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Preface

The Web has tremendous importance worldwide. It has arguably become the world’s
greatest resource for information, and its success has fostered a variety of new
ways for people to share information, communicate, and interact. Over the past
decade, a wave of cultural phenomena – including Facebook, Google+, Flicker,
YouTube, and MySpace – have all utilized the Web as their interface. However,
cloud-based solutions for online storage, backup, and sharing of multimedia content
over the Web have inherent privacy perils. Users have to put their trust on the
cloud-service providers. Service providers dictate the terms of usage, and potentially
gain control over users’ contents. Beside the privacy concern, transporting huge
volumes of user-generated, multimedia content to distant data centers may not
be bandwidth friendly for unpopular contents. A peer-to-peer (P2P) Web-based
content sharing architecture can subside these problems. This book investigates
the challenges in P2P web hosting and presents a potential solution named pWeb.
Three major challenges have been addressed in pWeb: (a) persistent naming of Web
contents over non-persistent P2P networks, (b) decentralized Web content searching
and distributed ranking of search results, and (c) ensuring content availability
with minimal replication overhead. pWeb will allow free hosting of websites and
multimedia Web contents, without limitation on content type or size. This will
provide anybody the opportunity to publish to the masses, rather than restricting
them by economics. In addition, freedom of speech is a valued principle; however
worldwide there are many who strive to block access to certain information. The
distributed approach of pWeb is inherently resistant to censorship, and will help to
spread this freedom worldwide.

Waterloo, ON, Canada Reaz Ahmed
Raouf Boutaba
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Chapter 1
Introduction

Mode of information production, dissemination and consumption is gaining a new
momentum with the advent of cheaper and more powerful home entertainment
devices (like set-top-boxes, home-gateways, network-attached storages, gaming
consoles etc.) and hand-held devices (like smart-phones, tablets, portable gaming
devices etc.). Combining the powerful multimedia capabilities of the hand-held
devices with the persistent uptime behavior of the home entertainment devices, users
can have an elevated Internet experience in a cost-effective manner.

Hand-held devices will increase dramatically in the upcoming years, which
is predictable from the prominent shift of the tech industry towards hand-held
device market, specially the smart phones and tablet PCs. Equipped with powerful
multimedia (e.g., HD video camera, audio, GPS etc.) and networking (e.g., Wi-fi, 4G
LTE, Bluetooth etc.) capabilities, these devices are generating voluminous content.
These devices are contributing significantly to the popular social networking sites
(e.g., Facebook) and online multimedia streaming portals (e.g., YouTube). As of
February 2010, YouTube served one billion videos per day, and more interestingly,
it would take 35 h to watch the videos uploaded to YouTube per minute. Online
storage and backup solutions are yet another class of Internet applications that are
consistently gaining popularity. These solutions offer reliable online storage and
ease of access over the Internet.

Cloud-based solutions for online storage, backup and sharing of multimedia
content over the Web have a few inherent drawbacks as pointed out in [3]. First,
voluminous multimedia content has to be uploaded to the cloud-stores, which
generates significant amount of Internet traffic. Second, building new data-centers
will generate more pressure on the energy sector; as of February, 2009, Microsoft’s
data center in Quincy, Washington was consuming 48 MW of electricity – sufficient
to power around 40,000 homes [1].

Transporting huge volumes of user generated, multimedia content to distant data-
centers is not a scalable solution. Rather, semi-persistent devices like, set-top boxes,
home-gateways, network-attached storages (NAS) etc., with network and storage
capabilities and residing near multimedia content production and consumption

R. Ahmed and R. Boutaba, Collaborative Web Hosting, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-03807-0__1, © The Author(s) 2014
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2 1 Introduction

points can be more appropriate targets for placing these contents. This strategy will
greatly reduce inter-AS traffic, provide efficient access to delay sensitive multimedia
content, and reduce power and resource consumption at the data-centers.

pWeb is a peer-to-peer (P2P) web-hosting infrastructure that will transform
networked, home-entertainment devices into light-weight, collaborating Web-
servers for persistently storing and serving multimedia and web contents. In pWeb,
user generated voluminous multimedia contents will be pro-actively uploaded in
a nearby network location (preferably within the same LAN or at least within the
same ISP) and a structured P2P mechanism will ensure Internet accessibility by
tracking the original contents and their replicas. Clearly, this is a radical departure
in how information would be managed compared to the existing Web.

1.1 Importance of P2P Web Hosting

Internet is the largest knowledge base that mankind has ever created. Autonomous
hosting infrastructure and voluntary contributions from millions of Internet users
have given the Internet its edge. However, contemporary Web search services are
governed by centrally controlled search engines, which is not healthy for our
online freedom due to the following reasons. A Web search service provider can
be compromised to evict certain websites from the search results, which can reduce
the websites’ visibility. Relative ranking of websites in search results can be biased
according to the service providers’ preference. Moreover, a service provider can
record its users’ search history for targeted advertisements or spying. For example,
the recent PRISM scandal surfaced the secret role of the major service providers in
continuously tracking our web search and browsing history.

A decentralized Web search service can subside these problems by distributing
the control over a large number of network nodes. No single authority will control
the search result. It will be computed by combining partial results from multiple
nodes. Thus a large number of nodes have to be compromised to bias a search result.
Moreover, a user’s queries will be resolved by different nodes. All of these nodes
have to be compromised to accumulate the user’s search history.

Distributed indexing and decentralized searching of the Web are very difficult to
achieve given the bandwidth limitation and response time constraints. In addition to
indexing and searching, a distributed web search engine should be able to rank the
search results in a decentralized manner, which requires global knowledge about the
hyper-link structure of the Web and keyword-document relevance. Predicting such
global information based on local knowledge only is inherently challenging in any
large scale distributed system. Moreover, incremental retrieval of search results in a
distributed manner is essential for conserving valuable network bandwidth.

Distributed Hash Table (DHT) based systems [6, 8, 10] offer efficient indexing
and lookup of information in a distributed manner, yet they does not natively
support approximate matching of query keywords to advertised documents. On
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the other hand, distributed ranking techniques proposed in existing research works
[5,7,11] compute approximate ranking of search results based on partial information
available locally to each node.

A number of research works [4, 5, 9] and implementations (YacYwww.yacy.net ,
Faroowww. f aroo.com) have focused on distributed Web search and ranking in
peer-to-peer (P2P) networks. These approaches have two potential problems in
common: (a) lookup overhead: number of network messages required for index/peer
lookup is much higher in P2P networks compared to a centralized alternative, (b)
churn: maintaining a consistent index in presence of high peer churn is not feasible.
Thus, those solutions have issues with performance and accuracy requirements.

1.2 Challenges

A P2P network is fundamentally different from a client-server architecture. First,
peers in a P2P system may join and leave the network frequently, while Web
servers are expected to remain up continuously for long periods of time. Second,
shared content in a P2P system often moves from one peer to another, whereas web
pages do not usually change their location within the Internet. These differences
mean that state-of-the-art P2P technology cannot be used directly to create a
serverless hosting system. A number of research challenges including the followings
must be addressed.

1.2.1 Naming

Web documents are identified using Unified Resource Locators (URLs), which form
the hyperlink structure of the World Wide Web. However, URLs are not suitable for
naming P2P Web objects, due to peer and content dynamism. The domain name part
of a URL essentially specifies the location of a document in the Internet. However, in
a P2P environment there is no guarantee of a stable location for a document. Peers’
get new network addresses for each session. As a result, the Domain Naming System
(DNS), which maps URLs to server IP addresses, is not adequate for naming peer or
content in a P2P system. Besides DNS, search engines (like Google or Bing) provide
a unanimous mechanism for keyword to content mapping. They crawl the Internet
hosts with fixed domain names and DNS resolvable network addresses. In our P2P
web scenario, the search engines will not be able to index peers and their contents
due to the lack of a proper naming and name resolution scheme. In summary, URL
based naming and hierarchical DNS lookup are not suitable for P2P Web hosting.
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1.2.2 P2P Web Search

While the current Web relies on centralized search engines (e.g. Google, Yahoo,
etc.), traditional P2P search techniques rely on distributed indexing. P2P indexing is
done voluntarily by transient peers and there is no central authority for controlling
index creation or maintenance. An index is built from important keywords of shared
content. However, while this metadata is effective for identifying certain content,
web searches rely on full text indexing. Moreover, web search engines support
partial keyword matching, which is very hard to achieve in a P2P environment.
A successful indexing mechanism for a P2P Web scenario should support full
text searching, with partial keyword matching capability. We have previously
developed a novel search technique named Plexus [2], that supports efficient partial
keyword matching and parallel multiple keyword lookups. Within this project,
further investigation will be dedicated to incorporating full text indexing capabilities
into the Plexus framework.

Relevance Ranking (RR) (the process of ordering search results by relevance to
the search keywords) and IR (the gradual retrieval of search results in parts) are
both commonly offered by web search engines. Currently, P2P search techniques
return links to all matching contents at once. However, as web search results may
return a very large number of (partial) matches, RR and IR techniques are essential
to the usability and performance of a P2P Web system. Implementing RR and IR in
a distributed manner are challenging problems. While responding to a query, a peer
must assess the relevance of its indexed pages, without any global knowledge. For
IR, the routing mechanism must also be able to track previously returned results, and
already queried peers. This is well beyond the current capabilities of P2P systems
and must be developed.

1.2.3 Ensuring Content Availability

In contrast to web servers, the uptime of a typical Internet user is short. In the
context of pWeb, it would be required for a peer to remain online round the clock to
host its web contents, unless some measure is taken to host the contents during its
off-line period. Contemporary P2P techniques rely on content replication to increase
availability; however, they do not focus on content persistence over time. Besides
the reliability requirement, security and privacy issues have to be considered while
placing contents in a P2P web hosting environment.
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1.3 Organization

The rest of this book is organized as follows. First, we provide a premier on Plexus
in Chapter 2. Then, we address the problems of naming, searching and availability.
More specifically, we explain the mechanism for naming peers and contents in
Chapter 3. Then we explain in Chapter 4, the mechanisms for Internet compatible
web search in pWeb. Finally, we explain the mechanism for improving content
availability in Chapter 5. Filnally, we conclude in Chapter 6.
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Chapter 2
Plexus: Routing and Indexing

A scalable and distributed indexing mechanism is essential for any P2P web hosting
solution. We also need to search indexed information in a bandwidth efficient
manner. Search and indexing is essential for a number of reasons. First, we need to
maintain information about each peer in the system, e.g., their name and IP address
binding, availability information, last seen time etc. Second, we need to keep track
of the Web contents hosted in different peers. Third, we need to keep track of the
relative importance or popularity of the available contents for ranking them in the
search results. We have previously developed a distributed search technique named
Plexus [1] that supports bandwidth efficient search and approximate matching.
Plexus has been intensively used for pWeb deployment. In this section, we present
the basic protocols in Plexus. We also outline a few enhancements to the basic
Plexus protocol to support the above mentioned requirements.

While the Internet relies on dedicated search engines (e.g., Google, Yahoo!, Bing
etc.), traditional P2P search techniques rely on distributed indexing. P2P indexing is
done voluntarily by transient peers and there is no central authority for controlling
index creation or maintenance. An index is built from important keywords of a
shared content. Although metadata is effective for identifying certain content, web
searches rely on full text indexing. Moreover, web search engines support partial
keyword matching, which is very hard to achieve in a P2P environment without
sacrificing routing efficiency. A successful indexing mechanism for the pWeb
scenario should support full text search, with partial keyword matching capability.

Like other DHT techniques Plexus supports efficient routing, which scales
logarithmically with network size. In addition, support for approximate matching
is built into the Plexus routing mechanism, which is not easily achievable by
other DHT techniques. To cope with churn in P2P systems, Plexus supports
multipath routing and efficient replica placement. Plexus delivers a high level of
fault-resilience by using replication and redundant routing paths. Because of these
advantages, we have incorporated Plexus routing at the core of our P2P web hosting
solution.

