
www.allitebooks.com

http://www.allitebooks.org

What Readers Are Saying About

Core Data

I was putting off learning Core Data—and then I saw Marcus’s book.

Bought it, read it, learned Core Data. It even covers the hard things I

really needed to know but weren’t well written elsewhere: things like

Spotlight integration, version migration, syncing, and, most important

for me, multithreading.

Brent Simmons

Developer, NetNewsWire

If your application deals with data, you need Core Data. If you need

Core Data, you need to know Marcus Zarra.

Mike Lee

Engineer, United Lemur

At last we have a book to introduce people to this fantastic devel-

oper technology. Starting with a high-level overview and ending with

advanced techniques, Marcus expertly guides developers on their

journey from Core Data noob to expert.

Steve Scott (Scotty)

The Mac Developer Network

This book does a wonderful job of leading you through Core Data’s

steep learning curve. Even experienced Core Data developers will

learn something new.

Jon Trainer

President, Outer Level

I have been using Core Data since it was introduced, and there were

still new techniques that I uncovered in this book.

Luis de la Rosa

Founder, Happy Apps LLC

www.allitebooks.com

http://www.allitebooks.org

Core Data
Apple’s API for Persisting Data on Mac OS X

Marcus S. Zarra

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Marcus S. Zarra.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-32-8

ISBN-13: 978-1-934356-32-6

Printed on acid-free paper.

P1.0 printing, September 2009

Version: 2009-10-9

www.allitebooks.com

http://www.pragprog.com
http://www.allitebooks.org

Contents
1 Introduction 8

1.1 What Is Core Data? . 9

1.2 In This Book . 10

1.3 Acknowledgments . 12

2 Getting Started with Core Data 14

2.1 Our Application . 14

2.2 Our Application Design 15

2.3 Advanced Readers . 16

2.4 Creating Our Xcode Project 16

2.5 Building the Data Model 16

2.6 Building the Controller Layer 22

2.7 Building the User Interface 25

2.8 Adding a Splash of Code 29

3 Core Data and Bindings 34

3.1 Key Value Coding . 34

3.2 Key Value Observing . 39

3.3 Cocoa Bindings and Core Data 40

3.4 Other Elements That Use KVO, KVC, and Core Data . 44

4 Under the Hood of Core Data 51

4.1 NSManagedObject . 52

4.2 NSFetchRequest . 59

4.3 NSSortDescriptor . 63

4.4 NSManagedObjectContext 64

4.5 NSManagedObjectModel 68

4.6 NSPersistentStoreCoordinator 69

4.7 Fetched Properties . 71

4.8 Wrapping Up . 72

www.allitebooks.com

http://www.allitebooks.org

CONTENTS 6

5 Versioning and Migration 73

5.1 Some Maintenance Before We Migrate 74

5.2 A Simple Migration . 76

5.3 Fundamentals of Core Data Versioning 82

5.4 A More Complex Migration 85

5.5 Automatic Data Migration 88

5.6 Manual Data Migration 90

5.7 Progressive Data Migration 90

5.8 Tips and Tricks . 96

6 Performance Tuning 97

6.1 Persistent Store Types 97

6.2 Optimizing Your Data Model 99

6.3 Fetching . 104

6.4 Faulting . 108

6.5 Access Patterns . 112

7 Spotlight, Quick Look, and Core Data 114

7.1 Integrating with Spotlight 116

7.2 Integrating with Quick Look 130

7.3 Putting It All Together 138

7.4 Taking It Further . 139

8 Sync Services and Core Data 140

8.1 Sync Services Fundamentals 141

8.2 Updating Our Data Model 143

8.3 Creating the Sync Schema 146

8.4 Creating the Client Description File 149

8.5 Modifying the NSPersistentStoreCoordinator 151

8.6 Creating the Sync Helper 152

8.7 The Syncrospector . 158

8.8 Wrapping Up . 160

9 Multithreading and Core Data 162

9.1 Why Isn’t Core Data Thread Safe? 162

9.2 Creating Multiple Contexts 163

9.3 Exporting Recipes . 165

9.4 Importing Recipes . 173

9.5 The Recursive Copy Reviewed 178

9.6 Wrapping Up . 183

www.allitebooks.com

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=6
http://www.allitebooks.org

CONTENTS 7

10 Core Data and iPhone 184

10.1 Similarities and Differences 184

10.2 Memory Management . 190

10.3 Data Change Notifications 192

10.4 Recipes for the iPhone 195

10.5 Going Further . 206

11 Recipe: Distributed Core Data 207

11.1 Building the Server . 209

11.2 Building the Client . 218

11.3 Testing the Networking Code 221

11.4 Wrapping Up . 227

12 Recipe: Dynamic Parameters 228

12.1 Building the Xcode Example Project 230

12.2 The DocumentPreferences Object 230

12.3 Review . 236

Index 238

www.allitebooks.com

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=7
http://www.allitebooks.org

Chapter 1

Introduction
It is hard to believe that I have been working on this book for nine

months and that it is now complete. I freely admit that I walked into

this project with a lot of trepidation. There was simply no way that I

was going to fill an entire book about Core Data! Now looking back on

it, I realize how wrong I was. If you look at Core Data in a vacuum, then

it can be a fairly small subject, and believe me, that is a good thing. But

when we take it as part of the whole ecology of OS X, then it becomes

so much more, which makes it possible to write several books on the

subject.

Back when Core Data was first introduced, I was in the process of

designing a desktop application later to become known as Simple Ele-

gant Sales. This point-of-sale software was originally written for my wife

and her business as a photographer. I wanted her to be able to easily

handle the accounting of her business from her laptop as she traveled

from location to location. When I originally wrote the software, I had far

more experience with Java than with Objective-C, but I knew that if the

app was going to be taken seriously as an OS X application, the user

interface had to be written in Objective-C and Cocoa. A Java UI simply

would not do. However, I decided to write the back side of the applica-

tion in Java so that I could take advantage of the powerful databases

and relational mapping abilities of Hibernate.

I was about halfway through this project when I met Tom Harrington

of Atomic Bird (http://www.atomicbird.com). He suggested that I take a

look at Core Data for the back end of my software and that it might

suit my needs better than Java. At that time, Tiger had not yet been

released, and Core Data was still available only to developers. After

experimenting with it for just one day, I immediately went back to the

www.allitebooks.com

http://www.atomicbird.com
http://www.allitebooks.org

WHAT IS CORE DATA? 9

Joe Asks. . .

Is This Book for You?

If you plan on writing an application that saves data to disk,
then you should be taking a very long look at Core Data.
Whether you are focusing on the desktop or the iPhone, Core
Data is the most efficient solution to data persistence.

A good way to confirm that you know enough Cocoa to bene-
fit from this book is to take a look at Chapter 2, Getting Started
with Core Data, on page 14. You should find that chapter
dense, but every step should be familiar to you.

drawing board, scratched the entire project, and started over. It was

that much of an improvement over what I was doing.

Since that day, I have been enraptured by Core Data, and I quickly

learned everything about it that I possibly could.

1.1 What Is Core Data?

In the simplest terms, Core Data is an object graph that can be per-

sisted to disk. But just like describing a man as a “bag of mostly water,”

that description hardly does Core Data justice. If you’ve worked with

Interface Builder, you know that it effectively removes a third of the cod-

ing design known as MVC. With Interface Builder, a developer does not

need to spend countless hours writing and rewriting their user inter-

face to make sure that it is pixel perfect. Instead, they simply drag and

drop the elements in the IDE, bind them together, and call it done.

Of course, the problem with Interface Builder is that we still need to

code the other two parts! Both the controller and the model need to be

developed in code and made to work with the interface we just designed.

That is where Core Data comes in. In a nutshell, Core Data removes

another third from that MVC design. Core Data is the model.

It is a common misconception that Core Data is a database API for

Cocoa that allows a Cocoa application to store its data in a database.

Although that is factually accurate, Core Data does a lot more for us. It

serves as the entire model layer for us. It is not just the persistence on

www.allitebooks.com

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=9
http://www.allitebooks.org

IN THIS BOOK 10

disk, but it is also all the objects in memory that we normally consider

to be data objects. If you have experience working with Java, C#, or

some other object-oriented language, the data objects take a lot of time

to write, and they are generally very repetitive in nature. Core Data

eliminates most, if not all, of that boilerplate code for us and lets us

focus on the business logic, or the controller layer, of our application.

It does this with an interface that is as easy to use as Interface Builder.

In addition to ease of use, Core Data is also highly flexible. If we need to

step in and change the functionality of some portion of the data model,

we can. From how a value is handled when it is being accessed to how

data is migrated from one persistent store to another, we can choose

how little or how much we want to code ourselves and how much we

want Core Data to do for us.

The original design and idea of Core Data came from Enterprise Ob-

jects, which is part of Web Objects, another Apple framework. You may

be surprised to learn that Enterprise Objects and Web Objects, the

ancestors of Core Data, still run a large portion of Apple’s public-facing

websites. Both iTunes and http://www.apple.com run on a Web Objects

server. Therefore, although Core Data is a relatively new technology for

the OS X desktop, it has a long lineage.

We are also not at the end of the story with Core Data. Although it

is a stable and mature framework that is being used by thousands of

applications on a daily basis, there are most certainly things coming in

the future that will make it even greater. Just comparing its abilities to

those of Enterprise Objects, we know that the best is yet to come. If you

are starting an application now, you should be using Core Data.

1.2 In This Book

Within this book we’ll build a single application that utilizes Core Data.

We’ll use that application as the foundation through our journey with

Core Data. Once we have the application started, we’ll cover a few of

the technologies that are not strictly speaking part of Core Data, but

they nonetheless make Core Data work. We will then start exploring

Core Data in depth and how it applies to and works with the other

technologies of OS X.

We will start off in Chapter 2, Getting Started with Core Data, on page 14,

with building our demo application. In that chapter, we will go through

all the steps to make our application functional, but we’ll step through

www.allitebooks.com

http://www.apple.com
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=10
http://www.allitebooks.org

IN THIS BOOK 11

them very quickly. The goal of the chapter is to give us a frame upon

which to build as we explore the depths of Core Data. By the end of

the chapter, we will have a basic Core Data application running that we

can then expand upon.

In Chapter 3, Core Data and Bindings, on page 34, we will explore Key

Value Observing (KVO) and Key Value Coding (KVC), which are at the

heart of what makes Core Data such a powerful framework. Without

an understanding of KVO and KVC, the rest of Core Data will seem like

magic. Therefore, we will make sure we have a solid understanding of

how these technologies work and how they apply to Core Data.

Next in Chapter 4, Under the Hood of Core Data, on page 51, we will

explore the big pieces of Core Data. We will take each component and

grasp how it works with our application that we wrote and what it does

in the overall Core Data framework. I strongly recommend bookmarking

this chapter, because we will be utilizing its components through the

rest of the book.

In Chapter 5, Versioning and Migration, on page 73, we will explore

how to change our underlying data model once our application has

been released to the public. Mistakes happen, and more often than not,

improvements to an application cause a need for the data to change. In

this chapter we will explore how to handle the changes to data and how

to migrate it from one version to another. At the end of this chapter,

we will discuss a technique that makes versioning and migration easier

and reduces the amount of maintenance we need to perform.

In Chapter 6, Performance Tuning, on page 97, we take the components

we learned from Chapter 4 and explore how to make them run as fast

as possible. Although Core Data does a lot of work for us and is very

performant, it is still possible to do the wrong thing and slow it down.

In this chapter we will discuss some of the common mistakes made and

how to avoid them. With that knowledge, we will be better armed going

forward to avoid those mistakes so that we don’t have to go back and

fix them later.

In Chapter 7, Spotlight, Quick Look, and Core Data, on page 114, you’ll

learn about integrating our Core Data application with the rest of the

operating system. Nothing screams polish to me like an application that

works well with both Spotlight and Quick Look. In this chapter we will

learn how to make that happen in our application.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=11

ACKNOWLEDGMENTS 12

In Chapter 8, Sync Services and Core Data, on page 140, we’ll discuss

ways in which we can sync the data that is in our application across

multiple instances. With more and more users having more than one

computer, it is ever more important to be able to keep data “in the

cloud” and sync it properly across machines. By the end of this chapter,

we will be able to add that functionality to our application.

In Chapter 9, Multithreading and Core Data, on page 162, you’ll see how

to maximize the use of the computing power available to us. Modern

desktops and laptops have more than one CPU available to use, and

if the situation demands it, it is expected that our applications will

take advantage of all that processing power in a parallel manner. In

this chapter, we explore the safe ways to make a Core Data application

multithreaded.

