

IN .NET

Marcin Kawalerowicz
Craig Berntson

MANNING

www.allitebooks.com

http://www.allitebooks.org

Continuous Integration in .NET

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Continuous
Integration

in .NET

MARCIN KAWALEROWICZ

CRAIG BERNTSON

MANNING

Greenwich

(74° w. long.)

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit

www.manning.com. The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department

Manning Publications Co.

180 Broad St.

Suite 1323

Stamford, CT 06901

Email: orders@manning.com

© 2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in

any form or by means electronic, mechanical, photocopying, or otherwise, without prior written

permission of the publisher.

Many of the designations used by manufacturers and sellers to dist inguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning

Publications was aware of a trademark claim, the designations have been printed in init ial caps

or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have

the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Recognizing also our responsibility to conserve the resources of our planet, Manning books

are printed on paper that is at least 15 percent recycled and processed without the use of

elemental chlorine.

Manning Publications Co.

180 Broad St.

Suite 1323

Stamford, CT 06901

Development editor:

Copyeditor:

Typesetter:

Cover designer:

Emily Macel

Tiffany Taylor

Dennis Dalinnik

Marija Tudor

ISBN: 9781935182559

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11

www.allitebooks.com

mailto:orders@manning.com
http://www.allitebooks.org

To HSD and all the “bwk” people
—M.K.

To Bonnie and Sherwood, the best parents a son could have

—C.B.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

brief contents

PART 1

MAKE I T HAPPEN ...1

1

■ Understanding continuous integration 3

2 ■ Setting up a source control system 29

3

4

■

■

Automating the build process

Choosing the right CI server

66

89

5 ■ Continuous feedback 120

6 ■ Unit testing continuously integrated code 144

PART 2

EXTEND I T ..165

7

8

■

■

Performing integration, system, and

acceptance testing 167

Analyzing the code 199

PART 3

SMOOTH AND POLI SH I T ..225

9

10

■

■

Generating documentation

Deployment and delivery

227

240

11

12

■

■

Continuous database integration

Extending continuous integration

260

276

vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents

preface xv
acknowledgments xvii

about this book xix

about the authors xxii

about the cover illustration xxiii

PART 1 MAKE I T HAPPEN ...1

1

Underst and ing con t inuous in t egrat ion 3

1.1 What does it mean to integrate continuously?

4

Defining continuous integration 4 ■ CI and your

development process 5 ■ Do I need to build with every

change? 7 ■ Overcoming team objections 8 ■ I t ’s all

about reducing risk 10

1.2

1.3

A simple Hello World–type CI example 12

CI tools 13

Essential tools 14 ■ Code-analysis tools 18

Testing tools 20 ■ Other tools 20

1.4 A project for CI : leasing/credit calculator 20

1.5

Calculat ion core

Summary

27

21 ■ Calculators 26

ix

 www.allitebooks.com

http://www.allitebooks.org

x

CONTENTS

2

Set t ing up a source con t ro l syst em 29

2.1 Choosing the right source control system for you

30

Benefits of source control systems 31 ■ Source control

aspects to consider 32

2.2 Sett ing up a Subversion source control server 35

Installing VisualSVN Server 35 ■ Creating users

and groups 37 ■ Creating the repository 37

Keeping a healthy repository 39

2.3 TortoiseSVN and working with the repository 42

Subversion client: TortoiseSVN 42 ■ Creating a

working copy 43 ■ Committ ing changes 45 ■ Updating

and committ ing files 48 ■ Referencing 50

2.4 Setting up Team Foundation Server 53

I nstalling TFS 2010 53 ■ TFS collections 55

Using Visual Studio Team Explorer 58 ■ Managing TFS

source control 61 ■ Locking and shelving 63

2.5 Summary 64

3

Aut om at ing t he bu i ld process 66

3.1 Build automation 67

Make and its children 67 ■ I t ’s not an Ant 68

3.2 The Microsoft worker: MSBuild 70

First encounters with MSBuild 71 ■ Using predefined tasks to

extend an MSBuild script 73 ■ MSBuild Community Tasks 76

3.3 The happy couple: Visual Studio and MSBuild 78

Examining a project file 79 ■ Examining the

solut ion file 81 ■ Starting an MSBuild script with

Visual Studio 82

3.4 Extending MSBuild by writing and using custom tasks 83

3.5

Implementing a custom task

Summary

88

84 ■ Putting it all together 86

4

Choosing t he r igh t CI server 89

4.1 A quick review of the CI process 90

4.2 Examining the CI server possibilit ies 92

Manual integration build or your own CI server? 92

CI servers for .NET 94

CONTENTS

xi

4.3

Continuous integration with CruiseControl.NET

95

Starting with CCNet 96 ■ Configuring CCNet 97

Triggering builds 100

4.4 Continuous integration with TeamCity 102

Running TeamCity 102 ■ Configuring a project 104

Pre-tested commit 110

4.5 Continuous integration with Team Foundation

Server 2010 113

TFS and build controllers 113 ■ Configuring TFS

build agents 115 ■ TFS build configuration 116

4.6 Summary 119

5

Cont inuous feedback 120

5.1 Knowing the state of your CI process 121

5.2 Continuous feedback with CruiseControl.NET 122

The CCNet Web Dashboard 122 ■ Getting feedback

with CCTray 126 ■ Alternative feedback

mechanisms with CCNet 128

5.3 Continuous feedback with TeamCity 129

TeamCity web feedback 130 ■ The TeamCity Windows Tray

Notifier 132 ■ Alternative notifications with TeamCity 134

5.4 Continuous feedback with Team Foundation Server 135

TFS tray not ificat ion 136 ■ Getting build details from

the TFS website 137

with TFS 137

■ Alternative feedback mechanisms

5.5 Extending build notifications 139

Providing feedback via an LED message board 139

Providing feedback via SMS notifications 142

5.6 Summary 142

6

Unit t est ing con t inuously in t egrat ed code 144

6.1 Unit testing from a bird’s-eye view 145

6.2 First encounters with unit testing 146

The search for perfect unit test material 147

Testing with NUnit 149

CruiseControl.NET 151

■

■

Marrying NUnit with

Examining test coverage 154

xii

CONTENTS

6.3

Microsoft unit testing framework

157

Creating unit tests the Microsoft way 157 ■ Testing on

TFS 2010 160 ■ MSTest in non-TFS environment 161

6.4 Summary 164

PART 2 EXTEND I T...165

7 Per form ing in t egrat ion , syst em , and accept ance t est ing 167

7.1 Extending your CI test repertoire 168

Beyond unit tests in CI 169 ■ Involving the customer or

domain expert in the CI testing process 171

right failing 172

■ Right timing,

7.2 Up close and personal with integration tests in CI 173

Performing integration testing 173 ■ From mocking

to integration testing 176

7.3 Testing the user interface 180

Testing Windows Forms with White 180 ■ Silverlight

test automation 182 ■ Testing a web application with

Selenium 185 ■ Integrating UI tests into the CI process 189

7.4 Acceptance testing with FitNesse 192

7.5

Preparing the FitNesse framework

Summary

197

192 ■ FitNesse and CI 196

8

Analyzing t he code 199

8.1 Analyzing object code with FxCop

200

Using Visual Studio Code Analysis 200 ■ Setting up

continuous FxCop code analysis 203

with CI servers 206

■ Integrating FxCop

8.2 Analyzing C# with StyleCop 209

Using StyleCop 209 ■ Continuous StyleCop analysis 210

8.3 Custom FxCop and StyleCop rules 213

Developing a custom FxCop rule 214 ■ Developing a

custom StyleCop rule 216

into the CI process 217

■ Incorporating custom rules

8.4 Extending code analysis 218

Stat ic analysis with NDepend 218

duplication with TeamCity 223

■ Analyzing code

8.5 Summary 224

CONTENTS

xiii

PART 3 SMOOTH AND POLI SH I T225

9

Generat ing docum ent at ion 227

9.1 XML documentation 228

Common XML documentation tags 228 ■ Formatting text

in XML comments 231

9.2 Sandcastle 233

9.3

Building with Sandcast le

Summary

239

235 ■ Sandcastle in CI 237

10

Deploym ent and del ivery 240

10.1 Creating an installer for your Windows application

Creating a Microsoft Installer package in Visual Studio

Continuously creating installation files 243

10.2

Windows Installer XML toolset 244

241

241

Creating an installer using WiX 245 ■ Automating WiX

with CI 247

10.3 ClickOnce deployment 248

Creating a ClickOnce deployment 248

in a CI scenario 251

■ ClickOnce

10.4 Web Deployment Tool 253

Visual Studio 2010 and MS Deploy 254

the build server 256

■ MS Deploy on

10.5 Summary 258

11

Cont inuous dat abase in t egrat ion 260

11.1 What is continuous database integration? 261

11.2

11.3

11.4

Rolling your own continuous database integration

Continuous database maintenance with

RoundhousE 264

Continuous database maintenance with

Visual Studio 266

262

Getting started with database projects 266 ■ Generating test

data 268 ■ Unit testing stored procedures 271 ■ Putting Visual

Studio database maintenance into CI 274

11.5 Summary 275

xiv

12

CONTENTS

Ex t ending con t inuous in t egrat ion 276

12.1 Speeding up CI 277

12.2 Seven deadly sins of slow software builds 278

Making a build script drive your build 279 ■ Getting rid of

build-script targets’ side effects 279 ■ Multiplying updated

files 279 ■ Pass-based builds 280 ■ Output in the

source directory 281 ■ Monoliths 281

Bad dependencies 282

12.3 Scaling CI 282

Build-agent theory 282 ■ Scaling TeamCity 283

12.4

12.5

Legal roadblocks 287

Maturity model for CI 288

Building 289 ■ Deploying 290 ■ Testing 291

Reporting 292

12.6 Summary

index

295

293

preface

After complet ing my master’s degree, I moved from Poland to Germany and began

working as a .NET developer for a company full of experts in … Clarion. The Clarion

folks were developing the company’s flagship—very successful leasing software—and I

was left to do “the rest”: a bit of interfacing with web services (no way to do it from

Clarion at that time), a rewrite of a Pocket PC leasing calculator, a piece of a website

for a customer in Switzerland, and so on.

Over t ime, I was given more and more small software gems to manage. “How about

introducing a source-control system?” I thought. I was uneasy about the “zip and store

on a share” method my old friends were using. Fortunately, my bosses were open-

minded, and I was given a free hand. I could do whatever I wanted to make my work

life easier. And believe me, there was a lot to change! I started with Visual SourceSafe

and a plug-in for Visual Studio. This made a difference, but I didn’t stop searching.

I t was a t ime of Agile hype. The popularity of test-driven development was increas-

ing, and my adventure with unit testing began. We moved from Visual SourceSafe to

Subversion, and about that time I saw some information about CruiseControl.NET. I t

was a build server. I thought that was cool: all I had to do was write a build script and

check the source into the version-control system, and CruiseControl.NET would

detect my changes, pull the source, and perform the build; it would include the tests

automatically, deploy the created bits to the test server, and tell me right away if some-

thing was wrong. I knew this continuous integrat ion (CI) process would change the

way software was developed on my team. All the pains of late consolidation were allevi-

xv

xvi

PREFACE

ated: we had a fairly ready, tested piece of software every time we checked in to the

source-control system.

I had to learn MSBuild to write my build scripts. The learning curve wasn’t too

steep; soon, I had a custom-built script for every project we worked on. I was lucky to

have virtually no hardware limits from my bosses. I got a fairly old server and created

my first build machine. Boy, was it cool to see all the “yet another successful build”

messages from the Windows tray-notification tool.

From day one, I was a fan of and a believer in the CI concept. I ’m strongly con-

vinced that it was the sole attraction that kept me in the Chaos Developer Club in

those days. Now I ’m running my own company, and one of the most important tools

in my repertoire is the CI server.

Back in 2007, I wrote an article about CI for a Polish computer magazine. I t reso-

nated in the community and was generally well received. Sometime after that, a

friend suggested that the topic was worth more exploration—perhaps in a book. I

couldn’t have agreed more. I ran the idea by a few Polish publishers, but they all

said the topic was too specific for the Polish market. “Well,” I thought, “ if the Polish

market is too narrow, how about the global market?” I t was the first time I ’d consid-

ered writing the book in English. I was concerned because English isn’t my mother

tongue. I knew the language well enough to read just about anything written in Eng-

lish, but would I be able to write in it? With the support of Manning, and Craig as

coauthor, I decided to give it a try. You are holding the result !

MARCIN KAWALEROWICZ

acknowledgments

Writing a book is a long and arduous process. Many people were involved and we’re

sure to forget someone here. Our sincere thanks to all of you.

We must acknowledge the entire staff at Manning, especially Emily Macel who

guided us through most of the writing process, and Michael Stephens for his support

and patience when things got tough. There were others, including Maureen Spencer,

Karen Tegtmeyer, Christ ina Rudloff, Tiffany Taylor, Katie Tennant, Mary Piergies, and

Dennis Dalinnik, who helped along the way, and of course, publisher Marjan Bace

who green-lighted the project.

Thanks to all the technical reviewers listed here and to Margriet Bruggeman and

Nikander Bruggeman who did a final technical proofread of the manuscript shortly

before it went to press. Your valuable feedback made this book better: Erik D. Lane,

Craig Smith, Rob Reynolds, Aleksey Nudelman, Darren Neimke, Dave Corun, Jonas

Bandi, Derik Whittaker, Sebastien Vaucouleur, Amos Bannister, Philippe Vialatte, Eric

C. A. Swanson, Marc Gravell, Anil Radhakrishna, and Lester Lobo.

Finally, we would like to thank all of the readers of Manning’s Early Access Pro-

gram (MEAP) who added comments and corrections to our manuscript via the Author

Online forum.

Marcin Kaw alerow icz

I would like to thank the people who made me the developer I am today: Pawe?

Jackowski (without you, I wouldn’t have become a software developer and this

book wouldn’t have been written), Jacek Jarczak (my long-t ime friend and business

xvii

xviii

ACKNOWLEDGMENTS

associate), Bernhard Korn (a man I ’ve learned a lot from), and Harald Cich (my

first boss at C.I .C. Software GmbH; his brilliant mind was always open to innova-

tion). Thanks also to Michal Sodomka, Blaz˙ej Choros´ , Mateusz Loskot, Aleksej Kir-

schner, Lukasz Stilger, Tomasz Rospond, and my fellows at CODEFUSION.

Thanks to the people who made me the person I am today: my parents, Bar-

bara and Krzysztof; my lovely wife, Sylwia; and my daughter (born between chap-

ters 8 and 9), Zosia.

Craig Bern t son

First and foremost, I need to thank my coauthor. Marcin made the init ial contact

with Manning and got the project started. Being almost half a world apart didn’t

help, but we were able to meet briefly in Germany. I t’s mostly through his work that

we finally got to the end of this journey.

I had other help with my research and with answers to many questions about

different tools and how things work. David Starr and Richard Hundhausen were

great sounding boards.

Thanks to all the people on the C# and VB.NET Insiders lists for answering my sim-

plest of questions about the CI process in their environments. Also, thanks to the peo-

ple at Microsoft, JetBrains, and ThoughtWorks for making great products.

Finally, a personal thank you to the people close to me: my coworkers and manag-

ers for putting up with hearing me talk about this project; and most of all to Jason,

Johnathan, and especially Laurie for supporting me in this effort.

www.allitebooks.com

http://www.allitebooks.org

about this book

Continuous integrat ion is what it is, regardless of whether it ’s done in .NET or some

other technology. I t’s a set of best practices aimed at easing the integration pains that

arise during the course of a software project. .NET has its own set of tools to make CI

happen, but the basic rules stay the same: use a source-control system, build by issuing

one command, test, analyze, and deploy. Be ready.

W ho shou ld read t h is book?

This book is for developers who want to dive into state-of-the-art CI techniques. I t pro-

vides simple guidance on how to create a full CI process with minimal effort and cost.

The book wasn’t written for experienced build masters and old-time CI practitioners,

but we hope they will find some gems of knowledge as well.

Roadm ap

The book is divided into three parts:

Part 1 “Make it happen” includes chapters 1-6

Part 2 “Extend it” consists of chapters 7-8

Part 3 “Smooth and polish it” covers chapters 9-12

Marcin wrote chapters 2 through 10. Craig contributed chapters 1, 11, and 12.

Chapter 1 lays the foundation. I t describes the CI process and gives you advice

about how to introduce it to your company. We’ll show a simple way to set up a CI pro-

cess using a CMD file.

xix

xx

ABOUT THIS BOOK

Chapter 2 describes the sine qua non for CI : a source-control system. You’ll learn

what the code repository is and how to use it. We’ll help you choose the right tool for

your needs. We’ll describe Subversion and TFS source control as examples of source-

control systems that are ready to be used in CI .

Chapter 3 goes deep into build automation. We’ll describe how to set up a system

that lets you build an entire project using one command. We’ll present MSBuild as our

tool of choice.

In chapter 4, we’ll help you choose a CI server. We’ll describe how to install and set

up CruiseControl.NET, TFS in its basic configurat ion, and JetBrains TeamCity.

In chapter 5, we’ll examine the responsiveness of CI servers. We’ll look at the feed-

back mechanisms available in these systems, including web-based reports, system tray

notifications, email, and SMS notifications. At the end, you’ll use a USB LED toy to get

immediate feedback from your system.

Chapter 6 describes unit testing and how it’s a characteristic of the CI process.

You’ll use NUnit and MSTest to build a simple test suite, and you’ll integrate the test

results with the CI server. We’ll examine test coverage and sending reports as feedback

to developers. You’ll learn how to mock some of the tests and how doing so affects the

CI process.

In chapter 7, we’ll extend your test repertoire with integration, system, functional,

and acceptance tests. You’ll use various frameworks to test various technologies: White

to test Windows Forms and Silverlight, Selenium to test Web Forms, and FitNesse to

establish user-acceptance test ing. You’ll learn if and when it’s OK to introduce these

kinds of tests to the CI process.

Chapter 8 describes how to perform static code analysis. You’ll analyze precom-

piled .NET intermediate language using FxCop. We’ll show how to use StyleCop to

analyze C# code even before it’s precompiled. And we’ll explain how to use NDepend

to do addit ional analysis. We’ll provide information about how to extend and inte-

grate this analysis with CI .

Chapter 9 describes XML comment notation and how to generate MSDN-style doc-

umentation from it. We’ll show you how to generate documentation continuously.

Chapter 10 deals with deployment and delivery, including using Visual Studio to

create setup files, and using WiX and MS Deploy. We’ll show you how to use these tech-

niques on the CI server.

Chapter 11 deals with continuous database integrat ion. We’ll show you how to main-

tain a database using Visual Studio and how to perform tests at the database level.

Chapter 12 is about extending CI . We’ll explain how to deal with slow builds, how to

scale the CI process, and how to check the maturity of the CI process you’re using.

Code conven t ions and dow n loads

All source code in listings or in text is in a fixed-width font like this to separate it

from ordinary text. Code annotations accompany many of the listings, highlighting

ABOUT THIS BOOK

xxi

important concepts. In some cases, numbered bullets link to explanations that follow

the listing.

This book includes a fair amount of source code that is available for download.

The source code illustrates the techniques described in the book. I t is not produc-

tion code. We provide many configuration files, especially for CruiseControl.NET.

You can access the source code from the publisher’s website at www.manning.com/

ContinuousIntegrationin.NET.

Aut hor On l ine

Purchase of Continuous Integration in .NET includes free access to a private web forum

run by Manning Publications where you can make comments about the book, ask

technical questions, and receive help from the authors and from other users. To

access the forum and subscribe to it, point your web browser to www.manning.com/

ContinuousIntegrationin.NET. This page provides information on how to get on the

forum once you are registered, what kind of help is available, and the rules of conduct

on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful

dialog between individual readers and between readers and the authors can take

place. I t is not a commitment to any specific amount of participation on the part of

the authors, whose contribution to the book’s forum remains voluntary (and unpaid).

We suggest you try asking them some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessi-

ble from the publisher’s website as long as the book is in print.

http://www.manning.com/ContinuousIntegrationin.NET
http://www.manning.com/ContinuousIntegrationin.NET
http://www.manning.com/ContinuousIntegrationin.NET
http://www.manning.com/ContinuousIntegrationin.NET
http://www.manning.com/ContinuousIntegrationin.NET
http://www.manning.com/ContinuousIntegrationin.NET
http://www.manning.com/ContinuousIntegrationin.NET
http://www.manning.com/ContinuousIntegrationin.NET

about the authors

MARCIN KAWALEROWICZ has a master’s degree in computer science from the Technical

University of Opole, Poland, and more than eight years of experience in software

development. He started programming in PHP and Java during his studies. After grad-

uation, he lived and worked in Munich, Germany, where he learned the basics of .NET

development. He’s back in Poland now, writing software and running his own com-

pany, CODEFUSION. Through his German contractors, he worked for the financial

branch of a large car manufacturer based in Munich and an even bigger credit bank

based in Zurich, Switzerland. He writes about the stuff that matters on his blog,

www.iprogrammable.com, and contributes articles to Polish computer magazines.

Marcin lives in Silesia, Poland, with his wife and daughter.

CRAIG BERNTSON has been writ ing software for over 25 years. He’s worked in several dif-

ferent fields and felt the same pain in his processes that you have. He has been named

a Microsoft Most Valuable Professional (MVP) every year since 1996 and is currently an

MVP for Visual C# . He speaks at developer events across the US, Canada, and Europe

and has written art icles for several magazines. This is his second book; he forgot every-

thing he said about never doing it again after the first one. Craig is active in his local

developer community, helps organize Utah Code Camp, and speaks at and attends sev-

eral area .NET and software craftsmanship groups. Craig lives in Salt Lake City, Utah,

where he works for a Fortune 100 company developing database software in C# and

C+ + for use in hospitals worldwide. He blogs at www.craigberntson.com/blog.

xxii

http://www.iprogrammable.com/
http://www.craigberntson.com/blog

about the cover illustration

The figure on the cover of Continuous Integration in .NET is captioned “Bride from Sinj

in Dalmatia, Croatia.” The illustration is taken from a reproduction of an album of

Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenovic,

published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations

were obtained from a helpful librarian at the Ethnographic Museum in Split, itself sit-

uated in the Roman core of the medieval center of the town: the ruins of Emperor

Diocletian’s retirement palace from around AD 304. The book includes finely colored

illustrations of figures from different regions of Croatia, accompanied by descriptions

of the costumes and of everyday life.

Sinj is a small town in the center of an area in Dalmatia known as Cetinska kraj ina, a

group of settlements situated on a fertile plain through which the river Cetnia passes.

Sinj lies between four mountains which give the area its specific sub-Mediterranean

climate. The town grew around an ancient fortress (held by the Ottomans from the

sixteenth century until the end of seventeenth century) and a Franciscan monastery

with the church of Our Lady of Sinj, a place of pilgrimage.

The bride on the cover wears a red cap over which she t ies a blue scarf, and a white

dress embroidered with red wool that she wears over a white shirt. She has tied a red

linen apron around her waist and added a long, dark blue vest decorated with red

wool. A small bouquet of flowers completes the bridal costume.

Dress codes and lifestyles have changed over the last 200 years, and the diversity by

region, so rich at the time, has faded away. I t is now hard to tell apart the inhabitants

of different continents, let alone of different hamlets or towns separated by only a few

xxiii

xxiv

ABOUT THE COVER ILLUSTRATION

miles. Perhaps we have traded cultural diversity for a more varied personal life—

certainly for a more varied and fast-paced technological life.

Manning celebrates the inventiveness and initiat ive of the computer business with

book covers based on the rich diversity of regional life of two centuries ago, brought

back to life by illustrations from old books and collections like this one.

A

Part 1

Make it happen

technically savvy programmer and project manager once asked how

we’d describe continuous integration (CI) to someone who had never heard of

it. We said there are two types of answers, and which one to give depends on how

much time the listener has. The longer answer starts with part 1 of the book.

The shorter one is not really an answer—it’s another question that can give you

an idea about what CI is. Do you remember the last time you released software?

That’s the time in the project when you gather all the bits and pieces required to

deliver the software to the customer. Was it painful? Yes? Well, that’s where CI

can come to the rescue.

In the first part of this book (chapters 1 through 6), we’ll lay the groundwork

for a well-designed CI process in .NET. You'll learn the basics required for any CI

system. We’ll start by looking at CI in general. We’ll define the term and talk a lit-

t le about how to do CI in .NET. After that, we’ll introduce the source control sys-

tem as part of the CI tool chain that can’t be omitted. We’ll help you choose the

right one and introduce it into your day-to-day work.

As a second ingredient that’s required for CI , we’ll describe build automa-

tion. We’ll show why you need a single command-build process and how modern

XML-based build systems are perfect for the .NET CI process. You'll also find out

how to choose the right CI server to bind all the ingredients into one.

We'll then look at unit testing—what it is and how to use it in CI . You’ll

learn to write unit tests and automate their execution. We’ll discuss CI servers

and their ability to give immediate feedback about the state of the build pro-

cess. I t’s a core concept of the CI process that every degradation in code qual-

ity should be immediately visible, so the team can react as swiftly as possible to

2

PART 1

Make i t happen

make obstacles disappear. This is the purpose of controlling and reporting mecha-

nisms in modern CI servers. We’ll look at how you can extend these reporting capa-

bilit ies with your software.

After reading this part of the book, you’ll be able to set up your own CI process

using free or inexpensive software. You’ll understand what the CI process is and

how to use it to your team’s benefit. And you’ll be ready to extend CI to better suit

your needs.

Understanding
continuous integration

Th is chapt er covers
■

■

■

Continuous integrat ion theory

A Hello World CI example

A preliminary list of CI tools

As developers, we’re interested in creating the best possible applications for our cus-

tomers with the least amount of work. But with applications becoming more com-

plex and having more moving parts, creating great applications is getting harder,

even with advances in tools such as Visual Studio and the .NET Framework.

One of the keys to improving applications and productivity is to automate some

of the work. Continuous integration (CI) is one of the best ways to do this.

Have you ever written code that did its small task perfectly, but then discovered

unexpected side effects when you integrated that piece of code with the rest of the

application? Do you always have success integrating your code with code from

other developers? Have you ever shipped an application, only to find that it didn’t

work for the customer but you couldn’t duplicate the error? Can you always pre-

dictably measure the state of the code for your current project? CI helps alleviate

these problems and more.

In this chapter, you’ll learn what CI is all about, why should you use it, and how

to overcome objections to its adoption from your team. We’ll briefly introduce you

3

4

CHAPTER 1

Underst anding con t inuous in t egrat ion

to several free or low-cost tools such as CruiseControl.NET, Subversion, MSBuild, Team

Foundation Server, and TeamCity that are part of a complete CI process. Throughout

the rest of the book, we’ll explain in detail how to use these tools.

This chapter also demonstrates a simple CI process through an example using

batch files. We’ll also get started on a more complex Visual Studio Solution that we’ll

use to demonstrate various CI tools and techniques. But before we do any of that, you

need to understand exactly what CI is.

1.1

1.1.1

W hat does i t m ean t o in t egrat e con t inuously?

When you adopt CI , it ’s likely that you’ll make major changes in your development

processes because you’ll move from a manual system to an almost completely auto-

mated system. Along the way, you may meet resistance from your team members. This

section provides you with reasons to use CI and how to overcome objections. But

before we take you there, we need to define CI .

Def in ing con t inuous in t egrat ion

One of the best definitions of continuous integration comes from Martin Fowler

(www.martinfowler.com/articles/ continuousIntegration.html):

Continuous Integration is a software development practice where members of a team

integrate their work frequently, usually each person integrates at least daily—leading to

multiple integrations per day. Each integration is verified by an automated build

(including test) to detect integration errors as quickly as possible. Many teams find that

this approach leads to significantly reduced integration problems and allows a team to

develop cohesive software more rapidly.

This definition contains an important phrase: “multiple integrations per day.” This

means that several times each day, the CI system should build and test the application.

But multiple integrations per day isn’t where you begin your journey into CI ; we rec-

ommend against this because many shops not using CI will meet enough resistance

just automating the build, let alone doing multiple builds per day. (We’ll talk more

about overcoming team resistance later in this chapter.) Ideally, you should set up

your CI process just as you create software: by taking small steps, one at a t ime.

Here is another definition:

CI is the embodiment of tactics that gives us, as software developers, the ability to make

changes in our code, knowing that if we break software, we’ll receive immediate feedback …

[I t is] the centerpiece of software development, as it ensures the health of software through

running a build with every change.

—Paul Duval, Continuous Integration

(Addison-Wesley, 2007)

The key phrase here is “ the centerpiece of software development.” This means what-

ever development process and methodology you use, CI is a key part of it.

www.allitebooks.com

http://www.allitebooks.org

W hat does i t m ean t o in t egrat e con t inuously?

5

Our definit ion is similar to those we’ve mentioned. Here’s how we define continu-

ous integration:

An automated process that builds, tests, analyzes, and deploys an application to help

ensure that it functions correctly, follows best practices, and is deployable. This process runs

with each source-code change and provides immediate feedback to the development team.

As we were discussing this definition, we wondered what a build is. I s it the same as

clicking Build on the Visual Studio menu, or something more? We finally decided that

the definition varies depending on what you’re doing. Early in the development pro-

cess, a build can be as simple as compiling and unit testing the code. As you get closer

to release, a build includes additional and more complete testing and running code

metrics and analysis. You can also go as far as combining all the different files into an

install set and making sure it works correctly.

Finally, don’t get caught up with the meaning of continuous. CI isn’t truly continu-

ous, because integration occurs only at specific intervals or when triggered by a spe-

cific event. Integration is continuous in that it happens regularly and automatically.

Now that you know what CI is, let’s see how it changes your development process.

1.1.2

CI and your developm ent process

I s your development process agile? Do you use extreme programming (XP), scrum,

or something else? I s your company deeply rooted in waterfall methodologies? Does

your process fall somewhere between agile and waterfall?

I t really doesn’t matter which methodology you use, because you probably follow

pretty much the same process when it comes to writing code:

1

2

3

4

5

6

7

8

Check out the needed source files from your source code repository.

Make changes to the code.

Click Build on the Visual Studio menu, and hope everything compiles.

Go back to step 2. You did get compile errors, didn’t you?

Run unit tests, and hope everything is green. We hope you’re running unit tests.

Go back to step 2. Unit tests do fail. In this case, you’ll see red. Perhaps in more

ways than one.

Refactor the code to make it more understandable, and then go back to step 5.

Check the updated code into the source code repository.

When you start using CI , you’ll follow the same process. But after you check in the

source code, you’ll take additional steps (see figure 1.1).

9

10

11

12

An automated system watches the source control system. When it finds changes,

it gets the latest version of the code.

The automated system builds the code.

The automated system runs unit tests.

The automated system sends build and test results to a feedback system so that

team members can know the current status of the build.

6

CHAPTER 1

Underst anding con t inuous in t egrat ion

Figure 1.1 In the CI process, developers check code into the version control

repository. The automated CI system polls the repository for changes and then builds

and tests the code. Results are posted to a feedback system where team members

can see the results.

At this point, you may be asking yourself several questions, such as, “Why do tests need

to be run multiple times?” or “Why can’t I just click Build in Visual Studio?” The

answer to these questions is the same: automating the building, testing, and running

of other processes through CI ensures that the code from multiple people integrates,

compiles, and functions correctly, and that it can be reproduced the same way every

time on a different machine than your workstation. Also, consider that you may have

an application with many assemblies. When you click Build, you may only build the

assemblies you’re responsible for. Even if you’re a one-person shop, adopting CI will

improve the quality of your software.

Automating the build and the unit tests are steps in the right direction, but a good

CI process can do more—and eventually you’ll want it to, so you can maximize its

usefulness. Things like running code-analysis tools, running tests in addition to unit

W hat does i t m ean t o in t egrat e con t inuously?

7

testing, building an install package, and simulating an install on the customer’s PC are

all possible through a CI process. But you won’t do all these things with every change.

1.1.3

Do I need t o bu i ld w it h every change?

The CI steps we’ve outlined make it sound like every time a developer checks in

code, a build is triggered. This is the ult imate goal and the reason it’s called continu-

ous integration. Reread the quote from Paul Duval: he says you should build “with

every change.” Martin Fowler says, “multiple integrations per day.” That’s pretty close

to continuous. But, remember, continuous is the eventual goal. You don’t want to

start there.

One way to begin to set up your CI system is to start by gett ing the latest changes

from source code and building the application. Then add unit tests. And only do this

daily at first. You can call this a daily build; but as you’ll see in a moment, a daily build

includes other things that don’t run when you do the incremental build.

When you have this build running every day, add two or three builds per day that

only build and test. I t won’t take long, and you’ll be building continuously and adding

different builds to do different things. The exact types of builds you need depend on

your environment and applicat ions. Some of the more common builds are listed in

table 1.1.

Table 1.1

Some of the different types of builds you can do with CI

Build type

Continuous/ Incremental

Daily/Nightly

Weekly

Release

QA

Staging

How it ’s used

Runs when code is checked in. Does a quick compile and

unit test.

Does a compile and full suite of unit tests and possibly

additional test ing such as FitNesse.

Does a compile, full unit testing, and addit ional testing

such as FitNesse.

Creates an install set and then runs and tests the inst

all process.

Creates a build just for the QA team.

Builds and copies assemblies to a staging server.

The most important build, and the one you want to get to, is the continuous or incre-

mental build. This build is automatically triggered whenever source code is checked in

to the repository. Because this build can potentially run several t imes per day, and one

build may run immediately upon completion of another, you want the continuous

build to run quickly—preferably in under 5 minutes. This build should get the

updated code, rebuild the assembly it ’s in, and then run some preliminary unit tests.

Reports are sent to the feedback mechanism.

8

CHAPTER 1

Underst anding con t inuous in t egrat ion

Next is the daily build, often called the nightly build. Rather than running whenever

the code changes, the daily build is scheduled to run once per day, usually in the

middle of the night. Because you don’t need to worry about the next build starting

immediately, the daily build typically runs a complete suite of unit tests against all the

code. Depending on your environment, you may want to add additional automated

tests or code analysis.

Another build type is the weekly build, which runs automatically and usually on the

weekend. Once a week, you should run a code analysis and additional tests with tools

like Selenium, FitNesse, and NUnitForms. You may also want to create documentation

with Sandcastle or do continuous database integration. As you get closer to your

release date, you may want to run the weekly test build more often. You’ll also want to

run a release build.

The purpose of the release build is to create and test an install set. The release

build is typically manually triggered. But after the build is started, all the other steps

are handled automatically. In a release build, you’ll build all the source code, incre-

ment the version number, and run a full suite of tests. You’ll then create the install set

and simulate the install. Good CI server software will have a way to check if the install

was successful and then roll back the changes, so that the test system is ready for the

next round of install testing.

Your environment may require other types of builds. For example, you may have a

build that copies assemblies to a QA environment after the build. Or you can copy files

to a staging or production server. The bottom line is that many different types of

builds are needed for different purposes. But because steps are automated, you can be

sure that things are done the same way every time.

As you introduce CI and different types of builds, some team members may resist the

changes. I t’s important to overcome these objections so your CI process is successful.

1.1.4

Overcom ing t eam obj ect ions

With all these builds going on and developers having to change their routine and

check in code more often, you may get objections from team members. Some com-

mon objections are as follows:

■

■

CI means increased maintenance.

Someone will have to maintain the CI system. This will take them away from

programming duties. At first, there will be extra overhead to set up the system;

but when a project is fully integrated, your team will save time because it will be

faster and easier to test the application and detect and fix bugs. Many teams

report that after the CI process is running, maintenance takes less than an hour

per week.

This is too much change, too fast.

I t ’s difficult to adapt to the new way of doing things. Don’t implement every-

thing at once. Start out with a simple build once per day, and then add unit test-

ing. After the team is comfortable with this, you can add one or two additional

W hat does i t m ean t o in t egrat e con t inuously?

9

builds per day or start doing code analysis. By taking the process in baby steps,

you’ll get more buy-in into the process.

■

■

■

CI means additional hardware and software costs.

Start out small with an old PC as your CI server if you need to. Eventually, you’ll

want better hardware so that you can run builds quickly (remember, the inte-

gration build should run in under 5 minutes); but for a build two or three t imes

a day, older hardware will work. I f you use the tools we discuss here, your soft-

ware costs will be minimal.

Developers should be compiling and testing.

We’re not taking those responsibilit ies away from developers. We’re moving

much of the grunt work to an automated system. This allows programmers

to use their brains to solve the business problems of the application. This

makes the developers more productive where it counts: writing and debug-

ging code.

The project is too far along to add CI .

Although it’s better and easier to place a new project under a CI process, the

truth is, most of the work we do is maintenance on exist ing projects. An

existing project may not have unit tests, but you’ll still use source control and

need to do builds. You can benefit from CI no matter how far along your

project is.

One of the authors once worked in an environment where each developer was respon-

sible for a different executable in a 15-year-old C+ + application. Each executable was

built locally and then copied to a shared folder on the network where QA picked it up

and tested it. Problems arose because each developer used a different version of third-

party components, and each developer used different compiler switches. This meant

that if one developer was on vacation, and a bug in their code needed to be fixed, it

was difficult to reproduce their development environment on another developer’s

workstation. I t was so troublesome that management finally decided that unless the

customer was down due to the bug, the fix would wait for the responsible programmer

to get back to the office. I f CI had been in place, many of the issues with the software

wouldn’t have happened.

Here are several reasons to use CI in your development process:

■

■

■

Reduced risks —By implementing good CI processes, you’ll create better software,

because you’ll have done testing and integration earlier in the process, thus

increasing the chances of catching bugs earlier. We’ll talk more about reducing

risks in the next section.

Deployable software —I f you automate the installat ion process, you’ll know that

the software installs as it should.

I ncreased project visibility —The feedback mechanism allows project members to

know the results of the build and where the problems are. Bugs can be fixed

sooner rather than later, reducing costs and the time spent fixing bugs.

10

CHAPTER 1

Underst anding con t inuous in t egrat ion

■

Fast incremental builds —In October 2009, ZeroTurnaround released results of a

survey of more than 500 Java developers. In the survey, 44% said their incre-

mental builds took less than 30 seconds, and another 40% said build times were

between 1 and 3 minutes. The overall average build time was 1.9 minutes.1

Although the survey was for Java apps, there’s no reason not to believe your

.NET projects will have fast incremental build t imes. Fast incremental build

times means you get build and test results sooner, helping you to fix bugs ear-

lier in the development process.

Don’t let team objections get you down. The initial resistance will eventually give

way to acceptance as the team works with the CI system. Virginia Satir, a family ther-

apist, developed the Satir Change Model, which shows how families deal with

change. Steven Smith wrote that the same model can be used to show how new tech-

nology is adopted (http: / / stevenmsmith.com/ar-satir-change-model/). The change

process involves five steps:

1

2

3

4

5

Late status quo —Everyone is working in the current process and knows how

it works.

Resistance —A new element is introduced. People are hesitant to change how

they’re working. The late status quo works fine. Why change it?

Chaos —The new element is adopted. There is no longer a normal way of doing

things. Daily routines are disrupted.

Integration —People slowly become adjusted to the new way of doing things. I t

gets easier to do their jobs with the new methodology.

New status quo —The new element becomes fully integrated into the system. Peo-

ple now look at it as normal.

Almost every team has adopted new methodologies at one time or another. This pro-

cess should sound familiar to you.

As you meet resistance from the team, be persistent in implementing the changes.

Team members will eventually accept them. Some team members will adopt CI more

quickly than others, who may need more convincing. Perhaps you should show them

how CI reduces risk in the development process.

1.1.5

I t ’s al l abou t r educing r isk

Your customer doesn’t like risk. Your manager doesn’t like risk. Your project manager

should have plans in place to mitigate risk. In the end, you shouldn’t like risk either.

CI is all about reducing risk.

Perhaps the biggest risk in software development is schedule slippage—in other

words, the project being delivered late. Because of the feedback mechanism in the CI

1

Alex Handy, “Survey finds that incremental Java builds are speeding up,” Software Development Times, Oct. 29,
2009, www.sdtimes.com/ link/33867.

http://www.sdtimes.com/link/33867

W hat does i t m ean t o in t egrat e con t inuously?

11

process, team members always know the status of the current build, which helps you

know whether the project is getting behind schedule. Feedback mechanisms will be

presented in chapter 5.

The next biggest risk is bugs. I t’s been shown that the later in the process you find

a bug, the more costly it is to fix. Some estimates suggest that it costs as much as

$4,000 to fix a single bug in internal, home-grown corporate web applications. In

2005, a well-known antivirus company had a bug in an update. That single bug caused

customers to lose confidence in the antivirus software and forced the company to

lower its quarterly income and revenue forecasts by $8 million. Do you want your

company to experience similar costs? One of the caveats of CI is that bugs are fixed as

soon as they’re reported. By integrating and testing the software with each build, you

can identify and fix bugs earlier in the process. We’ll discuss unit test ing in chapter 6

and application testing in chapter 7.

Have you considered how many different code paths exist in your application?

Have you tested each if/else combination? How about every case of a switch

statement? In his book Testing Computer Software (John Wiley & Sons, 1999), Cem

Kaner mentions a 20-line program written by G. J. Meyers that has 100 trillion

paths. Code coverage is a methodology that checks which paths are tested and which

aren’t. A great thing about code coverage is that you can automate it in your CI pro-

cess. I t’s impossible to test every combination; but the more you test, the fewer

issues will be uncovered by your customers. Code coverage will also be presented in

chapter 6.

Another risk is database updates. I t’s never easy to add columns to a table or new

tables to a database. With continuous database integration, you’ll know that database

changes work properly and without data loss. We’ll discuss continuous database inte-

gration in more detail in chapter 11.

Developers often hate coding and architectural standards, but they have a useful

purpose: they ensure that the application follows best practices, which in turn makes

the applicat ion perform better and makes it easier to maintain. Code reviews catch

some of these issues; but because code reviews are a manual process, things are

missed. Why not automate standards compliance as part of your CI process? We’ll

cover code analysis in chapter 8.

Comments are rarely put in code, and documentation is generated even less often.

Many people say that if you’re agile, you don’t have documentation, but this isn’t true.

Agile says that you value working software over documentation. But some documenta-

tion is st ill needed, especially if you’re creating assemblies for use by other developers.

Here’s another opportunity for automation in your CI process, and one that’ll be cov-

ered in chapter 9.

How do you know that your installation process works correctly? There are few

things that frustrate users more than when they can’t install an application. Create

and test the entire installation process in your CI system. We’ll cover deployment and

delivery in chapter 10.

12

CHAPTER 1

Underst anding con t inuous in t egrat ion

Finally, CI also increases visibility. I t ’s easier to see problems hiding in the project

that without CI wouldn’t be found until much later in the development process, when

they would be harder and much more costly to fix.

Now that you know what continuous integration is and how it can improve your

development process, let’s see CI in action.

1.2

A sim ple Hel lo W or ld– t ype CI exam ple

I t seems that just about every computer book starts with a Hello World application. To

help you understand the CI process, we’ve developed a simple C# application and sim-

ulated a CI server using a Windows script. Make sure you have .NET Framework 4.0

Extended installed. Throughout the book, we’ll use Visual Studio 2010. I f you have it

installed, you’re good to go.

To install the demo, create a miniCI folder, and then copy the demo files into it. To

run the demo, open a command window, change the directory to the miniCI folder,

and type Build. The results are shown in figure 1.2.

The build script is an old command-line batch file. We used this tool to show you

how easy it is to create something that resembles the CI process. We aren’t the only

ones to try something like this: there are PowerShell scripts made to do the CI server’s

job (see http: / / ayende.com/Blog/archive/2009/10/06/ texo-ndash-my-power-shell-

continuous-integration-server.aspx). The CI script, shown next, verifies that the input

and output folders exist, compiles the Equals.cs file into an .exe, and then runs it to

Figure 1.2 The miniCI application builds updated files, tests and deploys them, and

then keeps checking for changes in the source code files.

http://ayende.com/Blog/archive/2009/10/06/texo-ndash-my-power-shell-continuous-integration-server.aspx

CI t ools

13

verify that it works. The application takes two parameters and returns true if they’re

equal or false if they aren’t.

List ing 1.1

Script for the miniCI demo system

@echo off

cls

echo Setting up environment

if not exist work md work

if not exist deploy md deploy

if not exist equals.cs echo Dummy >> work\equals.cs

:Start

echo Checking for changes in files

fc equals.cs work\equals.cs /b > nul

if not errorlevel 1 goto :End

echo Compiling

copy equals.cs work\equals.cs

B

Verifies build
environment

C:\Windows\Microsoft.NET\Framework\v3.5\Csc.exe work\equals.cs

echo Testing

equals.exe test test

C

Builds
source file

if errorlevel 0 goto :TestPassed

echo Test failed. Application not deployed

goto :End

:TestPassed

copy equals.exe deploy\equals.exe

echo Test passed. Application deployed.

:End

ping 1.1.1.1 -n 1 -w 5000 > nul

goto :Start

In the CI script, you verify that the work area on the build server is set up correctly

B. The original source file is compared to the file in the work area. I f it ’s different,

it ’s copied to the work area. To detect the differences, you can use the fc.exe tool

that comes with Windows, which compares two text files, prints the differences on

screen, and redirects the output of the command to the null device to hide it from

the user. The new work-area source file is then compiled into an .exe and tested C.

To test the application, the script uses a litt le fake: it outputs 0 if the strings are iden-

tical. This is because you have to check the error level in the batch file. I f the pro-

gram returns something bigger than 0, you’ll assume it’s an error. I f the test is

successful, the .exe is copied to the deploy folder. The feedback mechanism is also

updated with the result.

Now that you’ve seen a simple example of how CI works, it ’s time for us to intro-

duce you to the tools that do the real work in continuous integrat ion.

1.3

CI t ools

A complete CI process consists of several tools. You can buy expensive CI systems

that are feature rich and often easy to set up and maintain; or you can use tools

that aren’t as feature rich and often require some work to set up but are either

14

CHAPTER 1

Underst anding con t inuous in t egrat ion

free or low cost. Either way, no one tool does everything you need in a complete

CI system. In this book, we’ll work with free or low-cost tools and show you how

they work and how to integrate them into a fully functional CI process. In this sec-

tion, we’ll give a brief introduction to several tools, starting with those that you

must have.

1.3.1

Essen t ial t ools

Five tools are required to get started with CI . At a minimum, you should have these

tools as part of your initial CI setup.

SOURCE CODE CONTROL

The first essential tool is source control. Source control systems are most often used

to store each revision of the source code so that you can go back to any previous ver-

sion at any time. But you should also use the source control system to store cus-

tomer notes, development documentation, developer and customer help files, test

scripts, unit tests, install scripts, build scripts, and so on. In fact, every file used to

develop, test, and deploy an application should be saved into source control. There’s

a debate in the developer community about whether this should include binaries

that you can build; that decision is up to you and should be based on the needs of

your team.

You have many source control options, ranging from high-end enterprise tools

from IBM Telelogic that integrate with requirements and bug-reporting systems, to

Visual SourceSafe (VSS) from Microsoft, which has been around for years. You can

spend thousands of dollars on these tools or find ones like Subversion and Git that are

open source and free. Even if you don’t use CI , you should have source control, no

matter the size of your team.

NOTE

Microsoft discontinued the aging and not well-respected VSS in early

2010 and replaced it with Team Foundation Server Basic. But many teams

continue to use VSS and have no plans to change in the near future.

This book looks at mostly free tools from the Subversion family and mostly paid tools

related to Microsoft Team Foundation Server (TFS). I f you choose Subversion, make

sure you also install another tool such as AnkhSVN (http: / / ankhsvn.open.collab.net/),

VisualSVN (www.visualsvn.com/visualsvn/), or TortoiseSVN (http: / / tortoisesvn.tigris.

org/) that integrates into Windows Explorer or Visual Studio and makes it easy to work

with Subversion. TortoiseSVN (see figure 1.3) seems to be the most popular (according

to StackOverflow2 and SuperUser3), so that’s what we’ll use for our examples. I f you’re

using TFS and have Visual Studio 2010 installed, you’re ready to go.

2

3

http: / / stackoverflow.com/questions/108/best-subversion-clients-for-windows-vista-64bit
http: / / superuser.com/questions/33513/which-subversion-client-should-i-use

www.allitebooks.com

http://stackoverflow.com/questions/108/best-subversion-clients-for-windows-vista-64bit
http://superuser.com/questions/33513/which-subversion-client-should-i-use
http://www.allitebooks.org

CI t ools

CONTINUOUS INTEGRATION SERVER

The second and most important tool you need is one

to drive your CI process. This sits on the CI server,

watches for changes in the source code repository, and

coordinates the other steps in the CI process. I t also

allows on-demand builds to be made. Essentially, this

application is the traffic cop of any CI system. The CI

server software typically has its own feedback mecha-

nism that’s used to aggregate feedback from the other

tools and provide it to the feedback mechanism.

The most common CI tools for .NET development

are Team Foundation Server from Microsoft and open

source tools such as CruiseControl.NET and Hudson.

TeamCity is another application that sits between

these two options, because it’s free for small teams but

requires licensing fees as the size of the team or num-

ber of projects increase. We’ll discuss CI servers in

more detail in chapter 4. Most CI tools are driven by a

configuration file (see figure 1.4) that specifies when

a build should take place and what specific steps are

taken during the build or integration process.

FEEDBACK MECHANISM

The feedback mechanism is another essential part of

the CI process. Your team needs to know the status of

any build at any time, especially when the build fails.

There are many ways to provide feedback to the team,

and we’ll discuss them in chapter 5. But the most com-

mon method is through a website.

15

Figure 1.3 TortoiseSVN

integrates into Windows Explorer

to make it easy to manage your

Subversion repository.

BUILD MANAGER

Next, you need something to do the actual build. The two most common options are

MSBuild and NAnt. MSBuild is part of the .NET Framework, so it ’s free and most closely

matches what happens when you click Build from the Visual Studio menu. NAnt is

designed after the Java tool Ant. I t ’s an open source solution, but it has received few

updates in the past couple of years. Both applications are controlled by XML configu-

ration files, but you can find GUI tools such as MSBuild Sidekick (see figure 1.5) to

make the configurat ion files easier to maintain.

The build-manager applicat ion takes a Visual Studio solution or individual proj-

ect files and calls the correct compiler, generally C# or VB.NET. The compilers

come free as part of the .NET Framework. Some shops use MSBuild for the actual

compilation of the source and then use NAnt for the remaining steps, such as run-

ning unit tests.

16

CHAPTER 1

Underst anding con t inuous in t egrat ion

Figure 1.4

Part of the XML configuration file for CruiseControl.NET

UNIT TEST FRAMEWORK

The last essential tool you need is a unit testing tool. The two most common options

are MSTest and NUnit (see figure 1.6), but there are others such as MbUnit and

xUnit.net. These tools run the unit tests that you write for your application and then

generate the results into a text file. The text file can be picked up by your CI server

software; a red/ green condition for fail/ succeed is reported to the team through the

feedback mechanism.

Although NUnit has a GUI tool, it can also be run as a console application as part of

your CI process. Many of the tools we’ll discuss in this book have both a GUI and a

command-line version. The command-line tools provide results as text or XML files

that can be processed by your CI server software; the results are displayed using the

feedback mechanism.

Now that you know the required tools, let’s turn our attention to other tools that

will help you write better code: code-analysis tools.

CI t ools

17

Figure 1.5

Figure 1.6

MSBuild Sidekick from Attrice makes it easy to develop and maintain MSBuild scripts.

NUnit runs unit tests on your code and reports the results as red/green for failure or success.

18

1.3.2

Code-analysis tools

CHAPTER 1

Underst anding con t inuous in t egrat ion

Code analysis plays an important part in the development process. Code from mult i-

ple team members should use the same naming conventions. And the code should fol-

low best practices so that it ’s robust, performant, extensible, and maintainable.

Several code-analysis tools can assist in the process.

The first, FxCop (see figure 1.7), a free tool from Microsoft, analyzes code and

reports possible issues with localizat ion, security, design, and performance. The tool is

targeted at developers creating components for other developers to use, but applica-

tion teams are finding FxCop a useful part of their CI process.

Another free Microsoft tool is StyleCop (see figure 1.8). I t comes with Visual Stu-

dio and is delivered with a set of MSBuild plug-ins for standalone usage. This tool

checks your code against best-practice coding standards. I t compares your code to rec-

ommended coding styles in several areas including maintainability, readability, spac-

ing, naming, layout, documentation, and ordering.

Both of these tools generate analysis reports that can be used by your CI server soft-

ware and integrated into the build report available via the feedback mechanism.

NCover (see figure 1.9) is a coverage tool that checks that all code paths are

being tested. So is NCover an analysis tool or a testing tool? The truth is, it ’s a litt le

of both.

NCover uses either MSTest or NUnit to run the tests and can integrate with several

CI server applicat ions. But there are additional test tools, and they’re the subject of

the next section.

Figure 1.7 FxCop reports problems in code that can be issues with design, performance, security,

or localization.

CI t ools

19

Figure 1.8

Figure 1.9

The StyleCop GUI integrates with Visual Studio and reports issues with coding style.

NCover reports the results of testing code paths through the application.

20

1.3.3

Test ing t ools

CHAPTER 1

Underst anding con t inuous in t egrat ion

Earlier in the chapter, we talked about unit testing tools as an essential part of the CI

process. But other test tools can be run against your code to help ensure that the

application functions correctly.

One such tool is Selenium, an open source tool developed by ThoughtWorks. Sele-

nium has record and playback capabilit ies for authoring tests that check web applica-

tions. I f you’re creating WinForms, Windows Presentation Foundation (WPF) or

Silverlight applications, you may be interested in White: it allows test ing of your UI

classes. Finally, there’s FitNesse. This test ing tool allows you to specify the functionality

of the application; then tests are run against the code to ensure that it works as speci-

fied. Chapter 6 is devoted to showing how to integrate these tools with your CI process.

There are also several other tools you can add to your CI system.

1.3.4

1.4

Ot her t ools

Have you ever put XML comments into your code? You can, and then extract them and

compile them into useful documentation. That’s the purpose of Sandcastle. These

comments are most often added by component and framework vendors for building

help files. But they can also be useful for other team members or even for yourself

when you have to make changes to a module a month from now.

You can also automate the building of your deployment. I t doesn’t matter if you

use ClickOnce, Visual Studio Installer, WiX, Inno Setup, or something else. Having

your CI process automatically build the application, create the install set, and then test

the install are big steps to ensuring a good, solid application.

The tools presented here are by no means an exhaustive list. You can find many

tools for things like code visualization, performance testing, static analysis, and more

through a web search. Some of the tools cost several thousand dollars, and others are

free. In this book, we take the low-cost approach and discuss tools that are free or

available at a minimal cost. Tools like this emerge continuously in the community. To

keep track of what’s new and hot, you can check community sites like StackOverflow

and ALT.NET (http: / / altdotnet.org/).

Now that you’ve been introduced to many of the tools you’ll be using in your CI

process, it ’s t ime to introduce you to the project we’ll use throughout the book.

A proj ect for CI : leasing/ cred i t calcu lat or
To better understand the CI process, you should have a simple but real-world example

of software that you can put under source control in the next chapter and eventually

integrate continuously. At this early point, you’ll only create a Visual Studio solution

and the project files. You’ll add the code in later chapters.

You want a sample applicat ion that isn’t trivial but is as easy as possible for demon-

stration purposes. How about a leasing/credit calculator? I t may not be a tool that’ll

prevent the next worldwide financial crisis, but it ’s a piece of software that’ll provide a

straightforward answer to a simple question: how much will you pay monthly for your

dream car or house?

A proj ect f or CI : leasing/ cred i t calcu lat or

21

Figure 1.10

You’ll create a CI process for an application

consisting of one shared library with two UIs:

Windows and web.

The architecture will be sophisticated, as you can see in figure 1.10.

The application will consist of one shared library with two clients. One client will

be made using WPF and the other with Web Forms. You’ll create a full CI process for

this tool throughout this book. But remember, the project is only a pretext to show

you how to set up a CI process and not a goal in itself.

You’ll use Visual Studio 2010 to develop the application. In this chapter, we’ll pres-

ent two examples using ASP.NET and WPF, but the techniques described are suitable

for other kinds of .NET applications like Windows Forms, ASP.NET MVC, Silverlight,

and mobile apps. The details may differ, but the easiest way to set the CI process cor-

rectly is to think about it from the beginning. I t never hurts to first think about what

you want to accomplish and then do it afterward—not the other way around. The first

part of the example we’ll look at is the core of the application: a shared library used

with the finance mathematical part of the software.

1.4.1

Calcu lat ion core

The financial library project will contain all the necessary code to perform the finan-

cial calculation. You’ll start small with one class to perform a leasing/credit install-

ment calculation.

DIRECTORY STRUCTURE

Pick a directory to work with. By default, Visual Studio stores projects somewhere

deep in the user folder structure, which makes all the paths long and error prone. I t’s

better to make the path shorter—anything on the first level in the directory structure

will do, such as C:\Project, C: \Development, or C: \Work. For this example, let’s use

C: \Dev.

Consider organizing your project directory a litt le better than the Visual Studio

defaults. I f you create a project, you’ll get a solution file named after the project.

Visual Studio will also create a directory under the solution file, again named after the

project, and place the project file inside. That may be all right for a quick shot, but

you should consider taking this structure under your control.

First, if you plan to have more than one project in a solution, consider naming the

solution differently than any of the projects. Second, remember the golden rule of CI :

keep everything you need to integrate inside the repository. To meet this rule, you’ll

need a directory to keep all your stuff in. You can name it lib or tools. And you can go

even further, as you can see in figure 1.11.

22

CHAPTER 1

Underst anding con t inuous in t egrat ion

Figure 1.11

Different project directory organization

structures. Files can be grouped in

logical collections. Pick a pattern that

suits you.

Organizing your files in logical groups makes the solution directory tidy. For example,

source files go in a directory called src, and documentation-related stuff goes in the doc

directory. Of course, this isn’t divine knowledge, and you may have a good reason to do

it differently. You may want to put the documentation in another repository or to not

have a separate source directory. I t’s up to you, but you should at least think about it.

ORGANIZING THE PROJECT STRUCTURE

Here are the steps to organize the project:

1

2

3

4

5

6

7

Launch Visual Studio, and create a new solution. Select File > New > Project from

the Visual Studio menu. The New Project dialog box opens (see figure 1.12).

In the Installed Templates list, select Other Project Types > Visual Studio Solu-

tions, and then choose Blank Solution.

Enter Framework for the solution name and C:\Dev\ for the location, and

click OK.

To add the financial-calculation library to the newly created solution, first

choose File > Add > New Project. Then choose Visual C# > Windows, select

Class Library, and name the library CalcCore. (In a real solution, you may have

other libraries parallel to the core—for example, a project containing database-

access classes or controls ready for reuse in various projects.) Your Solution

Explorer should look similar to figure 1.13.

You need to change some Visual Studio defaults to give better results when you

build the project and put it under the CI process. From the Solution Explorer,

right-click the CalcCore project, and select Properties.

Switch to the Build tab. Under Errors and Warnings, check if the warning level

is set to 4 (see figure 1.14).

Under Treat Warnings as Errors, select All.

A proj ect f or CI : leasing/ cred i t calcu lat or

23

Figure 1.12 You should start with a blank solution. Doing so will give you the ability to name it

differently than the project inside and to place the projects where you want them. Don’t take a shortcut

by creating a project first and letting Visual Studio create the solution file for you. You'll end up with

the Solution Explorer window shown.

These settings will cause the compiler to throw an error every time your code

contains the slightest warning (including the least severe and even informa-

tional warnings). I t ’s because the number

of warnings have the tendency to grow

and in end effect can be completely

ignored. I f you’re conscious that there’s

no way around the warning you can always

suppress it by typing its number into the

“Suppress warnings” text box. You do this

to eliminate unnecessary noise. I f you’re

like many developers, you have a tendency

to stop reacting to too-frequent stimula-

tion. Soon enough, you’ll have dozens of

warnings and miss an important one that

may lead to a problem. And you don’t

need any problems, do you?

Figure 1.13 The initial project

structure in the Visual Studio Solution

Explorer. Remember, it’s not necessary

to correspond to the folder structure on

the hard drive.

