictionary. You 
should save persistent state to 
an isolated storage. 
Applications are given ten 
seconds to complete this 
event; after ten seconds, if this 
event is still not completed, an 
application will be terminated 
and not tombstoned. 

Application_Closing The user uses the Back key to navigate 
past the first page of your application. 

Save all of the persistent state 
into the isolated storage. 

 
In the next section, you will code and observe the conditions under which each of the events in the 

application life cycle is triggered. 

Observing Application Life Cycle Events 
To help you better understand the conditions under which tombstoning occurs and the events that are 
fired, let’s enhance the application built previously in this chapter to trace the events raised within the 
application. 



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

220 

Enhancing the User Interface 
You will enhance the application user interface by adding a text box and a button control to the design 
surface of MainPage.xaml to make it look similar to Figure 10–2. 

1. Launch Visual Studio 2010 Express, and open the previously created Tasks 
project. 

2. Double-click MainPage.xaml in Solution Explorer, and add a text box and a 
button to the design surface, as shown in Figure 10–2. Clear the Text property 
of the text box, and set the button’s caption to “Launch Browser.” 

Adding Application Logic to Invoke WebBrowserTask Launcher and Log Events 
Now, you will add logic to invoke a WebBrowserTask launcher and navigate to www.windowsphone.com, as 
well as add messages to print in the Debug window when various application life cycle events occur.  

3. Add the following using directive to the top of MainPage.xaml: 

using System.Diagnostics; 

4. You will launch the web browser when the user clicks the Launch Browser 
button. Double-click the Launch Browser button on MainPage.xaml, and make 
that button’s Click event handler look like the following: 

     private void button2_Click(object sender, RoutedEventArgs e) 
     { 
      WebBrowserTask webTask = new WebBrowserTask(); 
      webTask.Show(); 
       webTask.URL = "http://www.windowsphone.com"; 
     } 

5. The application life cycle events discussed in the previous section are all 
automatically stubbed out (in other words, they contain basic method 
signatures without any implementation logic) in the App.xaml.cs file. Open 
that file (one way to do it is to right-click App.xaml and select View Code) so 
that you can modify those events by adding tracing logic to them. 

6. Within the Application_Launching event, add the following line of code: 

Debug.WriteLine("Application Launching"); 

7. Within the Application_Activated event, add the following line of code: 

Debug.WriteLine("Application Activated"); 

8. Within the Application_Deactivated event, add the following line of code: 

Debug.WriteLine("Application Deactivated"); 

9. Within the Application_Closing event, add the following line of code: 

Debug.WriteLine("Application Closing"); 
 

http://www.windowsphone.com
http://www.windowsphone.com


CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

221 

 

Figure 10–2. User interface for application lifecycle test application 

Running the Application  
Before running the application, make sure to bring the Visual Studio Output window to the forefront—in 
Visual Studio, select Debug  Windows  Output on the menu bar. Press F5 to run the application that 
you have built in the previous steps and observe the messages displayed in the Output window. 

1. When the application first comes up, observe how an Application Launching 
message is printed in the Output window, indicating that the 
Application_Launching event has fired, but the Application_Activated event 
has not fired upon the initial launch of an application. 

2. Click the Launch Browser button to bring up Internet Explorer with the 
Windows Phone web site open. In the Visual Studio Output window, notice 
how the Application_Deactivated event fired as soon as the web browser was 
launched (see Figure 10–3), indicating possible tombstoning of your 
application. 

3. Click the Back button on the emulator screen. Notice how the 
Application_Activated event fires and prints a message in the Output window. 



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

222 

4. Click the Start button, and observe how Application_Deactivated is fired 
again. If you click the Back button now, the Application_Activated event is 
triggered. 

5. Finally, click the Back button again. Since you have navigated past the first 
page of the application, the application is terminated, triggering the 
Application_Closing event and printing the corresponding message in the 
Output window. 

To summarize the previous experiments, any time your application lost focus, an 
Application_Deactivated event was triggered. Any time an application gained focus (except for the 
initial launch), an Application_Activated event was triggered. These concepts are important to keep in 
mind as we discuss saving and retrieving state information in Windows Phone 7 applications in the next 
section. 

 

Figure 10–3. Application life cycle illustrated by switching between applications on the phone. 

Table 10–4 summarizes the actions you took and the corresponding events raised within your 
application. You can cross-reference Tables 10-4 and 10–3 for actions to take in order to persist state 
when a given event is raised within your application. 



CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

223 

Table 10–4. Summary of Your Actions and Resulting Application Events 

Your Action Application Event 

Pressed F5 to start the application Application_Launching 

Pressed Launch Browser button to launch IE on the phone Application_Deactivated 

Clicked the Back button to go back to your application Application_Activated 

Clicked the Start button Application_Deactivated 

Clicked the Back button to return to your application Application_Activated 

Clicked the Back button to go past the first page of  your 
application 

Application_Closing 

Managing Application State 
Try the following experiment: open the Tasks project if it’s not already open within Visual Studio 2010 
Express for Windows Phone, and press F5 to run it. In the text box field that comes up, type “Hello, 
world" (you can press the Page Up key to allow you to type from the keyboard in the emulator). Next, 
click the Launch Browser button, and then press the Back button to return to your application.  

Notice how the text box is blank (the “Hello, world” text is gone) once you come back to the main 
application screen. Now imagine if your application were a real-world application capturing many 
different pieces of data and it provided a WebBrowserTask to allow quick lookup of data on the Internet. 
It would certainly not be acceptable to the end user to have to retype all the information once the 
WebBrowserTask completes. Hence, you must devise a mechanism to preserve such data when the 
application is being tombstoned. Enter state management. 

If you have done any sort of web development, the concept of state management will already be 
very familiar to you. And if you haven’t been exposed to state management before, it’s a fairly easy 
concept to grasp. Per Microsoft’s documentation, when an application like the Tasks application of the 
previous example is tombstoned, it should save state information in case it is reactivated. The sections 
that follow will show you how to save and retrieve state information within your application. 

Managing State at the PhoneApplicationPage Level 
The concept of state management at the page level applies not only to those times when an application 
is about to be tombstoned and the page needs to persist its state for possible future retrieval. Many 
times, individual pages within a Windows Phone 7 application must save their session data to allow 
navigation to other pages within that same application; if the user comes back to the original page, the 
application should be smart enough to retrieve data previously entered by the user. 

To accomplish session persistence for both tombstoning and page navigation scenarios, each page 
relies on the following three methods within the PhoneApplicationPage class: 

• OnNavigatedFrom(), which is called when the page is no longer an active page in a 
frame. 

• OnNavigatedTo(), which is called when the page becomes the active page in a 
frame. 



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

224 

• OnBackKeyPress(), which is called when the hardware Back key is pressed. 
 

In the following code demo, you will use each one of these methods, as well as the State dictionary 
object, to persist data from the text box in the Tasks application that you have built in this chapter. 
Follow these steps to accomplish this task. 

You will not be making any changes to the user interface of the Tasks application—it will stay very 
basic, just as it is shown in Figure 10–2. You will, however, add code to the Tasks application to persist 
the information that has been entered inside the single text box in that application. 

6. Launch Visual Studio 2010 Express, and open the previously created Tasks 
project, if it’s not already open. 

7. Open MainPage.xaml.cs (one way is to right-click MainPage.xaml and select 
View Code). You will add code to save text entered in the text box on 
MainPage.xaml into the session objects if the page becomes no longer active in 
a frame—i.e., in that page’s OnNavigatedFrom method. Add the following code 
to the MainPage.xaml.cs file: 

         protected override void 
OnNavigatedFrom(System.Windows.Navigation.NavigationEventArgs e) 
         { 
              Debug.WriteLine("Navigated From MainPage"); 
             
              if (State.ContainsKey("TextboxText")) 
  { 
                  State.Remove("TextboxText"); 

} 
              State.Add("TextboxText", textBox1.Text); 
              base.OnNavigatedFrom(e); 
         } 

Notice the use of the State dictionary object—it is indeed very similar to the Session variable of 
ASP.NET web-based applications, and in the previous method you add the value from the text box into 
the State dictionary object. 

8. Next, you will add code to retrieve values from the State dictionary object 
when the user navigates to the current page; you will do that inside the 
OnNavigatedTo method: 

     protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e) 
         { 
              Debug.WriteLine("Navigated To MainPage"); 
 
              if (State.ContainsKey("TextboxText")) 
              { 
                  string strTextboxText = State["TextboxText"] as string; 
 
                  if (null != strTextboxText) 
                       textBox1.Text = strTextboxText; 
              } 
 
              base.OnNavigatedTo(e); 
         } 
 



CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

225 

The code you have written thus far is sufficient to save the text from the text box for the duration of 
the application session; even if an application is tombstoned, and the user later returns to the current 
page, the text will be properly preserved. Let’s test this out really quickly: press F5 to run this application, 
enter “Hello, world” in the text box, and press the Launch Browser button. Once the browser comes up, 
press the Back button—you should see “Hello, world” still displayed in the text box, unlike the behavior 
you saw previously in this chapter, where you did not handle any state information at all. 

While saving information for the duration of the session is extremely important, there are many 
occasions when you would like to save information permanently, so that even if you turn your phone off 
(or the battery dies), you will still have access to that information. Let’s expand the demo to 
accommodate saving text into the isolated storage on the Windows Phone 7, so that text is available for 
use as long as the application’s isolated storage is intact (and as long as you don’t remove this 
information from the isolated storage, of course). Follow these steps to accomplish this task. 

9. Add the following two using directives to the top of the MainPage.xaml.cs file: 

using System.IO.IsolatedStorage; 
using System.IO; 

10. You will add code to save text into the isolated storage area of your application 
if the user presses the Back button past your application’s first page (for 
example, the user presses the Back button as soon as the application 
launches). If you would like to get more familiar with isolated storage, see 
Chapter 13. Add the following method to the MainPage.xaml.cs file: 

         protected override void OnBackKeyPress(System.ComponentModel.CancelEventArgs 
e) 
         { 
              base.OnBackKeyPress(e); 
              MessageBoxResult res = MessageBox.Show("Do you want to save your work 
before  

leaving?", "You are exiting the application", 
MessageBoxButton.OKCancel); 

 
              if (res == MessageBoxResult.OK) 
              { 
                  Debug.WriteLine("Ok"); 
                  SaveString(textBox1.Text, "TextboxText.dat"); 
              } 
              else 
              { 
                  Debug.WriteLine("Cancel"); 
              } 
         } 

 
Notice how the message box is used to ask the user whether to save information to the file inside 

isolated storage; if the user chooses Yes, the SaveString method is called, passing the value to save and 
the file to save it to. 



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

226 

11. Finally, you need to code the SaveString method that performs all the heavy 
lifting saving data to the isolated storage. This method accepts the name of the 
file as one of the parameters, and then it creates a file with that name within 
the isolated storage. After the file is created, the method saves the data string 
passed to it inside that file. While persisting string values inside the file is 
perfectly acceptable for the small application that you are building in this 
demo, you might consider a different data structure for bigger production 
applications with lots of data to persist. Serializing data to XML would be a 
better alternative for such applications, as would be saving data inside a 
dictionary or key-value collection objects. Here is the full listing of the method 
to persist data to an isolated storage; make sure it is also present in your code.  

         private void SaveString(string strTextToSave, string fileName) 
         { 
              using (IsolatedStorageFile isf = 
IsolatedStorageFile.GetUserStoreForApplication()) 
              { 
                  //If user choose to save, create a new file 
                  using (IsolatedStorageFileStream fs = 
isf.CreateFile(fileName)) 
                  { 
                       using (StreamWriter write = new StreamWriter(fs)) 
                       { 
                            write.WriteLine(strTextToSave); 
                       } 
                  } 
              } 
         } 

 
You are now ready to run your application. Press F5 to launch it, type “Hello, world” in the text box 

shown, and press the Back button. Remember, pressing the Back button past the first page of an 
application results in termination of that application. Click Yes on the message box prompting you to 
save your work before leaving. Next, re-launch your application. You should see “Hello, world” displayed 
in the text box—but you don’t. What happened? If you guessed that you still have to retrieve the values 
previously stored inside the isolated storage, you are correct. You will retrieve those values in the next 
section, together with looking at the best practices for retrieving this information. 

Retrieving Application Initial State 
Microsoft guidelines state that within the Application_Launching event there should not be any isolated 
storage access or web service calls, so that the application comes up and is available for use as quickly as 
possible. Instead, Microsoft recommends asynchronously loading values from the isolated storage of an 
application once the application is fully loaded. This set of restrictions forces us as developers to code 
the initialization routines using the following two guidelines: 

1. Invoke data initialization and retrieval on a separate thread so as to maximize 
the responsiveness of an application. 

2. Perform application initialization inside the OnNavigatedTo method of the 
PhoneApplicationPage class. 



CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

227 

In this demo, you will add the necessary methods to properly load application data from the isolated 
storage. 

3. You will continue modifying the Tasks project that you have worked with 
throughout this chapter. At the top of MainPage.xaml.cs, add the following 
using directive: 

using System.Threading; 

4. Open MainPage.xaml.cs and go to the OnNavigatedTo method within that code. 
You will make adjustments to that method to load data asynchronously (on a 
separate thread) from the isolated storage, if there is no data in the State 
dictionary. If you recall, the State dictionary object is used to hold transient 
application data, or data that is being saved and retrieved as the user navigates 
between pages in the application. Therefore, you check the State object to 
determine whether transient or permanently persisted data should be 
retrieved. Make the OnNavigatedTo method look like the following: 

            protected override void 
OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e) 
            { 
              Debug.WriteLine("Navigated To MainPage"); 
 
              if (State.ContainsKey("TextboxText")) 
              { 
                  string strTextboxText = State["TextboxText"] as string; 
 
                  if (null != strTextboxText) 
                      textBox1.Text = strTextboxText; 
              } 
              else 
              { 
                  LoadAppStateDataAsync(); 
              } 
 
              base.OnNavigatedTo(e); 
            } 

5. The LoadAppStateDataAsync method is responsible for invoking a method that 
accesses isolated storage data on a separate thread. The full method is shown 
here: 

            public void LoadAppStateDataAsync 
            { 
              Thread t = new Thread(new ThreadStart(LoadAppStateData)); 
              t.Start(); 
            } 

6. Finally, the LoadAppStateData method accesses isolated storage data looking 
for a particular file (hardcoded to be TextboxText.dat at the moment) and the 
settings within that file. 

            public void LoadAppStateData() 
            { 

6



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

228 

      string strData = String.Empty; 
 
              //Try to load previously saved data from IsolatedStorage 
              using (IsolatedStorageFile isf = 
IsolatedStorageFile.GetUserStoreForApplication()) 
              { 
                  //Check if file exits 
                  if (isf.FileExists("TextboxText.dat")) 
                  { 
                       using (IsolatedStorageFileStream fs = 
isf.OpenFile("TextboxText.dat",  

System.IO.FileMode.Open)) 
                       { 
                            using (StreamReader reader = new 
StreamReader(fs)) 
                            { 
                                 strData = reader.ReadToEnd(); 
                            } 
                       } 
                  } 
              } 
              Dispatcher.BeginInvoke(() => { textBox1.Text = strData; }); 
            } 

7. Your application is now complete, and it should handle both transient and 
persistent states. To test it, press F5 and enter “Hello, world” in the text box 
presented. Next, press the Back button and answer Yes to save work before 
leaving. The application is now terminated; if you press F5 again to re-launch 
the application, the screen should come with “Hello, world” already populated 
within it. 

Best Practices for Managing the Application Life Cycle  
on the Windows Phone 7 OS 
Microsoft provides an important set of application behavior guidelines to follow to ensure a consistent 
and positive user experience on a Windows Phone 7 platform. Some of the highlights of those best 
practices are as follows: 

1. Ensuring that when the user launches a new instance of an application, it is 
clear that it’s a new instance (in other words, the last example of automatically 
retrieving settings from the isolated storage upon application launch may not 
be ideal). At the same time, if an application is being reactivated, the user 
should feel that the reactivated application has returned in its previous state. 

2. Since the user may never return to the application once it becomes 
tombstoned, any data that needs to be saved to a persistent data store should 
be saved when either the Closing or Deactivated event fires. 



CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

229 

3. Invoking a launcher or a chooser will always deactivate an application and 
may cause it to become tombstoned. An application may not be tombstoned if 
it launches an experience that feels like it’s a part of the original application. 
Microsoft currently lists the following launchers and choosers as not 
automatically tombstoning the calling application (it clarifies, however, that 
an OS may still choose to tombstone the calling application if the resources are 
needed elsewhere): 

• PhotoChooserTask  

• CameraCaptureTask  

• MediaPlayerLauncher  

• EmailAddressChooserTask  

• PhoneNumberChooserTask  

• MultiplayerGameInvite [games]  

• GamerYouCard [games]  
 

You can take a look at the full list of best practices for managing the application life cycle (most of 
which have already been covered in this chapter) at http://msdn.microsoft.com/en-
us/library/ff817009(v=VS.92).aspx.  

Integrating with Facebook 

Applications running on mobile devices, including Windows Phone 7 devices, are ideally suited to take 
advantage of social networks—these devices are always on and are always with their respective owners, 
allowing for constant interaction with peers and colleagues. Today, integration of mobile devices into 
social networks is virtually assumed, so it makes a lot of sense for your application to take advantage of 
as many social networking features as are applicable. In the next section, you will walk through 
integrating with (currently) the biggest social network of them all—Facebook. These integration efforts 
will allow you to practice what you have learned about tombstoning and managing application state so 
far in this chapter, as well as explore new concepts of tapping vast marketing potential for your 
application through Facebook. More good news for application developers is that similar integration 
principles apply to other social networks as well—for example, LinkedIn uses the same protocol (OAuth, 
which you will learn about shortly) for authorizing applications on behalf of the users to retrieve and 
manipulate data. 

A Few Words about OAuth 
Facebook uses  OAuth protocol for third-party application authentication and authorization. OAuth is 
the authorization protocol characterized by separating resource ownership and access to the resource 
by third parties (referred to as clients in the OAuth documentation). In the context of Windows Phone 7 
development, the applications that you build that need to post to users’ Facebook walls or retrieve 
resources from the users’ social graphs are clients, and Facebook users (they are also users of your 
application) are the resource owners. Instead of blindly giving away their user name and password to 
your app, Facebook users will instead grant your application limited time and scope to perform 
authorized operations on their behalf. These operations may include posting on users’ walls or querying 

http://msdn.microsoft.com/en-us/library/ff817009
http://msdn.microsoft.com/en-us/library/ff817009
http://msdn.microsoft.com/en-us/library/ff817009


CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

230 

users’ information. The authorization to perform these operations will come in the form of an OAuth 
token obtained from Facebook. 

Facebook provides an excellent set of step-by-step guidelines for integrating your applications into 
their vast ecosystem (you can access those at http://developers.facebook.com/docs/authentication/). 
These guidelines state that there are essentially three steps to proper Facebook authorization via OAuth: 
(1) user authentication, (2) application authorization and (3) application authentication. Let’s take a 
look at how these three steps would happen on a Windows Phone 7 device. 

In the next demo, you will enhance the Tasks application that you built so far with the ability to post 
simple messages to your application users’ Facebook wall. In the first step (user authentication), you will 
need to launch a Web browser on the Windows Phone 7 device and direct it to www.facebook.com asking 
the user to authenticate (note that you cannot simply “post” user name and password to Facebook web 
page from within a XAML page in your application—that would break the trust chain that OAuth was 
designed to protect, since your application can easily capture the user name and password values). Once 
the user is successfully authenticated, she will be presented with a dialog listing all of the action your 
application intends to take on her behalf—that’s the second step in the OAuth implementation. This 
second step is necessary for the user to make an informed decision about whether to grant your 
application the necessary rights. Finally, in the third step (application authentication), your application 
will supply a special unique secret key that identifies your app on Facebook to ensure that the user is 
giving her information to your app and not someone else’s. Let’s go ahead and code these   three steps. 

Note Before your application is able to interact with Facebook, you must register it on Facebook and obtain the 
Application ID and a Secret Key. These values are unique to your application; do not share those values with 
anyone! To register your application, go to http://developers.facebook.com/setup and follow the step-by-step 
guidelines to get the necessary information pieces for your app. 

Enhancing the User Interface for Facebook Integration 
You will continue working with the Tasks application and add an additional option to post a message to 
Facebook on the main page of your application plus a separate page containing web browser control for 
navigating to facebook.com—you’ll see why a separate page is needed shortly. 

1. Launch Visual Studio 2010 Express, and open the previously created Tasks 
project. 

2. Double-click MainPage.xaml in Solution Explorer, and add a button to the 
design surface, somewhere underneath the other two buttons. Set the name of 
the button to be btnFacebook and set the button’s caption to “Post to 
Facebook.” 

3. Right-click on the project name (Tasks) in the Solution Explorer and choose 
Add  New Item, then choose Windows Phone Portrait Page. Name the page 
FBLogin.xaml. 

http://developers.facebook.com/docs/authentication/
http://www.facebook.com
http://developers.facebook.com/setup


CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

231 

4. Double-click the newly added FBLogin.xaml page in Solution Explorer and add 
a web browser control to that page. Make the web browser control occupy the 
whole width and height of the page, since the user will be utilizing this control 
to log in to Facebook. 

Adding Application Logic to Post to Facebook 
Now, you will add logic to post to Facebook from your application. Remember the brief discussion about 
OAuth—posting to Facebook is a multi-step procedure, which includes (1) user authentication, (2) app 
authorization and (3) app authentication. Follow the steps below to successfully implement each of 
these steps. 

 

1. First things first—you need to add a couple of references to the project to make 
the code below work. Right-click on the project name in Solution Explorer and 
select Add Reference. Add a reference to Microsoft.Phone.Reactive and 
System.Observable assemblies. 

2. Add the following using directives to the top of the page: 

using Microsoft.Phone.Reactive; 
using System.IO; 
using System.Diagnostics; 
using System.Text; 
 

3. User authentication will happen inside the newly added FBLogin.xaml page—
therefore your button click event handler should redirect the user to that page. 
Add the following code to the btnFacebook button click event (notice how you 
pass the MessageToPost parameter to the page): 

private void btnFacebook_Click(object sender, RoutedEventArgs e) 
                { 
              NavigationService.Navigate(new  

Uri(String.Format("/FBLogin.xaml?MessageToPost={0}", textBox1.Text),  
UriKind.Relative)); 

                } 
 

4. In the next step, you will define certain constants, such as permission types 
that an application needs, as well as a standard URL that Facebook gives to 
desktop and mobile developers to use upon successful authentication of an 
application (STR_FB_SuccessUrl constant below). Facebook developer 
documentation gives an in-depth overview of permission types available to 
your application; your sample application simply needs a permission to post 
to users’ Facebook wall. Open FBLogin.xaml.cs page (right-click on 
FBLogin.xaml and select View Code) and add the following constant 
declarations to the top of the page (note that you must supply your application 
ID and your application secret key for the STR_FB_AppID and FB_AppSecret 
parameters correspondingly): 

        const string STR_FB_Permissions = "publish_stream"; 



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

232 

        const string STR_FB_SuccessUrl =
"http://www.facebook.com/connect/login_success.html"; 
        const string STR_FB_Login =    

"https://graph.facebook.com/oauth/authorize?display=wap&client_id={0}&redirect
_uri={1}&scope={2}"; 

        const string FB_GetAccessToken =  
"https://graph.facebook.com/oauth/access_token?client_id={0}&redirect_uri={1}&
client_secret={2}&code={3}"; 

        const string STR_Post = "POST"; 
        const string STR_Access_token = "access_token"; 
        const string STR_FB_AppId = "Your App ID"; 
        const string FB_AppSecret = "Your App Secret"; 
        const string STR_FormEncoded = "application/x-www-form-urlencoded"; 

5. In this step, you will use Reactive Extensions for .NET (Rx.NET) to subscribe to 
Webbrowser’s control Navigated event. Rx.NET is ideally suited for working 
with events, such as navigation to and from facebook.com and the like. There is 
a whole chapter (Chapter 18) in this book devoted to learning and using 
Rx.NET.  For right now, however, a simple understanding that you are reacting 
to the web browser’s Navigated event and then creating a web request to 
Facebook in the code below is sufficient. Upon receiving the Navigated event, 
the code below parses out a session ID obtained from Facebook, then uses that 
session ID to compose a custom message to Facebook requesting an 
authentication token for the application. The actual posting of the message to 
the Facebook wall happens in the next step (Step 6). Make the FBLogin() 
constructor look like the following code: 

        public FBLogin() 
        { 
            InitializeComponent(); 

            this.Loaded += (sender, args) => 
            { 
                var url = string.Format(STR_FB_Login, STR_FB_AppId,  

HttpUtility.UrlEncode(STR_FB_SuccessUrl), STR_FB_Permissions); 
                IObservable<IEvent<NavigationEventArgs>> FBResponse; 

                //register a subscription to FaceBook navigated event 
                FBResponse = Observable.FromEvent<NavigationEventArgs>(webBrowser1,  

"Navigated"); 
                FBResponse.ObserveOn(Deployment.Current.Dispatcher) 
                    .Subscribe(evt => 
                    { 
                        //on successful user authentication event only 
                        if
(evt.EventArgs.Uri.ToString().StartsWith(STR_FB_SuccessUrl)) 
                        { 
                            //1. get a session ID from the query string 
                            var sessionId =  

http://www.facebook.com/connect/login_success.html
https://graph.facebook.com/oauth/authorize?display=wap&client_id=
https://graph.facebook.com/oauth/access_token?client_id=


CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

233 

evt.EventArgs.Uri.Query.Substring("?code=".Length); 

 
                            //get the user and compose an authentication token request 
                            string strTokenId = GetGraphToken(sessionId); 
                            string strMessage = String.Empty; 
                            NavigationContext.QueryString.TryGetValue("MessageToPost", 
out  

strMessage); 
 
                            //2. get OAuth authentication token and use it to update 
user's Facebook wall 
                            UpdateWall("POST", strTokenId, strMessage); 
                            NavigationService.GoBack(); 
                        } 
                    }, 
                    ex => 
                    { 
                        //log/process exceptions here 
 
                    } 
                ); 
 
                //invoke the navigation process 
                webBrowser1.Navigate(new Uri(url, UriKind.Absolute)); 
            }; 
        } 

 

6. Finally, you will code a couple of helper methods that will create a message to 
Facebook in the format that Facebook can understand, properly parse 
Facebook responses, and redirect. The first one of those methods is the 
GetGraphToken method shown here: 

 

        public static string GetGraphToken(string sessionId) 
        { 
            string strAccessTokenUrl = String.Empty; 
            try 
            { 
                strAccessTokenUrl = string.Format(FB_GetAccessToken, STR_FB_AppId,  

STR_FB_SuccessUrl, FB_AppSecret, sessionId); 
            } 
            catch (Exception exc) 
            { 
                System.Diagnostics.Debug.WriteLine("ERROR: " + exc.Message); 
                System.Diagnostics.Debug.WriteLine(exc.StackTrace); 
            } 
 
            return strAccessTokenUrl; 
        } 
 



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

234 

7. The final helper method performs the heavy lifting of posting to Facebook. The 
gist of it is to use Rx.NET to asynchronously create a POST request to Facebook 
website, asking for a special OAuth authentication token and, upon 
successfully getting it, update user’s Facebook wall. Don’t feel overwhelmed by 
the length of the method below—you have learned the basic flow of OAuth 
authorization already, and this method simply implements the details of that 
flow inside a single function that you could reuse inside the applications that 
you build. Also, don’t forget that you can always download all the code for this 
book instead of manually typing it in. 

        public static void UpdateWall(string method, string url, string postData) 
        { 
            var webRequest = WebRequest.Create(url) as HttpWebRequest; 
            webRequest.Method = method; 
 
            if (method == STR_Post) 
            { 
                webRequest.ContentType = STR_FormEncoded; 
                // request an authentication token 
                Observable.FromAsyncPattern<WebResponse>( 
                            webRequest.BeginGetResponse, 
                            webRequest.EndGetResponse)() 
                            .Subscribe( 
                            wr => 
                            { 
                                try 
                                { 
                                    // upon completion of request for authentication 
token, parse out access  

// token 
using (var responseReader = new  

StreamReader(wr.GetResponseStream())) 
                                    { 
                                        string strOutput = responseReader.ReadToEnd(); 
 
                                        // use access token to compose the request to 
post to user's Wall 
                                        var payload =  

string.Format("{0}&message={1}&caption={2}&link={3}&name={4}", 
strOutput, "My WP7 App: \n\n" + postData, "WP7 App", 
"http://www.windowsphone.com", "WP7 Facebook Integration"); 
 

                                        var uri = new  
Uri(string.Format("https://graph.facebook.com/me/feed?{0}", 
payload)); 

 
                                        var wc = new WebClient { Encoding = 
Encoding.UTF8 }; 
                                        
Observable.FromEvent<UploadStringCompletedEventArgs>(wc,  

"UploadStringCompleted") 
                                            .Subscribe(evt => 

http://www.windowsphone.com
https://graph.facebook.com/me/feed?


CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

235 

                                            { 
                                                try 
                                                { 
                                                    if (evt.EventArgs.Result != null) 
                                                    { 
                                                        //successfully updated wall, 
print SUCCESS message into  

// Debug window 
                                                        Debug.WriteLine("SUCCESS!"); 
                                                    } 
                                                } 
                                                catch (WebException ex) 
                                                { 
                                                    StreamReader readStream = new  

StreamReader(ex.Response.GetResponseStream()); 
                                                    
Debug.WriteLine(readStream.ReadToEnd()); 
                                                } 
                                            }, 
                                            ex => 
                                            { 
 
                                            } 
                                        ); 
 
                                        wc.UploadStringAsync(uri, null, payload); 
                                    } 
 
                                } 
                                catch (WebException ex) 
                                { 
                                    StreamReader readStream = new  

StreamReader(ex.Response.GetResponseStream()); 
                                    //Get the error message from Facebook 
                                    Debug.WriteLine(readStream.ReadToEnd()); 
                                } 
                            }); 
             } 
        } 
 

You are now ready to run the application. Press F5, type “Hello from WP7 and Rx.NET” in the text 
box that comes up, then press “Post to Facebook” button. You should be prompted to login to Facebook 
(it’s probably a good idea to create a test account on Facebook for testing your application), and, upon 
successful authentication, your message should appear on your Facebook wall. 

This section provided you with the basics of integrating your applications with social networks 
using OAuth. You should be able to relatively easily modify your applications to talk to LinkedIn and 
other providers implementing OAuth using the sample code above. The beauty of this implementation is 
the fact that the whole OAuth flow is embedded inside a single page (FBLogin.xaml), providing for 
modularized application development.  

A final word of caution, however, and it’s a very important one: even though in the sample above 
you have embedded your Facebook application ID and Secret Application Key inside the code, you 



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

236 

should never do this in applications that you will distribute to the end users. As you will see in Chapter 
19 of this book, it is extremely easy to gain access to application’s source code, and you don’t want to be 
sharing your application’s secrets with anybody. In the real-world solution, your Windows Phone 7 
application will request Facebook ID and a Secret Key from a secure web service that you provide (upon 
initialization, or right before the user makes a request to post to Facebook wall, for example). We have 
avoided showing you an implementation of this service here to avoid complicating the example; 
however, there are good demos on building web services throughout this book, including the one in 
Chapter 17 where you build a simple WCF service. 

 Note Remember to never embed your Facebook Application ID or your Secret Key inside your production code! 

Integrating into Windows Phone 7 Hubs 
Among the many strengths of the Windows Phone 7 platform is the extent of its integration into the rest 
of the .NET ecosystem developed by Microsoft over the years, which remains one of its biggest 
advantages over competing phone platforms. The integrated experience comes in the form of hubs on 
the phone Start screen, which are essentially menu areas that collect data based on functions. The 
following hubs are available and are tightly integrated into the Windows Phone 7 OS: 

• The People Hub integrates feeds from Windows Live and Facebook, and you can 
also connect other services to Windows Live like LinkedIn, YouTube, Flickr, 
WordPress, and over 70 more.  

• The Pictures Hub makes it easy to share pictures and video with your friends via 
social networks. 

• The Games Hub with its first and only Xbox Live app, which allows for game, 
avatar, achievements, and profile integration. 

• The Music and Video Hub makes the full collection of music and videos available 
to Zune devices also integrated with Windows Phone 7. In fact, the Zune pass that 
allows unlimited leasing of music may be one of the best kept secrets of Windows 
Phone 7 platform! 

• The Marketplace Hub allows users to find and install certified applications and 
games on the phone. 

• The Office Hub with its support of Exchange and Exchange ActiveSync, Outlook 
(with e-mail, calendar, and contacts all available), PowerPoint, SharePoint, Word, 
and Excel. You can edit Office documents on your mobile device and have your 
changes available in real time (i.e., as you change them) to others. 
 

The marketing campaign for Windows Phone 7 is about allowing users to “glance and go,” or to get 
the information or the functionality they need from the phone very quickly (quicker than competing 
platforms, that is). Hubs play a critical role in providing this “glance and go” experience, and your 
application can raise that role even further by integrating with hubs directly. When you integrate with 
one of the hubs, your application becomes visible and available through that hub, and not just through 
the standard list of applications installed on the device. Of course, the functionality provided by your 



CHAPTER 10   INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

237 

application must fit with the functionality a user might expect from the hub; for example, a music 
discovery service that allows you to search and find new music based on what you currently like and 
own should certainly fit within the Music and Video Hub. 

Detailed instructions for integrating with the Pictures Hub are provided in Chapter 16 by using the 
Extras feature of that hub. The next section of this chapter will briefly cover the Music and Video Hub, 
giving you a general idea of what it would take for your application to appear there and providing users 
more of the “glance and go” experience. In addition, we will touch on integration features of Windows 
Phone 7 platform available to users of SharePoint, a major enterprise collaboration platform from 
Microsoft. 

Integrating your Application with Music and Video Hub 
Integrating with Music and Video Hub is simple: once you ensure that your application makes use of the 
MediaHistory and MediaHistoryItem classes and provide images to display in the Music and Video Hub 
tile, the Windows Phone application certification process (discussed in detail in Chapter 5) will take care 
of the rest. Once the certification process detects that your application uses the MediaHistory and 
MediaHistoryItem classes, your application’s hub will be set to Music and Video, and your application 
will show up on the panorama panel titled “Marquee” within that hub. The quickest way to get to 
Marquee tab is to swipe the panorama from left to right once you are in the Music and Video hub. 

Once your application is inside the Music and Video Hub, it can manipulate the tile for that hub, 
and it can also update the history list of media items played or the list of newly available media items. To 
update the history and new media items lists, your application will instantiate a new MediaHistoryItem 
object, set its properties, and call WriteRecentPlay and WriteAcquiredItem, correspondingly. To update 
the Now Playing tile on the phone, you would once again create a new MediaHistoryItem object, set its 
properties, and then assign it to the MediaHistory.Instance.NowPlaying property. 

It is certainly inconvenient enough that the emulator does not provide any of the hubs to test 
integration against, so you have to deploy your application to a real device to test that integration. What 
could be even more frustrating is the fact that you may need to wait for your application to be certified 
before it is available for testing as part of the Music and Video Hub. To help prevent potentially lengthy 
application development procedures for hub integration, Microsoft has come up with a workaround for 
testing Music and Video Hub integration. Inside the WMAppManifest.xml file, located within the 
Properties folder in your Solution Explorer, make sure to set the HubType value to 1, as illustrated here: 

 

<App xmlns="" ProductID="{c98b0a70-e0c1-462f-a756-5d0aff98e066}" Title="Tasks" 
RuntimeType="Silverlight" Version="1.0.0.0" Genre="apps.normal"  Author="Tasks author" 
Description="Sample description" Publisher="Tasks" HubType=”1”> 
 

Microsoft provides a set of guidelines for images that you must submit during the certification step, 
should you choose to integrate with the Music and Video Hub and decide to update the tile of that hub. 
These guidelines are summarized in the list below: 

1. Your tile images must be of type JPEG. 

2. You must include your application title or logo on each tile image. 

3. The Now Playing tile must be 358 pixels x 358 pixels in size. 

4. Other tiles must be 173 pixels x 173 pixels in size. 



CHAPTER 10  INTEGRATING APPLICATIONS WITH THE WINDOWS PHONE OS 

238 

Integration with SharePoint 
While Microsoft has been very explicit in their marketing materials that the first release of Windows 
Phone 7 OS is targeted at everyday consumer and not at enterprise customers, the company has already 
started creating several critical hooks necessary for enterprises to take notice of the platform. One of 
such hooks is the fact that you can work within the enterprise SharePoint environment on your Windows 
Phone 7 device. The SharePoint Workspace Mobile application comes pre-installed on every single 
Windows Phone 7 device (and is located in the same exact spot on every device—inside the Office hub). 
Once you log in into SharePoint site, you can browse all Office documents and they will appear in the 
same exact format as on any other computer capable of connecting to SharePoint. You can modify 
documents, and your changes, as well as potential conflicts when others modify the same document, 
will be detected and resolved via the SharePoint integration. Another exciting feature is Offline 
Documents, which allows you to download and edit documents even if connection to SharePoint site is 
not available. You can synchronize the documents later, and you will also be guided through resolving 
potential conflicts within the document due to multiple people working on it. 

SharePoint integration is just one example of the powerful platform integration that you have on 
Windows Phone 7. As the platform continues to evolve, we will see even broader and better integration 
options available into the vast Microsoft ecosystem out there. 

Summary 
In this chapter, you learned how applications integrate with the Windows Phone OS. You learned how to 
use launchers and choosers to accomplish common tasks on the platform. You learned what effects 
launchers and choosers have on the state of the application that uses them, and you reviewed the 
application life cycle and managing state within this life cycle. Finally, you got a brief overview of all the 
major applications already tightly integrated within Windows Phone 7 and grouped in hubs. In the next 
chapter, you will learn about Trial API and build sample trial applications for submission to the 
Marketplace. 

 

 



C H A P T E R  11 
 

      
 

239 

Creating Trial Applications 

Today, many mobile software vendors maintain two versions of their application code, one for the trial 
version and another for purchase. The code base for the trial version typically includes some—but not 
all—of the functionality of the full version, as well as code that urges users to upgrade to the full version 
of the product. The Windows Phone 7 platform, however, eliminates the need for this practice thanks to 
the handy IsTrial method. The IsTrial method of the Microsoft.Phone.Marketplace.LicenseInformation 
class provides the functionality you need to create a trial version. 
Microsoft.Phone.Marketplace.LicenseInformation is a sealed class that contains the methods you'll use to 
test your applications. You have already learned how to deploy applications to the Windows Phone 
Marketplace in Chapter 5; in this chapter, you will learn how to add a trial option to applications you 
deploy so that your potential customers have a chance to try your applications before they buy them. 
The IsTrial method determines whether an application is running under a trial or a full license, allowing 
you to limit your application based on the result that IsTrial returns. 

Understanding Trial and Full Modes 
If you wish to let potential buyers try your application first, you must let Microsoft know that that trial 
functionality is “allowed”—i.e., available—when you submit your application to the Windows Phone 
Marketplace. If you specify that trials are allowed, then, in the Marketplace, Microsoft will automatically 
include a Free Trial button, as shown in Figure 11–1. An important consideration for application 
developers is that, at present, trials do not expire—they can be replaced by full application versions only 
if customers decide to purchase applications. Note that while you can certainly simulate time-limited 
trials (we talk about this in the next paragraph, but basically you would have to do all the plumbing 
yourself), it’s not the recommended way to use Trial API. Time-restricted applications are subject to re-
installation, resulting in a mere inconvenience to the end user to continue using your application 
without paying you a dime. 

The implementation of trial functionality is entirely up to the application developer; the developer 
may choose to limit the functionality of the application and prompt the user to purchase the full version 
of an application to access all application features. Alternately, the developer may choose to prevent the 
trial application from running after a certain time period. The way to accomplish these time-limited 
trials would be to either store the date the application was run for the first time in the Isolated Storage 
and stop after a certain time period, or to store the number of times the application has been run and 
disallow its execution after a certain number of runs. 

Microsoft recommends that application providers prompt users of their trial software during the 
trial period to purchase a full version. If a user selects the purchase option, control of the application 
should be programmatically transferred to Windows Phone Marketplace and the application details 
page should be displayed. Within the Windows.Phone.Tasks namespace, there is a set of methods that 
make it quick and easy to complete Marketplace tasks, including searching within the application or 



CHAPTER 11 ■ CREATING TRIAL APPLICATIONS 

240 

music categories and showing the application details page. You have already seen some of those 
methods in Chapter 10 when you read about launchers and choosers. If, after reviewing application 
details, the user decides to purchase your application, the trial license is replaced with the full license, 
and the execution of the IsTrial method should indicate that the application is no longer running in the 
trial mode. 

 

 

Figure 11–1. A Free Trial button is available in the Marketplace for applications that support Trial mode. 

You will now explore in detail both the IsTrial method and the Windows Phone Marketplace API 
classes that are used to do this work. 

Using the IsTrial Method 
Using the IsTrial method is straightforward: this method is part of the 
Microsoft.Phone.Marketplace.LicenseInformation class, and it returns true if an application is being 
used on a trial basis (i.e., when the user clicks the Free Trial button instead of the Buy button in the 
Windows Phone Marketplace) and false if an application is running with a full license. Windows Phone 
Marketplace handles installation of trial and full licenses and determines when each is appropriate. 
However, when you execute the IsTrial method while you’re developing an application or before the 
application user has acquired a trial or a full application license, its behavior is unpredictable. Microsoft 
documentation currently says that IsTrial would return true, while our tests show the opposite. 
Regardless of the outcome during the development stage, you should assume that the IsTrial method 
will work as designed while an application is in development and make provisions for the application to 
execute properly when it is running under either a trial license or a full license. 



CHAPTER 11 ■  CREATING TRIAL APPLICATIONS 

241 

The short example that follows demonstrates the use of the IsTrial method and prints a message 
onto the screen regardless of whether the current application is running under a trial or a full license. 

Creating the User Interface 
In this section, you will be creating very simple user interface to test your IsTrial method in Visual 
Studio 2010 Express. 

1. First, launch Visual Studio 2010 Express for Windows Phone and create a new 
Windows Phone Application project. Name it TrialSample. 

2. Now add some user interface elements. From the Toolbox, drag and drop a 
textblock onto the application design surface. Since you are only getting 
familiar with the IsTrial method, leave the name of the textblock unchanged 
(textBlock1) and adjust its width to occupy the entire width of the screen. 

Coding Application Logic 
Now you will be populating textblock with information about whether or not the current application is 
in trial mode in the code. 

1. Open MainPage.xaml.cs (right-click MainPage.xaml and select View Code), and 
add the following statement to the top of the page: 

using Microsoft.Phone.Marketplace; 
 

2. In the MainPage() constructor, add the following code right after 
InitializeComponent(): 

 

             LicenseInformation lic = new LicenseInformation(); 
 
             if (lic.IsTrial()) 
             { 
                textBlock1.Text = "You are running a trial version of our software!"; 
 
             } 
             else 
             { 
                textBlock1.Text = "Thank you for using the full version of our 
software!"; 
             } 

3. Press F5 to run the application to see the results of the IsTrial method 
execution. When the application comes up, you should see a message stating 
whether you are running a trial version of your application (i.e., the IsTrial 
method returned true) or the full version. 



CHAPTER 11 ■ CREATING TRIAL APPLICATIONS 

242 

In the next section, you get to explore options that go beyond simply displaying a text message when 
the user is executing the trial version of your software. Namely, Windows Phone Marketplace exposes a 
set of classes to help the user review the details and pay for the full license of your application. 

Using the Marketplace APIs 
Now that you know how to find out whether an application is running in trial mode, let’s add the ability 
to review an application and buy it. To do that, you'll need two new classes found in the 
Microsoft.Phone.Tasks namespace: MarketplaceDetailTask and MarketplaceReviewTask. These classes, 
known as application launchers on the Windows Phone 7 platform and described in Chapter 10, contain 
all the necessary functionality for your application to switch from trial to full mode. 

Both MarketplaceDetailTask and MarketplaceReviewTask classes implement a Show method that 
launches the Windows Phone Marketplace application and navigates to the specified application page. 
For the purposes of allowing users to switch from trial license to full license, there is little difference 
between these two classes. However, for reference purposes, note that MarketplaceDetailTask allows an 
application developer to specify an ID of the application (in the ContentIdentifier property) to show the 
Windows Phone Marketplace page for. This application ID is optional—if it’s not supplied to the 
MarketplaceDetailTask class, the details for the current application are shown in the Marketplace. The 
MarketplaceReviewTask class, on the other hand, does not expose any public properties, and its Show 
method displays the review page with an option to buy for the current application only.  

 Note Navigation to Windows Phone Marketplace must be simulated in your application while you are working
on it in the emulator. This is because required licensing and Windows Phone Marketplace ID properties are not
created until after your application is complete and submitted (refer to Chapter 5 for submitting your application to
the Marketplace). However, Microsoft provides a special “secret” code that signifies that your application can
successfully execute the Show method of the MarketplaceDetailTask and MarketplaceReviewTask launchers. Error
code 80070057 specifies that the Show call successfully opened the Windows Phone Marketplace application. 

Let’s enhance the TrialSample application created in the previous walkthrough with an option to 
review and buy the application from the Windows Phone Marketplace. We will enhance the code so that 
if an application is executing in the trial mode, it will show two buttons—one with an option to upgrade 
to the full version and another with an option to  cancel and return to the main screen.  

Enhancing the User Interface 
In this section, you will enhance the user interface to include the option for your application to allow 
users to upgrade your trial application to full version. 

1. Launch Visual Studio 2010 Express for Windows Phone if it is not already open, 
and open the Windows Phone Application project called TrialSample created 
during the previous example. 



CHAPTER 11 ■  CREATING TRIAL APPLICATIONS 

243 

2. From the Toolbox, drag and drop a button onto the design surface directly 
beneath the textBlock1 control, as shown in Figure 11–2. With that button 
selected, press F4 to bring up the button properties window, change the 
button’s Content property to Upgrade to Full Version, and set the button’s 
Visibility property to Collapsed. Change the button’s name to btnUpgrade. 

3. From the Toolbox, drag another button onto the design surface and drop it 
next to btnUpgrade, as shown in Figure 11–2. With that button selected, press 
F4 to bring up the button properties window and change the button’s Content 
property to Cancel. Change the button’s Visibility property to Collapsed. 
Change the button’s name to btnCancel. You should now end up with a design 
surface resembling Figure 11–2. 

Next, you will add code that responds to the new buttons. 
 

 

Figure 11–2. TrialSample application layout 

Enhancing Application Logic 
In this section you will be using MarketplaceReview to give the users option to upgrade to full version in 
the code. 



CHAPTER 11 ■ CREATING TRIAL APPLICATIONS 

244 

1. Add the following statement to the top of the page: 

using Microsoft.Phone.Tasks; 

2. Double-click the Upgrade to Full Version button and change the 
btnUpgrade_Click method to the following: 

       private void btnUpgrade_Click(object sender, RoutedEventArgs e) 
           { 
              MarketplaceReviewTask marketplaceReviewTask = new 
MarketplaceReviewTask(); 
              marketplaceReviewTask.Show(); 
           } 

3. In MainPage.xaml.cs, change the MainPage() constructor to the following: 

         public MainPage() 
         { 
              InitializeComponent(); 
              LicenseInformation lic = new LicenseInformation(); 
 
              if (lic.IsTrial() == true) 
              { 
                  textBlock1.Text = "You are running a trial version of our 
software!"; 
                  btnUpgrade.Visibility = Visibility.Visible; 
                  btnCancel.Visibility = Visibility.Visible; 
              } 
              else 
              { 
                  textBlock1.Text = "Thank you for using the full version of our 
software!"; 
              } 
         } 
 

When you press F5 to run the application now, two issues will immediately jump out at you. First, 
the IsTrial method, in its current implementation within Windows Phone 7 Framework, always returns 
false to the emulator. Because of this, given the logic of the application’s current implementation, you 
will not see the buttons with options to upgrade to the full version of an application. If you try to force 
those buttons to appear, by incorrectly changing the if (lic.IsTrial() == true) statement to if 
(lic.IsTrial() == false), for example, then when you click the Upgrade to Full Version button, a 
second issue surfaces. Since the application has not been approved and is not even registered with 
Windows Phone Marketplace, you will get an error (as expected) trying to display the application details 
page (but make sure the error number matches the secret error number mentioned in the Note above!). 

For details on the Windows Phone Marketplace registration and application approval process, you 
should refer to Chapter 5. Here, let’s assume that once the proper application registration is in place, 
Windows Phone Marketplace will properly display the application details page using the 
MarketplaceReviewTask class and then swap the trial license for the full application license if the user 
decides to purchase the program. That still leaves you with the need to properly test the application 
using both trial and full license modes before submitting the application to the Marketplace to ensure 
that all functionality that belongs to the full mode only is not available to trial users. The process of 
simulating trial application mode is the subject of the next section. 



CHAPTER 11 ■  CREATING TRIAL APPLICATIONS 

245 

Simulating Application Trial and Full Modes 
While the ability to create both trial and full application versions in the same code base is a boon to the 
developers who must maintain them, the technique does complicate testing. To properly test the 
functionality of your application, you must be able to simulate trial and full application modes before 
you submit it to the Marketplace. There are certainly many ways to do this, from conditional 
compilation to use of the SimulateTrialMode property within the 
Microsoft.Xna.Framework.GamerServices namespace. Each approach has its merits; however, the best 
approach is often the one that requires the least amount of changes to your code.  

One way to test an application with virtually no changes to its code base is to implement your own 
mock version of the LicenseInformation class. As you have seen, the LicenseInformation class can 
implement the single IsTrial method discussed earlier in this chapter. By implementing this class, you 
can fully control the value returned by the IsTrial method and thus the behavior of the application. 
Then, before going to production, you can swap your implementation of the LicenseInformation class 
for the sealed class provided by Microsoft within the Microsoft.Phone.Marketplace namespace. 

In this section, you’ll create such a class. In the next section, you will build an application that uses 
this class to test features available to trial and full versions of an application to ensure none of the 
premium content or features of the applications are leaked to trial users.  

To help you create your own implementation of the LicenseInformation class, you can (but 
certainly don’t have to) use Reflector.NET, a (formerly free) tool available for download from Red Gate’s 
web site, at www.red-gate.com/products/reflector/. Reflector is a great tool and becomes very handy 
when you would like to peek at the implementation details of common libraries. You can gather a wealth 
of information not just about the LicenseInformation file, but also about the Microsoft.Phone assembly 
in general. Here’s how to set up Reflector.NET to help you implement the example that follows: 

1. Download and run Reflector.NET, then select File  Open, and navigate to the 
Microsoft.Phone.dll file located by default at C:\Program Files 
(x86)\Reference 
Assemblies\Microsoft\Framework\Silverlight\v4.0\Profile\WindowsPhone.  

2. Drill down into Microsoft.Phone.dll  Microsoft.Phone.Marketplace  
LicenseInformation, right-click the LicenseInformation class, and click 
Disassemble. Be sure to also click the Expand Methods link on the right.  
 

You will see a screen similar to the one shown in Figure 11–3, which you will use to speed up your 
own implementation of the LicenseInformation class.  

Now follow these steps to implement a version of the LicenseInformation class in your code: 

1. Launch Visual Studio 2010 Express for Windows Phone if it is not already open, 
and open the Windows Phone Application project called TrialSample, created 
during the previous examples. 

2. Right-click the project name in Solution Explorer, select Add  New Item, and 
then select Class from the list of available items. Name the new class 
LicenseInformation and click OK. 

3. Now, you can copy the LicenseInformation class definition and 
implementation from Reflector.NET and paste it into your application. Here’s 
a copy of what you’ll see: 

public sealed class LicenseInformation 
{ 

http://www.red-gate.com/products/reflector/


CHAPTER 11 ■ CREATING TRIAL APPLICATIONS 

246 

      // Fields 
      private bool m_fIsTrial = true; 
 
      // For testing purpose only! 

     public bool IsTrial()  
      {  
           return m_fIsTrial;  
      } 

     // Nested Types 
      internal static class NativeMethods 
      { 
           // Fields 
           internal const int S_FALSE = 1; 
           internal const int S_OK = 0; 
      } 

} 
 

 

Figure 11–3. Using Reflector.NET to peek into the LicenseInformation class 



CHAPTER 11 ■  CREATING TRIAL APPLICATIONS 

247 

  Note There’s no reason not to simplify your own version of the class definition by implementing only the 
IsTrial method. There is no LicenseClass interface for you to follow. But this exercise gave us a good reason to 
show the use of a great tool—Reflector—which you may refer to constantly for troubleshooting your own 
assemblies and learning from the assemblies of others. 

4. To eliminate any potential confusion between the fake version of the 
LicenseInformation class you use for testing your application and the real one 
provided by Microsoft, you will use the var keyword to create an instance of 
the LicenseInformation class and then use the fully qualified name to help you 
visually distinguish between your own implementation of LicenseInformation 
and the implementation provided by Microsoft. Open MainPage.xaml.cs and 
change the following line of code at the top of the page from 

LicenseInformation lic = new LicenseInformation(); 

to 

         var lic = new TrialSample.LicenseInformation(); 
 
Now you can fully control return values of the IsTrial method by changing the value of the 

m_fIsTrial variable.  

5. Set the m_fIsTrial variable to true and press F5 to run the application.  
 

With these modifications, your TrialSample application will now prompt the user to upgrade to the 
full version. Changing the value of the m_fIsTrial variable to false and re-running the application results 
in a message that thanks the user for running an application with the full license. 

Once you’ve verified that the application will behave correctly when you deploy it to the 
Marketplace, it’s time to restore the official version of the LicenseInformation class. Here’s how: 

6. To switch back to the LicenseInformation class within the Windows Phone 7 
Framework, right-click LicenseInformation.cs in Solution Explorer and select 
Exclude from Project. This action effectively excludes the file from the 
solution, but does not delete it from the computer system.  

7. Finally, you need to change the instance of LicenseInformation to be the 
instance of the LicenseInformation class provided by Microsoft. Open 
MainPage.xaml.cs and change the following line of code from 

         var lic = new TrialSample.LicenseInformation(); 

       to 

   var lic = new LicenseInformation();  
 
Creating trial Windows Phone 7 applications is a relatively straightforward process, as you have seen 

so far. The biggest challenge is testing these applications to ensure that they behave as expected with 
both trial and full licenses. Luckily, you have several approaches at your disposal, which we’ve 
summarized and one of which we have described in detail. 



CHAPTER 11 ■ CREATING TRIAL APPLICATIONS 

248 

In the next section, you will create trial and full versions of a more complete application and employ 
several other Windows Phone 7 development techniques that are covered elsewhere in this book. We 
hope that this short review will help you further solidify your knowledge of the Windows Phone 7 
programming. 

Building a Trial Application 
The trial software application that you will build in this section is a currency converter. It calls a web 
service to obtain the current exchange rate for the currencies a user specifies, and then tells users how 
much of the desired currency they will receive in exchange for the currency they wish to exchange. If the 
application is running with a trial license, users will be able to convert currencies for free.  

However, as we all know, consumers never get the official market exchange rates. Various 
middlemen take a decent-size cut of foreign exchange transactions, so to calculate the actual amount of 
foreign currency you can expect to receive, the full application provides another screen, called the More 
Stuff screen. With More Stuff, users can enter the actual exchange rate quoted by an exchange broker 
and see how much foreign currency they will receive after they have paid a commission. This More Stuff 
screen will be available only to those who have paid you $.99 and acquired the full version of the 
application. Future enhancements to this application could include maps, shared between all users of 
this application, that show the best places to exchange currency around town, with the commission 
rates as a percentage of the transaction charged by those places. Power to the consumers at last! 

To create this application, you will employ several Windows Phone 7 techniques that are covered in 
this book. As we introduce such features, we will point to the location in the book where you can find 
more in-depth coverage of the material. We will also emphasize the functionality that is available and 
disabled with an application running with a trial license, and we will utilize the approach that we have 
covered in this book to simulate both trial and full license modes and to ensure that your application 
functions correctly under both. 

Now let’s build and test the application. 

Building the User Interface 
The Currency Converter application includes three pages: one for the main application screen that 
performs currency conversions; one to prompt the user to upgrade to the full application license when 
the application is running under a trial license; and one for additional options, such as determining how 
much money you actually lose on a conversion. In this section, you will create each of these pages. 
Follow these steps to create a Currency Converter project and add application pages: 

1. Launch Visual Studio 2010 Express for Windows Phone, and create a new 
Windows Phone Application project. Name it CurrencyConversion. 

2. Make sure MainPage.xaml is open in Design view. For MainPage.xaml, the end 
goal is to have a screen with a layout similar to the one shown in Figure 11–4. 
The screen looks a little busy, so we’ll go over each screen element to 
understand the type of the element and element’s name. Element names and 
types will be referred to from code and, hence, are important to get right. Table 
11–1 summarizes field names and types. A portion of the XAML code that 
creates the Amount to Convert text box, two list boxes, and the corresponding 
captions are shown here: 



CHAPTER 11 ■  CREATING TRIAL APPLICATIONS 

249 

<TextBlock Height="30" HorizontalAlignment="Left" Margin="24,14,0,0" 
Name="textBlock1" Text="Amount to Convert" VerticalAlignment="Top" /> 
            <TextBox Height="68" HorizontalAlignment="Left" Margin="6,36,0,0" 
Name="txtAmountToConvert" Text="" VerticalAlignment="Top" Width="446" /> 
            <ListBox Height="93" HorizontalAlignment="Left" Margin="24,137,0,0" 
Name="lstConvertFrom" VerticalAlignment="Top" Width="220" /> 
            <TextBlock Height="30" HorizontalAlignment="Left" Margin="24,101,0,0" 
Name="textBlock2" Text="Convert from (currency)" VerticalAlignment="Top" Width="220" 
/> 
            <TextBlock Height="28" HorizontalAlignment="Left" Margin="262,101,0,0" 
Name="textBlock3" Text="Convert to (currency)" VerticalAlignment="Top" Width="190" 
/> 
            <ListBox Height="93" HorizontalAlignment="Left" Margin="263,137,0,0" 
Name="lstConvertTo" VerticalAlignment="Top" Width="205" /> 

 

 

Figure 11–4. Currency Converter MainPage.xaml page layout 



CHAPTER 11 ■ CREATING TRIAL APPLICATIONS 

250 

Table 11–1. User Controls for MainPage.xaml 

Application Field Field Name Field Type 

Amount to Convert txtAmountToConvert TextBox 

Convert from (currency) 
lstConvertFrom ListBox 

Convert to (currency) lstConvertTo ListBox 

Status txtStatus TextBlock 

Total Converted txtTotalConverted TextBlock 

Convert Button btnConvert Button 

More Stuff Button btnMoreOptions Button 

 
Next, add the  “nag” page, or the page that will try to get users to purchase the full version of our 

application if the user is executing it under a trial license.  

3. To do that, right-click the project name in Solution Explorer and select Add  
New Item  Windows Phone Portrait Page. Name the page Upgrade.xaml and 
select OK. 

4. Bring up the design surface of the Upgrade.xaml page, and make it look like 
Figure 11–5.  
 

The page consists of a message and two buttons. The message prompts the user to upgrade. One of 
the buttons enables the user to purchase a full license, and the other one simply returns the user to the 
main application screen. Ensure that the buttons are properly named by verifying their names with 
Table 11–2. 

Table 11–2. User Controls for Upgrade.xaml  

Application Field Field Name Field Type 

Yes, upgrade btnUpgrade Button 

No, take me back 
btnGoBack Button 

 



CHAPTER 11 ■  CREATING TRIAL APPLICATIONS 

251 

 

Figure 11–5. The “nag” screen layout 

Finally, add the More Stuff page, or the page that will display features available only to paid users. 
Sadly, the users of your application will most likely feel cheated at the moment: the only premium 
feature available to them will be the calculation of the money they do not get as a result of using the 
currency conversion services.  

5. To add the More Stuff page, right-click the project name in Solution Explorer 
and select Add  New Item  Windows Phone Portrait Page. Name the page 
MoreStuff.xaml and select OK. 

6. Bring up the design surface of the MoreStuff.xaml page, and make it look like 
Figure 11–6. Refer to Table 11–3 field names and types. 



CHAPTER 11 ■ CREATING TRIAL APPLICATIONS 

252 

 

Figure 11–6. The More Stuff screen layout with functionality available to full-license users only 

Table 11–3.  User Controls for MoreStuff.xaml  

Application Field Field Name Field Type 

Exchange Rate Quoted txtExchangeRateQuoted TextBox 

Calculate Damage 
btnCalculateDamage Button 

Back to Main btnBackToMain Button 

Total Damage txtDamageExplained TextBlock 

 
With the design layout complete, you are now ready to add code to the application. In the next 

section, you will add code feature-by-feature, starting with a reference to the web service that supplies 
current exchange rates. 



CHAPTER 11 ■  CREATING TRIAL APPLICATIONS 

253 

Connecting to a Web Service 
To retrieve current currency exchange rates, you will be using a web service located at 
www.webservicex.net/CurrencyConvertor.asmx. While there are several ways to connect to a web service 
and retrieve data, you will be using the approach discussed in Chapter 18, which draws on the new 
Microsoft Reactive Extensions Framework, or Rx.NET. (Note that we use Rx.NET several times 
throughout this book, simply because we are convinced that it represents the future of programming on 
mobile devices.) Using Rx.NET makes it easier to follow the flow of execution by the program, since it 
abstracts—behind a solid Observer pattern—the complexities of invoking of a web service 
asynchronously. Follow these steps to add a reference to the Currency Conversion service and to wrap 
the results returned by that service within Rx.NET: 

1. With the CurrencyConversion project open, right-click Solution Explorer and select 
Add Service Reference. Paste the following URL into the Address field, as shown in 
Figure 11–7: 

http://www.webservicex.net/CurrencyConvertor.asmx 
 

 

Figure 11–7. Add Service Reference dialog 

http://www.webservicex.net/CurrencyConvertor.asmx
http://www.webservicex.net/CurrencyConvertor.asmx


CHAPTER 11 ■ CREATING TRIAL APPLICATIONS 

254 

Once you click the Go button, Visual Studio should be able to locate the CurrencyConverter service.  

2. Change the namespace in the Add Service Reference Page to svcCurrencyConverter 
and click OK. 

Next, you will need to add reference to the assemblies that contain the Rx.NET modules.  