R. Ahmed and R. Boutaba, Collaborative Web Hosting, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-03807-0__2, © The Author(s) 2014
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2.1 Core Concepts in Plexus

In Plexus, a search or advertisement keyword is converted to a Bloom filter [2],
which is a compact data-structure used to represent a set. However, the set
membership test operation may result into false (erroneously) positives with a small
probability. An m-bit array is used to represent a Bloom filter. h̄ different hash
functions need also to be defined. In an empty Bloom filter all the bits are set to zero.
To insert an element in a Bloom filter, it is hashed with the h̄ hash functions to obtain
h̄ positions in the bit-array and corresponding h̄ bits are set to 1. The membership
test process is similar to the insert process. The element, say x, to be tested for
set membership, is hashed with the same h̄ hash functions and corresponding h̄
positions in the bit-array are checked. If any of these h̄ bits is not 1 then x is definitely
not a member of the set represented by this Bloom filter. On the other hand, if all of
the h̄ bits equal to 1, then there is a high probability that x is a member of the set.

A Hamming distance based technique derived from the theory of Linear
Covering Codes [3] is used for routing. The keyword to Bloom filter mapping
process retains the notion of similarity between keywords, while Hamming distance
based routing delivers deterministic results and efficient bandwidth usage.

In Plexus, advertisements and queries are routed to two different sets of peers in
such a way that the queried set of peers and the advertised set of peers have at least
one peer in common, whenever a query pattern is within a pre-specified Hamming
distance of an advertised pattern. As explained in Fig. 2.1, a linear covering code
(C ) partitions the entire pattern space F

n
2 into Hamming spheres, represented by

hexagons. A codeword (ci ∈ C ) is selected as the unique representative for all the
patterns within its Hamming sphere. To facilitate approximate matching in Plexus,
an advertisement pattern, say P; is mapped to all codewords, denoted by A (P),
that are within a pre-specified Hamming distance, say s, from P. Mathematically
A (P) can re represented as, A (P) = Bs(P)∩C = {Y |Y ∈ C ∧d(Y,P)≤ s}, where
Bs(P) is the Hamming sphere of radius s centred at P and d(Y,P) = |Y ⊕P| is the
Hamming distance between Y and P. Similarly, a query pattern, say Q, is mapped to

Advertisement, P Query, Q

Bf (•)

codeword ci

pattern

Bs(P) Bt(Q)

Fig. 2.1 Hamming distance
based indexing
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a set of codewords Q(Q) = Bt(Q)∩C , for some pre-specified Hamming distance t.
It is shown in [1] that there will be at-least one common codeword in A (P) and
Q(Q), if d(P,Q)≤ s+ t−2 f , where f is the covering radius of C . In other words,
by looking into the codewords in Q(Q), one should be able to find all advertised
patterns within Hamming distance s+ t−2 f from Q.

2.2 Plexus Routing

Consider a (n,k,d) linear covering code C with generator matrix GC =
[g1,g2, . . . ,gk]

T . To route using this code, a peer responsible for codeword X ,
has to maintain links to (k+1) peers with codewords X1,X2, . . . ,Xk+1, computed as
follows:

Xi =

{
X⊕gi 1≤ i≤ k

X⊕g1⊕g2⊕ . . .⊕gk i = k+1
(2.1)

Now, the routing process in Plexus can be best explained by the example in Fig. 2.2,
which shows the possible routes from peer X to peer Y = g2⊕g3⊕g3 (any codeword
Y can be generated from any other codeword X as follows: Y = (X⊕gi1⊕gi2⊕ . . .⊕
git ), where gi1 ,gi2 , . . .git ∈G and ⊕ is bitwise XOR operation). Peer X will forward
the message to any of X2(= X ⊕g2), X3(= X ⊕g3) or X5(= X ⊕g5), which are one
hop nearer to Y than X . If the message is forwarded to X2 then X2 can route the
message to Y via X23(= X⊕g2⊕g3) or X25(= X⊕g2⊕g5). In such an overlay, it is
possible to route a query from any source to any destination codeword in k

2 or fewer
routing hops [1].

In Plexus protocol, a peer say Y replicates its indices to peer YK+1. In presence of
failure a peer’s replica can be reached in just two extra hops, which can be explained
using the example of Fig. 2.3. Here peer X is attempting to route a query to peer Y ,
which has failed. When a neighbor (Y ′) of Y detects the failure, it forwards the query
to its own replica Y ′K+1 in one hop. Next peer Y ′K+1 forward the query to peer Y ’s
replica YK+1 in one hop.

X Y

X2

X3

X5

X23

X25

X35

X231=X23⊕g1

X235=X23⊕g5

X23k=X23⊕gk

…

…

X21=X2⊕g1

X23=X2⊕g5

X2k=X2⊕gk

…

…

X1=X⊕g1

X2=X⊕g2

Xk=X⊕gk

… Y = X ⊕ g2 ⊕ g3 ⊕ g5

g2
g2

g3

g3 g3

g5

g3

g5

g2

g2

g5

g5

Fig. 2.2 Possible routing paths between peer X and Y



10 2 Plexus: Routing and Indexing

Y’ Y

YK+1
Y’K+1X

Fig. 2.3 Routing under
failure

2.3 Using Plexus in pWeb

Plexus is optimized for P2P content sharing environments, which has several
behavioral differences compared to the P2P Web hosting scenario:

• Replication behavior: In a P2P network, downloaded copy of a shared content
becomes a source for future downloads. While in our context, authenticity is an
important factor governing a web content’s placement. A popular content may be
replicated at multiple locations, but content authenticity has to be ensured.

• Query behavior: The number and variety of documents in the P2P Web scenario
will be much higher than that in a P2P content sharing system. This will result
into higher query traffic and index volume.

• User connectivity pattern: In pWeb, peers are expected to host web contents for
longer periods of time, compared to the peers in a traditional P2P content sharing
system. Peers will join and leave the network periodically, but it is expected that
a returning peer will retain the replicated contents from its previous session and
will continue to host those contents.

• Full text indexing: In content sharing P2P systems, a few keywords are advertised
for each shared content, while a matching query string comprises a subset of the
advertised keywords. On the contrary, Web search engines use many important
keywords per webpage, while web queries involve a few keywords. In essence
the gap between the number of keywords per advertisement and the number of
keywords per query is much higher in Web scenario compared to P2P content
sharing scenario.

The original Plexus routing mechanism has to be modified in order to handle the
above mentioned behavioral differences between P2P web hosting and P2P content
sharing. We utilize the inherent capability of Plexus for trading off query traffic with
advertisement traffic. As the expected advertisement rate in our case is much smaller
than query rate, we can increase the number of nodes indexing a content, which will
help in reducing the number of nodes to be searched for query lookup. To cope with
ad hoc connectivity in the peers, we will assign each peer a unique name. This will
enable a peer to host websites or contents from its previous sessions. Differential
updates will be propagated to the returning peer during the rejoin process.

To incorporate full text indexing capability, we have modified the advertisement
mechanism in Plexus framework [1] as follows (see Fig. 2.4).
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Fig. 2.4 Modified Plexus framework for web document advertisement

• Instead of advertising one pattern per document we advertise one pattern per
phrase. Phrases are extracted by applying a feature extraction mechanism, such
as Latent Semantic Indexing (LSI), over all the advertised web content on a given
website. This enables us to perform keyword search on the webpages, in a similar
way we search the Internet.

• For each extracted phrase we will first apply a phonetic algorithm like Soundex or
Metaphone, and hash the resulting words into a Bloom Filter. There is one Bloom
filter per phrase. Use of phonetic encoding increases the degree of similarity
matching offered by Plexus.

• Since the expected edit distance between the advertised phrases and query
keywords is small, we use a second order Reed-Muller code, instead of the
Extended Golay code G24, as proposed in the original Plexus protocol.

In the following chapters, we explain each of these concepts in further detail.
More specifically, we explain the mechanism for naming peers and contents in
Chap. 3. Then we explain in Chap. 4, the mechanisms for Internet compatible
web search in pWeb. Finally, we explain the mechanism for improving content
availability in Chap. 5. Each of these mechanisms use Plexus as explain in this
chapter.
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Chapter 3
Naming

Web documents are identified using Unified Resource Locators (URLs), which
form the hyperlink structure of the World Wide Web. However, URLs and the
contemporary Domain Naming System (DNS) resolution may not be suitable for
naming P2P Web objects, due to peer and content dynamism. The domain name
part of a URL essentially specifies the location of a document in the Internet.
However, in a P2P environment there is no guarantee of a stable location for a
document. A DNS resolver maps URLs to server IP addresses, which allows site
relocation and replication without affecting the URL. Site relocation is relatively
less frequent than P2P content dynamism. DNS updates are almost static compared
to P2P index updates, which allows DNS clients to cache network addresses for
saving network bandwidth and improving response time. Hence, URL based naming
and hierarchical DNS lookup may not be used in its current state for P2P Web
hosting.

3.1 Requirements

A suitable naming system for P2P Web deployment should be independent of
the spatial and temporal scope of the referred document. There should also exist
easy conversion mechanism for converting URLs to the new naming system, and
vice versa. P2P Web system requires a human-readable, flexible naming scheme.
The naming authority should be distributed as well as the name resolution archi-
tecture. The naming scheme should be compatible with widely accepted Internet
naming standards. Below is a list of requirements for naming Web contents in a P2P
Web scenario:

• Readability: Names may or may not be considered human-readable. Readable
names are important in the P2P Web scenario to facilitate memorization and
usability.

R. Ahmed and R. Boutaba, Collaborative Web Hosting, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-03807-0__3, © The Author(s) 2014
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• Extensibility: The naming system should be extensible for future updates.
Updates can occur in the format and structure, in the scope, and in the grammar.
In a rapidly evolving P2P environment, an extensible naming scheme is desirable.
New names should remain compatible with existing, older names from the same
naming schemes. The naming scheme should be able to accommodate changes
in namespace and scope.

• Namespace size: Namespace size determines how many unique entities can be
named. Although a finite namespace allows a fixed allocation for storing and
transmitting names, it runs the risk of being exhausted. For a P2P environment,
an infinite namespace is ideal.

• Naming authority: A naming authority is responsible for assigning and
changing names, as well as preventing name conflicts. It can be centralized
or decentralized. For the centralized case a single entity is responsible for the
entire namespace, while for the distributed case the namespace is divided in
non-overlapping domains and each domain is managed by a separate authority.
In a P2P Web context, distribution is preferable to avoid performance bottlenecks
and a single point of failure.

• Name resolution architecture: The name resolution process determines how to
translate names to addresses. Contrary to the existing name resolution systems
that return at most one address for a name, pWeb requires a system that will
return a set of peer addresses. The name resolution architecture should also be
distributed.

• Name persistence: A static name permanently denotes the same object, while a
dynamic name is assigned to an object for the lifetime of that object. Location
dependent static names (e.g., URLs) are used for naming Internet documents.
However, they are not suitable for naming documents in P2P environments due
to the lack of a central naming authority and the high level of dynamism.

• Standardization and implementation: A naming scheme based on a well-defined
standard, which is easy to incorporate into the existing infrastructure is far easier
to deploy than an experimental, constantly-changing scheme, even if the latter is
superior in other aspects. Ideally, the naming scheme used in a P2P Web hosting
system should comply with widely accepted standards and should have most
components of its name resolution already in place.

In summary, P2P Web system requires a human-readable, flexible naming
scheme that is persistent and location independent. The naming authority should be
distributed as well as the name resolution architecture. The naming scheme should
be compatible with widely accepted Internet naming standards.

3.2 Who Needs a Name

Facilitating a persistent naming scheme on a non-persistent, transient P2P network
is a challenging problem. To achieve this goal, we propose a multi-faced nam-
ing scheme, named pRL (P2P Resource Locater), which comprises of three



3.3 Naming in Peer-to-Peer Systems 15

components: (i) a UUID for system use, (ii) a human-friendly component and (iii) a
set of descriptive key-value pairs. Within the pWeb framework, we will need to
name the following four entities:

1. Peer: Peer names should be unique within pWeb system. A peer has to register
a name with the system before using it. A returning peer should reclaim its
registered name using a challenge/response mechanism.