NOTE

Pay close attention to the platform shown in figure 1.15. In Visual

Studio 2010, it defaults to x86 by executable .NET applications and to Any

CPU for class libraries. This is different than in Visual Studio 2008, which

defaults to Any CPU. I f your assembly doesn’t use native Windows func-

tionality, it ’s safer to set it to Any CPU. I t 'll run properly on either a 32- or

64-bit processor.

24

CHAPTER 1

Underst anding con t inuous in t egrat ion

Figure 1.14 Build propert ies set the right way. All warnings are treated as errors and

given the maximum warning level. This setup is used for every configuration defined.

8

9

10

11

12

Signing the assembly with a strong key gives your assembly a globally unique

name. I t makes identification and administration easier. I t makes it possible to

create a reference to an explicit version of software, and it prevents others from

spoofing your libraries. Without a strong name, you won’t be able to add a

library to the Global Assembly Cache (GAC), which may be a good idea for the

financial-calculation library. But keep in mind that signing the library will make

the versioning more complex. You can’t call a nonsigned library from a signed

one. The general rule of thumb is to sign the libraries and leave the executables

alone; you’ll have to decide for yourself what to do.

To sign the assembly, switch to the Signing tab (see figure 1.15), and select

the Sign the Assembly check box.

From the Choose a Strong Name Key File drop-down list, select New. The Cre-

ate Strong Name Key dialog box opens.

Enter CalcCore for the Key File Name, and deselect Protect My Key File with a

Password. Press Enter in the resulting dialog box (shown in figure 1.15).

Delete the default Class1.cs file. You need to add a new program file that’ll

eventually contain the code.

Delete all unused references. Everything that’s mentioned in the references is

loaded into memory at runtime. I f it isn’t needed in your program, it will have

nothing to do in memory.

www.allitebooks.com

http://www.allitebooks.org

A proj ect f or CI : leasing/ cred i t calcu lat or

25

Figure 1.15 I t’s worth signing your reusable assemblies. Doing so makes it possible to reference them

using strong assembly names.

13

14

Right-click the CalcCore project, and select Add > New Folder from the context

menu. Name the folder Math.

Create a class called Finance inside the

folder. Did you notice that the namespace

in the new program file contains the path

to the file? I t’s generally a good idea to

have the path and namespace match.

Using folders, you won’t clutter your solu-

tion with files, and it’ll be easier to man-

age a lot of files in the Solution Explorer

window. Your Solution Explorer should

look like figure 1.16.

The Finance class will contain simple financial

mathematical operations. The implementation

details are irrelevant now; we’ll pay closer atten-

tion to the financial library in chapter 6, where

you’ll write unit tests for the library.

Figure 1.16 Model solution with no

unnecessary references. The project is

signed and uses folders (that match the

namespaces).

26

CHAPTER 1

Underst anding con t inuous in t egrat ion

Now, let’s create two additional projects that you’ll put together with the core

library in the source control repository.

1.4.2

Calcu lat ors

You’ll need a user interface for the library. Using the same technique as for the frame-

work solution and core project, you’ll create two user interfaces: one for Windows and

one for the web.

Follow these steps:

1

2

3

4

5

Create a new blank solution and name it WindowsCalculator. From the Visual

Studio menu, select File > Add > Project...

Select Visual C# > Windows > WPF Application from the list of project templates

(see figure 1.17).

Name the project WinCalc.

Set the location to C:\Dev\.

Set the warning level as you did for the CalcCore project in the previous sec-

tion. Don’t sign the executable project.

You now need to create a web application for the web-base UI for the calculator project:

1 Create a new blank solution and name it WebCalculator. From the Visual Stu-

dio menu, select File > Add > Project.

Figure 1.17

Create a Windows Forms application for the finance calculator project.

Sum m ary

27

Figure 1.18 Creating the web calculator solut ion in Visual Studio 2010 is straightforward and should

be familiar to users of earlier versions.

2

3

4

5

Select Visual C# > Web > ASP.NET Web Application from the list of project tem-

plates (see figure 1.18).

Name the project WebCalc.

Set the location to C:\Dev\.

Set the warning level as you did for the CalcCore project in the previous sec-

tion. Don’t sign the executable project.

The solutions and projects for the loan calculator are now finished. Your folder struc-

ture should look like figure 1.19.

You’ve built the initial construction site. I t

contains three solutions, each with one proj-

ect. In the next chapter, you’ll place the appli-

cation under source control.

1.5

Sum m ary

You should now understand what continuous

integrat ion can do for you and your team. I t

may seem confusing to set up and maintain CI

with all the essential tools; but as you’ll learn

throughout this book, it’s simple if you take

things a step at a time.

Figure 1.19 I f you’ve followed the steps

in this chapter, you should end up with a

directory structure similar to this.

28

CHAPTER 1

Underst anding con t inuous in t egrat ion

In this chapter, we presented information to help you overcome objections from

team members and reduce project risk. We also gave you a simple example that shows

how CI looks for file changes and then builds and tests the code; and we introduced a

more complex sample application that you’ll use throughout the book.

In addition, you were introduced to some of the tools you’ll see in depth later in

the book. Specifically, we’ll focus on CruiseControl.NET, TeamCity, and TFS as CI serv-

ers, and show you how to integrate other tools with them. One of those, source con-

trol, is the first tool you need to set up and is the topic of the next chapter.

Setting up a source
control system

Th is chapt er covers
■

■

■

Choosing the right source control system

Using Subversion on the server and client sides

Setting up a TFS 2010–based source control

system

Continuous integrat ion (CI) isn’t possible without a source control system. As a

matter of fact, it’s difficult to set up any reasonable software manufacturing process

without one, regardless of whether you’re using CI . As soon as you progress beyond

being a lonely developer spitting out code in a dark corner of a dorm room, you’ll

have to think about sett ing up a proper place for your code to reside. You need a

place you can send the fruits of your work and from where you can receive the work

of your colleagues.

In the dawn of time, there was a harsh division of functionality, and every devel-

oper had their own EXE or DLL to work on. Everyone worked on a separate part of

the code and submitted their work to someone whose sole task was to integrate the

code from various developers into one codebase. Those times are long gone. We

now have automated systems that do the trick. They reside somewhere in the net

(intra or inter doesn’t matter). Every developer works closely with the system. They

29

30

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.1 Most common source control systems involve a centralized server and a bunch of

clients reading from and writing to the source control repository.

push their work onto it and regularly pull the work of others out to a local construc-

tion site.

Source control systems, also called version or revision control systems, are programs that

let you manage changes in files. More important, source control systems hold the

files containing the source code for your software. But generally, it doesn’t matter

what kind of files are managed: documents or binary files are also welcome. As shown

in figure 2.1, source control clients are able to read from and write to a revision con-

trol repository.

In this chapter, you’ll learn why a source control system is essential not only for the

CI process, but also in the day-to-day life of the developer. You’ll choose a suitable tool

for your needs, taking into consideration a number of attributes. Subversion (SVN)

and Team Foundation Server (TFS) source control will prove to be the source control

systems to choose from. We’ll look at the VisualSVN Server as a suitable Subversion

package for the Windows platform. You’ll learn how to use TortoiseSVN, a great SVN

Windows client. And last but not least, you’ll prepare and dispatch to source control

the sample project introduced in chapter 1. After that, you’ll learn how to do the

same with TFS source control. But first, why do you need a source control system in

your CI environment?

2.1

Choosing t he r igh t source con t ro l syst em for you

Let’s imagine a CI process without a source control system. I t could be a one-person

shop where everything happens on a single machine. That’s fine, but as soon as you

start to work on a team, you’ll run into problems.

There must be one single place where developers commit their work and the CI

process pulls it to integrate. I t may be a single folder on network share where develop-

ers manually copy their new features; the CI process periodically checks the folder for

Choosing t he r igh t source con t rol syst em for you

31

changes and integrates the code when something new is detected. That approach will

probably work too. But why do it the hard way? Why not make a full-blown system to

do the job?

Many great source control systems are available. Many of them are free—and

free in this field doesn’t mean an inferior product. They’re feature rich and well-

established. Installation is easy, and the list of benefits is huge. Let’s examine them

quickly before you decide what source control system to use.

2.1.1

Benef i t s of source con t r ol syst em s

With a source control system, you have a full development history of everything

you’ve committed—always. Have you ever wished you had the version from last Fri-

day where everything worked correctly, and not the mess you created on Monday

when you were tired after a long and eventful weekend? Of course, you didn’t think

about making a secure copy on Friday. And now you have to look for a nasty bug,

and you don’t have working code to compare. With a source control system, that’s

not a problem. You always have a full history of everything you’ve done. You can

pull the version from Friday (assuming, of course, that you didn’t forget to com-

mit!). You can pull and check every version from the time you set up your source

control system.

I f you can pull every historical version that exists in your repository, nothing pre-

vents you from reverting the changes you made to the current version. For example,

the bad code you wrote after an eventful weekend can be replaced with a working

copy in a minute.

Most source control systems let you lock a file one way or another. Think about a

situation in which you want to have a file just for you. You don’t want anyone changing

something while you work on this particular-new-very-important feature. With some

source control systems, you can explicitly lock the file you’re working on: no one can

edit the file, but everyone can still pull it and compile with it. Some systems only let

you mark the file as locked: others aren’t prevented from editing other files, but no

one can check out a file someone else locked. Either way, you can have the file avail-

able to only you.

Source control systems let you label revisions if you want. Assume you’re releasing

a new version. The revision number is 4711. Do you have to remember it, in case you

have to fix a bug in this particular version when it’s in production with a customer?

No: you can label this revision by giving it a meaningful name and marking it so it will

be easy to find and work with. I f needed, you can take the labeled version, fork it, and

set a separate CI process for it .

Let’s say you’ve found a bug in a labeled production version. You’ve fixed the bug

in this version, but it also resides in the main version. That means you’ll have to imple-

ment the fix there, too. But you don’t have to do this manually. In most cases, you can

merge the changes you’ve made in the labeled version with the main version using

only source control system features.

32

CHAPTER 2

Set t ing up a source con t rol syst em

Or, suppose you’re working on a new feature. You aren’t sure the technique you’ve

chosen is the right one. No problem: you set a labeled version and don’t mess with the

main version. But in the end, you realize that your technique was correct (of course!).

What do you do? You merge.

One more thing is especially important if you’re considering setting up a CI pro-

cess. The golden rule of CI says to keep all the files you need to fully integrate your

software in the project directory. You should keep not only your source but also all the

tests and third-party tools and libraries you use—literally everything you need for full

integrat ion, including executables for documentation generation, installation, and

deployment. Now, think about this project directory residing in your source control

system. You can point new developers to one place and have everything ready for

them to pull and start to work. They don’t need to install anything extra to start com-

piling, test ing, and working. The same setup applies to the CI process. You can point it

to the same place every developer uses, and it can do the work it’s designed for, wher-

ever it ’s installed. Not bad, eh?

Now that you know the most important source control system benefits, let’s look

for the right one for you.

2.1.2

Source con t ro l aspect s t o consider

The benefits we’ve discussed are mostly universal among modern version control sys-

tems. I f you find one that doesn’t perform all the functions described earlier, you

should forget it. The important aspects to consider are the following:

■

■

■

■

Centralized vs. distributed

Transactional vs. nontransactional

File blocking vs. non–file blocking

Free vs. paid

Table 2.1 lists several popular source control systems; you can use it as a reference for

your decision making.

Table 2.1

Important source control aspects of several different tools

Subversion

TFS Version

Control

Visual

SourceSafe

Git

Vault

Free vs. paid

Centralized vs.

Free

Centralized

$

Centralized

$

Centralized

Free

Distributed

$

Centralized

distributed

Transactional vs.

Transactional

Transactional

Nontransactional

Transactional

Transactional

nontransactional

File blocking vs.

Non–file

Both

File blocking

Non–file

Both

non–file blocking blocking blocking

Choosing t he r igh t source con t rol syst em for you

33

FREE VS. PAID

The first thing you should consider is the cost-benefit factor. Commercial version

control systems like that included in Microsoft TFS tend to do a lot more than you’d

expect. For a lot of money, you get a lot of functionality. (Beginning with Visual Stu-

dio 2010, anyone with an MSDN Professional subscription or above gets a license for

TFS. This significantly drives down the cost of implementing TFS.) The revision con-

trol system is a small part of the TFS infrastructure; we’ll look at TFS features in the

next chapter.

Other commercial tools are available, such as Vault. I t was designed to replace the

old Microsoft Visual SourceSafe (VSS).1 I f you’re familiar with VSS, and you’re afraid

of the learning curve with something else, consider using Vault (it has the coolness

factor of being written in .NET, too).

NOTE

Microsoft discontinued Visual SourceSafe with the release of Visual

Studio 2010. I t was replaced with Team Foundation Server Basic.

On the other hand, you have free systems like SVN and Git. Most of them are even

open source. They control your source—period. For everything else, you have to use

other tools.

CENTRALIZED VS. DISTRIBUTED

Another important aspect is the choice between centralized and distributed source

control systems. You can see the concept behind distributed version control systems in

figure 2.2.

Maybe because Linus Torvalds, the creator of Linux, started to work on Git, distrib-

uted source control systems are gaining popularity. The idea is to have a full reposi-

tory containing all the revision history locally on the developer’s machine. There is no

single central server to administer the source—instead, there are many “central repos-

itories.” You initially commit locally; what to merge globally is up to a superuser. Dis-

tributed source control is a fairly new concept, but it ’s used to develop the Linux

kernel and many other open source applications.

On the opposite end of the spectrum are centralized systems, with one server

somewhere that manages the source. This group includes Subversion, TFS, VSS,

and Vault.

Both distributed and centralized systems have their advantages and disadvantages.

From the CI point of view, the centralized approach can be considered better. With a

single repository and full control over history, centralized systems are easier to incor-

porate for a wider audience, and they demand less knowledge about source control

system infrastructure.

1

To use Visual SourceSafe with Visual Studio 2010 you will need to install additional package from here: http: / /

code.msdn.microsoft.com/KB976375.

http://code.msdn.microsoft.com/KB976375
http://code.msdn.microsoft.com/KB976375

34

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.2 A distributed source control system with an optional main node. Every client has its own

repository and can commit directly to other clients.

TRANSACTIONAL VS. NONTRANSACTI ONAL

Although it almost isn’t an issue with modern source control systems, this aspect is

something you should keep in mind. I t wasn’t so long ago that repository operations

within the source control system weren’t atomic. I f the operation to pass new files to

the repository failed due to a network error or some other problem, some of the files

were checked in to the repository and some weren’t. This situation could easily render

the repository unstable, in an unknown state and prone to further errors. For exam-

ple, the VSS was nontransactional. Almost all of the modern source control systems are

transactional. You should definitely go this way, too.

FI LE BLOCKING VS. NON–FILE BLOCKING

Another aspect you may consider while choosing a source control system is the ability

to explicitly check out files from the repository, preventing others from modifying

them. Essentially, a file-blocking system is able to prevent you from edit ing a file some-

one else has blocked. A non–file blocking system lets you edit everything every time,

which may eventually lead to a conflict.

Think about a situation where two developers have made changes to the same file.

The first developer checks his changes into the repository, and the second developer

is blocked from check-in because her version of the file conflicts with the one already

in the source control system. This aspect often isn’t addressed directly, but it may be

essential if your build depends on files that can’t be automatically merged. Two devel-

opers working on such a file could be a disaster. I t ’s a question of work culture, too: a

www.allitebooks.com

http://www.allitebooks.org

Set t ing up a Subversion source con t rol server

35

sick developer with an explicitly checked-out file is a real problem. You often end up

with a lot of part ial classes in separate files that have been created by various develop-

ers to bypass another user’s blocks.

TFS can work in both modes. Subversion can only lock files, preventing parties

from checking in rather than stopping them from editing. VSS works only in explicit

checkout mode. From our experience working with text-only .NET source files, you

don’t need an explicit checkout mode; work goes smoothly if you don’t block any-

thing. Conflicts are an exception rather a day-to-day problem.

MAKING A CHOICE

We don’t know if you’re lucky if you’re in a situation where you can choose among

the various source control systems. I f you’re a startup, you can take your choice. I f

you’re offered a job at a company that develops without one, consider running

away unless they give you permission to set one up before you write the first line of

code. I f you have a system that works fine, and everybody is happy with it, you

should st ick to it. Just make sure the source control system you choose will work

with your CI server.

I f you’re in the luxury position where you can choose, and you want to do it

cheaply but professionally, pick Subversion. We’re totally convinced that you won’t be

disappointed. Working with SVN is where we’re heading in the next section.

2.2

Set t ing up a Subversion source con t ro l server

Subversion is a good, established, free, and open source version control system. I t’s

widely adopted in open source projects and in corporat ions. I t has a neat feature to

make all the operations on the repository atomic. That means all you do is check-in,

checkout, merge, whatever, all enclosed in a transaction. Either all the files go

through or none at all. And there is no way someone else checks in the same t ime

you do.

TIP

A great source of information about SVN is a free book called Version

Control with Subversion by Ben Collins-Sussman, Brian W. Fitzpatrick, and C.

Michael Pilato, available online at http: / / svnbook.red-bean.com/ .

In this book, you’ll use SVN as the tool of choice for sett ing up a source control pro-

cess. Installation is straightforward. Let’s set it up.

2.2.1

I nst al l ing VisualSVN Ser ver

VisualSVN Server is a great choice if you want to quickly set up the SVN server on a

Windows machine. I t contains all you need to set up a Subversion server. I t has a user

interface to create repositories and users. I t cuts out all the friction you’d have with

setting up an Apache server on a Windows machine, configuring SSL to work on it,

creating users, and setting repositories manually. I t comes in a free version that has

some limitations.

36

CHAPTER 2

Set t ing up a source con t rol syst em

One of the limitations of a free VisualSVN Server version is the lack of remote con-

trol. You’ll have to install both the Server and the Management Console together on

one machine. I f you want to manage your server remotely, you must buy the Enter-

prise version.

You can get the latest version from www.visualsvn.com/server/ . I f you have a dedi-

cated machine to host your source control server, you obviously should install Visu-

alSVN Server on this machine. This book’s example uses a standalone Windows 2008

server to host the Subversion server.

Figure 2.3 shows the most important step in the installat ion process. You need to

decide where to install the server software and where to place the repositories. Please

consider a good location for the repositories. They should reside on a reasonably fast

hard disk. You should activate SSL to encrypt communication; it will be difficult to

read the content of the files you host on the source control server if you aren’t autho-

rized to do this. I f you don’t plan to make your repositories available from the inter-

net, you don’t have to activate a secure connection. Although it isn’t considered a

good idea, your server will react faster if you don’t use SSL, because SSL connection

negotiation is a fairly expensive process. The port use must be free in order for Visu-

alSVN Server to use it. You can select Subversion authentication or choose to integrate

user management with Windows authentication for additional security. I f you’re run-

ning Active Directory in your organization, you should obviously go with it and use

Windows authentication (keep in mind that the version of VisualSVN that integrates

with Active Directory isn’t free). You’ll avoid managing your users separately and in

Figure 2.3 Where to store your repositories, whether to encrypt

communication, and what user management to use are some of the important

decisions you need to make when you install VisualSVN Server.

Set t ing up a Subversion source con t rol server

37

effect doubling your administrative effort. I f you don’t have Active Directory, it ’ll be

easier to go with the built-in Subversion authenticat ion (accounts are kept in text files

with passwords hashed).

When all the necessary processes are installed, your source control server is ready

to be used. You can administer VisualSVN Server using the VisualSVN Server Manage-

ment Console (or VisualSVN Server Manager, as it’s called in the Start menu). You’ll

find it in Windows by choosing Start > All Programs > VisualSVN.

2.2.2

2.2.3

Creat ing users and groups

VisualSVN Server comes with a handy Management Console. Using this tool, you can

easily organize your source control system, manage your repositories and users, orga-

nize them into groups, and issue rights to the repositories.

I f you associated your Windows authentication with SVN authentication in the

Setup dialog box in figure 2.3, you can use your Windows user credentials to log in. I f

not, and you decided to let the VisualSVN Server manage your users, you’ll have to

create accounts for every member of your team, as shown in figure 2.4.

You can put users together in groups, as shown in figure 2.5.

After you create the users and groups, you can start creating repositories.

Creat ing t he r eposi t ory

You’ll store your source code on the server in a structure called the repository. Keeping

a healthy source code repository is important, even if you don’t use CI . But in this sce-

nario, it ’s somewhere near vital. You want to have the repository organized the right

way. You don’t want it to be cluttered with unnecessary files. You need a clean division

for your customer between work in progress and work being used. You also want to

easily manage the content of the repository and probably cross-reference repositories

between each other.

Creating a repository in VisualSVN Server is as straightforward as creating a user.

As you can see in figure 2.6, you have to assign a repository name, and you can decide

to create the default structure right away. You’ll learn why this is a good idea later in

the chapter.

Figure 2.4

Creating users managed by VisualSVN

Server is straightforward: just assign a

username and password. But you should

consider associat ing SVN with Windows

authentication so you won’t double the

administration effort.

38

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.5 Creating groups using the native user management in VisualSVN. This step isn’t

necessary if you use Windows authentication. The way you set the rights to the repository stay

the same: use the repository context menu.

To connect to the repository, you must provide an address to your files, in the form of

a URL (see figure 2.7). The VisualSVN Server Management Console is kind enough to

show you that address. I f the address looks familiar, you’re right: VisualSVN Server is

nothing more than Subversion bound to a web server (Apache, in this case).

Figure 2.6

When creating a repository, in

addition to naming it, you should

create a default structure.

Set t ing up a Subversion source con t rol server

39

Figure 2.7

Subversion URL construction

The URL contains the protocol or file-access method name. You’ll connect to the

server using HTTP if you’re using non-encrypted communication or HTTPS if you

turned on SSL. I t ’s also possible to use SVN with local folders or to use other protocols.

We won’t cover these in this book.

You connect VisualSVN Server using the server name or IP address and a port num-

ber. I f you have firewalls on the way from the client to the server, remember to open

this port. VisualSVN Server creates a kind of virtual directory named svn. The rest is

the path to the files. The path always starts with a repository name and can be supple-

mented with directories in the repository.

2.2.4

Keep ing a heal t hy r eposi t ory

I t ’s sometimes considered good practice to have one repository throughout a

whole company or department; this means you store all your projects in one repos-

itory, using directories to logically divide it. Others prefer to have one repository

per project.

The first approach makes a lot of things easier, such as source control server admin-

istrat ion. After assigning users to the single repository and giving them enough rights,

you can virtually forget about administrat ion. Adding a new project is a matter of add-

ing a new directory to the existing repository—no other administration is needed.

Daily work with the repository is also easier. Copying, merging, and peeking for the dif-

ferences (diff) is easier when you do it on a path basis rather than cross-repository. And

you don’t lose any historical data while moving, copying, and merging files.

You can set up something similar to the structure shown in figure 2.8. This is a sin-

gle repository, called Projects, with a directory structure underneath.

A single repository isn’t a good idea if you have a lot of users with different per-

missions to the code base. For example, it ’s difficult to assign one user only the

read permission to one project and read/write to another. You should consider

using multiple repositories if you plan to store different file types or when the revi-

sion number plays a special role in your development process. Another possible lay-

out is shown in figure 2.9: Framework, WebCalculator, and WinCalculator are all

separate repositories.

Look closely at the URLs shown in figures 2.8 and 2.9. Do you see the difference?

The first figure shows http: / / HYMIE:81/ svn/ Projects/ Framework, where Projects is a

40

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.8 One repository throughout a company or department makes it easier to

maintain the structure. You don’t have to set up every repository separately.

repository and Framework is a directory within this repository. The second, http: / /

HYMIE:81/svn/Framework, has Framework as the repository. From the client point of

view, it doesn’t matter. With SVN, you can pull a given directory. You don’t have to

work at the repository level.

Figure 2.9 One repository for (roughly) every solution makes it possible to vary the user

rights to the repositories. Generally, this approach is used to store various types of files—

separating documentation and source code.

http://hymie:81/svn/Framework
http://hymie:81/svn/Framework
http://hymie:81/svn/Framework

Set t ing up a Subversion source con t rol server

41

BRANCHES, TAGS, AND TRUNK

One other thing you have to consider when setting up your repository is the division

of the branches, tags, and trunk. Creating these directories in your repository isn’t

mandatory, but it helps to maintain the project. The trunk is the main development

line. Think of it like a tree trunk. I t’s the place where you spend the most t ime and

where new features are implemented. The trunk drives new development. I t ’s the

obvious place to hook up to the CI process.

A branch is a separate line of development. I t shares the same history but lives inde-

pendently from the trunk and other lines of development. I t ’s used mostly for release

stabilization (long-lived branch), a place where you can work on a feature without

considering influence from others (medium-lived branch), or as a try-out field for

experimental development (short-lived branch). Generally, it ’s a good idea to have a

branch for every software version used by a customer. This makes it easier to find and

fix bugs in a part icular version.

Some branches can be considered good material for the CI process. For example,

release-stabilization branches should be continuously integrated, experimental ones

shouldn’t, and feature branches may be.

A tag is a snapshot of your repository taken at a given time and given a mean-

ingful name. I t’s used every time something important happens, such as when you

make a release or implement an important feature. We consider tags irrelevant for

the CI process.

CREATING THE DIRECTORY STRUCTURE

You should go with the repository layout that works best for you. I n this case, you’ll use

a repository per project, with the default directory structure shown in figure 2.9. Fol-

low these steps:

1

2

From your source control server, launch the VisualSVN Server Management

Console.

Right-click the Repositories node in the tree view in the left panel, and select

Create New Repository. The Create New Repository dialog box opens (see fig-

ure 2.10).

Figure 2.10

When creating a new SVN repository,

you can optionally create a structure

for the trunk, branches, and tags.

42

CHAPTER 2

Set t ing up a source con t rol syst em

3

4

5

In the Repository Name text box, enter Framework.

Select the Create Default Structure (Trunk, Branches, Tags) check box, and

then click OK to create the repository.

Use the same steps to create two more repositories: one named WebCalculator

and the other named WinCalculator.

Notice how the repository names match the Visual Studio solutions you created in

chapter 1. I t’s a good idea to keep these names the same to make source code man-

agement easier. With a repository structure in place, you can feed it some data. To do

this, you need an SVN client.

2.3

2.3.1

Tor t o iseSVN and w ork ing w it h t he reposi t ory

Thus far, we’ve shown you the SVN server. To work with it, you can use command-line

utilit ies supplied with SVN, but it ’s much easier to work with the repository with an

SVN client. A client allows you to send files to and receive them from the repository, by

supporting one or many of the Subversion protocols (http: / / , https: / / , svn: / / ,

svn+ ssh: / / , file: / / / , and svn+ XXX:/ /). Many clients are available with various inter-

faces, from a command-line interface to standalone programs to tools that integrate

with Windows Explorer or Visual Studio.

The command-line tools are great for automation. You’ll use them a lot in your CI

process. They let you script things so the process can perform unmanaged, but they

aren’t so good for day-to-day work. And there is a learning curve for all the com-

mands, switches, and parameters.

I f you feel geeky enough to use the command-line interface feel free to do so. I f

not, think about using something with an easier user interface. You can use a stand-

alone SVN client such as SmartSVN. You may also choose a plug-in for Visual Studio.

The creators of VisualSVN Server have one called VisualSVN, but it isn’t free. There’s

also a free plug-in for Visual Studio called AnkhSVN. But in this case we’ll go with Tor-

toiseSVN, which is one of the most popular SVN clients for Windows. I t integrates with

Windows Explorer and is easy to use.

Subversion cl ien t : Tor t o iseSVN

You can download the last version of TortoiseSVN from http: / / tortoisesvn.tigris.org/ .

The installation is straightforward. TortoiseSVN integrates itself with Windows

Explorer (see figure 2.11), so you’ll have to restart your system to see the changes. You

can then access TortoiseSVN from the Windows Explorer context menu: select a

folder and right-click to see the context menu.

With TortoiseSVN properly integrated with Windows Explorer, you can start using

your repository. Let’s import the solution and project files you created in chapter 1

into the SVN source repository.

Tor t oiseSVN and w ork ing w i t h t he reposi t or y

Figure 2.11 TortoiseSVN integrates itself with Windows Explorer by

adding a context menu you can use to manage your source.

43

2.3.2

Creat ing a w ork ing copy

I f you followed along in section 2.2.4, you should have a repository layout similar to

the one shown in figure 2.9. The repositories are empty except the initial trunk,

branches, and tags structure. Before you can start normal work with the repository,

you have to populate it with some real data.

There are lots of ways to do that. You can import data into the repository and pull

it out again and do additional maintenance, but probably the easiest way is to check

the empty trunk into the folder with your project. Doing so creates a working or local

copy of your repository.

In addition to your files, the working copy contains SVN artifacts (in the svn direc-

tory). This svn directory is vital for the SVN client to work. You should never mess with

it or try to manage it manually—let the client do this work for you.

Follow these steps to create a working copy in the Framework directory:

1

2

Using Windows Explorer, navigate to the Framework directory, right-click, and

choose SVN Checkout. The Checkout dialog box opens (see figure 2.12).

You can read the repository URL in the VisualSVN Server Management Console

(shown earlier in figure 2.9). After you enter the server URL, and click OK, Tor-

toiseSVN informs you that the folder you’re trying to check out to isn’t empty

(see figure 2.13).

44

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.12 Checking out from the repository. Provide a URL to your

repository, and check out everything from the HEAD (newest) revision.

3

4

5

6

I t ’s all right, because you created your Visual Studio project in this folder and

you do want the local copy to exist in this folder. Click Yes.

I f you set up the SVN server to use SSL, you have to accept the SSL cert ificate

issued by VisualSVN Server (if you’re using SSL).

I f prompted, enter your repository credentials.

TortoiseSVN pulls the empty repository to the folder with your project, as

shown in figure 2.14.

Follow the same steps to create a local repository for WebCalculator and

WinCalculator.

Notice the new icons associated with the development folders on your local drive. The

integrat ion of TortoiseSVN with Windows Explorer tells you either that the files are

checked in (a green checkmark) or that the state of the file is unknown (a blue ques-

tion mark). As you work with the files and folders, you’ll see other icons, most of

which are self-explanatory.

Figure 2.13

TortoiseSVN displays a warning if you

initially check out into a populated

directory.

www.allitebooks.com

http://www.allitebooks.org

Tor t oiseSVN and w ork ing w i t h t he reposi t or y

45

Figure 2.14

The init ial checkout into the project folder. TortoiseSVN creates a working copy.

You now have a local copy of the repositories, but none of the source code has been

stored on the server. Committing the changes to the repository is the next step.

2.3.3

Com m it t ing changes

You now have to send files to the repository and fill it with your project:

1

2

3

Right-click the Framework folder in Windows Explorer, and select SVN Commit

from the context menu. TortoiseSVN searches in the folder for everything dif-

ferent than the checked-out version and presents you with a Commit dialog box

(see figure 2.15).

Enter some text in the Message box. You should make it a habit to provide a

message for everything. The message should clearly explain what changes were

made in this revision. This way, you’ll always have historical information that

you may need in the future. Because the messages are searchable in Tortoise-

SVN, it ’s easy to find a particular revision where you fixed a specific issue or bug

if you use, for example, the reference number assigned to the bug. Some tools

can resolve the issue based on the commit message.

Working with your project re-creates Visual Studio art ifacts that aren’t welcome

in the repository: temporary data, compiled output, and user-specific files. Cur-

rently you have the normal results of the Visual Studio build: the bin and obj

folders (containing compilation artifacts) and all the * .suo files (personalized

additions to solution file) and * .user files (additions to project files). You

shouldn’t include these files in the repository. Select everything, and then dese-

lect the files and directories you don’t want to have in the repository.

46

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.15

I nitial commit. TortoiseSVN finds everything that's different from the checkout.

4

5

Click OK to begin checking in the project files. The progress dialog box is dis-

played (see figure 2.16). I f all goes well, the Framework source files will be

stored in the repository.

Repeat the commit process for the Windows and web calculator projects.

Figure 2.16

TortoiseSVN displays a progress dialog box as it sends files into the repository.

Tor t oiseSVN and w ork ing w i t h t he reposi t or y

47

As you work with the project further, you’ll end up with more and more artifacts that

shouldn’t be included in the repository. Your build process is likely to produce many

artifacts that you don’t want to host in the repository, including reports, deployment

files, and so on. All these files can be ignored. You can ignore entire directories, sepa-

rate files, and files with wildcards. You can clear the check boxes to do this, but it ’s

inconvenient to browse the file list every time you want to commit something. To help,

you can permanently ignore some files (see figure 2.17). TortoiseSVN will never try to

commit the ignored files.

NOTE

Using TortoiseSVN, you can right-click an artifact and tell Subversion

to ignore it. After you mark a file or directory to be ignored, you have to com-

mit it to the repository. I f you want to include something you’ve ignored ear-

lier, choose Add from the TortoiseSVN context menu.

As usual, that’s only one way of preparing your construction site. You could create the

project in Visual Studio after making the initial checkout or import everything into

the repository and then make it clean. The thing is, you want to make the repository

clean at the beginning and quickly get to your day-to-day tasks: working with files,

updating, and committing.

Figure 2.17 Making your repository t idy requires you to ignore files that you don’t want in

your repository.

48

2.3.4

CHAPTER 2

Updat ing and commit t ing files

Set t ing up a source con t rol syst em

Day-to-day work with the source control system consists mostly of updating and com-

mitting to and from the repository. As we said in chapter 1, when you have a real CI

process, the developers on the team commit their work at least once a day. Generally,

the more commits the better.

Pull the changes before you commit, and check if everything is still working fine.

I t’s possible that someone committed something while you were working, and your

copy of the file is out of date. I t’s even possible that someone worked in the same file

you did. The Update function pulls all the changes from the central repository to your

working copy. I f necessary, SVN merges the changes others made into files you’ve

worked with (see figure 2.18).

I f TortoiseSVN isn’t able to merge the files properly, you may get a conflict that you

have to resolve. You can do so using the context menu for the conflicted item in the

Update window, as shown in figure 2.19.

Conflicts occur rather infrequently on a well-organized team. But when they do

occur, you must resolve them manually. A clean code base is important for a friction-

less CI process. TortoiseSVN les you easily resolve conflicts using the Merge dialog box

(see figure 2.20).

When you’ve updated your working copy, run the same build process the CI

server will use, and verified that everything is still working, you need to send the

changes to the central repository so others can benefit from the fruits of your work.

To do this, you must commit the changes. To issue this command with Tortoise-

SVN, from the context menu, choose TortoiseSVN > SVN Commit. TortoiseSVN will

Figure 2.18 Always pull the changes before you commit. There may be changes already in the central

repository. Check if everything st ill works after update. Commit only if you’re sure you won’t break the

CI build.

Tor t oiseSVN and w ork ing w i t h t he reposi t or y

49

Figure 2.19 Changes in the repository and in your local copy overlap and are too big for TortoiseSVN

to resolve. You have to step in and resolve the conflict.

Figure 2.20 Resolving the infrequent case of a conflict with TortoiseSVN. You must do this if you update

changes that someone made to the same files as you and SVN can’t automatically merge the files.

50

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.21 After your work is done, you have to send the changes to the repository. To do so, you

must commit the changes.

push the changes into the repository and display the progress dialog box (see fig-

ure 2.21).

There’s a lot more to source control management than updating and committing.

By now, you should have a pretty good idea how the Subversion server and client

work. You know enough to use it in your CI process. I f you want to master your SVN

skills, see the Subversion book at http: / / svnbook.red-bean.com/ . Try revert ing changes,

copying within the repository, and branching the trunk. We’ll now pay close attention

to referencing.

2.3.5

Refer encing

Let’s go back to the example calculator project. I t ’s divided into a shared calculation

library CalcCore (from the Framework solution) and two clients, WinCalc (from the

WindowsCalculator solution) and WebCalc (from the WebCalculator solution).

You’ve built your repository structure, as shown in figure 2.9. But the shared library

and the clients aren’t referenced with each other. You could compile the library and

reference the clients with a DLL, but you’ll probably want to work in the projects

simultaneously. You want to separately pull the projects from its repositories and cre-

ate one solution that references them. One of the solutions to this problem is pro-

vided with Subversion external definit ions.

When you set up an external reference, you tell Subversion to check out a differ-

ent repository when you pull something else. This way, you can automatically have an

external directory or repository present in your working copy. You’ll set Framework as

an external definition in the Windows and web calculator clients. Follow these steps:

1 In Windows Explorer, go to the WindowsCalculator folder, and bring up the

context menu. Select TortoiseSVN > Properties. The Propert ies dialog box

opens (see figure 2.22).

Tor t oiseSVN and w ork ing w i t h t he reposi t or y

Figure 2.22 The TortoiseSVN Propert ies dialog box is used to manage properties for a

part icular item.

51

2

3

4

5

6

7

Click New. The Add Properties dialog box opens (see figure 2.23).

In the Property Name drop-down menu, select svn:externals.

In the Property Value field, enter the word Framework, press the spacebar, and

then enter the URL to the Framework repository. The easiest way to get the URL

is to right-click the Framework folder in Windows Explorer, select TortoiseSVN

> Relocate, and copy the URL from the Relocate dialog box.

Click OK in the Add Properties dialog box, and then click OK to close the Prop-

erties dialog box.

Right-click the WindowsCalculator folder, and select SVN Update. Doing so

pulls the Framework folder into the WindowsCalculator folder. To inform the

repository about the external reference, you’ll have to do the commit.

Repeat these steps for the WebCalculator folder.

Figure 2.23

You can add many different properties using

the Add Properties dialog, including

references to external repositories.

52

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.24 Directory structure including SVN external references to WinCalculator and

WebCalculator, which contain the folder Framework that points to another repository or

directory

You now have the directory structure shown in figure 2.24. The directory structure has

changed, whereas the repository layout remains the same.

Now you can reference Framework from a subdirectory pulled by SVN within your

Windows and web clients. Go back to Visual Studio. In the Solution Explorer, right-

click the Windows Calculator solution, and choose Add > Existing Project. Choose the

CalcCore project from the subdirectory within the project folder. Your solution

should look like figure 2.25.

The library project is shared (including the source) among the client projects.

Doing it this way requires more work than creating a solid project structure up front

and checking it in. But this way, you have every project in its own repository, and

you can reference them as you like. This approach can be handy in some scenarios

such as simultaneous development of two projects that are destined to live sepa-

rately in the future and are placed in separate repositories. I n some scenarios (such

Set t ing up Team Foundat ion Server

as after release), it isn’t advisable to use

externals. Let’s say you’re ready to deliver

the software to the end user. You must tag

both the client project and the referenced

project. The same thing applies to branch-

ing: if you branch one project, the external

reference stays unchanged, and you must

branch and re-reference it manually.

After the project is released, you may

want to switch to referencing compiled

libraries. I t will be much easier to manage

the files in a lib directory than to use exter-

nal references.

The external definitions are also read by

the CI servers. I f you use them, you can be

53

sure that the CI server will be able to read and

resolve the externals without any problem.

Figure 2.25 Visual Studio solution layout with

a reference to a library project from the client

project. This way, you can work simultaneously

2.4 Sett ing up Team Foundat ion Server with two separate repositories.

Team Foundation Server 2010 brings a big

change to the TFS licensing model. I t ’s much more affordable than the earlier ver-

sions. Whereas an average setup of TFS 2008 with server, user licenses, and Visual Stu-

dio Team System (VSTS) cost around $10,000, the new TFS 2010 for five users is about

$500. I t works with all edit ions of Visual Studio except the Express Edit ions. And even

better, if you have a Visual Studio Professional with MSDN subscription or higher, TFS

is included. The cost factor is no longer a big deal.

One thing that drove this change was Microsoft’s desire to encourage VSS users to

move to TFS Version Control, which is a part of the TFS family of tools. The old VSS is

infamous (for good reasons or not) for its instability. A corrupted repository is the last

thing you want to experience after a hard day of work. And the sad truth about VSS is

that corruption happens way too often. TFS Version Control can’t be compared to VSS:

it uses a completely different file-access mode (changes are transactional), and it uses

SQL Server as its repository. You can also use SQL Server Express. TFS scales safely to a

large number of users. Now that it isn’t so expensive, you definitely should give it a try.

2.4.1

I nst al l ing TFS 2010

The TFS installat ion process has been completely reworked in TFS 2010. I n earlier ver-

sions, you had to walk through a pre-install checklist and make sure all the prerequi-

sites were in place before you could continue. The new process installs many of the

prerequisites for you.

There’s also a new TFS Basic, designed for VSS users, that installs a subset of TFS. I f

you select the Basic configurat ion during installation, you don’t get the full TFS

54

CHAPTER 2

Set t ing up a source con t rol syst em

experience, but you get source code control, work items, and CI automation. I t lacks

the SharePoint portal and Reporting Services integration, but it can be a good first

step for getting source code control and a CI system set up and running.

You can install the Basic configuration on a local workstation. I t can also use

SQL Server Express for its data store. We elected to go with the TFS Standard Sin-

gle Server configuration for this book. The only prerequisite is that SQL Server

needs to be installed on the server, including Reporting Services, Analysis Services,

and Full-Text Search.

Follow these steps:

1

2

Launch the TFS Setup program.

Select Team Foundation Compo-

nents and Team Foundation Server

(see figure 2.26).

3 Make sure Team Foundation Server

Proxy is unchecked.

Figure 2.26 Installing the core TFS features

with the build service

The TFS Proxy is nothing more

than a caching mechanism for distributed teams. Typically, it ’s installed in a

local area network to provide a transparent service for a local team and connec-

tion to a real TFS server over a slower connection. We’ll deal with it a lit t le more

in chapter 12, where you’ll scale CI . I f you don’t need proxy/ cache functional-

ity, leave this feature unchecked.

4

5

6

7

Make sure Team Foundation Build Service is checked.

You’ll definitely need it in chapter 4, where we’ll deal with the CI server, so

you want to install it here. I t will be the workhorse for your CI setup. Although

it’s typically installed on a separate machine from source code control, for bet-

ter performance you’ll leave it selected. You can always install another build ser-

vice on other machine later.

Click Install to begin the base install process. When it’s completed, click Finish.

Make sure Standard Single Server is selected, as shown in figure 2.27, and click

Start Wizard.

What happens next depends on how your server is already set up. For example,

if Internet Information Services (I IS) is installed, the TFS Configuration wizard

won’t install it. Go ahead and work through the wizard, answering prompts as

needed. Installation may take a while.

TFS 2010 installation has been greatly streamlined from earlier versions and is now a

straightforward task. When installation completes, the TFS Administration Console is

launched. Now you can begin organizing your Team Projects layout—and that’s the

topic of the next section.

Set t ing up Team Foundat ion Server

Figure 2.27 Choose the Standard Single Server configuration in the Team Foundation Server

Configuration tool to set up one server with full TFS functionality.

55

2.4.2

TFS col lect ions

The main organizational unit in TFS is a team project . To understand what a team proj-

ect is, you have to remove yourself from the source control perspective: think about

TFS as a general team-collaboration tool, with revision control as only a part of it. A

team project is a set of work items, code repositories, build definitions, and so on. I t’s

a central place that connects a software application with the team developing it.

Team projects are organized in collections. The team projects grouped in a collec-

t ion can share the same resources and are stored in the same database. From the code

point of view, a team project collection can share the same code base, and that makes

possible branching, merging, and other common source control activities. Let’s create

a collection for the loan calculator application:

1

2

I f it isn’t running, launch the TFS Administration Console.

In the left panel, select Application Tier and then Team Project Collections

(see figure 2.28).

56

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.28

TFS Administrat ion Console with a default team project collection

Figure 2.29 When you create a new team project collect ion, you give it a name and an

optional descript ion.

Set t ing up Team Foundat ion Server

Figure 2.30 In the second step of creating a new team project collection, you specify the database

settings for your source files.

57

3

4

5

6

7

Click the Create Team Project Collection link. The Create Team Project Collec-

tion wizard opens (see figure 2.29).

Enter Loan Calculator for the name, and an optional description; then

click Next.

Select the SQL Server instance and database (see figure 2.30) to use to store the

source files. In this case, keep the default settings. Click Next.

The remainder of the settings—SharePoint, Reports, and Lab Management—

are beyond the scope of this book. Click Verify to have the wizard check

whether everything is prepared for these settings. Then click Create.

I t will take a few minutes for the wizard to complete. When it’s finished, click

Complete and then Close.

The newly created team project collection is ready. You can now populate it with some

team projects. You won’t do this from the TFS Administrat ion Console. From now on,

you’ll work on your development machine with Visual Studio. Let’s switch to it and

populate the collection.

58

CHAPTER 2

Set t ing up a source con t rol syst em

2.4.3

Using Visual St udio Team Ex plorer

All you need to manage your code with TFS

2010 is a copy of Visual Studio 2010. The avail-

able versions (except Express) have Team

Explorer built in. Follow these steps:

1

2

Launch Visual Studio 2010, and select

View > Team Explorer from the menu.

An empty Team Explorer window opens

(see figure 2.31).

In Team Explorer, click the Connect to

Team Project icon. I f this is your first

project, you must configure the connec-

tion to TFS.

Figure 2.31 Team Explorer, ready to be

used. First you must connect to the server

3 You’re prompted to select a TFS server, and then to the team project.

because this is the first time you’ve set

up a project under TFS. Click Servers…, and then click Add in the resulting

dialog box.

4

5

The Add Team Foundation Server dialog box opens (see figure 2.32). Enter

the name of your server. I f you used the default settings for the TFS server,

everything else is filled in for you. Click OK to finish making the connection to

the server.

I f you’re prompted to log in, do so with proper credentials. The wizard should

choose the newly created server connection for you, and you have to pick the

collection. Choose the one you recently created, Loan Calculator, and click

Connect. You’ll land back in Visual Studio and see something like figure 2.33 in

your Team Explorer.

Figure 2.32 You need to tell Team Explorer which server has the TFS

installation you’re using.

Set t ing up Team Foundat ion Server

59

6

7

8

Team Explorer now points to an empty

project collection. You need to add a

project to it. To do so, right-click the col-

lection in Team Explorer, and choose

New Team Project. The New Team Proj-

ect wizard is launched (see figure 2.34).

Enter the name (for example, CI inDot-

Net Calculator Sample Applicat ion), and

click Next.

You need to select the process template

to use (see figure 2.35). In this case,

choose the MSF for Agile Software Devel-

opment template to work with, and then

Figure 2.33 Team Explorer now shows

the Loan Calculator project collection.

click Next.

TFS doesn’t limit the methodology you use to develop your software. I t

comes with two process templates: Microsoft Solution Framework (MSF) for

Figure 2.34 When adding a team project to the collect ion, you need to specify a name and optional

description.

60

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.35

You have a choice of process templates to use for the new team project.

Agile Software Development and MSF for Capability Maturity Model Integration

(CMMI) Process Improvement. The templates describe how TFS organizes your

work in the project. We recommend MSF for Agile because it’s less process-

heavy than the CMMI template. Anyone can create or edit a process template.

The best way to do this is to use the Team Foundation Power Tools and its Pro-

cess Editor. The TFS Power Tools are freely available over the MSDN website.

Additionally, at the bottom of figure 2.35, you can see the link where you can

download prebuilt templates. An interesting one is Microsoft Visual Studio

Scrum 1.0, which is suitable for teams using the scrum methodology to manage

the project lifecycle.

9

10

I f you wish to create a new SharePoint site, select that option and click Next.

You’re prompted to specify source control settings. As long as your source con-

trol repository is empty, you can only create a new folder. Because you have

nothing to branch yet, click Finish to complete the wizard. You’ll be connected

to the new team project (see figure 2.36).

You’re now ready to manage your source code inside the team project.

Set t ing up Team Foundat ion Server

61

2.4.4

Managing TFS source con t r ol

Unlike the example you saw earlier with

Subversion, you don’t need any external

tools to manage code with TFS if you’re

using Visual Studio. As we said earlier, TFS

is a lot more than source control. The

source control tooling is tightly integrated

with Visual Studio. From this perspective,

it can be easier to use TFS than to gather all

the SVN tooling, because everything is done

from inside the development environ-

ment. I t’s possible to use command-line

Figure 2.36 Team Explorer in Visual Studio 2010

connected to a server named hymie and Loan

Calculator collect ion with one project inside.

commands to manage TFS source control.

In this case, you’ll go the Visual studio way.

Let’s get the application source code checked in to TFS:

1

2

I f you followed along earlier in this chapter and set up the loan calculator

under Subversion, you need a fresh directory and project that aren’t currently

under source control. When that’s done, continue to step 2.

Open the Framework solution in Visual Studio. Right-click the solution, and

choose Add Solution to Source Control. The Add Solution to Source Control

dialog box opens (see figure 2.37).

Figure 2.37

Adding the solution to

source control

62

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.38 When you add files to TFS source code control, any files that are new or changed are

flagged as pending changes.

3

4

5

Click OK to accept the default settings. The Pending Changes dialog box opens

(see figure 2.38).

Because you want all the files to be saved, click Check In. I f you’re prompted to

check in all items, select Yes.

Repeat these steps for the WebCalculator and WindowsCalculator solutions.

When all the files are checked in, notice the change in Solution Explorer. Each file now

has a small lock icon displayed next to it (see figure 2.39) to indicate that the file is

checked in. Other icons are used to indicate different source code control statuses.

Consult the Visual Studio documentation for help understanding the different icons.

From now on, you can manage your code from the context menu in the Solution

Explorer. The management concepts are the same for TFS as for SVN. You check in,

check out, branch, merge, and so on. This time, you can perform all the operations

from within Visual Studio. To check in files, right-click the solution, and issue the

Check In command.

In a way similar to other revision-control software, you can add a message to every

operation. TFS makes it possible to associate a work item with a given source control

operation. We won’t deal with work-item management and tracing in this book, but

we strongly recommend that you look into it. You should start at http: / /msdn.micro-

soft.com/en-us/ vstudio, where you can find a lot of information about Visual Studio

itself and TFS 2010 in part icular. I t helps the development process to know exactly

http://msdn.microsoft.com/en-us/vstudio
http://msdn.microsoft.com/en-us/vstudio

Set t ing up Team Foundat ion Server

why you’re checking something in, what user

checked in a file, and what work item was asso-

ciated with it.

63

2.4.5

Lock ing and shelv ing

TFS source control, unlike SVN, lets you perma-

nently lock the files you’re working with. The

difference lies in the fact that you can choose

to prevent the files from being checked out by

other users. This not only can prevent check-

ing in changes to a locked file but also can pre-

vent the file from being checked out.

To lock a file or directory, right-click in the

Solution Explorer, and choose Check Out for

Edit. The Lock dialog box opens, as shown in

Figure 2.39 A newly added solution

source control. All the files are indicated as

being ready for the first check-in.

figure 2.40. Then choose a lock mode and click

Lock. Note that if you choose Check Out, other users will have to wait until you com-

mit your changes to the repository before they can begin to work with the file.

Another useful feature of TFS source control is the ability to shelve changes. This

lets you stack the changes you want to keep safe under source control but don’t want

to check in yet. Imagine that you’ve worked all day Friday on a new feature. You aren’t

Figure 2.40 Locking a file in TFS source control prevents other users from checking in (just as

with SVN) or prevents check in and check out.

64

CHAPTER 2

Set t ing up a source con t rol syst em

Figure 2.41 Shelving pending changes in TFS source control is nothing more than making a secure copy

of work in progress under version control.

finished, so you don’t want to check in the file; but the changes are too valuable for

you to keep on your laptop over the weekend. You can create a shelf in TFS source

control and send your changes there.

To create a shelf, right-click the file in Solution Explorer, and choose Shelve Pend-

ing Changes. The Shelve dialog box opens (see figure 2.41). Name the shelveset, and

click Shelve.

TFS 2010 source control, unlike Visual SourceSafe, is a product worth recommend-

ing. I f you’re planning to base your CI process on TFS, make sure you’re using its

internal source control capabilit ies. Mixing SVN and TFS is possible but troublesome.

I f you have the luxury of choosing a source code control system, refer to chapter 4,

where we discuss CI servers and how to choose the program that’s best for you.

2.5

Sum m ary

Setting up a clean and well-thought-out source control system is vital for the CI pro-

cess. Without one, you won’t be able to integrate your work continuously. There won’t

be a single repository containing all you need to build your software. I t’ll be difficult

to know when something changed. I t’ll be impossible to trigger a CI build.

Sum m ary

65

A well-designed repository structure should play along with the project layout.

Depending on your needs, you’ll use single or multiple repositories to host your proj-

ects. You’ll have to decide whether you need external references. The keys to the right

solution are circumstances and experience. We’re convinced that the solutions pro-

vided in this chapter play well while building a CI process.

I f you’re one of the rare software houses that hasn’t been using source control sys-

tems until now, incorporating CI may be a great opportunity to introduce Subver-

sion—a terrific, free revision control system. As you’ve seen, setting up a VisualSVN

Server is simple, and administration with the VisualSVN Management Console is more

than easy. I f you choose to use the TortoiseSVN client, you’ll be able to do anything

you need to keep a consistent and clean code base.

I f you’re planning to use Microsoft Team Foundation Server, for which the 2010

version is a big milestone, especially for smaller teams, you should seriously consider

using TFS source control to host the changes in your source code. TFS 2010 is afford-

able and is keeping up in the way of features with the best open source revision con-

trol systems.

The financial calculator you pushed to your source control system in this chapter

will help provide a full-blown CI process later in the book. The next step will be to cre-

ate a fully automated build process for this project. This build will be used within the

CI process to check whether integration is going well, along with team commits. In the

next chapter, you’ll create a build process.

Automating
the build process

Th is chapt er covers
■

■

■

Choosing a build-automation tool for the

CI process

Using MSBuild

Extending MSBuild

Having a single repository that contains everything you need for building your soft-

ware is the first step on the path to a good CI process. The second, which is also

important, is to have the software build. To do this, you need a kind of metaphori-

cal lever that will help you jack up your source code from transcription of ideas into

working software. You’ll use this lever in your day-to-day work as well as in the CI

process you’re building. Your build lever must be designed in a way that’ll let you

build your applicat ion in one step.

The first thing that may come to mind as a lever in the .NET Framework world is

Visual Studio. I t seems to have everything that makes for a good lever. When you

press the F6 button, you start a build process that leads to working software. But is it

enough? Does it make a good lever? We’re afraid not. I t ’s able to compile and start

a program, but nothing else. We need more to incorporate CI : something that’ll let

you test everything, analyze the code, generate documentation, deploy, and create

installation routines. We’re looking for something powerful, customizable, and

66

Bui ld au t om at ion

67

extensible. Visual Studio is a great development environment, but a poor software-

automation tool—and we want to automate the entire software build process.

I f your build process doesn’t take care of everything in addit ion to compiling,

those elements will most likely be neglected. You don’t click one button to compile,

another to test, and another to deploy. The key is automation—and that means you

have to get rid of the human factor.

We want to create a build process that can work autonomously, without supervi-

sion. The way to achieve this goal is through an automation platform.

In this chapter, we’ll browse through various build-management systems and deter-

mine which ones are suitable for the .NET integration process. We’ll look at NAnt, but in

the end we’ll choose MSBuild as the best build tool. You’ll use built-in and community-

owned MSBuild features to create a build-and-deploy process. Finally, you’ll extend

MSBuild with your own functionality.

3.1

Bui ld au t om at ion

I n the CI context, an automation platform is a tool or a set of tools that helps automate

the entire software build process, including doing the following:

■

■

■

■

■

■

Compiling the source code

Preparing the database

Performing tests

Analyzing the code

Creating installation routines and deploying

Creating documentation

What we’re looking for should be easily maintainable. And it should be stored in the

source control system like everything else that takes part in the CI process.

The obvious way to automate the build process is to script it using human-readable

text. You should avoid everything that doesn’t use text as a description of a build pro-

cess. Compile managers are bad, bad things. You should ban from your mind any

automation tool that keeps the build description in binary format and requires you to

manually click to make it run. Text form is easier to create, read, edit, and keep track

of (using version control) than binary form.

In chapter 1, you saw a simple example of automation using ordinary command-

line commands organized in a batch file; software automation was done this way at the

dawn of time. I t makes the process faster in comparison to manually issuing com-

mands, it reduces redundant tasks because you don’t have to be involved in every

build, and it lets others maintain the build. Now, let’s walk through some real automa-

tion tools and search for the best one.

3.1.1

Mak e and i t s ch i ldren

Software-automation platforms are older than most active software developers. The

great-grandfather of almost all current tools is the UNIX make utility, which was created

68

CHAPTER 3

Aut om at ing t he bu i ld process

at the end of the 1970s and has been used mostly in the * ix world. I t has a Windows ver-

sion called nmake and a fairly good clone called Opus Make. All the make systems use a

text file called a make file to describe the software build process.

Later-generation tools like Jam and Cook changed this. They used more sophisti-

cated statements to hide some of the lower-level aspects of software automation.

With time, the automation platforms became bigger and more complex and began

to be called automation systems. One of them is GNU Automake with the GNU Build

System (GBS—a set of small tools that comes in handy when you’re building soft-

ware on * ix systems).

Finally, we have automation tools that use a specific programming language to

describe the build process. For example, SCons uses Python, and rake uses Ruby.

All the tools we’ve mentioned can be used to set up a CI process. But we’ll look at

the vanguard of build automation: the XML-based build systems Ant (NAnt) and

MSBuild. The XML-based systems are a step away from tools that use fairly compli-

cated commands or a programming language to describe the build process. Using

them, you can declare the steps in an XML build script, and the steps are easy to

extend and adapt.

NAnt and MSBuild are two of the tools you should choose from if you’re creating a

build process in a .NET environment. Both do the same job using similar techniques.

NAnt is an open source tool maintained by the community, and MSBuild comes from

Microsoft. Table 3.1 shows the most significant differences between them.

Table 3.1

NAnt vs. MSBuild: significant differences

Feature

Actively developed

Built-in features

Open source

Cross-platform (Linux, Mono)

Good if you already know Ant

Built in to .NET Framework

I ntegrated with Visual Studio

no

yes

yes

yes

yes

yes

no

NAnt

MSBuild

yes

some

no

no

no

yes

yes

Let’s take a quick look at NAnt and see why we’ll go with MSBuild instead.

3.1.2

I t ’s not an An t

Once upon a time, there was Ant. I t was a good, established tool used to build appli-

cations in Java shops. I t was ported to work in the .NET world and called NAnt (Not

an Ant). From its Java ancestor, it inherited the XML declarat ive automation descrip-

tion language.

Bui ld au t om at ion

69

Let’s try to use NAnt with this full-blown, single-line C# program:

class c{static void Main(){System.Console.Write("Hello NAnt");}}

Place this program in a file called HelloNAnt.cs. Now write the following NAnt script

to build an application. Call it HelloNAnt.build.

List ing 3.1

NAnt build script to clean and compile a Windows application

<?xml version="1.0"?>

<project name="Hello NAnt" default="build" basedir=".">

<property name="debug" value="true" overwrite="false" />

<target name="clean">

<delete file="HelloNAnt.exe" failonerror="false" />

<delete file="HelloNAnt.pdb" failonerror="false" />

</target>

<target name="build" depends="clean">

<csc target="exe"

output="HelloNAnt.exe"

debug="${debug}">

<sources>

<include name="HelloNAnt.cs" />

</sources>

</csc>

</target>

</project>

An NAnt script is an ordinary XML document. First you declare the project, specifying

the name (Hello NAnt), the default target (Build), and the working directory (dot [.]

for the current directory). Next, NAnt gives you the ability to define properties. A prop-

erty is a kind of named variable to which you can assign a value. The overwrite attri-

bute lets you set the variable from the command line. The debug variable is used by

the C# compiler task in a moment. The Clean target uses two delete tasks to erase

unnecessary files. Sett ing the failonerror attribute tells NAnt to ignore possible

errors—for example, if there’s nothing to delete. The second target, Build, first runs

the Clean target because of the depends attribute, and then runs the csc target to

compile the source file.

One of the rules of CI that we keep mentioning is placing everything you need to

fully build a project inside the project directory/ repository. To use the script you just

wrote, you need NAnt executables (available from http: / / nant.sourceforge.net). Place

the NAnt executables in the tools/nant folder. NAnt is now ready to use.