3. To accomplish this, right-click the project name in Solution Explorer, select Add 
Reference, and add references to Microsoft.Phone.Reactive and System.Observable 
assemblies. 

4. Switch to the code view for MainPage.xaml (right-click MainPage.xaml and select View 
Code) and add the following using directive to the top of the page: 

using Microsoft.Phone.Reactive; 

5. Create a module-level variable referencing the currency converter web service (this 
would be a local MainPage class variable that should be initialized just above the 
constructor). Also, declare and initialize a module-level rate variable. 

svcCurrencyConverter.CurrencyConvertorSoapClient currencyClient = new  
svcCurrencyConverter.CurrencyConvertorSoapClient(); 

 Double dblRate = 0.0; 

6. Within the MainPage() constructor, create an Rx.NET subscription to the 
CurrencyConverter web service by pasting the following code: 

            //create subscription to the web service 
             var currency =  

Observable.FromEvent<svcCurrencyConverter.ConversionRateCompletedEventArgs>( 
currencyClient, "ConversionRateCompleted"); 

 
            currency.ObserveOn(Deployment.Current.Dispatcher).Subscribe(evt => 
            { 

dblRate = evt.EventArgs.Result; 
                 txtStatus.Text = "The current rate is 1 " +  

lstConvertFrom.SelectedItem.ToString()  + " to " +  
evt.EventArgs.Result.ToString() + " " + 

lstConvertTo.SelectedItem.ToString(); 
                 

                if (txtAmountToConvert.Text.Length>0) 
                 { 
                      Double decTotal = evt.EventArgs.Result *  

Convert.ToDouble(txtAmountToConvert.Text); 
                      txtTotalConverted.Text = txtAmountToConvert.Text + " " +  

lstConvertFrom.SelectedItem.ToString() + " = " + 
decTotal.ToString() + " " + 
lstConvertTo.SelectedItem.ToString();  

                 } 
            }, 
                ex => { txtStatus.Text = "Sorry, we encountered a problem: " + ex.Message; } 
            );             

 



CHAPTER 11 ■  CREATING TRIAL APPLICATIONS 

255 

This code creates a subscription to all of the results returned by the currency converter service. It 
processes the results and shows the conversion rates requested on the screen, including multiplying the 
total amount to be converted by the conversion rate. 

If you would like to understand more about Rx.NET, skip to Chapter 18 right after you finish this 
chapter. Since the second part of this book is organized as a set of independent tutorials, the chapters in 
the second part do not have to be read sequentially, but should instead be referred to when needed. 

You are almost done establishing a connection and retrieving data from the Currency Converter 
web service. The one piece that remains to be written is the invocation of this web service, which, in your 
example, is done via the Convert button.  

7. In the design view of MainPage.xaml, double-click the Convert button and change the 
btnConvert_Click method to look like the following: 

        private void btnConvert_Click(object sender, RoutedEventArgs e) 
         { 

currencyClient.ConversionRateAsync((svcCurrencyConverter.Currency)     
lstConvertFrom.SelectedItem, (svcCurrencyConverter.Currency)    
lstConvertTo.SelectedItem); 

         } 
 
This code invokes the web service asynchronously and passes it the parameters selected by the user 

(currency names only, in your case). Note how you have to properly cast the parameters to the type 
expected by the web service (svcCurrencyConverter.Currency type in your case). The results of this 
asynchronous invocation are returned to the application and are processed within the subscription code 
just created within the MainPage() constructor code. 

With the web service wired up and the data coming back through the Rx.NET subscription to the 
application, the backbone of your application is complete. Now, you need to introduce navigation 
between different pages of the application. 

Adding Page-to-Page Navigation 
In the “Building the User Interface” section, you created three separate pages that make up the 
application. However, in the application’s present state, only a single page (MainPage.xaml) is available 
during runtime. In this section, you will review navigation between pages in the Windows Phone 7 
application. For more in-depth coverage of this material, please refer to Chapter 2. 

The envisioned flow of the application is that a separate More Stuff page is available to users with 
full licenses; users with trial licenses should see an Upgrade page that prompts them to upgrade. 
Navigating between pages in Windows Phone 7 is similar to navigating between web pages: you can use 
the NavigationService.Navigate method and pass it the name of the XAML page within the application 
to navigate to. This is exactly what you’ll do in the Currency Converter application. 

1. With the Currency Converter application open, double-click the More Stuff 
button and make the btnMoreOptions_Click method look like the one here: 

         private void btnMoreOptions_Click(object sender, RoutedEventArgs e) 
         { 
       //use Microsoft implementation of LicenseInformation class 
              var lic = new LicenseInformation(); 
 
              if (lic.IsTrial() == true) 
              { 



CHAPTER 11 ■ CREATING TRIAL APPLICATIONS 

256 

                  NavigationService.Navigate(new Uri("/Upgrade.xaml",  

UriKind.RelativeOrAbsolute)); 
              } 
              else 
              { 
                  NavigationService.Navigate(new Uri("/MoreStuff.xaml?rate=" +  

dblRate.ToString() + "&total=" + txtAmountToConvert.Text,  
UriKind.RelativeOrAbsolute)); 

              } 
         } 

 
Notice how this method uses the IsTrial API to check whether an application is executing under a 

trial or full license, and then it uses the NavigationService.Navigate method to display the 
Upgrade.xaml page if IsTrial returns true, and it displays the MoreStuff.xaml page if IsTrial returns 
false. Note that when you navigate to the MoreStuff.xaml page, you also pass two parameters to that 
page. One way of passing parameters on Windows Phone 7 is identical to parameter passing on the 
Web—here, you included parameters for currency rate and amount as part of the URL. Parameters start 
after the name of the page, MoreStuff.xaml, are prefixed by the ? symbol, and are separated from each 
other by the & symbol. 

Passing parameters is not enough in itself; an application must know how to properly process those 
parameters, which it usually does in the OnNavigatedTo method, as shown next. 

2. Open MoreStuff.xaml in the code view and add the following method to 
receive parameters and assign them to global variables: 

         protected override void 
OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e) 
         { 
              base.OnNavigatedTo(e); 
              string strExchgRate = ""; 
              string strTotalToConvert = ""; 
 
              if (NavigationContext.QueryString.TryGetValue("rate", out 
strExchgRate)) 
                  dblExchgRate = Convert.ToDouble(strExchgRate); 
 
              if (NavigationContext.QueryString.TryGetValue("total", out 
strTotalToConvert)) 
                  decTotalToConvert = Convert.ToDecimal(strTotalToConvert); 
         } 

 
To make the previous code work, you must add the following two module-level variables to the 
MoreStuff.xaml.cs file: 

         Double dblExchgRate; 
         Decimal decTotalToConvert; 

 
What’s left is to add navigation to the other pages within the application.  



CHAPTER 11 ■  CREATING TRIAL APPLICATIONS 

257 

3. Open MoreStuff.xaml in design view, double-click the Back to Main button, 
and make that button click event handler look like the following: 

         private void btnBackToMain_Click(object sender, RoutedEventArgs e) 
         { 
              NavigationService.Navigate(new Uri("/MainPage.xaml",  

UriKind.RelativeOrAbsolute)); 
         } 

4. Open Upgrade.xaml in Design view, double-click the Back to Main button, and 
make that button click event handler look like this: 

private void btnGoBack_Click(object sender, RoutedEventArgs e) 
         { 
              NavigationService.GoBack(); 
         } 

 
Note the different navigation implementation in this case: you are simply using the code to go to the 

previous page within the application instead of navigating to the specific page. 
At this point, application navigation is complete. You are ready to make sure that the trial version of 

the application does not allow access to the More Stuff page. 

Verifying Trial and Full Mode 
Creating trial applications is the central theme of this chapter and you have spent the first part of it 
looking at various issues that may arise as part of trialing an application. When you allow application 
trials, one of your most important tasks is to ensure that certain application features are accessible to full 
license holders only; otherwise, there would be no reason to buy an application. 

For the Currency Converter application, you must ensure that that the MoreStuff.xaml page is 
visible only when the application runs with a full license. You have already seen the code that performs 
this check; in this section, you must verify that the trial mode indeed behaves as expected. You have 
already learned the technique of writing your own version of the LicenseInformation class just discussed 
to validate the trial mode of an application. You will use that technique here. 

1. With the Currency Converter application open, right-click the project name in 
Solution Explorer, select Add  New Item, and then select Class from the list of 
available items. Name the new class LicenseInformation and click OK. 

2. Make the LicenseInformation class look like the one here (as you have seen 
earlier in this chapter, this class definition has been copied from the 
information generated by Reflector.NET for the LicenseInformation class of 
the Windows Phone 7 Framework): 

public sealed class LicenseInformation 
{ 

      // Fields 
      private bool m_fIsTrial = true; 
 
      // Methods 
      public bool IsTrial() 
      { 
           int num = 0; 



CHAPTER 11 ■ CREATING TRIAL APPLICATIONS 

258 

           if (num != 0) 
           { 
                this.m_fIsTrial = true; 
           } 
           return this.m_fIsTrial; 
      } 
 
      // Nested Types 
      internal static class NativeMethods 
      { 

          // Fields 
           internal const int S_FALSE = 1; 
           internal const int S_OK = 0; 
      } 

} 
 
You will test the trial mode shortly, right after you put finishing touches on your Currency Converter 

application. 

Adding Finishing Touches 
You are nearly ready to test the Currency Converter application—just a few items remain. Before an 
application is functional, it needs to know what currency to convert to what. Create two list boxes inside 
the MainPage.xaml file to allow the user to make her selection. To keep things simple in the first version, 
include only three currencies: the US dollar, the euro, and the Russian ruble. When an application loads, 
you need to load list boxes with these currencies. 

7. Open MainPage.xaml.cs and paste the following LoadCurrencies method 
inside the MainPage() constructor: 

             private void LoadCurrencies() 
             { 
              lstConvertFrom.Items.Add(svcCurrencyConverter.Currency.USD); 
          lstConvertFrom.Items.Add(svcCurrencyConverter.Currency.EUR); 
                 lstConvertFrom.Items.Add(svcCurrencyConverter.Currency.RUB); 
 
                 lstConvertTo.Items.Add(svcCurrencyConverter.Currency.USD); 
                 lstConvertTo.Items.Add(svcCurrencyConverter.Currency.EUR); 
                 lstConvertTo.Items.Add(svcCurrencyConverter.Currency.RUB); 
             } 

 
MoreStuff.xaml needs code to perform calculations on the currency rates passed in and entered into 

the application. This code belongs inside the btnCalculateDamage_Click event. 

8. In Design view, double-click the Calculate Damage button and replace the 
btnCalculateDamage_Click event code with the following:  

     private void btnCalculateDamage_Click(object sender, RoutedEventArgs e) 
     { 
      decimal decTotalToReceive; 
          decimal decTotalAccordingToConversionRate; 



CHAPTER 11 ■  CREATING TRIAL APPLICATIONS 

259 

          decTotalToReceive = Convert.ToDecimal(txtExchangeRateQuoted.Text) *  

decTotalToConvert; 
          decTotalAccordingToConversionRate = Convert.ToDecimal(dblExchgRate) *  

decTotalToConvert; 
 
          txtDamageExplained.Text = "With exchange rate quoted, you will receive 
" +  

decTotalToReceive.ToString() + "\r\n"; 
    txtDamageExplained.Text = txtDamageExplained.Text +  "Given market exchange  

rate, you should receive " + 
decTotalAccordingToConversionRate.ToString() + "\r\n"; 

 
       txtDamageExplained.Text = txtDamageExplained.Text + "You lose " +  

(decTotalAccordingToConversionRate - decTotalToReceive).ToString(); 
       } 

 
Finally, Upgrade.xaml needs code to bring up the Windows Phone Marketplace and load the 

application review page, which will enable the user to purchase a full version of the application if the 
user elects to do so. As discussed earlier in this chapter, this is the job for one of the classes within the 
Microsoft.Phone.Tasks namespace. The Microsoft.Phone.Tasks namespace is covered in much greater 
detail in the “Launchers and Choosers” section of Chapter 10. 

9. Add the following using directive to the top of the Upgrade.xaml.cs file: 

using Microsoft.Phone.Tasks; 

10. Next, bring up the Upgrade.xaml page in design mode and double-click the Yes, 
upgrade button. Make that button’s click event look like the following: 

             private void btnUpgrade_Click(object sender, RoutedEventArgs e) 
             { 
              MarketplaceReviewTask marketplaceReviewTask = new 
MarketplaceReviewTask(); 
              marketplaceReviewTask.Show(); 
             } 

 
You’re done writing code for the Currency Converter application. The application should compile 

and run if you press F5 now. If, for some reason, there are errors preventing an application from 
launching, it’s best to compare your code to code available for download for this chapter. 

Assuming the code runs, the current value of the IsTrial method returned by your own 
implementation of the LicenseInformation class is true. Therefore, if you run the application and click 
the More Stuff button, you should see a message prompting you to upgrade to the full version of an 
application. This is the expected behavior. Go ahead and change the value of m_fIsTrial to false. You 
should now see the More Stuff screen, as expected for the application with full license.  

You can also verify that the program works as expected by entering values and asking it to convert 
them from one currency to another. For instance, today, as shown in Figure 11–8, $345 is only 267.86 
euros. To get that output, type 345 in the Amount to Convert text box, select USD from the Convert From 
list box and select EUR from the Convert To list box. Then, press the Convert button. Assuming that a 
connection to the Internet is available, you should get results that are similar. 

While the Currency Converter application is functional, it can stand many improvements, 
particularly in the area of validating user input. For instance, the application throws an error if the user 
tries to go to the More Stuff screen without entering a value in the Amount to Convert text box. 



CHAPTER 11 ■ CREATING TRIAL APPLICATIONS 

260 

Addressing this and other similar issues, as well as enhancing the application even further, is left as an 
exercise for the reader. 

 

Figure 11–8. Currency Converter application converting US$345 to euros 

Summary 
In this chapter, you learned about Windows Phone 7 trial modes. You learned that there is a single code 
base for both trial and production versions of an application, and that application developers control 
which functionality to disable for trial modes using the IsTrial method. You also learned about 
simulating trial mode, an important technique when creating trial applications. Finally, in this chapter, 
you created a Currency Converter application that utilized several techniques discussed in this book and 
perhaps solidified your understanding of several key concepts of Windows Phone 7 development. 

In the next chapter, you will learn about internationalizing applications to make them available to 
many markets whose language and date/time constructs are quite different from those of the American 
market. That chapter will further help you with your Currency Converter enhancement efforts! 

 



C H A P T E R  12 
 

      
 

261 

Internationalization 

Strong growth in mobile computing propelled by increasingly capable mobile devices is not just a North 
American phenomenon—people all over the world are increasingly relying on their phones both for 
business and leisure. This, of course, is wonderful news for Windows Phone 7 developers—the greater 
the customer base, the more potential revenue or exposure the application gets. There is just one small 
gotcha when taking mobile application development to the world: the vast majority of customers 
outside North America speak very little to no English. 

So if your goal is to create an application that succeeds globally, you must ensure that it can “speak” 
many languages. Certainly, one way to make that happen is to create many versions of an application, 
one for each language market you target. Unfortunately, that approach quickly becomes a nightmare to 
maintain. Imagine making a small code change to an application, such as rearranging UI controls on its 
main page—that code change would have to be made to each language version of the application! 
Fortunately, .NET Framework and the .NET Compact Framework that powers Windows Phone 7 devices 
provide a set of culture-aware classes and a general approach to implementing multilingual 
applications. This approach involves creating and editing resource files, which can be developed and 
distributed independently of your application code 

This chapter offers some simple steps that you can take to prepare an app for distribution in more 
than one language, ones that will save you time later. This topic deserves a book of its own, and indeed a 
few have been written already (see a list of them on Amazon’s web site at 
www.amazon.com/s/ref=nb_sb_ss_i_0_17?url=search-alias%3Daps&field-
keywords=.net+internationalization). We hope that our advice in this chapter will help you avoid extra 
work when you are ready to share your  brilliant creation with non-English speaking population of the 
world. Let’s begin with a closer look at the topic of internationalization and the support for it that the 
Windows Phone SDK provides. 

Understanding Internationalization 
Translating your application’s interface or its documentation into other languages may be the most 
important task you’ll face when you target your application for a global audience, but it’s not the only 
one. Cultures differ in the ways they display dates, numbers, currencies, and even text. For instance, in 
the United States, the month is always the first part of the numeric representation of a date. In England, 
on the other hand, the month comes after the day. This could potentially create confusion—imagine 
payment due dates being missed because the date was not formatted according to a culture’s standards. 
One way to avoid misinterpretation of numeric dates is to adopt an international standard, such as ISO 
8601, that specifies that all dates are to be represented from the most significant to the least significant 
element: year, month, day, hour, and so on. 

http://www.amazon.com/s/ref=nb_sb_ss_i_0_17?url=search-alias%3Daps&field-keywords=.net+internationalization
http://www.amazon.com/s/ref=nb_sb_ss_i_0_17?url=search-alias%3Daps&field-keywords=.net+internationalization
http://www.amazon.com/s/ref=nb_sb_ss_i_0_17?url=search-alias%3Daps&field-keywords=.net+internationalization


CHAPTER 12 ■ INTERNATIONALIZATION 

262 

Similarly, disagreements over cultural representations of decimal separators have the power to 
almost stall the development of the programming language 
(http://en.wikipedia.org/wiki/Decimal_separator). To illustrate how such heated debates can 
originate, consider the following example: the number “one thousand one and one tenth” would be 
written in the United States as “1,001.1”, with the comma symbol used as the separator for the 
thousands and the period symbol used for separating the decimals. The same number would be written 
in Europe as “1.001,1”, with the dot used for separating thousands and the comma used to separate the 
decimals. The Windows Phone 7 operating system, fortunately, automatically makes these locale-aware 
changes for you. As a developer, however, you must help the framework out a little and ensure that you 
use appropriate data types and appropriate formatting options for the operations you perform in your 
applications. For example, you should never represent dates or numbers as strings and hardcode the 
formatting of those strings in your application if an application is intended for more than one national 
market. 

In addition to these variations in the way different cultures handle numbers and dates, languages 
also differ in the number of words they require to express an idea, with some more verbose than others. 
For instance, it is estimated that an average sentence in the German language is 44 percent longer than 
the same sentence in English. That means that a Windows Phone 7 user interface written in English—its 
labels, textblocks, text boxes, and so on—may need to reserve additional available white space when 
designed in the English language and later translated (dynamically, as you’ll see shortly) into German or 
other languages. 

Also, if you are targeting international markets, the design of an application should be flexible 
enough to allow it to “speak” different languages without your having to make extensive changes to the 
source code. That means that all strings, images, and audio and video content must be placed in 
separate resource-only files—one for each target culture and language to make it easy to package the 
application for a new locale. By sticking with Unicode characters (with over 95,000 characters) to encode 
your strings content,  you’ll be able to display virtually any language in the world. 

Another important consideration in deciding how to prepare to support your application in 
multiple languages is the amount of material that will need to be translated. Later in this chapter, we 
recommend you use resource-only files inside Visual Studio. This technique is perfectly acceptable for 
smaller applications, when there are only a handful of items to translate. However, if the translation 
requires the use of third-party translation services, you will be better served by looking at more 
specialized localization tools, such as Alchemy Catalyst, Globalizer.Net, Lingobit Localizer, or Radialix. 
While the use of such tools is beyond the scope of this chapter, if you ever find that editing resource files 
in Visual Studio becomes hard to manage, you can refer to the foregoing list to determine whether any of 
these products makes the task easier. 

In MSDN documentation, there are usually two separate sections on internationalizing 
applications—globalization and localization. Roughly, globalization refers to ensuring that all 
commonly used application concepts, such as dates and currency, are properly represented and used in 
the system regardless of the locale of the user. Localization, on the other hand, refers to translating 
application resources, such as text of the user interface, into local representation. To muddy these 
concepts a little more, in the non-Microsoft world, the term internationalization is used to represent 
what Microsoft refers to as globalization. Since this is already confusing, for the purposes of this chapter, 
we won’t make such a distinction; when we talk about “internationalizing” an application, we refer to 
ensuring that the application will work without problems in all countries and regions it was intended to 
work in—i.e., the Microsoft concepts of globalization and localization are blurred. 

.NET and the Windows Phone 7 SDK include a number of tools to help you ready an app for 
international distribution. These tools include the CultureInfo class to properly determine the culture 
that an application is running in, as well as easy management of resource files that were custom 
developed for each culture. You will explore these tools next.  

http://en.wikipedia.org/wiki/Decimal_separator


CHAPTER 12 ■  INTERNATIONALIZATION 

263 

Using Culture Settings with ToString to Display Dates,  
Times, and Text 
To see how you can go about preparing an application for the world, you’ll build a simple application 
that announces a new product, in this case a Windows Phone. But first, you will learn how to use the 
CultureInfo class to ensure dates, numbers, and text appear in the right form regardless of the culture in 
which the announcement is made. Then you’ll see how, by using resource (.resx) files, you can easily 
add translated content to your app to reach new markets. Figure 12–8 shows how the finished 
application will look. 

Let’s jump into code that will set the stage for the discussion of internationalization of Windows 
Phone 7 applications. 

1. Let’s start by creating a new project inside Visual Studio and naming it 
InternationalizationSample. 

By default, the MainPage.xaml file is created in the application, with the designer and XAML windows 
open and ready to program. 

2. Double-click MainPage.xaml to bring up the XAML designer window. For 
convenience and simplicity, you will alter the content of textblocks in the 
TitleGrid block. Make the XAML of the TitleGrid look identical to the XAML 
here: 

        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12"> 
            <TextBlock x:Name="ApplicationTitle" Text="Current Culture Setting" 
Style="{StaticResource PhoneTextNormalStyle}"/> 
            <TextBlock x:Name="PageTitle" Text="culture" Margin="-3,-8,0,0" 
Style="{StaticResource PhoneTextTitle1Style}"/> 
        </StackPanel> 
 

Your project should now look like Figure 12–1. So far you’ve simply changed the text of the default 
title textblock in the Windows Phone 7 application. 



CHAPTER 12 ■ INTERNATIONALIZATION 

264 

 

Figure 12–1. Preparing the phone design surface for the internationalization demo 

3. Now double-click MainPage.xaml.cs to bring up the code view. Alternately, you 
can right-click the MainPage.xaml file and select View Code. 

4. Add the following statement to the top of the MainPage.xaml.cs file: 

using System.Globalization; 
5. Paste the following code in the MainPage() constructor: 

PageTitle.Text = CultureInfo.CurrentCulture.ToString(); 

6. Press F5 to run the application. You should see a phone emulator screen that 
looks like the one in Figure 12–2. 



CHAPTER 12 ■  INTERNATIONALIZATION 

265 

 

Figure 12–2. Running the internationalization demo  

Notice how the caption in Figure 12–2 reads “en-US.” This caption represents two parts of the 
current Culture setting on Windows Phone 7. The first part—“en”—states that the English language is 
the current language on this Windows Phone 7 device (or device emulator in your case) and it is a part of 
an ISO standard to represent culture code associated with the language. The second part—“US”—states 
that the current locale is the United States, and indicates that dates, currency, and other region-specific 
items should be shown in the format that is native to people in the United States. That part is an ISO 
standard as well, to represent a subculture code associated with a country or region. 

A concept of culture in .NET Framework refers to a set of user preferences specific to the user, such 
as dates, currency, and calendar format. Besides CurrentCulture, the CultureInfo class contains many 
properties that may be of interest to you as you internationalize your applications; you can find the full 
list at http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo_properties.aspx. 
For instance, you could have used the DisplayName property to show a friendlier description of the 
current culture (in your case, you would get “English (United States).” As mentioned, there is a lot of 
material to cover when it comes to internationalization—a good place to refer to for more information is 
the MSDN documentation of the System.Global namespace, located at http://msdn.microsoft.com/en-
us/library/abeh092z.aspx.  

You might think that the locale setting is of minor importance, yet it is extremely important to 
properly localize your application: in England, for instance, people speak English (certainly!), but, as 
mentioned, the numeric date format is “dd/mm/yyyy,” where the “dd” is the numeric representation of 
the day, “mm” is the numeric representation of the month, and “yyyy” is the numeric representation of 

http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo_properties.aspx
http://msdn.microsoft.com/en-us/library/abeh092z.aspx
http://msdn.microsoft.com/en-us/library/abeh092z.aspx
http://msdn.microsoft.com/en-us/library/abeh092z.aspx


CHAPTER 12 ■ INTERNATIONALIZATION 

266 

the year. Compare this to the United States, where people speak English as well, but for numerical date 
representations, the month comes first. In other words, it would be very time-consuming to keep track 
of all possible localization issues. In the end, you would very likely make mistakes. It’s much easier to 
stand on the shoulders of giants who have thought through many internationalization issues and have 
made standard libraries and functions available for your use. Your main task is to make sure to use those 
libraries. 

Using the .NET Culture Hierarchy to Ensure Culture Neutrality 
Suppose that you have built international support for only a portion of an application. What would 
happen when a user from a different country accesses features of an application that have not been 
internationalized? Will the application stop working, display a blank screen, etc.? The answer to this 
question lies in the concept of the .NET framework called culture hierarchy. 

There are three types of cultures that you as a developer must be aware of: invariant, neutral, and 
specific. These cultures are arranged in a hierarchical manner, with invariant culture being at the top of 
the hierarchy, neutral in the middle, and specific culture at the bottom, as illustrated in Figure 12–3. 
When international users access Windows Phone 7 applications, the operating system starts at the 
bottom of this hierarchy and checks whether an application implements the specific culture of a given 
user. This check includes whether an application has the resources, such as text for menus and labels, 
which have been localized for the user’s location. If such localized resources are not available, the 
system then moves up the culture hierarchy and checks whether there are provisions in the application 
for neutral cultures. Finally, if that check fails, the application defaults to the invariant culture, which is 
the same as English (US) culture. 

For example, if a French-speaking user from Canada accesses Windows Phone 7 applications, the 
first thing the system checks is whether there are application resources implementing specific “fr-CA” 
culture. If that specific culture is not supported by an application, the system then performs a check of 
whether the neutral “fr” culture is supported. If the neutral culture is not supported, then the system 
defaults to the invariant culture, where none of the resources are localized. In this chapter, you will learn 
how to create resources for specific cultures, and let the .NET Framework do the heavy lifting of 
defaulting to neutral or invariant cultures when resources specific to users’ culture are not available. 

 

 

Figure 12–3. Culture hierarchy in Windows Phone 7 



CHAPTER 12 ■  INTERNATIONALIZATION 

267 

Storing and Retrieving Current Culture Settings 
On Windows Phone 7, the System.Globalization.CultureInfo class contains all of the necessary 
information about the phone’s current culture settings. In this section, you will write code to retrieve 
basic properties of the CultureInfo class, as well as code to change the current culture of the phone and 
to react to those changes. In real-world applications, you are not likely to adjust the current culture in 
code, since the culture setting should be fully controlled by the user. 

In the following example, you will create a simple announcement of an upcoming event, and then, 
with a click of a button, adjust culture settings to properly display the date, time, and the cost of the 
event in a different region of the world—Spain. To accomplish that, you will instantiate a new 
CultureInfo class and set the current thread’s CurrentCulture property to this new class. Later in this 
chapter, you will expand upon this example and make your event advertisement speak different 
languages without having to change the source code. 

 Note You are probably wondering where and how the user would set Windows Phone 7 culture. On both the 
phone and the emulator, the culture is adjusted in Settings  Region and Language. Region and Language 
Settings can be accessed by clicking the small arrow to the right of the tiles on the phone screen (next to the 
Internet Explorer tile in the emulator). Click on Region & Language, and select an international format from the list 
that you’d like. Notice how both Short and Long Date properties, as well as the First Day of the Week property, 
adjust to the new format specific to the locale selected. Figure 12–4 illustrates how you can adjust Regional 
Settings on your phone. 

  

Figure 12–4. Changing the phone’s regional settings 



CHAPTER 12 ■ INTERNATIONALIZATION 

268 

1. Start by creating a Visual Studio project and naming it WP7AnniversaryParty. 

2. Double-click MainPage.xaml in Solution Explorer to bring up the XAML 
designer window.  

For this first example, you will display the contents of just two fields on the screen: the name of the 
event as well as the event’s date and time.  

3. Remove one of two default textblocks automatically added to the design 
surface by Visual Studio. Highlight the textblock with MY APPLICATION text in 
it (either in XAML or on the design surface) and hit the Delete key.  

4. Now let’s add the additional six text box controls that you need. If the toolbox 
is not visible, either click the Toolbox button on the Visual Studio Application 
Bar or select View  Other Windows  Toolbox. Drag six textblocks to the 
design surface and position them two per row, one underneath each other, as 
shown in Figure 12–5.  

5. Change the text of the three textblocks on the left to the following: Event Date, 
Event Time, and Event Cost, as shown in Figure 12–5.  

 

Figure 12–5. Design surface of the WP7AnniversaryParty application 



CHAPTER 12 ■  INTERNATIONALIZATION 

269 

6. Click on each textblock in the right column, press F4, and change the textblock 
names to txtEventDate, txtEventTime, and txtEventCost correspondingly.  

7. Finally, add a button to the design surface and name it Español.  

You should now end up with XAML code that matches the XAML shown in Listing 12–1 (you can 
simply copy and paste XAML code from the source code downloads for this chapter instead of adding 
elements to the design surface one-by-one, as you’ve done in the previous steps). 

Listing 12–1. WP7 Launch Party UI Code (XAML) 

       <Grid x:Name="LayoutRoot" Background="{StaticResource PhoneBackgroundBrush}"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <!--TitleGrid is the name of the application and page title--> 
        <Grid x:Name="TitleGrid" Grid.Row="0"> 
            <TextBlock Text="WP7 Party" x:Name="textBlockListTitle" Style="{StaticResource 
PhoneTextTitle1Style}"/> 
        </Grid> 
 
        <!--ContentGrid is empty. Place new content here--> 
        <Grid x:Name="ContentGrid" Grid.Row="1"> 
            <TextBlock Height="44" HorizontalAlignment="Left" Margin="204,48,0,0" 
Name="txtEventDate" Text="TextBlock" VerticalAlignment="Top" Width="276" /> 
            <TextBlock Height="43" HorizontalAlignment="Left" Margin="5,49,0,0" 
Name="textBlock1" Text="Event Date:" VerticalAlignment="Top" Width="193" /> 
            <TextBlock Height="44" HorizontalAlignment="Left" Margin="204,98,0,0" 
Name="txtEventTime" Text="TextBlock" VerticalAlignment="Top" Width="276" /> 
            <TextBlock Height="43" HorizontalAlignment="Left" Margin="5,99,0,0" 
Name="textBlock3" Text="Event Time:" VerticalAlignment="Top" Width="193" /> 
            <TextBlock Height="44" HorizontalAlignment="Left" Margin="205,146,0,0" 
Name="txtEventCost" Text="TextBlock" VerticalAlignment="Top" Width="276" /> 
            <TextBlock Height="43" HorizontalAlignment="Left" Margin="6,147,0,0" 
Name="textBlock4" Text="Event Cost:" VerticalAlignment="Top" Width="193" /> 
    <Button Content="Español" Height="70" HorizontalAlignment="Left" Margin="6,233,0,0" 
Name="button1" VerticalAlignment="Top" Width="160" Click="button1_Click" /> 
        </Grid> 
    </Grid> 

8. Double-click MainPage.xaml.cs to bring up the code view. Alternately, you can 
right-click the MainPage.xaml file and select View Code. 

9. Add the following statements to the very top of the page (right below the last 
using statement): 

using System.Globalization; 
using System.Threading; 

10. Next, you will code the function that will populate event details and the 
function that toggles event locale. You will learn the internationalization 



CHAPTER 12 ■ INTERNATIONALIZATION 

270 

concepts demonstrated in this function shortly, but for now add the code 
shown in Listing 12–2. 

Listing 12–2. ShowEventDetails and ToggleEventLocale functions (C#) 

        private void ShowEventDetails() 
        { 
            textBlockListTitle.Text = "WP7 Party"; 
            //create the date of October 11, 2011 at 9:00 PM 
            DateTime dtLaunchDate = new DateTime(2011, 10, 11, 21, 0, 0); 
            //make the cost equal to $5 
            decimal decEventCost = 5.0M; 
 
            //ToString() can also return values in specified culture 
            //txtEventDate.Text = dtLaunchDate.ToString("D"); 
            txtEventDate.Text = dtLaunchDate.ToString("D",  

Thread.CurrentThread.CurrentCulture); 
            txtEventTime.Text = dtLaunchDate.ToString("T"); 
 
            txtEventCost.Text = decEventCost.ToString("C"); 
        } 
 
        private void ToggleEventLocale() 
        { 
            //default to English-US culture 
            String cul = "en-US"; 
 
            if (button1.Content.ToString() == "Español") 
            { 
                //change the culture to Spanish 
                cul = "es-ES"; 
            } 
            else 
            { 
                cul = "en-US"; 
            } 
 
            CultureInfo newCulture = new CultureInfo(cul); 
            Thread.CurrentThread.CurrentCulture = newCulture; 
     
         ShowEventDetails(); 
        } 

 
Now you will call a function to show event details right after the application loads.  

11. Paste the call to the ShowEventDetails() function in the MainPage() 
constructor to show event details in English when the application is launched: 

ShowEventDetails(); 
 



CHAPTER 12 ■  INTERNATIONALIZATION 

271 

Finally, you need to add an event handler to handle the button click, which will toggle the current 
culture between English and Spanish. The best way to add it is to bring up MainPage.xaml in design view 
and double-click the button.  

12. Add the following code:  

        private void button1_Click(object sender, RoutedEventArgs e) 
        { 
            ToggleEventLocale(); 
        } 

13. Press F5 to run the application. Notice how the date, time, and cost are all 
shown in the familiar American format. If you press the Español button, you 
will see the date in Spanish, the time in the 24-hour format, and the cost in 
euros. The labels with Date, Time, and Cost did not change, however, since 
you have not made any localization provisions in your code for those. You will 
localize these resources in the next section of this chapter. 

In the preceding example, there are a couple of interesting points worth discussing in more detail. 
The first one is how you switched from one culture to another in code. To accomplish that, you 
instantiated a new CultureInfo class and set the current thread’s CurrentCulture property to this new 
class. During the instantiation of the CultureInfo class, you passed a string to its constructor 
representing a specific culture (“es-ES” for Spanish and “en-US” for American English). The second 
important point is the illustration of the use of standard formatting constructs in your code to make 
internationalizing your application easier. For example, let’s put the following line of code at the end of 
the ShowEventDetails() function: 

txtEventDate.Text = dtLaunchDate.ToString("MM/dd/yyyy"); 
 
Now when you run the application, notice how the date will be displayed as “11/10/2011” for both 

Spanish and English versions of your event. This certainly is confusing for residents of Spain, who would 
think that the Windows Phone 7 anniversary date is actually on November 10, 2011. Remember to use 
standard formatting options for all UI elements—in the case of the date, the standard formatting you 
have used with the following line of code to show the “long date representation” is certainly more 
appropriate: 

 

txtEventDate.Text = dtLaunchDate.ToString("D"); 
 
The third and final important point in the previous example is the ease of switching specific cultures 

on Windows Phone 7. If you pass “es-MX” instead of “es-ES” into the CultureInfo() constructor in the 
ToggleEventLocale() function, you can still see the date translated into the Spanish language, but the 
currency and time are formatted according to the Mexican standard and not the standard of Spain. 

Using Resource Files to Localize Content 

Assume now that you have been diligently designing your application for international markets: you 
have allowed enough space on the user interface for more verbose languages, and you have used only 
standard formatting options for date, time, and currency values. You still have to perform translation of 
the application interface and resources to other languages. This could be, certainly, the most labor-
intensive part of internationalizing your application. 



CHAPTER 12 ■ INTERNATIONALIZATION 

272 

As mentioned, the application should be flexible enough to function in different locales without the 
need for code change and recompilation. That means that all resources required for proper functioning 
of the application need to be located outside the source code of an application and loaded on demand in 
response to request for culture-specific elements. The location of those resources are the resource-only 
files, or *.resx files. In this section’s example, you will enhance your WP7 Anniversary Party 
announcement application with the use of .resx files. 

 Note Large resource files may take some time to load on the Windows Phone 7 device. However, according to
the Windows Phone 7 Application Certification Requirements document, a Windows Phone 7 application must
render its first screen within five seconds of launch. Make sure to always include a splash screen image within the
root of your package submitted to the Marketplace (see Chapter 19 for more details about the Marketplace). This
splash screen image can be any .jpg file of your choosing named SplashScreenImage.jpg. Even with the splash
screen image, however, be aware that the Microsoft Certification Requirements document further states that an
application must be responsive to user input within 20 seconds after its launch—make sure to use resource files
diligently so they don’t unnecessarily slow down your application. 

One benefit of using .resx files is that Windows Phone 7 will automatically find and use the resource 
file appropriate for the user’s locale based on the current user’s culture settings. Another benefit of 
resource files comes from the concept of culture hierarchy mentioned previously—.NET Framework 
provides a default fallback mechanism (i.e., going one level up in the culture hierarchy) for those 
resources that have not been localized. Also, .resx files are easily parseable by external tools, since they 
are simply XML files. This allows easy editing of those files by third-parties (such as translation services). 

   Note Throughout this book, you will see references to .NET Framework on Windows Phone 7. To be
completely accurate, however, it is the compact version of .NET Framework (.NETCF) that powers Windows Phone 
7. Compact .NET Framework is a portable version of the full .NET Framework, and it has a much smaller size and
footprint to accommodate smaller devices. The first version of Windows Phone 7 runs .NETCF version 3.7. So
whenever you encounter a reference to .NET Framework in this book, remember that the reference is really to the
.NETCF 3.7 or later. 

1. Unless it’s already open, open the WP7AnniversaryParty solution. 

2. Right-click the WP7LaunchParty project and select Add  New Item  
Resources File. 

3. This resource file will contain the values for English-US culture. Name the 
resource file AppResources.resx and click Add.  



CHAPTER 12 ■  INTERNATIONALIZATION 

273 

Remember the discussion of culture hierarchies earlier in this chapter? The fact that your resource 
file does not contain any locale information in the file name (unlike the Spanish one that you will be 
creating shortly) makes this an invariant culture resource file—the file that will be shown if no locale-
specific resource files are found on the device. 

4. Double-click the AppResources.resx file to bring up an empty table. Next, add 
four entries to that table for Event Title, Event Date, Event Time, and Cost, all 
in English, as shown in Figure 12–6.  
 

 

Figure 12–6. Resource file for English -US translation of WP7AnniversaryParty application 

Note that the contents of the first and second columns are extremely important: the first one 
contains the key that the code will use to reference the element, and it must be unique in this resource 
file. The second column contains the value, or the actual content that will be displayed on the UI at 
runtime. The third column is useful, but not essential: you can provide descriptive comments about 
each value in this column. 

You will now add a resource file for Spanish translation of the user interface elements.  

5. Right-click the WP7LaunchParty project and select Add  New Item  
Resources File. 

6. Name the resource file AppResources.es-ES.resx and click Add.  

Note the “es-ES” portion of the file name—it is extremely important to name resource files in 
accordance with the specific cultures they represent. In your case, you will provide Spanish (spoken in 
Spain and not Latin America, for example) translation of the user interface, hence the “es-ES” in the 
resources file name. If you wanted to add German (spoken in Germany and not Austria, for example) 
translation as well, your resource file would have the name AppResource.de-DE.resx. 



CHAPTER 12 ■ INTERNATIONALIZATION 

274 

7. Add four entries for Event Title, Event Date, Event Time, and Cost in Spanish, 
as shown in Figure 12–7.  
 

 

Figure 12–7. Resource file for Spanish-Spain translation of WP7LaunchParty application 

 Note The translations are approximate and are used for demonstrative purposes only—please forgive the 
authors if we are not 100 percent accurate. 

8. You need to rename the textblocks used for captions in your application so 
that you can easily refer to them in code. Bring up MainPage.xaml and change 
textBlock1 to txtEventDateCaption, textBlock3 to txtEventTimeCaption, and 
textBlock4 to txtEventCostCaption. You should end up with XAML that 
matches the following markup: 

        <Grid x:Name="ContentGrid" Grid.Row="1"> 
            <TextBlock Height="44" HorizontalAlignment="Left" Margin="204,48,0,0" 
Name="txtEventDate" Text="TextBlock" VerticalAlignment="Top" Width="276" /> 
            <TextBlock Height="43" HorizontalAlignment="Left" Margin="5,49,0,0" 
Name="txtEventDateCaption" Text="Date:" VerticalAlignment="Top" Width="193" /> 
            <TextBlock Height="44" HorizontalAlignment="Left" Margin="204,98,0,0" 
Name="txtEventTime" Text="TextBlock" VerticalAlignment="Top" Width="276" /> 
            <TextBlock Height="43" HorizontalAlignment="Left" Margin="5,99,0,0" 
Name="txtEventTimeCaption" Text="Time:" VerticalAlignment="Top" Width="193" /> 



CHAPTER 12 ■  INTERNATIONALIZATION 

275 

            <TextBlock Height="44" HorizontalAlignment="Left" Margin="205,146,0,0" 
Name="txtEventCost" Text="TextBlock" VerticalAlignment="Top" Width="276" /> 
            <TextBlock Height="43" HorizontalAlignment="Left" Margin="6,147,0,0" 
Name="txtEventCostCaption" Text="Cost:" VerticalAlignment="Top" Width="193" /> 
            <Button Content="Español" Height="70" HorizontalAlignment="Left" 
Margin="6,233,0,0" Name="button1" VerticalAlignment="Top" Width="160" Click="button1_Click" /> 
        </Grid> 

9. At the top of the page, add the following two statements: 

using System.Resources; 
using System.Reflection; 

10. In MainPage.xaml.cs, change the ShowEventDetails() function to match the 
code chunk shown here (note the commented out setting of default (English) 
caption): 

        private void ShowEventDetails() 
        { 
            //textBlockListTitle.Text = "WP7 Party"; 
            ResourceManager rm = new ResourceManager("WP7AnniversaryParty.AppResources",  

Assembly.GetExecutingAssembly()); 
            textBlockListTitle.Text = rm.GetString("EventTitle"); 
            txtEventCostCaption.Text = rm.GetString("EventCost"); 
            txtEventDateCaption.Text = rm.GetString("EventDate"); 
            txtEventTimeCaption.Text = rm.GetString("EventTime"); 
 
            //create the date of November 6, 2010 at 9:00 PM 
            DateTime dtLaunchDate = new DateTime(2010, 11, 6, 21, 0, 0); 
            //make the cost equal to $5 
            decimal decEventCost = 5.0M; 
 
            txtEventDate.Text = dtLaunchDate.ToString("D"); 
            txtEventTime.Text = dtLaunchDate.ToString("T"); 
 
            txtEventCost.Text = decEventCost.ToString("C"); 
        } 

11. Press F5 to compile and run the application. Click the button to toggle 
between Spanish and English. Do you see all captions and the event title being 
properly translated? Probably not, since you are missing one critical step: you 
have not indicated that your project must support different locales and which 
locales it must support. You will do that in the next step. 

12. It’s unfortunate that, at present time, you must edit a project file in the text 
editor (instead of Visual Studio) to indicate which locales your application 
supports. Open Windows Explorer and navigate to the folder where the 
WP7LaunchParty.csproj file is located. Open WP7LaunchParty.csproj in any text 
editor (Notepad is good) and find the <SupportedCultures> node. More than 
likely, that node will not contain any elements. Edit that node to look like the 
two line of text below: 

<SupportedCultures>es-ES; 
</SupportedCultures> 



CHAPTER 12 ■ INTERNATIONALIZATION 

276 

Were you supporting more than one culture, you would include all of them in this node with each 
culture code separated by a semicolon. For example, if you were supporting German and Russian 
translations as well, you would put es-ES;de-DE;ru-RU; in the <SuportedCultures> element. 

13. Save WP7AnniversaryParty.csproj in the text editor. Visual Studio should 
detect an external change to this file and ask you if you would like to reload the 
project. Click Yes. 

14. Add the following line of code to the ToggleEventLocale method, right below 
the  Thread.CurrentThread.CurrentCulture = newCulture; statement: 

        Thread.CurrentThread.CurrentUICulture = newCulture; 

15. Press F5 to run the application.  

Since you have provided a non-locale specific (invariant) file, AppResources.resx, with English (US) 
captions for the invitation text in it, you see a US English interface upon launching the application. Once 
you click the button to toggle the application into Spanish, you should see the event title and captions 
translated into the Spanish language, as shown in Figure 12–8. The cool part about this translation is that 
it’s completely dynamic—the string values are loaded from the resource file instead of being hardcoded! 

 

 

Figure 12–8. Spanish application interface 



CHAPTER 12 ■  INTERNATIONALIZATION 

277 

If you examine Figure 12–8 carefully, you will notice a couple of things. First, the date of the event 
almost ran off the screen in Spanish—a clear mistake on your part for not allowing an extra 40 percent of 
space (by perhaps allowing text wrapping) inside that date value for languages that are more verbose 
than English. Second, the caption for Cost did not translate into Spanish—it should be Costo in Spanish, 
not Cost. What’s going on here? 

The reason for this is that in AppResources.es-ES.resx, there is no entry named EventCost. There is 
an entry with the name Cost, but that is not the name you are referring to from code. This mistake is a 
good demonstration of the application’s cultural fallback: there was no entry in the Spanish version for 
EventCost, so the application “fell back” to the default language (English-US) to represent a given 
caption—the raison d’être of the resource files! 

Correct this typo by double-clicking the AppResources.es-ES.resx file and changing the name of the 
Cost entry to EventCost. Now re-run the application. You should see the proper caption, Costo, for the 
Spanish version of your announcement. 

 Note The MSDN documentation for internationalizing Windows Phone 7 applications proposes an entirely 
different approach than the one we’ve advocated in this example. MSDN examples encourage you to add a 
separate class to return resources. In this example, however, we have simplified things a bit and used the 
ResourceManager class to locate resources within the resource files. 

The main reason our example differs from the approach advocated by the MSDN documentation is 
that we are dynamically (i.e., in code) changing the culture of an application. We needed to do this for 
demonstration purposes, since changing local culture is a bit cumbersome if done in the emulator. 
Dynamic rebinding of elements (to toggle captions between English and Spanish) would be a bit more 
involved. The addition of a separate class and references to that class, as illustrated in the MSDN 
documentation, could have also taken away from the main points illustrated during the example. But we 
could certainly have used an approach other than using the ResourceManager class to accomplish the 
localization of the application. 

Summary 
In this chapter, you learned how to prepared an application to work in parts of the world other than the 
United States by using stored culture information and the ToString function to determine how to display 
data; ISO culture codes to reset an app’s CulturalInfo object to the user’s preferred language and 
country environment; and resource files to provide translated versions of field names, documentation, 
and even media. You learned what specific issues to consider when developing applications for 
international markets, such as dates, numbers, and currency translations between locales; you also 
learned how to translate application resources via Visual Studio resource files. 

In the next chapter, you will take a look at how to persist files and settings on Windows Phone 7 via the 
use of local storage. You will save images and application settings and then load them on demand from a 
local store on Windows Phone 7. 

  



C H A P T E R  13 
 

      
 

279 

Isolated Storage 

In Chapter 3, you learned that Microsoft Azure provides a reliable place to store and access data but 
using it requires Internet access. Sometimes it’s more efficient to cache frequently accessed data on the 
Windows Phone device itself. 

Isolated storage is a place on a Windows Phone 7 device where an application can save files, 
configuration information, and other data. Each application is allocated its own portion of the available 
space, but can’t access file systems used by the operating system itself, a limitation that prevents a rogue 
application from accessing system data and possibly corrupting it. The amount of storage that can be 
assigned to any single application depends on the phone’s available space.  

With isolated storage, a Windows Phone application can create and maintain a virtual file storage 
system that can contain virtual folders and files; you won’t have direct access to the underlying Windows 
Phone file system but the isolated storage will provide you with API to work with the file system. All input 
and output operations can be performed only on the application’s isolated storage level.  

Support for isolated storage on a Windows Phone is provided by the following two namespaces, 
whose features are depicted by Figure 13–1. 

• Isolated File Storage: System.IO.IsolatedStorage.IsolatedStorageFile allows you 
to create, use, and remove directories and files in the virtual isolated storage. The 
files can be added and retrieved through file stream using 
System.IO.IsolatedStorage.IsolatedFileStream, which can also cache images, 
sounds, and files that are dynamically loaded from the Web. In the first demo, you 
will learn how use isolated storage to cache an image loaded from the Web. 

• Isolated Local Settings: System.IO.IsolatedStorage.IsolatedStorageSettings 
provides APIs for storing and working with key-value pairs cached in isolated 
storage and for storing application settings and user specific settings. 



CHAPTER 13 ■ ISOLATED STORAGE 

280 

 

Figure 13–1. Using the Isolated Storage APIs 

In this chapter, you will learn how to work with a phone’s isolated storage. The first example will 
show you a technique to cache an image downloaded from the Web into the isolated storage file. The 
second demo will show you how to save and retrieve name and value pairs using isolated storage 
settings. 

Working with Isolated Directory Storage 
You’ll begin by building an application to work with the local storage on a phone. The application, 
named IsolatedStorageStoreImageDemo and shown in Figure 13–2, demonstrates the basic functions 
available through the isolated storage APIs, including the following: 

• Retrieving application-specific isolated storage. 

• Getting isolated storage quota. 

• Saving and retrieving isolated storage files. 

In this demo, when the Get Image button is clicked for the first time, the application checks to see 
whether there is enough space available in isolated storage. If there is, the image will be downloaded 
from the web site and then saved to isolated storage via isolated storage file stream. If the button is 
clicked again, the image will be loaded into an isolated storage file. 



CHAPTER 13 ■  ISOLATED STORAGE 

281 

 

Figure 13–2. IsolatedStorageStoreImageDemo 

You’ll build the demo in three steps. First, you’ll create a new Visual Studio project. Next, you’ll 
build the project’s user interface and finish up by adding code to respond to commands from the user. 

Creating the IsolatedStorageStoreImageDemo Project 
To set up the IsolatedStorageStoreImageDemo project, follow the steps you’ve used for previous 
examples in this book. 

1. Open Microsoft Visual Studio 2010 Express for Windows Phone on your 
workstation. 



CHAPTER 13 ■ ISOLATED STORAGE 

282 

2. Create a new Windows Phone Application by selecting File  New Project on 
the Visual Studio command menu. Select the Windows Phone Application 
template, name the application IsolatedStorageStoreImageDemo, and click 
OK, as shown in Figure 13–3.  
 

 

Figure 13–3. Windows Phone Application template for creating IsolatedStorageStoreImageDemo 

Coding the User Interface 
You’ll first code the user interface, which we’ve chosen to implement in XAML. Sometimes it’s faster to 
work with XAML than with managed code, especially when you’re working with a simple example, like 
this one, which requires only a few controls. Go to the Solution Explorer, open MainPage.xaml, and 
replace the XAML you find there with the code that appears in the following sections. 

Selecting the UI Resources  
Begin by adding the following XAML markup to MainPage.xaml to identify where the resource to build 
the application’s main page will be found:  



CHAPTER 13 ■  ISOLATED STORAGE 

283 

<phone:PhoneApplicationPage  

    x:Class="IsolatedStorageStoreImageDemo.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 
    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    shell:SystemTray.IsVisible="True"> 

 

Referencing the namespace as xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
allows you to use common Windows Phone controls such as text boxes, buttons, and list boxes to create 
the main page. The code snippet also includes a reference to a codebehind class 
(x:Class="IsolatedStorageStoreImageDemo.MainPage") that will handle the main page controls’ events. 

Building the Main Page and Adding Components 
Next, to create the main application page and populate it with controls, add the following XAML markup 
to the preceding block of code, also in MainPage.xaml: 

    <Grid x:Name="LayoutRoot" Background="{StaticResource PhoneBackgroundBrush}"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 

        <!--TitleGrid is the name of the application and page title--> 
        <Grid x:Name="TitleGrid" Grid.Row="0"> 
            <TextBlock Text="IsolatedStorageStoreImageDemo"  
                       x:Name="textBlockPageTitle"  
                       Style="{StaticResource PhoneTextTitle1Style}"  
                       FontSize="28" /> 
        </Grid> 

        <!--ContentGrid is empty. Place new content here--> 
        <Grid x:Name="ContentGrid" Grid.Row="1"> 
             
    <Image Height="458" HorizontalAlignment="Left"  
                   Margin="20,134,0,0" Name="image1" Stretch="Uniform"  
                   VerticalAlignment="Top" Width="423" /> 
            <Button Content="Get Image" Height="70"  
                    HorizontalAlignment="Left" Margin="0,598,0,0"  

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation


CHAPTER 13 ■ ISOLATED STORAGE 

284 

                    Name="btnGetImage" VerticalAlignment="Top"  
                    Width="443" Click="btnGetImage_Click" /> 
            <TextBox Height="72" HorizontalAlignment="Left"  
                     Margin="12,29,0,0" Name="txtImageUrl"  
                     Text="http://res1.newagesolution.net/Portals/0/twitter2_icon.jpg"  
                     VerticalAlignment="Top" Width="460" /> 
        </Grid> 
    </Grid> 
     
</phoneNavigation:PhoneApplicationPage> 
 

Once you’ve loaded the XAML code for the main page, you should see the layout shown in Figure 
13–4. Now it’s time to use the Isolated Storage APIs to add behavior to the application. 
 

  

Figure 13–4. IsolatedStorageStoreImageDemo Design view 

http://res1.newagesolution.net/Portals/0/twitter2_icon.jpg


CHAPTER 13 ■  ISOLATED STORAGE 

285 

Coding the Application 
In Solution Explorer, open MainPage.xaml.cs and replace the code there with the following C# code 
blocks, in precisely the order in which they are presented.  

Specifying the Namespaces 
Begin by specifying the namespaces the application will use. System.IO.IsolatedStorage and System.IO 
contain the APIs needed to work with the isolated file storage. 

using System; 
using System.Net; 
using System.Windows; 
using Microsoft.Phone.Controls; 
using System.Windows.Media.Imaging; 
using System.IO.IsolatedStorage; 
using System.IO; 
 
namespace IsolatedStorageStoreImageDemo 
{ 

Initializing Variables 
Now add the following block of code to MainPage.xaml.cs to initialize the application’s variables: 

    public partial class MainPage : PhoneApplicationPage 
    { 
        private string ImageFileName = null; 
         
 
        WebClient _webClient; // Used for downloading the image first time from the web site 
... 

Initializing the Application 
Now add the application’s constructor, which uses the WebClient.OpenReadCompleted event to 
download its target image. The code contains logic to check whether enough space is available in the 
phone’s isolated storage to save the downloaded image. If space is available, the image gets saved; 
otherwise it’s loaded directly into the image control. 

 

        public MainPage() 
        { 
            InitializeComponent(); 
 
            SupportedOrientations = SupportedPageOrientation.Portrait |  

SupportedPageOrientation.Landscape; 
             
            _webClient = new WebClient(); 



CHAPTER 13 ■ ISOLATED STORAGE 

286 

     // Handles when the image download is completed 
            _webClient.OpenReadCompleted += (s1, e1) => 
                { 
                    if (e1.Error == null) 
                   { 
                        try 
                     { 
                            bool isSpaceAvailable =  

IsSpaceIsAvailable(e1.Result.Length); 
 
                            if (isSpaceAvailable) 
                            { 
                                // Save Image file to Isolated Storage 
                                using (IsolatedStorageFileStream isfs =  

new IsolatedStorageFileStream(ImageFileName,  
                              FileMode.Create,  
     IsolatedStorageFile.GetUserStoreForApplication())) 
                                { 
                                    long imgLen = e1.Result.Length; 
                                    byte[] b = new byte[imgLen]; 
                                    e1.Result.Read(b, 0, b.Length); 
                                    isfs.Write(b, 0, b.Length); 
                                    isfs.Flush(); 
                                } 
             
                                LoadImageFromIsolatedStorage(ImageFileName); 
                            } 
                            else 
                            { 
                                BitmapImage bmpImg = new BitmapImage(); 
                                bmpImg.SetSource(e1.Result); 
                                image1.Source = bmpImg; 
                            } 
                       } 
                       catch (Exception ex) 
                       { 
                           MessageBox.Show(ex.Message); 
                       } 
                    } 
                }; 
        } 

 Note In order to create a sub-directory, you must create a directory path string, such as 
“MyDirectory1\SubDirectory1” and pass it to the CreateDirectory method. To add a file to SubDirectory1, 
you must create a string that combines the file name with its path, such as 
“MyDirectory1\SubDirectory1\MyFileInSubDirectory1.txt”, and then use IsolatedStorageFileStream to 
create a file. In order to add contents to the file, use StreamWriter.  



CHAPTER 13 ■  ISOLATED STORAGE 

287 

When you use the Remove method in IsolatedStorageFile, use it with caution as it will delete all directories and 
files. To avoid accidently deleting everything in the isolated storage, create a warning prompt window to confirm 
with the user that it will be OK to delete everything in the isolated storage. Another possibility is to use 
IsolatedStorage.DeleteFile or IsolatedStorage.DeleteDirectory to delete a specific file or directory to 
avoid removing all files or directories. Please refer to MSDN documentation for more information at 
http://msdn.microsoft.com/en-us/library/kx3852wf(VS.85).aspx. 

 

 Tip System.IO.Path.Combine provides a great way to combine directory paths and files without worrying if 
the backslashes (\) are properly added. Also, when searching files or directories, you can use a wild card (*) 
when building a directory or file path. 

Checking Availability of Isolated Storage Space  
Now, add code for the isSpaceAvailable helper method that the application uses to determine whether 
there is enough space available in isolated storage to store the image. 

 

 // Check to make sure there are enough space available on the phone 
        // in order to save the image that we are downloading on to the phone 
        private bool IsSpaceIsAvailable(long spaceReq) 
        { 
            using (IsolatedStorageFile store =  
IsolatedStorageFile.GetUserStoreForApplication()) 
    { 
                long spaceAvail = store.AvailableFreeSpace; 
                if (spaceReq > spaceAvail) 
                { 
                    return false; 
                } 
                return true; 
     } 
        } 

Adding a Button Event to Retrieve the Image from Isolated Storage 
When the Get Image button is clicked, it checks to see if the image exists in the isolated storage. If the 
image exists, the image is loaded from the isolated storage; otherwise the image is downloaded from the 
web site. 

 

http://msdn.microsoft.com/en-us/library/kx3852wf


CHAPTER 13 ■ ISOLATED STORAGE 

288 

        private void btnGetImage_Click(object sender, RoutedEventArgs e) 
        { 
            using (IsolatedStorageFile isf =  

IsolatedStorageFile.GetUserStoreForApplication()) 
            { 
                bool fileExist = isf.FileExists(ImageFileName); 
 
                if (fileExist) 
                { 
                    LoadImageFromIsolatedStorage(ImageFileName); 
                } 
                else 
                { 
                           if (!string.IsNullOrEmpty(txtImageUrl.Text)) 
                    { 
  // Use Uri as image file name 
                        Uri uri = new Uri(txtImageUrl.Text); 
                        ImageFileName = 
uri.AbsolutePath.Substring(uri.AbsolutePath.LastIndexOf('/')+1); 
                        _webClient.OpenReadAsync(new Uri(txtImageUrl.Text)); 
                    } 
 
                } 
 
            } 
            
        } 

Adding a Method to Retrieve the Image from Isolated Storage 
The image is streamed directly from the isolated storage into the image control. 

 

        private void LoadImageFromIsolatedStorage(string imageFileName) 
        { 
            // Load Image from Isolated storage 
            using (IsolatedStorageFile isf =  
IsolatedStorageFile.GetUserStoreForApplication()) 
            { 
                using (IsolatedStorageFileStream isoStream =  
isf.OpenFile(imageFileName, FileMode.Open)) 
                { 
                    BitmapImage bmpImg = new BitmapImage(); 
                    bmpImg.SetSource(isoStream); 
                    image1.Source = bmpImg; 
                } 
            } 
        } 
 
    } 
} 



CHAPTER 13 ■  ISOLATED STORAGE 

289 

Testing the Finished Application 
To test the completed application, press F5 on your keyboard and run it. 

In this brief demo, you’ve learned to work with isolated storage files by storing a downloaded image 
into the isolated storage and then retrieving the image from the isolated storage. In the next demo, you 
will interact with the name and value dictionary of the isolated storage settings. 

Working with Isolated Storage Settings 
In this section, you’ll build an application, named IsolatedStorageSettingsDemo, that demonstrates 

CRUD operations (create, read, update, and delete) of 
System.IO.IsolatedStorage.IsolatedStorageSettings. Figure 13–5 shows how its UI will look on a 
Windows Phone. 

 

 

Figure 13–5. IsolatedStorageSettingsDemo 



CHAPTER 13 ■ ISOLATED STORAGE 

290 

In the IsolatedStorageSettingsDemo application, when the Save button is clicked, the value in the  
Value text box will be added to the isolated storage settings using the key in the Key text box. Whenever 
new key-value pair data is added to the isolated storage settings, the key will be added to the list box of 
keys. When any of the keys in the list box of keys is selected, the Key text box and the Value text box will 
be populated with the data retrieved from the isolated storage settings. The Delete button will delete the 
selected key from the isolated storage settings. 

To build the demo, create a new project and then add XAML markup to create a new main page and 
its controls. Finally, you’ll add behavior to the application with C# code that makes use of isolated 
storage APIs to save and retrieve key-value pairs. 

Creating a New Project 
To create the new IsolatedStorageSettingsDemo project, open Microsoft Visual Studio 2010 Express for 
Windows Phone. Select File  New Project on the Visual Studio menu, select the Windows Phone 
Application template on the New Project dialogue, name the application IsolatedStorageSettingsDemo, 
and click OK, as shown in Figure 13–6. 

Now you’ll build the application main page. 
 

 

Figure 13–6. Windows Phone Application template for creating IsolatedStorageSettingsDemo 



CHAPTER 13 ■  ISOLATED STORAGE 

291 

Building the Application UI (XAML) 
To create the UI for IsolatedStorageSettingsDemo, go to Solution Explorer, open MainPage.xaml, and 
replace XAML with the following chunks of XAML markup in the sequence shown. 

Selecting the UI Resources  
The following code identifies where to find the UI controls that will be used to build this main page for 
this application. Using the namespace 
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" will allow you to add common 
Windows Phone controls like text boxes, buttons, and list boxes, which will be used to create the main 
page. Also, you are adding a reference to a codebehind class 
(x:Class="IsolatedStorageSettingsDemo.MainPage") that will handle the main page controls’ events. 