In Chapter 10, Core Data and iPhone, on page 184, we take a side step

to discuss how we can use the power and flexibility of Core Data to

make our iPhone development easier. In this chapter we will also be

introduced to a new controller object that does not currently exist on

the Desktop.

In Chapter 11, Recipe: Distributed Core Data, on page 207, we explore

one solution for using Core Data across a distributed environment. By

combining Core Data, Bonjour, and distributed objects, we can access

a Core Data repository from more than one client spread across a local

network. Although I would not recommend developing the next great

MMORPG with this solution, it certainly has its uses.

In Chapter 12, Recipe: Dynamic Parameters, on page 228, the final

chapter, I share one of my secrets that I used in Simply Elegant Sales

and have used several times since its original design. In this recipe, we

design a document-level properties storage system similar to NSUserDe-

faults.

By the end of this book, we will have a superior grasp of all that Core

Data can do along with many practical applications of this technology.

From here we can take that knowledge to build the next generation of

fantastic desktop applications.

1.3 Acknowledgments

When I first started working with Core Data, I enjoyed it so much that

I wanted to share all the discoveries that I had made with it. I soon

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=12

ACKNOWLEDGMENTS 13

continued sharing discoveries with other technologies as my enjoyment

of the sharing became addictive. A while back I had the pleasure of

meeting a fellow developer by the name of Matt Long and helped him

become more proficient with Cocoa and its related technologies. During

that time, we continued to share what we were learning and teaching

in the form of the blog “Cocoa Is My Girlfriend.” All of that led to this

book. What started out with a simple altruistic gesture has turned into

the text you are about to enjoy. Along the way I have been helped by a

number of fantastic developers.

First, I would like to thank Matt Long for convincing me to share what

we learned in a broader space than just one on one. I think that dis-

cussion has changed both of our lives forever.

Second, I would like to thank Tom Harrington for turning me on to

Core Data in the first place. Being pointed at this technology at that

particular time had a drastic positive change on my development efforts

at the time.

I would also like to thank one man who tends to remain behind the

scenes: Brent Simmons. A quote comes to mind when I think of Brent:

“Keep away from people who try to belittle your ambitions. Small people

always do that, but the really great make you feel that you, too, can

become great.” —Mark Twain. Thank you, Brent, for making me feel

that I, too, can become great.

Lastly, I would like to thank the reviewers of this book who have caught,

corrected, and pointed out my many mistakes while writing. As every

developer knows, it is nearly impossible to test your own code, and

the same goes for your own writing. Without the people who read this

book and tested the code while it was being written, this would be a

far inferior work than the one you have in front of you. The testers and

reviewers of this book have gone further than I ever expected to help

make sure this work is accurate.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=13

Chapter 2

Getting Started with Core Data
Instead of starting off discussing theory or reviewing the concepts be-

hind Core Data, we will dive right into writing a Core Data application.

The application we build in this chapter will be used throughout the

rest of the book to explore the intricacies of Core Data.

You will be learning through doing. We will build a basic application

and, in the chapters following, look back through it to understand what

the pieces actually do. In this book we are writing a food recipe appli-

cation that uses Core Data. The concepts within a recipe application

are well known, and we will avoid spending cycles on trying to figure

out the concepts of the application while also trying to grok Core Data

itself.

2.1 Our Application

Before we start building our application, we will do a quick overview of

how the UI will look and work (see Figure 2.1, on the following page).

In section 1, we will allow the user to edit information about individual

recipes. Each recipe can be selected in the list and its details edited

next to it.

In section 2, we will allow the user to enter the ingredients of the

selected recipe. Each recipe will have its own list of ingredients that

can be added, viewed, and edited here.

In section 3, we will allow the user to add a picture of the recipe for

reference. This is a view-only element, and the addition of the image

will be handled through the main menu.

OUR APPLICATION DESIGN 15

Figure 2.1: Our recipe application

2.2 Our Application Design

In this chapter, we will start at the very beginning. You will be launching

Xcode and proceeding through all the steps to create the application

and bring it to a usable state. At the end of this chapter, you may be

surprised that the steps to create our application are so few. This is

part of the allure and strength of Cocoa development. Coupled with

Core Data, it is doubly so.

In the first version of our recipe application, we will give our future

users the following abilities:

• The ability to add recipes with a description, type, name, image,

and number of people it serves

• The ability to add ingredients to those recipes that include a name,

quantity, type, and unit of measure

This first version of our application is intentionally simple. This is use-

ful both so that we can add features to it later and thereby explore some

of the abilities of Core Data and so that we can keep the distractions to

a minimum while we explore Core Data.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=15

ADVANCED READERS 16

2.3 Advanced Readers

If you are already a bit familiar with Core Data and building a Core

Data application, please feel free to move quickly through the rest of

this chapter. In this chapter, we will walk through the construction of

our project and how to build its data model. The end result will be a

data model like the one shown in Figure 2.4, on page 21.

2.4 Creating Our Xcode Project

The first step is to create our Xcode project. With the recent versions

of Xcode, quite a few project templates are available to us, and more

than one of those is based on Core Data. If you are using Leopard, then

you will want to use the Core Data Application template, and if you

are using Snow Leopard, then you want to select the Cocoa Application

template and ensure that the “Use Core Data for storage” checkbox is

selected.

Once we select which template, we will name the project Grokking

Recipes, which will also be the name of our application.1 In your Groups

& Files listing in Xcode, you will see an additional folder named Models

containing the data model file (see Figure 2.2, on the following page).

The basic Core Data template gives us an application that works some-

what like Address Book. In Address Book, the user has only one data

file and generally accesses that data file via one window. Our recipes

application will be designed around that same pattern. We will have

exactly one data file that all the user’s recipes will be stored in.

Once the project is created in Xcode, it is time to start building the Core

Data aspects of our application.

2.5 Building the Data Model

Core Data applications are like database-driven applications, and in

that light, we will start with building the data structures first and then

move to the user interface. The three components we are going to be

working with at this point are entities, attributes, and relationships.

In our design (see Section 2.2, Our Application Design, on the previous

page), we already described at least two of the data objects that we

1. Although it can be changed later.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=16

BUILDING THE DATA MODEL 17

Figure 2.2: The data model in Xcode

want to use and at least some of the attributes. Therefore, we will start

with them. In our Xcode project, there is a group called Models, and

within that group is a file called DataModel.xcdatamodel.2 This file is a

representation of the data structure that Core Data will use. This file

has a lot of similarities to an entity-relationship diagram (ERD) except

that Xcode will compile it directly into our final data file structure.

Adding an Entity to the Model

In Core Data, an entity has a lot of similarities to a table in a normal

database design. Although this similarity is not exact, it is a good place

to start.

To add our first entity to our data model, first open the .xcdatamodel file

in the Models group, and then choose Design > Data Model > Add Entity

from the menu bar (or use the + button in the entry area in the top left).

This will add a blank entity to our data model. Next, double-click the

name of the entity, and rename it to Recipe.

2. It is possible this file will be named ${PROJECT_NAME}_DataModel.xcdatamodel depending

on the version of Xcode you are using.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=17

BUILDING THE DATA MODEL 18

Figure 2.3: Attribute details

Adding an Attribute Property

Just as an entity has a lot of similarities to a table, a property has quite

a few similarities to a column in that table. This similarity breaks down

very quickly when we start adding relationships, but it helps in the

beginning to think of it this way. Properties are further broken down

into several subtypes; the two most relevant are attributes and rela-

tionships. Relationship properties describe the relationships between

two entities, and attribute properties are the values of an entity.

To add our first attribute property to our Recipe entity, select the entity,

and choose Design > Data Model > Add Attribute from the menu bar;

you can also use the top + button or the keyboard shortcut. Like the

entity creation, this will create a new attribute property within our

entity. Double-click the name of this property, and rename it to name.

After renaming the attribute, select it to see its details, as shown in

Figure 2.3.

These details allow us to control several aspects of the attribute includ-

ing the default value, what type of attribute it is, and whether it is

transient, indexed, optional, and so on. We will go through all of these

settings in greater detail later, so for now set the type to String, set the

default value to untitled, and make sure it is not optional.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=18

BUILDING THE DATA MODEL 19

Once the first attribute is finished, add the following attributes to the

Recipe object:

• Set imagePath to an optional String without a default value.

• Set desc to an optional String without a default value.

• Set serves to an Integer 16 with a minimum value of 1 and a default

value of 1. Be sure to flag it as nonoptional.

• Set type to an optional String with a default value of Meat.

Creating Our Second Entity

With the Recipe entity nearly complete, it is time to create our second

entity. This second entity will store the ingredients that go into a recipe,

and we will call it RecipeIngredient. Following the same steps, we can add

these attributes:

• Set name to a nonoptional String with a default value of untitled.

• Set quantity to a nonoptional Integer 16 with a minimum value of 0

and a default value of 1.

• Set unitOfMeasure to a nonoptional String with a default value of

untitled.

Adding a Relationship Property

Relationship properties are created in the same way as attribute prop-

erties, although the specifics naturally differ. Add a relationship to the

Recipe entity by selecting Design > Data Model > Add Relationship from

the menu bar. For this first relationship, name it ingredients, and flag it

as optional.

Where a relationship is different from an attribute, however, is in the

properties. Instead of defining an object type, default values, and so on,

we are instead defining a destination entity, an inverse relationship,

and whether this relationship is “to-many.” For this relationship, we

will start by naming it ingredients, and then we set the destination entity

to RecipeIngredient, but we are not going to set the inverse relationship

yet. We are also going to flag it as to-many, since a recipe can definitely

have more than one ingredient.

The last option, the delete rule, instructs Core Data on how to handle

the relationship when this, the Recipe entity, is deleted. In this rela-

tionship, we will delete the RecipeIngredient object to avoid any discon-

nected objects. Therefore, we will select the cascade option, which will

remove any associated RecipeIngredient objects when the Recipe entity

is deleted.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=19

BUILDING THE DATA MODEL 20

Joe Asks. . .

What Is One-to-Many?

One-to-many is a database term that describes the relation-
ship between two tables in the database. Normally, there
are three kinds of relationships: one-to-one, one-to-many, and
many-to-many. A one-to-one relationship means that for each
record in the first table there can be no more than one record
in the second table. In a one-to-many relationship, for each
record in the first table, there can be more than one record
in the second table. The last relationship type, many-to-many,
means that for any record in the first table, there can be
any number of records in the second table, and, likewise, for
each record in the second table, there can be any number of
records in the first table.

Completing the Relationship

One rule that is often repeated by the developers of Core Data is that

every relationship in your database should have an inverse. Although

this may not make logical sense for the data, it is important for data

integrity within Core Data. What this means from our programming

perspective is that we need to be able to reference each object in the

relationship from either side. Apple recommends this inverse relation-

ship for many reasons, which will be discussed in greater detail

throughout this book.

To set up the inverse relationship, we select the RecipeIngredient entity

and add a Relationship property to it just like we did in the Recipe entity

earlier. This new Relationship property is named recipe with a destina-

tion of the Recipe entity. Next, we set the inverse relationship to be

ingredients, which was the name of the relationship we set in the Recipe

entity. As soon as we set the inverse relationship on the RecipeIngredi-

ent, the graphical view of the relationships will change. Instead of two

lines connecting the objects, they are replaced with one line, making

the graphical view quite useful for debugging relationship settings. In

our current design, an ingredient can have only one recipe; therefore,

we leave the to-many option unselected. Lastly, we set the Delete Rule

setting to Nullify. This setting will not delete the Recipe entity when a

RecipeIngredient object is deleted. Instead, it will just break the connec-

tion between the two.

www.allitebooks.com

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=20
http://www.allitebooks.org

BUILDING THE DATA MODEL 21

Figure 2.4: The managed object model (MOM)

Adding the Last Entity

We have one more entity to add in this release of our recipe applica-

tion. We will be categorizing the recipes that are added. For example,

we will be separating desserts from appetizers, and so on. To keep these

categories consistent, we store the actual category names in their own

object. Therefore, add one more entity to our model called Type. This

entity has only one attribute property, called name, which is a nonop-

tional string with no default value. Lastly, this entity has no relation-

ships because it will be used only as a lookup to populate the type

NSComboBox discussed in Section 2.7, Adding the Recipe Details, on

page 27.

