

C# Essentials, 2nd Edition

Ben Albahari
Peter Drayton
Brad Merrill
Publisher: O'Reilly
Second Edition February 2001
ISBN: 0-596-00315-3, 216 pages

Concise but thorough, this second edition of C# Essentials introduces the Microsoft C#
programming language, including the Microsoft .NET Common Language Runtime (CLR) and
.NET Framework Class Libraries (FCL) that support it. This book's compact format and terse
presentation of key concepts serve as a roadmap to the online documentation included with the
Microsoft .NET Framework SDK; the many examples provide much-needed context.

My Release ☺ 2002

For OR Forum

www.allitebooks.com

http://www.allitebooks.org

 2

Preface... 4
Audience .. 4
About This Book ... 4
C# Online ... 4
Conventions Used in This Book... 5
How to Contact Us ... 7
Acknowledgments .. 7

Chapter 1. Introduction.. 9
1.1 C# Language .. 9
1.2 Common Language Runtime... 10
1.3 Framework Class Library ... 11
1.4 A First C# Program.. 11

Chapter 2. C# Language Reference ... 13
2.1 Identifiers... 13
2.2 Types ... 13
2.3 Variables ... 23
2.4 Expressions and Operators ... 24
2.5 Statements.. 26
2.6 Organizing Types... 33
2.7 Inheritance .. 35
2.8 Access Modifiers.. 39
2.9 Classes and Structs .. 41
2.10 Interfaces .. 56
2.11 Arrays .. 59
2.12 Enums ... 61
2.13 Delegates.. 62
2.14 Events ... 65
2.15 try Statements and Exceptions ... 67
2.16 Attributes ... 71
2.17 Unsafe Code and Pointers ... 73
2.18 Preprocessor Directives ... 75
2.19 XML Documentation ... 76

Chapter 3. Programming the.NET Framework .. 82
3.1 Common Types.. 82
3.2 Math ... 87
3.3 Strings ... 88
3.4 Collections .. 91
3.5 Regular Expressions ... 97
3.6 Input/Output.. 99
3.7 Networking .. 102
3.8 Threading .. 106
3.9 Assemblies ... 109
3.10 Reflection.. 112
3.11 Custom Attributes .. 118

www.allitebooks.com

http://www.allitebooks.org

 3

3.12 Automatic Memory Management.. 124
3.13 Interop with Native DLLs .. 127
3.14 Interop with COM... 133

Chapter 4. Framework Class Library Overview... 137
4.1 Core Types ... 137
4.2 Text .. 137
4.3 Collections .. 138
4.4 Streams and I/O ... 138
4.5 Networking .. 138
4.6 Threading .. 138
4.7 Security ... 139
4.8 Reflection and Metadata ... 139
4.9 Assemblies ... 139
4.10 Serialization.. 140
4.11 Remoting ... 140
4.12 Web Services ... 140
4.13 Data Access ... 141
4.14 XML ... 141
4.15 Graphics.. 141
4.16 Rich Client Applications .. 142
4.17 Web-Based Applications .. 142
4.18 Globalization... 142
4.19 Configuration.. 143
4.20 Advanced Component Services.. 143
4.21 Diagnostics and Debugging ... 143
4.22 Interoperating with Unmanaged Code ... 144
4.23 Compiler and Tool Support.. 144
4.24 Runtime Facilities .. 144
4.25 Native OS Facilities... 144
4.26 Undocumented Types... 145

Chapter 5. Essential .NET Tools ... 147
Appendix A. C# Keywords .. 149
Appendix B. Regular Expressions ... 153
Appendix C. Format Specifiers .. 156

C.1 Picture Format Specifiers .. 157
C.2 DateTime Format Specifiers ... 159

Appendix D. Data Marshaling ... 161
Appendix E. Working with Assemblies ... 162

E.1 Building Shareable Assemblies .. 162
E.2 Managing the Global Assembly Cache ... 163
E.3 Using nmake .. 163

Appendix F. Namespaces and Assemblies ... 165
Colophon ... 169

www.allitebooks.com

http://www.allitebooks.org

 4

Preface

C# Essentials is a highly condensed introduction to the C# language and the .NET Framework.
C# and the .NET initiative were both unveiled in July 2000 at the Microsoft Professional
Developers Conference in Orlando, Florida, and shortly thereafter, the .NET Software
Development Kit (SDK) was released on the Internet.

The information in this book is based on Release Candidate 1 (RC1) of the .NET SDK released
by Microsoft in October 2001. We expect that version to be largely compatible with the final
release, but Microsoft may make minor changes that affect this book. To stay current, be sure to
check the online resources listed in Section P.3 as well as the O'Reilly web page for this book,
http://www.oreilly.com/catalog/csharpess2 (see Section P.5).

Audience

While we have tried to make this book useful to anyone interested in learning about C#, our
primary audience is developers already familiar with an object-oriented language such as C++,
Smalltalk, Java, or Delphi. C# facilitates writing web applications and services, as well as
traditional standalone and client/server-based applications. Experience in any of these areas will
make the advantages of C# and the .NET Framework more immediately apparent but isn't
required.

About This Book

This book is divided into five chapters and six appendixes:

Chapter 1 orients you to C# and the .NET Framework.

Chapter 2 introduces the C# language and serves as a language reference.

Chapter 3 explains how to use C# and the .NET Framework.

Chapter 4 provides an overview of the key libraries in .NET—organized by function—and
documents the most essential namespaces and types of each.

Chapter 5 is an overview of essential .NET tools that ship with the .NET Framework SDK,
including the C# compiler and utilities for importing COM objects and exporting .NET objects.

The six appendixes provide additional information of interest to working programmers, including
an alphabetical C# keyword reference, codes for regular expressions and string formats, and a
cross reference of assembly and namespace mappings

This book assumes that you have access to the .NET Framework SDK. For additional details on
language features and class libraries covered here, we recommend the Microsoft online .NET
documentation.

C# Online

www.allitebooks.com

http://www.allitebooks.org

 5

Since this book is a condensed introduction to C#, it cannot answer every question you might
have about the language. There are many online resources that can help you get the most out of
C#.

We recommend the following sites:

http://msdn.microsoft.com/net

The Microsoft .NET Developer Center is the official site for all things .NET, including the
latest version of the .NET Framework SDK, which includes the C# compiler, as well as
documentation, technical articles, sample code, pointers to discussion groups, and third-
party resources.

http://msdn.microsoft.com/net/thirdparty/default.asp

A complete list of third-party resources of interest to C# and .NET Framework
developers.

http://discuss.develop.com/dotnet.html

The DevelopMentor DOTNET discussion list. Possibly the best site for freewheeling
independent discussion of the .NET languages and framework; participants often include
key Microsoft engineers.

http://www.oreillynet.com/dotnet

The O'Reilly Network .NET DevCenter, which features original articles, news, and
weblogs of interest to .NET programmers.

http://dotnet.oreilly.com

The O'Reilly .NET Center. Visit this page frequently for information on current and
upcoming .NET books from O'Reilly. You'll find sample chapters, articles, and other
resources.

Two articles of interest include:

http://windows.oreilly.com/news/hejlsberg_0800.html

An interview with chief C# architect Anders Hejlsberg, by O'Reilly editor John Osborn.

http://www.genamics.com/developer/csharp_comparative.htm

A comparison of C# to C++ and Java, by coauthor Ben Albahari.

You can find Usenet discussions about .NET in the microsoft.public.dotnet.* family of
newsgroups. In addition, the newsgroup microsoft.public.dotnet.languages.csharp specifically
addresses C#. If your news server does not carry these groups, you can find them at
news://msnews.microsoft.com.

Conventions Used in This Book

www.allitebooks.com

http://www.allitebooks.org

 6

Throughout this book we use these typographic conventions:

Italic

Represents the names of system elements, such as directories and files, and Internet
resources, such as URLs and web documents. Italics is also used for new terms when
they are defined and, occasionally, for emphasis in body text.

Constant width

Indicates language constructs such as .NET and application-defined types, namespaces,
and functions, as well as keywords, constants, and expressions that should be typed
verbatim. Lines of code and code fragments also appear in constant width, as do classes,
class members, and XML tags.

Constant width italic

Represents replaceable parameter names or user-provided elements in syntax.

We have included simple grammar specifications for many, but not all, of the language constructs
presented in this book. Our intent is not to be comprehensive—for that level of detail you should
consult the Microsoft C# Programmer's Reference in the .NET SDK—but rather to provide you
with a fast way to understand the grammar of a particular construct and its valid combinations.
The XML occurrence operators (?,*, and +) are used to specify more precisely the number of
times an element may occur in a particular construct.

x

Indicates x is to be used verbatim (constant width)

x

Indicates x is supplied by the programmer (constant width italic)

x?

Indicates x may occur zero-or-one times

x*

Indicates x may occur zero-or-more times, separated by commas

x+

Indicates x may occur one-or-more times, separated by commas

[...]

Indicates a logical grouping of code elements, when not implicitly grouped using the
verbatim terms {}, (), and []

www.allitebooks.com

http://www.allitebooks.org

 7

[x | y]

Indicates only one of a choice of code elements may occur

This icon designates a note, which is an important aside to
the nearby text.

This icon designates a warning relating to the nearby text.

We use the acronym "FCL" to refer to the .NET Framework Class Library. You may have heard
this referred to as the Base Class Library in other works, including the first edition of this book.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information.
You can access this page at:

http://www.oreilly.com/catalog/csharpess2

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network,
see our web site at:

http://www.oreilly.com

Acknowledgments

This book would not be possible without the contribution and support of many individuals,
including friends, family, and the hard-working folks at O'Reilly & Associates, Inc.

All three of us wish to thank Brian Jepson for his sterling editorial work on the 2nd edition of this
book, as well as Jeff Peil for his contributions to the sections of the book that deal with threads
and interop. Many thanks as well to Scott Wiltamuth, Joe Nalewabu, Andrew McMullen, and
Michael Perry, whose technical reviews have immeasurably improved our text.

www.allitebooks.com

http://www.allitebooks.org

 8

Ben Albahari

First of all, I'd like to thank my family (Sonia, Miri, and Joseph Albahari) and friends (most of all
Marcel Dinger and Lenny Geros) for still wanting to know me given that I'm practically epoxied to
my computer. I'd also like to thank all the bands (can't list them all but particularly Fiona Apple,
Dream Theater, and Incubus during this writing period) for the CDs that clutter my desk, without
which I would never have been motivated enough to stay up till 5:00 a.m. to simulate being in the
same time zone as the great people in America I worked with when writing this book (John
Osborn, Peter Drayton, and Brad Merrill). Finally I'd like to thank everyone who is enthusiastic
about new technology, which ultimately is what drove me to write this book. I'd like to dedicate
this book to my late father, Michael, to whom I am indebted for his foresight in introducing me to
programming when I was a child.

Peter Drayton

Above all, I'd like to thank my wife, Julie DuBois, for her constant, loving support. Regardless of
how engrossing the world of bits can be, you serve as a constant reminder of how much more
wonderful the world of atoms really is. I'd like to thank my coauthors, Ben and Brad, for so
graciously affording me the opportunity of participating in this project, and our editor, John
Osborn, for keeping all three of us pointed in the same direction during the wild ride that resulted
in this book. I'd also like to thank my friends and colleagues (most notably John Prout, Simon
Fell, Simon Shortman, and Chris Torkildson) who serve as trusty sounding boards on technical
and life issues. Finally, I'd like to thank my family back in South Africa, especially my father, Peter
Drayton Sr., and my late mother, Irene Mary Rochford Drayton, for giving me a strong rudder to
navigate through life.

Brad Merrill

I'd like to thank my son Haeley, my partner Jodi, my coparent Cyprienne, and my friends (Larry,
Colleen, and Evan) for their patience and support during this process. I'd also like to thank Ben
and Peter for their immense contributions and our editor John Osborn for keeping us sane.

www.allitebooks.com

http://www.allitebooks.org

 9

Chapter 1. Introduction

C# is a language built specifically to program the Microsoft .NET Framework. The .NET
Framework consists of a runtime environment called the Common Language Runtime (CLR), and
a set of class libraries, which provide a rich development platform that can be exploited by a
variety of languages and tools.

1.1 C# Language

Programming languages have strengths in different areas. Some languages are powerful but can
be bug-prone and difficult to work with, while others are simpler but can be limiting in terms of
functionality or performance. C# is a new language designed to provide an optimum blend of
simplicity, expressiveness, and performance.

Many features of C# were designed in response to the strengths and weaknesses of other
languages, particularly Java and C++. The C# language specification was written by Anders
Hejlsberg and Scott Wiltamuth. Anders Hejlsberg is famous in the programming world for creating
the Turbo Pascal compiler and leading the team that designed Delphi.

Key features of the C# language include the following:

Component orientation

An excellent way to manage complexity in a program is to subdivide it into several
interacting components, some of which can be used in multiple scenarios. C# has been
designed to make component building easy and provides component-oriented language
constructs such as properties, events, and declarative constructs called attributes.

One-stop coding

Everything pertaining to a declaration in C# is localized to the declaration itself, rather
than being spread across several source files or several places within a source file.
Types do not require additional declarations in separate header or Interface Definition
Language (IDL) files, a property's get/set methods are logically grouped,
documentation is embedded directly in a declaration, etc. Furthermore, because
declaration order is irrelevant, types don't require a separate stub declaration to be used
by another type.

Versioning

C# provides features such as explicit interface implementations, hiding inherited
members, and read-only modifiers, which help new versions of a component work with
older components that depend on it.

Type safety and a unified type system

C# is type-safe, which ensures that a variable can be accessed only through the type
associated with that variable. This encapsulation encourages good programming design
and eliminates potential bugs or security breaches by making it impossible for one
variable to inadvertently or maliciously overwrite another.

www.allitebooks.com

http://www.allitebooks.org

 10

All C# types (including primitive types) derive from a single base type, providing a unified
type system. This means all types—structs, interfaces, delegates, enums, and arrays—
share the same basic functionality, such as the ability to be converted to a string,
serialized, or stored in a collection.

Automatic and manual memory management

C# relies on a runtime that performs automatic memory management. This frees
programmers from disposing objects, which eliminates problems such as dangling
pointers, memory leaks, and coping with circular references.

However, C# does not eliminate pointers: it merely makes them unnecessary for most
programming tasks. For performance-critical hotspots and interoperability, pointers may
be used, but they are only permitted in unsafe blocks that require a high security
permission to execute.

Leveraging of the CLR

A big advantage of C# over other languages, particularly traditionally compiled languages
such as C++, is its close fit with the .NET CLR. Many aspects of C# alias the CLR,
especially its type system, memory-management model, and exception-handling
mechanism.

1.2 Common Language Runtime

Of fundamental importance to the .NET Framework is the fact that programs are executed within
a managed execution environment provided by the Common Language Runtime. The CLR
greatly improves runtime interactivity between programs, portability, security, development
simplicity, and cross-language integration, and provides an excellent foundation for a rich set of
class libraries.

Absolutely key to these benefits is the way .NET programs are compiled. Each language
targeting .NET compiles source code into metadata and Microsoft Intermediate Language (MSIL)
code. Metadata includes a complete specification for a program including all its types, apart from
the actual implementation of each function. These implementations are stored as MSIL, which is
machine-independent code that describes the instructions of a program. The CLR uses this
"blueprint" to bring a .NET program to life at runtime, providing services far beyond what is
possible with the traditional approach—compiling code directly to assembly language.

Key features of the CLR include the following:

Runtime interactivity

Programs can richly interact with each other at runtime through their metadata. A
program can search for new types at runtime, then instantiate and invoke methods on
those types.

Portability

Programs can be run without recompiling on any operating system and processor
combination that supports the CLR. A key element of this platform independence is the
runtime's JIT (Just-In-Time) Compiler, which compiles the MSIL code it is fed to native
code that runs on the underlying platform.

www.allitebooks.com

http://www.allitebooks.org

 11

Security

Security considerations permeate the design of the .NET Framework. The key to making
this possible is CLR's ability to analyze MSIL instructions as being safe or unsafe.

Simplified deployment

An assembly is a completely self-describing package that contains all the metadata and
MSIL of a program. Deployment can be as easy as copying the assembly to the client
computer.

Versioning

An assembly can function properly with new versions of assemblies it depends on without
recompilation. Key to making this possible is the ability to resolve all type references
though metadata.

Simplified development

The CLR provides many features that greatly simplify development, including services
such as garbage collection, exception handling, debugging, and profiling.

Cross language integration

The Common Type System (CTS) of the CLR defines the types that can be expressed in
metadata and MSIL and the possible operations that can be performed on those types.
The CTS is broad enough to support many different languages including Microsoft
languages, such as C#, VB.NET, and Visual C++ .NET, and such third-party languages
as COBOL, Eiffel, Haskell, Mercury, ML, Oberon, Python, Smalltalk, and Scheme.

The Common Language Specification (CLS) defines a subset of the CTS, which provides
a common standard that enables .NET languages to share and extend each other's
libraries. For instance, an Eiffel programmer can create a class that derives from a C#
class and override its virtual methods.

Interoperability with legacy code

The CLR provides interoperation with the vast base of existing software written in COM
and C. .NET types can be exposed as COM types, and COM types can be imported as
.NET types. In addition, the CLR provides PInvoke, which is a mechanism that enables C
functions, structs, and callbacks to be easily used from within in a .NET program.

1.3 Framework Class Library

The .NET Framework provides the .NET Framework Class Library (FCL), which can be used by
all languages. The FCL offers features ranging from core functionality of the runtime, such as
threading and runtime manipulation of types (reflection), to types that provide high-level
functionality, such as data access, rich client support, and web services (whereby code can even
be embedded in a web page). C# has almost no built-in libraries; it uses the FCL instead.

1.4 A First C# Program

 12

Here is a simple C# program:

namespace FirstProgram {
 using System;
 class Test {
 static void Main () {
 Console.WriteLine ("Welcome to C#!");
 }
 }
}

A C# program is composed of types (typically classes) that we organize into namespaces. Each
type contains function members (typically methods), as well as data members (typically fields). In
our program, we define a class named Test that contains a method, named Main, that writes
Welcome to C#! to the Console window. The Console class encapsulates standard
input/output functionality, providing methods such as WriteLine. To use types from another
namespace, we use the using directive. Since the Console class resides in the System
namespace, we write using System; similarly, types from other namespaces could use our
Test class by including the following statement: using FirstProgram;.

To compile this program into an executable, paste it into a text file, save it as Test.cs, then type
csc Text.cs in the command prompt. This compiles the program into an executable called
Test.exe. Add the /debug option to the csc command line to include debugging symbols in the
output. This will let you run your program under a debugger and get meaningful stack traces that
include line numbers.

.NET executables contain a small CLR host created by the
C# compiler. The host starts the CLR and loads your
application, starting at the Main entry point. Note that Main
must be specified as static.

In C#, there are no standalone functions; functions are always associated with a type, or as we
will see, instances of that type. Our program is simple and makes use of only static members,
which means the member is associated with its type, rather than instances of its type. In addition,
we make use of only void methods, which means these methods do not return a value. Of final
note is that C# recognizes a method named Main as the default entry point of execution.

 13

Chapter 2. C# Language Reference

This chapter walks you through each aspect of the C# language. Many features of C# will be
familiar if you have experience with a strongly typed object-oriented language.

2.1 Identifiers

Identifiers are names programmers choose for their types, methods, variables, and so on. An
identifiermust be a whole word, essentially composed of Unicode characters starting with a letter
or underscore. An identifier must not clash with a keyword. As a special case, the @ prefix can
be used to avoid such a conflict, but the character isn't considered part of the identifier that it
precedes. For instance, the following two identifiers are equivalent:

Korn
@Korn

C# identifiers are case-sensitive, but for compatibility with other languages, you should not
differentiate public or protected identifiers by case alone.

2.2 Types

A C# program is written by building new types and leveraging existing types, either those defined
in the C# language itself or imported from other libraries. Each type contains a set of data and
function members, which combine to form the modular units that are the key building blocks of a
C# program.

2.2.1 Type Instances

Generally, you must create instances of a type to use that type. Those data members and
function members that require a type to be instantiated are called instance members. Data
members and function members that can be used on the type itself are called static members .

2.2.2 Example: Building and Using Types

In this program, we build our own type called Counter and another type called Test that uses
instances of the Counter. The Counter type uses the predefined type int, and the Test type
uses the static function member WriteLine of the Console class defined in the System
namespace:

// Imports types from System namespace, such as Console
using System;
class Counter { // New types are typically classes or structs
 // --- Data members ---
 int value; // field of type int
 int scaleFactor; // field of type int

 // Constructor, used to initialize a type instance
 public Counter(int scaleFactor) {
 this.scaleFactor = scaleFactor;
 }
 // Method

 14

 public void Inc() {
 value+=scaleFactor;
 }
 // Property
 public int Count {
 get {return value; }
 }
}
class Test {
 // Execution begins here
 static void Main() {

 // Create an instance of counter type
 Counter c = new Counter(5);
 c.Inc();
 c.Inc();
 Console.WriteLine(c.Count); // prints "10";

 // Create another instance of counter type
 Counter d = new Counter(7);
 d.Inc();
 Console.WriteLine(d.Count); // prints "7";
 }
}

2.2.3 Implicit and Explicit Conversions

Each type has its own set of rules defining how it can be converted to and from other types.
Conversions between types may be implicit or explicit. Implicit conversions can be performed
automatically, while explicit conversions require a cast usingthe C cast operator, ():

int x = 123456; // int is a 4-byte integer
long y = x; // implicit conversion to 8-byte integer
short z =(short)x; // explicit conversion to 2-byte integer

The rationale behind implicit conversions is that they are guaranteed to succeed and not lose
information. Conversely, an explicitconversion is required when runtime circumstances determine
whether the conversion succeeds or when information might be lost during the conversion.

Most conversion rules are supplied by the language, such as the previous numeric conversions.
Occasionally it is useful for developers to define their own implicit and explicit conversions (see
Section 2.4 later in this chapter).

2.2.4 Categories of Types

All C# types, including both predefined types and user-defined types, fall into one of three
categories: value, reference, and pointer.

2.2.4.1 Value types

Value types typically represent basic types. Simple types, such as basic numeric types (int,
long, bool, etc.) are structs, which are value types. You can expand the set of simple types by
defining your own structs. In addition, C# allows you to define enums.

 15

2.2.4.2 Reference types

Reference types typically represent more complex types with rich functionality. The most
fundamental C# reference type is the class, but special functionality is provided by the array,
delegate, and interface types.

2.2.4.3 Pointer types

Pointer types fall outside mainstream C# usage and are used only for explicit memory
manipulation in unsafe blocks (see Section 2.17 later in this chapter).

2.2.5 Predefined Types

C# has two categories of predefined types:

• Value types: integers, floating point numbers, decimal, char, bool
• Reference types: object, string

Aliases for all these types can be found in the System namespace. For example, the following
two statements are semantically identical:

int i = 5;
System.Int32 i = 5;

2.2.5.1 Integral types

The following table describes integral types:

C# type System type Size (bytes) Signed?
sbyte System.Sbyte 1 Yes
short System.Int16 2 Yes
int System.Int32 4 Yes
long System.Int64 8 Yes
byte System.Byte 1 No
ushort System.UInt16 2 No
uint System.UInt32 4 No
ulong System.UInt64 8 No

sbyte, short, int, and long are signed integers; byte, ushort, uint, and ulong are
unsigned integers.

For unsigned integers n bits wide, their possible values range from to 2n-1. For signed integers n
bits wide, their possible values range from -2n-1 to 2n-1-1. Integer literals can use either decimal or
hexadecimal notation:

int x = 5;
ulong y = 0x1234AF; // prefix with 0x for hexadecimal

 16

When an integral literal is valid for several possible integral types, the chosen default type goes in
this order:

int
uint
long
ulong.

These suffixes may be appended to a value to explicitly specify its type:

U

uint or ulong

L

long or ulong

UL

ulong

2.2.5.1.1 Integral conversions

An implicit conversion between integral types is permitted when the resulting type contains every
possible value of the type it is converted from. Otherwise, an explicit conversion is required. For
instance, you can implicitly convert an int to a long, but must explicitly convert an int to a
short:

int x = 123456;
long y = x; // implicit, no information lost
short z = (short)x; // explicit, truncates x

2.2.5.2 Floating-point types

C# type System type Size (bytes)
float System.Single 4
double System.Double 8

A float can hold values from approximately ±1.5 x 10-45 to approximately ±3.4 x 1038 with seven
significant figures.

A double can hold values from approximately ±5.0 x 10-324 to approximately ±1.7 x 10308 with 15
to 16 significant figures.

Floating-point types can hold the special values +0, -0, + , - , or NaN (not a number) that
represent the outcome of mathematical operations such as division by zero. float and double
implement the specification of the IEEE 754 format types, supported by almost all processors,
defined at http://www.ieee.org.

 17

Floating-point literals can use decimal or exponential notation. A float literal requires the suffix
"f" or "F". A double literal may choose to add the suffix "d" or "D".

float x = 9.81f;
double y = 7E-02; // 0.07
double z = 1e2; // 100

2.2.5.2.1 Floating-point conversions

An implicit conversion from a float to a double loses no information and is permitted but not
vice versa. An implicit conversion from an sbyte, short, int, or long (or one of their unsigned
counterparts) to a float or double is allowed for readability:

short strength = 2;
int offset = 3;
float x = 9.53f * strength - offset;

If this example used larger values, precision might be lost. However, the possible range of values
isn't truncated because the lowest and highest possible values of a float or double exceed
those of any integral type. All other conversions between integral and floating-point types must be
explicit:

float x = 3.53f;
int offset = (int)x;

2.2.5.3 decimal type

C# type System type Size (bytes)
decimal System.Decimal 16

The decimal type can hold values from ±1.0 x 10-28 to approximately ±7.9 x 1028 with 28 to 29
significant figures.

The decimal type holds 28 digits and the position of the decimal point on those digits. Unlike a
floating-point value, it has more precision but a smaller range. It is typically useful in financial
calculations, in which the combination of its high precision and the ability to store a base10
number without rounding errors is valuable. The number 0.1, for instance, is represented exactly
with a decimal, but as a recurring binary number with a floating-point type. There is no concept
of +0, -0, + , - , and NaN for a decimal.

A decimal literal requires the suffix "m" or "M":

decimal x = 80603.454327m; // holds exact value

2.2.5.3.1 decimal conversions

An implicit conversion from all integral types to a decimal type is permitted because a decimal
type can represent every possible integer value. A conversion from a decimal to floating-point
type or vice versa requires an explicit conversion, since floating-point types have a bigger range
than a decimal, and a decimal has more precision than a floating-point type.

 18

2.2.5.4 char type

C# type System type Size (bytes)
char System.Char 2

The char type represents a Unicode character.

A char literal consists of either a character, Unicode format, or escape character enclosed in
single quote marks:

'A' // simple character
'\u0041' // Unicode
'\x0041' // unsigned short hexadecimal
'\n' // escape sequence character

Table 2-1 summarizes the escape characters recognized by C#.

Table 2-1. Escape sequence characters
char Meaning Value

\' Single quote 0x0027
\" Double quote 0x0022
\\ Backslash 0x005C
\0 Null 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Form feed 0x000C
\n New line 0x000A
\r Carriage return 0x000D
\t Horizontal tab 0x0009
\v Vertical tab 0x000B

2.2.5.4.1 char conversions

An implicit conversion from a char to most numeric types works; it's simply dependent on
whether the numeric type can accommodate an unsigned short. If it can't, an explicit conversion
is required.

2.2.5.5 bool type

C# type System type Size (bytes)
bool System.Boolean 1/2

The bool type is a logical value, which can be assigned the literal true or false.

Although Boolean values require only 1 bit (0 or 1), they occupy 1 byte of storage since this is the
minimum chunk that most processor architectures can allocate. Each element of an array
requires 2 bytes of memory.

 19

2.2.5.5.1 bool conversions

No conversions can be made from Booleans to numeric types or vice versa.

2.2.5.6 object type

C# type System type Size (bytes)
object System.Object 0/ 8 overhead

The object type is the ultimate base type for both value types and reference types. Value types
have no storage overhead from object. Reference types, which are stored on the heap,
intrinsically require an overhead. In the .NET runtime, a reference-type instance has an 8-byte
overhead, which stores the object's type and temporary information such as its synchronization
lock state or whether it has been fixed from movement by the garbage collector. Note that each
reference to a reference-type instance uses 4 bytes of storage.

For more information on the System.Object type, see Section 3.1 in Chapter 3.

2.2.5.7 string type

C# type System type Size (bytes)
string System.String 20 minimum

The C# string represents an immutable sequence of Unicode characters and aliases the
System.String class (see Section 3.3 in Chapter 3).

Although string is a class, its use is so ubiquitous in programming that it is given special
privileges by both the C# compiler and .NET runtime.

Unlike other classes, a new instance can be created with a string literal:

string a = "Heat";

Strings can also be created with verbatim string literals. Verbatim string literals start with a @,
which indicates the string should be used verbatim, even if it spans multiple lines or includes
escape characters, i.e., "\" (see Table 2-1). In this example the pairs a1 and a2 represent the
same string, and the pairs b1 and b2 represent the same string:

public void StringDemo() {
 string a1 = "\\\\server\\fileshare\\helloworld.cs";
 string a2 = @"\\server\fileshare\helloworld.cs";
 Console.WriteLine(a1==a2); // Prints "True"

 string b1 = "First Line\r\nSecond Line";
 string b2 = @"First Line
Second Line";
 Console.WriteLine(b1==b2); // Prints "True"
}

2.2.6 Types and Memory

 20

The fundamental difference between value and reference types is how they are stored in
memory.

2.2.6.1 Memory for value types

The memory of a value-type instance simply holds a raw value, like a number or character. Value
types are stored either on the stack or inline. A stack is a block of memory that grows each time a
method is entered (because its local variables need storage space) and shrinks each time a
method exits (because its local variables are no longer needed). Inline just means that the value
type is declared as part of a larger object, such as when it is a field in a class or a member of an
array.

2.2.6.2 Memory for reference types

The memory of a reference-type instance holds the address of an object on the heap. A reference
type may be null, which means no object is referenced. During a program's execution, references
are assigned to existing or new objects on the heap. An object on the heap remains in memory
until the runtime's garbage collector determines it is no longer referenced, at which time the
garbage collector discards the object and releases its memory.

2.2.6.3 Value types and reference types side by side

To create a value-type or reference-type instance, the constructor for the type may be called with
the new keyword. A value-type constructor simply initializes an object. A reference-type
constructor creates a new object on the heap and then initializes the object:

// Reference-type declaration
class PointR {
 public int x, y;
}
// Value type declaration
struct PointV {
 public int x, y;
}
class Test {
 public static void Main() {
 PointR a; // Local reference-type variable, uses 4 bytes of
 // memory on the stack to hold address
 PointV b; // Local value-type variable, uses 8 bytes of
 // memory on the stack for x and y
 a = new PointR(); // Assigns the reference to address of new
 // instance of PointR allocated on the
 // heap. The object on the heap uses 8
 // bytes of memory for x and y and an
 // additional 8 bytes for core object
 // requirements, such as storing the
 // object's type & synchronization state
 b = new PointV(); // Calls the value type's default
 // constructor. The default constructor
 // for both PointR and PointV will set
 // each field to its default value, which
 // will be 0 for both x and y.
 a.x = 7;
 b.x = 7;
 }

www.allitebooks.com

http://www.allitebooks.org

 21

}
// At the end of the method the local variables a and b go out of
// scope, but the new instance of a PointR remains in memory until
// the garbage collector determines it is no longer referenced

Assignment to a reference type copies an object reference; assignment to a value type copies an
object value:

 ...
 PointR c = a;
 PointV d = b;
 c.x = 9;
 d.x = 9;
 Console.WriteLine(a.x); // Prints 9
 Console.WriteLine(b.x); // Prints 7
 }
}

As with this example, an object on the heap can be pointed at by many variables, whereas an
object on the stack or inline can be accessed only via the variable it was declared with.

2.2.7 Unified Type System

C# provides a unified type system, whereby the object class is the ultimate base type for both
reference and value types. This means that all types, apart from the occasionally used pointer
types, share a basic set of characteristics.

2.2.7.1 Simple types are value types

In most languages, there is a strict distinction between simple types (int, float, etc.) and user-
defined types (Rectangle, Button, etc.). In C#, simple types actually alias structs found in the
System namespace. For instance, the int type aliases the System.Int32 struct, and the long
type aliases the System.Int64struct, etc. This means simple types have the same features you
expect any user-defined type to have. For instance, you can call a method on an int:

int i = 3;
string s = i.ToString();

This is equivalent to:

// This is an explanatory version of System.Int32
namespace System {
 struct Int32 {
 ...
 public string ToString() {
 return ...;
 }
 }
}
// This is valid code, but we recommend you use the int alias
System.Int32 i = 5;
string s = i.ToString();

 22

2.2.7.2 Value types expand the set of simple types

Creating an array of 1,000 ints is highly efficient. This line allocates 1,000 ints in one
contiguous block of memory:

int[] iarr = new int [1000];

Similarly, creating an array of a value type PointV is also very efficient:

struct PointV {
 public int x, y;
}
PointV[] pvarr = new PointV[1000];

Had you used a reference type PointR, you would have needed to instantiate 1,000 individual
points after instantiating the array:

class PointR {
 public int x, y;
}
PointR[] prarr = new PointR[1000];
for(int i=0; i<prarr.Length; i++)
 prarr[i] = new PointR();

In Java, only the simple types (int, float, etc.) can be treated with this efficiency, while in C#
you can expand the set of simple types by declaring a struct.

Furthermore, C#'s operators may be overloaded so that operations such as + and -, which are
typically applicable to simple types, can also be applied to any class or struct (see Section 2.4
later in this chapter).

2.2.7.3 Boxing and unboxing value types

In C#, multiple reference types can share the characteristics of a common base type or interface,
which allows reference types to be treated generically. This is very powerful. For instance, a
method that takes a reference type R for a parameter works for any type that derives from R or
implements R (see Section 2.7.2 later in this chapter).

To perform common operations on both reference and value types, each value type has a
corresponding hidden reference type, which is automatically created when it is cast to a reference
type. This process is called boxing.