Open a command window, navigate to the project folder, and type tools/nant/

bin/nant.exe to launch NAnt (see figure 3.1). Run the script, and build your one-line

program. Now that the script is working, you can extend it, declare more steps, and

integrate more actions.

At the t ime we started writ ing this book, the open source NAnt project seemed to

be dead. But in mid-2010, just as we were finishing writing, a new version of NAnt

emerged. We felt that delaying publication didn’t merit reworking examples and text

to include NAnt. From a technical point of view, it isn’t a big deal. NAnt is a good

70

CHAPTER 3

Aut om at ing t he bu i ld process

Figure 3.1 Start ing a Hello World–style NAnt script. The build performs a clean followed by a

build task. As an art ifact, you get a compiled executable.

alternative for software developers with a Java background who are familiar with its

ancestor, Ant. Many developers use MSBuild only to compile the source code and use

NAnt to integrate all other tools into the CI process.

3.2

The Microsof t w ork er : MSBu i ld

Microsoft first shipped its own build tool for the .NET platform with the second ver-

sion of the .NET Framework. Updated versions were shipped with .NET Frameworks

3.0, 3.5, and 4.0. I f you check C:\Windows\Microsoft.NET\Framework\ , you’ll see that

the subfolders for v2.0, v3.5, and v4.0 contain MSBuild.exe.

Using MSBuild means less work. You don’t need to worry about third-party tools

and how to integrate them with your environment. You don’t have to worry about

whether your favorite build tool is installed on the integration machine, because if

you have .NET Framework installed, the tool will be there. Pragmatic people will find

MSBuild appealing. Who knows how your business will grow? You may hit the scaling

wall with the free software and have to think about something bigger. The entire

Microsoft Team Foundation Server Build (more about it in chapter 4) is set on top of

MSBuild. Keep this in mind, and you’ll feel prepared.

MSBuild is freely distributed with the .NET platform. I t has Microsoft’s machinery

behind it, so you don’t need to worry about wide adoption and popularity. I t won’t die

suddenly, leaving you without support. MSBuild is extensible and well-documented. I t

uses XML syntax similar to NAnt to perform build tasks. And it’s closely integrated with

Visual Studio: it understands Visual Studio solution files and makes it possible to com-

pile Visual Studio solutions and projects without Visual Studio. I t seems to be the build

tool for .NET developers who want to set up a CI assembly line. But let’s start small with

a simple script that compiles a simple Hello World application.

The Microsoft worker: MSBuild

71

Figure 3.2

The Visual Studio Command

Prompt knows the paths to various

handy .NET tools. One of them is

MSBuild.

3.2.1

First encount ers w i t h MSBu i ld

To use MSBuild from the command line, you have to write the full path for the execut-

able or add it to your System Paths variable. But if you have Visual Studio installed,

you can use the Visual Studio Command Prompt, which knows the path to MSBuild.

You launch the Visual Studio Command Prompt from the Windows Start menu (see

figure 3.2).

As a small workout in MSBuild, you’ll perform the same tasks as you did previously

with NAnt. Write another captivating one-liner:

class c{static void Main(){System.Console.Write("Hello MSBuild");}}

Compile it using the MSBuild script build.proj, shown next. The .proj file should go in

the same folder as the source file for the program.

List ing 3.2

Simple MSBuild script

<?xml version="1.0" encoding="utf-8"?>

<Project DefaultTargets="Build"

➥xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>

<Debug Condition="'$(Delete)'==''">true</Debug>

</PropertyGroup>

<ItemGroup>

<CompileFiles Include="HelloMSBuild.cs" />

<DeleteFiles Include="HelloMSBuild.exe;HelloMSBuild.pdb" />

</ItemGroup>

<Target Name="Clean">

<Delete Files="@(DeleteFiles)" />

</Target>

<Target Name="Build" DependsOnTargets="Clean">

<Csc Sources="@(CompileFiles)"

OutputAssembly="HelloMSBuild.exe"

72

CHAPTER 3

Aut om at ing t he bu i ld process

EmitDebugInformation="$(Debug)" />

</Target>

</Project>

This script should look familiar. Just as with NAnt, an MSBuild script is an XML docu-

ment, and it uses a similar set of ideas including properties, targets, and tasks. The

main element of an MSBuild script is a Project, which defines the entire build pro-

cess. I t must be equipped with an xmlns attribute that defines the namespace. Option-

ally, you can define default targets. In this case, you use the Build target.

A Target is a logical part that declares a set of tasks. The target can be organized

hierarchically, so that one target depends on another. In this case, the Build target

depends on the Clean target, so MSBuild first runs the Clean target and then the

Build target.

The Build target has only one task: Csc. This task calls the C# compiler with param-

eters. I n the first parameter, specified by the Sources attribute, you provide an item

containing a list of documents to be compiled. In the second parameter, Output-

Assembly, you provide a name for the output file. In the last parameter, EmitDebug-

Information, you specify whether you’re interested in debug information for your

program. The value for it is defined in the Debug property.

An ItemGroup contains a list of items. I n the example, items contain one or more

references to a file. You have two of them: the first defines the files to be compiled (in

this case, one file, HelloMSBuild.cs) and the second contains the list of files that the

Clean target should delete.

MSBuild properties are containers for values. Every property has a name and is

defined in a PropertyGroup. You define only one property here: Debug. I t contains a

Boolean value and is used in the Csc target to determine whether the compiler should

create a .pdb debug symbols file.

I f the path to MSBuild exists in system variables or you’re using the Visual Studio

Command Prompt, the only thing you have to do is start MSBuild from the command

line. Type msbuild to launch and run the build process (see figure 3.3).

Now that you’ve written your first MSBuild script, let’s extend it a litt le.

Passing parameters to MSBuild scripts

Another neat thing you’ll use often when creating a CI process using MSBuild is

the ability to pass parameters from the command line to the script. Your Debug

property has one attribute, Condition, which you can set from the command line

like this: msbuild /property:Debug=false. This attribute helps set the default

value if you call the script without setting the value explicitly.

After you do this, the condition '$(Delete)'=='' isn’t fulfilled. That is, the value

is false and not empty. MSBuild uses what’s defined at the command line. In the

end, you get the compilation without the debug files.

The Microsof t w orker : MSBu i ld

Figure 3.3 MSBuild is less verbose than NAnt. I f you have only one file with the * .proj extension in

the directory where you start MSBuild, it’s automatically executed.

73

3.2.2

Using pr edef ined t ask s t o ex t end an MSBu i ld scr ip t

MSBuild comes with a set of predefined tasks. You’ve already used two of them: the C#

compiler taskCsc and theDelete task. Other useful MSBuild tasks include the following:

■

■

■

■

■

Copy copies a file.

MakeDir creates a folder.

RemoveDir removes a folder.

Message prints a message on the screen.

Exec runs any program.

You’ll use these tasks to extend your MSBuild script. Using the code from listing 3.3,

you can create something like a mini-CI iteration step (without the loop). Using

MSBuild, you clean up the building site, compile and archive the software, and then

copy the output to a folder and start the program to test whether it works.

List ing 3.3

Extending the build script

<?xml version="1.0" encoding="utf-8"?>

<Project DefaultTargets="Build;Deploy;Execute"

xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>

<Debug Condition="'$(Delete)'==''">false</Debug>

<OutputFile>HelloMSBuild.exe</OutputFile>

<OutputDirectory>Output</OutputDirectory>

</PropertyGroup>

<ItemGroup>

<CompileFiles Include="HelloMSBuild.cs" />

<DeleteFiles Include="HelloMSBuild.exe;HelloMSBuild.pdb" />

</ItemGroup>

B

Defines
default
targets

74

CHAPTER 3

Aut om at ing t he bu i ld process

<Target Name="Clean">

<Delete Files="@(DeleteFiles)" />

<Delete Files="$(OutputDirectory)***" />

<RemoveDir Directories="$(OutputDirectory)" />

</Target>

<Target Name="Build" DependsOnTargets="Clean">

<Csc Sources="@(CompileFiles)"

OutputAssembly="$(OutputFile)"

EmitDebugInformation="$(Debug)" />

</Target>

<Target Name="Deploy">

<MakeDir Directories="Output" />

<Copy SourceFiles="$(OutputFile)"

DestinationFolder="$(OutputDirectory)" />

</Target>

<Target Name="Execute">

<Message Text="Starting: $(MSBuildProjectDirectory)

➥\$(OutputDirectory)\$(OutputFile)"

Importance="low" />

<Exec WorkingDirectory="$(OutputDirectory)"

➥Command="$(OutputFile)"></Exec>

</Target>

</Project>

The first thing that catches your eye is probably the extended DefaultTargets list B.

You define three new tasks, divide by semicolons. They’re executed in the same order

that they appear in the list. Note that the Build task still depends on Clean.

The Build target is the same as in the previous example. The Deploy target creates

the output folder (MakeDir task) and copies the executable file (Copy task) to the

folder defined in the property $(OutputFile).

The Execute target first uses the Message task to write text to the screen. The mes-

sage contains information about what will be executed and where. The message uses

one of many predefined properties,$(MSBuildProjectDirectory), which contains the

path to the MSBuild project. The Message task has one more parameter, Importance,

which defines the verbosity of the MSBuild execution. In a minute, you’ll learn what this

means and how to start MSBuild with different verbosity settings.

After the Message task, you use the Exec task to start the program. The Exec task

uses two parameters: Command to define the program that needs to be started and

WorkingDirectory to define where it needs to be started.

The Clean target is then extended with addit ional functionality to remove old fold-

ers (RemoveDir) and files (Delete).

Let’s start the automated build process. For the sake of cleanliness, delete all the

artifacts that remained in the project directory. You don’t have to do this manually!

You have all you need in your MSBuild script. You can start it with the /target com-

mand-line parameter. Using this parameter, you can start any target defined in your

MSBuild project, disregarding the DefaultTargets project attribute.

Go to the command prompt, and type msbuild /target:Clean. You should see

something similar to figure 3.4.

The Microsof t w orker : MSBu i ld

75

Figure 3.4 You can pass MSBuild a specific target—for example, one to clean folders and files—on

the command line.

You’ve cleaned everything, and you’re ready to start the actual build. Enter msbuild in

the command window to build and run the program (see figure 3.5).

But what happened to the Message task in the Execute target? I t’s nowhere to be

seen in the output. I t was omitted because of MSBuild’s default verbosity level. The ver-

bosity level defines how much information the MSBuild process writes on the screen.

The higher the level, the more information you see on screen. To see the messages

with Importance set to Low, you must start MSBuild with high verbosity. I t may sound

trivial, but it ’s an art to set the correct verbosity level in the CI process. You have to set

Figure 3.5

MSBuild can build and run a program.

76

CHAPTER 3

Aut om at ing t he bu i ld process

verbosity this way to be able to quickly browse through and know what’s going on.

You’ll do this often. You don’t want to be flooded with information you don’t need;

instead, you want to be able to quickly and precisely locate the cause of a problem.

Only with the correct verbosity level can you do this.

Let’s run MSBuild with a nonstandard verbosity level. Go back to the command

window, and type msbuild /verbosity:detailed. This t ime, the Message task is exe-

cuted (see figure 3.6).

We’ve shown you how to use MSBuild with an essential set of tasks. These tasks are

built in to MSBuild. But sooner or later, you’ll need something more. MSBuild Com-

munity Tasks are a great set of additional tasks.

3.2.3

MSBui ld Com m unit y Task s

Using MSBuild, you aren’t limited to the tasks that are delivered inside the program

from Microsoft. The set of tasks can easily be extended. You can do this by writ ing a task

yourself, or you can use tasks others have written. A useful set of free tasks called

MSBuild Community Tasks is distributed as open source and contains a lot of ready-to-

use functionality, such as using FTP servers, sending email, manipulating XML, manag-

ing SVN, getting the date and time, and much more. For the complete list, refer to

http: / /msbuildtasks.tigris.org/ .

The easiest way to start using the MSBuild Community Tasks is to download the MSI

package and install it on the system. But this isn’t the best way if you intend to set up a

CI process. By installing the package, you get all the system variables set, and the Com-

munity Tasks are instantly ready to use. But if you do this, you must install the software

on the build server as well. You’ll encounter a similar problem if you want to use it on

various machines for your team. Think about what it means to install the new version

Figure 3.6

MSBuild is more verbose if you start it with a /verbosity:detailed switch.

The Microsof t w orker : MSBu i ld

77

Figure 3.7

The directory structure for a project should include the

MSBuild Community Tasks.

on every machine—that’s one of the reasons to keep everything you need in the proj-

ect directory.

Create the folder tools/MSBuildCommunityTasks under your project directory.

Download the Community Tasks zip archive, decompress it, and copy the content of

the bin directory into your tools directory (see figure 3.7). This way, everyone can use

the Community Tasks after they get the latest version of the project from your source

control system.

Now, let’s put the Community Tasks to work. Listing 3.4 uses three of the many

tasks that are available. These tasks let you archive your software, give the archive a

unique name, and send it using email. To keep the script brief, it omits some parts

that are duplicates from listing 3.3.

List ing 3.4

Build script using MSBuild Community Tasks

<?xml version="1.0" encoding="utf-8"?>

I mports Community Tasks

B

<Project DefaultTargets="Build;Deploy;Execute"

xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<UsingTask

AssemblyFile="tools\MSBuildCommunityTasks\MSBuild.Community.Tasks.dll"

TaskName="MSBuild.Community.Tasks.Zip" />

<UsingTask

AssemblyFile="tools\MSBuildCommunityTasks\MSBuild.Community.Tasks.dll"

TaskName="MSBuild.Community.Tasks.Mail" />

<UsingTask

AssemblyFile="tools\MSBuildCommunityTasks\MSBuild.Community.Tasks.dll"

TaskName="MSBuild.Community.Tasks.Time" />

<PropertyGroup>

</PropertyGroup>

<ItemGroup>

<DeleteFiles Include="*.zip" />

</ItemGroup>

<Target Name="Clean">

</Target>

<Target Name="Build" DependsOnTargets="Clean">

</Target>

I nsert code from
listing 3.3

78

CHAPTER 3

Aut om at ing t he bu i ld process

<Target Name="Deploy">

<MakeDir Directories="Output" />

<Copy SourceFiles="$(OutputFile)"

➥DestinationFolder="$(OutputDirectory)" />

<Time Format="yyyyMMddHHmmss">

<Output TaskParameter="FormattedTime"

PropertyName="BuildDate" />

</Time>

C Gets current
time

<Zip Files="$(OutputFile)"

ZipFileName="HelloMSBuild.$(BuildDate).zip" />

<Mail

SmtpServer="adres"

D Archives
program

To="email"

From="email"

Subject="New build!"

Body="This is an automated message."

Attachments="HelloMSBuild.$(BuildDate).zip"/>

</Target>

E Sends
email

<Target Name="Execute">

</Target>

I nsert code from
listing 3.3

</Project>

First, you must inform MSBuild that you’re about to use an additional task B. You do

this in the UsingTask tag, giving it an attribute with the path to the MSBuild Commu-

nity Tasks library and specifying what task you’ll be using. Here, you use the Zip, Mail,

and Time tasks in the Deploy target.

You use the Time task C to set a new property with the current date and t ime. This

property is named $(BuildDate) and is used in the next task, Zip D. This task creates

an archive with the name defined in the attribute ZipFileName, which contains the

files defined in the Files attribute. The last step is to send the archived file to a given

email address using the Mail task E. The Mail task needs to be configured: you must

provide the SMTP server name, the username and password if necessary, and the mail

recipient. In a development environment, you might think about using a fake SMTP

server to test the functionality. We like Antix SMTP Imposter (www.antix.co.uk/Proj-

ects/SMTPImpostor)—it has everything a normal SMTP server has, but it keeps the

messages unsent and ready for review.

Run MSBuild as before, and you’ll see that the MSBuild Community Tasks are run

just like the native MSBuild tasks (see figure 3.8).

Additional Community Tasks are handy when you write your own build script.

Another important feature of MSBuild is its integrat ion with Visual Studio.

3.3

The happy couple: Visual St ud io and MSBu i ld

MSBuild is used mostly in conjunction with Visual Studio, because they understand

each other so well. MSBuild has tasks that can read and compile entire Visual Studio

projects or solutions. And project files since Visual Studio version 2005 are nothing

other than MSBuild scripts, which means you can extend your project file directly.

IntelliSense and validation for MSBuild scripts are present in Visual Studio.

http://www.antix.co.uk/Proj-ects/SMTPImpostor
http://www.antix.co.uk/Proj-ects/SMTPImpostor

The happy couple: Visual St ud io and MSBu i ld

Figure 3.8 The extended MSBuild script in action. Using MSBuild Community Tasks, you can archive

the output and send it as an email attachment.

79

3.3.1

Ex am in ing a proj ect f i le

In chapter 1, you created some Visual Studio projects. This set contains one shared

mathematical library and two clients for a leasing calculator. Open one of the project

files: for C# projects, the name is * .csproj; and for VB, it ’s * .vbproj.

To open the project file in text form in Visual Studio 2010, unload the project (by

choosing Unload Project from the project context menu in Solution Explorer) and

edit it (also using the context menu). Don’t forget to reload the project afterward. You

can do the same thing using the PowerCommands plug-in (available from http: / /

visualstudiogallery.msdn.microsoft.com). I t’ll let you open the project file by right-

clicking in the Solution Explorer and choosing Edit Project File from the context menu.

The following listing shows part of a project file. To save space, we cut out the

PropertyGroups responsible for project configuration and the ItemGroups that define

references, includes, and files.

List ing 3.5

Visual Studio project file, which is an MSBuild script

<?xml version="1.0" encoding="utf-8"?>

<Project ToolsVersion="4.0" DefaultTargets="Build"

➥xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>

<Configuration Condition="

➥'$(Configuration)' == '' ">Debug</Configuration>

</PropertyGroup>

<ItemGroup>

<Reference Include="System" />

</ItemGroup>

<Import Project=

Omitted project

configuration

Omitted references,
imports, compile
items, embeds

"$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

B Does magic

http://visualstudiogallery.msdn.microsoft.com/

80

CHAPTER 3

Aut om at ing t he bu i ld process

<!-- To modify your build process, add your task

➥inside one of the targets below and uncomment it.

➥Other similar extension points exist, see

➥Microsoft.Common.targets.
<Target Name="BeforeBuild">

</Target> C Project extension points
<Target Name="AfterBuild">

</Target>

-->

</Project>

This project file should look familiar, because it’s an MSBuild script. I t has a default tar-

get named Build, a PropertyGroup, and so on. But wait! Where’s the definition of the

Build target? I t’s nowhere to be seen. To solve this riddle, you have to look in the

imported Microsoft.CSharp.targets project B. I t’s an import of the standard C#

targets file. You can check it by opening the CalcCore project you created in chapter 1;

the project file name is CalcCore.csproj. The property $(MSBuildToolsPath) points to

the default MSBuild installation folder. Effectively, you’re inserting the contents of the

file C: \Windows\Microsoft.NET\Framework\ [version number] \Microsoft.CSharp.targets

into your project file. This file defines the standard targets in the compilation pro-

cesses of C# projects. A similar file for Visual Basic resides in the same directory. Both

of them import Microsoft.Common.targets that defines the common tasks for vari-

ous project types.

The project files are ordinary MSBuild scripts, and it’s possible to override and

redefine the targets. You have to remember one rule: the target definit ion that’s

closer to your MSBuild script counts. So if you override the BeforeBuild or After-

Build target in your file, MSBuild will take this definition and not the definition with

the same name from an imported target file. BeforeBuild and AfterBuild are visible

in every project file C. They’re commented out, and all you have to do is to uncom-

ment and define them to extend your build process.

Let’s implement one of them to start the executable after the build. You can easily

do so like this:

<Target Name="AfterBuild">

<Exec Command="bin\$(Configuration)\WinCalc.exe"></Exec>

</Target>

Similar functionality is offered with the pre-build and post-build events. These are

legacy events from pre–Visual Studio times. They’re simple command-line commands

that are executed line by line. You can use macros with them; these so-called macros

are nothing more than MSBuild properties translated to strings by execution. These

events are available in project properties in Visual Studio and are saved in the

project file as PreBuildEvent and PostBuildEvent targets. To see the windows

shown in figure 3.9, right-click the project file in Solution Explorer, choose Project

Properties, click the Build Events tab, click the Pre- or Post-Build button, and click

the Macros.

The happy couple: Visual St ud io and MSBu i ld

81

Figure 3.9 Using pre- and post-build events, you can add simple command-line commands enriched with

MSBuild variables.

MSBuild integrates with Visual Studio solution files, but the integration looks different

than it does with project files. MSBuild knows how to execute the solution files, as

you’ll see next.

3.3.2

Ex am in ing t he solu t ion f i le

Unfortunately, Visual Studio solution files (* .sln) aren’t MSBuild projects. But MSBuild

knows how to talk to them. Using a task calledMSBuild, you can execute an MSBuild proj-

ect from another MSBuild script. The MSBuild task has one neat feature: it can execute

the Visual Studio solution file, which is the same thing Visual Studio does. Let’s try it.

You can use the leasing calculator from

chapter 1 as a test field. Your goal is to compile

the solution without using Visual Studio. To do

that, you’ll need an MSBuild script. The easiest

approach is to place it in the same folder as the

solution file and make it a solution item (see

figure 3.10). The Solution I tems folder in Solu-

tion Explorer is created if you add any file

directly to the solution. Create a text file, and

name it build.proj. I t helps to name the build

scripts the same way in every solution (you’ll

learn why in the next section).

Figure 3.10 Custom build script as a

solution item in Solution Explorer

82

CHAPTER 3

Aut om at ing t he bu i ld process

To perform clean and rebuild operations on the solution, you must provide the

Targets attribute to the MSBuild task. The targets are analogous to the action that

Visual Studio performs when you choose Clean Solution and Rebuild Solution

from the solution’s context menu in Solution Explorer. The other attribute is the

name of the solution file on which the MSBuild project file is to perform the targets.

Here’s the code:

<Project DefaultTargets="Build"

➥xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<Target Name="Build">

<MSBuild Targets="Clean;Rebuild" Projects="WindowsCalculator.sln" />

</Target>

</Project>

Save this file and reopen it to make Visual Studio realize that it ’s an MSBuild script and

turn on IntelliSense and code coloring.

3.3.3

St ar t ing an MSBui ld scr ip t w i t h Visual St ud io

During the course of setting up a CI process, you’ll work extensively with MSBuild. So

it’s a good idea to integrate it more closely with Visual Studio. I t would be handy to be

able to execute the script directly from Visual Studio. To do so, you can set MSBuild as

an external tool. In Visual Studio, choose Tools > External Tools, click Add, and name

the tool MSBuild. Complete the definition as shown in figure 3.11 and outlined in

table 3.2.

Figure 3.11

Sett ing a new external tool in

Visual Studio. The name will

appear in the Tools menu. The

command will be executed

using the arguments provided

in the Init ial Directory field,

and the output will be sent to

the Output window.

Ex t ending MSBu i ld by w r i t ing and using cust om t asks

83

Table 3.2

MSBuild external tool definition in Visual Studio

Sett ing name (as in figure 3.11)

Title

Command

Arguments

I nitial directory

Use Output window

Treat output as Unicode

Prompt for arguments

Value

MSBuild

C:\Windows\Microsoft.NET\Framework\ [version number] \

MSBuild.exe

$(SolutionDir)build.proj

$(SolutionDir)

Checked

Unchecked

Unchecked

After you define the new external tool, an MSBuild item appears on the Tools menu.

Click it, and look at the Output window. The script build.proj is executed. As you can

see, the convention of always naming build projects the same way is necessary here:

otherwise, you have to define the external tool for every project file name. The output

of the MSBuild script is visible in Visual Studio, as shown in figure 3.12.

Visual Studio and MSBuild integration are a great productivity boost. A similar situ-

ation exists with MSBuild extensibility; it ’s easy to write your own custom tasks.

3.4

Ex t ending MSBu i ld by w r i t ing and using cust om t asks

Extending MSBuild is easy. To write your own tasks, you need to implement the Micro-

soft.Build.Framework.ITask interface or inherit from Microsoft.Build.Utilit ies.Task.

The second solution is easier: all you have to do is override the Execute method. Let’s

use it to do something useful.

Figure 3.12

Custom build script output in the Output window in Visual studio

84

CHAPTER 3

Aut om at ing t he bu i ld process

Figure 3.13

Assembly versioning in .NET. You can use

* to let the system auto-manage your

build and revision numbers.

Let’s assume you want to associate the assembly version number with the Subversion

(SVN) revision number. For some compelling reason, you decide that the revision part

of the assembly version should be the current SVN revision number. For example, you

want your CI process to update the version number every t ime it builds.

The assembly version is kept in the assembly: AssemblyVersion attribute in

AssemblyInfo.cs. This file resides in the Properties folder in every project. Figure 3.13

shows how .NET Framework versioning works.

The revision number is easily readable with SvnInfo, a new MSBuild Community

Task. I t uses the SVN command-line client to read information about a given SVN path.

So in addition to the MSBuild Community Tasks in your tools folder, you need the SVN

client executable (available from http: / / subversion.tigris.org/).

Another MSBuild Community Task can help you easily update the AssemblyInfo.cs

file with the new version number, including the revision number. Keep in mind that

the version numbers have a maximum value of 65535.

One additional thing you want to do is archive the output in a zip file named after

the version number. You can write your own MSBuild task to read this number directly

from AssemblyInfo.cs.

3.4.1

I m plem en t ing a cust om t ask

I t ’s time to implement your custom task. Follow these steps:

1

2

3

4

Create a new solution named CustomBuildExtensions.

Add a new class library project named BuildTasks.MSBuildTasks. I f you can

go without the newest C# features, it ’s best to create the task in .NET Frame-

work 2.0; this way, you can use it in every MSBuild version.

Add references to Microsoft.Build.Framework.dll and Microsoft.Build.Utilit ies.dll.

Add a new class to the BuildTasks.MSBuildTasks project, and name it Assembly-

InfoReader.cs. Here’s the code.

List ing 3.6

MSBuild task to read the assembly version from AssemblyInfo file

namespace Calc.MSBuildTasks

{

using System.IO;

using System.Text.RegularExpressions;

public class AssemblyInfoReader :

Microsoft.Build.Utilities.Task

B I nherits
base task

{

Ex t ending MSBu i ld by w r i t ing and using cust om t asks

private string path;

private string property;

private string value;

85

[Microsoft.Build.Framework.Required]

public string Path

{

get { return path; }

set { path = value; }

}

[Microsoft.Build.Framework.Required]

public string Property

{

get { return property; }

set { property = value; }

}

[Microsoft.Build.Framework.Output]

public string Value

{

get { return this.value; }

set { this.value = value; }

}

public override bool Execute()

C

D

E

F

Contains path to
AssemblyI nfo file

Contains property
to be read

Output
property

Does actual
work

{

Regex regex = new

Regex(@"^\[assembly:.+?" + Property + ".+?$",

RegexOptions.Multiline);

value = string.Empty;

try

{

Match match = regex.Match(File.ReadAllText(path));

if (match.Success)

{

value = match.Value.Substring(

match.Value.IndexOf("\"") + 1,

match.Value.LastIndexOf("\"") –

match.Value.IndexOf("\"") - 1);

return true;

}

}

catch

{

// Ignore

}

return false;

}

}

}

To implement your own functionality and be able to use it in an MSBuild script, you

must inherit the Microsoft.Build.Utilities.Task class B. I t has everything you

need. The only thing you have to do is to override the Execute() method F. This

method does the actual job and returns true if it succeeds or false if it fails. I t uses

86

CHAPTER 3

Aut om at ing t he bu i ld process

custom propert ies that you can define, for example, to pass data in to the task. In the

required property Path C, you must set the path to the AssemblyInfo file. The other

required property is Property D, which contains the attribute to be read. The output

is set in the Value E property. The reading in the Execute() method is done with a

mix of regular expressions and hack-and-slash string manipulation.

Another thing you can do here is synchronize the version number among all the

assemblies in the project. Doing so may be a good idea if you always release the files

simultaneously and you want to have the version synced over the release. You do this by

creating a common assembly info file and adding it as a link in each project of the solu-

tion. The assembly info file must still be updated, but you can add that as a task in the

build script. We leave the implementation of this as an exercise for you to complete.

Now, let’s use your new task to do something useful.

3.4.2

Put t ing i t al l t oget her

Your custom task is ready, so let’s implement versioning using MSBuild and Subver-

sion. To use your task, you have to put the compiled version in the tools directory of

your framework. This is the project you intend to share with other projects. This way,

the new MSBuild task is available in all the projects that are using it .

Do the same with the SVN client you downloaded. You should end up with the

directory structure shown in figure 3.14.

Figure 3.14

The project directory structure with a

reusable Framework/ tools folder that

contains MSBuild Community Tasks,

your own tasks, and the SVN client.

Ex t ending MSBu i ld by w r i t ing and using cust om t asks

87

You’ll version your leasing calculator. Go to the build.proj script you created in sec-

tion 3.3.2, and extend it as follows.

List ing 3.7

Project versioning with Subversion and a custom MSBuild task

<Project DefaultTargets="Build;Deploy;"

xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>

<MSBuildCommunityTaskPath>

$(MSBuildProjectDirectory)\Framework\tools\MSBuildCommunityTasks

</MSBuildCommunityTasksPath>

<RevisionNumber Condition=" '$(RevisionNumber)' == '' ">

x

</RevisionNumber>

<Configuration Condition=" '$(Configuration)' == '' ">

Debug

</Configuration>

</PropertyGroup>

<Import Project="Framework\tools\MSBuildCommunityTasks

➥\MSBuild.Community.Tasks.Targets"/>

<UsingTask AssemblyFile="Framework\tools\MyMSBuildExtensions

➥\BuildTasks.MSBuildTasks.dll"

TaskName="BuildTasks.MSBuildTasks.AssemblyInfoReader">

</UsingTask>

<SetupSourceFiles Include="WinCalc\bin\

➥$(Configuration)\WinCalc.exe" />

</ItemGroup>

<Target Name="Build">

<SvnInfo RepositoryPath=

"https://HYMIE/svn/WindowsCalculator/trunk"

Username="[user]" Password="[password]"

ToolPath="Framework\tools\svn">

B

Maps task to
implementing
assembly

<Output TaskParameter="Revision"

PropertyName="RevisionNumber" />

</SvnInfo>

C Reads SVN
revision number

<FileUpdate Files=" WinCalc\Properties\AssemblyInfo.cs"

➥Regex="(\d+)\.(\d+)\.(\d+)\.(\d+)"

➥ReplacementText="$1.$2.$3.$(RevisionNumber)" />

D Uses regex to
update
assembly info

<MSBuild Targets="Clean;Rebuild" Projects="WindowsCalculator.sln" />

</Target>

<Target Name="Deploy">

<AssemblyInfoReader

Path=" WinCalc\Properties\AssemblyInfo.cs"

Property="AssemblyVersion">

<Output TaskParameter="Value" ItemName="Version" />

E Custom task
reads assembly
version

</AssemblyInfoReader>

<Zip Files="@(SetupSourceFiles)"

ZipFileName="WindowsCalculator.%(Version.Identity).zip"

Flatten="true" ContinueOnError="false" />

<Copy SourceFiles="WindowsCalculator.%(Version.Identity).zip"

DestinationFolder="c:\Dev\Release" />

88

CHAPTER 3

Aut om at ing t he bu i ld process

<Delete Files="WindowsCalculator.%(Version.Identity).zip"/>

</Target>

</Project>

You extend the default build for the Windows calculator project and add the deploy

target. You import the MSBuild Community Tasks using the predefined targets file.

And you tell MSBuild that the task AssemblyInfoReference defined in TaskName that

you intend to use is implemented in the assembly defined in the AssemblyFile attri-

bute B. Then you extend the build target. You read the SVN revision number C first,

using the SvnInfo Community Task. The revision number is saved in the $(Revision-

Number) property. Next, you use the FileUpdate Community Task D to update

AssemblyInfo.cs with the new version number. After that, you perform the build on

the solution. When the build target is ready, MSBuild fires the Deploy target. Using

your custom task, you read the version number into the $(Version) property E.

Using the property metadata %(Version.Identity), you create a zip file. The archive

is copied into the release directory and deleted.

You’ve put everything together. The script you wrote is ready to be used as a part of

a CI process.

3.5

Sum m ary

Build automation is an essential part of the CI process, because CI occurs behind the

scenes. You need an automated process that will perform the entire build every time

it’s needed.

Ideally, the automation process is scriptable. Changes can be made manually, or

automatically with a tool like Visual Studio. You should be able to define various exe-

cution paths. Using conditions and parameterization, you should be able to perform

various types of builds according to the situation. And your build process should be

easily extensible.

Many tools deal with the build automation. Right now, MSBuild seems to be the

best choice for .NET developers using Windows and Visual Studio; it ’s integrated with

.NET Framework and used in the UI . But there are alternatives, such as NAnt. The

choice is yours.

In the next chapter, we’ll look at ways to bend the build process a litt le. You’ll con-

nect the end with the beginning and add some continuity to this process. To do so,

you need a CI server.

Choosing the right
CI server

Th is chapt er covers
■

■

■

■

■

CI server basics

Choosing the right CI server

Setting up CruiseControl.NET, TeamCity, and

TFS Team Build

Discussing build triggers

Checking some extended capabilit ies of

CI servers

In chapters 2 and 3, you gathered everything you need to perform full integrat ion

in a single repository. You now know how to build everything automatically. You’re

fully prepared for continuous integration (CI). You have all the bits and pieces to

set up a fully automated process that eventually will build, test, deploy, and analyze

an application to help ensure it functions correctly, follows best practices, and is

deployable by the customer. I t ’ll be a process that runs with each source code

change and provides immediate feedback to the development team. To accomplish

this, you need a CI server.

In this chapter, we’ll give you an overview of what’s on the market today. We’ll

look at the Microsoft flagship in this area: Team Foundation Server (TFS) 2010.

89

90

CHAPTER 4

Choosing t he r igh t CI server

We’ll also pay close attention to two leaders in the alternative .NET tooling list: Cruise-

Control.NET and JetBrains TeamCity. But first, let’s consider how far we are from a

full-blown CI process.

4.1

A qu ick rev iew of t he CI process

Thus far, we’ve presented a sample application—a financial calculator—that you’ll

put under CI . I t ’s been stored in the source code repository. You can get everything

you need to build your software from the repository and then, with a single command,

build it. Both actions are on a one-off basis. But you have to add continuity to the pro-

cess and make the actions occur in a constant loop. They need to run continuously,

preferably after every commit to the source control repository.

Right now, your process is a lit t le flat. When something new happens, you start

your build, it does all the things it was designed to do, and then it stops. The status

quo is back in force until a software developer makes the next move (see figure 4.1).

The goal of this chapter is to introduce another player: a production-ready CI

server that will work for you. The software developer works as shown in figure 4.1, but

the new player gets more responsibility. Even if the software developer forgets to pull

the “ lever” to make a build and to check if everything is correct, the CI server never

forgets, as shown in figure 4.2.

There are various ways to accomplish this manual build. First, you can try to build

the system manually: you act as a CI server; you are the build master. You can perform

a build once a day or after every check-in (for example, by using a physical item/

token to show who has control, as we’ll discuss later in the chapter). Think of hand-

crafting a shell script similar to the example provided in chapter 1. You can try to write

Figure 4.1 Until now, you’ve been able to push the lever and get the build

done. I f the application builds correctly, you can push your code into the source

control system on a one-off basis. You get to do it all over again when you

implement the next feature.

A qu ick rev iew of t he CI process

91

Figure 4.2 The CI server in action. I t checks whether anything new is on the source

control server. I f so, it pulls the code and uses the lever to start the build. The whole

process is enclosed in an infinite loop. Whenever the software developer pushes anything

into the source control repository, sooner or later it’s integrated.

your own task-loop software to mimic the CI server and extend it to a full-blown tool.

Or you can use one of the ready-to-use tools on the market. I n this chapter, we’ll try to

find the best way.

Choosing the right CI server isn’t an easy task. You have to deal with both the hard-

ware and software aspects. On the hardware side, you have to determine whether you

have a separate physical machine on which to build your CI server. Is it a full-blown

server with 99.9% uptime or only an old machine standing in the corner of your devel-

opers’ room? I f you don’t have a physical machine, can you get a virtualized server

running somewhere that every team member can access? I f you’re setting up a non-

productive CI process, just to check things out, it ’s all right to install it on your devel-

opment machine, but that most likely isn’t a production setup.

I t’s strongly suggested that you dedicate a separate machine to act as the CI server.

Why? Because a correctly created CI process should have as few dependencies as possi-

ble. This means your machine should be as vanilla as possible. For a .NET setup, it ’s

best to have only the operating system, the .NET framework, and probably the source

control client. Some CI servers also need I IS or SharePoint Services to extend their

functionality. We recommend that you not install any additional applicat ions on the

build server unless they’re taking part in the build process.

Another reason to use a dedicated continuous build machine is that you can keep

it clear of any configuration changes you normally do on a development machine or

on a machine that’s used for something else. This way, you’re free from any assump-

tions about the installed software or machine configuration. You can be sure your

vanilla machine stays vanilla—no toppings, no icing, nothing spoiling the vanilla taste.

In other words, a machine brought to a known state every time the builds occur.

92

CHAPTER 4

Choosing t he r igh t CI server

As for hardware, as usual, more is better. Your build should be as fast as possible.

Every team member, after putting a new feature in the source control system, should

wait for the CI build to finish and check it to be sure everything worked as expected.

You don’t want to keep developers from their work for too long. In the long run, a fast

CPU and a fast hard drive are cheaper than your developers’ time.

When you have a dedicated integration machine ready to host your CI server, you

can figure out which server is right for you.

4.2

4.2.1

Exam in ing t he CI server possib i l i t ies

Before CI , a build master or release engineer had a build machine and integrated

your software there. They received the code from the team and created working soft-

ware, ready for shipment. They did the same set of repetitive steps over and over

again. The work was boring, it was error prone, and it took a lot of time. The release

build was made infrequently. Often, it led to integrat ion problems.

Then someone came up with the idea of a manual integration build. With a build

script in place, you can require developers to personally integrate new features or user

stories into working software.

But someone else thought about changing the adjective to create automated inte-

gration builds. One thought led to another, and the CI server emerged. Let’s try to

walk this path—maybe it’ll lead to the correct decision about how to establish your

own CI server.

Manual in t egrat ion bu i ld or your ow n CI ser ver ?

How about your own build server? Look at figure 4.3, which shows an ordinary build

run as a simple directed graph.

Think about what it takes for the build process to run continuously. Perhaps

you can squeeze or bend it a litt le, connecting the end with the beginning as shown

in figure 4.4. With our warm apologies to all the math purists out there, you get a

task loop.

The main reason to apply manual integration to builds is to prevent broken builds.

The manual build technique is losing importance with the newest CI servers. All devel-

opers have to manually run the build and integrate the software before they check the

software in to the repository. This task should be done in an environment as close to

the customer’s as possible. Running a manual integration build often involves using a

physical marker (often a toy) to mark the developer who is currently holding up the

Figure 4.3 An ordinary build run. You clean the construction site, compile, test,

and deploy. What can make this graph bend and become a task loop?

Exam in ing t he CI server possib i l i t ies

build or the person who checked in code

that doesn’t compile or fails tests, thus creat-

ing a broken build. Basically, it relies on

starting the same build script in the integra-

tion environment that the software develop-

ers start on their machines to check if

everything is still working.

I f you apply this process, you can be sure

that no code that can break the build gets

into the repository. This technique can com-

plement a normal CI server. Some modern

CI servers can perform this kind of task out

of the box. For example, TeamCity lets no

93

code touch the source control repository

without a prior integration build. But if you

Figure 4.4 A directed graph that bends and

closes in a task loop. I t's almost a homemade

CI server diagram.

choose a server that doesn’t have this fea-

ture, a manual integration build must be made by humans. And humans tend to

neglect, forget, and make mistakes.

This approach has one fault: if nothing changes, you’re building the same soft-

ware over and over again. I t ’s a pure waste of energy. How about adding one substan-

tial element, something that’ll periodically poll the changes from the repository? I f

nothing interesting has changed, the process waits. I f not, it performs the build (see

figure 4.5).

Scripting this scenario or writing a small program to do it shouldn’t be too hard.

You did it in chapter 1 using a command-line script. But the question is, do you have

the time to do it? You won’t do that in this book; but if you want to play, go ahead and

write your own CI server. I t ’ll take you a long t ime to get to the stage where the pro-

duction-ready CI servers are right now. They’ve evolved over the years into feature-

rich applications.

Figure 4.5

A simple CI server diagram. The build

process bends to form a loop plus a

poll/delay element.

94

4.2.2

CI servers f or .NET

CHAPTER 4

Choosing t he r igh t CI server

I f you decided not to write your own CI server, you made the right decision. But now

you have to decide which server to use. You have a lot of options to choose from. Sev-

eral CI servers are on the market, and if you want to choose wisely, you must consider

many aspects, such as the following:

■

■

■

■

■

■

■

■

How much money do you have to spend?

Do you want to pay the angle-bracket tax (write a lot of XML)?

Does it support the other tools you need?

How good are the documentation and support?

Does it do what you want it to do?

Does it do more than you need, not just now but into the future?

Is it easy to use?

Is it cool and hip?

Before we go into details, let’s take a broader look at the tools available.

Programs and scripts that performed a task similar to a CI server existed for a long

time. For example, they were used in the Linux community for kernel development

(see http: / / test.kernel.org/ tko/). But the era of CI servers started with CruiseControl

in 2000 or 2001. I t’s a tool from ThoughtWorks, and it emerged about the same t ime

as the first article about CI from Martin Fowler, who works at ThoughtWorks. Cruise-

Control is a Java-based tool for performing continuous builds. I t’s widely adopted

mainly in the Java community. I t has a pluggable architecture and supports a wide

range of source control systems. The build for CruiseControl is usually made using

Ant as the build tool.

The first CI server aimed at the .NET community was CruiseControl.NET (CCNet).

I t ’s a form of the old CruiseControl made by ThoughtWorks, and it’s been on the

market since 2003. I t has everything the older brother has, and it’s written in .NET. I t

works as a Windows service and has a web dashboard to present the current state.

I t can remotely manage the process using a system tray program called CCTray. Just

like CruiseControl, CCNet is open source.

CCNet was for years the automated integration server of choice for .NET teams that

didn’t have enough resources for commercial products, especially for Microsoft Team

Foundation Server (TFS). As we mentioned in chapter 2, TFS is a suite of tools that

supports collaborative software development. One of its features is the ability to per-

form CI builds.

Somewhere in between the totally free model of CCNet and the rather expensive

model of TFS is another important player in the .NET CI server market: TeamCity from

JetBrains, which was first released in 2006. The licensing scenario for TeamCity is a

hybrid between free and propriety. You can start small without paying a penny for the

Professional Edition license; but if you grow, and your needs expand, then you’ll have

to pay for the license. I t’s written in Java, is easy to set up, and has a few features that

make it interesting to look at.

Cont inuous in t egrat ion w i t h Cru iseCont rol .NET

95

These three tools aren’t all the CI servers you can use in .NET. You can also con-

sider adopting Hudson, Bamboo, Electric Cloud, Anthill, or one of many others. A

detailed CI feature matrix is available at ThoughtWorks’ wiki page (http: / / confluence.

public.thoughtworks.org/display/CC/CI+ Feature+ Matrix). We’ll look at these three

players from our point of view.

Earlier in this section, we listed some aspects to consider when choosing a CI

server. Table 4.1 compares our three server choices on those aspects.

Table 4.1

CI server matrix that compares the features of three CI servers

Aspect

Cost

XML

Tools support

Documentation

CI functionality

Addit ional features

Easy to use

Cool (subjective)

CruiseControl.NET

yes

no

yes

yes

yes

no

no

somewhat

TFS 2010

somewhat

yes

somewhat

yes

yes

yes

somewhat

somewhat

TeamCity

somewhat

yes

yes

yes

yes

yes

yes

yes

When we were planning this book, we init ially discussed going with CCNet. Our original

goal was to provide you with all the information you needed to get up and running with

no or litt le cost. We soon found that TeamCity was gaining a lot of interest from .NET

developers, so we added it, knowing there would eventually be some cost to you. At that

time, TFS was costly, so we ruled it out. But when Microsoft announced that TFS 2010

would be available at no extra cost to everyone with an MSDN Professional subscription

or above, we knew it had to be included. We could have discussed other CI servers, but

at some point, it would have been too many, and the book would have lost focus. We

feel that with the CI servers we’ve selected, we meet our goal of no or litt le cost.

Now, let’s start digging in to each server, beginning with CCNet.

4.3

Cont inuous in t egrat ion w it h Cru iseCont ro l .NET

CruiseControl.NET is a CI server that is established in the .NET community. On the one

hand, it ’s widely adopted and used with success in the production environment; but

you have to pay a so called angle-bracket tax for using it. This is a loose term for the addi-

t ional costs that are generated if you have to fight your way manually through the con-

figuration, which is held in XML format (hence an angle-bracket tax).

With CCNet, you get the software for free, but you must deal with the configurat ion

yourself. But on the other hand, if you’re doing the configuration, nothing is hidden

from you behind a wizard or UI .

http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix
http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix
http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix
http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix

96

CHAPTER 4

Choosing t he r igh t CI server

You need a thorough understanding of what you’re doing in order to do the con-

figuration correctly. Let’s set up a CCNet server to continuously integrate your project.

4.3.1

St ar t ing w it h CCNet

You can get the last version of CCNet from the ThoughtWorks website (http: / / ccnet.

thoughtworks.com). Get the setup installation file, and start it on your CI machine.

The installation is easy. As shown in figure 4.6, you have to decide what components

you want to install.

I f you have Internet Information Server (I IS) installed on the same machine as

CCNet, you can install Web Dashboard on the same machine. I t can be also installed

somewhere else. We strongly advise you to have an instance of the Web Dashboard

running somewhere. I f you don’t have I IS installed on your server, we strongly recom-

mend that you install it now. Depending on the operating system your server is run-

ning, you’ll have to add the Web Server (I IS) role in Server Management in Windows

Server 2008 or use the Programs and Features console to turn on I IS. I f you get a mes-

sage while installing Web Dashboard to choose an ASP.NET version, choose at least 2.0,

and everything will work fine.

CI is all about the feedback. You should always know what’s going on. Did the build

fail? Why did it fail? You can obtain that information using the Web Dashboard, and

CCNet would be handicapped without it.

During the installation, you’re asked whether to install CCNet as a Windows service

(see figure 4.7.). CCNet can work standalone or as a Windows service. I f you plan to use

CCNet as a production CI server, it should run as a Windows service. Standalone mode

is helpful while you’re configuring and troubleshooting the server; we’ll look at it later

in this chapter. Note that the CCNet Windows service won’t be started automatically

Figure 4.6 Selecting the CCNet components you need for your server.

CruiseControl.NET Server is the essential part of the installation. Web Dashboard is

a web page that provides build feedback. And Examples provides configuration

examples.

Cont inuous in t egrat ion w i t h Cru iseCont rol .NET

97

Figure 4.7 You can install CCNet as a Windows service and configure I IS to be

ready to serve the Web Dashboard.

after the installation, and you’ll be able to start and stop it every t ime you want to

switch to standalone mode.

As shown in figure 4.7, the CCNet installer can prepare everything on I IS for the

Web Dashboard. This way, you’ll only have to configure your CCNet instance to make

it work.

4.3.2

Conf igur ing CCNet

You can access the CCNet configuration file via the Start menu or edit it directly using,

for example, Notepad, in % Program Files% \CruiseControl.NET\server\ ccnet.config if

you installed CCNet in the default location. I mmediately after installat ion, you have an

empty configuration file like this:

<cruisecontrol xmlns:cb="urn:ccnet.config.builder">

<!-- This is your CruiseControl.NET Server Configuration file.

➥Add your projects below! -->

<!--

<project name="MyFirstProject" />

-->

</cruisecontrol>

CCNet lets you define mult iple projects. I n CCNet nomenclature, a project is a separate

unit of works that CCNet performs. Define a project for the financial calculator Frame-

work project as shown here.

List ing 4.1

Project configuration in CCNet

<project name="Framework">

<workingDirectory>c:\CI\Framework\</workingDirectory>

<artifactDirectory>c:\CI\Artifacts.Framework</artifactDirectory>

<webURL>http://localhost/ccnet</webURL>

<triggers>

<intervalTrigger initialSeconds="0" />

</triggers>

<sourcecontrol type="svn">

B Defines interval
trigger

<trunkUrl>https://HYMIE:81/svn/Framework/trunk</trunkUrl>

<executable>C:\Program Files\Svn\bin\svn.exe</executable>

<username>marcin</username>

<password>password</password>

</sourcecontrol>

C Gets source
code from
SVN

98

CHAPTER 4

Choosing t he r igh t CI server

<tasks>

<msbuild>

<executable>

C:\Windows\Microsoft.NET\Framework\

➥v4.0.20506\MSBuild.exe

</executable>

<projectFile>Framework.sln</projectFile>

<buildArgs>

/p:Configuration=Release /verbosity:minimal

D Declares Visual
Studio project with
default target

</buildArgs>

<logger>

C:\[Program Files]\CruiseControl.NET\server\

➥ThoughtWorks.CruiseControl.MSBuild.dll</logger>

</msbuild>

</tasks>

</project>

After defining a name for your project, you must set some important variables, such as

the working directory where the integrat ion will occur. I t needs to be a directory solely

for CI purposes, so you should prepare an empty one—for example, in c: \CI . CCNet

produces various artifacts while integrat ing. For example, build logs should be stored

somewhere; you define this location using the artifactDirectory element. I f you’re

using Web Dashboard, define its webURL.

The minimal configuration that lets you perform CI consists of three elements.

The first is an intervalTrigger B which specifies that the integration should occur

periodically. This means CCNet will poll the source control system for changes period-

ically and trigger the build only if something new is found in the repository. Using

CCNet, you have to remember that not every change committed to the repository trig-

gers a build. I f two commits occur during the wait interval, both of them will be pulled

and integrated after the trigger fires.

The second element you must declare is a sourceControl C tag. I t defines the

place from which CCNet should pull the changes to feed the integrat ion. In this exam-

ple, you’re using the SVN server and repository from chapter 2. You need a SVN

command-line client on the machine where CCNet is running (you define the path to

the client in the executable tag). You can get a subversion command-line client at

CollabNet (www.collab.net/downloads/subversion/). I f you have concerns about the

user and password to the SVN repository in the project definition, you should keep a

few things in mind. First, in the production environment, the file will reside on a sep-

arate machine: the build server. No one else will have access to it. Second, you should

have a special SVN user for the CI server with only read rights to the repositories the

user is working on.

The last part you have to define is what CCNet should do. I n the tasks element D,

you define a task for CCNet. The MSBuild task starts the solut ion file.

Before you start CCNet, you can verify your configuration using the Configuration

Validation tool that comes with CCNet; it ’s available from the Start menu (look for

CCValidator). After loading your configuration file, it performs the validation as

shown in figure 4.8.

Cont inuous in t egrat ion w i t h Cru iseCont rol .NET

99

Figure 4.8 The CCNet Configuration Validation can ease the angle-bracket tax you have to pay using

this CI server. I t lets you check the configuration before you start your server.

When you’re sure you’ve configured everything, you can start the server. You have two

options. As mentioned earlier, CCNet can work as a Windows service or as a standalone

application. You’ll begin with the standalone version. I t gives you immediate feedback on

screen and is much better to use in the initial phase than the non-UI Windows service ver-

sion. After start ing your CCNet standalone application, you’ll see something like figure 4.9.

Figure 4.9 CCNet in console mode is best for initial trial-and-error configuration or troubleshooting

your configuration. The CCNet console displays a lot of information about what’s going on, such as

how the integration is going and what the build is saying. I t’s great for debugging your CI process.

100

CHAPTER 4

Choosing t he r igh t CI server

I f you get everything right, your software should be integrated. You can of course con-

figure the interval trigger to run as often as you want. You can use another type of trig-

ger, too. Let’s look at the possibilit ies.

4.3.3

Tr igger ing bu i lds

I f you provide the interval trigger without any parameters, you get the default 60 sec-

onds between the time the last integration ends and when the next cycle begins. By

default, the build fires only if something changes in the source repository. You can

change the default settings this way:

<intervalTrigger seconds="30" buildCondition="ForceBuild"/>

This causes CCNet to cycle this project every 30 seconds and build every time regard-

less of any changes in the repository.

Let’s consider a more complicated scenario. In chapter 1, you created a small

financial calculator; and in chapter 3, you introduced a build script to integrate it.

One section of the calculator is a shared library that contains the mathematical part.

I t ’s used in UI projects: Windows and web clients. The shared project is placed in a

separate Visual Studio solution and can be referenced from various other projects.

What if you want to build projects that are referencing this shared library, and some-

thing changes inside it? You can use another type of trigger: a project trigger, as shown

in the following listing.

List ing 4.2

Triggering one build with another project build

<project name="WindowsCalculator">

<workingDirectory>c:\CI\WindowsCalculator\</workingDirectory>

<artifactDirectory>c:\CI\WindowsCalculator.Artifacts</artifactDirectory>

<webURL>http://localhost/ccnet</webURL>

<triggers>

<intervalTrigger initialSeconds="0" />

<projectTrigger project="Framework">

<triggerStatus>Success</triggerStatus>

</projectTrigger>

B

Project dependency
trigger

</triggers>

<sourcecontrol type="svn">

<trunkUrl>https://HYMIE:81/svn/WinCalculator/trunk</trunkUrl>

<executable>C:\Program Files\Svn\bin\svn.exe</executable>

<username>marcin</username>

<password>password</password>

</sourcecontrol>

<tasks>

<msbuild>

<executable>

C:\Windows\Microsoft.NET\Framework\

➥v4.0.20506\MSBuild.exe</executable>

<projectFile>build.proj</projectFile>

<buildArgs>/p:Configuration=Release /verbosity:minimal</buildArgs>

<logger>

Cont inuous in t egrat ion w i t h Cru iseCont rol .NET

101

C:\Program Files\CruiseControl.NET\server

➥\ThoughtWorks.CruiseControl.MSBuild.dll

</logger>

</msbuild>

</tasks>

</project>

You define the WindowsCalculator project in a fashion similar to the Framework proj-

ect, but you extend the trigger repository. You’re performing an ordinary CI build

every 30 seconds and also checking whether a dependent project has completed its

build B. I f so, you fire the build for WindowsCalculator as well.

Think of distributing your projects onto more machines. CCNet lets you distrib-

ute projects indirectly. This means you don’t have one centralized server that is man-

aging build processes; you can couple several CCNet instances (we’ll discuss this

more in chapter 12). For example, if the Framework project is built on a separate

machine, you can provide the addit ional attribute serverUri to the project trigger

like this:

<projectTrigger serverUri="tcp://server:21234/CruiseManager.rem"

project="Core">

<triggerStatus>Success</triggerStatus>

<innerTrigger type="intervalTrigger" seconds="30"/>

</projectTrigger>

This way, one CCNet instance will ask another instance about the Framework build. In

addition, the innerTrigger element lets you define how often it happens. In this case,

it will poll the changes from other CCNet servers every 30 seconds rather than the

default 5 seconds, which may be too often for a distributed scenario.

What if you have a long-running build that you want to perform once a day, possi-

bly at night? For example, you may need to generate documentation from your source

code. This takes a lot of time, and it isn’t necessary to generate the documentation

whenever the source code changes. You can use the schedule trigger to accomplish this.

Let’s define it:

<scheduleTrigger time="03:00" buildCondition="ForceBuild" />

In this case, the build will fire every night at 3:00 a.m.

You can limit the trigger further. Let’s say you want this build to run once a week,

at night, on Sunday. Here you go:

<scheduleTrigger time="03:00" buildCondition="ForceBuild">

<weekDays>

<weekDay>Sunday</weekDay>

</weekDays>

</scheduleTrigger>

Using triggers, you can fairly easily manipulate the build chain. But this chain has an

end: when the build is finished, you have to pass the feedback along. You can do so

with publishers (we’ll talk more about it in the next chapter).

102

CHAPTER 4

Choosing t he r igh t CI server

As you can see, there’s a lot to configure with CCNet. You can learn about how your

CI servers are working by manually configuring CCNet. You have to use the CCNet doc-

umentation extensively to do this such that CCNet works the way you want. And it’ll

take time to learn the configuration basics. I f you want get the configuration done

more quickly, we have something suitable: another CI server. I t ’s not open source, but

it ’s still free. And you won’t have to write a single line of configuration XML to make it

work. Meet TeamCity.

4.4

4.4.1

Cont inuous in t egrat ion w it h Team Cit y

TeamCity is a CI server that has been gaining popularity in the .NET community for

the last few years. I t’s packed with handy futures that we’ll discuss in a minute, and it

offers a free version that’s suitable for smaller teams.

The free version of TeamCity lets a group of 20 people work with 20 assorted proj-

ects. There are a few minor restrictions, such as a lack of more sophisticated login sce-

narios using Active Directory. I f you need support for more developers or projects,

you must buy a license for about $1,500. Both versions allow you to set a distributed

build grid using build agents (specialized build machines). They let you divide your

builds over several machines. Basically, you install the agent software on various

machines, and TeamCity automatically starts the build on one of the build machines.

TeamCity has a neat feature that lets you forget the manual build technique we dis-

cussed earlier in this chapter. I t verifies code compiles and passes unit tests before

committing your source code into the repository. See figure 4.10 to better understand

the difference.

You basically send your changes first to TeamCity and not to your source control

system. TeamCity performs the build, tests whether everything is fine, and then com-

mits the changes to the source control system only if everything works fine.

We hope we have your attention and that you’re eager to try it for yourself. Let’s

get started with TeamCity!

Runn ing Team Cit y

You can download the TeamCity setup file from the JetBrains website (www.jet-

brains.com/ teamcity/). I t ’s a large file that contains everything you need to build a CI

process. I t asks you to install the core features and build agent (see figure 4.11).

Both the Build Agent and Core Server are installed as separate Windows services

and automatically hooked together. TeamCity comes bundled with its own web

server; all TeamCity configurat ion and management happen on a web page that’s

hosted on this server. As shown in figure 4.12, you have to choose a port where Team-

City will be available.

You must choose an account under which to run TeamCity (see figure 4.13). Your

choice depends on what you expect to do with the server. Will your build need more

rights than a normal system account? I t may be possible if you plan to use network

shares or have other restrictions on the files on the server. I f you aren’t sure, run

http://www.jetbrains.com/teamcity

Cont inuous in t egrat ion w i t h Team Cit y

Figure 4.10 TeamCity’s pre-test commit feature lets you check your build for correctness before

you commit it to the source control repository.

Figure 4.11 To run builds with TeamCity, you need to install at least one Build

Agent. You can install more Build Agents on multiple computers to create a

build grid.

103

104

CHAPTER 4

Choosing t he r igh t CI server

Figure 4.12 TeamCity comes with a bundled web server. I f you have I IS or any

other application running on a standard HTTP port, you’ll have to change the port

for TeamCity.

Figure 4.13 I f you plan to make TeamCity available outside your intranet

environment, don’t make hasty decisions here. Run it with the user who has the

fewest rights needed for normal usage. I f you’re a local administrator on the

machine, choose the SYSTEM account (you can change it later in the Services

Management Console).

TeamCity under the system account—doing so is safer, because your user account is

probably an administrator on the machine.

Start both the Build Agent and server services. When the installer is finished,

you’re presented with a license agreement and asked to create the first user account

with administrator privileges. TeamCity is then available for normal work. After initial

login, you’re asked to create your first project (see figure 4.14).

To make the project run under TeamCity, you must connect TeamCity to the

source control configuration, define a runner, and make sure your agent is properly

connected. Let’s do that next.

4.4.2

Conf igur ing a p roj ect

After you’ve installed TeamCity, you need to configure your first project. You’ll go

through these steps for each project, but some settings may change from one project

to another. Let’s walk through setting up the Framework shard library from your

financial calculator:

1 TeamCity needs to know how you’ll refer to the project (see figure 4.15). This

doesn’t have to be the same name as the Visual Studio project. In fact, you prob-

ably want to make the name something more understandable, because it’ll be

Cont inuous in t egrat ion w i t h Team Cit y

105

Figure 4.14

When TeamCity is ready to work, the first step is to create a new project.