And with that last entity, that concludes the construction of the data

model for our application. The final result should look similar to Fig-

ure 2.4.

Build the Data Objects

In other languages, or even in Cocoa applications that do not use Core

Data, the next step would normally be to build the data objects that

are associated with the “tables” in the “database.” Fortunately, we are

working with Core Data, and there are no data objects to construct.

As part of Core Data, defining the data model also defines the base

data objects for us. If we need custom management of objects, we can

extend from these, but at this point the base data objects (called NSMan-

agedObject) are more than sufficient for our needs.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=21

BUILDING THE CONTROLLER LAYER 22

2.6 Building the Controller Layer

As you know from your experience developing Cocoa apps, Interface

Builder is a very large part of any project. Now that we have built our

data model and we have a template ready in Xcode, it is time to put

together the user interface.

I should mention two things before we get into the fun of Interface

Builder:

• This is not going to be Delicious Library. We will be using standard

widgets for our application to help keep the non–Core Data code

to a minimum.

• There are a lot of features that we could add to this application

but we won’t. Those features, although useful, will detract from

our focus.

Adding Objects to the xib

The first part of the user interface we will work on is the objects in

the xib file. As with most applications, we need to add the AppDelegate

to the xib so that it both will be instantiated on startup and will be

properly linked into the application itself.

Add the AppDelegate

Upon opening MainMenu.xib and depending on the whims of the tem-

plates within Xcode, the AppDelegate may already be in the xib file. If it

is, great! Move on to the next section. If it is not, then we need to add

it.3

To add the AppDelegate to the xib file, follow these steps:

1. Find the NSObject in the library palette, and drag it to the xib’s

window.

2. Click the name of the NSObject, and when it is editable, change it

to AppDelegate.

3. Go to the Identity tab on the Inspector palette, and change the

class of the object from NSObject to AppDelegate.

4. Right-drag from the application to the AppDelegate object, and

select Delegate.

3. Please note that depending on the version of Xcode you are running, the applica-

tion delegate could have the application name prepended to it. If it does, then please

substitute that name for any reference to AppDelegate in this context.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=22

BUILDING THE CONTROLLER LAYER 23

Figure 2.5: The main menu xib

When this is completed, the AppDelegate class will be instantiated when

our application launches, and the application will send all delegate

messages to it.

Adding the NSArrayController Objects

Our application is going to display all of our recipes in a single win-

dow. To do that, we need to be able to reference the data so that it

can be displayed. Therefore, add three NSArrayController objects into our

xib that reference that data. Our window will then reference those NS-

ArrayController objects. Once the NSArrayController objects are added and

configured, the xib will look like Figure 2.5.

To add an NSArrayController for the recipe entities, follow these steps:

1. Find the NSArrayController object in the library, and drag it to the

xib file.

2. Click the name of the NSArrayController, and when it is editable,

rename it to Recipes. If you have trouble getting the element to go

into edit mode, you can change the name in the Identity inspector

in Interface Builder and change the identity Name field.

3. On the Attributes tab of the inspector, change the mode from Class

to Entity, and change the entity name to Recipe.

4. Make sure that the Prepares Content flag is selected.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=23

BUILDING THE CONTROLLER LAYER 24

Figure 2.6: NSArrayController content set properties

5. On the Bindings tab of the inspector, bind ManagedObjectContext

to the AppDelegate with a model key path of managedObjectCon-

text.

Now that we have the recipe’s NSArrayController built, we need to config-

ure the other two, the recipe ingredients and the type. The type NSArray-

Controller follows the same steps as our Recipe entity, but we need to set

the entity name to Type so that it will be populated with Type objects.

Other than that one difference, we can follow the previous steps to com-

plete the type’s NSArrayController.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=24

BUILDING THE USER INTERFACE 25

Figure 2.7: The main window

Set the identity of the last NSArrayController, the recipe ingredients’ NS-

ArrayController, to RecipeIngredient. In the Attributes inspector, choose

Entity, and set the entity name to RecipeIngredient. Set the bindings as

before with one additional change. On the Bindings tab of the inspec-

tor, enable the content set in the controller content and point it at the

recipe’s NSArrayController with a controller key of selection and a model

key path of ingredients. See Figure 2.6, on the preceding page.

Now we are ready to build the NSWindow itself.

2.7 Building the User Interface

Now that we have all the data objects referenced properly, it is time to

build the user interface. Although this interface certainly will not be

winning any ADAs4 any time soon, it will allow us to view and edit all

the data objects in our model. The window we are building will look like

Figure 2.7, and we will quickly walk through the steps to set it up with

a more detailed review of what we are doing in Chapter 3, Core Data

and Bindings, on page 34.

4. Apple Design Awards

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=25

BUILDING THE USER INTERFACE 26

Building the Recipe Source List

The first part of this interface that we are building is in the upper-

left corner just below the search field. This view is an NSTableView that

is configured with one column, no horizontal scroll bar, an automati-

cally displaying vertical scroll bar, and the highlight set to Source List.

The scroll bars are configured in the inspector for the NSScrollView.

The number of columns and the highlight option are configured in

the NSTableView inspector. Each of these inspectors can be accessed

by Control+Shift-clicking (or Shift+right-clicking) the NSTableView and

selecting the appropriate view from the list. If the inspector is not on

the screen, it can be displayed from the Tools > Inspector menu item.

To bind this table to our recipe’s NSArrayController object, though, we

need to dig down a little bit and get ahold of the NSTableColumn so that

we can tell that column what to display. We could click in the table view

until eventually, ideally, we would get the NSTableColumn selected, but

fortunately there is an easier way. If we Shift+right-click the table, we

will be presented with a pop-up listing all of the views, hereby making

it easy for us to select the NSTableColumn (see Figure 2.8, on the next

page). With the NSTableColumn selected, we can now open its Bindings

tab in the inspector and bind its value to the RecipesNSArrayController

with a controller key of arrangedObjects and a model key path of name.

Once this is set, our Recipe entities will now show up in this table. More

important, when we click a recipe in this list, that recipe will become

the selection that feeds the rest of the UI.

Next we need to add the buttons that will control the creation and

removal of Recipe entities. To do this, we drag an NSButton (it does not

matter which one) from the Library and place it below the Recipe table

view. Then in the button’s Attributes tab, we want to set its image to

NSAddTemplate (a system-level image available for our use), change its

style to Round Rect, and remove its title if it has one. Once that is done,

we need to select the menu item Layout > Size to Fit to get the button

to the perfect size. Once that is done for the add button, select Edit >

Duplicate from the main menu to create a second button and change

the second button’s image to NSRemoveTemplate.

Next, we can “wire up” the buttons under the NSTableView and connect

them directly to the recipe’s NSArrayController. The add button will be

connected to the -add: action, and the remove button will be connected

to the -remove: action on the Recipes NSArrayController. These buttons

can be connected to their actions by holding down the Control key,

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=26

BUILDING THE USER INTERFACE 27

Figure 2.8: List view tree

clicking the button, and dragging from the selector sent action to the

NSArrayController. With those small changes, we can now add and remove

recipe entities at will.

Adding the Recipe Details

With the source list in place, it is time to add the details about the

recipe. These details, specifically the name, serves, description, and type,

will tie to the now-valid selection controller key on the recipe’s NSArray-

Controller. That way, when a user clicks in the list, the relevant details

of that recipe will be selected.

The first two are text fields, and the third is a combo box, as shown

in Figure 2.7, on page 25. With the exception of the combo box for the

type, all of these details are configured the same way. All of them have

their Value binding associated with the recipe’s NSArrayController object

with a controller key of selection and a model key path of name, serves,

and description as appropriate. One tip with regard to the text area is

to be sure to turn off the Rich Text setting. With this setting on, the

field expects an NSAttributedString instead of an NSString and can be a bit

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=27

BUILDING THE USER INTERFACE 28

Figure 2.9: Remember to turn off the Rich Text setting.

confusing (see Figure 2.9). In addition, to be proper citizens, we should

drag over an NSNumberFormatter to the Serves text field and configure it

to allow only whole numbers.

The combo box is a little more complex. Although it is also associated

with the selected recipe, we need to populate the entire list with values.

For now, we will enter the possible values for this box manually into

Interface Builder, as shown in Figure 2.10, on the following page. Next

we need to bind its current value to the selected recipe. We do this by

binding the NSComboBox value to the currently selected recipe’s type

value. On the Bindings tab for the NSComboBox, we open the Value sec-

tion, bind it to the recipe NSArrayController, and set the controller key to

selection and model key path to type. Later, in Section 4.4, NSManage-

dObjectContext, on page 64, we will show how to prepopulate this list

directly into the Core Data persistent store.

Adding the Ingredients

Now that we have the recipe section of our UI complete, it is time to

add ingredients. This is the table you see in the lower-left corner of

our window. Fortunately, this part is almost identical to setting up the

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=28

ADDING A SPLASH OF CODE 29

Figure 2.10: Manual data entry for the combo box

recipe source list. However, unlike the recipe source list, our NSTable-

View will have three columns, display its headers and its vertical scroll

bar, but hide the horizontal scroll bar. Enter the column headings as

Name, Quantity, and Unit of Measure.

Like the recipe source list, bind the values for each column in the NS-

TableView to our recipe ingredients’ NSArrayController using the controller

key arrangedObjects and using the appropriate model key paths: name,

quantity, and unitOfMeasure. The quantity column (or more specifically

the table cell in the quantity column) should also have an NSNumberFor-

matter assigned to it so that the quantity is properly formatted for the

value that it holds. Once those are configured, we can see the recipe

ingredients for the selected recipe. Remember that we configured the

recipe ingredients’ NSArrayController to feed off the selected recipe, so we

do not have to do anything extra at this point.

Like the recipe source list, the add and subtract buttons are config-

ured by binding them to the recipe ingredients’ NSArrayController objects

-add: and -remove: methods, respectively. And with that, we have the

ingredients section complete and are nearly done with our UI.

2.8 Adding a Splash of Code

Wondering where the code is? As it stands right now, our recipe appli-

cation is fully functional. We can run it without any actual code on

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=29

ADDING A SPLASH OF CODE 30

our part and start inputting recipes. With the combination of Cocoa

and Core Data, we can produce an application like this with no custom

code on our part. However, we are not stopping there.

Displaying a Picture of the Recipe

What recipe application would be complete without a picture? The

users of our application need to know what the dish is going to (or

at least should) look like when they are done. Fortunately, from the UI

point of view, this is an easy addition. Drag an NSImageView (referred to

as an image well in Interface Builder 3.1) onto our window, and con-

nect its value path to the imagePath of the recipe’s NSArrayController with

a controller key of selection.

Importing Images

Once we have the NSImageView added to our user interface, we need to

make our AppDelegate aware of it. In addition, we need to add a way to

set the image path of our Recipe entities. Therefore, we need to update

our AppDelegate.h and add an IBOutlet for the recipe NSArrayController

and an IBAction to be able to set the image path, as shown here:

Download GrokkingRecipes_v1/AppDelegate.h

@interface AppDelegate : NSObject

{

IBOutlet NSWindow *window;

IBOutlet NSArrayController *recipeArrayController;

NSPersistentStoreCoordinator *persistentStoreCoordinator;

NSManagedObjectModel *managedObjectModel;

NSManagedObjectContext *managedObjectContext;

}

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator;

- (NSManagedObjectModel *)managedObjectModel;

- (NSManagedObjectContext *)managedObjectContext;

- (IBAction)saveAction:(id)sender;

- (IBAction)addImage:(id)sender;

@end

The IBAction, specifically -(IBAction)addImage:(id)sender;, will be called

from our main menu and will display an open file dialog box when it is

called. In addition, for us to be able to work with the recipe entities, we

need to be able to get a reference to the selected recipe. To do that, we

will add a reference to the recipe’s NSArrayController that is instantiated

in our nib within the AppDelegate.

www.allitebooks.com

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v1/AppDelegate.h
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=30
http://www.allitebooks.org

ADDING A SPLASH OF CODE 31

Figure 2.11: Add Recipe Image menu item

Once the recipe’s NSArrayController has been added to the AppDelegate

header, we need to go back to Interface Builder briefly and Control+drag

from the AppDelegate to the recipe’s NSArrayController to complete the

binding.

While we are here, we need to add a menu item to the File menu. We do

this by making sure the MainMenu element is open in Interface Builder

(it will appear as a floating menu) and clicking its File menu. From

there we can either add a new NSMenuItem or use one that already

exists that is not being used. Since the Save As menu item is not rele-

vant to our application, go ahead and rename it to Add Recipe Image.