2. Group: Websites will be replicated within well defined, automatically
maintained small groups of peers. These groups will not be visible to the users.
Hence group names will only have the UUID part of a name.

3. Website: To separate a website from the hosting peer, we will use separate
namespaces for websites and peers. The originating peer’s name and the replica-
tion group’s UUID will be stored in the web-site’s key value list. We will allow
multiple website to have same name, but the UUID and key-value list will be
different. For disambiguating between multiple names, the system will use the
UUID part and the users will use the key-value list.

4. Web pages: For naming webpages or documents, we intend to use hierarchical
path names relative to the website’s pRL, much like relative names in URL
scheme.

3.3 Naming in Peer-to-Peer Systems

In this section we highlight the naming schemes and the name resolution systems
in three categories of P2P networks: (a) file-sharing systems, (b) BitTorrent and
(c) P2P DNS.

3.3.1 File Sharing Systems

Content sharing P2P systems (e.g., Gnutella, Kaaza, Morpheus etc.) use descriptive
keyword list for content naming. Those systems use randomly selected, temporary
identifiers for peer names. In this approach content names are unique and hence can
not be used as a substitute for hyperlinks. On the other hand, peers do not retain
their IDs across sessions, thus peer history from the previous sessions can not be
reused in the indexing process.

3.3.2 BitTorrent

BitTorrent [2] is a P2P application that replicates content on multiple peers that are
interested in that content. A specificity of BitTorrent is the notion of torrent, which
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Fig. 3.1 A sample torrent file

defines a session of transfer of a single content to a set of peers. Peers involved in a
torrent cooperate to replicate the file among each other using swarming techniques.
A user joins an existing torrent by downloading a .torrent file, usually from a Web
server that contains metadata, e.g., the piece size and the SHA-1 hash values of
each piece, and the IP address of the so-called tracker of the torrent. The tracker
is the only centralized component of BitTorrent, but it is not involved in the actual
distribution of the file. It keeps track of the peers currently involved in the torrent
and collects statistics on the torrent. A sample torrent file is presented in Fig. 3.1.

The peers in a BitTorrent network are assigned random IDs. A torrent file, on
the other hand, contains SHA-1 hash of each piece of the target file. These hash
values can be used to uniquely identify the pieces of a file. Its use of SHA-1 hash in
identifying pieces of a file introduced a new idea in the realm of P2P naming.

3.3.3 P2P DNS

A number of research works, including [3, 6] and [8], focus on implementing DNS
lookup using P2P systems. We briefly explain each of these approaches.

In [3], the authors have proposed a distributed hash mechanism called DHash –
a Chord-based hash table. DHash improves over the load balancing and robustness
properties of Chord’s consistent hashing technique. DNS records are cached along
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every node on a lookup according to the Chord routing protocol. To improve
robustness, a fixed number of replicas are maintained for each name record. DHash
also uses public key cryptography for ensuring name security.

Cooperative Domain Name System (CoDoNS) [6] focuses on fast DNS lookup,
resilience to denial of service (DoS) attack and low update propagation delay.
CoDoNS is a legacy DNS compatible naming system. It uses Beehive [7] DHT to
proactively replicate a DNS record according to its request rate. Replica placement
and synchronization overheads in CoDoNS is very high. It increases exponentially
with the popularity of a DNS record.

Internet Indirection Infrastructure (i3) [8] is a general-purpose framework for
rendezvous-based communication services like unicast, multicast, anycast and
mobility. i3 is built on top of Chord routing. i3 can be used for DNS record indexing
and lookup. However, the expected lookup latency in i3 is greater than that of the
legacy DNS.

All of these works use DHT-techniques for P2P lookup and support exact name
lookup. Updating name to IP association over DHT lookup is expensive in terms
of bandwidth. Besides, the achieved response time for name resolution would be
significantly higher than that of the legacy DNS.

3.4 A Collaborative Naming Scheme

For P2P Web hosting we need a persistent, secure and human friendly naming
scheme. The naming scheme should have flexible embedding of organizational
structure to permit seamless content movement between the peers. The name to
IP binding should be verifiable from the peer that requested the name resolution.
We proposed a naming scheme and a name resolution mechanism to achieve all of
these properties in [1]. In this section we provide a brief overview of that work.

A significant difference of the pWeb naming scheme from other P2P naming
schemes is the assignment of names to content instead of peers. Here names are
assigned to websites, not to peers. We coin the term pRL which stands for pWeb
Resource Locator. A pRL is used in pWeb to uniquely identify any resource just
as an URL used in the Internet. However peers are identified by the underlying
Plexus codewords. A peer can have multiple websites hosted on it and thus have
multiple pRLs resolved to its IP address and port number. A pRL uniquely identifies
a website but the reverse is not true. A single website can have multiple pRLs
associated with it. This feature can also be used for load balancing in case of hot
spots. In the following sections we first describe the entities to be named along with
the requirements, the naming framework and then we discuss the naming authority
and name resolution systems. After that we present two naming techniques that we
devised for pWeb.
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3.4.1 Entities and Requirements

In this section we discuss the entities that need to be named and the naming
requirements for each entity. In order to facilitate a persistent object naming scheme
on a non-persistent, transient P2P network, we need to name the following entities
in the pWeb system:

• Website Naming: As stated earlier, pRLs are assigned to websites and used just
like URLs in the Internet. The process of pRL assignment can be fully automated.
We also have the provision for assigning human friendly names to a website. This
is implemented as an additional level of mapping in the name resolution system.
As pRLs are assigned to the content instead of the peer, name persistence is
supported across peer sessions and any peer with a valid copy (replica) of the
content can serve as a source. This makes it possible to provide support for peer
data browsing, bookmarking, IM etc. between peers.

• Content Naming: For naming the content of a website we use relative naming
and the information is contained in the Object ID (Fig. 3.5) field of pRL. Content
metadata (e.g., descriptive keywords) are associated with each object/content in
pWeb. This facilitates keyword searching.

• Peer Naming: A peer is not assigned any name under the pWeb naming scheme.
However, Plexus assigns a codeword to each peer in the pWeb overlay network,
responsible for a specific codeword. This codeword serves as the peer ID.

• Replication Group Naming: To ensure document persistence, we have to first
ensure a persistent storage over the non-persistent P2P network. To this end, we
devised a novel replication mechanism that is expected to work across temporal
and spatial dimensions. This replication mechanism is based on the diurnal
availability pattern of the peers participating from different time zones across
the Globe. Peers from different time zones form a group for hosting a web site.
In effect, peers in a group host a website in turn to make it available round the
clock.

From naming point of view a group should have globally unique, auto-
generated ID. We do not require the Group IDs to be human-friendly, since these
IDs are expected to be used internally by the name resolution mechanism for
locating the currently active (i.e., alive) replica of a web site.

Although replication Group ID will introduce an additional level of indirection
during the name resolution process, it will decouple the location of a content from
its name.

3.4.2 pWeb Naming System

The pWeb system architecture and the functional dependencies within the
architectural components have a direct impact on the naming scheme and vice
versa. Hence for the sake of a better understanding of the naming scheme,
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we present the functional architecture of the following three processes within
pWeb: (a) advertisement process, (b) peer rejoin process and (c) query process.

3.4.2.1 Advertisement

To facilitate efficient search of web sites we use a distributed Hamming distance
based indexing mechanism using Plexus routing. As depicted in Fig. 3.2, the
advertisement process consists of the following four steps:

• Step a: Each peer in the system will belong to a replication group. Suppose peer
X belongs to group G and wants to advertise site S. Assume that the search
keywords (or other meta information) related to site S are r, s and t. Peer X sends
this information to a peer A in the pWeb indexing framework.

• Step b: in this step, peer A creates an advertisement pattern (basically a Bloom
Filter) from this meta information (i.e., r, s and t), list decodes the pattern
and computes the set of codewords within a pre-specified Hamming distance
from the advertised pattern. Then it uses the Plexus routing mechanism to
multi-cast the site index to the peers (B1,B2,B3) responsible for the code-
words. The indices stored in the indexing peers (i.e., Bi’s) are in the form of
<webID,Keywords,GroupID> triplets.

• Steps c and d: Newly hosted sites or updates in existing sites are propagated to all
the members (i.e., peer Y and peer Z) of the hosting peer’s (i.e., X’s) replication
group (i.e., group G). This replication takes place whenever a group member
rejoins the network. More detail on the rejoin and replication process is given in
the next section.
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3.4.2.2 Rejoin and Group Maintenance

In order to maintain diurnal availability, web site hosting peers collaborate in small
groups in such a way that at any given instance at least one peer from a group
is online with very high probability. Contents in each peer of a group are fully
replicated and synchronized. To ensure replica consistency, whenever a peer returns
to the system it finds its group members and updates its online status in the following
manner:

• Step α: As depicted in Fig. 3.3, peer Z, a member of group G, becomes online
after being offline for a while. After becoming online, peer Z request a peer, say
C, in the pWeb indexing framework to find the members in its own group G.

• Step β : Peer C, constructs a pattern from the group ID G, decodes the pattern to
find the closest codeword, and routes the query to the responsible peer (here D)
using Plexus routing. Upon receiving the query, peer D updates the current status
of peer Z to online, records its IP:port and returns the IP:port list of all the online
members of group G.

• Step γ: In this manner peer Z learns about the currently online members of its
own group and synchronizes each others replicas.

3.4.2.3 Query

pWeb can handle two types of queries: (a) keyword search and (b) pRL search. The
second case is more straightforward and a subset of the first case. Hence we explain
here the first case only, i.e. query by keywords. As depicted in Fig. 3.4, the keyword
search process can be performed in the following four steps:
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• Step 1: In the example scenario peer W is searching for the sites that have
keyword r. It first sends the query to a peer, say E, participating in the pWeb
indexing framework.

• Step 2: Upon receiving the query, peer E constructs a query pattern (a Bloom
filter) from the query keywords and uses list decoding to find the codewords
within a pre-specified Hamming distance. Then it uses the Plexus routing to
forward the query to the peers that are likely to have the meta-information on
sites with the queried keywords. In the example, peer B3 responds with the site
name, keywords and the group ID (G) of the group hosting the site.

• Step 3: Once peer E receives the group ID G, it query the Plexus network (similar
to the rejoin process) to find the list of currently online members of group G.
In this instance the IP:Port of peer Z is discovered and returned to the original
querying peer W.

• Step 4: Now peer W can directly browse site S from peer Z using the pWeb
hosting framework.

3.4.3 Naming Scheme

In pWeb, each website is assigned a unique ID called pRL. pRLs are globally unique
and maintained by the naming authority described in the next section. Figure 3.5
shows the structure of a pRL and the accompanying metadata.

The pRL consists of three parts: NSID, Web ID and Object ID. NSID identifies
the naming scheme in use. Naming authority and resolution system use this
information for determining the appropriate name resolution method. Using NSID
we can incorporate additional naming scheme into our system with minimum
effort. As P2P web applications consist of a diverse communities of users, we kept
this option open to tackle future architectural changes. The Web ID is a globally



22 3 Naming

Fig. 3.5 Structure of pRL

unique ID that is associated with a user’s web site/domain (we will use the terms
web site and domain interchangeably). There must be one such ID per web site.
We will discuss more about Web ID in the following sections. The Object ID is
used for identifying pages, image, documents etc. under a web site and it is the
publisher/owner’s responsibility to make the names unique under his/her domain.
This requirement is similar to that of any traditional web site.

The metadata is an XML document that contains additional information about
the website like title, owner name, description, content, keywords etc. The metadata
will facilitate attribute based keyword search in pWeb. The metadata also includes
security related information like public key, encryption method etc.

3.4.4 Naming Authority

The primary function of a Naming Authority (NA) is to maintain name uniqueness.
A centralized NA will make the task fairly simple, but this design choice is not
suitable for pWeb for scalability concerns. Instead, we propose a distributed Naming
Authority. Each peer is responsible for maintaining only a portion of the namespace.
Responsibility is determined by the encode(pattern) function that performs an
exact decoding to the nearest codeword from the given pattern. The API of
the naming authority includes the following functions: RegisterWebID(WebID)
and InvalidateWebID(WebID). These two functions are formally presented in
Algorithms 1 and 3, respectively.