In the following example, the Queue class can enqueue and dequeue any object (object is a
reference type that is the base type of all types). You can put an int (a value type) in a queue,
because an int can be boxed and unboxed to and from its corresponding reference type:

class Queue {
 ...
 void Enqueue(object o) {...}
 object Dequeue() {return ...}
}

 23

Queue q = new Queue();
q.Enqueue(9); // box the int
int i = (int)q.Dequeue(); // unbox the int

When a value type is boxed, a new reference type is created to hold a copy of the value type.
Unboxing copies the value from the reference type back into a value type. Unboxing requires an
explicit cast, and a check is made to ensure the specified value type matches the type contained
in the reference type. An InvalidCastException is thrown if the check fails.

Function members of a value type don't actually override
virtual function members of the class object or an
implemented interface. However, a boxed value type
overrides virtual function members.

2.3 Variables

A variable represents a typed storage location. A variable can be a local variable, a parameter, an
array element (see Section 2.11 later in this chapter), an instance field, or a static field (see
Section 2.9.2 later in this chapter).

Every variable has an associated type, which essentially defines the possible values the variable
can have and the operations that can be performed on that variable. C# is strongly typed, which
means the set of operations that can be performed on a type is enforced at compile time, rather
than at runtime. In addition, C# is type-safe, which, with the help of runtime checking, ensures
that a variable can be operated only via the correct type (except in unsafe blocks; see Section
2.17.2 later in this chapter).

2.3.1 Definite Assignment

Variables in C# (except in unsafe contexts) must be assigned a value before they are used. A
variable is either explicitly assigned a value or automatically assigned a default value. Automatic
assignment occurs for static fields, class instance fields, and array elements not explicitly
assigned a value. For example:

using System;
class Test {
 int v;
 // Constructors that initialize an instance of a Test
 public Test() {} // v will be automatically assigned to 0
 public Test(int a) { // explicitly assign v a value
 v = a;
 }
 static void Main() {
 Test[] iarr = new Test [2]; // declare array
 Console.WriteLine(iarr[1]); // ok, elements assigned to null
 Test t;
 Console.WriteLine(t); // error, t not assigned
 }
}

 24

2.3.2 Default Values

The following table shows that, essentially, the default value for all primitive (or atomic) types is
zero:

Type Default value

Numeric 0
Bool false
Char '\0'
Enum 0
Reference null

The default value for each field in a complex (or composite) type is one of these aforementioned
values.

2.4 Expressions and Operators

An expression is a sequence of operators and operands that specifies a computation. C# has
unary operators, binary operators, and one ternary operator. Complex expressions can be built
because an operand may itself be an expression, such as the operand (1 + 2) in the following
example:

((1 + 2) / 3)

2.4.1 Operator Precedence

When an expression contains multiple operators, the precedence of the operators controls the
order in which the individual operators are evaluated. When the operators are of the same
precedence, their associativity determines their order of evaluation. Binary operators (except for
assignment operators) are left-associative and are evaluated from left to right. The assignment
operators, unary operators, and the conditional operator are right-associative, evaluated from
right to left.

For example:

1 + 2 + 3 * 4

is evaluated as:

((1 + 2) + (3 * 4))

because * has a higher precedence than +, and + is a left-associative binary operator. You can
insert parentheses to change the default order of evaluation. C# also overloads operators, which
means the same operator symbols can have different meanings in different contexts (e.g.,
primary, unary, etc.) or different meanings for different types.

Table 2-2 lists C#'s operators in order of precedence. Operators in the same box have the same
precedence, and operators in italic may be overloaded for custom types (see Section 2.9.8 later
in this chapter).

 25

Table 2-2. Operator Precedence Table
Category Operators

Primary

Grouping:(x)
Member access: x.y
Struct pointer member access: ->
Method call: f(x)
Indexing: a[x]
Post increment: x++
Post decrement:x--
Constructor call: new
Array stack allocation: stackalloc
Type retrieval: typeof
Struct size retrieval: sizeof
Arithmetic check on: checked
Arithmetic check off: unchecked

Unary

Positive value of (passive):
+Negative value of:
-Not:!
Bitwise complement: ~
Pre increment: ++x
Pre decrement:-- x
Type cast: (T)x
Value at address: *
Address of value: &

Multiplicative
Multiply: *
Divide: /
Division remainder: %

Additive
Add: +
Subtract: -

Shift
Shift bits left: <<
Shift bits right :>>

Relational

Less than: <
Greater than: >
Less than or equal to:<=
Greater than or equal to: >=
Type equality/compatibility: is
Conditional type conversion: as

Equality
Equals: ==
Not equals: !=

Logical bitwise And: &

 Exclusive or: ^

 Or: |

Logical
Boolean

And: &&

 Or: ||

 Ternary conditional: ?: e.g. int x = a > b ? 2 : 7; is equivalent to :int
x; if (a > b) x = 2; else x = 7;

Assignment Assign/modify: = *= /= %= += -= <<= >>= &= ^= |=

 26

2.4.2 Arithmetic Overflow Check Operators

Checked/unchecked operator syntax:
checked (expression)
unchecked (expression)

Checked/unchecked statement syntax:
checked statement-or-statement-block
unchecked statement-or-statement-block

The checked operator tells the runtime to generate an OverflowException if an integral
expression exceeds the arithmetic limits of that type. The checked operator affects expressions
with the ++, --, (unary)-, +, -, *, /, and explicit conversion operators () between integral types
(see Section 2.2.5.1 later in this chapter). Here's an example:

int a = 1000000;
int b = 1000000;

// Check an expression
int c = checked(a*b);

// Check every expression in a statement block
checked {
 ...
 c = a * b;
 ...
}

The checked operator applies only to runtime expressions, because constant expressions are
checked during compilation (though this can be turned off with the /checked [+|-] command-
line compiler switch). The unchecked operator disables arithmetic checking at compile time and
is seldom useful, but it can enable expressions such as this to compile:

const int signedBit = unchecked((int)0x80000000);

2.5 Statements

Execution of a C# program is specified by a series of statements that execute sequentially in the
textual order in which they appear. All statements in a procedural-based language such as C# are
executed for their effect. The two most basic kinds of statement in C# are the declaration and
expression statements. C# also provides flow control statements for selection, looping, and
jumping. Finally, C# provides statements for special purposes, such as locking memory or
handling exceptions.

So that multiple statements can be grouped together, zero or more statements may be enclosed
in braces ({ }) to form a statement block. A statement block can be used anywhere a single
statement is valid.

2.5.1 Expression Statements

Syntax:

 27

[variable =]? expression;

An expression statement evaluates an expression either by assigning its result to a variable or
generating side effects, (i.e., invocation, new, ++, or --). An expression statement ends in a
semicolon (;). For example:

x = 5 + 6; // assign result
x++; // side effect
y = Math.Min(x, 20); // side effect and assign result
Math.Min (x, y); // discards result, but ok, there is a side effect
x == y; // error, has no side effect, and does not assign result

2.5.2 Declaration Statements

Variable declaration syntax:
type [variable [= expression]?]+ ;

Constant declaration syntax:
const type [variable = constant-expression]+ ;

A declaration statement declares a new variable. You can initialize a variable at the time of its
declaration by optionally assigning it the result of an expression.

The scope of a local or constant variable extends to the end of the current block. You can't
declare another local variable with the same name in the current block or in any nested blocks.
For example:

bool a = true;
while(a) {
 int x = 5;
 if (x==5) {
 int y = 7;
 int x = 2; // error, x already defined
 }
 Console.WriteLine(y); // error, y is out of scope
}

A constant declaration is like a variable declaration, except that the value of the variable can't be
changed after it has been declared:

const double speedOfLight = 2.99792458E08;
speedOfLight+=10; // error

2.5.3 Empty Statements

Syntax:
;

The empty statement does nothing. It is used as a placeholder when no operations need to be
performed, but a statement is nevertheless required. For example:

 28

while(!thread.IsAlive);

2.5.4 Selection Statements

C# has many ways to conditionally control the flow of program execution. This section covers the
simplest two constructs, the if-else statement and the switch statement. In addition, C# also
provides a conditional operator and loop statements that conditionally execute based on a
Boolean expression. Finally, C# provides object-oriented ways of conditionally controlling the flow
of execution, namely virtual method invocations and delegate invocations.

2.5.4.1 if-else statement

Syntax:
if (Boolean-expression)
 statement-or-statement-block
[else
 statement-or-statement-block]?

An if-else statement executes code depending on whether a Boolean expression is true.
Unlike C, C# permits only a Boolean expression. For example:

int Compare(int a, int b) {
 if (a>b)
 return 1;
 else if (a<b)
 return -1;
 return 0;
}

2.5.4.2 switch statement

Syntax:
switch (expression) {
[case constant-expression : statement*]*
[default : statement*]?
}

switch statements let you branch program execution based on the value of a variable. switch
statements can result in cleaner code than if you use multiple if statements, because the
controlling expression is evaluated only once. For instance:

void Award(int x) {
 switch(x) {
 case 1:
 Console.WriteLine("Winner!");
 break;
 case 2:
 Console.WriteLine("Runner-up");
 break;
 case 3:
 case 4:
 Console.WriteLine("Highly commended");

 29

 break;
 default:
 Console.WriteLine("Don't quit your day job!");
 break;
 }
}

The switch statement can evaluate only a predefined type (including the string type) or enum,
though user-defined types may provide an implicit conversion to these types.

After a particular case statement is executed, control doesn't automatically continue to the next
statement or break out of the switch statement. Instead, you must explicitly control execution,
typically by ending each case statement with a jump statement. The options are:

• Use the break statement to jump to the end of the switch statement (this is by far the
most common option).

• Use the goto case <constantexpression> or goto default statements to jump to
either another case statement or the default case statement.

• Use any other jump statement, namely return, throw, continue, or goto label.

Unlike in Java and C++, the end of a case statement must explicitly state where to go next.
There is no error-prone "default fall through" behavior, so not specifying a jump statement results
in the next case statement being executed:

void Greet(string title) {
 switch (title) {
 case null:
 Console.WriteLine("And you are?");
 goto default;
 case "King":
 Console.WriteLine("Greetings your highness");
 // error, should specify break, otherwise...
 default :
 Console.WriteLine("How's it hanging?");
 break;
 }
}

2.5.5 Loop Statements

C# enables a group of statements to be executed repeatedly using the while, do while, and
for statements.

2.5.5.1 while loops

Syntax:
while (Boolean-expression)
 statement-or-statement-block

while loops repeatedly execute a statement block while a given Boolean expression remains
true. The expression is tested before the statement block is executed:

 30

int i = 0;
while (i<5) {
 i++;
}

2.5.5.2 do-while loops

Syntax:
do
 statement-or-statement-block
while (Boolean-expression);

do-while loops differ functionally from while loops only in that they test the controlling Boolean
expression after the statement block has executed. Here's an example:

int i = 0;
do
 i++;
while (i<5);

2.5.5.3 for loops

Syntax:
for (statement?; Boolean-expression?; statement?)
 statement-or-statement-block

for loops can be more convenient than while loops when you need to maintain an iterator
value. As in Java and C, for loops contain three parts. The first part is a statement executed
before the loop begins, and by convention, it initializes an iterator variable. The second part is a
Boolean expression that, while true, permits the statement block to execute. The third part is a
statement that is executed after each iteration of the statement block and, by convention,
increments an iterator variable. Here's an example:

for (int i=0; i<10; i++)
 Console.WriteLine(i);

Any of the three parts of the for statement may be omitted. You can implement an infinite loop
like this, though alternatively a while (true) statement has the same result:

for (;;)
 Console.WriteLine("Hell ain't so bad");

2.5.5.4 foreach loops

Syntax:
foreach (type-value in IEnumerable)
 statement-or-statement-block

It's common to use for loops to iterate over a collection, so C#, like Visual Basic, includes a
foreach statement. For instance, instead of doing this:

www.allitebooks.com

http://www.allitebooks.org

 31

for (int i=0; i<dynamite.Length; i++)
 Console.WriteLine(dynamite [i]);

you can do this:

foreach (Stick stick in dynamite)
 Console.WriteLine(stick);

The foreach statement works on any collection (including arrays). Although not strictly
necessary, all collections leverage this functionality by implementing the IEnumerable and
IEnumerator interfaces, which are explained in Section 3.4 in Chapter 3. Here is an
equivalent way to iterate over the collection:

IEnumerator ie = dynamite.GetEnumerator();
while (ie.MoveNext()) {
 Stick stick = (Stick)ie.Current;
 Console.WriteLine(stick);
}

2.5.6 jump Statements

The C# jump statements are: break, continue, goto, return, and throw. All jump
statements obey sensible restrictions imposed by try statements (see Section 2.15 later in this
chapter). First, a jump out of a try block always executes the try's finally block before
reaching the target of the jump. Second, a jump can't be made from the inside to the outside of a
finally block.

2.5.6.1 break statement

Syntax:
break;

The break statement transfers execution from the enclosing while loop, for loop, or switch
statement block to the next statement block:

int x = 0;
while (true) {
 x++;
 if (x>5)
 break; // break from the loop
}

2.5.6.2 continue statement

Syntax:
continue;

The continue statement forgoes the remaining statements in the loop and makes an early start
on the next iteration:

int x = 0;

 32

int y = 0;
while (y<100) {
 x++;
 if ((x%7)==0)
 continue; // continue with next iteration
 y++;
}

2.5.6.3 goto statement

Syntax:
goto statement-label;
goto case-constant;

The goto statement transfers execution to another label within the statement block. A label
statement is just a placeholder in a method:

int x = 4;
start:
x++;
if (x==5)
 goto start;

The goto case statement transfers execution to another case label in a switch block (as
explained in the Section 2.5.4.2 section).

2.5.6.4 return statement

Syntax:
return expression?;

The return statement exits a method. If the method is non-void, it must return an expression of
the method's return type:

int CalcX(int a) {
 int x = a * 100;
 return x; // return to the calling method with value
}

2.5.6.5 throw statement

Syntax:
throw exception-expression?;

The throw statement throws an Exceptionto indicate that an abnormal condition has occurred
(see Section 2.15 later in this chapter):

if (w==null)
 throw new Exception("w can't be null");

2.5.6.6 lock statement

 33

Syntax:
lock (expression)
 statement-or-statement-block

The lock statement is actually a syntactic shortcut for calling the Enter and Exit methods of
the Monitor class (see Section 3.8 in Chapter 3).

2.5.6.7 using statement

Syntax:
using (declaration-expression)
 statement-or-statement-block

Many classes encapsulate non-memory resources, such as file handles, graphics handles, or
database connections. These classes implement System.IDisposable, which defines a single
parameterless method named Dispose that is called to clean up these resources. The using
statement provides an elegant syntax for declaring, then calling, the Dispose method of
variables that implement IDisposable. For example:

using (FileStream fs = new FileStream (fileName, FileMode.Open)) {
 // do something with fs
}

This is precisely equivalent to:

FileStream fs = new FileStream (fileName, FileMode.Open);
try {
 // do something with fs
} finally {
 if (fs != null)
 ((IDisposable)fs).Dispose();
}

2.6 Organizing Types

A C# program is basically a group of types. These types are defined in files, organized by
namespaces, compiled into modules, and then grouped into an assembly.

Generally, these organizational units overlap: an assembly can contain many namespaces, and a
namespace can be spread across several assemblies. A module can be part of many
assemblies, and an assembly can contain many modules. A source file can contain many
namespaces, and a namespace can span many source files. For more information, see Section
3.9 in Chapter 3.

2.6.1 Files

File organization is of almost no significance to the C# compiler: an entire project can be merged
into a single .cs file and still compile successfully (preprocessor statements are the only exception
to this). However, it's generally tidy to have one type in one file, with a filename that matches the
name of the class and a directory name that matches the name of the class's namespace.

 34

2.6.2 Namespaces

Namespace declaration syntax:
namespace name+a {
 using-statement*
 [namespace-declaration | type-declaration]*b
}

a Dot-delimited.

b No delimiters.

A namespace enables you to group related types into a hierarchical categorization. Generally the
first name in a namespace name is the name of your organization, followed by names that group
types with finer granularity. For example:

namespace MyCompany.MyProduct.Drawing {
 class Point {int x, y, z;}
 delegate void PointInvoker(Point p);
}

2.6.2.1 Nesting namespaces

You may also nest namespace declarations instead of using dots. This example is semantically
identical to the previous example:

namespace MyCompany {
 namespace MyProduct {
 namespace Drawing {
 class Point {int x, y, z;}
 delegate void PointInvoker(Point p);
 }
 }
}

2.6.2.2 Using a type with its fully qualified name

The complete name of a type includes its namespace name. To use the Point class from
another namespace, you may refer to it with its fully qualified name:

namespace TestProject {
 class Test {
 static void Main() {
 MyCompany.MyProduct.Drawing.Point x;
 }
 }
}

2.6.2.3 using keyword

The using keyword is a convenient way to avoid using the fully qualified names of types in other
namespaces. This example is semantically identical to the previous example:

 35

namespace TestProject {
 using MyCompany.MyProduct.Drawing;
 class Test {
 static void Main() {
 Point x;
 }
 }
}

2.6.2.4 Aliasing types and namespaces

Type names must be unique within a namespace. To avoid naming conflicts without having to
use fully qualified names, C# allows you to specify an alias for a type or namespace. Here is an
example:

using sys = System; // Namespace alias
using txt = System.String; // Type alias
class Test {
 static void Main() {
 txt s = "Hello, World!";
 sys.Console.WriteLine(s); // Hello, World!
 sys.Console.WriteLine(s.GetType()); // System.String
 }
}

2.6.2.5 Global namespace

The outermost level within which all namespaces and types are implicitly declared is called the
global namespace. When a type isn't explicitly declared within a namespace, it can be used
without qualification from any other namespace, since it is a member of the global namespace.
However, it is always good practice to organize types within logical namespaces

2.7 Inheritance

A C# class can inherit from another class to extend or customize that class. A class can inherit
only from a single class but can be inherited by many classes, thus forming a class hierarchy. At
the root of any class hierarchy is the object class, which all objects implicitly inherit from.
Inheriting from a class requires specifying the class to inherit from in the class declaration, using
the C++ colon notation:

class Location { // Implicitly inherits from object
 string name;

 // The constructor that initializes Location
 public Location(string name) {
 this.name = name;
 }
 public string Name {get {return name;}}
 public void Display() {
 Console.WriteLine(Name);
 }
}
class URL : Location { // Inherit from Location
 public void Navigate() {

 36

 Console.WriteLine("Navigating to "+Name);
 }
 // The constructor for URL, which calls Location's constructor
 public URL(string name) : base(name) {}
}

URL has all the members of Location and a new member, Navigate:

class Test {
 public static void Main() {
 URL u = new URL("http://microsoft.com");
 u.Display();
 u.Navigate();
 }
}

The specialized class and general class are referred to as
either the derived class and base class or the subclass and
superclass.

2.7.1 Class Conversions

A class D may be implicitly upcast to the class B it derives from, and a class B may be explicitly
downcast to a class D that derives from it. For instance:

URL u = new URL("http://microsoft.com");
Location l = u; // upcast
u = (URL)l; // downcast

If the downcast fails, an InvalidCastException is thrown.

2.7.1.1 as operator

The as operator allows a downcast that evaluates to null to be made if the downcast fails:

u = l as URL;

2.7.1.2 is operator

The is operator can test if an objectis or derives from a specified class (or implements an
interface). It is often used to perform a test before a downcast:

if (l is URL)
 ((URL)l).Navigate();

2.7.2 Polymorphism

Polymorphism is the ability to perform the same operation on many types, as long as each type
shares a common subset of characteristics. C# custom types exhibit polymorphism by inheriting
classes and implementing interfaces (see Section 2.10 later in this chapter).

 37

In the following example, the Show method can perform the operation Display on both a URL
and a LocalFile because both types inherit the characteristics of Location:

class LocalFile : Location {
 public void Execute() {
 Console.WriteLine("Executing "+Name);
 }
 // The constructor for LocalFile, which calls Location's constructor
 public LocalFile(string name) : base(name) {}
}
class Test {
 static void Main() {
 URL u = new URL("http://www.microsoft.com");
 LocalFile l = new LocalFile("C:\\LOCAL\\README.TXT");
 Show(u);
 Show(l);
 }
 public static void Show(Location loc) {
 Console.Write("Location is: ");
 loc.Display();
 }
}

2.7.3 Virtual Function Members

A key aspect of polymorphism is that each type can implement a shared characteristic in its own
way. One way to permit such flexibility is for a base class to declare function members as
virtual. Derived classes can provide their own implementations for any function members
marked virtual in the base class (see Section 2.10 later in this chapter):

class Location {
 public virtual void Display() {
 Console.WriteLine(Name);
 }
 ...
}
class URL : Location {
 // chop off the http:// at the start
 public override void Display() {
 Console.WriteLine(Name.Substring(7));
 }
 ...
}

URL now has a custom way of displaying itself. The Show method of the Test class in the
previous section will now call the new implementation of Display. The signatures of the
overridden method and the virtual method must be identical, but unlike Java and C++, the
override keyword is also required.

2.7.4 Abstract Classes and Members

A class can be declared abstract. An abstract class may have abstractmembers, which are
function members without implementation that are implicitly virtual. In earlier examples, we
specified a Navigate method for the URL type and anExecute method for the LocalFile

 38

type. You can, instead, declare Location an abstract class with an abstract method called
Launch:

abstract class Location {
 public abstract void Launch();
}
class URL : Location {
 public override void Launch() {
 Console.WriteLine("Run Internet Explorer...");
 }
}
class LocalFile : Location {
 public override void Launch() {
 Console.WriteLine("Run Win32 Program...");
 }
}

A derived class must override all its inherited abstract members or must itself be declared
abstract. An abstract class can't be instantiated. For instance, if LocalFile doesn't
override Launch, LocalFile itself must be declared abstract, perhaps to allow Shortcut
and PhysicalFile to derive from it.

2.7.5 Sealed Methods and Sealed Classes

An overridden function member may seal its implementation so it cannot be overridden. In our
previous example, we could have made the URL's implementation of Display sealed. This
prevents a class that derives from URL from overriding Display, which provides a guarantee on
the behavior of a URL.

public sealed override void Display() {...}

A class can prevent other classes from inheriting from it by specifying the sealed modifier in the
class declaration:

sealed class Math {
 ...
}

The most common scenario for sealing a class is when that class comprises only static members,
as is the case with the Math class of the FCL. Another effect of sealing a class is that it enables
the compiler to seal all virtual method invocations made on that class into faster, nonvirtual
method invocations.

2.7.6 Hiding Inherited Members

Aside from its use for calling a constructor, the new keyword can also hide the data members,
function members, and type members of a base class. Overriding a virtual method with the new
keyword hides, rather than overrides, the base class implementation of the method:

class B {
 public virtual void Foo() {
 Console.WriteLine("In B.");

 39

 }
}
class D : B {
 public override void Foo() {
 Console.WriteLine("In D.");
 }
}
class N : D {
 public new void Foo() { // hides D's Foo
 Console.WriteLine("In N.");
 }
}
public static void Main() {
 N n = new N();
 n.Foo(); // calls N's Foo
 ((D)n).Foo(); // calls D's Foo
 ((B)n).Foo(); // calls D's Foo
}

A method declaration with the same signature as its base class should explicitly state whether it
overrides or hides the inherited member.

2.7.7 Versioning Virtual Function Members

In C#, a method is compiled with a flag that is true if the method overrides a virtual method.
This flag is important for versioning. Suppose you write a class that derives from a base class in
the .NET Framework and then deploy your application to a client computer. The client later
upgrades the .NET Framework, and the .NET base class now contains a virtual method that
happens to match the signature of one of your methods in the derived class:

public class Base { // written by the library people
 public virtual void Foo() {...} // added in latest update
}
public class Derived : Base { // written by you
 public void Foo() {...} // not intended as an override
}

In most object-oriented languages, such as Java, methods are not compiled with this flag, so a
derived class's method with the same signature is assumed to override the base class's virtual
method. This means a virtual call is made to type Derived's Foo method, even though
Derived's Foo is unlikely to have been implemented according to the specification intended by
the author of type Base. This can easily break your application. In C#, the flag for Derived's Foo
will be false, so the runtime knows to treat Derived's Foo as new, which ensures that your
application will function as it was originally intended. When you get the chance to recompile with
the latest framework, you can add the new modifier to Foo, or perhaps rename Foo something
else.

2.8 Access Modifiers

To promote encapsulation, a type or type member may hide itself from other types or other
assemblies by adding one of the following five access modifiers to the declaration:

public

 40

The type or type member is fully accessible. This is the implicit accessibility for enum
members (see Section 2.12 later in this chapter) and interface members (see Section
2.10 later in this chapter).

internal

The type or type member in assembly A is accessible only from within A. This is the
default accessibility for nonnested types, so it may be omitted.

private

The type member in type T is accessible only from within T. This is the default
accessibility for class and struct members, so it may be omitted.

protected

The type member in class C is accessible only from within C or from within a class that
derives from C.

protected internal

The type member in class C and assembly A is accessible only from within C, from within
a class that derives from C, or from within A. Note that C# has no concept of protected
and internal, in which a type member in class C and assembly A is accessible only
from within C or from within a class that derives from C and is within A.

Note that a type member may be a nested type. Here is an example that uses access modifiers:

// Assembly1.dll
using System;
public class A {
 private int x=5;
 public void Foo() {Console.WriteLine (x);}
 protected static void Goo() {}
 protected internal class NestedType {}
}
internal class B {
 private void Hoo () {
 A a1 = new A (); // ok
 Console.WriteLine(a1.x); // error, A.x is private
 A.NestedType n; // ok, A.NestedType is internal
 A.Goo(); // error, A's Goo is protected
 }
}

// Assembly2.exe (references Assembly1.dll)
using System;
class C : A { // C defaults to internal
 static void Main() { // Main defaults to private
 A a1 = new A(); // ok
 a1.Foo(); // ok
 C.Goo(); // ok, inherits A's protected static member
 new A.NestedType(); // ok, A.NestedType is protected

www.allitebooks.com

http://www.allitebooks.org

 41

 new B(); // error, Assembly 1's B is internal
 Console.WriteLine(x); // error, A's x is private
 }
}

2.8.1 Restrictions on Access Modifiers

A type or type member can't declare itself to be more accessible than any of the types it uses in
its declaration. For instance, a class can't be public if it derives from an internal class, or a
method can't be protected if the type of one of its parameters is internal to the assembly.
The rationale behind this restriction is that whatever is accessible to another type is actually
usable by that type.

In addition, access modifiers can't be used when they conflict with the purpose of inheritance
modifiers. For example, a virtual (or abstract) member can't be declared private, since it
would then be impossible to override. Similarly, a sealed class can't define new protected
members, since there is no class that can benefit from this accessibility.

Finally, to maintain the contract of a base class, a function member with the override modifier
must have the same accessibility as the virtual member it overrides.

2.9 Classes and Structs

Class declaration syntax:
attributes? unsafe? access-modifier?
new?
[abstract | sealed]?
class class-name
[: base-class | : interface+ | : base-class, interface+]?
{ class-members }

Struct declaration syntax:
attributes? unsafe? access-modifier?
new?
struct struct-name [: interface+]?
{ struct-members }

A class or struct combines data, functions, and nested types into a new type, which is a key
building block of C# applications. The body of a class or struct is comprised of three kinds of
members: data, function, and type.

Data members

Includes fields, constants, and events. The most common data members are fields.
Events are a special case, since they combine data and functionality in the class or struct
(see Section 2.14 later in this chapter).

Function members

Includes methods, properties, indexers, operators, constructors, and destructors. Note
that all function members are either specialized types of methods or are implemented
with one or more specialized types of methods.

 42

Type members

Includes nested types. Types can be nested to control their accessibility (see Section
2.8 later in this chapter).

Here's an example:

class ExampleClass {
 int x; // data member
 void Foo() {} // function member
 struct MyNestedType {} // type member
}

2.9.1 Differences Between Classes and Structs

Classes differ from structs in the following ways:

• A class is a reference type; a struct is a value type. Consequently, structs are typically
simple types in which value semantics are desirable (e.g., assignment copies a value
rather than a reference).

• A class fully supports inheritance (see Section 2.7 earlier in this chapter). A struct
inherits from object and is implicitly sealed. Both classes and structs can implement
interfaces.

• A class can have a destructor; a struct can't.
• A class can define a custom parameterless constructor and initialize instance fields; a

struct can't. The default parameterless constructor for a struct initializes each field with a
default value (effectively zero). If a struct declares a constructor(s), all its fields must be
assigned in that constructor call.

2.9.2 Instance and Static Members

Data members and function members may be either instance (default) or static members.
Instance members are associated with an instance of a type, whereas static members are
associated with the type itself. Furthermore, invocation of static members from outside their
enclosing type requires specifying the type name. In this example, the instance method
PrintName prints the name of a particular Panda, while the static method PrintSpeciesName
prints the name shared by all Pandas in the application (AppDomain):

using System;
class Panda {
 string name;
 static string speciesName = "Ailuropoda melanoleuca";
 // Initializes Panda (see the later section "Instance Constructors")
 public Panda(string name) {
 this.name = name;
 }
 public void PrintName() {
 Console.WriteLine(name);
 }
 public static void PrintSpeciesName() {
 Console.WriteLine(speciesName);
 }
}

 43

class Test {
 static void Main() {
 Panda.PrintSpeciesName(); // invoke static method
 Panda p = new Panda("Petey");
 p.PrintName(); // invoke instance method
 }
}

2.9.3 Fields

Syntax:
attributes? unsafe? access-modifier?
new?
static?
[readonly | volatile]?
type [field-name [= expression]?]+ ;

Fields hold data for a class or struct. Fields are also referred to as member variables:

class MyClass {
 int x;
 float y = 1, z = 2;
 static readonly int MaxSize = 10;
 ...
}

As the name suggests, the readonly modifier ensures a field can't be modified after it's
assigned. Such a field is termed a read-only field. Assignment to a read-only field is always
evaluated at runtime, not at compile time. To compile, a read-only field's assignment must occur
in its declaration or within the type's constructor (see Section 2.9.9 later in this chapter). Both
read-only and non-read-only fields generate a warning when left unassigned.

The volatile modifier indicates that a field's value may be modified in a multi-threaded
scenario, and that neither the compiler nor the runtime should perform optimizations with that
field.

2.9.4 Constants

Syntax:
attributes? access-modifier?
new?
const type [constant-name = constant-expression]+;

The type must be one of the following predefined types: sbyte, byte, short, ushort, int,
uint, long, ulong, float, double, decimal, bool, char, string, or enum.

A constant is a field that is evaluated at compile time and is implicitly static. The logical
consequence of this is that a constant can't defer evaluation to a method or constructor and can
only be one of a few built-in types (see the preceding syntax definition).

public const double PI = 3.14159265358979323846;

 44

The benefit of a constant is that since it is evaluated at compile time, the compiler can perform
additional optimization. For instance:

public static double Circumference(double radius) {
 return 2 * Math.PI * radius;
}

evaluates to:

public static double Circumference(double radius) {
 return 6.28318530717959 * radius;
}

2.9.4.1 Versioning with constants

A readonly field isn't optimized by the compiler but is more versionable. For instance, suppose
there is a mistake with PI, and Microsoft releases a patch to their library that contains the Math
class, which is deployed to each client computer. If software using the Circumference method
is already deployed on a client machine, the mistake isn't fixed until you recompile your
application with the latest version of the Math class. With a readonly field, however, this
mistake is automatically fixed the next time the client application is executed. Generally this
scenario occurs when a field value changes not as a result of a mistake, but simply because of an
upgrade, such as a change in the value of the MaxThreads constant from 500 to 1,000.

2.9.5 Properties

Syntax:
attributes? unsafe? access-modifier?
[
 [[sealed | abstract]? override] |
 new? [virtual | abstract | static]?
]?
type property-name { [
attributes? get statement-block | // read-only
attributes? set statement-block | // write-only
attributes? get statement-block // read-write
attributes? set statement-block
] }

abstract accessors don't specify an implementation, so they replace a get/set block with a
semicolon. Also see Section 2.8.1 earlier in this chapter.

A property can be characterized as an object-oriented field. Properties promote encapsulation by
allowing a class or struct to control access to its data and by hiding the internal representation of
the data. For instance:

public class Well {
 decimal dollars; // private field
 public int Cents {
 get { return(int)(dollars * 100); }
 set {
 // value is an implicit variable in a set
 if (value>=0) // typical validation code

 45

 dollars = (decimal)value/100;
 }
 }
}
class Test {
 static void Main() {
 Well w = new Well();
 w.Cents = 25; // set
 int x = w.Cents; // get
 w.Cents += 10; // get and set(throw a dime in the well)
 }
}

The get accessor returns a value of the property's type. The set accessor has an implicit
parameter value that is of the property's type.

Many languages loosely implement properties with a get or
set method convention, and in fact, C# properties are
compiled to get_XXX or set_XXX methods, which is their
representation in MSIL; for example:

public int get_Cents {...}
public void set_Cents (int value) {...}

Simple property accessors are inlined by the JIT (just-in-time
compiler), which means there is no performance difference
between a property access and a field access. Inlining is an
optimization that replaces a method call with the body of that
method.

2.9.6 Indexers

Syntax:
attributes? unsafe? access-modifier?
[
 [[sealed | abstract]? override] |
 new? [virtual | abstract]?
]?
type this [attributes? [type arg]+] {
 attributes? get statement-block | // read-only
 attributes? set statement-block | // write-only
 attributes? get statement-block // read-write
 attributes? set statement-block
}

abstract accessors don't specify an implementation, so they replace a get/set block with a
semicolon. Also see Section 2.8.1 earlier in this chapter.

 46

An indexer provides a natural way to index elements in a class or struct that encapsulates a
collection, using the open and closed bracket ([]) syntax of the array type. For example:

public class ScoreList {
 int[] scores = new int [5];
 // indexer
 public int this[int index] {
 get {
 return scores[index]; }
 set {
 if(value >= 0 && value <= 10)
 scores[index] = value;
 }
 }
 // property (read-only)
 public int Average {
 get {
 int sum = 0;
 foreach(int score in scores)
 sum += score;
 return sum / scores.Length;
 }
 }
}
class IndexerTest {
 static void Main() {
 ScoreList sl = new ScoreList();
 sl[0] = 9;
 sl[1] = 8;
 sl[2] = 7;
 sl[3] = sl[4] = sl[1];
 System.Console.WriteLine(sl.Average);
 }
}

A type may declare multiple indexers that take different parameters.