Once it is renamed, Control+drag from it to the AppDelegate, and bind

the menu item to the IBAction we defined in the header, as shown in

Figure 2.11. With the bindings in place, it is time to implement the

-addImage: method.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=31

ADDING A SPLASH OF CODE 32

Download GrokkingRecipes_v1/AppDelegate.m

- (IBAction)addImage:(id)sender

{

id recipe = [[recipeArrayController selectedObjects] lastObject];

if (!recipe) return;

NSOpenPanel *openPanel = [NSOpenPanel openPanel];

[openPanel setCanChooseDirectories:NO];

[openPanel setCanCreateDirectories:NO];

[openPanel setAllowsMultipleSelection:NO];

SEL select = @selector(addImageSheetDidEnd:returnCode:contextInfo:);

[openPanel beginSheetForDirectory:nil

file:nil

modalForWindow:window

modalDelegate:self

didEndSelector:select

contextInfo:recipe];

}

The implementation of -addImage: will display an NSOpenPanel, which

will attach to the window as a sheet, making it modal to the window.

Next, we tweak the NSOpenPanel a little bit so that it cannot select direc-

tories or multiple files or create directories. You will also notice that we

first check to make sure a recipe has been selected before we open the

panel. A little bit of error checking can go a long way.

Since sheets work asynchronously, we need to hand it a callback to

another method in the AppDelegate. Also, while we are engaging the

sheet, we will pass along the current recipe reference. When the sheet

calls back, we are guaranteed to still be talking about the same recipe

we started with.

Download GrokkingRecipes_v1/AppDelegate.m

- (void)addImageSheetDidEnd:(NSOpenPanel*)openPanel

returnCode:(NSInteger)returnCode

contextInfo:(NSManagedObject*)recipe

{

if (returnCode == NSCancelButton) return;

NSString *path = [openPanel filename];

//Build the path we want the file to be at

NSString *destPath = [self applicationSupportFolder];

NSString *guid = [[NSProcessInfo processInfo] globallyUniqueString];

destPath = [destPath stringByAppendingPathComponent:guid];

NSError *error = nil;

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v1/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v1/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=32

ADDING A SPLASH OF CODE 33

[[NSFileManager defaultManager] copyItemAtPath:path

toPath:destPath

error:&error];

if (error) {

[NSApp presentError:error];

}

[recipe setValue:destPath forKey:@"imagePath"];

}

In -addImageSheetDidEnd:returnCode:contextInfo:, we grab the filename

from the NSOpenPanel and stick it into the correct recipe. As part of

this callback, we get passed the recipe so we will get the filename and

set it into the recipe. However, there is a risk there. What happens if the

user moves the image? Perhaps it was a temporary image? To ensure

that we always have the image available, we will copy it to a known

location within our control and then use that file path. To accomplish

this, we grab the filename from the NSOpenPanel and also construct a

unique path within our Application Support directory structure. Next we

use the NSFileManager to copy the image to that location. Last we set the

new file path into our Recipe object.

With the addition of that menu item, we have completed the initial func-

tionality. Our application is now ready to hand off to our trusty users,

and we can eagerly await feedback. While we wait to hear back from

them, we can tear into the depths of Core Data. To test our application,

we can do a Build and Go from Xcode and start entering recipes into

the application.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=33

Chapter 3

Core Data and Bindings
Cocoa Bindings provides a lot of the magic behind Core Data. Cocoa

Bindings consists of a number of APIs and concepts that together allow

us to develop our applications using the Model View Controller para-

digm without requiring a tight coupling of the three aspects.

Cocoa Bindings allows us to design views, controllers, and models that

all expect data in a specific format without requiring that we bind them

to specific classes. This means we can use views in multiple places

and swap out controllers and even models without extensive (if any)

recoding.

In this chapter, we’ll look at some of the key components of Cocoa Bind-

ings and then delve into the specifics of how Core Data works with those

bindings. The two primary APIs that we are looking into are Key Value

Coding and Key Value Observing. Between these two APIs, we are given

a tremendous amount of flexibility in our design. In addition, these

APIs are part of the foundation that allows Interface Builder to function

and allows us to focus on the business logic of our applications. Lastly,

these APIs are used heavily by Core Data to allow us to focus on the

business logic of our applications as opposed to the data layer.

3.1 Key Value Coding

One of the cornerstones of Cocoa Bindings is Key Value Coding (KVC).

Key Value Coding is a way to access the attributes of an object without

calling the accessors of that object directly. Key Value Coding is imple-

mented through an informal protocol on NSObject itself and is used

mainly through the getter/setter pair -valueForKey: and -setValue:forKey:.

KEY VALUE CODING 35

-valueForKey:

The method -valueForKey: is a generic accessor to retrieve an attribute

on an object. For example, if we had an object called Recipe and it had

an attribute called name, normally we would access that attribute via

the following:

Recipe *myRecipe = ...

NSString *recipeName = [myRecipe name];

However, this requires specific knowledge about the Recipe object to

exist in the calling method and generally requires that we import the

header file of the Recipe object. However, with Key Value Coding, we can

obtain this same attribute without having any preexisting knowledge

about the Recipe object:

id myRecipe = ...

NSString *recipeName = [myRecipe valueForKey:@"name"];

By itself, this is not all that useful. However, there are huge benefits to

it that are not apparent on the surface. Here’s an example that shows

how you might better take advantage of this:

- (NSString*)description

{

NSMutableString *string = [NSMutableString stringWithFormat:@"[%@] {",

[self class]];

NSEntityDescription *desc = [self entity];

for (NSString *name in [desc attributeKeys]) {

[string appendFormat:@"\n\t%@ = '%@'", name, [self valueForKey:name]];

}

[string appendString:@"\n}"];

return string;

}

In this example, I am utilizing the NSEntityDescription1 class to retrieve

the names all of the attributes of an NSManagedObject subclass and

generating an NSString for display in the logs. With this method, I can

reuse it in every NSManagedObject subclass that I create rather than

having to create a custom -description method for each subclass.

There are a couple of things to note in this example. First, the tar-

get object is not required to have accessor methods for the attribute

being queried. If our target object has only an ivar2 for a name, it will

still be resolved and retrieved properly. In addition, if the target object

1. We will discuss the NSEntityDescription class in greater detail in Chapter 4, Under the

Hood of Core Data, on page 51
2. ivar stands for instance variable. This is different from a static or local variable.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=35

KEY VALUE CODING 36

has neither an accessor nor an ivar, the target object will still have

a chance to respond to the request before an error occurs via the

-valueForUndefinedKey: method. Lastly, all the properties of an NSMan-

agedObject are queryable via the KVC protocol. What this means is that

if we have an NSManagedObject defined in our model, we can retrieve

an instance of that object and access its properties without having to

implement a single line of code in the target object!

-setValue:forKey:

Being able to dynamically access properties on an object is quite useful,

but that is only half of what KVC does. The other half is the ability to

dynamically set attributes on an object in much the same manner that

we can retrieve them. Normally, we would change the name attribute

on an Recipe object by calling the setter method:

Recipe *myRecipe = ...

[myRecipe setName:@"Yummy Cookies"];

Like the earlier getter accessor, this requires preexisting knowledge of

the Recipe object to be able to use that accessor without compiler warn-

ings. However, with KVC, we can access it in a more dynamic manner:

id myRecipe = ...

[myRecipe setValue:@"Yummy Cookies" forKey:@"name"];

This call will attempt to use the setter -setName: if it is available; if it is

not, then it will look for and use the attribute directly if it is available,

and failing that, it will call -setValue:forUndefinedKey: on the target object.

The combination of the dynamic getter coupled with the dynamic setter

allows us to manipulate objects without having to write accessors and

without having to know (or care!) if they exist. This is used to great

effect in one of the Core Data recipes to create a preferences singleton

object that reads its values from a properties table. See Chapter 12,

Recipe: Dynamic Parameters, on page 228.

@property

In addition, as of OS X 10.5 Leopard, we have the new keyword @prop-

erty that allows us to synthesize accessors to attributes on an object.

This new feature plays very nicely with KVC, and the two can be used

together to produce extremely dynamic and flexible code. By utilizing

the new @property keyword, we can instruct the compiler to generate

getter and setter accessors for us that are KVO compliant. In a 32-bit

application, we can define a @property that has the same object type

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=36

KEY VALUE CODING 37

and name as a defined ivar. This will tell the compiler that getter and

setter accessors exist or will exist for that ivar. In a 64-bit application,

the ivar itself is not required because the property definition handles

that for us as well. For example, if we had an object with the following

header:

@interface MyObject : NSObject

{

NSString *myString;

}

@property (retain) NSString *myString;

@end

Xcode would interpret it the same as the following header:

@interface MyObject : NSObject

{

NSString *myString;

}

- (NSString*)myString;

- (void)setMyString:(NSString*)string;

@end

In combination with the @property keyword, we have the @synthesize

and @dynamic keywords for use in our implementation files. @synthe-

size will generate the actual accessors that the @property alludes to in

the header. Therefore, in our example MyObject.m file, we can declare

the following:

#import "MyObject.h"

@implementation MyObject

@synthesize myString;

@end

and have the same effective code as this:

#import "MyObject.h"

@implementation MyObject

- (NSString*)myString;

{

return myString;

}

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=37

KEY VALUE CODING 38

- (void)setMyString:(NSString*)string;

{

@synchronized(self) {

if ([string isEqualToString:myString]) return;

[myString release];

myString = [string retain];

}

}

@end

The retain in the setter is added by the compiler because we specified it

in the property. If we had set it to assign instead, then no retain would

have occurred. Likewise, the locking of the ivar is a default option that

we could have turned off by adding the nonatomic option to the property

definition.

When dealing with multiple properties on an object, this can be a great

time-saver. There have also been indications that the accessors gener-

ated by the compiler are faster than the “normal” accessors that devel-

opers write. In addition to generating accessors, the @synthesize keyword

is smart about what it implements. If we need to implement our own

setter for a property, then it will not overwrite that setter.

Alongside the @synthesize property, we have the @dynamic property. Un-

like @synthesize, which generates the accessors for us, @dynamic tells

the compiler that while the accessors for the property are not there at

compile time, they will be there at run time and to not produce a warn-

ing for them. @synthesize and @dynamic are sibling keywords. For each

property, we can use one or the other but not both.3 If the accessor

methods will be implemented at runtime, we would use the @dynamic

property instead of the @synthesize property so that the compiler does

not produce a warning. This is particularly useful for Core Data sub-

classes, which we will discuss in Chapter 4, Under the Hood of Core

Data, on page 51.

It should be noted that it is possible to have a @property definition that

does not match the name of the ivar. For example, it is fairly common

to have ivars that start with an underscore, but the accessors do not

include the underscore. The @property can handle this as well as part

of the @synthesize and @dynamic calls.

3. However, neither is required in a situation where we are implementing the accessors

ourselves.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=38

KEY VALUE OBSERVING 39

@interface MyObject : NSObject

{

NSString *_myString;

}

@property (retain) NSString *myString;

@end

@implementation MyObject

@synthesize myString = _myString;

@end

3.2 Key Value Observing

Key Value Observing (KVO) is the sister API to KVC. KVO allows us

to request notifications when an attribute has changed. By observ-

ing attributes on an object, we can react when those attributes are

changed. KVO is also implemented via an informal protocol on the

NSObject, and you register and remove observers using -addObserver:for-

KeyPath:options:context: and -removeObserver:forKeyPath:. Although, like

KVC, there are other methods involved in the protocol, these are the

primary two used.

If we wanted to observe the name value on a recipe, we would add

ourselves (or another object) as an observer for that value like this:

static NSString *kPragProgObserver = @"PragProgObserver"

id myRecipe = ...