 

<phone:PhoneApplicationPage  
    x:Class="IsolatedStorageSettingsDemo.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 
    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    shell:SystemTray.IsVisible="True"> 

Building the Main Page and Adding Controls  
Now add the various controls and layouts you need to create the UI shown in Figure 13–5. 

 

    <Grid x:Name="LayoutRoot" Background="{StaticResource PhoneBackgroundBrush}"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <!--TitleGrid is the name of the application and page title--> 
        <Grid x:Name="TitleGrid" Grid.Row="0"> 
            <TextBlock Text="Isolated Storage Settings Demo"  
                       x:Name="textBlockListTitle"  
                       Style="{StaticResource PhoneTextTitle1Style}"  
                       FontSize="30" /> 
        </Grid> 
 
        <!--ContentGrid is empty. Place new content here--> 
        <Grid x:Name="ContentGrid" Grid.Row="1"> 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 13 ■ ISOLATED STORAGE 

292 

            <TextBox Height="72" HorizontalAlignment="Left"  
                     Margin="172,46,0,0" Name="txtKey" Text=""  
                     VerticalAlignment="Top" Width="212" /> 
            <Button Content="Save" Height="70"  
                    HorizontalAlignment="Left" Margin="78,228,0,0"  
                    Name="btnSave" VerticalAlignment="Top" Width="160"  
                    Click="btnSave_Click" /> 
             

<ListBox Height="301" HorizontalAlignment="Left" Margin="94,392,0,0"  
                     Name="lstKeys" VerticalAlignment="Top" Width="290" BorderBrush="White" 
                     BorderThickness="1" SelectionChanged="lstKeys_SelectionChanged" /> 
            <TextBlock Height="39" HorizontalAlignment="Left" Margin="94,62,0,0"  
                       Name="lblKey" Text="Key" VerticalAlignment="Top" /> 
            <TextBox Height="74" HorizontalAlignment="Left" Margin="172,124,0,0"  
                     Name="txtValue" Text="" VerticalAlignment="Top" Width="212" /> 
            <TextBlock Height="39" HorizontalAlignment="Left" Margin="94,140,0,0"  
                       Name="lblValue" Text="Value" VerticalAlignment="Top" /> 
            <Button Content="Delete" Height="70" HorizontalAlignment="Left"  
                    Margin="224,228,0,0" Name="btnDelete" VerticalAlignment="Top"  
                    Width="160" Click="btnDelete_Click" /> 
            <TextBlock Height="39" HorizontalAlignment="Left" Margin="94,347,0,0"  
                       Name="lblListOfKeys" Text="List of Keys" VerticalAlignment="Top" /> 
        </Grid> 
    </Grid> 
     
</phoneNavigation:PhoneApplicationPage> 

 
Once you’ve added the XAML markup blocks displayed in this section to MainPage.xaml, you should 

see the UI shown on the Visual Studio Design View tab in Figure 13–7. 



CHAPTER 13 ■  ISOLATED STORAGE 

293 

 

Figure 13–7. IsolatedStorageSettingsDemo design view 

Now it’s time to add behavior to the application. 

Coding Application Behavior (C#) 
From Solution Explorer, open MainPage.xaml.cs and replace the code you find there with the following 
blocks of C# code. 

Specifying the Namespaces 
Begin by listing the namespaces the application will use. Note the inclusion of 
System.IO.IsolatedStorage in order to work with the isolated storage settings. 

 

using System; 
using System.Windows; 
using System.Windows.Controls; 



CHAPTER 13 ■ ISOLATED STORAGE 

294 

using Microsoft.Phone.Controls; 
using System.IO.IsolatedStorage; 
namespace IsolatedStorageSettingsDemo 
{ 
    public partial class MainPage : PhoneApplicationPage 
    { 
        private IsolatedStorageSettings _appSettings; 

Initializing the Application  
Now add the next code block to the MainPage class. Notice the use of the BindKeyList() method, which 
will retrieve all keys from the isolated storage settings and bind them to the list box created in the 
previous section. 

         
public MainPage() 
        { 
            InitializeComponent(); 
            SupportedOrientations = SupportedPageOrientation.Portrait; 
            _appSettings = IsolatedStorageSettings.ApplicationSettings; 
    BindKeyList(); 
        } 

Adding the Save Button Event Handler  
Now add an event handler for the Save button. When the Save button is clicked, the application reads the 
key and the value from the text boxes into the isolated storage settings. 

 

 // Handles Create and Update 
// If the key does not exist key-value pair will be added 
// ElseIf the key exists the value will be updated 
        private void btnSave_Click(object sender, RoutedEventArgs e) 
        { 
            if (!String.IsNullOrEmpty(txtKey.Text)) 
            { 
                if (_appSettings.Contains(txtKey.Text)) 
                { 
                    _appSettings[txtKey.Text] = txtValue.Text; 
                } 
                else 
                { 
                    _appSettings.Add(txtKey.Text, txtValue.Text); 
                } 
_appSettings.Save(); 
                BindKeyList(); 
            } 
        } 



CHAPTER 13 ■  ISOLATED STORAGE 

295 

 Note An isolated storage file will perform much better than isolated storage settings because a file can be 
streamed in and out of the isolated storage file as raw data by using StreamWriter and StreamReader, whereas 
the storage and retrieval of data in an isolated storage settings key-value pair dictionary requires serialization. 
However, there is complexity in using isolated storage files: you need to use the file stream to save and retrieve 
the data and you must be careful to dispose the stream after each use. In the isolated storage settings, there is 
inherent simplicity in using the key to save and retrieve the data. 

Adding the Delete Button Event Handler  
Next, add an event handler for the Delete button. When the Delete button is clicked, it removes the 
selected key from the isolated storage settings and rebinds the list box. 

 

        private void btnDelete_Click(object sender, RoutedEventArgs e) 
        { 
            if (lstKeys.SelectedIndex > -1) 
            { 
                _appSettings.Remove(lstKeys.SelectedItem.ToString()); 
_appSettings.Save(); 
                BindKeyList(); 
            } 
        } 

Adding the Listbox Changed Event 
Finally, you’ll use the Listbox changed event to update the Key and Value text boxes of the application 
interface. When the user selects a key from the list box, the application will load the key and its 
associated value from the isolated storage settings using the selected key and then populate the key and 
value text boxes. 

 

// When key is selected value is retrieved from the storage settings 
        private void lstKeys_SelectionChanged(object sender, SelectionChangedEventArgs e) 
        { 
            if (e.AddedItems.Count > 0) 
            { 
                string key = e.AddedItems[0].ToString(); 
                if (_appSettings.Contains(key)) 
                { 
                    txtKey.Text = key; 
                    txtValue.Text = _appSettings[key].ToString(); 
                } 
            } 
        } 
 



CHAPTER 13 ■ ISOLATED STORAGE 

296 

        private void BindKeyList() 

        { 
            lstKeys.Items.Clear(); 
            foreach (string key in _appSettings.Keys) 
            { 
                lstKeys.Items.Add(key); 
            } 
            txtKey.Text = ""; 
            txtValue.Text = ""; 
        } 
 
    } 
} 

Testing the Finished Application 
To test the finished application, press F5. The result should resemble the screenshot shown in Figure 13–5. 

Summary 
In this chapter, you learned how to save application data on a Windows Phone device using either an 
isolated storage file or isolated storage settings. From the demo applications, you learned to create, read, 
update, and delete isolated storage data. 

In Chapter 14, you will learn to pinpoint the location of the phone by working with the Windows 
Phone’s global positioning system (GPS), connected networks, and cellular telephone networks. You will 
also learn to interact with Microsoft’s Bing Maps. 

 
 



C H A P T E R  14 
 

      
 

297 

Using Location Services 

All Windows Phone devices are required to ship with a GPS receiver; as a result, you can develop 
applications that are location aware. The GPS receiver in the Windows Phone gets the data in the form of 
longitude and latitude. 

There are many popular applications available for phones these days that use location data, such as 
restaurant finder applications, and navigation applications that give driving directions and plot the 
street address on a map using the services like Yahoo, Google, and Microsoft Bing Maps. With Microsoft 
Bing Maps service, you can convert the address into a GPS coordinate system and plot it using the Bing 
Maps Silverlight control of the Windows Phone. 

Even search engines take advantage of the phone’s GPS by providing relevant search results based 
on the location of the phone. There is an application that tracks your location while you are running and, 
based on the distance travelled, gives you total calories burned. 

Social networking applications like Twitter and Facebook also take advantage of the GPS tracking 
system on your phone by tagging your tweets or uploaded photos with the location information. There 
are applications that even allow you to share your current location with your friends and family. This can 
be life-saving information: a lost sea kayaker was found out in the ocean because he had a phone in his 
possession and the Coast Guard was able to locate him by his GPS location. 

Understanding Windows Phone Location  
Services Architecture 
A Windows Phone device can determine its current position on the surface of the earth in one of three 
ways. The first approach is to use the built-in GPS receiver, which uses satellites and is the most accurate 
but consumes the most power. The second and third approaches are to use Wi-Fi and the triangulation 
of the cell phone towers, which are much less accurate then GPS receiver but consume less power. 
Fortunately, the Windows Phone Location Service automatically decides which option is best for the 
location of a device and presents its best guess of longitude and latitude through the Bing Maps location 
service. With a longitude and latitude reading in hand, an application can plot it on a Bing Maps 
Silverlight control map. Another approach is to use the street or civic address returned by the on-board 
location service to query the Bing Maps web service for its corresponding GPS coordinates (longitude 
and latitude) and plot them on a Bing Maps map.  

In upcoming sections, you will learn how to take advantage of the Windows Phone’s GPS receiver to 
track your movements and how to plot an address on the Bing Maps Silverlight control using the 
Microsoft Bing Maps service. 



CHAPTER 14 ■ USING LOCATION SERVICES 

298 

Introducing the Windows Phone Location Service  
and Mapping APIs 
In order to use the location service on a device, you need to reference the System.Device assembly and 
declare System.Device.Location in your code. And before you can take advantage of the location service, 
you must enable the location service on the phone by going to Settings  Location  Turn on Location 
Services option. You can detect whether the phone’s location service is enabled using the StatusChanged 
event of GeoCoordinateWatcher, as seen in the following code: 

GeoCoordinateWatcher geoCoordinateWatcher;  
geoCoordinateWatcher = new GeoCoordinateWatcher(GeoPositionAccuracy.High); 
geoCoordinateWatcher.MovementThreshold = 100; // in Meters 
geoCoordinateWatcher.StatusChanged += (s, e) => 
    { 
        if (e.Status == GeoPositionStatus.Disabled) 
        { 
            MessageBox.Show("Please enable your location service by going to Settings ->  
Location -> Turn on Location Services option."); 
        } 
    }; 
 

Another way to check if the location service is enabled is to use TryStart to see if the 
GeoCoordinateWatcher can be started: 

 

if (!_geoCoordinateWatcher.TryStart(true, TimeSpan.FromSeconds(5))) 
{ 
     MessageBox.Show("Please enable Location Service on the Phone.",  
"Warning", MessageBoxButton.OK); 
} 
 

Next, you need to set DesiredAccuracy and provide MovementThreshold in GeoCoordinateWatcher, 
as seen in the previous code. 

GeoPositionAccuracy.Default uses Wi-Fi or cell phone towers and thus depends on the availability 
of these sources while GeoPositionAccuracy.High uses the GPS receiver built into the phone device; 
Windows Phone will automatically choose one to use. MovementThreshold is a very important property 
to set because MovementThreshold specifies the change in distance in meters before the 
PositionChanged event notifies the application that new coordinates are available; the lower the value of 
MovementThreshold, the more accurately the position will be tracked, but you will pay a price in higher 
power consumption. Microsoft recommends that you set MovementThreshold to at least 20 meters to 
filter out this noise. 

In the following sections, you will learn how to use the Windows Phone Location Service by 
simulating the behavior of the GPS receiver. This simulation allows you to test location-aware 
applications (like the ones you’ll build in this chapter) in the emulator, which lacks a real GPS receiver. 



CHAPTER 14 ■  USING LOCATION SERVICES 

299 

Simulating the Location Service 
In order to simulate use of the location service, you will be intercepting the GeoCoordinateWatcher’s 
PositionChanged event using an Observable object. With an Observable object, you can subscribe to an 
event and then stream the data received to the subscribed event delegates. For the examples in this 
chapter, you will subscribe to the PositionChanged event to feed GPS data to the parts of your 
application that consume it. The use of Observable objects is covered in more detail in Chapter 18. 

Creating the GeoCoordinateWatcherDemo Project 
To set up the GeoCoordinateDemo project, follow the steps you used for previous examples in this book. 
In order to use the .NET Reactive Extension, you will need to add a reference to 
Microsoft.Phone.Reactive. You’ll also need to reference System.Device in order to use the location 
service and, most importantly, System.Observable, in order to feed GPS data to the location service. 

1. Open Microsoft Visual Studio 2010 Express for Windows Phone on your 
workstation. 

2. Create a new Windows Phone Application by selecting File  New Project on 
the Visual Studio command menu. Select the Windows Phone Application 
template, and name the application GeoCoodinateWatcherDemo. 

3. Add a reference to Microsoft.Phone.Reactive in order to use Reactive 
Extension. Also add a reference to System.Device in order to use the location 
service. In Solution Explorer, you should be able to see the added reference, as 
shown in Figure 14–1. 



CHAPTER 14 ■ USING LOCATION SERVICES 

300 

 

Figure 14–1. Project references to use the Reactive Extension and the location service 

Coding the User Interface 
You will be building the user interface using the XAML in the Visual Studio. For building simple controls, 
it’s faster to work with the XAML code. Go to the solution, open MainPage.xaml, and replace the XAML 
you find there with the following code. 

Declaring the UI Resources 
The namespaces you see in the following code snippet are typically declared by default when you first 
create a Windows Phone project. In particular, namespace xmlns:phone="clr-
namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" allows you to add common Windows 
Phone controls to the application main page. 

 

<phone:PhoneApplicationPage  
    x:Class="GeoCoordinateWatcherDemo.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 
    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 14 ■  USING LOCATION SERVICES 

301 

    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    shell:SystemTray.IsVisible="True"> 

Building the Main Page and Adding Components 
Next, add two textblocks, txtLatitude and txtLongitude, to display the longitude and latitude that the 
phone location service provides. 

 

    <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28"> 
            <TextBlock x:Name="ApplicationTitle" Text="GeoCoordinateWatcherDemo"  
Style="{StaticResource PhoneTextNormalStyle}"/> 
        </StackPanel> 
 
        <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"> 
            <TextBox Height="72" Name="txtLongitude" Text=""  
                     Margin="193,142,41,393" /> 
            <TextBox Height="72" Name="txtLatitude" Text=""  
                     Margin="193,236,41,299" /> 
            <TextBlock Height="30" HorizontalAlignment="Left"  
                       Margin="78,202,0,0" Name="textBlock1"  
                       Text="Longitude" VerticalAlignment="Top" /> 
            <TextBlock Height="30" HorizontalAlignment="Left"  
                       Margin="78,306,0,0" Name="textBlock2"  
                       Text="Latitude" VerticalAlignment="Top" /> 
        </Grid> 
    </Grid> 
</phone:PhoneApplicationPage> 

 
Once you have loaded the XAML code, you should see the layout shown in Figure 14–2. In the next 

section, you will be adding events to handle updating the UI with the received GPS data from the 
location service. 

 

http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 14 ■ USING LOCATION SERVICES 

302 

 

Figure 14–2. GeoCoordinateWatcherDemo Design view 

Coding the Application 
In Solution Explorer, open MainPage.xaml.cs and replace the code there with the following C# code 
blocks, which will implement the UI updates using the location service with the data received from 
Reactive Extension. 

Specifying the Namespaces 
Begin by listing the namespaces the application will use. You will need System.Device.Location in order 
to use the location service. Declare Microsoft.Phone.Reactive in order to use the Reactive Extension’s 
Observable. Also note that you will need System.Threading in order to feed the GPS data into the 
location service; you can think of Reactive Extension’s Observable as if it were the satellite, Wi-Fi, or 
communication tower sending the GPS data. 

 



CHAPTER 14 ■  USING LOCATION SERVICES 

303 

using Microsoft.Phone.Controls;
using System.Threading; 
using Microsoft.Phone.Reactive;
using System.Device.Location;
using System.Collections.Generic;
using System; 

Initializing Variables 
The variable _geoCoordinateWatcher is an instance of the Windows Phone location class that you’ll use to 
access and retrieve location data. Notice in the constructor you declared the PositionChanged event in 
order to receive the location service’s GPS data. Also, you’ll be starting the thread that will simulate the 
GPS data that is sent to the PositionChanged event delegate. 

 

        GeoCoordinateWatcher _geoCoordinateWatcher;  

        public MainPage() 
        { 
            InitializeComponent(); 

            // initialize GeoCoordinateWatcher 
            _geoCoordinateWatcher = new GeoCoordinateWatcher(); 

            // PositionChanged event will receive GPS data 
            _geoCoordinateWatcher.PositionChanged +=  
                new EventHandler<GeoPositionChangedEventArgs<GeoCoordinate>> 
                    (_geoCoordinateWatcher_PositionChanged); 

            // simulateGpsThread will start Reactive Extension 
            // where EmulatePositionChangedEvents will be feeding  
            // the data to PositionChanged event 
            Thread simulateGpsThread = new Thread(SimulateGPS); 
            simulateGpsThread.Start(); 
        } 

Simulating GPS Data Using Reactive Extension’s Observable 
In the previous constructor, you initiated a thread that executes the SimulateGPS method. In the 
SimulateGPS method, the Reactive Extension’s Observable subscribes to the PositionChanged event in 
order to feed the GPS data. Notice that GPSPositionChangedEvents constantly sends 
GeoPositionChangedEventArgs every two seconds, which then gets received by 
GeoCoordinateWatcher’s PositionChanged event and the GPS data. 

 

        // Reactive Extension that intercepts the _geoCoordinateWatcher_PositionChanged 
        // in order to feed the GPS data. 
        private void SimulateGPS() 
        { 
            var position = GPSPositionChangedEvents().ToObservable(); 



CHAPTER 14 ■ USING LOCATION SERVICES 

304 

            position.Subscribe(evt => _geoCoordinateWatcher_PositionChanged(null, evt)); 
        } 
 

        private static IEnumerable<GeoPositionChangedEventArgs<GeoCoordinate>>  
GPSPositionChangedEvents() 
        { 
            Random random = new Random(); 
 

            // feed the GPS data 
            while (true) 
            { 
                Thread.Sleep(TimeSpan.FromSeconds(2)); 
 

                // randomly generate GPS data, latitude and longitude. 
// latitude is between -90 and 90 
double latitude = (random.NextDouble() * 180.0) - 90.0;                 
// longitude is between -180 and 180 
double longitude = (random.NextDouble() * 360.0) - 180.0;  
                yield return new GeoPositionChangedEventArgs<GeoCoordinate>( 
                   new GeoPosition<GeoCoordinate>(DateTimeOffset.Now, new  
GeoCoordinate(latitude, longitude))); 
            } 

        } 

Displaying GPS Data 
In this demo, the received GPS data is displayed directly to the user. Notice here that you are using 
Dispatcher.BeginInvoke to execute the lambda expression of an anonymous method. Using 
Dispatcher.BeginInvoke to update the UI with the GPS data is absolutely necessary because the 
PositionChanged event is executed in a different thread than the UI, and thus you must explicitly use 
Dispatcher.Invoke to run UI specific codes. 

 

        private void _geoCoordinateWatcher_PositionChanged(object sender 
            , GeoPositionChangedEventArgs<GeoCoordinate> e) 
        { 
            this.Dispatcher.BeginInvoke(() => 
            { 
                txtLatitude.Text = e.Position.Location.Latitude.ToString(); 
                txtLongitude.Text = e.Position.Location.Longitude.ToString(); 
            }); 

        } 

Testing the Finished Application 
To test the application, press F5. The result should resemble the screenshot in Figure 14–3, and you will 
see constantly changing longitude and latitude in the textblocks. 



CHAPTER 14 ■  USING LOCATION SERVICES 

305 

 

Figure 14–3. GeoCoordinateWatcherDemo 

Using GeoCoordinateWatcher and the Bing Maps Control  
to Track Your Movements 
You’ll begin by building an application to work with the phone’s location service, 
GeoCoordinateWatcher. The application, Bing Map Demo, is shown in Figure 14–4 and demonstrates 
the basic functions available through GeoCoordinateWatcher, the location service that was introduced 
in the previous section. The application will display your location with a blinking icon on a map and 
continuously update your position as you move. 

In this demo, when you click the Start button, it will start the location service that will send 
notification when the position is changed; upon the changed position event, the Bing Maps map will be 
updated with the new position. You can actually start the application while you are walking and watch 
the position of the locator (red dot) on the map change as you move. 



CHAPTER 14 ■ USING LOCATION SERVICES 

306 

 

Figure 14–4. Bing Maps Demo using GeoCoordinateWatcher 

You’ll build the demo in four steps. First, you need to register with the Bing Maps service portal and 
create a new Visual Studio project. Next, you’ll build the project’s user interface and finish up by adding 
code to respond to commands from the user. 

Registering with the Bing Maps Service Portal and  
Installing the Bing Maps SDK 
Before you can use the Bing Maps Silverlight control and its service offerings, you must register with 
Bing Maps at www.bingmapsportal.com. Go to www.bingmapsportal.com and you should see something 
similar to Figure 14–5. 

http://www.bingmapsportal.com
http://www.bingmapsportal.com


CHAPTER 14 ■  USING LOCATION SERVICES 

307 

 

Figure 14–5. Bing Maps portal to create new user 

1. Click the Create button and follow the instructions provided by Microsoft. 

2. Once you create a Bing Maps service user, you must create an application key 
so that you can use the Bing Maps control and the Bing Maps service from 
Windows Phone. Sign in to the Bing Maps portal; once you are logged in, click 
the “Create or view keys” link shown in Figure 14–6. 



CHAPTER 14 ■ USING LOCATION SERVICES 

308 

 

Figure 14–6. Creating an application key to use Bing Maps service 

Once you’ve created the Bing Maps application key, you must install the Windows Phone SDK 
found at http://create.msdn.com/en-us/home/getting_started. 

If you successfully installed the Windows Phone SDK, the binaries (Microsoft.Phone.Controls.Maps) 
can be referenced from the project in order to use the Bing Maps Silverlight control. 

Creating the BingMapDemo Project 
To set up the BingMapDemo project, follow the steps you’ve used for previous examples in this book. 

1. Open Microsoft Visual Studio 2010 Express for Windows Phone on your 
workstation. 

2. Create a new Windows Phone Application by selecting File  New Project on 
the Visual Studio command menu. Select the Windows Phone Application 
template, and name the application BingMapDemo. 

http://create.msdn.com/en-us/home/getting_started


CHAPTER 14 ■  USING LOCATION SERVICES 

309 

3. In order to use Bing Maps control in Windows Phone, you must reference 
Microsoft.Phone.Controls.Maps, and in order to track your movement, you 
need to add reference to System.Device to use the location service. Open 
Solution Explorer and add those references now. Check to ensure that your list 
of references matches the list shown in Figure 14–7. 
 

  

Figure 14–7. Referenced assemblies needed for Bing Maps control 



CHAPTER 14 ■ USING LOCATION SERVICES 

310 

Coding the User Interface 
Now it’s time to code the user interface. Let’s implement it in XAML (sometimes it’s faster to work with 
XAML when working with a simple example that requires only a few controls). Go to Solution Explorer, 
open MainPage.xaml, and replace the XAML you find there with the following two blocks of code. 

Declaring the UI Resources 
Most of the namespaces you see in this snippet are typically declared by default when you first create a 
Windows Phone project. The following namespace is unique to this application and allows you to add 
the Bing Maps control you will use to plot your location: xmlns:BingMap="clr-
namespace:Microsoft.Phone.Controls.Maps;assembly=Microsoft.Phone.Controls.Maps". 

 

<phone:PhoneApplicationPage  
    x:Class="BingMapDemo.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 
    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    xmlns:BingMap= 
"clr-namespace:Microsoft.Phone.Controls.Maps;assembly=Microsoft.Phone.Controls.Maps " 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    shell:SystemTray.IsVisible="True"> 

Building the Main Page and Adding a Bing Maps Control 
To the main page, you will be adding a Bing Maps control to display your position and a button to start 
the location service. You’ll also add an animation storyboard named BlinkLocator to cause the locator 
icon to blink by changing its color. Note that inside bingMap control there is a BingMap:Pushpin named 
bingMapLocator. The map layer bingMapLocator contains an Ellipse control named locator, whose 
initial map position in latitude and longitude is (0, 0). In this application, the location service will 
provide changing positions in the latitude and longitude so that the locator position can be properly 
updated. This is a very simple but very powerful demonstration of using the location service and Bing 
Maps control. You can use the same technique for Yahoo or Google Maps, as their API is very similar to 
Bing Maps. 

 

    <phone:PhoneApplicationPage.Resources> 
 <Storyboard x:Name="BlinkLocator" AutoReverse="True" RepeatBehavior="Forever"> 
  <ColorAnimationUsingKeyFrames  
Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"  
Storyboard.TargetName="locator"> 
    <EasingColorKeyFrame KeyTime="0" Value="Red"/> 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 14 ■  USING LOCATION SERVICES 

311 

    <EasingColorKeyFrame KeyTime="0:0:1" Value="#FFCEFF00"/> 
  </ColorAnimationUsingKeyFrames> 
 </Storyboard> 
    </phone:PhoneApplicationPage.Resources> 
 
    <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12"> 
            <TextBlock x:Name="ApplicationTitle" Text="Bing Map Demo"  
                       Style="{StaticResource PhoneTextNormalStyle}"/> 
        </StackPanel> 
 
        <Grid x:Name="ContentGrid" Grid.Row="1"> 
            <BingMap:Map Name="bingMap" NavigationVisibility="Collapsed" 
                         Margin="0,0,0,72"> 
                <BingMap:Pushpin Name="bingMapLocator"> 
      <BingMap:Pushpin.Content> 
                    <Ellipse Fill="Red" Width="20" Height="20"  
                             BingMap:MapLayer.Position="0,0"  
                             Name="locator" /> 
  <BingMap:Pushpin.Content> 
          </BingMap: Pushpin> 
            </BingMap:Map> 
            <Button Content="Start" Height="72" HorizontalAlignment="Right"  
Margin="0,633,0,0" Name="btnStart" VerticalAlignment="Top" Width="160"  
Click="btnStart_Click" /> 
            <TextBlock Height="30" HorizontalAlignment="Left" Margin="6,657,0,0"  
Name="txtStatus" Text="Status" VerticalAlignment="Top" Width="308" /> 
        </Grid> 
    </Grid> 
     
</phone:PhoneApplicationPage> 

 Tip In this code, you changed the content of the Pushpin, which is the locator that specifies where you are. 
You can add any type of control and change the appearance of the Pushpin. You can even put a placeholder and 
dynamically change the content of the Pushpin. 

Once you have loaded the XAML code, you should see the layout shown in Figure 14–8. In the next 
section, you will be adding an event to consume the GPS data and plot the data onto the map layer of the 
Bing Maps Silverlight control. 



CHAPTER 14 ■ USING LOCATION SERVICES 

312 

 

Figure 14–8. BingMapDemo Design view 

Coding the Application 
In Solution Explorer, open MainPage.xaml.cs and replace the code there with the following C# code 
blocks, which will implement the media player’s functionalities. 

Specifying the Namespaces 
Begin by listing the namespaces the application will use. Notice the inclusion of 
Microsoft.Maps.Control, which will allow you to manipulate Bing Maps control, and System.Device, 
which will allow you to work with geoCoordinateWatcher, which will retrieve the location data from GPS, 
Wi-Fi, or cellular towers. 

 

using System; 
using System.Windows; 
using Microsoft.Phone.Controls; 
using Microsoft.Maps.MapControl; 
using System.Device.Location; 
namespace BingMapDemo 
{ 



CHAPTER 14 ■  USING LOCATION SERVICES 

313 

    public partial class MainPage : PhoneApplicationPage 
    { 

Initializing Variables 
The variable _geoCoordinateWatcher is an instance of the location service class that you’ll use to access 
and retrieve location data. Note that you will be using GeoPositionAccuracy.High, which will use the 
phone device’s GPS, and for this to work you must use the real Windows Phone device. If you need to 
simulate the location service, you can refer to the previous section in this chapter or Chapter 18 to 
simulate fake GeoCoordinateWatcher service. Note that you’ll also be setting MovementThreshold to 
100 meters so that the PositionChanged event fires every 100 meters, and you’ll be plotting your current 
location on the Bing Maps map. 

GeoCoordinateWatcher has StatusChanged and PositionChanged events that notify the application 
whenever the new updated position is received from the GPS. 

As for bingMap, you will hide the Microsoft Bing Maps logo and copyright in order to make things 
cleaner and make more space for other controls for the application. Finally, in order to use the map 
control at all, you must set ClientTokenCredentialsProvider to the value of the application key you 
obtained when you registered at the Bing Maps site. 

        GeoCoordinateWatcher _geoCoordinateWatcher;  

         
        public MainPage() 
        { 
            InitializeComponent(); 
            // Add your own BingMap Key 
            bingMap.CredentialsProvider =  
new ApplicationIdCredentialsProvider("ADD-YOUR-OWN-KEY"); 
             
            // Remove Bing Maps logo and copyrights in order to gain 
            // extra space at the bottom of the map 
            bingMap.LogoVisibility = Visibility.Collapsed; 
            bingMap.CopyrightVisibility = Visibility.Collapsed; 

            // Delcare GeoCoordinateWatcher with high accuracy 
            // in order to use the device's GPS 
            _geoCoordinateWatcher = new GeoCoordinateWatcher(GeoPositionAccuracy.High); 
            _geoCoordinateWatcher.MovementThreshold = 100; 

            // Subscribe to the device's status changed event 
            _geoCoordinateWatcher.StatusChanged +=  
                new  EventHandler<GeoPositionStatusChangedEventArgs>(
_geoCoordinateWatcher_StatusChanged); 

            // Subscribe to the device's position changed event 
            // to receive GPS coordinates (longitude and latitude) 
            _geoCoordinateWatcher.PositionChanged +=  
                New EventHandler<GeoPositionChangedEventArgs<GeoCoordinate>>(
_geoCoordinateWatcher_PositionChanged); 
        } 



CHAPTER 14 ■ USING LOCATION SERVICES 

314 

Responding to StatusChanged and PositionChanged  
GeoCoordinateWatcher Events 
In GeoCoordinateWatcher, StatusChanged fires when the GPS status changes and PositionChanged 
fires when the GPS receives new a position. In StatusChanged, if the received status is Disabled, you 
must notify the user that the device’s location service is disabled and must be turned on. You can enable 
the location service on the device by going to Settings  Location  Turn on the location service. 

Note here that the PositionChanged event will not fire until the position of the phone has changed 
by at least 100 meters as specified by MovementThreshold. When the StatusChanged event fires, 
txtStatus will be updated, and when the PositionChanged event fires, the locator icon you have added to 
the Bing Maps layer will be moved accordingly. 

 

        private void _geoCoordinateWatcher_PositionChanged(object sender,  
GeoPositionChangedEventArgs<GeoCoordinate> e) 
        { 
            Deployment.Current.Dispatcher.BeginInvoke(() => ChangePosition(e));  
        } 
 
        private void ChangePosition(GeoPositionChangedEventArgs<GeoCoordinate> e) 
        { 
            SetLocation(e.Position.Location.Latitude,  
e.Position.Location.Longitude, 10, true); 
        } 
 
        private void _geoCoordinateWatcher_StatusChanged(object sender,  
GeoPositionStatusChangedEventArgs e) 
        { 
            Deployment.Current.Dispatcher.BeginInvoke(() => StatusChanged(e));  
        } 
 
private void StatusChanged(GeoPositionStatusChangedEventArgs e) 
        { 
            switch (e.Status) 
            { 
                case GeoPositionStatus.Disabled: 
                    txtStatus.Text = "Location Service is disabled!"; 
                    break; 
                case GeoPositionStatus.Initializing: 
                    txtStatus.Text = "Initializing Location Service..."; 
                    break; 
                case GeoPositionStatus.NoData: 
                    txtStatus.Text = "Your position could not be located."; 
                    break; 
                case GeoPositionStatus.Ready: 
                    break; 
            } 
        } 



CHAPTER 14 ■  USING LOCATION SERVICES 

315 

Starting the Location Service: GeoCoordinateWatcher 
When the user clicks the Start button, the location service will start. TryStart will return false if the 
phone’s location service is disabled. If the location service is disabled, a message box is displayed to the 
user, instructing the user to enable the location service on the phone. 

 

        private void btnStart_Click(object sender, RoutedEventArgs e) 
        { 
            if (!_geoCoordinateWatcher.TryStart(true, TimeSpan.FromSeconds(5))) 
            {  
                MessageBox.Show("Please enable Location Service on the Phone.",  
"Warning", MessageBoxButton.OK); 
 
            } 
        } 

Plotting the Location on the Bing Maps MapLayer 
BingMap has a SetView method that allows you to set the current view on the screen using the location 
data, latitude and longitude, received from GeoCoordinateWatcher. The zoomLevel property indicates 
how far into the location the map will be zoomed. BingMap also has MapLayer, which can set the position 
of the map layer with respect to the received location. To make things interesting, let’s animate 
bingMapLocator with simple color blinks. 

 

        private void SetLocation(double latitude, double longitude,  
double zoomLevel, bool showLocator) 
        { 
            Location location = new Location(latitude, latitude); 
            bingMap.SetView(location, zoomLevel); 
            MapLayer.SetPosition(locator, location); 
            if (showLocator) 
            { 
                locator.Visibility = Visibility.Visible; 
                BlinkLocator.Begin(); 
            } 
            else 
            {  
                locator.Visibility = Visibility.Collapsed; 
                BlinkLocator.Stop(); 
            } 
        } 
    } 

} 

Testing the Finished Application 
To test the application, press F5. The result should resemble Figure 14–4. Remember that you must have 
a real phone device to be able to use real GPS. In the following section, you’ll utilize Bing Maps 



CHAPTER 14 ■ USING LOCATION SERVICES 

316 

geocoding service to convert the address into geocode of longitude and latitude in order to plot the 
address on the Bing Maps Silverlight control. 

Plotting an Address on a Bing Maps Map and Working with  
the Bing Maps Service 
Microsoft provides three main services hosted on the cloud to be used by any clients, including 
Windows Phone devices. 

• GeoCodeService allows an address to be converted to longitude and latitude or 
converts geocode into an address. The web service can be consumed by accessing 
the URL at 
http://dev.virtualearth.net/webservices/v1/geocodeservice/geocodeservice.s
vc. 

• RouteService includes services such as calculating the distance between two 
addresses, providing driving and walking directions from address to address, and 
step-by-step navigation. The web service can be consumed by accessing the URL 
at 
http://dev.virtualearth.net/webservices/v1/routeservice/routeservice.svc. 

• SearchService provides location-based search results. For example, based on the 
submitted address, it will find restaurants in a five-mile radius. The web service 
can be consumed by accessing the URL at 
http://dev.virtualearth.net/webservices/v1/searchservice/searchservice.svc
. 
 

In the following section, you will be using GeoCodeService to convert any address into geocode 
(longitude and latitude) and plot the address on the Bing Maps Silverlight Control. Through the demo, 
you will learn how to access the Bing Maps service using the credentials you received when you 
registered.  

The following demo interface will contain a text box where you can enter an address to be plotted 
on the map and a button to invoke a method to convert the address using the Bing Maps geocode 
service. It then plots the geocode onto the Bing Maps Silverlight control, as shown in Figure 14–9. 

http://dev.virtualearth.net/webservices/v1/geocodeservice/geocodeservice.s
http://dev.virtualearth.net/webservices/v1/routeservice/routeservice.svc
http://dev.virtualearth.net/webservices/v1/searchservice/searchservice.svc


CHAPTER 14 ■  USING LOCATION SERVICES 

317 

 

Figure 14–9. AddressPlottingDemo application 

Creating the AddressPlottingDemo Application 
To set up the BingMapDemo project, follow the steps you used for previous examples in this book: 

1. Open Microsoft Visual Studio 2010 Express for Windows Phone on your 
workstation. 

2. Create a new Windows Phone Application by selecting File  New Project on 
the Visual Studio command menu. Select the Windows Phone Application 
template, and name the application AddressPlottingDemo. 

3. In order to use Bing Maps control in Windows Phone, you must reference 
Microsoft.Phone.Controls.Maps and System.Device. 

Adding a Service Reference to the Bing Maps GeoCodeService 
In order to use the Bing Maps GeoCodeService, you need to add a service reference to your project. 



CHAPTER 14 ■ USING LOCATION SERVICES 

318 

1. In Solution Explorer, right-click the References folder and choose Add Service 
Reference. 

2. When the Add Service Reference window pops up, enter 
http://dev.virtualearth.net/webservices/v1/geocodeservice/geocodeservic
e.svc into the Address field and press Go.  

3. You see a list of services. In the Namespace text box, enter 
BingMapGeoCodeService. You should see a result similar to Figure 14–10. 
 

 

Figure 14–10. Adding a service reference 

4. Click OK and you should see BingMapGeoCodeService in Solution Explorer, as 
shown in Figure 14–11. 

http://dev.virtualearth.net/webservices/v1/geocodeservice/geocodeservic


CHAPTER 14 ■  USING LOCATION SERVICES 

319 

 

Figure 14–11. Bing Maps GeoCodeService in Service References folder 

Coding the User Interface 
AddressPlottingDemo has a very simple UI, consisting of the textblock for capturing the address, the 
button to invoke a method for plotting the address onto the map, and the Bing Maps Silverlight control. 

Declaring the UI Resources 
The namespaces you see in the following code snippet are typically declared by default when you first 
create a Windows Phone project. In particular, namespace xmlns:phone="clr-
namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" allows you to add common Windows 
Phone controls to the application main page. 

 



CHAPTER 14 ■ USING LOCATION SERVICES 

320 

<phone:PhoneApplicationPage  
    x:Class="AddressPlottingDemo.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 
    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    xmlns:BingMap="clr-
namespace:Microsoft.Phone.Controls.Maps;assembly=Microsoft.Phone.Controls.Maps" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    shell:SystemTray.IsVisible="True"> 

Creating the Main Page 
The main page consists of the Bing Maps Silverlight control, a button, and an address textblock to 
capture the user address input. Notice on the bingMap control that CopyrightVisibility and LogoVisibity 
are set to Collapsed, giving you much more needed real estate on the screen. 

 

    <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <StackPanel x:Name="TitlePanel" Grid.Row="0"  
                    Margin="12,17,0,28"> 
            <TextBlock x:Name="ApplicationTitle"  
                       Text="AddressPlottingDemo"  
                       Style="{StaticResource PhoneTextNormalStyle}"/> 
        </StackPanel> 
 
        <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"> 
 
            <BingMap:Map Name="bingMap"  
                         Width="425" Height="513"  
                         Margin="0,0,19,25" 
                         CopyrightVisibility="Collapsed" 
                         LogoVisibility="Collapsed" 
                         VerticalAlignment="Bottom" HorizontalAlignment="Right"> 
                <BingMap:Pushpin Name="bingMapLocator"  
                                 Background="Transparent"> 
                    <BingMap:Pushpin.Content> 
                        <Ellipse Fill="Red" Width="20" Height="20"  
                            Name="locator" /> 
                    </BingMap:Pushpin.Content> 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 14 ■  USING LOCATION SERVICES 

321 

                </BingMap:Pushpin> 
            </BingMap:Map> 
            <TextBox Height="72" Margin="110,10,6,0" Name="txtAddress"  
                     Text="4237 Salisbury Rd, Suite 114 Jacksonville FL, 32216"  
                     VerticalAlignment="Top" /> 
            <TextBlock Height="30" HorizontalAlignment="Left"  
                       Margin="33,32,0,0" Name="textBlock1"  
                       Text="Address" VerticalAlignment="Top" /> 
            <Button Content="Show on map" Height="72"  
                    Name="btnPlot" Margin="17,68,192,556"  
                    Click="btnPlot_Click" /> 
        </Grid> 
    </Grid> 
</phone:PhoneApplicationPage> 

Coding the Application 
One of most important things to notice in this demo application is its use of the Bing Maps geocode 
service to convert a street address to longitude and latitude measures so that it can be plotted on the 
map. Also, in order to use the Bing Maps geocode service, you must provide the Bing Maps credential 
that you created during the registration. 

Specifying the Namespaces 
Once the service is referenced, you will be able to declare the namespace of the Bing Maps geocode 
service, AddressPlottingDemo.BingMapGeoCodeService. You are including System.Linq because you will 
be using Linq to query returned GeoCodeResults with the highest confidence. 

 

using System.Windows; 
using Microsoft.Phone.Controls; 
using AddressPlottingDemo.BingMapGeoCodeService; 
using Microsoft.Phone.Controls.Maps; 
using System.Collections.ObjectModel; 
using System.Linq; 

Initializing Variables 
The GeocodeServiceClient variable _svc is a proxy class that lets you connect to the Bing Maps geocode 
service to geocode the address in order to plot on the map. Note that you need to subscribe to 
GeocodeCompleted event in order to receive results that contains longitude and latitude. 

 

        GeocodeServiceClient _svc; 
        public MainPage() 
        { 
            InitializeComponent(); 
 
            // instantiate Bing Maps GeocodeService 
            _svc = new GeocodeServiceClient(“BasicHttpBinding_IGeocodeService”); 



CHAPTER 14 ■ USING LOCATION SERVICES 

322 

            _svc.GeocodeCompleted += (s, e) => 
                 { 
                     // sort the returned record by ascending confidence in order for 
                     // highest confidence to be on the top.  
     // Based on the numeration High value is 
                     // at 0, Medium value at 1 and Low volue at 2 
                     var geoResult = (from r in e.Result.Results  
                                      orderby (int)r.Confidence ascending  
                                      select r).FirstOrDefault(); 
                     if (geoResult != null) 
                     { 
                         this.SetLocation(geoResult.Locations[0].Latitude, 
                             geoResult.Locations[0].Longitude, 
                             10, 
                             true); 
                     } 
                 }; 
        } 

Handling the Button Event That Plots Address Data onto the Bing Maps Map 
When btnPlot is clicked, you will be making a web service request to the Bing Maps geocode service to 
convert txtAddress.Text to return geocoordinates in longitude and latitude. When the 
GeoCodeCompleted event is raised, you will receive multiple results that contain only the highest 
confidence level. Using GeoCodeResult, you will be making a call to SetLocation that will plot the 
location on the Bing Maps Silverlight control. 

 

private void SetLocation(double latitude, double longitude,  
double zoomLevel, bool showLocator) 
        { 
            // Move the pushpin to geo coordinate 
            Microsoft.Phone.Controls.Maps.Platform.Location location =  
new Microsoft.Phone.Controls.Maps.Platform.Location(); 
            location.Latitude = latitude; 
            location.Longitude = longitude; 
            bingMap.SetView(location, zoomLevel); 
            bingMapLocator.Location = location; 
            if (showLocator) 
            { 
                locator.Visibility = Visibility.Visible; 
            } 
            else 
            {  
                locator.Visibility = Visibility.Collapsed; 
            } 
        } 
 
        private void btnPlot_Click(object sender, RoutedEventArgs e) 
        { 
            BingMapGeoCodeService.GeocodeRequest request =  



CHAPTER 14 ■  USING LOCATION SERVICES 

323 

new BingMapGeoCodeService.GeocodeRequest(); 

            // Only accept results with high confidence. 
            request.Options = new GeocodeOptions() 
            { 
                Filters = new ObservableCollection<FilterBase> 
                { 
                    new ConfidenceFilter() 
                    { 
                        MinimumConfidence = Confidence.High 
                    } 
                } 
            }; 

            request.Credentials = new Credentials() 
            { 
                ApplicationId = "Put-Your-BingMap-Credential-Id" 
            }; 

            request.Query = txtAddress.Text; 
             
            // Make asynchronous call to fetch the geo coordinate data. 

            _svc.GeocodeAsync(request); 
        } 

Testing the Finished Application 
To test the application, press F5. The result should resemble the display shown in Figure 14–9. Enter an 
address into Address text box and press the  “Show on map” button. You should see the pushpin move 
from its current position to the coordinates provided by the Bing Maps geocode service. 

Summary 
In this chapter, you learned how to start the location service to receive the position in latitude and 
longitude. Upon receiving the position, you passed the location data into the Bing Maps control and use 
the Bing Maps map layer to indicate your current GPS position. This simple but powerful concept will 
help you create your own location-aware application. Also, you learned how to utilize the Bing Maps 
geocode service, which converts the address to geocoordinates so you can plot the address location on 
the map. 

In Chapter 15, you will learn how to use the media elements of the phone to play video and audio as 
well as stream movies and sounds from external sites. You will also learn how media elements play a 
significant role in making sound effects in a game. 

 
 



C H A P T E R  15 


 

325 

Media 

In today’s smartphone era, content is everything. Think of YouTube, which provides fun videos to the 
masses through the Internet. Now smartphones, too, have the ability to play high-quality movies, music, 
and more, anywhere. What was once possible only on a desktop computer can now be done with the 
smartphone you carry all the time, regardless of whether you are near a cell tower or Wi-Fi connection.  

Windows Phones come equipped with powerful media features for developers and designers to use 
to create compelling applications that can play back music, audio, and video in a host of formats. A good 
example of such functionality can be found at the NBC Olympics web site, where the Olympic games 
were streamed live, then archived, and can now be viewed again in high definition 
(www.nbcolympics.com/video/index.html). The NBC Olympic video player includes a BOSS button, 
which, when clicked, pauses the video player and pops up a full-screen display that resembles Microsoft 
Excel, creating the impression for you-know-who that you are working really hard. Another example are 
the pay-per-view fighting matches from the Ultimate Fighting Championship (UFC) that are streamed 
live at http://modules.ufc.com/live/.  

MediaElement provides more than just a simple video player. Windows Phone provides the ability 
to play videos and sounds, listen to FM radio, interact with the music and video hub, and launch 
Windows Marketplace to allow the user to buy songs.  

In this chapter, you will learn how to embed media in your application and customize a media 
player control to play videos and sounds using MediaElement. You’ll also learn to use 
MediaPlayerLauncher, which activates the stand-alone media player application that ships with 
Windows Phone. (Please refer to Chapter 5 for more information on how to direct users to Windows 
Marketplace to buy your application. Also, this chapter won’t be covering FMRadio API but you can find 
information on it at http://msdn.microsoft.com/en-us/library/ ff769541(VS.92).aspx.) 

Introducing MediaElement 
MediaElement is a Windows Phone control that you can add to an application to play video and sound. 
It first appeared with .NET and was later ported to Silverlight and then to Windows Phone. When the 
MediaElement control is placed on the Visual Studio or Blend Design view, you will see only a rectangle, 
which is not what you would expect of a video or audio player. This is because the MediaElement control 
is left in somewhat of a blank slate to give designers full control over the look of the play, stop, pause, 
mute, and seek buttons. For developers, MediaElement exposes APIs for full control of a player’s play, 
stop, pause, mute, and seek behavior, as well as stream buffering, the progress of downloads, and 
volume control.  

You’ll want to use MediaElement when you are creating an application that requires more than a 
simple media player and you want it to be a part of your application—not something you have to exit the 
application to access. Also, MediaElement provides flexibility to customize the look and add more 
functionality, like being able to share videos via Twitter, Facebook, SMS, or e-mail; you can even allow 

http://www.nbcolympics.com/video/index.html
http://modules.ufc.com/live/
http://msdn.microsoft.com/en-us/library/


CHAPTER 15  MEDIA 

326 

the user to add ratings and comments. Another option is creating a video player that offers chapters plus 
thumbnails of each chapter.  

MediaPlayerLauncher is more useful if you simply want to play video or audio using the default 
media player of the Windows Phone. The default media player that comes with Windows Phone 
supports basic functions such as play, pause, move forward, move backward, and play time elapsed. 
MediaElement will support a variety of video and audio formats. See Table 15–1 for the most commonly 
used formats that are supported by Windows Phone; a complete list can be found at 
http://msdn.microsoft.com/en-us/library/ff462087(VS.92).aspx. 

Table 15–1. Media Formats Supported on Windows Phone 

Media Type Supported Formats 

Audio WAV, MP3, WMA, MP4 

Video WMV, MP4, AVI 

Images JPEG, PNG, GIF, BMP, TIF 

The first demo will show you a technique to stream a video file from the Internet or play a video file 
that’s part of the application content using MediaElement, and then you will learn to play the same 
video content using MediaPlayerLauncher. 

Working with Video 
In this demo, you will build a media player (for video and audio) that can play, stop, pause, mute, and 
seek (which is a video player function that lets you move the video forward or backward to any position); 
the UI is shown in Figure 15–1. You will learn to stream video content from the Internet as well as play 
content that is part of the application. (Note that you won’t want to package the video as part of the 
phone application because video or audio files are very large).  

In the real world, you must think about the strategy of deploying media content to the Web and 
allowing the phone application to simply play the URL. In Chapter 13, you learned about caching the 
image download into the isolated storage. The same technique can be used to download video or music 
content the first time and then save it into isolated storage.  

Another approach is to store video content on a Windows IIS media server and take advantage of 
the smooth streaming technology for HD-quality content and Microsoft DRM protection the server 
provides. Netflix, for example, uses DRM technology to secure the content of its streaming videos. 
Microsoft DRM provides a platform to protect digital materials and deliver content that can be played on 
any device. Also, IIS media server can effectively distribute the HD video content to low-bandwidth and 
low-performing computers via smooth streaming technology. If you would like to learn more about 
DRM using IIS media streaming server, please refer to http://msdn.microsoft.com/en-
us/library/cc838192(VS.95).aspx, as you will not be learning about this advanced topic in this chapter.  

Yet another way to store video content is in the cloud using Microsoft Azure. Please refer to Chapter 
3 for Windows Azure data store. 

http://msdn.microsoft.com/en-us/library/ff462087
http://msdn.microsoft.com/en-us/library/cc838192
http://msdn.microsoft.com/en-us/library/cc838192
http://msdn.microsoft.com/en-us/library/cc838192


CHAPTER 15  MEDIA 

327 

 

Figure 15–1. Media Player Demo application 

You will build the demo application in three major steps. First you will create a Windows Phone 
project. Then you will build the user interface of the media player and you’ll finish up by wiring up the 
commands in the code that respond to the user. 

Creating the MediaPlayerDemo Project 
To create the Video Demo project, follow the steps from previous examples in this book. 

1. Open Microsoft Visual Studio 2010 Express for Windows Phone on your 
workstation. 



CHAPTER 15  MEDIA 

328 

2. Create a new Windows Phone Application by selecting File  New Project on 
the Visual Studio command menu. Select the Windows Phone Application 
template, name the application MediaPlayerDemo, and click OK.  

Building the User Interface 
You will build the user interface in Visual Studio with XAML (for building simple controls, it’s faster to 
work with the XAML code). Go to Solution Explorer, open MainPage.xaml, and replace the XAML you 
find there with the following code snippets. 

Declaring the UI Resources 
The namespaces you see in the following code snippets are typically declared by default when you first 
create the Windows Phone project. The namespace xmlns:phone="clr-
namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" allows you to add common Windows 
Phone controls required to build this demo: buttons, textblocks, text boxes, list boxes, sliders, and media 
elements. 

 

<phone:PhoneApplicationPage  
    x:Class="MediaPlayerDemo.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 
    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    shell:SystemTray.IsVisible="True"> 

Building the Main Page and Adding Media Player Components 
Next, add the code shown in Listing 15–1, which creates the common media controls the application will 
use, like play, pause, stop, mute, and seek. You will be using the Slider control to implement the function 
that will allow the user to see how much time is elapsed in playing the media content. Also, by clicking 
the Slider, the user can skip backward and forward. You will also be adding labels to track video 
buffering and video downloading status using the textblocks. Lastly, a button called 
btnMediaPlayerLauncher will launch the default Windows Phone’s media player to play the media 
content. 

Listing 15–1. Custom Media Player Main Page and UI (XAML) 

<phone:PhoneApplicationPage  
    x:Class="MediaPlayerDemo.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation


CHAPTER 15  MEDIA 

329 

    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 
    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    shell:SystemTray.IsVisible="True"> 
 
    <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12"> 
            <TextBlock x:Name="PageTitle" Text="MediaPlayerDemo" Margin="-3,-8,0,0"  
                       Style="{StaticResource PhoneTextTitle1Style}" FontSize="48" /> 
        </StackPanel> 
 
        <Grid x:Name="ContentGrid" Grid.Row="1"> 
            <MediaElement Height="289" HorizontalAlignment="Left"  
                          Margin="26,148,0,0" x:Name="mediaPlayer"  
                          VerticalAlignment="Top" Width="417"  
                          AutoPlay="False"/> 
            <Button Content="&gt;" Height="72"  
                    HorizontalAlignment="Left" Margin="13,527,0,0"  
                    x:Name="btnPlay" VerticalAlignment="Top" Width="87"  
                    Click="btnPlay_Click" /> 
            <Button Content="O" Height="72"  
                    HorizontalAlignment="Right" Margin="0,527,243,0"  
                    x:Name="btnStop" VerticalAlignment="Top" Width="87"  
                    Click="btnStop_Click" /> 
            <Button Content="||" Height="72" Margin="0,527,313,0"  
                    x:Name="btnPause" VerticalAlignment="Top"  
                    Click="btnPause_Click" HorizontalAlignment="Right" Width="87" /> 
            <Slider Height="84" HorizontalAlignment="Left"  
                    Margin="13,423,0,0" Name="mediaTimeline"  
                    VerticalAlignment="Top" Width="443"  
                    ValueChanged="mediaTimeline_ValueChanged"  
                    Maximum="1" LargeChange="0.1" /> 
            <TextBlock Height="30" HorizontalAlignment="Left"  
                       Margin="26,472,0,0" Name="lblStatus"  
                       Text="00:00" VerticalAlignment="Top" Width="88" FontSize="16" /> 
            <TextBlock Height="30"  
             Margin="118,472,222,0" x:Name="lblBuffering"  
             Text="Buffering" VerticalAlignment="Top" FontSize="16" /> 
            <TextBlock Height="30"  
             Margin="0,472,82,0" x:Name="lblDownload"  

http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 15  MEDIA 

330 

             Text="Download" VerticalAlignment="Top" FontSize="16" 
HorizontalAlignment="Right" Width="140" /> 
            <Button Content="Mute" Height="72"  
                    HorizontalAlignment="Left" Margin="217,527,0,0"  
                    Name="btnMute" VerticalAlignment="Top" Width="89"  
                    FontSize="16" Click="btnMute_Click" /> 
            <TextBlock Height="30" HorizontalAlignment="Left"  
                       Margin="315,551,0,0" Name="lblSoundStatus"  
                       Text="Sound On" VerticalAlignment="Top" Width="128" /> 
            <Button Content="Use MediaPlayerLauncher" FontSize="24" Height="72"  
                    HorizontalAlignment="Left" Margin="13,591,0,0"  
                    Name="btnMediaPlayerLauncher" VerticalAlignment="Top"  
                    Width="411" Click="btnMediaPlayerLauncher_Click" /> 
            <TextBox x:Name="txtUrl" Height="57" Margin="91,33,8,0"  
                     TextWrapping="Wrap" VerticalAlignment="Top" FontSize="16"  
                     
Text="http://ecn.channel9.msdn.com/o9/ch9/7/8/2/9/1/5/ARCastMDISilverlightGridComputing_ch9.wm
v"/> 
            <TextBlock x:Name="lblUrl" HorizontalAlignment="Left" Height="25"  
                       Margin="8,48,0,0" TextWrapping="Wrap" Text="Video URL:"  
                       VerticalAlignment="Top" Width="83" FontSize="16"/> 
            <TextBox x:Name="txtBufferingTime" Height="57" Margin="151,78,0,0"  
                     TextWrapping="Wrap" VerticalAlignment="Top" FontSize="16" 
HorizontalAlignment="Left" Width="86" Text="20"/> 
            <TextBlock x:Name="lblBufferingTime" HorizontalAlignment="Left"  
                       Height="25" Margin="8,93,0,0" TextWrapping="Wrap"  
                       Text="Buffering Time (s):" VerticalAlignment="Top"  
                       Width="139" FontSize="16"/> 
        </Grid> 
    </Grid> 
 
</phone:PhoneApplicationPage> 
 

Once you have loaded the XAML code, you should see the layout shown in Figure 15–2. In the next 
section, you will add code to respond to UI events and implement MediaElement’s behaviors. 



CHAPTER 15  MEDIA 

331 

 

Figure 15–2. MediaPlayerDemo Design view 

Coding the Application 
In Solution Explorer, open MainPage.xaml.cs and replace the code you find there with the following C# 
code blocks to implement the media player’s functions. 

Specifying the Namespaces 
Begin by listing the namespaces the application will use. The inclusion of Microsoft.Phone.Tasks will 
allow you to launch Windows Phone’s default media player. As for the MediaElement, it is declared in 
the XAML page, which you will simply reference here by the control’s name. Also, you’ll need to add 
reference to Microsoft.Xna.Framework that you will be using to check if background music is currently 
being played before playing your own video. This is necessary in order to pass the “Applications that 
Play Music section 6.5.1.” marketplace certification. 

 

using System; 
using System.Windows; 
using System.Windows.Media; 
using Microsoft.Phone.Controls;using Microsoft.Phone.Tasks; 
using Microsoft.Xna.Framework; 

using Microsoft.Xna.Framework.Media; 



CHAPTER 15  MEDIA 

332 

namespace MediaPlayerDemo 

{ 
    public partial class MainPage : PhoneApplicationPage 

Initializing Variables 
The variable _updatingMediaTimeline is an extremely important variable that stops the infinite loop in 
this demo. By setting _updatingMediaTimeline to true while the media timeline (Slider control) is being 
updated during the CompositionTarget.Rendering event, the media’s backward and forward event will 
wait to be processed until the timeline update is completed. Another way to look at this complexity is to 
see the purpose of the Slider control that is responsible for displaying the timeline of the media being 
played. But the Slider control is also responsible for allowing the user to interact to drag the slider 
forward or backward in order to move the media position. _updatingMediaTimeline will allow only one 
specific behavior to happen in the Slider control, thereby avoiding unwanted application behavior. 

 

        private bool _updatingMediaTimeline; 
 
        public MainPage() 
        { 
            InitializeComponent(); 
 
            _updatingMediaTimeline = false; 
             
            // rewinds the media player to the beginning 
            mediaPlayer.Position = System.TimeSpan.FromSeconds(0); 

Handling Video Download Progress 
As the video file download progresses, you will be receiving the percentage of the file downloaded and 
you will be displaying the progress updates back to the user by updating the lblDownload. 

 

            // Download indicator 
            mediaPlayer.DownloadProgressChanged += (s, e) => 
                { 
                    lblDownload.Text = string.Format("Downloading {0:0.0%}",  
mediaPlayer.DownloadProgress); 
                }; 

Handling Video Buffering 
You will be setting video BufferingTime property, and as the video buffering time progresses, you will 
receive a callback where you will update lblBuffering. 

 



CHAPTER 15  MEDIA 

333 

            // Handle media buffering 
            mediaPlayer.BufferingTime =  

TimeSpan.FromSeconds(Convert.ToDouble(txtBufferingTime.Text)); 
            mediaPlayer.BufferingProgressChanged += (s, e) => 
                { 
                    lblBuffering.Text = string.Format("Buffering {0:0.0%}",  
mediaPlayer.BufferingProgress); 
                }; 

Showing Time Elapsed in the Media Player 
CompositionTarget.Rendering is a frame-based event that will fire once per frame, allowing you to 
update the media timeline (Slider control) that reflects how much of the media is played. By default, the 
event will fire 60 times in one second. You can check this by checking the value of 
Application.Current.Host.Settings.MaxFrameRate. By using the CompositionTarget.Rendering event, 
you will be able to see the smooth media player timeline filling up as the media plays. 

 

            // Updates the media time line (slider control) with total time played 
            // and updates the status with the time played 
            CompositionTarget.Rendering += (s, e) => 
                { 
                    _updatingMediaTimeline = true; 
                    TimeSpan duration = mediaPlayer.NaturalDuration.TimeSpan; 
                    if (duration.TotalSeconds != 0) 
                    { 
                        double percentComplete =  
mediaPlayer.Position.TotalSeconds / duration.TotalSeconds; 
                        mediaTimeline.Value = percentComplete; 
                        TimeSpan mediaTime = mediaPlayer.Position; 
                        string text = string.Format("{0:00}:{1:00}",  
                            (mediaTime.Hours * 60) + mediaTime.Minutes, mediaTime.Seconds); 
 
                        if (lblStatus.Text != text) 
                            lblStatus.Text = text; 
 
                        _updatingMediaTimeline = false; 
                    } 
                }; 
        } 



CHAPTER 15  MEDIA 

334 

 Tip When defining the event handler of CompositionTarget.Rendering, you can use the lambda
expression to create a delegate that contains the programming logic. For example, you can rewrite
CompositionTarget.Rendering += (s, e) => { … } by first declaring the event handler
CompositionTarget.Rendering += new EventHandler(CompositionTarget_Rendering) and then creating a
method void CompositionTarget_Rendering(object sender, EventArgs e) { … }. Using the lambda
expression technique makes the code much more readable, and in this demo project, gives you the ability to group
the relevant code together. For more information on the lambda expression, please refer to
http://msdn.microsoft.com/en-us/library/bb397687.aspx.  

Implementing the Pause Button 
When the Pause button is clicked, invoke MediaElement.Pause to pause the media player. Note that you 
are updating the Status label, communicating to the user the media is in pause mode. Occasionally, for 
unknown reasons, the media player may not be able to pause. You can use mediaPlayer.CanPause to 
make sure you can pause; otherwise, set the Status label to warn the user it could not pause. 

 

        private void btnPause_Click(object sender, RoutedEventArgs e) 
        { 
            if (mediaPlayer.CanPause) 
            { 
                mediaPlayer.Pause(); 
                lblStatus.Text = "Paused"; 
            } 
            else 
            { 
                lblStatus.Text = "Can not be Paused. Please try again!"; 
            } 
        } 

Implementing the Stop Button 
When the stop button is clicked, invoke MediaElement.Stop to stop the media player and then rewind 
the media player back to the beginning and update the Status label as Stopped. 