The function RegisterWebID(webID), is used by a peer to register its Web
IDs with the naming authority. A peer first generates a Web ID for its website.
The details about the Web ID generation process will be discussed in Sect. 3.4.6.
The function first finds out the primary code word (targetCodeWord) responsible
for the Web ID. Then it creates a list of code words that fall within the Hamming
sphere of radius r (which is a global parameter) centered at targetCodeWord. The
function iterates over the list and registers the Web ID by checking whether the
peer associated with the code word is alive or not and then checking the uniqueness
of the Web ID using the API function IsPeerAlive and Register. Register simply
saves the mapping between pRL and peer IP:port address. If the function can
successfully register the Web ID at least at one peer then it returns true otherwise
returns false. If failure occurs then the peer has to generate another Web ID and try
to register again.
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Algorithm 1 RegisterWebID(webID)
1: count ← 0
2: targetCodeWord ← encode(webId)
3: codeWordList ← [targetCodeWord, decode(targetCodeWord, r)] {r is a global parameter}
4: for all codeWord ∈ codeWordList do
5: if IsPeerAlive(codeWord) = true then
6: if Register(codeWord, webID) = true then
7: count ← count +1
8: end if
9: end if

10: end for
11: if count > 0 then
12: return true
13: else
14: return false
15: end if

The peer associated with the primary code word is responsible for keeping
the pRL mapping data replicated across the overlay network. Every peer storing
some pRL mapping runs Algorithm 2 to maintain a suitable number of replicas.
The analysis for quantifying the suitable number of replicas in diverse network
conditions is determined by the Plexus routing protocol.

Algorithm 2 ReplicateWebID(webID)
1: webIDList ←WebIDs from locally stored pRL mappings
2: for all webID ∈ webIDList do
3: targetCodeWord ← encode(webId)
4: if targetCodeWord = localCodeWord then
5: codeWordList ← [decode(targetCodeWord, r)]
6: for all codeWord ∈ codeWordList do
7: Register(codeWord, webID)
8: end for
9: end if

10: end for

When a peer decides to delete its website from pWeb, it uses the function
InvalidateWebID(WebID). This function invalidates all pRL mapping replicas from
all peers.

Algorithm 3 InvalidateWebID(webID)
1: targetCodeWord ← encode(webId)
2: codeWordList ← [targetCodeWord, decode(targetCodeWord, r)] {r is a global parameter}
3: for all codeWord ∈ codeWordList do
4: Invalidate(codeWord, webID)
5: end for
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3.4.5 Name Resolution

The name resolution system is pretty straight forward and follows the same principle
as the algorithms presented in the previous section. When a peer wants to resolve a
pRL, it uses the encode function to find out the primary codeword, and the decode
function to find the codewords within Hamming radius (r) of the primary codeword
(i.e., targetCodeWord) . Then the peers associated with the code words are queried
for the required pRL mapping. This procedure is formally presented in Algorithm 4.

Algorithm 4 Resolve(webID)
1: targetCodeWord ← encode(webId)
2: codeWordList ← [targetCodeWord, decode(targetCodeWord, r)] {r is a global parameter}
3: for all codeWord ∈ codeWordList do
4: PeerIP : Port ← GetMapping(codeWord, webID)
5: if PeerIP : Port != NULL then
6: return PeerIP : Port
7: end if
8: end for

3.4.6 Methods for Selecting Web ID

In this section we describe two methods for selecting Web IDs. The first method is
based on Public/Private key based naming similar to DONA [5] and NetInf [4].
The second approach is an email address based registration scheme. While the
first approach provides us security features like content authentication and data
integrity, the second approach offers us no security. However the second approach
is easier to implement and incurs lesser computation overhead. We intend to use the
Public/Private key based approach when higher level of trust worthiness is required
and use the second scheme in other cases. Trust worthiness can also be achieved
in the second approach using techniques like community based reputation scores.
In the following sections we discuss these two naming schemes in greater detail.

3.4.6.1 Public/Private Key Based Naming

When a peer deploys a new website the pWeb client application creates a pair of
Public and Private key, and uses the hash (e.g. SHA1) of the Public key as the
Web ID for the website. Using the Private key the peer creates a signature of every
web page and includes the signature in the accompanying metadata. The metadata
also contains the full Public key of the web page along with other attribute–value
pairs for facilitating keyword based search. A receiver hashes the public key in the
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metadata to see whether it matches the hash in the pRL. Then the receiver decrypts
the signature using the public key. If the decrypted string matches the hash of the
entire file then the data is both authentic and there was no unauthorized changes in
the data.

We have to ensure two things for this scheme to work. Whenever a peer updates
its website its signature needs to be updated. And second, a receiver has to hash
and decrypt the received content to ensure data authenticity and integrity. The
computational overhead of these functions is not so significant for even a nominal
personal computer [4].

3.4.6.2 Email Based Naming

In this naming scheme we follow the traditional scheme of registering in any
website. When we want to register at a website we need to provide an email address
along with a password. Later a verification link is emailed to us for registering at
that web site. We follow the same paradigm here. When a peer needs to generate
a Web ID it simply uses a user supplied email address as the Web ID and calls the
RegisterWebID function. The primary code word holder (the peer responsible for
registering this Web ID according to Algorithm 1) registers the Web Id and sends
back a verification link (pRL link) back to the users inbox. The user finishes the
registration process by browsing to the pRL. The choice of email based naming
is motivated by the need for avoiding Web ID name conflicts and for preventing
malicious nodes from launching DoS attacks.

3.5 Summary

In this chapter, we have identified the naming requirements for a P2P web hosting
system. We also identified the entities that has to be named for P2P web hosting.
We presented a few example scenarios describing advertisement, rejoin and query
processes withing the pWeb architecture. Finally, we have outlined two alternative
algorithms for achieving unique and secure naming in pWeb.
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Chapter 4
Collaborative Web Search

Internet is the largest repository of documents that mankind has ever created.
Voluntary contributions from millions of Internet users around the globe, and
decentralized, autonomous hosting infrastructure are the sole factors propelling the
continuous growth of the Internet. According to the Netcraft (http://news.netcraft.
com/ ) Web Server Survey, around 18 million websites were added to the Internet in
October 2011 making the total to 504.08 million.

Visibility of a website and its contents is largely governed by the web search
engines. However, contemporary Web search services are governed by centrally
controlled search engines, which is not healthy for our online freedom due to the
following reasons. A Web search service provider can be compromised to evict
certain websites from the search results, which can reduce the websites’ visibility.
Relative ranking of websites in search results can be biased according to the service
providers’ preference. Moreover, a service provider can record its users’ search
history for targeted advertisements or spying. For example, the recent PRISM
scandal surfaced the secret role of the major service providers in continuously
tracking our web search and browsing history.

A decentralized Web search service can subside these problems by distributing
the control over a large number of network peers. No single authority will control
the search result. It will be computed by combining partial results from multiple
peers. Thus a large number of peers have to be compromised to bias a search result.
Moreover, a user’s queries will be resolved by different peers. All of these peers
have to be compromised to accumulate the user’s search history.

4.1 Requirements

The usual search semantic in a P2P system is to return all the document names
matching the query keywords. In contrast, search results from the contemporary
Internet search engines include only a pre-specified number of most relevant results,
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along with hyperlinks for fetching additional results on-demand. The requirements
for a search mechanism for pWeb can be summarized as follows:

• Response time: Centralized search engines can produce results in fraction of a
second. We need to ensure a similar response time for pWeb. However, query
resolution requires multiple overlay hops in a P2P system. Each overlay hop can
require multiple IP hops in the Internet. This can greatly increase the response
time for web query resolution.

• Partial keyword search: Traditional web search engines offer full text indexing
and partial matching of query keywords. However, achieving these two properties
in a distributed environment is very challenging and can incur significant network
overhead.

• Distributed ranking: Web search engines rank the websites in a search result
based on their relative importance and relevance to the query keywords. P2P
search techniques, on the contrary, return links to all matching contents at once.
However, the number of matching websites in a P2P web search result may
be very large. Transmitting all of these results to the querying peer will incur
significant network and storage overheads. Hence, we need to rank the search
results in a distributed manner. This will reduce network and storage overheads
by transmitting only the most important and relevant results.

• Distributed incremental retrieval: Gradual retrieval of search results in chunks
of 10 or 20 records is supported by the contemporary web search engines for
performance reasons. For achieving incremental retrieval in a P2P network, the
routing mechanism must be able to track previously returned results, and already
queried peers. This is well beyond the capabilities of the traditional file-sharing
P2P systems.

4.2 Web Search in P2P Networks

None of the previous research works in P2P networks have provided a search
mechanism that can fulfill all of the aforementioned requirements. In this section
we present the related research works that aim to solve either the similar keyword
search problem or the distributed ranking problem in P2P networks.

4.2.1 Similar Keyword Search

4.2.1.1 Structured Techniques

Inability to support partial keyword matching is considered a handicap for
DHT-techniques. In the last few years a number of research efforts have focused
on extending DHT-techniques for supporting keyword search. Most of these
approaches adopted either of the following two strategies:
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• Build an additional layer on top of an existing routing mechanism, like
Chord [26], CAN [20] or Tapestry [35]. The aim is to reduce the number of
DHT lookups per search by mapping related keywords to nearby peers on the
overlay. This strategy is proposed in a number of research works including
[10, 14, 25] and [28].

• Combine structured and unstructured approaches in some hierarchical manner to
gain the benefits of both paradigms. Few research works focus on this strategy
including [5, 9] and [27].

A generic inverted index on top of a DHT-based network for solving partial-
keyword matching has been proposed in [8]. A keyword can be fragmented into
η-grams, and each η-gram can be hashed and stored at the responsible peer. This
approach can solve partial keyword matching problem in O(ω logN) time, where ω
is the number of η-grams in a query and N is the number of peers in the system.
However, solving the generic DPM problem with this approach will require
O(2λ logN) time, where λ is the number of 1 bits in a query (or advertisement)
pattern.

Keyword fusion, presented in [14], is also an inverted indexing mechanism on
top of Chord. It supports keyword search only. A document advertised with key-
words {k1,k2, . . . ,kt} is routed to peers responsible for keys h(k1),h(k2), . . . ,h(kt),
where h(·) is the DHT hash function. To reduce the number of DHT-lookups per
search, a system-wide dictionary of common keywords is maintained. A query is
routed using the most specific keyword and then filtered using the more common
keywords specified in the query. In contrast to DPMS and Plexus, advertisement
and replication overhead in this system is proportional to the number of keywords
associated with the document. A similar inverted indexing mechanism for web page
indexing has been proposed in [34].

Joung et al. [10] proposed a distributed indexing scheme, build on a logical,
d-dimensional hypercube vector space over a DHT network (they used Chord
for their experiment). In this scheme each advertised object is mapped to a d-bit
vector according to its keyword set (similar to Bloom filter construction). They treat
d-bit vectors as points in d-dimensional hypercube. No restriction on the mapping
of a d-dimensional point to a 1-dimensional key space (required for Chord) has
been specified. An advertisement is registered to the peer responsible for the d-bit
advertisement vector. A query vector (say Q) is computed in the same manner as
the advertisement vector. A query is routed to the peers in the Chord ring that are
responsible for a key (say Pi) that is a superset of the query vector Q.

The work by Joung et al. [10] and the inverted indexing method presented in [14]
represent the two extremes of advertisement and query traffic trade off. In [10], an
advertisement is registered at one peer (responsible for the advertised bit vector) and
a query is routed to all possible peers that may contain a matching advertisement.
In turn, in [14] an advertisement is registered at all the peers responsible for the
advertised keywords and the query is routed to the peer responsible for the most
uncommon keyword specified in the query.
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pSearch [28] utilizes Information Retrieval (IR) techniques on top of CAN
(Content-Addressable Network) for facilitating content-based full-text search. Key-
words associated with an advertised document (or query) are represented as unit
vectors. IR techniques like vector space model (VSM) and latent semantic indexing
(LSI) are used to compute a unit vector from the keyword list specified with a
document (or query). Similarity between a query and a document (or between
two documents) is measured using the cosine (i.e., vector dot product) of the
vector representation of the corresponding documents or query. Semantically close
documents and queries are expected to be mapped to geometrically close point
vectors in the Cartesian space. Now the semantic point vectors from LSI or VSM
are treated as geometric points in the Cartesian space of CAN. CAN partitions a
d-dimensional, conceptual, Cartesian space into zones and assigns each zone to a
peer. However this mapping technique uses the same dimensionality for LSI space
and CAN. Thus it needs to have a priori knowledge of the possible keywords
(or terms) in the whole system. In reality there can be hundreds of possible
keywords, and CAN performance degrades at higher dimensions.