[myRecipe addObserver:self

forKeyPath:@"name"

options:(NSKeyValueObservingOptionNew|NSKeyValueObservingOptionOld)

context:kPragProgObserver];

What this snippet of code is doing is adding self as an observer to

the myRecipe object and asking that when the name value changes to

please notify self of that change and include both the old value and

the new value in that notification. We pass along a context so that we

can ensure we are acting on observations meant only for us and that

they are not accidentally intercepted. After this code has been called,

any time the name property is changed on that instance of Recipe, the

-observeValueForKeyPath:ofObject:change:context: is called upon self.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=39

COCOA BINDINGS AND CORE DATA 40

We can then handle that change notification as appropriate:

- (void)observeValueForKeyPath:(NSString*)keyPath

ofObject:(id)object

change:(NSDictionary*)change

context:(void*)context

{

if (context != kPragProgObserver) {

[super observeValueForKeyPath:keyPath

ofObject:object

change:change

context:context];

return;

}

NSLog(@"Attribute %@ changed from %@ to %@", keyPath,

[change valueForKey:NSKeyValueChangeOldKey],

[change valueForKey:NSKeyValueChangeNewKey]);

}

When the variable is changed, we will see output similar to the follow-

ing:

Attribute name changed from untitled to Beef Chili

When we are done observing a value, we can stop receiving messages

by passing -removeObserver:forKeyPath: to the observed object:

id myRecipe = ...

[myRecipe removeObserver:self

forKeyPath:@"name"];

KVO is what allows views to automatically refresh themselves from the

model when the data has changed. When a view is initialized, it uses

KVO to connect all its components to the underlying objects and uses

the notifications to refresh itself.

3.3 Cocoa Bindings and Core Data

The combination of KVO/KVC (collectively referred to as Cocoa Bind-

ings) and Core Data reduces the amount of code that we are required

to write by a considerable amount. In the previous chapter, we wrote

almost no code to create and display our recipe objects. Nearly all the

work that we did was in Interface Builder. In this section, we will dis-

cuss each of those interface objects that we used and how they worked

with Core Data.

How does this apply to our application? Let’s review the user interface

that we built in Chapter 2, Getting Started with Core Data, on page 14

and how we used KVO and KVC.

www.allitebooks.com

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=40
http://www.allitebooks.org

COCOA BINDINGS AND CORE DATA 41

Figure 3.1: Select each NSTableColumn individually.

NSTableView

In our recipe application, we make heavy use of the NSTableView. In the

main window of our application, we have two table views, one to list

all of the recipes and another to list the ingredients for those recipes.

Whenever an application needs to display a list of items or a grid of

data, the NSTableView is the element to use.

NSTableView, like NSOutlineView (as discussed in Section 3.4, NSOutline-

View, on page 46), plays very nicely with Core Data. This is especially

true when the NSTableView is backed by an NSArrayController that is feed-

ing the data. However, it is possible to use NSTableView with a cus-

tom data source if that is appropriate for the problem at hand. How-

ever, when bound with an NSArrayController, then the NSTableView can be

manipulated with other objects such as the NSSearchView discussed in a

moment to produce interfaces that integrate smoothly and give a great

user experience.

In an NSTableView, like the NSOutlineView, we do not actually bind the

table itself to the NSArrayController. Instead, we select each column indi-

vidually and bind it to a property of the objects in the NSArrayController

(see Figure 3.1). As we did in Chapter 2, Getting Started with Core Data,

on page 14, we bind the column to the arrangedObjects controller key

and the model key path to the value we want displayed in that column,

as shown in Figure 3.2, on the following page.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=41

COCOA BINDINGS AND CORE DATA 42

Figure 3.2: Bind the table column to the Core Data property.

With this configuration, the NSTableView will display the data from the

NSArrayController automatically and, thanks to KVO, will stay in sync

with the data stored in the persistence layer.

NSArrayController

NSArrayController is an extremely useful object when working with Core

Data because it is aware of the Core Data layer and knows how to talk to

it without any additional code on our part. When we configure it within

Interface Builder, all that we really need to give it is the NSManagedOb-

jectContext and a data object type. The rest of the work—retrieving the

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=42

COCOA BINDINGS AND CORE DATA 43

objects, updating those objects, and creating new ones—is all handled

for us.

NSArrayController also understands relationships between objects when

it is working with Core Data. In our recipe application, we have one

NSArrayController configured to manage RecipeIngredient objects. Based

on our data model, these are child objects that are bound to a specific

recipe. Because NSArrayController understands these relationships, we

can configure it to pull and display only those RecipeIngredient objects

that are connected to a Recipe object that is selected in another NSArray-

Controller. This again is made possible by KVC and KVO. When we con-

figure the RecipeIngredient’s NSArrayController to provide only those ingre-

dients that are related to the specific recipe, what it is doing behind

the scenes is accessing the Recipe object and requesting its ingredients

property via KVC. In the RecipeIngredient’s NSArrayController, we bind the

NSManagedObjectContext so that new ingredients can be added. In addi-

tion to properly being able to create (and remove) objects from the per-

sistence layer, the NSArrayController will also manage the relationship

between the newly created or removed RecipeIngredient and the parent

Recipe object.

All of this works because Core Data is the entire persistence layer and is

accessed in a consistent way no matter what object is being dealt with.

Because Core Data uses KVO and KVC, our controller objects do not

need to know very much about the objects, other than the name of the

objects and where they are stored. The rest is all resolved at runtime

based on the settings that we provide in Interface Builder. In our recipe

application, we have one NSArrayController that is bound to the Recipe

entity in Core Data. Because we also bound that NSArrayController to

our NSManagedObjectContext, it is able to retrieve those Recipe entities

automatically and make them available to the rest of the user interface.

When our interface is loaded, those NSArrayController objects go out to

that NSManagedObjectContext and ask for the entities that currently

exist. Once they are loaded into the NSArrayController objects, any view

element associated with them will be notified, via KVO, that the data

is available for display. All of this happens behind the scenes without

requiring us to write code for any of this.

NSFormatter

Users expect fields in the interface to accept their input and format it

appropriately. This is where NSFormatter objects come into play. When

dealing with any type of number, it is best to add an NSNumberFormatter

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=43

OTHER ELEMENTS THAT USE KVO, KVC, AND CORE DATA 44

to the text field or table column and define its display. Likewise, when

working with dates, use an NSDateFormatter on the field or column to

ensure that the data will be formatted and validated correctly before it

is stored in the Core Data repository. When working with Core Data, it

is sometimes necessary to manipulate the display of the data both so

that the user’s input can be validated and so that it can be displayed

in a usable form. For instance, it is not a very good user experience to

display currency as 3.99 rather than $3.99 or to display a date in raw

seconds.

In our application, we used an NSNumberFormatter to display the quan-

tity in the ingredients column of our second NSTableView. If we were to

add a shopping list to our application, we would also use NSNumberFor-

matter objects to display currency and NSDateFormatter objects to show

date and time information.

To add an NSFormatter to a field (either a column or a text field), select

it in the library palette, and drag it onto the interface element. Once

it is in place, you can configure its details in the Attributes inspector,

as shown in Figure 3.3, on the next page. The Attributes inspector will

allow you to configure exactly how the data is presented to the user.

In addition to properly displaying number and date data, the NSFormat-

ter classes will also accept input from the user and send it back to the

model in the correct format. For example, by applying NSNumberFormat-

ter to the quantity column of the ingredients table, we are guaranteed

to receive an NSNumber back from the user interface.

Once an NSFormatter has been applied to an object, it can be a little

tricky to reference it again to make changes. To be able to change or

remove an NSFormatter once it has been applied, you can select the user

interface element, and a small double bracket icon will appear below it.

Selecting that icon will reference the NSFormatter again so that it can be

manipulated. See Figure 3.4, on page 46.

3.4 Other Interface Elements That Use KVO, KVC, and Core Data

Although the previous list shows how we are using KVO and KVC to

access our Core Data repository in our recipe application, we should

quickly review the other elements that, if we wanted or needed to, could

be utilized to display the data in our application as well.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=44

OTHER ELEMENTS THAT USE KVO, KVC, AND CORE DATA 45

Figure 3.3: NSNumberFormatter Attributes inspector

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=45

OTHER ELEMENTS THAT USE KVO, KVC, AND CORE DATA 46

Figure 3.4: Accessing an existing NSFormatter on an element

NSObjectController

NSObjectController shares a lot of similarities with the NSArrayController

discussed earlier. However, unlike the NSArrayController, the NSObject-

Controller is designed to represent one instance rather than an array of

instances. One common usage of the NSObjectController is to represent

the selected object of an NSArrayController, thereby making it clearer as to

what data is being displayed in the interface elements that are bound to

the NSObjectController as opposed to an NSArrayController. Another com-

mon usage is to have an entire interface, such as a detail sheet or child

window, be bound to the values within an NSObjectController and then

have the File’s Owner reference and populate that NSObjectController. In

this design, the File’s Owner (usually a subclass of NSWindowController)

simply has to populate the NSObjectController with a call to -setContent:,

and the entire UI will get populated automatically. This again makes

the maintenance of the code very easy and also improves readability.

NSOutlineView

If we wanted to change the look of our application, we could display

a single NSOutlineView instead of the two table views we have currently.

With an NSOutlineView, we could display a list of recipes with a hierarchy

of ingredients listed under them, as depicted in Figure 3.5, on the next

page.

NSOutlineView shares a lot in common with the NSTableView object. In

fact, it is a subclass of NSTableView. The major difference is that the

NSOutlineView displays data in both a column format as well as a hier-

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=46

OTHER ELEMENTS THAT USE KVO, KVC, AND CORE DATA 47

Figure 3.5: Outline view of recipes

archal format. This changes how the data needs to be represented and

accessed. Instead of a flat array of objects, the NSOutlineView expects the

data to be in a tree structure. Fortunately, there is a controller designed

just for that use: NSTreeController. Some care needs to be taken when

working with Core Data and an NSOutlineView. In general, the NSOutline-

View and the NSTreeController expect the data to be in a fairly organized

state. NSTreeController expects each parent (or branch) to have children

accessible via the same methods. This is a bit counterintuitive to hav-

ing descriptive names for relationships between objects, and I normally

implement accessors instead of making my relationships generic. For

instance, if we had a recipe that has children named RecipeIngredients,

I would add another accessor to that relationship called children, purely

for the NSOutlineView to use. We will discuss custom NSManagedObject

classes in the next chapter.

Unlike its parent object, NSTableView, the NSOutlineView does not work

as cleanly as you might expect. You can combine it with the NSTreeCon-

troller, but you get a lot more functionality and control by implement-

ing the data source protocol for the NSOutlineView instead of using the

NSTreeController object. Since we have seen continual improvement in

the last couple of releases of OS X on the NSTreeController, I suspect this

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=47

OTHER ELEMENTS THAT USE KVO, KVC, AND CORE DATA 48

situation will change in the future. However, for now, the data source

protocol is the better option when working with the NSOutlineView object.

NSTreeController

As discussed in Section 3.4, NSOutlineView, on page 46, NSTreeCon-

troller objects are primarily used by the NSOutlineView interface element.

Although they can store any data that lends itself to a tree structure,

they are best suited as a controller for NSOutlineView objects. Unfortu-

nately, there is still quite a bit of work to be done with the NSTreeCon-

troller, and the results we get from working with it can be unexpected

and unclear. Therefore, I recommend skipping it at this time and imple-

menting the data source protocol instead when working with tree data.

NSSearchField

The NSSearchField interface element is an extremely useful tool to pro-

vide that extra little bit of polish to an interface. Its primary purpose

is to filter the objects in an NSArrayController. This does not seem like

much until we remember that, thanks to KVO, any tables or interface

elements associated with that NSArrayController will get updated auto-

matically and instantly. This means if we put a search field into our

application and link it to our NSArrayController of Recipe objects, our

source list of recipes will automatically be filtered based on the user

input into that NSSearchField. Even better, we don’t have to write any

code to accomplish this! All that we need to do to implement it is con-

figure the bindings for the NSSearchField.

To accomplish this, first we need to add an NSSearchField to our appli-

cation. In Figure 3.6, on the next page, we have decreased the vertical

size of the Recipe source list and inserted an NSSearchField above it. Next

we need to configure its bindings.

As shown in Figure 3.7, on page 50, the NSSearchField interface ele-

ment works with an NSPredicate. We write the predicate in the Predicate

Format field substituting $value for whatever the user inputs into the

search field and using the controller key, model key path, and value

transformer to bind it to our data. In this example, we want to filter on

the name of recipes; therefore, we bind this NSSearchField to our recipe’s

NSArrayController using the controller key of filterPredicate and a model

key path of name.

Once we add one predicate, another will appear on the Bindings tab

for the NSSearchField. This is intended so that we can use a search field

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=48

OTHER ELEMENTS THAT USE KVO, KVC, AND CORE DATA 49

Figure 3.6: Adding an NSSearchField to our application

for more than one type of search. Each search will be shown in the

drop-down on the NSSearchField, and the Display Name binding will be

shown to the user. This allows us to create one NSSearchField that can

search for recipe names, ingredients, descriptions, or anything else we

may need.