 

        private void btnStop_Click(object sender, RoutedEventArgs e) 
        { 
            mediaPlayer.Stop(); 
            mediaPlayer.Position = System.TimeSpan.FromSeconds(0); 
            lblStatus.Text = "Stopped"; 
        } 

http://msdn.microsoft.com/en-us/library/bb397687.aspx


CHAPTER 15  MEDIA 

335 

Implementing the Play Button 
When the play button is clicked, invoke MediaElement.Play to play the media player. But before you can 
play, you must check to make sure no background music is being played. For example, if the user is 
using the phone to play music and then he enters your application, your application must confirm with 
the user that you will be playing your own video or music which will interrupt his already playing music. 
If you don’t confirm with the user the permission to play the music, your application will fail the 
“Applications that Play Music section 6.5.1” of the market certification. The CanPlay method uses XNA 
media framework’s MediaPlayer to check if the GameHasControl to play the sound, which will tell you if 
the user entered your application playing his or her own music. 
         

        private void btnPlay_Click(object sender, RoutedEventArgs e) 
        { 
            if (this.CanPlay()) 
            { 
                mediaPlayer.Play(); 
            } 
        } 
 

private bool CanPlay() 
{ 
    bool canPlay = false; 
 
    FrameworkDispatcher.Update(); 
    if (MediaPlayer.GameHasControl) 
    { 
        canPlay = true; 
    } 
    else 
    { 
        if (MessageBox.Show 

("Is it ok to stop currently playing music and play our animal sounds?" 
, "Can play our sounds?" 
, MessageBoxButton.OKCancel) == MessageBoxResult.OK) 

        { 
            canPlay = true; 
            MediaPlayer.Pause(); 
            AboutViewModel.Instance.CanPlay = true; 
        } 
        else 
        { 
            canPlay = false; 
            AboutViewModel.Instance.CanPlay = false; 
        } 
    } 
 
    return canPlay; 
} 

 



CHAPTER 15  MEDIA 

336 

Implementing the Mute Button 
When the Mute button is clicked, set MediaElement.IsMuted to true in order to mute the sound or set it 
to false to turn on the sound. 

 

        private void btnMute_Click(object sender, RoutedEventArgs e) 
        { 
            if (lblSoundStatus.Text.Equals("Sound On", 
StringComparison.CurrentCultureIgnoreCase)) 
            { 
                lblSoundStatus.Text = "Sound Off"; 
                mediaPlayer.IsMuted = true; 
            } 
            else 
            { 
                lblSoundStatus.Text = "Sound On"; 
                mediaPlayer.IsMuted = false; 
            } 
             
        } 

 Note To mute the player, you could also have set MediaElement.Volume to zero instead of setting the 
IsMuted property to true, as shown here. 

Implementing Seek 
When the Slider control that displays the timeline of the media is clicked or dragged, 
MediaElement.Position moves either forward or backward, depending on the user’s input on the Slider 
control. Figure 15–3 shows dragging the slider to the right in order to move forward in the video timeline. 

 

        private void mediaTimeline_ValueChanged(object sender,  
RoutedPropertyChangedEventArgs<double> e) 

        { 
            if (!_updatingMediaTimeline && mediaPlayer.CanSeek) 
            { 
                TimeSpan duration = mediaPlayer.NaturalDuration.TimeSpan; 
                int newPosition = (int)(duration.TotalSeconds * mediaTimeline.Value); 
                mediaPlayer.Position = new TimeSpan(0, 0, newPosition); 
            } 
        } 



CHAPTER 15  MEDIA 

337 

 

Figure 15–3. Dragging the slider to skip the video 

 Note Using MediaElement.Position, you can jump to any part of the media. This is very useful when you want 
to create chapters in a movie similar to those you see in DVD players. 

Implementing the MediaPlayerLauncher 
When the MediaPlayerLauncher button is clicked, invoke the MediaPlayerLauncher task to launch the 
default Windows Phone media player. 

 

        private void btnMediaPlayerLauncher_Click(object sender, RoutedEventArgs e) 
        { 
            MediaPlayerLauncher player = new MediaPlayerLauncher(); 



CHAPTER 15  MEDIA 

338 

            player.Media = new  
Uri("http://ecn.channel9.msdn.com/o9/ch9/7/8/2/9/1/5/ 
ARCastMDISilverlightGridComputing_ch9.wmv"); 
            //player.Media =  
    //         new Uri("ARCastMDISilverlightGridComputing_ch9.wmv",  
    //    UriKind.Relative); 
            //player.Location = MediaLocationType.Data; 
            player.Show(); 
        } 

 Note  In the commented code where MediaPlayerLauncher is going to play the content that is part of the 
application, you can see that player.Location is set to MediaLocationType.Data, which means that it will look at the 
isolated storage for the file named ARCastMDISilverlightGridComputing_ch9.wmv. Refer to Chapter 13 for the 
isolated storage demo where the file was downloaded the first time and then saved into the isolated storage for 
later access. If you set player.Location to MediaLocationType.Install, the media file must be added to the 
application as the content; also, the media source’s Uri must have UriKind.Relative, which basically means the 
file is part of the application. The only problem with this is that the size of the application install will get much 
bigger. 

Testing the Finished Application  
To test the application, press F5. The result should resemble Figure 15–1. Try clicking each button: Play, 
Pause, Stop, and Mute. As the movie plays, take note of the buffering and downloading progress status. 
You can also drag the slider back and forth to skip around the movie scenes. Feel free to enter your 
favorite movie link. 

In this demo, you created a custom media player and then launched the default Windows Phone 
media player. Both MediaElement and MediaPlayerLauncher accessed the video content on the Web 
because video files are typically very big. But if you are adding simple sound effects to an application, it’s 
not always ideal to download the contents from the Web; a better solution is to package the sound along 
with the application. This is especially true if you are planning to create a game where all the graphical 
and media assets are packaged as the part of the application. In the next demo, you will learn how to add 
sound effects to an application. 

Adding Sounds to an Application 
Sounds can be used in applications and games. In the first demo, you played video, but you can also use 
MediaElement to play music files or to create sound effects in a game. In this demo, you will learn how 
to apply a sound effect to an animated object—in this case, a flying robot. Such sound effects are 
essential to games.  

Figure 15–4 shows the UI of the demo application. When you press the Play button, the robot flies 
diagonally toward the bottom right-hand corner of the screen. When it reaches an edge, the robot will 
bounce several times while making a swoosh sound to give the animation that dash of realism it needs to 
satisfy gamers. 

http://ecn.channel9.msdn.com/o9/ch9/7/8/2/9/1/5/ARCastMDISilverlightGridComputing_ch9.wmv
http://ecn.channel9.msdn.com/o9/ch9/7/8/2/9/1/5/ARCastMDISilverlightGridComputing_ch9.wmv


CHAPTER 15  MEDIA 

339 

 

Figure 15–4. Robot sound demo 

You will build the RobotSoundDemo in three steps. Start by creating a Windows Phone project. 
Then you’ll build the UI, and then you’ll add the code to handle control events. 

Creating the RobotSoundDemo Project 
To create the Video Demo project, follow the steps from previous examples in this book. 

1. Open Microsoft Visual Studio 2010 Express for Windows Phone on your 
workstation. 

2. Create a new Windows Phone Application by selecting File  New Project on 
the Visual Studio command menu. Select the Windows Phone Application 
template, name the application RobotSoundDemo, and click OK.  



CHAPTER 15  MEDIA 

340 

Building the User Interface 
Before you can build the user interface, you need to add the following three files to the project: 

• Robot.xaml  

• Robot.xaml.cs  

• sound18.wma  
 

Once you have successfully added these files to the project, you see the following list of files in the 
Solution Explorer window, as shown in Figure 15–5. 

 

Figure 15–5. RobotSoundDemo project after adding the assets 

All three files are included in the source code that is distributed with this book; located in your 
unzipped directory of the source codes (c:\[where you unzipped]\Codes\ch15\Assets) are the assets 
necessary for this demo. Robot.xaml and Robot.xaml.cs are the vector graphic versions of the robot and 
sound18.wma is the sound effect file for when the robot moves. 

Selecting the UI Resources 
You will be adding the namespace of the robot asset you just added to the project using xmlns:uc="clr-
namespace:RobotSoundDemo". This namespace will allow you to add the robot user control using the 
XAML code that looks like <uc:Robot x:Name="ucRobot" …>. 

 

<phone:PhoneApplicationPage  
    x:Class="RobotSoundDemo.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone" 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 15  MEDIA 

341 

    xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    xmlns:uc="clr-namespace:RobotSoundDemo" 
    FontFamily="{StaticResource PhoneFontFamilyNormal}" 
    FontSize="{StaticResource PhoneFontSizeNormal}" 
    Foreground="{StaticResource PhoneForegroundBrush}" 
    SupportedOrientations="Portrait" Orientation="Portrait" 
    mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768" 
    shell:SystemTray.IsVisible="True"> 

Adding Robot Animation to the Main Page Resource Section 
In the Main Page resource section, add the robot storyboard animation of moving from top left corner to 
bottom right. The bouncing EasingFunction is added to the robot’s movement, which will cause the 
robot to bounce toward the end of the movement. 

 

 <phone:PhoneApplicationPage.Resources> 
  <Storyboard x:Name="MoveRobot"> 
   <DoubleAnimationUsingKeyFrames 
Storyboard.TargetProperty="(UIElement.RenderTransform).(CompositeTransform.TranslateX)" 
Storyboard.TargetName="ucRobot"> 
    <EasingDoubleKeyFrame KeyTime="0" Value="0"/> 
    <EasingDoubleKeyFrame KeyTime="0:0:0.6" Value="244"> 
     <EasingDoubleKeyFrame.EasingFunction> 
      <BounceEase EasingMode="EaseOut"/> 
     </EasingDoubleKeyFrame.EasingFunction> 
    </EasingDoubleKeyFrame> 
   </DoubleAnimationUsingKeyFrames> 
   <DoubleAnimationUsingKeyFrames 
Storyboard.TargetProperty="(UIElement.RenderTransform).(CompositeTransform.TranslateY)" 
Storyboard.TargetName="ucRobot"> 
    <EasingDoubleKeyFrame KeyTime="0" Value="0"/> 
    <EasingDoubleKeyFrame KeyTime="0:0:0.6" Value="421"> 
     <EasingDoubleKeyFrame.EasingFunction> 
      <BounceEase EasingMode="EaseOut"/> 
     </EasingDoubleKeyFrame.EasingFunction> 
    </EasingDoubleKeyFrame> 
   </DoubleAnimationUsingKeyFrames> 
  </Storyboard> 
 </phone:PhoneApplicationPage.Resources> 

Building the Main Page and Adding Components 
This demo has a very simple UI that contains a Play button to animate the robot and a MediaElement to 
play the sound effect. Note that MediaElement.Source is set to sound18.wma, whereas in a previous demo 
you set the source to the URL. This is because sound18.wma is a type of content. You can verify this by 
right-clicking the sound18.wma file in Solution Explorer to observe its properties, as shown in Figure  
15–6. 

http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 15  MEDIA 

342 

 

Figure 15–6. Sound18.wma file of a type of Content 

    <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12"> 
            
            <TextBlock x:Name="PageTitle" Text="RobotSoundDemo" Margin="-3,-8,0,0" 
Style="{StaticResource PhoneTextTitle1Style}" FontSize="56" /> 
        </StackPanel> 
 
        <Grid x:Name="ContentGrid" Grid.Row="1"> 
            <uc:Robot x:Name="ucRobot" Margin="24,27,264,442" RenderTransformOrigin="0.5,0.5" 
> 
             <uc:Robot.RenderTransform> 
              <CompositeTransform/> 
             </uc:Robot.RenderTransform> 
            </uc:Robot> 
            <Button Content="Play" Height="72" HorizontalAlignment="Left"  
                    Margin="6,333,0,0" Name="btnPlay"  
                    VerticalAlignment="Top" Width="160"  



CHAPTER 15  MEDIA 

343 

                    Click="btnPlay_Click" /> 
            <MediaElement x:Name="robotSound" Height="100"  
                          VerticalAlignment="Bottom" Margin="176,0,204,69"  
                          Source="sound18.wma" AutoPlay="False"/> 
        </Grid> 
    </Grid> 
     
</phone:PhoneApplicationPage> 
 

Once you’ve loaded the XAML code, you should see the layout shown in Figure 15–7. Now it’s time 
to wire up the events to animate the robot and play the sound effect in the next section. 

 

 

Figure 15–7. RobotSoundDemo in Design view 

Coding the Application 
In Solution Explorer, open MainPage.xaml.cs and replace the code there with the following code C# 
code blocks. 



CHAPTER 15  MEDIA 

344 

Specifying the Namespaces 
 Add reference to Microsoft.Xna.Framework because you will be using it to check if background music is 
currently being played before playing your own video. This is necessary in order to pass the 
“Applications that Play Music section 6.5.1.” marketplace certification. 

 

using System.Windows; 
using Microsoft.Phone.Controls;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Media; 

Adding an Event to Handle Play Button Click 
When the Play button is clicked, the MoveRobot animation will be played; at the same time, the sound 
effect of the robot moving will also be played. 
         
        private void btnPlay_Click(object sender, RoutedEventArgs e) 
        { 
            if (CanPlay()) 
            { 
                MoveRobot.Begin(); 

                robotSound.Stop(); 
                robotSound.Source = new System.Uri("sound26.wma", System.UriKind.Relative); 

                System.Threading.Thread.Sleep(50); 
                robotSound.Play(); 
            } 
        } 

        private bool CanPlay() 
        { 
            bool canPlay = false; 

            FrameworkDispatcher.Update(); 
            if (MediaPlayer.GameHasControl) 
            { 
                canPlay = true; 
            } 
            else 
            { 
                if (MessageBox.Show("Is it ok to stop currently playing music?", "Can stop
music?", MessageBoxButton.OKCancel) == MessageBoxResult.OK) 
                { 
                    canPlay = true; 
                    MediaPlayer.Pause(); 
                } 
                else 
                { 



CHAPTER 15  MEDIA 

345 

                    canPlay = false; 
                } 
            } 
 
            return canPlay; 
        } 

Testing the Finished Application 
To test the finished application, press F5. The result should resemble the screenshot in Figure 15–4. Test 
your work by clicking the play button, which should cause the robot to fly to the bottom right-hand 
corner of the screen, making a swoosh sound as it goes. When the robot reaches the bottom, watch it 
bounce several times. 

Summary 
In this chapter, you streamed media content from the Web or from the resource of the application and 
then played video and audio using MediaElement and MediaPlayerLauncher. You also applied basic 
sound effects to an animation using MediaElement. 

In Chapter 16, you will learn how to interact with the Windows Phone’s photo application, which 
will allow you to create your own version of a photo altering application or interact with the phone’s 
camera to capture and manipulate an image. 



C H A P T E R  16 
 

      
 

347 

Working with the Camera  
and Photos 

Today, consumers assume that any cell phone they purchase will be able to take photos, and that the 
quality of photos taken will come close to the quality of photos taken with any entry-level digital camera. 
Furthermore, the latest mobile devices, and especially the Windows Phone 7 device, allow for the 
integration of their photo capabilities with the various applications that run on them. For instance, 
taking a picture with the phone, adding a caption to it, and immediately uploading it to a social media 
web site are common capabilities of all smartphone platforms today. 

In this chapter, you will learn how the Windows Phone 7 platform implements yet another level of 
integrated user experience when it comes to the picture-taking capabilities of the phone and your 
application. You will learn how to build an application that takes photos, saves them, lets the user open 
them, and then sends them to Twitpic, a remote cloud service where they can be embedded in Twitter 
messages. 

A lot of the code you will write in this chapter will have to be physically deployed and debugged on a 
real Windows Phone 7 device—after all, it’s not possible to take a real picture with the emulator or test 
many features of the pictures application (it is, however, possible to take a “dummy” picture of a small 
square moving around the emulator perimeter, which proves extremely useful for testing). We highly 
recommend that before you proceed with this chapter, you get your hands on an actual Windows Phone 
7 device. You should also install the necessary Zune software that allows debugging on that device and 
connect the device to your development machine (for more information on using Zune software to 
debug a photo application using a physical device, see Chapter 4). 

Introducing Windows Phone 7 Photo Features 
Before you delve into developing a Windows Phone 7 application that snaps photos and manipulates 
them, it’s important to understand the model for working with photos on this device. As explained in 
greater detail in Chapter 19, each application deployed to the device runs in its own sandbox, or 
execution environment. This execution sandbox prevents third-party applications from directly 
accessing common data stores on the phone, such as photos or contact lists, and prevents them from 
directly invoking the applications that ship with a Windows Phone device, such as the camera or a 
messaging application. So how can you build an application that can take pictures, manipulate them, 
save them to the phone, and then later access those pictures for uploading to the cloud? The answer is 
through launchers and choosers as shown in Table 16–1 and 16–2. 



CHAPTER 16 ■ WORKING WITH THE CAMERA AND PHOTOS 

348 

Table 16–1. Launchers 

Launchers Description 

EmailComposeTask Opens the default device e-mail composer. 

MarketPlaceDetailTask Opens detailed product information. 

MarketPlaceDetailTask Opens to the Marketplace within specified category. 

MarketPlaceReviewTask Opens the product review for the specified product. 

MarketPlaceSearchTask Opens the MarketPlace search result based on the search term 
specified. 

MediaPlayerLauncher Opens the default device MediaPlayer. 

PhoneCallTask Opens the Phone application with specified number ready to dial. 

SearchTask Opens the default search application. 

SmsComposeTask Opens the messaging application. 

WebBrowserTask Opens the default device web browser to the specified URL.  

Table 16–2. Choosers 

Choosers Description 

CameraCaptureTask Opens the Camera application to capture the image. 

EmailAddressChooserTask Opens the Contact application to choose an e-mail. 

PhoneNumberChooserTask Opens the Phone application to choose a phone number. 

PhotoChooserTask Opens the Photo Picker application to choose the image. 

SaveEmailAddressTask Saves the provided e-mail to the Contact list. 

SavePhoneNumberTask Saves the phone number to the Contact list. 

The Windows Phone Launchers and Choosers framework is a collection of APIs you can use to 
indirectly access core Windows Phone applications, like the phone or contact list, to perform a specific 
task. Launchers can launch a phone application but return no data. A chooser, such as a photo chooser, 
on the other hand, returns data to the application that calls it. In other words, the difference between 
launchers and choosers lies in the fact that the former do not return result to the calling function, but the 



CHAPTER 16 ■  WORKING WITH THE CAMERA AND PHOTOS 

349 

latter do. Tables 16–1 and 16–2 list all of the launchers and choosers that ship with the Windows Phone 
platform today and how each is used. The CameraCaptureTask is a chooser that is of particular interest 
for you in this chapter. This chooser launches the built-in Windows Phone camera application, allowing 
a user of a third-party application to snap photos and for that application to retrieve them for its own 
purposes by handling the chooser’s Completed event. You will write code to capture photos shortly, but 
before you do that, it’s important to understand one more basic concept when working with launchers 
and choosers—the application execution model and application tombstoning (for a more thorough and 
detailed look at the Windows Phone application life cycle, refer to Chapter 10). 

As you know by now, the initial version of the Windows Phone 7 platform does not support 
multitasking due to the excessive demands it puts on the battery and other resources on the device. 
Microsoft has announced that by the end of 2011, Windows Phone will receive support for multitasking; 
however, the principles outlined later will still be valid even after the version of Windows Phone with 
multitasking support ships. Launchers and choosers are, in essence, separate applications that are 
launched from within your application. Since, at the time of this writing, support for multitasking does 
not yet exist, your application effectively terminates when launchers or choosers are used. This 
termination is known as tombstoning, and it has direct implications on programming Windows Phone 7 
devices that use launchers and choosers, such as the photo management applications you will build in 
this chapter. The difference between application tombstoning and application termination is that when 
an application is tombstoned, it is fully expected to be resumed upon completion of the launcher or 
chooser. Upon resuming, the application should continue in the same state that it was left off in, with 
data specific to the application session before tombstoning properly preserved. It is up to the 
application programmer to ensure that this happens and that the data gets properly restored. Therefore, 
if your application gathered a lot of unique data prior to launcher or chooser call, that data must be 
properly preserved. For thorough details on how to preserve this data, refer to Chapter 10. 

Using a Chooser to Take Photos 
The very first application that you will write will take photos and bring them inside your application. The 
first application will also lay the foundation for the rest of this chapter, since you will enhance and add 
features to this application as you go along. You will, therefore, create a basic navigation system in this 
first step for your application using an Application Bar and a standard set of icons that ship with the 
Windows Phone 7 Development Tools (which you downloaded and installed in Chapter 2). You’ll find 
the icons for a 32-bit system at C:\Program Files\Microsoft SDKs\Windows Phone\v7.0\Icons and for a 
64-bit system at C:\Program Files (x86)\Microsoft SDKs\Windows Phone\v7.0\Icons. 

As mentioned, you will use choosers to implement photo manipulation features on Windows Phone 
7. To take photos, you will use the CameraCaptureTask chooser to take the photo and bring that photo 
inside your application. Follow this demo to accomplish these tasks. 

Creating a New Project and Building the User Interface 
In the first part of the demo, you will create a new project and add necessary user interface elements to 
allow photo manipulation in the future sections of this chapter. 

1. Launch Visual Studio 2010 Express for Windows Phone, and create a new 
Windows Phone Application project. Name it PhotoCapture. 

You will create an Application Bar with three icons. The first button of the Application Bar will be for 
taking photos, which is the subject of the current demo. The second button will be for opening 
previously taken photos. Finally, the third button will be for saving photos to the phone. 



CHAPTER 16 ■ WORKING WITH THE CAMERA AND PHOTOS 

350 

2. Create a separate folder within your application to store Application Bar icons. 
To do that, right-click the name of the project within Solution Explorer, choose 
Add  New Folder, and name that folder images. 

3. You will use the standard Application Bar icons that came pre-installed with 
Developer Tools for Windows Phone. By default, the icons are installed in the 
C:\Program Files\Microsoft SDKs\Windows phone\v7.0\Icons folder. Within 
that folder, go to the subfolder called dark, and, using Windows Explorer, copy 
the following icons into the images folder within your application: 
appbar.feature.camera.rest.png, appbar.folder.rest.png, and 
appbar.save.rest.png. 

4. Now you need to make the icons part of your solution. Highlight all three 
icons, and press F4 to bring up the Properties dialog. For the Build Action 
property, specify Content. Then, select Copy Always for the Copy to Output 
Directory property. 

5. With icons ready for use in the Application Bar, you are ready to add an 
Application Bar to MainPage.xaml (for an in-depth explanation of how to add 
and use an Application Bar within your application, please refer to Chapter 7). 
Open MainPage.xaml, and paste the following code at the end of the XAML file 
just before the </phone:PhoneApplicationPage> closing tag. This XAML 
replaces the auto-generated template for the Application Bar: 

    <phone:PhoneApplicationPage.ApplicationBar> 
        <shell:ApplicationBar IsVisible="True"> 
            <shell:ApplicationBar.Buttons> 
                <shell:ApplicationBarIconButton x:Name="btnCamera" Text="Take Photo" 
IconUri="images/appbar.feature.camera.rest.png" Click="btnCamera_Click"/> 
                <shell:ApplicationBarIconButton Text="Open Photo" 
IconUri="images/appbar.folder.rest.png"/> 
                <shell:ApplicationBarIconButton Text="Save Photo" 
IconUri="images/appbar.save.rest.png"/> 
            </shell:ApplicationBar.Buttons> 
        </shell:ApplicationBar> 
    </phone:PhoneApplicationPage.ApplicationBar> 

Note The btnCamera_Click event handler will be called when the user clicks the Take Photo button. You will 
write code for this event handler in the next section. 

6. Finally, you need to add an Image control to show the photos taken within 
your application. From the Toolbox, drag and drop an Image control onto the 
MainPage.xaml design surface, place it in the middle, and size it to be about 
half of the available screen space. Name it imgPhoto. 



CHAPTER 16 ■  WORKING WITH THE CAMERA AND PHOTOS 

351 

Writing Code to Take Photos with CameraCaptureTask 
Although you may lose a bit of flexibility when programming with launchers and choosers, it is hard to 
dispute how easy they have made working with common phone tasks, such as taking pictures. In the 
following steps, you will launch a PhotoCapture application and wire up a callback event to invoke when 
that application completes. 

1. Open MainPage.xaml.cs (right-click MainPage.xaml and select View Code). Add 
the following using statements to the very top of the code page: 

using Microsoft.Phone.Tasks; 
using Microsoft.Phone; 

2. Add the following class-level variables within the MainPage class (right above 
the MainPage constructor): 

       private CameraCaptureTask cameraCaptureTask; 
         byte[] imageBits; 

3. Add the following code for the btnCamera_Click method. This will invoke the 
PhotoCapture application when the user clicks the first button in the 
Application Bar: 

         private void btnCamera_Click(object sender, EventArgs e) 
{ 

         cameraCaptureTask.Show(); 
         } 

4. You are now ready to write event handler code that will be invoked when the 
CameraCaptureTask chooser completes its work (the user has taken a picture) 
and control returns to your application. When control returns to your 
application, the photo taken by the user is passed in as one of the arguments to 
the callback function; you will take that photo and show it in the imgPhoto 
image control that you have added previously. Add the following method, 
which will be executed when the chooser completes, to MainPage.xaml.cs: 

 

         private void PhotoChooserTaskCompleted(object sender, PhotoResult e) 
         { 
              if (e.ChosenPhoto != null) 
              { 
                  imageBits = new byte[(int)e.ChosenPhoto.Length]; 
                  e.ChosenPhoto.Read(imageBits, 0, imageBits.Length); 
                  e.ChosenPhoto.Seek(0, System.IO.SeekOrigin.Begin); 
 
                  var bitmapImage = PictureDecoder.DecodeJpeg(e.ChosenPhoto); 
                  this.imgPhoto.Source = bitmapImage; 
              } 
         } 

5. You need to tell your application’s instance of CameraCaptureTask that the 
PhotoChooserTaskCompleted method must be invoked upon its completion. 
You will do this within the MainPage() constructor using the following two 
lines of code: 



CHAPTER 16 ■ WORKING WITH THE CAMERA AND PHOTOS 

352 

       cameraCaptureTask = new CameraCaptureTask(); 
     cameraCaptureTask.Completed += PhotoChooserTaskCompleted; 

 
You are now ready to run the application. Note that for this demo, it is not completely necessary to 

deploy your application to the physical device, since the emulator provides limited simulated photo-
taking capabilities (the aforementioned small rectangle moving around the phone area). 

6. Press F5 to run the application on the emulator, and then press the camera 
button in the Application Bar to be presented with the Windows Phone 7 
PhotoCapture application. Press the button in the upper right-hand corner to 
simulate photo-taking within the emulator (notice how this simulation 
consists of a black rectangle moving around the screen’s perimeter), and then 
press the Accept button to accept the photo. You should see a phone screen 
similar to the one shown in Figure 16–1 with your application displaying the 
captured image. Of course, if you deploy this application to the actual 
Windows Phone 7 device, the photos that you take will look a bit more exciting. 

Throughout the rest of this chapter, you will continue enhancing this application by wiring the rest 
of the Application Bar icons, getting familiar with the Model-View-ViewModel pattern (covered in 
Chapter 3), and integrating your application within the Windows Phone 7 experience, including handy 
image uploads to Twitter. 

 

Figure 16–1. Results of PhotoCapture on Windows Phone 7 emulator 



CHAPTER 16 ■  WORKING WITH THE CAMERA AND PHOTOS 

353 

Using a Chooser to Open Photos 
In the previous section, you learned how to use the CameraCaptureTask chooser to take photos with 
your phone. In this section, you will learn how to open previously taken photos on your phone using the 
PhotoChooserTask chooser. As you have already seen, launchers and choosers do make the lives of 
developers a lot easier by simplifying and abstracting the most common tasks within the Windows 
Phone 7 Application platform. 

In this section, you will enhance the application you have built by adding functionality to the 
second button of the Application Bar—Opening Photos. Windows Phone 7 has several locations, or 
“folders” so to speak, where the photos are located. Those “folders” are Camera Roll, Saved Pictures, and 
Pictures Library. Inside Pictures Library, there are general-purpose photos provided by Microsoft that 
help you in your programming efforts. Since you have already created a user interface for the application 
in the previous section, in this section you will add code implementing the photo browsing and 
retrieving functionality. 

1. Launch Visual Studio 2010 Express for Windows Phone, and open the 
PhotoCapture project that you created in the previous section. 

2. Open MainPage.xaml.cs, and paste the following class-level variable 
declaration right above the MainPage() constructor: 

private PhotoChooserTask photoChooserTask; 

3. You need to specify that the PhotoChooserTaskCompleted will be the callback 
function invoked upon completion of the PhotoChooserTask chooser. You do 
this via the following two lines of code inside the MainPage() constructor: 

        photoChooserTask = new PhotoChooserTask(); 
photoChooserTask.Completed +=  

new EventHandler<PhotoResult>(PhotoChooserTaskCompleted); 

4. As the final step of this demo, you will need to add logic to launch the chooser 
when the user clicks the second button in the Application Bar. To accomplish 
this, open the MainPage.xaml file, locate the line of XAML code that starts with 
<shell:ApplicationBarIconButton Text="Open Photo", and indicate that 
btnOpenPhoto_Click must be called when that button is clicked. 

<shell:ApplicationBarIconButton Text="Open Photo" 
IconUri="images/appbar.folder.rest.png" Click="btnOpenPhoto_Click"/> 

5. Now, switch back to MainPage.xaml.cs and paste the btnOpenPhoto_Click 
function definition, which will launch the PhotoChooserTask chooser. 

private void btnOpenPhoto_Click(object sender, EventArgs e) 
{ 

photoChooserTask.Show(); 
   } 

 
Press F5 to run application. Now, if you click the Open Photo button in the Application Bar, you 

should be able to browse through photos on the emulator or (better) on the phone, select a photo, and 
have it presented to you in the application window.  

Being able to navigate to a photo on the phone and display it within an application is certainly 
important, but hardly a useful feature by itself. However, as you will see shortly, you can use the 
PhotoChooserTask chooser to select photos to upload to a cloud service, such as TwitPic, as well as for 



CHAPTER 16 ■ WORKING WITH THE CAMERA AND PHOTOS 

354 

loading images inside the application in order to manipulate them (by cropping, adding shapes to them, 
altering their color composition and such) and then resaving them back onto the phone or uploading 
them to a social media site. Although altering photos within an application is slightly beyond the scope 
of this chapter, you will learn how to save photos onto the phone in the next section. Saving photos 
could also be used together with CameraCaptureTask from the first demo in this chapter to save photos 
taken using that chooser. 

Saving Photos to the Phone 
In the prior sections, you have seen how choosers can be used to make the taking and opening of photos 
a breeze on a Windows Phone 7 device. Unfortunately, things become a bit more complicated when it 
comes to saving photos onto the device, since there are no choosers available to aid you with this task. In 
fact, the Windows Phone 7 platform does not provide any mechanism you can use to get the job done. 
So how can you do it? Enter the Windows Phone XNA library. 

In this book, we have not covered the XNA Framework on Windows Phone 7 for a reason. The XNA 
Framework is a very powerful mechanism for programming graphics-intensive interfaces and, as such, is 
used primarily for game development, whereas Silverlight is used for the vast majority of line-of-
business applications. This book is about learning to build line-of-business applications. At times, 
however, you have to resort to using a mix of technologies to get things done, and saving photos onto the 
Windows Phone 7 device is one example of such a situation. The Microsoft.Xna.Framework.Media library 
provides the SavePicture method, which saves a given array of bytes to the Saved Pictures location on 
the phone. The following demo demonstrates how to add save capabilities to the PhotoCapture 
application you have built so far. 

Adding a Status Message 
The user interface built as part of the first demo of this chapter has an Application Bar button already 
defined for saving images. Therefore, you need to make only a small enhancement to the user interface 
to allow the user to see whether the status of the save was successful or not.  

Open MainPage.xaml and add a TextBlock right below the image control. Name it txtStatus and clear 
its Text property. With user interface enhancements complete, you are ready to add the code that saves 
photos to the Media Library. 

Writing Code to Save Photos with the XNA Framework 
Before you can use a method from the XNA Framework, you must first add a reference to the 
Xna.Framework.Media library. To accomplish this, right-click the name of the project (PhotoCapture) in 
Solution Explorer, select Add Reference, and then double-click the Microsoft.Xna.Framework assembly. 
Notice how a warning dialog comes up, telling you that there’s a possibility of unexpected behavior—
click Yes to complete adding a reference. Follow the rest of the steps to implement photo-saving 
functionality within your application. 

1. Open MainPage.xaml.cs and add the following using statement to the top of 
that page: 

using Microsoft.Xna.Framework.Media; 



CHAPTER 16 ■  WORKING WITH THE CAMERA AND PHOTOS 

355 

2. The following method does all the work of saving a photo into the Media 
Library. Note specifically the SavePicture method, which saves the array of 
bytes passed into the Media Library. 

        private void btnSave_Click(object sender, EventArgs e) 
        { 
            try 
            { 
              var library = new MediaLibrary(); 

              library.SavePicture("PhotoCapture Photo", imageBits); 

               txtStatus.Text = "Successfully saved photo."; 
            } 

           catch (Exception ex) 
            { 
               txtStatus.Text = "Failed to save photo. Exception: " + ex.Message; 
            } 
        } 

3. What remains is to tie the btnSave_Click method with the click event of the 
Save button on the Application Bar. You will do it by editing the XAML of the 
MainPage.xaml file. Locate the line that starts with
<shell:ApplicationBarIconButton Text="Save Photo" and change it to look 
like the following: 

<shell:ApplicationBarIconButton Text="Save Photo"  
IconUri="images/appbar.save.rest.png" Click="btnSave_Click"/> 

 
You are now ready to run the application on the Windows Phone 7 emulator. Press F5 to start the 

application, and then press the Camera button on the Application Bar (first button) to take a picture and 
have it loaded inside your application. Then, press the Save button on the Application Bar; you should 
get a status message that the image was successfully saved. Now, if you use the middle button of the 
Application Bar to see photos available, you should see a screen like the one shown in Figure 16–2, with 
three separate photo “folders,” each displayed in a separate tile. 



CHAPTER 16 ■ WORKING WITH THE CAMERA AND PHOTOS 

356 

 

Figure 16–2. The Saved Pictures “folder” is available once at least one photo has been saved there. 

Integrating Your Application with Windows Phone 7  
So far in this chapter, you have built a stand-alone application that uses choosers and parts of the XNA 
Framework to manage photos snapped with a Windows Phone camera. What’s unique about the 
Windows Phone 7 Framework, however, is that it encourages you to have your application make use of 
built-in phone applications to perform certain tasks. The Photo application, for example, provides hooks 
to make the functionality of an application like PhotoCapture available to users without having to 
explicitly launch it. Those hooks are the Extras and the Share commands, which are found on the context 
menus of each photo where the context menu is displayed when you press the photo for a few seconds. 

Both Extras and Share features are best explained by actually observing them at work. With the real 
Windows Phone 7 device in hand, click the Pictures hub, select the “folder” to view the photos from 
(Camera Roll, for example), and then select a specific photo from the list. Click the ellipsis (…) at the 
bottom of the screen. When the context menu appears, you’ll see an Extras option displayed at the very 
bottom. This Extras option is available for you to integrate or tie into. You will use it in the next demo to 
launch the PhotoCapture application so that you can choose a picture, save it to your TwitPic, and share 
it with your Twitter friends. 

 
 



CHAPTER 16 ■  WORKING WITH THE CAMERA AND PHOTOS 

357 

 Note You will only see the Extras command if there’s an application on the phone that implements the 
integration with Windows Phone Picture Viewer; as such, if you currently don’t have any applications deployed to 
your Windows Phone device that implement the Extras functionality, you will not be able to see this menu option. 
You will learn how to build such an integration in the next section. 

The context menu that pops up when you press the picture also includes a Share command. The 
Share option is also available when photos are being viewed as a list rather than one at a time. If you 
click the Share command, you will notice that it offers several ways to share the photo with the world. In 
the following section, you will learn to build an application that will use TwitPic as a cloud store for the 
photos on the phone, and as such will add TwitPic as one of the options on the Share menu. 

 Note Up to this point in the chapter, it has been possible (although a bit quirky) to run code against the 
Windows Phone 7 emulator. The features discussed in the next two sections are not available on the emulator; to 
see them in action, you must deploy applications onto the real Windows Phone 7 device. 

Using Extras to Launch an Application 
The Windows Phone 7 platform is all about providing the best possible phone usage experience to 
consumers. When consumers look at a photo on the phone, they are using an application known as a 
Single Photo Viewer (SPV) that provides applications to extend the viewer’s functionality via the Extras 
command of the context menu. In this section, you will further enhance the PhotoCapture application to 
take advantage of the Extras feature within the Photos application. The PhotoCapture application will be 
using PhotoChooserTask or CameraCaptureTask to allow the user to select or take a picture once it has 
been invoked via the Extras feature. 

To integrate with SPV, an application needs the following: 

1. An Extras.xml file in its root directory with markup to the Extras feature. 

2. Code to properly read and load or manipulate the photo selected in the Extras 
dialog. 

You will implement both requirements in the next section. 

Adding an Extras.xml File to the Project 
Adding an Extras.xml file is very straightforward; the only potential difficulty may be in the fact that the 
content of that file has to be precise. Make sure you either copy and paste this content from the source 
code available with this book, or type it in very carefully. 

3. Right-click the project name, select Add  New Item, and then select XML file. 
Make sure (this is important!) you name it Extras.xml. 



CHAPTER 16 ■ WORKING WITH THE CAMERA AND PHOTOS 

358 

4. Double-click the Extras.xml file to open it. Paste the following contents inside 
that file, which will enable the Windows Phone 7 framework to locate those 
applications ready to implement the Extras functionality: 

<Extras> 
<PhotosExtrasApplication> 

       <Enabled>true</Enabled> 
     </PhotosExtrasApplication> 

</Extras> 

5. In the Properties window, make sure to set the Build Action property to 
Content and the Copy To Output property to Copy Always for the this file (click 
the file and press F4 to bring up the Properties dialog). 

Make sure you save Extras.xml. Now you can move on to the next step. 

Adding Code to Navigate to a Photo 
To properly retrieve the photo that the user selected through the Extras feature, the application must 
override the OnNavigatedTo event in MainPage.xaml.cs. The steps here show you how to do that: 

6. Open MainPage.xaml.cs and add the following using statement to the top of 
the page: 

using System.Windows.Navigation; 

7. The reference to the Microsoft.Xna.Framework assembly should still be in the 
project from the prior demos; however, if you start a new project that 
implements the Extras functionality, make sure to add a reference to that 
assembly and the following using statement to properly refer to the Media 
Library. You will also need System.Windows.Media.Imaging to work with the 
image source. 

using Microsoft.Xna.Framework.Media; 
using System.Windows.Media.Imaging; 

8. Paste the following OnNavigatedTo method. Note how the basic operation is 
that of reading a QueryString passed in, determining if you have a value for the 
parameter token, and then trying to retrieve the photo from the Media Library 
by that token ID. 

            protected override void OnNavigatedTo(NavigationEventArgs e) 
            { 
              try 
              { 
                  IDictionary<string, string> queryStrings =  

this.NavigationContext.QueryString; 
                  if (queryStrings.ContainsKey("token")) 
                  { 
                       MediaLibrary library = new MediaLibrary(); 
                       Picture picture = 
library.GetPictureFromToken(queryStrings["token"]); 
 



CHAPTER 16 ■  WORKING WITH THE CAMERA AND PHOTOS 

359 

                     BitmapImage bitmap = new BitmapImage(); 
                       bitmap.SetSource(picture.GetImage()); 
                       WriteableBitmap picLibraryImage = new 
WriteableBitmap(bitmap); 
                       imgPhoto.Source = picLibraryImage; 
                  } 
 
              } 
              catch (Exception ex) 
              { 
                  Dispatcher.BeginInvoke(() => txtStatus.Text = ex.Message);                 
              } 
           } 

9. Deploy the application to the phone. Then, from the phone’s Start screen, 
select the Pictures hub, pick any picture collection, and select an individual 
picture of your choice. Click the ellipsis at the bottom of the screen, and select 
Extras. You should see the PhotoCapture application listed on the next screen 
that comes up. Clicking the PhotoCapture application should start the 
application and load the selected photo into the Image control—exactly the 
expected behavior. 

In the next section, you will walk through the steps needed to extend the Share dialog for the photos. 
The concepts you use to extend the Extras and Share features are very similar; the differences, as you will 
see shortly, are in the details of the file name and the query string key. 

Using Share to Upload PhotoCapture Snapshots to TwitPic 
In this demo, you will make more changes to the PhotoCapture application to take advantage of the 
Share extensibility feature within the Photos application. For simplicity, the PhotoCapture application 
will load the selected image onto its main screen. In the next section, you will complete the circle and 
write code to send the image to the TwitPic cloud service for easy reference from the Twitter messages. 

As with your implementation of Extras, to extend the Share option to include it, an application 
needs the following: 

1. An E0F0E49A-3EB1-4970-B780-45DA41EC7C28.xml file in its root directory 
enabling the application’s integration with the Share feature; this is not a 
typo—the XML file must be named exactly like that for the application to 
belong to the Share feature. 

2. Code to properly read and/or share the photo selected in the Share dialog. 

You will implement both requirements in the next section. 

Adding an E0F0E49A-3EB1-4970-B780-45DA41EC7C28.xml File to the Project 
Adding this strangely named XML file is very straightforward; the only potential difficulty may be the fact 
that the name is completely unreadable, so it’s a good idea to copy and paste it from the downloadable 
source code for this book. 



CHAPTER 16 ■ WORKING WITH THE CAMERA AND PHOTOS 

360 

3. Right-click the project name, select Add  New Item, and then select XML file. 
Make sure (this is important!) you name it E0F0E49A-3EB1-4970-B780-
45DA41EC7C28.xml. 

4. While the contents of the file may not be very important, be sure to go to the 
Properties window and set the Build Action property to Content and the Copy 
To Output property to Copy Always for the this file (click the file and press F4 
to bring up the Properties dialog). 

Make sure you save this XML file before moving onto the next step. 

Adding Code to Navigate to the Selected Photo 
To properly retrieve the photo that the user selected through the Extras feature, the application must 
override the OnNavigatedTo event in MainPage.xaml.cs. The steps here show you how to do that: 

5. If you are continuing from the Extras demo, you already have all the necessary 
references and using statements in place. However, if you were to start a new 
project, make sure that you have a reference added to 
Microsoft.Xna.Framework and the following using statements are in place: 

using System.Windows.Navigation; 
using Microsoft.Xna.Framework.Media; 

6. Paste the following OnNavigatedTo method (or add to that method if you are 
continuing from the Extras demo). Note how the basic operation is that of 
reading a query string passed in, determining whether there is a value for the 
Field parameter, and then trying to retrieve the photo from the Media Library 
by that token ID. 

             try 
             { 
                 IDictionary<string, string> queryStrings =  

this.NavigationContext.QueryString; 
 
                 if (queryStrings.ContainsKey("FileId")) 
                 { 
                      MediaLibrary library = new MediaLibrary(); 

                     Picture picture = 
library.GetPictureFromToken(queryStrings["FileId"]); 
 

                     BitmapImage bitmap = new BitmapImage(); 
                     bitmap.SetSource(picture.GetImage()); 

                      WriteableBitmap picLibraryImage = new WriteableBitmap(bitmap); 
                      imgPhoto.Source = picLibraryImage; 
                 } 
             } 
             catch (Exception ex) 
             { 
                Dispatcher.BeginInvoke(() => txtStatus.Text = ex.Message);                 
             } 

7. Deploy the application to the phone.  



CHAPTER 16 ■  WORKING WITH THE CAMERA AND PHOTOS 

361 

Now you’re ready to test your implementation so far. Just as you did for your Extras integration, 
from the phone’s Start screen, select the Pictures hub on your phone, pick any picture collection, and 
select an individual picture of your choice. Click the ellipsis (…) at the bottom of the screen, and select 
Share. You should see Upload to PhotoCapture as one of the options that come up. Clicking that option 
should start the application and load the selected photo into the Image control—the behavior you 
expect. 

Now you’re ready to upload the photos to TwitPic, which is the primary hosting service for photos 
destined for Twitter, the hottest social media network today. Silverlight (in general) and Silverlight on 
Windows Phone 7 (in particular) differ from other applications in the fact that they rigorously enforce a 
non-blocking user interface principle: everything, including communications over the network, must 
happen asynchronously. TwitPic cloud service provides a RESTful API that allows programmers to send 
messages to that service as long as you conform to the expected message format. In the next section, you 
will write code against that API to upload the photo to TwitPic. 

Adding an Upload Button to the UI 
On the user interface front, you will need to add an additional button that will trigger the upload of the 
photo to TwitPic. Figure 16–3 illustrates one possible placement of this button. Name the button 
btnUpload, and set its caption to TwitPic. 

Writing Code to Transfer an Image to TwitPic 
Because network access on Windows Phone 7 must be performed asynchronously, it takes quite a bit of 
code to properly construct the RESTful web service request. Most of the code, however, is repetitive, and 
all of the major points are summarized in these step-by-step instructions. 

8. Right-click the project name in Solution Explorer, select Add Reference, and 
then select System.Xml.Linq. 

9. Add the following using statements to the top of the page: 

using System.IO; 
using System.Text; 
using System.Xml.Linq; 

10. Open MainPage.xaml.cs and paste the UploadPhoto function written here. This 
will be the only function that will be invoked when the photo upload needs to 
take place. This function sets the URL and the type of the request, and then it 
invokes the asynchronous BeginGetRequestStream, which packages the photo 
and the user credentials. 

           public void UploadPhoto() 
           { 
              HttpWebRequest request =  

(HttpWebRequest)WebRequest.Create("http://twitpic.com/api/upload"); 
             request.ContentType = "application/x-www-form-urlencoded"; 

              request.Method = "POST"; 
              request.BeginGetRequestStream(new 
AsyncCallback(GetRequestStreamCallback),  

request);             
           } 

http://twitpic.com/api/upload


CHAPTER 16 ■ WORKING WITH THE CAMERA AND PHOTOS 

362 

 

Figure 16–3. User interface for uploading photos to TwitPic 

11. Add the following code to define the asynchronous function 
GetRequestStreamCallback that does all of the packaging of proper parameters; 
note that the exact form of the message was dictated by TwitPic, and this 
method simply conforms to it: 

 Note The TwitPic API is sensitive to even slightly malformed messages, so be sure you copy/paste this method 
from the source code that comes with this book instead of manually retyping it and risking making a mistake. 

        private void GetRequestStreamCallback(IAsyncResult asynchronousResult) 
        { 
            try 
            { 
 
                HttpWebRequest request = (HttpWebRequest)asynchronousResult.AsyncState; 
                string encoding = "iso-8859-1"; 
                // End the operation 
                Stream postStream = request.EndGetRequestStream(asynchronousResult); 



CHAPTER 16 ■  WORKING WITH THE CAMERA AND PHOTOS 

363 

                string boundary = Guid.NewGuid().ToString(); 
                request.ContentType = string.Format("multipart/form-data; boundary={0}",  

boundary); 
 
                string header = string.Format("--{0}", boundary); 
                string footer = string.Format("--{0}--", boundary); 
 
                StringBuilder contents = new StringBuilder(); 
                contents.AppendLine(header); 
 

  string fileHeader = String.Format("Content-Disposition: file; name=\"{0}\";  
filename=\"{1}\"; ", "media", "testpic.jpg"); 

                string fileData = Encoding.GetEncoding(encoding).GetString(imageBits, 0,  
imageBits.Length); 

 
                contents.AppendLine(fileHeader); 
                contents.AppendLine(String.Format("Content-Type: {0};", "image/jpeg")); 
                contents.AppendLine(); 
                contents.AppendLine(fileData); 
                contents.AppendLine(header); 
                contents.AppendLine(String.Format("Content-Disposition: form-data;  

name=\"{0}\"", "username")); 
                contents.AppendLine(); 
                contents.AppendLine("BeginningWP7"); 
 
                contents.AppendLine(header); 
                contents.AppendLine(String.Format("Content-Disposition: form-data;  

name=\"{0}\"", "password")); 
                contents.AppendLine(); 
                contents.AppendLine("windowsphone7"); 
 
                contents.AppendLine(footer); 
 
                // Convert the string into a byte array. 
                byte[] byteArray =  

Encoding.GetEncoding(encoding).GetBytes(contents.ToString()); 
 
                // Write to the request stream. 
                postStream.Write(byteArray, 0, contents.ToString().Length); 
                postStream.Close(); 
 
                // Start the asynchronous operation to get the response 
                request.BeginGetResponse(new AsyncCallback(GetResponseCallback), request); 
            } 
            catch (Exception ex) 
            { 
                Dispatcher.BeginInvoke(() => txtStatus.Text = ex.Message);                 
            } 
        } 



CHAPTER 16 ■ WORKING WITH THE CAMERA AND PHOTOS 

364 

12. Add the GetResponseCallback function that will asynchronously receive the 
results of the upload (Success or Fail) and parse that result out using LINQ to 
XML: 

     private void GetResponseCallback(IAsyncResult asynchronousResult) 
         { 
              try 
              { 
 

                HttpWebRequest request = 
(HttpWebRequest)asynchronousResult.AsyncState; 

                // End the operation 
 HttpWebResponse response =  

(HttpWebResponse)request.EndGetResponse(asynchronousResult); 
                  Stream streamResponse = response.GetResponseStream(); 
                  StreamReader streamRead = new StreamReader(streamResponse); 
                  string responseString = streamRead.ReadToEnd(); 
 
                  XDocument doc = XDocument.Parse(responseString); 
                  XElement rsp = doc.Element("rsp"); 

string status = rsp.Attribute(XName.Get("status")) != null ? 
rsp.Attribute(XName.Get("status")).Value : 
rsp.Attribute(XName.Get("stat")).Value; 

 
                 // Close the stream object 

              streamResponse.Close(); 
                 streamRead.Close(); 
 
                 // Release the HttpWebResponse 
                 response.Close(); 
 
              } 
              catch (Exception ex) 
              { 
                  Dispatcher.BeginInvoke(() => txtStatus.Text = ex.Message); 
              } 
         } 

13. Now you need to call the UploadPhoto method when the user clicks the TwitPic 
button. Open MainPage.xaml in Design view, and double-click the TwitPic 
button. Inside the btnUpload_Click method, paste the following line of code: 

UploadPhoto(); 
 
You are now ready to run the application. Fortunately, you can test the upload to TwitPic 

functionality in this demo by using Windows Phone emulator; you don’t need to deploy to the actual 
device. Set the Windows Phone 7 emulator as your deployment target, click F5, and when the 
application comes up, click the camera button (the first button on the Application Bar). Take a picture, 
accept it, and then click the TwitPic button. If no errors were reported in the status TextBlock, you 
should see your image on TwitPic’s web site, as shown in Figure 16–4. 



CHAPTER 16 ■  WORKING WITH THE CAMERA AND PHOTOS 

365 

 Note Once you successfully upload photos from your phone to TwitPic, the response XML from TwitPic
contains a mediaurl node with the URL of your image. You can parse out that URL in a way that is similar to
parsing out the status in the previous code. Your application can then make use of that URL by, for example,
constructing an HTML page with that URL and showing it within the Web Browser control or doing anything else
with it that your imagination can dream up. 

 

Figure 16–4. Image uploaded to TwitPic 



CHAPTER 16 ■ WORKING WITH THE CAMERA AND PHOTOS 

366 

Summary 
In this chapter, you worked extensively with photos on a Windows Phone 7 device. You used choosers to 
take pictures and loaded previously saved pictures. You also learned a bit about the XNA Framework and 
how it helps you work with the Media Library. You then explored the integration options available 
between the Windows Phone 7 built-in application for photos and your application. Finally, you 
uploaded photos that you took with your Windows Phone 7 device to TwitPic, a photo-sharing site used 
extensively by Twitter. 

In the next chapter, you will look into push notifications, a powerful mechanism for mimicking 
multi-tasking and providing timely notifications about important events. 

 

 



C H A P T E R  17 
 

      
 

367 

Push Notifications 

One day in the somewhat distant future, smartphones and other mobile appliances will ship with 
batteries that last for weeks without the need to recharge them. But until that day arrives, Windows 
Phone 7 software developers must write applications that use energy sparingly, since a resource-
intensive program—such as one that uses the built-in cellular or Wi-Fi radio continuously—can quickly 
drain a Windows Phone battery. To prevent this from happening, Microsoft has built a number of 
safeguards into the Windows Phone application platform to ensure that the phone battery lasts as long 
as possible. One such safeguard prohibits any third-party application from running in the background 
while another is executing in the foreground, a feature that is also known as multitasking. 

Given this limitation, how do you build an application that needs to be—or at least needs to appear 
to be—always running, providing your users with important alerts and messages, such as when to buy or 
sell stocks or take cover from bad weather? In the Windows Phone 7 world, the answer is push 
notifications, also referred to as Windows Phone Notifications (WPN). In a nutshell, push notifications 
allow a user of an application to receive notification messages even when it is not running (currently on 
Windows Phone 7, any time an application is not in the foreground, it is not running).  

In this chapter, you’ll learn how notifications work on the Windows Phone, the WPN types that 
Microsoft provides, and the steps you need to follow to use them in an application. You will build a 
simple phone application that can receive and process push notifications, and you’ll create a simple 
service that can create and send them. The service will notify the user when the price of Microsoft stock 
changes (stock symbol MSFT). Without further ado, let’s start experimenting with this powerful 
technology available for Windows Phone 7. 

Understanding Push Notifications 
The Windows Phone 7 platform provides developers with three types of push notifications: toast 
notifications, tile notifications, and raw notifications. All three types follow the same basic principles of 
operation and processing, yet differ in the way they display notifications. Toast and tile notification 
types are used only when the application is not running; raw notifications are used to continuously 
receive messages while the application is running in the foreground. Let’s discuss each notification type 
in detail. 

Toast Notifications 
Toast notifications are displayed as overlays at the top of a phone’s screen. Only a message title and a 
line of text can be controlled by the service or an application sending (“pushing”) a toast notification; the 
icon that appears on the left side of a toast notification is the default icon for the application deployed 
on the Windows Phone 7 device. You can display toast notifications only when an application is not 



CHAPTER 17  PUSH NOTIFICATIONS 

368 

running; if an application is running when a toast notification is sent, it is not displayed on the phone 
screen.  

Toast notifications are used to display information that is timely and urgent. An example of toast 
notification is shown in Figure 17–1, where it appears as “Time to buy!” text at the top of the phone 
screen. Here, a notification has been received about Microsoft stock becoming an attractive buy. If the 
user chooses to tap (or click) the toast notification, an application opens up, allowing users to take 
additional actions within the application. 

 

 

Figure 17–1. Sample toast notification 

Tile Notifications 
Tile notifications can alter the contents of any application tile that is pinned to the Quick Launch area of 
the phone initial screen (also referred to as Start Experience/Start Screen in Microsoft documentation). 
Tile notifications are used to communicate information visually, by displaying, say, dark clouds with rain 
to represent a rapidly approaching storm. Generally, an application tile is a visual representation of an 
application and its contents or functionality. An application tile typically contains an icon and two 
strings, and tile notifications can change any of these elements, as well as the background of each tile. To 
change a tile’s background image, a tile notification must include a URI that points to the new image, a 



CHAPTER 17  PUSH NOTIFICATIONS 

369 

URI that can be either local or cloud-based. The string at the bottom of an application tile is referred to 
as the tile title. The string in the middle and slightly to the right is referred to as the tile counter. 

Figure 17–2 shows the same Windows Phone 7 Start screen as Figure 17–1, but with an update to the 
PNClient application tile, which has changed the tile’s text to “MSFT +2” and set the count property to 2. 
By continuously updating the tile with new text and images, an application can keep a user informed 
without the need to launch the application. 

Raw Notifications 
The third and final type of push notification is the raw notification, which can be used to continuously 
send messages or updates to a Windows Phone 7 application that is running in the foreground. Contrast 
this with toast and tile notifications, which are used to send updates to an application when it is not 
running front and center on the Windows Phone 7 device. Unlike toast and tile notifications, all raw 
notifications are dropped once an application is no longer running in the foreground on the Windows 
Phone 7 device. Raw notifications are an energy-friendly alternative to constantly polling web services 
for data; this type of push notification also eliminates the need to keep connections to web services open 
for prolonged periods of time. 

Each notification type has its niche—specific application development scenarios in which it shines 
(shown in Table 17-1). For instance, if an application receives updates only when it’s actively used, such 
as a chat application, a raw notification is the most appropriate mechanism for transmitting these 
updates. If an application is ideally suited to communicate updates via the use of visual elements on an 
ongoing basis, such as weather updates, sports events scores, or stock prices, tile notifications are a 
more appropriate choice. Finally, if text-based messages are the most appropriate form of 
communication on an around-the-clock basis ( such as e-mail receipts, Facebook friend requests, or 
news alerts), toast notifications would be most suitable. 

Having taken a look at three available push notification types, let’s look at the architecture of 
notification services, since knowing the architecture will help you better understand how to program 
and troubleshoot push notification services. 

Table 17–1. Characteristics of Windows Phone Push Notification Types 

PN Type Must Application Be Running 
in Foreground? 

Must Application Tile be 
Pinned to Start Screen? 

Use 

  Toast                 No            No Urgent and time-sensitive 
data (e.g., storm warning) 

  Tile                 No            Yes Updates (e.g., count of new 
messages) 

  Raw                 Yes            No Continuous data (e.g., Twitter 
client, stock ticker) 

Introducing the Push Notifications Architecture 
Windows Phone push notifications involve three players, (1) a phone application, (2) a Microsoft service, 
and (3) a remote web-based service, as illustrated in Figure 17–3. At the heart of push notifications is a 
service provided by Microsoft called, very appropriately, Microsoft Push Notification Service (MPNS). 
MPNS “provides a dedicated, resilient, and persistent channel for pushing a notification to a mobile 
device,” according to MSDN documentation. This service is hosted on Microsoft’s Azure cloud operating 



CHAPTER 17  PUSH NOTIFICATIONS 

370 

system and is responsible for seamlessly establishing a channel of communication between a Windows 
Phone 7 device and an application that provides notification data to it. Typically, notifications to 
Windows Phone 7 devices are provided by a web service (or a “cloud service,” as often seen in Microsoft 
documentation). These cloud services are generally accessible via standard web protocols, such as REST 
and SOAP, aside from MPNS for data retrieval and updates.  

Naturally, you may be wondering what happens when MPNS becomes unavailable for some 
technical reason. At the moment, the answer is that should that happen, push notifications will not 
reach their destination; in other words,  they will be simply dropped (see the Note below). Hence, push 
notifications should never be counted on as a reliable form of message delivery. 

Note When programming Push Notifications, there’s an additional caveat that you should be aware of: the 
battery level of the Windows Phone 7 device has direct influence over the receipt of Push Notifications. Currently, 
there are three different values defined for battery power within the Microsoft.Phone.Notifications 

namespace: Normal, Low, and CriticalLow. If the power on the device receiving Push Notifications drops from 
Normal to Low, tile and toast notifications are discontinued, and only Raw will still be sent to the device. When the 
battery power drops to CriticalLow, all push notifications are discontinued. 

 

Figure 17–2. A tile notification 



CHAPTER 17  PUSH NOTIFICATIONS 

371 

The Life Cycle of a Notification 
Suppose that you’re building a mobile stock trading application that consists of a central web service, 
which gathers and analyzes trading data, and an application running on Windows Phone 7 devices, 
which displays data to users. Suppose you want the application to notify users whenever there is a 
significant jump in the value of Microsoft stock, such as might occur right after the official launch of the 
next version of Windows Phone 7. Architecturally speaking, how would it go about doing that? 

First, the application will need to take advantage of Push Notification Services, since this will allow it 
to keep the user updated on the market conditions even if the user is not constantly running the stock 
trading app on her Windows Phone 7.  

Second, to enable push notifications on Windows Phone 7, a communication channel for 
notifications must be created between the application and the web service that is collecting stock 
trading data. In the world of push notifications, a communication channel is represented by a URI that 
contains all of the information necessary for notifications to reach their destination. A Windows Phone 7 
client must request this channel be created, and obtain the URI associated with that communication 
channel.  

Third, the URI of this communication channel must be communicated to the web service that will 
deliver, or “push” notifications about the market conditions to Windows Phone 7 clients. Once this third 
step is complete, all three types of push notifications are available to the stock trading application.  

Figure 17–3 provides detailed visual representation of how a Windows Phone 7 client application 
will be able to receive stock trading alerts from the server using MPNS. The steps are sequentially 
numbered and each numbered step is described in detail below: 

1. Windows Phone 7 application contacts MPNS and requests for 
communication channel inside MPNS to be created. 

2. MPNS responds with the URI of communication channel, which is unique for 
a given Windows Phone 7 device and an application on that device. 

3. Windows Phone 7 application communicates the URI of the channel created 
in Step 2 to the service providing stock quotes. 

4. The stock quotes service publishes updates to the URI communicated to it in 
Step 3. 

5. MPNS routes the updates to the proper Windows Phone 7 device and 
application on that device. 



CHAPTER 17  PUSH NOTIFICATIONS 

372 

page name
kljadai hgjkajd

k

l

i

d

b

e 

g

e

k

 

Figure 17–3. Basic push notifications architecture 

When the service needs to send notifications to its clients, it contacts MPNS by making a POST 
request to the unique URIs created for each client (Step 4). These POST requests have to conform to a 
predefined XML schema set by Microsoft. The type of notification sent (toast, tile, or raw) is determined 
by one of the header values inside the POST request—namely, the X-NotificationClass header; you will 
see how to use this header momentarily. 

The sections that follow will show you how to write code for the steps that have just been described. 
Using the Windows Phone 7 emulator, you’ll implement an application with both toast and tile 
notifications. 

When programming Windows Phone 7 push notifications, perhaps the most common error that 
occurs is the PayloadFormat error. Generally, it means that the XML or message format received from 
the MPNS does not conform to the expected format. If this happens, check whether an XML format 
expected for tile notifications is used for toast notifications or vice versa. 