Squid [25] has been designed to support partial prefix matching and range
queries on top of DHT-based structured P2P networks. In this system Hilbert Space-
filling Curve (HSFC) [23] has been used on top of Chord. HSFC is a special type
of locality preserving hash function that can map points from a d-dimensional
grid (or space) to a 1-dimensional curve in such a way that the nearby points in
d-dimensional space are usually mapped to adjacent values on the 1-dimensional
curve. Squid converts keywords to base-26 (for alphabetical characters) numbers.
A d-dimensional point is constructed from d keywords specified in the query
or advertisement. Then a d-dimensional HSFC is used to map a d-dimensional
region (i.e., set of points) specified by the query into a set of curve segments in
1-dimension. Finally, each segment is searched using a DHT-lookup followed by
a local flooding. Squid supports partial prefix matching (e.g., queries like compu*
or net*) and multi-keyword queries; however, Squid does not have provision for
supporting true inexact matching of queries like *net*. Another major problem
is that the number of (partial) keywords specified in a query or advertisement is
bounded by the dimensionality d of the HSFC in use.

4.2.1.2 Non-structured Techniques

Unstructured systems ([1, 2]) identify objects by keywords. Advertisements and
queries are expressed in terms of the keywords associated with the shared objects.
Structured systems, on the other hand, identify objects by keys, generated by
applying one-way hash function on keywords associated with an object. Key-based
query routing is much efficient than keyword-based unstructured query routing. The
downside of key-based query routing is the lack of support for partial-matching
semantics as discussed in the previous section. Unstructured systems, utilizing
blind search methods such as Flooding [1] and Random-walk [16], can easily be
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modified to support partial-matching queries. But, due to the lack of proper routing
information, the generated query routing traffic would be very high. Besides, there
would be no guarantee on search completeness.

Many research activities are aimed at improving the routing performance of
unstructured P2P systems. Different routing hints are used in different approaches.
In [3], routing is biased by peer capacity; queries are routed to peers of higher
capacity with higher probability. In [29] and [33], peers learn from the results of
previous routing decisions and bias future query routing based on this knowledge.
In [4], peers are organized based on common interest, and restricted flooding
is performed in different interest groups. Many research works ([3, 13, 33], etc.)
propose storing index information from peers within a radius of 2 or 3 hops on the
overlay network. All of these techniques reduce the volume of search traffic to some
extent, but none provides guarantee on search completeness.

Bloom filters are used by a few unstructured P2P systems for improving
query routing performance. In [13] each peer stores Bloom filters from peers one
or two hops away. Three ways of aggregating Bloom-filters are also presented.
Experimental results presented in [13] show that logical OR-based aggregation of
Bloom filters is not suitable for indexing information from peers more than one hop
away. In [21] each peer stores a list of Bloom filters per neighbor. The ith Bloom
filter in the list of Bloom filters for neighbor M summarizes the resources that are
i− 1 hops away from neighbor M. A query is forwarded to the neighbor with a
matching Bloom filter at the smallest hop-distance. This approach aims at finding
the closest replica of a document with a high probability.

4.2.2 Distributed Relevance Ranking

Integrated solutions for distributed web search is not well investigated in the
literature, although there exists implementations like YacY and Faroo. Both of these
implementations use gossip based index propagation and distributed crawlers. YacY
uses distributed PageRank, while Faroo relies on user feedback for ranking search
results. Existing research works on distributed ranking can be classified in two broad
categories: link structure based ranking and semantic relevance based ranking.

Link structure analysis is a popular technique for ranking. Google uses the
PageRank [18] algorithm to compute page weights that measure its authority-ship.
Bender et al. [4] proposed a distributed document scoring and ranking system
that focuses on correlation between query keywords that appear in query logs.
Sankaralingam et al. proposed a P2P PageRank algorithm in [24], where every peer
initializes a PageRank score to its local documents and propagates update messages
to adjacent peers. DynaRank [11] works in a similar manner, but only propagates
update messages when the magnitude of weight change is greater than a threshold
value. In JXP [19], each peer computes initial weights for their local pages using
standard PageRank and introduces the notion of “external world”, which is a logical
node representing the outgoing and incoming hyperlinks from the webpages stored
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in a peer. Each time a peer meets with another peer, it updates the knowledge about
its external world. Wang et al. used two types of ranks for overall ranking: Local
PageRank is computed in each peer based on the standard Pagerank algorithm,
and ServerRank is computed as the highest local PageRank or the sum of all the
PageRanks of a web server [30]. SiteRank [31] computes the rank at the granulaity
level of websites instead of web page level using PageRank. Wu et al. proposed a
layered Markov model for distributed ranking where links between websites are in
the higher layers and links between the web pages within a particular website or
domain are in the lower layers [32].

Another research trend is to use Information Retrieval techniques such as
VSM (Vector Space Model), which is widely used in centralized ranking systems.
However, computing global weight (inverse document frequency or id f ) in a
distributed system is challenging. A random sampling technique is used in [6]
to estimate id f . In a DHT-based structured network, each keyword is mapped to
a particular peer and that peer can compute the approximate value of id f [15].
A Gossip-based algorithm is proposed in [17] to approximate both term frequency
(t f ) and id f for unstructured P2P networks.

4.3 A Collaborative Approach

This section focuses on Distributed Engine for Web search (DEWS) – a very
different approach to decentralized web indexing, ranking and incremental retrieval.
Instead of relying on an overlay of regular Internet users, DEWS builds an overlay
between the webservers. DEWS exploit the stability in webserver overlay to heavily
cache links (network addresses) that are used as routing shortcuts. Thus DEWS
can achieve faster lookup, lower messaging overhead, and higher ranking accuracy
in search results. DEWS has two fold contributions. First, is achieves a working
solution for distributed web search through a novel combination of link caching,
route aggregation, distributed ranking and webserver networking. And second, it
proposes a novel approach for distributed, bandwidth efficient incremental retrieval.
Incremental retrieval is offered by centralized web search engines, yet not supported
by other distributed solutions.

This section is organized into three parts. First, the network architecture for
DEWS is presented in Sect. 4.3.1. Then the indexing architecture is presented in
Sect. 4.3.2. Finally, the process for resolving a distributed Web query is presented in
Sect. 4.3.3.

4.3.1 Network Architecture

DEWS uses the Plexus protocol to build an overlay network between the participat-
ing webservers. Plexus ensures efficient information lookup along with scalability
to network size. It also provides fault-resilience without incurring much replication
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overhead. In addition, Plexus offers approximate matching between query keywords
and webpage keywords, which is not easily achievable by other DHT techniques.
DEWS extends the original Plexus protocol in the two ways: (a) route aggregation
(b) incremental retrieval. These extensions are explain in the following.

4.3.1.1 Route Aggregation

The aggregate query rate in DEWS is very high. Hence, the number of query mes-
sage and the associated communication overhead will be very high if these queries
are routed one at a time. Instead, DEWS proposes to aggregate multiple queries in
same message. This aggregation approach can significantly reduce the number of
network messages.

Plexus has an inherent capability of path aggregation for multicast routing. This
capability is extended to aggregate multicast traffic from multiple sources. Route
aggregation can be explained by the analogy of an airport. Each airport works as
a hub. Transit passengers from different sources gather at an airport and depart on
different outgoing flights matching their destinations. Similarly, each Plexus node is
used as a routing hub.

Algorithm 5 presents the aggregate routing mechanism in DEWS. The default
routing mechanism in Plexus is multicasting, since a few peers have to be checked
to allow approximate matching. As a result, each message arriving at a peer contains
a number of target codewords. Each peer in DEWS is likely to continuously receive
query messages, since Web queries from around the globe will be submitted and
processed by the system. Instead of instantly forwarding the incoming messages,
each peer accumulates incoming messages in a message queue (msgQ) for a very
small period of time. Target codeword lists (m.Y ) in the incoming messages are
combined to a master target list T . Then Plexus routing is applied to select the
next hop neighbors and the targets in T are distributed over the selected neighbors.
Since, index advertisement and query messages have small size, many of these
messages can be packed in a single message and sent to appropriate neighbors. This
approach significantly reduces the number of messages in the network.

4.3.1.2 Incremental Retrieval

Incremental retrieval refers to the process of gradually retrieving search results in
parts from a repository or server, as offered by the Web search engines. Though it
is a challenging problem to achieve incremental retrieval in a distributed setup, an
appropriate solution to the problem can save valuable network bandwidth.

DEWS have exploited the Hamming distance based lookup capability of Plexus
to achieve incremental retrieval in a distributed manner. In the Plexus search mech-
anism, list decoding radius ρ can be varied tocontrol the Hamming distance of the
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Algorithm 5 AggregateRouting in node X
1: Inputs:

msgQ: {< pl,Y >}, where pl is message payload
and Y is target list for pl.

2: Internals:
k: Dimension of the linear code RM(2,m)
L : set of neighbors (X1, . . . ,Xk+1) and cached links

3: T ←⋃
m∈msgQ m.Y

{find suitability of each neighbor/link as next hop}
4: R←{Tw| w ∈L ∧Tw ⊆ T ∧

(Y ∈Tw =⇒ w is closer to target Y than X)}
5: while T not empty do
6: O ← φ
7: find s such that ∀Tw ∈R, |Ts| ≥ |Tw|
8: for all m ∈ msgQ do
9: if m.Y ∩Ts = φ then

10: O ← O ∪{< m.pl,m.Y ∩Ts >}
11: m.Y ← m.Y −Ts

12: end if
13: end for
14: R←R−{Ts}
15: T ← T −Ts

16: send O to peer Xs

17: end while

discovered advertisement patterns from a query pattern. The edit distance between
query and advertisement keywords is proportional to the Hamming distance between
the corresponding query and advertisement patterns. DEWS exploits this feature to
discover the documents having lesser similarity to the query keywords by gradually
increasing ρ .

DEWS gradually explores the peers near a query pattern in steps. For the initial
step, it uses a small ρ close to half of the minimum distance between any pair of
codewords. For any query, the closest matching advertised keywords can be found
within this radius. By increasing the list decoding radius in subsequent steps, it
can find additional codewords, further away from the query pattern. The search is
repeated with these additional codewords if the user requires additional results or
not enough result is found in the first step. For most of the cases, desired number of
results can be found in the first step, which can save a lot of network bandwidth.

Unlike expanding ring search or iterative deepening search in unstructured P2P
networks, DEWS can find the target peers (i.e., IP addresses) for the next step from
the neighbor list of the queried peers in the current step. Hence, the same set of peers
is not queried again and again for consecutive steps.
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4.3.2 Indexing Architecture

Metrics used for ranking web search results can be broadly classified into
two categories: (a) hyperlink structure of the webpages, and (b) keyword to
document relevance. Techniques from Information Retrieval (IR) literature are
used for measuring relevance ranks. While link structure analysis algorithms
like PageRank [18], HITS [12], etc., are used for computing weights or relative
significance of each URL. DEWS exploits both of these measures for ranking
search results.

4.3.2.1 Hyperlink Index

About 90% hyperlinks in the Web are intra-domain [31]. Topics and ideas in
the webpages of a particular website are almost similar or correlated, and it is
not reasonable to utilize the authorship of web documents at the level of single
pages. Besides, a website is usually reorganized and managed periodically without
significant changes in semantics and outgoing hyperlinks to the rest of the Web.
The number of websites in the Web is about 100th of the number of webpages.
Considering these facts we perform link structure analysis at the granularity level
of websites. For the rest of this paper, we use “URL” to refer to the root URL of
a website.