Figure 4.15 TeamCity doesn’t impose an angle-bracket tax for most tasks. The entire configuration

process runs in a comfortable UI . You’re starting with a new project.

used in the feedback mechanism we’ll discuss in chapter 5. Enter the name and

description for the project, and click Create.

2 You need to configure your TeamCity project (see figure 4.16). Give the build

configuration a meaningful name and description. Look at the build-number

format (the example takes the revision number and assigns it to the build).

The build process doesn’t leave any art ifacts now, so leave the artifacts paths

empty (you’ll learn about artifacts in the next chapter). Next, you can decide

when to fail a build based on the build exit code, test output, build runner

errors, exceeding the maximum build time, lack of system resources, or an

unexpected crash. You can decide whether TeamCity will try to detect hanging

builds (builds that are running but aren’t doing anything). By enabling the sta-

tus widget, you give external sites the ability to retrieve the build status. The last

thing you can decide is the maximum number of simultaneous builds of this

type to run.

Notice the Configuration Steps at the right in figure 4.16; they help you keep

track of everything you need to do.

106

CHAPTER 4

Choosing t he r igh t CI server

Figure 4.16 General project settings. Pay close attention to the build-number formatter and the fail

condit ions. Builds are formatted with the revision number. In this case, you decide to fail if the build

exceeds 10 minutes.

3

4

When you’ve configured the project’s build options, you must configure the

connection to the version control system (VCS)—in other words, your source

code repository (see figure 4.17). The source root configuration varies depend-

ing on the source control system you’re using. Because you’re using SVN, you

must provide at least the SVN URL, username, and password. You have to decide

whether to use the default configuration directory (you don’t have to change

this if you aren’t doing anything extraordinary). You can choose to pull the

source with all externals (you learned about this in chapter 2). You can leave all

the rest of the settings at their defaults.

The newly created source control root will be added to the project con-

figuration.

You can also decide what checkout mode you want to use (see figure 4.18).

You can do this on the TeamCity server, on the build agent, or not at all if your

build script will pull the changes for itself. SVN lets you check out the files on

the agent, so do it; this will reduce the load on the main TeamCity server. You

can decide where to check out the files or leave it blank for TeamCity to

decide. The build folder can be automatically purged before every build

Cont inuous in t egrat ion w i t h Team Cit y

107

Figure 4.17

Creating a new source control root. You can reuse this configuration in other projects.

Figure 4.18 Addit ional source control configuration. Check out on the build agent, choose the

default working directory with cleanup, and don’t use labeling.

108

CHAPTER 4

Choosing t he r igh t CI server

(choose to clean the directory if you aren’t doing anything special). Note that

you can automatically label every build you make. To do that, you have to dive

into additional SVN configurat ion; in this case, you’ll pull the build lever with-

out labeling.

5

6

The next step is the build runner configuration. The build runner is a tool that

performs your build. TeamCity comes with a bunch of runners. In this .NET sce-

nario, the MSBuild, NAnt, and Visual Studio Solution runners are handy. Yes,

TeamCity can run the solution projects directly and not only through an

MSBuild script like CCNet. You’ll use this feature for the Shared project, as

shown in figure 4.19.

To make TeamCity automatically trigger the build every time something new is

detected in the source control repository, you have to add a new build trigger.

Choose Add New Trigger, and then select VCS Trigger from the drop-down list.

You see the screen shown in figure 4.20. You can choose the quiet period (a time

after every build during which no builds are triggered—it’s useful in an envi-

ronment with a lot of check-ins and a weak build machine). You can also add

triggering rules (for example, if you want to start the build only if specific files

are changed).

Figure 4.19 Visual Studio Solution runner configuration. I t starts the Rebuild target in the Release

configuration.

Cont inuous in t egrat ion w i t h Team Cit y

109

Figure 4.20 Configuring triggers in TeamCity. You can have triggers that fire

periodically, or fire based on a dependency.

I f you’ve configured everything correctly, your first continuous build with TeamCity is

ready. I t should be visible on theuu project overview page (figure 4.21).

We’ll pay closer attention to the project feedback page in chapter 5. But now, let’s

look at a feature we mentioned earlier. I t ’s something that eliminates many broken

Figure 4.21

Project overview page with one configured project

110

CHAPTER 4

Choosing t he r igh t CI server

builds, because it compiles and tests the code before allowing the code to be checked

in to the source control repository.

4.4.3

Pre- t est ed com m it

Pre-tested commit is a TeamCity feature that lets you make a dry integration run

before you check your software into the source code repository. What’s important

is that the dry run is performed on the integration server, so it’s a true integration

test that happens before you commit the code rather than after, as with CCNet. To

use this feature, you must install the TeamCity add-in for Visual Studio. You can

find it under the My Settings & Tools option on your local TeamCity web page (see

figure 4.22).

After a successful install, the TeamCity add-in integrates itself with Visual Studio.

Open your Shared project, and look at the new Visual Studio menu item shown in fig-

ure 4.23.

To use the pre-tested commit feature, run it from the TeamCity menu in Visual

Studio. Select TeamCity > Login, and a login dialog box opens. Enter the URL of your

TeamCity server and your TeamCity username and password and click OK.

You’ve now hooked Visual Studio to the TeamCity server. You must also config-

ure the add-in to work with Subversion (see figure 4.24). You need to do this

because the TeamCity add-in handles checking in code for you if the compile and

tests are successful. Enable Subversion support, and point the plug-in to the SVN

Figure 4.22 Under My Sett ings & Tools, you can find handy TeamCity additions: a plug-in for Visual

Studio and Windows tray notification.

Cont inuous in t egrat ion w i t h Team Cit y

command-line client that you need to

install locally on the machine (the Collab-

Net client we mentioned earlier is per-

fect). Enter the SVN credentials, and

decide to detect the working copy auto-

matically. Note that in the previous section,

you connected the TeamCity server to

source control, not the TeamCity add-in.

When everything is set up to perform a

test build, introduce an error somewhere

111

in your code so you can see what happens

when a build fails. In Visual Studio, select

TeamCity > Local Changes. The add-in

Figure 4.23 The TeamCity Visual Studio add-in

adds a new toolbar and menu item to Visual

Studio.

compares your local files to those in SVN

and shows you which ones have changed (see figure 4.25). These are the files you

need to check in and specifically the ones you need to test.

Figure 4.24

Enabling Subversion support is essential for pre-tested commit.

112

CHAPTER 4

Choosing t he r igh t CI server

Figure 4.25

The TeamCity add-in for Visual Studio

compares the files already in the source code

repository with your local copies. I f it detects

changes, you can choose them for a dry

integration run.

Choose the changes you want to pre-test, and click the Remote Run icon . The

window shown in figure 4.26 opens. Choose whether you want to automatically com-

mit the changes if the dry integration run succeeds, and then click Run to build and

test the code.

After the pre-test is complete, you’re presented with the results (see figure 4.27).

Because you purposely had an error in the code, the build and tests failed. But

because you told the add-in to check in code only if successful, the bad code wasn’t

checked in to the source control repository, and other developers on your team and

the CI process won’t get a broken build due to your error.

TeamCity is a good CI server, no doubt about it. I t has a lot of handy features and

comes in a free version suitable for small teams. I t’s definitely worth evaluating as a CI

server of choice. Another server you shouldn’t omit when evaluating CI solutions for

the .NET world is Microsoft Team Foundation Server.

Figure 4.26 You use this pre-tested commit window in Visual Studio to build and test the code

before it’s checked in to source control.

Cont inuous integrat ion with Team Foundat ion Server 2010

113

Figure 4.27 The My Changes window shows the results of the last operations. Your pre-tested run

failed because the software didn’t compile. This way, the broken code stays on your machine to be fixed

and never reaches the source control system.

4.5

4.5.1

Cont inuous in t egrat ion w it h Team Foundat ion
Server 2010

Microsoft TFS has been around for some time, but prior to the 2010 release it was

cost-prohibitive to many teams. TFS is much more than a CI server. I t comes with an

integrated source control server, which we discussed in chapter 2. I t has extensive

work-item tracing tools, and it integrates with SQL Server to provide rich reporting.

The feature that’s most important for setting up a CI scenario is TFS Team Build. I t

lets you create a full-blown CI server of your own. I t’s a grown-up solution for collab-

orative software development (see figure 4.28).

We’re interested in the CI side of TFS 2010. Setting up a CI process with it is

straightforward. We’re assuming you have the Financial Calculator team project cre-

ated in TFS source control and that you’re connected to it as we described in chap-

ter 2. Now, let’s define the build.

TFS and bu i ld con t r ol ler s

TFS 2010 uses a build controller to manage software building tasks. You can install

everything onto a single server or split the build process across multiple servers.

Build agents are services that can be installed on the same or on separate machines to

distribute building tasks. A build-agent pool is a set of one or more build agents. Fig-

ure 4.29 shows a possible TFS build layout.

TFS assigns a build to a build controller. The builds are queued on a given con-

troller and then taken out of the queue one by one or according to a priority and

sent to a build agent. A build controller checks in its build-agent pool for a suitable

agent to perform the build. After the build is done, the build agent stores the build

artifacts and performs notificat ions.

114

CHAPTER 4

Choosing t he r igh t CI server

Figure 4.28 TFS Team Build in the TFS landscape. As you can see, the

build server is only part of the architecture.

Figure 4.29

TFS 2010 build layout. A

build controller manages a

set of build agents, choosing

the appropriate one to

perform the build.

Cont inuous integrat ion with Team Foundat ion Server 2010

115

4.5.2

Conf igur ing TFS bu i ld agen t s

But first, you need to configure the build agent. You do this on the server side using the

Team Foundation Administration Console, which you can run from the Start menu.

Choose Build Configuration from the tree beneath your server name, and select Con-

figure Installed Feature. Start the configuration wizard, and follow these instructions:

1

2

3

4

5

Step through the Welcome screen.

On the Project Collection screen, browse for the collection you want to config-

ure, and choose Loan Calculator, as shown in figure 4.30.

On the Build Services screen you can leave the default number of 1 build agent

to run on the build machine.

On the Settings screen, leave the System Account as a user to run the TFS build,

and don’t change the port (if it ’s free on your machine).

Review the changes that will be made for you, perform the configuration check,

and observe the configuration process as it’s working. I f everything goes well,

you’re informed about the success on the last wizard screen.

You’re finished on the server. Now, switch back to the client and configure the build.

Figure 4.30 While configuring a TFS build agent, you have to choose the project collection that the

build machine will serve.

116

4.5.3

TFS build configurat ion

CHAPTER 4

Choosing t he r igh t CI server

Before you can add a build to the build queue, you must define it. You can have as

many build definit ions as you need. Let’s define a CI build for the existing Team proj-

ect you created in the last chapter (see figure 4.31).

You’re by no means limited to a CI kind of build process in TFS 2010. For example,

you can have CI builds, scheduled builds, or others. I f you create multiple types of

builds, we advise using some kind of a prefix like Ci for continuous build, sh for sched-

uled, and so on.

After you give the build a name, you can decide what kind of trigger will be

used to start the build. See figure 4.32 for the two first steps of the Build Defini-

tion Wizard.

You can use five possible build triggers:

■

■

■

Manual —This is in fact not a trigger. I t tells TFS not to do anything until the

build is submitted manually to the queue.

Continuous integrat ion —This trigger follows the CI principle strictly to build

after every check-in.

Rolling build —Rolling builds are suitable if your build is taking longer than the

average check-in rate. In other words, if the developers on your team check in

more quickly than the build process, you should choose this type of trigger. I t

accumulates the check-ins and triggers the build after the currently running

build finishes. You can also set a rough equivalent of a quiet period, as you saw

earlier when working with TeamCity. You can prevent the build from executing

for a given amount of time, during which check-ins are accumulated. I t isn’t the

same, but it can do the trick.

Figure 4.31

Adding a new build definition to a

Team project in Visual Studio 2010

Team Explorer

Cont inuous integrat ion with Team Foundat ion Server 2010

117

Figure 4.32 Visual Studio 2010 guides you through the creation of a build definition. Assign a name

using a convention of some sort that will help you manage a large number of build definitions if you plan

to have them. Also choose a trigger type.

■

■

Gated check-in —A gated check-in build is a mechanism that prevents bad code

from getting into the source code repository. I t compiles the code and runs unit

tests before check-in. Everything must pass, or the check-in isn’t allowed. The

gated check-in is similar to the TeamCity pre-tested commit.

Schedule —The scheduled trigger lets you organize your builds; for example, you

can do a nightly or weekly build.

In this case, choose a strict CI build. On the Workspace tab, you can define the work-

ing folder that the build agent will use and the source control folders it will pull from.

Use the defaults unless you have a more complicated source control layout.

On the Build Defaults tab, you choose the Build Controller to be used for this

build and the output drop folder where the build agent will copy the build result and

the log file. This must be a network share, and you must have enough rights to use it.

A litt le explanation is needed for the Process tab shown in figure 4.33. The build

definition in TFS 2010 is created using XAML and Windows Workflow Foundation. We

won’t dive into the details in this book; in this case, you’ll use the default build tem-

plate. But if you want to make extensive use of TFS 2010, this is a good opportunity to

learn about XAML and Windows Workflow.

118

CHAPTER 4

Choosing t he r igh t CI server

Figure 4.33 When you define a build in TFS, you can use XAML templates. For an ordinary CI process,

you can use the default template; but if you want to customize this and that, it ’s time to get some

Workflow Foundation information (you can start at http: / /msdn.microsoft.com/en-us/vstudio/

aa718795.aspx).

I f you stick with the default template, you have to choose the item to be built from the

source control repository. I t can be a solution file if you wish, or it can be an MSBuild

script. Choose I tems to Build from the build process parameters (with a small yellow

exclamation mark), and click Add on the Solutions/Projects tab. Navigate to the

WindowsCalculator.sln file, and choose it. I t will be used for the CI build.

The last tab controls the build retention. You define how long build information

should be kept for a given build’s output.

From now on, your CI build definition runs on the TFS server. Every time you check

in something, the build will trigger. To watch the build queue, double-click the build

definition in Team Explorer to open the Build Explorer, and choose the Queued tab

(see figure 4.34).

You’ve now defined a CI build process, and it’s running on TFS. The build process

runs on a build agent and everything is ready for the developers to start work. I t’s

time to move to the next step, defining feedback mechanisms, which we’ll look at in

chapter 5.

http://msdn.microsoft.com/en-us/vstudio/aa718795.aspx

Sum m ary

119

Figure 4.34

You can watch the build queue in Build Explorer. The first build is waiting in the queue.

4.6

Sum m ary

In this chapter, we’ve talked about using CruiseControl.NET, TeamCity, and TFS 2010

as your CI server. There are others to choose from that we haven’t discussed. The mar-

ket is now in such a state that there’s no single obvious tool to use. Some of them are

great for small teams and others for enterprise-level development. Some are free; oth-

ers you must pay for. Some are easy to use, and others put an angle-bracket tax on you.

Some are packed with features that solve problems you’re not even aware of.

We’ll go with a mix of CCNet, TeamCity, and TFS 2010 in the book. We think

they’re a good ground to lay a foundation under your CI process. CCNet is feature

poor, but it ’s completely open source so you can easily poke around to extend it or to

see what’s going on inside. I t’s a good choice for a small team if you like to check

things for yourself. TeamCity is free for smaller teams, and it keeps up with the fea-

tures offered by the Microsoft flagship, TFS.

We know we’re throwing a lot of options at you to consider, but you must remem-

ber a few important things when considering these CI options. Your CI server

shouldn’t be a build server. I t should provide feedback. I t should build quickly and

should efficient ly give you information whenever the code quality is degrading,

there’s a problem with your codebase, or your tests are failing. In the next chapter,

we’ll discuss feedback mechanisms.

Continuous feedback

Th is chapt er covers
■

■

■

■

Getting CI feedback from the server

Getting notifications about the build status

Using CCNet, TeamCity, and TFS

Extending build notifications

Picture this. You’re about to go on a long-awaited vacation. For months you’ve

planned the best routes for a cross-country trip in your convertible. You’ve had

your car’s engine tuned and the oil changed, and you bought new tires for the

trip. You should have a smooth drive and a carefree trip. You go to the web for

directions, get a map with a detailed route, and study it carefully. One beautiful

sunny morning you pack your things, jump in the car, and … blindfold yourself.

Drive carefully!

Do you know what we just described? Your CI process without a feedback mech-

anism. You seem well prepared. You have your tools ready. You know where you’re

heading. You seem to know the route, but you don’t see the road ahead. You can’t

see if you drive off the road, and you don’t know if you’ve made a wrong turn. I t will

be difficult to get to your destination. You’re more likely to end up in a ditch or

wrapped around a tree.

120

Know ing t he st at e of your CI process

121

I t ’s that important to build appropriate controlling mechanisms into your CI pro-

cess. With continuous feedback, you’ll get back the results of every build as soon as it ’s

finished. A well-designed feedback mechanism should do the following:

■

■

■

■

■

Give information about any decrease in code quality

Be quick

Provide information in different formats

Point to the specific place that causes deterioration

Be accessible to any team member, anytime

You’ll probably pack your CI process with tasks that’ll examine your code in search of

problems. You’ll have tests and analysis tasks. They should all be able to produce clear

output reports. The reports should be integrated with each other and be available to

you on demand.

The process of producing feedback documents and presenting them should be

swift. You should be informed about the outcome of the process immediately, so you

can react at once.

I t’s sometimes good to diversify the communication routes from your CI process to

the developer. Some people prefer to use tray icons, some want to have the integra-

tion feedback within the development environment, and others like to use toys with

visual effects. Sometimes it’s advisable to diversify the feedback even more; what if you

want to be informed about a failing build when you aren’t online?

I f the build fails, the feedback should be clear about where it failed and why. Infor-

mation about a problem with the build is useless if you can’t see where the problem is

so you can react and clean it up.

I n this chapter, we’ll look at various feedback mechanisms provided by the three CI

servers—CCNet, TeamCity, and Team Foundation Server (TFS)—that we’ve been look-

ing at in this book. The feedback will be provided by web pages, email, and a couple of

surprises that we’ll save for later in the chapter. We’ll show you how to provide imme-

diate feedback mechanisms with tray icons or instant-messaging notifications, and

you’ll send an email notification. We’ll look at detailed build reports to find out why a

build failed. You’ll make the feedback more visual and send it to developers who are

offline. First, let’s get the build status.

5.1

Know ing t he st at e of your CI process

Generally, the build process (if it ’s working) can be in one of three distinct states:

■

■

Working —The build is currently doing something. I t shouldn’t take more

than 10 minutes for it to finish its task and transform the state to success

or failure.

Yet another successful build —This is the desired state of the integration build. The

last integration run was successful. Everything is all right, and everyone can

work uninterrupted.

122

CHAPTER 5

Cont inuous feedback

■

Failed —The last build was interrupted due to a problem. Immediate action is

needed to fix something and run another build.

You should ensure that every team member has immediate access to the current build

state so that when the build breaks, it can be fixed immediately. One of your goals

should be to have as few broken builds as possible, and those that make their way to

the CI server should be as loud as possible. The information about broken builds

should jump out at the developer. When a team consists of a few developers working

together on a few projects, the information should be given to every team member. A

broken build should mean

■

■

■

No one pulls anything from source control. The source is broken, and no one

should be interested in broken code.

Someone should jump in to fix the problem—preferably the person who

caused it, but volunteers are welcome.

All the commits to the repository are withheld until the build is fixed. I f you

push good code into a spoiled repository, your code may get the smell, too.

In addition to knowing that the build is broken, your team should have easy access to

the information about what caused the problem. I t’ll help them identify the issue and

target the effort to fix is as soon as possible.

Software developers should have immediate access to information about what state

the process is in. Various tools provide this information; let’s examine them.

5.2

5.2.1

Cont inuous feedback w it h Cru iseCont ro l .NET

CruiseControl.NET, as you may have guessed, is the most difficult of our three CI serv-

ers to configure. Build feedback is no exception. The most detailed feedback comes

from the CCNet Web Dashboard.

The CCNet W eb Dashboard

I f you followed our discussion in chapter 4, you should have the CCNet Web Dash-

board installed. You can reach it by entering its URL into your web browser. Typically,

the URL is something like http: / /MyServer/ ccnet.

The CCNet Web Dashboard (see figure 5.1) is a website that contains information

about the state of your CI process. You can install it separately and use it to administer

a set of CCNet servers. Web Dashboard works only if the CCNet service or standalone

version is running (otherwise, it displays a message about a refused connection). I t

lists all the projects running on various CCNet servers that are configured to be dis-

played in a given Web Dashboard installation. The project definitions come from the

CCNet configuration file that you learned about in chapter 4.

Next to information about the project’s CI state—such as last build state and date,

build label, status, and activity indication—are buttons that let you force the build on

the server or stop the currently executing integration.

http://myserver/ccnet

Cont inuous feedback w i t h Cru iseCont rol .NET

123

Figure 5.1 The CruiseControl.NET Web Dashboard lets you administer a set of projects. The projects

can be hosted on different CCNet servers.

CCNet Web Dashboard information is organized as shown in figure 5.2. At the top is

a server farm with all the configured servers connected to the Web Dashboard. You

can switch to the server view, which contains information about a given server. I f you

dig further, you get information about the project; and the most narrow view is of a

single build.

Every view is fully configurable and can be extended using plug-ins. You per-

form the configuration using the dashboard.config file (the default installation places

it in the % ProgramFiles% \CruiseControl.

NET\webdashboard directory). This is

another place where you have to pay the

angle-bracket tax: everything is configu-

rable, but you must fight your way through

the XML. ThoughtWorks is moving toward

web-enabled configuration for CCNet, but

the plug-ins aren’t ready yet. Until they

are, you’ll have to look at the plug-ins sec-

tion of the CCNet documentation (http: / /

confluence.public.thoughtworks.org/display/
CCNET/Web+ Dashboard). The following

listing shows the configuration we’re using

in this book.

Figure 5.2 The CCNet Web Dashboard is

divided into four views. At the top resides the

server farm with all the configured servers, and

at the bottom is specific build information.

http://confluence.public.thoughtworks.org/display/CCNET/Web+Dashboard
http://confluence.public.thoughtworks.org/display/CCNET/Web+Dashboard

124

CHAPTER 5

Cont inuous feedback

List ing 5.1

A sample CCNet configuration file

<?xml version="1.0" encoding="utf-8"?>

<dashboard>

<remoteServices>

<servers>

<server name="local"

url="tcp://localhost:21234/CruiseManager.rem"

allowForceBuild="true" allowStartStopBuild="true"

backwardsCompatible="false" />

<server name="dotnet3"

url="tcp://dotnet3:21234/CruiseManager.rem"

allowForceBuild="true" allowStartStopBuild="true"

backwardsCompatible="true" />

</servers>

</remoteServices>

<plugins>

<farmPlugins>

B Defines

servers

<farmReportFarmPlugin />

<cctrayDownloadPlugin />

</farmPlugins>

<serverPlugins>

<serverReportServerPlugin />

<serverLogServerPlugin />

</serverPlugins>

<projectPlugins>

<projectReportProjectPlugin />

<viewProjectStatusPlugin />

<latestBuildReportProjectPlugin />

<viewAllBuildsProjectPlugin />

<viewConfigurationProjectPlugin>

</viewConfigurationProjectPlugin>

</projectPlugins>

<buildPlugins>

<buildReportBuildPlugin>

<xslFileNames>

<xslFile>xsl\header.xsl</xslFile>

<xslFile>xsl\modifications.xsl</xslFile>

</xslFileNames>

</buildReportBuildPlugin>

<buildLogBuildPlugin />

C

D

E

Farm-level
plug-ins

Server-level
plug-ins

Project-level
plug-ins

<xslReportBuildPlugin

description="FxCop Report"

actionName="FxCopBuildReport"

F Build-level

plug-ins

xslFileName="xsl\FxCopReport.xsl" />

<xslReportBuildPlugin

description="NUnit Details"

actionName="NUnitDetailsBuildReport"

xslFileName="xsl\tests.xsl" />

<xslReportBuildPlugin

description="NUnit Timings"

actionName="NUnitTimingsBuildReport"

xslFileName="xsl\timing.xsl" />

<xslReportBuildPlugin

description="FxCop Report"

Cont inuous feedback w i t h Cru iseCont rol .NET

actionName="FxCopBuildReport"

xslFileName="xsl\FxCopReport.xsl" />

<xslReportBuildPlugin

description="NCover Report"

actionName="NCoverBuildReport"

xslFileName="xsl\NCover.xsl" />

125

<xslReportBuildPlugin

description="Fitnesse Report"

actionName="FitnesseBuildReport"

F

Build-level
plug-ins

xslFileName="xsl\fitnesse.xsl"/>

<xslReportBuildPlugin

description="MSBuild Report"

actionName="MSBuildBuildReport"

xslFileName="xsl\msbuild.xsl"/>

</buildPlugins>

</plugins>

</dashboard>

This configuration file defines two servers b: localhost and dotnet3. The Web Dash-

board communicates with them using a remoting endpoint. You can define as many

servers as you like. You separately configure all the view levels for the server farm C,

for the servers themselves D, for the projects E, and for the builds F. This example

sets up several build reports to be included in the Web Dashboard feedback. I f you

look closely, you’ll see several tools like NUnit, FitNesse, FxCop, and others that we

haven’t discussed yet. Don’t worry about what these tools are and what they do; we’ll

discuss them in upcoming chapters. Figure 5.3 shows the build-level view at the CCNet

Web Dashboard as configured from listing 5.1.

Figure 5.3

All the detail levels of CCNet views in action

126

CHAPTER 5

Cont inuous feedback

When you first install CCNet, none of the build reports from other applicat ions are

included. You need to activate them through the Administrator Dashboard. Before the

first time you use the Web Dashboard, you have to edit the dashboard.config file (you’ll

find it in % ProgramFiles% \CruiseControl.NET\webdashboard) and change the initial

password in the <administrationPlugin> tag. When you’re finished, click the link in

the Web Dashboard’s main page, enter the Administrator password, and then enable

the tool reports you want to include in the Web Dashboard report.

As you can see, you can have full control over the CCNet Web Dashboard. You can

write your own plug-ins or obtain plug-ins from the internet. But to have so much con-

trol, you have to pay a small administration cost. The Web Dashboard gives you

detailed information, and you can use CCTray to get a quick snapshot of what’s hap-

pening on your build server.

5.2.2

Get t ing f eedback w i t h CCTray

CCTray is an applicat ion that’s installed on each developer’s workstation. You can

download it from the home page of your CCNet Web Dashboard or directly from the

ThoughtWorks website at http: / /ccnet.thoughtworks.com/ . I t sits in the Windows

Notification area, commonly called the Task Tray. I t manifests itself with this icon: CC .

To configure CCTray, open it (double-click the icon) and choose File > Settings (see

figure 5.4).

You need to configure the noise level here as well. You don’t want to be interrupted

by messages about projects in which you have no interest. Try to keep the noise level as

small as possible. Allow only information that’s necessary to help you react when the

Figure 5.4

When you double-click CCTray, you access CruiseControl.NET and the CCTray configuration

settings.

green tray icon indicates that everything is running fine. A red CCTray icon means

Cont inuous feedback w i t h Cru iseCont rol .NET

127

code quality degrades. Choose only the projects you need to see (see figure 5.5). On a

fresh installation, you need to add a new CCNet server. To do so, go to settings (File >

Settings) and click the Build Projects tab. Click the Add button. In the Project window,

click Add Server. The easiest way to connect the CCNet server is over a dashboard: type

the CCNet dashboard URL in the window. Keep in mind that if you’re connecting to

the CCNet server from another machine, you must add a firewall exception (port 80

on a standard I IS installation).

CCTray uses a red/green indicator, similar to what you find in unit test tools. A

CC

you have to act. First, you must know where the problem is. The best way to get this

information is via Web Dashboard. You can reach the CCNet Web Dashboard directly

from CCTray: right-click one of the configured projects, and choose Display Web Page,

as shown in figure 5.6.

Figure 5.5 Configuring CCTray. One CCTray benefit is the ability to work with more than one

CruiseControl.NET server.

128

CHAPTER 5

Cont inuous feedback

Figure 5.6

Using CCTray with information about a broken build to display the CCNet Web Dashboard

As you can see, CCTray offers lots of power and information without ever connecting

to the CCNet Web Dashboard. But these aren’t the only ways of providing feedback

with CCNet. Another way is to sending email.

5.2.3

Alt er nat ive feedback m echan ism s w it h CCNet

I f you’re using CruiseControl.NET, you can configure publishers. These publishers run

after the build, gather integrat ion information, and prepare it to be presented to the

user. You define the publishers in the CCNet configuration file (found in % Program-

Files% \CruiseControl.NET\server\ ccnet.config—for more information, see chapter 4)

just after the tasks. They run whether the build was successful or not.

By default, CCNet runs an XML Log Publisher to integrate the build output with

Web Dashboard (described later in this chapter). You can override the publisher’s

configuration and use an email publisher, as shown next.

List ing 5.2

Email publisher in CCNet

<publishers>

<xmllogger />

<email from=user@mailserver.pl

mailhost="smtp.mailserver.pl"

B XML Log

Publisher

mailport="25"

includeDetails="TRUE"
C Defines email

server
mailhostUsername="user"

mailhostPassword="password"

useSSL="FALSE">

<users>

<user name="Marcin" group="everyone"

address="marcin@kawalerowicz.net"/>

Cont inuous feedback w i t h Team Cit y

129

<user name="craig" group="everyone"

address="craig@craigberntson.com"/>

</users>

<groups>

<group name="everyone">

<notifications>

<notificationType>Failed</notificationType>

<notificationType>Fixed</notificationType>

</notifications>

</group>

</groups>

<subjectSettings>

<subject buildResult="Broken" value="${CCNetProject}

broke at ${CCNetBuildDate}

${CCNetBuildTime } , last checkin(s)

by ${CCNetFailureUsers}" />

<subject buildResult="StillBroken"

value="Build is still broken for ${CCNetProject}" />

<subject buildResult="Fixed"

value="Build fixed for ${CCNetProject}" />

</subjectSettings>

</email>

</publishers>

I f you’ll be using the Web Dashboard, you have to integrate the build output with it.

Because you’re explicitly defining the publishers, you must provide the default XML

Log Publisher before any other publisher in your list b. Then you define the email

publisher C, providing all the necessary information about the mail server you want

to use. After that, you define the users who will be getting the emails and decide what

group they belong to. Depending on the group, you can narrow the information they

receive. You can create a group that gets every email, or you can make a group, as in

this example, that only receives information about failing and fixed builds. You can

even customize the messages’ subject lines.

Many predefined publishers are available for you to use. You can clean up your

construction site before the next integration, generate an RSS feed to be integrated

into the Web Dashboard, send a message to another CCNet instance to start a depen-

dent project, and much more.

Now that you’ve seen how to get feedback from CCNet, let’s discuss how to get the

same information from TeamCity.

5.3

Cont inuous feedback w it h Team Cit y

TeamCity, like CCNet, provides detailed build information via a website and a tray

application; it also gives you alternate ways to provide feedback. Configuring the

different methods is decidedly easier than in CCNet. Let’s start with TeamCity’s

web features.

130

CHAPTER 5

Cont inuous feedback

Figure 5.7

The Projects page in TeamCity shows all configured projects.

5.3.1

Team Cit y w eb f eedback

TeamCity build feedback is merged together with project administration. You do both

with a single website that you learned about in chapter 4. All configured projects are

visible on the Projects tab (figure 5.7).

As you can see in figure 5.8, TeamCity allows you

to create projects with various configurations. For

example, you can have a project that builds once as

a CI process after every source code change and

once as a build runner.

TeamCity provides detailed information about

the build. This information is divided into tabs.

By default, only a few are available: general and

detailed build information, change details, and so

on. I f you want to integrate additional information

with the build page, you can configure additional

tabs. I f you do so on the server level, the tabs are

Figure 5.8 TeamCity project layout.

One project can have a set of

configurations. Every configuration

is built according to build triggering.

Every configuration can have

mult iple triggers.

available for all projects. The tabs configured on

the project level are visible only in a given project.

For the purpose of presentat ion, let’s create a (very) hypothetical demand. Let’s

say you want your build script to generate a file containing all the build parameters

listed. To do this, you can use the echo command and redirect the output to a file.

The following list ing shows the MSBuild script that uses this echo command to create a

file called msbuildvariables.txt that contains some configuration values ($(Configu-

ration) and $(Platform) in this case).

List ing 5.3

Sample TeamCity build script

<Project DefaultTargets="Build"

xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>

<Configuration

Condition=" '$(Configuration)' == '' ">

Cont inuous feedback w i t h Team Cit y

Debug

</Configuration>

<Platform Condition=" '$(Platform)' == '' ">"Any CPU"</Platform>

</PropertyGroup>

<Target Name="Build">

<MSBuild Targets="Clean;Rebuild"

Projects="WinCalculator.sln" ContinueOnError="false" />

<Exec Command="echo Variables used to in build script:

➥Configuration= $(Configuration) Platform= $(Platform)>

msbuildvariables.txt">

</Exec>

131

Creates
file with
variables
list

</Target>

</Project>

Add a new tab to the project information page for this file on the server level (see fig-

ure 5.9). The new tab will be visible to all of your projects hosted in TeamCity (pro-

vided the build process creates an artifact called msbuildvariables.txt).

I f TeamCity runs the script from listing 5.3, a file named msbuildvariables.txt is

created in the current working directory. This file will be deleted after the build

is finished. That’s of course not what you want—you want to see the list of MSBuild

variables on a tab in TeamCity. You need to tell TeamCity that the text file you’re

Figure 5.9 Adding a new tab to the build results at the server level. Every t ime TeamCity finds the file

msbuildvariables.txt in the current build directory, it will add a tab containing the file’s content.

132

CHAPTER 5

Cont inuous feedback

Figure 5.10

Sett ing an artifact file in the General settings of a project’s configuration in TeamCity

Figure 5.11 A custom tab on the TeamCity build-report page, containing an artifact text file

with a list of MSBuild variables

generating is an artifact. Artifacts are files that should be stored for future refer-

ence. You can set the artifact files in the General settings of your build configura-

tion (see figure 5.10).

I f you set this file as an art ifact and configure the tab for the server, as in figure 5.7,

you’ll get a build tab as shown in figure 5.11.

Integrating custom reports on the build page is very important to give you the big

picture of the build. TeamCity does a nice job of lett ing you extend the build-report

pages. Now we need to look at the TeamCity Windows Tray Notifier.

5.3.2

The Team Cit y W indow s Tray Not i f ier

I f you want to use the TeamCity Windows Tray Notifier, log on to your TeamCity server

and switch to My Settings & Tools (at the top of the page, beneath the Welcome infor-

mation). You’ll see the TeamCity Tools pane, as shown in figure 5.12.

Download the Windows Tray Notifier and install it on your development machine.

The installer will prompt you for the URL to your TeamCity server. When you’re fin-

ished, you’ll see the new icon ? in your Windows Tray. The

question mark indicates

that you need to configure the notification rule.

TeamCity provides a centralized notification-management site for all feedback

mechanisms. To turn it on, click My Setting and Tools, and switch to the Notification

Rules tab. You can also select it directly from the Tray Notifier. Configure the Windows

Tray Notifier to suit your needs, using the page shown in figure 5.13.

Deciding what kind of notificat ions to let through is crucial for your reaction time.

Remember that letting too much information through the Tray Notifier will most

likely blunt your attention span. You should let through only as much information as

Cont inuous feedback w i t h Team Cit y

Figure 5.12 The notification possibilit ies in TeamCity are generous. I t provides email, IDE plug-ins,

instant messaging, and tray notifications.

133

Figure 5.13

Configuring the TeamCity Windows Tray Notifier for the currently logged-in user

134

CHAPTER 5

Cont inuous feedback

Blame the build breaker

I t ’s usually not a good idea to watch only changes caused by your actions. Project

health is usually a group effort, and a broken build on the CI server should concern

everybody. Some teams are going with crazy ideas like having the last person to

cause a broken build wear a funny hat or pay into a piggy bank for a future team

activity!

needed for you to react. You’re obviously not interested in projects you aren’t working

with. I t’s a good idea to let only the first failure notification through.

After you configure the TeamCity Windows Tray Notifier, you can use it to get

information about the projects running under TeamCity (see figure 5.14).

This doesn’t end our look at notification with TeamCity. Let’s see how to send

email notifications.

5.3.3

Alt er nat ive not i f icat ions w it h Team Cit y

I f you’ve chosen TeamCity as your CI server, email notification is easy to turn on. Log

in to your TeamCity site, go to My Sett ings & Tools, switch to the Notification Rules

tab, and add a new email notification. Voila! Email notification for your account is

activated (see figure 5.15).

In TeamCity, you can easily configure other types of information passing. I f you

use the Jabber-based communicator, you can make TeamCity send you notification

on Jabber. Figure 5.16 shows a Jabber success message from TeamCity. To get an

instant notification over the Jabber network, you have to assign a Jabber account to

the server. To do this, go to Administration, choose Server Configuration, and switch

to the Jabber Notified tab. TeamCity will send the messages from this account. You

Figure 5.14 TeamCity Windows Tray Notifier in action. One project is

currently running while another rests happily in a success state.

Cont inuous feedback w i t h Team Foundat ion Server

135

Figure 5.15

TeamCity with configured email notification. You can configure additional notifications just

as easily.

Figure 5.16 Jabber notification from TeamCity in the Miranda IM communicator.

The TeamCity server uses its Jabber account (teamci) to send you a notification

message.

can provide your account name in the My Setting & Tools section under Notifica-

tion Rules.

As you can see, TeamCity directly supports several alternative notification methods,

and they’re easier to configure than with CCNet. Next, let’s see how to configure TFS

to provide build feedback.

5.4

Cont inuous feedback w it h Team Foundat ion Server

As you saw earlier in the chapter, configuring feedback can be easy, as with TeamCity,

or more complicated, as with CCNet. TFS is in the easy-to-configure camp—it’s even

easier than TeamCity.

TFS Basic has a limitation: it doesn’t support alternative feedback methods. I f

you’re using the full TFS, you’re in luck: it does support them. Let’s start our discus-

sion of TFS feedback by looking at tray notification.

136

5.4.1

TFS t ray not i f icat ion

CHAPTER 5

Cont inuous feedback

TFS 2010 uses Build Notificat ion, which is installed along with Visual Studio 2010. You

can start it from the Start menu. I t resides in the Team Foundation Server Tools sub-

folder. After initial execution, it starts automatically when Windows starts, and displays

this icon: . Double-click the icon, and configure Build Notification as shown in fig-

ure 5.17.

From now on, TFS Build Notification will display changes to the chosen build defi-

nitions (see figure 5.18).

Figure 5.17

Choosing which build definit ions to watch in TFS Build Notification

Cont inuous feedback w i t h Team Foundat ion Server

137

Figure 5.18

TFS Build Notification

showing build results

Tray notification is a convenient way to get information about the state of the integra-

tion. Let’s see how to handle web notification with TFS.

5.4.2

5.4.3

Get t ing bu i ld det ai ls f r om t he TFS w ebsi t e

The easiest way to get to the build-details page in TFS is through the Build Notification

feature. Double-click the build you’re interested in, and you’ll get the build report

shown in figure 5.19.

That’s it! TFS provides full build information for your project without any addi-

tional configuration. But what about email notification? I t’s also supported by TFS.

Alt er nat ive feedback m echan ism s w it h TFS

Unfortunately, TFS 2010 in its Basic configuration, which works with SQL Server

Express, has no reporting services installed. I f you’re using this configuration, you

can’t extend the notification functionality. But if you’re using any of the more

advanced configurations, you’re good to go.

TFS 2010 is extensible with regard to notification. I t uses a notification data-

base to manage notification subscriptions. You can subscribe to a set of events

using, for example, email or a web service. I f the event is raised, the subscriber is

notified. You manage subscriptions using the provided API or a command-line tool

called BisSubscribe. Let’s use the second option to create an email notifier for your

build configurat ion.

138

CHAPTER 5

Cont inuous feedback

Figure 5.19

The TFS build report is produced automatically for you. No addit ional configuration is

necessary.

BisSubscribe.exe is installed along with TFS 2010. You can find it in % Program

Files% \Microsoft Team Foundation Server 2010\Tools. To subscribe to an event that

notifies you about build completion, issue the following command:

BisSubscribe.exe

➥/eventType BuildCompletionEvent

➥/address marcin@kawalerowicz.net

➥/deliveryType EmailHtml

➥/collection http://tfs1:8080/tfs/CiDotNet

This command says that when the build of the CiDotNet collection is completed, TFS

should send an HTML-formatted email to the recipient.

The downside of email notification is that it requires you to be online to receive

the information. What if you want to be woken up during the night to be notified

about a failing build? Why not text the information to your cell phone? And how

about making the notification fun? Let’s extend the notification abilit ies with some

other interesting options.

mailto:marcin@kawalerowicz.net
http://tfs1:8080/tfs/CiDotNet

Ex t ending bu i ld not i f icat ions

139

5.5

5.5.1

Ex t ending bu i ld not i f icat ions

A build notification tells you the results of a build. Did it succeed? Did it fail? And if it

failed, why? And which module caused the failure? CI servers have a rich notification

repertoire. Windows tray icons, emails, instant messaging, and IDE plug-ins are just

some of the possibilit ies. I t’s a proof for the thesis that build notification is one of the

most important parts of CI .

I t ’s so important that some CI practitioners sacrifice an additional monitor or

even a whole machine to provide constant monitoring for the team. I t’s usually

an old computer with an old monitor that stands in a visible place in the develop-

ers’ room or some place where everybody can see it. The sole purpose of this

machine is to provide the team with up-to-date information about the build pro-

cesses. The dashboard page may refresh every few minutes, or special custom soft-

ware may monitor the CI server. I f your team can benefit from something like this,

set it up. Or get geeky and use the following LED message board to provide a broken-

build notification.

Prov id ing feedback v ia an LED m essage boar d

An LED message board is a gadget that comes from a big family of crazy USB toys from

the China Seas area. The one this example uses is a matrix of 7 x 21 LED lights sealed

in a small black plastic casing (sometimes called a human interface device [HID]). I f you

aren’t a USB geek, the only thing you have to know is that the HID driver makes it easy

to interact programmatically with a HID-enabled device. I f you want to buy one, you

can search for “USB LED message board” from Dream Cheeky.

Let’s write a simple program that checks the state of the builds on a TFS server. I f it

finds a broken build, it ’ll display a blinking red circle on the LED message board. This

should be hard to miss if the board is in the developers’ room.

First, let’s find out whether the last build in a given build definition was broken.

The following listing shows the details.

List ing 5.4

Sniffing around the last broken build in TFS 2010

NetworkCredential Credentials =

new NetworkCredential("marcin", "password");

TeamFoundationServer tfs =

new TeamFoundationServer("http://tfs1:8080/tfs/CiDotNet",

Credentials);

IBuildServer buildServer =

(IBuildServer)tfs.GetService(typeof(IBuildServer));

B Connects
to team
collection

IBuildDetailSpec buildDetailSpec =

buildServer.CreateBuildDetailSpec("CiDotNet.Ch4.Tfs",

"Ci.CiDotNet.Ch4.Tfs");

buildDetailSpec.MaxBuildsPerDefinition = 1;

buildDetailSpec.QueryOrder =

BuildQueryOrder.FinishTimeDescending;

C

Searches for
team project and
build definition

140

CHAPTER 5

Cont inuous feedback

IBuildQueryResult results =

buildServer.QueryBuilds(buildDetailSpec);

if (results.Failures.Length == 0

&& results.Builds.Length == 1)

{

IBuildDetail buildDetail = results.Builds[0];

if (buildDetail.Status == BuildStatus.Failed)

D

Gets last
build

{
MyLedNotify();

E Turns on
red light

}

}

This example uses the Microsoft.TeamFoundation API to sniff for the latest build out-

put. You use the Microsoft.TeamFoundation, Microsoft.TeamFoundation.Client,

and Microsoft.TeamFoundation.Build.Client namespaces to first connect to the

TFS server and team collection using network credentials b. Then you get the build

server from the TFS instance and query it for a given team project and build definition

C. You take only the last build result D and check its state. I f it fails, you turn on the

big red dot E, as shown in the next listing.

List ing 5.5

Using an LED message board to notify you about a broken build

HidDevice[] HidDeviceList;

HidDevice MessageBoard;

HidDeviceList = HidDevices.Enumerate(0x1d34, 0x0013);

if (HidDeviceList.Length > 0)

{

B Searches
for device

MessageBoard = HidDeviceList[0];

MessageBoard.Open();

Thread.Sleep(1000);

byte[] Packet0 = new byte[] { 0x00, 0x00,

0xff, 0xfe, 0xff, 0xff, 0xfd, 0x7f };

byte[] Packet1 = new byte[] { 0x00, 0x00,

0xff, 0xfb, 0xbf, 0xff, 0xf7, 0xdf };

byte[] Packet2 = new byte[] { 0x00, 0x00,

0xff, 0xfb, 0xbf, 0xff, 0xfd, 0x7f };

byte[] Packet3 = new byte[] { 0x00, 0x00,

0xff, 0xfe, 0xff, 0x00, 0x00, 0x00 };

for (int i = 0; i < 10; i++)

{

0x00,

0x02,

0x04,

0x06,

C

D

Connects to LED
message board

Specifies light
pattern

MessageBoard.Write(Packet0);

MessageBoard.Write(Packet1);

MessageBoard.Write(Packet2);

MessageBoard.Write(Packet3);

E Sends light

definition
to device

Thread.Sleep(50);

}

MessageBoard.Close();

}

Ex t ending bu i ld not i f icat ions

141

NOTE

The HID interface isn’t a topic of this book. Suffice to say that this

example uses a generic .NET HID device library from Mike O’Brien (http: / /

labs.mikeobrien.net/Document.aspx?id= hidlibrary). The library provides a way

to connect and use any HID-enabled device. All you have to do is to get a man-

ual for the interface used in this device. The manufacturer of our LED mes-

sage board is kind enough to provide one when asked.

To connect a HID device, you have to find it b using a unique identifier provided by

the manufacturer. After you find the device, you must connect to it C and wait a while

for the hardware to snap in. Next, you define the big red dot using a report formatted

according to the manufacturer’s interface description D. For now, you’ll have to

believe us that the lights form a big red dot on the LED message board. You then send

the light definition to the device E, after which the device will look like the one

shown in figure 5.20. The packets sent to the LED message board light up the device

for only a few milliseconds, so you have to refresh the signal to light it up periodically.

I t doesn’t cost much to provide a new way to notify your team about a problem.

Buying a flashing roof light from an emergency vehicle and installing it in the devel-

opers’ room is an even better idea (of course, including the siren!). But because the

Taiwanese LED device is a lot cheaper (around $10 to $20), you can start with it. I t ’s

that important to react immediately to a broken build.

Figure 5.20

LED message board blinking with a red eye to tell you about a failed build

142

CHAPTER 5

Cont inuous feedback

What if the blinking lights, emails, and sirens aren’t doing the job? How about some-

thing more intrusive? Send an SMS message to every team member.

5.5.2

Prov id ing feedback v ia SMS not i f icat ions

I t ’s a litt le scary idea to send someone an SMS message with a build notification. But

what if you’re on vacation climbing Mount Kilimanjaro, and you want to know if your

team is dealing with the broken build fast enough? No problem. You can take the easy

route and send yourself an SMS message using Skype and an online computer in your

office. Here’s how.

Skype provides a COM library to automate some of its tasks. One of the methods

provided by this API is SendSms, which you’ll use here. This method requires you to

have Skype installed and some money in your Skype account, because unfortunately

SMS isn’t free.

NOTE

You can download the Skype library from https: / / developer.skype.

com/ . Check the Tools and SDK area.

To do the build-state sniffing, you can use a variation of the program shown earlier in

listing 5.4. The hitch is to detect only the change in the state of the build from success-

ful to broken, and then send one SMS message. After such an event, it ’s a matter of

implementing the following code to send the SMS message:

Skype Skype = new Skype();

if (Skype.Client.IsRunning)

{

Skype.Client.Start();

}

Skype.SendSms(PhoneNumber, Message);

From now on, you can sleep well, knowing that an SMS message will alert you if some-

thing goes wrong with your build. Isn’t that comforting?

5.6

Sum m ary

Access to immediate and accurate information about the state of your build process is

vital to your CI quality. The faster you get the information about a change in the qual-

ity of your source code, the more quickly you can react to fix the problem. The faster

you fix the problem, the better your team will work. You’ll know where you journey is

taking you and whether your project is starting to veer off the road.

In this chapter, you learned that you should employ a variety of methods to notify

your team about the current build status. The most common technique is a website

that reports detailed integration information.

Using a tray notifier is good for providing quick updates to a developer’s worksta-

tion. At a glance, each team member can know whether a build is broken or things are

running smoothly.

https://developer.skype.com/

Sum m ary

143

Sometimes it’s useful to send information about the build status to offline team

members. SMS notification may be advisable for mission-critical applications that

should build correctly all the time.

You may also want to explore different notification methods such as lights, mes-

sage boards, RSS feeds, or even messages to team members’ instant messaging and

Skype accounts.

Now that you’ve seen how to get feedback to your team, it’s time to turn our atten-

tion to the last piece of a basic CI process: unit testing. That’s where we’re heading in

the next chapter.

Unit testing continuously
integrated code

Th is chapt er covers
■

■

■

Unit testing in a CI environment

Continuously examining test coverage

Test mocking

We’ll risk the opinion that without automated testing, CI would be obsolete,

because CI ’s main strength is that it shows how the changes you introduce into the

code affect the software. The CI process should be designed to show you immedi-

ately when a change degrades the code quality. What better way to check for that

kind of occurrence than to perform automated testing along with every source

code change?

Automated software testing is a broad term. In this chapter, we’ll focus on one par-

ticular type of automated test ing: unit testing. Unit testing lies somewhere toward

the bottom of the common automated-test chain. We’ll get to the rest of the

chain—integrat ion, system, and acceptance test ing—in chapter 7. But in this chap-

ter, we’ll define what unit tests are and what purpose they serve in the CI process.

We’ll take two popular testing frameworks, NUnit and Microsoft Unit Testing

Framework (MSTest), and incorporate them into the CI process. Then you’ll learn

how to mock things out to speed up your tests.

144

Unit t est ing f r om a b i r d ’s-eye v iew

145

6.1

Unit t est ing f rom a b ird ’s-eye v iew

Before we jump in to create some unit tests, let’s define the term and look at the

aspects that are important from the CI perspective. There’s a common misunderstand-

ing about unit tests. They’re often associated with automated tests in general, but this

assumption is incorrect. Unit tests are part of automated tests. Figure 6.1 shows the dif-

ference. As you can see, there’s a lot more to automated testing than just unit tests.

(As we mentioned earlier, you’ll have to wait until chapter 7 to see the rest.) For now,

you’ll search for the smallest testable part of the application you’re building: a unit.

Depending on your point of view, it may be a class or a separate method. Unit tests

verify this smallest testable part of your application.

A well-designed unit test works with a fully isolated piece of code. I t should test the

smallest part of your software without dependencies on other classes or external

resources. Sometimes unit tests are writ ten by the software developer even before the

actual code. They’re perfect material for application verification in the CI process.

Let’s look at how to use them.

When you’re designing unit tests for the CI process, you have to keep some simple

rules in mind. The most important in the CI context are as follows:

■

■

■

Make your unit tests fast and unambiguous.

Have your unit tests rely on as few dependencies as possible.

Let errors drive your unit tests.

Figure 6.1

Unit tests are a small but important

part of the automated-testing

landscape.

146

CHAPTER 6

Unit t est ing con t inuously in t egrat ed code

Unit test should be fast. One unit test should run in a fraction of a second with no

delays and no time-expensive operations. Each small piece of code should be tested in

complete isolation, meaning the test shouldn’t have any access to external resources.

I t shouldn’t write to the hard drive, nor should it require network connections. I f you

have code that does that, you’ll have to mock it as part of the test. (We’ll discuss mocks

later in this chapter.)

To illustrate the suspicious-looking rule “Let errors drive your unit tests,” we’ll

revise a Samuel Beckett saying, “Ever tried. Ever failed. No matter. Fail again. Fail bet-

ter,” and say “Ever tried. Ever failed. No matter. Try again. Fail no more.” We strongly

believe that when it comes to unit tests, you shouldn’t fail more than once. This means

there’s no excuse for not writ ing a test for every bug. You should be doing error/ defect-

driven development . Every t ime someone finds a bug in your code, you write a test for it ,

fix it, and let the test work from then on. I t’ll function as a regression test in the

future. You’ll be sure that particular bug is fixed for good, and your build will never

again fail because of that bug.

Let’s jump right in, take the financial library you’ve worked with in earlier chap-

ters, and create a simple unit test for it using NUnit and MSTest. You’ll integrate the

tests with the CI servers. To demonstrate the mocking of functionality in unit tests,

you’ll extend the financial calculator to perform some I /O operations that you can

mock. But before we get into mocking, you need some code to test, and you need to

write some tests for the code.

6.2

First encoun t ers w it h un i t t est ing

In chapter 1, we introduced a small application that’ll stay with you through your jour-

ney with CI . I t ’s your friend the leasing/credit calculator. I t can calculate the credit

rate according to several input variables such as contract duration and interest. But

before we dive into some mathematical details of finance, let’s change the calculator a

litt le by flattening the structure. For better clarity, you’ll keep all the projects in your

solution at one level. I f you like the structure with external SVN references, feel free to

keep the project that way; but here you’ll modify it. From now on, you’ll have one

solution named CiDotNet with some projects inside, including the calculat ion core in

a project named CiDotNet.Calc (it contains basically what the Framework external

SVN reference repository had). The Windows calculator is in the project CiDot-

Net.WinCalc, the web calculator is in CiDotNet.WebCalc, and the Silverlight calcula-

tor is in CiDotNet.SilverlightCalc. The sources provided with this book include a

ready-to-use project.

Let’s start with the calculation core and its mathematical details. This informa-

tion isn’t necessary from the CI point of view, but it ’s important to fully understand

the unit tests that will follow. I f you’re a unit testing specialist, please feel free to

skip the next section.

First encoun t ers w i t h un i t t est ing

147

6.2.1

The search f or per f ect un i t t est m at er ial

I t ’s time to add code to the project so you have something to unit test. Open the

class library project CiDotNet.Calc and add a new class named FinanceHelper, as

shown next.

List ing 6.1

A simple finance mathematical library

using System;

namespace Core.Math

{

public class Finance

{

public enum Mode

{

BeginMode = 1, EndMode = 0

}

private static double CalculateSPPV(double compoundPeriods,

double periodicInterestRate)

{

return System.Math.Pow(1.0 + (periodicInterestRate / 100),

-compoundPeriods);

}

private double CalculateSPFV(double compoundPeriods,

double periodicInterestRate)

{

return System.Math.Pow(1 + (periodicInterestRate / 100),

compoundPeriods);

}

private double CalculateUSPV(double compoundPeriods,

double periodicInterestRate)

{

double uspv = (1 - CalculateSPPV(compoundPeriods,

periodicInterestRate)) / (periodicInterestRate / 100);

return uspv;

}

private double CalculateUSFV(double compoundPeriods,

double periodicInterestRate)

{

double usfv = (CalculateSPFV(compoundPeriods,

periodicInterestRate) - 1) / (periodicInterestRate / 100);

return usfv;

}

private static double GetCompoundPeriods(int periods, int ppy)

{

return (double)((ppy * periods) / 12);

}

private static double GetPeriodicInterestRate(

double interestRate, int ppy)

{

148

CHAPTER 6

Unit t est ing con t inuously in t egrat ed code

return (interestRate / ((double)ppy));

}

public static double CalculateRate(int periods, int ppy,

double interest, double presentValue,

double finalValue, Mode mode)

{

int m = (int)mode;

double compoundPeriods = GetCompoundPeriods(periods, ppy);

double periodicInterestRate =

GetPeriodicInterestRate(interest, ppy);

Calculates
monthly
payment

return -((finalValue * CalculateSPPV(compoundPeriods,

periodicInterestRate) - presentValue)

/ ((1.0 + ((periodicInterestRate * m) / 100))

* CalculateUSPV(compoundPeriods, periodicInterestRate)));

}

}

}

This code seems to include lots of cryptic methods and values, but it ’s much easier to

understand than you can tell at first glance. Single Payment Present Value (SPPV) is

the present value of money received in the future at a given interest rate. Single Pay-

ment Future Value (SPFV) is the future value of money paid in the future at a given

interest rate. Uniform Series Present Value (USPV) is the payment required each

period to achieve the future value. And Uniform Series Future Value (USFV) is the

future value of a uniform payment.

All of these values are used in the last and most important calculation: the monthly

payment, with the public method CalculateRate(). I t takes as parameters all the nec-

essary data to make the calculation, as shown in table 6.1.

Table 6.1

Parameters to the CalculateRate() method

Parameter

periods

ppy

interest

presentValue

finalValue

mode

Descript ion

Number of periods you want to carry the burden of the loan

Periods per year—for example, 12 for monthly payments

How much the bank charges you (the interest rate)

How much money you need right now

How much money you need at the end of the loan

Whether the bank calculates interest income at the beginning of the

calculation period or at the end

The CalculateRate() method uses the periodic interest rate (annual interest

divided over the number of periods in a year) and compound period rate (payments

in a month). You may consider the decimal data type for use with money-related cal-

culations. You may even want to use your own Money type. We won’t deal with these

issues, to make the case simpler. After all, we’re chasing the perfect CI process and

First encoun t ers w i t h un i t t est ing

149

not financial issues. This small financial library is a perfect fit for the first test case.

You’ll test it with NUnit.

6.2.2

Test ing w it h NUn i t

NUnit (www.nunit.com) is a legend in the unit testing world of .NET. I t’s one of the

oldest automated testing frameworks for .NET and was originally a clone of the Java

test library JUnit. NUnit has the responsibility of running unit tests and providing feed-

back about which tests pass and which ones fail. You’ll see that NUnit is easy to use.

The easiest way to install it is to download the zip file and extract the core of the test-

ing framework from NUnit-Version\bin\net-2.0\ framework into your tools directory.

Next, you have to decide where to put the code you write for the unit test. There

are two possible locations for your unit test code: together with the code you’re about

to test, or in another project. Both approaches have their plusses and minuses. Put-

t ing all the code together lets you test the private members, but creates a dependency

on the unit testing framework. We prefer using separate library classes for the sake of

cleanly separating test and production code. This way, you can easily drop the test

DLLs while building the release on the CI server. For this example, you’ll go this way.

I t’s a good idea to use a pattern for the test projects’ names. We like to name them

after the project they’re testing and then add the suffix .Test. For the example, this

yields the name CiDotNet.Calc.Test.

Further, the test should correspond with the structure of the production code. The

same folder structure and of course one test fixture per class is a good way to go. We

encourage you to give this some thought; there’s no one best pattern for the unit test

infrastructure; something else may work better for you. But keep in mind that your

test suite will eventually grow to hundreds or thousands of test cases.

Now you need to create the actual unit test. Add a new class library project to your

solution, and name it CiDotNet.Calc.Test. Add a reference to the CiDotNet.Calc proj-

ect and then to the nunit.framework.dll. The Finance.cs class lies in the Math subdi-

rectory of the production project, so create a FinanceTestFixture.cs file in the Math

directory of the test project. Add the following code to this new class.