The Push Notification Framework 
The namespace that hosts the APIs to do the push notification heavy lifting is 
Microsoft.Phone.Notification, and the HttpChannelNotification is its workhorse. Before a notification 
of any type can be sent, a notification channel must be created. The HttpChannelNotification class 
allows developers to create a new channel or find an existing (previously created) one using its Open and 
Find methods correspondingly. When programming push notifications, it is a good practice to check 
whether the channel has been previously created using the Find operation. You will see how this is done 
shortly in several upcoming demos. An important note about the Open method: once the channel is 
open, it is not immediately active. The push notification channel becomes active once it acquires the 
push notification URI from the MPNS. This URI is acquired in an asynchronous manner, as you will also 
see in the demos in this chapter. 

Other important methods of the HttpChannelNotification class include BindToShellToast and 
BindToShellTile. These methods are responsible for associating, or binding, a particular 
HttpChannelNotification channel instance to toast and tile notifications. These methods have 
corresponding UnbindToShellToast and UnbindToShellTile methods that disassociate toast and tiles 
subscriptions correspondingly from a given channel. Finally, the Close method of the 



CHAPTER 17  PUSH NOTIFICATIONS 

373 

HttpChannelNotification class closes the channel and removes all the subscriptions associated with 
that channel. 

Push notifications are most appropriate in situations where Windows Phone 7 applications almost 
fully depend on the data supplied by the server on the web or somewhere else in the cloud. As such, to 
demonstrate push notifications in action, you must create two separate projects: one project will be a 
Windows Phone 7 application, and the other project could be either a web-based application, a web 
service, or, for the purposes of keeping the current example simple, a Windows Forms application. To 
create the Windows Forms application that will be used as part of the next demo, you will be using a 
version of Visual Studio that allows the creation of Windows Forms applications—Visual C# 2010 
Express. Alternately, you could use other (paid) editions of Visual Studio 2010 to create Windows Forms 
applications. 

 Note Currently, there’s a limit of one notification channel per application and the maximum of 15 push 
notification channels per device. This means if you deploy an application to the device that already has 15 
notification channels consumed by other applications, you will get an InvalidOperationException (Channel quota 
exceeded). 

Implementing Toast Notifications 
For the toast notifications demo, you will implement a Windows Phone 7 client application that will 
create a notification channel, and a Windows Forms application that can send the notifications to the 
Windows Phone 7 application via that channel. The Windows Phone 7 client application will be a single 
screen application with one button and one text box, as shown in Figure 17–4.  



CHAPTER 17  PUSH NOTIFICATIONS 

374 

 

Figure 17–4. Windows Phone 7 application that will create a push notification URI and receive push 

notifications 

The Windows Forms application will consist of the single form shown in Figure 17–5. You will follow 
this order of program implementation: 

1. You will create the Windows Phone 7 Notification client application. This 
application will establish a notification channel and print the URI of that 
communication channel into the Output window. 

2. You will create and execute the Windows Forms application that will send 
notifications. You will take the URI of the notification channel that you 
established in Step 1, paste it into the Push Notifications URL field of this 
application, and submit the notification. 

3. You will verify that you are able to receive toast notifications in the Windows 
Phone 7 application. 

 



CHAPTER 17  PUSH NOTIFICATIONS 

375 

 

Figure 17–5. Design surface for Windows Phone 7 Notification client application 

 Note If your application implements toast notifications, per Microsoft Application Certification Requirements,
you must ask the user for permission to receive those notifications and you must allow the user to disable such
notifications. 

Creating a Client Application 
The Windows Phone 7 Notification client application will consist of a command button that will create a 
push notification channel and print its URI into the Debug window. You will also add a text box to the 
application to display the URI for visual confirmation. Follow these steps to create the application:  

1. Launch Visual Studio 2010 Express for Windows Phone and create a new 
Windows Phone Application project. Name it PNClient. 

2. From the Toolbox, drag and drop a text box on the design surface. Rename the 
text box to txtURI, adjust its width to be the full width of the screen, and adjust 
its height to be about a quarter of the screen’s height. Set the text box’s 
TextWrapping property to Wrap and clear out its Text property. 

3. From the Toolbox, drag and drop a button on the design surface. Rename the 
button to btnCreateChannel and set the Content property to Create Channel. 
Your Windows Phone 7 design surface should now look like Figure 17–6. 



CHAPTER 17  PUSH NOTIFICATIONS 

376 

 

Figure 17–6. Windows Forms application that will send push notifications to WP7 app 

4. Add the following using directives to the top of the MainPage.xaml.cs file. 

using Microsoft.Phone.Notification; 
using System.Diagnostics; 

5. You need to add code that will capture the URI of the notification channel in 
the Output window. At the top of the code page, right underneath the 

         public partial class MainPage : PhoneApplicationPage 
         { 

 
 add the following code 
 

          Uri channelUri; 
         public Uri ChannelUri 
         { 

get { return channelUri; } 
set 

             { 



CHAPTER 17  PUSH NOTIFICATIONS 

377 

channelUri = value; 
OnChannelUriChanged(value); 

} 
         } 
 
         private void OnChannelUriChanged(Uri value) 
         { 
          Dispatcher.BeginInvoke(() => 
              { 
                  txtURI.Text = "changing uri to " + value.ToString(); 
              }); 
 
              Debug.WriteLine("changing uri to " + value.ToString()); 
         } 

 
The last bit of code will print the URI of the push notification channel opened by the application 

into the Visual Studio Output window, which will allow you to copy and paste that URI into the Windows 
Forms application that you will be building in the next section. Certainly, in a real-world application, 
this copy and paste method is not appropriate; a more robust method of exchanging that URI, such as 
passing it to a web service, would be more appropriate. You will build a more realistic method of 
exchanging this URI later on in this chapter. 

6. Open MainPage.xaml in Design view (right-click MainPage.xaml in Solution 
Explorer and select View Designer), double-click the Create Channel button, 
and make the btnCreateChannel_Click event handler look like the following: 

         private void btnCreateChannel_Click(object sender, RoutedEventArgs e) 
         { 
         SetupChannel(); 
         } 

7. Paste the following SetupChannel function into the btnCreate_Click event 
handler (note that you can always download the code available for this book). 
Here, you use the HttpNotificationChannel class to try to find an existing 
push notification channel or open a new channel with a given channel name. 

        private void SetupChannel() 
        { 
            HttpNotificationChannel httpChannel = null; 
            string channelName = "DemoChannel"; 
 
            try 
            { 
                //if channel exists, retrieve existing channel 
                httpChannel = HttpNotificationChannel.Find(channelName); 
                if (httpChannel != null) 
                { 
                    //If we cannot get Channel URI, then close the channel and reopen it 
                    if (httpChannel.ChannelUri == null) 
                    { 
                        httpChannel.UnbindToShellToast(); 
                        httpChannel.Close(); 
                        SetupChannel(); 



CHAPTER 17  PUSH NOTIFICATIONS 

378 

                        return; 
                    } 
                    else 
                    { 
                        ChannelUri = httpChannel.ChannelUri;                        
                    } 
         BindToShell(httpChannel); 
                } 
                else 
                { 
                 httpChannel = new HttpNotificationChannel(channelName); 

httpChannel.ChannelUriUpdated += new 
EventHandler<NotificationChannelUriEventArgs>(httpChannel_ChannelUriUpdated); 

httpChannel.ShellToastNotificationReceived+=new 
EventHandler<NotificationEventArgs>(httpChannel_ShellToastNotificationReceived); 

httpChannel.ErrorOccurred += new 
EventHandler<NotificationChannelErrorEventArgs>(httpChannel_ExceptionOccurred); 

 
                 httpChannel.Open(); 
                 BindToShell(httpChannel); 

 } 
            } 
            catch (Exception ex) 
            { 
                Debug.WriteLine("An exception setting up channel " + ex.ToString()); 

            } 
        } 

 
The code in the SetupChannel() function warrants an explanation, since there is quite a bit going on 

and it is the nucleus of creating a channel for a Windows Phone 7 Notification client application. In the 
first few lines, you define a new object of type HttpNotificationChannel, give it a name, and wire up an 
event to fire when an error occurs. You also wire up an event to fire when the URI of the notification 
channel changes. Next, you try to find the channel with a given name for the application and then bind it 
to receive toast notifications (via the BindToShell function shown here). If the channel is found, you’ll 
use an existing channel to obtain the push notification URI and you will not need to wire various 
httpChannel event handlers. If the channel is not found, you’ll create a new one and wire up appropriate 
httpChannel events. Notice the ShellToastNotificationReceived event—it occurs if your application is 
running in the foreground when it receives a toast notification. Normally, push notifications are 
designed to alert that there is something happening when the application is not running and when an 
application needs to receive a notification. However, occasionally, your application may be running 
when a toast notification is received—to handle cases like this, ShellToastNotificationReceived event 
handler is introduced. You will code this event handler in the next step. 

8. To handle toast notifications when the application is running in the 
foreground, add the code below for the ShellToastNotificationReceived event 
handler. This code will read the notification messages received and print them 
in the textbox on the screen. 

void httpChannel_ShellToastNotificationReceived(object sender,  
NotificationEventArgs e) 

             { 



CHAPTER 17  PUSH NOTIFICATIONS 

379 

              Dispatcher.BeginInvoke(() => 
              { 
                  txtURI.Text = "Toast Notification Message Received: "; 

                 if (e.Collection != null)    
                  {    

Dictionary<string, string> collection =  
(Dictionary<string, string>)e.Collection;    

System.Text.StringBuilder messageBuilder = new 
System.Text.StringBuilder();    

                       foreach (string elementName in collection.Keys)    
                       { 
                            txtURI.Text+= string.Format("Key: {0}, 
Value:  

{1}\r\n", elementName, collection[elementName]);    
                       } 
                  }    
              }); 
            } 
 

9. To bind a toast notification subscription to a given HttpNotificationChannel 
instance, you must call the BindToShellToast method of the 
HttpNotificationChannel class. Underneath the SetupChannel function, paste 
the following code to accomplish this: 

         private static void BindToShell(HttpNotificationChannel httpChannel) 
         { 
              //This is a toast notification 
              try 
              { 
                  httpChannel.BindToShellToast(); 
              } 
              catch (Exception) 
              { 
                  Debug.WriteLine("An exception occurred binding to shell " + 
ex.ToString()); 
              } 
         } 

10. In the SetupChannel function, you designated the 
httpChannel_ExceptionOccurred should fire in case of an error. Add this 
function to your code as defined here: 

void httpChannel_ExceptionOccurred(object sender, NotificationChannelErrorEventArgs 
  e) 
         { 
              //Display Message on error 
              Debug.WriteLine ( e.Message); 
         } 
 

11. You also need to add code that will fire if the ChannelUri gets updated: 



CHAPTER 17  PUSH NOTIFICATIONS 

380 

void httpChannel_ChannelUriUpdated(object sender, NotificationChannelUriEventArgs e) 
        { 
              //You get the new Uri (or maybe it's updated) 
              ChannelUri = e.ChannelUri; 
        } 

 
At this point, you have finished building the Windows Phone 7 client application and are ready to 

implement the Windows Forms application for sending notification messages to the mobile device. 

Creating an Application to Send Notifications 
In the previous section, you wrote a Windows Phone 7 client application that creates a notification 
channel to the MPN Service to indicate that it wishes to receive push notification messages. By creating a 
channel, the application has also created an MPNS endpoint to which the web-based application can 
send POST requests. The endpoint exists on an MPNS server operated by Microsoft and will forward any 
requests it receives to the appropriate mobile device and application to which the endpoint points.  

You can create POST requests from virtually any application environment, including web sites, web 
services, and desktop applications, making this type of notification architecture very flexible and easy to 
use. In this example, you will create a Windows Forms application that packages POST requests to the 
URI generated in the previous section. This application will create POST requests and send them off to 
the MPNS in the cloud, which will in turn properly route the requests to the mobile devices and 
applications. 

To ensure proper message routing and successful delivery, there are two key pieces of information 
that any application sending push notifications to a Windows Phone 7 device must supply. Those key 
pieces of information are the following: 

1. The URI of the notification channel that the service must use to communicate 
with a Windows Phone 7 device. It is up to the Windows Phone 7 client 
application to request the URI and pass it to the service that will use it. 

2. A proper XML message to POST to the URI. While the format of the XML 
message is simple, it has to be followed precisely for the notifications to 
succeed. 

The latest MPNS XML template for toast notifications looks like the following, where <Notification 
Title> and <Notification Text> are the text of the notification title and the text of the toast notification 
message to be sent to a Windows Phone 7 device: 

 

        <?xml version="1.0" encoding="utf-8"?> 
        <wp:Notification xmlns:wp="WPNotification"> 
         <wp:Toast> 
          <wp:Text1><Notification Title></wp:Text1> 
          <wp:Text2><Notification Text></wp:Text2> 
         </wp:Toast> 
        </wp:Notification> 
 

Now that you know the XML template format of the expected POST request and, using cut and 
paste, can quickly obtain the URI of the notification channel, you’re ready to create an application to 
dispatch notifications to the Windows Phone 7 client app. Follow these steps: 



CHAPTER 17  PUSH NOTIFICATIONS 

381 

1. Launch Visual C# 2010 Express (or another edition of Visual Studio that will 
allow you to create Windows Forms projects) and create a new Windows 
Forms project. Name it  PNServer. 

2. Form1.cs is added by default. Double-click it to bring up the design view. From 
the toolbox, drag three labels and three text boxes and make Form1.cs look like 
Figure 17–5. Name the text boxes txtURL, txtTitle, and txtText accordingly. 

3. Add a Button control onto Form1. Change its text property to Send 
Notification and change its name to btnSendNotification. 

4. Finally, add the label control to the bottom of the form and change its name to 
lblStatus. 

5. Right-click Form1.cs in Solution Explorer and choose View Code (alternately, 
you can also press F7). Add the following using statements to the top: 

using System.Net; 
using System.IO; 

6. After the constructor, add the following definition of the XML to be POSTed to 
MPNS: 

 string ToastPushXML = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" + 
             "<wp:Notification xmlns:wp=\"WPNotification\">" + 
             "<wp:Toast>" + 
             "<wp:Text1>{0}</wp:Text1>" + 
             "<wp:Text2>{1}</wp:Text2>" + 
             "</wp:Toast>" + 
             "</wp:Notification>"; 

7. Switch back to the design view on Form1.cs (by right-clicking Form1.cs in 
Solution Explorer and choosing View Designer). Double-click the Send 
Notification button to bring up the btnSendNotification_Click event handler. 

You’ll use the btnSendNotification_Click event handler, with the help of the .NET HttpWebRequest 
class to create a POST request to the push notification URI that the Windows Phone 7 client has 
obtained. The beauty of communication with MPNS is that once this POST request is composed and 
sent off, MPNS will take care of the delivery of the notification from there. The critical piece of 
information is the URI to send the POST request to, since that URI is what uniquely identifies both a 
Windows Phone 7 device and an application to send push notifications to.  

 
Make the btnSendNotification_Click event handler look like the code here: 
 

        private void btnSendNotification_Click(object sender, EventArgs e) 
        { 
            if (txtURL.Text == string.Empty) 
            { 
                MessageBox.Show("Please enter a url"); 
                return; 
            } 
 
            if (txtTitle.Text == string.Empty || txtText.Text == string.Empty) 
            { 



CHAPTER 17  PUSH NOTIFICATIONS 

382 

                MessageBox.Show("Please enter text and title to send"); 
                return; 
            } 
 
            string url = txtURL.Text; 
 
            HttpWebRequest sendNotificationRequest = (HttpWebRequest)WebRequest.Create(url); 
 
            sendNotificationRequest.Method = "POST"; 
            sendNotificationRequest.Headers = new WebHeaderCollection(); 
            sendNotificationRequest.ContentType = "text/xml"; 
 
            sendNotificationRequest.Headers.Add("X-WindowsPhone-Target", "toast"); 
            sendNotificationRequest.Headers.Add("X-NotificationClass", "2"); 
 
            string str = string.Format(ToastPushXML, txtTitle.Text, txtText.Text); 
            byte[] strBytes = new UTF8Encoding().GetBytes(str); 
            sendNotificationRequest.ContentLength = strBytes.Length; 
            using (Stream requestStream = sendNotificationRequest.GetRequestStream()) 
            { 
                requestStream.Write(strBytes, 0, strBytes.Length); 
            } 
 
            HttpWebResponse response = (HttpWebResponse)sendNotificationRequest.GetResponse(); 
            string notificationStatus = response.Headers["X-NotificationStatus"];        
            string deviceConnectionStatus = response.Headers["X-DeviceConnectionStatus"];    
            lblStatus.Text = "Status: " + notificationStatus + " : " + deviceConnectionStatus; 
        } 

 
The POST request includes two headers: 

• The X-WindowsPhone-Target header defines the notification type. The possible 
values for this header are toast, token, or not defined. Toast defines the 
notification of toast type, while token defines a tile notification. If this header is 
not defined, then it is a raw notification.  

• The X-NotificationClass header defines how soon the MPNS should deliver the 
notification. The value of 2 specifies that the toast notification is to be delivered 
immediately. Had you specified the value of 12, for example, the MPNS would 
have been instructed to wait 450 seconds, or seven and a half minutes before 
notification delivery. 

Now it’s time to test the application and its service. 

Verifying Delivery of Push Notifications 
With the Windows Phone 7 Notification client application ready to receive notification messages and the 
Windows Forms application ready to send them, you are ready to verify the proper delivery of those 
notifications. Follow these steps to test push notification delivery: 

1. First, you will need to obtain the URI of the notification channel. Open the 
PNClient project created in the “Creating a Client Application” section. Make 



CHAPTER 17  PUSH NOTIFICATIONS 

383 

sure that you have a connection to the Internet, and press F5 to run the 
project.  

2. Click the Create Channel button and, after a short while, you should see 
messages (the URI of the notification channel, actually) printed in the text box 
on the screen—that’s a confirmation that the notification URI is available to 
copy from the Output window.  

3. In Visual Studio 2010 Express for Windows Phone, click the Debug  Windows 
 Output menu option to bring up the Output window. The URI should be 
printed together with the “changing uri to …” message, as shown in Figure 17–
7. Highlight the URI and press Ctrl+C to copy it into the buffer. Make sure to 
leave the application running in the Windows Phone emulator, since you will 
be receiving push notifications on this emulator screen. 
 

 

Figure 17–7. Notification channel URI printed in the Output window 

4. Switch to the PNServer Windows Forms project and press F5 to run it. In the 
Push Notifications URL text box, paste the URI obtained in Step 3 above by 
pressing Ctrl+V. In the Push Notifications Title and Push Notifications Text 



CHAPTER 17  PUSH NOTIFICATIONS 

384 

text boxes, you can enter any text—for example, “Time to buy!” and “MSFT up 
$2 after WP7 release”. Press the Send Notification button. 

Remember that push notifications appear on the phone only when the Windows Phone 7 
application associated with these notifications is not running in the foreground on the phone. Therefore, 
if the PNClient application was running—which is likely—in the foreground when you pressed the Send 
Notification button, no notifications will have appeared on the phone screen. To enable them, do the 
following; otherwise, skip to the next paragraph. 

5. Press the Windows button on the emulator (the middle button on the emulator 
with the Windows logo on it) to switch to the Start screen of the phone, which 
shuts down PNClient application. In the PNServer app, press the Send 
Notification button again.  

You should see a toast notification like the one shown in Figure 17–1. 
As you can see, creating and receiving push notifications is a somewhat involved process, with a 

separate Windows Phone 7 application establishing a notification channel and receiving notifications, 
and a separate application sending these notifications to that Windows Phone 7 app. Once you 
understand how to work with other types of notifications—namely, tile and raw—you can build a service 
that will programmatically acquire and keep track of the connected clients. From an application 
development point of view, the good news is that the process of creating other notification types—tile 
notifications and raw notifications—is very similar to the process of creating toast notifications 
described previously.  

In the next section, you will take a look at how to create tile notifications, but instead of creating 
everything from scratch, you will concentrate only on the changes needed to the toast notifications 
already implemented. 

Implementing Tile Notifications 
Tile notifications can update the images and texts of application tiles, as you saw in Figure 17–2. Tile 
notifications are ideal for applications that convey small amounts of information, especially when that 
information changes frequently. For example, weather reports and compass headings are both good 
candidates for this category. 

Note There is currently a limitation of 500 push notifications per subscription channel per day on 
unauthenticated web services. Later in this chapter, you will learn about overcoming this limitation by setting up 
authenticated web services for push notifications. 

You will implement the tile notifications application in the same three steps you followed to 
implement toast notifications, namely the following: 

1. Create a Windows Phone 7 Notification client application. This application will 
establish a notification channel. 

2. Create and execute the Windows Forms client. You will take the URI of the 
notification channel that you established in Step 1, paste it into the Push 
Notifications URL text box, and submit push notification to the application. 



CHAPTER 17  PUSH NOTIFICATIONS 

385 

3. Verify that you are able to receive tile notifications in the Windows Phone 7 
application. 

Creating a Client Application 
You will take the PNClient application that you have created and enhance it to accept tile notifications in 
addition to toast notifications. You will not recreate the application; rather, you will concentrate on the 
changes needed to enable tile notifications. 

1. Launch Visual Studio 2010 Express for Windows Phone and open the PNClient 
project. 

2. Locate the BindToShell function inside the MainPage.xaml.cs file. Change that 
function to look like the one here (essentially, you are adding a line to bind this 
application to tile notifications): 

        private static void BindToShell(HttpNotificationChannel httpChannel) 
         { 
            try 
             { 

               //toast notification binding 
                httpChannel.BindToShellToast(); 
                 //tile notification binding 
                 httpChannel.BindToShellTile(); 
             } 
             catch (Exception) 
             { 

 //ignore exceptions at the moment 
             } 
        } 

These are all the changes you need to make to the PNClient application to enable tile notifications. 

Creating an Application to Send Notifications 
There are a few changes that you need to make to code that sends push notifications to enable tile 
notifications processing. First, you’ll need to use a different XML schema for tile notifications, as shown 
here: 

 

<?xml version=\"1.0\" encoding="utf-8"?>
<wp:Notification xmlns:wp="WPNotification"> 
 <wp:Tile>                                  
  <wp:BackgroundImage><URI to Image></wp:BackgroundImage> 
  <wp:Count><Count Message></wp:Count> 
  <wp:Title><Title Message></wp:Title> 
 </wp:Tile>
</wp:Notification> 

 
The <URI to Image> element specifies the location, which is either local or remote, of the 

background image used to update the application tile. <Count Message> is the counter text (the one 



CHAPTER 17  PUSH NOTIFICATIONS 

386 

almost at the center of the tile) to set on the tile and the <Title Message> is the message text to set at the 
bottom of the application tile. 

Note In the current implementation of Push Notifications for Windows Phone 7, to set the background image to 
an image located on the Internet, you must specify the location of that image when creating a Windows Phone 7 
Notification client application. While this is certainly not very flexible (you would have to know beforehand all of the 
images that you will be using to update tiles), Microsoft generally does not encourage the use of remote images 
for tile updates, limiting the maximum allowed size of those images to 80KB and emphasizing in documentation 
that the use of remote resources leads to excessive battery drain. 

Follow these steps to make changes for tile notifications: 

1. Open the PNServer project and open code for the Form1.cs file (right-click 
Form1.cs in Solution Explorer and select View Code). 

2. Now, you will define the XML schema information inside the code. Paste the 
following string declaration to the top of the file, right underneath the string 
ToastPushXML declaration:  

 string TilePushXML = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" + 
         "<wp:Notification xmlns:wp=\"WPNotification\">" + 
                "<wp:Tile>" + 
                "<wp:Count>{0}</wp:Count>" + 
                "<wp:Title>{1}</wp:Title>" + 
                 "</wp:Tile>" + 
                 "</wp:Notification>"; 

3. Inside the btnSendNotification_Click event handler, change the following two 
lines of code 

         sendNotificationRequest.Headers.Add("X-WindowsPhone-Target", "toast"); 
         sendNotificationRequest.Headers.Add("X-NotificationClass", "2"); 
 
 to 

         sendNotificationRequest.Headers.Add("X-WindowsPhone-Target", "token"); 
         sendNotificationRequest.Headers.Add("X-NotificationClass", "1"); //- tiles 

4. Finally, you need to change the string that gets sent to the Windows Phone 7 
application. To accomplish that, change the following line of code inside the 
btnSendNotification_Click event handler from 

        string str = string.Format(ToastPushXML, txtTitle.Text, txtText.Text); 
 
 to 

        string str = string.Format(TilePushXML, txtTitle.Text, txtText.Text); 
 



CHAPTER 17  PUSH NOTIFICATIONS 

387 

These are all of the changes that you need to make to enable tile notifications on the Windows 
Phone 7 device. You are now ready to test tile notifications on the Windows Phone 7 emulator. 

Verifying Delivery of Push Notifications 
Having made changes to both the client and the server portions of the code to enable tile notifications, 
it’s time to take them for a spin.  

Just as with toast notifications, you need to obtain the URI of the notification channel.  

1. Open PNClient project, make sure that you have a connection to the Internet, 
and press F5 to run the project.  

2. Click the Create Channel button and, after seeing the URI printed on the 
screen, copy it to the clipboard from the Output window. 

Remember that tile notifications appear on the phone only when a Windows Phone 7 application 
associated with these notifications is not running in the foreground on the phone and (this is important!) 
only when the application tile is available on the Windows Phone 7 Start screen.  

3. To pin the application tile onto the Start screen, with the PNClient application 
running, click the phone’s Windows button, and then click the arrow () to 
open the Windows Phone 7 Options screen, shown in Figure 17–8.  

4. Click and hold the left mouse button down (also referred to as “long click”) to 
bring up the pop-up menu shown in Figure 17–8.  

5. Click the Pin to Start option. 

Now, you should see the PNClient application tile on the Start screen, together with the Internet 
Explorer tile. 

6. Switch to the PNServer Windows Forms project, and press F5 to run it.  

7. In the Push Notifications URL text box, paste the URI obtained in Step 1. In the 
Push Notifications Title and Push Notifications Text text boxes, enter text for 
the counter and tile message accordingly. For example, to get tile notification 
to appear as in Figure 17–2, enter “2” for Push Notification Title and “MSFT 
+2” in Push Notification Text field. 



CHAPTER 17  PUSH NOTIFICATIONS 

388 

 

Figure 17–8. To receive tile notifications, the application tile must be pinned to the Start screen. 

Now you’re ready to send and receive tile notifications.  

8. Click the Push Notification button in the PNServer application.  

You should now see the application tile updated from default to the one containing both the 
counter text (2) and the message text (MSFT +2). 

As you can see, processing tile notifications is only slightly different from processing toast 
applications. Processing raw notifications is also very similar to the previous demos; however, since raw 
notifications are received when an application is running in the foreground only, you would need to wire 
up an event inside the Windows Phone 7 application to process messages received, as you will see in the 
next demo implementing raw notifications. 

Implementing Raw Notifications 
Raw notifications represent the third and final type of push notification available on the Windows Phone 
7 platform. Unlike tile and toast notifications, however, raw notifications are available to a Windows 
Phone 7 application only if that application is running in the foreground. If the application is not 
running in the foreground, even if the application’s icon is pinned to the phone’s Start screen, raw 
notifications are simply dropped. 

You will implement raw notifications following the same three general steps as implementing toast 
and tile notifications, namely the following: 



CHAPTER 17  PUSH NOTIFICATIONS 

389 

1. Create a Windows Phone 7 Notification client application. This application will 
establish a notification channel. 

2. Create and execute a Windows Forms client. You will take the URI of the 
notification channel that you established in Step 1, paste it into the Push 
Notifications URL text box, and submit a push notification to the application. 

3. Verify that you are able to receive raw notifications in your Windows Phone 7 
application. 

Creating a Client Application 
You will create the RawNotificationPNClient application to accept raw notifications. This application is 
similar to the PNClient application you have created in the prior sections of this chapter, yet it has subtle 
differences from that codebase to warrant a separate project. 

1. Launch Visual Studio 2010 Express for Windows Phone and create a new 
Windows Phone Application project. Name it RawNotificationPNClient. 

2. From the Toolbox, drag and drop a text box on the design surface. Rename the 
text box to txtURI, adjust its width to be the full width of the screen, and adjust 
its height to be about a quarter of screen’s height. Set the text box’s 
TextWrapping property to Wrap and clear out its Text property. 

3. From the Toolbox, drag and drop a button on the design surface. Rename the 
button to btnCreateChannel and set the Content property to Create Channel. 
Once again, your Windows Phone 7 design surface should now look like Figure 
17–6. 

4. The Microsoft.Phone.Notification namespace contains the functionality 
necessary to establish a push notification channel and receive push 
notifications; therefore you need to add the following using directive at the top 
of the MainPage.xaml.cs file: 

using Microsoft.Phone.Notification; 
using System.Diagnostics; 

 

5. You will now program the button click event handler to create the push 
notification URL. In the Windows Phone 7 design surface, double-click the 
Create Channel button and make that button’s click event handler look like the 
following: 

private void btnCreateChannel_Click(object sender, RoutedEventArgs e) 
         { 
              SetupChannel(); 
         } 
 

The SetupChannel function, which follows, is responsible for creating a channel within MPNS to 
receive updates from the server and to fire when the error occurs during communication and when the 
raw notification is received. Remember that raw notifications are available to the application only when 
it’s running; therefore an event handler must be defined in code that processes raw notifications as they 
come in. The code that binds the raw notification received event to the 
httpChannel_HttpNotificationReceived event handler function lives inside the SetupChannel function: 



CHAPTER 17  PUSH NOTIFICATIONS 

390 

httpChannel.HttpNotificationReceived += new  
EventHandler<HttpNotificationEventArgs>(httpChannel_HttpNotificationReceived); 

6. Here’s the complete implementation of the SetupChannel function. Add the 
code to your project: 

         private void SetupChannel() 
         { 
              HttpNotificationChannel httpChannel = null; 
              string channelName = "DemoChannel"; 
 
              try 
              { 
                  //if channel exists, retrieve existing channel 
                  httpChannel = HttpNotificationChannel.Find(channelName); 
                  if (httpChannel != null) 
                 { 
                      //If you can't get it, then close and reopen it. 
                      if (httpChannel.ChannelUri == null) 
                     { 
                          httpChannel.UnbindToShellToast(); 
                          httpChannel.Close(); 
                          SetupChannel(); 
                          return; 
                     } 
                     else 
                     { 
                          ChannelUri = httpChannel.ChannelUri; 
                         
                      //wiring up the raw notifications event handler 
                  httpChannel.HttpNotificationReceived += new  

EventHandler<HttpNotificationEventArgs>(httpChannel_HttpNotificationReceived); 
                     } 
                } 
                else 
                { 
                 httpChannel = new HttpNotificationChannel(channelName); 
                 httpChannel.ChannelUriUpdated += new  

   
EventHandler<NotificationChannelUriEventArgs>(httpChannel_ChannelUriUpdated); 

httpChannel.ErrorOccurred += new  
   
EventHandler<NotificationChannelErrorEventArgs>(httpChannel_ExceptionOccurred)
; 

 
                     //wiring up the raw notifications event handler 
                     httpChannel.HttpNotificationReceived += new  

   
EventHandler<HttpNotificationEventArgs>(httpChannel_HttpNotificationReceived); 

 
                 httpChannel.Open(); 

} 



CHAPTER 17  PUSH NOTIFICATIONS 

391 

            } 
            catch (Exception ex) 
            { 
 
            } 
        } 
 

What you do with received raw notifications is totally up to you: raw notifications can be simple 
status messages to be shown in the Windows Phone 7 client application, or they can be directives to the 
application to perform a given task. In this application, you will simply print a message into the text box 
with the text of raw notifications received.  

7. To print the raw notification, add the following code: 

         void httpChannel_HttpNotificationReceived(object sender, 
HttpNotificationEventArgs e) 
         { 
              if (e.Notification.Body != null && e.Notification.Headers != null) 
              { 
                System.IO.StreamReader reader = new  

System.IO.StreamReader(e.Notification.Body); 
                  Dispatcher.BeginInvoke(() => 
                 { 
                      txtURI.Text = "Raw Notification Message Received: " + 
reader.ReadToEnd(); 
                 }); 
             } 
        } 

 
You are very close to completing the client application; what remains is to write an error handling 

function that will fire off when any errors during communication occur. You will also write a simple 
event handler that will fire off when the push notification channel URI gets updated. 

8. Add the following code to your application: 

void httpChannel_ExceptionOccurred(object sender, NotificationChannelErrorEventArgs e) 
{ 
 //Display Message on error 

          Debug.WriteLine ( e.Message); 
   } 
 

void httpChannel_ChannelUriUpdated(object sender, NotificationChannelUriEventArgs e) 
{ 
 //You get the new Uri (or maybe it's updated) 

        ChannelUri = e.ChannelUri; 
} 

9. Finally, add the following helper code to the top of the MainPage class. This 
code will print the push notification channel URI into the Debug window; you 
will need that URI to test the application shortly. 

Uri channelUri; 
 
         public Uri ChannelUri 



CHAPTER 17  PUSH NOTIFICATIONS 

392 

         { 
              get { return channelUri; } 
              set 
              { 
                  channelUri = value; 
                  OnChannelUriChanged(value); 
              } 
         } 
 
         private void OnChannelUriChanged(Uri value) 
         { 
              Dispatcher.BeginInvoke(() => 
              { 
                  txtURI.Text = "changing uri to " + value.ToString(); 
              }); 
 

          Debug.WriteLine("changing uri to " + value.ToString()); 
         } 
 

With the client application complete, press F5 to make sure that the application compiles and runs. 
In the next section, you will be building a server piece to send raw notifications to this client application. 

Creating an Application to Send Notifications 
Sending raw notifications from the server is simpler than sending Tiles or Toasts: there are no XML 
templates for message formatting for raw notifications. You will reuse the PNServer project created in 
the prior sections and edit the button click event handler for raw notifications processing. Follow these 
steps to accomplish that: 

1. Open the PNServer project and open code for the Form1.cs file (right-click 
Form1.cs in Solution Explorer and select View Code). 

2. Replace the btnSendNotification_Click event handler with the following code. 
Note how the X-NotificationClass header value is set to 3 and how the X-
WindowsPhone-Target header value is left blank to indicate that this is a raw 
notification. 

         private void btnSendNotification_Click(object sender, EventArgs e) 
         { 
              if (txtURL.Text == string.Empty) 
              { 
                  MessageBox.Show("Please enter a url"); 
                  return; 
              } 
 
              if (txtTitle.Text == string.Empty || txtText.Text == string.Empty) 
              { 
                  MessageBox.Show("Please enter text and title to send"); 
                  return; 
              } 
 



CHAPTER 17  PUSH NOTIFICATIONS 

393 

HttpWebRequest sendNotificationRequest =    

   (HttpWebRequest)WebRequest.Create(txtURL.Text); 
 
              sendNotificationRequest.Method = "POST"; 
              sendNotificationRequest.Headers = new WebHeaderCollection(); 
              sendNotificationRequest.ContentType = "text/xml"; 
 
              sendNotificationRequest.Headers.Add("X-WindowsPhone-Target", ""); 
              sendNotificationRequest.Headers.Add("X-NotificationClass", "3"); //- 
raw 
              string str = string.Format(txtTitle.Text + "\r\n" + txtText.Text); 
              byte[] strBytes = new UTF8Encoding().GetBytes(str); 
              sendNotificationRequest.ContentLength = strBytes.Length; 
              using (Stream requestStream = 
sendNotificationRequest.GetRequestStream()) 
              { 
                  requestStream.Write(strBytes, 0, strBytes.Length); 
              } 
 

HttpWebResponse response =   
   (HttpWebResponse)sendNotificationRequest.GetResponse(); 

              string notificationStatus = response.Headers["X-NotificationStatus"];            
              string deviceConnectionStatus = response.Headers["X-
DeviceConnectionStatus"];    
              lblStatus.Text = "Status: " + notificationStatus + " : " + 
deviceConnectionStatus; 
         } 

 
That’s all the code necessary to send raw notifications to Windows Phone 7 clients. You are now 

ready to test raw notifications on the Windows Phone 7 emulator. 

Testing Delivery of Raw Notifications 
Testing raw notifications is very straightforward: there are no applications to pin to the Start screen—
simply start both the client and the server pieces of the application, make sure that the push notification 
URL is available to both, and fire away! This demo gives more details on testing raw notifications. 

1. Just as with toast and tile notifications, you need to obtain the URI of the 
notification channel. Open the RawNotificationPNClient project, make sure 
that you have a connection to the Internet, and press F5 to run the project. 
Click the Create Channel button and, after seeing the URI printed on the 
screen, copy it to the clipboard from the Output window. 

2. Switch to the PNServer Windows Forms project and press F5 to run it. In the 
Push Notifications URL text box, paste the URI obtained in Step 1. In the Push 
Notifications Title and Push Notifications Text text boxes, enter “Hello” and 
“World” correspondingly. Click the Send Notification button. 

3. You should now see the message stating that the raw notification has been 
received and the “Hello World” message on the Windows Phone 7 emulator 
screen. 



CHAPTER 17  PUSH NOTIFICATIONS 

394 

As you can see, implementing raw notifications is very similar to implementing tile and toast 
notifications, albeit a bit simpler. Each one of the notification types has its purposes; use the most 
appropriate notification type for your circumstances. 

You may be shaking your head by now, thinking that the copy and paste method of communicating 
the push notification channel URL between the client and the server is completely unrealistic for any 
commercial application. We agree, and we will show you how to automate that communication piece in 
the next section. 

Implementing Cloud Service to Track Push Notifications 
In the previous demos, you have used a somewhat unrealistic approach to communicating push 
notification URLs from the Windows Phone 7 client application to the push notification server. You 
copied that URL from the Debug window of the client application and pasted it into the server 
application, where it was used to send tiles, toasts, and raw notifications to the Windows Phone 7 
applications. To make the stock alerts application a bit more real-world, however, you must automate 
the URL communication piece. In this section, you will learn how to do that using a cloud service built 
with the Microsoft Windows Communication Foundation (WCF) stack of technologies. 

Creating a WCF Service to Track Notification Recipients 
This section will show you how to enhance the PNServer application built previously by adding a WCF 
service to it. WCF is a very powerful technology with an array of configuration options for creating and 
hosting cloud services. You will be building what is known as a self-hosted service, which means that it 
will be hosted within the Windows Forms application and you will write code to initialize and start that 
service. Another important point about this service is that it will be a RESTful service, which, for your 
purposes right now, means that you can access operations of the service over the properly formatted 
URLs, as you will see shortly.  

Before you create a RESTful WCF service, however, you may need to make a small change in the 
Visual Studio environment to reference assemblies you need to create that service. The reason for this is 
that, by default, Visual Studio creates a lightweight profile for client applications, such as Windows 
Forms or Windows Presentation Foundation (WPF) applications. This lightweight profile omits many 
web-related assemblies by default because the chances of a true client application needing them are 
slim.  

The setting that controls which assemblies are included or left out is the Target Framework setting, 
and it is located on your project’s Properties page. You need to change this setting from .Net Framework 
4 Client Profile to .Net Framework 4. To accomplish this, open the PNServer project if it’s not already 
open, right-click the project name, and then select Properties. Locate the Target Framework setting and 
set it to .Net Framework 4, as illustrated in Figure 17–9.  



CHAPTER 17  PUSH NOTIFICATIONS 

395 

 

Figure 17–9. To add RESTful WCF service to the Windows Forms application, set the application’s target 

framework to .NET Framework 4. 

Now follow these steps to complete creation of the WCF service. First, before creating the service, 
you need to include the System.ServiceModel.Web assembly to the PNServer project.  

1. Right-click the project name and select Add Reference. Locate the 
System.ServiceModel.Web assembly in the list, highlight it, and click OK. 

Now, you will add WCF service files to the project. Adding the WCF service files will consist of two 
parts: creating what is known as a Service Contract, which will appear in the form of an Interface file, and 
defining a class that will physically implement the methods defined within the Service Contract.  

2. To create the Service Contract, right-click the project name, choose Add  
New Item, and then scroll almost all the way to the bottom and pick WCF 
Service. Name the service Registration Service, and then click OK. 

3. Add the following statement to the top of the IRegistrationService.cs file 
created: 

using System.ServiceModel.Web; 



CHAPTER 17  PUSH NOTIFICATIONS 

396 

4. Add the following code to the IRegistrationService.cs file: 

     [ServiceContract] 
     public interface IRegistrationService 
     { 
          [OperationContract, WebGet] 
          void Register(string uri); 
 
          [OperationContract, WebGet] 
          void Unregister(string uri); 
     } 
 

Note how you defined two operations for the service to perform: Register new Windows Phone 7 
clients for push notifications and Unregister them. 

Now it’s time to add the implementation of the Register and Unregister methods.  

5. Double-click the RegistrationService.cs file that Visual Studio added to your 
project. Make the RegistrationService.cs file look like the code here: 

     public class RegistrationService : IRegistrationService 
     { 
          private static List<Uri> subscribers = new List<Uri>(); 
          private static object obj = new object(); 
 
          public void Register(string uri) 
          { 
               Uri channelUri = new Uri(uri, UriKind.Absolute); 
               Subscribe(channelUri); 
          } 
 
          public void Unregister(string uri) 
          { 
               Uri channelUri = new Uri(uri, UriKind.Absolute); 
               Unsubscribe(channelUri); 
          } 
 
          private void Subscribe(Uri channelUri) 
          { 
               lock (obj) 
               { 
                     if (!subscribers.Exists((u) => u == channelUri)) 
                     { 
                            subscribers.Add(channelUri); 
                     } 
              } 
         } 
 
         public static void Unsubscribe(Uri channelUri) 
         { 
              lock (obj) 
              { 
                    subscribers.Remove(channelUri); 
              } 



CHAPTER 17  PUSH NOTIFICATIONS 

397 

         } 
 
         public static List<Uri> GetSubscribers() 
         { 
              return subscribers; 
         } 
    } 

 
Take a look closer look at the code that you just added to the RegistrationService.cs file. Notice 

that the RegistrationService class implements the IRegistrationService interface on the very first 
line—this is important! Aside from that, the code is pretty straightforward: a collection of push 
notification URIs is maintained in the static subscribers variable, and every client that calls the Register 
method of the service gets added to that list of subscribers. The lock function is used to prevent multiple 
clients changing the same data at the same exact moment in time, possibly resulting in incomplete and 
unpredictable data. 

In the beginning of this section, we said that a WCF service hosted by a Windows Forms application 
needs initialization code to start up. One of the places this initialization code can go is in the load event 
of Form1.  

6. Here’s the code you need to start up the service. Copy it to the load event of 
Form1 here: 

             ServiceHost host; 
           host = new ServiceHost(typeof(RegistrationService)); 
           host.Open(); 
 

You’re almost done—you only need to provide some configuration parameters for the WCF service 
to run.  

7. Open the app.config file and add the following configuration parameters to 
the <system.ServiceModel> element (you should already have configuration 
settings defined within <system.ServiceModel>, but now you need to make 
sure those settings match precisely what is pasted here): 

     <system.serviceModel> 
         <behaviors> 
             <endpointBehaviors> 
                <behavior name="EndpointPNServerServiceBehavior"> 
                    <webHttp /> 
                </behavior> 
             </endpointBehaviors> 
             <serviceBehaviors> 
                <behavior name=""> 
                    <serviceDebug includeExceptionDetailInFaults="true" /> 
                </behavior> 
             </serviceBehaviors> 
         </behaviors> 
         <services> 
             <service name="PNServer.RegistrationService"> 
                <endpoint address="http://localhost/RegistrationService" 
                    behaviorConfiguration="EndpointPNServerServiceBehavior"  
                    binding="webHttpBinding" 
                    contract="WP7_Push_Notifications.IRegistrationService"> 



CHAPTER 17  PUSH NOTIFICATIONS 

398 

                </endpoint> 
             </service> 
         </services> 
     </system.serviceModel> 
 

In a nutshell, with these settings you have configured your service to listen at the following address: 
http://localhost/RegistrationService. You have also specified that the requests to this service will be 
coming over the http protocol. 

Finally, you will modify the main application form (Form1) and add a Broadcast button that will 
send a push notification to all subscribed clients. Once clicked, the button click handler will get a list of 
all clients subscribed and send each one of them a push notification (toast notification in the following 
code). Here’s how to do this: 

8. Open Form1.cs in Design view and add a button to that form underneath the 
Send Notification button.  

a. Change the button’s text to Broadcast, as shown in Figure 17–10.  

b. Change the button’s name to btnBroadcast, double-click it, and make sure 
that the button’s Click event contains the following code: 

          private void btnBroadcast_Click(object sender, EventArgs e) 
          { 
               if (txtTitle.Text == string.Empty || txtText.Text == 
string.Empty) 
               { 

                 MessageBox.Show("Please enter text and title to send"); 
                     return; 
               } 
 
               List<Uri> allSubscribersUri = 
RegistrationService.GetSubscribers(); 
             
               foreach (Uri subscriberUri in allSubscribersUri) 
               { 
                     sendPushNotificationToClient(subscriberUri.ToString()); 
               } 
          } 



CHAPTER 17  PUSH NOTIFICATIONS 

399 

 

Figure 17–10. Main application form with Broadcast button 

 

9. Add the following code to the sendPushNotificationToClient function: 

         private void sendPushNotificationToClient(string url) 
         { 
                HttpWebRequest sendNotificationRequest = 
(HttpWebRequest)WebRequest.Create(url); 
 
                 sendNotificationRequest.Method = "POST"; 
                sendNotificationRequest.Headers = new WebHeaderCollection(); 
                sendNotificationRequest.ContentType = "text/xml"; 
 
                sendNotificationRequest.Headers.Add("X-WindowsPhone-Target", "toast"); 
                sendNotificationRequest.Headers.Add("X-NotificationClass", "2"); 
 
                string str = string.Format(TilePushXML, txtTitle.Text, txtText.Text); 
                byte[] strBytes = new UTF8Encoding().GetBytes(str); 
                sendNotificationRequest.ContentLength = strBytes.Length; 
                using (Stream requestStream = sendNotificationRequest.GetRequestStream()) 
             { 
                 requestStream.Write(strBytes, 0, strBytes.Length); 
             } 
 
             try 
             { 
                  HttpWebResponse response =  

(HttpWebResponse)sendNotificationRequest.GetResponse(); 
                  string notificationStatus = response.Headers["X-NotificationStatus"];            
                 string deviceConnectionStatus = response.Headers["X-DeviceConnectionStatus"];    



CHAPTER 17  PUSH NOTIFICATIONS 

400 

            lblStatus.Text = "Status: " + notificationStatus + " : " +  
deviceConnectionStatus; 

            } 
             catch (Exception ex) 
             { 
                 //handle 404 (URI not found) and other exceptions that may occur 
                 lblStatus.Text = "Failed to connect, exception detail: " + ex.Message; 
            } 

 
Note that the TilePushXML variable was previously defined when we talked about Tile 

Notifications—specifically, in the “Creating an Application to Send Notifications” section. With the WCF 
service tracking subscribed clients and sending push notifications complete, it’s now time to enhance 
the client application to call the web service with its push notification URL. 

 

Modifying the Client to Call the WCF Service 
The Windows Phone 7 Push Notification client application needs to be modified to call the newly 
implemented web service with the push notification URL. Previously, we briefly mentioned that the 
convenience of creating a RESTful WCF service lies in the fact that the operations of that web service can 
be accessed as URLs. For instance, the URL http://localhost/RegistrationService/Register?uri={0} 
accesses the Register function of the web service created in the previous section; the uri parameter is 
supplied on the QueryString. With that in mind, you can go ahead and complete the Windows Phone 7 
Push Notification client implementation by creating the functions that will register/unregister a 
Windows Phone 7 client with the server. 

1. Launch Visual Studio 2010 Express for Windows Phone and open the PNClient 
project. 

2. Locate the ChannelUri property getter and setter and change them to the 
following (notice the use of two new functions, RegisterUriWithServer and 
UnregisterUriFromServer): 

         public Uri ChannelUri 
         { 
                get { return channelUri; } 
                set 
                { 
                 //unregister the old URI from the server 
                 if (channelUri!=null) 
                     UnregisterUriFromServer(channelUri); 
 
                 //register the new URI with the server 
                 RegisterUriWithServer(value); 
 
                 channelUri = value; 
                 OnChannelUriChanged(value); 
                } 
         } 
 



CHAPTER 17  PUSH NOTIFICATIONS 

401 

3. Now add the following two functions to invoke the WCF service that you have 
created (note that when it comes time to release your service to production, 
you will be most likely deploying this service somewhere in the cloud): 

         private void RegisterUriWithServer(Uri newChannelUri) 
         { 
                //Hardcode for solution - need to be updated in case the REST WCF service 
address change 
                string baseUri = "http://localhost/RegistrationService/Register?uri={0}"; 
                string theUri = String.Format(baseUri, newChannelUri.ToString()); 
                WebClient client = new WebClient(); 
                client.DownloadStringCompleted += (s, e) => 
                { 
                 if (e.Error == null) 
                      Dispatcher.BeginInvoke(() => { 
                          txtURI.Text = "changing uri to " + 
newChannelUri.ToString(); 
                      }); 
                 else 
                      Dispatcher.BeginInvoke(() => 
                      { 
                           txtURI.Text = "registration failed " + 
e.Error.Message; 
                      }); 
             }; 
             client.DownloadStringAsync(new Uri(theUri)); 
 
         } 
 
         private void UnregisterUriFromServer(Uri oldChannelUri) 
         { 
                //Hardcode for solution - need to be updated in case the REST WCF service 
address change 
                string baseUri = "http://localhost/RegistrationService/Unregister?uri={0}"; 
                string theUri = String.Format(baseUri, oldChannelUri.ToString()); 
                WebClient client = new WebClient(); 
                client.DownloadStringCompleted += (s, e) => 
             { 
                if (e.Error == null) 
                    Dispatcher.BeginInvoke(() => 
                    { 
                        txtURI.Text = "unregistered uri " + oldChannelUri.ToString(); 
                    }); 
                else 
                    Dispatcher.BeginInvoke(() => 
                    { 
                        txtURI.Text = "registration delete failed " + e.Error.Message; 
                    }); 
            }; 
            client.DownloadStringAsync(new Uri(theUri)); 
        } 
 



CHAPTER 17  PUSH NOTIFICATIONS 

402 

In the preceding code, notice that the URL of the cloud service is hardcoded—this URL must match 
the URL you have specified in the configuration file (app.config) for the WCF service. Notice also how 
the event handlers (client.DownloadStringCompleted) are wired up—those event handlers provide the 
status updates on whether the registration/unregistration succeeded or failed. 

At this point, you have completed writing both the server and the client pieces for automated push 
notification. It is now time to verify that the server is able to keep track and notify its clients 
appropriately, without the need to manually copy and paste the push notification URL. 

Verifying Automated Push Notification Subscriber Tracking 
To test automated push notification tracking, the very first thing you have to do is make sure that the 
WCF service starts up appropriately and that it is able to process requests coming in. Here’s how: 

1. WCF Services are designed with security in mind, so there are numerous 
security configuration options for those services. To bypass security 
configuration options so that they don’t take distract from the main points of 
this chapter and allow you to test the service that you have built, you will need 
to run the WCF Service project as Administrator. The quickest way to 
accomplish this is to exit Visual Studio, then right-click on the shortcut to 
Visual Studio, and choose “Run as Administrator” option. Once Visual Studio 
comes up, open the PNServer solution. You are now set to run PNServer as 
Administrator. 

2. To verify that the WCF service is indeed ready to accept client connections, set 
a breakpoint at the first line of the Register function of the 
RegistrationService class, and then press F5 to start the PNServer application.  

3. If the application is running and the Windows form in Figure 17–10 is 
displayed, then fire up Internet Explorer (or any other browser) and go to the 
following URL: 

http://localhost/RegistrationService/Register?uri=http://www.microsoft.com 
 
If the breakpoint gets hit after you access this URL, this means that the service is running and it is 

ready for clients to connect.  
If the breakpoint does not get hit and you see a message that the page cannot be displayed, verify 

that the content in the <system.ServiceModel> section of your app.config file in the PNServer project 
matches the content of that file described in the section on creating a WCF service. Most likely, some 
sort of configuration issue is preventing you from properly launching the service. 

Once you’ve confirmed that the service is running, you can observe the automated push notification 
subscriber tracking in action by following these steps: 

4. Launch PNClient application and click the Create Channel button. If you still 
have the breakpoint set in the Register function of the WCF service, that 
breakpoint should be hit. 

5. To be able to see toast notifications on the phone, you need to pin the 
application icon to the Start screen. To accomplish this, click the phone’s 
Windows button, and then click the arrow () to open the Windows Phone 7 
Options screen, as shown in Figure 17–8. Click and hold the left mouse button 
(also referred to as a “long click”) to bring up the pop-up menu shown in 
Figure 17–8, and then click the Pin to Start option.  

http://www.microsoft.com


CHAPTER 17  PUSH NOTIFICATIONS 

403 

6. With the application icon pinned onto the Start screen, you are ready to 
receive notifications on the phone. In the PNServer application window, enter 
the title and the text of the notification message to send and press the 
Broadcast button. A second or two later, you should see the push notification 
coming through to the phone. 

With clients and cloud service dynamically exchanging push notification URLs and clients accepting 
push notifications, this is a good point to conclude push notifications demos. The next sections will give 
you a perspective on using push notifications in the real world and summarize what you have learned in 
this chapter. The solution that you have built in this chapter provides the full lifecycle implementation of 
Push Notifications; however, it has a set of limitations that should be considered before deploying it to 
production. Windows Phone 7 client applications that go down don’t unregister themselves from the 
server; therefore, the server will try to send notifications to non-existent channels. The server lacks 
persistency—all of the connected client addresses are kept in-memory, which means that they all will be 
lost should the service be shut down accidentally or on purpose. Finally, there’s no centralized 
scheduling or event-based mechanism for distributing notifications: you have to push the button on the 
Windows Forms application to distribute the notifications. In the real world, the notifications will most 
likely be distributed in response to some external events (such as Microsoft stock rising rapidly), and the 
service has to be smart about handling those. 

Using Push Notifications in the Real World 
Push notifications provide a scalable framework for Windows Phone 7 applications that lets them 
receive important messages without the need to continuously run in the background. This approach 
preserves device resources (processor, Internet connection) and extends battery life. There are many 
potential uses for Push notifications: from Twitter updates to severe weather alerts to stock market 
notifications. This chapter demonstrated how you can send push notifications to Windows Phone 7 
devices using a Windows Forms application; just as easily, it could be a web-based or cloud-based 
application that sends those updates. In this chapter, you built a cloud service to programmatically keep 
track and send notifications to the connected clients. This same cloud service could be further enhanced 
to send out push notifications on a schedule. 

Currently, there is a limit on how many free push notifications can be sent to a single notification 
channel URI. That limit is 500 notifications per 24 hours per URI. That means that you can send 500 
messages per app per device for free for every 24 hours. This limitation is in place to prevent abuse or 
malicious attacks and possibly spam through a notification channel. To get past the limit of 500 
messages per channel in the 24-hour window, follow the guidelines in the next section, “Setting Up 
Secure Web Services for Push Notifications.” The communication channel between the Windows Phone 
7 and the Microsoft Push Notification Service is secure, and customers also have an option (for a fee) to 
secure the channel between their web service and MPNS, as described next. 

Setting up Secure Web Services for Push Notifications 
In a nutshell, to set up secure web services for Push Notifications, you must acquire an SSL certificate 
from one of the trusted root Certificate Authorities (a full list can be found at 
http://msdn.microsoft.com/en-us/library/gg521150(v=VS.92).aspx, and it includes companies like 
Verisign and RSA Security among others). Once you acquire that certificate, submit it to the Windows 
Phone Marketplace at the time of application certification. This will allow you to process unlimited push 
notification messages per secure channel. 

Of course, as a prudent developer, you will want to test the secure communication channel between 
your Windows Phone 7 application, MPNS, and your web service before you reach the application 

http://msdn.microsoft.com/en-us/library/gg521150


CHAPTER 17  PUSH NOTIFICATIONS 

404 

certification step. Microsoft allows you to do so by letting you upload a certificate purchased from 
trusted CA to the Windows Phone Marketplace ahead of the certification process. Once the certificate is 
uploaded, you have four months to test secure communication out between your Windows Phone 7 
application and your cloud service via Push Notifications. After your application passes certification, the 
four-month time limit is removed, and you gain access to unlimited push notifications via secure 
communication channel—truly the best practice for utilizing Microsoft Push Notifications. 

Summary 
This chapter gave the background and provided an introduction to push notification services. You 
gained an understanding of various push notification types, as well as the general architecture of push 
notifications. You implemented all three forms of push notifications: toast, tile, and raw. Finally, you 
completed the push notifications life cycle by creating a simple yet realistic WCF service to keep track of 
all Windows Phone 7 clients connecting to it and to broadcast messages to all subscribed clients. 

In the next chapter, you will take a look at simplifying and abstracting asynchronous and event-
based programming with Reactive Extensions for .Net, also referred to as Rx.Net. With Rx.Net, the 
implementation of concurrent asynchronous and events-based applications becomes easy and 
manageable. You could perhaps start thinking about implementing the server portion of Push 
Notifications using Rx.NET, with notifications broadcasting messages using Rx.NET techniques in 
response to a given event (such as severe weather alert or a stock price alert). 



C H A P T E R  18 

      

405 

Reactive Extensions for .NET 

For developers, the computing world of today is becoming much more concurrent than just a few short 
years ago. Computer users expect an ever-increasing computational power from their electronic 
gadgets, including their mobile devices. Unfortunately, it seems that the only way manufacturers will be 
able to increase computational speed in the near future is through adding additional processors (instead 
of making a single processor faster, as has been the case over the last few decades). In the case of 
processors on personal computers, the industry has already hit a proverbial brick wall, having pretty 
much reached the maximum computational capacity available on a single processing unit. An average 
personal computer today comes with two or more processing units, and the number is certain to 
increase.  

Mobile devices still have some processing speed to grow into before they max out the processing 
power of a single CPU. However, the average phone will soon have several processing units as well. In 
addition, uninterrupted Internet access on the phone is assumed—resources needed for proper 
functioning of an application may be spread around the world (in the cloud), but the user is rarely aware 
of that. A phone application should have the ability to access those resources seamlessly as needed—i.e., 
it should not stop accepting all input from the user while these resources are accessed. Rather, an 
application should retrieve the resources without interrupting other functionality of an application—in 
other words, it should obtain these resources asynchronously. The future for both personal computers 
and mobile devices is both concurrent and asynchronous. 

How do you approach concurrent and asynchronous programming on Windows Phone 7? The 
answer is, certainly, with great caution, since it’s not easy. To help tame that complexity, a powerful 
framework emerged on the .NET scene at the end of 2009. That framework, called the Reactive 
Extensions for .NET (also known as Rx.NET), is now available for Windows Phone 7 and provides 
sophisticated mechanisms to make event processing and asynchronous programming more intuitive. In 
this chapter, you will learn the concepts behind Reactive Extensions for .NET and build two simple 
applications using the Rx.NET framework. The first will search and retrieve images on Flickr 
asynchronously. The second will display the current weather after accepting a ZIP code as input from 
the user. As with several other chapters of this volume, a whole book could be written on the subject of 
Reactive Extensions alone, especially since there is a version of Reactive Extensions for JavaScript 
available as well.  

In this chapter, you will learn the basics of Rx.NET and, we hope, leave with a basic understanding 
and appreciation of this technology. However, to leverage the power of Rx.NET, you need a good 
understanding of LINQ. Although the examples in this chapter should be relatively easy to understand 
for the novice C# programmer even without an in-depth knowledge of LINQ, for expert coverage of the 
topic we recommend the excellent book Pro LINQ: Language Integrated Query in C#2008 by Joseph C. 
Rattz (Apress, 2008). Another good resource is “101 LINQ Samples,” available for free online at 
http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx. Rx.NET also relies heavily on general object-
oriented principles; if the concept of interfaces is not familiar to you, it may be a good idea to 
understand those before reading this chapter. Finally, Rx.NET constructs make extensive use of the 

http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx


CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

406 

newer concepts of the .NET Framework, such as lambda expressions and extension methods. While it 
will be possible to follow examples in this book without in-depth understanding of either of those 
concepts, to leverage the power of Rx.NET on your own, you will have to know these features of the .NET 
Framework. 

The power of Reactive Framework can be applied to deal with a wide range of computational issues. 
This chapter will focus on the way that the framework deals with a problem that is probably as old as the 
personal computer: how do you provide a responsive user interface while utilizing the full 
computational resources available? And how can you do so in a manner that makes code readable and 
easy to manage/maintain? 

 Note The initial release of Rx.NET libraries comes pre-installed on the operating system of every Windows 
Phone 7 device. However, just like any other technology, the Reactive Extensions library is constantly being 
enhanced to deliver even more power to the developers. As a Windows Phone 7 developer, you are not “stuck” 
having to use the version of Rx.NET that comes preinstalled on the devices—you can always go to the Microsoft 
Data Developer Center (http://msdn.microsoft.com/en-us/data/gg577609) and download the latest libraries 
available for the phone. Once you reference and use them, they will be distributed together with your application, 
slightly increasing its footprint. 

Introducing Reactive Programming 
Rx.NET aims to revolutionize reactive programming in the .NET Framework. In reactive programming, 
you register an interest in something and have items of interest handed over, or pushed to the attention 
of the application, asynchronously, as they become available. A classic example of an application that 
relies heavily on the reactive programming model is the spreadsheet, where an update to a single cell 
triggers cascading updates to every cell that references it. This concept of having things pushed down as 
they become available is particularly well suited to applications that use constantly changing data 
sources, such as the weather application that you will be building in this chapter.  

Reactive programming is often contrasted with interactive programming, where the user asks for 
something and then waits for it until it is delivered. To help further differentiate these concepts, let’s 
take a look at a car shopping analogy. Usually, when shopping for a car, you go to a car dealership (or 
look online) and look at different car makes and models. You pick the ones you like and test-drive them. 
This arrangement is an example of interactive programming, where you asked for a car and got it in 
return. In a reactive approach to car shopping experience, you would send a note to a dealership 
expressing interest in a certain make and model and then continue going on with your daily routine. The 
dealer locates items of interest and notifies you when they become available. 