Indexers are compiled to get_Item (...)/set_Item
(...) methods, which is their representation in MSIL:

public Story get_Item (int index) {...}
public void set_Item (int index, Story value)
{...}

Consequently, you cannot define a property named Item in a
type that has an indexer.

2.9.7 Methods

Method declaration syntax:

 47

attributes? unsafe? access-modifier?
[
 [[sealed | abstract]? override] |
 new? [virtual | abstract | static extern?]?
]?
[void | type] method-name (parameter-list)
statement-block

Parameter list syntax:
[attributes? [ref | out]? type arg]*
[params attributes? type[] arg]?

abstract and extern methods don't contain a method body. Also see Section 2.8.1 earlier in
this chapter.

All C# code executes in a method or in a special form of a method (constructors, destructors, and
operators are special types of methods, and properties and indexers are internally implemented
with get/set methods).

2.9.7.1 Signatures

A method's signature is characterized by the type and modifier of each parameter in its parameter
list. The parameter modifiers ref and out allow arguments to be passed by reference rather
than by value.

2.9.7.2 Passing arguments by value

By default, arguments in C# are passed by value, which is by far the most common case. This
means a copy of the value is created when passed to the method:

static void Foo(int p) {++p;}
public static void Main() {
 int x = 8;
 Foo(x); // make a copy of the value type x
 Console.WriteLine(x); // x will still be 8
}

Assigning p a new value doesn't change the contents of x, since p and x reside in different
memory locations.

2.9.7.3 ref modifier

To pass by reference, C# provides the parameter modifier ref. Using this modifier allows p and
x to refer to the same memory locations:

static void Foo(ref int p) {++p;}
public static void Test() {
 int x = 8;
 Foo(ref x); // send reference of x to Foo
 Console.WriteLine(x); // x is now 9
}

 48

Now, assigning p a new value changes the contents of x. This is usually why you want to pass by
reference, though occasionally it is an efficient technique with which to pass large structs. Notice
how the ref modifier is required in the method call, as well as in the method declaration. This
makes it very clear what's going on and removes ambiguity since parameter modifiers change the
signature of a method (see Section 2.9.7.1 earlier in this chapter).

2.9.7.4 out modifier

C# is a language that enforces the requirement that variables be assigned before use, so it also
provides the out modifier, which is the natural complement of the ref modifier. While a ref
modifier requires that a variable be assigned a value before being passed to a method, the out
modifier requires that a variable be assigned a value before returning from a method:

using System;
class Test {
 static void Split(string name, out string firstNames,
 out string lastName) {
 int i = name.LastIndexOf(' ');
 firstNames = name.Substring(0, i);
 lastName = name.Substring(i+1);
 }
 public static void Main() {
 string a, b;
 Split("Nuno Bettencourt", out a, out b);
 Console.WriteLine("FirstName:{0}, LastName:{1}", a, b);
 }
}

2.9.7.5 params modifier

The params parameter modifier may be specified on the last parameter of a method so the
method can accept any number of parameters of a particular type. For example:

using System;
class Test {
 static int Add(params int[] iarr) {
 int sum = 0;
 foreach(int i in iarr)
 sum += i;
 return sum;
 }
 static void Main() {
 int i = Add(1, 2, 3, 4);
 Console.WriteLine(i); // 10
 }
}

2.9.7.6 Overloading methods

A type may overload methods (have multiple methods with the same name) as long as the
signatures are different.[3]

[3] A minor exception to this rule is that two otherwise identical signatures cannot coexist if one parameter
has the ref modifier and the other parameter has the out modifier.

 49

For example, the following methods can coexist in the same type:

void Foo(int x);
viod Foo(double x);
void Foo(int x, float y);
void Foo(float x, int y);
void Foo(ref int x);

However, the following pairs of methods can't coexist in the same type, since the return type
and params modifier don't qualify as part of a method's signature:

void Foo(int x);
float Foo(int x); // compile error
void Goo (int[] x);
void Goo (params int[] x); // compile error

2.9.8 Operators

Overloadable operators:
+ - ! ~ ++ -- + -
* (binary only) / % & (binary only)
| ^ << >> ++ != > <
>= <= ==

Literals doubling as overloadable operators:
true false

C# lets you overload operators to work with operands that are custom classes or structs using
operators. An operator is a static method with the keyword operator preceding the operator to
be overloaded (instead of a method name), parameters representing the operands, and return
type representing the result of an expression.

2.9.8.1 Implementing value equality

A pair of references exhibit referential equality when both references point to the same object. By
default, the == and != operators will compare two reference-type variables by reference.
However, it is ocassionally more natural for the == and != operators to exhibit value equality,
whereby the comparison is based on the value of the objects that the references point to.

Whenever overloading the == and != operators, you should always override the virtual Equals
method to route its functionality to the == operator. This allows a class to be used polymorphically
(which is essential if you want to take advantage of functionality such as the collection classes). It
also provides compatibility with other .NET languages that don't overload operators.

A good guideline for knowing whether to implement the ==
and != operators is if it is natural for the class to overload
other operators too, such as <, >, +, or -; otherwise, don't
bother—just implement the Equals method. For structs,
overloading the == and != operators provides a more efficient
implementation than the default one.

 50

using System;
class Note {
 int value;
 public Note(int semitonesFromA) {
 value = semitonesFromA;
 }
 public static bool operator ==(Note x, Note y) {
 return x.value == y.value;
 }
 public static bool operator !=(Note x, Note y) {
 return x.value != y.value;
 }
 public override bool Equals(object o) {
 if(!(o is Note))
 return false;
 return this ==(Note)o;
 }
 public static void Main() {
 Note a = new Note(4);
 Note b = new Note(4);
 Object c = a;
 Object d = b;

 // To compare a and b by reference:
 Console.WriteLine((object)a ==(object)b); // false

 // To compare a and b by value:
 Console.WriteLine(a == b); // true

 // To compare c and d by reference:
 Console.WriteLine(c == d); // false

 // To compare c and d by value:
 Console.WriteLine(c.Equals(d)); // true
 }
}

2.9.8.2 Logically paired operators

The C# compiler enforces the rule that operators that are logical pairs must both be defined.
These operators are == and !=; < and >; and <= and >=.

2.9.8.3 Custom implicit and explicit conversions

As explained in the earlier section Section 2.2, the rationale behind implicit conversions is they
are guaranteed to succeed and not lose information during the conversion. Conversely, an
explicit conversion is required either when runtime circumstances determine if the conversion
succeeds or if information is lost during the conversion. In the following example, we define
conversions between the musical Note type and a double (which represents the frequency in
hertz of that note):

...
// Convert to hertz
public static implicit operator double(Note x) {
 return 440*Math.Pow(2,(double)x.value/12);

www.allitebooks.com

http://www.allitebooks.org

 51

}

// Convert from hertz (accurate only to nearest semitone)
public static explicit operator Note(double x) {
 return new Note((int)(0.5+12*(Math.Log(x/440)/Math.Log(2))));
}
...

Note n =(Note)554.37; // explicit conversion
double x = n; // implicit conversion

2.9.8.4 Three-state logic operators

The true and false keywords are used as operators when defining types with three-state logic
to enable these types to seamlessly work with constructs that take Boolean expressions, namely
the if, do, while, for, and conditional (?:) statements. The System.Data.SQLTypes.
SQLBoolean struct provides this functionality:

public struct SQLBoolean ... {
 int value;
 ...
 public SQLBoolean(int value) {
 this.value = value;
 }
 public static bool operator true(SQLBoolean x) {
 return x.value == 1;
 }
 public static bool operator false(SQLBoolean x) {
 return x.value == -1;
 }
 public static SQLBoolean operator !(SQLBoolean x) {
 return new SQLBoolean(- x.value);
 }
 public bool IsNull {
 get { return value == 0;}
 }
 ...
}
class Test {
 public static void Foo(SQLBoolean a) {
 if (a)
 Console.WriteLine("True");
 else if (! a)
 Console.WriteLine("False");
 else
 Console.WriteLine("Null");
 }
}

2.9.8.5 Indirectly overloadable operators

The && and || operators are automatically evaluated from & and |, so they don't need to be
overloaded. The [] operators can be customized with indexers (see Section 2.9.6 earlier in this
chapter). The assignment operator = can't be overloaded, but all other assignment operators are
automatically evaluated from their corresponding binary operators (e.g., += is evaluated from +).

 52

2.9.9 Instance Constructors

Syntax:
attributes? unsafe? access-modifier?
unsafe?
class-name (parameter-list)
[:[base | this] (argument-list)]?
statement-block

An instance constructor allows you to specify the code to be executed when a class or struct is
instantiated. A class constructor first creates a new instance of that class on the heap and then
performs initialization, while a struct constructor merely performs initialization.

Unlike ordinary methods, a constructor has the same name as the class or struct in which it is
declared, and has no return type:

class MyClass {
 public MyClass() {
 // initialization code
 }
}

A class or struct can overload constructors and may call one of its overloaded constructors before
executing its method body using the this keyword:

using System;
class MyClass {
 public int x;
 public MyClass() : this(5) {}
 public MyClass(int v) {
 x = v;
 }
 public static void Main() {
 MyClass m1 = new MyClass();
 MyClass m2 = new MyClass(10);
 Console.WriteLine(m1.x); // 5
 Console.WriteLine(m2.x); // 10;
 }
}

If a class does not define any constructors, an implicit parameterless constructor is created. A
struct can't define a parameterless constructor, since a constructor that initializes each field with a
default value (effectively zero) is always implicitly defined.

2.9.9.1 Calling base class constructors

A class constructor must call one of its base class constructors first. In the case where the base
class has a parameterless constructor, that constructor is called implicitly. In the case where the
base class provides only constructors that require parameters, the derived class constructor must
explicitly call one of the base class constructors using the base keyword. A constructor may also
call an overloaded constructor (which calls base for it):

class B {

 53

 public int x ;
 public B(int a) {
 x = a;
 }
 public B(int a, int b) {
 x = a * b;
 }
 // Notice that all of B's constructors need parameters
}
class D : B {
 public D() : this(7) {} // call an overloaded constructor
 public D(int a) : base(a) {} // call a base class constructor
}

2.9.9.2 Field initialization order

Another useful way to perform initialization is to assign fields an initial value in their declaration:

class MyClass {
 int x = 5;
}

Field assignments are performed before the constructor is executed and are initialized in the
textual order in which they appear. For classes, every field assignment in each class in the
inheritance chain is executed before any of the constructors are executed, from the least derived
to the most derived class.

2.9.9.3 Constructor access modifiers

A class or struct may choose any access modifier for a constructor. It is occasionally useful to
specify a private constructor to prevent a class from being constructed. This is appropriate for
utility classes made up entirely of static members, such as the System.Math class.

2.9.10 Static Constructors

Syntax:
attributes? unsafe? extern?
static class-name ()
statement-block

Note that extern static constructors don't specify an implementation, so they replace a
statement-block with a semicolon.

A static constructor allows initialization code to be executed before the first instance of a class or
struct is created, or before any static member of the class or struct is accessed. A class or struct
can define only one static constructor, and it must be parameterless and have the same name as
the class or struct:

class Test {
 static Test() {
 Console.WriteLine("Test Initialized");
 }
}

 54

2.9.10.1 Base class constructor order

Consistent with instance constructors, static constructors respect the inheritance chain, so each
static constructor from the least derived to the most derived is called.

2.9.10.2 Static field initialization order

Consistent with instance fields, each static field assignment is made before any of the static
constructors is called, and the fields are initialized in the textual order in which they appear:

class Test {
 public static int x = 5;
 public static void Foo() {}
 static Test() {
 Console.WriteLine("Test Initialized");
 }
}

Accessing either Test.x or Test.Foo assigns 5 to x and prints Test Initialized.

2.9.10.3 Nondeterminism of static constructor calls

Static constructors can't be called explicitly, and the runtime may invoke them well before they
are first used. Programs shouldn't make any assumptions about the timing of a static
constructor's invocation. In the following example, Test Initialized can be printed after
Test2 Initialized:

class Test2 {
 public static void Foo() {}
 static Test2() {
 Console.WriteLine("Test2 Initialized");
 }
}
...
Test.Foo();
Test2.Foo();

2.9.11 Self-Referencing

C# provides the keywords for accessing the members of a class itself or of the class from which it
is derived, namely the this and base keywords.

2.9.11.1 this keyword

The this keyword denotes a variable that is a reference to a class or struct instance and is
accessible only from within nonstatic function members of the class or struct. The this keyword
is also used by a constructor to call an overloaded constructor (see Section 2.9.9 earlier in this
chapter) or declare or access indexers (see Section 2.9.6 earlier in this chapter). A common
use of the this variable is to unambiguate a field name from a parameter name:

class Dude {
 string name;

 55

 public Dude(string name) {
 this.name = name;
 }
 public void Introduce(Dude a) {
 if (a!=this)
 Console.WriteLine("Hello, I'm "+name);
 }
}

2.9.11.2 base keyword

The base keyword is similar to the this keyword, except that it accesses an overridden or
hidden base-class function member. The base keyword can also call a base-class constructor
(see Section 2.9.9 earlier in this chapter) or access a base-class indexer (using base instead of
this). Calling base accesses the next most derived class that defines that member. To build
upon the example with the this keyword:

class Hermit : Dude {
 public Hermit(string name): base(name) {}
 public new void Introduce(Dude a) {
 base.Introduce(a);
 Console.WriteLine("Nice Talking To You");
 }
}

There is no way to access a specific base-class instance
member, as with the C++ scope resolution :: operator.

2.9.12 Destructors and Finalizers

Syntax:
attributes? unsafe?
~class-name ()
statement-block

Destructors are class-only methods used to clean up non-memory resources just before the
garbage collector reclaims the memory for an object. Just as a constructor is called when an
object is created, a destructor is called when an object is destroyed. C# destructors are very
different from C++ destructors, primarily because of the garbage collector's presence. First,
memory is automatically reclaimed with a garbage collector, so a destructor in C# is solely used
for non-memory resources. Second, destructor calls are non-deterministic. The garbage collector
calls an object's destructor when it determines it is no longer referenced. However, it may
determine that this is an undefined period of time after the last reference to the object
disappeared.

The C# compiler expands a destructor into a Finalize method override:

protected override void Finalize() {
 ...
 base.Finalize();
}

 56

For more details on the garbage collector and finalizers, see Section 3.12 in Chapter 3.

2.9.13 Nested Types

A nested type is declared within the scope of another type. Nesting a type has three benefits:

• It can access all the members of its enclosing type, regardless of a member's access
modifier.

• It can be hidden from other types with type-member access modifiers.
• Accessing a nested type from outside its enclosing type requires specifying the type

name (same principle as static members).

Here's an example of a nested type:

using System;
class A {
 int x = 3; // private member
 protected internal class Nested {// choose any access level
 public void Foo () {
 A a = new A ();
 Console.WriteLine (a.x); // can access A's private members
 }
 }
}
class B {
 static void Main () {
 A.Nested n = new A.Nested (); // Nested is scoped to A
 n.Foo ();
 }
}
// an example of using "new" on a type declaration
class C : A {
 new public class Nested {} // hide inherited type member
}

Nested classes in C# are roughly equivalent to static inner
classes in Java. There is no C# equivalent to Java's nonstatic
inner classes, in which an inner class has a reference to an
instance of the enclosing class.

2.10 Interfaces

Syntax:
attributes? unsafe? access-modifier?
new?
interface interface-name [: base-interface+]?
{ interface-members }

An interface is like a class, but with these major differences:

 57

• An interface provides a specification rather than an implementation for its members. This
is similar to a pure abstract class, which is an abstract class consisting of only abstract
members.

• A class and struct can implement multiple interfaces; a class can inherit only from a
single class.

• A struct can implement an interface but can't inherit from a class.

Earlier we defined polymorphism as the ability to perform the same operations on many types, as
long as each type shares a common subset of characteristics. The purpose of an interface is
precisely for defining such a set of characteristics.

An interface is comprised of one or more methods, properties, indexers, and events. These
members are always implicitly public and implicitly abstract (therefore virtual and nonstatic).

2.10.1 Defining an Interface

An interface declaration is like a class declaration, but it provides no implementation for its
members, since all its members are implicitly abstract. These members are intended to be
implemented by a class or struct that implements the interface.

Here's a simple interface that defines a single method:

public interface IDelete {
 void Delete();
}

2.10.2 Implementing an Interface

Classes or structs that implement an interface may be said to "fulfill the contract of the interface."
In this example, GUI controls that support the concept of deleting, such as a TextBox or
TreeView, or your own custom GUI control, can implement the IDelete interface:

public class TextBox : IDelete {
 public void Delete() {...}
}
public class TreeView : IDelete {
 public void Delete() {...}
}

If a class inherits from a base class, the name of each interface to be implemented must appear
after the base-class name:

public class TextBox : Control, IDelete {...}
public class TreeView : Control, IDelete {...}

2.10.3 Using an Interface

An interface is useful when you need multiple classes to share characteristics not present in a
common base class. In addition, an interface is a good way to ensure that these classes provide
their own implementation for the interface member, since interface members are implicitly
abstract.

 58

The following example assumes a form containing many GUI controls, including some TextBox
and TreeView controls, in which the currently focused control is accessed with the
ActiveControl property. When a user clicks Delete on a menu item or a toolbar button, you
test to see if ActiveControl implements IDelete, and if so, cast it to IDelete to call its
Delete method:

class MyForm {
 ...
 void DeleteClick() {
 if (ActiveControl is IDelete) {
 IDelete d = (IDelete)ActiveControl;
 d.Delete();
 }
 }
}

2.10.4 Extending an Interface

Interfaces may extend other interfaces. For instance:

interface ISuperDelete : IDelete {
 bool CanDelete {get;}
 event EventHandler CanDeleteChanged;
}

In implementing the ISuperDelete interface, an ActiveControl implements the CanDelete
property to indicate it has something to delete and isn't read-only. The control also implements
the CanDeleteChanged event to fire an event whenever its CanDelete property changes. This
framework lets the application ghost its Delete menu item and toolbar button when the
ActiveControl is unable to delete.

2.10.5 Explicit Interface Implementation

If there is a name collision between an interface member and an existing member in the class or
struct, C# allows you to explicitly implement an interface member to resolve the conflict. In this
example, we resolve a conflict that arises when we implement two interfaces that each define a
Delete method:

public interface IDesignTimeControl {
 ...
 object Delete();
}
public class TextBox : IDelete, IDesignTimeControl {
 ...
 void IDelete.Delete() {...}
 object IDesignTimeControl.Delete() {...}
 // Note that explicitly implementing just one of them would
 // be enough to resolve the conflict
}

Unlike implicit interface implementations, explicit interface implementations can't be declared with
abstract, virtual, override, or new modifiers. In addition, they are implicitly public, while

 59

an implicit implementation requires the use of the public modifier. However, to access the
method, the class or struct must be cast to the appropriate interface first:

TextBox tb = new TextBox();
IDesignTimeControl idtc = (IDesignTimeControl)tb;
IDelete id = (IDelete)tb;
idtc.Delete();
id.Delete();

2.10.6 Reimplementing an Interface

If a base class implements an interface member with the virtual (or abstract) modifier, a
derived class can override it. If not, the derived class must reimplement the interface to override
that member:

public class RichTextBox : TextBox, IDelete {
 // TextBox's IDelete.Delete is not virtual (since explicit
 // interface implementations cannot be virtual)
 public void Delete() {}
}

The implementation in this example lets you use a RichTextBox object as an IDelete object
and call RichTextBox's version of Delete.

2.10.7 Interface Conversions

A class or struct T can be implicitly cast to an interface I that T implements. Similarly, an interface
X can be implicitly cast to an interface Y that X inherits from. An interface can be explicitly cast to
any other interface or nonsealed class. However, an explicit cast from an interface I to a sealed
class or struct T is permitted only if T can implement I. For example:

interface IDelete {...}
interface IDesignTimeControl {...}
class TextBox : IDelete, IDesignTimeControl {...}
sealed class Timer : IDesignTimeControl {...}

TextBox tb1 = new TextBox ();
IDelete d = tb1; // implicit cast
IDesignTimeControl dtc = (IDesignTimeControl)d;
TextBox tb2 = (TextBox)dtc;
Timer t = (Timer)d; // illegal, a Timer can never implement IDelete

Standard boxing conversions happen when converting between structs and interfaces.

2.11 Arrays

Syntax:
type[*]+ array-name = new type [dimension+][*]*;

Note that [*] is the set: [] [,] [,,] ...

 60

Arrays allow a group of elements of a particular type to be stored in a contiguous block of
memory. Array types derive from System.Array and are declared in C# using brackets ([]).
For instance:

char[] vowels = new char[] {'a','e','i','o','u'};
Console.WriteLine(vowels [1]); // Prints "e"

The preceding function call prints "e" because array indexes start at 0. To support other
languages, .NET can create arrays based on arbitrary start indexes, but the FCL libraries always
use zero-based indexing. Once an array has been created, its length can't be changed. However,
the System.Collection classes provide dynamically sized arrays, as well as other data
structures, such as associative (key/value) arrays (see Section 3.4 in Chapter 3).

2.11.1 Multidimensional Arrays

Multidimensional arrays come in two varieties, rectangular and jagged. Rectangular arrays
represent an n-dimensional block; jagged arrays are arrays of arrays:

// rectangular
int [,,] matrixR = new int [3, 4, 5]; // creates one big cube
// jagged
int [][][] matrixJ = new int [3][][];
for (int i = 0; i < 3; i++) {
 matrixJ[i] = new int [4][];
 for (int j = 0; j < 4; j++)
 matrixJ[i][j] = new int [5];
}
// assign an element
matrixR [1,1,1] = matrixJ [1][1][1] = 7;

2.11.2 Local and Field Array Declarations

For convenience, local and field declarations can omit the array type when assigning a known
value, because the type is specified in the declaration:

int[,] array = {{1,2},{3,4}};

2.11.3 Array Length and Rank

Arrays know their own length. For multidimensional arrays, the GetLength method returns the
number of elements for a given dimension, which is counted from (the outermost) to the array's
Rank-1 (the innermost):

// one-dimensional
for(int i = 0; i < vowels.Length; i++);
// multidimensional
for(int i = 0; i < matrixR.GetLength(2); i++);

2.11.4 Bounds Checking

www.allitebooks.com

http://www.allitebooks.org

 61

All array indexing is bounds-checked by the CLR, with IndexOutOf-RangeException thrown
for invalid indexes. As in Java, bounds checking prevents program faults and debugging
difficulties while enabling code to be executed with security restrictions.

Generally the performance hit from bounds checking is minor,
and the JIT can perform optimizations such as determining
each array index is safe before entering a loop, thus avoiding
a check made for each iteration. In addition, C# provides
unsafe code to explicitly bypass bounds checking (see
Section 2.17 later in this chapter).

2.11.5 Array Conversions

Arrays of reference types can be converted to other arrays using the same logic you apply to its
element type (this is called array covariance). All arrays implement System.Array, which
provides methods to generic get and set elements regardless of array type.

2.12 Enums

Syntax:
attributes? access-modifier?
new?
enum enum-name [: integer type]?
{ [attributes? enum-member-name [= value]?]* }

Enums specify a group of named numeric constants:

public enum Direction {North, East, West, South}

Unlike in C, enum members must be used with the enum type name. This resolves naming
conflicts and makes code clearer:

Direction walls = Direction.East;

By default, enums are assigned integer constants: 0, 1, 2, etc. You can optionally specify an
alternative numeric type to base your enum on and explicitly specify values for each enum
member:

[Flags]
public enum Direction : byte {
 North=1, East=2, West=4, South=8
}
Direction walls = Direction.North | Direction.West;
if((walls & Direction.North) != 0)
 System.Console.WriteLine("Can't go north!");

The [Flags] attribute is optional. It informs the runtime that the values in the enum can be bit-
combined and should be decoded accordingly in the debugger or when outputting text to the
console. For example:

 62

Console.WriteLine(walls); // Displays "North, West"
Console.WriteLine(walls.ToString("d")); // displays "5"

The System.Enum type also provides many useful static methods for enums that allow you to
determine the underlying type of an enum, check if a specific value is supported, initialize an
enum from a string constant, retrieve a list of the valid values, and perform other common
operations such as conversions. Here is an example:

using System;
public enum Toggle : byte { Off=0, On=1 }
class TestEnum {
 static void Main() {
 Type t = Enum.GetUnderlyingType(typeof(Toggle));
 Console.WriteLine(t); // Prints "System.Byte"

 bool bDimmed = Enum.IsDefined(typeof(Toggle), "Dimmed");
 Console.WriteLine(bDimmed); // Prints "False"

 Toggle tog =(Toggle)Enum.Parse(typeof(Toggle), "On");
 Console.WriteLine(tog.ToString("d")); // Prints "1"
 Console.WriteLine(tog); // Prints "On"

 Array oa = Enum.GetValues(typeof(Toggle));
 foreach(Toggle atog in oa) // Prints "Off=0, On=1"
 Console.WriteLine("{0}={1}", atog, atog.ToString("d"));
 }
}

2.12.1 Enum Operators

The operators relevant to enums are:

== != < > <= &
>= + - ^ |
-= += = ++ ~
sizeof --

2.12.2 Enum Conversions

Enums can be explicitly converted to other enums. Enums and numeric types can be explicitly
converted to one another. A special case is the numeric literal 0, which can be implicitly
converted to an enum.

2.13 Delegates

Syntax:
attributes? unsafe? access-modifier?
new?
delegate
[void | type]
delegate-name (parameter-list);

 63

A delegate is a type that defines a method signature so delegate instances can hold and invoke a
method or list of methods that match its signature. A delegate declaration consists of a name and
a method signature.[4]

[4] The signature of a delegate method includes its return type and allows the use of a params modifier in its
parameter list, expanding the list of elements that characterize an ordinary method signature. The actual
name of the target method is irrelevant to the delegate.

Here's an example:

delegate bool Filter(string s);

This declaration lets you create delegate instances that can hold and invoke methods that return
bool and have a single string parameter. In the following example a Filter is created that
holds the FirstHalfOfAlphabet method. You then pass the Filter to the Display method,
which invokes the Filter:

class Test {
 static void Main() {
 Filter f = new Filter(FirstHalfOfAlphabet);
 Display(new String [] {"Ant","Lion","Yak"}, f);
 }
 static bool FirstHalfOfAlphabet(string s) {
 return "N".CompareTo(s) > 0;
 }
 static void Display(string[] names, Filter f) {
 int count = 0;
 foreach(string s in names)
 if(f(s)) // invoke delegate
 Console.WriteLine("Item {0} is {1}", count++, s);
 }
}

2.13.1 Multicast Delegates

Delegates can hold and invoke multiple methods. In this example, we declare a simple delegate
called MethodInvoker, which can hold and then invoke the Foo and Goo methods sequentially.
The += method creates a new delegate by adding the right delegate operand to the left delegate
operand.

using System;
delegate void MethodInvoker();
class Test {
 static void Main() {
 new Test(); // prints "Foo", "Goo"
 }
 Test() {
 MethodInvoker m = null;
 m += new MethodInvoker(Foo);
 m += new MethodInvoker(Goo);
 m();
 }
 void Foo() {
 Console.WriteLine("Foo");
 }

 64

 void Goo() {
 Console.WriteLine("Goo");
 }
}

A delegate can also be removed from another delegate using the -= operator:

Test() {
 MethodInvoker m = null;
 m += new MethodInvoker(Foo);
 m -= new MethodInvoker(Foo);
 m(); // m is now null, throws NullReferenceException
}

Delegates are invoked in the order they are added. If a delegate has a non-void return type, then
the value of the last delegate invoked is returned. Note that the += and -= operations on a
delegate are not thread-safe.

To work with the .NET runtime, C# compiles += and -=
operations made on a delegate to the static Combine and
Remove methods of the System.Delegate class.

2.13.2 Delegates Compared with Function Pointers

A delegate is behaviorally similar to a C function pointer (or Delphi closure) but can hold multiple
methods and the instance associated with each nonstatic method. In addition, delegates, like all
other C# constructs used outside unsafe blocks, are type-safe and secure, which means you're
protected from pointing to the wrong type of method or a method that you don't have permission
to access.

2.13.3 Delegates Compared with Interfaces

A problem that can be solved with a delegate can also be solved with an interface. For instance,
here is how to solve the filter problem using an IFilter interface:

using System;
interface IFilter {
 bool Filter(string s);
}
class Test {
 class FirstHalfOfAlphabetFilter : IFilter {
 public bool Filter(string s) {
 return ("N".CompareTo(s) > 0);
 }
 }
 static void Main() {
 FirstHalfOfAlphabetFilter f = new FirstHalfOfAlphabetFilter();
 Display(new string [] {"Ant", "Lion", "Yak"}, f);
 }
 static void Display(string[] names, IFilter f) {
 int count = 0;
 foreach (string s in names)

 65

 if (f.Filter(s))
 Console.WriteLine("Item {0} is {1}", count++, s);
 }
}

In this case, the problem was slightly more elegantly handled with a delegate, but generally
delegates are best used for event handling.

2.14 Events

Event handling is essentially a process by which one object can notify other objects that an event
has occurred. This process is largely encapsulated by multicast delegates, which have this ability
built in.

2.14.1 Defining a Delegate for an Event

The FCL defines numerous public delegates used for event handling, but you can also write your
own. For example:

delegate void MoveEventHandler(object source, MoveEventArgs e);

By convention, an event delegate's first parameter denotes the source of the event, and the
delegate's second parameter derives from System.EventArgs and stores data about the event.

2.14.2 Storing Data for an Event with EventArgs

You can define subclasses of EventArgs to include information relevant to a particular event:

public class MoveEventArgs : EventArgs {
 public int newPosition;
 public bool cancel;
 public MoveEventArgs(int newPosition) {
 this.newPosition = newPosition;
 }
}

2.14.3 Declaring and Firing an Event

A class or struct can declare an event by applying the event modifier to a delegate field. In this
example, the Slider class has a Position property that fires a Move event whenever its
Position changes:

class Slider {
 int position;
 public event MoveEventHandler Move;
 public int Position {
 get { return position; }
 set {
 if (position != value) { // if position changed
 if (Move != null) { // if invocation list not empty
 MoveEventArgs args = new MoveEventArgs(value);
 Move(this, args); // fire event

 66

 if (args.cancel)
 return;
 }
 position = value;
 }
 }
 }
}

The event keyword promotes encapsulation by ensuring that only the += and -= operations can
be performed on the delegate. This means other classes can register themselves to be notified of
the event, but only the Slider can invoke the delegate (fire the event) or clear the delegate's
invocation list.

2.14.4 Acting on an Event with Event Handlers

You can act on an event by adding an event handler to an event. An event handler is a delegate
that wraps the method you want invoked when the event is fired.

In the next example, we want our Form to act on changes made to a Slider's Position. You
do this by creating a MoveEventHandler delegate that wraps the event-handling method, the
slider.Move method. This delegate is added to the Move event's existing list of
MoveEventHandlers (which starts off empty). Changing the position on the Slider object fires
the Move event, which invokes the slider.Move method:

class Form {
 static void Main() {
 Slider slider = new Slider();
 // register with the Move event
 slider.Move += new MoveEventHandler(slider_Move);
 slider.Position = 20;
 slider.Position = 60;
 }
 static void slider_Move(object source, MoveEventArgs e) {
 if(e.newPosition < 50)
 Console.WriteLine("OK");
 else {
 e.cancel = true;
 Console.WriteLine("Can't go that high!");
 }
 }
}

Typically, the Slider class would be enhanced to fire the Move event whenever its Position is
changed by a mouse movement, keypress, or other user action.

2.14.5 Event Accessors

Syntax:
attributes? unsafe? access-modifier?
[
 [[sealed | abstract]? override] |
 new? [virtual | static]?

 67

]?
event delegate type event-property accessor-name
{
attributes? add statement-block
attributes? remove statement-block
}

Note that abstract accessors don't specify an implementation, so they replace an add/remove
block with a semicolon.

Similar to the way properties provide controlled access to a field, event accessors provide
controlled access to an event. Consider the following field declaration:

public event MoveEventHandler Move;

Except for the underscore prefix added to the field (to avoid a name collision), this is semantically
identical to:

private MoveEventHandler _Move;
public event MoveEventHandler Move {
 add {
 _Move += value;
 }
 remove {
 _Move -= value;
 }
}

The ability to specify a custom implementation of add and remove handlers for an event allows a
class to proxy an event generated by another class, thus acting as a relay for an event rather
than as the generator of that event. Another advantage of this technique is to eliminate the need
to store a delegate as a field, which can be costly in terms of storage space. For instance, a class
with 100 event fields would store 100 delegate fields, even though maybe only four of those
events are actually assigned. Instead, you can store these delegates in a dictionary and add and
remove the delegates from that dictionary (assuming the dictionary holding four elements uses
less storage space than 100 delegate references).

The add and remove parts of an event are compiled to
add_XXX and remove_XXX methods.

2.15 try Statements and Exceptions

Syntax:
try statement-block
[catch (exception type value?)? statement-block]+ |
finally statement-block |
[catch (exception type value?)? statement-block]+
finally statement-block

 68

2.15.1 try Statement

The purpose of a try statement is to simplify dealing with program execution in exceptional
circumstances. A try statement does two things. First, it lets exceptions thrown during the try
block's execution be caught by the catch block. Second, it ensures that execution can't leave the
try block without first executing the finally block. A try block must be followed by one or
more catch blocks, a finally block, or both.

2.15.2 Exceptions

C# exceptions are objects that contain information representing the occurrence of an exceptional
program state. When an exceptional state has occurred (e.g., a method receives an illegal value),
an exception object may be thrown, and the call stack is unwound until the exception is caught by
an exception handling block.