List ing 6.2

A simple unit test for the rate calculation

using NUnit.Framework;

using CiDotNet.Calc.Math;

namespace CiDotNet.Calc.Test.Math

{

[TestFixture]

public class FinanceTestFixture

{

[Test]

public void CalculateRate()

{

int Duration = 12;

int Ppy = 12;

double PeriodicInterestRate = 7.5;

150

CHAPTER 6

Unit t est ing con t inuously in t egrat ed code

double presentValue = 30000;

double finalValue = 0;

CiDotNet.Calc.Math.Finance.Mode mode =

CiDotNet.Calc.Math.Finance.Mode.BeginMode;

double ExpectedRate = 2586.556528260553;

double ActualRate = Finance.CalculateRate(Duration, Ppy,

PeriodicInterestRate, presentValue, finalValue, mode);

Assert.AreEqual(ExpectedRate, ActualRate);

}

}

}

NUnit uses reflection to dig the test methods from the test library. I t uses attributes to

find what it needs. First, you need to decorate the test class with the [TestFixture]

attribute, which tells NUnit that it ’s found a class containing tests. All the test meth-

ods must be public voids and have the [Test] attribute. In the test code, you can do

everything that’s possible in .NET. I n the CalculateRate() method, you name the

calculation parameters in local variables and fill them with values. You then define

the ExpectedRate variable and assign it the value that you expect to be returned

from the calculation. The ActualRate variable will be set with the actual calculation

value from the Finance library.

A test needs something that tells it whether it was a success or a failure. This is

called an assertion. The Assert.AreEqual method is part of the NUnit framework. I t

compares the ExpectedRate to the ActualRate. I f they’re equal, the test passes. I f not,

the test fails.

You can execute the test a few ways. One of them is to use the GUI test runner that

comes with NUnit, nunit-x86.exe. This is a program that lets you interactively run

your tests and gives immediate feedback on the results. You’ll find it in the NUnit-

Version\bin\net-2.0 folder in the NUnit zip archive. Because the CI unit test process

needs to run with no user interaction, you won’t need it on the CI server. But you’ll

use it now to demonstrate NUnit’s testing capabilit ies. The source code included with

this book contains more unit tests for you to browse and learn from.

Launch the NUnit GUI test runner (see figure 6.2). Select File > Open Project,

search for CiDotNet.Calc.Test.dll, and open it. NUnit will load the DLL and prepare

everything for the tests.

The left pane shows the assembly and the test methods you’ve written. You can run

all the tests together or mark separate tests to execute them independently. To start

the test, click Run. The tests will run, and the results will be displayed in the NUnit

GUI (see figure 6.3).

Green means the tests passed and everything is all right. What you don’t want to

see is red, which means the tests failed; or yellow, which indicates that at least one test

wasn’t run.

Let’s make test results more colorful by creating one failing and one omitted test. In

doing so, you’ll learn some other NUnit attributes. Copy the CalculateRate() test,

paste it into the same class, and change the name to IgnoreTest(). I f you decorate it

First encoun t ers w i t h un i t t est ing

151

Figure 6.2

The CiDotNet.Calc.Test assembly is loaded into the NUnit GUI test runner and ready to

execute.

Figure 6.3 I f all the tests pass, you see a green bar in the right pane. The left pane shows a check mark

inside a green circle next to each passing test.

with the [Ignore] attribute (in addition to the [Test] attribute), NUnit skips execu-

tion and shows a yellow result when you run the test.

Copy the test again, change the name to FailOnPurpose(), and decorate it with

the [ExpectException] attribute. This informs the NUnit framework that you expect

the tested code to cause an exception. Run the test DLL in the GUI test runner, and

you’ll get the colorful output shown in figure 6.4.

All the GUI tests are of course useless in the CI environment. The CI server isn’t as

smart as you are and can’t use GUI tools. You need something that you’ll be able to

start from a build script—something that will perform the tests and save the output in

a text file. To do this, you can use a command-line test runner. You’ll hook it up to

CruiseControl.NET (CCNet).

6.2.3

Mar ry ing NUn i t w i t h Cru iseCon t rol .NET

I f you want to integrate the unit tests with your CI server, you’ll use a command-line tool

and script the process in the build script. NUnit comes with a suitable command-line test

152

CHAPTER 6

Unit t est ing con t inuously in t egrat ed code

Figure 6.4 I f a single test fails, you get a red result in the right pane. The left pane shows an X inside

a red circle for failing tests, which bubble up all the way to the top-level assembly. One test,

CalculateRate(), passed. The IgnoreTest() method didn’t run, so it displays a question mark

inside a yellow circle.

runner. Add the nunit-console.exe file and all the dependencies (nunit-console-runner.

dll, nunit-console.exe, nunit.core.dll, nunit.core.interfaces.dll, nunit.framework.dll,

and nunit.util.dll) from the NUnit zip file that you downloaded earlier to the tools

directory. To execute the tests you created earlier, issue the following command:

C:\Dev\CiDotNet>lib\NUnit\nunit-console.exe

➥CiDotNet.Calc.Test\bin\Debug\CiDotNet.Calc.Test.dll

The console test runner will perform all the tests, as shown in figure 6.5.

In chapter 3, you chose MSBuild as your build engine of choice. You need NUnit to

run from within the MSBuild script. There’s an MSBuild Community Task (see chapter 3)

to run NUnit that you can use, but you’ll now execute it using the exec task as follows.

Figure 6.5

NUnit console test runner executing from the command line and performing the tests

First encoun t ers w i t h un i t t est ing

153

List ing 6.3

MSBuild script running the NUnit tests

<Project DefaultTargets="Build;Test"

xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>

<Configuration Condition=" '$(Configuration)' == '' ">

Debug

</Configuration>

<TestAssemblies>

CiDotNet.Calc.Test\bin\$(Configuration)

➥\CiDotNet.Calc.Test.dll

</TestAssemblies>

</PropertyGroup>

<Target Name="Build" >

<MSBuild Targets="Clean;Rebuild" Projects="CiDotNet.sln"

ContinueOnError="false" />

</Target>

<Target Name="Test" >

<Exec Command="lib\NUnit\nunit-console.exe

➥$(TestAssemblies) /xml=NUnitReport.xml"/>

</Target>

Launches NUnit
and runs tests

</Project>

As you can see, you start the Test target that uses the exec task to execute the nunit-

console.exe application, providing it with the property that contains the DLL to test.

The /xml parameter tells NUnit to create an XML report file. You’ll use this file on the

CI server to integrate the test results within the feedback mechanism.

The build script contains the target named Build, which compiles and rebuilds

the whole solution. You can use it directly as a build script on the CI server. I f your

project resides in a revision-control system (we described how to put it there in chap-

ter 2) and you’re st ill using the CruiseControl.NET configuration from chapter 3,

then you’re good to go. Update the MSBuild script according to listing 6.3, check

everything in, and your CI process will snap in and perform the build followed by

the test.

Let’s quickly glance at the Web Dashboard to see if everything works correctly (see

figure 6.6).

You can see a lot on the CCNet Dashboard page. I t integrates easily with various test

tools. The test tool must be able to produce XML-formatted output; CCNet applies an

Figure 6.6 CCNet Web Dashboard with a failing project. A red bar under the project is a quick indicator

that something's wrong.

154

CHAPTER 6

Unit t est ing con t inuously in t egrat ed code

XSL transformer to the report to show it on the Dashboard. NUnit can produce XML

output. Running NUnit as in listing 6.3 produces a test report called NUnitReport.xml.

On the CCNet server, this file needs to be integrated with the overall build report on

the Dashboard page. To do so, you’ll have to modify the ccnet.config file and the defi-

nition for the CiDotNet project by changing the publishers tag:

<publishers>

<merge>

<files>

<file>NUnitReport.xml</file>

</files>

</merge>

<xmllogger />

</publishers>

Don’t forget to enable NUnit in the CCNet Dashboard Administrator function and

include the xmllogger tag in the publishers tag. I t includes the CCNet logs to the

Dashboard page.

The XSL files we’ve talked about are defined in the dashboard.config file discussed

in chapter 5. I t’s usually located in C:\Program Files\CruiseControl.NET\webdashboard

and contains a buildPlugins section. This section controls the build-level Dashboard

page. To show the NUnit report formatted properly, it should contain this line:

<xslReportBuildPlugin description="NUnit Details"

➥actionName="NUnitDetailsBuildReport" xslFileName="xsl\tests.xsl" />

The NUnit XSL transformer file is provided with CCNet. Similarly, there’s an XSL

transformer for NUnit timings. I t consumes the same XML report file to display dif-

ferent data.

<xslReportBuildPlugin description="NUnit Timings"

➥actionName="NUnitTimingsBuildReport" xslFileName="xsl\timing.xsl" />

I f you apply the scenario we’ve just described, you’ll get an NUnit report like that

shown in figure 6.7.

We’ll deal with test analysis and code metrics in chapter 8. But one interest ing

code metric comes with unit testing: test coverage. Let’s look at that next.

6.2.4

Ex am in ing t est coverage

Test coverage is the percentage of your code covered by tests. In this case, it ’s the unit

test. What does “code covered by tests” mean? I t’s the measurement of how many lines

of code are executed by the test code. Some teams strive to cover 100% of their source

code lines with tests. Some teams sett le for 50% . Covering all the code can be difficult

and time consuming; in many cases, a number around 80% is about right.

The mother of all test coverage tools in .NET world used to be NCover. But it went

commercial and costs about $200 in its classic version. I f you want to do test coverage

on the cheap and don’t mind a litt le manual work, a great open source alternative is

available: PartCover (http: / / sourceforge.net/projects/partcover/). After installation,

as usual, copy the necessary files to the project tools directory. All it takes to run the

First encoun t ers w i t h un i t t est ing

155

Figure 6.7 An NUnit report transformed from an XML file into a nice web page using an XSL stylesheet,

and displayed on the CCNet Dashboard

test coverage with PartCover is starting its command-line tool with the NUnit runner

and some test assemblies, like this:

<Target Name="Coverage" >

<Exec Command="tools\PartCover\PartCover.exe --target lib\NUnit\nunit-

➥console.exe --target-work-dir CiDotNet.Calc.Test\bin\$(Configuration) -

➥-target-args CiDotNet.Calc.Test.dll --output PartCoverReport.xml --

➥include [CiDotNet.Calc*]* --exclude [CiDotNet.Calc.Test*]*" />
</Target>

This code snippet is a part of an MSBuild script that checks the coverage on the calcu-

lator mathematical library, including only the namespace CiDotNet.Calc and exclud-

ing CiDotNet.Calc.Test. The output will be saved in the PartCoverReport.xml file. You

can call this target in the DefaultTargets of your MSBuild project.

The integration of the report file with CCNet works as usual. You have to use an

XSLT file on the XML output and integrate it with the CCNet Web Dashboard. Part-

Cover comes with some XSLT files. Unfortunately, the files currently must be edited to

work with CCNet, because the report file is integrated with the overall build-process

report and extracted from there. The original files assume they’re working with sepa-

rate files. We won’t discuss the required changes here; we hope the next version of

PartCover comes with dedicated XSLT files. To make life easier for you, we’ve provided

the corrected files with this book.

Copy the XSLT files to the xsl folder of your Dashboard installation. Go to dash-

board.config, and extend the buildPlugins tag as follows.

List ing 6.4

Extending CCNet dashboard.config with PartCover report transformations

<buildPlugins>

<buildReportBuildPlugin>

156

CHAPTER 6

Unit t est ing con t inuously in t egrat ed code

<xslFileNames>

<xslFile>

xsl\PartCoverReport.Assembly.xsl

Other build report
plug-ins here

</xslFile>

</xslFileNames>

</buildReportBuildPlugin>

<buildLogBuildPlugin />

<xslReportBuildPlugin description="PartCover Report"

actionName="PartCoverReport"

xslFileName="xsl\PartCoverReport.Class.xsl" />

</buildPlugins>

Don’t forget to merge PartCoverReport.xml with the build log in the CCNet project

configuration file ccnet.config.

<publishers>

<merge>

<files>

<file>PartCoverReport.xml</file>

</files>

</merge>

<xmllogger />

</publishers>

You’re finished. Get it up and running, run the build, and you’ll see a report page sim-

ilar to figure 6.8.

TeamCity comes with built-in functionality for NCover and PartCover. To use Part-

Cover, you have to set it up on the Build Configuration page. First, enable NUnit Tests

(mark the flag in New Unit Test Settings). Set it to run the tests from % system.team-

city.build. workingDir% \ CiDotNet.Calc.Test\ bin\ Release\ CiDotNet.Calc.Test.dll.Go to the

.NET Coverage section, choose PartCover from the drop-down list, and provide the path

to the executables in the lib directory (% system.teamcity.build.workingDir% \ lib\Part-

Cover\PartCover.exe). In the Report XSLT test box, provide the following transformation:

Figure 6.8 The PartCover report in the CCNet Web Dashboard. I t shows the assembly test coverage

and the coverage divided into separate classes. I t’s easy to get to 100% coverage with so small a

project, but you should try it with one of your own projects.

Microsof t un i t t est ing f r am ew ork

157

%system.teamcity.build.workingDir%\lib\PartCover\xslt\

➥PartCoverReport.Class.xsl=>PartCover.Class.html

%system.teamcity.build.workingDir%\lib\PartCover\xslt\

➥PartCoverReport.Assembly.xsl=>PartCover.Assembly.html

That’s it. The next time your project builds, you’ll get a nice report about unit tests

and test coverage.

NUnit was a big success in the .NET world, so big that Microsoft hired one of

NUnit’s creators and developed its own unit testing framework.

6.3

6.3.1

Microsof t un i t t est ing f ram ew ork

Since Visual Studio 2003, Microsoft has had its own automated unit testing frame-

work, commonly called MSTest. You’ll find it hidden in the Microsoft.VisualStu-

dio.TestTools.UnitTesting namespace. The tools are fully integrated with Visual Studio

and are available in all Visual Studio 2010 versions except the Express editions. I t’s

time to try it and see how it works.

Creat ing un i t t est s t he Microsof t w ay

Let’s take the same financial mathematical library you used with NUnit and create unit

tests the Microsoft way. Open the Finance.cs file in Visual Studio, right-click some-

where in the text editor, and choose Create Unit Tests from the context menu (see fig-

ure 6.9).

Visual Studio browses through the code and finds all the methods worth creat-

ing unit tests for. I f you don’t want to create tests for all the methods in your class,

Figure 6.9

Adding a unit test to an existing class in Visual Studio 2010

158

CHAPTER 6

Unit t est ing con t inuously in t egrat ed code

Figure 6.10

To create a unit test from an existing class, choose the methods

to test.

you have to choose the ones you want from the Create Unit Tests dialog box (see fig-

ure 6.10).

I f you choose to create the test in a new project (a wise decision), you need to

name it in the next dialog box. In this case, call it CiDotNet.Calc.MSTest; a naming

convention will turn out to be important in a minute. In the newly created project,

you’ll find a new class named after the class it will be testing, but with a Test suffix.

The test method for the CalculateRate() method is shown next.

List ing 6.5

A generated test method

/// <summary>

///A test for CalculateRate

///</summary>

[TestMethod()]

B Specifies method
is a test

public void CalculateRateTest()

{

int duration = 0; // TODO: Initialize to an appropriate value

int ppy = 0; // TODO: Initialize to an appropriate value

double interestRate = 0F; // TODO: Initialize to an appropriate value

double presentValue = 0F; // TODO: Initialize to an appropriate value

double finalValue = 0F; // TODO: Initialize to an appropriate value

CalculationCore.Mode mode = new CalculationCore.Mode(); // TODO:

➥Initialize to an appropriate value

Microsof t un i t t est ing f r am ew ork

double expected = 0F; // TODO: Initialize to an appropriate value

double actual;

actual = CalculationCore.CalculateRate(duration, ppy, interestRate,

presentValue, finalValue, mode);

159

Assert.AreEqual(expected, actual);

Assert.Inconclusive(

"Verify the correctness of this test method.");

C

Default
Assert

}

As you can see, the test method is given a [TestMethod()] B attribute, and the actual

test method looks similar to the NUnit test you wrote in the previous section. Now you

need to get rid of the TODO comments and set all the variables. Don’t forget to erase the

line Assert.Inconclusive("Verify the correctness of this test method."); C.

Even if your assertion passes, this line will make your test yellow.

To start the test, click the Run Tests in Current Context button on the toolbar,

or choose Test > Run > Test in Current Context from the Visual Studio menu. The test

runs directly in the Visual Studio GUI , and the results appear in the Test Results win-

dow (see figure 6.11).

Figure 6.11

MSTest results (bottom pane) for the test code (top pane). As you can see, the test

passed.

160

CHAPTER 6

Unit t est ing con t inuously in t egrat ed code

Figure 6.12 Turning on test coverage for MSTest. In the test settings, you have to enable Code

Coverage for a given assembly (you can get to the configuration sett ings by double-clicking the Code

Coverage row).

Creating unit tests with MSTest is as easy as it is with NUnit. You can turn on test cover-

age for MSTest, too. To do so, you have to open the Local.testsettings file in Visual Stu-

dio (it ’s with the solution items); see figure 6.12.

After enabling the test coverage, you have to decide what assemblies should be

instrumented. You can do this by clicking the Configure button shown in figure 6.12.

I f for some reason you decide to strongly sign the assembly that contains the tests, you

must enable re-signing. To do so, choose the re-signing key at the bottom of the con-

figuration window.

We encourage you to further explore MSTest. One good resource is the Microsoft

Press book Software Testing with Visual Studio 2010. But right now, let ’s see how to add the

MSTest test to your continuous build process on Team Foundation Server (TFS) 2010.

6.3.2

Test ing on TFS 2010

Integrating tests with TFS 2010 is easy. I f the source of your project is already under

TFS Version Control, as we described in chapter 2, and you followed the project nam-

ing convention with the Test suffix, you’re almost done. You check in your new proj-

ect, and TFS will do the test work for you. Let’s examine why TFS does this.

In Team Explorer in Visual Studio, select your build. Right-click it, and from the

context menu, choose Edit Build Definition. In the resulting dialog box, click the Pro-

cess tab; you’ll see a definit ion like that shown in figure 6.13.

Microsof t un i t t est ing f r am ew ork

161

Figure 6.13 The build definition with the Automated Tests assembly matching pattern in the Basic

area. All assemblies containing the word t est search for automated tests.

In the Basic area of the Process tab is an Automated Tests property. This property tells

TFS the assemblies from which to run the automated tests.

By default, the definition is “Run tests in assemblies matching * * \ * test* .dll using

settings from $/MyFirstProject/CiDotNet.Ch5/Local.testsettings.” I f you followed the

pattern and named the test project to contain the Test suffix, your tests will be per-

formed. Your continuous build should execute all the tests from your test library

because it matches the pattern * * \ * test* .dll.

To see the build results from the context menu of your build definition, choose

View Builds from the Builds folder of your team project in Team Explorer, and open

the last-performed build (see figure 6.14). At the bottom of the report is the executed

test count. Click it, and you’ll see the detailed test report.

I ntegrating MSTest with other CI servers isn’t as straightforward as with its natural

habitat, TFS. Let’s see how can you do so with CCNet and TeamCity.

6.3.3

MSTest in non-TFS env i r onm en t

Sometimes you need to go against the flow and integrate MSTest with a third-party CI

server. You have to go against the flow because, unfortunately, MSTest isn’t a frame-

work—it’s part of Visual Studio and the TFS environment. This means you can’t take

only the MSTest executables and run them friction-free on the build server. You have

to install Visual Studio on the build server, do a lot of manual hacking to make it work

without Visual Studio, or use third-party test runners for MSTest. By installing Visual

Studio on the build machine, you’re going against the rule of a vanilla server that has

as few external dependencies as possible. I t also means you must purchase an addi-

tional license for Visual Studio, which increases your costs.

I f you want to go the hacker way and make MSTest run without Visual Studio, you

can use an external tool such as Gallio.

162

CHAPTER 6

Unit t est ing con t inuously in t egrat ed code

Figure 6.14

The TFS 2010 build report with test results at the bottom

We’ll assume that you got your tests running on the build machine one way or

another, and show you how to integrate MSTest with CCNet and TeamCity. As usual,

you begin by extending the MSBuild script, as shown here.

List ing 6.6

An MSBuild target for running MSTest

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>

<MSTestPath Condition=" '$(MSTestPath)' == ''

➥">%ProgramFiles%\Microsoft Visual Studio 10.0\Common7\IDE

</MSTestPath>

B Path to
MSTest

<TestAssemblies>

CiDotNet.Calc.Test\bin\$(Configuration)\CiDotNet.Calc.Test.dll

</TestAssemblies>

</PropertyGroup>

<Target Name="Test">

<Delete Condition=

Microsof t un i t t est ing f r am ew ork

163

"Exists('MSTestReport.trx')" Files="MSTestReport.trx">

</Delete>

Performs test

C

<Exec Command=""$(MSTestPath)\MSTest.exe"

➥/testcontainer:$(TestAssemblies) /resultsfile:MSTestReport.trx"/>

</Target>

</Project>

All you do is use the command line to run the MSTest runner C installed on the build

agent B to produce an MSTestReport.trx file. The .trx file is nothing more than an

XML file. To add the test results to CCNet, you apply an XSLT file and configure the

Dashboard to show the results. You already know the drill, so we won’t discuss it here.

More interesting is the integrat ion with TeamCity, which gives us the opportunity to

discuss TeamCity service messages.

Service messages in TeamCity are commands you can pass from the build script to

TeamCity itself. For example, you can tell TeamCity that you have a .trx file with an

MSTest report for it to transform and show on the build page. You send a service mes-

sage to TeamCity by outputting it to the standard output in the build script. I f you’re

using MSBuild, you use the simple line

<Message Text="##teamcity[importData type='mstest'

➥path='MSTestReport.trx']"></Message>

TeamCity can interpret this message and has the built-in ability to process the MSBuild

report files. So if it gets an importData command of type mstest, it searches a given

path for the report to transform and then displays the results. Make sure you add the

.trx file to the project art ifacts. Add the previous message line to your build script, and

you’ll get a TeamCity Test Details page as shown in figure 6.15.

Figure 6.15

The standard TeamCity Test Details page showing the results of the MSTest run on the

build server

164

CHAPTER 6

Unit t est ing con t inuously in t egrat ed code

As you can see, integrating unit tests with the CI server is a straightforward task. I t

should be. Getting the unit tests to run every time the project is integrated is essential

for a good CI process. Now it’s time to wrap up our discussion of unit testing.

6.4

Sum m ary

We’ve covered a lot of ground in this chapter. Congratulations for making it all the

way through! Writing good unit tests is an art of its own, and we’ve merely glossed over

the surface. I f you want to go deeper and master unit testing, look at Roy Osherove‘s

great book, The Art of Unit Testing (Manning, 2009).

You’ve written a simple unit test and seen how to isolate the tests from external

resources. But most important, you know why you need unit tests in the CI process

and how to incorporate them into your CI server of choice.

Unit tests are the fastest way to ensure that the code you’re producing maintains

some given level of excellence. Writing tests and running them inside your CI process

lets you discover every fault as quickly as possible. Unit tests must run quickly—run-

ning a single unit test should take a fraction of a second. Remember that the entire

test run, together with other CI activities, shouldn’t last longer than 5 to 10 minutes.

Together with unit tests comes a very useful software metric called test coverage. You

saw how test coverage can show you how much of your code is tested. The more code

you test, the higher the code quality.

Depending on your CI server, you can incorporate unit tests into the build script

as you’ve done using MSBuild and CruiseControl.NET, or use built-in features of the

CI server, like the CI setup in TFS 2010. We tend to believe that controlling every-

thing in the build script is a better way to do it. We like to have total control over

the build process, and MSBuild lets us do so. Of course, TFS relies on MSBuild

under the hood, and you can take control; but it isn’t as obvious as using the build

script from the beginning.

The general output from the suite of unit tests is always binary. All the tests pass, or

the entire CI process is broken. This information, although important, is only part of

the story. You can run many other tests—integration, acceptance, and system tests, for

example—to check whether your code is operating properly. Those tests are the sub-

ject of the next chapter.

C

Part 2

Extend it

an you develop software without test ing? Sure you can. Can you float

without knowing how to swim? Sure you can—for about 20 seconds.

Software development involves constantly striving to produce code that’s as

bug-free as possible. And that means testing—start ing at the lowest level and

ending at the highest. In a modern software development company, the lowest

level is usually unit testing, which you learned about in part 1. I t’s followed by a

happy crowd of other types of testing including, but not limited to, integration,

regression, and load testing, ending with end-user acceptance testing. You can

accomplish this in the CI process by making the testing and analysis happen con-

stantly. In part 2 (chapters 7 and 8), we discuss how to extend your test reper-

toire beyond unit testing and incorporate other types of testing into the CI

process. Finally, you’ll learn how to perform code analysis on the source and at

the intermediate code level.

After reading this part of the book, you’ll be able to extend your CI process’s

testing, add stat ic code analysis, and take total control over CI feedback.

Performing integration,
system, and

acceptance testing

Th is chapt er covers
■

■

■

Integration testing and mocking

Automating UI testing of Windows, web, and

Silverlight applications

Acceptance testing with FitNesse

In chapter 6, you learned how to unit test continuously integrated source code. A

unit test is the most basic form of test that a software developer can create, and this

type of test should be done first. I t ’s like adding sauce to pizza dough. But you can

use a lot of other tests too, just as you can add pepperoni, mushrooms, and extra

toppings to a pizza. And you can get tests from other sources. Many tests can be

automated and integrated into the CI process. We’ll deal with other types of tests

and how to integrate them into your CI process in this chapter.

But first, let’s try to answer the following question: what other types of tests are

there? Unit tests are only the t ip of the iceberg. The answer to the question

depends on your point of view. Tests are categorized in various ways. Who performs

the test? Do you need a person to manually test the software, or can the process be

automated? Who creates the test—a developer, test personnel, or the domain

expert? Do you know the source code you’re testing (white-box testing), or does a

167

168

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

module seem to magically perform some functionality (black-box testing)? What parts

of your software are you testing, and where? I s it an integration test or regression test?

You must consider many variables, and these questions are also relevant from the CI

point of view.

In chapter 5, we compared continuous feedback to a cross-country road trip. In

this chapter, we’ll focus on additional test ing techniques. Think of each testing tech-

nique as an important stop on your cross-country journey. We’ll introduce integration,

system, and acceptance testing. And you’ll see a lot of tools in this chapter; table 7.1

gives a quick overview of the tools we’ll talk about.

Table 7.1

Tools to extend your test repertoire

Tool

NUnit

Mocking framework

White

Selenium

FitNesse

Purpose

Performing integration tests

Simulating the behavior of some objects while unit testing others

Testing Windows Forms and Silverlight applications

Testing web applications

Performing acceptance testing in a highly sophisticated manner

We’ll show you how these tools can become a part of your CI process. But before we

get there, it ’s important to understand the entire testing process so you can see how

these tools and techniques fit in.

7.1

Ex t ending your CI t est reper t o ire

In this chapter, we’ll focus on tests that can be automated. Without automation, test

activities wouldn’t play a valuable role in CI because they’d have to be done manually.

Manual tests are important as another means to improve software quality, but they

tend to be difficult to perform continuously. I t’s hard to imagine test personnel per-

forming tests after every check-in to the repository, don’t you think?

The developer isn’t the only person who can write tests. In many scenarios, domain

experts create their own tests. Of course, they need a different set of tools to write tests

than developers use. We’ll deal with one of these tools, FitNesse, in this chapter.

When you know what you’re testing, and your tests are based on the actual code,

you’re doing white-box testing. I f the inner workings of a piece of software you’re testing

are unknown to you, that’s black-box testing. Unit test ing is most definitely a white-box

test methodology. Regardless of whether you do test-driven development (TDD), you

know the implementation details of what you’re test ing. We’ll focus in this chapter on

black-box testing. Usually, black-box tests are functional tests—they don’t care how

the software works as long it meets the requirements.

Ex t ending your CI t est r eper t oi re

169

Figure 7.1 The testing t imeline. First, you do the unit tests. Then, you take a bigger

piece of software and test how it integrates with other pieces. After that, you test how

the software behaves in the production environment with a system test.

The test process that begins with unit testing usually continues with integration tests

(see figure 7.1). Integration tests usually involve testing the interoperability between a

few modules. The modules are usually thoroughly covered with unit tests, and integra-

tion testing lays the groundwork for the next step: system testing. System tests are

roughly equivalent to the functional tests we mentioned earlier. They occur in fully

integrated software, preferably in the deployment environment, and ensure that the

software works as designed and meets all the requirements.

From the system and functional tests emerges yet another interest ing aspect of

software testing in the CI environment: acceptance test ing. This type of test can be

designed and performed by an end user or a domain expert. Usually, a system test

doesn’t require programming skills. In this chapter, we’ll investigate acceptance tests

that you can automate.

Various testing frameworks let you automate integration and system tests. We’ll

look at three of them in depth throughout this chapter:

■

■

■

White —Tests a WinForms or Silverlight application

Selenium —Tests an ASP.NET application

FitNesse —Performs acceptance tests

As you can see, there’s a lot more to testing than just unit tests. Let’s look at these

additional tests from the CI angle.

7.1.1

Beyond un i t t est s in CI

Unit tests are merely the first step in the long testing journey. Think of this journey as

a road trip: each state border you cross requires a different type of test. You start at the

state of unit tests, and as you continue on the trip, you find a series of more complex

testing scenarios.

■

■

■

Integration tests

System, functional, and acceptance tests

Performance, load, and stability tests

As you enter the state of each test, you look for road signs to help you understand

what each test is and why you’re interested in it. Let’s see what these signs have to say.

170

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

INTEGRATION TESTS

Integration tests usually take multiple pieces of functionality and test how they behave

together. Such tests can involve two or more classes, assemblies, components, or even

small programs that interoperate.

I t’s a good idea to leave as much isolation as possible while you’re integration test-

ing. What does this mean? When you unit test your software, the goal is to mock every

external activity the code is performing. There’s no database connection present, no

reading or writing to files, no network connectivity—not even the configuration mat-

ters. Integration tests are allowed to interact with the system, but they should stay as

small as possible. The tests should be fast and give you immediate feedback if there’s a

problem. Integration tests are perfect to use in a CI environment.

FUNCTIONAL TESTS

Functional tests, on the other hand, are sometimes associated with integration tests

and sometimes with system tests. You extract functional tests from other types of

tests to support your CI scenario.

Let’s say your functional tests extend your integration tests. Code tested in this man-

ner has no interfaces stubbed. You don’t use mocking to isolate your functionality.

There’s one important thing to remember if you want to integrate functional tests

in your CI process: the CI tests should be fast. I f you rely on a database connection or

other external resources, the tests tend to take longer. I f you’re able to fit the tests into

a 10-minute run, you’re good to go. I f the functional tests take longer, you should

think about dividing your build process into smaller chunks.

ACCEPTANCE TESTS

Acceptance tests take fully integrated software with all its dependencies and test it

against a normal environment. This means no mocking—only the real deal. You

should test I /O, network, and database operations with specific configurations.

Acceptance tests can be designed by the customer or domain specialist. This kind

of test usually takes longer to run. These tests won’t break your build, so they’re usu-

ally not included in the CI build, but they’re great material for periodic builds, such as

the nightly or weekly build.

SYSTEM TESTS

System tests are also performed on fully integrated software, but the environment

tends to mimic a production environment more than it does during acceptance tests.

This kind of test is hard to integrate within your build process; these tests tend to rely

on specific hardware and software configurations. But if you strain a litt le, some sys-

tem tests can be included in your automatic build and test schedule.

Software that passes system tests can be tested in various other ways. For example,

you can test how it performs under high load. During this kind of test, you try to stress

your software in various ways. For instance, you may issue thousands of requests to a

website or take your software through the mill with your database.

Ex t ending your CI t est r eper t oi re

171

STABILITY TESTS

You may also want to test the stability of your software. Stability tests answer such

questions as whether there are any memory leaks in your Windows service, whether

your program can restore the database connection after hibernation, and so on.

Although in most cases it’s possible to automate these tests, they usually have no

place in CI the process. They take too much time. You need hours to properly test

your software under stress or to make sure it’s stable. We won’t deal with this kind of

test in this book.

These test techniques build a kind of pyramid (see figure 7.2). I t ’s a good idea to

start at the bottom of the test pyramid with unit testing and build up from that. You

should test the integration of software that’s covered with good unit tests. You should

start functional tests as soon as you’re ready with your integration tests, and so on.

As you can see, unit testing is the foundation or base of your different types of

tests. Without it, the other tests collapse and are less meaningful. Addit ional tests

build on unit tests and then on each other. Many of the tests you run involve the cus-

tomer, and that’s what we talk about next.

7.1.2

I nvolv ing t he cust om er or dom ain ex per t in t he CI t est ing process

With the rise of agile software development methodology, the role of the customer in

the software development cycle has skyrocketed. Maybe it’s t ime you acknowledge that

and give the customer limited access to the CI process.

I f you get cold shivers at the thought of lett ing the customer get so close to the pro-

cess, it ’s understandable. I t takes a special relationship to let the customer mess with

your CI process. But think about a domain specialist or product owner. Most likely

they aren’t programmers, but they can have a positive influence on your process. Why

not give them tools to write their tests?

Of course, you don’t want to make them program the tests. There are other ways to

classify tests. The first type, code-facing tests, focuses on the technical part of the soft-

ware equation. This kind of test tells you whether the software is writ ten the right way.

Does everything work as you, the developer, expect it to work? Are the data flows cor-

rect? Does the UI respond the right way? And so on.

Figure 7.2

The software testing pyramid shows

how to lay a good base with unit tests

and then build up. In the CI scenario,

you’ll probably cut the peak off the

pyramid because some types of tests

take too long to run.

172

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

The second type is customer-facing tests. These answer such questions as, is what the

developer wrote what the customer needs? Does it fulfill customer expectat ions? Will

it be of value to generate return on investment?

Customer-facing tests tend to fall into another category that’s relevant in the CI

scenario: user-acceptance tests. Such tests are roughly the equivalent of the functional

testing you do, which we described in section 7.1.1. They let the customer, the domain

expert, or even the project manager set acceptance boundaries on the software that’s

developed for them.

Some user-acceptance tests are good material to include in the CI process. You

have to remember that this kind of test must follow the normal rules for CI tests: it

needs to be automated and run fast.

You can’t use manual tests in the CI process. And if the tests aren’t quick enough,

they’ll introduce unnecessary friction in your day-to-day work. I f the user-acceptance

tests aren’t fast enough, it may still be a good idea to include them in the nightly

build. As more and more user-acceptance tests pass, your feeling of being on the right

path will strengthen.

Wait a minute: “As more and more user-acceptance tests pass”? Does that mean not

all tests need to pass? I t’s time to look at this interesting problem.

7.1.3

Righ t t im ing, r igh t f ai l ing

When you’re designing tests for the CI process, you should keep this golden rule in

mind: “Fail fast.” This means you should design your test suite so that in case of a

problem, you’ll detect it as soon as possible. In order to do that, you should

■

■

Perform quick tests at the beginning.

Break the build after the first failing test.

I f you perform the quick tests earlier in the CI process, you’ll get the potential fail

more quickly. I t ’s a waste of resources to perform time-consuming tests if some of the

quick ones can potentially fail earlier. In addition, you should break the entire build

after the first failing test. (OK, it may be the first test suite or group, but be sure to

break your build.)

Unit tests are definitely the quickest. They should be designed to focus on details:

test one specific thing, and don’t rely on external resources. After that, testing com-

plexity grows, as does execution time. Figure 7.3 shows roughly how the typical execu-

tion time of a test depends on the test’s detail level.

There may be situations when you don’t want to break your build on a failing

test—for example, if the test is written by a customer. Consider the following scenario.

You’ve written the code and created a set of acceptance tests. These tests define a

product with full functionality. Acceptance tests should break the build if they fail. But

what about user-created acceptance tests? I f such tests are part of your CI process, they

shouldn’t break the build, because acceptance testing comes long after the build is

finished. A broken build should indicate that the code either doesn’t compile or that

unit and integration tests fail.

Up close and personal w i t h in t egrat ion t est s in CI

173

Figure 7.3 This diagram shows that the further from the code and closer to

the functionality (test level) you are, the longer a test takes to run. (I f you have

rich testing scenarios, the execution t ime of the entire test suite may vary.)

Try to be specific. Group the tests that you don’t expect to pass just yet in another test

suite, and move them into your main test suite when the code functionality is ready

for them.

Now that we’ve covered the concepts, let’s dive deep into extended test ing in CI .

7.2

7.2.1

Up close and personal w it h in t egrat ion t est s in CI

As we said earlier, integration tests are one step higher than unit tests in the complex

testing hierarchy. Elements that were previously tested in isolation are now tested

together. I ntegration tests check how the individual pieces of code behave collectively.

In addition, integration tests are allowed to interact with external resources: they can

read or write from the database or from the hard drive. Integration tests also tend to

take more t ime; when you’re designing a CI scenario with integrat ion tests, you have

to take this into considerat ion. How do you perform integrat ion testing?

Per form ing in t egrat ion t est ing

To perform integration testing, use a testing framework you’re familiar with. I t can be

NUnit or MSTest. You’ll just organize your tests a different way this time.

First, you have to separate the integration tests from your normal unit tests—you

shouldn’t mix them. Unit tests should run quickly, because they have to run in every

CI iteration. Integration tests can run in every CI iteration, but they take longer, and

174

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

the test execution time may eventually exceed

acceptable CI execution time. You should keep as

many tests as possible in every CI build, but some-

times it’s a good idea to move some of the tests into a

periodic or nightly build.

Let’s dig out the leasing calculator project that

you used earlier in the book. I t’s small, slick, and easy

to use. You can enter the credit amount, interest, dura-

tion, and other variables, and it will calculate your

rate (see figure 7.4). Using this example, you’ve set

the revision-control system, developed a build pro-

cess, and performed some unit tests.

Let’s extend this calculator. Suppose you’re sell-

ing it to a customer in Switzerland. I t’s a custom in

Switzerland to round prices to 5 rappen, which is 1/

100 of a Swiss Franc. I t’s also a custom in Switzer-

land that no payable amount of money should be

less than 5 rappen. So Swiss bankers invented the

Figure 7.4 Simple financial

calculator as a Windows Forms

application

so-called 5-rappen round. Look at this helper class to

see how to perform the 5-rappen round:

public class RoundHelper

{

public static decimal Round5Rappen(decimal price)

{

return Math.Round(price * 20,

MidpointRounding.AwayFromZero) / 20;

}

}

This calculation is easy enough. You take the price, multiply it by 20, and round away

from zero (it ’s called the accountant method). Thanks to that, if you multiply again by

20, you get the price rounded to exactly 5 rappen.

The 5-rappen-round method should be unit tested. Here’s an example:

List ing 7.1

An ordinary unit test for the 5-rappen-round method

[Test]

public void Test5RappenRound1p024M()

{

decimal Price = 1.024M;

decimal ExpectedPrice5RappenRound = 1M;

decimal ActualPrice5RappenRound =

CiDotNet.Calc.Math.RoundHelper.Round5Rappen(Price);

Assert.AreEqual(ExpectedPrice5RappenRound,

ActualPrice5RappenRound);

}

[Test]

Up close and personal w i t h in t egrat ion t est s in CI

175

public void Test5RappenRound1p025M()

{

decimal Price = 1.025M;

decimal ExpectedPrice5RappenRound = 1.05M;

decimal ActualPrice5RappenRound =

CiDotNet.Calc.Math.RoundHelper.Round5Rappen(Price);

Assert.AreEqual(ExpectedPrice5RappenRound,

ActualPrice5RappenRound);

}

You’re testing the individual pieces of software separately. The rate-calculation

method was unit tested in chapter 5. Your new 5-rappen-round method is unit tested

in list ing 7.1. Now, let ’s test them together by performing your first integration test. I n

this case, the easiest approach is to take the unit testing framework and set it to work

as an integrat ion testing framework. Follow along as you do it.

Remember that you want to keep your unit tests and integration tests in separate

places. So create a new class library project called CiDotNet.Calc.I ntegrationTest. Ref-

erence your favorite unit testing framework from it (this example uses NUnit), add a

new class, and add the following test.

List ing 7.2

Testing the rate calculation and the 5-rappen round

[Test]

public void CalculateRate5RappenRound()

{

int Duration = 12;

int Ppy = 12;

double PeriodicInterestRate = 7.5;

double presentValue = 30000;

double finalValue = 0;

CiDotNet.Calc.Math.Finance.Mode mode =

CiDotNet.Calc.Math.Finance.Mode.BeginMode;

double ExpectedRate = 2586.556528260553d;

double ActualRate = Finance.CalculateRate(Duration, Ppy,

PeriodicInterestRate, presentValue, finalValue, mode);

Assert.AreEqual(ExpectedRate, ActualRate);

decimal ExpectedRate5RappenRound = 2586.55M;

decimal ActualRate5RappenRound =

RoundHelper.Round5Rappen((decimal)ActualRate);

Assert.AreEqual(ExpectedRate5RappenRound, ActualRate5RappenRound);

}

This is a simplified integration test, but it shows the idea well. I t uses a bottom-up

approach, which means you first test the lower-level functionality and build up from

there. In this case, you first test the simple rate calculation and then use the outcome

as input for a second test with the 5-rappen round. This way, you test all the function-

ality together.

176

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

As you can see, the border between unit tests and integration tests is often only

semantics. This integration test case isn’t much different than the unit test. But

because of its structure, it ’s beyond our definition of a unit test. Let’s look at some-

thing more complicated: an integrat ion test that touches I /O.

7.2.2

From m ock ing t o in t egr at ion t est ing

Integration tests, unlike unit tests, aren’t bound by the rule to have as few external

dependencies as possible. To demonstrate, let’s take the financial calculator and

extend it with the ability to export the calculation values to a file. The exported data

can be imported into an accounting tool to create an invoice or used by an external

tool to create a document. For your purposes, let’s say you want to append the calcula-

tions to a comma-separated value (CSV) file somewhere on the disk, which contains all

the calculation data. I t will have one row and one calculation.

First, to make everything testable, you need to abstract the file operations. Let’s do

this by defining an interface called IFileWrapper. You need the new functionality to

check whether the file exists, to create it if it doesn’t exist, and then to append a line

of text to it:

public

{

bool

void

void

interface IFileWrapper

FileExists(string path);

CreateFile(string path, string text);

AppendLine(string path, string text);

}

You use an interface because you need to substitute a fake for the actual implementa-

tion. The implementation uses the System.IO namespace to check whether the file

exists, create it, and append a line to it. This is the functionality you’ll test in your inte-

gration tests. But before that, you should test your piece of functionality. This way, you

can observe the difference between unit tests and integration tests.

Use the IFileWrapper from the CsvFileProvider class, as follows.

Listing 7.3 CsvFileProvider using IFileWrapper to save a CSV file

public class CsvFileProvider

{

private IFileWrapper fileWrapper;

public CsvFileProvider(IFileWrapper fileWrapper)

{

if (fileWrapper == null)

{

throw new ArgumentNullException("fileWrapper");

I njects I / O

interface

}

this.fileWrapper = fileWrapper;

}

#region ICsvFileProvider Members

public bool Append(string path, string[] values)

{

Up close and personal w i t h in t egrat ion t est s in CI

177

bool Success = true;

string CvsLine = string.Join(",", values);

if (path == null || path.Length == 0)

{

throw new ArgumentException("Path is null or empty", "path");

}

if (!this.fileWrapper.FileExists(path))

{

this.fileWrapper.AppendLine(path,

"Duration, Ppy, InterestRate, PresentValue, FinalValue, Mode");

}

try

{

this.fileWrapper.AppendLine(path,

System.Environment.NewLine);

this.fileWrapper.AppendLine(path, CvsLine);

}

catch

{

Success = false;

}

return Success;

}

#endregion

}

The CsvFileProvider takes the IFileWrapper in the constructor. This way, you can

inject any custom functionality you want. The heavy lift ing is performed in the Append

method, which uses IFileWrapper to insert something into the file.

Let’s write a unit test that uses the mock framework.

List ing 7.4

Unit test with mocked file operations

[Test]

public void UnitTest()

{

DynamicMock fileWrapper =

new DynamicMock(typeof(IFileWrapper));

fileWrapper.ExpectAndReturn("FileExists", true,

new object[] { "path" });

CsvFileProvider csvFileProvider = new

CsvFileProvider((IFileWrapper)fileWrapper.MockInstance);

Assert.IsTrue(csvFileProvider.Append("path",

new string[] { "test" }));

}

This test uses the mocking framework that comes with NUnit. Many other good mock-

ing frameworks are available, such as Rhino Mocks, Moq, and Typemock I solator. This

example uses the one that comes in NUnit.Mocks because you already have it in your

tools directory.

178

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

DynamicMock is a fake object created using the IFileWrapper interface. You tell

the mocking framework that you expect the method FileExist to return true. The

last parameter is the path to the file, which is irrelevant because you’re faking. After

that, your CsvFileProvider object is created using the fake IFileWrapper object.

Finally, you assert that the Append operation on csvFileProvider returns true, which

indicates success. This way, you’re fulfilling all of the unit tests’ criteria and not touch-

ing the filesystem.

How does the integrat ion test differ? Remember that our definition of integration

tests lets the tests interoperate with external resources, such as the filesystem. You

don’t need to mock anything. You can use the real implementation for IFileWrapper,

shown here.

Listing 7.5 System.IO implementation of the file wrapper

public class FileWrapper : IFileWrapper

{

#region IFileWrapper Members

public bool FileExists(string path)

{

return System.IO.File.Exists(path);

}

public void CreateFile(string path, string text)

{

AppendLine(path, text);

}

public void AppendLine(string path, string text)

{

System.IO.File.AppendAllText(path, text);

System.IO.File.AppendAllText(path, System.Environment.NewLine);

}

#endregion

}

Every test should function against a system that’s in a known state. This means that in

order to get repeatable results, you have to set the test variables to a known state. Unit

tests do this by definition. But this isn’t the case with integrat ion tests. I f your tests rely

on data in a database, you must make sure you have the data in the database. I f

you rely on a system variable, it ’s a good idea to check that the variable exists or to

re-create it every time the test is executed.

I f your tests change anything in the system, you should clean up those changes

after the tests run. This way, your tests will have less influence on the system itself and

will be more repeatable. The following listing shows the CSV file integration test.

List ing 7.6

CSV file integration test

[TestFixture]

public class CsvFileIntegrationTestFixture

{

private string _path = @"c:\temp\export.csv";

Up close and personal with integrat ion tests in CI

[SetUp]

public void SetUp()

{

CleanUp();

}

[TearDown]

public void TearDown()

{

CleanUp();

}

[Test]

public void IntegrationTest()

{

FileWrapper fileWrapper = new FileWrapper();

CsvFileProvider csvFileProvider =

new CsvFileProvider(fileWrapper);

Assert.IsTrue(csvFileProvider.Append(_path,

new string[] { "test" }));

}

[Test]

[ExpectedException]

public void IntegrationTest2()

I ntegration
test

I ntegration test 2:
gets exception from
code being tested

179

{

FileWrapper fileWrapper = new FileWrapper();

CsvFileProvider csvFileProvider =

new CsvFileProvider(fileWrapper);

Assert.IsTrue(csvFileProvider.Append(null,

new string[] { "test" }));

}

private void CleanUp()

{

if (System.IO.File.Exists(_path))

{

System.IO.File.Delete(_path);

}

}

}

}

I ntegration tests done in this fashion are st ill pretty code-centric. But they’re as impor-

tant for the health of your software as unit tests. You should definitely use them in

your CI setup. Pay close attention to the execution time, and separate slow-running

tests. Put the latter in a separate process, such as a periodic build. Be aware that the

tests may change the environment, and try to set it back to a known state every time

you run the tests.

What if you want to go even higher with your tests’ detail level, closer to system or

functional tests? You can do this by using the UI testing framework with your applica-

tion. You can even integrate it into your CI process. Let’s look at how to do that.

180

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

7.3

Test ing t he user in t er face

I f you’re lucky enough to have a QA department, you’re probably familiar with the

process it typically follows:

1

2

3

4

5

6

Pull test scenarios for the day’s tests

Read the description

Do exactly as described

Observe the output

Compare the output with the description

Assert

Repetitive and boring, isn’t it? But how about automating the process? Is it possible to

make the machine read and perform UI tests automatically? Yes; and there are tools

you can use to do that.

The tools are called GUI testing tools. They comprise a broad set of tools that basi-

cally pretend they’re a real user. They need a formal description of what to do, and

they do it. You provide steps such as start the application, enter this field, click that button,

check whether the text box gets the proper value, and so on. One of these GUI test tools is

called White. Let’s look at it.

7.3.1

Test ing W indow s Form s w it h W hi t e

White is an open source tool developed by ThoughtWorks. I t lets you automate a

bunch of technologies including old-style Win32, Windows Forms, and Windows Pre-

sentation Foundation (WPF). And here’s something cool: it works with Silverlight,

too. You’ll see how to use it with both WinForms and

Silverlight before you’re finished.

Underneath the hood of White sits the Microsoft

UI Automation (UIA) framework. This framework

makes programmatic access to the UI possible. The

UIA framework is a set of APIs that allow programs to

interact with various Windows GUI elements. White

adds a layer of abstraction to UIA, making it easy to

automate testing the UI .

Let’s automate the testing of the financial calcula-

tor. The Windows Forms version looks like figure 7.5.

To use White, download it from www.codeplex.

com/white and put it in your project’s tools direc-

tory. I t’s probably a good idea to separate the GUI

tests from the rest, so create a new class library proj-

ect. Add a reference to the White.Core assembly,

which contains White’s basic functionality. Now you

need something to run the test cases: NUnit will work

great for this.

Figure 7.5 The WinForms financial

calculator against which you’ll run

UI tests

http://www.codeplex.com/white
http://www.codeplex.com/white

Test ing t he user in t er f ace

181

Writ ing a White test works like writ ing an NUnit test. Decorate the testing class with

a TestFixture attribute and a public void method with a Test attribute. The follow-

ing listing shows how to set up GUI testing with White.

List ing 7.7

Basic Windows GUI test performed with White

using

using

using

using

using

System;

NUnit.Framework;

White.Core;

White.Core.UIItems.WindowItems;

White.Core.UIItems;

namespace CiDotNet.WinCalc.Test

{

[TestFixture]

public class AcceptanceTests

{

private string _path =

@"..\..\..\CiDotNet.Win\bin\Debug\CiDotNet.WinCalc.exe";

[SetUp]

public void SetUp()

{
_application = Application.Launch(_path);

B Starts
application

}

[TearDown]

public void TearDown()

{

}

_application.Kill();
C

Shuts down
application

[Test]

public void Test()

{

Window Window =

_application.GetWindow("CiDotNet Windows Calculator");

TextBox TxtPrice = Window.Get<TextBox>("txtPrice");

TextBox TxtPeriods = Window.Get<TextBox>("txtPeriods");

TextBox TxtInterest = Window.Get<TextBox>("txtInterest");

TextBox TxtResidualValue =

Window.Get<TextBox>("txtResidualValue");

RadioButton RbModeBegin =

Window.Get<RadioButton>("rbModeBegin");

TxtPrice.Text = "10000,00";

TxtPeriods.Text = "36";

TxtInterest.Text = "7,50";

TxtResidualValue.Text = "1000,00";

RbModeBegin.Click();

string ExpectedRate = "284,45";

Button Button = Window.Get<Button>("btnCalculate");

Button.Click();

182

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

TextBox rateTextBox = Window.Get<TextBox>("txtRate");

Assert.AreEqual(rateTextBox.Text, ExpectedRate);

}

}

}

You use the SetUp and TearDown methods to initialize B and close C the application

under test, respectively. White is able to attach to a working application process or to

start a new one. You start the application using a relative path (in production you

should consider copying the exe and tests to one directory and performing the tests

from there—it will make the relative path obsolete). The test begins by getting a

Window object—in this case, by searching for the window title—then gets the controls

from the window, using their names. The controls can be manipulated on demand.

You set the Text propert ies to provide calculation values. You deal with the Radio but-

ton by executing the Click() method on the control instance. When you’re finished

with the initial values, you get the instance of the Calculate button. Click it:

Assert.AreEqual then verifies that you get the value you expected.

Integrating test results with CI is easy. White generates an ordinary XML NUnit

report file that you can integrate with your CI feedback mechanism (see chapters 5

and 6). But you must keep one issue in mind if you want to perform the GUI tests in

the CI environment: the CI server process usually works as a Windows service under a

system account. This means that, normally, there’s no chance the service can start and

use something with the UI . You’ll have to deal with that and make the appropriate

changes to the CI server’s service properties by selecting the Allow Service to Interact

With Desktop check box (see figure 7.6). You can get to the service properties by

choosing Start > Control Panel > Administrative Tools > Services, and selecting Cruise-

Control.NET Server Propert ies.

This way, your CI process can start and test your Windows application automatically.

But WinForms programs aren’t the only type of application that White deals with. You

may want to automate an old Win32 application or a new WPF app. But what makes

White exceptional is its ability to automatically test Silverlight applications.

7.3.2

Silver l igh t t est au t om at ion

Silverlight has a gained considerable momentum in the .NET world. I t’s an excep-

tional technology that mixes web availability and Windows responsiveness. I t lets .NET

developers use the knowledge they already have to build a web application to create a

Windows style application. Figure 7.7 shows the financial calculator as a Silverlight

application. We won’t walk you through the creation of this application, but we pro-

vide full source code with this book.

Testing a Silverlight application in White is as easy as testing a Windows applica-

tion. You again use NUnit to perform the test. The following listing shows how to set

up White to test your Silverlight application.

Test ing t he user in t er f ace

183

Figure 7.6

I f you want your CI server to be

able to test the Windows GUI , you

have to allow it to interact with the

desktop.

Figure 7.7 The example financial calculator running as a Silverlight

application

184

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

List ing 7.8

Automating UI testing of a Silverlight application

[TestFixture]

public class SilverlightCalcUiTestFixture

{

InternetExplorerWindow _browserWindow;

[SetUp]

public void SetUp()

{

_browserWindow = InternetExplorer.Launch("http://localhost:52661/

➥CiDotNet.SilverlightCalcTestPage.aspx",

➥"CiDotNet.SilverlightCalc - Windows Internet Explorer");
}

[TearDown]

public void TearDown()

{

_browserWindow.Dispose();

}

[Test]

public void Test()

{

SilverlightDocument document =

_browserWindow.SilverlightDocument;

Button button = document.Get<Button>("btnCalculate");

button.Click();

System.Threading.Thread.Sleep(5000);

TextBox rateTextBox = document.Get<TextBox>("txtRate");

Assert.AreEqual(rateTextBox.Text, "878,754159722056");

}

}

Testing the Silverlight application is as straightforward as testing a Windows applica-

tion. In the SetUp method, you launch Microsoft Internet Explorer with your Silver-

light application. I n TearDown, you close the browser. In the test method, you first get

the Silverlight document from the page; the test is similar to the WinForms app you

tested earlier.

White comes with a ton of neat additional features. For example, it has the ability

to reuse a test in multiple test scenarios. This means you don’t have to search the con-

trols on the GUI using the Get() methods. The controls are generated and provided

to you in strongly typed fashion. Detailed usage of White isn’t a topic of this book, so

we won’t cover the extended features any further, but we encourage you to explore it.

I t ’s well worth your time!

You’ve tested a Windows application and a Silverlight-powered website. How about

an ordinary website? White won’t help you there. But you can use another tool, Sele-

nium, to test websites.

Test ing t he user in t er f ace

185

7.3.3

Test ing a w eb appl icat ion w i t h Selen ium

Selenium is a web application testing framework that originally came from Thought-

Works. I t’s a set of tools, including the Selenium IDE, which is a Firefox plug-in that

helps to record and play the test, and Selenium RC, a remote control to perform

tests for various browsers from various languages. You can get Selenium from http: / /

seleniumhq.org/ . I t automatically installs; after a restart, you’ll have one additional

item on the Tools menu: Selenium IDE.

Let’s automatically test the web financial calculator, shown in figure 7.8.

You’ll do exactly the same test you did with the Windows and Silverlight applica-

tions, but you’ll use Selenium IDE to record the test. First, get the Firefox web

browser (www.firefox.com/) if you don’t already have it. You’ll only need it on your

development machine because the Selenium IDE is a Firefox plug-in. To install it,

use Firefox: go to http: / / seleniumhq.org/ , browse to the download, and click the

link to an .xpi file. This is the plug-in file for Firefox. When you click it, Firefox

prompts you to allow the installation. Do so, and restart Firefox. Run the web finan-

cial calculator from Visual Studio. Doing so launches the ASP.NET development

server. Now, launch Firefox, and navigate to the URL of your application. Start the

Selenium IDE from the Firefox Tools menu. You’ll get the empty test suite shown in

figure 7.9.

Be sure the button is selected, and you’re good to go. Enter some values into

the calculator, and click the Calculate button. Selenium, by default, records all your

clicks and keystrokes and places them in a table (see figure 7.10).

Figure 7.8

The web financial calculator, ready to

be tested

http://seleniumhq.org/
http://seleniumhq.org/

186

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

Figure 7.9

The Selenium I DE integrated control

center lets you record, edit, and

debug automated web tests.

NOTE

You may be wondering how Selenium performs on applicat ions big-

ger than the simple calculator. From our experience, it works fine with

modern business web applications. In the end, they’re all HTML with a

bunch of links, buttons, and other controls. Selenium even manages Ajax

and similar technologies.

Figure 7.10

Selenium uses a simple table form

to save the tests.

Test ing t he user in t er f ace

187

Figure 7.11

Although Selenium can record your

clicks and keystrokes, you have to

manually add additional commands to

complete the test.

The table consists of three columns: Command, Target, and Value. A command is a

Selenium instruction that defines what the testing framework should do. For example,

open directs the browser to open the document specified in the Target column; type

enters text specified in the Value column into the field specified in Target; and click

clicks a control specified in Target.

To complete the test, you have to do an assertion. To do that, click the Record but-

ton again to stop the recording. Go to the empty line at the end of the test steps, and

add two more commands, as shown in figure 7.11.

You add the waitForPageToLoad command with a value of 3000 milliseconds

because your application does a postback after you click the Calculate button. The test

suite has to wait until the page is loaded; after that, you assert the output rate value.

You then issue an assertValue command to the target txtRate (the name of the field

on the website) and check that the value is correct.

Your first automated test is ready. Click the Play button to run it. Selenium exe-

cutes the entire test suite (which consists of only one test) and displays the output (see

figure 7.12).

As we said earlier, the default table-style test layout isn’t the only input Selenium

accepts. You can easily change the format to C# so that you can run the test as an

NUnit test. In the Selenium IDE window, choose Options > Format > C# - Selenium RC.

You’ll get the code shown next.

Figure 7.12

Selenium executes the commands in

the script sequentially and detects

the correct value. I t looks like

everything works.

188

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

List ing 7.9

Selenium test case as a C# NUnit test fixture

using

using

using

using

using

using

System;

System.Text;

System.Text.RegularExpressions;

System.Threading;

NUnit.Framework;

Selenium;

namespace SeleniumTests

{

[TestFixture]

public class Untitled

{

private ISelenium selenium;

private StringBuilder verificationErrors;

[SetUp]

public void SetupTest()

{

}

}

selenium = new DefaultSelenium("localhost", 4444,

"*chrome",

"http://change-this-to-the-site-you-are-testing/");

selenium.Start();

verificationErrors = new StringBuilder();

}

[TearDown]

public void TeardownTest()

{

try

{

selenium.Stop();

}

catch (Exception)

{

// Ignore errors if unable to close the browser

}

Assert.AreEqual("", verificationErrors.ToString());

}

[Test]

public void TheUntitledTest()

{

selenium.Open("/Default.aspx");

selenium.Type("txtPrice", "20000");

selenium.Type("txtPeriods", "36");

selenium.Type("txtInterest", "5,5");

selenium.Click("rbModeEnd");

selenium.Click("btnCalculate");

selenium.WaitForPageToLoad("3000");

Assert.AreEqual("603,90", selenium.GetValue("txtRate"));

}

B Defines
Selenium RC
server proxy

Test ing t he user in t er f ace

189

This test can only be run against a Selenium RC server that’s able to play the test

remotely. I t starts and closes one of the supported web browsers and acts as a proxy

between the test case and that browser. On the test case side, Selenium RC is a set of

assemblies that allows communication with the Selenium RC proxy server.

Let’s prepare the client test case side of the browser-automation test suite. First,

from http: / / seleniumhq.org/ , download Selenium RC. I t contains the server and the

client-side libraries. Take the libraries from the selenium-dotnet-client folder and copy

them to your tools folder.

We’ve put a ready-to-use project in the source codes accompanying the book.