Algorithms for computing webpage weights based on hyperlink structure are
iterative and require many iterations to converge. In each iteration webpage weights
are updated and the new weights are propagated to adjacent URLs for computation
in the next iteration. In order to implement such ranking mechanisms on websites,
distributed across an overlay network, the adjacency relationships in hyperlink graph
has to be preserved while mapping websites to peers. If hyperlinked websites are
mapped to the same peer or adjacent peers then network overhead for computing
URL weights will be significantly reduced. Unfortunately, there exists no straight
forward hyperlink structure preserving mapping of the Web to an overlay network.

DEWS retains the hyperlink structure as a virtual overlay on top of Plexus
overlay. It uses a standard shift-add hash function (h̄(·)) to map a website’s base
URL, say ui, to a codeword, say ck = h̄(ui). Then Plexus routing is used to
lookup β (ui), which is the peer responsible for indexing codeword ck (Fig. 4.2).
For each outgoing hyperlink say uit of ui, DEWS finds the responsible peer
β (uit) in a similar manner. During distributed link-structure analysis, β (ui) has to
frequently send weight update messages to β (uit). Hence the network address of
peer β (uit) is cached at peer β (ui), which is called a soft-link. Soft-links mitigate the
network overhead generated from repeated lookups during PageRank computation.
The process of mapping the hyperlink overly over a Plexus overlay is explained
in Fig. 4.1.

The index stored in β (ui) has the form < ui,wi,{< uit ,β (uit) >} >, where wi

is the PageRank weight of ui. wi is computed as wi = (1−η)+η ∑g
t=1

wit
L(uit )

. Here,
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Fig. 4.1 Hyperlinks to Plexus overlay mapping

η (usually 0.85) is the damping factor for PageRank algorithm. {uit} is the set of
webpages linked by ui and L(uit) is the number of outgoing links from webpage uit .

Each peer periodically executes Algorithm 6 to maintain the PageRank weights
updated in a distributed manner. To communicate PageRank information between
the peers, a PageRank update message is used. This message contains the triplet
< us,ui,

ws
L(us)

>, where peer β (us) sends the message to peer β (ui), and ws
L(us)

is the
contribution of us towards PageRank weight of ui. Each peer maintains a separate
message queue (Qui) for each website (ui) it has indexed. Incoming PageRank
messages are queued for a pre-specified period of time and is used to compute the
PageRank for each webpage. If the change in newly computed PageRank value is
greater than a pre-defined threshold θ , PageRank update messages are sent to β (uit)
for each hyperlinked website uit .

4.3.2.2 Keyword Index

Plexus indexing is used to build an inverted index on the important keywords
for each webpage. This index allows us to lookup a query keyword and find
all the webpages containing that keyword by forwarding the query message to
a small number of peers. Suppose, K rep

i = {krep
i j } is the set of representative

keywords for ui. For each keyword krep
i j in K rep

i , kdmp
i j is generated by applying

Double Metaphone encoding [7] on krep
i j . Double Metaphone encoding attempts

to detect phonetic (‘sounds-alike’) relationship between words. Motivation behind
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Algorithm 6 Update PageRank
1: Internals:

Qui : PageRank message queue for ui

L(ui): Number of outlinks for ui

wi: PageRank weight of ui

η : Damping factor for PageRank algorithm
θ : Update propagation threshold

2: for all URL ui indexed in this peer β (ui) do
3: temp← 0
4: for all < usi,ui,

wsi
L(usi)

>∈Qui do
5: temp← temp+ wsi

L(usi)

6: end for
7: wnew

i ← (1−η)+η ∗ temp
8: if |wnew

i −wi|> θ then
9: wi← wnew

i
10: for all out link uit from ui do
11: send PageRank message < ui,uit ,

wi
L(ui)

> to β (uit)

12: end for
13: end if
14: end for

adapting phonetic encoding is twofold: (i) any two phonetically equal keywords
have no edit distance between them, (ii) phonetically inequivalent keywords have
less edit distance than the edit distance between the original keywords. In both
cases, Hamming distance between the encoded advertisement and search patterns
is lesser than that of the patterns generated from the original keywords. This
low Hamming distance increases the percentage of common codewords computed
during advertisement and search, which eventually increases the possibility of
finding relevant webpages.

The process of generating keyword index is depicted in Fig. 4.2. To generate
an advertisement or a query pattern Pi j from keyword krep

i j , DEWS fragments krep
i j

into 3-g ({krep
i j }) and encode these k-grams along with kdmp

i j into a b-bit Bloom

filter. This Bloom filter is used as a pattern Pi j in F
b
2. Then Pi j is list decoded1 it

to a set of codewords, ζρ(Pi j) = {ck|ck ∈ C ∧ δ (Pi j,ck) < ρ}, where ζρ(·) is a list
decoding function and ρ is list decoding radius. Finally, Plexus routing is used to
lookup and store the index on krep

i j at the peers responsible for codewords in ζρ(Pi j).
The index for krep

i j is a quadruple < krep
i j ,ri j,ui,β (ui) >, where ri j is a measure

of semantic relevance of krep
i j to ui. γ(krep

i j ) represents the set of peers responsible

for krep
i j . Evidently, γ(krep

i j ) ≡ lookup(ζρ(BF({krep
i j }∪ {kdmp

i j }))), BF(·) represents
Bloom filter encoding function.

1List decoding is the process of finding all the codewords within a given Hamming distance from
a (advertisement or query) pattern.
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Vector Space Model (VSM) is used for computing the relevance between
keyword krep

i j and URL ui. In VSM, each URL ui is represented as a vector νi =
(ri1, . . ., rig), where ri j represents the relevance of the term or keyword krep

i j in ui,
and g is the number of representative keywords in ui. The relevance weight ri j, of the
jth keyword is computed as t f (krep

i j ) ∗ id f (krep
i j ). Here, term frequency t f (krep

i j ) is
the number of occurrences of krep

i j in webpage ui, while inverse document frequency

id f (krep
i j ) is computed as id f (krep

i j ) = log U
ψ(krep

i j )
. Here, U is the total number of

webpages and ψ(krep
i j ) is the number of webpages containing keyword krep

i j . t f (krep
i j )

is a measure of the relevance of krep
i j to ui, while id f (krep

i j ) is a measure of relative
importance of krep

i j w.r.t. other keywords. id f is used to prevent a common term from
gaining higher weight and a rare term from having lower weight in a collection.

Computing t f (krep
i j ) for each keyword krep

i j ∈K rep
i from ui is straight forward and

can be done by analyzing the webpages in ui. For computing id f (krep
i j ) one needs to

know U and ψ(krep
i j ). Now, all webpages containing keyword krep

i j are indexed at the
same peer. Hence, ψ(krep

i j ) can be computed by searching the local repository of that
peer. However, it is not trivial to compute U in a purely decentralized way. Instead
of computing U , the total number of indexed URLs in a peer is used as advocated
in [15].

PageRank for URL ui is computed and maintained in peer β (ui), while the
computed PageRank value wi is used in peers γ(krep

i j ), where a representative
keyword krep

i j for webpage ui is indexed. The Web is continuously evolving and
PageRank for the webpages are likely to change over time. As a result, storing
PageRank weight, wi to the peers in γ(krep

i j ) will not be sufficient; it has to be
refreshed periodically. To reduce network overhead, softlink to β (ui) is stored in
peers γ(krep

i j ). This softlink structure between peers β (ui), β (uit) and γ(krep
i j ) is

presented in Fig. 4.3.
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Fig. 4.3 Softlink structure

4.3.3 Resolving Web Query

4.3.3.1 Advertising Websites

The pseudocode for advertising a webpage is presented in Algorithm 7. As
discussed in the previous two sections, two sets of indexes are maintained for
a webpage: (a) using site URL ui and (b) using representative keywords K rep

i .
Lines 3–8 of Algorithm 7 compute the index on ui, which involves computing
the softlinks (β (uit)) for each outgoing hyperlinks from ui and storing the index
in peer β (ui). Lines 9–18 compute the indexes on K rep

i and advertise the indexes
to the responsible peers.

4.3.3.2 Search and Ranking

To resolve Web queries in DEWS, it is fragmented into subqueries – each consisting
of a single query keyword, say ql . Similar to the keyword advertisement process
explained in Sect. 4.3.2.2, the Double Metaphone (i.e., qdmp

l ) and k-gram ({ql}) are
computed, and encoded in a Bloom filter Pl . Then the Plexus protocol is used to
find the peers responsible for storing the keywords similar to ql and retrieve a list of
triplets like {< ui,wi,ril >}, which gives us the URLs (ui) containing query keyword
ql along with the link structure weight (wi) of ui, and semantic relevance of ql to ui,
i.e., ril . Now, the querying peer computes the ranks of the extracted URLs using the
following equation:

rank(ui) = ∑
ql

∑
ui

ϑil(μ ·wi +(1−μ) · ril) (4.1)

In Eq. 4.1, μ is a weight adjustment factor governing the relative importance of link
structure weight (wi) and semantic relevance (ril) in the rank computation process.
While ϑil is a binary variable that assumes a value of one when webpage ui contains
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Algorithm 7 Publish webpage
1: Inputs:

ui: URL of the webpage to be advertised
2: Functions:

h̄(ui): hash map ui to a codeword
γr(P): {ck|ck ∈ C ∧δ (P,ck)≤ r}
lookup(ck): Finds the peer that stores ck

3: β (ui)← lookup(h̄(ui))
4: for all out-link uit of {ui} do
5: β (uit)← lookup(h̄(uit)))
6: end for
7: wi← initial PageRank of ui

8: store < ui,wi,{uit ,β (uit)}> to peer β (ui)
9: K rep

i ← set of representative keywords of ui

10: for all krep
i j in K rep

i do

11: kdmp
i j ← DoubleMetaphoneEncode(krep

i j )

12: Pi j ← BloomFilterEncode({krep
i j }∪{kdmp

i j })
13: ri j ← relevance of krep

i j to ui

14: for all ck in ζρ (Pi j) do
15: v← lookup(ck)
16: store < krep

i j ,ri j,ui,β (ui)> to peer v
17: end for
18: end for

keyword ql and zero otherwise. While the implication of simply summing wi and
ril together is not obvious, similar approaches were proposed in [22]. Although,
one can devise complicated ways to combine these two measures together, a simple
summation suffices to achieve the desired effect.

The query process in DEWS is explained in Algorithm 8. In this algorithm, a
separate lookup(ck) is required for each target codeword ck. In practice separate
lookup of each target is expensive in terms of network usage. Instead, DEWS uses
the extended multicast routing mechanism with route aggregation as explained in
Sect. 4.3.1.1.

4.4 Summary

DEWS is a self-indexing architecture for the Web. It enables webservers to
collaboratively index the Web and respond to Web queries in a completely
decentralized manner. In DEWS, we have the provision for approximate matching
on query keywords, and distributed ranking on semantic relevance and link-structure
characteristics. Network and storage overheads for achieving this decentralization
is not significant. DEWS scales well with network size and the number of indexed
webpages. In addition, the ranking accuracy of DEWS is comparable to the ranking
accuracy of the centralized ranking solution. The route aggregation technique,



References 41

Algorithm 8 Query
Input:

Q: set of query keywords {ql}
T : Most relevant T webpages requested

Internals:
μ: Weight adjustment on link-structure vs relevance
ρ: list decoding radius

ξ ← empty associative array
for all ql ∈ Q do

qdmp
l ← DoubleMetaphoneEncode(ql)

Pl ← BloomFilterEncode({ql}∪{qdmp
l })

for all ck ∈ listDecodeρ (Pl) do
n← lookup(ck)
for all {< ui,wi,ril >} ∈ n.retrive(ql) do

ξ [ui].value← ξ [ui].value+μ ·wi +(1−μ) · ril
end for

end for
end for
sort ξ based on value
return top T ui from ξ

proposed in DEWS, outperforms the original Plexus routing protocol in terms
of network usage efficiency. DEWS is highly resilient to peer failures due to the
existence or alternate routing paths and smart replication policy. Neither routing
efficiency nor ranking accuracy degrades significantly even in presence of 20%
failures. Compared to a centralized solution, DEWS will incur some network
overhead. In exchange DEWS will give us the freedom of searching and exploring
the Web without any control or restrictions, as can be imposed by the contemporary
centrally controlled search engines.
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Chapter 5
Availability

Since its inception, peer-to-peer (P2P) technology has been applied for numerous
distributed applications, including file sharing, distributed computing, multi-player
gaming, media streaming and instant messaging. None of these applications require
or assume a persistent service guarantee from the underlying P2P overlay. Yet there
exists other applications like web hosting, online backup, content distribution
etc., that require persistence in resource/service availability. P2P systems rely on
commodity machines, voluntarily participating at the network edge. As a result, it
is challenging to use P2P technology for deploying any application that requires
persistent resource/service availability.