In the following example, we have an Account class. An exceptional state for the account class
is when its balance is below zero, which occurs when the Withdraw method receives a withdraw
amount larger than the current balance. Our test class makes our customer tiffanyTaylor
perform several actions that involve despositing and withdrawing from an account. When she
attempts to withdraw more money than she has in her account, a FundException is thrown,
which we will catch so we can notify the user and display her current account balance.

using System;

public class FundException : Exception {
 public FundException(decimal balance) :
 base("Total funds are "+balance+" dollars") {}
}

class Account {
 decimal balance;
 public decimal Balance {
 get {return balance;}
 }
 public void Deposit(decimal amount) {
 balance += amount;
 }
 public void Withdraw(decimal amount) {
 if (amount > balance)
 throw new FundException(balance);
 balance -= amount;
 }
}

class Customer {
 Account savingsAccount = new Account();
 public void SellBike() {
 savingsAccount.Deposit (1000);
 }
 public void BuyCar() {
 savingsAccount.Withdraw (30000);
 }
 public void GoToMovie() {
 savingsAccount.Withdraw (20);

 69

 }
}

class Test {
 static void Main() {
 Customer tiffanyTaylor = new Customer();
 bool todaysTasksDone = false;
 try {
 tiffanyTaylor.SellBike();
 tiffanyTaylor.BuyCar();
 tiffanyTaylor.GoToMovie();
 todaysTasksDone = true;
 }
 catch (FundException ex) {
 Console.WriteLine(ex.Message);
 }
 finally {
 Console.WriteLine(todaysTasksDone);
 }
 }
}

At the point when the FundException is thrown, the call stack is comprised of three methods:
Withdraw, BuyCar, and Main. Each of these methods will in succession return immediately to
its calling method until one of them has a catch block that can handle the exception, in this case
Main. Without a try statement, the call stack would have been unwound completely, and our
program would have terminated without displaying what caused the problem and without letting
the user know whether today's tasks were completed.

2.15.3 catch

A catch clause specifies which exception type (including derived types) to catch. An exception
must be of type System.Exception or of a type that derives from System.Exception.
Catching System.Exception provides the widest possible net for catching errors, which is
useful if your handling of the error is totally generic, such as with an error-logging mechanism.
Otherwise, you should catch a more specific exception type to prevent your catch block from
dealing with a circumstance it wasn't designed to handle (for example, an out-of-memory
exception).

2.15.3.1 Omitting the exception variable

Specifying only an exception type without a variable name allows an exception to be caught when
we don't need to use the exception instance, and merely knowing its type will suffice. The
previous example could have been written like this:

catch(FundException) { // don't specify variable
 Console.WriteLine("Problem with funds");
}

2.15.3.2 Omitting the catch expression

You may also completely omit the catch expression. This will catch an exception of any type,
even types that are not derived from System.Exception (these could be thrown by non-CLS-
compliant languages). The previous example could have been written like this:

 70

catch {
 Console.WriteLine("Something went wrong...");
}

The fact that most exceptions do inherit from System.Exception is a CLS convention, not a
CLR requirement.

2.15.3.3 Specifying multiple catch clauses

When declaring multiple catch clauses, only the first catch clause with an exception type that
matches the thrown exception executes its catch block. It is illegal for an exception type B to
precede an exception type D if B is a base class of D, since it would be unreachable.

try {...}
catch (NullReferenceException) {...}
catch (IOException) {...}
catch {...}

2.15.4 finally

finally blocks are always executed when control leaves the try block. A finally block is
executed at one of the following times:

• Immediately after the try block completes
• Immediately after the try block prematurely exits with a jump statement (e.g., return,

goto) and immediately before the target of the jump statement
• Immediately after a catch block executes

finally blocks add determinism to a program's execution by ensuring that particular code
always gets executed.

In our main example, if some other exception occurred such as a memory exception, the
finally block would have still been executed. This ensures that the user would know whether
today's tasks were completed. The finally block can also be used to gracefully restore
program state when an exception occurs. Had our example used a connection to a remote
account object, it would have been appropriate to close the account in the finally block.

2.15.5 Key Properties of the System.Exception Class

You will most frequently use the following properties of System.Exception:

StackTrace

This is a string representing all the methods called from the origin of the exception to the
catch block.

Message

This is a string with a description of the error.

InnerException

www.allitebooks.com

http://www.allitebooks.org

 71

Sometimes it is useful to catch an exception, then throw a new, more specific exception.
For instance, you can catch an IOException, and then throw a
DocumentLoadException that contains more specific information on what went wrong.
In this scenario, the DocumentLoadException should include the IOException as
the InnerException argument in its constructor, which is assigned to the
InnerException property. This cascading exception structure can be particularly
useful for debugging.

In C# all exceptions are runtime exceptions; there is no
equivalent of Java's compile-time exceptions.

2.16 Attributes

Syntax:
[[target:]? attribute-name (
positional-param+ |
[named-param = expression]+ |
positional-param+, [named-param = expression]+)?]

Attributes are language constructs that can decorate code elements (e.g., assemblies, modules,
types, members, return values, and parameters) with additional information.

In every language, you specify information associated with the types, methods, parameters, and
other elements of your program. For example, a type can specify a list of interfaces that it derives
from, or a parameter can specify how its values are to be passed with modifiers such as the ref
modifier in C#. The limitation of this approach is that you can only associate information with code
elements using the predefined constructs that the language itself provides.

Attributes allow programmers to add to the types of information associated with these code
elements. For example, serialization in the .NET Framework uses various serialization attributes
applied to types and fields to define how these code elements are serialized. This is more flexible
than requiring the language to have special syntax for serialization.

2.16.1 Attribute Classes

An attribute is defined by a class that inherits (directly or indirectly) from the abstract class
System.Attribute. When specifying an attribute on an element, the attribute name is the
name of the type. By convention the derived type name ends with the word "Attribute", but this
suffix isn't required.

In this example we specify that the Foo class is serializable using the Serializable attribute:

[Serializable]
public class Foo {...}

The Serializable attribute is actually a type declared in the System namespace, as follows:

class SerializableAttribute : Attribute {...}

 72

We could also specify the Serializable attribute using its fully qualified typename, as follows:

[System.SerializableAttribute]
public class Foo {...}

The preceding two examples that use the Serializable attribute are semantically identical.

The C# language and the FCL include a number of
predefined attributes. For more information on the other
attributes included in the FCL, and on creating your own
attributes, see Section 3.11 in Chapter 3.

2.16.2 Named and Positional Parameters

Attributes can take parameters, which specify additional information on the code element beyond
the mere presence of the attribute.

In this next example, we use the WebPermission attribute to specify that methods in class Foo
cannot make web connections to any URL starting with http://www.oreilly.com/ . This attribute
allows you to include parameters that specify a security action and a URL:

[WebPermission(SecurityAction.Deny,
 ConnectPattern="http://www.oreilly.com/.*")]
public class Foo {...}

Attribute parameters fall into one of two categories: positional and named parameters. In the
preceding example, SecurityAction.Deny is a positional parameter, and
ConnectPattern="http://www.oreilly.com/.*" is a named parameter.

The positional parameters for an attribute correspond to the parameters passed to one of the
attribute type's public constructors. The named parameters for an attribute correspond to the set
of public read/write or write-only instance properties and fields on the attribute type.

Since the parameters used when specifying an attribute are evaluated at compile time, they are
generally limited to constant expressions.

2.16.3 Explicitly Specifying Attribute Targets

Implicitly, the target of an attribute is the code element it immediately precedes. However,
sometimes it is necessary to explicitly specify that the attribute applies to a particular target. The
possible targets are assembly, module, type, method, property, field, param, event,
and return.

Here is an example that uses the CLSCompliant attribute to specify the level of CLS compliance
for an entire assembly:

[assembly:CLSCompliant(true)]

2.16.4 Specifying Multiple Attributes

 73

You can specify multiple attributes on a single code element. Each attribute can be listed within
the same pair of square brackets (separated by a comma), in separate pairs of square brackets,
or any combination of the two.

Consequently, the following three examples are semantically identical:

[Serializable, Obsolete, CLSCompliant(false)]
public class Bar {...}

[Serializable]
[Obsolete]
[CLSCompliant(false)]
public class Bar {...}

[Serializable, Obsolete]
[CLSCompliant(false)]
public class Bar {...}

2.17 Unsafe Code and Pointers

C# supports direct memory manipulation via pointers within blocks of code marked unsafe and
compiled with the /unsafe compiler option. Pointer types are primarily useful for interoperability
with C APIs but may also be used for accessing memory outside the managed heap or for
performance-critical hotspots.

2.17.1 Pointer Types

For every value type or pointer type V in a C# program, there is a corresponding C# pointer type
named V*. A pointer instance holds the address of a value. That value is considered to be of type
V, but pointer types can be (unsafely) cast to any other pointer type. Table 2-3 summarizes the
principal pointer operators supported by the C# language.

Table 2-3. Principal pointer operators

Operator Meaning
& The address-of operator returns a pointer to the address of a value.
* The dereference operator returns the value at the address of a pointer.

-> The pointer-to-member operator is a syntactic shortcut, in which x->y is equivalent to
(*x).y.

2.17.2 Unsafe Code

By marking a type, type-member, or statement block with the unsafe keyword, you're permitted
to use pointer types and perform C++-style pointer operations on memory within that scope. Here
is an example that uses pointers with a managed object:

unsafe void RedFilter(int[,] bitmap) {
 const int length = bitmap.Length;
 fixed (int* b = bitmap) {
 int* p = b;
 for(int i = 0; i < length; i++)

 74

 *p++ &= 0xFF;
 }
}

Unsafe code typically runs faster than a corresponding safe implementation, which in this case
would have required a nested loop with array indexing and bounds checking. An unsafe C#
method can be faster than calling an external C function too, since there is no overhead
associated with leaving the managed execution environment.

2.17.3 The fixed Statement

Syntax:
fixed ([value type | void]* name = [&]? expression)
 statement-block

The fixed statement is required to pin a managed object, such as the bitmap in the previous
pointer example. During the execution of a program, many objects are allocated and deallocated
from the heap. In order to avoid the unnecessary waste or fragmentation of memory, the garbage
collector moves objects around. Pointing to an object would be futile if its address can change
while referencing it, so the fixed statement tells the garbage collector to pin the object and not
move it around. This can impact the efficiency of the runtime, so fixed blocks should be used
only briefly, and preferably, heap allocation should be avoided within the fixed block.

C# returns a pointer only from a value type, never directly from a reference type. Arrays and
strings are an exception to this, but only syntactically, since they actually return a pointer to their
first element (which must be a value type), rather than the objects themselves.

Value types declared inline within reference types require the reference type to be pinned, as
follows:

using System;
class Test {
 int x;
 static void Main() {
 Test test = new Test();
 unsafe {
 fixed(int* p = &test.x) { // pins Test
 *p = 9;
 }
 System.Console.WriteLine(test.x);
 }
 }
}

2.17.4 Pointer to Member Operator

In addition to the & and * operators, C# also provides the C++-style -> operator, which can be
used on structs:

using System;
struct Test {
 int x;
 unsafe static void Main() {

 75

 Test test = new Test();
 Test* p = &test;
 p->x = 9;
 System.Console.WriteLine(test.x);
 }
}

2.17.5 The stackalloc Keyword

Memory can be allocated in a block on the stack explicitly using the stackalloc keyword. Since
it is allocated on the stack, its lifetime is limited to the execution of the method in which it is used,
just as with other local variables. The block may use [] indexing but is purely a value type with
no additional self-describing information or bounds checking, which an array provides:

int* a = stackalloc int [10];
for (int i = 0; i < 10; ++i)
 Console.WriteLine(a[i]); // print raw memory

2.17.6 void*

Rather than pointing to a specific value type, a pointer may make no assumptions about the type
of the underlying data. This is useful for functions that deal with raw memory. An implicit
conversion exists from any pointer type to a void*. A void* cannot be dereferenced, and
arithmetic operations cannot be performed on void pointers. For example:

class Test {
 unsafe static void Main () {
 short[] a = {1,1,2,3,5,8,13,21,34,55};
 fixed (short* p = a) {
 // sizeof returns size of value-type in bytes
 Zap (p, a.Length * sizeof (short));
 }
 foreach (short x in a)
 System.Console.WriteLine (x); // prints all zeros
 }
 unsafe static void Zap (void* memory, int byteCount) {
 byte* b = (byte*)memory;
 for (int i = 0; i < byteCount; i++)
 *b++ = 0;
 }
}

2.17.7 Pointers to Unmanaged Code

Pointers are also useful for accessing data outside the managed heap, such as when interacting
with C DLLs or COM or when dealing with data not in the main memory, such as graphics
memory or a storage medium on an embedded device.

2.18 Preprocessor Directives

Preprocessor directives supply the compiler with additional information about regions of code.
The most common preprocessor directives are the conditional directives, which provide a way to
include or exclude regions of code from compilation. For example:

 76

#define DEBUG
using System;
class MyClass {
 int x;
 public void Foo() {
 # if DEBUG
 # warning "Debug mode is ON"
 Console.WriteLine("Testing: x = {0}", x);
 # endif
 }
}

In this class, the statement in Foo is compiled conditionally, dependent upon the presence of the
user-selected DEBUG symbol. If you remove the DEBUG symbol, the statement isn't compiled.
Preprocessor symbols can be defined within a source file as just shown and can be passed to the
compiler with the /define:symbol command-line option.

The #error and #warning symbols prevent accidental misuse of conditional directives by
making the compiler generate a warning or error given an undesirable set of compilation symbols.

2.18.1 Preprocessor Directives

The C# language supports the preprocessor directives shown in Table 2-4.

Table 2-4. Preprocessor directives
Preprocessor directive Action

#define symbol Defines symbol

#undef symbol Undefines symbol

#if symbol [operator
symbol2] ...

symbol to test; operator: ==, !=, &&, || followed by #else,
#elif, #endif

#else Executes code to subsequent #endif

#elif symbol [operator
symbol2]

Combines #else branch and #if test

#endif Ends conditional directives
#warning text text: warning text to appear in compiler output

#error text text: error message to appear in compiler output

#line number [file] number specifies line in source code; file is the filename to
appear in computer output

#region name Marks beginning of outline
#end region Ends an outline region

2.19 XML Documentation

C# offers three different styles of source code documentation: single-line comments, multiline
comments, and documentation comments.

2.19.1 C/C++-Style Comments

 77

Single- and multiline comments use the C++ syntax: // and /*...*/:

int x = 3; // this is a comment
MyMethod(); /* this is a
comment that spans two lines */

The disadvantage of this style of commenting is that there is no predetermined standard for
documenting your types. Consequently, it can't be easily parsed to automate the production of
documentation. C# improves on this by allowing you to embed documentation comments in the
source and by providing an automated mechanism for extracting and validating documentation at
compile time.

2.19.2 Documentation Comments

Documentation comments are similar to C# single-line comments but start with /// and can be
applied to any user-defined type or member. These comments can include embedded XML tags
as well as descriptive text. These tags allow you to mark up the descriptive text to better define
the semantics of the type or member and also to incorporate cross-references.

These comments can then be extracted at compile time into a separate output file containing the
documentation. The compiler validates the comments for internal consistency, expands cross-
references into fully qualified type IDs, and outputs a well-formed XML file. Further processing is
left up to you, although a common next step is to run the XML through an XSL/T, generating
HTML documentation.

Here is an example documentation for a simple type:

// Filename: DocTest.cs
using System;
class MyClass {
 /// <summary>
 /// The Foo method is called from
 /// <see cref="Main">Main</see>
 /// </summary>
 /// <mytag>Secret stuff</mytag>
 /// <param name="s">Description for s</param>
 static void Foo(string s) { Console.WriteLine(s); }
 static void Main() { Foo("42"); }
}

2.19.3 XML Documentation Files

When the preceding source file is run through the compiler with the /doc:<filename>
command-line options, this XML file is generated:

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>DocTest</name>
 </assembly>
 <members>
 <member name="M:MyClass.Foo(System.String)">
 <summary>

 78

 The Foo method is called from
 <see cref="M:MyClass.Main">Main</see>
 </summary>
 <mytag>Secret stuff</mytag>
 <param name="s">Description for s</param>
 </member>
 </members>
</doc>

The <?xml...>, <doc>, and <members> tags are generated automatically and form the
skeleton for the XML file. The <assembly> and <name> tags indicate the assembly that this type
lives in. Every member preceded by a documentation comment is included in the XML file via a
<member> tag with a name attribute that identifies the member. Note that the cref attribute in
the <see> tag has also been expanded to refer to a fully qualified type and member. The
predefined XML documentation tags embedded in the documentation comments are also
included in the XML file. The tags have been validated to ensure that all parameters are
documented, that the names are accurate, and that any cross-references to other types or
members can be resolved. Finally, any additional user-defined tags are transferred verbatim.

2.19.4 Predefined XML Tags

This section lists the predefined set of XML tags that can be used to mark up the descriptive text:

<summary> , <remarks>
<summary>description</summary>
<remarks>description</remarks>

These tags describe a type or member. Typically, <summary>contains the description of
a member, and <remarks> contains a full description of a type.

<param>
<param name="name">description</param>

This tag describes a parameter on a method. The name attribute is mandatory and must
refer to a parameter on the method. If this tag is applied to any parameter on a method,
all parameters on that method must be documented. You must enclose name in double
quotation marks ("").

<returns>
<returns>description</returns>

This tag describes the return values for a method.

<exception>
<exception [cref="type"]>description</exception>

This tag describes the exceptions a method may throw. If present, the optional cref
attribute should refer to the type of exception. You must enclose the type name in double
quotation marks ("").

<permission>
<permission [cref="type"]>description</permission>

 79

This tag describes the permission requirements for a type or member. If present, the
optional cref attribute should refer to the type that represents the permission set
required by the member, although the compiler doesn't validate this. You must enclose
the type name in double quotation marks ("").

<example> , <c> , <code>
<example>description</example>
<c>code</c>
<code>code</code>

These tags provide a description and sample source code explaining the use of a type or
member. Typically, the <example> tag provides the description and contains the <c>
and <code> tags, although these can also be used independently. If you need to include
an inline code snippet, use the <c> tag. If you need to include multiline snippets, use the
<code> tag.

<see> , <seealso>
<see cref="member">text</see>
<seealso cref="member">text</seealso>

These tags identify cross-references in the documentation to other types or members.
Typically, the <see> tag is used inline within a description, while the <seealso> tag is
broken out into a separate "See Also" section. These tags are useful because they allow
tools to generate cross-references, indexes, and hyperlinked views of the documentation.
Member names must be enclosed by double quotation marks ("").

<value>
<value>description</value>

This tag describes a property on a class.

<paramref>
<paramref name="name"/>

This tag identifies the use of a parameter name within descriptive text, such as
<remarks> or <summary>. The name must be enclosed by double quotation marks
("").

<list> , <para>
<list type=[bullet| number| table]>
 <listheader>
 <term>name</term>
 <description>description</description>
 </listheader>
 <item>
 <term>name</term>
 <description>description</description>
 </item>
</list>
<para>text</para>

These tags provide hints to documentation generators on how to format the
documentation.

 80

<include>
<include file='filename' path='path-to-element'>

This tag specirfies an external file that contains documentation and an XPath path to a
specific element in that file. For example, a path of docs[@id="001"]/* would retrieve
whatever is inside of <docs id="001"/>. The filename and path must be enclosed by
single quotation marks ('').

2.19.5 User-Defined Tags

There is little that is special about the predefined XML tags recognized by the C# compiler, and
you are free to define your own. The only special processing done by the compiler is on the
<param> tag (where it verifies the parameter name and confirms that all the parameters on the
method are documented) and the cref attribute (where it verifies that the attribute refers to a real
type or member and expands it to a fully qualified type or member ID). The cref attribute can
also be used in your own tags and is verified and expanded just as it is in the predefined
<exception>, <permission>, <see>, and <seealso> tags.

2.19.6 Type or Member Cross-References

Type names and type or member cross-references are translated into IDs that uniquely define the
type or member. These names are composed of a prefix that defines what the ID represents and
a signature of the type or member. Table 2-5 lists the set of type and member prefixes.

Table 2-5. XML type ID prefixes
Prefix Applied to

N Namespace
T Type (class, struct, enum, interface, delegate)
F Field
P Property (includes indexers)
M Method (includes special methods)
E Event
! Error

The rules describing how the signatures are generated are well-documented, although fairly
complex.

Here is an example of a type and the IDs that are generated:

// Namespaces do not have independent signatures
namespace NS {
 // T:NS.MyClass
 class MyClass {
 // F:NS.MyClass.aField
 string aField;
 // P:NS.MyClass.aProperty
 short aProperty {get {...} set {...}}
 // T:NS.MyClass.NestedType
 class NestedType {...};
 // M:NS.MyClass.X()
 void X() {...}

 81

 // M:NS.MyClass.Y(System.Int32,System.Double@,System.Decimal@)
 void Y(int p1, ref double p2, out decimal p3) {...}
 // M:NS.MyClass.Z(System.Char[],System.Single[0:,0:])
 void Z(char[] p1, float[,] p2) {...}
 // M:NS.MyClass.op_Addition(NS.MyClass,NS.MyClass)
 public static MyClass operator+(MyClass c1, MyClass c2) {...}
 // M:NS.MyClass.op_Implicit(NS.MyClass)~System.Int32
 public static implicit operator int(MyClass c) {...}
 // M:NS.MyClass.#ctor
 MyClass() {...}
 // M:NS.MyClass.Finalize
 ~MyClass() {...}
 // M:NS.MyClass.#cctor
 static MyClass() {...}
 }
}

 82

Chapter 3. Programming the.NET Framework

Most modern programming languages include some form of runtime that provides common
services and access to the underlying operating systems and hardware. Examples of this range
from a simple functionallibrary, such as the ANSI C Runtime used by C and C++, to the rich
object-oriented class libraries provided by the Java Runtime Environment.

Similar to the way that Java programs depend on the Java class libraries and virtual machine, C#
programs depend on the services in the .NET Framework such as the framework class library
(FCL) and the Common Language Runtime (CLR).

For a high-level overview of the FCL, see Chapter 4.

This chapter addresses the most common tasks you need to perform when building C# programs.
These topics generally fall into one of two categories: leveraging functionality included in the FCL
and interacting with elements of the CLR.

3.1 Common Types

Certain types in the FCL are ubiquitous, in that they are fundamental to the way the FCL and CLR
work and provide common functionality used throughout the entire FCL.

This section identifies some of the most common of these types and provides guidelines to their
usage. The types mentioned in this section all exist in the System namespace.

3.1.1 Object Class

The System.Object class is the root of the class hierarchy and serves as the base class for
every other class. The C# object type aliases System.Object. System.Object provides a
handful of useful methods that are present on all objects, and whose signatures are listed in the
following fragment of the System.Object class definition:

public class Object {
 public Object() {...}
 public virtual bool Equals(object o) {...}
 public virtual int GetHashCode(){...}
 public Type GetType(){...}
 public virtual string ToString() {...}
 protected virtual void Finalize() {...}
 protected object MemberwiseClone() {...}
 public static bool Equals (object a, object b) {...}
 public static bool ReferenceEquals (object a, object b) {...}
}
Object()

The constructor for the Object base class.

Equals(object o)

This method evaluates whether two objects are equivalent.

 83

The default implementation of this method on reference types compares the objects by
reference, so classes are expected to override this method to compare two objects by
value.

In C#, you can also overload the == and != operators. For more information see Section
2.9.8.1 in the Section 2.9 section in Chapter 2.

GetHashCode()

This method allows types to hash their instances. A hashcode is an integer value that
provides a "pretty good" unique ID for an object. If two objects hash to the same value,
there's a good chance that they are also equal. If they don't hash to the same value, they
are definitely not equal.

The hashcode is used when you store a key in a dictionary or hashtable collection, but
you can also use it to optimize Equals() by comparing hash codes and skipping
comparisons of values that are obviously not equal. This is a gain only when it is cheaper
to create the hashcode than perform an equality comparison. If your hashcode is based
on immutable data members, you can make this a no-brainer by caching the hash code
the first time it is computed.

The return value from this function should pass the following tests: (1) two objects
representing the same value should return the same hashcode, and (2) the returned
values should generate a random distribution at runtime.

The default implementation of GetHashCode doesn't actually meet these criteria
because it merely returns a number based on the object reference. For this reason, you
should usually override this method in your own types.

An implementation of GetHashCode could simply add or multiply all the data members
together. You can achieve a more random distribution of hash codes by combining each
member with a prime number (see Example 3-1).

To learn more about how the hashcode is used by the predefined collection classes, see
Section 3.4 later in this chapter.

GetType()

This method provides access to the Type object representing the type of the object and
should never be implemented by your types. To learn more about the Type object and
reflectionin general, see the later section Section 3.10.

ToString()

This method provides a string representation of the object and is generally intended for
use when debugging or producing human-readable output.

The default implementation of this method merely returns the name of the type and
should be overridden in your own types to return a meaningful string representation of the
object. The predefined types such as int and string all override this method to return
the value, as follows:

 84

using System;
class Beeblebrox {}
class Test {
 static void Main() {
 string s = "Zaphod";
 Beeblebrox b = new Beeblebrox();
 Console.WriteLine(s); // Prints "Zaphod"
 Console.WriteLine(b); // Prints "Beeblebrox"
 }
}

Finalize()

The Finalize method cleans up nonmemory resources and is usually called by the
garbage collector before reclaiming the memory for the object. The Finalize method
can be overridden on any reference type, but this should be done only in a very few
cases. For a discussion of finalizers and the garbage collector, see the later section
Section 3.12.

MemberwiseClone()

This method creates shallow copies of the object and should never be implemented by
your types. To learn how to control shallow/deep copy semantics on your own types, see
Section 3.1.2 later in this chapter

Equals/ReferenceEquals (object a, object b)

Equals tests for value quality, and ReferenceEquals tests for reference equality.
Equals basically calls the instance Equals method on the first object, using the second
object as a parameter. In the case that both object references are null, it returns true,
and in the case that only one reference is null, it returns false. The ReferenceEquals
method returns true if both object references point to the same object or if both object
references are null.

3.1.1.1 Creating FCL-friendly types

When defining new types that work well with the rest of the FCL, you should override several of
these methods as appropriate.

Example 3-1 is an example of a new value type that is intended to be a good citizen in the FCL:

Example 3-1. Defining new value type

// Point3D - a 3D point
// Compile with: csc /t:library Point3D.cs
using System;
public sealed class Point3D {
 int x, y, z;
 public Point3D(int x, int y, int z) {
 this.x=x; this.y=y; this.z=z; // Initialize data
 }
 public override bool Equals(object o) {
 if (o == (object) this) return true; // Identity test
 if (o == null) return false; // Safety test

 85

 if (!(o is Point3D)) // Type equivalence test
 return false;
 Point3D p = (Point3D) o;
 return ((this.x==p.x) && (this.y==p.y) && (this.z==p.z));
 }
 public override int GetHashCode(){
 return ((((37+x)*37)+y)*37)+z; // :-)
 }
 public override string ToString() {
 return String.Format("[{0},{1},{2}]", x, y, z);
 }
}

This class overrides Equals to provide value-based equality semantics, creates a hashcode that
follows the rules described in the preceding section, and overrides ToString for easy
debugging. It can be used as follows:

// TestPoint3D - test the 3D point type
// Compile with: csc /r:Point3D.dll TestPoint3D.cs
using System;
using System.Collections;
class TestPoint3D {
 static void Main() {
 // Uses ToString, prints "p1=[1,1,1] p2=[2,2,2] p3=[2,2,2]"
 Point3D p1 = new Point3D(1,1,1);
 Point3D p2 = new Point3D(2,2,2);
 Point3D p3 = new Point3D(2,2,2);
 Console.WriteLine("p1={0} p2={1} p3={2}", p1, p2, p3);

 // Tests for equality to demonstrate Equals
 Console.WriteLine(Equals(p1, p2)); // Prints "False"
 Console.WriteLine(Equals(p2, p3)); // Prints "True"

 // Use a hashtable to cache each point's variable name
 // (uses GetHashCode).
 Hashtable ht = new Hashtable();
 ht[p1] = "p1";
 ht[p2] = "p2";
 ht[p3] = "p3"; // replaces ht[p2], since p2 == p3

 // Prints:
 // p1 is at [1,1,1]
 // p3 is at [2,2,2]
 foreach (DictionaryEntry de in ht)
 Console.WriteLine("{0} is at {1} ", de.Value, de.Key);
 }
}

3.1.2 ICloneable Interface

public interface ICloneable {
 object Clone();
}

 86

ICloneable allows class or struct instances to be cloned. It contains a single method named
Clone that returns a copy of the instance. When implementing this interface your Clone method
can simply return this.MemberwiseClone(), which performs a shallow copy (the fields are
copied directly), or you can perform a custom deep copy, in which you clone individual fields in
the class or struct.The following example is the simplest implementation of ICloneable:

public class Foo : ICloneable {
 public object Clone() {
 return this.MemberwiseClone();
 }
}

3.1.3 IComparable Interface

interface IComparable {
 int CompareTo(object o);
}

IComparable is implemented by types that have instances that can be ordered (see the later
section Section 3.4). It contains a single method named CompareTo that:

• Returns - if instance < o
• Returns + if instance > o
• Returns 0 if instance = = o

This interface is implemented by all numeric types: string, DateTime, etc. It may also be
implemented by custom classes or structs to provide comparison semantics. For example:

using System;
using System.Collections;
class MyType : IComparable {
 public int x;
 public MyType(int x) {
 this.x = x;
 }
 public int CompareTo(object o) {
 return x -((MyType)o).x;
 }
}
class Test {
 static void Main() {
 ArrayList a = new ArrayList();
 a.Add(new MyType(42));
 a.Add(new MyType(17));
 a.Sort();
 foreach(MyType t in a)
 Console.WriteLine(((MyType)t).x);
 }
}

3.1.4 IFormattable Interface

public interface IFormattable {

 87

 string ToString(string format, IFormatProvider formatProvider);
}

The IFormattable interface is implemented by types that have formatting options for
converting their value to a string representation. For instance, a decimal may be converted to a
string representing currency or to a string that uses a comma for a decimal point. The
formatting options are specified by the format string (see Section 3.3.4 later in this chapter). If
an IFormatProvider interface is supplied, it specifies the specific culture to be used for the
conversion.

IFormattable is commonly used when calling one of the String class Format methods (see
the later section Section 3.3).

All the common types (int, string, DateTime, etc.) implement this interface, and you should
implement it on your own types if you want them to be fully supported by the String class when
formatting.

3.2 Math

C# and the FCL provide a rich set of features that make math-oriented programming easy and
efficient.

This section identifies some of the most common types applicable to math programming and
demonstrates how to build new math types. The types mentioned in this section exist in the
Systemnamespace.

3.2.1 Language Support for Math

C# has many useful features for math and can even build custom mathematical types. Operator
overloading allows custom mathematical types, such as complex numbers and vectors, to be
used in a natural way. Rectangular arrays provide a fast and easy way to express matrices.
Finally, structs allow the efficient creation of low-overhead objects. For example:

struct Vector {
 float direction;
 float magnitude;
 public Vector(float direction, float magnitude) {
 this.direction = direction;
 this.magnitude = magnitude;
 }
 public static Vector operator *(Vector v, float scale) {
 return new Vector(v.direction, v.magnitude * scale);
 }
 public static Vector operator /(Vector v, float scale) {
 return new Vector(v.direction, v.magnitude * scale);
 }
 // ...
}
class Test {
 static void Main() {
 Vector [,] matrix = {{new Vector(1f,2f), new Vector(6f,2f)},
 {new Vector(7f,3f), new Vector(4f,9f)}};
 for (int i=0; i<matrix.GetLength(0); i++)

 88

 for (int j=0; j<matrix.GetLength(1); j++)
 matrix[i, j] *= 2f;
 }
}

3.2.2 Special Types and Operators

The decimal datatype is useful for financial calculations, since it is a base10 number that can
store 28 to 29 significant figures (see Section 2.2.5.3).

The checked operator allows integral operations to be bounds checked (see Section 2.4.2).

3.2.3 Math Class

The Math class provides static methods and constants for basic mathematical purposes. All
trigonometric and exponential functions use the double type, and all angles use radians. For
example:

using System;
class Test {
 static void Main() {
 double a = 3;
 double b = 4;
 double C = Math.PI / 2;
 double c = Math.Sqrt (a*a+b*b-2*a*b*Math.Cos(C));
 Console.WriteLine("The length of side c is "+c);
 }
}

3.2.4 Random Class

The Random class produces pseudo-random numbers and may be extended if you require
greater randomness (for cryptographically strong random numbers, see the
System.Security.Cryptography.RandomNumberGenerator class). The random values
returned are always between a minimum (inclusive) value and a maximum (exclusive) value. By
default, the Random class uses the current time as its seed, but a custom seed can also be
supplied to the constructor. Here's a simple example:

Random r = new Random();
Console.WriteLine(r.Next(50)); // return between 0 and 50

3.3 Strings

C# offers a wide range of string-handling features. Support is provided for both mutable and
immutable strings, extensible string formatting, locale-aware string comparisons, and multiple
string encoding systems.

This section introduces and demonstrates the most common types you'll use when working with
strings. Unless otherwise stated, the types mentioned in this section all exist in the System or
System.Text namespaces.

 89

3.3.1 String Class

A C# string represents an immutable sequence of characters and aliases the System.String
class. Strings have comparison, appending, inserting, conversion, copying, formatting, indexing,
joining, splitting, padding, trimming, removing, replacing, and searching methods. The compiler
converts + operations on operands where the left operand is a string to Concat methods and
preevaluates and interns string constants wherever possible.

3.3.2 Immutability of Strings

Strings are immutable, which means they can't be modified after creation. Consequently, many of
the methods that initially appear to modify a string actually create a new string:

string a = "Heat";
string b = a.Insert(3, "r");
Console.WriteLine(b); // Prints Heart

If you need a mutable string, see the StringBuilder class.

3.3.3 String Interning

In addition, the immutability of strings enable all strings in an application to be interned. Interning
describes the process whereby all the constant strings in an application are stored in a common
place, and any duplicate strings are eliminated. This saves space at runtime but creates the
possibility that multiple string references will point at the same spot in memory. This can be the
source of unexpected results when comparing two constant strings, as follows:

string a = "hello";
string b = "hello";
Console.WriteLine(a == b); // True for String only
Console.WriteLine(a.Equals(b)); // True for all objects
Console.WriteLine(Object.ReferenceEquals(a, b)); // True!!