Reference the ThoughtWorks.Selenium.Core.dll in the test project, and copy the Sele-

nium-generated code from listing 7.9 into a new test fixture class. Modify the

namespace and class name to suit your needs. The Selenium client connects to the RC

server over a proxy server. This server is specified in the test fixture SetUp method B.

Selenium RC server is a Java-based application that comes with the Selenium RC

archive. Extract the contents of the selenium-server directory. Then go to the com-

mand line, navigate to the directory with your server, and issue a command to start the

server from the JAR file:

java -jar selenium-server

By default, the Selenium RC server starts on port 4444. I f it doesn’t collide with any of

your network services, it can stay this way. I f not, change it and edit B to use the new

port number. The first parameter in the DefaultSelenium constructor is the Sele-

nium RC server address, the second is the port number where it listens, and the third

is the browser to automate (you can change this to *firefox or *iexplore if you

don’t have Google Chrome). The last parameter is the URL to the site you’re about to

test. In this case, the constructor can be

selenium = new DefaultSelenium("localhost", 4444,

➥"*firefox", " http://localhost:54121");

Start the test with your favorite NUnit tool. Selenium RC server starts the browser (see

figure 7.13), performs the test, and then closes everything.

Now that you know how to test the UI of your application, let ’s see how to integrate

those UI tests into your CI process.

7.3.4

I n t egrat ing UI t est s in t o t he CI process

The answer to the question of whether to include UI testing in your CI suite comes

from the “ it depends” series. Are the tests fast enough to complete in 10 minutes?

Are the tests reliable enough not to introduce unnecessary tension by breaking

some dependency?

SPEED

Tests that involve the UI are often slow. You have to start the application. I f it ’s an

ASP.NET application, that can mean starting a web server, compiling the application

on the server, and starting a browser with which to perform the test. I f your program

http://localhost:54121/

190

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

Figure 7.13

Selenium RC performing the test in Firefox

makes a connection to the database, you have to go all the way to the database server

to reach it. This can mean the test execution time is unacceptable.

You can fight that issue in various ways. A good solution for accelerating your web

test is to deploy your application to a preconfigured web server and test it on that

server. We’ll deal with this in chapter 11. Another good idea is to prepare a special

database for this kind of test, with less data and faster query-execution times.

RELIABILITY

Are the tests reliable enough? You have to pay closer attention to the fact that the

functional UI tests depend on the environment in which they’re executing. I f you’re

developing and testing on the same database, you’re likely to introduce data that will

interfere with your test suite. I f your tests depend on the company’s network architec-

ture, you’ll get a false alarm if your network administrator decides to replace an old

switch in the server room.

You can minimize this kind of problem by using a separate test database for devel-

opment, manual testing, and automated testing. I t may even be a good idea to set up

the database every time, as with integration tests. You can minimize network depen-

dency by setting up your hardware test architecture yourself. I f it ’s physically impossi-

ble, how about using a virtual server? I f all else fails, think about putting the UI tests in

a periodic-build scenario—say, every 2 hours or every night.

Test ing t he user in t er f ace

191

SELENIUM

Working with Selenium in a CI environment has its own issues. Start ing the Selenium

RC server every t ime to run a test is a bad idea. I t takes t ime; and if you’re working with

several projects that use Selenium, you’ll quickly reach the point where two projects

want to start the Selenium RC server on the same port, and the second project is out

of luck.

The best way to use Selenium RC server is to install it on a machine and let it work

constantly. You can start Selenium RC server as a Windows service. That way, it’s always

ready to perform the tests.

To install Selenium RC server as a Windows Service, follow this quick guide:

1

2

3

Make sure you have Java installed on the server where you want to run Sele-

nium RC server.

Extract Selenium RC server to the destination server: for example, c: \ tools\

seleniumrc directory.

Get Non-Sucking Service Manager (NSSM) and copy it to your tools folder. Issue

nssm.exe install SeleniumRC from the command line. You’re asked what pro-

gram you want to start as a service (see figure 7.14).

NOTE

The Non-Sucking Service Manager is a service-helper program that

handles the failure of an application running as a service. You can down-

load it from http: / / iain.cx/ src/nssm/ .

4

5

6

7

8

Open the Windows Services console. Search for your new SeleniumRC service.

Go to Properties. On the Log On tab, select Allow Service to Interact With

Desktop (as shown earlier in figure 7.4).

Start the service.

The last thing you’ll most likely have to deal with is an exception on your fire-

wall. I f you start the Selenium RC service on the default 4444 port, you must

define a hole in the firewall for this port.

From now on, you don’t have to run Selenium RC server on your local machine.

All you have to do is direct your test to the server where it ’s running as a service

(see list ing 7.10 B).

GUI tests are a great extension to your test repertoire. With tools like White and Sele-

nium, you can design and write high-level tests for your applications. But can you

Figure 7.14

Installing Selenium RC Server as a Windows

service with NSSM

http://iain.cx/src/nssm

192

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

imagine someone else doing at least part of this testing for you? How about a cus-

tomer? Yes, it ’s possible, and that’s what we’ll talk about next.

7.4

7.4.1

Accept ance t est ing w it h Fi t Nesse

FitNesse is a highly sophisticated acceptance test tool. Essentially, it ’s a web server that

hosts wiki-style web pages you can use as tests for your software. I t’s a direct descen-

dant of Framework for Integrated Test (Fit) by Ward Cunningham.

The basic idea of Fit and FitNesse is to give nontechnical users, such as end users and

domain experts, the ability to write acceptance tests. The tests can be expressed in a

table form that can be understood and managed by a customer or a domain specialist.

The table-form tests are executed against a test runner, and the output is presented to the

user. There’s no better way of learning than doing, so let’s jump in and try out FitNesse.

Prepar ing t he Fi t Nesse f ram ew ork

FitNesse is written in Java, so make sure you have the Java Runtime environment

installed (you can get it from http: / / java.com/en/). Download FitNesse from http: / /

fitnesse.org/ , and copy the fitnesse.jar file to your directory of choice—for exam-

ple, c:\ tools\ fitnesse. To start FitNesse, issue java -jar fitnesse.jar from a com-

mand window.

By default, FitNesse runs on port 80. I t’s a standard HTTP server; so if a web server

is present on the machine, this port is most likely taken. To start FitNesse on another

port, use the -p switch: for example, java -jar fitnesse.jar -p 8888.

Open a web browser, and navigate to http: / / localhost:8888, substituting your host

name or IP address in place of localhost. The FitNesse home page opens, as shown in

figure 7.15.

Figure 7.15 The FitNesse home page. FitNesse is a wiki-style service that allows nontechnical users

to write and perform acceptance software tests.

http://fitnesse.org/
http://fitnesse.org/

Accept ance t est ing w i t h Fit Nesse

193

The next step is to prepare FitNesse to run .NET code. Download fitSharp from

www.syterra.com/FitSharp.html. You’ll have to tell FitNesse where the .NET files are

installed; to make the relative path short, copy the contents of the zip file to a dotnet

folder next to your fitnesse.jar file. FitNesse.NET contains the files needed on both

the client test side and on the FitNesse server side.

Let’s say you want to give the financial calculation specialists the ability to test your

financial calculation library. I t ’s the core of your calculator application. The library lets

you calculate the rate for a given lease or credit amount with various parameters. You’ve

covered this code with your unit tests, but it would be nice for nontechnical people to

be able to write their own tests. In order to do that, you have to prepare a class that will

be an interface between the code you’re about to test and the FitNesse wiki site.

Drop the content of FitNesse.NET into the tools folder in your project, and refer-

ence a test project with fit.dll and fitSharp.dll. This assembly contains the fit.Column-

Fixture class, which will be the base class for your test fixture.

Listing 7.10 A class that hooks up the financial library with FitNesse

namespace CiDotNet.Calc.Test.Math

{

public class FinanceColumnFixture : fit.ColumnFixture

{

public int duration;

public int ppy;

public double periodicInterestRate;

public double presentValue;

public double finalValue;

public CiDotNet.Calc.Math.Finance.Mode mode;

public double CalculateRate()

{

return CiDotNet.Calc.Math.Finance.CalculateRate(

duration, ppy, periodicInterestRate,

presentValue, finalValue, mode);

}

}

}

First, you inform FitNesse that you’ll be using the most common fixture that maps the

test’s columns to the appropriate properties. You define the available properties and

do the work. The input values from the test columns are passed to the financial

library implementation.

You’re good to go on the client side. Now, let’s define a test in FitNesse. To create a

new wiki site with FitNesse, you must navigate to the application test page on your Fit-

Nesse server, such as http: / / localhost:8888/CalcTest (this test suite is included with

the book’s source code). This page will host a test suite. You can have as many test

suites as you wish; you just have to navigate to a new URL like http: / / localhost:8888/

AnotherTestSuite. When the page opens in your browser, you’re presented with a new

wiki site (see figure 7.16) that you can use to enter the FitNesse test.

http://www.syterra.com/FitSharp.html
http://localhost:8888/AnotherTestSuite
http://localhost:8888/AnotherTestSuite

194

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

Figure 7.16 Blank wiki test page in FitNesse. This page is where you enter the instructions for FitNesse

to test your application.

Let’s say that the assembly with the FinanceColumnFixture is called CiDotNet.Calc.

Test.dll. The simplest test looks like this:

!define COMMAND_PATTERN {%m -r

➥fitnesse.fitserver.FitServer,dotnet\fit.dll %p}

!define TEST_RUNNER {dotnet\Runner.exe}

!path ..\..\CiDotNet.Calc.Test\bin\Debug\CiDotNet.Calc.Test.dll

!|CiDotNet.Calc.Test.Math.FinanceColumnFixture|

|duration|ppy|periodicInterestRate|presentValue|finalValue|

➥mode|CalculateRate?|

|12|12|7|30000|0|1|2580,75|

|24|12|7|30000|0|1|1335,40|

|36|12|7|30000|0|1|920,95|

You first define the test environment, starting from COMMAND_PATTERN and continuing

through to TEST_RUNNER and the path to the test library. The test runner is a tool that

takes the wiki test definit ion and performs the test; it ’s part of FitNesse.NET, which you

downloaded earlier. I t uses the command pattern specified earlier.

I f you’re familiar with wiki syntax, the test definition is straightforward. I t’s a table

with a header containing the test fixture class name. The table is enclosed with | bars

Accept ance t est ing w i t h Fit Nesse

195

and prefixed with ! to prevent the wiki engine from interpreting the CamelCased

name as a link to another page. The columns are defined between the | bars. The col-

umn values will be mapped to the test fixture class properties, one line after another,

one each time.

After you enter the test information into the wiki page, click the Save button. The

test page looks like figure 7.17.

You can easily switch back to edit mode using the side toolbar. At the top of this

toolbar is a Test button that launches the test runner to perform the wiki-defined test.

Click Test; the output is shown in figure 7.18.

This is only the tip of the iceberg when it comes to acceptance tests with FitNesse.

I t isn’t easy to involve domain experts in the testing like this. I t ’s even harder to

involve the customer. But it ’s certainly worth trying. This is the best way to get the peo-

ple with the best domain knowledge as close to development as possible.

To deepen your FitNesse knowledge, Gojko Adzic has a great book about FitNesse,

Test Driven .NET Development with FitNesse. I f you want to extend your test repertoire,

look at it. We’ll deal now with something more important to us: FitNesse integrat ion

into your CI process.

Figure 7.17

A simple FitNesse test page after the test instructions have been entered

196

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

Figure 7.18 After the FitNesse test runs, everything is green. I t looks like the financial library has

passed the test.

7.4.2

Fit Nesse and CI

Making FitNesse play in your CI environment can be a lit t le tricky because it involves

someone from outside the team; in addition, integrating the test result with your CI

feedback mechanism requires some extra work. The best way to deal with the first

issue is to install FitNesse on a machine that’s available for the domain expert (keep

the security issues in mind). You can do this exactly the same way you install Selenium

RC server. FitNesse runs as a service; you’ll have to tell the customer to direct their

browser to a given URL.

The CI server will use this FitNesse installation to perform the tests remotely. In

order to do this, you use the standalone test runner, TestRunner.exe, from Fit-

Nesse.NET. You can use it against an external test page. The following list ing shows the

MSBuild script that performs a test run.

Listing 7.11 MSBuild using TestRunner to perform an acceptance test

<Project DefaultTargets="FitTest"

➥xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>

<FitNesseServer>localhost</FitNesseServer>

<FitNessePort>8888</FitNessePort>

<FitNesseTest>CalcTest</FitNesseTest>

</PropertyGroup>

Sum m ary

197

<Target Name="FitTest" >

<Exec Command="tools\FitNesse\dotnet\Runner.exe

➥-r fitnesse.fitserver.TestRunner,Tools\FitNesse\dotnet\fit.dll

➥-results FitNesseLog.html -format html

➥$(FitNesseServer) $(FitNessePort) $(FitNesseTest)" />
</Target>

</Project>

You execute TestRunner with the Exec command. You start TestRunner.exe from the

dotnet folder while the working directory is set to the FitNesse directory. This way,

the relative file paths in the test will be correct. The results file is saved under the

name FitNesseLog.txt. The server name, port number, and test page name are saved

in MSBuild propert ies.

The test results that FitNesse produces are simple HTML documents. Integration

with TeamCity is straightforward. As you learned in previous chapters, add the Fit-

NesseLog.html file to your project artifacts, and define a new FitNesse project tab.

After the next test run, you see the tests results on the TeamCity webpage.

To integrate the test runner results with Cruisecontrol.NET you must use the fit-

Sharp and XML results (change –format in the listing 7.11 to text) it produces or

transforms the html output of the test runner to XML. After that, apply a proper XSLT

transformation to it like this:

<xslReportBuildPlugin description="Fitnesse Report"

➥ actionName="FitnesseReport" xslFileName="xsl\fitnesse.xsl"/>

You’ll have to integrate it into your CI server feedback mechanism. And there you

have it: customer test ing, integrated into your CI system.

7.5

Sum m ary

Extending a test repertoire into your CI process is worthwhile. Different tests reveal

different problems. Unit tests live close to the code and aim for different issues than

integration or functional tests. The latter have broader scope; they target interactions

within the code or beyond it, to external resources. With the broader scope comes

complexity. Integration and functional tests tend to take longer and to be harder to

isolate. You can no longer rely on mocked objects—you have to deal with interactions

and a real environment. Nevertheless, it pays to integrate as many tests as possible into

your CI process.

The more you test, the more certain you can be that you aren’t breaking anything.

As long as you can keep your integration and functional tests quick and reliable, you’re

good to go with CI . I f not, think about putting these tests in periodic builds. Keep in

mind that you need to organize your tests in any CI process from the quickest to the lon-

gest running; this way, you’ll get feedback as soon as possible.

Sometimes it’s a good idea to involve a client or a nontechnical person with

domain knowledge into the test process. Acceptance tests have their place in CI too.

They probably won’t break the build if they fail, and they’re better indicators of being

on the right track. The art is to use them as a kind of specification and to gradually

198

CHAPTER 7

Per form ing in t egrat ion , syst em , and accept ance t est ing

make them more and more green. There is no better feeling than being sure the work

you’ve done delivers what the customer wants.

Various tests ensure that the software works as designed. This is important. But

these tests say litt le about how maintainable the software is. Will it be easy to extend

with new features? I s the code readable to others besides the developer who wrote it?

Is it properly commented and understandable? Does it follow the rules? To answer

all these questions, you may consider doing the stat ic code analysis automatically and

integrat ing it into the CI process. This is the topic of the next chapter, “Analyzing

the code.”

Analyzing the code

Th is chapt er covers
■

■

■

■

Using FxCop and StyleCop for static code

analysis

Integrating FxCop and StyleCop into the CI

process

Extending the CI process with custom rules

Using NDepend

Have you ever taken over a project to fix a bug or code a feature? In such a situa-

tion, did you feel uncertain, lost, or upset? How many times have you wanted to

find the person who originally wrote the piece of code you’re working on and sim-

ply … thank them warmly? I f you’re living in the same world we are, this has hap-

pened to you at least a few times (see figure 8.1).

Did you ever wonder why you felt like this? Was it because the code didn’t do

what it was supposed to do? I f it wasn’t a bug, it was probably something else: the

software smelled. And nothing is worse than smelly code. In this chapter, we’ll dis-

cuss what you can do about smelly code and how to enforce clean code using CI .

We’ll look at a few tools that make this possible: FxCop, StyleCop, NDepend, and a

TeamCity tool that checks for code duplication.

199

200

CHAPTER 8

Analyzing t he code

Figure 8.1

Always code as if the person who will

maintain your code is a violent psychopath

who knows where you live (picture courtesy

of http: / / kkphoto.art.pl/).

These tools do static code analysis against the code you’re writing and tell you where

you could do better. The testing methods we showed you in the previous two chapters

are called dynamic analysis. That is, you run the code to determine its correctness.

With static analysis, you don’t run the code: you check it for other types of issues.

Each tool checks for a different type of issue, something we’ll explain as we look at

each tool.

Two of the tools, FxCop and StyleCop, are appropriately named because they

enforce rules for good coding. They have your back when the psychopath comes lurk-

ing. In this chapter, we’ll look at how to enforce obedience to good coding rules and

how to define your own rules for these tools. You’ll also integrate everything into your

CI process. You’ll do all this so you don’t anger the psychopath who knows where you

live. Let’s get started by looking at FxCop.

8.1

8.1.1

Analyzing ob j ect code w it h FxCop

FxCop is a free Microsoft tool for code analysis. I t examines compiled .NET assem-

blies for things like performance, naming conventions, library design, globalization,

and security.

FxCop started as a standalone program that enforced the rules from Design Guide-

lines for Class Library Developers (http: / /msdn.microsoft.com/en-us/ library/

czefa0ke(VS.71).aspx), a document that contains good coding practices for developers

writing .NET code. FxCop was incorporated into Visual Studio Team System 2008 and

Visual Studio Premium 2010 as Code Analysis. The good news is, it ’s also still available

as a standalone program, and it’s helpful as part of CI . Let’s look at FxCop in action.

Using Visual St udio Code Analysis

I f you have an edition of Visual Studio 2010 that includes Code Analysis, using it is

straightforward. Go to your project’s properties, click the Code Analysis tab, and select

the Enable Code Analysis on Build check box (see figure 8.2).

http://kkphoto.art.pl/
http://msdn.microsoft.com/en-us/library/czefa0ke/czefa0ke(VS.71).aspx
http://msdn.microsoft.com/en-us/library/czefa0ke/czefa0ke(VS.71).aspx

Analyzing ob j ect code w i t h FxCop

201

Figure 8.2

FxCop is built in to Visual Studio 2010’s Premium and Ultimate editions as Code Analysis.

Microsoft suggests that by default you use the Microsoft Minimum Recommended

Rules. I t’s up to you what set of rules to use; you can even define your own. Keep in

mind that the rules come from a document that contains the word guidelines in its

tit le. What’s important is that you’re making a conscious decision about using the

rules. To see the rules that are working, click Open next to the Run This Rule Set

drop-down list. You can modify the list according to your needs and save the output

file for future use in other projects (see figure 8.3).

You can decide which rules will break your build and which will only cause com-

piler warnings. After you turn on Code Analysis, every t ime your project compiles, the

analysis is finished.

But what about situations when you feel you have to make an exception to a rule

you chose to obey? To do this, you can use suppressions. You can suppress FxCop mes-

sages directly in the code where they occur, or you can use a global suppression file.

Visual Studio comes with neat functionality to make this easier. To suppress a part icu-

lar issue, right-click it in the Error List window, and select Suppress Message(s) (see fig-

ure 8.4). You can suppress the messages either in the source code or in a special

suppression file. The way we do it is to give developers a free hand in suppressing the

particular message. Of course, they should be able to support their decisions, but we

202

CHAPTER 8

Analyzing t he code

Figure 8.3 When you define a set of Code Analysis rules in Visual Studio 2010, you can save them to a

rule-set file so you can apply them to projects.

don’t want to handicap development (peer code review is a good t ime to discuss suppres-

sions). On the other hand, the project suppression file should be treated with respect.

The records it contains should be carefully chosen by senior members of the team.

Figure 8.4

Suppressing a Code Analysis message in the Error List window in Visual Studio 2010

Analyzing ob j ect code w i t h FxCop

203

You should approach stat ic code analysis with caution. Turning on all the rules for an

old project can be painful. You’ll probably get hundreds of errors (especially if you’re

threading warnings as errors). From experience, we know that one reasonable solu-

tion is to go through the available rules, think about them, and turn on only the ones

you’re convinced are right for you. Keep in mind that, in most cases, you aren’t writ-

ing something that must be as clean as .NET Framework. You want to get your job

done as well as you can without generating too much additional cost.

Using Code Analysis is fine, but what if it isn’t included in your edition of Visual

Studio, or you need it to run automatically on your CI server? The answer is to use

FxCop.

8.1.2

Set t ing up con t inuous Fx Cop code analysis

As you’ve seen, FxCop has been dressed up nicely as Code Analysis and migrated to

Visual Studio. Fortunately, the FxCop source project didn’t die: it ’s still actively sup-

ported. Even if you don’t have the full-blown Visual Studio, you can still use FxCop;

you just have to download it from http: / / code.msdn.microsoft.com/codeanalysis and

install it. Of course, using it won’t be as friction-free as using Visual Studio Code Anal-

ysis; but with standalone FxCop, you can customize your CI process as you wish. And

using the FxCop GUI (see figure 8.5), you can do basically everything that is possible

with Code Analysis in Visual Studio.

FxCop stores information about the assemblies that it needs to analyze in an

FxCop project. You can recognize a project by its .FxCop extension. The project

is created automatically as you add your .NET assemblies to the FxCop GUI—just

remember to save the FxCop project in the same directory as your .NET solution

Figure 8.5 Standalone FxCop performs the same analysis as Code Analysis in Visual Studio and allows

you to create FxCop project files for use in your CI process.

204

CHAPTER 8

Analyzing t he code

so it can be checked in to your source code repository, where the CI process can

grab it.

Let’s configure the CI server to analyze your code. First, copy the contents of the

standalone FxCop tool to the tools subdirectory. One important file is the FxCop

command-line tool, FxCopCmd.exe.

Next, you need to extend the MSBuild project file with a new code-analysis task.

You can use the MSBuild Exec task with FxCopCmd.exe. In addition, an MSBuild Com-

munity Task automates the usage of command-line FxCop (if you want to know how to

use it, refer to chapter 3).

When you run FxCop as part of your CI process, you must consider two issues.

First, if you’re picky about the rules you’re using, it ’s better to manage them visually in

the FxCop GUI . Second, getting information about rules violations isn’t as straightfor-

ward as it could be.

The command-line tool, FxCopCmd, can take either the list of assemblies to ana-

lyze and the list of rules to be checked or the FxCop project as an input parameter. I f

you aren’t picky about the rules you want to check, the command to check your assem-

bly is pretty clear:

tools\FxCop\FxCopCmd.exe /f:CiDotNet.Calc/bin/Debug/CiDotNet.Calc.dll

➥/r:tools/FxCop/Rules /console

This takes the financial library you created earlier in the book and runs in through

FxCop using all the rules from the tools/FxCop/Rules directory. The /console switch

tells FxCopCmd to output everything to the console. I f you want to write the output to

a file, you need to specify the filename with /o:FxCopReport.xml.

I f you’re choosier about what rules to use and what to leave out, you can use the

/ruleid parameter along with the +/- notation to indicate which rules to include

(put a plus (+) sign in front of them) or ignore (put a minus (–) sign in front of the

rule). For example, to ignore a rule, put a minus before its category and id number

(written Category#Id), like this:

tools\FxCop\FxCopCmd.exe /f:CiDotNet.Calc/bin/Debug/CiDotNet

➥.Calc.dll /r:tools/FxCop/Rules /ruleid:-Microsoft.Design#CA2210

➥/console

This example turns off the rule that says you must assign a strong name for your assem-

bly. You can customize this call as you wish, but doing so takes some work. I t’s a lot eas-

ier to use the FxCop GUI and filter the assemblies visually, as shown in figure 8.6.

Let’s say you’ve configured your FxCop project and saved it as CiDotNet.FxCop.

You can now use it with FxCopCmd.exe:

tools\FxCop\FxCopCmd.exe /project:CiDotNet.FxCop /out:FxCopReport.xml

Unfortunately, the assemblies you want to analyze are hard coded in the FxCop proj-

ect file. Even if you choose to have the relat ive or absolute path to the targets and

you’re using the standard Debug or Release scenario, you’ll end up with one of the

output directories being written into the FxCop project file:

Analyzing ob j ect code w i t h FxCop

205

Figure 8.6

Filtering FxCop rules. I f you need to

follow only some of the FxCop rules,

it’s easier to choose them visually and

use the FxCop project file with

command line than to write a long

FxCopCmd command.

<Target Name="$(ProjectDir)/CiDotNet.Calc/bin/Debug/CiDotNet.Calc.dll"

➥Analyze="True" AnalyzeAllChildren="True" />

One way to resolve this is to have two FxCop project files: one for Debug and one for

Release. I f you want to vary the analysis for both scenarios (not recommended from

our experience, because Release tends to be neglected by developers), it should work

for you. I f not, you have to use a different solution.

MSBuild comes with a possible answer: the Community Tasks we examined in chap-

ter 3 include a FileUpdate task. You can use it to change the assembly directory in the

FxCop project file in a CI scenario, as shown in the following listing.

List ing 8.1

FxCop run from the command line using a manipulated project file

<Project DefaultTargets="Analyze"

xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<UsingTask AssemblyFile=

"tools\MSBuildCommunityTasks\MSBuild.Community.Tasks.dll"

TaskName="MSBuild.Community.Tasks.FileUpdate">

</UsingTask>

<Target Name="Analyze">

<FileUpdate Files="CiDotNet.FxCop"

Regex="bin/Debug"
B Updates

project file
ReplacementText="bin/$(Configuration)" />

<Exec Command="tools\FxCop\FxCopCmd.exe

➥/project:CiDotNet.FxCop /out:FxCopReport.xml" />

</Target>

C Performs

analysis

</Project>

First you import the Community Task to use it to update the paths B according to the

current configuration. You then call FxCopCmd C to perform the analysis.

We generally recommend that you incorporate all the rules provided and then

exclude specific rules that you think aren’t important. Nevertheless, if you’re picky,

you can use our solution.

206

CHAPTER 8

Analyzing t he code

But as you’ll see by start ing the MSBuild script, it ends without any errors or warn-

ings even if there are rule violations in your code. This isn’t acceptable, because you

can bet that if the rule violation doesn’t break the build, no one will bother to obey

the rules. You can’t expect developers to check the FxCop results for a working

build—you have to break the build in order for the rules to be obeyed. Unfortunately,

FxCopCmd doesn’t provide a straightforward way to do this. The ContinueOnError

property in the Exec task reacts only on exceptions during the FxCopCmd run and

not to broken rules. One of the options is to read the XML output from FxCopCmd to

find the violat ions. But there’s an easier way.

FxCopCmd produces an output file only if there’s something to report, such as

broken rules. So, if the file exists, you can safely break the build like this:

<Target Name="Analyze">

<Delete Condition="Exists('FxCopReport.xml')"

Files="FxCopReport.xml">

</Delete>

<Exec Command="tools\FxCop\FxCopCmd.exe /project:CiDotNet.FxCop

➥ /out:FxCopReport.xml"/>

<Error Condition="Exists('FxCopReport.xml')"

Text="FxCop found some broken rules!" />

</Target>

You’re now fully prepared to integrate your code analysis with your CI server of

choice. Let’s find out how to do this.

8.1.3

I n t egrat ing Fx Cop w i t h CI servers

As you know from previous chapters, CCNet takes XML files and can show them on the

Dashboard page. Fortunately, it comes with an XSD file to perform a transformation to

HTML format. Make sure you have this line in your dashboard.config file to include

the FxCop XSD file, and that you’ve enabled FxCop on the CCNet Dashboard Admin-

istrator screen:

<xslReportBuildPlugin description="FxCop Report"

actionName="FxCopBuildReport"

xslFileName="xsl\fxcop-report_1_36.xsl" />

You also need to merge the FxCopCmd output report file into the Dashboard:

<publishers>

<merge>

<files>

<file>FxCopReport.xml</file>

</files>

</merge>

<xmllogger />

</publishers>

After you check everything into your source code repository, it should work fine. You

can see the FxCop report, as shown in figure 8.7.

Analyzing ob j ect code w i t h FxCop

207

Figure 8.7 FxCop analysis report on the CCNet Dashboard page. The output from FxCopCmd is

formatted using the XSD file supplied by CCNet to provide an easily readable report.

Integration with TeamCity requires an HTML file to merge with the TeamCity web

page. FxCopCmd can produce an HTML file instead of the standard XML file. You

only have to modify the call:

tools\FxCop\FxCopCmd.exe /project:CiDotNet.FxCop /out:FxCopReport.html

➥/axsl

The axsl parameter tells FxCopCmd to apply the XSL style sheet and produce HTML

output. When that’s finished, you’re ready to add a new tab to the TeamCity website.

Remember from earlier in the book that you have to define a new artifact FxCop-

Report.html and a new tab server configuration. You’ll end up with this page being

part of the TeamCity build report (see figure 8.8).

I f you’re using TFS 2010 as your CI server, you’re probably using the built-in code-

analysis tools. You can turn on Code Analysis even without the Visual Studio 2010 Pre-

mium Edition. I t’s just a matter of adding a line to the project file:

<RunCodeAnalysis>true</RunCodeAnalysis>

You can also optionally specify the rule set to use:

<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>

You can’t benefit from Code Analysis right away on your development machine, but

TFS 2010 will snap in and perform the check for you when it performs a build. Fig-

ure 8.9 shows the TFS build report.

208

CHAPTER 8

Analyzing t he code

Figure 8.8

An FxCop analysis report in TeamCity.

Figure 8.9 The TFS build report with Code Analysis output on the Build summary page. I f you want to

break the build on a given violation check, change the action to Error.

FxCop does a great job of checking the conformance of your assemblies to the

Microsoft .NET Framework Design Guidelines. Because it checks assemblies and not

actual code, it has some limitations. What if you want to check everything? Here

comes StyleCop.

Analyzing C# w i t h St y leCop

209

8.2

8.2.1

Analyzing C# w it h St y leCop

StyleCop is a static code-analysis tool that works with the actual C# source code, rather

than assemblies. I t checks for things like class, variable, and namespace naming; main-

tainability, readability, spacing, documentation, and ordering. Unfortunately, if you’re

a VB.NET or F# developer, you’re out of luck, because StyleCop supports only C# .

StyleCop is a useful and complementary tool to FxCop. Together they’ll guard

your code cleanliness like watchdogs. But beware! You may get into a clinch with those

two tools. I f you run two conflicting rules, one on your C# code and one on the inter-

mediate language it produces, the issue will be difficult to fix. Keeping this in mind,

let’s make StyleCop work.

Using St y leCop

StyleCop is a separate product that you need to download on its own (http: / /

code.msdn.microsoft.com/sourceanalysis). I t ’s installed as a Visual Studio plug-in.

Don’t forget to install the MSBuild files; you’ll use them to work with CCNet and

TeamCity.

After installation, StyleCop is available from the Tools menu in Visual Studio. Let’s

start with the settings. Choose StyleCop Sett ings from the project’s context menu in

Solution Explorer. A window opens, like the one shown in figure 8.10.

Figure 8.10

You can choose which StyleCop rules to enforce on your project.

http://code.msdn.microsoft.com/sourceanalysis

X

210

CHAPTER 8

Analyzing t he code

You can turn the rules to be used on and off by selecting the check boxes. When

you’re finished, look inside the project folder. You’ll find a new file: Settings.Style-

Cop. I t’ll control how StyleCop performs on your local Visual Studio project or later

on the server.

To perform the analysis, right-click the project in Solution Explorer, and click { }

Run StyleCop. I t may take a while to analyze your project, especially if it contains lots

of files. When it’s finished, you’ll get list of errors (see figure 8.11).

Unfortunately, StyleCop isn’t integrated with Visual Studio the way Code Analysis

is, so you can’t suppress rules from the context menu in the Error List window. You

have to disable the rule you don’t want to obey, using the dialog box shown in fig-

ure 8.10. But the integration with your CI process should be even simpler than the

FxCop integrat ion, as you’ll see in the next section.

8.2.2

Con t inuous St y leCop analysis

I f you don’t mind editing your project file by hand, you can get StyleCop to work with

TFS 2010 without any problem. Just as with the other scenarios, take the StyleCop

components, make a folder in your project called tools/StyleCop, and check it in to

your source control repository. The files you need are in the StyleCop installation

directory (probably % ProgramFiles% \Microsoft StyleCop) and in the MSBuild targets

directory (probably % ProgramFiles% \MSBuild\Microsoft\StyleCop\ plus version num-

ber). I f the size of the repository is an issue, leave the documentation files. Go to the

build’s project file, and find this line:

<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

Just after it, add a new line:

<Import Project="..\tools\StyleCop\Microsoft.StyleCop.targets" />

This line tells the compiler to import the Microsoft.StyleCop.targets project and

run the StyleCop target defined there. We encourage you to look inside to know

exactly what’s going on.

Figure 8.11

A StyleCop analysis displays its errors in the Visual Studio Error List window.

Analyzing C# w i t h St y leCop

211

Figure 8.12

TFS build report with StyleCop Code Analysis reporting

By default, all StyleCop rule violations are only compiler warnings, but they can easily

break your build if you define a new property in the main property group in your

csproj file:

<StyleCopTreatErrorsAsWarnings>false</StyleCopTreatErrorsAsWarnings>

That’s everything you have to do to run StyleCop analysis in the TFS 2010 context.

Check everything in, and wait for your CI process to start. The project build report

should look like figure 8.12.

I f you’re using MSBuild as your build platform, you can use the StyleCopTask that

comes with StyleCop. The usage isn’t complicated.

List ing 8.2

MSBuild project for StyleCop analysis

<Project DefaultTargets="Analyze;"

xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<UsingTask AssemblyFile="tools\StyleCop\Microsoft.StyleCop.dll"

TaskName="StyleCopTask"/>

<Target Name="Analyze">

<CreateItem Include="***.cs">

<Output TaskParameter="Include" ItemName="StyleCopFiles"/>

</CreateItem>

<StyleCopTask

ProjectFullPath="$(MSBuildProjectFile)"

SourceFiles="@(StyleCopFiles)"

ForceFullAnalysis="true"

TreatErrorsAsWarnings="false"

OutputFile="StyleCopReport.xml"

CacheResults="true" />

</Target>

</Project>

212

CHAPTER 8

Analyzing t he code

Figure 8.13

The default StyleCop report in CCNet

To use the task that comes with StyleCop, you first have to import it. I t takes the list of

.cs files as input and produces a StyleCopReport.xml file.

Unfortunately, CCNet doesn’t come with a good XSL transformer for StyleCop.

A better StyleCopReport.xsl file is provided with this book; copy it to the dashboard/

xsl folder on the CCNet server, and add this line to the <buildPlugins> tag in the

d= Dashboard.config file:

<xslReportBuildPlugin description="StyleCop Report"

actionName="StyleCopBuildReport" xslFileName="xsl\StyleCopReport.xsl" />

After you restart the Dashboard, you’ll see a new menu option that should contain the

formatted StyleCop page (see figure 8.13).

You need a ready-made HTML file to combine the analysis report with TeamCity.

You have to transform the XML to HTML using the XSL. The best way to do it is in the

MSBuild script. As usual, MSBuild Community Tasks can help. The following listing

shows an MSBuild script.

List ing 8.3

MSBuild StyleCop script for TeamCity

<Project DefaultTargets="Analyze;"

xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<UsingTask AssemblyFile=

"tools\MSBuildCommunityTasks\MSBuild.Community.Tasks.dll"

TaskName="MSBuild.Community.Tasks.Xslt" />

<UsingTask AssemblyFile=

"tools\MSBuildCommunityTasks\MSBuild.Community.Tasks.dll"

TaskName="MSBuild.Community.Tasks.XmlRead" />

<UsingTask AssemblyFile=

Cust om FxCop and St y leCop ru les

"tools\StyleCop\Microsoft.StyleCop.dll"

TaskName="StyleCopTask"/>

<Target Name="Analyze">

<CreateItem Include="CiDotNet.Calc***.cs">

<Output TaskParameter="Include" ItemName="StyleCopFiles"/>

</CreateItem>

<StyleCopTask

ProjectFullPath="$(MSBuildProjectFile)"

SourceFiles="@(StyleCopFiles)"

ForceFullAnalysis="true"

TreatErrorsAsWarnings="true"

OutputFile="StyleCopReport.xml"

CacheResults="true" />

213

<Xslt Inputs="StyleCopReport.xml"

RootTag="StyleCopViolations"

Xsl="tools\StyleCop\StyleCopReport.xsl"

Output="StyleCopReport.html" />

B

Transforms
StyleCop
report to HTML

<XmlRead XPath="count(//Violation)"

XmlFileName="StyleCopReport.xml">

<Output TaskParameter="Value"

PropertyName="StyleCopViolations" />

C Counts

violations

</XmlRead>

<Error Condition="$(StyleCopViolations) > 0"

Text="StyleCop found some broken rules!" />

D

Conditionally
fails build

</Target>

</Project>

The first part of the script works like previous scripts. The script then does three new

things at the end. I t doesn’t fail the build in StyleCopTasks, but goes further. I t per-

forms an XSLT transformation B and counts the violat ions C using the XmlRead task

and some XPath query language. Finally, it fails the build D if the number of viola-

tions is greater than zero.

To show the StyleCop build report in TeamCity, you have to do the same thing as

in FxCop: add the artifact file, and a new tab appears in the build report page (see

figure 8.14).

You’ve used both the FxCop and StyleCop static code-analysis tools with the rules

provided with them. Most of those rules are well thought out and worth following. But

what if you want your own set of rules? Can you write custom FxCop and StyleCop

rules? Of course. The next section will show you how to do it .

8.3

Cust om FxCop and St y leCop ru les

Both FxCop and StyleCop are fairly extensible. I f you aren’t satisfied with the rules

they provide, you can always define your own set of rules. When you’re planning your

rules for FxCop and StyleCop, keep in mind the small but substantial difference

between them. Although both are used for static code analysis, FxCop works on com-

piled assemblies, whereas StyleCop works on the source code. Some things may be

checked for all .NET languages and some only for C# . Let’s define some rules.

214

8.3.1

CHAPTER 8

Figure 8.14

The StyleCop report in TeamCity

Developing a cust om Fx Cop ru le

Analyzing t he code

As an example of a custom FxCop rule, let’s say you want to visually distinguish all the

private methods in your classes. You’ve decided to name them all using a My prefix.

(This isn’t the time or place to deliberate the usefulness of this rule—this is the time

to implement a custom FxCop rule to enforce it.) The easiest way to extend FxCop is

to extend the Microsoft.FxCop.Sdk.BaseIntrospectionRule class and override the

Check() method. Copy the FxCopSdk.dll and Microsoft.Cci.dll files to the lib folder in

a new project named CiDotNet.FxCop, and add a reference to the project that points

to the two DLLs. Then look at the following listing for implementation details.

List ing 8 4

FxCop rule: private methods should start with My

namespace CiDotNet.FxCop.NamingRules

{

using System;

using Microsoft.FxCop.Sdk;

public class PrivateMethodsShouldStartWithMy

: BaseIntrospectionRule

B I nherits base
rule class

{

public PrivateMethodsShouldStartWithMy():

base("PrivateMethodsShouldStartWithMy",

"CiDotNet.FxCop.NamingRules",

typeof(PrivateMethodsShouldStartWithMy).Assembly){}

Cust om FxCop and St y leCop ru les

215

public override ProblemCollection Check(Member member)

{

Method Method;

string Name;

Method = member as Method;

if ((Method != null) && (Method.IsPrivate))

{

if (!RuleUtilities.IsEventHandling(Method))

{

Name = Method.Name.Name;

if (!Name.StartsWith("My",StringComparison.Ordinal))

C

Performs
rule check

{
this.Problems.Add(new

Problem(this.GetResolution(Name)));

D

Submits rule
violation

}

}

}

return this.Problems;

}

}

}

BaseIntrospectionRule provides B a suitable extension point for FxCop rules. All

you need to do is override the Check() method C that works on the class members. I t’s

called every time the member is found during the analysis. The Check() method reads

the method name and, if it ’s private, conducts the actual check. I f the method name

doesn’t conform to the My prefix rule, a new problem indicator is added D.

To fully prepare the new CiDotNet.FxCop assembly to work as an FxCop rule, you

have to define an XML definition file as shown next.

List ing 8.5

XML definition for a custom FxCop rule

<?xml version="1.0" encoding="utf-8" ?>

<Rules FriendlyName="CiDotNet Naming Rules">

<Rule TypeName="PrivateMethodsShouldStartWithMy"

Category="CiDotNet.Naming" CheckId="CA3010">

B

Defines
new rule

<Name>Private methods should start with My.</Name>

<Description>Private methods should start with

➥My</Description>

<Url></Url>

<Resolution>Prefix the method '{0}' with 'My'.</Resolution>

<MessageLevel Certainty="95">Warning</MessageLevel>

<FixCategories>Breaking</FixCategories>

<Email></Email>

<Owner></Owner>

</Rule>

</Rules>

The Rule tag B is the most important line in the definition file. I t tells the

FxCop framework what type the new rule has and in what category it appears, and

it defines the code by which the rule will be called. The rest is a descript ion in

216

CHAPTER 8

Analyzing t he code

which you should provide as much information as needed to identify the rule and

the violation.

Set the XML definition file as an embedded resource in the project. Compile every-

thing, and copy the output assembly to the FxCop rules folder in the project you want

to check. We’ll deal with build-process integration in a moment; first, let’s define a

custom StyleCop rule.

8.3.2

Developing a cust om St y leCop ru le

StyleCop works on a different level than FxCop. I t can do some of the checks that

FxCop is unable to do because the translation process erases or changes some of the

source code information. For example, the length of each line in the source file

doesn’t carry over to the compiled assembly. The information will be lost, but some

developers like to have a maximum line length for their source files. You can easily

check this using StyleCop.

Prepare a new project named CiDotNet.StyleCop. Copy the Microsoft.StyleCop.dll

and Microsoft.StyleCop.CSharp.dll files to the lib directory of the project. Add a refer-

ence for each DLL to the project. Then examine the following listing for implementa-

tion details.

List ing 8.6

StyleCop rule: line length must not exceed a set number of characters

namespace CiDotNet.StyleCop.ReadabilityRules

{

using Microsoft.StyleCop;

using Microsoft.StyleCop.CSharp;
B C# parser

attribute
[SourceAnalyzer(typeof(CsParser))]

public class LineLengthMussNotExceedNumberCharacters

: SourceAnalyzer

C Defines analysis

extension point

{

private const int MAXLINELENGTH = 60;

public override void AnalyzeDocument(CodeDocument document)

{

Param.RequireNotNull(document, "document");

CsDocument CsDocument = (CsDocument)document;

// TODO: check if generated code should be checked

if (CsDocument.RootElement != null &&

!CsDocument.RootElement.Generated)

{

foreach (CsToken TokenLoop in CsDocument.Tokens)

{

if (TokenLoop.CsTokenType == CsTokenType.EndOfLine)

{

if (TokenLoop.Location.StartPoint.IndexOnLine - 1

> MAXLINELENGTH)

{

this.AddViolation(CsDocument.RootElement,

TokenLoop.Location.StartPoint.LineNumber,

Cust om FxCop and St y leCop ru les

217

"LineLengthMussNotExceedNumberCharacters",

MAXLINELENGTH);

}

}

}

}

}

}

}

}

}

Because the class contains a StyleCop rule, it needs to be decorated with [Source-

Analyzer(typeof(CsParser))] B. The easiest way to extend StyleCop is to overload

the SourceAnalyzer class C. I t provides all the basic functionality, including an

AnalyzeDocument() method that you can override. Inside, you’re working on code

tokens: parts of a parsed C# source file. You iterate through them all in search of a new-

line token. I f the new line occurs too late in the line, after the MAXLINELENGTH limit,

you add a violation.

Similar to FxCop, you need an XML definition file for the custom StyleCop rule.

List ing 8.7

StyleCop XML definition file for a custom rule

<?xml version="1.0" encoding="utf-8" ?>

<SourceAnalyzer Name="CiDotNet Rules">

<Description>CiDotNet Rules extensions</Description>

<Rules>

<RuleGroup Name="CiDotNet Readability Rules">

<Rule Name="LineLengthMussNotExceedNumberCharacters"

CheckId="EX1001">

<Context>Line length</Context>

<Description>Line schould not be longer than a

➥given number of characters.</Description>

</Rule>

</RuleGroup>

</Rules>

The Rule tag defines a new rule: it specifies the Rule Name and CheckId. The rules are

gathered into groups, which correspond with the StyleCop settings tree in Visual Stu-

dio. The XML definition file should be an embedded resource.

Your StyleCop rule is ready. Let’s try to integrate it, together with the custom

FxCop rule, into your CI process.

8.3.3

I ncor porat ing cust om r u les in t o t he CI pr ocess

I f you’re using the FxCop GUI for code analysis, as we described earlier in this chapter,

you’re one step away from incorporating your custom FxCop rule into the CI process.

Copy the CiDotNet.FxCop.dll file into the tools/FxCop/Rules directory, open the

FxCop project file in the FxCop GUI , and then switch to the Rules tab and make sure

your new rule is selected (see figure 8.15).

218

CHAPTER 8

Analyzing t he code

Figure 8.15

Adding a custom FxCop rule to the project

in the FxCop GUI

Save the project. You can test it in the FxCop GUI ; but, more important, from now on,

if you point to the FxCop project in your MSBuild file as shown in the following code

snippet, the rule will be checked:

<Exec Command="tools\FxCop\FxCopCmd.exe /project:CiDotNet.FxCop

/out:FxCopReport.xml"/>

When it comes to StyleCop, the trick is to get the rule description into the StyleCop

settings file Settings.StyleCop. The easiest way is, as you may have suspected, through

the StyleCop GUI . Copy the assembly with the new rule into the StyleCop installation

directory (which is something like C:\Program Files\Microsoft StyleCop 4.x.x.x). Go to

Visual Studio, open the StyleCop Project Settings window (see figure 8.16), and make

sure your new rule is selected.

I f you’re using the configuration we’ve proposed in this chapter, you only have to

make sure the MSBuild task is using the correct Sett ings.StyleCop file, and you’re good

to go. The new StyleCop rule will be checked.

8.4

8.4.1

Ex t ending code analysis

I f you feel that your code isn’t getting enough attention from FxCop and StyleCop,

you can always extend your analysis repertoire. One of the best static code-analysis

tools is NDepend. TeamCity also provides another kind of code analyzer that can

detect code duplicat ions. Let’s look at these two tools.

St at ic analysis w i t h NDepend

NDepend (www.ndepend.com) is a powerful static code-analysis tool that comes with a

free noncommercial version. The professional commercial license costs about $410

and is more customizable than the free version. I f you’re interested in the large num-

ber of different code metrics that are built in to NDepend, it should be a tool for you.

You can write your own metrics using the built-in Code Query Language (CQL). I t’s

time to run NDepend and integrate it with the CI process.

Ex t ending code analysis

219

Figure 8.16

StyleCop Visual Studio project settings with the new custom rule

NDepend completely integrates itself with any non-Express edition of Visual Studio

from version from 2005 to 2010. After downloading the tool and installing the add-in

in Visual Studio (you can do so from VisualNDepend.exe), you can attach the NDe-

pend project to your current solution by using the new NDepend menu item (see fig-

ure 8.17).

After you attach the NDepend project, the new plug-in will perform the default

analysis and show it to you. You’ll get immediate access to all the CQL rules and analy-

sis diagrams. You can configure the project by choosing Edit > Project Propert ies. Fig-

ure 8.18 shows the analysis results and NDepend project properties.

Leave all the options set to their defaults, and let’s get right into the CI integration.

You’ll use MSBuild to automate the NDepend analysis. You have two options for inte-

gration: you can use the provided NDependTask or run the console version of NDe-

pend using the Exec task. For now, go the command-line way. The NDepend analysis

target in MSBuild may look like this:

<Target Name="NDependAnalyze">

<Exec Command="tools\NDepend\NDepend.Console.exe

$(MSBuildProjectDirectory)\CiDotNet.NDepend.xml"/>

</Target>

220

CHAPTER 8

Analyzing t he code

Figure 8.17 Attaching the NDepend project to a solution. Afterward, all the analysis and

configuration possibilities of NDepend are available in Visual Studio.

Figure 8.18 NDepend completely integrates with Visual Studio and comes with a handy Visual NDepend

tool in which you can configure the project you’ll use on the CI server.

Ex t ending code analysis

221

I f you run the MSBuild project using this task, you’ll get a detailed NDepend report in

the NDependOut folder. Let’s try to integrate it with TeamCity. You’ll integrate the

NDepend report only for pure informational purposes. You haven’t yet defined any

build-breaking rules in the NDepend project file. The perfect place to show the analy-

sis report is on the project page, not on the build page. You’re getting the HTML

report, so you’re ready to integrate it with TeamCity. First, you have to define new arti-

facts on the General Settings page (see section 5.3.1 to learn how to do this). You can

go with NDependOut/*.* => NDependOut.

NOTE Some rules are more important than others. You may consider some

rules so important that they must break the build so the CI process will stop

and inform the team that something is wrong. To define the build-breaking

rule in NDepend, you have to decorate it with the Critical Rule attribute. To

do so, go to the CQL Query Editor and click the button.

TeamCity takes all the files from the NDependOut folder and copies them to the same-

named NDependOut folder as artifacts. Remember that each and every build will con-

tain the data; this can result in a lot of files if you do the analysis continuously. Consider

choosing only the files you need or running NDepend in the nightly build.

In TeamCity, you can add custom reports at the server level to make them visible

for the build in any project, or you can do it at the project level where they’re visi-

ble only in a particular project. Figure 8.19 shows the second approach. To reach

this dialog box, select Administration on the main TeamCity page, edit the project

properties, and add a new tab on the Report Tabs page (see section 5.3.1 to learn

how to do this).

Figure 8.19 Adding a new project-level tab in TeamCity. I t contains the NDepend report

from the last successful build.

222

CHAPTER 8

Analyzing t he code

Figure 8.20

A project-level NDepend report in TeamCity

From now on, the project page will always include the last NDepend report from the

last successful build (see figure 8.20).

NDepend integrates just as easily with other CI servers like CCNet. I f you’re using

this server, you’ll have to merge the results of the analysis with the Dashboard using

the provided XSL transformation file.

Extending the NDepend rules is easy due to the handy CQL. You don’t have to

write any NDepend extensions to enforce your own rules; but if you want to, you can

do this in the commercial version of NDepend. One of the example CQL rules says

that the number of lines in the method shouldn’t be greater than 30. The query that

checks this rule looks like this:

WARN IF Count > 0 IN SELECT TOP 10 METHODS WHERE NbLinesOfCode > 30 ORDER

➥BY NbLinesOfCode DESC

I f you don’t like the number, you can easily change it. Open Visual NDepend, and

choose Reset Views to Work with CQL Language. In the CQL list, choose Methods Too

Big, edit CQL, and change NbLinesOfCode > 30 to something bigger. That’s it!

I f you’re using TeamCity, you can do one more useful code analysis: you can check

where the code is duplicated in your projects.

Ex t ending code analysis

223

8.4.2

Analyzing code dupl icat ion w i t h Team Cit y

TeamCity includes the JetBrains Duplicates Finder for .NET. I ts purpose is to find the

places in your code where your team has duplicated the code. These places are obvi-

ous candidates for refactoring. Having too much duplicated code in the project can

be dangerous: a bug in one piece of code may exist somewhere else in the code base,

but you can’t detect it if you don’t check for code duplication.

The Duplicates Finder is a separate build runner in TeamCity. You can reuse the

existing project and define an additional build configuration to quickly get TeamCity

to analyze your code for duplications.

To do this, you can reuse some of an existing project’s settings. Go to Administra-

tion, and, in the project, choose Create Build Configurat ion. Name the build configu-

ration—for example, CiDotNet Duplication Finder. You can reuse the exist ing version

control system configuration you created earlier. In the build-runner configuration,

choose Duplicates Finder (.NET). I f you choose CI Trigger for the build configuration,

you’ll always get the duplication analysis. Figure 8.21 shows an example.

Finding similar code fragments is one of the TeamCity features we recommend

you use in a continuous manner. The more you reuse your code, the better. Code

duplications aren’t desirable. Analyze, detect, and get rid of them!

Figure 8.21

TeamCity can report on duplicate code found in a project.

224

8.5

Sum m ary

CHAPTER 8

Analyzing t he code

From experience, we know that projects tend to grow. Developers have a tendency to

add new lines of code to their projects. They sometimes even change old lines to fix

something. Some projects exist for many years and are modified by many developers.

They usually want to know what’s going on in the project. But when they change the

code, they add to the project’s growth.

But what if you’re handed a project that looks like a big ball of mud? One class may

have been developed with Cobol influence and look like functional programming.

Some lines may be 1,000 characters long; or a previous developer may have used one-

character variable names. I t’s a pain to work with smelly code. The only way out is to

enforce some rules. Many software shops have written coding guidelines, but having

rules doesn’t mean they’ll be obeyed. Developers are human—they’re working under

time pressure, and sometimes they neglect or don’t even understand the rules. Only if

the coding rules are enforced will they be obeyed. Keep in mind that you should

adjust the number of rules you want to obey to the project you’re working on. FxCop

and StyleCop offer hundreds of rules, and some may be more important to you than

others (see Krzysztof Cwalina’s and Brad Abrams’ book Framework Design Guidelines for

more on that topic).

There’s nothing better than static code analysis to check the rules. Tools like the

ones you’ve used in this chapter—FxCop, StyleCop, NDepend, and Team City’s Dupli-

cates Finder—are great guards against bad coding habits. Static code analysis as part

of your CI process will effectively fight any smell in the code. You can even write your

own rules, to guard yourself against that violent psychopath who may work on the

code next.

I t ’s especially important to have clean code if you’re moving toward the next part

of our CI journey: code documentation. As we’ve gone through the chapter, you’ve

probably seen StyleCop rule violations that tell you parts of the code aren’t docu-

mented. I t’s t ime to obey this rule, too, as you’ll find out in the next chapter.

E

Part 3

Smooth and polish it

very business has room for improvement. Skyscrapers can be taller, cars

can be faster—even grass can be greener. CI isn’t any different. There’s always

room to do it better—an opportunity for smoothing and polishing.

In the last part of this book (chapters 9 through 12), you’ll squeeze even

more from the CI process. You’ll extend it with automatically documentation

generation, using the .NET XML documentation feature to build readable tech-

nical documentation right from the source code. We’ll continue the discus-

sion with deployment and delivery techniques in CI . You’ll learn how to sleep

well, knowing that your software is always ready to be deployed. We’ll look at

continuous database integrat ion. And in the last chapter, we’ll peek into high-

scale CI setups.

CI can be extended ad absurdum. The key is, as usual, to maintain balance—to

include everything you need and nothing else. You shouldn’t try to pack every-

thing into the CI process: remember that you need the build feedback as soon as

possible. The entire CI process should take less than 10 minutes, so choose wisely

what you include. Leave the rest for regular nightly or weekly builds. In this sec-

tion of the book, we’ll help you choose.

After reading this part, you’ll be able to produce nice-looking technical doc-

umentation out of the comments in your code during the periodic CI build.

You’ll have enough know-how to automate the software deployment in various

scenarios. You’ll know how to bind CI with database management and how to

scale CI .

I f you want to make your CI process shine, keep reading: we’ll teach you how

to polish it!

Generating
documentation

Th is chapt er covers
■

■

Using XML documentation tags to comment

code

Creating rich technical documentation with

Sandcastle

Every developer knows another developer who doesn’t like to write documenta-

tion. Most of them see this fellow developer every day morning in the mirror; some

see the other developer a litt le later, in the office. Even if you’re in the second

group, you probably wouldn’t mind a litt le help on the documentation side, right?

There’s no magical way to produce documentation. I t has to be written. But you

can do this the smart way. How about documenting your code inside your source

files and generating the documentation from there? You can do so by adding spe-

cial XML comments to the code. The specially formatted tags, which you’ll learn to

use in this chapter, are extracted during the build to a separate XML file. An exter-

nal tool called Sandcastle can take this file and transform it into nice-looking techni-

cal documentation. Figure 9.1 illustrates the process.

In this chapter, we’ll look at how to document your code using XML

notation. To do this, you’ll use Sandcastle to generate an HTML and Compiled

227

228

CHAPTER 9

Generat ing docum ent at ion

Figure 9.1 Generating documentation: from source code to XML, and finally to technical

documentation

HTML Help (CHM) format documentation. Then you’ll integrate everything into

your CI process.

9.1

XML docum ent at ion

A normal comment in C# looks like this

// This is

// comment.

or like this

/* This is:

Comment */

There is a third kind of comment:

/// This is

/// comment.

This type of comment is threaded specially by the compiler. I t can be extracted to a

particular kind of XML file that can be used for two main purposes:

■

■

As a source for any kind of documentation formatting

By Visual Studio in IntelliSense highlighting

We’re obviously interested in the first purpose, because we want to generate nicely

formatted documentation during the CI process. But let’s not forget about the

IntelliSense side effect, shown in figure 9.2, which you’ll get when you’re finished.

I f you’re using Visual Basic, you get the same functionality with the ''' comment.

Let’s examine the commenting techniques you can use.

9.1.1

Com m on XML docum en t at ion t ags

We’ll show you the most common XML tags used for XML documentation. For the

source code, you’ll use the financial library project. I t ’s a perfect target for documen-

tation, because it’s used across multiple projects as the central point for lease and

loan calculations.

Let’s use the Finance class from the CiDotNet.Calc.Math namespace (it resides in

CiDotNet.Calc). The XML tag you’ll use the most is shown in the following list ing.

XML docum ent at ion

229

Figure 9.2

The Visual Studio IntelliSense mechanism is based on XML documentation.

List ing 9.1

Summary XML comment tag in action

namespace CiDotNet.Calc.Math

{

/// <summary>

/// Finance calculation class performs

➥lease and loan calculations.

/// </summary>

public class Finance

{

B Defines class

summary
comment

/// <summary>

/// Payment mode

/// </summary>

C Defines enum
summary
comment

public enum Mode

{

/// <summary>

/// Begin mode (in advance) is typical for leasing

/// </summary>

BeginMode = 1,

/// <summary>

/// End mode (in arrears) is typical for loans and mortgages

}

/// </summary>

EndMode = 0
Class continues

here

You can use the <summary> tag for various parts of your code: classes B, properties,

methods, enumerators C, fields, constants, delegates, and so on.

I f you want to comment a method or delegate in addition to using <summary>, you

can use the <param> and <returns> tags, as shown here.

List ing 9.2

Commenting methods with XML comments

/// <summary>

/// Calculates the present value of an amount of

➥money received in the future at a given interest rate..

/// </summary>

230

CHAPTER 9

Generat ing docum ent at ion

/// <param name="compoundPeriods">Compound periods</param>

/// <param name="periodicInterestRate">Periodic interest rate</param>

/// <returns>SPPV</returns>

private static double CalculateSPPV(double compoundPeriods,

➥double periodicInterestRate)

{

return System.Math.Pow(1.0 + (periodicInterestRate / 100),

}

➥ -compoundPeriods);

The <param> tag requires a name attribute, which links the description with the param-

eter name. The <returns> tag defines the description for the return parameter.

Some methods may throw an exception. I t’s a good habit to document the possible

exceptions using the <exception> tag. Doing so makes it easier for someone using

this method to track down possible problems. The following listing shows an example

of the <exception> tag.

List ing 9.3

Describing an exception with the cref attribute

/// <summary>

/// Gets the compound periods.

/// </summary>

/// <param name="duration">The duration.</param>

/// <param name="ppy">The ppy.</param>

/// <returns></returns>

/// <exception cref="CalcArgumentException">

➥if <paramref name="duration"/> or

➥<paramref name="ppy"/> < 1.</exception>
public static double GetCompoundPeriods(int duration, int ppy)

{

if (duration < 1)

throw new CalcArgumentException();

if (ppy < 1)

throw new CalcArgumentException();

return (double)((ppy * duration) / 12);

}

The description of the exception uses the cref attribute to create a link in the docu-

mentation to CalcArgumentException. You can also use cref attributes in other parts

of your documentation. In addition, you provide some information about when the

exception will be thrown. Using a <paramref> tag with a name attribute creates a link

in the documentation to a given parameter.