Let’s see if we can carry over this analogy to event processing on Windows Phone 7. For the sample 
application that you will be building later in this chapter, you will want to read the contents of a text box 
once it can be determined that no keystroke has occurred a half a second since the previous one. In the 
sample, this will be taken to mean that the user has finished typing and is ready for the application to do 
something. If you were to use an interactive approach, you would implement this by wiring up the 
KeyDown event for the text box, and then checking some sort of timer to see whether enough time had 
elapsed between keystrokes. In a reactive approach, as you will see shortly, things are much simpler: you 
express interest in being notified of KeyDown events only after a half-second has elapsed between a 
user’s keystrokes. Once notified of such an event, you take action—searching for photos online, in this 

http://msdn.microsoft.com/en-us/data/gg577609


CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

407 

case. Before you learn how to search for photos in a reactive manner, however, you will walk through 
several short examples to get a feeling for how Reactive Extensions implement the core Observer 
pattern, which forms the basis of the Reactive Framework and is described in detail in the following 
sidebar. 

Rx.NET Subscription Pipeline 
To use Rx.NET, there are four basic steps that you have to follow to designate observables and create 
observers.  

1. First, you build or define an Observable (or Subject, as it is called in the 
Observer pattern described in the sidebar). 

2. Then, you subscribe to that Observable (or create an Observer if you follow 
along with the Observer pattern in the sidebar). 

3. Next, you receive data and act on it for as long as the Subject continues to 
notify the Observer. 

4. Finally, when there are no more notifications from the Subject to process, the 
Observer unsubscribes from the Subject by calling the Dispose method. 

Rx.NET defines two new interfaces to accommodate this subscription pipeline: IObservable and 
IObserver. You will learn how to use these interfaces in the next few sections. 



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

408 

THE OBSERVER PATTERN 

The Observer pattern is a commonly used technique (pattern) in the world of object-oriented software 
development. At its basis, it has a Subject object that keeps track of all the objects (referred to as Observers) 
that want to be notified about changes to the Subject’s state. All Observers are automatically notified of any 
changes to the Subject. The power of this pattern comes from not having to query the Subject for specific 
changes to its state—the Subject will promptly let Observers know when it gets modified. For detailed 
description of the Observer pattern, you can refer to Design Patterns: Elements of Reusable Object-Oriented 
Software by Gamma et al (Addison-Wesley, 1994) or you can read about it on Wikipedia at 
http://en.wikipedia.org/wiki/Observer_pattern. 

According to Microsoft DevLabs, where the Reactive Extensions library was developed, the objective 
of Rx.NET is to enable the composition of asynchronous and event-driven programs. Rx.NET uses 
observable collections to enable such composition. In Rx.NET, Observable collections perform the role 
of the Subject in the Observer pattern. Observable collections gather data associated with a given 
event or an asynchronous method call and notify everyone who has subscribed to these collections of 
the changes as they occur. This might sound a bit confusing, so let’s jump into code that will allow 
you to start using key features of Rx.NET right away to build awesome Windows Phone 7 
applications. 

Implementing the Observer Pattern with Rx.NET 
Before you create an application that asynchronously searches photos on Flickr, you will take a short 
detour to understand the basics of Rx.NET. In the project that follows, you will generate a simple 
Observable collection using Reactive Extensions for .NET and read values from this collection as they are 
pushed down to you. Follow these step-by-step instructions. 

Creating a Windows Phone Project  
First, you will create a new Windows Phone 7 project and add framework elements necessary to make it 
work on the mobile platform. 

1. Launch Visual Studio 2010 Express for Windows Phone and create a new 
Windows Phone Application project. Name it RxSample. 

In this project, you will observe the messages generated by the Reactive Extensions framework in 
the text box on the phone screen.  

2. From the Toolbox, select the textblock and drop it on the design surface. Since 
you are just getting your feet wet with Rx.NET, leave the name of the textblock 
(textBlock1) unchanged for now and adjust its height and width to occupy the 
full area of the screen. Highlight the textblock, press F4 to bring up its 
Properties window, and set the TextWrapping property to Wrap. 

On Windows Phone 7, the Rx.Net implementation is contained within two separate assemblies—
Microsoft.Phone.Reactive and System.Observable. 

http://en.wikipedia.org/wiki/Observer_pattern


CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

409 

3. Add a reference to Microsoft.Phone.Reactive and System.Observable 
assemblies by right-clicking and selecting Add Reference. 

Adding Code to Create and Read Observable Collections 
You will now add code to create an Observable collection, subscribe to it, and read values from it. 

1. Import the Rx.NET libraries to current code. To do that, open 
MainPage.xaml.cs (right-click MainPage.xaml and select View Code) and add 
the following statement to the top of the page: 

    using Microsoft.Phone.Reactive; 
Remember how an Observable collection performs the role of the Subject in the Observer pattern. 

In Rx.NET, the IObservable<T> interface acts as that Subject. You will now create an Observable 
collection that will consist of a range of integer values.  

2. In the MainPage() constructor, add the following code right after the 
InitializeComponent() statement: 

        IObservable<int> source = Observable.Range(5, 3); 
 
Notice the use of the Observable.Range method to create an Observable collection that will consist 

of a range of integers from 5 to 7 inclusive (the Range method created three sequential values, from 5 to 7 
inclusive). 

You will now create an Observer for the source Subject created in Step 2. This Observer object will 
be notified of any changes to the source—in this case, every time a new integer is generated, or “pushed 
down” to the application. Notice that the Observer object implements IDisposable interface as well. 

3. Add the following code to create the Observer: 

       IDisposable subscription = source.Subscribe(x =>  
         textBlock1.Text += String.Format(" OnNext: {0}", x),  
                ex => textBlock1.Text += String.Format(" OnError: {0}", ex.Message),  
                () => textBlock1.Text += " OnCompleted"); 

 
The Subscribe method of IObservable<T> has several overloads; the one that you just used accepts 

three lambda expressions (see the “Lambda Expressions” sidebar) as its parameters: the first lambda 
expression contains the logic to invoke when another element becomes available to the Observer 
(OnNext), the second has logic to invoke if there is an exception in the Observer  (OnError), and the last 
one contains logic that gets executed when the Subject completes its useful life  (OnComplete). The 
“completion of useful life” condition varies from Subject to Subject, but generally means that there are 
no more elements to receive from the Subject. If you’re not familiar with lambda expressions, the 
sidebar contains a brief introduction to this newer feature of the .NET Framework. 

4. Finally, tell the Observer to discontinue its interest in the Subject’s state by 
issuing a Dispose() method: 

        subscription.Dispose(); 

5. Press F5 to run the application. The Windows Phone 7 emulator screen will 
appear, showing messages OnNext: 5, OnNext: 6, OnNext: 7, and OnComplete, 
as shown in Figure 18–1. The Observable object generated three integer values, 
pushed them down to Observers, and called it quits. 



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

410 

LAMBDA EXPRESSIONS 

With the release of C# 3.0, Microsoft borrowed a number of features from the so-called family of functional 
programming languages. Among these features is the ability to define functions inline known to C# 
programmers by the intimidating term “lambda expression.” At a basic level, lambda expressions are 
simply functions that differ from “normal” C# functions in their syntax. In your example, x 
=>textBlock1.Text += String.Format(" OnNext: {0}", x) is a lambda expression that defines a 
function that accepts x as a parameter and infers its type from context. The textBlock1.Text += 
String.Format(" OnNext: {0}", x) statement is the body of the function. Note that if you see the 
“()=>” syntax in the lambda expression, as in the last parameter to the Subscribe function (Step 3), it 
means that no parameters are being passed in to the lambda expression. 

 

 

Figure 18–1. Reactive Extensions for .NET first steps 

In the previous code, notice how subscription does not implement the IObserver<T> interface. That 
is because the Microsoft.Phone.Reactive assembly contains a set of extension methods that overload 
the Subscribe() method of IObservable. These overloaded methods accept OnNext, OnError, and 
OnCompleted handlers defined by the IObserver<T> interface as lambda expressions, just as described 
in the previous paragraphs. Hence, in your experiments and samples with Rx.NET in this chapter, you 
will not have to physically implement the IObserver<T> interface. 



CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

411 

The output of your first Rx.NET application (shown in Figure 18–1) is certainly nothing spectacular. 
But you are just barely skimming the Rx.NET surface here. Imagine subscribing to events, such as 
keystrokes or data emitted by the location service. Then, imagine having the ability to react to those 
events only if certain conditions are met. For instance, filter out location values so that only when the 
location specifies a certain predefined area, the event is raised. In the next section, you will build a small 
application that uses this filtering approach to make an asynchronous web service call to Flickr once the 
user has stopped typing text for half a second. 

Using Rx.NET Event Handling to Search for  
Flickr Photographs 

In this section, you will build an application that searches Flickr photos asynchronously using 
Rx.NET. In particular, you will learn how to create Observable data sources from events, as well as how 
to subscribe to them. The version of Flickr search you’ll create is shown in Figure 18–2. The search 
technique is basic and uses a WebBrowser control to display images; however, this example will allow 
you to concentrate on learning the Rx.NET techniques for processing events on the Windows Phone 7. In 
the next example, you will build a Weather Service application that will demonstrate asynchronous 
programming with Rx.NET. Let’s get started. 

Creating a Windows Phone Project 
First, create a new Windows Phone 7 project for the Flickr image search. 

1. Launch Visual Studio 2010 Express for Windows Phone and create a new 
Windows Phone Application project. Name it FlickrRx. 

2. Change the name of the application to Flickr Search, and change the page title 
to “Rx at Work” (to accomplish this, highlight the application name, press F4, 
edit the Text property, and then do the same for the page title). 

3. Add a reference (by right-clicking and selecting Add Reference) to 
Microsoft.Phone.Reactive and System.Observable assemblies. 



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

412 

 

Figure 18–2. Flickr Search with Rx.NET 

Adding a User Interface 
Now,  add some user interface elements to the project. The user interface will consist of a text box, a 
label, and a WebBrowser control, as shown in Figure 18–3. 

4. From the Toolbox, select a text box and drop it on the design surface. Rename 
the text box to txtSearchTerms. Make the width of the text box equal the width 
of the screen and clear the Text property. Next, select a textblock, drop it 
underneath the text box, rename it lblSearchingFor, and resize it to be the 
width of the screen. 

5. From the Toolbox, select the WebBrowser control and drop it on the design 
surface underneath the textblock. Rename the WebBrowser control 
webResults and make it the width of the screen. 

You should now have something similar to Figure 18–3.  



CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

413 

 

Figure 18–3. Flickr Search using Rx.NET screen layout         

Adding Logic to Search Flickr for Images 
The next step is to add logic to populate the WebBrowser controls with the results of a Flickr image 
search.  

1. Open MainPage.xaml.cs (right-click MainPage.xaml and select View Code) and 
paste the following using statement at the top of the page: 

using Microsoft.Phone.Reactive; 
 
Now, write code to capture the KeyUp events of the text box. To accomplish this, you will use the 

FromEvent method of the Rx.NET library, which accepts the name of the object to capture events for, as 
well as name of the event on that object. 

2. Paste the following code immediately following the InitializeComponent() 
statement in the MainPage() constructor: 

var keys =  Observable.FromEvent<KeyEventArgs>(txtSearchTerms, "KeyUp"); 
 

keys.Subscribe(evt => 
{ 
  lblSearchingFor.Text = "Searching for ..." + txtSearchTerms.Text; 



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

414 

  webResults.Navigate(new Uri("http://www.flickr.com/search/?q="  
  + txtSearchTerms.Text)); 
}); 

 
The first statement creates an Observable data source, keys that will consist of all KeyUp events of 

the txtSearchTerms text box. The second statement is a lambda expression that creates an Observer on 
this collection and attempts to update the lblSearchingFor textblock with the text entered into the text 
box and show the web page representing the results of searching Flickr with the text supplied in the text 
box. Note the { symbol within the lambda expression—that symbol is used to define a lambda expression 
whose body has more than one statement within it, as you do in the previous example. 

3. Press F5 to run the application. As you type the first character, you should see 
the WebBrowser control attempting to navigate to the Flickr search page 
specifying the only character entered as its search criteria. Notice how there is 
very little visual indication that there’s some search or navigation performed 
behind the scenes. You will improve on that in the sections that follow, where 
you will create an animation to play while the WebBrowser control is loading 
with the results of an image search. 

Enhancing a Flickr Search with Throttling 
At this point, you must certainly be wondering what Rx.NET has added to your toolbox besides the 
complexities of the Observer pattern. Couldn’t you do pretty much everything you have done so far 
using the standard event handling procedures available to Microsoft developers since the earliest days of 
Visual Basic (before there ever was VB.NET, that is)? The answer is: Rx.NET has added nothing up until 
now, and yes, you could have done everything with VB. The power of Reactive Extensions for .NET starts 
to come through in the next few steps of the example. 

First, modify the application as follows: 

1. Change the code line declaring an Observable collection above from  

        var keys =  Observable.FromEvent<KeyEventArgs>(txtSearchTerms, "KeyUp"); 
 

  to  
 

         var keys =  Observable.FromEvent<KeyEventArgs>(txtSearchTerms,  
    "KeyUp").Throttle(TimeSpan.FromSeconds(.5)); 

2. Change the code block declaring an Observer from  

        keys.Subscribe(evt => 
        { 
         lblSearchingFor.Text = "Searching for ..." + txtSearchTerms.Text; 

webResults.Navigate(new Uri("http://www.flickr.com/search/?q="  
+ txtSearchTerms.Text)); 

        }); 
 

to 
        keys.ObserveOn(Deployment.Current.Dispatcher).Subscribe(evt => 

         { 
          if (txtSearchTerms.Text.Length>0) 

http://www.flickr.com/search/?q=
http://www.flickr.com/search/?q=


CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

415 

                 { 
                      lblSearchingFor.Text = "Searching for ..." +
txtSearchTerms.Text; 

                     webResults.Navigate(new Uri("http://www.flickr.com/search/?q="
+  

txtSearchTerms.Text)); 
                } 
         }); 

3. Press F5 to run the application. Click the text box and enter the search terms 
for photo lookup in Flickr (for example, Barcelona) and watch the WebBrowser 
control retrieve the images of that beautiful European city from Flickr. 

Let’s examine the code that you added in the last section. You created an observable collection that 
consists of all of the KeyUp events generated on txtSearchTerms text box. When you added the 
Throttle(.5) statement, you effectively told Rx.NET that you wanted to observe only KeyUp events that 
occur more than half a second apart (0.5 seconds). Assume that an average user will be pressing the keys 
on the keyboard less than half a second apart; so a half-a-second pause between key presses will tell the 
application that the user is ready for the Flickr search to launch and the user is ready to “observe” the 
results of its execution. 

In Step 2, you enhanced the application in two ways. First, you added logic not to invoke image 
search if nothing is entered in the text box (this could happen if the user erased the content with the 
Backspace key). Second, notice the ObserveOn(Deployment.Current.Dispatcher) construct that was used 
to help create an Observer. To understand its reason for being and to allow you to peek under the hood 
of Rx.NET, remove it. As a result, your code for Step 2 will look like the following snippet:  

 

keys.Subscribe(evt => 
            { 
                if (txtSearchTerms.Text.Length > 0) 
                { 
                    lblSearchingFor.Text = "Searching for ..." + txtSearchTerms.Text; 
                    webResults.Navigate(new Uri("http://www.flickr.com/search/?q=" + 
txtSearchTerms.Text)); 
                } 
            }); 

4. Press F5 to run the application now, and you will see the screen shown in 
Figure 18–4, where Visual Studio displays an “Invalid cross-thread access” 
message.  

What is happening, as readers familiar with programming User Interface (UI) on the .NET platform 
know, is that updating UI from a thread other than a UI thread is a tricky undertaking. Under the hood, 
Reactive Extensions for .NET has created a separate background thread and will be pushing notifications 
of changes from the Observable data source to the Observers from that thread. This background thread 
can’t modify the UI thread directly.  

http://www.flickr.com/search/?q=
http://www.flickr.com/search/?q=


CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

416 

 

Figure 18–4. An invalid cross-access thread exception is generated when trying to update UI directly from 

the background thread. 

Fortunately, the creators of Rx.NET have provided a solution to this problem by giving us the 
ObserveOn() extension method in the Microsoft.Phone.Reactive assembly. This extension method has 
several overloads, and one of them accepts a Dispatcher object. In the .NET Framework, a Dispatcher 
object maintains a prioritized queue of work items on a specific thread, and here it provides a way for 
you to observe an Observable data source on the UI thread. In the preceding example, you pass the 
Deployment.Current.Dispatcher property to the ObserveOn() method to get thread-safe access to the 
current Dispatcher and use it to update visual elements on the phone. The use of a single ObserveOn() 
method is significantly easier than dealing with the Dispatcher’s Invoke method, which is a common 
way to update UI in multi-threaded Silverlight and WPF applications. 

Adding an Animation that Plays as Flickr Images Load 
You can further enhance the Flickr image search application by adding a simple animation that will play 
while the web pages with the results of your image search are loading. To do that, you will create an 
animation in Expression Blend for Windows Phone, subscribe to the Navigated event of the WebBrowser 
control, and play the animation in code.  

Follow these steps to add this feature to your project: 



CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

417 

1. Still in Visual Studio for Windows Phone, add a textblock to the phone’s design 
surface and place it between the “Searching for” textblock and the WebBrowser 
control. Name that textblock lblLoading, set the caption to “Loading Images,” and set 
its Visibility property to Collapsed. 

Microsoft Expression Blend for Windows Phone is a powerful application for creating and editing 
graphics and animations for Windows Phone 7 devices. You have used it in the first part of this book to 
style controls and for other graphical tasks.  

2. To launch Expression Blend and load it with the Flickr project, right-click 
MainPage.xaml in Visual Studio and select Open in Expression Blend. Microsoft 
Expression Blend launches with your solution open and ready to edit. 

Your animation will be a progress bar in the form of a rectangle that will grow in width as the time 
passes. This animation will loop indefinitely, so that when it reaches maximum allowable size, the 
rectangle will go back to its beginning and the animation will be repeated.  

3. In Expression Blend, select a Rectangle from the Toolbox, draw a very narrow, almost 
invisible rectangle right next to the Loading Images textblock, and set its Fill color to 
red. 

Now, create what is called a timeline animation in Expression Blend. Timeline animations are 
created with the use of the storyboards, so you will create a new storyboard in this step.  

4. In the Objects and Timeline window, click the New button (shown in Figure 18–5), 
name the storyboard loadingImages, and click OK. 

The Objects and Timeline panel will now change to display a timeline, and Blend is ready to record 
your animation.  

5. Select the rectangle that you placed on the Windows Phone design surface and click 
the Record Keyframe button, as shown in Figure 18–6. 

6. Next, move the Animation Playhead (the yellow vertical line in the Timeline) to about 
1.5 seconds, as shown in Figure 18–7. Click the Record Keyframe button again, and 
then resize the rectangle to be close to the full phone screen width. 

Now you will now set the animation to loop as long as it is active.  

7. In Objects and Timeline, click and select the loadingImages storyboard name. 
Common Properties for the Storyboard dialog appears. Select “Forever” in the 
Repeat Behavior property of this storyboard. 

With the animation now complete, you are ready to show it when the user performs a search for 
Flickr images.  

 



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

418 

 

Figure 18–5. Creating a new storyboard animation in Expression Blend 

8. Save everything in Expression Blend (File  Save All) and switch back to Visual 
Studio.  

Now you will add code to first show the animation when the search for images is initiated and then 
stop the animation once that search is complete. 

To start the animation once the user initiates search for Flickr images, you will call the Begin method 
of the loadingImages animation.  

In MainPage.xaml.cs, change the code that creates an Observer for the KeyUp event to the following: 
  

            keys.ObserveOn(Deployment.Current.Dispatcher).Subscribe(evt => 
            { 
                if (txtSearchTerms.Text.Length > 0) 
                { 
                 lblSearchingFor.Text = "Searching for ..." + txtSearchTerms.Text; 
                    lblLoading.Visibility=System.Windows.Visibility.Visible; 
                    loadingImages.Begin(); 
 

webResults.Navigate(new Uri("http://www.flickr.com/search/?q=" +  
txtSearchTerms.Text)); 

                 } 
            }); 

http://www.flickr.com/search/?q=


CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

419 

 

Figure 18–6. Beginning of the Loading Images timeline animation 

Once the images load in the WebBrowser control, you will stop the animation by calling the Stop 
method of the loadingImages animation. To accomplish this, you will use Rx.NET to subscribe to the web 
browser’s Navigated event. Once this subscription receives data, you will stop the animation. The 
following code accomplishes these tasks. 



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

420 

 

Figure 18–7. End of the Loading Images timeline animation 

9. Paste the following code at the end of the MainPage constructor: 

var browser =   
Observable.FromEvent<System.Windows.Navigation.NavigationEventArgs>(webResults, 

"Navigated"); 
 
        browser.ObserveOn(Deployment.Current.Dispatcher).Subscribe(evt => 
        { 
         loadingImages.Stop(); 

lblLoading.Visibility = System.Windows.Visibility.Collapsed; 
        }); 
 

You are now ready to run the application. 

10. Press F5, type a keyword into the text box, and observe the animation while the 
images are being loaded into the browser. 

You’re still only scratching the surface of Rx.NET and its applications, but you can already see the 
power of this framework. Using Rx.NET, you can think of virtually any event as an observable data 
source, whether it’s a location service that generates coordinate values (which you can think of as an 
observable set of position values),  accelerometer data, key press events, or web browser events, such as 
those already demonstrated. Now that you have seen how to create Observable data sources from events 



CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

421 

using the FromEvent<T> method and how to subscribe to those events, we will expand upon this 
knowledge in the next section. Specifically, using Rx.NET, you will build a small real-time weather 
application that will use a publicly available web service to asynchronously retrieve current weather and 
show a small picture representing current weather for the zip code provided. But before you build this 
application, you will learn about general design guidelines for using Rx.NET from the Rx.NET 
Development team. 

Rx.NET Design Guidelines 
As a sign of maturing platform, Rx.NET has received its own set of design guidelines (available at 
http://go.microsoft.com/fwlink/?LinkID=205219) to help developers make best decisions when using 
the library. Some of the recommendations within that document have already been covered in this 
chapter; for instance, the general guideline to use Rx.NET for asynchronous and event-based 
computations. In the next few sections, you will get familiar with few more useful strategies for creating 
robust Rx.NET-based applications. 

Consider Drawing a Marble Diagram 
If you research Rx.NET on Microsoft web site (and specifically, Channel 9), chances are extremely high 
you will encounter references to what is known as Marble Diagrams. An example of a Marble Diagram is 
shown in Figure 18-8, where it depicts the use of the TakeUntil() operator in Rx.NET. In Marble 
Diagrams, we have input sequences of event-based and asynchronous data that we know about. Marble 
Diagram helps us understand what would happen to those input sequences as a result of application of 
Rx.NET operator.  

Figure 18-8 is representative of the real-world example of receiving geolocation position on the 
phone. It assumes that there is data about phone user’s location being gathered until the user types in a 
new location of interest to search for (such as searching for a Starbucks in the immediate neighborhood, 
for example). Initially, the top data sequence (geoLocationReading) receives data points (each data point 
is indicated by a small circle, or a marble, on the line corresponding to the geoLocationReading, in 
Figure 18-8). Then, newLocation sequence starts receiving data and the marbles are drawn on the line 
corresponding to the newLocation sequence. Notice how as a result of application of the TakeUntil() 
operator, the resulting sequence (result) gets only the data points (marbles on the line corresponding to 
the result sequence) of geoLocationReading until the marbles on the newLocation sequence started 
coming in. Regardless of how many data points (marbles) appeared on either geoLocationReading or 
newLocation sequences after that fact (indicated by an X in Figure 18-8), the result sequence did not get 
any additional data points after that fact. 

http://go.microsoft.com/fwlink/?LinkID=205219


CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

422 

 

Figure 18–8. Marble Diagram for the TakeUntil Rx.NET operator 

As with the TakeUntil operator, you can analyze all of the Rx.NET operators by visualizing them on a 
Marble Diagram and understanding the resulting sequences they produce. Rx.NET design guidelines 
hint at another area where Marble Diagrams may be helpful: draw a marble diagram of the sequence you 
would like to create, and then you can deduct which Rx.NET operators you need to use to get to that 
marble diagram. 

Consider Passing a Specific Scheduler to Concurrency  
Introducing Operators 
We stated in the beginning of this chapter that Rx.NET has the power to make parallel programming 
easier. It does this by abstracting away many issues of threading and concurrency and handling 
concurrency in a declarative way (there is no need to explicitly create threads, for example). However, 
even with this concurrency abstraction, we have some control over how the execution of Rx.NET should 
proceed and the context of how the Rx.NET notifications should be processed.  This brings us to a 
discussion about schedulers. 

In Rx.NET, it is possible to schedule two things: (1) how (or what thread context) the subscription 
will execute and (2) how (what thread context) the notification will be published. This context is 
controlled by the SubscribeOn() and ObserveOn() extension methods of the IObservable<T> interface. 
Both of those extension methods can accept a property of the static Scheduler class, and the properties 
available for you to pass in are described next. 

 

• Scheduler.Dispatcher will force the execution on the Dispatcher, which is a class 
that owns the application thread and internally maintains a queue of work items. 

• Scheduler.NewThread will schedule all actions onto a new thread. 

• Scheduler.ThreadPool will schedule all actions onto the Thread Pool. 

• Scheduler.Immediate will ensure the action is executed immediately.  

• Scheduler.CurrentThread will ensure that the actions are performed on the thread 
that made the original call. This is not the same as Scheduler.Immediate, since 
actions scheduled on the current thread may be queued for later execution. 

 



CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

423 

The following code is an example of how you would use the schedulers with subscriptions in 
Rx.NET—notice how you subscribe on a new thread and observe the results of the subscription on the 
dispatcher: 

 

                Observable.FromAsyncPattern<WebResponse>( 
                            webRequest.BeginGetResponse, 
                            webRequest.EndGetResponse)() 
                            .SubscribeOn(Scheduler.NewThread) 
                            .ObserveOn(Scheduler.Dispatcher) 
                            .Subscribe( 
 

The Rx design guidelines deem it as best practice to pass in the scheduler wherever appropriate, so 
that the concurrency is created in the right place to begin with. Now you know how to accomplish that.  

We have touched on a couple of guidelines from The Rx Design Guidelines document in this section. 
There are many other suggestions for building robust, high-performing Rx.NET constructs in this 
document, so you are encouraged to study it in greater detail. In the next section of this chapter, you will 
continue practicing using Rx.NET by building a simple weather application, which will also allow us to 
discuss concepts such as error recover in Rx.NET. 

Using Rx.NET with Web Services to Asynchronously  
Retrieve Weather Data 
In this section, you will use a publicly available weather web service located at 
http://www.webservicex.net/WS/WSDetails.aspx?CATID=12&WSID=68 to retrieve and display current 
weather for a given ZIP code within the United States. In addition to weather services, there are many 
other useful web services available at this location, including ZIP code validation and currency 
conversion. As an exercise in the usage of Rx.NET, you are encouraged to build useful, functional 
applications that take advantage of these services. 

From the development point of view, the weather application will consist of (1) asynchronously 
capturing user input (a ZIP code), and (2) asynchronously calling the web service and then displaying 
the current weather for a given ZIP code. Let’s go ahead and create the application. 

Creating a Windows Phone Project 
First, you will create a new project, import all of the libraries, and create service references necessary to 
make the weather application work. 

1. Launch Visual Studio 2010 Express for Windows Phone and create a 
new Windows Phone Application project. Name it WeatherRx. 

2. In MainPage.xaml, change the name of the application to WeatherRx 
and change the page title to “Weather App” (you are also certainly 
welcome to name the application and the page according to your 
preference). 

3. Since you will be using Rx.NET to build this application, add a reference 
(by right-clicking and selecting Add Reference) to 
Microsoft.Phone.Reactive and System.Observable assemblies. 

6

http://www.webservicex.net/WS/WSDetails.aspx?CATID=12&WSID=68


CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

424 

You need to add a Service Reference to the weather service already mentioned. The weather service 
is an .asmx web service hosted at www.webservicex.net. 

4. To add a reference to this service, right-click the Project Name and 
select Add Service Reference. In the dialog that comes up, enter the 
following value in the Address Textbox: 
http://www.webservicex.net/WeatherForecast.asmx. Press the Go 
button.  

5. The WeatherForecast service should appear on the left. Click the arrow 
next to it, make sure to select WeatherForecastSoap service, and then 
rename the namespace to “svcWeather.”  

6. Your final Add Service screen should look like Figure 18–9.  

7. Press the OK button. 
 

 

Figure 18–9. Adding a Service Reference to the weather web service 

x

http://www.webservicex.net
http://www.webservicex.net/WeatherForecast.asmx


CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

425 

Creating a User Interface  
For the application, your goal is to create a screen that looks like the one shown in Figure 18–10. To assist 
in that objective, the XAML for visual elements that appear after the page title is pasted here. You can 
also copy and paste this XAML from the sample code available in the download section for this chapter. 

1. Open MainPage.xaml and add the following code:  

<!--ContentPanel - place additional content here--> 
        <Grid x:Name="ContentGrid" Grid.Row="1"> 
            <TextBox Height="72" HorizontalAlignment="Left" Margin="0,51,0,0" 
Name="txtZipCode" Text="" VerticalAlignment="Top" Width="480" /> 
            <TextBlock Height="53" HorizontalAlignment="Left" Margin="6,13,0,0" 
Name="lblLegend" Text="Enter Zip Code Below for Current Weather" VerticalAlignment="Top"
Width="462" /> 
            <TextBlock Height="30" HorizontalAlignment="Left" Margin="6,129,0,0" 
Name="lblWeatherFahrenheit" Text="Current Weather, Fahrenheit " VerticalAlignment="Top"
Width="435" /> 
            <Image Height="150" HorizontalAlignment="Left" Margin="241,213,0,0" 
Name="imgWeather" Stretch="Fill" VerticalAlignment="Top" Width="200" /> 
    <TextBlock Height="30" HorizontalAlignment="Left" Margin="6,162,0,0" 
Name="lblCelsius" Text="Current Weather, Celsius" VerticalAlignment="Top" Width="435" /> 
    <TextBlock Height="30" Margin="6,379,39,0" Name="lblStatus" Text=""
VerticalAlignment="Top" /> 
        </Grid> 
    </Grid> 

 
Notice how in addition to the textblocks that will hold the current weather information, the XAML 

also creates an image control that will show a visual representation of the current weather (e.g., sunny, 
raining, snowing, etc.). Notice also that the last </Grid> statement closes the LayoutGrid element, not 
shown in the preceding fragment. 



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

426 

 

Figure 18–10. WeatherRx design layout 

Adding Logic to Get Weather Information 
With design elements and proper references in place, you are ready to add code to the application. In 
this example, you will split the code into multiple functions for enhanced readability. 

1. Open MainPage.xaml.cs (by clicking MainPage.xaml and selecting View Code) 
and add the following using statements to the top of the page: 

using Microsoft.Phone.Reactive; 
using System.Windows.Media.Imaging; 

2. Add the following code after the InitializeComponent() statement of the 
MainPage() constructor: 

 WireUpWeatherEvents(); 
WireUpKeyEvents(); 
 

Here, you are wiring up web service events and keystroke events in separate functions, a technique 
that will become very useful in the subsequent sections of this chapter when you deal with error 
recovery. 



CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

427 

3. Create the WireUpWeatherEvents function and its supporting 
GetWeatherSubject function by pasting the following code. Note how you have 
created a separate function (GetWeatherSubject) to return an Observable 
collection from the weather web service event. 

         private void WireUpWeatherEvents() 
         { 
              var weather = GetWeatherSubject(); 

weather.ObserveOn(Deployment.Current.Dispatcher).Subscribe(evt => 
              { 
                  if (evt.EventArgs.Result.Details != null) 
                  { 

lblWeatherFahrenheit.Text = "Current Weather, Fahrenheit: " +  
evt.EventArgs.Result.Details[0].MinTemperatureF.ToString() + " 
- " +  
evt.EventArgs.Result.Details[0].MaxTemperatureF.ToString(); 
 
lblCelsius.Text = "Current Weather, Celsius: " +  
evt.EventArgs.Result.Details[0].MinTemperatureC.ToString() + " 
- " + 
evt.EventArgs.Result.Details[0].MaxTemperatureC.ToString(); 

                      
imgWeather.Source = new BitmapImage(new 
Uri(evt.EventArgs.Result.Details[0].WeatherImage, 
UriKind.Absolute)); 

                  } 
               }, 
                ex => { lblStatus.Text = "Sorry, we encountered a problem: " + ex.Message; } 
            ); 
        } 
 

private IObservable<IEvent<svcWeather.GetWeatherByZipCodeCompletedEventArgs>> 
GetWeatherSubject() 

        { 
            var weather = 
Observable.FromEvent<svcWeather.GetWeatherByZipCodeCompletedEventArgs>(weatherClient, 
"GetWeatherByZipCodeCompleted"); 
            return weather; 
        } 

4. Create the WireUpKeyEvents function that will define an Observable collection 
from the KeyUp events and create subscription to that collection by adding the 
following code: 

        private void WireUpKeyEvents() 
         { 

var keys = Observable.FromEvent<KeyEventArgs>(txtZipCode,  
"KeyUp").Throttle(TimeSpan.FromSeconds(1)).DistinctUntilChanged(); 

keys.ObserveOn(Deployment.Current.Dispatcher).Subscribe(evt => 
              { 

               if (txtZipCode.Text.Length >= 5) 
                  { 



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

428 

                      
 weatherClient.GetWeatherByZipCodeAsync(txtZipCode.Text); 
                  } 
              }); 
         } 
 

5. Press F5 to run the application. You should see a screen prompting you to 
enter the US ZIP code to retrieve the current weather for. If you enter your ZIP 
code, you should get a reasonable estimate of your current weather, both on 
the Fahrenheit and Celsius scales. You should also see a small picture with a 
visual representation of the current weather conditions. Figure 18–11 shows 
sample output for the Jacksonville, FL area (ZIP code of 32202). 

Let’s spend some more time dissecting the tools you used to build this application. First, you used 
Rx.NET to create an Observable collection from the asynchronous responses to the weather web service 
calls. You used the following statement to create that collection: 

 

var weather =     
Observable.FromEvent<svcWeather.GetWeatherByZipCodeCompletedEventArgs>(weatherClient, 
"GetWeatherByZipCodeCompleted"); 

 
You then defined an Observer for this data source, so that when the data is pushed from the web 

service to Observers, you take action by displaying that data in the User Interface. 
Next, you created an Observable collection of the KeyUp events in the txtZipCode text box and 

created an Observer for that collection. As a result, whenever users pause their typing for one second, 
the Observer on the keys data source will validate whether five or more digits have been entered in the 
Zip Code field. Then, it goes ahead and calls the function GetWeatherByZipCodeAsync, which in turn 
invokes an asynchronous request to the weather web service. 

It’s important to note the asynchronous nature of all these calls—if you had other functionality built 
into the application, you could continue using it while the asynchronous request completes. As stated 
several times, the asynchronous processing is an area that Rx.NET was specifically designed to address.  

If you have done some form of asynchronous programming prior to Rx.NET, you can certainly 
appreciate that single code line. Prior to Rx.NET, in an asynchronous method design pattern in .NET, 
two methods were provided. The first method started the computation, and the second method 
acquired the results of the computation. If there was more than one asynchronous operation, even just 
the simple ones illustrated in the weather example, the management of those multiple methods quickly 
became a headache. The fact that Rx.NET also attempts to parallelize asynchronous requests across all 
available cores is a hefty bonus to an already generous benefits package of clarity and powerful querying 
of Observers. 



CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

429 

 

Figure 18–11. Sample output of WeatherRx application for ZIP code 32202 

Handling Errors in Rx.NET 
In the world of asynchronous programming, and especially in the world of distributed asynchronous 
programming, errors are a fact of life and should be expected. Rx.NET Observers provide a separate 
OnError event handler to deal with unforeseen errors that may arise. For instance, to make the 
WeatherRx application more robust, let’s add an OnError handler to the weather.Subscribe call. The 
resulting code would look like this: 

 

weather.ObserveOn(Deployment.Current.Dispatcher).Subscribe(evt => 
        { 
          if (evt.EventArgs.Result.Details != null) 
                 { 
                      lblWeatherFahrenheit.Text = "Current Weather, Fahrenheit: " +  

evt.EventArgs.Result.Details[0].MinTemperatureF.ToString() + " 
- " + 
evt.EventArgs.Result.Details[0].MaxTemperatureF.ToString(); 

 
lblCelsius.Text = "Current Weather, Celsius: " +  



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

430 

evt.EventArgs.Result.Details[0].MinTemperatureC.ToString() + " 
- " + 
evt.EventArgs.Result.Details[0].MaxTemperatureC.ToString(); 

 
imgWeather.Source = new BitmapImage(new  

Uri(evt.EventArgs.Result.Details[0].WeatherImage, 
UriKind.Absolute)); 

                 } 
            }, 

ex =>  {                      
Deployment.Current.Dispatcher.BeginInvoke(() => lblStatus.Text = ex.Message);                  

                } 
  ); 

 
Note the somewhat cryptic (it’s a lambda expression and it uses a lambda expression within its own 

body) use of the Deployment.Current.Dispatcher.BeginInvoke statement to get around cross-thread 
access issues discussed previously. In the preceding code, the OnError handler simply displays the 
exception text, but there is nothing stopping you from dissecting an error thoroughly and providing a 
possible corrective action. For instance, if the web service is not available at the address specified, you 
may retry your call to a different location of the web service. Rx.NET also has exception handling 
operators Catch, Finally, OnErrorResumeNext, and Retry, which aid in recovering from errors. You will 
explore some of them in the next section as we discuss some potential ways of handling intermittently 
available data connections on the phones. 

Handling Data Connection Issues with Rx.NET 
On a phone, slow or lost data connections are a fact of everyday life. Ideally, phone applications 

should detect such connections and provide a recovery mechanism to deal with them. Two potential 
ways to deal with slow or lost connectivity on the phone are: (1) let the user decide whether the 
application should retry what it was doing before the connection timed out or lost, and (2) provide an 
automated retry mechanism. 

Rx.NET can aid in both scenarios. Furthermore, Rx.NET includes a special Timeout operation that 
will generate a timeout error if it does not receive data, such as a web service callback, from its 
Observable within a user-specified interval. Let’s take a look at the Timeout operation in action. Let’s 
change the WireUpWeatherEvents function to time out if it does not get any data for two seconds: 

1. Replace the WireUpEvents() function of the WeatherRx application with the 
following code: 

         private void WireUpWeatherEvents() 
         { 
              var weather = GetWeatherSubject(); 
              weather.ObserveOn(Deployment.Current.Dispatcher) 
                  .Timeout(TimeSpan.FromSeconds(2)) 
                 .Subscribe(evt => 
              { 
                  if (evt.EventArgs.Result.Details != null) 
                  { 

lblWeatherFahrenheit.Text = "Current Weather, Fahrenheit: " + 
evt.EventArgs.Result.Details[0].MinTemperatureF.ToString() + " 
- " + 
evt.EventArgs.Result.Details[0].MaxTemperatureF.ToString(); 



CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

431 

 
lblCelsius.Text = "Current Weather, Celsius: " + 
evt.EventArgs.Result.Details[0].MinTemperatureC.ToString() + " 
- " + 
evt.EventArgs.Result.Details[0].MaxTemperatureC.ToString(); 
 
imgWeather.Source = new BitmapImage(new 
Uri(evt.EventArgs.Result.Details[0].WeatherImage, 
UriKind.Absolute)); 

                  } 
              }, 
                 ex =>  {                      

Deployment.Current.Dispatcher.BeginInvoke(() => lblStatus.Text 
= ex.Message);                  

                  } 
              ); 
         } 

 
Now run the application and notice how after two seconds, it immediately times out and displays 

the timeout exception text on the emulator. What happened? You did not even get a chance to specify 
the ZIP code! 

Your code needs a little refactoring, or changing around. In the code so far, you subscribed to the 
web service’s events immediately on application launch, and since you did not get any data two seconds 
after the launch of the application, that subscription timed out. The change that you need to make is to 
subscribe to the web service’s events right before you invoke that web service, yet you have to be careful 
to create this subscription just once.  

2. Remove the call to WireUpWeatherEvents from the MainPage constructor and 
place it within the WireUpKeyEvents function, like so: 

         private void WireUpKeyEvents() 
         { 

var keys = Observable.FromEvent<KeyEventArgs>(txtZipCode, 
"KeyUp").Throttle(TimeSpan.FromSeconds(1)).DistinctUntilChanged(); 

              keys.ObserveOn(Deployment.Current.Dispatcher).Subscribe(evt => 
              { 
                  if (txtZipCode.Text.Length >= 5) 
                  { 
                       WireUpWeatherEvents(); 
                      
 weatherClient.GetWeatherByZipCodeAsync(txtZipCode.Text); 
                  } 
              }); 
        } 
 

Now the timeout feature should work properly. Notice, however, that it will most likely take slightly 
more than two seconds to return a valid response from the Weather service. 

Rx.NET also provides a Retry method that optionally takes a parameter for the number of times to 
retry to re-subscribe to the Observable collection. If you don’t specify that parameter, Rx.NET will try to 
re-subscribe to the Observable collection indefinitely. One way to deal with an absent or slow 
connection is to retry the subscription two or three times, and then, if unsuccessful, give the user the 



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

432 

option to either retry once more or cancel. You will see how to give the user this option in the next 
section.  

Revising WeatherRx to Manage Slow Data Connections 
To modify the WeatherRx application, you will first add buttons to the UI to allow the user to either 

retry the failed connection or to exit gracefully. Then, you will add code to the application to react to the 
events on these new User Interface elements. 

To add the new elements to the WeatherRx UI, do the following: 

1. Open MainPage.xaml and add two buttons right below the lblStatus textblock, 
as shown in Figure 18–12. Name the first button btnRetry and set its Content 
property to Retry. Name the second button btnQuit and set its Content 
property to Quit. Set the Visibility of both buttons to Collapsed. 
 

 

Figure 18–12. Weather application with error recovery elements 

On retry, you will recreate the Observable connection to the weather web service, if it’s needed, and 
then invoke the web service again.  

2. Double-click the Retry button and add the following handler code to the 
btnRetry_Click function: 



CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

433 

         private void btnRetry_Click(object sender, RoutedEventArgs e) 
         { 
              btnQuit.Visibility = System.Windows.Visibility.Collapsed; 
              btnRetry.Visibility = System.Windows.Visibility.Collapsed; 
              lblStatus.Text = ""; 
 
              WireUpWeatherEvents(); 
              weatherClient.GetWeatherByZipCodeAsync(txtZipCode.Text); 
         } 
 

If the user selects Quit, let’s simply hide the buttons and the exception text. 

3. Double-click the Quit button and add the following code to the btnQuit_Click 
function: 

         private void btnQuit_Click(object sender, RoutedEventArgs e) 
         { 
              btnQuit.Visibility = System.Windows.Visibility.Collapsed; 
              btnRetry.Visibility = System.Windows.Visibility.Collapsed; 
              lblStatus.Text = ""; 
         } 
 

Finally, you will need to ensure there is only one subscription to the weather web service at any 
given time.  

4. To ensure that there’s only one subscription, first declare a module level 
variable by adding the following statement: 

         IObservable<IEvent<GetWeatherByZipCodeCompletedEventArgs>> _weather; 

5. Next, change the GetWeatherSubject function to the following: 

         private void GetWeatherSubject() 
         { 
              if (_weather == null) 
              {  

_weather = 
Observable.FromEvent<svcWeather.GetWeatherByZipCodeCompletedEventArgs>
(weatherClient, "GetWeatherByZipCodeCompleted"); 

              } 
         } 

6. Finally, change the WireUpWeatherEvents method to look like the following 
(notice how the timeout value is now set to a more reasonable five seconds as 
well): 

         private void WireUpWeatherEvents() 
         { 
              GetWeatherSubject(); 
              _weather.ObserveOn(Deployment.Current.Dispatcher) 
                 .Timeout(TimeSpan.FromSeconds(5)) 
                 .Subscribe(evt => 
                 { 
                      if (evt.EventArgs.Result.Details != null) 



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

434 

                      { 
lblWeatherFahrenheit.Text = "Current Weather, Fahrenheit: " + 
evt.EventArgs.Result.Details[0].MinTemperatureF.ToString() + " - " + 
evt.EventArgs.Result.Details[0].MaxTemperatureF.ToString(); 

 
lblCelsius.Text = "Current Weather, Celsius: " + 
evt.EventArgs.Result.Details[0].MinTemperatureC.ToString() + " - " + 
evt.EventArgs.Result.Details[0].MaxTemperatureC.ToString(); 
 
imgWeather.Source = new BitmapImage(new 
Uri(evt.EventArgs.Result.Details[0].WeatherImage, UriKind.Absolute)); 

                    } 
                }, 
                ex => 
                { 
                Deployment.Current.Dispatcher.BeginInvoke(() => lblStatus.Text = 
ex.Message); 

Deployment.Current.Dispatcher.BeginInvoke(() => 
btnQuit.Visibility=System.Windows.Visibility.Visible); 
 
Deployment.Current.Dispatcher.BeginInvoke(() => btnRetry.Visibility = 
System.Windows.Visibility.Visible); 

                } 
            ); 
        } 

 
This example illustrates one approach to handling connection issues on Windows Phone 7 devices: 

you specify a timeout period, and if you don’t get a response within that period, you prompt the user to 
retry or to quit. 

Handling Multiple Concurrent Requests with Rx.NET 
So far, the weather application that you have created is sending as many requests for weather data as the 
user types in ZIP codes. When the data comes back from the weather web service, the order that this 
data comes back in is not guaranteed. For example, if the user first types in 32207 (Jacksonville) and then 
types in 10001 (New York City), the weather results for Jacksonville may come in behind New York City, 
yet the user would not realize that she’s seeing Jacksonville’s weather when New York’s ZIP code still 
remains on the screen. It would be great if there were a solution that gave an application the power to 
cancel out all weather requests that occurred prior to the latest one, i.e., in this example, a request for 
Jacksonville weather is canceled as soon as request for New York City weather is made. 

Rx.NET provides such a solution. There are two operators in Rx.NET—TakeUntil() and Switch—that 
allow for cancellation of operations that occur prior to the latest operation and are still “in-flight,” or are 
still pending the return values. Through the use of an elegant LINQ query, these operators tie together 
Observable collections, as you will see shortly. But first, there is some bad news: in the current 
implementation of .NET Framework on Windows Phone 7, it is impossible to link the beginning of the 
asynchronous SOAP web service invocation to the end of that invocation. The root of the problem is the 
exclusion of the CreateChannel method implementation in the Windows Communication Foundation 
libraries on Windows Phone 7. Microsoft had to slim down and optimize .NET Framework on the phone, 
and the loss of this method for the time being seems to be due to those optimization efforts. 

Nevertheless, the technique for canceling in-flight requests still applies to the clients with full.NET 
Framework installed (Windows Forms and WPF applications) and to the Silverlight platform. For the 



CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

435 

weather application, you will “fake” the technique of canceling those requests by creating a new 
Observable collection for the weather service each time a user types in a new ZIP code. Note, however, 
that the Observable subscriptions that you will be creating listen for any completed weather service 
requests, and not the specific ones. In other words, your implementation of canceling in-flight requests 
on Windows Phone 7 is currently incomplete and not reliable. Here, each one of these subscriptions 
would process both Jacksonville and New York City weather from the example, and the order that this 
weather data comes in would be irrelevant. This is due to the aforementioned limitation in the current 
implementation of Windows Phone 7 framework—at present, you can’t link the beginning of the SOAP 
web service call to the end of that service call on this platform. 

To make the cancellation of operations on the Observable collections possible while those 
operations are in-flight, you will change the code around to expose Observable collections to LINQ 
queries.  

Follow these steps to make operation cancellation possible: 

7. At the top of the MainPage class (right above the constructor), paste the 
following code to declare a module-level Observable collection for the KeyUp 
events of the ZIP code text box: 

IObservable<IEvent<KeyEventArgs>> _keys; 

8. Expose the Observables for both the KeyUp event of the ZIP code text box and 
for the web service callback by adding the following two methods to your code: 

private IObservable<IEvent<GetWeatherByZipCodeCompletedEventArgs>> GetWeatherSubject() 
         {            

return
Observable.FromEvent<svcWeather.GetWeatherByZipCodeCompletedEventArgs>(weather
Client, "GetWeatherByZipCodeCompleted");                         

         } 

        private void GetKeys() 
        { 
             if (_keys == null) 
             { 

_keys = Observable.FromEvent<KeyEventArgs>(txtZipCode,
"KeyUp").Throttle(TimeSpan.FromSeconds(1)).DistinctUntilChanged(); 

             } 
        } 

The magic that makes the cancellations work appears in the next code snippet. Pay particularly 
close attention to the LINQ query; it establishes the relationship between the Observable collection for 
the KeyUp events and the Observable collection for the web service callbacks. Note that had Windows 
Phone 7 framework supported what is referred to as the Asynchronous pattern for web service calls (with 
the use of BeginXXX/EndXXX methods), you could have established a direct relationship between key 
sequences and web service invocations. However, with the following code, you have only a loose or 
indirect relationship between those two, since each subscription listens for any and all responses from 
the weather web service, and not just for specific ones. Right after the LINQ statement, there is a Switch() 
operator that instructs the application to dispose of the old subscription to the weather web service once 
there is a new key sequence awaiting in the _keys Observable collection. 

9. Add the following code to the application: 

        private void WireUpWeatherEvents() 



CHAPTER 18 ■ REACTIVE EXTENSIONS FOR .NET 

436 

         { 
              GetKeys(); 

             var latestWeather = (from term in _keys 
                         select GetWeatherSubject() 
                           .Finally(() => 
                           { 

Deployment.Current.Dispatcher.BeginInvoke(() => 
Debug.WriteLine("Disposed of prior subscription")); 

                           }) 
               ).Switch();  
 
              latestWeather.ObserveOnDispatcher() 
                  .Subscribe(evt => 
               { 
                   if (evt.EventArgs.Result != null) 
                   { 

lblWeatherFahrenheit.Text = "Current Weather, Fahrenheit: " + 
evt.EventArgs.Result.Details[0].MinTemperatureF.ToString() + " 
- " + 
evt.EventArgs.Result.Details[0].MaxTemperatureF.ToString(); 
 
lblCelsius.Text = "Current Weather, Celsius: " + 
evt.EventArgs.Result.Details[0].MinTemperatureC.ToString() + " 
- " + 
evt.EventArgs.Result.Details[0].MaxTemperatureC.ToString(); 
 
imgWeather.Source = new BitmapImage(new 
Uri(evt.EventArgs.Result.Details[0].WeatherImage, 
UriKind.Absolute)); 

                  } 
              }, 
                 ex => { 
                              Deployment.Current.Dispatcher.BeginInvoke(() 
=>lblStatus.Text = ex.Message); 
                         }                 
            ); 
        } 

Notice the .Finally statement in the code. Its purpose is to print a “Disposed of prior subscription” 
message into the Output windows when one Observable collection is being removed and replaced with 
the newer one. This occurs when there is a new event in the _keys module-level Observable collection. 

Finally, you need to make some minor changes to the WireUpKeyEvents function, namely, the 
Observable sequence generation for the KeyUp event on the ZIP code has been moved into a separate 
GetKeys method.  

10. Replace the WiredUpKeyEvents() function with the following code: 

         private void WireUpKeyEvents() 
         { 
              GetKeys(); 
              _keys.ObserveOn(Deployment.Current.Dispatcher).Subscribe(evt => 
              { 
                  if (txtZipCode.Text.Length >= 5) 



CHAPTER 18 ■  REACTIVE EXTENSIONS FOR .NET 

437 

                  { 
                      
 weatherClient.GetWeatherByZipCodeAsync(txtZipCode.Text); 
                  } 
              }); 
         } 
 

You are now ready to run the application. 
11. Press F5 and observe that the application behavior is virtually unchanged from 

the previous examples: you still type in the ZIP code and receive weather 
information for that ZIP code. However, behind the scenes, you will notice the 
messages printed in the Output window indicating that there are Observable 
sequences being disposed of in accordance to the new data (ZIP codes typed 
in) available in the key sequence observable collection. 

Perhaps in the very near future, you will see a CreateChannel method available on the Windows Phone 7 
platform. Once that happens, you could very easily enhance the previous example with the code linking 
the beginning and end of an asynchronous web service call through the Observable.FromAsyncPattern 
method. For right now, however, you can still take advantage of this extremely powerful feature of 
Rx.NET in Silverlight or on clients running the full version of .NET Framework. 

Summary 
This chapter provided a general overview of Reactive Extensions for .NET and their implementation of 
the Observer pattern. You built two applications that demonstrated the features of Rx.NET, including 
event representation as Observable data sources and seamless concurrent asynchronous processing and 
error handling. You learned about Marble Diagrams and some of the main design guidelines for building 
Rx.NET applications. You observed techniques for managing unreliable data links and the principles of 
cancellation of in-flight operations using the Rx.NET framework. As concurrent programming becomes 
more and more the norm, Rx.NET provides a powerful framework for asynchronous and parallel 
programming, including programming for the cloud. We have touched on the subject of Rx.NET lightly, 
but we hope that you have gained an appreciation for this technology and will take the initiative to learn 
(and, most importantly, practice!) Rx.NET development techniques on your own. 

In the next and final chapter of this book, you will learn how to make your Windows Phone 7 
applications more secure. You will learn about the common threats to mobile devices and the steps you 
must take to protect yourself and your customers from unwanted and potentially harmful attention. 



C H A P T E R  19 
 

      
 

439 

Security 

Because everything about the design and operation of Windows Phone 7 targets consumers, it is only 
natural that Microsoft has carefully thought through the ways to protect consumers from both intended 
and unintentional harm. Windows Phone 7 ships with a compelling set of built-in security features that 
go towards accomplishing that goal. The capabilities of the Windows Phone 7 platform allow the data to 
be protected both in transit and on the device. Because of the centralized application certification 
process, consumers gain confidence that no malicious applications are downloaded and installed on 
their devices (unlike some competing platforms, which are increasingly becoming infested with 
malware). And should the phone be lost or stolen, each device comes with a free web-based tool that 
allows you to remotely control the phone, including locking and wiping all data on that phone. 

In this chapter, you will learn how the Windows Phone Marketplace certification process acts as a 
gatekeeper and allows only legitimate applications to be present on the device. Then you’ll look at the 
ways you can ensure that your Windows Phone 7 application can receive, transmit, and store sensitive 
data in a secure manner. Finally, you’ll take a look at the free support for remote lock and data wipe that 
Microsoft provides to protect lost or stolen Windows Phones. 

We will lead you through an analysis of Windows Phone 7 security features along the following four 
domains: application security, network security, data security, and device security. You will also learn 
how to use the tools Windows Phone 7 platform has to address specific security concerns associated 
with each domain. 

Understanding Application Security  
Ideally, all Windows Phone 7 applications would come from legitimate sources and behave like good 
citizens. However, experience shows that many applications break rules and that safeguards must be put 
in place to prevent malicious behavior. On the application security front, Windows Phone 7 platform 
includes the safeguards to verify the identity of the author of the application and sandboxes the 
execution of each mobile application. In the next few sections, you will explore these safeguards in 
detail. 

Windows Phone Marketplace 
For a moment, let’s travel a couple of decades back in time. The early years of Windows XP were not 
happy ones at Microsoft. The whole world was upset with the company for allowing its operating system 
to be exploited by multiple malicious programs. Even though Windows XP shipped with safeguards that 
could prevent those exploits, the activation of those safeguards was left up to the user, and that 
activation rarely happened. What Microsoft quickly learned from that experience was that it must take a 
lot of responsibility to protect its user base from both known and potential harm.  



CHAPTER 19 ■ SECURITY 

440 

Because mobile devices contain huge amounts of personal information and by their nature are 
frequently lost or misplaced, application monitoring is all the more necessary. For Microsoft to assume 
this responsibility for Windows Phone 7 applications, it must have as much control as possible over the 
applications built and deployed onto its platform, while still encouraging developer creativity as much 
as possible. To facilitate this dual goal of being autocratic and democratic at the same time, Microsoft 
has created a Windows Phone Marketplace. Windows Phone Marketplace is the single online 
distribution point for all Windows Phone 7 applications. The objectives of Windows Phone 7 
Marketplace and the way it achieves those objectives are described in the following sections. 

Non-Repudiation: Proof of the Integrity and Origin of Data 
The first objective of Windows Phone Marketplace is to confirm the identity of an application’s author. 
In the Internet era, attempts to claim false identity are extremely common—every day, millions of e-
mails claim to come from an online bank or an African prince. In a similar fashion, without a centralized 
approval mechanism, any malicious Windows Phone 7 application could claim to be genuine and 
capture the user’s personal information. In software security, the concept of non-repudiation refers to 
the guarantee that the application indeed came from the source it claims to have come from. On the 
Windows Phone 7 platform, the origin and safety of applications are confirmed during the application 
certification, a required step for all Windows Phone 7 applications. (Note that the application 
certification process is covered in Chapter 5, and a lot of the material on the following pages is repeating 
that same information as it relates to Windows Phone 7 security). During application certification, the 
developer submits her application to the Windows Phone Marketplace and pays a fee, at which point 
Microsoft runs a series of automated and manual tests to confirm application safety and, to some extent, 
reliability.  

Currently, no application can be loaded onto the phone without going through Windows Phone 
Marketplace. While there is a possibility that this policy will be revisited in the future to allow enterprise 
customers to bypass Windows Phone Marketplace, at the time of this writing it is only a possibility. All 
Windows Phone 7 developers must sign up for the marketplace and must provide legitimate proof of 
their identity to the marketplace before any of the applications they create are available for installation 
on users’ phones. Once their identity is verified, application developers receive a code-signing 
certificate. This digital certificate verifies that the application was created by the specified company or 
individual, fulfilling the concept of non-repudiation mentioned previously. 

Intellectual Property Protection 
Software piracy is a huge problem affecting both giants of software development like Microsoft as well as 
small one-person shops trying to building mobile applications. To help safeguard from piracy, Microsoft 
requires that a valid application license issued by the Windows Phone Marketplace be present on the 
Windows Phone 7 device before it allows the execution of an application. This means that even if 
somebody figures out how to load an application onto the device without going through Windows 
Phone Marketplace, the application will not run since the license key for that application will not be 
available. 

Safe Application Behavior 
The Windows Phone Marketplace application approval process includes a suite of certification tests to 
prohibit risky applications from being loaded onto users’ phones. Risky applications may contain 



CHAPTER 19 ■ SECURITY 

441 

malware or viruses themselves, or they may contain code constructs that could allow malicious code 
execution. 

All applications submitted to Windows Phone Marketplace will be subject to malicious software 
screening, which will attempt to confirm that applications are free from viruses and malware. After 
successful completion of those tests, additional tests are performed to confirm that an application is 
written using only type-safe Microsoft Intermediate Language (MSIL) code. Writing applications in MSIL 
avoids public enemy #1, as software buffer overruns were called in Writing Secure Code by Michael 
Howard and David LeBlanc (Microsoft press, 2001). In addition, an application must not implement any 
security-critical code, since Windows Phone Application Platform does not allow an application to run 
security-critical code. You will revisit MSIL and briefly learn about security-critical code on mobile 
devices at the end of this chapter. 

To get a better idea of how the Windows Phone Marketplace submission process helps improve the 
security of a user’s device, let’s walk through the steps involved in submitting an application to the 
marketplace. 

Submitting an Application to Windows Phone Marketplace 
In this example, you will prepare a package for your application to submit to Windows Phone 
Marketplace and learn the steps involved in successfully publishing an application to the marketplace, 
beginning with the creation of a XAP file. Let’s get started. 

Generating a XAP Submission File 
The submission file that Windows Phone Marketplace requires is a XAP file that gets generated when 
the Windows Phone 7 application is built. An XAP file is a zip file containing all elements an application 
needs to run. To generate a XAP file, you must first build your application, as described in the following 
steps: 

1. Open your Windows Phone 7 application project inside Visual Studio Express 
for Windows Phone. 

2. Set the Solution Configuration option to Release if it presently isn’t, as shown 
in Figure 19–1.  

3. In Solution Explorer, right-click the name of the solution and select Build. At 
this point, if the build succeeds, Visual Studio creates the ProjectName.xap file, 
where ProjectName is the name of your solution. 

4. Locate the ProjectName.xap file you created in Step 3. Open Windows Explorer 
and navigate to the project’s directory and the bin/Release/ folder. You 
should find there a file named ProjectName.xap. This is the file that you will 
upload to the marketplace. 

The next step is to log in to Windows Phone Marketplace and submit the XAP file you just created. 



CHAPTER 19 ■ SECURITY 

442 

Uploading the XAP File to Marketplace 
Before uploading files to Windows Phone Marketplace, you must create Windows Phone Marketplace 
login credentials at http://create.msdn.com/. To do this, once you open the Marketplace web site, click 
the  Register for the Marketplace link and follow the step-by-step wizard to create your username and 
password for the Marketplace. With login credentials created, follow the following step-by-step guide to 
submit your application to the marketplace. 

1. Login to Windows Phone Marketplace (http://create.msdn.com/) and create a 
new application submission. 

2. When prompted, locate the XAP file that you created in the previous section 
(remember, it’s in the bin/Release/ folder of the project’s directory) and follow 
instructions to upload it to the Marketplace. 

3. Enter a description for your application, select its category, and upload an icon 
for it. 

4. Next, choose the countries that you would like your application to be available 
in and set the pricing. 

5. While you are busy entering application details (description, category, 
pricing), Marketplace is at work validating the XAP file. This is the step that 
confirms that the XAP file is valid and can be passed on for further testing of its 
reliability and security. 

6. If basic XAP file validation fails, you will get a failure notification and will have 
to start the process over.  

7. If validation succeeds, you will be presented with a screen that lets you make 
your application available to customers right away once it passes certification 
or wait until you decide to publish. 

8. The automated process within Windows Phone Marketplace opens up the 
submitted XAP file and updates the application manifest file 
(WMAppManifest.xml) with a unique product identifier and which hub on the 
Windows Phone 7 device (for example, Media + Video hub) this application 
belongs to. In addition, the header file called WMAppPRHeader.xml is created; it 
will be used to protect digital rights to your application. Finally, an additional 
update to the application manifest file listing all of the security capabilities of 
an application is performed and the application is repackaged into a new XAP 
file. This new XAP file is then deployed to the actual Windows Phone 7 device 
at the Marketplace for certification testing. 

http://create.msdn.com/
http://create.msdn.com/


CHAPTER 19 ■ SECURITY 

443 

 

Figure 19–1. Before deploying your application, make sure to set Solution Configuration to Release. 