3.3.4 Formatting Strings

The Format method provides a convenient way to build strings that embed string representations
of a variable number of parameters. Each parameter can be of any type, including both
predefined types and user-defined types.

The Format method takes a format-specification string and a variable number of parameters.
The format-specification string defines the template for the string and includes format
specifications for each of the parameters. The syntax of a format specifier looks like this:

{ParamIndex[,MinWidth][:FormatString]}
ParamIndex

The zero-based index of the parameter to be formatted.

MinWidth

The minimum number of characters for the string representation of the parameter, to be
padded by spaces if necessary (negative is left-justified, positive is right-justified).

 90

FormatString

If the parameter represents an object that implements IFormattable, the
FormatString is passed to the ToString method on IFormattable to construct the
string. If not, the ToString method on Object is used to construct the string.

All of the common types (int, string, DateTime, etc.)
implement IFormattable. A table of the numeric and
picture format specifiers supported by the common
predefined types is provided in Appendix C.

In the following example, we embed a basic string representation of the account variable (param
0) and a monetary string representation of the cash variable (param 1, C=Currency):

using System;
class TestFormatting {
 static void Main() {
 int i = 2;
 decimal m = 42.73m;
 string s = String.Format("Account {0} has {1:C}.", i, m);
 Console.WriteLine(s); // Prints "Account 2 has $42.73"
 }
}

3.3.5 Indexing Strings

Consistent with all other indexing in the CLR, the characters in a string are accessed with a zero-
based index:

using System;
class TestIndexing {
 static void Main() {
 string s = "Going down?";
 for (int i=0; i<s.Length; i++)
 Console.WriteLine(s[i]); // Prints s vertically
 }
}

3.3.6 Encoding Strings

Strings can be converted between different character encodings using the Encoding type. The
Encoding type can't be created directly, but the ASCII, Unicode, UTF7, UTF8, and
BigEndianUnicode static properties on the Encoding type return correctly constructed
instances.

Here is an example that converts an array of bytes into a string using the ASCII encoding:

using System;
using System.Text;
class TestEncoding {
 static void Main() {

 91

 byte[] ba = new byte[] { 67, 35, 32, 105, 115,
 32, 67, 79, 79, 76, 33 };
 string s = Encoding.ASCII.GetString(ba);
 Console.WriteLine(s);
 }
}

3.3.7 StringBuilder Class

The StringBuilder class is used to represent mutable strings. It starts at a predefined size (16
characters by default) and grows dynamically as more string data is added. It can either grow
unbounded or up to a configurable maximum. For example:

using System;
using System.Text;
class TestStringBuilder {
 static void Main() {
 StringBuilder sb = new StringBuilder("Hello, ");
 sb.Append("World?");
 sb[12] = '!';
 Console.WriteLine(sb); // Hello, World!
 }
}

3.4 Collections

Collections are standard data structures that supplement arrays, the only built-in data structures
in C#. This differs from languages such as Perl and Python, which incorporate key-value data
structures and dynamically sized arrays into the language itself.

The FCL includes a set of types that provide commonly required data structures and support for
creating your own. These types are typically broken down into two categories: interfaces that
define a standardized set of design patterns for collection classes in general, and concrete
classes that implement these interfaces and provide a usable range of data structures.

This section introduces all the concrete collection classes and abstract collection interfaces and
provides examples of their use. Unless otherwise stated, the types mentioned in this section all
exist in the System.Collections namespace.

3.4.1 Concrete Collection Classes

The FCL includes the concrete implementations of the collection design patterns that are
described in this section.

Unlike C++, C# doesn't yet support templates, so these implementations work generically by
accepting elements of type System.Object.

3.4.1.1 ArrayList class

ArrayList is a dynamically sized array of objects that implements the IList interface (see
Section 3.4.2.5 later in this chapter). An ArrayList works by maintaining an internal array of

 92

objects that is replaced with a larger array when it reaches its capacity of elements. It is very
efficient at adding elements (since there is usually a free slot at the end) but is inefficient at
inserting elements (since all elements have to be shifted to make a free slot). Searching can be
efficient if the BinarySearch method is used, but you must Sort() the ArrayList first. You
could use the Contains() method, but it performs a linear search in O(n) time.

ArrayList a = new ArrayList();
a.Add("Vernon");
a.Add("Corey");
a.Add("William");
a.Add("Muzz");
a.Sort();
for(int i = 0; i < a.Count; i++)
 Console.WriteLine(a [i]);

3.4.1.2 BitArray class

A BitArray is a dynamically sized array of Boolean values. It is more memory-efficient than a
simple array of bools because it uses only one bit for each value, whereas a bool array uses
two bytes for each value. Here is an example of its use:

BitArray bits = new BitArray(0); // initialize a zero-length bit
array
bits.Length = 2;
bits[1] = true;
bits.Xor(bits); // Xor the array with itself

3.4.1.3 Hashtable class

A Hashtable is a standard dictionary (key/value) data structure that uses a hashing algorithm to
store and index values efficiently. This hashing algorithm is performed using the hashcode
returned by the GetHashCode method on System.Object. Types used as keys in a
Hashtable should therefore override GetHashCode to return a good hash of the object's
internal value.

Hashtable ht = new Hashtable();
ht["One"] = 1;
ht["Two"] = 2;
ht["Three"] = 3;
Console.WriteLine(ht["Two"]); // Prints "2"

Hashtable also implements IDictionary (see Section 3.4.2.6 later in this chapter), and
therefore, can be manipulated as a normal dictionary data structure.

3.4.1.4 Queue class

A Queue is a standard first-in, first-out (FIFO) data structure, providing simple operations to
enqueue, dequeue, peek, etc. Here is an example:

Queue q = new Queue();
q.Enqueue(1);
q.Enqueue(2);
Console.WriteLine(q.Dequeue()); // Prints "1"

 93

Console.WriteLine(q.Dequeue()); // Prints "2"

3.4.1.5 SortedList class

A SortedList is a standard dictionary data structure that uses a binary-chop search to index
efficiently. SortedList implements IDictionary (see the later section Section 3.4.2.6):

SortedList s = new SortedList();
s["Zebra"] = 1;
s["Antelope"] = 2;
s["Eland"] = 3;
s["Giraffe"] = 4;
s["Meerkat"] = 5;
s["Dassie"] = 6;
s["Tokoloshe"] = 7;
Console.WriteLine(s["Meerkat"]); // Prints "5" in 3 lookups

3.4.1.6 Stack class

A Stack is a standard last-in first-out (LIFO) data structure:

Stack s = new Stack();
s.Push(1); // Stack = 1
s.Push(2); // Stack = 1,2
s.Push(3); // Stack = 1,2,3
Console.WriteLine(s.Pop()); // Prints 3, Stack=1,2
Console.WriteLine(s.Pop()); // Prints 2, Stack=1
Console.WriteLine(s.Pop()); // Prints 1, Stack=

3.4.1.7 StringCollection class

A StringCollection is a standard collection data structure for storing strings.
StringCollection lives in the System.Collections.Specialized namespace and
implements ICollection. It can be manipulated like a normal collection (see the later section
Section 3.4.2.3):

StringCollection sc = new StringCollection();
sc.Add("s1");
string[] sarr = {"s2", "s3", "s4"};
sc.AddRange(sarr);
foreach (string s in sc)
 Console.Write("{0} ", s); // s1 s2 s3 s4

3.4.2 Collection Interfaces

The collection interfaces provide standard ways to enumerate, populate, and author collections.
The FCL defines the interfaces in this section to support the standard collection design patterns.

3.4.2.1 IEnumerable interface

public interface IEnumerable {
 IEnumerator GetEnumerator();
}

 94

The C# foreach statement works on any collection that implements the IEnumerable
interface. The IEnumerable interface has a single method that returns an IEnumerator object.

3.4.2.2 IEnumerator interface

public interface IEnumerator {
 bool MoveNext();
 object Current {get;}
 void Reset();
}

The IEnumerator interface provides a standard way to iterate over collections. Internally, an
IEnumerator maintains the current position of an item in the collection. If the items are
numbered (inclusive) to n (exclusive), the current position starts off as -1, and finishes at n.

IEnumerator is typically implemented as a nested type and is initialized by passing the
collection to the constructor of the IEnumerator:

using System;
using System.Collections;
public class MyCollection : IEnumerable {
 // Contents of this collection.
 private string[] items = {"hello", "world"};
 // Accessors for this collection.
 public string this[int index] {
 get { return items[index]; }
 }
 public int Count {
 get { return items.Length; }
 }
 // Implement IEnumerable.
 public virtual IEnumerator GetEnumerator () {
 return new MyCollection.Enumerator(this);
 }
 // Define a custom enumerator.
 private class Enumerator : IEnumerator {
 private MyCollection collection;
 private int currentIndex = -1;
 internal Enumerator (MyCollection collection) {
 this.collection = collection;
 }
 public object Current {
 get {
 if (currentIndex==-1 || currentIndex == collection.Count)
 throw new InvalidOperationException();
 return collection [currentIndex];
 }
 }
 public bool MoveNext () {
 if (currentIndex > collection.Count)
 throw new InvalidOperationException();
 return ++currentIndex < collection.Count;
 }
 public void Reset () {
 currentIndex = -1;

 95

 }
 }
}

The collection can then be enumerated in either of these two ways:

MyCollection mcoll = new MyCollection();
// Using foreach: substitute your typename for
string
foreach (
string item in mcoll) {
 Console.WriteLine(item);
}
// Using IEnumerator: substitute your typename for
string
IEnumerator ie = mcoll.GetEnumerator();
while (ie.MoveNext()) {

string item = (
string) ie.Current;
 Console.WriteLine(item);
}

3.4.2.3 ICollection interface

public interface ICollection : IEnumerable {
 void CopyTo(Array
array, int
index);
 int Count {get;}
 bool IsSynchronized {get;}
 object SyncRoot {get;}
}

ICollection is the interface implemented by all collections, including arrays, and provides the
following methods:

CopyTo(Array array, int index)

This method copies all the elements into the array starting at the specified index in the
source collection.

Count

This property returns the number of elements in the collection.

IsSynchronized()

This method allows you to determine whether or not a collection is thread-safe. The
collections provided in the FCL are not themselves thread-safe, but each one includes a
Synchronized method that returns a thread-safe wrapper of the collection.

SyncRoot()

 96

This property returns an object (usually the collection itself) that can be locked to provide
basic thread-safe support for the collection.

3.4.2.4 IComparer interface

IComparer is a standard interface that compares two objects for sorting in Arrays. You
generally don't need to implement this interface, since a default implementation that uses the
IComparable interface is already provided by the Comparer type, which is used by the Array
type.

public interface IComparer {
 int Compare(object x, object y);
}

3.4.2.5 IList interface

IList is an interface for array-indexable collections, such as ArrayList.

public interface IList : ICollection, IEnumerable {
 object this [int index] {get; set}
 bool IsFixedSize { get; }
 bool IsReadOnly { get; }
 int Add(object o);
 void Clear();
 bool Contains(object value);
 int IndexOf(object value);
 void Insert(int index, object value);
 void Remove(object value);
 void RemoveAt(int index);
}

3.4.2.6 IDictionary interface

IDictionary is an interface for key/value-based collections, such as Hashtable and
SortedList.

public interface IDictionary : ICollection, IEnumerable {
 object this [object key] {get; set};
 bool IsFixedSize { get; }
 bool IsReadOnly { get; }
 ICollection Keys {get;}
 ICollection Values {get;}
 void Clear();
 bool Contains(object key);
 IDictionaryEnumerator GetEnumerator();
 void Remove(object key);
}

3.4.2.7 IDictionaryEnumerator interface

IDictionaryEnumerator is a standardized interface that enumerates over the contents of a
dictionary.

 97

public interface IDictionaryEnumerator : IEnumerator {
 DictionaryEntry Entry {get;}
 object Key {get;}
 object Value {get;}
}

3.4.2.8 IHashCodeProvider interface

IHashCodeProvider is a standard interface used by the Hashtable collection to hash its
objects for storage.

public interface IHashCodeProvider {
 int GetHashCode(object o);
}

3.5 Regular Expressions

The FCL includes support for performing regular expression matching and replacement
capabilities. The expressions are based on Perl5 regexp, including lazy quantifiers (e.g., ??, *?,
+?, and {n,m}?), positive and negative lookahead, and conditional evaluation.

The types mentioned in this section all exist in the System.Text.RegularExpressions
namespace.

3.5.1 Regex Class

The Regex class is the heart of the FCL regular expression support. Used both as an object
instance and a static type, the Regex class represents an immutable, compiled instance of a
regular expression that can be applied to a string via a matching process.

Internally, the regular expression is stored as either a sequence of internal regular expression
bytecodes that are interpreted at match time or as compiled MSIL opcodes that are JIT-compiled
by the CLR at runtime. This allows you to make a tradeoff between worsened regular expression
startup time and memory utilization versus higher raw match performance at runtime.

For more information on the regular expression options, supported character escapes,
substitution patterns, character sets, positioning assertions, quantifiers, grouping constructs,
backreferences, and alternation, see Appendix B.

3.5.2 Match and MatchCollection Classes

The Match class represents the result of applying a regular expression to a string, looking for the
first successful match. The MatchCollection class contains a collection of Match instances
that represent the result of applying a regular expression to a string recursively until the first
unsuccessful match occurs.

3.5.3 Group Class

The Group class represents the results from a single grouping expression. From this class, it is
possible to drill down to the individual subexpression matches with the Captures property.

 98

3.5.4 Capture and CaptureCollection Classes

The CaptureCollection class contains a collection of Capture instances, each representing
the results of a single subexpression match.

3.5.5 Using Regular Expressions

Combining these classes, you can create the following example:

/*
 * Sample showing multiple groups
 * and groups with multiple captures
 */
using System;
using System.Text.RegularExpressions;
class Test {
 static void Main() {
 string text = "abracadabra1abracadabra2abracadabra3";
 string pat = @"
 (# start the first group
 abra # match the literal 'abra'
 (# start the second (inner) group
 cad # match the literal 'cad'
)? # end the second (optional) group
) # end the first group
 + # match one or more occurences
 ";
 Console.WriteLine("Original text = [{0}]", text);
 // Create the Regex. IgnorePatternWhitespace permits
 // whitespace and comments.
 Regex r = new Regex(pat, RegexOptions.IgnorePatternWhitespace);
 int[] gnums = r.GetGroupNumbers(); // get the list of group
numbers
 Match m = r.Match(text); // get first match
 while (m.Success) {
 Console.WriteLine("Match found:");
 // start at group 1
 for (int i = 1; i < gnums.Length; i++) {
 Group g = m.Groups[gnums[i]]; // get the group for this match
 Console.WriteLine("\tGroup{0}=[{1}]", gnums[i], g);
 CaptureCollection cc = g.Captures; // get caps for this group
 for (int j = 0; j < cc.Count; j++) {
 Capture c = cc[j];
 Console.WriteLine("\t\tCapture{0}=[{1}] Index={2}
Length={3}",
 j, c, c.Index, c.Length);
 }
 }
 m = m.NextMatch(); // get next match
 } // end while
 }
}

The preceding example produces the following output:

 99

Original text = [abracadabra1abracadabra2abracadabra3]
Match found:
 Group1=[abra]
 Capture0=[abracad] Index=0 Length=7
 Capture1=[abra] Index=7 Length=4
 Group2=[cad]
 Capture0=[cad] Index=4 Length=3
Match found:
 Group1=[abra]
 Capture0=[abracad] Index=12 Length=7
 Capture1=[abra] Index=19 Length=4
 Group2=[cad]
 Capture0=[cad] Index=16 Length=3
Match found:
 Group1=[abra]
 Capture0=[abracad] Index=24 Length=7
 Capture1=[abra] Index=31 Length=4
 Group2=[cad]
 Capture0=[cad] Index=28 Length=3

3.6 Input/Output

The FCL provides a streams-based I/O framework that can handle a wide range of stream and
backing store types. This support for streams also infuses the rest of the FCL, with the pattern
repeating in non-I/O areas such as cryptography, HTTP support, and more.

This section describes the core stream types and provides examples. The types mentioned in this
section all exist in the System.IO namespace.

3.6.1 Streams and Backing Stores

A stream represents the flow of data coming in and out of a backing store. A backing store
represents the endpoint of a stream. Although a backing store is often a file or network
connection, in reality it can represent any medium capable of reading or writing raw data.

A simple example would be to use a stream to read and write to a file on disk. However, streams
and backing stores are not limited to disk and network I/O. A more sophisticated example would
be to use the cryptography support in the FCL to encrypt or decrypt a stream of bytes as they
move around in memory.

3.6.1.1 Abstract Stream class

Stream is an abstract class that defines operations for reading and writing a stream of raw,
typeless data as bytes. Once a stream has been opened, it stays open and can be read from or
written to until the stream is flushed and closed. Flushing a stream updates the writes made to
the stream; closing a stream first flushes the stream, then closes the stream.

Stream has the properties CanRead, CanWrite, Length, CanSeek, and Position. CanSeek
is true if the stream supports random access and false if it only supports sequential access. If
a stream supports random access, set the Position property to move to a linear position on
that stream.

 100

The Stream class provides synchronous and asynchronous read and write operations. By
default, an asynchronous method calls the stream's corresponding synchronous method by
wrapping the synchronous method in a delegate type and starting a new thread. Similarly, by
default, a synchronous method calls the stream's corresponding asynchronous method and waits
until the thread has completed its operation. Classes that derive from Stream must override
either the synchronous or asynchronous methods but may override both sets of methods if the
need arises.

3.6.1.2 Concrete Stream-derived classes

The FCL includes a number of different concrete implementations of the abstract base class
Stream. Each implementation represents a different storage medium and allows a raw stream of
bytes to be read from and written to the backing store.

Examples of this include the FileStream class (which reads and writes bytes to and from a file)
and the System.Net.Sockets.NetworkStream class (which sends and receives bytes over
the network).

In addition, a stream may act as the frontend to another stream, performing additional processing
on the underlying stream as needed. Examples of this include stream encryption/decryption and
stream buffering.

Here is an example that creates a text file on disk and uses the abstract Stream type to write
data to it:

using System.IO;
class Test {
 static void Main() {
 Stream s = new FileStream("foo.txt", FileMode.Create);
 s.WriteByte(67);
 s.WriteByte(35);
 s.Close();
 }
}

3.6.1.3 Encapsulating raw streams

The Stream class defines operations for reading and writing raw, typeless data in the form of
bytes. Typically, however, you need to work with a stream of characters, not a stream of bytes.
To solve this problem, the FCL provides the abstract base classes TextReader and
TextWriter, which define a contract to read and write a stream of characters, as well as a set
of concrete implementations.

3.6.1.4 Abstract TextReader/TextWriter classes

TextReader and TextWriter are abstract base classes that define operations for reading and
writing a stream of characters. The most fundamental operations of the TextReader and
TextWriter classes are the methods that read and write a single character to or from a stream.

The TextReader class provides default implementations for methods that read in an array of
characters or a string representing a line of characters. The TextWriter class provides default
implementations for methods that write an array of characters, as well as methods that convert
common types (optionally with formatting options) to a sequence of characters.

 101

The FCL includes a number of different concrete implementations of the abstract base classes
TextReader and TextWriter. Some of the most prominent include StreamReader and
StreamWriter, and StringReader and StringWriter.

3.6.1.5 StreamReader and StreamWriter classes

StreamReader and StreamWriter are concrete classes that derive from TextReader and
TextWriter, respectively, and operate on a Stream (passed as a constructor parameter).

These classes allow you to combine a Stream (which can have a backing store but only knows
about raw data) with a TextReader/TextWriter (which knows about character data, but
doesn't have a backing store).

In addition, StreamReader and StreamWriter can perform special translations between
characters and raw bytes. Such translations include translating Unicode characters to ANSI
characters to either big- or little-endian format.

Here is an example that uses a StreamWriter wrapped around a FileStream class to write to
a file:

using System.Text;
using System.IO;
class Test {
 static void Main() {
 Stream fs = new FileStream ("foo.txt", FileMode.Create);
 StreamWriter sw = new StreamWriter(fs, Encoding.ASCII);
 sw.Write("Hello!");
 sw.Close();
 }
}

3.6.1.6 StringReader and StringWriter classes

StringReader and StringWriter are concrete classes that derive from TextReader and
TextWriter, respectively, and operate on a string (passed as a constructor parameter).

The StringReader class can be thought of as the simplest possible read-only backing store
because it simply performs read operations on that string. The StringWriter class can be
thought of as the simplest possible write-only backing store because it simply performs write
operations on that StringBuilder.

Here is an example that uses a StringWriter wrapped around an underlying StringBuilder
backing store to write to a string:

using System;
using System.IO;
using System.Text;
class Test {
 static void Main() {
 StringBuilder sb = new StringBuilder();
 StringWriter sw = new StringWriter(sb);
 WriteHello(sw);
 Console.WriteLine(sb);

 102

 }
 static void WriteHello(TextWriter tw) {
 tw.Write("Hello, String I/O!");
 }
}

3.6.2 Directories and Files

The File and Directory classes encapsulate the operations typically associated with file I/O,
such as copying, moving, deleting, renaming, and enumerating files and directories.

The actual manipulation of the contents of a file is done with a FileStream. The File class has
methods that return a FileStream, though you may directly instantiate a FileStream.

In this example, you read in and print out the first line of a text file specified on the command line:

using System;
using System.IO;
class Test {
 static void Main(string[] args) {
 Stream s = File.OpenRead(args[0]);
 StreamReader sr = new StreamReader(s);
 Console.WriteLine(sr.ReadLine());
 sr.Close();
 }
}

3.7 Networking

The FCL includes a number of types that make accessing networked resources easy. Offering
different levels of abstraction, these types allow an application to ignore much of the detail
normally required to access networked resources, while retaining a high degree of control.

This section describes the core networking support in the FCL and provides numerous examples
leveraging the predefined classes. The types mentioned in this section all exist in the
System.Net and System.Net.Sockets namespaces.

3.7.1 Network Programming Models

High-level access is performed using a set of types that implement a generic request/response
architecture that is extensible to support new protocols. The implementation of this architecture in
the FCL also includes HTTP-specific extensions to make interacting with web servers easy.

Should the application require lower-level access to the network, types exist to support the
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). Finally, in situations in
which direct transport-level access is required, there are types that provide raw socket access.

3.7.2 Generic Request/Response Architecture

The request/response architecture is based on Uniform Resource Indicator (URI) and stream I/O,
follows the factory design pattern, and makes good use of abstract types and interfaces.

 103

A factory type (WebRequest) parses the URI and creates the appropriate protocol handler to
fulfill the request.

Protocol handlers share a common abstract base type (WebRequest) that exposes properties
that configure the request and methods used to retrieve the response.

Responses are also represented as types and share a common abstract base type
(WebResponse) that exposes a Stream, providing simple streams-based I/O and easy
integration into the rest of the FCL.

This example is a simple implementation of the popular Unix snarf utility. It demonstrates the use
of the WebRequest and WebResponse classes to retrieve the contents of a URI and print them
to the console:

// Snarf.cs
// Run Snarf.exe <http-uri> to retrieve a web page
using System;
using System.IO;
using System.Net;
using System.Text;
class Snarf {
 static void Main(string[] args) {

 // Retrieve the data at the URL with an WebRequest ABC
 WebRequest req = WebRequest.Create(args[0]);
 WebResponse resp = req.GetResponse();

 // Read in the data, performing ASCII->Unicode encoding
 Stream s = resp.GetResponseStream();
 StreamReader sr = new StreamReader(s, Encoding.ASCII);
 string doc = sr.ReadToEnd();

 Console.WriteLine(doc); // Print result to console
 }
}

3.7.3 HTTP-Specific Support

The request/response architecture inherently supports protocol-specific extensions via the use of
subtyping.

Since the WebRequest creates and returns the appropriate handler type based on the URI,
accessing protocol-specific features is as easy as downcasting the returned WebRequest object
to the appropriate protocol-specific handler and accessing the extended functionality.

The FCL includes specific support for the HTTP protocol, including the ability to easily access and
control elements of an interactive web session, such as the HTTP headers, user-agent strings,
proxy support, user credentials, authentication, keep-alives, pipelining, and more.

This example demonstrates the use of the HTTP-specific request/response classes to control the
user-agent string for the request and retrieve the server type:

// ProbeSvr.cs

 104

// Run ProbeSvr.exe <servername> to retrieve the server type
using System;
using System.Net;
class ProbeSvr {
 static void Main(string[] args) {

 // Get instance of WebRequest ABC, convert to HttpWebRequest
 WebRequest req = WebRequest.Create(args[0]);
 HttpWebRequest httpReq = (HttpWebRequest)req;

 // Access HTTP-specific features such as User-Agent
 httpReq.UserAgent = "CSPRProbe/1.0";

 // Retrieve response and print to console
 WebResponse resp = req.GetResponse();
 HttpWebResponse httpResp = (HttpWebResponse)resp;
 Console.WriteLine(httpResp.Server);
 }
}

3.7.4 Adding New Protocol Handlers

Adding handlers to support new protocols is trivial: simply implement a new set of derived types
based on WebRequest and WebResponse, implement the IWebRequestCreate interface on
your WebRequest-derived type, and register it as a new protocol handler with Web-
Request.RegisterPrefix() at runtime. Once this is done, any code that uses the
request/response architecture can access networked resources using the new URI format (and
underlying protocol).

3.7.5 Using TCP, UDP, and Sockets

The System.Net.Sockets namespace includes types that provide protocol-level support for
TCP and UDP. These types are built on the underlying Socket type, which is itself directly
accessible for transport-level access to the network.

Two classes provide the TCP support: TcpListener and TcpClient. TcpListener listens for
incoming connections, creating Socket instances that respond to the connection request.
TcpClient connects to a remote host, hiding the details of the underlying socket in a Stream-
derived type that allows stream I/O over the network.

A class called UdpClient provides the UDP support. UdpClient serves as both a client and a
listener and includes multicast support, allowing individual datagrams to be sent and received as
byte arrays.

Both the TCP and the UDP classes help access the underlying network socket (represented by
the Socket class). The Socket class is a thin wrapper over the native Windows sockets
functionality and is the lowest level of networking accessible to managed code.

The following example is a simple implementation of the Quote of the Day (QUOTD) protocol, as
defined by the IETF in RFC 865. It demonstrates the use of a TCP listener to accept incoming
requests and the use of the lower-level Socket type to fulfill the request:

// QOTDListener.cs

 105

// Run QOTDListener.exe to service incoming QOTD requests
using System;
using System.Net;
using System.Net.Sockets;
using System.Text;
class QOTDListener {
 static string[] quotes = {
 @"Sufficiently advanced magic is indistinguishable from technology
 -- Terry Pratchett",
 @"Sufficiently advanced technology is indistinguishable from magic
 -- Arthur C. Clarke" };
 static void Main() {

 // Start a TCP listener on port 17
 TcpListener l = new TcpListener(17);
 l.Start();
 Console.WriteLine("Waiting for clients to connect");
 Console.WriteLine("Press Ctrl+C to quit...");
 int numServed = 1;
 while (true) {

 // Block waiting for an incoming socket connect request
 Socket s = l.AcceptSocket();

 // Encode alternating quotes as bytes for sending
 Char[] carr = quotes[numServed%2].ToCharArray();
 Byte[] barr = Encoding.ASCII.GetBytes(carr);

 // Return data to client, then clean up socket and repeat
 s.Send(barr, barr.Length, 0);
 s.Shutdown(SocketShutdown.Both);
 s.Close();
 Console.WriteLine("{0} quotes served...", numServed++);
 }
 }
}

To test this example, run the listener and try connecting to port 17 on localhost using a telnet
client. (Under Windows, this can be done from the command line by entering telnet
localhost 17).

Notice the use of Socket.Shutdown and Socket.Close at the end of the while loop. This is
required to flush and close the socket immediately, rather than wait for the garbage collector to
finalize and collect unreachable Socket objects later.

3.7.6 Using DNS

The networking types in the base class library also support normal and reverse Domain Name
System (DNS) resolution. Here's an example using these types:

// DNSLookup.cs
// Run DNSLookup.exe <servername> to determine IP addresses
using System;
using System.Net;
class DNSLookup {

 106

 static void Main(string[] args) {
 IPHostEntry he = Dns.GetHostByName(args[0]);
 IPAddress[] addrs = he.AddressList;
 foreach (IPAddress addr in addrs)
 Console.WriteLine(addr);
 }
}

3.8 Threading

A C# application runs in one or more threads that effectively execute in parallel within the same
application. Here is a simple multithreaded application:

using System;
using System.Threading;
class ThreadTest {
 static void Main() {
 Thread t = new Thread(new ThreadStart(Go));
 t.Start();
 Go();
 }
 static void Go() {
 for (char c='a'; c<='z'; c++)
 Console.Write(c);
 }
}

In this example, a new thread object is constructed by passing it a ThreadStart delegate that
wraps the method that specifies where to start execution for that thread. You then start the thread
and call Go, so two separate threads are running Go in parallel. However, there's a problem: both
threads share a common resource—the console. If you run ThreadTest, you could get output
like this:

abcdabcdefghijklmnopqrsefghijklmnopqrstuvwxyztuvwxyz

3.8.1 Thread Synchronization

Thread synchronization comprises techniques for ensuring that multiple threads coordinate their
access to shared resources.

3.8.1.1 The lock statement

C# provides the lock statement to ensure that only one thread at a time can access a block of
code. Consider the following example:

using System;
using System.Threading;
class LockTest {
 static void Main() {
 LockTest lt = new LockTest ();
 Thread t = new Thread(new ThreadStart(lt.Go));
 t.Start();

 107

 lt.Go();
 }
 void Go() {
 lock(this)
 for (char c='a'; c<='z'; c++)
 Console.Write(c);
 }
}

Running LockTest produces the following output:

abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz

The lock statement acquires a lock on any reference-type instance. If another thread has
already acquired the lock, the thread doesn't continue until the other thread relinquishes its lock
on that instance.

The lock statement is actually a syntactic shortcut for calling the Enter and Exit methods of
the FCL Monitor class (see the later section Section 3.8.3):

System.Threading.Monitor.Enter(expression);
try {
 ...
}
finally {
 System.Threading.Monitor.Exit(expression);
}

3.8.1.2 Pulse and Wait operations

In combination with locks, the next most common threading operations are Pulse and Wait.
These operations let threads communicate with each other via a monitor that maintains a list of
threads waiting to grab an object's lock:

using System;
using System.Threading;
class MonitorTest {
 static void Main() {
 MonitorTest mt = new MonitorTest();
 Thread t = new Thread(new ThreadStart(mt.Go));
 t.Start();
 mt.Go();
 }
 void Go() {
 for (char c='a'; c<='z'; c++)
 lock(this) {
 Console.Write(c);
 Monitor.Pulse(this);
 Monitor.Wait(this);
 }
 }
}

Running MonitorTest produces the following result:

 108

aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz

The Pulse method tells the monitor to wake up the next thread that is waiting to get a lock on
that object as soon as the current thread has released it. The current thread typically releases the
monitor in one of two ways. First, execution may leave the scope of the lock statement block.
The second way is to call the Wait method, which temporarily releases the lock on an object and
makes the thread fall asleep until another thread wakes it up by pulsing the object.

3.8.1.3 Deadlocks

The MonitorTest example actually contains a bug. When you run the program, it prints the
correct output, but then the console window locks up. This occurs because the last thread printing
z goes to sleep but never gets pulsed. You can solve the problem by replacing the Go method
with this new implementation:

void Go() {
 for (char c='a'; c<='z'; c++)
 lock(this) {
 Console.Write(c);
 Monitor.Pulse(this);
 if (c<'z')
 Monitor.Wait(this);
 }
}

In general, the danger of using locks is that two threads may both end up being blocked waiting
for a resource held by the other thread. This situation is known as a deadlock. Most common
deadlock situations can be avoided by ensuring that you always acquire resources in the same
order.

3.8.1.4 Atomic operations

Atomic operations are operations the system promises will not be interrupted. In the previous
examples, the Go method isn't atomic because it can be interrupted while it is running so another
thread can run. However, updating a variable is atomic because the operation is guaranteed to
complete without control being passed to another thread. The Interlocked class provides
additional atomic operations, which allows basic operations to be performed without requiring a
lock. This can be useful, since acquiring a lock is many times slower than a simple atomic
operation.

3.8.2 Common Thread Types

Much of the functionality of threads is provided through the classes in the System.Threading
namespace. The most basic thread class to understand is the Monitor class, which is explained
in the following section.

3.8.3 Monitor Class

The System.Threading.Monitor class provides an implementation of Hoare's Monitor that
allows you to use any reference-type instance as a monitor.

3.8.3.1 Enter and Exit methods

 109

The Enter and Exit methods, respectively, obtain and release a lock on an object. If the object
is already held by another thread, Enter waits until the lock is released or the thread is
interrupted by a ThreadInterruptedException. Every call to Enter for a given object on a
thread should be matched with a call to Exit for the same object on the same thread.

3.8.3.2 TryEnter methods

The TryEnter methodsare similar to the Enter method but don't require a lock on the object to
proceed. These methods return true if the lock is obtained and false if it isn't, optionally
passing in a timeout parameter that specifies the maximum time to wait for the other threads to
relinquish the lock.

3.8.3.3 Wait methods

The thread holding a lock on an object may call one of the Wait methods to temporarily release
the lock and block itself while it waits for another thread to notify it by executing a pulse on the
monitor. This approach can tell a worker thread that there is work to perform on that object. The
overloaded versions of Wait allow you to specify a timeout that reactivates the thread if a pulse
hasn't arrived within the specified duration. When the thread wakes up, it reacquires the monitor
for the object (potentially blocking until the monitor becomes available). Wait returns true if the
thread is reactivated by another thread pulsing the monitor and returns false if the Wait call
times out without receiving a pulse.

3.8.3.4 Pulse and PulseAll methods

A thread holding a lock on an object may call Pulse on that object to wake up a blocked thread
as soon as the thread calling Pulse has released its lock on the monitor. If multiple threads are
waiting on the same monitor, Pulse activates only the first in the queue (successive calls to
Pulse wake up other waiting threads, one per call). The PulseAll method successively wakes
up all the threads.