The next commonly used XML documentation tag is <remarks>. You can apply it

to classes, methods, properties, and so on. This tag usually contains additional data

that’s important for the use of a given element.

Other useful tags include <example>, which is used for usage examples; and

<value>, which describes a property value. Finally, the <see> tag creates a link from

some text to another XML comment. The following listing contains examples of

these tags.

XML docum ent at ion

231

List ing 9.4

Using <remarks>, <example>, and <see>

/// <summary>

/// Calculates leasing or credit rate

/// </summary>

/// <param name="periods">for how long do you want

➥to carry the burden of loan</param>

/// <param name="ppy">periods per year

➥(for example 12 for monthly payments)</param>

/// <param name="interestRate">how much will the bank

➥charge you (interest)</param>

/// <param name="presentValue">how much money do you need</param>

/// <param name="finalValue">will you be paying something

➥after the payoff period (especially for leasing)</param>

/// <param name="mode">how the bank calculates the interest

➥income <see cref="Mode"/></param>

/// <returns>rate</returns>

/// <example>

/// CiDotNet.Calc.Math.Finance.CalculateRate(

B

References
another element

➥36, 12, 7.5, 30000, 500, Calc.Math.Finance.Mode.BeginMode)

/// </example>

/// <remarks>

/// Implements the so-called HP method.

C

Gives
example

/// </remarks>

public static double CalculateRate(

➥int periods, int ppy, double interestRate,

➥double presentValue, double finalValue, Mode mode)
{

D

Defines additional
remarks

int m = (int)mode;

double compoundPeriods = GetCompoundPeriods(periods, ppy);

double periodicInterestRate = GetPeriodicInterestRate(interestRate, ppy);

return -(

(finalValue * CalculateSPPV(compoundPeriods,

➥periodicInterestRate) - presentValue)

/

((1.0 + ((periodicInterestRate * m) / 100)) *

➥CalculateUSPV(compoundPeriods, periodicInterestRate))

);

}

The <see> tag B creates a link to the Mode enumerator. The examples at C and D
give a litt le more information about the commented code. They contain simple text,

but you can customize the documentation by formatting the text inside the elements.

Let’s look at how to do this.

9.1.2

Form at t ing t ex t in XML com m en t s

I f you think the XML comments aren’t readable to a normal human being, you aren’t

alone. XML tagging doesn’t make the comments people-friendly. Fortunately, tools are

available to create comments that are easier to read. One of them is a Visual Studio

plug-in called GhostDoc (http: / / submain.com/GhostDoc/). You press Shift-Ctrl-D,

and it reads the names of classes, methods, and parameters and automatically creates

or updates the XML comments. Try it: it ’s free and worth using, especially if you go a

232

CHAPTER 9

Generat ing docum ent at ion

level higher and format the text inside the comments. But keep in mind that with

great power comes great responsibility: it ’s easy to overuse GhostDoc. You should treat

the generated comments with caution. Most of them need to be edited.

For example, to format part of the text in an XML comment as code, you can use

<c> (inline) and <code> (mult iline), as shown here (this list ing extends list ing 9.4.).

List ing 9.5

Highlighting code portions in comments

/// <example>

/// Let's say you want to lease a car for 36 moths (<c>periods</c>)

/// that costs 30000 $ (<c>presentValue</c>)

/// by 7.5 interest (<c>interestRate</c>)

/// and 500 $ residual value (<c>finalValue</c>).

/// <code>CiDotNet.Calc.Math.Finance.CalculateRate(

/// 36,

/// 12,

/// 7.5,

/// 30000,

/// 500,

/// Calc.Math.Finance.Mode.BeginMode)</code>

/// Calculation mode for leasing is

➥(<c>Calc.Math.Finance.Mode.BeginMode</c>)

/// </example>

Both kinds of code element will be nicely formatted in the output document.

You can also introduce lists into your documentation with the <list> tab. Lists can

be bulleted or numbered, or can appear in a table, as shown next.

Listing 9.6 Extended summary with a bulleted list

/// <summary>

/// Finance calculation class performs lease and loan calculations.

///

/// <list type="bullet">

/// <listheader>

/// <term>term</term>

/// <description>description</description>

/// </listheader>

/// <item>

/// <term>SPPV</term>

/// <description>present value of a money amount received

➥in the future at a given interest</description>

/// </item>

/// <item>

/// <term>SPFV</term>

/// <description>value of an amount of money paid in the

➥future at a given interest rate </description>

/// </item>

/// <item>

/// <term>USPV</term>

/// <description>payment required each period to

➥achieve future value</description>

/// </item>

Declares
bulleted list

List header

List item

Sandcast le

233

///

///

///

///

///

///

<item>

<term>USFV</term>

<description>future value of a uniform future payment</description>

</item>

</list>

</summary>

As we mentioned, you can use the <list> tag to create a table, but you’ll quickly reach

the limit of this functionality—it only lets you create a simple table. The other option

is to use the HTML <table> tag, as shown next.

List ing 9.7

Remarks for the payment mode enumerator

///

///

///

///

<summary>

Payment mode

</summary>

<remarks>

///

///

///

<div class="tablediv">

<table>

<tr valign="top">

Contains
HTML-style table

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

///

<th>Term</th>

<th>Description</th>

<th>Example</th>

</tr>

<tr valign="top">

<td>In advance</td>

<td>Begin mode is typical for leasing</td>

<td><c>Calc.Math.Finance.Mode.BeginMode</c></td>

</tr>

<tr valign="top">

<td>In arrears</td>

<td>End mode is typical for loans and mortgages</td>

<td><c>Calc.Math.Finance.Mode.EndMode</c></td>

</tr>

</table>

</div>

</remarks>

As you can see, you can declare HTML-style tables inside the XML documentation.

That’s nice, you say. I t’s a lot of XML code in my source files. IntelliSense is

handy in Visual Studio, but that’s hardly real documentation. But what if we tell

you that you can generate from the XML documentation like that shown in fig-

ure 9.3?

You can create this MSDN-style documentation using Sandcastle.

9.2

Sandcast le

Sandcastle is a set of free tools from Microsoft that you can use to transform XML

documentation into a formatted document. I t contains a bunch of command-line

programs that you can automate to create documentation, but this technique would

take too long to discuss here. There’s a much quicker and more pleasant way: you

can use Sandcastle Help File Builder (SHFB), which is also free. Both are available

234

CHAPTER 9

Generat ing docum ent at ion

Figure 9.3

Readable documentation that’s been transformed from XML documentation

from CodePlex: Sandcastle at www.codeplex.com/Sandcastle and SHFB at http: / /

shfb.codeplex.com/ . Install both on your development machine.

Before you start, make sure Visual Studio is extracting all of your XML documenta-

tion into a single XML file. You can check this XML Documentation File setting in your

project properties (see figure 9.4.).

Figure 9.4 Select the XML Documentation File check box in your project properties to

make Visual Studio extract the XML documentation into a given XML file.

http://shfb.codeplex.com/
http://shfb.codeplex.com/

Sandcast le

235

Visual Studio 2010 is so clever that it makes this change for you as soon you add the

first /// comment to a project (provided you’ve selected the option Tools > Options >

Text Editor > C# > Advanced > Generate XML Documentation Comment for / / /). In

earlier versions, you’ll have to select the option manually.

9.2.1

Bui ld ing w i t h Sandcast le

Start SHFB, which is essentially a GUI for Sandcastle. Using this tool, you’ll create a

project file with all the necessary settings. At the end, you’ll take this file for a ride

with MSBuild.

You want to be able to create documentation even on a machine that doesn’t have

Sandcastle and SHFB installed. So take both installed tools and copy them to the tools

directory in your project folder: put Sandcastle in tools\Sandcastle and SHFB in

tools\SHFB. Remember to put in the tools directory only what’s needed—don’t clutter

the project directory with unnecessary files. What you need depends on what template

you’ll use to format the documentation. You can delete all the readme and help

files—you don’t need them in the repository.

Start SHFB by running tools\SHFB\SandcastleBuilderGUI .exe. Add the compiled

DLL and accompanying XML file to Documentation Sources in Project Explorer.

Specify the obvious project properties, such as FooterText, HeaderText, HelpTitle,

CopyrightText, and so on. Then get to the not-so-obvious but important propert ies

that are important from the CI point of view; see figure 9.5 for details.

Figure 9.5

Customizing the SHFB project file

236

CHAPTER 9

Generat ing docum ent at ion

I f you’re building using the Debug/Release configuration, go to the DLL and XML

properties and replace the configuration name with the $(Configuration) MSBuild

variable. You can use the MSBuild variables because the SHFB project files are in fact

MSBuild scripts. One important project property you have to set is SandcastlePath:

set it to $(MSBuildProjectDirectory)\tools\Sandcastle\. I t ’ll use the MSBuild pre-

defined variable to build an absolute path to the Sandcastle binaries.

You need to set one more property in order for the documentation process to

work on a machine that doesn’t have Sandcastle installed. In Project Properties,

locate UserDefinedProperties, and click the … button. Figure 9.6 shows the dialog

box that opens.

Thanks to the SHFBROOT variable, MSBuild tasks can locate the SHFB installation for

any necessary files.

There’s no way to document the namespace using the XML documentation.

Even if you use the <summary> tag on a namespace, it’ll be ignored by the com-

piler, and it won’t be added to the XML file. You can close this gap by documenting

the namespace in the SHFB GUI . In Project Properties, locate the Namespace Sum-

maries property, and open it. Figure 9.7 shows the dialog box in which you can add

the summaries.

You can browse the other properties, such as HelpFileFormat. By default, you’re

generating an HtmlHelp file. But you can change it to a website if you want to

deploy the documentation to a web server for immediate viewing. And look at the

PresentationStyle property: you can dress up your documentation in various ways.

Visibility lets you choose which filters to use on the documentation elements.

Figure 9.6

Sett ing the SHFBROOT variable in the SHFB user-defined propert ies dialog box

Sandcast le

237

Figure 9.7 Editing summaries on namespaces. To include them in your documentation, you have to

use SHFB.

When you’re ready, click the Build the Help File icon on the SHFB toolbar to make

a test run. SHFB will switch to the Build Output window and create the documenta-

tion. You can look in the Help directory for a Documentation.chm file (figure 9.8

shows the file’s content).

You now have nice-looking HtmlHelp documentation. You’re ready to make docu-

mentation creation part of your CI process.

9.2.2

Sandcast le in CI

Before you add Sandcastle documentation generation to the CI server, you have to

automate it. This task is easy. As we said earlier, an SHFB project file is in fact an

MSBuild script. All you have to do to create documentation is add a task like this to

build.proj:

<Target Name="Document" >

<MSBuild Projects="CiDotNet.shfbproj"/>

</Target>

That’s it. I f you hook up the new target to run during an automated build and check

everything in to the repository, your build server should snap right in. You’ll get the

CHM file on the server. Now you need to do something useful with it: send it over

email, copy it to a location where it’ll be available for everyone, or add it to the deploy-

ment package (we’ll deal with deployment in the next chapter).

238

CHAPTER 9

Generat ing docum ent at ion

Figure 9.8

A CHM file created from XML documentation using Sandcastle

But here, let’s do something different. How about generating the documentation and

integrat ing the results with the TeamCity CI server? Change the type of generated doc-

umentation to Website (the HelpFileFormat property in SHFB Project Propert ies).

Getting the documentation to be visible on the build-information page in Team-

City is straightforward. Go to your TeamCity project’s General Settings, and set the

Artifacts path to

Help/**/* => Help

This causes all the Help folder content from the current build to be copied to the

Help artifacts folder. To make the documentation visible on the build-report page,

add a new tab in the server configuration, pointing to /Help/ I ndex.html. After a suc-

cessful build, you should see something like figure 9.9.

You should consider two things when you incorporate Sandcastle into CI . First, as

you can see, generating documentation files with Sandcastle takes time. Even for a

tiny project, it can take a few minutes. I f you feel it ’s taking too long, consider moving

the documentation build out of CI and into the daily build.

Sum m ary

239

Figure 9.9

Sandcastle-generated documentation integrated with TeamCity build report page

The second issue is the size of the artifacts. I f you store every documentation drop,

you’ll need to consider the amount of hard drive space required.

9.3

Sum m ary

I t ’s maybe a truism, but well-documented code is more valuable and more maintain-

able than code with neglected documentation. Knowing the reason code was written

one way and not another way makes a difference. Good documentation will make it

easier for you or anyone else to understand the code later and to fix bugs. And by

commenting your code, you can get help such as IntelliSense in Visual Studio, which

means you can develop more quickly.

Using tools like Sandcastle, you can generate nice-looking, readable documenta-

tion in the form of Windows Help files or a website. The process can be automated

and incorporated into CI . This way, you’ll always have up-to-date, code-level documen-

tation available.

You can add documentation generated this way to your software, in a step we’ll

look at in the next chapter: deployment.

Deployment and delivery

Th is chapt er covers
■

■

■

Creating setup projects in Visual Studio

Using WiX to create installation routines and

incorporate them into CI

Using MS Deploy with web applications

I f you’ve been following along with us chapter by chapter, your software is continu-

ously built, tested, analyzed, and documented. After every check-in to the version

control system, you’re creating a piece of bulletproof software. Some developers

make rules that every act of sending software to the repository must be associated

with a feature. Other developers strive to have potentially shippable software after

it ’s been continuously built. I f you fall into the latter group, you’re fully prepared

to include new elements in the CI process: deployment and delivery. Even if you

don’t have such high goals, you should have your software deployed to a test site or

create an installer.

CI deployment and delivery target a few important aspects, such as what to do

with continuously built software at the end of the CI process, how to prepare it for

various tasks like manual testing and presentation, and how to deal with deploy-

ment targets. In this chapter, we’ll give you a taste of several types of deployment

240

Creat ing an inst al ler f or your W indow s appl icat ion

241

candy. We’ll look at different aspects and discuss tools that may help you with

deployment and delivery. You may like the taste of the MSI installer using Visual Stu-

dio and learn why other tools such as WiX are sweeter and better tasting. You’ll

script ClickOnce deployment using MSBuild. Then we’ll look at the wrappings of

how to deploy web software using some new and tasty Visual Studio 2010 technolo-

gies like Web Deployment and how to use it in the CI process. Let’s get started with

Windows delivery.

10.1 Creat ing an inst al ler for your W indow s app l icat ion

The common scenario for Windows applicat ions delivery is the build of an installation

package that can be installed on a target machine. I t may be a good idea to incorpo-

rate the installation package creation into the CI environment. This way, your software

will always be ready for eventual delivery and deployment. Let’s say your boss wants to

see where your team is with development of your application, or you want the test

team to be able to get the newest version, without your involvement, every t ime they

need it. This is easy to do. We’ll show you by creating the installation package for the

financial calculator.

10.1 .1 Creat ing a Microsof t I nst al ler pack age in Visual St ud io

The easiest way to create the installat ion package is to use built-in Visual Studio fea-

tures. I f you want to do it and eventually incorporate the installation package cre-

ation into your CI process, you have keep in mind that you’ll need to install Visual

Studio on the build server. We’ll deal with this issue in a moment. But first, let’s

make the setup project. Open the solution where you have the Windows version of

the financial calculator. Right-click the solution, choose Add > New Project, select

Other Project Types > Setup and Deployment > Visual Studio Installer, and choose

Setup Project (see figure 10.1).

In the Solution Explorer, you’ll get a new setup project. Right-click it, and choose

Add > Project Output. In the Add Project Output Group window (see figure 10.2),

choose Primary Output from the project CiDotNet.WinCalc. Doing so adds all the

files that are needed to run the calculator. As your project grows, you may want to add

other types of files, such as documentation files (if you have any) or content files (if

you have files marked as content that are needed by the application). More details

about every file group are provided at the bottom of the window.

For a project as simple as the financial calculator, that’s all you have to do. I f you

wish, you can make the setup project prettier. To do so, in the setup project’s proper-

ties, specify the Manufacturer, ProductName, and Title. You can change the setup

user interface (right-click the project and select View > User interface). You can also

add the icon on the desktop or an item in the Start menu (in View > File System, right-

click the primary output, choose Create Shortcut, and drag it to the user’s desktop or

user’s Programs menu).

242

CHAPTER 10

Deploym ent and del ivery

Figure 10.1 I f you want to use the standard Setup Project from Visual Studio in your CI process, you’ll

have to install the entire development environment on the build server.

Figure 10.2

A Visual Studio setup project can contain

the primary output from another project in

the solution.

Creat ing an inst al ler f or your W indow s appl icat ion

243

Figure 10.3 An MSI package created in Visual Studio installing the Windows

financial calculator

After you build the project, you should test the installation package. To do so, right-

click the setup project in Solution Explorer, and choose Install. Visual Studio starts

the installat ion wizard (see figure 10.3).

The MSI package is created in the Setup Project directory. I t can be taken from

there and given to anybody interested in it. You can incorporate the entire setup pro-

cess into the CI process.

10.1 .2 Con t inuously creat ing inst al lat ion f i les

The creation of the MSI package with Visual Studio can be scripted into an MSBuild

file. Unfortunately, the creation of setup files designed using setup projects can be

performed only using Visual Studio. This means you’ll need to use the Visual Studio

devenv.exe file from the command line. The script that shows how to do this is

shown next.

Listing 10.1 Creating setup files in MSBuild using Visual Studio

<Project DefaultTargets="Build;Setup;" xmlns="http://schemas.microsoft.com/

developer/msbuild/2003">
<PropertyGroup>

<!--Default Configuration-->

<Configuration Condition=" '$(Configuration)' == ''">

Debug

</Configuration>

http://schemas.microsoft.com/developer/msbuild/2003

244

CHAPTER 10

Deploym ent and del ivery

<!--Default Platform-->

<Platform Condition=" '$(Platform)' == '' ">"Any CPU"</Platform>

<!--Visual Studio path-->

<VSPath Condition=" '$(VSPath)' == '' ">

➥%ProgramFiles%\Microsoft Visual Studio 10.0\Common7\IDE</VSPath>

</PropertyGroup>

<Target Name="Build" >
Defines Visual

Studio path B
<MSBuild Targets="Clean;Rebuild" Projects="CiDotNet.sln"

➥ContinueOnError="false"/>

</Target>

<Target Name="Setup" >

<Exec

Command=""$(VSPath)\devenv.exe" CiDotNet.sln /build

➥"$(Configuration)" /project

➥CiDotNet.WinCalc.Setup\CiDotNet.WinCalc.Setup.vdproj"

➥ContinueOnError="false" IgnoreExitCode="true" />
</Target>

</Project>

Creates
setup files

C

You have to tell MSBuild B where Visual Studio is to be found and consequently use it

from the command line C with a lit t le strange syntax. The code first specifies

devenv.exe, and then the solution file name, build configurat ion, project, and setup

project file name. This script can create the MSI setup packages.

As we mentioned earlier, this entire procedure has one fault : you must install

Visual Studio on the build machine. You have to be able to configure the build on

the build server and substitute the $(VSPath) MSBuild property for the actual path

on the server. I f you’re using CCNet, it can be something like this:

<tasks>

<msbuild>

<executable>

C:\WINDOWS\Microsoft.NET\Framework\v4.0.21006\MSBuild.exe

</executable>

<projectFile>build.msbuild</projectFile>

<buildArgs>/p:VSPath="C:\Program Files (x86)\Microsoft Visual Studio

➥ 10.0\Common7\IDE\"</buildArgs>

</msbuild>

</tasks>

Installing Visual Studio on the build server isn’t always a good idea. Remember the CI

rule that says the environment where the CI occurs needs to have as few dependencies

as possible. Visual Studio is a big breach of this rule. Not to mention licensing: you’ll

need an extra license for this Visual Studio installation. But have no fear! There’s a

way to deal with it using WiX.

10.2 W indow s I nst al ler XML t oolset

Windows Installer XML (WiX) is a free Microsoft tool for creating Windows installa-

tion packages. The WiX scripts are XML files, and you can use WiX from the com-

mand line. I t’s easy to incorporate into the CI process.

W indow s I nst al ler XML t oolset

245

10.2 .1 Creat ing an inst al ler using W iX

Download and install the WiX package (if you’re using Visual Studio 2010, use at

least version 3.0) from http: / /wixtoolset.org/ . In the next couple of pages, you’ll do

the usual drill and install WiX on the development machine for day-to-day work

and then extract and put in the tools subdirectory what’s needed on the build

server for CI .

Open your solution and add a new project. Locate Windows Installer XML tem-

plates, and choose Setup Project (see figure 10.4).

WiX is a giant mine of functionality. We won’t discuss the full functionality of

this toolset; we’ll only dive into it enough to produce a simple install file for the

Windows calculator. WiX stores all the information it needs to produce the installa-

tion file inside one or more XML files. I f you want to penetrate WiX capabilit ies

you’ll surely have a lot to do with the angle brackets. Listing 10.2 shows a simple

WiX file.

NOTE

You can find the complete WiX documentation on the WiX website at

http: / /wix.sourceforge.net/ .

Figure 10.4

A WiX setup project doesn’t require Visual Studio on the build server.

246

CHAPTER 10

Deploym ent and del ivery

Listing 10.2 WiX script file for Windows financial calculator

<?xml version="1.0" encoding="UTF-8"?>

<Wix xmlns="http://schemas.microsoft.com/WiX/2006/wi">

<Product Id="4c50dba3-f33d-41a2-bc25-8a983e4fe398"

Name="CiDotNet.WinCalc" Language="1033" Version="1.0.0.0"

Manufacturer="CiDotNet"

UpgradeCode="3dbf5cd7-bda4-46a5-bb99-53c7df6a3bad">

<Package InstallerVersion="200" Compressed="yes" />

<Media Id="1" Cabinet="media1.cab" EmbedCab="yes" />

<Directory Id="TARGETDIR" Name="SourceDir">

<Directory Id="ProgramFilesFolder">

<Directory Id="INSTALLLOCATION" Name="CiDotNet.WinCalc">

<Component Id="Calculator"

Guid="b01b0452-7507-4b06-acef-9e7f693599b8">

<File Id="exe" Name="CiDotNet.WinCalc.exe" DiskId="1"

Source= "..\CiDotNet.WinCalc\bin\$(var.Configuration)

➥\CiDotNet.WinCalc.exe" KeyPath="yes">

<Shortcut Id="desktopIcon" Directory="DesktopFolder"

Name="WinCalc" WorkingDirectory="INSTALLDIR"

IconIndex="0" Advertise="yes" />

</File>

</Component>

<Component Id="FinancialLibrary"

Guid="ada092ce-5e6d-4ba7-a986-a8cabb895cb8">

<File Id="dll" Name="CiDotNet.Calc.dll" DiskId="1"

Source="..\CiDotNet.WinCalc\bin\$(var.Configuration)

➥\CiDotNet.Calc.dll" KeyPath="yes" />

</Component>

</Directory>

</Directory>

<Directory Id="DesktopFolder" Name="Desktop" />

</Directory>

<Feature Id="ProductFeature" Title="CiDotNet.WinCalc.WiX" Level="1">

<ComponentRef Id="Calculator" />

<ComponentRef Id="FinancialLibrary" />

</Feature>

</Product>

</Wix>

Creating complex installat ion files with WiX is a topic for a separate book. So let’s dis-

cuss it just enough for you to understand the example file. The WiX script defines a

Product. I t contains a Name, Manufacturer, and information about the Language. WiX

installers are fully translatable. This information is essentially what you see in the Pro-

grams and Features pane in the Control Panel of your Windows installation. The

Product tag also contains the Package and Media values. You’ll leave default values.

Inside the Product is a Directory definition. I t contains the directory tree where

the product will be installed. WiX uses a set of predefined identifiers. What’s impor-

tant is that the software will be installed inside the Program Files folder in the CiDot-

Net.WinCalc directory. This directory will contain two components: the executable

and the financial library.

W indow s I nst al ler XML t oolset

247

Figure 10.5

The WiX installat ion running without

any UI defined

Inside every Component, you can define any number of files or even other types of

resources, such as registry keys. Inside the Component tag, you define the executable

file. Look at the $(var.Configuration) macro: it’s used to pass variables into the WiX

script, in this case the build configuration.

The executable file contains a shortcut named WinCalc that’s created inside the

DesktopFolder. The shortcut points to the executable defined in the Component tag.

The second component contains the DLL file with the financial calculation library.

Everything is put together with the Feature tag. I f you compile the project in Visual

Studio, you’ll get the MSI package in the WiX Setup Project folder. Give it a try, and

install the software (see figure 10.5).

You have to be observant to catch the WiX installer you’ve created when you run it.

Because you didn’t define any UI components, it ’s a message box with a progress bar.

But as you can see, it gets the job done. An icon is installed on the desktop, and the

software can be uninstalled from the Programs and Features snap-in. WiX is now

tamed; let’s combine it with the CI process.

10.2 .2 Au t om at ing W iX w it h CI

WiX can easily be combined with the CI process. Take the content of the WiX installa-

tion bin folder (usually inside your Program Files folder in Windows Installer XML

v3.5), and copy it to the tools\ WiX folder in your project directory. You’ll use MSBuild

to automate the WiX process, so you need to get the MSBuild bits of WiX (usually in

the Program Files folder in the MSBuild\Microsoft\WiX\v3.5 subdirectory). Copy the

DLLs (containing the MSBuild tasks and the .targets files) into the same directory in

your project folder.

Take a peek into the .WiXproj file. Does it look familiar? I t should, because it’s an

MSBuild script. Look at the WiXTargetsPath property: it defines the WiX installation

path. By default, it resides on your development machine. You have to pass the path to

tools/WiX, instead. The best way to do this is from the build script, as shown in the

following listing.

Listing 10.3 Starting WiX MSBuild .WiXproj file

<Project DefaultTargets="Build;Setup;"

➥xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>

<!--Default Configuration-->

248

CHAPTER 10

Deploym ent and del ivery

<Configuration Condition=" '$(Configuration)' == ''">

Debug

</Configuration>

<!--Default Platform-->

<Platform Condition=" '$(Platform)' == '' ">

"Any CPU"

</Platform>

</PropertyGroup>

<Target Name="Build" >

<MSBuild Targets="Clean;Rebuild" Projects="CiDotNet.sln"

ContinueOnError="false"/>

</Target>

<Target Name="Setup" >

<MSBuild

Projects="CiDotNet.WinCalc.WiX\CiDotNet.WinCalc.WiX.WiXproj"

Properties="WiXTargetsPath=$(MSBuildProjectDirectory)

➥\tools\WiX\WiX2010.targets;"/>

</Target>

B

Calls external

MSBuild script

</Project>

In the Setup target, you use the MSBuild task to call the .WiXproj file and pass the

WiXTargetsPath property B into it . The property points to the local tools folder. I f

you check everything in to your repository and configure your build server to start this

MSBuild script, the MSI is created after every commit. You can then copy it to a loca-

tion or send it using email. You can even remotely install it on a machine if you want.

But there’s a simple way to make a Windows applicat ion available over the internet

without using installation files: it ’s called ClickOnce. Let’s use it in the CI process.

10.3 Cl ickOnce dep loym ent

ClickOnce is a Microsoft technology that lets you easily deploy a Windows application,

whether it ’s a Windows Forms or Windows Presentation Foundation (WPF) applica-

tion, via a web page. An application deployed in this manner is sometimes called a

smart client.

This application is installed in a sandbox on the client machine and has fewer

rights than a normally installed application. One limitation is that the application has

no access to local files. I t isn’t installed in the Program Files folder but in the private

folder of the user who installs the applicat ion. The advantage of ClickOnce deploy-

ment is that whenever a new version of the application is available on the website, the

user can decide whether to install the upgrade.

I f you like this approach, you can easily incorporate it into your CI process and

make the new version available after every check-in. Interested? Let’s see how to do it.

10.3 .1 Creat ing a Cl ick Once deploym en t

You’ll make the Windows calculator available with ClickOnce. In order to do this, go

to the CiDotNet.WinCalc’s project properties, and switch to the Publish tab (see fig-

ure 10.6).

Cl ickOnce deploym ent

249

Figure 10.6 The Publish tab for a Windows application. The install is deployed to a share in the local

network that is available over HTTP.

You need a web server (I IS works) to host your ClickOnce-published applications. Fig-

ure 10.6 shows a publishing target somewhere in the local network. In the test setup,

I IS is installed on the ci1 server, sees the WinCalc folder, and is able to immediately

host the WinCalc application. I f you have FrontPage Server Extensions installed on

the remote I IS server, you can publish onto it right away. This technology was designed

to allow Microsoft FrontPage to communicate with the web server. In this case, you’ll

use the publishing features of FrontPage Server Extensions.

To make the published version look nice, you should define the deployment web

page. Click the Options button. Fill in the Description, and then select Deployment

from the list box (see figure 10.7.)

I t ’s time for a test publicat ion. Click the Publish Now button or use the publish-

ing wizard. Then launch Internet Explorer and open the remote location (see fig-

ure 10.8). Be advised that Firefox and other browsers don’t support ClickOnce

without special plug-ins.

Now, if you click Install, WinCalc is installed on your computer. The entire process

works like a charm from Visual Studio. With a command line (and eventually CI), it

isn’t so easy, as you’ll see next.

250

CHAPTER 10

Deploym ent and del ivery

Figure 10.7

Figure 10.8

Defining the Deployment web page for the ClickOnce deployment

A published ClickOnce application on a web page

Cl ickOnce deploym ent

251

10.3 .2 Cl ick Once in a CI scenar io

Publishing a ClickOnce-based application in Visual Studio is easy, as opposed to the

automated deployment. But it ’s st ill tricky, and if you want to do it, you can either use

a command-line tool like mage.exe or have MSBuild do the work for you. You’re a

master of MSBuild now, so you’ll use this build tool.

You can generate the publication files with MSBuild by using the Publish target on

the solution file like this:

msbuild CiDotNet.sln /t:Publish

There are several problems with this approach:

■

■

■

The version number isn’t incremented.

The publication files are created in the bin\$(Configuration)\app.publish

folder and not on the destination location.

The website HTML file isn’t generated at all.

Let’s deal with these issues one at the time. You can set the version number from out-

side by providing the ApplicationVersion property on the MSBuild command line:

Msbuild CiDotNet.sln /t:Publish /p:ApplicationVersion=1.0.0.3

But how do you get the version number on the build server? Visual Studio takes it

from the ApplicationRevision property inside the .csproj file, and it isn’t a good

idea to mess with it on the server. But how about combining the ApplicationVersion

number with the revision number? You did something similar in chapter 3 when you

got the revision number to update the project version number. You’ll use the same

method here.

First, make sure the MSBuild community tasks have been copied into the tools direc-

tory. Next, get the svn.exe file, and copy it to the svn subdirectory in the tools folder.

You’ll use them both, as shown in the next listing.

Listing 10.4 Publishing an application versioned with an SVN revision number

<Project DefaultTargets="Publish"

➥xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<UsingTask

➥AssemblyFile="tools\MSBuildCommunityTasks\MSBuild.Community.Tasks.dll"

➥TaskName="MSBuild.Community.Tasks.Subversion.SvnInfo"></UsingTask>
<PropertyGroup>

<ApplicationVersion Condition=

➥" '$(ApplicationVersion)' == '' ">

</ApplicationVersion>

B Defines
immutable
version part

<RevisionNumber Condition=" '$(RevisionNumber)' == '' ">

0

</RevisionNumber>

</PropertyGroup>

<Target Name="Publish">

<SvnInfo RepositoryPath="http://ci1/svn/CiDotNetCh10/trunk"

Username="user" Password="password" ToolPath="tools\svn">

C Defines
mutable
version part

252

CHAPTER 10

Deploym ent and del ivery

<Output TaskParameter="Revision" PropertyName="RevisionNumber" />

</SvnInfo>

<MSBuild Targets="Publish" Projects="CiDotNet.sln"

ContinueOnError="false" Properties=

"ApplicationVersion=$(ApplicationVersion)$(RevisionNumber)"/>

</Target>

</Project>

After import ing the SvnInfo MSBuild Community Task (see chapter 3), you define the

immutable B and mutable C version-number parts. In the Publish target, you get

the RevisionNumber using the SvnInfo task and apply it to the ApplicationVersion

property. Problem one, setting the version number, is now solved.

The second problem is that the files aren’t copied to the target location. The Click-

Once files are created in bin\$(Configuration)\app.publish. They need to be copied

to the web server. The easiest way is to define the target location:

<DeploymentFolder>\\ci1\WinCalc\</DeploymentFolder>

Then, gather the source files:

<ItemGroup>

<DeploymentSourceFiles

➥Include="CiDotNet.WinCalc\bin\$(Configuration)\app.publish***.*" />

</ItemGroup>

After the publishing files are created, you can copy them:

<Copy

SourceFiles="@(DeploymentSourceFiles)"

DestinationFiles="@(DeploymentSourceFiles->'

➥$(DeploymentFolder)\%(RecursiveDir)%(Filename)%(Extension)')"/>

The last problem is the lack of the HTML website. There is no elegant way to deal with

that. The best solution is to take the created index.html website and create a kind of

template with it. Let’s copy the index.html file to the solution project folder and

change the current version to a string stored in the ApplicationVersion variable.

You’ll use the FileUpdate task from the MSBuild Community Tasks. Here’s the file-

update usage:

<Copy SourceFiles="index.htm"

DestinationFiles="$(DeploymentFolder)\index.htm"/>

<Copy SourceFiles="wincalc.png"

DestinationFiles="$(DeploymentFolder)\wincalc.png"/>

<FileUpdate Files="$(DeploymentFolder)\index.htm"

IgnoreCase="true"

Multiline="true"

Singleline="false"

Regex="ApplicationVersion"

ReplacementText="$(ApplicationVersion)$(RevisionNumber)"/>

Using the HTML template gives you one more opportunity to customize the ClickOnce

website to suit your needs. For example, you can provide additional information to the

W eb Deploym ent Tool

253

Figure 10.9

A customized ClickOnce website generated directly from the build server

user. First you take the custom-made HTML template file together with an application

screenshot and copy it to the destination folder. Afterward, you apply the FileUpdate

task, search for the ApplicationVersion string, and replace it with the version num-

ber. Don’t forget to import the FileUpdate task from MSBuild Community Tasks. Your

ClickOnce website may look like the one in figure 10.9.

You can make your CI server use this build script to deploy a brand-new application

every time something changes in the repository.

Deployment and delivery of Windows applications is a completely different beast

than web applications, which is the topic of the next section.

10.4 W eb Deploym ent Tool

Deploying web applications in .NET has always been an adventure. .NET web apps

aren’t interpreted files like PHP or Ruby on Rails. Part of the application is compiled;

another part may not be or is only precompiled. There are sophisticated techniques

like handlers and modules, and configuration and databases must be dealt with. An

easy thing became complex, so Microsoft had to came up with an idea for how to deal

with that.

Earlier versions of Visual Studio had Web Deployment projects. You had to install

them separately, and unfortunately they addressed only part of the problem. In Visual

Studio 2010, Microsoft went the extra mile and introduced a set of Web Deployment

Tools that interoperate with I IS MS Deploy. Let’s look at how to use it and how to

incorporate it into the CI process.

254

CHAPTER 10

Deploym ent and del ivery

10.4 .1 Visual St udio 2010 and MS Deploy

Microsoft Web Deployment Tool (MS Deploy) is a tool that provides support for

deployment, synchronization, and migration to a newer I IS version. I t can do a lot

more than you’ll get to know here. We’ll deal with the deployment part of MS Deploy.

Visual Studio 2010 uses it under the hood to create so-called web packages. I t ’s nothing

more than a compressed zip file containing everything necessary to create the applica-

tion on the I IS server. The process of creating the package is called publishing. You’ll

create a web package for the web edition of the finance calculator.

To use the full packaging/ publishing capabilit ies of Visual Studio, you have to

install I IS on the local machine and run the application using I IS. By default, Visual

Studio uses a small development server to host the web applications. I t differs from

full-blown I IS, where your application will be hosted in production. To use I IS settings,

you have to run Visual Studio 2010 with administrator rights. Using I IS as your local

test server, go to the web project’s properties; on the Web tab, select the Use Local I IS

Web Server option (see figure 10.10).

After you do that, you can use all the features of packaging/publishing, including

I IS settings. This is a huge improvement over previous versions, because it makes your

local I IS settings migrate to the package and eventually to the target environment. The

package contains, for example, information about the application pool, authentica-

tion method, and error handling. I t makes it easier to migrate application-specific set-

tings to the server.

The settings for packaging/publication are available in the web application prop-

erties on the Package/Publish Web tab (see figure 10.11).

The general idea is to create a package that contains everything necessary for

deployment on a remote machine, beginning with the files that constitute the

application, through the database files and I IS settings. Choose to deploy only

the files needed to run this application. You can leave the program database (PDB)

files and the App_Data folder. You don’t have a database, so we don’t need to

choose Include All Databases Configured in Package/Publish SQL Tab. Include the

I IS settings without the application pool (you don’t do anything special, so you

Figure 10.10

Running a web application under a local I IS web server

W eb Deploym ent Tool

255

Figure 10.11

The packaging/publication settings of a web application

don’t need it). Finally, create the deployment package as a zip file (you can leave

the default paths).

Web Deployment in Visual Studio 2010 addresses the

configuration files too. I f you look at the web.config file,

you’ll notice the dependent files shown in figure 10.12.

Issues with managing configuration files are severe

especially for automatic packaging and deployment.

Your goal is to separate the configuration and installa-

tion issues. Visual Studio 2010 lets you use simple XML

transformations with your web.config files. Let’s say

you want to identify the installed version of the web

calculator by providing a name in the browser tit le.

You want to pull the t itle in Default.aspx from your

configuration file:

<title><%= ConfigurationSettings.AppSettings

➥["Title"]%></title>

Figure 10.12 Configuration

management in Visual Studio

web applications. The

dependent config files are

transformations for the

standard web.config file.

256

CHAPTER 10

Deploym ent and del ivery

And in web.config, an appSettings value contains the t it le:

<appSettings>

<add key="Title" value="Welcome to developement!"/>

</appSettings>

You can replace the value for a given configuration by providing in Web.Release.Con-

fig a transformation like this

<appSettings>

<add key="Title" value="Welcome to production!"

xdt:Transform="Replace"/>

</appSettings>

During installation, the value will be replaced with a provided value. MS Deploy devel-

opers have given reasonable thought to configuration file transformations. I f you want

to know more, refer to the MSDN documentation (http: / /msdn.microsoft.com/en-us/

library/dd394698.aspx).
Another interesting MS Deploy feature is the ability to manage the database out of

the package. We’ll look into this topic in the next chapter. For now, you’re ready: the

package is configured and can be created. To create the package, select Publish from

the web project context menu in Solution Explorer.

Visual Studio 2010 provides a nice UI for deployment. One of the options is Web

Deploy (using MS Deploy); see figure 10.13 for details.

Choose Web Deploy as the publishing method. Provide the service URL (if you use

the default MS Deploy installat ion, you can provide only the server name; if not,

enter the entire URL to the MS Deploy service). Enter the name of the site and

application (for example, Default Web site/CiDotNet.WebCalc). You don’t have to

delete the files prior to deployment and provide the physical path for the files. At

the bottom, provide the credentials of the user who is allowed to use the deploy-

ment service.

The Visual Studio 2010 publishing window, however nice, is useless in a CI sce-

nario. Fortunately, the MS Deploy developers thought about automated deployment,

too. Let’s look at how to incorporate MS Deploy into the CI process.

10.4 .2 MS Dep loy on t he bu i ld server

In the previous section, you saw how to create an MS Deploy package in Visual Studio.

Now you want to create the package from within the MSBuild project and deploy the

package on the test/ staging server. Here’s how to do it.

First, gather everything you need to build the project inside the repository. In this

case, you need all the MSBuild targets and DLLs with tasks to compile and create pack-

ages for web applications. The files you’re looking for are in the folder % Program-

Files% \ MSBuild\ Microsoft\ VisualStudio\ v10.0\ when you install Visual Studio 2010. You

need the Web and WebApplications folders in the tools folder. Copy the folders to the

subdirectory tools\Microsoft\VisualStudio\ v10.0\ in your project. This is important

http://msdn.microsoft.com/en-us/library/dd394698.aspx

W eb Deploym ent Tool

257

Figure 10.13

Publishing the web

application from Visual

Studio 2010, made easy.

Provide a URL to a server

with MS Deploy installed.

Give the application a name,

and click Publish.

because of the way the path is created in the .csproj script. Look in the CiDotNet.Web-

Calc.csproj file, and you’ll find this import:

<Import

Project="$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v10.0\

➥WebApplications\Microsoft.WebApplication.targets" />

This tells you that you have to pass the $(MSBuildExtensionsPath32) parameter in

the MSBuild task in the script:

<Target Name="Build" >

<MSBuild Targets="Clean;Rebuild"

Projects="CiDotNet.sln"

ContinueOnError="false"

Properties="MSBuildExtensionsPath32=..\tools" />

</Target>

258

CHAPTER 10

Deploym ent and del ivery

This way, MSBuild knows to look in the tools folder for the web application–specific

targets and tasks. Using the same path, you tell MSBuild to create the web package. I t’s

as easy as starting the web application project file from the command line:

msbuild CiDotNet.WebCalc.csproj /t:Package

➥/p:PackageLocation=WebPublication\Package.zip

This command creates a new package called Package.zip in the WebPublicat ion

folder. I f you look in this folder, you’ll find additional files: two XML files containing

manifests and one .cmd file. The .cmd file is the key to deployment. You can use it to

perform publication. Basically, it ’s the same functionality as shown in figure 10.13, but

made available from the command line. You can start a dry run by issuing the follow-

ing command:

WebPublication\Package.deploy.cmd /T

This command does the test publication for you. You encapsulate the real publication

inside a new target in the MSBuild script, as shown next.

Listing 10.5 Creating a web package and installing it in the MSBuild script

<Target Name="WebPublish" >

<MSBuild Targets="Package"

Projects="CiDotNet.WebCalc\CiDotNet.WebCalc.csproj"

ContinueOnError="false"

Properties="PackageLocation=WebPublication\Package.zip;

➥MSBuildExtensionsPath32=..\tools"/>

<Exec

Command="CiDotNet.WebCalc\WebPublication\Package.deploy.cmd

➥/Y /m:ci1 /u:marcin /p:password"

ContinueOnError="false"

IgnoreExitCode="true"

Creates
package

/>

</Target>

Deploys package on
remote machine

One more thing you have to deal with before you can use this technique properly is

installing MS Deploy on the deployment target machine (it ’s available at www.iis.net/

expand/WebDeploy) and starting the Web Deployment Agent Service.

I f you’re deploying to a local machine, you can use filesystem deployment and not

worry about any Windows services running on the machine. You can now pass the

source code to the CI sever and configure it to process the build script. I f you’ve done

everything right, you should have a package ready and deployed.

10.5 Sum m ary

Automating delivery and deployment and incorporating them into the CI process is a

natural thing to do. I t feels right to take the compiled, tested, analyzed, and docu-

mented code and wrap it up like a delicious candy. You’ve created this colorful wrap-

ping for your Windows application using Visual Studio and WiX. You’ve sent the

candy to a remote server for immediate delight. You’ve taken a web application and

http://www.iis.net/expand/WebDeploy
http://www.iis.net/expand/WebDeploy

Sum m ary

259

used new Visual Studio 2010 features to create a professional casing. You’ve dealt with

configuration issues. You’ve used MSBuild to automate the packaging. And you’re able

to deploy your software to various locations using a single command.

The delivery and deployment scenarios you’ve seen are only the tip of the iceberg.

You can extend them based on your needs. You can, for example, provision virtual

PC setups just like physical ones. You may want to add the automatically generated

documentation to the package. You may also need to take into account laws, such as

Sarbanes-Oxley (SOX) in the U.S., which prohibit development from touching QA or

production servers. In this case, you can use agents on QA and production servers to

get the latest build. You may want to create safety-net funct ionality in your build script

to redo changes if something goes wrong. You should now be equipped with enough

knowledge to do what you want with your deployment process.

Did you ever think about combining the deployment process with database cre-

ation or preparation, or how to manage and version schema and stored-procedure

changes? All these things are possible. Read on to the next chapter to learn how.

Continuous
database integration

Th is chapt er covers
■

■

■

The basics of database CI

How Visual Studio helps you maintain the

database

Database-level testing

We’ve spent the last 10 chapters discussing various parts of the continuous integra-

tion process. All these parts involve the source code, assemblies, or the actual appli-

cation. But one part of CI is often overlooked and is just as important as the code

and application. We’re talking about dealing with the database.

In this chapter, you’ll use Microsoft SQL Server. Even though the Northwind sam-

ple database no longer ships with SQL Server, you’ll use it because it’s well under-

stood and has almost everything needed for the examples.

NOTE

All SQL Server sample databases are available via download from

various Microsoft websites. You can find the Northwind database at www.

microsoft.com/downloads/details.aspx?FamilyID= 06616212-0356-46A0-
8DA2-EEBC53A68034.

You can use many tools for database maintenance. We’ll look at some of them, includ-

ing SQL Server Management Studio (SSMS), the open source tool RoundhousE, and

260

http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034

W hat is con t inuous dat abase in t egrat ion?

261

Visual Studio. We won’t look at higher-end solutions such as those from Red Gate that

provide tools for dependency tracking, documentation, data and schema comparisons,

and so on, but we highly recommend that you evaluate these tools to see if they fit your

database maintenance needs and budget.

We’ll get into the tools in a moment, right after we define continuous database inte-

gration and discuss some best practices.

11.1 W hat is con t inuous dat abase in t egrat ion?

As developers, we’re aware of the importance of source code control, automated test-

ing, and easily rolling out application changes. We stressed these topics earlier in the

book. But do you put your database under source control? Do you have a way to track

changes to the schema, stored procedures, functions, and so on? Do you fully test

each stored procedure? Can you easily update databases not only in your develop-

ment and test environments, but also in production? Can you do this without causing

data loss?

Don’t overlook the importance of good database-management processes. This is

just as important as handling changes to the application source code. In fact, the data-

base schema, stored procedures, and other database objects should be considered

part of your applicat ion source code. After all, you can’t run your program without

both the code and the database.

Every object in your database should be scripted. This means you’ll have to learn

T-SQL. Don’t let that scare you—T-SQL isn’t that difficult. I t ’s another programming

language, albeit one that is procedural rather than object-oriented. Yes, newer ver-

sions of SQL Server support CLR objects, but you shouldn’t use them for database-

maintenance issues because T-SQL provides better performance and maintainability

over CLR objects.

Scripting allows you to reliably reproduce the database at any time. This adds con-

fidence to the database operations. Haven’t we already told you about increasing

confidence in your application through CI? I f you answer, “No,” go back to chapter 1

and start reading the book again.

Scripts are stored in .sql files, which are text files. This makes it easy to add them to

source control. You check them in like any other source file.

Every change to the database schema should be handled via a script. I f you create a

database or table, set security, create a stored procedure, add a constraint, add a col-

umn, drop a table, or whatever, you should do it via a script.

Each developer should run a local copy of SQL Server. I t can be the free SQL

Server Express or SQL Server Developer Edition, which is available for a small fee.

When you keep things local, if one developer makes a schema change, it causes prob-

lems for other team members. I t also makes it easier to test the applicat ion. Can you

imagine the problems created by using a database on the server when you test that

data-update routine only to find that another developer has deleted the row you need

to update as part of your test?

262

CHAPTER 11

Cont inuous dat abase in t egrat ion

Having local copies of the database brings up additional questions such as, should

each developer be allowed to make schema changes? That depends on your environ-

ment, but if you think of schema changes the same way as source code changes, your

automated test system will catch issues that it creates.

Another question that is raised from local data is how to handle conflicts and

merges. But again, the same answer applies. Bring down changes from the server as

source code changes.

Database configuration changes, such as connection strings, can be handled by

having the automated test system modify the connection strings (most likely stored in

your app.config file) before running tests.

But, there is one rule that should apply here. I f you have a DBA or data architect as

part of your team, you should push schema requests through them and let them han-

dle them.

Your CI system should also have its own copy of the data so that tests can be run

from the server.

SQL Server stores the data in a file with a .mdf extension; the log file has a .ldf

extension. I f your test database is small enough, you should also keep the database

files under source control. I t ’s difficult to determine what “small enough” really

means because each application has different requirements, but a good rule of thumb

would be a few hundred records. Databases zip down to a very small size, so they don’t

require much disk space. Storing the database this way makes it quick and easy to get

your test database back to a known state. Often it’s faster to get the latest version,

unzip it, and then attach it than it is to run the database script.

Now that you have an idea what continuous database integration is all about, let’s

try it, starting with doing it all yourself.

11.2 Rol l ing your ow n con t inuous dat abase in t egrat ion

One of the easiest ways to get started with continuous database integration is to use

SSMS. After you install it, it gives you everything you need to write scripts to maintain

your database.

Start by logging in to your SQL Server. Right-click the Pubs database, and

select Script Database As. You can save the script into a file or open it in SSMS for

editing (see figure 11.1). After you’ve created a script file for the database, you

should create one for each table and other database objects so they can be cre-

ated programmatically.

You should create a new table from scratch, one that doesn’t exist in the database.

How about a States table to use as validation? Make sure the Database drop-down in

the toolbar is set to Pubs, and click the New Query button. Enter the script in the next

listing into the script editor.

Rol l ing your ow n con t inuous dat abase in t egrat ion

263

Figure 11.1 You can create a script file for each object in your database. This is an easy way to get

started with database scripts.

Listing 11.1 SQL script to create the States table

USE [pubs]

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_PADDING ON

B

Selects
database

GO
Creates table C

CREATE TABLE [dbo].[states](

[states_id] [char] (4) NOT NULL,

[abbrev] [char](2) NOT NULL,

[state_name] [varchar](40) NULL,

CONSTRAINT [UPK_statesid] PRIMARY KEY CLUSTERED

([states_id] ASC)

WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)

ON [PRIMARY])

ON [PRIMARY]

GO

SET ANSI_PADDING OFF

GO

264

CHAPTER 11

Cont inuous dat abase in t egrat ion

The script first ensures that the proper database is selected B. The table is cre-

ated along with a primary, clustered index C. You can run the script directly inside

SSMS: click the Execute button on the toolbar. After it completes successfully, save

the script.

That was fun, wasn’t it? But you can hardly expect to have to run the script manu-

ally every time you want to create the table. Before we show you how to automatically

run the script, delete the States table you just created so that you can re-create it out-

side of SSMS.

To run the script, you’ll use the SQL Server command-line ut ility. Launch a com-

mand prompt, and navigate to the folder where you saved the States.sql script. Type

sqlcmd -S[database server name] -iStates.sql. The –i specifies the input file. The

script runs, and the States table is added to the Pubs database.

All you need to do to create the database is run the scripts in order or create a sin-

gle script that does everything. Inside your CI process, you run sqlcmd with the proper

script files as input.

Now that you have an idea how to automatically run database-maintenance scripts,

let’s look at a tool to make all this easier. I t ’s called RoundhousE.

11.3 Con t inuous dat abase m ain t enance w it h RoundhousE

I f you’ve ever seen a Chuck Norris movie, you know what a roundhouse is. Chuck is

known for his roundhouse kicks. In fact, his blurred image is used as the logo for the

RoundhousE project. According to Wikipedia.org, a roundhouse is “a kick in which

the attacker swings his leg around in a semicircular motion, striking with the front of

the leg or foot.”

What does this have to do with database maintenance? The RoundhousE home

page (http: / / code.google.com/p/ roundhouse/) says RoundhousE “ is an automated

database deployment (change management) system that allows you to use your cur-

rent idioms and gain much more. I t seeks to solve both maintenance concerns and

ease of deployment.” In other words, it provides a knockout kick for database mainte-

nance. And because it’s an open source project, you can use it free of charge.

You should be aware that RoundhousE isn’t as feature-rich as Visual Studio. I t

doesn’t support database unit testing or creating test data. What RoundhousE will do

is help you with database migration, which means upgrading and making changes to

the database. I t does this through Windows batch files and SQL scripts.

After you download and unzip RoundhousE, you’re ready to get started. A

good place to begin is the sample apps that ship with RoundhousE. But take

note that many of the samples use NAnt to show you how to integrate with your

CI solution.

I f you drill down to the RoundhousE\Sample\Deployment folder, you’ll find sev-

eral .bat files. LOCAL.DBDeployment.bat is a good one to start with.

Cont inuous dat abase m aint enance w i t h RoundhousE

Listing 11.2 LOCAL.DBDeployment.bat sample file from RoundhousE

@echo off

SET DIR=%~d0%~p0%

265

SET

SET

SET

SET

SET

SET

SET

database.name="TestRoundhousE"

sql.files.directory="%DIR%..\db\TestRoundhousE"

server.database="(local)"

repository.path="http://roundhouse.googlecode.com/svn"

version.file="_BuildInfo.xml"

version.xpath="//buildInfo/version"

environment=LOCAL

"%DIR%Console\rh.exe" /d=%database.name% /f=%sql.files.directory%

➥/s=%server.database% /vf=%version.file% /vx=%version.xpath%

➥/r=%repository.path% /env=%environment% /simple

pause

Note the server name specified (local): you’ll need to change this if you’re using SQL

Server Express or not using a local server. After you’ve made the change, you can run

the batch file from the Windows command prompt. RoundhousE runs several .sql

scripts from the db\TestRoundhousE folder to create the TestRoundhousE database.

I f you run RoundhousE without any switches, you get a list of command-line

switches. One that’s important for CI is /ni or non-interactive mode. This tells Round-

housE not to display any input prompts when it runs.

To set up RoundhousE to handle database changes in the CI process, you first need

to create your .sql scripts. You can do this in Visual Studio, SSMS, or any text editor.

When you have the scripts, you need to save them into a SQL Scripts folder and check

them into source control.

You then need to run an external program from your MSBuild script. Here’s how

to do this with the RoundhousE sample you saw earlier:

<Target Name="Database" >

<Exec Command="lib\rh.exe /ni

➥/d="TestRoundhousE"

➥/f=..\SQLScripts\TestRoundhousE

➥/s=(local)

➥/vf=_BuildInfo.xml

➥/vx=//buildInfo/version

➥/r=http://roundhouse.googlecode.com/svn

➥/env=LOCAL /simple” />
</Target>

RoundhousE is st ill a work in progress and lacks some needed functionality, but the

people behind it are dedicated to making it feature complete. I t doesn’t have unit-

test or test-generation abilit ies, but it can solve some database-maintenance issues

for you.

Perhaps you’re interested in a more robust or feature-complete tool. Hang on:

we’re heading into the territory of Visual Studio Data Dude.

266

CHAPTER 11

Cont inuous dat abase in t egrat ion

11.4 Con t inuous dat abase m ain t enance w it h Visual St ud io

One of the least-known features of Visual Studio is its great tooling for database

maintenance. Originally released as Visual Studio 2005 Team Edition for Database

Professionals (wow, what a mouthful), it was more commonly called Data Dude.

One reason it wasn’t well-known is that Data Dude started as a special version of

Visual Studio that most developers didn’t own and didn’t want to purchase. Luckily,

Microsoft later rolled Data Dude features into Visual Studio 2010 Premium and

Ultimate Editions. I t’s time for us to introduce you to the Visual Studio 2010 ver-

sion of Data Dude.

11.4 .1 Get t ing st ar t ed w it h dat abase pr oj ect s

In order to see what continuous database integration does for you, you need to learn

how to use it in Visual Studio. Let’s jump right in:

1

2

Launch Visual Studio, and create a new SQL Server 2008 Database Project

named NWSandbox (see figure 11.2). Store it wherever you want on your disk;

don’t add it to source control at this time.

Right-click the NWSandbox project in the Solution Explorer, and select Import

Database Objects and Settings from the context menu. The Import Database

Wizard is displayed (see figure 11.3). Create a connection to the Northwind

Figure 11.2

Visual Studio includes several database project templates.

Cont inuous dat abase m aint enance w i t h Visual St ud io

267

Figure 11.3 You use the Import Database Wizard to connect to an existing database and

create .sql scripts to import into the project.

database you installed from the download. Typically, you’ll import a production

database to get started.

3

4

5

6

7

Click Start to begin the import process. This process examines your database

schema and creates SQL scripts for creating the database, tables, fields, indexes,

stored procedures, and other objects in your database. I t doesn’t import any of

the data.

When the import process is complete, go out to Windows Explorer and drill

down to the folder where you stored the project; you’ll see that each script is

saved in its own file. This makes it easy to place your database under source

control: follow the same process that we outlined in chapter 2 for your applica-

tion files.

Go back to Visual Studio, and double-click one of the .sql files. I t opens in the

T-SQL Editor. This is a fantastic way to edit SQL scripts, because you’re already

familiar with Visual Studio.

Build the project.

Open the project properties, and navigate to the Deploy tab (see figure 11.4).

Change the Deploy action to Create a Deployment Script (.sql), and deploy to

the database. Also set up the target connection. This target should never be a

268

CHAPTER 11

Cont inuous dat abase in t egrat ion

Figure 11.4

Database deploy options are part of the database project properties.

production server; as a best practice, always target a local SQL Server installa-

tion such as SQL Server Express.

8 Right-click the project in the Solution Explorer, and select Deploy. I f you watch

the Output Window, you’ll see Visual Studio generate a SQL script that is then

sent to the target database and run to create the NWSandbox database.

You can generate the deployment script without specifying the target database, but it

won’t run because there are variables in the script that specify the target and are left

empty. I t’s a simple matter to load the script into SSMS Studio, validate it, find these

places, and manually enter the needed values.

Now that you’ve created the database, you need to add some test data. You’ll learn

how to do that in the next section.

11.4 .2 Generat ing t est dat a

Have you ever tried to test an application, only to find that another developer on your

team is using the same database and has changed the data in a way that causes your

tests to fail? I f you’re manually testing your application, this isn’t too big of a problem;

but imagine how this will cause automated tests to fail in a CI process.

You can take two steps to resolve this issue. First, you should always use a local copy

of the database rather than a shared server. Second, you can generate test data when

you need it. Normally, generating test data sounds like a big job, but Visual Studio

makes it easy:

1

2

In the NWSandbox project in the Solution Explorer, right-click Data Generation

Plans and select Add > New I tem.

In the Add New I tem dialog box (see figure 11.5), select Data Generation Plan,

and then click Add.

Cont inuous dat abase m aint enance w i t h Visual St ud io

269

Figure 11.5

Add a data-generation plan to create test data for your database.

3

4

On the Visual Studio menu, select Data > Data Generator > I nclude All Tables

from Data Generation (see figure 11.6). You can generate data for a single

table if you want to, but you’ll need additional test data later to unit test a

stored procedure.

The top pane of the Data Generation Plan window shows the tables from the

database. The bottom pane shows the fields for the selected table. You can

choose the generator to use to create the data. One generator, Data Bound

Generator, lets you generate data from the results of a query. You do this by

checking the columns you want to include in the query.1 You can change the

output for each column based on the generator. In this case, use the default set-

tings for each column.

Select Data > Data Generator > Preview Data Generation from the Visual Studio

menu. The generated data is displayed in a preview window. You may be

shocked, because the data looks like random characters and dates. We never

said the data was perfect, but it will work for some purposes.

1

Creating a test data query can be a complex process depending on how you want to process each column, the
number of records to include, and other details. Complete instructions are available on the MSDN website at

http: / /msdn.microsoft.com/en-us/ library/dd193257.aspx.

http://msdn.microsoft.com/en-us/library/dd193257.aspx

270

CHAPTER 11

Cont inuous dat abase in t egrat ion

Figure 11.6

As part of generating test data, you can specify the tables, columns, and a generator to use.

5

Press F5 to generate the test data and populate the database. I f you’re

prompted to connect to a database, select the local test database you created in

the previous section. You may also be prompted to delete current test data in

the selected tables.

Visual Studio inserts the data into the selected tables. You may see warnings about

data in other tables being deleted; this is because of referential integrity rules set up in

the database.

One drawback to automatically generating test data is that the data is basically

unreadable (see figure 11.7). I f you need readable data, you can have Visual Studio

Figure 11.7 When you generate test data, you get gobbledygook, but it’s good enough for many of the

tests you need to run.