Certification testing consists of both manual and automated verification that the application 
complies with the rules set by Microsoft regarding content, security, performance, and reliability of 
Windows Phone 7 applications. If an application violates any of these provisions, it is not published and 
you get a failure report with details of the problem-causing behavior. 

If the application successfully passes certification tests, the XAP file is signed and becomes available 
for installation from the Windows Phone Marketplace according to the option you selected in Step 5. 

Note When you update your application, you will have to go through the same certification steps as the 
original application. Chapter 5 outlines the update process in detail. 

Sandboxed Execution and the Execution Manager 
Sandboxed execution refers to the concept that each application runs in its own environment, or 
sandbox, so that it has no access to applications running in different sandboxes on the same device. 
Windows Phone 7 platform implements this concept of sandboxed execution. Applications running on 
the same Windows Phone 7 device are isolated from each other and must communicate with services 



CHAPTER 19 ■ SECURITY 

444 

provided by the Windows Phone 7 platform by using a well-defined standard mechanism. System files 
and resources are shielded from user applications. To store and retrieve application and configuration 
data, applications must use isolated storage, which is designed to be protected from access by any 
application other than the currently running one. For in-depth information on working with isolated 
storage, please refer to Chapter 13. 

To further ensure security and responsiveness of the Windows Phone 7 platform, Microsoft has built 
in separate provisions to make it even more secure. These provisions include the use of the Execution 
Manager, as well as granting only the rights an application absolutely requires to function. 

The Execution Manager monitors application resource usage in accordance with certain defined 
conventions. For instance, the Execution Manager may terminate an application in the background if it 
deems that an application in the foreground is not very responsive. Similarly, the Execution Manager 
may dismiss an application if it makes an excessive number of requests for phone resources. 

The Windows Phone Application Platform also tries to minimize the number of privileges granted to 
an application. For instance, if an application does not require the use of the location services library, 
Windows Phone will create a custom execution environment for the application that does not include 
the rights to that library. This way, the number of potential exploits (or “attack surface,” as it is referred 
to in the computer security industry) against the application is minimized. 

Implementing Network Security 
If your application accesses sensitive data over the network, it is critical that this data is encrypted 
during transit from the remote location to the Windows Phone 7 device. Similarly, if your application 
requires authentication, it is important to implement a secure authentication mechanism within your 
application. Windows Phone 7 platform allows you to accomplish both of these objectives. Any time you 
have to transmit sensitive data from a remote location, you should use Secure Sockets Layer (SSL) 
protocol, an industry standard for encrypting data. And if your environment requires secure 
authentication, it is possible to use digital certificates on a Windows Phone 7 device for that 
authentication, eliminating the need for user names and passwords.  

In the next sections, you will walk through establishing SSL connections and configuring a 
certificate for secure authentication on a Windows Phone 7 device. 

Securing Connections with SSL 
Secure Sockets Layer protocol is a sophisticated way of securing connections between the client 
(Windows Phone 7 device) and cloud service, and it utilizes the concepts of asymmetric cryptography 
and  certification authority (CA) hierarchies. When a Windows Phone 7 device initiates a secure 
connection to the remote service, it requests that service’s certificate. That certificate is checked and the 
certification authority that issued that certificate is determined. Once the CA of the certificate is known, 
Windows Phone 7 client then checks its own installed list of certification authorities. If it finds a 
certification authority in its list, that implies that a trust relationship between the Windows Phone 7 
device and the CA has been previously established, and that a secure connection between the phone and 
the remote server can be created. 

Windows Phone 7 devices come with several certification authorities pre-installed. This means that, 
most of the time, establishing an SSL connection will be a seamless experience. As long as the remote 
service obtained its certificate from a very well-known certification authority (such as VeriSign, for 
example), SSL connections can be created both from Internet Explorer on the phone and from 
application code. The following example demonstrates how to test if you can establish a secure 
connection to the remote server (PayPal) that has a certificate issued by a well-known CA (VeriSign). 



CHAPTER 19 ■ SECURITY 

445 

Testing and Opening an SSL Connection 
In this brief example, you will test if you can establish a secure connection to a remote server (PayPal), 
and then you will write a small Windows Phone 7 application that programmatically loads secure 
content from the PayPal web site. 

1. The quickest way to test whether a connection to a secure web site can be 
established is to open up Internet Explorer on Windows Phone 7 Emulator or a 
Windows Phone 7 device and type the URL of a secure remote server. Launch 
Windows Phone 7 Emulator by clicking Start  All Programs  Windows 
Phone Developer Tools  Windows Phone 7 Emulator. Once the emulator 
loads, click the Internet Explorer icon and type in https://www.paypal.com to 
go to the secure PayPal site. You should see the main screen of the PayPal web 
site. 

 Tip It may get quite tiresome having to click all of the keyboard buttons on the emulator. To enable the use 
of computer keyboard in the emulator window, you can press the PgUp key once the emulator loads up. To 
discontinue using the keyboard in the emulator, press the PgDn key. 

2. Now, you will create a small Windows Phone 7 application that will access the 
PayPal site via a secure connection. You could access any secure remote 
service in a similar manner, but only if that service has a certificate issued by a 
CA that Windows Phone 7 device trusts. In the next section of this chapter, you 
will go through creating, exporting, and installing the self-signed certificates, 
which is a bit more complicated.  

3. As usual, launch Visual Studio 2010 Express for Windows Phone and create a 
new Windows Phone 7 Application project. Name that project SSLConnection 
and click OK. MainPage.xaml is presented in the Designer. 

4. From the toolbox, drag and drop the WebBrowser control onto the design 
surface. Make the width and height of that control to be the full width and 
height of available design surface on MainPage.xaml. 

5. Switch to code view (right-click MainPage.xaml and select View Code) and add 
the following code to the MainPage() constructor. This code will create a 
WebClient object, register the callback function for that object (which you will 
write in the next section), and create a request to retrieve the contents of 
www.paypal.com securely. 

       WebClient client = new WebClient(); 
         client.OpenReadCompleted += new  
          OpenReadCompletedEventHandler(HandleResponse); 
         client.OpenReadAsync(new Uri("https://www.paypal.com")); 

6. Write the HandleResponse callback function for the request. This function will 
display the contents of whatever was returned as a result of the previous 
request to https://www.paypal.com. 

https://www.paypal.com
http://www.paypal.com
https://www.paypal.com
https://www.paypal.com


CHAPTER 19 ■ SECURITY 

446 

        void HandleResponse(object sender, OpenReadCompletedEventArgs e) 
        { 
            StreamReader reader = new StreamReader(e.Result); 
            string res = reader.ReadToEnd(); 
            webBrowser1.NavigateToString(res); 
        } 

7. Press F5 to run the application. You should see the PayPal page displayed in 
the web browser window. 

As you can see from the previous example, establishing a secure connection to the remote service is 
fairly straightforward if a remote service has a certificate issued by a major CA with whom Windows 
Phone 7 has an existing trust relationship. Just remember to use https protocol instead of http when 
accessing a remote web service securely. But certificates issued by a major certification authority can be 
expensive, and may not be necessary if all users of remote service trust that the service is legitimate. In 
addition, you may want to experiment or test your secure service without spending a lot of money on the 
certificates. Self-signed SSL certificates offer the same degree of data protection in transit (data is 
encrypted using SSL), without the expense of using the certification authority. There is a slight 
administrative overhead in issuing and installing those certificates, but you will easily tackle it in a few 
steps in the next example. 

Creating a Self-Signed Certificate 
There are three steps to enabling the use of self-signed certificates on Windows Phone 7 device: first, 

you have to create a self-signed certificate; second, you have to export that certificate for installation on 
the mobile device; and third, you have to install that certificate on the Windows Phone 7 device. Creating 
and exporting the self-signed certificate steps occur on the server where the secure service resides. 
Installing the certificate, of course, happens on each device that will need to establish a secure 
connection to the service using a self-signed certificate. 

Internet Information Services (IIS) is the web server software written by Microsoft. IIS has evolved 
significantly over the years, and the most current version in production as of this writing is IIS version 
7.5. With IIS 7.5, creating self-signed certificates and enabling SSL using those certificates is much easier 
than with previous versions of IIS. IIS 7.5 comes with Windows 7 by default, and the following example 
assumes that you are using IIS7.5 installed on a Windows 7 machine. The example also assumes that 
both the server and the Windows Phone 7 client (the emulator) reside on the same machine. 

1. Open IIS Manager by clicking Start  Control Panel  Administrative Tools  
Internet Information Services (IIS) Manager. 

2. Create a new web site by right-clicking the Sites node on the left and choosing 
Add Web Site. Name the site WP7Server and fill in the rest of the web site 
properties as shown in Figure 19–2.  

Note The physical path setting for the new site on your computer may certainly be something else than what
is shown in Figure 19-2, but be sure to make the Port setting something other than the default 80, otherwise IIS
might complain that port 80 is already taken (note how it is set to 8888 in Figure 19-2). 



CHAPTER 19 ■ SECURITY 

447 

 

Figure 19–2. IIS 7.5 new web site properties dialog 

Next, you will issue a self-signed certificate.  

3. Click the root machine node on the left, and then click the Server Certificates 
node, as shown in Figure 19–3. This should bring up a dialog listing all of the 
certificates currently registered on the machine. 



CHAPTER 19 ■ SECURITY 

448 

 

Figure 19–3. IIS 7.5 Server Certificates node 

4. Click the Create Self-Signed Certificate link on the right-hand side of the 
dialog. Then, specify a name for that certificate when prompted—for example, 
wp7cert. 

Next, you will enable SSL on the new web site that you created. To do this, you will need to create a 
binding of that web site to the https protocol.  

5. In the list of sites, click WP7Server and then click Bindings on the right-hand 
side, as illustrated in 19–4. 



CHAPTER 19 ■ SECURITY 

449 

 

Figure 19–4. Web site bindings link 

6. To create an https binding for the site, so that traffic to and from the site can 
be encrypted using SSL, click Add Binding. When the dialog shown in Figure 
19–5 comes up, select https type binding and select the wp7cert certificate 
from the certificates list. This certificate will be used to encrypt traffic between 
the web site and your Windows Phone 7 client application. 
 



CHAPTER 19 ■ SECURITY 

450 

 

Figure 19–5. Adding https site binding 

Finally, you need to create some content to browse to on the secure web site. In the real world, this 
would most likely be the service returning some sort of sensitive data, such as financial or security 
information. However, for this example, you will simply create an HTML file and save it onto the server.  

7. Open Notepad and paste the following HTML into it: 

<html> 
<h1>Hello, Windows Phone 7</h1> 
</html> 

8. Save the HTML file you created to the physical path for the web site that you 
specified in Step 2 (referenced in Figure 19–2) and name the file index.html. 
For example, if you kept your Physical Path setting as C:\WP7Server\ in Step 2, 
then you will save the HTML file as C:\WP7Server\index.html. 

 Note  You may be getting a “Permission Denied” error when you try to save the HTML file (we did). If so, 
make sure that the currently logged-in user has permissions to write to that folder and try again. 

You are now ready to test out your self-signed certificate.  

9. On your computer, open Internet Explorer and navigate to 
https:/machinename/, where machinename is the name of your computer (for 
example, wp7server). You should see the “Hello, Windows Phone 7” message in 
the browser. 

Now let’s test whether you can access secure data from your Windows Phone 7 application.  



CHAPTER 19 ■ SECURITY 

451 

10. From your Windows Phone 7 emulator, open Internet Explorer and navigate to 
https:/machinename/. The very first time you start up the emulator, you will see 
a screen like the one shown in Figure 19–6, the absence of trust relationship 
error message. If you click Continue, however, you will be able to establish SSL 
connections to the web server from both the browser on the Windows Phone 7 
device and the applications.  

 

Figure 19–6. Certificate authority error on the Windows Phone 7 Emulator 

Exporting a Self-Signed Certificate 
It is possible to establish secure connections between mobile applications executing on the Windows 
Phone 7 and remote services, such as Microsoft Exchange, using self-signed certificates. 

The first step in establishing a secure connection with the use of a self-signed certificate between 
the client and the server is to export the certificate from the server. The next example shows you how to 
do this; it assumes that you are using Internet Explorer 8 to export certificates and that you have created 
a self-signed certificate using the steps in the previous section. 

1. On the server, open Internet Explorer, and click Tools  Internet Options. If 
the menu bar with Tools menu option is not visible, press the Alt key. 

2. In the window that comes up, click the Content tab, and then click the 
Certificates button. In the Certificates dialog that comes up, select the Trusted 
Root Certification Authorities tab. The self-signed certificate that you created 



CHAPTER 19 ■ SECURITY 

452 

should be listed in this tab—you can scan the Friendly Name column and look 
for wp7cert, as shown in Figure 19–7. 
 

 

Figure 19–7. List of trusted root CAs, with self-signed certificate highlighted 

3. Click on the Export button, and then click the Next button. On the next screen, 
select “No, do not export the private key” (the default option) and click Next. 

4. On the next screen, choose the DER Encoded binary X.509 format (default 
option) and click Next. Finally, select the folder to export certificate into, name 
the file wp7cert (make sure to put it somewhere you can find it later!), click 
Next, and then click Finish. You should get a message notifying you that the 
export was successful. 



CHAPTER 19 ■ SECURITY 

453 

With the certificate exported, you are now ready to finalize the trust relationship between the 
Windows Phone 7 device and the server secured by a self-signed certificate. You will do that in the next 
section. 

Installing Self-Signed Certificate on Windows Phone 7 
The easiest way to install a self-signed certificate on Windows Phone 7 device or emulator in the first 
release of Windows Phone 7 Framework is to simply e-mail it. Then, let the built-in Windows Phone 7 
features recognize the certificate file and properly install it on the device. The next few steps will guide 
you through this process. 

1. Open or navigate to your e-mail program; for instance, if you use Hotmail as 
your default e-mail, log in and create an e-mail message to yourself. In that e-
mail, add an attachment—the exported self-signed certificate in the 
wp7cert.cer file you created in the previous example. Send e-mail to yourself. 

2. From the Windows Phone 7 device or emulator, access the e-mail message you 
just sent. Once you click the wp7cert.cer attachment, the Windows Phone 7 
should prompt you to open the certificate file. Go ahead and click (or tap) the 
screen to get the Install Certificate prompt shown in Figure 19–8. Then, click 
the Install Certificate button. After the installation, click the OK button. 

You are now familiar with how to secure data in transit from a remote service to the Windows Phone 7 
device. You have seen how to use SSL with both trusted third-party certificates from established 
certification authorities and self-signed certificates. In the next section, you will take a look at securely 
storing data on your Windows Phone 7 device by encrypting it. 

Implementing Data Security 
In this section, you will learn how to secure data that gets stored on a Windows Phone 7 device. While 
the data in isolated storage is sandboxed for each application—i.e., an application cannot access the 
contents of isolated storage of another application—it is still important to encrypt sensitive data stored 
on the device. Encrypting data makes it impossible for anybody other than the data owner to read that 
data, something that is especially critical for enterprise users. Windows Phone 7 provides a powerful 
subset of .NET encryption classes, which make data encryption not only possible, but extremely easy on 
this device. The following data encryption algorithms are supported on Windows Phone 7: 

• AES 

• HMACSHA1 

• HMACSHA256 

• Rfc2898DeriveBytes 

• SHA1 

• SHA256 

As you will see in the next example, many of these algorithms complement each other to provide a 
robust data encryption strategy for Windows Phone 7 devices. But first, let’s briefly review the purpose of 
each of the supported encryption algorithms. 



CHAPTER 19 ■ SECURITY 

454 

AES (stands for Advanced Encryption Standard) is a symmetric encryption algorithm, which means 
that it uses the same key (password) to encrypt and decrypt data. Since the key used to encrypt/decrypt 
data could be easy to guess by iterating through words in a dictionary in an automated manner, an 
additional secret key is added during the encryption process. 

 

 

Figure 19–8. Installing certificates via e-mail 

This additional key is called salt and is usually a random set of bits, such as an employee 
identification number, that is used to make the AES-encrypted message harder for intruders to decrypt. 

HMACSHA1 and HMACSHA256 algorithms both generate a unique message authentication code 
(MAC) from the data and password supplied. Both algorithms use the same approach to generating 
MAC: they take data and hash it with the secret key using standard hash function SHA1 and SHA256 
correspondingly. The difference between HMACSHA1 and HMACSHA256 lies in the strength of the 
message generated: HMACSHA1 output is 160 bits long while HMACSHA256 generates results that are 
256 bits in length. 

Finally, Rfc2898DeriveBytes is an algorithm that relies on the HMACSHA1 function to generate a 
strong key, using the password and salt values supplied, to be used to encrypt and decrypt data. 



CHAPTER 19 ■ SECURITY 

455 

Note Do not store password or salt values in application code. It is extremely easy to peek at compiled .NET 
code using tools such as Ildasm.exe, Red Gate Reflector or even a simple text editor and retrieve the value of 
the password/salt. At the end of this chapter, you will learn how to protect your application code from possible 
decompilation by obfuscating it; however, even with obfuscation, the password and salt values should never be 
stored inside application code. 

In the first data security example, you will experiment with HMACSHA1 and HMACSHA256 
algorithms to observe the keys that those algorithms generate from the input and password/salt values 
supplied. In the second example, you will encrypt and decrypt data on the device using the AES 
algorithm. 

Using HMACSHA1 and HMACHSHA256 
Both HMACSHA1 and HMACSHA256 functions are one-way: once the message authentication code is 
generated using either of those functions, it is impossible to recreate the original message from the 
generated MAC. This makes those functions ideal for storing values of security codes: the only way to 
produce a match of the MAC on those values is to supply a valid password and security code. The 
following example demonstrates how to generate HMACSHA1 and HMACSHA256 messages. 

Creating a User Interface 
Your application interface will consist of textboxes to accept a message and a password to create a MAC 
from, and it will show the MAC generated using both HMACSHA1 and HMACSHA256 algorithms. 

1. Open Visual Studio Express for Windows Phone and create a new project 
called HMACTest. 

2. Make MainPage.xaml look like Figure 19–9. For reference, the XAML of this page 
is pasted here (and don’t forget that you can also download all code samples 
for this book): 

     <!--LayoutRoot contains the root grid where all other page content is placed--> 
     <Grid x:Name="LayoutRoot" Background="Transparent"> 
          <Grid.RowDefinitions> 
              <RowDefinition Height="Auto"/> 
              <RowDefinition Height="*"/> 
          </Grid.RowDefinitions> 
 
         <!--TitlePanel contains the name of the application and page title--> 
        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12"> 
            <TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION"             
Style="{StaticResource PhoneTextNormalStyle}"/> 
            <TextBlock x:Name="PageTitle" Text="HMAC Test" Margin="-3,-8,0,0" 
Style="{StaticResource PhoneTextTitle1Style}"/> 
        </StackPanel> 
 



CHAPTER 19 ■ SECURITY 

456 

        <!--ContentPanel - place additional content here--> 
        <Grid x:Name="ContentGrid" Grid.Row="1"> 
            <Button Content="Generate" Height="72" HorizontalAlignment="Left"
Margin="149,437,0,0" Name="button1" VerticalAlignment="Top" Width="160" Click="button1_Click"
/> 
            <TextBox Height="72" HorizontalAlignment="Left" Margin="149,23,0,0"
Name="txtMessage" Text="" VerticalAlignment="Top" Width="317" /> 
            <TextBlock Height="99" HorizontalAlignment="Left" Margin="21,216,0,0"
Name="textBlock1" Text="TextBlock" VerticalAlignment="Top" Width="445" TextWrapping="Wrap" /> 
            <TextBlock Height="114" HorizontalAlignment="Left" Margin="24,321,0,0"
Name="textBlock2" Text="TextBlock" VerticalAlignment="Top" Width="442" TextWrapping="Wrap" /> 
            <TextBlock Height="30" HorizontalAlignment="Left" Margin="21,44,0,0"
Name="textBlock3" Text="Message:" VerticalAlignment="Top" Width="122" /> 
            <TextBlock Height="30" HorizontalAlignment="Left" Margin="21,129,0,0"
Name="textBlock4" Text="Key:" VerticalAlignment="Top" /> 
            <TextBox Height="72" HorizontalAlignment="Left" Margin="149,101,0,0" Name="txtKey"
Text="" VerticalAlignment="Top" Width="246" /> 
        </Grid> 
    </Grid> 

Coding the Application Logic 
The next step is to add logic that takes advantage of the cryptography classes on Windows Phone 7 to 
show Message Authentication Codes. 

1. Add the following using directive to the top of the page: 

using System.Security.Cryptography; 

2. Because you want all of the encryption logic to happen on the button click, add an 
event handler to the Click event of the Generate button. To do that, double-click the 
Generate button and paste the following code inside the handler. Note how after 
declaring the HMACSHA1 and HMACSHA256 classes, all of the magic happens in the 
ComputeHash function, which returns an array of bytes that you convert to the 
hexadecimal string. 

        string message = txtMessage.Text; 
        string key = txtKey.Text; 

        System.Text.UTF8Encoding encoding = new System.Text.UTF8Encoding(); 

        byte[] keyByte = encoding.GetBytes(key); 

        HMACSHA1 hmacsha1 = new HMACSHA1(keyByte); 
    HMACSHA256 hmacsha256 = new HMACSHA256(keyByte); 

      byte[] messageBytes = encoding.GetBytes(message); 
      byte[] hashmessage = hmacsha1.ComputeHash(messageBytes); 
       textBlock1.Text = ConvertToString(hashmessage); 

       hashmessage = hmacsha256.ComputeHash(messageBytes); 
       textBlock2.Text = ConvertToString(hashmessage); 



CHAPTER 19 ■ SECURITY 

457 

 

Figure 19–9. User interface for the HMACTest application 

3. Finally, paste the contents of the ConvertToString helper function that converts a 
byte array passed in to the hexadecimal string. 

         public static string ConvertToString(byte[] buff) 
         { 
              string sbinary = ""; 
 
              for (int i = 0; i < buff.Length; i++) 
              { 
                  //hex-formatted 
                  sbinary += buff[i].ToString("X2"); 
              } 
              return (sbinary); 
         } 

 
Press F5 to run the application. Enter some message text (for example, “Hello, World”) and key (for 

example, “test”) and observe the MAC values generated using the HMACSHA1 algorithm (top TextBlock) 
and HMACSHA256 algorithm (bottom TextBlock). Notice that not only does the length of the MACs 
differ, but the MACs themselves are completely different from each other. 

In the next example, you will encrypt and decrypt data using AES. 



CHAPTER 19 ■ SECURITY 

458 

Using Rfc2898DeriveBytes and AES to Encrypt Data 
To encrypt data from prying eyes on a Windows Phone 7 device, you need a strong encryption 
mechanism that, in turn, relies on the strong key to make encryption withstand all of the known 
attempts to break it. The Rfc2898DeriveBytes algorithm, available on Windows Phone 7, creates a very 
strong key for use in AES encryption from the password and salt values passed in. This example 
demonstrates how to use both of these algorithms in combination on a Windows Phone 7 device. 

Creating a User Interface 
The interface will prompt the user for data to encrypt and for a password and salt to use for that 
encryption. The interface will also have two buttons—one for encryption and the other one for 
decryption of data. 

1. Open Visual Studio Express for Windows Phone and create a new project 
called AESEncryption. 

2. Make the MainPage.xaml page look like the one shown in Figure 19–10. For 
convenience, the XAML of this page is pasted here: 

    <!--LayoutRoot contains the root grid where all other page content is placed--> 
    <Grid x:Name="LayoutRoot" Background="Transparent"> 
        <Grid.RowDefinitions> 
            <RowDefinition Height="Auto"/> 
            <RowDefinition Height="*"/> 
        </Grid.RowDefinitions> 
 
        <!--TitlePanel contains the name of the application and page title--> 
        <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12"> 
            <TextBlock x:Name="ApplicationTitle" Text="CLASSIFIED" Style="{StaticResource 
PhoneTextNormalStyle}"/> 
            <TextBlock x:Name="PageTitle" Text="AES Encryption" Margin="-3,-8,0,0" 
Style="{StaticResource PhoneTextTitle1Style}"/> 
        </StackPanel> 
 
        <!--ContentPanel - place additional content here--> 
        <Grid x:Name="ContentGrid" Grid.Row="1"> 
            <TextBox Height="65" HorizontalAlignment="Left" Margin="6,41,0,0" 
Name="txtDataToEncrypt" Text="" VerticalAlignment="Top" Width="462" /> 
            <TextBlock Height="30" HorizontalAlignment="Left" Margin="20,21,0,0" 
Name="textBlock1" Text="Data to encrypt" VerticalAlignment="Top" Width="419" /> 
            <TextBox Height="72" HorizontalAlignment="Left" Margin="6,334,0,0" 
Name="txtPassword" Text="" VerticalAlignment="Top" Width="462" /> 
            <TextBlock Height="30" HorizontalAlignment="Left" Margin="20,310,0,0" 
Name="textBlock2" Text="Password" VerticalAlignment="Top" Width="346" /> 
            <TextBox Height="72" HorizontalAlignment="Left" Margin="6,426,0,0" Name="txtSalt" 
Text="" VerticalAlignment="Top" Width="462" /> 
            <TextBlock Height="36" HorizontalAlignment="Left" Margin="21,403,0,0" 
Name="textBlock3" Text="Salt" VerticalAlignment="Top" Width="304" /> 



CHAPTER 19 ■ SECURITY 

459 

            <Button Content="Encrypt" Height="72" HorizontalAlignment="Left" 
Margin="20,504,0,0" Name="button1" VerticalAlignment="Top" Width="160" Click="button1_Click" 
/> 
            <Button Content="Decrypt" Height="72" HorizontalAlignment="Left" 
Margin="296,504,0,0" Name="button2" VerticalAlignment="Top" Width="160" Click="button2_Click" 
/> 
            <TextBlock Height="30" HorizontalAlignment="Left" Margin="24,101,0,0" 
Name="textBlock4" Text="Encrypted Data" VerticalAlignment="Top" Width="432" /> 
            <TextBox Height="72" HorizontalAlignment="Left" Margin="8,123,0,0" 
Name="txtEncryptedData" Text="" VerticalAlignment="Top" Width="460" /> 
            <TextBlock Height="27" HorizontalAlignment="Left" Margin="21,197,0,0" 
Name="textBlock5" Text="Decrypted Data" VerticalAlignment="Top" Width="435" /> 
            <TextBox Height="72" HorizontalAlignment="Left" Margin="13,221,0,0" 
Name="txtDecryptedData" Text="" VerticalAlignment="Top" Width="460" /> 
        </Grid> 
    </Grid> 
 

 

Figure 19–10. User interface for the AESEncryption application 



CHAPTER 19 ■ SECURITY 

460 

Coding the Application Logic 
AES encryption in the .NET Framework is implemented via a class called AesManaged. The following code 
uses this class, together with the Rfc2898DeriveBytes class to encrypt the data. 

 

1. Add the following using directive to the top of the page: 

using System.Security.Cryptography; 
using System.IO; 
using System.Text; 

 

2. Code the Encrypt method. The Encrypt method takes data to encrypt, 
password and salt as parameters, and returns a string. Notice how the Encrypt 
method creates the Rfc2898DerivedBytes class and uses that class to generate a 
strong key from the password and salt combination; that key is later used by 
the AesManaged class to encrypt data. 

        public string Encrypt(string dataToEncrypt, string password, string salt) 
        { 
            AesManaged aes = null; 
            MemoryStream memStream = null; 
            CryptoStream crStream = null; 
 
            try 
            { 

//Generate a Key based on a Password and Salt 
           Rfc2898DeriveBytes rfc2898 = new Rfc2898DeriveBytes(password,  

Encoding.UTF8.GetBytes(salt)); 
 
           //Create AES algorithm with 256 bit key and 128-bit block size  
             aes = new AesManaged(); 
             aes.Key = rfc2898.GetBytes(aes.KeySize / 8); 
             aes.IV = rfc2898.GetBytes(aes.BlockSize / 8); 
 
             memStream = new MemoryStream(); 
             crStream = new CryptoStream(memStream, aes.CreateEncryptor(),  

CryptoStreamMode.Write); 
 
             byte[] data = Encoding.UTF8.GetBytes(dataToEncrypt); 
              crStream.Write(data, 0, data.Length); 
             crStream.FlushFinalBlock(); 
 
              //Return Base 64 String  
              return Convert.ToBase64String(memStream.ToArray()); 
            } 
            finally 
            { 
                //cleanup 
                if (crStream != null) 
                    crStream.Close(); 
 



CHAPTER 19 ■ SECURITY 

461 

                if (memStream != null) 
                    memStream.Close(); 
 
                if (aes != null) 
                     aes.Clear(); 
             } 
         } 

3. Code the Decrypt method. The Decrypt method is the inverse of Encrypt: it 
takes data to decrypt, password and salt as parameters, and returns an input 
string. Since AES is a symmetric algorithm, the same password and salt values 
must be used to decrypt data as were used to encrypt it. The Decrypt method 
initializes the Rfc2898Bytes key and uses it to create Decryptor for data. 

        public string Decrypt(string dataToDecrypt, string password, string salt) 
         { 
              AesManaged aes = null; 
              MemoryStream memStream = null; 
              CryptoStream crStream = null; 
 
             try 
             { 
                 Rfc2898DeriveBytes rfc2898 = new Rfc2898DeriveBytes(password,  

Encoding.UTF8.GetBytes(salt)); 
                 aes = new AesManaged(); 
                 aes.Key = rfc2898.GetBytes(aes.KeySize / 8); 
                 aes.IV = rfc2898.GetBytes(aes.BlockSize / 8); 
 
                 memStream = new MemoryStream(); 
                 crStream = new CryptoStream(memStream, aes.CreateDecryptor(),  

CryptoStreamMode.Write); 
                 byte[] data = Convert.FromBase64String(dataToDecrypt); 
                 crStream.Write(data, 0, data.Length); 
                 crStream.FlushFinalBlock(); 
 
                 byte[] decryptBytes = memStream.ToArray(); 
                 return Encoding.UTF8.GetString(decryptBytes, 0, decryptBytes.Length); 
             } 
             finally 
             { 
                if (crStream != null) 
                      crStream.Close(); 
 
                 if (memStream != null) 
                      memStream.Close(); 
 
                 if (aes != null) 
                      aes.Clear(); 
              } 
         } 



CHAPTER 19 ■ SECURITY 

462 

4. Add code to call the Encrypt method when the user clicks the Encrypt button. 
Double-click the Encrypt button in MainPage.xaml and add the following code 
to the click event handler: 

txtEncryptedData.Text = Encrypt(txtDataToEncrypt.Text, txtPassword.Text,  
txtSalt.Text); 

5. Finally, add code to call the Decrypt method when the user clicks the 
Decrypt button. Double-click the Decrypt button in MainPage.xaml and 
add the following code to the Click event handler: 

       txtDecryptedData.Text = Decrypt(txtEncryptedData.Text, txtPassword.Text, 
txtSalt.Text); 
 

Press F5 to run the application. Enter some data (for example, “Classified Information”), a password 
(for example, “test”), and salt (note that it must be at least 8 characters long, otherwise AES classes will 
throw an exception), and observe the values being encrypted in the Encrypted Data textbox. Press 
Decrypt and you should see the original text in the Decrypted Data field. Note that if you enter the 
password or salt values that are different between encryption and decryption, the application will raise 
an error. 

Now that you understand the cryptography framework on the Windows Phone 7, it’s time to take a 
look at the physical security of the device. 

 

Understanding Device Physical Security 
With Windows Phone 7, customers rarely have to worry about sensitive data ending up in malicious 
hands if the device is lost or stolen. This is because several standard features that come complimentary 
with the phone make it possible to feel confident about the security of the device at no extra charge. In 
this section, you will walk through the Windows Phone 7 physical security safeguards that Microsoft 
provides. All of these features are accessible at http://windowsphone.live.com. You will need to create a 
Microsoft Live ID if you don’t have one already and properly associate it with your Windows Phone 7 
device. 

• Map It: Using this feature, Windows Phone 7 users are able to see the location of 
their phones using Bing maps. 

• Ring It: Using this option, you can instruct the phone to ring for 60 seconds using 
a special ringtone, even if the ring tone has been turned off. 

• Lock It and Display a Message: You can also lock the phone from the web site and 
display a custom message to instruct people who may have found your phone on 
how to get in touch with you. 

• Erase It: Finally, if all is lost and there is no hope of recovering the phone, you can 
remotely wipe all of the data from that phone and reset it to factory settings. 

 
As you can see, the Windows Phone 7 security story is very compelling, especially for the first 

generation of this device. You can expect this story to become better and more feature-rich in the very 
near future. Certainly, more and more features from the full .NET Framework will find their way onto the 
phone, which should further contribute to the security of the device. 

http://windowsphone.live.com


CHAPTER 19 ■ SECURITY 

463 

Meeting Certification Requirements 
Microsoft documentation on security in Windows Phone 7 lists explicit requirements regarding 
application code. In this chapter, you will gain an understanding of what types of application behavior 
are not tolerated by Microsoft. 

Application Must Implement MSIL Code 
Microsoft imposes a requirement on Windows Phone 7 application developers to use managed code to 
construct their applications. Strong typing, bounds checking, and memory management features of 
managed code help minimize the most common types of attacks (also referred to in the security 
community as attack vectors) on both the application and the Windows Phone 7 application platform. 

Generally, if you use C# language with its default settings, you will be in compliance with this 
restriction imposed by Windows Phone Marketplace. The problems will arise, however, if you venture 
into unsafe C# code territory, which can be enabled by using the unsafe keyword in a method signature. 
In addition to the unsafe keyword, applications with unsafe code must be compiled with a special 
switch, as shown in Figure 19–11. As an example of unsafe code, consider the following code, which uses 
a simple SquarePtrParam function to accept a pointer variable (non-MSIL code) and perform pointer 
arithmetic on it: 

 

    public partial class MainPage : PhoneApplicationPage 
    { 
        unsafe public MainPage() 
        { 
            int i=5; 
            InitializeComponent(); 
            SquarePtrParam(&i); 
            PageTitle.Text = i.ToString(); 
        } 
 
        // Unsafe method, using a pointer to square the number 
        unsafe static void SquarePtrParam(int* p) 
        { 
            *p *= *p; 
        } 
    } 
 

The good news for Windows Phone 7 developers is that while the previous code is a perfectly valid 
.NET code, the Windows Phone 7 templates in Visual Studio disable the option to compile unsafe code. 
This option is generally found under Project  Properties  Build tab, and the check box “Allow Unsafe 
Code” is grayed out on Windows Phone 7 templates, making the option of writing unsafe application for 
Windows Phone 7 a challenging exercise. And even though it is possible to work around this limitation 
by modifying the project file (.csproj) using a text editor and specifying the <AllowUnsafeCode> attribute, 
it is certainly not worth the trouble because Windows Phone Marketplace will reject the application 
anyway. 



CHAPTER 19 ■ SECURITY 

464 

 

Figure 19–11. Applications that implement unsafe code must be compiled with a special switch. 

Application Must Not Implement Any Security-Critical Code 
With .NET version 4.0, Microsoft has moved away from the complexities of its Code Access Security 
(CAS) model and towards a simpler model it calls the Transparent Security model. The first transparency 
rule set was initially introduced in .NET 2.0 and then expanded to Transparency Level 2 in .NET 4.0. With 
Transparency Level 2, code is segregated into three types: transparent code, security-safe-critical code, 
and security-critical code. These types are discussed in the following sections.  

Transparent Code 
In the transparent category, there are applications that run in a sandbox, which are pretty much all of 
the Windows Phone 7 applications that you will ever write, and these applications have a limited 
permission set granted by the sandbox. That means that as a developer you don’t have to be concerned 
about checking security policies when you write your applications, as long as you don’t try to perform 
any operation deemed not accessible by the transparent code. For reference purposes, here is the list of 
tasks that transparent applications are not permitted to perform: 

• Directly call critical code 

• Perform an Assert operation or elevation of privilege 

• Contain unsafe or unverifiable code 



CHAPTER 19 ■ SECURITY 

465 

• Call native code or code that has the SuppressUnmanagedCodeSecurityAttribute 
attribute 

• Call a member that is protected by a LinkDemand 

• Inherit from critical types 

Security-Safe-Critical Code 
In the security-safe-critical category, there is code that is fully trusted but is still callable by transparent 
code. It exposes a limited surface area of full-trust code. Correctness and security verifications happen in 
security-safe-critical code. 

Security-Critical code 
Finally, there is a category of code that can’t be called by transparent code. This is usually security-
critical code that typically implements system-level functionality and has unlimited access to Windows 
Phone resources, making it a perfect place to embed malicious behavior. Therefore, Microsoft disallows 
this type of code; to successfully pass Windows Phone Marketplace certification criteria, applications 
must not implement any security-critical code. In addition, applications must not invoke native code via 
PInvoke or COM Interoperability. 

You will most likely never have to worry about the ins and outs of the Transparent Security model 
when you program for Windows Phone 7. But in case you decide to try to implement unsafe or security-
critical code in your application, remember that Marketplace certification tests will quickly uncover this 
type of behavior and deny entry to your application. 

Capability List 
To protect users’ privacy and enforce developer accountability, Windows Phone Marketplace fully 
discloses to the user whether an application is relying on any of the following services for proper 
operation: 

• Gamer Services 

• Location Services 

• Media Library 

• Microphone 

• Networking 

• Place Phone Calls 

• Push Notifications 

• Sensors 

• Web Browser 



CHAPTER 19 ■ SECURITY 

466 

These capabilities are requested on a Windows Phone 7 device when an application developer 
submits her application for certification. Only the requested capabilities are granted, protecting device 
users from unexpected behavior of potentially privacy-intruding applications. 

Obfuscating Your Application Code 
The clarity and speed of writing your application in managed .NET languages (C# or VB.NET) and 
avoiding unsafe code constructs are very appealing features of the Windows Phone 7 platform. 
Unfortunately, from a security and intellectual property perspective, managed languages have one 
significant drawback: they can easily be de-compiled or reverse-engineered using tools such as 
ildasm.exe or Red Gate Reflector, potentially exposing your application source code to anybody who has 
access to your application’s .xap file. That means that the programming logic that you may have spent 
days or weeks tweaking could be easily copied by your competition or could be easily eavesdropped on 
for a possible attack on your application. 

To illustrate how easy it is to peek inside your compiled application, let’s use the Red Gate Reflector 
tool and open up one of the compiled assemblies that you have created earlier in this chapter. 

Note Reflector was a free tool for the longest time; however, it appears that Red Gate started charging for its
use recently. You can still download a 14-day evaluation trial of this tool from http://reflector.red-
gate.com/download.aspx.  

Launch Reflector (by double-clicking on Reflector.exe from the location you downloaded it to) and 
click on File  Open Assembly. Navigate to AESEncryption.dll, which should be located inside the 
Bin/Debug/ folder of the AESEncryption project created in the previous section (AESEncyrption.dll is 
created automatically for you in the Debug folder when you run the application inside the emulator). 
Once you open that assembly, expand AESEncryption  AESEncyrption.dll  AESEncryption  
MainPage node and click on the Encrypt method. You should see something similar to Figure 19-12, with 
virtually all of your code for the Encrypt method exposed in the right pane. 

 

http://reflector.red-gate.com/download.aspx
http://reflector.red-gate.com/download.aspx
http://reflector.red-gate.com/download.aspx


CHAPTER 19 ■ SECURITY 

467 

 

Figure 19–12. Encrypt method of the AESEncryption project in Reflector 

Obfuscation serves to protect intellectual property in your code from the prying eyes of Reflector and 
other such tools. There are several .NET obfuscation products on the market, including Dotfuscator, 
DeepSea, and Crypto. The one you will be taking a look in this chapter is Dotfuscator because full 
version of Dotfuscator for Windows Phone 7 will be freely available to you to try out first before making a 
decision to buy, but the basic principles of hiding code should be applicable to all of the products 
mentioned above. 

Note You can download a copy of Dotfuscator for Windows Phone 7 from PreEmptive Solutions website at 
www.preemptive.com/know-more/windows-phone-7. 

Follow the steps in this example to obfuscate the code from the AESEncryption project. 

1. Start by launching Dotfuscator from Start  All Programs  Dotfuscator. 

2. When the Select Project Type dialog comes up, select Create New Project. On 
the Input Files menu bar, select the Add New Input (the folder icon) and 
navigate to the AESEncryption.xap file. Note how Dotfuscator understands that 
Windows Phone 7 applications consist of .xap files, while we had to navigate to 
the .dll file when we used Reflector, since Reflector is not currently 
customized to work with Windows Phone 7 applications. Make a mental note 

http://www.preemptive.com/know-more/windows-phone-7


CHAPTER 19 ■ SECURITY 

468 

of it for now—you will come back to this minor difference in the way these two 
programs function shortly. 

3. By default, Dotfuscator is not set to obfuscate anything in the assembly. You 
must tell the application that you want the assembly obfuscated and variables 
hidden. To do so, go to the Settings tab. Set Disable Control Flow to No, and 
set Disable String Encryption to No, as shown in Figure 19-13. 

 

 

Figure 19–13. Enabling Dotfuscator settings for code obfuscation 

4. Still on the Settings tab, click on the Build Settings node and make sure to set 
Destination Directory to a folder that you can easily locate on your computer 
such as C:\Projects\Dotfuscated\. 

5. You are now ready to create an obfuscated version of your .xap file. To do that, 
click on the Build button in Dotfuscator, as shown in Figure 19-13. Once the 
Build completes, you should have a new .xap file generated in the Output 
Directory that you configured in Step 4. 

6. You are now ready to peek inside the obfuscated file to determine whether the 
code has indeed been made unreadable to Reflector. However, Reflector can 
only understand .dll assemblies and not .xap files generated for Windows 
Phone 7 applications. Recall how a .xap file is simply a renamed .zip file 
containing several files, including application resource files and a .dll 



CHAPTER 19 ■ SECURITY 

469 

assembly within it. Rename the obfuscated .xap file to have a .zip extension 
and peek inside that file. 

7. Extract the AESEncryption.dll assembly from the obfuscated .xap file 
generated in Step 5. From within Reflector, navigate to that assembly and open 
it.  

8. Expand AESEncryption  AESEncyrption.dll  AESEncryption  MainPage 
node and click on the Encrypt method. Instead of code in the right pane, you 
should now see something similar to Figure 19-14, making the logic of that 
method unreachable to tools like Reflector and ildasm. 

 
This example should give you the basic idea on obfuscating managed .NET code. You can tweak 

settings inside Dotfuscator to ensure that you application’s intellectual property is properly secured. 
Note, however, that you should always deploy your obfuscated device to your (unlocked) Windows 
Phone 7 device for testing. Sometimes, the obfuscator tools get a bit ambitious and scramble the 
information that is expected by the Windows Phone 7 platform in a certain format, resulting in 
application failing to properly load and launch. Always test your .xap before submitting it to the 
Marketplace for certification! 

 

 

Figure 19–14. Obfuscated Encrypt method 



CHAPTER 19 ■ SECURITY 

470 

Summary 
In this last chapter of the book, you learned about the facilities that the Windows Phone 7 platform 
provides to secure data in transit and on devices, as well as how it imposes a set of rigorous tests to 
confirm the identity of the application developer and ensure that the applications in Windows Phone 
Marketplace don’t contain malicious code. You have also looked at making your code unreadable, or 
obfuscated, to tools like ildasm and Reflector. The Windows Phone 7 device also provides security for the 
device itself, giving users the ability to remotely find, ring, or erase all data from the phone. Windows 
Phone 7 has already implemented a strong set of security features, and those features will only get more 
and more comprehensive. 

 



 

471 

Index 

 Special Characters & 
Numbers 
{ symbol, in lambda expressions, 414 
+ icon. See Add icon button (Application Bar) 
256MB of RAM and 8GM flash storage, 5 

 A 
_ac variable, 155 
_acc, Accelerometer object, 117 
accelerometer, 5, 95, 139–157 

best practices for, 144 
device exceptions and, 112–118 
displaying data from, 149 
MoveBallDemo sample and, 151–157 
retrieving data from, 144–151 
SDK support for, 144 
start/stop behavior and, 117 
start/stop behavior, button click event for, 

117 
stopping/starting, 150 

Accelerometer class, 144, 155 
AccelerometerFailedException, 112–118 
actions, applications and, 218 
ActiveX controls, security and, 191 
Add button, for Notepad phone sample 

application, 69, 71 
Add icon button (Application Bar), 159 

creating, 165 
event handling for, 169–174 

Add method, 95 
AddCompleted event delegate, 105 
AddNew button, for Notepad phone sample 

application, 69, 72 
AddNote method 

NotepadViewModel and, 80 
SQL Azure database and, 60 

AddNoteCompleted, 79, 81 

address plotting, 297, 316–323 
Address text box, for AddressPlottingDemo, 319, 

323 
AddressPlottingDemo, 317–323 

coding, 321 
testing, 323 
user interface for, 319 

AddUser method 
NotepadViewModel and, 80 
SQL Azure database and, 60 

AddUserCompleted, 82 
AES encryption algorithm, 453–454, 458–459 
AESEncryption.dll, 466, 469 
AESEncryption.xap, 467 
AesManaged class, 460 
airport application (sample), 202–207 
Alchemy Catalyst localization tool, 262 
alerts. See push notifications 
<AllowUnsafeCode> attribute, 463 
animation 

for FlickrSearch (sample) application, 416–
421 

timeline, 417 
animation sequences, 8, 338, 341, 344 
App hub. See Windows Phone Marketplace 
app.config file, 397, 402 
Application Bar, 159–177 

.NET languages and, 167 
creating, 162–169 
icon buttons on, 159, 162, 165 
PhoneApplicationFrame control and, 206 
PhotoCapture sample application and, 349, 

365 
screen orientations and, 196 
two types of, 159 
Windows Phone Chrome and, 194 
wiring events for, 169–176 

Application Bar icons, 196 
application icon, customizing, 25 
application launchers, 242 
application manifest file for Windows Phone, 124 



 INDEX 

472 

Application Policies (Windows Phone 
Marketplace certification requirements), 121 

Application Submission Validation 
Requirements (Windows Phone Marketplace 
certification), 123 

Application_Activated event, 98, 219, 222–223 
Application_Closing event, 98, 219, 223 
Application_Deactivated event, 98, 219, 222–223 
Application_Launching event, 98, 219, 223, 226 
Application_UnhandledException method, 98–

100, 104 
ApplicationBar="{StaticResource 

GlobalAppMenuBar}", 164 
ApplicationBarMenuItem_Click, 176 
Application.Current, 196 
ApplicationIcon.png, 26 
<Application.Resources> section, 163 
applications 

application security and, 439–444 
building, 15–33 
debugging, 95–105 
deploying your first one to Windows Phone 

Marketplace, 126–138 
development life cycle and, 11 
distributing/selling your own, 12, 119–138 
integrating with Facebook, 229–237 

application logic, 231–237 
OAuth protocol, 229–230 
user interface for, 230–231 

integrating with SharePoint, 239 
integrating with Windows Phone 7, 213–239, 

356–365 
life cycle of, 218–223, 228 
location-aware, testing, via GPS simulation, 

299–305 
one-page/multiple-page, 17 
packaging, 123, 126 
purchasing, 242 
renaming, 25 
trial version of. See trial applications 
updating/redeploying at Windows Phone 

Marketplace, 135, 443 
Windows Phone application lifecycle and, 

119, 441–443 
AppResource.de-DE.resx file, 273 
AppResources.es-ES.resx file, 277 
AppResources.resx file, 272, 276 
App.xaml file, 163, 220 
ARCastMDISilverlightGridComputing_ch9.wmv 

file, 338 
ArgumentOutOfException, 97–98 

ArgumentOutOfRangeException, 97 
artwork page, 132 
asynchronous programming, 405, 428–429 
audio, 338–345 
authentication, 444 
Azure (Microsoft), 11, 36–37 
Azure Service environment, 63 
Azure tools, downloading, 51 

 B 
back button (Windows Phone emulator), 27 
background settings, 196 
ball, MoveBallDemo and, 151–157 
battery life, 217 

color white and, 197 
isolated storage and, 225 
multitasking and, 349 
push notifications and, 367, 403 

BeginInvoke method, 304 
BeginXXX/EndXXX methods, 435 
being pressed state, 209 
being unpressed state, 209 
best practices, for applicationlife cycle 

management, 228 
Bin/Debug/ folder, 466 
BindKeyList method, isolated storage and, 295 
BindToShellTile method 

(HttpNotificationChannel class), 372 
BindToShellToast method 

(HttpNotificationChannel class), 372 
Bing Maps, 11 

address plotting via, 316–323 
application key and, 307 
location plotting, 315 
registering with, 306 
SDK , installing, 306 
tracking movements via, 305–316 

Bing Maps Silverlight Control, 297, 308, 319–322 
BingMapDemo, 305–316 

coding, 312–315 
Start icon button for, 305, 315 
testing, 315 
user interface for, 310–312 

bin/Release/folder, 441–442 
Blend. See Microsoft Expression Blend for 

Windows Phone 
BlinkLocator storyboard, 310 
BoolToVisibilityConvert, Notepad phone sample 

application and, 70, 72–74 



  INDEX 

473 

BoolToVisibilityConvert.cs, 73 
btnAdd_Click function, 173 
btnConvert_Click method, 255 
btnCreateChannel_Click event, 377 
btnLoad_Click method, 188 
btnMediaPlayerLauncher button, 328 
btnMoreOptions_Click method, 255 
btnOk_Click method, 22 
btnQuit_Click function, 433 
btnRetry_Click function, 432 
btnSave_Click method, 188, 355 
btnSendNotification_Click event handler, 381, 

386 
btnUpgrade_Click method, 244 
btnUpload_Click method, 364 
BufferingTime property, 332 
button click event 

for accelerometer start/stop behavior, 117 
for Hello World sample application, 22 
illustrating internationalization, 267, 271, 275 

Button control, for TiltableTest project, 209 
button1_Click method, 183, 186 
buttons. See also icon buttons 

for Notepad phone sample application, 69, 
71–72 

PanoramaItem control and, 203 
Buttons property, 176 

 C 
C# 

Application Bar and, 167 
overview, 4–6 
Windows Phone Marketplace certification 

requirements and, 463 
CalculatorService web service project, 95, 100–

105 
Camera icon button, 349, 352, 355, 365 
Camera Roll location, 353, 355 
CameraCaptureTask chooser, 215, 229, 348 

Extras feature and, for invoking photos, 357 
saving photos and, 354 
taking photos and, 349, 351 

cameras, 347. See also photos 
Cancel button, upgrading to full version and, 242 
CanPause property (MediaPlayer class), 334 
CanPlay method, 335 
capability list, Windows Phone Marketplace and, 

465 

CaptureAccelerometerData demo, 144 
CaptureAccelerometerData project, 145–151 

coding, 148–150 
testing, 150 
user interface for, 145–148 

Car Browser (sample) application, 180–191 
CAs (certification authorities), 444, 446, 451 
CAS (Code Access Security), 464 
Catch method, Rx for .NET and, 430 
CatchDeviceException UI, 113 
CatchDeviceExceptionDemo project, 95, 112–

118 
coding, 116 
testing, 118 
user interface for, 114 

cell phone providers, 6 
cell phone tower triangulation, Windows Phone 

location services architecture and, 297–298 
Certificate authority error, 451 
certification authorities (CAs), 444, 446, 451 
certification requirements (Windows Phone 

Marketplace), 11, 121–126 
application behavior and, 463–465 
checking for latest version of, 121 
summarized, 125 

certification tests, for applications, 440 
Change Device Selection window, 33 
ChannelUri, 379 
Checkbox control, for TiltableTest project, 209 
CheckValue method, 104 
Choose Data Source window, 54 
ChoosePhoneNumberTaskCompleted method, 

216 
choosers, 213–218, 347–354 
Choosing the database objects, 56 
class libraries, Windows Phone Class Library 

template and, 17 
Close method (HttpNotificationChannel class), 

372 
cloud database, 37–63 

accessing, 50–63 
creating, 37–50 

cloud services, 11, 35–93 
cloud database access to, 50–63 
cloud database creation and, 37–50 
phone client access to, 64–93 
push notifications and, 369–373, 394–403 
SSL security and, 444 

Code Access Security (CAS), 464 
Collapse button, 171 



 INDEX 

474 

colors 
on Application Bar, 161–162 
gradient, for TextBox control, 31 
hard-coded, 200 
text foreground color and, 204 
themes and, 196 
white, 197, 200 

comic book reading, 159 
Compass, 5 
CompositionTarget.Rendering event, 333 
computational capacity, 405 
computer keyboard, enabling on emulator, 445 
concurrent programming, 405 
concurrent requests, Rx for .NET and, 434–437 
Connection Properties window, 55 
contacts/SMS application (sample), 216, 220–228 
Content Policies (Windows Phone Marketplace 

certification requirements), 123 
controls 

internationalization and, 262 
styling, 28–33 
themes changes and, 197 

<controls\:Panorama... element, 203–204 
<controls\:PanoramaItem... elements, 204 
Convert method, 74 
ConvertBack method, 74 
ConvertToString, 457 
cookies, security and, 191 
<Count Message>, 385 
CreateChannel method, 434, 437 
CreateDirectory method, 287 
CRUD operations, isolated storage and, 290 
cryptography, 444, 456 
CSS properties, display considerations and, 190 
culture codes, 265 
culture hierarchy 

.NET and, 266 
resource (.resx) files and, 272 

culture neutrality, 266 
culture settings on Windows Phone devices, 

storing/retrieving, 267–271 
CultureInfo( ) constructor, 271 
CultureInfo class, 262–271 
currency 

Currency Converter sample and, 248–260 
internationalization and, 261, 263, 266–267, 

271–277 
Currency Converter application (sample), 248–

260 
finishing touches for, 258 
page navigation for, 255 

testing, 259 
web service connection for, 253–255 

CurrentCulture property, 265, 267, 271 

 D 
Dark background setting, 196 
dark subfolder, 162 
data connection handling, Rx for .NET and, 430–

434 
data security, 453–459 
database tables, creating in SQL Azure database, 

48 
databases, 35 
Databases folder, 48 
DataContract, WCF service implementation and, 

59 
DataContract attributes, 59 
DataMember attributes, 59 
dates, internationalization and, 261, 263–266 
debugging, 95–118 

applications, 95–105 
best practices for, 25 
devices, 105, 118 
Hello World sample application, 23 
on Windows Phone, 105 

decimal separators, internationalization and, 262 
Decrypt method, 461 
Delete button, for Notepad phone sample 

application, 69, 72 
Delete icon button, 159, 165, 291, 296 
DeleteNote method 

NotepadViewModel and, 80 
SQL Azure database and, 61 

DeleteNoteCompleted, 79, 82 
deleting files, isolated storage and, 288 
Deployment screen, 89 
Deployment.Current.Dispatcher.BeginInvoke 

method, 144 
Deployment.Current.Dispatcher.BeginInvoke 

statement, 430 
description page, 131 
Design view window, 18 
DesiredAccuracy property 

(GeoCoordinateWatcher class), 298 
Development Fabric, 63, 83 
device exceptions, debugging, 112–118 
Device Selection window (Blend), 32 
devices. See Windows Phone devices 
Digital Camera, 5 



  INDEX 

475 

DirectX 9 hardware acceleration, 5 
disk icon. See Save icon button 
Dispatcher, 422 
DisplayName property, 265 
Dispose( ) method, 409 
distance, calculating, 142 
.dll file, 468 
documentation, 7, 10 
downloads 

Azure tools, 51 
progress of, for video files, 332 
Reflector.NET tool, 245 
TiltEffect.cs, 211 
tools, 7 
UI Design and Interaction Guide for 

Windows Phone 7, 193 
Windows Phone Marketplace certification 

requirements, 12, 121 
Zune software, 1, 105, 137 

DRM technology, 326 
dynamic content, WebBrowser control and, 186–

187 

 E 
E0F0E49A-3EB1-4970-B780-45DA41EC7C28.xml 

file, 360 
EasingFunction property, 341 
ellipse, drawing/displaying, 198–201 
ellipsis, on Application Bar, 159–160, 165, 174 
EmailAddressChooserTask chooser, 215, 229, 348 
EmailComposeTask launcher, 214, 348 
emulator 

enabling computer keyboard on, 445 
PhotoCapture sample application run in, 355, 

364 
themes changes and, 197 

Encrypt method, 460, 466, 469 
Encrypted Data textbox, 462 
encryption, 444, 453–459 
EndXXX method, 435 
Enterprise-level n-tier deployment scenario, 36 
Entity Data Model Wizard, 53, 55 
Entity Framework, 50 

benefits of, 38 
SQL Azure database interaction and, 52, 57–

63 
Entity model Notepad.edmx, 57 
ErrorHandlingDemo application, 95–105 

page load exceptions debugging and, 96–100 

testing/running, 105 
web service exceptions debugging and, 100–

105 
errors, 429. See also debugging 
ESRB rating, 123 
Euclidean distance algorithm, 142 
event announcement (sample), illustrating 

internationalization, 267, 271–277 
event handling 

Application Bar and, 169–176 
Rx for .NET and, 411–421 

events, applications and, 218 
exceptions 

application, debugging, 95–105 
device, handling, 112–118 
object values of, querying in Visual Studio, 97 
page load, debugging, 95–100 
smartphones and, 95 
unhandled, catching, 98 
web service, debugging, 100 

Execution Manager, 443 
Expand button, 172 
Expand Pane, 171 
Extensible Application Markup Language. See 

XAML 
Extras feature, for invoking photos, 357 
Extras.xml file, 357–358 

 F 
Facebook, integrating applications with, 229–237 

application logic, 231–237 
OAuth protocol, 229–230 
user interface for, 230–231 

FBLogin.xaml, 230–231, 237 
Field parameter, 360 
Finally method, Rx for .NET and, 430 
Finally statement, 436 
Find method (HttpNotificationChannel class), 

372 
firewall configuration, for SQL Azure database, 

43 
FlickrSearch (sample) application, 405, 411–421 

animation for, 416–421 
coding, 413 
enhanced via Throttle method, 414–416 
user interface for, 412 

FMRadio, 325 
fonts, Segoe WP, 194 
foreign languages. See internationalization 



 INDEX 

476 

Form1.cs file, 386, 392, 398 
Four-point multi-touch capable, 5 
Foursquare Labs social networking game, 159 
frame navigation, 206 
Free Trial button, 239 
FromEvent<T> method, 421 

 G 
gamer services, Windows Phone Marketplace 

capability list and, 465 
GamerYouCard, 229 
games, 2 

accelerometer and, 139, 142 
social networking, 159 
XAML and, 6 

Games hub (Start screen), 237 
geocode, 316 
GeocodeCompleted event, 321 
GeoCodeService (location service), 316–323 
GeoCoodinateWatcherDemo, 299–316 

coding, 302–304 
displaying the GPS data, 304 
testing, 304 
user interface for, 300 
using with Bing Maps, 305–316 

GeoCoordinateWatcher class, 298, 303, 306, 313 
GeoPositionChangedEventArgs, 303 
Get Image icon button, for 

IsolatedStorageStoreImageDemo, 280, 288 
GetGraphToken method, 234 
GetKeys method, 436 
GetNote method, 62 
GetNotes method, 62 
GetNotesCompleted, 79, 81 
GetRequestStreamCallback function, 362 
GetResponseCallback function, 364 
GetWeatherByZipCodeAsync, 428 
GetWeatherSubject function, 433 
glance and goexperience, 238 
global Application Bar, 159, 162–163 
globalization, 262. See also internationalization 
Globalizer.Net localization tool, 262 
glue code, Application Bar events and, 169, 174–

175 
GPS navigation, 5, 122. See also location services 

GPS receiver simulation and, 299–305 
Windows Phone location services 

architecture and, 297 
GPSPositionChangedEvents, 303 

gradient color, for TextBox control, 31 
Graphic.ly, 159 
<Grid> statement, 425 

 H 
hard-coded colors, 200 
Hardware controls: Back, Start, and Search 

buttons, 5 
hardware specifications, 4 
Hello World Windows Phone (sample 

application), 15–33 
customizing, 25–28 
finished user interface of, 33 
running, 23 
Silverlight controls for, 18–22 
styling controls for, 28–33 
user interface for, 20 

HelloWorldIcon.png, 26 
Help.htm file, 184, 190 
HMACSHA1encryption algorithm, 454–457 
HMACSHA256 encryption algorithm, 453–457 
HMACTest (sample) applications, 455–457 
HTML content, WebBrowser control and, 179, 

184–187 
httpChannel event handlers, 378 
httpChannel_ExceptionOccurred, 379 
httpChannel_HttpNotificationReceived event 

handler, 389 
HttpNotificationChannel class, 372, 377–378 
https:// and http://, security and, 191 
HttpWebRequest class, 381 
hubs, 4, 237 
Hyperlink control, for TiltableTest project, 209 
HyperText Markup Language. See HTML content 

 I 
icon buttons 

on Application Bar, 159, 162, 165 
Delete, 291, 296 
Get Image, for 

IsolatedStorageStoreImageDemo, 280, 
288 

MediaPlayerLauncher, 337 
Mute, 336 
Open Photo, 349, 353, 355 
Pause, 334 
Play, 335, 338, 344 
Save, 291, 295 



  INDEX 

477 

Save Photo, 349, 354–355 
Show on map, 319, 323 
Start, 305, 315 
Stop, 334 
Take Photo (Camera), 349, 352, 355, 365 
Upload, 361 

icons, shipped with Microsoft Expression Blend 
for Windows Phone, 349–350 

IIS (Internet Information Services), 446 
images 

for Application Bar icon buttons, 162 
background, for Panorama control, 204 
IsolatedStorageStoreImageDemo and, 280–

290 
Music and Video hub, certification and, 238 
tile background and, 368, 386 
Windows Phone Marketplace certification 

requirements and, 124 
Images folder, 162 
Immediate Window (Visual Studio), 97 
InitializeComponent( ) method, 167, 409, 413, 

426 
INotifyPropertyChanged interface, 76, 82 
interactive programming, vs. reactive 

programming, 406 
interfaces, Rx for .NET and, 405 
internationalization, 261–277 

event announcement sample illustrating, 
267, 271–277 

language validation/support for, 124 
localization tools and, 262 
resource (.resx) files for, 262–263, 271–277 

Internet Explorer 7, 179, 190 
Internet Explorer Mobile, 179, 190 
Internet Information Services. See IIS 
Invalid cross-thread access error message, 144, 