Existing proposals in P2P systems use replication as the primary means
for increasing resource availability. Replication strategies in P2P systems can
be broadly classified as time-based replication and quantitative replication.
In quantitative replication approaches availability is ensured by consistently
maintaining a fixed number of replicas per resource. On the other hand, time-
based replication approaches utilize a peer’s uptime history to reuse a replica from
the peer’s previous session.

In quantitative replication approaches, content availability is proportional to
the number of its replicas. But, increasing the number of replicas has a number
of side effects. First, it incurs increased network overhead for replica placement
and update propagation between the replicas when the original content is updated.
Second, storage overhead increases linearly with the number of replicas. Third, it
requires additional mechanisms for keeping track of the replicas for efficient query
forwarding. And last but not the least, query load balancing among the replicas
of a specific content becomes an important issue from fairness point of view.
Existing availability approaches [1,2,16,19] that solely rely on replication are either
bandwidth hungry or require complex predictive knowledge for replica updates and
relocation. These approaches frequently burden the peers with longer uptime, which
results into a skewed load distribution and a negative impact on availability.

Time-based replication strategies, on the other hand, utilize daily uptime
behavior of the peers to replicate a content. Cyclic diurnal pattern in peer availability
has been observed in a number of previous studies including [6, 8, 15, 20].

R. Ahmed and R. Boutaba, Collaborative Web Hosting, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-03807-0__5, © The Author(s) 2014
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Rzadca et al. [13] have shown that diurnal behavior of peers can be a useful
characteristic for improving availability if the system has a truly global scope. For
example, consider two peers separated by 12-h difference in time zone. They will
exhibit complementary availability patterns, if both of them remain online during
daytime and off-line at night. Even for the peers located in the same time zone,
mutually exclusive availability patterns may be observed due to their Internet usage
habits or job nature.

In this chapter, we investigate the availability requirements for P2P web hosting
in Sect. 5.1. Then we present the existing solutions for improving availability in
P2P networks (Sect. 5.2). In Sects. 5.3 and 5.4, we present a globally optimized and
efficient protocol, named S-DATA (Structured approach for Diurnal Availability by
Temporal Assemblage) that maximizes 24/7 content availability in a P2P network.
S-DATA minimizes the aforementioned shortcomings of the existing time-based
availability schemes.

5.1 Requirements

Here outline the requirements on the group formation process and replication
mechanism. A good solution for ensure availability for pWeb should fulfill these
requirements.

• Replication strategy: As discussed before, both quantitative and time-based
replication strategies have their relative advantages and disadvantages.
Time-based replication is more appropriate for achieving smaller group size
and for reducing network overhead. However, for ensuring content availability
at any given time, we have to perform quantitative replication as well. Hence, a
hybrid replication strategy is required pWeb.

• Group size: In a P2P network of a million peers, it is a challenging problem to
match and tie peers in small groups in such a way that the maximum availability
can be achieved with minimal replication overhead. Group size should be as
small as possible in order to reduce the replication overhead.

• Global optimization: the group formation process should be globally optimized
and should not incur significant network overhead. Existing time-based
availability approaches ([3, 13, 17]) rely on unstructured, gossip-based protocol
and do not deliver guarantee on the above mentioned requirements.

• Continuity: At any given time, at least one peer (or a pre-specified number of
peers) should be online within a group. This would ensure a content’s availability
regardless of its popularity.
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5.2 Availability in P2P Systems

A number of approaches to improve availability in P2P systems can be found
in the literature. To the best of our knowledge, only a few of these approaches
focus on increasing content availability by adopting a time-based replication
strategy. In [17], we proposed the DATA protocol that construct replication groups
using complementary availability patterns of peers through a gossip based routing
technique applicable to unstructured networks. Blond et al. [3] proposed two
availability-aware applications that take into account the peers’ previous availability
history collected through an epidemic protocol. Using a simple predictor, they
propose to find the best matching peer to meet the specific goals of the application.

A group based Chord model is proposed in [7] to minimize the impact of
frequent arrivals and departures of peers. The redundancy group based approach
proposed by Schwarz et al. [16] tries to improve availability by utilizing the cyclic
behavior of peers distributed across the World. They proposed a hill-climbing
strategy to determine redundancy groups for data objects. They proposed a counter-
based availability score update mechanism through periodic scans. However, the
counter mechanism cannot consistently capture phase relationships within a peer
and between peers. For example, a peer having diurnal availability pattern will be
online for the longest consecutive stretch starting in the morning, when its counter
is the lowest. But this fact is not reflected in their mechanism.

Rzadca et al.[13] proposed to represent peer availability as a function of discrete
time to minimize the number of replicas. In their model, availability is represented
by a set of time slots in which a peer is available with certainty, i.e., the used
discrete on-off availability. In contrast, S-DATA represents availability by historical
probability at discrete time slots. Our probabilistic model captures diurnal avail-
ability patterns more accurately, since peer connectivity cannot be predicted with
absolute certainty in a real world network. Moreover, the group formation approach
proposed in [13] uses a single-valued scoring function, which only considers the
number of newly covered slots while making group formation decision. On the
contrary, our utility function considers relative improvement from both sides and
considers the size of the resulting group. Finally, their model only targets to ensure
1-availability across time slots, whereas S-DATA proposes to consider β -Availability
to provide better reliability.

A significant number of research works aim to increase availability by adopting
various strategies for quantitative replication. These works vary in the type of
redundancy, method of replica regeneration, and the number and location of
peers storing redundant data. Bhagwan et al. explored the issues of replication
granularity, replica placement, and application characteristics in [1]. In terms of
replica generation approach, redundancy is achieved in two ways: (i) replicating
the complete data, and (ii) fragmenting and encoding the data by network coding
in such a way that not all fragments are needed to reproduce the original content
[1, 16]. Data replication is mainly done in two ways: reactive [2] or proactive [19].
Both of these approaches aim to optimally place the replicas in a minimum number
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of peers so that the overall content availability remains high. Existing solutions use
information like peers’ session time and churn [10], availability history [3], lifespan
distribution [5], machines’ uptime, downtime, lifetime, and correlation among them
[4], Mean Time to Failure [9], up time score [16], recent up time [14], application
specific availability [18], availability-prediction guided replica placement [2, 11],
and probabilistic models [12] to reduce redundancy while retaining high availability.
These approaches rely on quantitative replication, whereas S-DATA combines both
time-based and quantitative replication strategies. Another major difference of
S-DATA with these schemes is that they make no distinction between transient and
permanent disconnections and data stored at a peer is reused upon its return to the
system. Ignoring stored data after peers’ offline period incurs significant network
overhead, which S-DATA can readily avoid by co-relating a returning peer with its
previous session.

5.3 Conceptual Overview

5.3.1 Architecture

As depicted in Fig. 5.1, S-DATA architecture evolves around three conceptual
components: replication group, Group Index Overlay (GIO) and Content Index
Overlay (CIO). Replication groups provide a persistent storage by exploiting diurnal
uptime-behavior of the regular peers. GIO maintains peers’ and groups’ availability
information. While CIO retains an indirect mapping from content name to content
location. In the following we explain each of these three components.

Group Index
(Plexus)

Offline peer

Online peer

Super peer

Replication
group

Content Index
(any DHT)

Index

persistent content

1. lookup(content-name)
→ groupID

2. lookup(groupID)
→ peer IP:port

3. Content access

In
de

x

Fig. 5.1 Conceptual architecture of S-DATA
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Replication group: In S-DATA, peers are clustered into small groups based on
their diurnal availability pattern. Within a replication group, peers have mutually
exclusive uptime with little overlap. In a replication group with β -availability, it is
ensured that at least β members from that group will be online at any given time.
Each member within a group replicates each others contents, and works as a proxy
for the off-line members of that group.

Group index overlay: It has two functions. First, during group formation, it works as
a distributed agent for match-making peers with complementary uptime behavior.
Second, it acts as an indirection structure during content lookup. Initially each
peer advertises its availability pattern as a bit-vector to this overlay. During group
formation, peers willing to form a group search for other peers (or groups) having
complementary uptime behavior. To the best of our knowledge, Plexus is the
only Distributed Hash Table (DHT) technique that supports approximate bit-vector
matching in an efficient manner. Hence, we used Plexus as the indexing and routing
protocol for GIO. At any given time, this overlay maps a group ID to one (or β )
online peer from that group.

Content index overlay: This overlay can be implemented using any DHT-technique
depending on the application-specific requirements. This overlay maps a content
name to a group ID. In order to search and download a content, a peer will first
search the CIO and discover a group ID. Then it will lookup the group ID in the
GIO and find the location (IP:port) of an alive peer currently hosting that content
and download it. Mapping a content name to a group ID, instead of directly mapping
to a peer ID incurs an additional lookup. But, this lookup is necessary to facilitate
dynamically associate a content name to the currently online peer hosting that
content.

From uptime point of view, we assume that the peers in a replication group are
regular peers with moderate online time (4–8 h) on a daily basis. While the peers
in the indexing overlays are superpeers with longer uptime, higher communication
bandwidth and storage capacity.

5.3.2 Availability Vector

The traditional definition of peer availability is simply measured by the fraction of
time a peer is online [2] within a certain time period. If a peer joins and leaves
m times during a period of T hours, and every time remains up for tk hours,

then its availability can be computed as, ∑m
k=1 tk
T . This formula does not take the

diurnal availability pattern in peer uptime behavior into account. This fact has been
mathematically proven by Yang et al. in [21].

In S-DATA, we divide 24-h of a day in K equal-length time-slots w.r.t. GMT+0,
and estimate the probability of a peer being online in each time-slot based on
its historical behavior. Thus the availability of a peer, say x, is defined as Ax =
{ax1,ax2, . . . ,axk, . . . ,axK}, where Ax is the K-dimensional availability vector for
peer x, and axk is the probability of peer x being online in slot k.
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The responsibility of computing and maintaining the availability vectors can be
dedicated either to the P2P client software or to GIO. Each of these alternatives has
its own merits and demerits, and can be considered as an implementation specific
choice. Computing and maintaining availability vectors at the client software will
give a more accurate estimate of a peer’s availability vector, and will generate
minimal network traffic. However, a client software can be maliciously modified to
report a fake availability vector. Alternatively, the availability vectors can be com-
puted and maintained at GIO. This approach can generate more reliable probability
values for the availability vectors, though at the expense of increase network traffic
and decreased accuracy of the computed availability.

5.4 S-DATA Protocol Details

5.4.1 Terminology

In S-DATA we use four indexes (see Table 5.1) for group formation and content
lookup. Ie represents an indexing peer in GIO, which is responsible for storing the
ID of e (IDe), where e can be a regular peer or a group. Ie works as e’s proxy
for meta-information exchange. For a regular peer, say x, Ix stores an Mx record,
which contains the availability vector (Ax), ID (IDx) and network location (Locx)
for x, as well as the group ID (IDGx ) and index location (IGx ) for x’s group Gx. For
a group G, IG contains index record NG, which contains group availability vector
(AG), group ID (IDG), and for each member x of G, its ID (IDx), index location (Ix)
and network location (Locx). To enable approximate matching between peers’ and
groups’ availability vectors, we maintain Ve indexes that contain availability pattern
(Se, explained in Sect. 5.4.2.1), availability vector (Ae), ID (IDe) and index location
(Ie) for e. Ve is stored in all peers Le within a pre-specified Hamming distance
from Se. Finally, for content lookup another set of indexes (Kw) is maintained
in CIO. For each keyword w attached to a content an index (Kw) is stored in CIO at
peer Jw, which is responsible for keyword w. Kw retains the content’s ID (IDdoc),
other keywords describing the content ({wi}), group ID (IDG) and index location
(IG) of the group that hosts the content.