Once the binding is complete, we are done adding a basic search field.

Running the application will show that text entered into the search field

impacts the list of recipes, as shown in Figure 3.8, on the next page.

Now that we have a better understanding of the user interface we built

in Chapter 2, Getting Started with Core Data, on page 14, we can next

look at the structure of the Core Data code provided for us in the tem-

plate to get a firm understanding both of it and of how to improve it.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=49

OTHER ELEMENTS THAT USE KVO, KVC, AND CORE DATA 50

Figure 3.7: NSSearchField bindings

Figure 3.8: Search filter running against the recipe list

www.allitebooks.com

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=50
http://www.allitebooks.org

Chapter 4

Under the Hood of Core Data
The more we understand the details of Core Data, the better equipped

we are to understand when something goes wrong or how to accomplish

a task that is off the beaten path.

In my experience of working with and writing persistence layers for var-

ious languages, I am constantly amazed at how simple and elegant the

Core Data API is. There is very little overlap in functionality between the

individual pieces of Core Data—no wasted space or unnecessary redun-

dancy. Because Core Data is built upon the infrastructure of Objective-

C and Core Foundation, it does not seek to duplicate functionality that

already exists in other parts of the overall API but instead uses it to its

full extent.

In this chapter, we will walk through the various pieces that make up

Core Data and explore how they apply to the ways that we use Core

Data and how they apply to the application we are developing in this

book. By the end of this chapter, we will have a firmer grasp of what

Core Data is, what we can do with it, and how to use it to its full

capabilities.

The Core Data API, or stack as it is commonly called, consists of three

primary pieces: NSPersistentStoreCoordinator, NSManagedObjectModel,

and NSManagedObjectContext. All of these work together to allow a pro-

gram to retrieve and store NSManagedObject objects. In most situations,

the program will access NSManagedObjectContext only once the stack

has been created. It is possible to access the other components of the

stack, but it is rarely necessary.

NSMANAGEDOBJECT 52

Joe Asks. . .

What Is a Stack?

The term stack has a few different meanings depending on its
context. In this context, it refers to a multilayered structure that
passes data around in a vertical manner. Vertical here means
coming in through the top layer and reaching down to the last,
or bottom, layer. Data is never passed directly to the bottom
layer or any of the middle layers; it always accessed from the
top.

4.1 NSManagedObject

NSManagedObject is the object we work with the most in a Core Data

application. Each instance of NSManagedObject represents one entity in

our Core Data repository. By combining Core Data with KVC and KVO,

this one object can dynamically represent any object that we need and

that can be defined in our data model.

All of the properties and relationships defined in our data model are

available and are easy to access directly from the NSManagedObject.

Without subclassing it, we can access values associated with an NSMan-

agedObject in the following ways.

Accessing Attributes

Attributes are the easiest to access. By utilizing KVC, we can get or set

any attribute on the NSManagedObject directly. You may have noticed

that we did not write a Recipe entity in the previous chapter. At this

point in our application, NSManagedObject provides all the functionality

that we require. For example, we could get the name as follows:

NSManagedObject *recipe = ...;

NSString *name = [recipe valueForKey:@"name"];

Likewise, we can set the name in a similar fashion:

NSManagedObject *recipe = ...;

[recipe setValue:@"New Name" forKey:@"name"];

When we want to subclass NSManagedObject, we can also define prop-

erties for the attributes (and relationships discussed in a moment) so

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=52

NSMANAGEDOBJECT 53

that we can access them directly. In the header of our subclass, we

would define the properties normally:

Download Spotlight/PPRecipe.h

@interface PPRecipe : NSManagedObject {

}

@property (assign) NSString *desc;

@property (assign) NSString *name;

@property (assign) NSString *type;

@property (assign) NSManagedObject *author;

@property (assign) NSDate *lastUsed;

As you can see, we are defining the property like normal, but there

are no ivars associated with those properties. Since these properties

are created dynamically at runtime, we do not need to declare them in

the header. However, we do need to flag them as dynamic so that the

compiler will not issue a warning. This is done in the implementation

file:

Download Spotlight/PPRecipe.m

@implementation PPRecipe

@dynamic desc;

@dynamic name;

@dynamic type;

@dynamic author;

@dynamic lastUsed;

By declaring them as @dynamic, we are telling the compiler to ignore

any warnings associated with these properties because we “promise” to

generate them at runtime. Naturally, if they turn up missing at runtime,

then our application is going to crash. However, when we are working

with NSManagedObject objects, the attributes will be looked up for us,

and we do not need to implement anything. By adding that code, we

can access the attribute directly, as shown in the following example:

PPRecipe *myRecipe = ...;

NSString *recipeName = [myRecipe name];

//Do something with the name

[myRecipe setName:recipeName];

Primitive Access

It should be noted that accessing the attribute via KVC or properties

will trigger KVO notifications that the attribute has changed. There are

situations where we do not want this to occur or where we prefer it to

http://media.pragprog.com/titles/mzcd/code/Spotlight/PPRecipe.h
http://media.pragprog.com/titles/mzcd/code/Spotlight/PPRecipe.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=53

NSMANAGEDOBJECT 54

occur later. In those situations, we can access the attribute using the

-primitiveValueForKey: and -setPrimitiveValue:forKey: methods. Both of these

methods work the same as the -valueForKey: and -setValue:forKey methods

that we are used to working with, but they do not cause KVO notifica-

tions to fire. This means that the rest of our application will be unaware

of any changes we make until and unless we notify it.

Where is this useful? I find it quite useful when I am loading in data

from an external source and the data is going to impact several attri-

butes at once. Imagine we wrote a recipe importer that accepted a

comma-separated value (CSV) file from another recipe application. In

that situation, we may not want the UI or other parts of our applica-

tion making decisions based on the data in the middle of the import.

Therefore, we would want to update the values without notifications,

and once all of them are done, we let the notifications go out. The code

to handle this situation would look something like this:

- (void)importData:(NSDictionary*)values //CSV translated into a dictionary

{

[self willChangeValueForKey:@"name"];

[self willChangeValueForKey:@"desc"];

[self willChangeValueForKey:@"serves"];

[self willChangeValueForKey:@"type"];

[self setPrimitiveValue:[values valueForKey:@"name"] forKey:@"name"];

[self setPrimitiveValue:[values valueForKey:@"desc"] forKey:@"desc"];

[self setPrimitiveValue:[values valueForKey:@"serves"] forKey:@"serves"];

[self setPrimitiveValue:[values valueForKey:@"type"] forKey:@"type"];

[self didChangeValueForKey:@"type"];

[self didChangeValueForKey:@"serves"];

[self didChangeValueForKey:@"desc"];

[self didChangeValueForKey:@"name"];

}

In this example code, we are handling all the change notifications our-

selves and setting the values into our NSManagedObject directly using

the -setPrimitiveValue:forKey: method. This will cause all the values to be

updated prior to the notifications being fired.

Accessing Relationships

Accessing relationships on an NSManagedObject is nearly as easy as

accessing attributes. There is a bit of a difference between working with

a to-one relationship and a to-many relationship, though.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=54

NSMANAGEDOBJECT 55

Accessing a To-One Relationship

When we are accessing a to-one relationship, we can treat it the same as

an attribute. For example, the relationship between Recipe and RecipeIn-

gredient is a to-one relationship from the RecipeIngredient side. There-

fore, if we were accessing this relationship from that point of view, the

code would be as follows:

NSManagedObject *ingredient = ...;

NSManagedObject *recipe = [ingredient valueForKey:@"recipe"];

In this example, we are using the -valueForKey: KVC method to access

the relationship, and the NSManagedObject will return the object on

the other side of the relationship, the Recipe entity. Likewise, to set the

recipe for a RecipeIngredient, we would use the following code:

NSManagedObject *ingredient = ...;

NSManagedObject *recipe = ...;

[ingredient setValue:recipe forKey:@"recipe"];

Accessing a To-Many Relationship

The many side of a relationship is stored orderless. What this means

is that each time we fetch the objects on the many side of a relation-

ship, the order is not guaranteed, and it is probable that the order will

change between fetches. However, we are guaranteed that each object

will be included only once. In other words, when we access a to-many

relationship using KVC, we will get an NSSet back. For example, if we

want to access the ingredients of a recipe, we would use code similar to

the following:

NSManagedObject *recipe = ...;

NSSet *ingredients = [recipe valueForKey:@"ingredients"];

Likewise, setting the ingredients into a recipe is as follows:

NSManagedObject *recipe = ...;

NSSet *someIngredients = ...;

[recipe setValue:someIngredients forKey:@"ingredients"];

Mutable Access of To-Many Relationships

You might note that the NSSet we get back when accessing a to-many

relationship is immutable. Adding an object to a to-many relationship

with a immutable NSSet would require creating a mutable copy of the

NSSet, adding the new object to the NSMutableSet and then setting the

NSMutableSet back onto the parent object. That’s painful and fortunately

unnecessary. When we want to add an object to a to-many relationship,

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=55

NSMANAGEDOBJECT 56

we can use -mutableSetValueForKey: in the place of -valueForKey:. This will

return an NSMutableSet for us that is already associated with the parent

object and reduces our code to the following:

NSManagedObject *newIngredient = ...;

NSManagedObject *recipe = ...;

NSMutableSet *ingredients = [recipe mutableSetValueForKey:@"ingredients"];

[ingredients addObject:newIngredient];

Note that we did not need to set the NSMutableSet back into the Recipe

entity, and therefore the code to add an object to a to-many relationship

is quite short.

One important thing to notice in these relationship examples is that

when we are updating the relationship, we are updating only one side

of it. Because we defined these relationships as double-sided (that is, it

includes an inverse relationship that we defined in Section 2.5, Building

the Data Model, on page 16), Core Data handles keeping the integrity

of the relationship intact. When we update one side of the relationship,

Core Data automatically goes in and sets the other side for us.

Primitive Access

Like accessing attributes discussed earlier, changes to a relationship

will fire KVO notifications. Since there are situations where we would

not want this to occur or where we would want a finer-grained control

over the notifications, there are primitive accessors for relationships as

well. However, there is no primitive method for retrieving an NSMutable-

Set for a to-many relationship. Therefore, if the code requires changes to

a relationship with either delayed or no observations being fired, then

we would need to use -primitiveValueForKey: to get back an NSSet, call

-mutableCopy on the NSSet, add our new object to the NSMutableSet, and

finally use -setPrimitiveValue:forKey: to apply the changes.

Property Accessors

Relationships can use properties just like attributes discussed earlier.

In the code in Section 4.1, Mutable Access of To-Many Relationships,

on the preceding page, if we wanted to add a property to retrieve the

RecipeIngredient relationship, we would declare the following property:

@property (retain) NSSet *recipeIngredients;

And then flag it as dynamic in the implementation file.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=56

NSMANAGEDOBJECT 57

Subclassing NSManagedObject

Although NSManagedObject provides a tremendous amount of flexibil-

ity and handles the majority of the work a data object normally does,

it does not cover every possibility, and there are occasions where we

would want to subclass it. Subclassing to gain @property access to

attributes and relationships is one common situation, but we may also

want to add other convenience methods or additional functionality to

the object. When this arises, there are some general rules to remember.

Methods That Are Not Safe to Override

In Apple’s documentation, the following methods should never be over-

ridden:

-primitiveValueForKey:, -setPrimitiveValue:forKey:, -isEqual:, -hash, -superclass,

-class, -self, -zone, -isProxy:, -isKindOfClass:, -isMemberOfClass:, -conformsToPro-

tocol:, -respondsToSelector:, -retain, -release, -autorelease, -retainCount,

-managedObjectContext, -entity, -objectID, -isInserted, -isUpdated, -isDeleted,

-isFault, -alloc, -allocWithZone:, +new, +instancesRespondToSelector:,

+instanceMethodForSelector:, -methodForSelector:, -methodSignatureForSel-

ector:, and -isSubclassOfClass:.

That’s quite a list! Most, if not all, of these are common sense, and expe-

rience with Objective-C explains why these should not be overridden.

Even though this is a fairly long list, I would add a few more.

-initXXX. There is really no reason or benefit to overriding the -init meth-

ods of an NSManagedObject, and there are situations where doing so

will have unpredictable results. Although it is not specifically against

the documentation to override the -init methods, I recommend strongly

against it. The -awakeFromInsert and -awakeFromFetch methods provide

sufficient access that overriding -init is unnecessary. Both -awakeFromIn-

sert and -awakeFromFetch are discussed in more depth later in this

chapter.