149 
InvalidCastException, 102 
invariant culture, .NET framework and, 266 
IObservable interface, 409 
IRegistrationService.cs file, 395 
IsMuted property (MediaElement class), 336 
ISO culture codes, 265 
isolated storage, 225, 279–297 

available space, checking for, 288 
cloud services and, 35 
isolated storage files, saving to/retrieving 

from, 280–290 
isolated storage files vs. isolated storage 

settings, 296 
sandboxing and, 453 

storage settings for, 290–297 
warning prompt window and, for deletions, 

288 
IsolatedFileStream class, 279 
IsolatedStorage.DeleteDirectory, 288 
IsolatedStorage.DeleteFile, 288 
IsolatedStorageFile class, 279, 288 
IsolatedStorageFileStream class, 287 
IsolatedStorageSettings class, 279, 290 
IsolatedStorageSettingsDemo, 290–297 

coding, 294–297 
Delete icon button for, 291, 296 
Save icon button for, 291, 295 
testing, 297 
user interface for, 292–294 

IsolatedStorageStoreImageDemo, 280–290 
coding, 286–290 
Get Image icon button for, 280, 288 
testing, 290 
user interface for, 282–285 

isSpaceAvailable helper method, 288 
IsTrial method, 239–241, 244–247, 256, 259 
IValueConverter interface, 73 

 K 
Key text box, for IsolatedStorageSettingsDemo, 

291, 296 
KeyDown event, 406 
KeyUp event, 413, 418, 435 

 L 
lambda expressions, 334, 406, 409–410, 414 
Landscape left screen orientation, 196 
Landscape orientation (Windows Phone) 

controls and, 18 
Hello World sample application and, 24 

language validation/support, 124 
language-integrated query (LINQ), 405 
languages. See internationalization; 

programming languages 
launchers, 213–218, 347–351, 353 
license key, for applications, 440 
LicenseInformation class, 239–248, 257 
light, 5 
Light background setting, 196 
Lingobit localization tool, 262 
links, PanoramaItem control and, 203 
LINQ (language-integrated query), 405 



 INDEX 

478 

Linq to Entity technique, 62 
Linq to Object technique, 80 
Listbox changed event, 

IsolatedStorageSettingsDemo and, 296 
ListBox control 

for NoteListUserControl (Notepad phone 
sample application), 68 

for TiltableTest project, 209 
LoadCurrencies method, 258 
loadingImages animation, 418 
local Application Bar, 159, 162, 164 
locale awareness. See internationalization 
localization, 262. See also internationalization 
location services, 122, 297–323 

APIs for, 298 
architecture of, 297 
enabling on devices, 298 
services comprising, 316 
simulating GPS receiver and, 299–305 
starting, 315 
tracking your movements, 305–316 
using Bing Maps and, 315–323 
Windows Phone Marketplace capability list 

and, 465 
locator control, 310 
lock and wipe feature, 439, 462 

 M 
m_fIsTrial, 259 
MAC codes, 454–457 
MainPage( ) method, 174, 181, 202, 216, 244, 255, 

270, 409, 413, 445 
MainPage class, 211, 254, 295, 391, 435 

Application Bar and, 168 
ArgumentOutOfException and, 98 
for Currency Converter sample application, 

248 
for MoveBallDemo, 153 
for Notepad phone sample application, 69, 71 
RootFrame_NavigationFailed method and, 

100 
MainPage.xaml file, 186, 258, 263, 355 
MainPage.xaml page, 458 
MainPage.xaml.cs, 22, 100, 208, 216, 227, 247, 

294, 358, 361, 418 
malicious software (malware) screening, 440 
managed code, Application Bar and, 167 
Map It option, 462 
MapLayer, 315 

Market Trial API, 119 
Marketplace for Windows Phone. See Windows 

Phone Marketplace 
MarketplaceDetailTask class, 242 
MarketplaceDetailTask launcher, 214 
MarketPlaceDetailTask launcher, 348 
MarketplaceHubTask launcher, 214 
MarketplaceReviewTask class, 242 
MarketplaceReviewTask launcher, 214 
MarketPlaceReviewTask launcher, 348 
MarketplaceSearchTask launcher, 214 
MarketPlaceSearchTask launcher, 348 
media, 325–345 

audio and, 338–345 
elapsed time and, 333 
formats supported by Windows Phone, 326 
updatingMediaTimeline variable, 332 
video and, 326–338 

Media Library, Windows Phone Marketplace 
capability list and, 465 

MediaElement class, 325 
MediaPlayerDemo and, 331, 334, 338 
RobotSoundDemo and, 338, 341 

MediaElement.Position, 337 
MediaHistory class, 238 
MediaHistoryItem class, 238 
MediaLibrary class, 354–355 
MediaPlayerDemo, 326–338 

coding, 331–338 
finished user interface of, 327 
testing, 338 
user interface for, 328–331 

MediaPlayerLauncher, 215, 229, 326, 337–338, 
348 

menu items (Application Bar), 159–160, 166,  
174 

menu system for Windows Phone 7. See 
Application Bar 

MenuItems property, 176 
message authentication codes (MACs), 454–457 
Metro phone design system, 4, 11, 193–212 
microphone, Windows Phone Marketplace 

capability list and, 465 
Microsoft Advertising service, 119, 122 
Microsoft Azure. See SQL Azure database; 

Windows Azure 
Microsoft Bing Maps, 95. See also Bing Maps 
Microsoft Exchange, self-signed SSL certificates 

and, 451 
Microsoft Expresion Blend 4, 9 



  INDEX 

479 

Microsoft Expression Blend for Windows Phone, 
8, 15, 349–350 
animation created via, 416–421 
styling controls with, 28–33 

Microsoft Intermediate Language (MSIL), 441, 
463 

Microsoft Location Service API, 122 
Microsoft Push Notification Service (MPNS), 

369–373, 381 
Microsoft Reactive Extensions (Rx.NET), 

Currency Converter sample and, 253 
Microsoft SQL Server Management Studio. See 

SQL Server Management Studio (Microsoft) 
Microsoft.Devices.Sensors namespace, 114, 116, 

144–145, 148, 155 
Microsoft.Maps.Control namespace, 

BingMapDemo and, 312 
Microsoft.Phone.Controls namespace, 69, 114 

AddressPlottingDemo and, 319 
MediaPlayerDemo and, 328 
MoveBallDemo and, 153 

Microsoft.Phone.Controls.Maps namespace, 
309–310, 317 

Microsoft.Phone.Marketplace.LicenseInformatio
n class, 240 

Microsoft.Phone.Notification namespace, 372, 
389 

Microsoft.Phone.Reactive, 231, 254, 299, 302, 
408, 410–411, 423 

Microsoft.Phone.Tasks namespace, 214, 242, 
259, 331 

Microsoft.Xna.Framework, 331, 344, 358 
Model-View-ViewModel (MVVM) design pattern, 

36, 203 
More Stuff page, 248, 250, 258 
MoreStuff.xaml, 251, 256 
MoveBallDemo (sample), 151–157 

coding, 155–157 
finished user interface of, 152 
testing, 157 
user interface for, 153 

movement, 139–143 
MovementThreshold property 

(GeoCoordinateWatcher class), 298 
MPNS (Microsoft Push Notification Service), 

369–373, 381 
MSIL (Microsoft Intermediate Language), 441, 

463 
ms-text-size-adjust property, text display 

considerations and, 190 
MultiplayerGameInvite, 229 

Music and Video hub (Start screen), 237–238 
Music hub, 4 
Must display at WVGA (800 x 480), 5 
Mute icon button, for MediaPlayerDemo, 336 
MVVM design pattern, 36, 203 

 N 
nag page, to prompt users to purchase full 

version, 250 
Navigate method (NavigationService class), 255 
Navigated event (WebBrowser control), 416, 419 
NavigateToString method (WebBrowser control), 

186, 191 
navigation failed exception, handling, 95–100 
navigation service, 122 
NavigationFailedEventArgs, 99 
NavigationService class, 207–208, 255 
NavigationService.Navigate method, 256 
NBC Olympics web site, 325 
NET Framework, 4, 6 

compact version of for Windows Phone 7, 272 
culture hierarchy and, 266 
internationalization and, 261–262 
object-oriented programming, Rx for .NET 

and, 406 
NET languages, Application Bar and, 167 
Netflix, 326 
network security, 444–453 
networking, Windows Phone Marketplace 

capability list and, 465 
neutral culture, .NET framework and, 266 
New Connection button, 54 
New Project dialog page, 16–17 
non-repudiation, application security and, 440 
Note database table, for Notepad phone sample 

application, 49, 57 
NoteDto.cs class, 59 
NoteListUserControl, 65, 67, 72 
Notepad phone application (sample) 

database for, 38–50 
deploying to Windows Phone Marketplace, 

126–137 
finished user interface of, 64 
NotepadViewModel as controller for, 69, 71, 

75–83 
phone client for, 64–93 
testing, 83, 92 
user interface for, 65–71 
WCF service for, 50–63 



 INDEX 

480 

NotepadDB, 48, 50. See also SQL Azure database 
Notepad.edmx, 56 
Notepad.NotepadServiceProxy namespace, 76 
NotepadService (sample), 38, 50–63 

creating, 51 
deploying to Windows Azure, 84–91 
event handlers for, 80 
implementing, 57–63 
Notepad phone sample application testing 

and, 83, 92 
testing, 63 

NotepadService WCF endpoint, 92 
NotepadService.cspkg, 88 
NotepadService.edmx, 52 
NotepadServiceProxy, 75 
NotepadServiceRole, 59 
NotepadViewModel, coding, 75–83 
Notepad.xap file, 128, 130 
Notification client (sample) application 

cloud services and, 394–403 
for raw notifications, 388–392 
testing, 382, 387, 393 
for tile notifications, 384 
for toast notifications, 373–380 
WCF service and, 400 

Notification server (sample) application 
cloud service push notification tracking and, 

394–399 
for raw notifications, 392 
testing, 382, 387, 393 
for tile notifications, 385–388 
for toast notifications, 380–384 

notifications. See push notifications 
NowPlaying property (MediaHistory class), 238 
numbers, internationalization and, 261, 263–266 
nvalidCastException, 103 

 O 
OAuth protocol, 229–230 
object values of exceptions, querying in Visual 

Studio, 97 
object-oriented programming 

Observer pattern and, 408 
Rx for .NET and, 405 

Observable collections, 299, 303, 408, 428, 432–
437 

Observable data source, 414–416, 420 
Observable objects, 299 
ObserveOn( ) method, 415–416, 422 

Observer pattern, implementing, 408–411 
Office hub (Start screen), 237 
OK button, for Hello World sample application, 

16, 21–22 
Olympics web site, 325 
OnBackKeyPress method 

(PhoneApplicationPage class), 224 
OnCompleted event handler, 409 
OnError event handler, 409, 429 
OnErrorResumeNext method, Rx for .NET and, 

430 
OnNavigatedFrom method, 223–224 
OnNavigatedTo event, 360 
OnNavigatedTo method, 223–224, 226 
OnNext event handler, 409 
Opacity property, Application Bar and, 166 
Open method (HttpNotificationChannel class), 

372 
Open Photo icon button, 349, 353, 355 
operating system, isolated storage and, 279 
orientation, 139–143 
Orientation property, 196 
Output window (Visual Studio), 221 

 P 
page load exceptions, debugging, 95–100 
page navigation 

controls for, 202–209 
Currency Converter sample and, 255 
passing parameters and, 208, 256 

Page1.xaml.cs, 208 
Panorama control, 193, 202–205 
PanoramaItem control, 203, 205 
PanoramaPage1.xaml, 203 
Pause icon button, for MediaPlayerDemo, 334 
PayloadFormat error, 372 
PayPal, 445 
PEGI rating, 123 
People hub (Start screen), 4, 202, 237 
Permission Denied error, 450 
persistence layer, for database interaction, 50, 52 
persistent state, 219, 222–226 
phone client, for accessing cloud service, 64–93 
Phone Feature Use Disclosure, 124 
PhoneApplicationFrame control, 206 
PhoneApplicationPage class, 207, 223, 226 
PhoneApplicationPage control, 206 
PhoneCallTask launcher, 215, 348 



  INDEX 

481 

PhoneNumberChooserTask chooser, 215–216, 
229, 348 

<phone:PhoneApplicationPage> node, 164 
PhotoCapture (sample) application, 349–365 

coding, 351 
save status message and, 354–355 
sharing photo and, 359–365 

PhotoChooserTask chooser, 215, 229, 348, 353, 
357 

PhotoChooserTaskCompleted method, 351 
photos, 347–366 

saving to phone, 354 
sharing, 347, 359–365 
Windows Phone 7 features and, 347–356 

Pictures hub (Start screen), 237, 361 
Pictures Library location, 353, 355 
pitch, calculating, 142 
Pitch and roll angles, 143 
Pivot control, 193, 202, 205–206 
PivotItem control, 206 
Place Phone Calls, Windows Phone Marketplace 

capability list and, 465 
Play icon button 

for MediaPlayerDemo, 335 
for RobotSoundDemo, 338, 344 

Play method (MediaElement class), 335 
*.png files, 162 
PNS (Push Notification Service), 11, 123 
Portrait orientation (Windows Phone), controls 

and, 18 
Portrait screen orientation, 196 
Position property (MediaElement class), 336 
PositionChanged event (GeoCoordinateWatcher 

class), 298, 303, 313–314 
pressed state, 209 
programming languages, 4 
ProjectName.xap file, 441 
projects, creating in Visual Studio, 16 
Properties folder, 238 
Properties window (Visual Studio Toolbox), 

displaying, 20 
Push Notification Service (PNS), 11, 123 
push notifications, 367–404 

architecture of, 369–373 
free push notifications and, 403 
life cycle of, 371 
sending, 380–388, 392 
tracking, 394–403 
types of, 367, 369 
verifying delivery of, 382, 387, 393 

Windows Phone Marketplace capability list 
and, 465 

pushpin, location services and, 310, 323 

 Q 
Query object value, 98 
Quick Launch area. See Start screen 

 R 
Radialix localization tool, 262 
Range method, 409 
raw notifications, 369, 388–394 
Reactive Extensions for .NET (Rx for .NET), 9, 

405–437 
Currency Converter sample and, 253 
data connection handling and, 430–434 
error handling in, 429 
event handling and, 411–421 
GeoCoodinateWatcherDemo and, 299–304 
multiple concurrent requests and, 434–437 
objective of, 408 

reactive programming, 406 
ReadingChanged event, accelerometer and, 144, 

149 
Red Gate's Reflector.NET tool, 245 
Reference.cs, 103 
References folder, 75, 114, 145, 318 
Reflector.NET tool, 245 
Register button, 67 
Register method, 397, 402 
RegistrationService class, 397, 402 
RegistrationService.cs file, 396–397 
remote lock and wipe feature, 439, 462 
Remove method (IsolatedStorageFile class), 

caution with, 288 
renaming, applications, 25 
resource (.resx) files, 262–263, 271–277 
ResourceManager class, 277 
resources for further reading 

deleting files, isolated storage and, 288 
DRM technology, 326 
FMRadio, 325 
internationalization, 261, 265 
LINQ, 405 
Metro phone design system, 11 
Observer pattern, 408 
Pivot control, 206 
Windows Phone devices, 6 



 INDEX 

482 

Resources.MergedDictionaries, 196 
RESTful, WCF service and, 394, 400 
RESTful API, TwitPic photo-sharing service, 361–

362 
resx (resource) files, 262–263, 271–277 
Retry method, Rx for .NET and, 430–431 
Rfc2898DeriveBytes encryption algorithm, 453–

454, 458–459 
Rfc2898DerivedBytes class, 460 
Ring It option, 462 
RobotSoundDemo, 338–345 

coding, 343 
testing, 345 
user interface for, 340–343 

Robot.xaml, 340 
rolls, calculating, 142 
RootFrame_NavigationFailed method, 98–100 
rotate control (Windows Phone emulator), 24 
RouteService (location service), 316 
Rx for .NET. See Reactive Extensions for .NET 
RxSample application, 408–411 

 S 
salt key, encryption and, 454, 458–459 
samples 

AddressPlottingDemo, 317–323 
AESEncryption application, 458–459 
airport application, 202–207 
Application Bars, 162–169 
BingMapDemo, 305–316 
CalculatorService web service project, 95, 

100–105 
CaptureAccelerometerData project, 145– 

151 
Car Browser application, 180–191 
CatchDeviceExceptionDemo project, 112–

118 
contacts/SMS application, 216, 220–228 
Currency Converter, 248 
Currency converter, 260 
ErrorHandlingDemo, 95–105 
event announcement, illustrating 

internationalization, 267, 271–277 
FlickrSearch application, 405, 411–421 
GeoCoodinateWatcherDemo, 299–316 
Hello World, 15–33 
HMACTest application, 455–457 
IsolatedStorageSettingsDemo, 290–297 
IsolatedStorageStoreImageDemo, 280–290 

MediaPlayerDemo, 326–338 
MoveBallDemo, 151–157 
Notepad phone application, 36, 38–93 
Notification client application, 373–380, 384, 

388–392, 400 
Notification server application, 380–388, 392, 

394–399 
PhotoCapture application, 349–365 
RobotSoundDemo, 338–345 
RxSample application, 408–411 
SSLConnection application, 445 
TrialSample application, 241–247 
Weather App, 405, 423–437 

SAN networks, 36 
sandboxing, 213, 347, 443, 453, 464 
Save icon button, 159, 165, 170, 174, 291, 295 
Save Photo icon button, 349, 354–355 
Saved Pictures location, 353–355 
SaveEmailAddressTask chooser, 348 
SaveEmailAddressTask launcher, 215 
SaveHelpFileToIsoStore method, 184–185 
SaveNote method 

Notepad phone sample application and, 71 
NotepadViewModel and, 80 

SavePhoneNumberTask chooser, 348 
SavePhoneNumberTask launcher, 215 
SavePicture method (MediaLibrary class), 354–

355 
SaveString method, 225 
SaveStringToIsoStore method, 189 
SaveToString method, 187, 189, 191 
saving data. See isolated storage 
Scheduler class, 422 
screen orientations, 196 
screenshots, Windows Phone Marketplace 

certification requirements and, 124 
scripting, security and, 191 
scrolling, Panorama control and, 202–205 
search functionality, airport sample application 

and, 203 
Searchservice (location service), 316 
SearchTask launcher, 215, 348 
secret key, encryption and, 454 
Secure Sockets Layer (SSL), 444–453 
security, 439–470 

application security and, 439–444 
data security and, 453–459 
device physical security and, 462 
network security and, 444–453 
remote lock and wipe feature and, 439, 

 462 



  INDEX 

483 

web content loading and, 191 
Windows Phone Marketplace certification 

requirements and, 126 
security-critical code, 465 
security-safe-critical code, 465 
Segoe WP font, 194 
self-hosted services, 394 
self-signed SSL certificates, 446–453 
sendPushNotificationToClient function, 399 
sensors, Windows Phone Marketplace capability 

list and, 465 
service contract, RESTful WCF service and, 395 
Service References folder, 319 
Service1.svc.cs, 60 
ServiceConfiguration.cscfg, 88 
ServiceReferences.ClientConfig, 92 
Session variable, 224 
SetupChannel function, 377, 389 
SetView method, location services and, 315 
SHA1 encryption algorithm, 453–454 
SHA256 encryption algorithm, 453–454 
Share option, for sharing photos, 356, 359–365 
SharePoint, integrating applications with, 239 
ShellToastNotificationReceived event, 378 
Show method, Windows Phone Marketplace 

application and, 242 
Show on map icon button, for 

AddressPlottingDemo, 319, 323 
ShowEventDetails( ) function, 270–271, 275 
Silverlight controls 

for Hello World sample application, 18–22 
styling, Microsoft Expression Blend for 

Windows Phone for, 28 
WebBrowser control and, 179 

Silverlight for Windows Phone, 15 
SimulateGPS method, 303 
Single Photo Viewer (SPV), 357 
Slider control, for MediaPlayerDemo, 328, 332, 

336 
smartphones, 1, 95 
SMS application (sample), 216, 220–228 
SmsComposeTask launcher, 215–216, 348 
social networking games, 159 
sound. See audio 
sound18.wma, 341 
specific culture, .NET framework and, 266 
SplashScreenImage.jpg file, 272 
SPV (Single Photo Viewer), 357 
SQL Azure Add Firewall Rule screen, 45 
SQL Azure Create Database screen, 43 
SQL Azure Create Server screen, 41 

SQL Azure database, 37 
accessing, 52–57 
creating, 37–50 
database tables created in, 48 
entering username/password for, 40 
firewall configuration and, 43 
Notepad phone sample application testing 

and, 83 
SQL Server Management Studio and, 47 
testing, 45 
WCF service for, 57–63 

SQL Azure Database Connectivity Test, 46 
SQL Azure main screen, 39 
SQL Azure Server Administration screen, 42 
SQL Azure service account 

logging in to, 39 
signing up for, 38, 84 

SQL Azure Terms of Use screen, 40 
SQL AzureFirewall settings, 44 
SQL Server Management Studio (Microsoft), 47, 

83 
SQL Server Management Studio Object Explorer, 

48 
SquarePtrParam function, 463 
SSL (Secure Sockets Layer), 444–453 
SSLConnection (sample) application, 445 
Start button (hardware), 218 
Start icon button, for BingMapDemo, 305, 315 
Start screen, 237 

People hub on, 202 
shown in Portrait orientation, 196 
tile notifications and, 368, 388 

State dictionary object, 218, 224, 227 
states, managing, 223–228 
StatusChanged event (GeoCoordinateWatcher 

class), 298, 314 
stock alerts, Notification client sample 

application and, 367–371, 394 
Stop icon button, for MediaPlayerDemo, 334 
Stop method, 334, 419 
storage, 35. See also isolated storage 
storage area networks (SAN networks), 36 
streaming media. See media 
StreamReader, 296 
StreamWriter, 287, 296 
subculture codes, 265 
Subject object, Observer pattern and, 408–409 
submit page, 134 
Subscribe( ) method, 410 
Subscribe method (IObservable interface), 409 
SubscribeOn( ) method, 422 



 INDEX 

484 

subscribers variable, 397 
<SuportedCultures> element, 276 
support, 10 
Support data connections: cellular network and 

Wi-Fi, 5 
<SupportedCultures> node, 275 
_svc variable, 321 
svcCurrencyConverter, 254 
Switch method, Rx for .NET and, 434–435 
System Tray 

PhoneApplicationFrame control and, 206 
screen orientations and, 196 
Windows Phone Chrome and, 194 

System.ComponentModel namespace, 76 
System.Device, 299, 302, 309, 312, 317 
System.IO namespace, 286 
System.IO.IsolatedStorage namespace, 279, 286, 

294 
System.IO.Path.Combine, 288 
System.Linq, 76, 321 
System.Observable namespace, 231, 254, 408, 

411 
System.Runtime.Serialization, 59 
<system.ServiceModel> element, 397 
<system.ServiceModel> section, 402 
System.ServiceModel.Web, 395 
System.Threading namespace, 302 
System.Windows.Controls, 124 
System.Windows.Media.Imaging, 358 
System.Windows.Navigation, 360 

 T 
tabbed pages, 202 
Take Photo icon button, 349, 352, 355, 365 
TakeUntil method, Rx for .NET and, 434 
technical support information, 126 
templates, 17 
testing 

AddressPlottingDemo, 323 
BingMapDemo, 315 
CaptureAccelerometerData project, 150 
CatchDeviceExceptionDemo project, 118 
ErrorHandlingDemo sample application, 105 
exception handling and, 95 
GeoCoodinateWatcherDemo, 304 
IsolatedStorageSettingsDemo, 297 
IsolatedStorageStoreImageDemo, 290 
location-aware applications, via GPS 

simulation, 299–305 

MediaPlayerDemo, 338 
MoveBallDemo, 157 
Notepad phone sample application, 83, 92 
NotepadService sample, 63 
RobotSoundDemo, 345 
self-signed SSL certificates, 450 
SQL Azure database connection, 45 
trial/full applications, 245–248, 257 

text 
display considerations and, 190 
internationalization and, 261, 263–266 
text foreground color, Panorama control and, 

204 
TextBlock 

for AddressPlottingDemo, 319, 323 
for Application Bar, 170–174 
for GeoCoodinateWatcherDemo, 301 
for Hello World sample application, 18, 21 
for NoteListUserControl (Notepad phone 

sample application), 68 
PanoramaItem control and, 203 
for UserRegistrationUserControl (Notepad 

phone sample application), 67 
TextBox control, for Hello World Windows 

sample application, 20, 30 
TextboxText.dat, 227 
themes 

applying, 197 
changing, 199 
configuring, 196 
currently selected, detecting, 201 
text foreground color, Panorama control and, 

204 
theme awareness and, 197–201 
theme resources and, 201 

Theming application UI layout, 199 
There were deployment errors. Continue? error 

message, 111 
third-party plug-ins, security and, 191 
Throttle method, FlickrSearch sample 

application and, 414–416 
tile counter, 369 
tile notifications, 368, 370, 384–388 

sending, 385–388 
verifying delivery of, 387 

tile title, 369 
TilePushXML variable, 400 
tilt effect, 142, 209–211 
TiltableTest namespace, 211 
TiltableTest UI layout, 210 
TiltEffect.cs, 211 



  INDEX 

485 

timeline animations, 417 
time-out, disabling on Windows Phone devices, 

111 
timeout feature, 430 
tips and tricks, debugging on Windows Phone 

devices, 111 
TitlEffect.cs, 211 
toast notifications, 367, 373–384 

sending, 380–384 
verifying delivery of, 382 

ToggleEventLocale( ) function, 271, 276 
tombstoning, 218 

launchers/choosers and, 229, 349 
PhoneApplicationPage class and, 223 

Toolbox, 375 
tools, 7 
ToString method, internationalization and, 263 
touch gestures, 202 
transition effects, 209–211 
transparent code, 464 
Transparent Security model, 464 
trash can icon (Application Bar), 159, 165 
trial applications, 239–260 

building, 248–260 
changing to full version, 242 
Free Trial button and, 239 
full version and, 239, 252–259 
nag page, to prompt users to purchase full 

version, 250 
testing, 245–248, 257 

TrialSample application (sample), 241–247 
triggers, applications and, 218 
try-catch-finally block, 99 
TryStart method (GeoCoordinateWatcher class), 

298, 315 
tutorials, 7 
TwitPic photo-sharing service, 347, 359–365 
Twitter 

photo-sharing and, 359 
push notifications and, 403 

Twitter feeds, WebBrowser control and, 179 
type-safe code, Windows Phone Marketplace 

certification requirements and, 126 

 U 
<uc:Robot x:Name="ucRobot" …>, 340 
UFC (Ultimate Fighting Championship), 325 
UI. See user interface 

UI Design and Interaction Guide for Windows 
Phone 7, 193 

Ultimate Fighting Championship (UFC), 325 
UnbindToShellTile method 

(HttpNotificationChannel class), 372 
UnbindToShellToast method 

(HttpNotificationChannel class), 372 
unpressed state, 209 
unsafe code, 463 
UpdateNote method 

NotepadViewModel and, 80 
SQL Azure database and, 61 

UpdateNoteCompleted, 79, 81 
updatingMediaTimeline variable, 332 
updating/redeploying applications at Windows 

Phone Marketplace, 135 
Upgrade to Full Version button, 242 
Upgrade.xaml, 250, 257, 259 
Upload icon button, 361 
UploadPhoto method, 364 
<URI to Image> element, 385 
URL communication piece, for push 

notifications 
automated, 394–403 
for raw notifications, manually, 389 
for tile notifications, manually, 384, 387 
for toast notifications, manually, 374, 383 

User database table, for Notepad phone sample 
application, 49, 57 

user experience 
Metro phone design principles and, 193 
themes and, 196 
tilt effect and, 209 

user interface 
for AddressPlottingDemo, 319 
for BingMapDemo, user interface, 310–312 
for CaptureAccelerometerData project for, 

145–148 
for CatchDeviceExceptionDemo project, 114 
for contacts/SMS sample application, 216, 

220 
creating, 197 
for Currency Converter sample application, 

248–252 
for FlickrSearch sample application, 412 
forRobotSoundDemo, 340–343 
for GeoCoodinateWatcherDemo, 300 
for Hello World sample application, 20 
internationalization and, 262 



 INDEX 

486 

user interface (cont.) 
for IsolatedStorageSettingsDemo, 292–294 
for IsolatedStorageStoreImageDemo, 282–

285 
for MediaPlayerDemo, 328–331 
Metro design system for, 193–212 
for MoveBallDemo, 153 
for NavigationTest project, 207 
for Notepad phone sample application, 65–

71 
for TiltableTest project, 209 
for Weather App sample, 432–434 
for Weather App sample and, 425 

UserName label, for 
UserRegistrationUserControl (Notepad phone 
sample application), 67 

UserRegistrationUserControl, 65–66 
using statements, 361 
USK rating, 123 

 V 
Value text box, for IsolatedStorageSettingsDemo, 

291, 296 
VeriSign, 444 
video, 326–338 
View/Edit button, for Notepad phone sample 

application, 69, 72 
viewport, Internet Explorer Mobile and, 190 
virtual storage, 279 
Visibility property, themes and, 202 
Visual Basic, 4, 6 
Visual Studio 

.xap/.zap files and, 121, 123 
AddressPlottingDemo created in, 317 
AESEncryption sample application created 

in, 458 
application manifest file and, 124 
ApplicationBarSample created in, 162 
BingMapDemo created in, 308 
CaptureAccelerometerData project created 

in, 145 
contacts application created in, 216 
CurrencyConversion project created in, 248 
debugging applications, best practices for, 25 
debugging page load exceptions in, 96–100 
FlickrSearch sample application created in, 

411 
GeoCoodinateWatcherDemo created in, 299 
glue code and, 169 

Hello World sample application created in, 
16–18 

HMACTest sample application created in, 
455 

Immediate Window of, 97 
InternationalizationSample created in, 263 
IsolatedStorageSettingsDemo created in, 291 
IsolatedStorageStoreImageDemo created in, 

282 
MediaPlayerDemo created in, 327 
MoveBallDemo created in, 152 
NavigationTest project created in, 207 
Notepad phone sample application created 

in, 64 
NotepadService sample project created in, 51 
Notification client sample application 

created in, 375 
Notification server sample application 

created in, 381 
Output window of, 221 
packaging applications in, 126 
Panorama project created in, 203 
PhotoCapture (sample) application created 

in, 349 
projects, creating in, 16 
RESTful WCF service and, 394 
RobotSoundDemo created in, 339 
RxSample application created in, 408 
styling controls and, 28 
TiltableTest project created in, 209 
TrialSample project created in, 241 
unsafe code and, 463 
Weather App sample created in, 423 
WebBrowserSample created in, 180 
worker function and, 169 
WP7LaunchParty project created in, 268 

Visual Studio 2010, 7, 15 
Visual Studio command menu, 64 
Visual Studio Design View tab, 293 
Visual Studio Toolbox, 19–20 
vm_web.exe. See Windows Phone developer 

tools 

 W 
warning prompt window, for deletions in 

isolated storage, 288 
Warning screen, 90 
WCF Azure service, 87 



  INDEX 

487 

WCF service 
accessing SQL Azure database via, 57 
for accessing SQL Azure database via, 63 
accessing SQL Azure database via, 63 
contract for, 57 
for Notepad phone sample application, 50–

63 
for push notification tracking, 394–403 

WCF Service Web Role, 52 
Weather App (sample) application, 405, 423–437 

coding, 426–429, 432–434 
handling multiple concurrent requests and, 

434–437 
revising to manage slow connections, 432–

434 
user interface for, 425, 432–434 

WeatherForecastSoap service, 424 
WeatherRx application, 429 
web browser, Windows Phone Marketplace 

capability list and, 465 
web pages 

browsing, 179–192 
saving locally, 187 

web service calls, security and, 191 
web services, 35 

Currency Converter sample and, 248, 253–
255 

debugging, 95, 100–105 
Microsoft Bing Maps services and, 95 
push notifications and, 369–373 
Weather App sample and, 423–437 

WebBrowser control, 179–192 
adding to applications, 180 
displaying content via, 181–187 
FlickrSearch sample application and, 411–

414, 419 
Navigated event and, 416, 419 
security and, 191 

webBrowser1_Loaded( ) function, 182 
WebBrowserTask launcher, 215, 220, 223, 348 
WebClient.OpenReadCompleted event, 286 
webkit-text-size-adjust property, text display 

considerations and, 191 
white color 

battery life and, 197 
white controls/backgrounds and, 200 

Wi-Fi, Windows Phone location services 
architecture and, 297–298 

Windows Azure, 91 
NotepadService sample deployed to, 84–91 
NotepadService testing and, 92 

Windows Azure AppFabric, 37 
Windows Azure Cloud Service project, 51 
Windows Communication Foundation. See also 

WCF service 
Windows Forms application, WCF service and, 

373, 394, 397 
Windows Phone 7 

application manifest file and, 124 
building applications. See applications 
development life cycle and, 11 
hubs and, 237 
integrating applications with, 213–239, 356–

365 
Internet Explorer Mobile and, 179, 190 
Phone Feature Use Disclosure and, 124 
preparing your machine for development,  

15 
Windows Phone Platform and, 6–11 

Windows Phone application binary files (.xap 
files), 121 

Windows Phone Application project, 65 
Windows Phone Application template, 17 
Windows Phone applications, 3 
Windows Phone Chrome, 194 
Windows Phone Class Library template, 17 
Windows Phone controls, 20 
Windows Phone Design surface (Visual Studio), 

20 
Windows Phone developer portal, 119, 121, 128 
Windows Phone developer registration, 108 
Windows Phone developer tools (vm_web.exe), 

15, 193 
Windows Phone devices, 4 

camera and, 347 
certification authorities pre-installed on,  

444 
culture settings on, storing/retrieving, 267–

271 
data security and, 453–459 
debugging on, 105–118 
debugging tips and tricks, 111 
enabling location services on, 298 
installing self-signed SSL certificates on,  

453 
isolated storage on, 279–297 
photos, saving to, 354 
physical security on, 462 
registering for debugging, 108 
remote lock and wipe feature and, 439, 462 
screen orientations of, 196 
Segoe WP system font and, 194 



 INDEX 

488 

Windows Phone emulator, 9–10, 15 
applications installed on, displaying, 27 
back button on, 27 
best practices for, 25 
Hello World sample application, running in, 

23 
rotate control on, 24 

Windows Phone List Application template, 17 
Windows Phone Marketplace 

APIs and, 242 
application lifecycle and, 119, 441–443 
application security and, 439 
capability list and, 465 
certification requirements of, 11, 121–126, 

463–465 
deploying your first app to, 126–138 
full/trial applications and, 239–244, 259 
locating apps in, 137 
overview, 1–2 
registering with, 12, 120, 442 
viewing app ratings/comments, 137 
ways to distribute/sell your applications, 119 

Windows Phone Notifications (WPN), 367. See 
also push notifications 

Windows Phone page, 110 
WiredUpKeyEvents( ) function, 436 
Wireless Markup Language (WML), 179 
WireUpEvents( ) function, 430 
WireUpKeyEvents function, 431, 436 
WireUpWeatherEvents function, 427, 430, 433 
WMAppManifest.xml file, 238 
WMAppPRHeader.xml, 442 
WML (Wireless Markup Language), 179 

worker function, Application Bar events and, 
169, 176 

wp7cert.cer file, 453 
WP7LaunchParty.csproj file, 275 
WPN (Windows Phone Notifications), 367. See 

also push notifications 
WriteAcquiredItem (MediaHistory class), 238 
WriteRecentPlay (MediaHistory class), 238 

 X 
XAML 

Application Bar event handling and, 175 
Silverlight and, 6 

xap files, 121, 123, 441–443, 466–468 
Xbox LIVE services, 11 
xmlns:uc="clr-namespace:RobotSoundDemo", 

340 
XNA, 4, 7, 15, 354 
X-NotificationClass header, 372, 382 
X-WindowsPhone-Target header, 382 

 Y 
[your project folder]\bin\release, 128 
YouTube, 325 

 Z 
zap files, 121 
zoomLevel property, location services and, 315 
Zune software, 1, 105–108, 118, 137, 347 



 

Beginning Windows Phone 
7 Development 

 
Second Edition 

 
 

 

 

 

 

 

 

   

Henry Lee and 
Eugene Chuvyrov 
                                               



Beginning Windows Phone 7 Development, Second Edition  

Copyright © 2011 by Henry Lee & Eugene Chuvyrov  

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher. 

ISBN-13 (pbk): 978-1-4302-3596-5  

ISBN-13 (electronic): 978-1-4302-3597-2 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol 
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of 
the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights. 

President and Publisher: Paul Manning 
Lead Editor: Ewan Buckingham 
Development Editor: James Markham 
Technical Reviewer: Fabio Claudio Ferracchiati  
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick, 

Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Duncan Parkes, Jeffrey 
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt 
Wade, Tom Welsh 

Coordinating Editor: Jennifer L. Blackwell 
Copy Editor: Mary Behr  
Compositor: Bytheway Publishing Services 
Indexer: BIM Indexing & Proofreading Services 
Artist: April Milne 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our 
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales. 

The information in this book is distributed on an “as is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have 
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused 
directly or indirectly by the information contained in this work.  

The source code for this book is available to readers at www.apress.com. 

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com


To Erica, my beautiful wife, for her love and support. Thank you for always being there for me.  

        —Henry Lee  

 

To Marianna—my friend, my wife, my muse—and to my parents for their gift of unconditional love.  

        —Eugene Chuvyrov  
 

 



v 

Contents 

 About the Authors................................................................................................ xiii 
 About the Technical Reviewer ............................................................................. xiv 
 Acknowledgments ................................................................................................ xv 
 Introduction ......................................................................................................... xvi 
 Chapter 1: Introducing Windows Phone 7 and the Windows Phone Platform ........1 

Windows Phone Overview .................................................................................................4 
Windows Phone Hardware Specifications .........................................................................4 

Windows Phone Application Platform................................................................................6 
Silverlight for Windows Phone.................................................................................................................. 6 
XNA for Windows Phone........................................................................................................................... 7 
Tools ......................................................................................................................................................... 7 
Cloud Services........................................................................................................................................ 11 
Metro Design .......................................................................................................................................... 11 

Application Development Life Cycle ................................................................................11 

Summary .........................................................................................................................13 

 Chapter 2: Building Windows Phone 7 Applications.............................................15 

Preparing Your Development Machine ............................................................................15 

Building Your First Windows Phone 7 Application ...........................................................15 
Creating a Windows Phone Project ........................................................................................................ 16 
Using Your First Windows Phone Silverlight Controls ............................................................................ 18 
Writing Your First Windows Phone Code ................................................................................................ 22 
Running Your First Silverlight Windows Phone Application.................................................................... 23 



 CONTENTS 

vi 

Customizing Your First Windows Phone Application .............................................................................. 25 
Styling Your Application ......................................................................................................................... 28 

Summary .........................................................................................................................33 

 Chapter 3: Building Windows Phone 7 Applications Using Cloud Services  As 
Data Stores ...............................................................................................................35 

Introducing the MVVM Pattern.........................................................................................36 

Introducing Microsoft Azure and SQL Azure ....................................................................37 
Creating a Cloud Database ..............................................................................................37 

The Entity Framework ............................................................................................................................ 38 
Creating an SQL Azure Database............................................................................................................ 38 
Creating a Database in SQL Azure.......................................................................................................... 46 

Creating a Cloud Service to Access the Cloud Database.................................................50 
Creating a Windows Azure Project ......................................................................................................... 51 
Generating an Object Model to Access the Cloud Database................................................................... 52 
Implementing a WCF Service to Access the SQL Azure Database.......................................................... 57 

Building a Phone Client to Access a Cloud Service .........................................................64 
Creating a Windows Phone Project ........................................................................................................ 64 
Building the User Interface ..................................................................................................................... 65 
Coding MainPage.................................................................................................................................... 71 
Coding the BoolToVisibilityConvert ......................................................................................................... 72 
Adding Reference to NotepadService..................................................................................................... 74 
Coding NotepadViewModel..................................................................................................................... 75 
Testing the Application Against NotepadService Deployed Locally........................................................ 83 
Deploying the Service to Windows Azure............................................................................................... 84 
Testing the Notepad Application Against NotepadService  Azure Service ............................................. 92 

Summary .........................................................................................................................93 



 CONTENTS 

vii 

 Chapter 4: Catching and Debugging Errors ..........................................................95 

Debugging Application Exceptions ..................................................................................95 
Debugging Page Load Exceptions .......................................................................................................... 96 
Debugging a Web Service Exception.................................................................................................... 100 
Testing the Application......................................................................................................................... 105 

Registering a Windows Phone Device for Debugging....................................................105 
Handling Device Exceptions ..........................................................................................112 

Creating the CatchDeviceExceptionDemo Project ................................................................................ 113 
Building the User Interface ................................................................................................................... 114 
Coding the Application.......................................................................................................................... 116 
Testing the Finished Application .......................................................................................................... 118 

Summary .......................................................................................................................118 

 Chapter 5: Packaging, Publishing, and Managing Applications .........................119 

Windows Phone Application Publishing Lifecycle .........................................................119 

Windows Phone Application Certification Requirements...............................................121 
Application Policies .............................................................................................................................. 121 
Content Policies.................................................................................................................................... 123 
Application Submission Validation Requirements ................................................................................ 123 
Application Certification Requirements ................................................................................................ 125 

Submitting Your First Windows Phone Application to the Windows Phone  
Marketplace...................................................................................................................126 

Packaging the Application .................................................................................................................... 126 
Submitting the Application ................................................................................................................... 128 
Updating Your Application .................................................................................................................... 135 
Finding Your Application in the Marketplace........................................................................................ 137 

Summary .......................................................................................................................138 



 CONTENTS 

viii 

 Chapter 6: Working with the Accelerometer.......................................................139 

Understanding Orientation and Movement ....................................................................139 
Calculating Distance............................................................................................................................. 142 
Calculating Pitch, Roll, and Yaw........................................................................................................... 142 

Introducing SDK Support for Accelerometers................................................................144 

Retrieving Accelerometer Data......................................................................................144 
Creating the CaptureAccelerometerData Project.................................................................................. 145 
Building the User Interface ................................................................................................................... 145 
Coding the Application.......................................................................................................................... 148 
Testing the Finished Application .......................................................................................................... 150 

Using Accelerometer Data to Move a Ball .....................................................................151 
Creating the MoveBall Project .............................................................................................................. 152 
Building the User Interface ................................................................................................................... 153 
Coding the Application.......................................................................................................................... 155 
Testing the Finished Application .......................................................................................................... 157 

Summary .......................................................................................................................157 

 Chapter 7: Application Bar..................................................................................159 

Introducing the Application Bar .....................................................................................160 
Adding an Application Bar to a Windows Phone 7 Application ......................................162 

Adding Images for Use with Application Bar Buttons ........................................................................... 162 
Adding a Global Application Bar Using XAML ....................................................................................... 163 
Adding a Local Application Bar Using XAML......................................................................................... 164 
Adding Menu Items............................................................................................................................... 166 
Adding an Application Bar Using Managed Code ................................................................................. 167 

Wiring Up Events to an Application Bar .........................................................................169 
Adding Glue Code and a Worker Function to the Add Button ............................................................... 169 
Reacting to Add Button Events ............................................................................................................. 170 



 CONTENTS 

ix 

Reacting to Save Button Events . ......................................................................................................... 174 
Reacting to Menu Events. .................................................................................................................... 174 
Adding Event Handlers with XAML . ..................................................................................................... 175 
Using the ApplicationBar class to glue XAML and Managed Code . ..................................................... 176 

Summary . ......................................................................................................................177 

 Chapter 8: WebBrowser Control .........................................................................179 

Introducing the WebBrowser Control. ............................................................................179 
Adding a WebBrowser Control . ......................................................................................180 
Using a WebBrowser Control to Display Web Content . ..................................................181 
Using a WebBrowser Control to Display Local HTML Content . ......................................184 
Using a WebBrowser Control to Display Dynamic Content . ...........................................186 
Saving Web Pages Locally .............................................................................................187 
Choosing Display and Security Settings . .......................................................................190 
Viewport. ........................................................................................................................190 

CSS . ..................................................................................................................................................... 190 
Security . .............................................................................................................................................. 191 

Summary . ......................................................................................................................192 

 Chapter 9: Working with Controls and Themes ...................................................193 

Introducing the Metro Design System . ..........................................................................193 
Windows Phone Chrome. ..................................................................................................................... 194 
Screen Orientations . ............................................................................................................................ 196 

Themes on Windows Phone 7 Devices . .........................................................................196 
Applying a Theme. ............................................................................................................................... 197 
Changing the Theme. ........................................................................................................................... 199 
Detecting the Currently Selected Theme. ............................................................................................ 201 



 CONTENTS 

x 

Panorama and Pivot Controls ........................................................................................202 
Using the Panorama Control................................................................................................................. 202 
Using the Pivot Control ......................................................................................................................... 206 

Understanding Frame and Page Navigation ..................................................................206 
Creating a User Interface for NavigationTest Project ........................................................................... 207 
Adding Navigation Code ....................................................................................................................... 208 
Adding Code to Pass Parameters Between Pages................................................................................ 208 

Adding Transition Effects...............................................................................................209 
Creating a User Interface...................................................................................................................... 209 
Downloading TiltEffect.cs and Applying Dependency Properties ......................................................... 211 

Summary .......................................................................................................................212 

 Chapter 10: Integrating Applications with the Windows Phone OS....................213 

Introducing Windows Phone 7 Launchers and Choosers...............................................213 
Launchers............................................................................................................................................. 214 
Choosers............................................................................................................................................... 215 

Working with Launchers and Choosers .........................................................................216 
Creating the User Interface................................................................................................................... 216 
Coding Application Logic ...................................................................................................................... 216 

Working with the Windows Phone 7 Application Life Cycle...........................................218 
Observing Application Life Cycle Events .............................................................................................. 219 
Managing Application State.................................................................................................................. 223 
Best Practices for Managing the Application Life Cycle  on the Windows Phone 7 OS........................ 228 

Integrating with Facebook.............................................................................................229 
A Few Words about OAuth.................................................................................................................... 229 

Integrating into Windows Phone 7 Hubs........................................................................237 
Integrating your Application with Music and Video Hub....................................................................... 238 
Integration with SharePoint.................................................................................................................. 239 

Summary .......................................................................................................................239 



 CONTENTS 

xi 

 Chapter 11: Creating Trial Applications..............................................................239 

Understanding Trial and Full Modes ..............................................................................239 
Using the IsTrial Method....................................................................................................................... 240 
Using the Marketplace APIs.................................................................................................................. 242 
Simulating Application Trial and Full Modes ........................................................................................ 245 

Building a Trial Application............................................................................................248 
Building the User Interface ................................................................................................................... 249 
Connecting to a Web Service................................................................................................................ 254 
Adding Page-to-Page Navigation.......................................................................................................... 256 
Verifying Trial and Full Mode................................................................................................................ 258 
Adding Finishing Touches .................................................................................................................... 259 

Summary .......................................................................................................................261 

 Chapter 12: Internationalization .........................................................................261 

Understanding Internationalization................................................................................261 

Using Culture Settings with ToString to Display Dates,  Times, and Text......................263 
Using the .NET Culture Hierarchy to Ensure Culture Neutrality .....................................266 
Storing and Retrieving Current Culture Settings............................................................267 

Using Resource Files to Localize Content......................................................................271 
Summary .......................................................................................................................277 

 Chapter 13: Isolated Storage ..............................................................................279 

Working with Isolated Directory Storage .......................................................................280 
Creating the IsolatedStorageStoreImageDemo Project ........................................................................ 281 
Coding the User Interface ..................................................................................................................... 282 
Coding the Application.......................................................................................................................... 286 

Working with Isolated Storage Settings ........................................................................290 
Creating a New Project......................................................................................................................... 291 



 CONTENTS 

xii 

Building the Application UI (XAML) ....................................................................................................... 292 
Coding Application Behavior (C#) ......................................................................................................... 294 

Summary .......................................................................................................................297 

 Chapter 14: Using Location Services ..................................................................297 

Understanding Windows Phone Location  Services Architecture ..................................297 

Introducing the Windows Phone Location Service  and Mapping APIs..........................298 
Simulating the Location Service ....................................................................................299 

Creating the GeoCoordinateWatcherDemo Project ............................................................................... 299 
Coding the User Interface ..................................................................................................................... 300 
Coding the Application.......................................................................................................................... 302 
Testing the Finished Application .......................................................................................................... 304 

Using GeoCoordinateWatcher and the Bing Maps Control to Track Your Movements...305 
Registering with the Bing Maps Service Portal and  Installing the Bing Maps SDK ............................. 306 
Creating the BingMapDemo Project ..................................................................................................... 308 
Coding the User Interface ..................................................................................................................... 310 
Coding the Application.......................................................................................................................... 312 
Testing the Finished Application .......................................................................................................... 315 

Plotting an Address on a Bing Maps Map and Working with the Bing Maps Service ....316 
Creating the AddressPlottingDemo Application.................................................................................... 317 
Adding a Service Reference to the Bing Maps GeoCodeService .......................................................... 317 
Coding the User Interface ..................................................................................................................... 319 
Coding the Application.......................................................................................................................... 321 
Testing the Finished Application .......................................................................................................... 323 

Summary .......................................................................................................................323 

 Chapter 15: Media...............................................................................................325 

Introducing MediaElement.............................................................................................325 
Working with Video........................................................................................................326 

Creating the MediaPlayerDemo Project................................................................................................ 327 



 CONTENTS 

xiii 

Building the User Interface ................................................................................................................... 328 
Coding the Application.......................................................................................................................... 331 

Adding Sounds to an Application...................................................................................338 
Creating the RobotSoundDemo Project ................................................................................................ 339 
Building the User Interface ................................................................................................................... 340 
Coding the Application.......................................................................................................................... 343 

Summary .......................................................................................................................345 

 Chapter 16: Working with the Camera  and Photos............................................347 

Introducing Windows Phone 7 Photo Features ..............................................................347 
Using a Chooser to Take Photos........................................................................................................... 349 
Using a Chooser to Open Photos .......................................................................................................... 353 
Saving Photos to the Phone.................................................................................................................. 354 

Integrating Your Application with Windows Phone 7.....................................................356 
Using Extras to Launch an Application ................................................................................................. 357 
Using Share to Upload PhotoCapture Snapshots to TwitPic ................................................................. 359 

Summary .......................................................................................................................366 

 Chapter 17: Push Notifications ...........................................................................367 

Understanding Push Notifications .................................................................................367 
Toast Notifications................................................................................................................................ 367 
Tile Notifications................................................................................................................................... 368 
Raw Notifications ................................................................................................................................. 369 

Introducing the Push Notifications Architecture ............................................................369 
The Life Cycle of a Notification............................................................................................................. 371 
The Push Notification Framework ........................................................................................................ 372 

Implementing Toast Notifications..................................................................................373 
Creating a Client Application ................................................................................................................ 375 
Creating an Application to Send Notifications ...................................................................................... 380 



 CONTENTS 

xiv 

Implementing Tile Notifications.....................................................................................384 
Creating a Client Application ................................................................................................................ 385 
Creating an Application to Send Notifications ...................................................................................... 385 

Implementing Raw Notifications....................................................................................388 
Creating a Client Application ................................................................................................................ 389 
Creating an Application to Send Notifications ...................................................................................... 392 
Testing Delivery of Raw Notifications................................................................................................... 393 

Implementing Cloud Service to Track Push Notifications..............................................394 
Creating a WCF Service to Track Notification Recipients ..................................................................... 394 
Modifying the Client to Call the WCF Service ....................................................................................... 400 
Verifying Automated Push Notification Subscriber Tracking................................................................ 402 

Using Push Notifications in the Real World....................................................................403 

Setting up Secure Web Services for Push Notifications ................................................403 
Summary .......................................................................................................................404 

 Chapter 18: Reactive Extensions for .NET...........................................................405 

Introducing Reactive Programming ...............................................................................406 

Rx.NET Subscription Pipeline.........................................................................................407 
Implementing the Observer Pattern with Rx.NET ..........................................................408 

Creating a Windows Phone Project ...................................................................................................... 408 
Adding Code to Create and Read Observable Collections .................................................................... 409 

Using Rx.NET Event Handling to Search for  Flickr Photographs...................................411 
Creating a Windows Phone Project ...................................................................................................... 411 
Adding a User Interface ........................................................................................................................ 412 
Adding Logic to Search Flickr for Images............................................................................................. 413 
Enhancing a Flickr Search with Throttling............................................................................................ 414 
Adding an Animation that Plays as Flickr Images Load........................................................................ 416 

Rx.NET Design Guidelines..............................................................................................421 
Consider Drawing a Marble Diagram.................................................................................................... 421 



 CONTENTS 

xv 

Consider Passing a Specific Scheduler to Concurrency  Introducing Operators .................................. 422 
Using Rx.NET with Web Services to Asynchronously  Retrieve Weather Data...............423 

Creating a Windows Phone Project ...................................................................................................... 423 
Creating a User Interface...................................................................................................................... 425 
Adding Logic to Get Weather Information............................................................................................. 426 

Handling Errors in Rx.NET..............................................................................................429 

Handling Data Connection Issues with Rx.NET..............................................................430 
Revising WeatherRx to Manage Slow Data Connections ...............................................432 

Handling Multiple Concurrent Requests with Rx.NET ....................................................434 
Summary .......................................................................................................................437 

 Chapter 19: Security ...........................................................................................439 

Understanding Application Security ..............................................................................439 
Windows Phone Marketplace ............................................................................................................... 439 
Submitting an Application to Windows Phone Marketplace................................................................. 441 
Sandboxed Execution and the Execution Manager .............................................................................. 443 

Implementing Network Security ....................................................................................444 
Securing Connections with SSL............................................................................................................ 444 
Testing and Opening an SSL Connection.............................................................................................. 445 
Creating a Self-Signed Certificate ........................................................................................................ 446 
Exporting a Self-Signed Certificate ...................................................................................................... 451 
Installing Self-Signed Certificate on Windows Phone 7 ....................................................................... 453 

Implementing Data Security ..........................................................................................453 
Using HMACSHA1 and HMACHSHA256................................................................................................. 455 
Using Rfc2898DeriveBytes and AES to Encrypt Data ........................................................................... 458 

Understanding Device Physical Security .......................................................................462 
Meeting Certification Requirements ..............................................................................463 

Application Must Implement MSIL Code............................................................................................... 463 
Application Must Not Implement Any Security-Critical Code ............................................................... 464 



 CONTENTS 

xvi 

Capability List ....................................................................................................................................... 465 
Obfuscating Your Application Code ...............................................................................466 

Summary .......................................................................................................................470 

 Index ...................................................................................................................471 



xvii 

About the Authors 

 

 Henry Lee is the founder of www.ToeTapz.com and 
http://NewAgeSolution.net and is passionate about technology. He works with 
various Fortune 500 companies delivering mobile applications and Rich 
Internet Applications (RIAs). He is focusing his energy on delivering mobile 
applications on Windows Phone 7, Android, and iPhone. In his spare time, he 
helps his communities by delivering sessions at technology events. He enjoys 
discussing current trends in technology with other technologists and sharing 
business insights with fellow colleagues. You will often find Henry at a local 
cigar bar, enjoying a cigar and a drink while trying to come up with the next big 
mobile application. 

 

 

 

 Eugene Chuvyrov is an independent .NET consultant in beautiful 
Jacksonville, Florida. He was lucky enough to start working with Microsoft 
technologies when he graduated from college in 1998 and has been 
consistently delivering a positive return on investment to the clients that 
engage him. His most recent venture is an online event marketing startup, 
http://packedhouseevents.com, which extends event creation, marketing, and 
electronic payments to anybody with Internet access. Eugene also facilitates 
the meetings of the Jacksonville Software Architecture Group, where he enjoys 
networking and learning from smart people. 

As soon as Eugene heard the news that a new mobile platform (Windows 
Phone 7) was being released by Microsoft, he was intrigued. It was hard to 
resist the temptation of wide-open possibilities to create smartphone 

applications using his favorite IDE and all the latest cloud and functional programming-based 
technologies. This passion, discussed over a cigar with Henry at a local cigar bar, resulted in the book 
you now hold in your hands. He sincerely hopes you find it useful! 

 
 

http://www.ToeTapz.com
http://NewAgeSolution.net
http://packedhouseevents.com


xviii 

About the Technical Reviewer 

 

 Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft 
technologies. He works for Brain Force (www.brainforce.com) in its Italian branch (www.brainforce.it). 

He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer 
for .NET, a Microsoft Certified Professional, and a prolific author and technical reviewer. Over the past 
ten years, he’s written articles for Italian and international magazines and co-authored more than ten 
books on a variety of computer topics. 

 

 
 

http://www.brainforce.com
http://www.brainforce.it


xix 

 

Acknowledgments 

We would like to express our love and gratitude to our wives for encouraging us to finish this book. We 
are also grateful to Apress for giving us the opportunity to write second edition about what we love to do 
so that we could share it with the world. The staff at Apress made this book possible by spending many 
days and nights reviewing and editing the book to meet the tight deadline. Ewan Buckingham provided 
us with this unique opportunity to share our knowledge. Thank you, Ewan, for believing in us. Also we 
would like to show our appreciation to the coordinating editor, Jennifer Blackwell, and staff members 
James Markham, Fabio Claudio Ferracchiati, and Mary Behr. When the first edition was published, we 
also realized that there were Apress staff members in the marketing department promoting the book; we 
would like to thank Lisa Lau and the marketing department and Simon Yu for helping us to get in 
contact with the user groups for speaking engagements. 

We also like to thank those who sent us e-mail with comments and those who blogged about our 
books on the Web with kind remarks. Many online communities helped us improve upon our first 
edition by offering valuable feedback and we used that feedback to make the second edition better. 
 
 

 

 
 
 


	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	What You Need to Use This Book
	How This Book Is Organized
	Where to Find Sources for the Examples
	Send Us Your Comments
	Contacting the Authors


	Introducing Windows Phone 7 and the Windows Phone Platform
	Windows Phone Overview
	Windows Phone Hardware Specifications
	Windows Phone Application Platform
	Application Development Life Cycle
	Summary

	Building Windows Phone 7 Applications
	Preparing Your Development Machine
	Building Your First Windows Phone 7 Application
	Summary

	Building Windows Phone 7 Applications Using Cloud Services As Data Stores
	Introducing the MVVM Pattern
	Introducing Microsoft Azure and SQL Azure
	Creating a Cloud Database
	Creating a Cloud Service to Access the Cloud Database
	Building a Phone Client to Access a Cloud Service
	Summary

	Catching and Debugging Errors
	Debugging Application Exceptions
	Registering a Windows Phone Device for Debugging
	Handling Device Exceptions
	Summary

	Packaging, Publishing, and Managing Applications
	Windows Phone Application Publishing Lifecycle
	Windows Phone Application Certification Requirements
	Submitting Your First Windows Phone Application to the Windows Phone Marketplace
	Summary

	Working with the Accelerometer
	Understanding Orientation and Movement
	Introducing SDK Support for Accelerometers
	Retrieving Accelerometer Data
	Using Accelerometer Data to Move a Ball
	Summary

	Application Bar
	Introducing the Application Bar
	Adding an Application Bar to a Windows Phone 7 Application
	Wiring Up Events to an Application Bar
	Summary

	WebBrowser Control
	Introducing the WebBrowser Control
	Adding a WebBrowser Control
	Using a WebBrowser Control to Display Web Content
	Using a WebBrowser Control to Display Local HTML Content
	Using a WebBrowser Control to Display Dynamic Content
	Saving Web Pages Locally
	Choosing Display and Security Settings
	Summary

	Working with Controls and Themes
	Introducing the Metro Design System
	Themes on Windows Phone 7 Devices
	Panorama and Pivot Controls
	Understanding Frame and Page Navigation
	Adding Transition Effects
	Summary

	Integrating Applications with the Windows Phone OS
	Introducing Windows Phone 7 Launchers and Choosers
	Working with Launchers and Choosers
	Working with the Windows Phone 7 Application Life Cycle
	Integrating with Facebook
	Integrating into Windows Phone 7 Hubs
	Summary

	Creating Trial Applications
	Understanding Trial and Full Modes
	Building a Trial Application
	Summary

	Internationalization
	Understanding Internationalization
	Using Culture Settings with ToString to Display Dates, Times, and Text
	Using the .NET Culture Hierarchy to Ensure Culture Neutrality
	Storing and Retrieving Current Culture Settings
	Using Resource Files to Localize Content
	Summary

	Isolated Storage
	Working with Isolated Directory Storage
	Working with Isolated Storage Settings
	Summary

	Using Location Services
	Understanding Windows Phone Location Services Architecture
	Introducing the Windows Phone Location Service and Mapping APIs
	Simulating the Location Service
	Using GeoCoordinateWatcher and the Bing Maps Control to Track Your Movements
	Plotting an Address on a Bing Maps Map and Working with the Bing Maps Service
	Summary

	Media
	Introducing MediaElement
	Working with Video
	Adding Sounds to an Application
	Summary

	Working with the Camera and Photos
	Introducing Windows Phone 7 Photo Features
	Integrating Your Application with Windows Phone 7
	Summary

	Push Notifications
	Understanding Push Notifications
	Introducing the Push Notifications Architecture
	Implementing Toast Notifications
	Implementing Tile Notifications
	Implementing Raw Notifications
	Implementing Cloud Service to Track Push Notifications
	Using Push Notifications in the Real World
	Setting up Secure Web Services for Push Notifications
	Summary

	Reactive Extensions for .NET
	Introducing Reactive Programming
	Rx.NET Subscription Pipeline
	Implementing the Observer Pattern with Rx.NET
	Using Rx.NET Event Handling to Search for Flickr Photographs
	Rx.NET Design Guidelines
	Using Rx.NET with Web Services to Asynchronously Retrieve Weather Data
	Handling Errors in Rx.NET
	Handling Data Connection Issues with Rx.NET
	Revising WeatherRx to Manage Slow Data Connections
	Handling Multiple Concurrent Requests with Rx.NET
	Summary

	Security
	Understanding Application Security
	Implementing Network Security
	Implementing Data Security
	Understanding Device Physical Security
	Meeting Certification Requirements
	Obfuscating Your Application Code
	Summary

	Index
	Special Characters & Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I, J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 738.000]
>> setpagedevice