Table 5.1 List of indexes in S-DATA

Name Overlay Indexed information

Mx GIO/Ix < Ax, IDx,Locx, IDGx ,IGx >

NG GIO/IG < AG, IDG,{< IDx,Ix,Locx > |x ∈ G}>
Ve GIO/LSe < Se,Ae, IDe,Ie >

Kw CIO/Jw < IDG,IG, IDdoc,{wi|wi ∈ doc}> LŚx
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5.4.2 Indexing Availability Information

To cluster regular peers in globally optimized replication groups, we need to index
each peer’s availability information (Ve) to GIO. This indexing process involves two
steps: (i) encoding availability vector (Ae) to bit-vector (Se) and (ii) advertisement
using Plexus protocol. These two steps are explained in the following.

5.4.2.1 Availability Vector Encoding

It can be easily seen that the availability vector Ai is a K-dimensional vector of
uptime probabilities, whereas the advertisement (or query) patterns in a Plexus
network built on an < n,k,d > code are n-bit values. Hence, we need a means to
encode a K-dimensional availability vector into an n-bit pattern.

In S-DATA we have used K = 24 slots for availability vector. While for
Plexus implementation, we have used the < 24,12,8 > Extended Golay Code G24.
Trivially, we can directly encode each probability value aik in Ai to 1-bit in the
24-bit advertisement (or query) pattern. We can use a threshold, say θ , and can set
the k-th bit of the 24-bit encoded pattern to 1 if aik > θ . Unfortunately, this encoding
will incur significant information loss and will degrade the approximate matching
performance in Plexus network.

Alternatively, we use a better encoding scheme based on the observation that
consecutive values in the availability vector are usually similar in magnitude.
To exploit this observation, we average the probability values in two adjacent slots,
and obtain a 12-dimensional availability vector ´Ai = {ái1, ái2, . . . ái12}, where ái j is

computed as ái j =
(ai(2 j−1)+ai(2 j))

2 . Now, we encode each ái j into two bits in the 24-bit
advertisement pattern as follows. ái j is encoded to 00 if ái j is less than 1

3 . If ái j is
between 1

3 and 2
3 then the encoding is 01. Otherwise, ái j is greater than 2

3 and is
encoded to 11. This encoding reflects the numeric distance in ái j to the Hamming
distance in advertisement patterns. The bit-vector obtained from this encoding is
referred to as Se for element e. Se is required to advertise and search peer availability
information in the GIO.

5.4.2.2 Advertisement

An advertising peer, say x, first computes the n-bit advertisement pattern, say Sx, as
explained above. Then x sends the tuple < Sx,Ax, IDx,Locx, IDGx ,IGx >, to Ix.
In this advertisement IDGx and IGx will be empty, if x has not formed a group.
Upon receiving the advertisement message, Ix computes the codewords within a
pre-specified Hamming distance from Sx and uses Plexus routing to route and index
the advertisement (Vx) to the peers (LSx ) responsible for these codewords.
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5.4.3 Group Formation

This process lies at the core of S-DATA protocol. Our target is to cluster peers into
groups in such a way that the group sizes are minimal and at any given time at least
β ≥ 1 peers from a group is online with the highest possible probability.

The most challenging part of this process is to relay group formation messages
between peers that may not be simultaneously online. To this end, we use GIO as
a message relay. Figure 5.2 presents a sequence of message exchanges between
indexing peers in GIO and regular peers x and m while forming a 1-availability
group G. It is worth noting that x and m are not online simultaneously and hence
they have no direct message exchange. The Group formation process is composed
of the following three steps:
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1. Invitation: We assume that on average a regular peer will be online for L
time-slots on a daily basis. It will be the responsibility of a peer to maintain
β peers in its group during the L-slots it is online and the next L-slots. To find
a suitable peer that can improve its own group’s availability for the next L-slots,
peer x computes an availability pattern Śx. Śx has bits t +L+ 1 to t + 2L set to
1, assuming that the availability pattern Sx of peer x has bits t to t +L set to 1.
Once Śx is computed, peer x forwards it to Ix. Ix uses Plexus multi-cast routing
to find the peers (LŚx

) in GIO responsible for indexing peer/group availability

records (Ve) similar to Śx. From the availability records (Ve) returned by Ix, peer
x selects the most appropriate peer, say m, that maximizes its group’s availability.
Peer x locates the indexing peer (Im) for m using Plexus routing and sends an
invitation request to Im that includes the Vx record.

2. Group formation: Upon becoming online m updates Im with its new network
location (Locm). In response Im sends all the invitations ({Ve}) for m that has
been accumulated during m’s offline period. Among these invitations, m selects
the best candidate x. If x is already a member of an existing group then m simply
joins the group otherwise it creates a new group G. To create or update the group
index in GIO, m may require to transmit three messages: (a) if m created a new
group, then it has to update the Mx record in Ix so that x can learn about G upon
returning; (b) m has to index (VG) to all peers (LG) within a certain Hamming
distance from SG; (c) finally, m has to store the group index NG to IG.

3. Participation: During its next online session peer x will update Ix with its new
network location Locx. If the previous invitation from x was honored by m then
Ix responds with the newly formed group’s information (IDG and IG). x updates
IG with its location information Locx. IG responds with any update from m
or other members of G. On the other hand, if the invitation from x was not
accepted by m, then x has to restart the group formation process with the next
best matching peer, other than m.

The above mentioned process of forming 1-availability group can be easily
extended to construct β -availability groups. Two modifications in Step 1 of the
above process are required. First, x should be the highest ID peer among the online
members of its group (Gx). And second, x should send invitations to β − f peers
simultaneously, where f is the number of peers in x’s group who shall be online in
the L-time slots following the online period of x.

5.4.4 Group Maintenance

The diurnal availability pattern of a peer may change over time. In such a situation,
a peer, say x, may want to change its group. Group changing involves leaving the
current group and joining a new group. The process of joining a group has been
described in Sect. 5.4.3. To leave its current group Gx, peer x has to update two peers
in CIO. First, x has to remove its index information from NGx record, which is stored
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in peer IGx . And second, x has to clear the IDGx and IGx fields in Mx record, which
is stored in Ix. It should be noted that we use soft-state registration for advertising
Vx records to LSx . Hence, the Vx records will be automatically removed from the
peers in LSx , if x does not re-advertise before the previous advertisement expires.

5.4.5 Content Indexing and Lookup

In the following we describe the mechanisms for content indexing and lookup.

5.4.5.1 Content Indexing

Traditionally a content in a P2P network is tagged with a set of descriptive keywords,
( w ∈ {wi}). These keywords are used to locate the peers(s) (Jw) in CIO for storing
the Kw record. While advertising a content a peer, say x, may or may not be a
member of a replication group. If x is a member of a replication group, say Gx then
IDGx and IGx are stored in Kw record, otherwise IDx and Ix are used. However,
Kw is not updated when x forms a group. Rather, Kw is updated in a reactive manner
during content lookup. This process is described in the following section.

5.4.5.2 Content Lookup

A query for keyword w will be routed to Jw using the routing protocol in CIO.
Based on the information found in Kw, the query will be forwarded to either IGx if
the content host x has formed a group and Kw has been updated, or the query will be
forwarded to Ix. In a regular scenario, the query will be forwarded to IGx and the
location Locy of the currently alive peer y in Gx will be return to the querying peer
via Jw. On the other hand, if x has formed a group but Kw has not been updated,
then Jw will contact Ix, which will respond with IDGx and IGx . Accordingly, Jw

will update Kw for future references. Finally, Jw will contact IGx to obtain the
location (Locy) of the currently active peer (y) in Gx.

5.5 Summary

In this chapter, we have identified the availability requirement for P2P web hosting.
A short survey of the existing approaches for ensuring availability in P2P file-
sharing applications has been presented as well. Finally, we have presented an
efficient grouping and replication protocol named S-DATA, which ensures content
persistence over a non-persistent P2P network for web hosting.
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Chapter 6
Conclusion

Peer-to-peer technology has been in use for more than a decade now. The most
prominent and successful applications of this technology include file sharing,
content distribution and video streaming. Yet, Web hosting and Web-based
multimedia content sharing, a rather potential P2P application, have not been
well-investigated. In this book we have highlighted the challenges in P2P web
hosting and presented our solutions for addressing these challenges.

P2P Web hosting is a challenging problem due to the fundamental differences
between P2P and client-server architectures. In the traditional Web hosting scenario,
content location and content hosts are fairly persistent. On the contrary, P2P
networks are characterized by their volatility in peer population and frequent
content relocation. This fundamental difference introduces three main challenges
for P2P Web hosting: naming, searching and availability. In this book we have
presented an integrated framework, named pWeb, for solving these three challenges.
pWeb offers a location-independent, persistent and Web technology compatible
naming scheme over non-persistent P2P networks. Searching in pWeb is done in
a distributed manner, which does not require centrally controlled compute resources
(e.g., datacenters). In pWeb, the participating stable peers collaboratively index
web-documents and ensures distributed ranking. Finally, pWeb exploits the diurnal
availability pattern, in order to group peers in small groups. Web-contents are fully
replicated between the members of a group. pWeb framework ensures that at least
one peer from a group is available all the time with very high probability.

Currently, we are in the process of deploying the pWeb framework for public use.
The latest version of the pWeb client can be obtained from pWeb projects homepage
(www.pwebproject.net). However, while deploying this framework we are facing a
few technical and deployment challenges as discussed below.

The technical challenges are more implementation specific and less research
intensive. The first technical challenge we are facing is related to the NAT traversal
issue. In a few cases both sides of a connection are behind NAT. To allow
connectivity in such situations, we are deploying STUNT servers. However, STUNT
servers can become performance bottleneck and can reduce the overall scalability of
the pWeb framework. The second technical challenge is related to the heterogeneity
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in the client platform. Currently, pWeb supports Android and Windows platforms.
Yet, there exists a wide variety of other platforms. It is very difficult to develop
pWeb client software for all of these operating systems and ensure compatibility
across these clients.

Besides the technical challenges, we have to address a deployment challenge that
is related to the contemporary business model adopted by the ISPs. Traditionally,
users has to pay for both download and upload bandwidth usages. This policy
will discourage a user to host Web contents from his own devices. However, we
argue that the ISPs should remove the charges on upload bandwidth usage for
their own benefit. Our argument can be justified by observing the economic tension
between the ISPs and the content providers. ISPs work as a carrier, while the content
providers take the major cut from the aggregate revenue. By allowing free upload
bandwidth, ISPs can play the role of a content provider and can eventually increase
their profit margin.

The Web has a tremendous importance worldwide. It has arguably become the
world’s greatest resource for information, and it’s success has fostered a variety of
new ways for people to share information, communicate, and interact. Over the past
decade, a wave of cultural phenomena – including Google, Wikipedia, YouTube,
MySpace, Facebook, and Twitter – have all utilized the web as their interface.

Serverless web hosting can have a dramatic social impact. pWeb will allow the
free hosting of websites, without limitation on content type or size. This will provide
anybody the opportunity to publish to the masses, rather than restricting them by
economics. In addition, freedom of speech is a valued principle, however worldwide
there are many who strive to block access to certain information. The distributed
approach of pWeb is inherently resistant to censorship, and will help to spread this
freedom worldwide.

The “free” nature of pWeb hosting will also promote other economic activities.
From a content provider’s point of view, it will allow them to focus on the production
and sharing of content, rather than on hosting and administration. For an individual
or small organization, they will have the capability to reach a far larger audience than
would have been previously possible, due to prohibitive hosting costs. In addition,
we believe that this restructuring will create the opportunity for a host of new
applications that better connect the content provider with the user.
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