Cont inuous dat abase m aint enance w i t h Visual St ud io

271

generate data from an exist ing data store, or you can create your own data and either

load it through a SQL script or bulk-insert it from a text file.

You’ve generated the schema, stored procedures, and so on from the existing data-

base, and created test data. Next up, you’ll unit test a stored procedure.

11.4 .3 Un it t est ing st ored pr ocedur es

Back in chapter 6, we talked about the importance of unit testing your code and

showed how to do it manually with different unit test tools. You then integrated unit

testing into the CI process.

When you think about it, a stored procedure is no different than code in your

application. For this reason, you should unit test your stored procedures, just like your

C# or VB.Net code.

Before test ing a stored procedure, let’s look at the one you’re going to use: Ten

Most Expensive Products. To open it in the T-SQL Editor, double-click it in the Solu-

tion Explorer. Here it is:

create procedure "Ten Most Expensive Products" AS

SET ROWCOUNT 10

SELECT Products.ProductName AS TenMostExpensiveProducts, Products.UnitPrice

FROM Products

ORDER BY Products.UnitPrice DESC

To run this stored procedure and see its results, open the Server Explorer in Visual

Studio, and drill down to the NWSandbox database until you find the stored proce-

dure you want. Right-click it, and select Execute. The query will run against your

Northwind database and the results appear in the Output window (see figure 11.8).

Figure 11.8

The results of the Ten Most Expensive Products stored procedure

272

CHAPTER 11

Cont inuous dat abase in t egrat ion

The question is, how do you test this? The following steps show you how:

1

2

3

4

5

6

7

8

9

10

In Visual Studio, select Test > New Test. The Add New Test dialog box opens

(see figure 11.9).

Name the test TenMostExpensiveProductsTest, and click OK.

I f you don’t have a test project in the solution, you’re asked to add one. Name it

NWTests. Click Create.

In the Project Configuration dialog box shown in figure 11.10, select the

NWSandbox database. We won’t deal with the other configuration options;

click OK.

The Database Test Designer opens. Click the link in the middle to create your

first test.

Click the Rename button, and name the test RowCountIs10.

Remove the comments in the editor, and replace them with the following snippet:

EXEC [dbo].[Ten Most Expensive Products]

In the bottom pane, click the X to remove the current test.

Select Row Count in the Test Conditions drop-down.

Click the + to add a new test.

Figure 11.9 Visual Studio can unit test database objects. You create a new test

in the Add New Test dialog.

Cont inuous dat abase m aint enance w i t h Visual St ud io

Figure 11.10 When you create a new database test, you need to specify

which database you want to use.

273

11

12

In the property sheet, set the name to RowCountIs10 and Row Count to 10.

Visual Studio should look something like figure 11.11.

Select Test > Run > Tests in Current Context to execute the test. Visual Studio

builds the project, runs the test, and displays the results in the Test Results win-

dow (see figure 11.12).

You can create database tests against the schema, procedures, triggers, and functions,

and even compare table values between one database and another. Along the way, you

can test for several conditions including data checksum, empty resultset, execution

time, expected schema, not empty resultset, row count, scalar value, and inconclusive

results, or create your own tests.

Now that you’ve seen some of the database functionality in Visual Studio, you need

to learn how to integrate it into your CI environment.

274

CHAPTER 11

Cont inuous dat abase in t egrat ion

Figure 11.11 Creating a database unit test is as easy as executing a stored procedure and checking

its return value.

Figure 11.12 The results of a database unit test are displayed in the Test

Results pane, just as when you unit test application code.

11.4 .4 Pu t t ing Visual St udio dat abase m ain t enance in t o CI

Did you pay attention to the projects you created earlier? You have NWSand-

box.dbproj and NWTests.csproj. These are both MSBuild files, so they aren’t any differ-

ent than the projects we’ve been looking at until now.

But there are settings that you probably want to change. In figure 11.9, you saw

how to set up the connection to your database. You won’t want automated testing

done on the same database because it’s local to your development PC. So you need to

change the database connection string. You can do this by configuring the MSBuild

command line in your build script:

<MSBuild

Projects = "$(SolutionRoot)\NWSandbox.dbproj"

Properties = "Configuration=Debug; TargetDatabase=NewDBName"

Targets = "Deploy"/>

Handling database maintenance and creation through Visual Studio adds lots of

power to your development process. But testing a database is part of MSTest, so to use

Sum m ary

275

it from something other than TFS requires that you install Visual Studio on your build

server or use a trick described in 6.3.3.

We’ve only scratched the surface of database maintenance in Visual Studio. You

can add more unit tests, refactoring, and much more. But as you can see, Visual Stu-

dio lets you do much more than rolling your own or roundhouse.

11.5 Sum m ary

In this chapter, we’ve provided an introduction to continuous database integration.

Ideally, you’ll follow the same concepts you do for your program source code: that is,

you should store your SQL scripts in source code control; have a way to unit test your

stored procedures, functions, and so on; and have a way to easily deploy your data-

base changes.

We also showed you how to use Visual Studio to deal with database changes; and

we introduced you to a free tool, RoundhousE, that can help with maintenance issues.

Coming up in chapter 12, we conclude our CI coverage by discussing issues such as

large and/or many projects and teams, how to grow your CI system, and other issues

you may encounter along the way.

Extending continuous
integration

Th is chapt er covers
■

■

■

Dealing with slow builds

Scaling the CI process

Measuring the maturity of the CI process

Now that you have your CI process up and running and you’ve added some capabil-

it ies, you may have found that not everything is a bed of roses. Some things don’t

work as you expect or become slower as you add more capabilit ies. You may also

have found political or legal issues that cause you pain.

This chapter will help you. We’ll wrap up our discussion of CI by talking about

extending your process and how to overcome some of these obstacles. The topics

we’ll present in this chapter aren’t necessarily directly related to each other, but

they’re important enough that we need to discuss them. You’ll learn how to work

with large projects, lots of projects, large and geographically separated teams, and

legal roadblocks, and see where your CI process should be headed to make it more

efficient and able to handle more of your software pipeline.

We’ll discuss the seven deadly sins of slow software builds and how to receive

absolution. You’ll tweak the MSBuild scripts. We’ll look at how to technically scale

the TeamCity server builds. And after dealing with Sarbanes-Oxley, we’ll examine the

Enterprise CI Maturity Model. Let’s begin with team and project problems.

276

Speeding up CI

277

12.1 Speeding up CI

How many times have you started a project and, when it was finished, found that it

required no enhancements, no bug fixes, and no more work? We’re guessing rarely, if

ever. I t ’s inevitable that projects become bigger and more complex over time. Addi-

tional functionality means that more is happening in your CI process, which slows it

down. You may be creating more and more projects. I t’s rare to have a single project

in your shop. And what happens when you’re working in California and the rest of

your team is in New York?

The solutions to all these problems are pretty much the same. Let’s talk about the

not-so-obvious first. You can remove code. Yes, you read that correctly: remove code. At

some point, all projects have old code that’s no longer needed. Why do you carry

around the old code? Because you might need it someday? Delete the old code from

the source. You won’t lose anything. I t’s still in your source control system, so you can

always get it back. After you strip out the old code, your compile t ime should drop; the

difference may only be a few seconds, but it may be a minute or more if the codebase

is large.

Did you take out the unit tests with the old code? That will save even more time

during your build process.

Now for the more obvious: you can get a bigger, faster build box. That should

speed things up. You can also spread out the build to mult iple machines. Most CI serv-

ers support build agents running on more than one machine. When you do this, one

machine controls the build process and farms out the actual build to other machines;

then it aggregates the results into the feedback mechanism. In other words, you’re

working with parallel builds. We’ll have more to say about this in a moment, when we

discuss the seven deadly sins of slow software builds.

You can also set up a different build machine for each project. We don’t recom-

mend this: it makes feedback more complicated because you’ll need multiple feed-

back mechanisms or have to do some fancy configuration to pull all the build results

into a single reporting tool. We also don’t recommend running geographically sepa-

rated build servers. But there are other things you can do without spending money on

more hardware.

Do you need to run all those unit or integration tests with every check-in? Remem-

ber, the build t ime is ideally less than ten or five minutes. Separate the unit and inte-

gration tests. Typically, integration tests take longer to run than true unit tests. Run the

integrat ion tests at night when you can afford the time for longer tests.

Next, you can look for other steps in your CI process that don’t need to run at

every check-in. You may be doing addit ional testing or different types of statist ical

analysis on the code. These items can wait until the nightly or even weekly build.

One other thing you may want to do for geographically separated teams it use a

distributed source control system such as Git. Doing so allows developers to work

locally, without check-in/ checkout wait times.

Table 12.1 describes your options for dealing with slow builds.

278

CHAPTER 12

Ex t ending con t inuous in t egrat ion

Table 12.1

Having problems with slow builds? Use one of these techniques.

Problem

Slow compile time

Slow build machine

Slow tests

Overall slow build

Solution

Delete old code.

Scale using multiple build agents.

Categorize your tests, and don’t run them all every time.

Categorize your builds.

Now you know the obvious solutions for speeding up the build. But how about darker

lore? Let’s examine the seven deadly sins of slow builds.

12.2 Seven deadly sins of slow sof t w are bu i lds

When you get right down to it, serialized builds, where one step has to complete

before the next begins, are slow. When your build runs slowly, you may have one or

more of the seven deadly sins of slow software builds. This is a term coined by Usman

Muzaffar of Electric Cloud,1 a company that provides high-end build-management

and build-analysis software. The seven deadly sins lead to serialized processes. Why

not speed up that large project or multiple projects by running things in parallel as

much as possible? Table 12.2 lists the seven deadly sins and contrasts them with

good guidelines.

Table 12.2

The seven deadly sins of slow builds

Deadly sin

Make at the bottom

Targets with side effects

Mult iple updated files

Pass-based builds

Output in the source directory

Monoliths

Bad dependencies

Good guideline

Let make drive your build.

Update only one file in a make rule.

Write each file only once during a build.

Visit each directory once.

Write output to its own directory.

Split long jobs into mult iple targets.

Specify relationships in a make file.

Now that you’ve been introduced to the seven deadly sins, let’s dig into them to

understand what they mean and how you can counteract them with the good guide-

lines. We’ll paraphrase Usman’s explanations of the seven deadly sins.

1

Electric Cloud Commander provides functionality similar to TeamCity and CruiseControl.NET. For more
information, visit www.electriccloud.com.

http://www.electriccloud.com/

Seven deadly sins of slow sof t w are bu i lds

279

12.2 .1 Mak ing a bu i ld scr ip t dr ive you r bu i ld

Throughout this book, we’ve looked at MSBuild. Have you enjoyed spelunking into

the XML that makes MSBuild run? We didn’t think so. You may think it would be easier

to wrap MSBuild in a cool PowerShell or Python script and have it call MSBuild mult i-

ple times. The problem is, you’re not letting MSBuild do the things it does best, such

as comparing t imestamps on files and dealing with dependencies.

MSBuild is designed to understand what you want to happen, and then go back

and figure out how to do it. When externally scripted, you make multiple calls to

MSBuild. You’re telling it not only what you want, but how to get there. This causes

unnecessary serialization. The external script is at the top of the process, not MSBuild.

You want MSBuild to drive the actual compile, not have some external script do it.

There are two ways to fix this. First, you can remove the external scripts and put

MSBuild back at the top. But this approach can lead to monoliths, where you have one

big job; or it can create bad dependencies. These are two of the seven deadly sins. Don’t

have a single target in the MSBuild script; use multiple targets to break things up.

The second approach is a much better solution. I t ’s called separation of powers. Don’t

have MSBuild do everything for you; if you need to do some setup work, such as check-

ing out code or cleaning up folders from a previous build, do so outside of your

MSBuild script. I f you’ve followed us through this book, that’s exactly what we’ve done.

Now that the first sin has been resolved, let’s look at the second: targets with

side effects.

12.2 .2 Get t ing r id of bu i ld -scr ip t t arget s’ side ef fect s

Do you need to pass data from one build target (see chapter 3 for details) to another?

For example, does one target get the new version number and then pass it to another?

Or does a target figure out if you’re doing a debug or release build, only to send that

information to another target? This sounds innocent enough, doesn’t it?

The problem is that you have serialization, where one build target implicitly calls

another. To make it worse, this serializat ion is hidden. And even worse, it ’s often

impossible to tell if it isn’t working properly. But wait: there’s more bad news. I f the

two targets run in parallel, things can fail unpredictably. I n this case, you should intro-

duce serializat ion with an explicit dependency. Or, even better, merge the multiple

targets into a single target.

The next sin occurs when you update a file more than once.

12.2 .3 Mu lt ip ly ing updat ed f i les

The build process updates many files, some of them more than once. Examples

include build logs, program database (.pdb) files, and updated zip files. The problem

is that if a file is updated mult iple times (see figure 12.1), it takes longer to create mul-

tiple input files than to create the final file one time (see figure 12.2).

Figure 12.1 shows a serialized process that updates an output file more than once.

Source file 1 is processed, and the result placed in the output file. A second source file

280

CHAPTER 12

Ex t ending con t inuous in t egrat ion

Figure 12.1 A serialized process that updates the output file after each step in

the process

is processed, and the output from that pro-

cess updates the output file. Depending on

how the output code is written, the output for

source 2 can do a simple append to the out-

put file, or it can cause the output file to be

completely rewritten. This process gets even

more lengthy when source file 3 is added.

Figure 12.2 shows an alternative process.

Each source file produces its own output

file after processing. Each separate output

file is then combined one time to create the

final output file. This way of updating a file

only once can provide significant speed

increases, especially if the source files can

Figure 12.2 Mult iple output files that are

combined only once to create the final output

can be significantly faster than updating the

output file multiple times.

be processed in parallel.

In the case of the .pdb file, you can compile each source file separately. Use the

/pdb switch on the compiler (either csc or vbc) command line to specify that each

source file gets its own .pdb file. Don’t worry about combining them at the end of

the build. You don’t debug on the build server, so why take the extra step to com-

bine the .pdb files?

Next we turn to pass-based builds.

12.2 .4 Pass-based bu i lds

Pass-based dependencies occur when you

have to build things in a particular order or

you say, “We have cyclical dependencies, so

we have to control the order of the build.”

This completely serializes your build.

First, there’s no such thing as a cyclical

build. MSBuild doesn’t allow it . I f you think

you have one, you don’t. Analyzing this

Figure 12.3 Project A compiles and fails. We

then compile project B, which succeeds. We

then compile A again. Because it ’s successful,

we assume we have a cyclical dependency.

more closely, we get figure 12.3.

In this figure, we know that project B depends on project A; but when we compile

A, we get errors, and it doesn’t actually build. We then build B, and it succeeds. I f we

then build A again, we assume that we have a cyclical dependency. But what’s really hap-

pening is depicted in figure 12.4.

Seven deadly sins of slow sof t w are bu i lds

The reality is that B relies on only part of

A. That part builds. The other part of A

relies on B, so A fails the first t ime. Because

it’s partially built, B can now build, and

281

then A can build properly when the build is

run a second time. The solution is to break

A into two parts and serialize them. There’s

Figure 12.4 What really happens is that part

of A builds, and then B. Then, the remainder of

A that relies on B can build.

always a serialization that works.

Now we move on to where to place output from the build process.

12.2 .5 Ou t pu t in t he sou rce d irect ory

When you build your Visual Studio project, where does the output go? By default, it

goes in either the bin\ debug or the bin\ release folder under the project directory. You

can then manually or automatically copy the generated assemblies to some other

folder for unit testing. The additional copy takes time.

Do you clean out the generated files before each build? I f you have to specify each

individual file, it takes more time to delete these generated files. What if you have to

clean the output folders for multiple Visual Studio projects?

The solution is obvious: point all the generated output from the build to a single

folder. This way, you’ll have one output folder for the compiled assemblies and a sec-

ond output folder for the build artifacts, such as the build log, unit test results log,

and so on. Also, if you put this output on the local disk instead of a server drive, you’ll

get better performance.

Next, we look at monoliths.

12.2 .6 Monol i t hs

Monoliths exist when you have a single, large build target or a build target that per-

forms many tasks. This can get tricky. I t’s fairly easy to identify monoliths, but it can be

difficult to break them up. Where they occur in the build process can make a differ-

ence. You may have one at the beginning of your build that identifies dependencies.

At the end, you may have many file copies or copy a large file.

The bad news is, monoliths are often unavoidable. You have to use them. But if you

do have a monolith, you can ask several questions to try to break it up:

■

■

■

■

■

■

■

■

■

I s it necessary?

I f it ’s necessary, is there a faster way?

Can it be rewritten as MSBuild targets?

Can it be pushed later in the build process?

Can it be made optional?

Should it be run locally (on the build server) rather than on a file server?

Can it be cached?

Is it really part of the build or the setup?

Can it be broken into smaller steps, each one a separate target?

282

CHAPTER 12

Ex t ending con t inuous in t egrat ion

After you’ve asked these questions, you may be able to break down the monolith, mak-

ing it faster and more manageable.

There’s one more sin to cover: bad dependencies.

12.2 .7 Bad dependencies

Dealing with bad dependencies is another tricky area. I t’s almost impossible to resolve

all dependencies so that everything builds cleanly. The problem is that sometimes

dependencies build correctly, and other times the build fails. Even worse, you may not

know exactly why the build failed. Things may build correctly when you run the build

serially but fail on a parallel build. Or the build may not fail every time, only when

race conditions are just right. A race condition exists when the output of one process

is dependent on other processes completing in a specific sequence, but they run in

parallel, thus complet ing in an unexpected order.

How do you deal with this issue? First, you can run parallel builds often. The more

you run them, the more often the race conditions are likely to show up. This will alert

you to where the errors are so you can fix them.

Second, whenever possible, add the missing dependency. Make sure it exists.

Maybe you can serialize that part of the build process and run the rest in parallel.

Finally, you can centralize build rules. Doing so helps eliminate mistakes. Don’t

copy the same build code into multiple build files for the same project; this increases

the chances that one build script will be changed and another won’t. In other words,

follow the same rule for your build scripts that you would for source code: don’t copy

and paste code into mult iple files. Put things in one place and one place only.

We’ve covered a lot of ground discussing ways to speed up your build. We’ve talked

about things as simple as adding more hardware and as varied as the seven deadly sins

of slow builds. But you may have to deal with other issues as your CI process grows.

Next, let’s scale.

12.3 Scal ing CI

Your CI setup grows. You have more and more projects working on the build

server. You’ve done your best to minimize the time the build takes to run, but the

CI server is overloaded. You have many projects, and you work with many develop-

ers. The changes are pouring in more quickly than the build server can process

them. One option is scaling up (in other words, scale vertically) by buying more

memory for the server, switching the processor for a better one, or adding disk

space. I t’s easy, but you may bump the ceiling. What if you can’t scale higher? Try

scaling out.

12.3 .1 Bu i ld-agen t t heory

Most modern build servers can scale vertically. This means you can add more physical

machines. We touched on this topic briefly in chapter 4 when we discussed Microsoft

Team Foundation Server. Let’s dig a litt le deeper.

Scaling CI

283

Figure 12.5

The build server queues the build

orders and assigns build agents to

process them.

The theory is simple. There’s one central CI server and a bunch of build agents. The

server is responsible for build management. The server doesn’t process any builds

itself; it passes the order to build to one of the build machines. The server checks

whether there’s something to do, and if so, it queues the build or chooses the build

agent to do the work (see figure 12.5).

The algorithm to assign jobs to build agents is a science in itself. I t ’s based on

measuring the build-agent workload. You can measure the workload by analyzing the

build results. Does one particular agent take longer and longer to build or is it sitt ing

idle most of the time?

When using an agent, the CI server assigns a job to the build agent that is least used

or one that’s idle. I t can also direct a build to a given build agent because of the build

agent’s characteristics; for example, it may have the proper operating system to perform

the build. The server can start builds simultaneously on different machines—for exam-

ple, to test the software under various environments and give feedback more quickly.

Build agents are often categorized, and builds are marked to check for compatibility.

Build agents often don’t need to communicate with the source repository. The CI

server deals with getting the last version to build.

12.3 .2 Scal ing Team Cit y

TeamCity lets you set up a build grid. I t ’s a TeamCity server with a farm of build agents.

Setting up such a farm is easy; you’ll build one now. Follow these steps:

1

2

3

Prepare a separate machine onto which to install a build agent.

Go to the TeamCity website on your server, and switch to the Agents tab. You’ll

see something like figure 12.6.

In the upper-right corner is an Install Build Agent link. Click it, download the

install file, and execute it.

I f the machine you want to install on uses Windows, you’re asked whether to

install the build agent as a Windows service (if you want to use it productively,

284

CHAPTER 12

Ex t ending con t inuous in t egrat ion

Figure 12.6 Default build agent running together with the TeamCity server. From here, you can

install a new build agent.

you should choose to install it as a service). On other operating systems, you

can use Java Web Start or take care of the installation yourself (a zip package of

shell scripts is available to help you).

4

5

When you’re finished with the installation, you’re given the opportunity to con-

figure the newly installed build agent; figure 12.7 shows the details.

You can change the configurat ion variables using this window. The build

agent comes with its own Java Runtime Environment, and the path is set to it

by default. TeamCity is installed on the current machine using port 9090 by

default. Remember to open the port on the firewall to make communication

possible. Change the serverUrl variable to match your TeamCity server instal-

lation. You can change the temporary and working directories if you like. You

can always change the variables later by edit ing the XML configuration file.

After installing, you’re finished on the build-agent side. Go back to the server

website. On the Agents tab is a new Unauthorized agent. Click its tab, and click

the Unauthorized link to authorize the build agent (see figure 12.8).

You have one build agent installed, together with the TeamCity server and an addi-

tional build agent. I f both your machines use Windows and all the projects are .NET

projects, you have no compatibility issues, and TeamCity will always assign builds to the

build agent that is least occupied. As a result, TeamCity can execute more builds simul-

taneously. You’ve achieved horizontal scaling, as you can see in figure 12.9.

Scaling CI

Figure 12.7 Configuring the TeamCity build agent. Pay close attention to the ownPort

variable (the port needs to be open for communication) and the serverUrl variable (it’s

the TeamCity server location).

285

Figure 12.8

Authorizing a new build agent in TeamCity is required to make it work.

286

CHAPTER 12

Ex t ending con t inuous in t egrat ion

Figure 12.9

Simultaneous execution of builds on two different build agents under TeamCity

Build agents in TeamCity are characterized using system properties and environment

variables. You can freely set the requirements for build agents at the project level. For

example, you can say that you want your build to run only on Windows machines with

.NET Framework 4.0 installed. Let’s configure a project to do so:

1

2

Go to the build configuration, and choose the seventh wizard step: Agent

Requirements.

Add two system property requirements for the build, as shown in figure 12.10

(you can use the Frequently Used Requirements link on the page if you wish).

Figure 12.10 Build agent with additional system requirements (Windows and installed .NET

Framework 4.0). Both of the connected build agents are compatible.

Legal r oadblocks

287

You can also set the requirements by using environment variables on the build-agent

machine. I f you wish, you can give your custom variables a condition (like “exists” or

“contains”) if you like. The condition will be checked before assigning a job to the

build agent. I f it ’s fulfilled, the job will be assigned. I f not, another build agent will

be used.

As you can see, scaling a modern CI server is easy. I f you’re using CruiseControl.

NET, you’re in a more difficult situation; you can configure a project trigger to react

according to changes on another CCNet server, but you can’t design more sophisti-

cated scaling scenarios.

On the other hand, if you’re using TFS 2010, you have even more possibilit ies. You

can use build queuing and a grid of build agents to perform simultaneous integra-

t ions. You can use TFS Proxy for distributed teams. Let’s say your headquarters are in

America, and you have one offshore team in Asia. I f you let the offshore team connect

directly to the TFS server at headquarters, you’ll most likely end up with internet traffic

as a communication bottleneck. I t helps to set the TFS Proxy in the offshore location.

The developers connect only to the TFS Proxy server, and it optimizes communication

with the main TFS server.

NOTE

Some setups use network load balancing with multiple TFS instances to

lighten the workload on one TFS application tier. You can find a good paper

about scaling TFS 2010 at http: / / blogs.msdn.com/b/ tfsao/archive/2009/11/

05/ scaling-tfs-2010-beta-2.aspx.

Next, let’s change directions and look at softer topics. We’ll begin with legal issues

related to CI .

12.4 Legal roadblocks

The last thing a developer wants to hear about is a legal roadblock to their application

being fully tested and deployed. You may well be in such an environment. Federal,

state, or local laws may impose restrictions on moving your application internally in

your company.

One such law in the U.S. is the Sarbanes-Oxley Act, commonly called SOX. Passed

in 2002, SOX applies to all publically traded companies regardless of size. The bill was

created after several major accounting scandals at firms such as Enron, Tyco, and

WorldCom. The law creates tough restrictions on corporate accounting procedures

and reporting. I t requires that documented processes be in place so that similar

accounting scandals don’t happen again.

But what does a law governing accounting have to do with CI? I f you’re creating

internal applications that do any type of accounting, inventory, financial manage-

ment, and so on, you may have to comply.

Briefly, to comply with SOX, developers can’t touch QA or production systems. QA

can’t touch production or development systems. Production can’t touch QA or devel-

opment systems. This may make it more difficult for your CI system to function cleanly.

http://blogs.msdn.com/b/tfsao/archive/2009/11/05/scaling-tfs-2010-beta-2.aspx
http://blogs.msdn.com/b/tfsao/archive/2009/11/05/scaling-tfs-2010-beta-2.aspx

288

CHAPTER 12

Ex t ending con t inuous in t egrat ion

Figure 12.11 Under SOX, there's separation between development, QA, and

production. One team can’t access the systems of another. I t’s as if a brick wall exists

between the teams.

But here’s what you may be able to do. The development CI system compiles the code

and runs unit and integration tests. I t may run Sandcastle and do static code analysis.

I t may not run other tests such as acceptance, stress, scalability, load, performance,

and so on. I t certainly can’t push an application directly into production. I f the build

succeeds, it can push the compiled assemblies or even an install set onto a shared

server. Think of it as a demilitarized zone (DMZ) (see figure 12.11) where no work

takes place. I t’s a drop point for the QA files. Source code never goes here.

The QA people have their own CI system that picks up the dropped files and starts

running automated tests. Bugs are documented and entered into a bug-tracking sys-

tem that development has access to.

I f a build is deemed ready for release, the QA team pushes the install set out to

another DMZ between them and production. The production team then picks up the

bits and installs them, and users begin working with the new version.

We must stress that we aren’t lawyers and aren’t giving legal advice. You should

consult with an attorney to determine if any laws pertain to your environment and, if

they do, what specifically you need to do to comply with them.

To wrap things up, we now move on to a topic that seems out of place in a book on

CI : a CI maturity model.

12.5 Mat u r i t y m odel for CI

Different models that show the maturity of a process have grown out of the Capability

Maturity Model2 (CMM). I t’s a methodology for businesses to help improve their proc-

esses. In software, CMM is most often associated with application lifetime management

(ALM) in shops that use waterfall project-management methodologies. That said, it

seems as though a maturity model has no place in CI , a practice that came out of the

Agile movement, which is the complete opposite of waterfall.

But if we look at a maturity model as a way to improve processes, we start to see

areas that can be improved. The Enterprise CI Maturity Model3 (ECIMM) was devel-

oped by Eric Minick and Jeffrey Fredrick at Urban Code,4 a leading company in build

2

3

4

Capability Maturity Model is a service mark of Carnegie Mellon University.

You can download the complete Enterprise CI Maturity Model white paper at www.anthillpro.com/html/

resources/default.html.
To learn more about Urban Code and its Anthill Pro CI products, visit www.anthillpro.com.

http://www.anthillpro.com/html/resources/default.html
http://www.anthillpro.com/html/resources/default.html
http://www.anthillpro.com/

Mat ur i t y m odel f or CI

289

and release solutions. I t was the result of a discussion at the Continuous Integration

and Testing Conference (CITCON).

ECIMM breaks a CI process into four distinct areas: building, deploying, testing,

and reporting. In each area, five different compliance levels—introductory, novice,

intermediate, advanced, and insane—are provided, for ranking a level of compliance.

We’ll look at these in a moment. Additionally, the industry norm and a best practice

target level for each area are identified. You can use ECIMM to rate where your

company is compared to others and set a target for where your company should be in

relation to best practices. But to do this, you need to understand ECIMM, starting

with building.

12.5 .1 Bu i ld ing

As we discuss ECIMM, you’ll see that many companies are in the introductory stage for

most areas. Building (see figure 12.12) is no exception.

Building refers to using a source code repository, and the way your CI process per-

forms the actual build. Look carefully at the introductory level, where most compa-

nies are. I f you’re performing manual builds that check out the latest changes, you’re

probably at this level.

Compare that to the best practice. Are your builds continuous, meaning that they

run with every check-in? Do you use a single machine, or are your builds clustered?

(Remember that earlier in this chapter we talked about parallel builds.) What will it

Figure 12.12 The building area of ECIMM specifies levels for storing source code and compiling the

application. The industry norm (smiley face) and target levels (star) are specified in the Urban Code

ECIMM document. The graphics in this section are adapted from that document.

290

CHAPTER 12

Ex t ending con t inuous in t egrat ion

Figure 12.13 The deploying stage of ECIMM maps out levels to help you make your deployment

easier and more complete.

take to get you to the intermediate level? I f you’ve been following our advice, you

should be well on your way to complying with the best practices of the intermediate

level. You should have a dedicated build machine executing build scripts automati-

cally and using a source control repository.

Now it’s time to move on to deploying.

12.5 .2 Deploy ing

How do you get your application from development into QA? What about getting your

application to your users in the production environment? That’s what the next step,

deploying (see figure 12.13) is all about.

Chances are, you have a few scripts in your CI process that push the compiled bits

out to your QA department. But what if QA isn’t ready for that build? Did you just over-

write the version they had only partially tested?

You may also have multiple environments that you support, such as 32- and 64-bit.

Do you have different configurations of the software for each environment?

Why not let QA pull the latest build when they’re ready for it? That’s the idea

behind self-service test deploys. And a single, standardized configuration for each

environment is essential. I t not only makes it easier to program, it also makes testing

significantly easier.

Mat ur i t y m odel f or CI

291

NOTE

Automatic deployment to production, although it sounds ideal, falls

into the insane level. I t ’s difficult to do properly, and few companies do it

because of the level of complexity. One of the biggest issues here has to do

with SOX compliance as discussed earlier in this chapter.

We just talked about your QA department gett ing the latest build, so it ’s a good t ime to

examine ECIMM testing.

12.5 .3 Test ing

We’ve spent several chapters talking about different types of testing. ECIMM addresses

testing your application (see figure 12.14).

Many companies have some areas of unit testing. And perhaps other types of test-

ing have some automation attached to them. But are you doing static code analysis

with FxCop or StyleCop? How much unit testing do you have in place? How about

security scans? Even managed code can have security issues that need to be addressed.

I t’s interesting that 100% test coverage is placed at the insane level. We agree with

this, because 100% test coverage is not only almost impossible to achieve, but also

undesirable. Not everything needs to be unit tested, and doing so slows down the

build process.

The final step of ECIMM is feedback.

Figure 12.14

Application testing levels are an important part of ECIMM.

292

CHAPTER 12

Ex t ending con t inuous in t egrat ion

12.5 .4 Repor t ing

Getting good feedback is a key step of any CI process. I t’s also important to ECIMM

(see figure 12.15). After all, without good reporting, you have no way of knowing if

your CI process is doing its job or needlessly running through the steps.

Reporting is the only ECIMM stage that has novice as the industry norm. This level

is where we find reporting from most CI tools. Think about the reports you get from a

build. You see what the latest build result was, how many unit tests passed, and possibly

other important information such as other test results, static code analysis, document-

ing, and so on.

But these standard reports don’t give you much in the way of trend analysis. Are

bug counts going up or down over time? Is the percentage of code covered by unit

tests increasing? I s the speed of the build staying at a manageable level?

Cross-silo analysis is important too. This can involve collecting data across different

projects or teams inside your company. One team may be better at creating and run-

ning unit tests than another. Perhaps there’s something you can learn from this,

which you can apply to other teams.

The ECIMM is a valuable tool to use in your business as you expand the use of CI .

By using it as a guide for where you should be, you can improve your CI process.

Figure 12.15

Reporting is a key part of the ECIMM.

Sum m ary

293

12.6 Sum m ary

In this chapter, we presented several topics for you to consider as your CI process

grows. We discussed areas that cause the build to slow down, including the seven

deadly sins of slow builds, and we presented several ideas that you can implement to

speed up your CI process.

We then turned to legal issues that can impose roadblocks in moving applications

through your company. Specifically, we talked about SOX and one idea for helping

you comply with the law.

Finally, we discussed the Enterprise CI Maturity Model, which presents a way for

you to determine how your CI process compares with other companies and what you

should be targeting as a best practice.

We’re at the end of our journey in this book. We’ve dealt with various aspects of a

well-designed CI process. By now, you should know all you need to build your own

setup and to maintain and extend it, from creating a solid source control system to

automating the build, sett ing up a CI server, automating various types of testing, per-

forming code analysis, generating documentation, creating setup routines, and incor-

porating database integration and scaling. You’ll profit greatly from this knowledge.

We wish you well on your journey with continuous integration in .NET!

index

Numerics

automation platform,

seven deadly sins of slow soft-

100% test coverage 291

definition 67 ware builds 278–282
spreading to mult iple

5-rappen round 174
test 174

A

acceptance testing 169, 192–197

introduction 170
ActualValue 150
Adzic, Gojko 195
AfterBuild 80
agile

and documentation 11
development process 5

angle-bracket tax 95
AnkhSVN 14, 42
Ant 68–70
Anthill 95
application lifetime manage-

ment (ALM) 288
ASP.NET

handlers 253
modules 253

assembly, signing 24
AssemblyInfo 84, 86
AssemblyInfoReference 88
AssemblyVersion 84
Assert.AreEqual 150
assertion, definition of 150
Automake 68
automatic test 168
automating standards

compliance 11

B

bad dependency 282
Bamboo 95

BeforeBuild 80

BisSubscribe 137

black-box testing 168

broken build, rules 122

Build 74

target 72, 153

build

automating 20

breaking 172–173

broken. See broken build

continuous. See continuous
build

cyclical, no such thing as 280

daily. See daily build

definition of 5

driving with a build script 279

incremental. See incremental
build

manual integration. See man-
ual integration build

output location 281

parallel, running often to
reveal race conditions 282

pass-based. See pass-based
build

QA. See QA build

release. See release build

machines 277
staging. See staging build
types 7–8
weekly. See weekly build

build agent
categorized 283
theory 282–283
workload 283

build automation 67–70
build machine

bigger, to speed up CI 277
different, for each

project 277
build manager 15
build master 92
build process

linear 92
looped 92

build rules, centralizing 282
build script 92

naming 81
targets, side effects of 279

build state, immediate
access 122

build token 90
BuildDate 78
building continuously 7

C

C# , analysis with StyleCop 209–

213

295

296

INDEX

Capability Maturity Model

(CMM) 288
CCNet 15, 95–102

Administrator Dashboard 126
alternative feedback 128–129
and NUnit 151–154
and StyleCop 212
and TeamCity 212
angle-bracket tax 95
artifacts 98
configuration file 97
Configuration Validation

tool 98
configuring 97–100
console mode 99
distributing builds 101
email publisher 129
feedback 122–129
feedback mechanisms 96
installing 96–97
introduction 94
MSBuild 98
NUnit XSL transformer 154
project 97
publishers 101, 128
remoting endpoint 125
source control path 98
tasks 98
triggers 98, 100–102

inner trigger 101
interval trigger 98, 100
project trigger 100
schedule trigger 101

using I IS 96
Web Dashboard 96, 122–126,

153
and PartCover 155
build 123
build reports 125
configuring 123
FitNesse report 125
FxCop report 125
NUnit report 125
organization of 123
plug-ins 123
project 123
server 123

working as service 96
working directory 98
working standalone 96
XML Log Publisher 128
XSL transformer 154

CCTray 94, 126–128
configuration 126
feedback 126

indicator 127
noise level 126
Windows Notification

area 126
change, and CI 8
CI 4–12

and developer tasks 9
and ensuring deployable

software 9
and exist ing projects 9
and source control 30
and system maintenance 8
and the development

process 5–7
as centerpiece of

development 4
automating code coverage

with 11
automating

documentation 11
automating standards

compliance 11
beginning with 7
changing via baby steps 8
complying with Sarbanes-

Oxley 287
continuous database

integrat ion 11
creating and testing the instal-

lation process 11
definition of 4–5
example project. See example

project
feedback mechanism 10
golden rule 21
hardware and software

costs 9
increasing visibility of project

with 9, 12
infinite loop 91
legal roadblocks 287–288
maturity model 288–292
mult iple integrations per

day 4
objections to, overcoming 8–

10
reasons to use 9
reducing risk with 9–12
scaling 282–287
server 15
speeding up 277–278
speeding up incremental

builds with 10
testing 168–173
tools 13–20

build manager 15
CI server 15
code analysis 18
essential 14–16
feedback mechanism 15
source code control 14
testing tools 20
unit test framework 16

CI process 90–92
broken build 122
ClickOnce 251–253
creating installation

package 241
custom code-analysis

rules 217
failed 122
feedback

extending program-
matically 139, 142

getting
programmatically 139

LED message board 139–
141

over Skype 142
programming

mechanisms 140
SMS notification 142
via LED 141
via USB gadget 139–141

periodic poll 93
reducing dependencies 91
state discovery 121–122
StyleCop 210–213
WiX 247–248
working state 121
yet another successful build

state 121
CI server 90

and Linux kernel
development 94

angle-bracket tax (XML) 94
CCNet 95–102
choosing 92–95

aspects to consider 94
cost 94
dedicated machine 91
documentation 94
for .NET 94–95
freeing from assumptions 91
functionality 94
hardware 92
integrat ing unit tests with 151
interoperability 94
physical vs. virtualized 91
simple 93

INDEX

297

CI server (continued)

support 94
TeamCity 102–112
TFS Team Build 113–118
usability 94
vanilla 91
your own, vs. manual integra-

t ion build 92–93
Clean target 72, 74
ClickOnce 20, 248–253

advantages 248
automating 251
deployment technology 248
Front Page Extensions 249
getting version number from

SVN revision 252
installing 249
manipulating publication

HTML 252
Publish target 251
publishing 249
sandbox 248
smart clients 248
use of web server 249
versioning 251
Windows Form 248
with MSBuild 251
WPF 248

Code Analysis 200–208
breaking the build 206
enabling 200
Microsoft Minimum Recom-

mended Rules 201
Suppress Message

window 201
suppressions 201

code analysis
dynamic. See dynamic analysis
extending 218–223
static. See stat ic analysis
tools 18

code coverage, definition 11
Code Query Language. See

NDepend, CQL
code, removing, to speed up

CI 277
code-facing test 171
Command 74
compile manager 67
Condition 72
continuous build 7
continuous database integrat ion

definition of 261–262
rolling your own 262–264
using SSMS 262

with RoundhousE 264–265
with Visual Studio 266–275

Continuous Integration and
Testing Conference
(CITCON) 289

continuous integration. See CI
Copy 73–74
CruiseControl 94
CruiseControl.NET. See CCNet
Csc 72
csc 69
Cunningham, Ward 192
CustomBuildExtensions 84
customer-facing test 172

D

daily build 7–8, 90
dashboard.config 123, 154
Data Bound Generator 269
Data Dude 266–275
database

deploy options 268
files, keeping under source

control 262
placing under source

control 267
schema, handling changes via

scripts 261
target connection 267
test data

generating 268–271
readability 269

unit test ing 271–273
database integration, continu-

ous. See continuous data-
base integration

database object, creating script
for 262

data-generation plan 269
DefaultTargets 74
Delete 72, 74
demilitarized zone (DMZ) 288
dependency, bad. See bad depen-

dency
depends 69
Deploy 78
Design Guidelines for Class

Library Developers 200
developers, and CI 9
development

CI as centerpiece of 4
process 5

documentation
automating 11

formatting 228
XML notation 228–233

common tags 228–231
formatting comments 231–

233
formatting with

Sandcastle 233–239
Dream Cheeky 139
Duval, Paul, definition of CI 4
dynamic analysis, definit ion

of 200

E

Electric Cloud 95, 278
EmitDebugInformation 72
Enterprise CI Maturity Model

(ECIMM) 288–292
building 289
deploying 290–291
feedback 292
testing 291

error-driven development 146
example project

architecture 21
calculation core 21–26
folder structure 27
introduction 20–27
user interfaces 26–27

Exec 73–74
Execute() 85
ExpectedRate 150
[ExpectException] 151
extreme programming. See XP

F

failonerror 69
feedback mechanism 15
file, updating more than

once 279–280
filesystem deployment 258
FileUpdate 88
financial calculator, putting

under CI 90
Fit 192
FitNesse 20, 169, 192–197

column fixture 193
edit and test mode 195
fixtures 193
in the CI process 196
installing 192
Java Runtime

environment 192

298

INDEX

FitNesse (continued)

log file 197
running the server 192
syntax 194
test

running 194
running remotely 196
writing 194

test runner 194
TestRunner.exe 196
wiki style 192

Fowler, Martin
definition of CI 4
first article about CI 94

Fredrick, Jeffrey 288
functional test,

introduction 170
FxCop 18, 200–208

and StyleCop, conflict ing
rules 209

and TeamCity 207
and TFS 207
Check method 214
continuous analysis 203–206
custom rule, incorporating

into CI process 217
custom rules 213–218
extending 214–216
for compiled .NET 200
FxCopCmd.exe 204
GUI 203
ignoring rules 204
integrat ing with CI

servers 206–208
project 203
report 206
Rule tag 215
standalone 203
suppressions 201
XML rule definition 216
XSD transformation 206
XSL style sheet 207

G

GhostDoc 231
Git 14, 277

as distributed system 33
cost-benefit factor 33
Linus Torvalds’ use of 33
source control aspects 32

Global Assembly Cache
(GAC) 24

golden rule of CI 21
GUI testing, tools 180

H

Hello World 12–13

HID 139

feedback, via HID-enabled
device 139

generic .NET device 141

horizontal scaling 284

HTML

table 233

tables in XML
documentation 233

Hudson 15, 95

human interface device (HID).
See HID

I

IBM, Telelogic 14
Identity 88

[Ignore] 151

IgnoreTest(). 150

Importance 74

importData 163

incremental build 7

speeding up, with CI 10

Inno Setup 20

installation package 241

installation, creating and
testing 11

integrat ion test 170

separating from unit tests 277

integrat ion testing 169

bottom-up approach 175

in CI 173–179

leasing calculator 174

MSTest 173

NUnit 173

project layout 175

running 174

IntelliSense 78, 233

XML file to use for 228

ITask 83

I temGroup 72

I temGroups 79

J

Jabber, receiving TeamCity

notifications in 134

JetBrains Duplicates Finder 223

K

Kaner, Cem, Testing Computer

Software 11

L

leasing/credit calculator. See

example project
LOCAL.DBDeployment.

CommandLine.bat 264

M

Mail 78
maintenance, and CI 8
make 67–68
MakeDir 73–74
manual integrat ion build 92

vs. your own CI server 92–93
manual test 168

and the CI process 172
MbUnit 16
Message 73–74
Meyers, G. J. 11
Microsoft

FxCop. See FxCop
StyleCop. See StyleCop
Team Foundation Server

(TFS). See TFS
Visual SourceSafe (VSS).

See VSS
Microsoft Deployment Tool.

See MS Deploy
Microsoft Installer package.

See MSI package
Microsoft UI Automation.

See UIA
Microsoft Unit Testing Frame-

work. See MSTest
Microsoft.TeamFoundation 140
Microsoft.TeamFoundation.

Build.Client 140
Microsoft.TeamFoundation.

Client 140
Microsoft.VisualStudio.

TestTools.UnitTesting 157
Minick, Eric 288
mocking a unit test 170
mocking file operations 176–

179
monolith 281

breaking up 281
Moq 177

INDEX

299

MS Deploy 253–258

automating 256–258
command file 258
command-line

installation 258
configuration files 255
creating packages 254
database management 256
deployment 254
gathering MSBuild targets

and DLLs 256
I IS settings 254
manifests 258
migration 254
Package/ Publish sett ings 254
publishing 254
replacing configuration

values 256
synchronization 254
using MSBuild 256
Visual Studio 2010 254–256
XML transformations 255

MSBuild 15, 68, 70–78
and Visual Studio 78–83
code-analysis task 204

MSBuild Community Task 152
MSBuild Community tasks 252
MSBuild Sidekick 15
MSBuild task 81
MSBuildProjectDirectory 74
MSBuildTasks 84
MSBuildToolsPath 80
MSDN subscription 95
MSI package 241–243

adding project output 242
configuring 241
creating continuously 243–

244
creating in Visual Studio 241
using Visual Studio,

drawbacks 244
MSTest 16, 144, 157

and TFS 2010 160–161
and third-party CI servers 161
integrating with CCNet 162
integrat ing with

TeamCity 162
test coverage 160
unit test, creating 157–160

mstest 163

NUnit 16

and CCNet 151–154
attributes 150
command-line test

runner 152
GUI test runner 150
installing 149
running with MSBuild 152

unit test ing with 149–151
using with White 180
XML report 153

NUnit.Mocks 177
NUnitForms 20

O

O’Brien, Mike, HID device

library 141
objections, overcoming 8–10
Osherove, Roy, The Art of Unit

Testing 164
OutputAssembly 72

P

Community Tasks 76–78
example 77

Muzaffar, Usman 278
PartCover 154

installing 76
Copy 73
creating using Visual Studio

and MSBuild 243
custom tasks 83–88

implementing 84–86
using 86–88

dry run 258
Exec 73
FileUpdate 205, 252
Hello World 71–72
I temGroup 72
Mail 78
MakeDir 73
Message 73
Project 72
PropertyGroup 72
RemoveDir 73
running NUnit in 152
script

extending 73–76
starting with Visual

Studio 82–83
set of tasks 72
SvnInfo 252
Time 78
UsingTask 78
verbosity 75

N

NAnt 15, 68

executables 69
launching 69
properties 69

NCover 18, 154
NDepend 218–222

and CCNet 222
artifacts 221
automation 219
breaking build 221
code metrics 218
CQL 218
extending with CQL 222
integrat ing with

TeamCity 221
licensing 218
MSBuild task 219
report 221
static code analysis 218
Visual NDepend 220
Visual Studio plug-in 219
XSL 222

nmake 68
Non-Sucking Service Manager.

See NSSM
NSSM 191

pass-based build 280–281
Path 86
PostBuildEvent 80
PowerCommands 79
PreBuildEvent 80
Project 72
project directory, organizing 21
project, existing, placing under

CI 9
Property 86
PropertyGroup 72
PropertyGroups 79
psychopath 200

Q

QA build 7–8

R

race condition, revealing with

parallel builds 282
rake 68
release build 7–8
release engineer 92

RemoveDir 73–74
repository 21

300

INDEX

revision control. See source

control
RevisionNumber 88
Rhino Mocks 177
risk

database updates 11
of bugs 11
of schedule slippage 10
reducing with CI 9–12

RoundhousE
calling 265
command-line switches 265
continuous database

integrat ion 264–265
data migration 264
description of 264
non-interactive mode 265
running without switches 265
sample applications 264

S

Sandcastle 20, 233–239

daily build 238
GUI 235
Help File Builder (SHFB). See

SHFB
HelpFileFormat 236
HtmlHelp 236
in the CI process 237–239
using with TeamCity 238

Sarbanes-Oxley. See SOX
Satir Change Model

and technology adoption 10
steps 10

Satir, Virginia 10
scaling wall 70
SCons 68
script

creating for database
object 262

running automatically 264
scrum, development process 5
Selenium 20, 169, 185–189

.NET 189
ASP.NET 185
assertion 187
C# test format 187
commands 187
Firefox plug-in 185
IDE 185
installing 189
performing test remotely 189
RC 185

RC server 189

installing 189
installing as Windows

service 191
recording tests 185
running in different browser

contexts 189
running tests 187
table test format 185
targets 187
test suite 187
values 187

self-service test deploy 290
separation of powers 279
serialization, unnecessary,

fixing 279
setup project 241
seven deadly sins of slow soft-

ware builds 278–282
SHFB 233

Documentation Sources 235
MSBuild 235–237
MSBuild task 236

Silverlight, test
automation 182–184

Skype, providing build notifica-
t ions via 142

SmartSVN 42
Smith, Steven 10
source control 14, 29–65

and CI golden rule 32
benefits 31–32
centralized systems 33
centralized vs. distr buted 32–

33
choosing 30–35
CI 30
distributed systems 33
explicit checkout 34
explicit lock 31
file blocking 34

vs. non–file blocking 32, 34
free vs. paid 32–33
labeling revisions 31
locking vs. blocking 35
transactional vs.

nontransactional 32
Sources attribute 72
SOX 259

and CI 287
SQL script, editing in T-SQL

Editor 267
SQL Server, developers running

local copies 261
SSL, and SVN 36

SSMS, and continuous database

integrat ion 262
stability test, introduction 171
staging build 7–8
standards, compliance,

automating 11
static analysis, definition in 200
stored procedure, unit

testing 271–273
StyleCop 18, 209–213

analysis
continuous 210–213
performing 210

analysis report 211
AnalyzeDocument() 217
and FxCop, conflicting

rules 209
and TeamCity 212
breaking the build 211
build report 213
custom rule, incorporating

into CI process 218
custom rules 213–218
extending 216–217
installing 209
MSBuild StyleCopTask 211
MSBuild targets file 210
report page 212
rules

suppressing 210
turning on and off 210

Settings 209
Visual Studio plug-in 209
XML rule definition 217
XSL 212

Subversion. See SVN
SVN 14

AnkhSVN. See AnkhSVN
as centralized system 33
authentication 36
command-line utilit ies 42
commit 45–50

frequent 48
connection protocol 39
cost-benefit factor 33
directory structure with

references 52
externals 50
files

excluding 45
ignoring 47
merging 48

integrat ion with Windows
Explorer 42

locking 35

INDEX

301

SVN (continued)

messages 45
on Windows Server 35
protocol 38
pulling before committing 48
repository

branch 41
clean 47
creating 37–39
multiple-repository

layout 39
referencing 50–53
single-repository layout 39
structure 41
tag 41
trunk 41
vs. directory 39

resolving conflicts 48
SmartSVN. See SmartSVN
source control aspects 32
source control server 35–42
svn directory 43
TortoiseSVN client. See

TortoiseSVN
update 48–50
URL construction 38
virtual directory 38
VisualSVN Server. See

VisualSVN Server
working copy 43–45

SvnInfo 84
system test, introduction 170
system test ing 169

T

task loop 91
TaskName 88
Team Foundation Server (TFS).

See TFS
Team Foundation Server 2010.

See TFS
team, objections,

overcoming 8–10
TeamCity 15, 102–112

Add-in for Visual Studio 110
alternative notification 134–

135
analyzing code

duplication 223
and NCover 156
and NDepend 221
and PartCover 156
artifacts 132
Build Agent 104

build agent 102
build feedback 130–132
build grid 283
build runner 108
build script 130
checkout mode 106
configuration 104–110
continuous build 109
dry run 110
Duplicates Finder 223
email notifier 134
feedback 129–135
IDE plug-ins 133
installing 102–104
integrat ion build 93
introduction 94
Jabber notification 134
JetBrains 94
labeling builds 108
licensing 102
login 104
MSBuild 108
NAnt 108
pre-test commit 103
pre-tested commit 110–112
project 104
project configurations 130
project settings 106
project-level feedback 130
Projects tab 130
scaling 283–287
server-level feedback 130
service messages 163
tabs 130
test report 163
triggering 108
using Sandcastle with 238
version control system 106
Visual Studio Solution 108
Windows Tray Notifier 132–

134
noise level 132

technology adoption, and Satir
Change Model 10

Telelogic 14
[Test] 150
test

acceptance test. See accep-
tance test

automatic test. See automatic
test

code-facing test. See code-
facing test

customer-facing test. See
customer-facing test

execution time 172
failing fast 172–173
integrat ion test. See integra-

tion test
manual test. See manual test
stability test. See stability test
system test. See system test
timing 172
types 169–171
user-acceptance test. See user-

acceptance test
written by domain

experts 168
written by someone other

than developer 168, 171–
172

test coverage 154–157
test runner 194
test-driven development

(TDD) 168
[TestFixture] 150
testing

abstracting actual
implementation 176

acceptance test ing. See accep-
tance testing

black-box testing. See black-
box testing

CSV 176
I /O 176
injecting functionality 177
integrat ion testing. See integra-

tion testing
known state 178
system test ing. See system

testing
timeline 169
UI testing. See UI testing
unit test ing. See unit testing
white-box testing. See white-

box testing
testing pyramid 171
testing tools 20
[TestMethod()] 159
TFS 15, 94, 113–118

Administration Console 55
alternative feedback 137
and build controllers 113
and CI 54
and Reporting Services 54
and SharePoint 54
and SQL Server Express 137
and StyleCop 211
and Visual Studio Team

Explorer 58–60

302

INDEX

TFS (continued)

API 137
as centralized system 33
associating work item with

check-in 62
Basic configuration 53
BisSubscribe 137
build agents 113, 115
build artifacts 113
build configuration 116–

118
build controller 113
build details 137
Build Explorer 118
build layout 113
Build Notification 137
build queue 113
build scripting 117
Build Service 54
build-agent pool 113
checking in 61
checking out, branching,

merging 62
CI builds 116
Code Analysis report 207
collections 55–57

populating with project 57
cost-benefit factor 33
distributed teams 54
distributing building

tasks 113
email notification 138
feedback 135–138

LED message board 139
using API for extended

feedback 140
file storage 57
installing 53–54
Lab Management 57
licensing 53, 113
locking 63
locking and blocking 35
messages 62
migrating from VSS 53
mixing with SVN 64
notification 113
notification database 137
notification subscript ions 137
pending changes 62
process templates 59

Microsoft Solution Frame-
work (MSF) for Agile
Software
Development 60

MSF for CMMI Process

Improvement 60
Proxy 54
reporting services 137
retention 118
scheduled builds 116
server, connecting 58
setting up 53–64
sett ing up a server 53–64
shelvesets 64
shelving 63
Single Server

configuration 54
source control 53–64

adding solution to 61
managing 61–63

SQL Server integration 113
team project 55
testing on 160–161
TFS 2010 vs. VSS 64
tray notification 136
triggering 116
triggers

continuous integration
trigger 116

gated check-in 117
manual trigger 116
rolling build trigger 116
schedule trigger 117

turning on Code Analysis 207
using SQL Server 53
Visual Studio integration 58–

60
web feedback 137
Windows Workflow

Foundation 117
work items 62
XAML 117

TFS Basic
feedback limitat ions 135
report ing services, lack of 137

TFS Version Control, source
control aspects 32

ThoughtWorks 20
Time 78
TortoiseSVN 14

commit 48
icons 44
installing 42
resolving conflicts 48
revert ing, copying,

branching 50
working with repository 42–

53

Torvalds, Linus, use of Git 33
.trx file 163
T-SQL 261
Typemock I solator 177

U

UI testing 180, 192

integrat ing into the CI
process 189–192

Silverlight 182–184
tools 180
web applications 185–189
Windows Forms 180–182

UI tests in CI
reliability 190
Selenium 191
speed 189

UIA 180
unit test

as part of automated tests 145
design rules 145
framework 16
integrat ing with CI server 151
mocking 164–170
removing, to speed up CI 277
separating from integration

tests 277
unit test ing

as base of testing pyramid 171
as white-box testing 168
bird’s-eye view 145–146
error-driven

development 146
example 146–157
stored procedures 271–273
with NUnit 149–151

Urban Code 288
user-acceptance test 172
UsingTask 78

V

Value 86
Vault

as centralized system 33
cost-benefit factor 33
source control aspects 32

verbosity 75
version control system. See

source control
Version Control with Subversion 35
vertical scaling 282
virtual PC, deployment 259

INDEX

303

visibility of project, increasing 9,

12
Visual Basic, comments 228
Visual SourceSafe (VSS). See

VSS
Visual Studio

and MSBuild 78–83
Code Analysis. See Code

Analysis
Command Prompt 71
continuous database

integrat ion 266–275
database maintenance, put-

t ing into CI 274
generating test data 268
Import Database

Wizard 266
project file 79–81
solution file 81–82
starting MSBuild script 82–

83
Visual Studio 2010

MS Deploy 254–256
Visual Studio Installer 20
VisualSVN 14
VisualSVN Server

free vs. Enterprise 36
installing 35–37
integrat ing with Windows user

management 36
Management Console 35–37
on Windows 35
repository

creating 37–39
keeping healthy 39–42
location 36

setting up 35–42
SSL 36
users, managing 37

VSS 14
as centralized system 33
blocking 35
cost-benefit factor 33
replaced by TFS Basic 33
source control aspects 32

W

web application

deploying 253
developing under I IS 254

Web Deployment Agent
Service 258

Web Deployment Tool 253–
258

web package 254
weekly build 7–8
White Framework 169

creating tests 182, 184
installing 180
integrating results with CI

server 182
reusing Silverlight tests 184
running with higher

privileges 182
testing Silverlight

applications 182–184
testing Win32

applications 182
testing Windows Forms 180–

182
testing WPF applications 182
XML NUnit report 182

white-box testing 167
definition of 168

Windows Installer XML. See
WiX

WiX 20, 244–248
automating 247
components 247
creating shortcuts 247
installation directory

definition 246
installing 245–247
MSI package 247
product descript ion 246
project file description 246
registry keys 247
resources 247
setup project 245
toolset 245

UI 247
XML project files 244

WorkingDirectory 74

X

XML build script 68
XML documentation 228–233

< c> tag 232
< code> tag 232
< example> tag 230
< exception> tag 230
< list> tag 232
< param> tag 229
< paramref> tag 230
< remarks> tag 230
< returns> tag 229
< see> tag 230
< summary> tag 229
< table> tag 233
< value> tag 230
comments 229

creating 231
formatting text in 231–233

comments, formatting 231–
233

common tags 228–231
cref attribute 230
exceptions 230
formatting with

Sandcastle 233–239
HTML-style tables in 233
lists 232
name attribute 230
table 233

XML file, using for
documentation 228

xmllogger 154
xmlns 72
XP, development process 5
xUnit.net 16

Z

ZipFileName 78

C

.NET SOFTWARE DEVELOPMENT

Continuous Integration IN

.NET
Kawalerowicz Berntson

ontinuous integration (CI) combines frequent integration,

constant readiness, short build feedback cycles, persistent

testing, and a flexible approach to system requirements.

Adopting these practices, and the supporting tools, requires

rethinking your entire development process.

Continuous Integration in .NET shows you how to reimagine

your development strategies by creating a consistent continuous

integration process. You’ll use Visual Studio along with tools

like Subversion, MSBuild, TFS, TeamCity, NUnit, and Selenium.

And because CI is as much about the culture of your shop as

the tooling, this book provides clear guidelines for starting

and maintaining projects, along with metrics for measuring

project success.

What’s Inside

CI best practices using .NET tools

Test and build automation

Keeping code tidy with FxCop and StyleCop

How to make CI succeed in your shop

An independent consultant based in Silesia, Poland, Marcin
Kawalerowicz works for European customers in the automotive

and financial sectors, among others. He writes a popular blog

at iprogrammable.com. Craig Berntson is a Microsoft MVP and

popular speaker and trainer based in the US. He blogs at

www.craigberntson.com/blog.

For online access to the authors and a free ebook for owners

of this book, go to manning.com/ ContinuousIntegrationin.NET

SEE INSERT

“A great resource with a good
mix of open source and
Microsoft tools.”
—Erik D. Lane

Ciena Corporation

“Covers the whole gamut
of CI.”
—Rob Reynolds

FHLBank Topeka

“Up-to-date, ready-to-use, and
agnostic information on CI.”
—Philippe Vialatte, Capgemini

“It saved us plenty of time
and money!”
—Nikander & Margriet

Bruggeman
Lois & Clark IT Services

MANNING

$49.99 / Can $57.99

[INCLUDING eBOOK]

http://www.craigberntson.com/blog