All of the KVO methods. The documentation flags these methods as

“discouraged,” but I would put them in the “do not subclass” list. Again,

there is no reason to override these methods, and any logic that you

would want to put into them can probably be put somewhere else with

fewer issues.

-description. The -description method is used in logging fairly often. It is

a great way to dump the contents of an object out to the logs dur-

ing debugging. However, when we are dealing with faults (discussed in

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=57

NSMANAGEDOBJECT 58

Chapter 6, Performance Tuning, on page 97), we do not want to fire a

fault in the -description method. Since the default implementation of

-description does the right thing with regard to faults, it is best that we

not try to override its behavior.

-dealloc is normally the place that we release memory before the object

is being freed. However, when we are dealing with NSManagedObject

objects, it is possible that the object will not actually be released from

memory when we think it will. In fact, the -dealloc method may never

get called in the life cycle of our application! Instead of releasing objects

in the -dealloc method, it is recommended that we use -didTurnIntoFault

as our point of releasing transient resources. -didTurnIntoFault will be

called whenever the NSManagedObject is “faulted,” which occurs far

more often than the object actually being removed from memory.

-finalize is on the list for the same reason as -dealloc. When dealing with

NSManagedObject objects, -finalize is not the proper point to be releasing

resources.

Methods to Override

With the long list of methods that we should not override, what methods

should we consider overriding? There are a few where it is common to

override them.

-didTurnIntoFault

This method is called after the NSManagedObject has been turned into

a fault. It is a good place to release transient resources. One important

thing to note is that when this method is called, all the stored val-

ues/relationships in the NSManagedObject are already out of memory.

If you access any of them, it will fire the fault and pull them all back

into memory again.

-willTurnIntoFault

Similar to -didTurnIntoFault, this method is called just before the NSMan-

agedObject is turned into a fault. If your code needs to access attributes

or relationships on the NSManagedObject before it is turned into a fault,

then this is the entry point to use. Transient resources that impact

attributes and relationships should be released here.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=58

NSFETCHREQUEST 59

-awakeFromInsert

As mentioned, overriding any of the -init methods is risky and unnec-

essary. However, it is very useful to be able to prepare an NSManage-

dObject before it starts accepting data. Perhaps we want to set up some

logical defaults or assign some relationships before handing the object

to the user. In these situations, we use -awakeFromInsert. As the name

implies, this method is called right after the NSManagedObject is created

from an insert call. This method is called before any values are set and

is a perfect opportunity to set default values, initialize transient prop-

erties, and perform other tasks that we would normally handle in the

-init method. This method is called exactly once in the entire lifetime of

an object. It will not be called on the next execution of the application,

and it will not be called when an object is read in from the persistent

store. Therefore, we do not need to worry about overriding values that

have been set previously. When we override this method, we should be

sure to call [super awakeFromInsert] at the very beginning of our imple-

mentation to allow the NSManagedObject to finish anything it needs to

before we begin our code.

-awakeFromFetch

-awakeFromFetch is the counterpart to -awakeFromInsert. The -awakeFrom-

Fetch method will be called every time the object is retrieved from the

persistent store (that is, loaded from disk). This method is highly useful

for setting up transient objects or connections that the NSManagedOb-

ject will use during its life cycle. Because this method is called before

the data is loaded into the NSManagedObject, care should be taken to

not access or change any relationships that are associated with the

NSManagedObject. Like the -awakeFromInsert method, when we override

this method, we should call [super awakeFromFetch]; before any of our

own code is called.

4.2 NSFetchRequest

NSFetchRequest is the part of Core Data that causes people to think it

is a database API instead of an object hierarchy. Whenever we want to

retrieve objects from Core Data, we will normally use an NSFetchRe-

quest to do the retrieval. There are two parts to the creation of an

NSFetchRequest: setting the entity to be retrieved and optionally defining

an NSPredicate to filter the objects we want retrieved.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=59

NSFETCHREQUEST 60

Setting the Entity

The one thing that we must do as part of every NSFetchRequest is define

what entity we want returned from the fetch. We do this by passing

the appropriate NSEntityDescription to the NSFetchRequest. For example, if

we wanted to retrieve recipe entities, we would construct the NSFetchRe-

quest as follows:

NSManagedObjectContext *moc = [self managedObjectContext];

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:@"Recipe"

inManagedObjectContext:moc]];

In this example code, we are constructing a new NSFetchRequest and

calling -setEntity: on it. We are using the class method +entityForName:in-

ManagedObjectContext: on the NSEntityDescription class to get the appro-

priate instance of NSEntityDescription back for the setter.

Executing a Fetch Request

Once we have constructed our NSFetchRequest, we need to execute it

against the NSManagedObjectContext to get back the results. Like a

result set when accessing a database, an executed NSFetchRequest will

return an NSArray of entities that match our search criteria. Since it

is possible that a search will fail, the execution of an NSFetchRequest

accepts a pointer to an NSError to describe any problems that resulted

from the execution. For example, if we wanted to execute the fetch from

the previous example, we could use the following code:

NSManagedObjectContext *moc = [self managedObjectContext];

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:@"Recipe"

inManagedObjectContext:moc]];

NSError *error = nil;

NSArray *results = [moc executeFetchRequest:request error:&error];

if (error) {

[NSApp presentError:error];

return;

}

In this example, we are calling -executeFetchRequest:error: on the NSMan-

agedObjectContext, passing in the NSFetchRequest and a pointer to a

local NSError. If the fetch failed with an error, then the pointer will be

directed to an instance of NSError that describes the problem, and the

NSArray will be assigned to nil. In that situation, we ask the NSApplication

to present the error for us and return. If there is no error, then we can

www.allitebooks.com

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=60
http://www.allitebooks.org

NSFETCHREQUEST 61

proceed with our code. Note that the NSArray is guaranteed to not be nil

at this point, but it could be empty if no results are returned.

NSPredicate

When we don’t want every instance of an entity returned, we then use

an NSPredicate to narrow the search or filter the results. The NSPredicate

class is quite complex and powerful and can be used for more things

than just Core Data. It is frequently used to filter the results of an

NSArray by acting on the KVC API and doing logic checks on the objects

contained in the NSArray.

One of the most common ways to use an NSPredicate is to construct a

SQL-like query such as the following example:

NSManagedObjectContext *moc = [self managedObjectContext];

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:@"Recipe"

inManagedObjectContext:moc]];

NSPredicate *predicate = [NSPredicate predicateWithFormat:@"serves > 10"];

[request setPredicate:predicate];

There are many different ways to build an NSPredicate. The one shown

in the previous example accepts a SQL-like NSString and can accept any

number of parameters after the NSString. For example, if we were going

to pass in the number of servings, we would rewrite the NSPredicate as

follows:

NSUInteger numberOfServings = 10;

NSManagedObjectContext *moc = [self managedObjectContext];

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:@"Recipe"

inManagedObjectContext:moc]];

NSPredicate *predicate = nil;

predicate = [NSPredicate predicateWithFormat:@"serves > %i", numberOfServings];

[request setPredicate:predicate];

It is possible to add as many parameters to the NSPredicate as needed.

The NSPredicate class is quite flexible and can be used in a large number

of ways. For further reading on how to use the NSPredicate class to its

full potential, I recommend Apple’s Predicate Programming Guide.1

Stored Fetch Requests

In addition to constructing the NSFetchRequest directly in code, it is pos-

sible to build them within the data model and store them for later

1. http://developer.apple.com/documentation/Cocoa/Conceptual/Predicates/Articles/pUsing.html

http://developer.apple.com/documentation/Cocoa/Conceptual/Predicates/Articles/pUsing.html
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=61

NSFETCHREQUEST 62

Figure 4.1: Stored fetch request

use. By storing the fetch requests within the model itself, it is possi-

ble for us to change them as needed without having to go through all

the code looking for every place that it is used. Simply changing it in

the model will automatically update wherever it is being used. To store

an NSFetchRequest within the data model, we select the entity that we

want to run the request against and choose Design > Data Model >

Add Fetch Request from the main menu. From there we will be able to

set the name of the fetch request and define its predicate, as shown in

Figure 4.1.

Once we have the fetch request in our data model, we can request a

reference to it by asking the NSManagedObjectModel. Once we have a

reference to the NSFetchRequest, we can execute it in the same manner

as we do with an NSFetchRequest that has been constructed in code.

Download GrokkingRecipes_v1/AppDelegate.m

- (NSArray*)retrieveBigMeals

{

NSManagedObjectContext *moc = [self managedObjectContext];

NSManagedObjectModel *mom = [self managedObjectModel];

NSFetchRequest *request = [mom fetchRequestTemplateForName:@"bigMeals"];

NSError *error = nil;

NSArray *result = [moc executeFetchRequest:request error:&error];

if (error) {

[NSApp presentError:error];

return nil;

}

return result;

}

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v1/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=62

NSSORTDESCRIPTOR 63

As shown, we call the -fetchRequestTemplateForName: method on the

NSManagedObjectModel, which will return a fully formed NSFetchRequest

to us. This NSFetchRequest will already have the NSEntityDescription and

NSPredicate set so that we can execute the NSFetchRequest immediately.

4.3 NSSortDescriptor

NSSortDescriptor has been around longer than Core Data has; however,

it is quite useful for ordering data. As mentioned previously, data that

comes from a to-many relationship is unordered by default, and it is

up to us to order it. For example, if we wanted to retrieve all the recipes

and then sort them by their name property in alphabetical order, this

would require an additional step as part of the fetch.

Download GrokkingRecipes_v1/AppDelegate.m

- (NSArray*)allRecipesSortedByName

{

NSSortDescriptor *nameSort = [[NSSortDescriptor alloc] initWithKey:@"name"

ascending:YES];

NSArray *sorters = [NSArray arrayWithObject:nameSort];

[nameSort release], nameSort = nil;

NSManagedObjectContext *moc = [self managedObjectContext];

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setSortDescriptors:sorters];

[request setEntity:[NSEntityDescription entityForName:@"Recipe"

inManagedObjectContext:moc]];

NSError *error = nil;

NSArray *result = [moc executeFetchRequest:request

error:&error];

[request release], request = nil;

if (error) {

[NSApp presentError:error];

return nil;

}

return [result sortedArrayUsingDescriptors:sorters];

}

In this example, we are retrieving all the recipe entities by creating an

NSFetchRequest with the NSEntityDescription set to our Recipe entity and

no predicate. However, in addition to fetching the recipe entities, we

also want them sorted. We can accomplish this by adding an NSArray

of NSSortDescriptor instances directly to the NSFetchRequest, which will

cause the returned NSArray to be properly sorted.

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v1/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=63

NSMANAGEDOBJECTCONTEXT 64

NSManagedObjectContext

NSPersistentStoreCoordinator NSManagedObjectModel

Disk

NSPersistentStore

Figure 4.2: The Core Data stack

The NSSortDescriptor takes two parameters as part of its -init: a key and

a BOOL denoting whether the sort is ascending or descending. We can

have as many NSSortDescriptor objects as we want as part of the sort,

and therefore they are placed within an NSArray prior to the sort being

performed.

Adding an NSSortDescriptor is especially useful on Cocoa Touch because

the NSFetchedResultsController will continue to keep its results sorted

without any intervention on our part. The NSFetchedResultsController is

discussed in more depth in Chapter 10, Core Data and iPhone, on

page 184.

4.4 NSManagedObjectContext

Next to NSManagedObject, NSManagedObjectContext is the one object in

the Core Data stack that we access the most. The NSManagedObjectCon-

text is the object we access when we want to save to disk, when we want

to read data into memory, and when we want to create new objects. As

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=64

NSMANAGEDOBJECTCONTEXT 65

shown in Figure 4.2, on the preceding page, the NSManagedObjectCon-

text is at the top of the Core Data “stack” in that it is accessed directly

by our code frequently. It is much less common for us to need to go

deeper into the stack.

NSManagedObjectContext isn’t thread safe. Each thread that needs ac-

cess to the data should have its own NSManagedObjectContext. This is

generally not an issue since most applications are not multithreaded or

their multithreaded portions do not need to interact with NSManaged-

ObjectContext on any thread other than the main thread. However, it

is important to keep in mind that, like the UI, NSManagedObjectContext

should be accessed only on the thread that created it, which is generally

the main thread.