3.9 Assemblies

An assembly is a logical package (similar to a DLL in Win32) that consists of a manifest, a set of
one or more modules, and an optional set of resources. This package forms the basic unit of
deployment and versioning, and creates a boundary for type resolution and security
permissioning.

3.9.1 Elements of an Assembly

Every .NET application consists of at least one assembly, which is in turn built from a number of
basic elements.

The manifest contains a set of metadata that describes everything the runtime needs to know
about the assembly. This information includes:

• The textual name of the assembly
• The version number of the assembly
• An optional shared name and signed assembly hash
• The list of files in the assembly with file hashes

 110

• The list of referenced assemblies, including versioning information and an optional public
key

• The list of types included in the assembly, with a mapping to the module containing the
type

• The set of minimum and optional security permissions requested by the assembly
• The set of security permissions explicitly refused by the assembly
• Culture, processor, and OS information
• A set of custom attributes to capture details such as product name, owner information,

etc.

Modules contain types described using metadata and implemented using MSIL.

Resources contain nonexecutable data that is logically included with the assembly. Examples of
this include bitmaps, localizable text, persisted objects, etc.

3.9.2 Packaging

The simplest assembly contains a manifest and a single module containing the application's
types, packaged as an EXE with a Main entry point. More complex assemblies can include
multiple modules (Portable Executable (PE) files), separate resource files, a manifest, etc.

The manifest is generally included in one of the existing PE files in the assembly, although the
manifest can also be a standalone PE file.

Modules are PE files, typically DLLs or EXEs. Only one module in an assembly can contain an
entry point (either Main, WinMain, or DllMain).

An assembly may also contain multiple modules. This technique can reduce the working set of
the application, because the CLR loads only the required modules. In addition, each module can
be written in a different language, allowing a mixture of C#, VB.NET, and raw MSIL. Although not
common, a single module can also be included in several different assemblies.

Finally, an assembly may contain a set of resources, which can be kept either in standalone files
or included in one of the PE files in the assembly.

3.9.3 Deployment

An assembly is the smallest .NET unit of deployment. Due to the self-describing nature of a
manifest, deployment can be as simple as copying the assembly (and in the case of a multifile
assembly, all the associated files) into a directory.

This is a vast improvement over traditional COM development in which components, their
supporting DLLs, and their configuration information are spread out over multiple directories and
the Windows registry.

Generally, assemblies are deployed into the application directory and are not shared. These are
called private assemblies. However, assemblies can also be shared between applications; these
are called shared assemblies . To share an assembly you need to give it a shared name (also
known as a "strong" name) and deploy it in the global assembly cache.

The shared name consists of a name, a public key, and a digital signature. The shared name is
included in the assembly manifest and forms the unique identifier for the assembly.

 111

The global assembly cache is a machine-wide storage area that contains assemblies intended for
use by multiple applications.

For more information on working with shared assemblies and the global assembly cache, see
Section E.1.4 in Appendix E.

3.9.4 Versioning

The manifest of an application contains a version number for the assembly and a list of all the
referenced assemblies with associated version information. Assembly version numbers are
divided into four parts and look like this:

<major>.<minor>.<build>.<revision>

This information is used to mitigate versioning problems as assemblies evolve over time.

At runtime, the CLR uses the version information specified in the manifest and a set of versioning
policies defined for the machine to determine which versions of each dependent, shared
assembly to load.

The default versioning policy for shared assemblies restricts you to the version that your
application was built against. By changing a configuration file, the application or an administrator
can override this behavior.

Private assemblies have no versioning policy, and the CLR simply loads the newest assemblies
found in the application directory.

3.9.5 Type Resolution

The unique identifier for a type (known as a TypeRef) consists of a reference to the assembly it
was defined in and the fully qualified type name (including any namespaces). For example, this
local variable declaration:

System.Xml.XmlReader xr;

is represented in MSIL assembly language as follows:

.assembly extern System.Xml { .ver 1:0:3300:0 ... }

.locals init (class [System.Xml]System.Xml.XmlReader V_0)

In this example, the System.Xml.XmlReader type is scoped to the
System.Xmlsharedassembly, which is identified using a shared name and associated version
number.

When your application starts, the CLR attempts to resolve all static TypeRefs by locating the
correct versions of each dependent assembly (as determined by the versioning policy) and
verifying that the types actually exist (ignoring any access modifiers).

When your application attempts to use the type, the CLR verifies that you have the correct level
of access and throws runtime exceptions if there is a versioning incompatibility.

 112

3.9.6 Security Permissions

The assembly forms a boundary for security permissioning.

The assembly manifest contains hashes for any referenced assemblies (determined at compile
time), a list of the minimum set of security permissions the assembly requires in order to function,
a list of the optional permissions that it requests, and a list of the permissions that it explicitly
refuses (i.e., never wants to receive).

To illustrate how these permissions might be used, imagine an email client similar to Microsoft
Outlook, developed using the .NET Framework. It probably requiresthe ability to communicate
over the network on ports 110 (POP3), 25 (SMTP), and 143 (IMAP4). It might request the ability
to run Java Script functions in a sandbox to allow for full interactivity when presenting HTML
emails. Finally, it probably refusesever being granted the ability to write to disk or read the local
address book, thus avoiding scripting attacks such as the ILoveYou virus.

Essentially, the assembly declares its security needs and assumptions, but leaves the final
decision on permissioning up to the CLR, which enforces local security policy.

At runtime the CLR uses the hashes to determine if a dependent assembly has been tampered
with and combines the assembly permission information with local security policy to determine
whether to load the assembly and which permissions to grant it.

This mechanism provides fine-grained control over security and is a major advantage of the .NET
Framework over traditional Windows applications.

3.10 Reflection

Many of the services available in .NET and exposed via C# (such as late binding, serialization,
remoting, attributes, etc.) depend on the presence of metadata. Your own programs can also take
advantage of this metadata and even extend it with new information.

Manipulating existing types via their metadata is termed reflection and is done using a rich set of
types in the System.Reflection namespace. Creating new types (and associated metadata)
is termed Reflection.Emit and is done via the types in the System.Reflection.Emit
namespace. You can extend the metadata for existing types with custom attributes. For more
information, see Section 3.11 later in this chapter.

3.10.1 Type Hierarchy

Reflection involves traversing and manipulating an object model that represents an application,
including all its compile-time and runtime elements. Consequently, it is important to understand
the various logical units of a .NET application and their roles and relationships.

The fundamental units of an application are its types, which contain members and nested types.
In addition to types, an application contains one or more modules and one or more assemblies.
All these elements are static and are described in metadata produced by the compiler at compile
time. The one exception to this rule is elements (such as types, modules, assemblies, etc.) that
are created on the fly via Reflection.Emit, which is described in the later section Section
3.10.8.

 113

At runtime, these elements are all contained within an AppDomain. An AppDomain isn't
described with metadata, yet it plays an important role in reflection because it forms the root of
the type hierarchy of a .NET application at runtime.

In any given application, the relationship between these units is hierarchical, as depicted by the
following diagram:

AppDomain (runtime root of hierarchy)
 Assemblies
 Modules
 Types
 Members
 Nested types

Each of these elements is discussed in the following sections.

3.10.1.1 Types, members, and nested types

The most basic element that reflection deals with is the type. This class represents the metadata
for each type declaration in an application (both predefined and user-defined types).

Types contain members, which include constructors, fields, properties, events, and methods. In
addition, types may contain nested types, which exist within the scope of an outer type and are
typically used as helper classes. Types are grouped into modules, which are, in turn, contained
within assemblies.

3.10.1.2 Assemblies and modules

Assemblies are the logical equivalent of DLLs in Win32 and the basic units of deployment,
versioning, and reuse for types. In addition, assembliescreate a security, visibility, and scope
resolution boundary for types (see the earlier section Section 3.9).

A module is a physical file such as a DLL, an EXE, or a resource (such as GIFs or JPGs). While it
isn't common practice, an assemblycan be composed of multiple modules, allowing you to control
application working set size, use multiple languages within one assembly, and share a module
across multiple assemblies.

3.10.1.3 AppDomains

From the perspective of reflection, an AppDomain is the root of the type hierarchy and serves as
the container for assemblies and types when they are loaded into memory at runtime. A helpful
way to think about an AppDomainis to view it as the logical equivalent of a process in a Win32
application.

AppDomains provide isolation, creating a hard boundary for managed code just like the process
boundary under Win32. Similar to processes, AppDomains can be started and stopped
independently, and application faults take down only the AppDomain the fault occurs in, not the
process hosting the AppDomain.

3.10.2 Retrieving the Type for an Instance

 114

At the heart of reflection is System.Type, which is an abstract base class that provides access
to the metadata of a type.

You can access the Type class for any instance using GetType, which is a nonvirtual method of
System.Object. When you call GetType, the method returns a concrete subtype of
System.Type, which can reflect over and manipulate the type.

3.10.3 Retrieving a Type Directly

You can also retrieve a Type class by name (without needing an instance) using the static
method GetType on the Type class, as follows:

Type t = Type.GetType("System.Int32");

Finally, C# provides the typeof operator, which returns the Type class for any type known at
compile time:

Type t = typeof(System.Int32);

The main difference between these two approaches is that Type.GetType is evaluated at
runtime and is more dynamic, binding by name, while the typeof operator is evaluated at
compile time, uses a type token, and is slightly faster to call.

3.10.4 Reflecting Over a Type Hierarchy

Once you have retrieved a Type instance you can navigate the application hierarchy described
earlier, accessing the metadata via types that represent members, modules, assemblies,
namespaces, AppDomains, and nested types. You can also inspect the metadata and any
custom attributes, create new instances of the types, and invoke members.

Here is an example that uses reflection to display the members in three different types:

using System;
using System.Reflection;
class Test {
 static void Main() {
 object o = new Object();
 DumpTypeInfo(o.GetType());
 DumpTypeInfo(typeof(int));
 DumpTypeInfo(Type.GetType("System.String"));
 }
 static void DumpTypeInfo(Type t) {
 Console.WriteLine("Type: {0}", t);

 // Retrieve the list of members in the type
 MemberInfo[] miarr = t.GetMembers();

 // Print out details on each of them
 foreach (MemberInfo mi in miarr)
 Console.WriteLine(" {0}={1}", mi.MemberType, mi);
 }
}

 115

3.10.5 Late Binding to Types

Reflection can also perform late binding, in which the application dynamically loads, instantiates,
and uses a type at runtime. This provides greater flexibility at the expense of invocation
overhead.

In this section, we create an example that uses very late binding, dynamically discovers new
types at runtime, and uses them.

In the example one or more assemblies are loaded by name (as specified on the command line)
and iterated through the types in the assembly, looking for subtypes of the Greeting abstract
base class. When one is found, the type is instantiated and its SayHello method invoked, which
displays an appropriate greeting.

To perform the runtime discovery of types, we use an abstract base class that's compiled into an
assembly as follows (see the source comment for filename and compilation information):

// Greeting.cs - compile with /t:library
public abstract class Greeting {
 public abstract void SayHello();
}

Compiling this code produces a file named Greeting.dll, which the other parts of the sample can
use.

We now create a new assembly containing two concrete subtypes of the abstract type
Greeting, as follows (see the source comment for filename and compilation information):

// English.cs - compile with /t:library /r:Greeting.dll
using System;
public class AmericanGreeting : Greeting {
 private string msg = "Hey, dude. Wassup!";
 public override void SayHello() {
 Console.WriteLine(msg);
 }
}
public class BritishGreeting : Greeting {
 private string msg = "Good morning, old chap!";
 public override void SayHello() {
 Console.WriteLine(msg);
 }
}

Compiling the source file English.cs produces a file named English.dll, which the main program
can now dynamically reflect over and use.

Now we create the main sample, as follows (see the source comment for filename and
compilation information):

// SayHello.cs - compile with /r:Greeting.dll
// Run with SayHello.exe <dllname1> <dllname2> ... <dllnameN>
using System;
using System.Reflection;

 116

class Test {
 static void Main (string[] args) {

 // Iterate over the cmd-line options,
 // trying to load each assembly
 foreach (string s in args) {
 Assembly a = Assembly.LoadFrom(s);

 // Pick through all the public type, looking for
 // subtypes of the abstract base class Greeting
 foreach (Type t in a.GetTypes())
 if (t.IsSubclassOf(typeof(Greeting))) {

 // Having found an appropriate subtype, create it
 object o = Activator.CreateInstance(t);

 // Retrieve the SayHello MethodInfo and invoke it
 MethodInfo mi = t.GetMethod("SayHello");
 mi.Invoke(o, null);
 }
 }
 }
}

Running the sample now with SayHello English.dll produces the following output:

Hey, dude. Wassup!
Good morning, old chap!

The interesting aspect of the preceding sample is that it's completely late-bound; i.e., long after
the SayHello program is shipped you can create a new type and have SayHello automatically
take advantage of it by simply specifying it on the command line. This is one of the key benefits of
late binding via reflection.

3.10.6 Activation

In the previous examples, we loaded an assembly by hand and used the System.Activator
class to create a new instance based on a type. There are many overrides of the
CreateInstance method that provide a wide range of creation options, including the ability to
short-circuit the process and create a type directly:

object o = Activator.CreateInstance("Assem1.dll",
 "Friendly.Greeting");

Other capabilities of the Activator type include creating types on remote machines, creating
types in specific AppDomains (sandboxes), and creating types by invoking a specific constructor
(rather than using the default constructor as these examples show).

3.10.7 Advanced Uses of Reflection

The preceding example demonstrates the use of reflection, but doesn't perform any tasks you
can't accomplish using normal C# language constructs. However, reflection can also manipulate
types in ways not supported directly in C#, as is demonstrated in this section.

 117

While the CLR enforces access controls on type members (specified using access modifiers such
as private and protected), these restrictions don't apply to reflection. Assuming you have the
correct set of permissions, you can use reflection to access and manipulate private data and
function members, as this example using the Greeting subtypes from the previous section
shows (see the source comment for filename and compilation information):

// InControl.cs - compile with /r:Greeting.dll,English.dll
using System;
using System.Reflection;
class TestReflection {
 // Note: This method requires the ReflectionPermission perm.
 static void ModifyPrivateData(object o, string msg) {

 // Get a FieldInfo type for the private data member
 Type t = o.GetType();
 FieldInfo fi = t.GetField("msg", BindingFlags.NonPublic|
 BindingFlags.Instance);

 // Use the FieldInfo to adjust the data member value
 fi.SetValue(o, msg);
 }
 static void Main() {
 // Create instances of both types
 BritishGreeting bg = new BritishGreeting();
 AmericanGreeting ag = new AmericanGreeting();

 // Adjust the private data via reflection
 ModifyPrivateData(ag, "Things are not the way they seem");
 ModifyPrivateData(bg, "The runtime is in total control!");

 // Display the modified greeting strings
 ag.SayHello(); // "Things are not the way they seem"
 bg.SayHello(); // "The runtime is in total control!"
 }
}

When run, this sample generates the following output:

Things are not the way they seem
The runtime is in total control!

This demonstrates that the private msg data members in both types are modified via reflection,
although there are no public members defined on the types that allow that operation. Note that
while this technique can bypass access controls, it still doesn't violate type safety.

Although this is a somewhat contrived example, the capability can be useful when building utilities
such as class browsers and test suite automation tools that need to inspect and interact with a
type at a deeper level than its public interface.

3.10.8 Creating New Types at Runtime

The System.Reflection.Emit namespace contains classes that can create entirely new
types at runtime. These classes can define a dynamic assembly in memory; define a dynamic

 118

module in the assembly; define a new type in the module, including all its members; and emit the
MSIL opcodes needed to implement the application logic in the members.

Here is an example that creates and uses a new type called HelloWorld with a member called
SayHello:

using System;
using System.Reflection;
using System.Reflection.Emit;
public class Test {
 static void Main() {
 // Create a dynamic assembly in the current AppDomain
 AppDomain ad = AppDomain.CurrentDomain;
 AssemblyName an = new AssemblyName();
 an.Name = "DynAssembly";
 AssemblyBuilder ab =
 ad.DefineDynamicAssembly(an, AssemblyBuilderAccess.Run);

 // Create a module in the assembly and a type in the module
 ModuleBuilder modb = ab.DefineDynamicModule("DynModule");
 TypeBuilder tb = modb.DefineType("AgentSmith",
 TypeAttributes.Public);

 // Add a SayHello member to the type
 MethodBuilder mb = tb.DefineMethod("SayHello",
 MethodAttributes.Public,
 null, null);

 // Generate the MSIL for the SayHello Member
 ILGenerator ilg = mb.GetILGenerator();
 ilg.EmitWriteLine("Never send a human to do a machine's job.");
 ilg.Emit(OpCodes.Ret);

 // Finalize the type so we can create it
 Type t = tb.CreateType();

 // Create an instance of the new type
 object o = Activator.CreateInstance(t);

 // Prints "Never send a human to do a machine's job."
 t.GetMethod("SayHello").Invoke(o, null);
 }
}

A common example using Reflection.Emit is the regular expression support in the FCL,
which can emit new types that are tuned to search for specific regular expressions, eliminating
the overhead of interpreting the regular expression at runtime.

Other uses of Reflection.Emit in the FCL include dynamically generating transparent proxies
for remoting and generating types that perform specific XSLT transforms with the minimum
runtime overhead.

3.11 Custom Attributes

 119

Types, members, modules, and assemblies all have associated metadata that is used by all the
major CLR services, is considered an indivisible part of an application, and can be accessed via
reflection(see the earlier section Section 3.10).

A key characteristic of metadata is that it can be extended. You extend the metadata with custom
attributes, which allow you to "decorate" a code element with additional information stored in the
metadata associated with the element.

This additional information can then be retrieved at runtime and used to build services that work
declaratively, which is the way that the CLR implements core features such as serialization and
interception.

3.11.1 Language Support for Custom Attributes

Decorating an element with a custom attribute is known as specifying the custom attribute and is
done by writing the name of the attribute enclosed in brackets ([]) immediately before the
element declaration as follows:

[Serializable] public class Foo {...}

In this example, the Foo class is specified as serializable. This information is saved in the
metadata for Foo and affects the way the CLR treats an instance of this class.

A useful way to think about custom attributes is that they expand the built-in set of declarative
constructs such as public, private, and sealed in the C# language.

3.11.2 Compiler Support for Custom Attributes

In reality, custom attributes are simply types derived from System.Attribute with language
constructs for specifying them on an element (see Section 2.16 in Chapter 2).

These language constructs are recognized by the compiler, which emits a small chunk of data
into the metadata. This custom data includes a serialized call to the constructor of the custom
attribute type (containing the values for the positional parameters) and a collection of property set
operations (containing the values for the named parameters).

The compiler also recognizes a small number of pseudo-custom attributes. These are special
attributes that have direct representation in metadata and are stored natively (i.e., not as chunks
of custom data). This is primarily a runtime performance optimization, although it has some
implications for retrieving attributes via reflection, as discussed later.

To understand this, consider the following class with two specified attributes:

[Serializable, Obsolete]
class Foo {...}

When compiled, the metadata for the Foo class looks like this in MSIL:

.class private auto ansi serializable beforefieldinit Foo
 extends [mscorlib]System.Object
{
 .custom instance void

 120

 [mscorlib]System.ObsoleteAttribute::.ctor() = (01 00 00 00)
 ...
}

Compare the different treatment by the compiler of the Obsolete attribute, which is a custom
attribute and represented by a .custom directive containing the serialized attribute parameters,
to the treatment of the Serializable attribute, which is a pseudo-custom attribute represented
directly in the metadata with the serializable token.

3.11.3 Runtime Support for Custom Attributes

At runtime the core CLR services such as serialization and remoting inspect the custom and
pseudo-custom attributes to determine how to handle an instance of a type.

In the case of custom attributes, this is done by creating an instance of the attribute (invoking the
relevant constructor call and property-set operations), and then performing whatever steps are
needed to determine how to handle an instance of the type.

In the case of pseudo-custom attributes, this is done by simply inspecting the metadata directly
and determining how to handle an instance of the type. Consequently, handling pseudo-custom
attributes is more efficient than handling custom attributes.

Note that none of these steps is initiated until a service or user program actually tries to access
the attributes, so there is little runtime overhead unless it is required.

3.11.4 Predefined Attributes

The .NET Framework makes extensive use of attributes for purposes ranging from simple
documentation to advanced support for threading, remoting, serialization, and COM interop.
These attributes are all defined in the FCL and can be used, extended, and retrieved by your own
code.

However, certain attributes are treated specially by the compiler and the runtime. Three attributes
considered general enough to be defined in the C# specification are AttributeUsage,
Conditional, and Obsolete. Other attributes such as CLSCompliant, Serializable, and
NonSerialized are also treated specially.

3.11.4.1 AttributeUsage attribute

Syntax:
[AttributeUsage(target-enum
 [, AllowMultiple=[true|false]]?
 [, Inherited=[true|false]]?
]
(for classes)

The AttributeUsage attribute is applied to a new attribute class declaration. It controls how the
new attribute should be treated by the compiler, specifically, what set of targets (classes,
interfaces, properties, methods, parameters, etc.) the new attribute can be specified on, whether
multiple instances of this attribute may be applied to the same target, and whether this attribute
propagates to subtypes of the target.

 121

target-enum is a bitwise mask of values from the System.AttributeTargets enum, which
looks like this:

namespace System {
 [Flags]
 public enum AttributeTargets {
 Assembly = 0x0001,
 Module = 0x0002,
 Class = 0x0004,
 Struct = 0x0008,
 Enum = 0x0010,
 Constructor = 0x0020,
 Method = 0x0040,
 Property = 0x0080,
 Field = 0x0100,
 Event = 0x0200,
 Interface = 0x0400,
 Parameter = 0x0800,
 Delegate = 0x1000,
 ReturnValue = 0x2000,
 All = 0x3fff,
 }
}

3.11.4.2 Conditional attribute

Syntax:
[Conditional(symbol)]
(for methods)

The Conditionalattribute can be applied to any method with a void return type. The presence
of this attribute tells the compiler to conditionally omit calls to the method unless symbolis
defined in the calling code. This is similar to wrapping every call to the method with#ifand
#endif preprocessor directives, but Conditional has the advantage of needing to be
specified only in one place. Conditional can be found in the System.Diagnostics
namespace.

3.11.4.3 Obsolete attribute

Syntax:
[Obsolete(message[, true | false]]
(for all attribute targets)

Applied to any valid attribute target, the Obsolete attribute indicates that the target is obsolete.
Obsolete can include a message that explains which alternative types or members to use and a
flag that tells the compiler to treat the use of this type or member as either a warning or an error.

For example, referencing type Bar in the following example causes the compiler to display an
error message and halts compilation:

[Obsolete("Don't try this at home", true)]
class Bar { ... }

 122

3.11.4.4 CLSCompliant attribute

Syntax:
[CLSCompliant(true|false)]
(for all attribute targets)

Applied to an assembly, the CLSCompliant attribute tells the compiler whether to validate CLS
compliance for all the exported types in the assembly. Applied to any other attribute target, this
attribute allows the target to declare if it should be considered CLS-compliant. In order to mark a
target as CLS-compliant, the entire assembly needs to be considered as such.

In the following example, the CLSCompliant attribute is used to specify an assembly as CLS-
compliant and a class within it as not CLS-compliant:

[assembly:CLSCompliant(true)]

[CLSCompliant(false)]
public class Bar {
 public ushort Answer { get {return 42;} }
}

3.11.4.5 Serializable attribute

Syntax:
[Serializable]
(for classes, structs, enums, delegates)

Applied to a class, struct, enum, or delegate, the Serializable attribute marks it as being
serializable. This attribute is a pseudo-custom attribute and is represented specially in the
metadata.

3.11.4.6 NonSerialized attribute

Syntax:
[NonSerialized]
(for fields)

Applied to a field, the NonSerialized attribute prevents it from being serialized along with its
containing class or struct. This attribute is a pseudo-custom attribute and is represented specially
in the metadata.

3.11.5 Defining a New Custom Attribute

In addition to using the predefined attributes supplied by the .NET Framework, you can also
create your own.

To create a custom attribute:

 123

1. Derive a class from System.Attribute or from a descendent of System.Attribute.
By convention the class name should end with the word"Attribute," although this isn't
required.

2. Provide the class with a public constructor. The parameters to the constructor define the
positional parameters of the attribute and are mandatory when specifying the attribute on
an element.

3. Declare public-instance fields, public-instance read/write properties, or public-instance
write-only properties to specify the named parameters of the attribute. Unlike positional
parameters, these are optional when specifying the attribute on an element.

The types that can be used for attribute constructor parameters and properties are bool,
byte, char, double, float, int, long, short, string, object, the Type type,
enum, or a one-dimensional array of the aforementioned types.

4. Finally, define what the attribute may be specified on using the AttributeUsage
attribute, as described in the preceding section.

Consider the following example of a custom attribute, CrossRef-Attribute, which removes
the limitation that the CLR metadata contain information about statically linked types but not
dynamically linked ones:

// XRef.cs - cross-reference custom attribute
// Compile with: csc /t:library XRef.cs
using System;
[AttributeUsage(AttributeTargets.All, AllowMultiple=true)]
public class CrossRefAttribute : Attribute {
 Type xref;
 string desc = "";
 public string Description { set { desc=value; } }
 public CrossRefAttribute(Type xref) { this.xref=xref; }
 public override string ToString() {
 string tmp = (desc.Length>0) ? " ("+desc+")" : "";
 return "CrossRef to "+xref.ToString()+tmp;
 }
}

From the attribute user's perspective, this attribute can be applied to any target multiple times
(note the use of the AttributeUsage attribute to control this). CrossRefAttribute takes one
mandatory positional parameter (namely the type to cross-reference) and one optional named
parameter (the description), and is used as follows:

[CrossRef(typeof(Bar), Description="Foos often hang around Bars")]
class Foo {...}

Essentially, this attribute embeds cross-references to dynamically linked types (with optional
descriptions) in the metadata. This information can then be retrieved at runtime by a class
browser to present a more complete view of a type's dependencies.

3.11.6 Retrieving a Custom Attribute at Runtime

Retrieving attributes at runtime is done using reflection via one of System.Attribute's
GetCustomAttribute or GetCustomAttributes overloads. This is one of the few
circumstances in which the difference between customattributes and pseudo-custom attributes

 124

becomes apparent, since pseudo-custom attributes can't be retrieved with
GetCustomAttribute.

Here is an example that uses reflection to determine which attributes are on a specific type:

using System;
[Serializable, Obsolete]
class Test {
 static void Main() {
 Type t = typeof(Test);
 object[] caarr = Attribute.GetCustomAttributes(t);
 Console.WriteLine("{0} has {1} custom attribute(s)",
 t, caarr.Length);
 foreach (object ca in caarr)
 Console.WriteLine(ca);
 }
}

Although the Test class of the preceding example has two attributes specified, the sample
produces the following output:

Test has 1 custom attribute(s)
System.ObsoleteAttribute

This demonstrates how the Serializable attribute (a pseudo-custom attribute) isn't accessible
via reflection, while the Obsolete attribute (a custom attribute) still is.

3.12 Automatic Memory Management

Almost all modern programming languages allocate memory in two places: on the stack and on
the heap.

Memory allocated on the stack stores local variables, parameters, and return values, and is
generally managed automatically by the operating system.

Memory allocated on the heap, however, is treated differently by different languages. In C and
C++, memory allocated on the heap is managed manually. In C# and Java, however, memory
allocated on the heap is managed automatically.

While manual memory management has the advantage of being simple for runtimes to
implement, it has drawbacks that tend not to exist in systems that offer automaticmemory
management. For example, a large percentage of bugs in C and C++ programs stem from using
an object after it has been deleted (dangling pointers) or from forgetting to delete an object when
it is no longer needed (memory leaks).

The process of automaticallymanaging memory is known as garbage collection. While generally
more complex for runtimes to implement than traditional manualmemory management, garbage
collection greatly simplifies development and eliminates many common errors related to
manualmemory management.

For example, it is almost impossible to generate a traditional memory leak in C#, and common
bugs such as circular references in traditional COM development simply go away.

 125

3.12.1 The Garbage Collector

C# depends on the CLR for many of its runtime services, and garbage collection is no exception.

The CLR includes a high-performing generational mark-and-compact garbage collector (GC)that
performs automatic memory management for type instances stored on the managed heap.

The GC is considered to be a tracing garbage collector in that it doesn't interfere with every
access to an object, but rather wakes up intermittently and traces the graph of objects stored on
the managed heap to determine which objects can be considered garbage and therefore
collected.

The GC generally initiates a garbage collection when a memory allocation occurs, and memory is
too low to fulfill the request. This process can also be initiated manually using the System.GC
type. Initiating a garbage collection freezes all threads in the process to allow the GC time to
examine the managed heap.

The GC begins with the set of object references considered roots and walks the object graph,
markingall the objects it touches as reachable. Once this process is complete, all objects that
have not been marked are considered garbage.

Objects that are considered garbage and don't have finalizers are immediately discarded, and the
memory is reclaimed. Objects that are considered garbage and do have finalizers are flagged for
additional asynchronous processing on a separate thread to invoke their Finalize methods
before they can be considered garbage and reclaimed at the next collection.

Objects considered still live are then shifted down to the bottom of the heap (compacted),
hopefully freeing space to allow the memory allocation to succeed.

At this point the memory allocation is attempted again, the threads in the process are unfrozen,
and either normal processing continues or an OutOfMemoryException is thrown.

3.12.2 Optimization Techniques

Although this may sound like an inefficient process compared to simply managing memory
manually, the GC incorporates various optimization techniques to reduce the time an application
is frozen waiting for the GC to complete (known as pause time).

The most important of these optimizations is what makes the GC generational. This techniques
takes advantage of the fact that while many objects tend to be allocated and discarded rapidly,
certain objects are long-lived and thus don't need to be traced during every collection.

Basically, the GC divides the managed heap into three generations. Objects that have just been
allocated are considered to be in Gen0, objects that have survived one collection cycle are
considered to be in Gen1, and all other objects are considered to be in Gen2.

When it performs a collection, the GC initially collects only Gen0objects. If not enough memory is
reclaimed to fulfill the request, both Gen0 and Gen1 objects are collected, and if that fails as well,
a full collection of Gen0, Gen1, and Gen2 objects is attempted.

 126

Many other optimizations are also used to enhance the performance of automatic memory
management, and generally, a GC-based application can be expected to approach the
performance of an application that uses manual memory management.

3.12.3 Finalizers

When implementing your own types, you can choose to give them finalizers (via C# destructors),
which are methods called asynchronously by the GC once an object is determined to be garbage.

Although this is required in certain cases, generally, there are many good technical reasons to
avoid the use of finalizers.

As described in the previous section, objects with finalizers incur significant overhead when they
are collected, requiring asynchronous invocation of their Finalize methods and taking two full
GC cycles for their memory to be reclaimed.

Other reasons not to use finalizers include:

• Objects with finalizers take longer to allocate on the managed heap than objects without
finalizers.

• Objects with finalizers that refer to other objects (even those without finalizers) can
prolong the life of the referred objects unnecessarily.

• It's impossible to predict in what order the finalizers for a set of objects will be called.
• You have limited control over when (or even if!) the finalizer for an object will be called.

In summary, finalizers are somewhat like lawyers: while there are cases when you really need
them, generally, you don't want to use them unless absolutely necessary, and if you do use them,
you need to be 100% sure you understand what they are doing for you.

If you have to implement a finalizer, follow these guidelines or have a very good reason for not
doing so:

• Ensure that your finalizer executes quickly.
• Never block in your finalizer.
• Free any unmanaged resources you own.
• Don't reference any other objects.
• Don't throw any unhandled exceptions.

3.12.4 Dispose and Close Methods

It is generally desirable to explicitly call clean-up code once you have determined that an object
will no longer be used. Microsoft recommends that you write a method named either Dispose or
Close (depending on the semantics of the type) to perform the cleanup required. If you also have
a destructor, include a special call to the static SuppressFinalize method on the System.GC
type to indicate that the destructor no longer needs to be called. Typically, the real destructoris
written to call the Dispose/Close method, as follows:

using System;
public class Worker : IDisposable {
 bool disposed = false;
 int id;
 public Worker(int id) {

 127

 this.id=id;
 }
 // ...
 protected virtual void Dispose(bool disposing) {
 if (!this.disposed) { // don't dispose more than once
 if (disposing) {
 // disposing==true means you're not in the finalizer, so
 // you can reference other objects here
 Console.WriteLine("#{0}: OK to clean up other objects.", id);
 }
 Console.WriteLine("#{0}: disposing.", id);
 // Perform normal cleanup
 }
 this.disposed = true;
 }
 public void Dispose() {
 Dispose(true);
 // Mark this object finalized
 GC.SuppressFinalize(this); // no need to destruct this instance
 }
 ~Worker() {
 Dispose(false);
 Console.WriteLine("#{0}: destructing.", id);
 }
 public static void Main() {
 // create a worker and call Dispose when we're done.
 using(Worker w1 = new Worker(1)) {
 // ...
 }
 // create a worker that will get cleaned up when the CLR
 // gets around to it.
 Worker w2 = new Worker(2);
 }
}

If you run this code, you will see that Worker 1 is never finalized, since its Dispose() method
is implicitly called (the using block guarantees this). Worker 2 is finalized and disposed when the
CLR gets around to it, but it's never given a chance to clean up other objects. The disposable
pattern gives you a way to close or dispose of any external objects you might be using, such as
an I/O stream:

#1: OK to clean up other objects.
#1: disposing.
#2: disposing.
#2: destructing.

3.13 Interop with Native DLLs

PInvoke, short for Platform Invocation Services, lets C# access functions, structs, and callbacks
in unmanaged DLLs. For example, perhaps you wish to call the MessageBox function in the
Windows user32.dll:

int MessageBox(HWND hWnd, LPCTSTR lpText,
 LPCTSTR lpCation, UINT uType);

 128

To call this function, write a static extern method decorated with the DllImportattribute:

using System.Runtime.InteropServices;
class MsgBoxTest {
 [DllImport("user32.dll")]
 static extern int MessageBox(int hWnd, string text,
 string caption, int type);
 public static void Main() {
 MessageBox(0, "Please do not press this button again.",
 "Attention", 0);
 }
}

PInvoke then finds and loads the required Win32 DLLs and resolves the entry point of the
requested function. The CLR includes a marshaler that knows how to convert parameters and
return values between .NET types and unmanaged types. In this example the int parameters
translate directly to four-byte integers that the function expects, and the string parameters are
converted to null-terminated arrays of characters using one-byte ANSI characters under Win9x or
two-byte Unicode characters under Windows NT, 2000, and XP.

3.13.1 Marshaling Common Types

The CLR marshaler is a .NET facility that knows about the core types used by COM and the
Windows API and provides default translations to CLR types for you. The bool type, for instance,
can be translated into a two-byte Windows BOOL type or a four-byte Boolean type. You can
override a default translation using the MarshalAs attribute:

using System.Runtime.InteropServices;
static extern int Foo([MarshalAs(UnmanagedType.LPStr)]
 string s);

In this case, the marshaler was told to use LPStr, so it will always use ANSI characters. Array
classes and the StringBuilder class will copy the marshaled value from an external function
back to the managed value, as follows:

using System;
using System.Text;
using System.Runtime.InteropServices;
class Test {
 [DllImport("kernel32.dll")]
 static extern int GetWindowsDirectory(StringBuilder sb,
 int maxChars);
 static void Main() {
 StringBuilder s = new StringBuilder(256);
 GetWindowsDirectory(s, 256);
 Console.WriteLine(s);
 }
}

3.13.2 Marshaling Classes and Structs

Passing a class or struct to a C function requires marking the struct or class with the
StructLayout attribute:

 129

using System;
using System.Runtime.InteropServices;
[StructLayout(LayoutKind.Sequential)]
struct SystemTime {
 public ushort wYear;
 public ushort wMonth;
 public ushort wDayOfWeek;
 public ushort wDay;
 public ushort wHour;
 public ushort wMinute;
 public ushort wSecond;
 public ushort wMilliseconds;
}
class Test {
 [DllImport("kernel32.dll")]
 static extern void GetSystemTime(ref SystemTime t);
 static void Main() {
 SystemTime t = new SystemTime();
 GetSystemTime(ref t);
 Console.WriteLine(t.wYear);
 }
}

In both C and C#, fields in an object are located at n number of bytes from the address of that
object. The difference is that a C# program finds this offset by looking it up using the field name;
C field names are compiled directly into offsets. For instance, in C, wDay is just a token to
represent whatever is at the address of a SystemTime instance plus 24 bytes.

For access speed and future widening of a datatype, these offsets are usually in multiples of a
minimum width, called the pack size. For .NET types, the pack size is usually set at the discretion
of the runtime, but by using the StructLayout attribute, field offsets can be controlled. The
default pack size when using this attribute is 8 bytes, but it can be set to 1, 2, 4, 8, or 16 bytes
(pass Pack=packsize to the StructLayout constructor), and there are also explicit options to
control individual field offsets. This lets a .NET type be passed to a C function.

3.13.3 In and Out Marshaling

The previous Test example works if SystemTime is a struct and t is a ref parameter, but is
actually less efficient:

struct SystemTime {...}
static extern void GetSystemTime(ref SystemTime t);

This is because the marshaler must always create fresh values for external parameters, so the
previous method copies t when going in to the function and then copies the marshaled t when
coming out of the function. By default, pass-by-value parameters are copied in, C# ref
parameters are copied in/out, and C# out parameters are copied out, but there are exceptions
for the types that have custom conversions. For instance, array classes and the
StringBuilder class require copying when coming out of a function, so they arein/out. It is
occasionally useful to override this behavior, with the in and out attributes. For example, if an
array should be read-only, the in modifier indicates to copy only the array going into the function,
and not the one coming out of it:

static extern void Foo([in] int[] array);

 130

3.13.4 Callbacks from Unmanaged Code

C# can not only call C functions but can also be called by C functions, using callbacks. In C# a
delegate type is used in place of a function pointer:

class Test {
 delegate bool CallBack(int hWnd, int lParam);
 [DllImport("user32.dll")]
 static extern int EnumWindows(CallBack hWnd, int lParam);
 static bool PrintWindow(int hWnd, int lParam) {
 Console.WriteLine(hWnd);
 return true;
 }
 static void Main() {
 CallBack e = new CallBack(PrintWindow);
 EnumWindows(e, 0);
 }
}

3.13.5 Predefined Interop Support Attributes

The FCL provides a set of attributes you can use to mark up your objects with information used
by the CLR marshaling services to alter their default marshaling behavior.

This section describes the most common attributes you will need when interoperating with native
Win32 DLLs. These attributes all exist in the System.Runtime.InteropServices
namespace.

3.13.5.1 DllImport attribute

Syntax:
[DllImport (dll-name
 [, EntryPoint=function-name]?
 [, CharSet=charset-enum]?
 [, SetLastError=true|false]?
 [, ExactSpelling=true|false]?
 [, PreserveSig=true|false]?
 [, CallingConvention=callconv-enum]?
)]
(for methods)

The DllImport attribute annotates an external function that defines a DLL entry point. The
parameters for this attribute are:

dll-name

A string specifying the name of the DLL.

function-name

A string specifying the function name in the DLL. This is useful if you want the name of
your C# function to be different from the name of the DLL function.

 131

charset-enum

A CharSet enum, specifying how to marshal strings. The default value is
CharSet.Auto, which converts strings to ANSI characters on Win9x and Unicode
characters on Windows NT, 2000, and XP.

SetLastError

If true, preserves the Win32 error info. The default is false.

ExactSpelling

If true, the EntryPoint must exactly match the function. If false, name-matching
heuristics are used. The default is false.

PreserveSig

If true, the method signature is preserved exactly as it was defined. If false, an
HRESULT transformation is performed.

callconv-enum

A CallingConvention enum, specifying the mode to use with the EntryPoint. The
default is StdCall.

3.13.5.2 StructLayout attribute

Syntax:
[StructLayout(layout-enum
 [, Pack=packing-size]?
 [, CharSet=charset-enum]?
 [, Size=absolute-size])?
]
(for classes, structs)

The StructLayout attribute specifies how the data members of a class or struct should be laid
out in memory. Although this attribute is commonly used when declaring structures that are
passed to or returned from native DLLs, it can also define data structures suited to file and
network I/O. The parameters for this attribute are:

layout-enum

A LayoutKind enum, which can be 1) sequential, which lays out fields one after the
next with a minimum pack size; 2) union, which makes all fields have an offset of 0, so
long as they are value types; or 3) explicit, which lets each field have a custom offset.

packing-size

An int specifying whether the packing size is 1, 2, 4, 8, or 16 bytes. The default value is
8.

 132

charset-enum

A CharSet enum, specifying how to marshal strings. The default value is
CharSet.Auto, which converts strings to ANSI characters on Win9x and Unicode
characters on Windows NT, 2000, and XP.

absolute-size

Specifies the size of the struct or class. This has to be at least as large as the sum of all
the members.

3.13.5.3 FieldOffset attribute

Syntax:
[FieldOffset (byte-offset)]
(for fields)

The FieldOffset attribute is used within a class or struct that has explicit field layout. This
attribute can be applied to a field and specifies the field offset in bytes from the start of the class
or struct. Note that these offsets don't have to be strictly increasing and can overlap, thus creating
a union data structure.

3.13.5.4 MarshalAs attribute

Syntax:
[MarshalAs(unmanaged-type
 [, named-parameters])?
]
(for fields, parameters, return values)

The MarshalAs attribute overrides the default marshaling behavior that the marshaler applies to
a parameter or field. The unmanaged-type value is taken from the UnmanagedType enum; see
the following list for the permissible values:

Bool LPStr VBByRefStr
I1 LPWStr AnsiBStr
U1 LPTStr TBStr
I2 ByValTStr VariantBool
U2 IUnknown FunctionPtr
I4 IDispatch LPVoid
U4 Struct AsAny
I8 Interface RPrecise
U8 SafeArray LPArray
R4 ByValArray LPStruct
R8 SysInt CustomMarshaler
BStr SysUInt NativeTypeMax
Error Currency

 133

For a detailed description of how and when to use each of these enum values, as well as other
legal named-parameters, see the .NET Framework SDK documentation.

3.13.5.5 In attribute

Syntax:
[In]
(for parameters)

The In attribute specifies that data should be marshaled into the caller and can be combined with
the Out attribute.

3.13.5.6 Out attribute

Syntax:
[Out]
(for parameters)

The Out attribute specifies that data should be marshaled out from the called method to the caller
and can be combined with the In attribute.

3.14 Interop with COM

The CLR provides support both for exposing C# objects as COM objects and for using COM
objects from C#.

3.14.1 Binding COM and C# Objects

Interoperating between COM and C# works through either early or late binding. Early binding
allows you to program with types known at compile time, while late binding forces you to program
with types via dynamic discovery, using reflection on the C# side and IDispatch on the COM
side.

When calling COM programs from C#, early binding works by providing metadata in the form of
an assembly for the COM object and its interfaces. TlbImp.exe takes a COM type library and
generates the equivalent metadata in an assembly. With the generated assembly, it's possible to
instantiate and call methods on a COM object just as you would on any other C# object.

When calling C# programs from COM, early binding works via a type library. Both TlbExp.exe and
RegAsm.exe allow you to generate a COM type library from your assembly. You can then use
this type library with tools that support early binding via type libraries such as Visual Basic 6.

3.14.2 Exposing COM Objects to C#

When you instantiate a COM object you are actually working with a proxy known as the Runtime
Callable Wrapper (RCW). The RCW is responsible for managing the lifetime requirements of the
COM object and translating the methods called on it into the appropriate calls on the COM object.
When the garbage collector finalizes the RCW, it releases all references to the object it was
holding. For situations in which you need to release the COM object without waiting for the

 134

garbage collector to finalize the RCW, you can use the static ReleaseComObject method of the
System.Runtime.InteropServices.Marshal type.

The following example demonstrates changing the friendly name of the user with MSN Instant
Messenger from C# via COM Interop:

// SetFN.cs - compile with /r:Messenger.dll
// Run SetFN.exe <Name> to set the FriendlyName for
// the currently logged-in user
// Run TlbImp.exe "C:\Program Files\Messenger\msmsgs.exe"
// to create Messenger.dll
using Messenger; // COM API for MSN Instant Messenger
public class MyApp {
 public static void Main(string[] args) {
 MsgrObject mo = new MsgrObject();
 IMsgrService im = mo.Services.PrimaryService;
 im.FriendlyName = args[0];
 }
}

3.14.3 Exposing C# Objects to COM

Just as an RCW proxy wraps a COM object when you access it from C#, code that accesses a
C# object as a COM object must do so through a proxy as well. When your C# object is
marshaled out to COM, the runtime creates a COM Callable Wrapper (CCW). The CCW follows
the same lifetime rules as other COM objects, and as long as it is alive, a CCW maintains a
traceable reference to the object it wraps, which keeps the object alive when the garbage
collector is run.

The following example shows how you can export both a class and an interface from C# and
control the assigned Global Unique Identifiers (GUIDs) and Dispatch IDs (DISPIDs). After
compiling IRunInfo and StackSnapshot you can register both using RegAsm.exe.

// IRunInfo.cs
// Compile with:
// csc /t:library IRunInfo.cs
using System;
using System.Runtime.InteropServices;
[GuidAttribute("aa6b10a2-dc4f-4a24-ae5e-90362c2142c1")]
public interface IRunInfo {
 [DispId(1)]
 string GetRunInfo();
}

// StackSnapshot.cs
// compile with: csc /t:library /r:IRunInfo.dll StackSnapshot.cs
using System;
using System.Runtime.InteropServices;
using System.Diagnostics;
[GuidAttribute("b72ccf55-88cc-4657-8577-72bd0ff767bc")]
public class StackSnapshot : IRunInfo {
 public StackSnapshot() {
 st = new StackTrace();
 }
 [DispId(1)]

 135

 public string GetRunInfo() {
 return st.ToString();
 }
 private StackTrace st;
}

3.14.4 COM Mapping in C#

When you use a COM object from C#, the RCW makes a COM method look like a normal C#
instance method. In COM, methods normally return an HRESULT to indicate success or failure
and use an out parameter to return a value. In C#, however, methods normally return their result
values and use exceptions to report errors. The RCW handles this by checking the HRESULT
returned from the call to a COM method and throwing a C# exception when it finds a failure
result. With a success result, the RCW returns the parameter marked as the return value in the
COM method signature.

For more information on the argument modifiers and default
mappings from COM type library types to C# types, see
Appendix D.

3.14.5 Common COM Interop Support Attributes

The FCL provides a set of attributes you can use to mark up your objects with information needed
by the CLR interop services to expose managed types to the unmanaged world as COM objects.

This section describes the most common attributes you will use for this purpose. These attributes
all exist in the System.Runtime.InteropServices namespace.

3.14.5.1 ComVisible attribute

Syntax:
[ComVisible(true|false)]
(for assemblies, classes, structs, enums, interfaces, delegates)

When generating a type library, all public types in an assembly are exported by default. The
ComVisible attribute specifies that particular public types (or even the entire assembly) should
not be exposed.

3.14.5.2 DispId attribute

Syntax:
[DispId(dispatch-id)]
(for methods, properties, fields)

The DispId attribute specifies the DispID assigned to a method, field, or property for access
via an IDispatch interface.

3.14.5.3 ProgId attribute

 136

Syntax:
[ProgId(progid)]
(for classes)

The ProgId attribute specifies the COM ProgID to be used for your class.

3.14.5.4 Guid attribute

Syntax:
[GuidAttribute(guid)]
(for assemblies, modules, classes, structs, enums, interfaces,
delegates)

The Guid attribute specifies the COM GUID to be used for your class or interface. This attribute
should be specified using its full type name to avoid clashes with the Guid type.

3.14.5.5 InterfaceType attribute

Syntax:
[InterfaceType(ComInterfaceType)]
(for interfaces)

By default, interfaces are generated as dual interfaces in the type library, but you can use this
attribute to use one of the three COM interface types (dual, dispatch, or a traditional IUnknown-
derived interface).

3.14.5.6 ComRegisterFunction attribute

Syntax:
[ComRegisterFunction]
(for methods)

Requests that RegAsm.execall a method during the process of registering your assembly. If you
use this attribute, you must also specify an unregistration method that reverses all the changes
you made in the registration function. Use the ComUnregisterFunction attribute to mark that
method.

 137

Chapter 4. Framework Class Library Overview

In Chapter 3, we focused on some of the key aspects of the .NET Framework and how to
leverage them from C#. However, access to these capabilities isn't limited to C#.

Almost all the capabilities of the .NET Framework are exposed via a set of managed types known
as the .NET Framework Class Library (FCL). Because these types are CLS-compliant, they are
accessible from almost any .NET language. FCL types are grouped logically by namespace and
are exported from a set of assemblies (DLLs) that are part of the .NET platform.

In order to work effectively in C# on the .NET platform, it is important to understand the general
capabilities in the predefined class library. However, the library is far too large to cover completely
in this book, as it encompasses approximately 3,540 types grouped into 124 namespaces and
exported from 38 different assemblies.

Instead, in this chapter, we give an overview of the entire FCL (broken down by logical area) and
provide references to relevant types and namespaces so you can explore their details in the .NET
Framework SDK on your own.

Useful tools for exploring the FCL include the .NET Framework SDK documentation, the
WinCV.exe class browser, and the ILDasm.exe disassembler (see Chapter 5).

4.1 Core Types

The core types are contained in the System namespace. This namespace is the heart of the FCL
and contains classes, interfaces, and attributes that all other types depend on. The root of the
FCL is the type Object, from which all other .NET types derive. Other fundamental types are
ValueType (the base type for structs), Enum (the base type for enums), Convert (used to
convert between base types), Exception (the base type for all exceptions), and the boxed
versions of the predefined value types. Interfaces used throughout the FCL—such as
ICloneable, IComparable, IFormattable, and IConvertible—are defined here (see
Section 3.3 in Chapter 3).Extended types such as DateTime, TimeSpan, and DBNull are
also available. Other classes include support for delegates (see Section 2.13 in Chapter 2),
basic math operations (see Section 3.2 in Chapter 3), attributes (see Section 2.16 in
Chapter 2), and exception handling (see Section 2.15 in Chapter 2).

For more information, see the System namespace.

4.2 Text

The FCL provides rich support for text. Important types include a String class for handling
immutable strings, a StringBuilder class that provides string-handling operations with support
for locale-aware comparison operations and multiple string-encoding formats (such as ASCII,
Unicode, UTF-7, and UTF-8), and a set of classes that provide regular expression support (see
Section 3.5 in Chapter 3).

For more information, see the following namespaces:

System.Text
System.Text.RegularExpressions

 138

An important type in other namespaces is System.String.

4.3 Collections

The FCL provides a set of general-purpose data structures such as Array, ArrayList,
Hashtable, Queue, Stack, BitArray, and more. Standardized design patterns using common
base types and public interfaces allow consistent handling of collections throughout the FCL for
both predefined and user-defined collection types (see Section 3.4 in Chapter 3).

For more information, see the following namespaces:

System.Collections
System.Collections.Specialized

An important related type in another namespace is System.Array.

4.4 Streams and I/O

The FCL provides good support for accessing the standard input, output, and error streams.
Classes are also provided for performing binary and text file I/O, registering for notification of
filesystem events, and accessing a secure user-specific storage area known as Isolated Storage.

For more information, see the following namespaces:

System.IO
System.IO.IsolatedStorage

An important related type in another namespace is System.Console.

4.5 Networking

The FCL provides a layered set of classes for communicating over the network using different
levels of abstraction, including raw socket access; TCP, UDP, and HTTP protocol support; a high-
level, request/response mechanism based on URIs and streams; and pluggable protocol handlers
(see Section 3.7 in Chapter 3).

For more information, see the following namespaces:

System.Net
System.Net.Sockets

An important related type in another namespace is System.IO.Stream.

4.6 Threading

The FCL provides rich support for building multithreaded applications, including thread and thread
pool management; thread-synchronization mechanisms such as monitors, mutexes, events,
reader/writer locks, etc.; and access to such underlying platform features as I/O completion ports
and system timers(see Section 3.8 in Chapter 3).

 139

For more information, see the following namespaces:

System.Threading
System.Timers

Important related types in other namespaces include System.Thread and
System.ThreadStaticAttribute.

4.7 Security

The FCL provides classes for manipulating all elements of the .NET runtime's Code Access
Security model, including security policies, security principals, permission sets, and evidence.
These classes also support cryptographic algorithms such as DES, 3DES, RC2, RSA, DSig,
MD5, SHA1, and Base64 encoding for stream transformations.

For more information, see the following namespaces:

System.Security
System.Security.Cryptography
System.Security.Cryptography.X509Certificates
System.Security.Cryptography.Xml
System.Security.Permissions
System.Security.Policy
System.Security.Principal

4.8 Reflection and Metadata

The .NET runtime depends heavily on the existence of metadata and the ability to inspect and
manipulate it dynamically. The FCL exposes this via a set of abstract classes that mirror the
significant elements of an application (assemblies, modules, types, and members) and provide
support for creating instances of FCL types and new types on the fly(see Section 3.10 in
Chapter 3).

For more information, see the following namespaces:

System.Reflection
System.Reflection.Emit

Important related types in other namespaces include System.Type, System.Activator and
System.AppDomain.

4.9 Assemblies

The FCL provides attributes that tag the metadata on an assembly with information such as target
OS and processor, assembly version, and other information. The FCL also provides classes to
manipulate assemblies, modules, and assembly strong names.

For more information, see the following namespace:

System.Reflection

 140

4.10 Serialization

The FCL includes support for serializing arbitrary object graphs to and from a stream. This
serialization can store and transmit complex data structures via files or the network. The default
serializers provide binary and XML-based formatting but can be extended with user-defined
formatters.

For more information, see the following namespaces:

System.Runtime.Serialization
System.Runtime.Serialization.Formatters
System.Runtime.Serialization.Formatters.Soap
System.Runtime.Serialization.Formatters.Binary

Important related types in other namespaces include System.NonSerializedAttribute and
System.SerializableAttribute.

4.11 Remoting

Remoting is the cornerstone of a distributed application, and the FCL provides excellent support
for making and receiving remote method calls. Calls may be synchronous or asynchronous;
support request/response or one-way modes; can be delivered over multiple transports (such as
TCP, HTTP, and SMTP); and can be serialized in multiple formats (such as SOAP and binary).
The remoting infrastructure supports multiple activation models, lease-based object lifetimes,
distributed object identity, object marshaling by reference and by value, and message
interception. These types can be extended with user-defined channels, serializers, proxies, and
call context.

For more information, see the following namespaces:

System.Runtime.Remoting
System.Runtime.Remoting.Activation
System.Runtime.Remoting.Channels
System.Runtime.Remoting.Channels.Http
System.Runtime.Remoting.Channels.Tcp
System.Runtime.Remoting.Contexts
System.Runtime.Remoting.Lifetime
System.Runtime.Remoting.Messaging
System.Runtime.Remoting.Metadata
System.Runtime.Remoting.MetadataServices
System.Runtime.Remoting.Proxies
System.Runtime.Remoting.Services

Important related types in other namespaces include System.AppDomain,
System.ContextBoundObject, System.ContextStaticAttribute, and
System.MarshalByRefObject.

4.12 Web Services

Logically, web services are simply an instance of remoting. In reality, the FCL support for web
services is considered part of ASP.NET and is largely separate from the CLR remoting
infrastructure. Classes and attributes exist for describing and publishing web services,

 141

discovering which web services are exposed at a particular endpoint (URI), and invoking a web
service method.

For more information, see the following namespaces:

System.Web.Services
System.Web.Services.Configuration
System.Web.Services.Description
System.Web.Services.Discovery
System.Web.Services.Protocols

4.13 Data Access

Th e FCL includes a set of classes that access data sources and manage complex data sets.
Known as ADO.NET, these classes are the managed replacement for ADO under Win32.
ADO.NET supports both connected and disconnected operations, multiple data providers
(including nonrelational data sources), and serialization to and from XML.

For more information, see the following namespaces:

System.Data
System.Data.Common
System.Data.OleDb
System.Data.SqlClient
System.Data.SqlTypes

4.14 XML

The FCL provides broad support for XML 1.0, XML schemas, and XML namespaces, with two
separate XML parsing models (a DOM2-based model and a pull-mode variant of SAX2) and
implementations of XSL/T, XPath, and SOAP 1.1.

For more information, see the following namespaces:

System.Xml
System.Xml.Schema
System.Xml.Serialization
System.Xml.XPath
System.Xml.Xsl

4.15 Graphics

The FCL includes classes to support working with graphic images. Known as GDI+, these
classes are the managed equivalent of GDI under Win32 and include support for brushes, fonts,
bitmaps, text rendering, drawing primitives, image conversions, and print-preview capabilities.

For more information, see the following namespaces:

 142

System.Drawing
System.Drawing.Design
System.Drawing.Drawing2D
System.Drawing.Imaging
System.Drawing.Printing
System.Drawing.Text

4.16 Rich Client Applications

The FCL includes support for creating classic GUI applications. This support is called Windows
Forms and consists of a forms package, a predefined set of GUI components, and a component
model suited to RAD designer tools. These classes provide varying degrees of abstraction from
low-level, message-loop handler classes to high-level layout managers and visual inheritance.

For more information, see the following namespaces:

System.Windows.Forms
System.Windows.Forms.Design

4.17 Web-Based Applications

The FCL includes support for creating web-based applications. This support is called Web Forms
and consists of a server-side forms package that generates HTML UI, a predefined set of HTML-
based GUI widgets, and a component model suited to RAD designer tools. The FCL also includes
a set of classes that manage session state, security, caching, debugging, tracing, localization,
configuration, and deployment for web-based applications. Finally, the FCL includes the classes
and attributes that produce and consume web services, which were described previously in
Section 4.12. Collectively, these capabilities are known as ASP.NET and are a complete
replacement for ASP under Win32.

For more information, see the following namespaces:

System.Web
System.Web.Caching
System.Web.Configuration
System.Web.Hosting
System.Web.Mail
System.Web.Security
System.Web.SessionState
System.Web.UI
System.Web.UI.Design
System.Web.UI.Design.WebControls
System.Web.UI.HtmlControls
System.Web.UI.WebControls

4.18 Globalization

 143

The FCL provides classes that aid globalization by supporting code-page conversions, locale-
aware string operations, date/time conversions, and the use of resource files to centralize
localization work.

For more information, see the following namespaces:

System.Globalization
System.Resources

4.19 Configuration

The FCL provides access to the .NET configuration system, which includes a per-user and per-
application configuration model with inheritance of configuration settings, and a transacted
installer framework. Classes exist both to use the configuration framework and to extend it.

For more information, see the following namespaces:

System.Configuration
System.Configuration.Assemblies
System.Configuration.Install

4.20 Advanced Component Services

The FCL provides support for building on the COM+ services such as distributed transactions, JIT
activation, object pooling, queuing, and events. The FCL also includes types that provide access
to reliable, asynchronous, one-way messaging via an existing Message Queue infrastructure
(MSMQ). The FCL also includes classes that provide access to existing directory services (Active
Directory).

For more information, see the following namespaces:

System.DirectoryServices
System.EnterpriseServices
System.EnterpriseServices.CompensatingResourceManager
System.Messaging

4.21 Diagnostics and Debugging

The FCL includes classes that provide debug tracing with multilistener support; access to the
event log; access to process, thread, and stack frame information; and the ability to create and
consume performance counters.

For more information, see the following namespaces:

System.Diagnostics
System.Diagnostics.SymbolStore

 144

4.22 Interoperating with Unmanaged Code

The .NET runtime supports bidirectional interop with unmanaged code via COM, COM+, and
native Win32 API calls. The FCL provides a set of classes and attributes that support this,
including precise control of managed-object lifetime and the option of creating user-defined
custom marshalers to handle specific interop situations.

For more information, see the following namespaces:

System.Runtime.InteropServices
System.Runtime.InteropServices.CustomMarshalers
System.Runtime.InteropServices.Expando

Important types in other namespaces include System.Buffer.

4.23 Compiler and Tool Support

In the .NET runtime, components are distinguished from classes by the presence of additional
metadata and other apparatus that facilitate the use of component forms packages such as
Windows Forms and Web Forms. The FCL provides classes and attributes that support both the
creation of components and the creation of tools that consume components. These classes also
include the ability to generate and compile C#, JScript, and VB.NET source code.

For more information, see the following namespaces:

Microsoft.CSharp
Microsoft.JScript
Microsoft.VisualBasic
Microsoft.Vsa
System.CodeDom
System.CodeDom.Compiler
System.ComponentModel
System.ComponentModel.Design
System.ComponentModel.Design.Serialization
System.Runtime.CompilerServices

4.24 Runtime Facilities

The FCL provides classes that can control runtime behavior. The canonical examples are the
classes that control the garbage collector and those that provide strong and weak reference
support.

For more information, see the following namespace:

System

An important related type in another namespace is System.Runtime.
InteropServices.GCHandle.

4.25 Native OS Facilities

 145

The FCL provides support for controlling existing NT services and creating new ones. It also
provides access to certain native Win32 facilities such as the Windows registry and the Windows
Management Instrumentation (WMI).

For more information, see the following namespaces:

Microsoft.Win32
System.Management
System.Management.Instrumentation
System.ServiceProcess

4.26 Undocumented Types

The assemblies that make up the .NET Framework also export many types and namespaces that
are not documented. These types and namespaces generally represent either implementation
details that are subject to change, vestigial code from earlier betas, or tool-specific code that
happens to be managed and is therefore subject to examination via reflection. Regardless of the
reason, one cannot count on undocumented types, nor expect any support from Microsoft.

That said, there is useful information to be gained from investigating these private implementation
details. Examples of this include: programmatic access to the GAC; predefined Win32 structures
and COM interfaces, such as internals of SoapSuds.exe, RegAsm.exe, TlbImp.exe and
TlbExp.exe; and browser, tool and OS integration helpers.

Many of the documented namespaces include additional undocumented types. Additionally, the
following namespaces are completely undocumented:

Accessibility
IEHost.Execute
Microsoft.CLRAdmin
Microsoft.IE
Microsoft.JScript.Vsa
Microsoft.VisualBasic.CompilerServices
Microsoft.VisualBasic.Vsa
Microsoft.VisualC
Microsoft_VsaVb
RegCode
SoapSudsCode
System.Diagnostics.Design
System.EnterpriseServices.Internal
System.Messaging.Design
System.Runtime.Remoting.Metadata.W3cXsd2001
System.ServiceProcess.Design
System.Web.Handlers
System.Web.RegularExpressions
System.Web.Services.Configuration
System.Web.Util
System.Windows.Forms.ComponentModel.Com2Interop
System.Windows.Forms.PropertyGridInternal
TlbExpCode
TlbImpCode

 146

To investigate these types and namespaces, use ILDasm.exe to examine the metadata and
MSIL.

 147

Chapter 5. Essential .NET Tools

The .NET Framework SDK contains many useful programming tools. Here, in an alphabetical list,
are those we have found most useful or necessary for developing C# applications. Unless
otherwise noted, the tools in this list can be found either in the \bin directory of your .NET
Framework SDK installation or in the %SystemRoot%\Microsoft.NET\Framework \VERSION
directory (replace VERSION with the framework version). Once the .NET Framework is installed,
you can access these tools from any directory. To use any of these tools, invoke a Command
Prompt window and enter the name of the desired tool. For a complete list of the available
command-line switches for any given tool, enter the tool name (e.g., csc) and press the Return
or Enter key.
ADepends.exe: assembly dependency list

Adepends displays all assemblies that a given assembly is dependent on to load. This is
a useful C# program found among the samples in the \Tool Developers Guide directory
beneath the .NET Framework or Visual Studio .NET directory tree. You need to install
these samples before you can use them, because they are not installed by default.

Al.exe: assembly linking utility
Creates an assembly manifest from the modules and resources files you name. You can
also include Win32 resources files. Here's an example:
al /out:c.dll a.netmodule b.netmodule

CorDbg.exe : runtime debugger
General source-level, command-line debug utility for MSIL programs. Very useful tool for
C# source debugging. Source for cordbg is available in the \Tool Developers Guide
directory.

Csc.exe: C# compiler
Compiles C# sources and incorporates resource files and separately compiled modules.
Also allows you to specify conditional compilation options, XML documentation, and path
information. Here are some examples:
csc foo.cs /r:bar.dll /win32res:foo.res
csc foo.cs /debug /define:TEMP

DbgClr.exe: GUI debugger
Windows-based, source-level debugger. Available in the \GuiDebug directory of the .NET
Framework SDK installation.

GACUtil.exe: global assembly cache utility
Allows you to install, uninstall, and list the contents of the global assembly cache. Here's
an example:
gacutil /i c.dll

ILAsm.exe: MSIL assembler
Creates MSIL modules and assemblies directly from an MSIL textual representation.

ILDasm.exe : MSIL disassembler
Disassembles modules and assemblies. The default is to display a tree-style
representation, but you can also specify an output file. Here are some examples:
ildasm b.dll
ildasm b.dll /out=b.asm

InstallUtil.exe: installer utility
Executes installers and uninstallers contained within the assembly. A logfile can be
written, and state information can be persisted.

Ngen.exe: native image generator
Compiles an assembly to native code and installs a native image in the local assembly
cache. That native image is used each time you access the original assembly, even
though the original assembly contains MSIL. If the runtime can't locate the native image,
it falls back on JIT compilation. Here are some examples:
ngen foo.exe
ngen foo.dll

nmake.exe: make utility

 148

Common utility that scripts building of multiple components and source files and tracks
rebuild dependency information. See Appendix E for more information.

PEVerify.exe: portable executable verifier
Verifies that your compiler has generated type-safe MSIL. C# will always generate type-
safe MSIL. Useful interop with ILASM-based programs.

RegAsm.exe: register assembly tool
Registers an assembly in the system registry. This allows COM clients to call managed
methods. You can also use it to generate the registry file for future registration. Here's an
example:
regasm /regfile:c.reg c.dll

RegSvcs.exe : register services utility
Registers an assembly to COM+ 1.0, and installs its typelib into an existing application.
Can also generate a typelib. Here's an example:
regsvcs foo.dll /appname:comapp /tlb:newfoo.tlb

Sn.exe : shared name utility
Verifies assemblies and their key information. Also generates key files. Here's an
example:
sn -k mykey.snk

SoapSuds.exe: SoapSuds utility
Creates XML schemas for services in an assembly and creates assemblies from a
schema. You can also reference the schema via its URL. Here's an example:
soapsuds
 -url:http://localhost/myapp/app.soap?wsdl
 -os:app.xml

TlbExp.exe : type library exporter
Exports a COM typelib derived from the public types within the supplied assembly. Differs
from regasm in that it doesn't perform any registration. Here's an example:
tlbexp /out:c.tlb c.dll

TlbImp.exe: type library importer
Creates a managed assembly from the supplied COM typelib, mapping the type
definitions to .NET types. You need to import this new assembly into your C# program for
use. Here's an example:
tlbimp /out:MyOldCom.dll MyCom.tlb

Wsdl.exe: web services description language tool
Creates service descriptions and generates proxies for ASP.NET web-service methods.
See the ASP.NET documentation in the .NET Framework SDK for more detail on web
services.

WinCV.exe : windows class viewer
Searches for matching names within a supplied assembly. If none are supplied, it uses
the default libraries. The namespaces and classes are displayed in a listbox, and the
selected type information is displayed in another window.

Xsd.exe : XML schema definition tool
Generates XML schemas from XDR, XML files, or class information. Can also generate
DataSet or class information from a schema. Here's an example:
xsd foo.xdr
xsd bar.dll

 149

Appendix A. C# Keywords

abstract
A class modifier that specifies that the class must be derived-from to be instantiated.

as
A binary operator type that casts the left operand to the type specified by the right
operand and that returns null rather than throwing an exception if the cast fails.

base
A variable with the same meaning as this, except that it accesses a base-class
implementation of a member.

bool
A logical datatype that can be true or false.

break
A jump statement that exits a loop or switch statement block.

byte
A one-byte, unsigned integral data type.

case
A selection statement that defines a particular choice in a switch statement.

catch
The part of a try statement that catches exceptions of a specific type defined in the
catch clause.

char
A two-byte, Unicode character data type.

checked
A statement or operator that enforces arithmetic bounds checking on an expression or
statement block.

class
An extendable reference type that combines data and functionality into one unit.

const
A modifier for a local variable or field declaration that indicates that the value is a
constant. A const is evaluated at compile time and can be only a predefined type.

continue
A jump statement that skips the remaining statements in a statement block and continues
to the next iteration in a loop.

decimal
A 16-byte precise decimal datatype.

default
A marker in a switch statement specifying the action to take when no case statements
match the switchexpression.

delegate
A type for defining a method signature so delegate instances can hold and invoke a
method or list of methods that match its signature.

do
A loop statement to iterate a statement block until an expression at the end of the loop
evaluates tofalse.

double
An eight-byte, floating-point data type.

else
A conditional statement that defines the action to take when a precedingif expression
evaluates to false.

enum
A value type that defines a group of named numeric constants.

event

 150

A member modifier for a delegate field or property that indicates that only the+= and-=
methods of the delegate can be accessed.

explicit
An operator that defines an explicit conversion.

extern
A method modifier that indicates that the method is implemented with unmanaged code.

false
A Boolean literal.

finally
The part of atry statement to execute whenever control leaves the scope of thetry
block.

fixed
A statement to pin down a reference type so the garbage collector won't move it during
pointer arithmetic operations.

float
A four-byte floating-point data type.

for
A loop statement that combines an initialization statement, continuation condition, and
iterative statement into one statement.

foreach
A loop statement that iterates over collections that implement IEnumerable.

get
The name of the accessor that returns the value of a property.

goto
A jump statement that jumps to a label within the same method and same scope as the
jump point.

if
A conditional statement that executes its statement block if its expression evaluates
totrue.

implicit
An operator that defines an implicit conversion.

in
The operator between a type and an IEnumerable in a foreach statement.

int
A four-byte, signed integral data type.

interface
A contract that specifies the members that aclass or structmay implement to receive
generic services for that type.

internal
An access modifier that indicates that a type or type member is accessible only to other
types in the same assembly.

is
A relational operator that evaluates to true if the left operand's type matches, is derived-
from, or implements the type specified by the right operand.

lock
A statement that acquires a lock on a reference-type object to help multiple threads
cooperate.

long
An eight-byte, signed integral data type.

namespace
A keyword that maps a set of types to a common name.

new
An operator that calls a constructor on a type, allocating a new object on the heap if the
type is a reference type, or initializing the object if the type is a value type. The keyword
is overloaded to hide an inherited member.

 151

null
A reference-type literal that indicates that no object is referenced.

object
The type all other types derive from.

operator
A method modifier that overloads operators.

out
A parameter modifier that specifies that the parameter is passed by reference and must
be assigned by the method being called.

override
A method modifier that indicates that a method of a class overrides a virtualmethod of a
class orinterface.

params
A parameter modifier that specifies that the last parameter of a method may accept
multiple parameters of the same type.

private
An access modifier that indicates that only the containing type can access the member.

protected
An access modifier that indicates that only the containing type or derived types can
access the member.

public
An access modifier that indicates that a type or type member is accessible to all other
types.

readonly
A field modifier specifying that a field can be assigned only once, either in its declaration
or in its containing type's constructor.

ref
A parameter modifier that specifies that the parameter is passed by reference and is
assigned before being passed to the method.

return
A jump statement that exits a method, specifying a return value when the method is non-
void.

sbyte
A one-byte, signed integral data type.

sealed
A class modifier that indicates a class cannot be derived-from.

set
The name of the accessor that sets the value of a property.

short
A two-byte, signed integral data type.

sizeof
An operator that returns the size in bytes of a struct.

stackalloc
An operator that returns a pointer to a specified number of value types allocated on the
stack.

static
A type member modifier that indicates that the member applies to the type rather than to
an instance of the type.

string
A predefined reference type that represents an immutable sequence of Unicode
characters.

struct
A value type that combines data and functionality in one unit.

switch
A selection statement that allows a selection of choices to be made based on the value of
a predefined type.

 152

this
A variable that references the current instance of a classor struct.

throw
A jump statement that throws an exception when an abnormal condition has occurred.

true
A Boolean literal.

try
A statement that provides a way to handle an exception or a premature exit in a
statement block.

typeof
An operator that returns the type of an object as a System.Type object.

uint
A four-byte, unsigned integral data type.

ulong
An eight-byte, unsigned integral data type.

unchecked
A statement or operator that prevents arithmetic bounds checking on an expression.

unsafe
A method modifier or statement that permits pointer arithmetic to be performed within a
particular block.

ushort
A two-byte, unsigned integral data type.

using
A directive that specifies that types in a particular namespace can be referred to without
requiring their fully qualified type names. The keyword is overloaded as a statement that
allows an object that implements IDisposable to be disposed of at the end of the
statement's scope.

value
The name of the implicit variable set by the set accessor of a property.

virtual
A class method modifier that indicates that a method can be overridden by a derived
class.

void
A keyword used in place of a type for methods that don't have a return value.

volatile
A field modifier indicating that a field's value may be modified in a multithreaded scenario
and that neither the compiler nor runtime should perform optimizations with that field.

while
A loop statement to iterate a statement block while an expression at the start of each
iteration evaluates to false.

 153

Appendix B. Regular Expressions

The following tables summarize the regular expression grammar and syntax supported by the
regular expression classes in System.Text.RegularExpressions. Each of the modifiers and
qualifiers in the tables can substantially change the behavior of the matching and searching
patterns. For further information on regular expressions, we recommend the definitive Mastering
Regular Expressions by Jeffrey E. F. Friedl (O'Reilly).
All the syntax described in Table B-1 through Table B-10 should match the Perl5 syntax, with
specific exceptions noted.

Table B-1. Character escapes

Escape Code Sequence Meaning Hexadecimal equivalent
\a Bell \u0007
\b Backspace \u0008
\t Tab \u0009
\r Carriage return \u000D
\v Vertical tab \u000B
\f Form feed \u000C
\n Newline \u000A
\e Escape \u001B
\040 ASCII character as octal
\x20 ASCII character as hex
\cC ASCII control character
\u0020 Unicode character as hex
\
non-escape A nonescape character

Special case: within a regular expression, \b means word boundary, except in a [] set, in which
\b means the backspace character.

Table B-2. Substitutions

Expression Meaning
$group-number Substitutes last substring matched by group-number

${group-name} Substitutes last substring matched by (?<group-name>)

$$ Substitutes a literal "$"
$& Substitutes copy of the entire match
$' Substitutes text of the input string preceding match
$' Substitutes text of the input string following match
$+ Substitutes the last captures group
$_ Substitutes the entire input string
Substitutions are specified only within a replacement pattern.

Table B-3. Character sets

Expression Meaning
. Matches any character except \n
[characterlist] Matches a single character in the list
[^characterlist] Matches a single character not in the list
[char0-char1] Matches a single character in a range

 154

\w Matches a word character; same as [a-zA-Z_0-9]

\W Matches a nonword character
\s Matches a space character; same as [\n\r\t\v\f]
\S Matches a nonspace character

\d Matches a decimal digit; same as [0-9]
\D Matches a nondigit

Table B-4. Positioning assertions
Expression Meaning

^ Beginning of line
$ End of line
\A Beginning of string
\Z End of line or string
\z Exactly the end of string
\G Where search started
\b On a word boundary
\B Not on a word boundary

Table B-5. Quantifiers
Quantifier Meaning

* 0 or more matches
+ 1 or more matches
? 0 or 1 matches

{n} Exactly n matches

{n,} At least nmatches

{n,m} At least n, but no more than m matches

*? Lazy *, finds first match that has minimum repeats

+? Lazy +, minimum repeats, but at least 1

?? Lazy ?, zero or minimum repeats

{n}? Lazy {n}, exactly n matches

{n,}? Lazy {n}, minimum repeats, but at least n

{n,m}? Lazy {n,m}, minimum repeats, but at least n, and no more than m

Table B-6. Grouping constructs
Syntax Meaning

() Capture matched substring
(?<name>) Capture matched substring into group name[A]

(?<number>) Capture matched substring into group number[A]

(?<name1-
name2>)

Undefine name2 and store interval and current group into name1; if name2 is
undefined, matching backtracks; name1 is optional[A]

(?:) Noncapturing group
(?imnsx-
imnsx:) Apply or disable matching options

(?=) Continue matching only if subexpression matches on right[C]
(?!) Continue matching only if subexpression doesn't match on right[C]
(?<=) Continue matching only if subexpression matches on left [B] [C]

 155

(?<!) Continue matching only if subexpression doesn't match on left[B][C]
(?>) Subexpression is matched once, but isn't backtracked

[A] Single quotes may be used instead of angle brackets, for example (?'name').

[B] This construct doesn't backtrack; this is to remain compatible with Perl5.

[C] Zero-width assertion; does not consume any characters.

The named capturing group syntax follows a suggestion
made by Jeffrey Friedl in Mastering Regular Expressions
(O'Reilly). All other grouping constructs use the Perl5 syntax.

Table B-7. Back references

Parameter syntax Meaning
\count Back reference count occurrences

\k<name> Named back reference

Table B-8. Alternation

Expression syntax Meaning
| Logical OR
(?(expression)yes|no) Matches yes if expression matches, else no; the no is optional

(?(name)yes|no) Matches yes if named string has a match, else no; the no is
optional

Table B-9. Miscellaneous constructs
Expression syntax Meaning
(?imnsx-imnsx) Set or disable options in midpattern
(?#) Inline comment
[to end of line] X-mode comment (requires x option or IgnorePatternWhitespace)

Table B-10. Regular expression options
Option RegexOption value Meaning
i IgnoreCase Case-insensitive match

m MultiLine
Multiline mode; changes ^ and $ so they match beginning and
ending of any line

n ExplicitCapture Capture explicitly named or numbered groups

 Compiled Compile to MSIL

s SingleLine
Single-line mode; changes meaning of "." so it matches every
character

x IgnorePatternWhitespace Eliminates unescaped whitespace from the pattern
 RightToLeft Search from right to left; can't be specified in midstream

 156

Appendix C. Format Specifiers

Table C-1 lists the numeric format specifiers supported by the ToString method on the
predefined numeric types (see Chapter 3).

Table C-1. Numeric format specifiers
Specifier String result Data type

C[n] $XX,XX.XX
($XX,XXX.XX) Currency

D[n] [-]XXXXXXX Decimal

E[n] or e[n]

[-]X.XXXXXXE+xxx
[-]X.XXXXXXe+xxx
[-]X.XXXXXXE-xxx
[-]X.XXXXXXe-xxx

Exponent

F[n] [-]XXXXXXX.XX Fixed point
G[n] General or scientific General
N[n] [-]XX,XXX.XX Number
P[n] [-]XX,XXX.XX % Percent

R Round-trip format Floating point
X[n] or x[n] Hex representation Hex
This is an example that uses numeric format specifiers without precision specifiers:
using System;
class TestDefaultFormats {
 static void Main() {
 int i = 654321;
 Console.WriteLine("{0:C}", i); // $654,321.00
 Console.WriteLine("{0:D}", i); // 654321
 Console.WriteLine("{0:E}", i); // 6.543210E+005
 Console.WriteLine("{0:F}", i); // 654321.00
 Console.WriteLine("{0:G}", i); // 654321
 Console.WriteLine("{0:N}", i); // 654,321.00
 Console.WriteLine("{0:P}", i); // 65,432,100.00 %
 Console.WriteLine("{0:P}", .42); // 42.00 %
 Console.WriteLine("{0:X}", i); // 9FBF1
 Console.WriteLine("{0:x}", i); // 9fbf1
 // Round-trip conversions
 string s1 = Math.PI.ToString("G");
 Console.WriteLine(s1); // 3.14159265358979
 string s2 = Math.PI.ToString("R");
 Console.WriteLine(s2); // 3.1415926535897931
 Console.WriteLine(Math.PI == Double.Parse(s1)); // False
 Console.WriteLine(Math.PI == Double.Parse(s2)); // True
 }
}
This is an example that uses numeric format specifiers with precision specifiers on a variety of
int values:
using System;
class TestIntegerFormats {
 static void Main() {
 int i = 123;
 Console.WriteLine("{0:C6}", i); // $123.000000
 Console.WriteLine("{0:D6}", i); // 000123

 157

 Console.WriteLine("{0:E6}", i); // 1.230000E+002
 Console.WriteLine("{0:G6}", i); // 123
 Console.WriteLine("{0:N6}", i); // 123.000000
 Console.WriteLine("{0:P6}", i); // 12,300.000000 %
 Console.WriteLine("{0:X6}", i); // 00007B
 i = -123;
 Console.WriteLine("{0:C6}", i); // ($123.000000)
 Console.WriteLine("{0:D6}", i); // -000123
 Console.WriteLine("{0:E6}", i); // -1.230000E+002
 Console.WriteLine("{0:G6}", i); // -123
 Console.WriteLine("{0:N6}", i); // -123.000000
 Console.WriteLine("{0:P6}", i); // -12,300.000000 %
 Console.WriteLine("{0:X6}", i); // FFFF85
 i = 0;
 Console.WriteLine("{0:C6}", i); // $0.000000
 Console.WriteLine("{0:D6}", i); // 000000
 Console.WriteLine("{0:E6}", i); // 0.000000E+000
 Console.WriteLine("{0:G6}", i); // 0
 Console.WriteLine("{0:N6}", i); // 0.000000
 Console.WriteLine("{0:P6}", i); // 0.000000 %
 Console.WriteLine("{0:X6}", i); // 000000
 }
}
Here's an example that uses numeric format specifiers with precision specifiers on a variety of
double values:
using System;
class TestDoubleFormats {
 static void Main() {
 double d = 1.23;
 Console.WriteLine("{0:C6}", d); // $1.230000
 Console.WriteLine("{0:E6}", d); // 1.230000E+000
 Console.WriteLine("{0:G6}", d); // 1.23
 Console.WriteLine("{0:N6}", d); // 1.230000
 Console.WriteLine("{0:P6}", d); // 123.000000 %
 d = -1.23;
 Console.WriteLine("{0:C6}", d); // ($1.230000)
 Console.WriteLine("{0:E6}", d); // -1.230000E+000
 Console.WriteLine("{0:G6}", d); // -1.23
 Console.WriteLine("{0:N6}", d); // -1.230000
 Console.WriteLine("{0:P6}", d); // -123.000000 %
 d = 0;
 Console.WriteLine("{0:C6}", d); // $0.000000
 Console.WriteLine("{0:E6}", d); // 0.000000E+000
 Console.WriteLine("{0:G6}", d); // 0
 Console.WriteLine("{0:N6}", d); // 0.000000
 Console.WriteLine("{0:P6}", d); // 0.000000 %
 }
}

C.1 Picture Format Specifiers

Table C-2 lists the valid picture format specifiers supported by the ToStringmethod on t he
predefined numeric types (see the documentation for System.IFormattable in the .NET
SDK). The picture format can include up to three sections separated by a semicolon. With one

 158

section, the format specifier is applied to all values. With two sections, the first format specifier
applies to zero and positive values, and the second applies to negative values. With three
sections, the first specifier applies to positive values, the second applies to negative values, and
the third applies to zero.

Table C-2. Picture format specifiers

Specifier String result
0 Zero placeholder
Digit placeholder
. Decimal point
, Group separator or multiplier
% Percent notation
E0, E+0, E-0, e0 e+0, e-0 Exponent notation
\ Literal character quote
'xx'"xx" Literal string quote
; Section separator
Here's an example using picture format specifiers on some int values:
using System;
class TestIntegerCustomFormats {
 static void Main() {
 int i = 123;
 Console.WriteLine("{0:#0}", i); // 123
 Console.WriteLine("{0:#0;(#0)}", i); // Two sections: 123
 Console.WriteLine("{0:#0;(#0);<zero>}", i); // Three sections: 123
 Console.WriteLine("{0:#%}", i); // 12300%
 i = -123;
 Console.WriteLine("{0:#0}", i); // -123
 Console.WriteLine("{0:#0;(#0)}", i); // Two sections: (123)
 Console.WriteLine("{0:#0;(#0);<zero>}", i); // Three sections:
(123)
 Console.WriteLine("{0:#%}", i); // -12300%
 i = 0;
 Console.WriteLine("{0:#0}", i); // 0
 Console.WriteLine("{0:#0;(#0)}", i); // Two sections: 0
 Console.WriteLine("{0:#0;(#0);<zero>}", i); // Three sections:
<zero>
 Console.WriteLine("{0:#%}", i); // %
 }
}
The following is an example that uses these picture format specifiers on a variety of double
values:
using System;
class TestDoubleCustomFormats {
 static void Main() {
 double d = 1.23;
 Console.WriteLine("{0:#.000E+00}", d); // 1.230E+00
 Console.WriteLine(
 "{0:#.000E+00;(#.000E+00)}", d); // 1.230E+00
 Console.WriteLine(
 "{0:#.000E+00;(#.000E+00);<zero>}", d); // 1.230E+00
 Console.WriteLine("{0:#%}", d); // 123%
 d = -1.23;
 Console.WriteLine("{0:#.000E+00}", d); // -1.230E+00
 Console.WriteLine(

 159

 "{0:#.000E+00;(#.000E+00)}", d); // (1.230E+00)
 Console.WriteLine(
 "{0:#.000E+00;(#.000E+00);<zero>}", d); // (1.230E+00)
 Console.WriteLine("{0:#%}", d); // -123%
 d = 0;
 Console.WriteLine("{0:#.000E+00}", d); // 0.000E+01
 Console.WriteLine(
 "{0:#.000E+00;(#.000E+00)}", d); // 0.000E+01
 Console.WriteLine(
 "{0:#.000E+00;(#.000E+00);<zero>}", d); // <zero>
 Console.WriteLine("{0:#%}", d); // %
 }
}

C.2 DateTime Format Specifiers

Table C-3 lists the valid format specifiers supported by the Format method on the DateTime
type (see System.IFormattable).

Table C-3. DateTime format specifiers
Specifier String result

d MM/dd/yyyy
D dddd, MMMM dd, yyyy

f dddd, MMMM dd, yyyy HH:mm
F dddd, MMMM dd, yyyy HH:mm:ss
g MM/dd/yyyy HH:mm
G MM/dd/yyyy HH:mm:ss
m, M MMMM dd
r, R Ddd, dd MMM yyyy HH:mm:ss GMT
s yyyy-MM-ddTHH:mm:ss
t HH:mm
T HH:mm:ss

u yyyy-MM-dd HH:mm:ssZ
U dddd, MMMM dd, yyyy HH:mm:ss
y, Y MMMM, yyyy
Here's an example that uses these custom format specifiers on a DateTime value:
using System;
class TestDateTimeFormats {
 static void Main() {
 DateTime dt = new DateTime(2000, 10, 11, 15, 32, 14);

 // Prints "10/11/2000 3:32:14 PM"
 Console.WriteLine(dt.ToString());
 // Prints "10/11/2000 3:32:14 PM"
 Console.WriteLine("{0}", dt);
 // Prints "10/11/2000"
 Console.WriteLine("{0:d}", dt);

 // Prints "Wednesday, October 11, 2000"
 Console.WriteLine("{0:D}", dt);
 // Prints "Wednesday, October 11, 2000 3:32 PM"

 160

 Console.WriteLine("{0:f}", dt);
 // Prints "Wednesday, October 11, 2000 3:32:14 PM"
 Console.WriteLine("{0:F}", dt);

 // Prints "10/11/2000 3:32 PM"
 Console.WriteLine("{0:g}", dt);
 // Prints "10/11/2000 3:32:14 PM"
 Console.WriteLine("{0:G}", dt);

 // Prints "October 11"
 Console.WriteLine("{0:m}", dt);
 // Prints "October 11"
 Console.WriteLine("{0:M}", dt);

 // Prints "Wed, 11 Oct 2000 15:32:14 GMT"
 Console.WriteLine("{0:r}", dt);
 // Prints "Wed, 11 Oct 2000 15:32:14 GMT"
 Console.WriteLine("{0:R}", dt);

 // Prints "3:32 PM"
 Console.WriteLine("{0:t}", dt);
 // Prints "3:32:14 PM"
 Console.WriteLine("{0:T}", dt);

 // Prints "2000-10-11T15:32:14"
 Console.WriteLine("{0:s}", dt);
 // Prints "2000-10-11 15:32:14Z"
 Console.WriteLine("{0:u}", dt);
 // Prints "Wednesday, October 11, 2000 7:32:14 PM"
 Console.WriteLine("{0:U}", dt);

 // Prints "October, 2000"
 Console.WriteLine("{0:y}", dt);
 // Prints "October, 2000"
 Console.WriteLine("{0:Y}", dt);
 // Prints "Wednesday the 11 day of October in the year 2000"
 Console.WriteLine(
 "{0:dddd 'the' d 'day of' MMMM 'in the year' yyyy}", dt);
 }
}

 161

Appendix D. Data Marshaling

When calling between the runtime environment and existing COM interfaces, the CLR performs
automatic data marshaling for CLR types into compatible COM types.
Table D-1 describes the C# to COM default data type mapping.

Table D-1. C# type to COM type mapping
C# type COM type

bool VARIANT_BOOL
char unsigned short
sbyte char
byte unsigned char
short short
ushort unsigned short
int int
uint unsigned int
long hyper
ulong unsigned hyper
float float
double double
decimal DECIMAL
object VARIANT, IUnknown*, IDispatch*
string BSTR
System.DateTime DATE[A]
System.Guid GUID
System.Decimal CURRENCY
1-dimensional arrays SAFEARRAY
Value types Equivalently named struct
enum Equivalently named enum
interface Equivalently named interface
class Equivalently named CoClass

[A] COM dates are less precise, causing comparison problems.

Table D-2 shows the mapping of the C# modifiers to their equivalent COM interface attributes.
Table D-2. C# modifier/COM attribute mapping

C# modifier COM attribute
<no modifier> [in]
out [out]
ref [in, out]
<return value> [out, retval]

 162

Appendix E. Working with Assemblies

This appendix describes a number of useful techniques for working with assemblies. Among the
topics covered are how to create modules, how to manage the global assembly cache, how to
make assemblies shareable, and how to use the nmake utility to automate your builds.

E.1 Building Shareable Assemblies

For most applications you build components that are either standalone assembly EXEs or DLLs.
If you want to build shareable components that are shared across multiple applications, you need
to give your assembly a strong name (using the snutility) and install it into the global cache (using
the gacutil utility).

E.1.1 Building Modules

The al utility doesn't rebuild assemblies from other assemblies, so you need to compile your C#
files as modules, using the flag (/target:module). Here's an example:
csc /target:module a.cs

E.1.2 Linking Modules to Assemblies

Once your modules are built, you can create a single shared assembly with the al (alink) utility.
You specify the name of the new assembly and the source modules. Here's an example:
al /out:c.dll a.netmodule b.netmodule

E.1.3 Building with Your New Assemblies

You can now create applications with the new assembly by referencing it on the compiler
command line. For example:
csc /r:c.dll d.cs
Note that in order to use classes within the namespaces contained in the c.dll assembly of the
preceding example, you need to specify the using keyword to reference the namespace.

E.1.4 Sharing Assemblies

To share assemblies across multiple applications where the assembly itself doesn't reside in the
same directory, you need to install it into the assembly cache. To install an assembly into the
cache, it must be signed with a strong name. The sequence is:

1. You must generate a key file. For example:

sn -k key.snk

2. Then build an assembly that is signed with the strong name:

al /out:e.dll /keyfile:key.snk a.netmodule b.netmodule

3. Once your assembly is signed, you can install it in the global assembly cache.

 163

Note that installing an assembly to the shared cache doesn't copy it to anywhere, so when
specifying the reference on compilations, you need to specify the assembly file location for the
compiler:
csc /r:..\e.dll f.cs

E.2 Managing the Global Assembly Cache

There are two ways to work with the assembly cache. One is with the Windows Explorer, which
has a shell extension that displays the cache and allows you to manipulate the entries. If you
explore the %SYSTEMROOT%\assembly directory, you can display the current cache:
start %SYSTEMROOT%\assembly
Alternatively you can use the gacutil utility, which allows you to install, uninstall, and list the
contents of the global assembly cache. The following:
gacutil /i e.dll
installs e.dll.
This example:
gacutil /u e
uninstalls all assemblies with the name e.
This example:
gacutil /u e,ver=0.0.0.0
uninstalls only the assemblye that matches the version number.

E.3 Using nmake

You can use nmake to automate many tasks that build assemblies and modules. Here's an
example that shows many of the previous command lines in a cohesive manner. Particular
nmake features to note are the use of the.SUFFIXES keyword to add a definition for the .cs file
extension and the use of the response file with the C# compiler, for when more source file names
are supplied than can be listed on the command line.
REF=/r:c.dll
DEBUG=/debug
.SUFFIXES: .exe .dll .cs .netmodule
.cs.netmodule:
 csc /t:module $*.cs
.cs.exe:
 csc $(DEBUG) $(REF) @<<big.tmp
$*.cs $(SRCLIST)
<<
all : d.exe f.exe
d.exe : d.cs c.dll
c.dll : a.netmodule b.netmodule
 al /out:c.dll a.netmodule b.netmodule
b.netmodule : b.cs
a.netmodule : a.cs
key.snk :
 sn -k $*.snk
e.dll : a.netmodule b.netmodule key.snk
 al /out:$*.dll /keyfile:key.snk a.netmodule b.netmodule
 gacutil /i $*.dll
f.exe : f.cs e.dll
 csc $(DEBUG) /r:.\e.dll f.cs
clean:

 164

 gacutil /u e
 del key.snk *.netmodule c.dll d.exe e.dll f.exe *.pdb /q

 165

Appendix F. Namespaces and Assemblies

This appendix allows you to look up a namespace and determine which assemblies export that
namespace. This information is helpful when constructing the appropriate /reference:<file
list>command-line option for the C# compiler. Note that mscorlib.dll is implicitly referenced by
the compiler unless the /nostdlib command-line option is used.

Namespace DLLs
Accessibility Accessibility.dll
EnvDTE envdte.dll
IEHost.Execute IEExecRemote.dll
Microsoft.CLRAdmin mscorcfg.dll
Microsoft.CSharp cscompmgd.dllSystem.dll

Microsoft.IE
IEHost.dll

IIEHost.dll
Microsoft.JScript Microsoft.JScript.dll
Microsoft.JScript.Vsa Microsoft.JScript.dll
Microsoft.Office.Core office.dll

Microsoft.VisualBasic
Microsoft.VisualBasic.dll

System.dll

Microsoft.VisualBasic.Compatibility.VB6
Microsoft.VisualBasic.Compatibility.Data.dll

Microsoft.VisualBasic.Compatibility.dll
Microsoft.VisualBasic.CompilerServices Microsoft.VisualBasic.dll
Microsoft.VisualBasic.Vsa Microsoft.VisualBasic.Vsa.dll
Microsoft.VisualC Microsoft.VisualC.Dll

Microsoft.Vsa
Microsoft.JScript.dll

Microsoft.Vsa.dll
Microsoft.Vsa.Vb.CodeDOM Microsoft.Vsa.Vb.CodeDOMProcessor.dll

Microsoft.Win32
mscorlib.dll

System.dll
Microsoft_VsaVb Microsoft_VsaVb.dll
RegCode RegCode.dll

System
mscorlib.dll

System.dll
System.CodeDom System.dll
System.CodeDom.Compiler System.dll
System.Collections mscorlib.dll
System.Collections.Specialized System.dll
System.ComponentModel System.dll

 166

System.ComponentModel.Design
System.Design.dll

System.dll

System.ComponentModel.Design.Serialization
System.Design.dll

System.dll
System.Configuration System.dll
System.Configuration.Assemblies mscorlib.dll
System.Configuration.Install System.Configuration.Install.dll
System.Data System.Data.dll
System.Data.Common System.Data.dll
System.Data.OleDb System.Data.dll
System.Data.SqlClient System.Data.dll
System.Data.SqlTypes System.Data.dll

System.Diagnostics
mscorlib.dll

System.Configuration.Install.dll
System.Diagnostics.Design System.Design.dll

System.Diagnostics.SymbolStore
ISymWrapper.dll

mscorlib.dll
System.DirectoryServices System.DirectoryServices.dll
System.Drawing System.Drawing.dll

System.Drawing.Design
System.Drawing.Design.dll

System.Drawing.dll
System.Drawing.Drawing2D System.Drawing.dll
System.Drawing.Imaging System.Drawing.dll
System.Drawing.Printing System.Drawing.dll
System.Drawing.Text System.Drawing.dll
System.EnterpriseServices System.EnterpriseServices.dll
System.EnterpriseServices.CompensatingResourceManager System.EnterpriseServices.dll
System.EnterpriseServices.Internal System.EnterpriseServices.dll
System.Globalization mscorlib.dll

System.IO
mscorlib.dll

System.dll
System.IO.IsolatedStorage mscorlib.dll
System.Management System.Management.dll
System.Management.Instrumentation System.Management.dll
System.Messaging System.Messaging.dll

System.Messaging.Design
System.Design.dll

System.Messaging.dll
System.Net System.dll
System.Net.Sockets System.dll

 167

System.Reflection mscorlib.dll
System.Reflection.Emit mscorlib.dll

System.Resources
mscorlib.dll

System.Windows.Forms.dll
System.Runtime.CompilerServices mscorlib.dll
System.Runtime.InteropServices mscorlib.dll
System.Runtime.InteropServices.CustomMarshalers CustomMarshalers.dll
System.Runtime.InteropServices.Expando mscorlib.dll
System.Runtime.Remoting mscorlib.dll
System.Runtime.Remoting.Activation mscorlib.dll

System.Runtime.Remoting.Channels
mscorlib.dll

System.Runtime.Remoting.dll
System.Runtime.Remoting.Channels.Http System.Runtime.Remoting.dll
System.Runtime.Remoting.Channels.Tcp System.Runtime.Remoting.dll
System.Runtime.Remoting.Contexts mscorlib.dll
System.Runtime.Remoting.Lifetime mscorlib.dll
System.Runtime.Remoting.Messaging mscorlib.dll
System.Runtime.Remoting.Metadata mscorlib.dll
System.Runtime.Remoting.Metadata.W3cXsd2001 mscorlib.dll
System.Runtime.Remoting.MetadataServices System.Runtime.Remoting.dll
System.Runtime.Remoting.Proxies mscorlib.dll

System.Runtime.Remoting.Services
mscorlib.dll

System.Runtime.Remoting.dll
System.Runtime.Serialization mscorlib.dll
System.Runtime.Serialization.Formatters mscorlib.dll
System.Runtime.Serialization.Formatters.Binary mscorlib.dll
System.Runtime.Serialization.Formatters.Soap System.Runtime.Serialization.Formatters.Soap.dll
System.Security mscorlib.dll
System.Security.Cryptography mscorlib.dll

System.Security.Cryptography.X509Certificates
mscorlib.dll

System.dll
System.Security.Cryptography.Xml System.Security.dll

System.Security.Permissions
mscorlib.dll

System.dll
System.Security.Policy mscorlib.dll
System.Security.Principal mscorlib.dll
System.ServiceProcess System.ServiceProcess.dll

System.ServiceProcess.Design
System.Design.dll

System.ServiceProcess.dll
System.Text mscorlib.dll

 168

System.Text.RegularExpressions System.dll

System.Threading
mscorlib.dll

System.dll
System.Timers System.dll
System.Web System.Web.dll
System.Web.Caching System.Web.dll
System.Web.Configuration System.Web.dll
System.Web.Handlers System.Web.dll
System.Web.Hosting System.Web.dll
System.Web.Mail System.Web.dll
System.Web.RegularExpressions System.Web.RegularExpressions.dll
System.Web.Security System.Web.dll
System.Web.Services System.Web.Services.dll
System.Web.Services.Configuration System.Web.Services.dll
System.Web.Services.Description System.Web.Services.dll
System.Web.Services.Discovery System.Web.Services.dll
System.Web.Services.Protocols System.Web.Services.dll
System.Web.SessionState System.Web.dll
System.Web.UI System.Web.dll
System.Web.UI.Design System.Design.dll
System.Web.UI.Design.WebControls System.Design.dll
System.Web.UI.HtmlControls System.Web.dll
System.Web.UI.WebControls System.Web.dll
System.Web.Util System.Web.dll
System.Windows.Forms System.Windows.Forms.dll
System.Windows.Forms.ComponentModel.Com2Interop System.Windows.Forms.dll

System.Windows.Forms.Design
System.Design.dll

System.Windows.Forms.dll
System.Windows.Forms.PropertyGridInternal System.Windows.Forms.dll

System.Xml
System.Data.dll

System.XML.dll
System.Xml.Schema System.XML.dll
System.Xml.Serialization System.XML.dll
System.Xml.XPath System.XML.dll
System.Xml.Xsl System.XML.dll

 169

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.
The animals on the cover of C# Essentials are star-nosed moles (Condylura cristata). Like all
moles, star-nosed moles live primarily in underground tunnels that they dig, but they do surface to
find food. A mole's rodent-like body is covered in short, waterproof gray fur, and it is about six to
eight inches long. A notable feature is its long claws, which are perfect for digging its trenches
and foraging for food. It has small ears and eyes, and sharp, pointed teeth. A mole's eyesight and
hearing are known to be terrible.
The star-nosed mole gets its name from the approximately 25 feelers on its nose that help it find
food, primarily insects, worms, and small fish, as well as other small pond life. The star-nosed
mole is the best swimmer in the mole family and can even dive to catch a fish. It prefers to live in
wetlands but can be found in various areas of the northeastern United States and southeastern
Canada.
Moles are mammals who nurse their young, and a female mole has one litter of three to six
babies per year. This particular type of mole is considered to be less of a household pest than its
mole cousins because its mostly aquatic diet keeps it from rummaging around in backyards for
food.
Darren Kelly was the production editor, and Mary Anne Weeks Mayo was the copyeditor for C#
Essentials. Matt Hutchinson and Claire Cloutier provided quality control. Joe Wizda wrote the
index.
Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman.
The cover image is an original engraving from The Illustrated Natural History by J. G. Wood,
published in 1865. Emma Colby and Melanie Wang produced the cover layout with QuarkXPress
4.1 using Adobe's ITC Garamond font.
David Futato designed the interior layout. Neil Walls converted the files from Microsoft Word to
FrameMaker 5.5.6, using tools created by Mike Sierra. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning
icons were drawn by Christopher Bing. This colophon was written by Nicole Arigo.