Download GrokkingRecipes_v1/AppDelegate.m

- (NSManagedObjectContext*)managedObjectContext

{

if (managedObjectContext) return managedObjectContext;

NSPersistentStoreCoordinator *coord = [self persistentStoreCoordinator];

if (!coord) return nil;

managedObjectContext = [[NSManagedObjectContext alloc] init];

[managedObjectContext setPersistentStoreCoordinator: coord];

NSFetchRequest *request = [[[NSFetchRequest alloc] init] autorelease];

[request setEntity:[NSEntityDescription entityForName:@"Type"

inManagedObjectContext:managedObjectContext]];

NSError *error = nil;

NSArray *result = [managedObjectContext executeFetchRequest:request

error:&error];

NSAssert(error == nil, [error localizedDescription]);

if ([result count]) return managedObjectContext;

//The types table has not been populated

NSArray *types;

types = [[[NSBundle mainBundle] infoDictionary] valueForKey:@"RecipeTypes"];

for (NSString *type in types) {

NSManagedObject *object = [NSEntityDescription

insertNewObjectForEntityForName:@"Type"

inManagedObjectContext:managedObjectContext];

[object setValue:type forKey:@"name"];

}

return managedObjectContext;

}

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v1/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=65

NSMANAGEDOBJECTCONTEXT 66

Linking the Type Entity to the Type NSComboBox

Now that we have our Type entity populated on launch, we
should bind our user interface to it so that changes to the Type
table will be reflected in the user interface. To do this, we need
to open the MainMenu.xib file in Interface Builder and select
the NSComboBox. Then on the Bindings tab, open the Content
Values section, and bind it to the type’s NSArrayController with
a controller key of arrangedObjects and a model key path of
name, as shown in Figure 4.3, on the next page.

Now any changes to the Type table will be reflected in the user
interface automatically.

The NSManagedObjectContext itself is fairly straightforward to initialize.

However, I also like to load any objects that need to be prepopulated into

the repository at this point as well. To review, we start off by grabbing

a reference to the NSPersistentStoreCoordinator and initializing the NSMan-

agedObjectContext. Once the NSManagedObjectContext is initialized, we

pass in the NSPersistentStoreCoordinator.

If we did not have any data that we needed to load into the NSManaged-

ObjectContext, this would normally be the completion of the method.

However, in our application, we want to prepopulate the Type entity

before anyone gets a chance to create any recipes. Therefore, once the

NSManagedObjectContext has been initialized, we immediately execute

an NSFetchRequest against the Type table and see whether there are any

results. If there are any, then we complete the method and exit the run

loop.

If there are no entities in the Type table, then we know that it needs to

be populated. The next step is to grab the list of types from the Info.plist

and loop over them. For each entry in the Info.plist, we create a new

NSManagedObject and set its name to the value from the Info.plist. Once

the loop is complete, the store has been prepopulated, and we can exit

this cycle of the run loop.

There are a few other ways to prepopulate the repository. Some are

easier and some are more complicated than this method. One example

I have used in the past is to simply store a prepared repository in the

application bundle. When the user requests a new store, I copy the pre-

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=66

NSMANAGEDOBJECTCONTEXT 67

Figure 4.3: Binding the NSComboBox to the Type entity

populated store out of the application bundle to the location specified

and then initialize the NSPersistentStoreCoordinator against it. This makes

the prepopulation easy, but we need to maintain that internal database

and update it any time the data model changes.

Another design to prepopulate data is to keep an XML store within the

application bundle instead of the final store type. XML is more pliable

than the other store types and can easily be manipulated during devel-

opment. At runtime, we can stand up a Core Data stack against that

internal XML store and then execute a copy of the objects over to the

final store. This design involves a bit more code than just copying the

file, but it makes the maintenance of the internal store easier.

Each design is viable, and it depends on the final application design

and the preferences of the developer as to which serves best.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=67

NSMANAGEDOBJECTMODEL 68

Joe Asks. . .

What Is a Plist?

A plist is an XML file that normally represents an NSDictionary

data structure. The top level of a plist normally starts out with a
<dict> tag and a list of <key> tags along with their values. Since
an NSDictionary can hold any object as its value, the value tags
can be any number of types including <string>, <array>, and a
number of other types including other <dict> tags!

4.5 NSManagedObjectModel

The NSManagedObjectModel can be considered a compiled, binary ver-

sion of the data model that we created in Xcode. As part of the build

process for an application, the .xcdatamodel file is compiled into a .mom

file that is stored in the Resources directory of the application bundle.

If we have more than one .xcdatamodel file, then each file is compiled

into a separate .mom file. When we construct our NSManagedObject-

Model, we can use just one of these .mom files, or we can combine them

all into a single NSManagedObjectModel. The design of our application

usually dictates this decision. For our recipes application, however, we

have a single .mom to use as part of our NSManagedObjectModel:

Download GrokkingRecipes_v1/AppDelegate.m

- (NSManagedObjectModel*)managedObjectModel

{

if (managedObjectModel) return managedObjectModel;

NSString *path = [[NSBundle mainBundle] pathForResource:@"DataModel"

ofType:@"mom"];

NSAssert(path != nil, @"Unable to find DataModel in main bundle");

if (!path) return nil;

NSURL *url = [NSURL fileURLWithPath:path];

managedObjectModel = [[NSManagedObjectModel alloc] initWithContentsOfURL:url];

return managedObjectModel;

}

The construction of the NSManagedObjectModel does not involve very

much code when used in one of the standard configurations. We start

by determining the location of the .mom file. Since we have only a sin-

gle data model, we use the NSBundle method -pathForResource:ofType: to

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v1/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=68

NSPERSISTENTSTORECOORDINATOR 69

locate the path for our model and use it to construct an NSURL. With

that NSURL, we can then initialize the NSManagedObjectModel.

Depending on the complexity of the application, it is common to not

need access to the NSManagedObjectModel after the Core Data stack

has been initialized. However, there is a wealth of information within

this object that can be quite useful in edge cases.

For example, since the descriptions of all the entities that exist in the

model are contained in the NSManagedObjectModel, it is possible to use

it to do dynamic discovery of the model for display purposes. By access-

ing the NSManagedObjectModel directory, we can interrogate the Core

Data stack and discover all the relationships, entities, and properties

that exist and display them to the user. Although this might not be

useful in a consumer-facing application, it can be quite useful as a

developer tool.

Another situation when accessing the NSManagedObjectModel directly

is useful is when handling versioning. When we are developing unusual

version shifts or writing the versioning code ourselves, it can be very

useful to interrogate the NSManagedObjectModel, both the source and

the destination, to make logical decisions about the versioning process.

Core Data versioning is discussed more in depth in Chapter 5, Version-

ing and Migration, on page 73.

4.6 NSPersistentStoreCoordinator

The NSPersistentStoreCoordinator is at the bottom of the Core Data stack. It

is responsible for persisting the data to its repository. That repository is

usually, but not always, on disk. The store, in the case of an in-memory

store, could be only in memory with no disk representation. However,

in most cases, the NSPersistentStoreCoordinator handles disk access.

The NSPersistentStoreCoordinator is also not thread safe. However, the

NSManagedObjectContext knows how to properly lock the NSPersistent-

StoreCoordinator, so therefore it is possible to associate multiple NSMan-

agedObjectContext instances to a single NSPersistentStoreCoordinator with-

out concern. However, direct access to the NSPersistentStoreCoordinator

from multiple threads (such as adding persistent store objects) can

cause issues. In fact, when working in a multithreaded environment,

this is how the single-threaded design of the NSManagedObjectContext

is handled. We discuss this aspect of the NSPersistentStoreCoordinator in

detail in Chapter 9, Multithreading and Core Data, on page 162.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=69

NSPERSISTENTSTORECOORDINATOR 70

In our Grokking Recipes example application, we build the NSPersis-

tentStoreCoordinator using a known file location and a known persistent

store type. This is common in a single persistent store design. How-

ever, when we are working in a document model, then each document

would have its own persistent store, and each store can be of a differ-

ent type. Therefore, the creation of the NSPersistentStoreCoordinator can

be more complicated in that design. We demonstrate the use of the

NSPersistentStoreCoordinator in a document model in Chapter 12, Recipe:

Dynamic Parameters, on page 228. In our current application, we con-

struct the NSPersistentStoreCoordinator as follows:

Download GrokkingRecipes_v1/AppDelegate.m

- (NSPersistentStoreCoordinator*)persistentStoreCoordinator;

{

if (persistentStoreCoordinator) return persistentStoreCoordinator;

NSString *filename = @"GrokkingRecipes.xml";

NSFileManager *fileManager = [NSFileManager defaultManager];

NSString *path = [self applicationSupportFolder];

if (![fileManager fileExistsAtPath:path

isDirectory:NULL]) {

[fileManager createDirectoryAtPath:path

attributes:nil];

}

path = [path stringByAppendingPathComponent:filename];

NSURL *url = [NSURL fileURLWithPath:path];

NSManagedObjectModel *mom = [self managedObjectModel];

persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]

initWithManagedObjectModel:mom];

NSError *error = nil;

if (![persistentStoreCoordinator addPersistentStoreWithType:NSXMLStoreType

configuration:nil

URL:url

options:nil

error:&error]) {

[NSApp presentError:error];

}

return persistentStoreCoordinator;

}

In a single persistent store design, the NSPersistentStoreCoordinator is

straightforward in its construction. After confirming that we have not

already initialized the store, we check to make sure that the location

where the file is to be written exists. The standard location for an appli-

www.allitebooks.com

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v1/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=70
http://www.allitebooks.org

FETCHED PROPERTIES 71

cation of this design is in the Application Support directory under the

Library directory of the user’s home.

Once we have confirmed the existence or added the appropriate direc-

tories, the next step is to get a reference to the NSManagedObjectModel,

which is discussed in Section 4.5, NSManagedObjectModel, on page 68.

With a reference to the NSManagedObjectModel, we can initialize the

NSPersistentStoreCoordinator with that model.

With the NSPersistentStoreCoordinator initialized, we need to add the act-

ual NSPersistentStore to it. It is possible to add more than one NSPersis-

tentStore to the NSPersistentStoreCoordinator, which can be useful when

dealing with data that is split into multiple files. However, in our exam-

ple, we have a single file. Part of adding the NSPersistentStore to the

NSPersistentStoreCoordinator is to specify what type of store it is. The dif-

ferent types of stores and their benefits are discussed in Chapter 6,

Performance Tuning, on page 97. When we add the NSPersistentStore to

the NSPersistentStoreCoordinator, it is possible that there will be a failure.

Therefore, we check for the error and handle it if it occurs.

Normally once we have initialized the NSPersistentStoreCoordinator and

added it to the NSManagedObjectContext, we rarely touch it again. In

most cases, the only time we would want to access it again is to handle

manual migration.

4.7 Fetched Properties

In addition to NSFetchRequest objects, we have the ability to define a lazy

relationship between objects. Fetched properties are kind of a cross

between relationships and the NSFetchRequest. A fetched property is not

a relationship in the strictest sense and is not realized until the prop-

erty is requested. When the property is accessed, Core Data performs

the underlying NSFetchRequest and returns the result. Unlike a normal

relationship, a fetched property is returned as an NSArray as opposed to

an NSSet.

In practice, I have found fetched properties to be less useful and less

flexible than creating either a stored fetch request or building the fetch

request in code. Usually when a situation calls for a fetched property,

it tends to be easier to subclass the entity in question, perform an

NSFetchRequest in code, and return the results.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=71

WRAPPING UP 72

4.8 Wrapping Up

We covered a large number of pieces of Core Data in this chapter. As

we continue to explore Core Data in depth, please use this chapter as

a reference point for pieces of Core Data and how they all fit together.

By the end of the book, each of these elements should be as familiar to

you as NSString and NSArray are today.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=72

Chapter 5

Versioning and Migration
Just like a battle plan, no code base ever survives contact with users. As

soon as users start to use an application, they want to change it. Even

if the code is just for ourselves, we, also as users, will want to change

things. For example, we may need to add an attribute, add a new

object, or just restructure things to accommodate those changes. Those

changes can be quite involved and invariably will require a change to

how the data is stored. Although the data migration will work even if

there is no data stored, it is more useful going forward to have some

data to work with. Therefore, if you have not added any recipes yet, I

recommend doing so before we proceed.

Starting with Mac OS X 10.5 Leopard, Apple has made data migration

nearly trivial for users of Core Data. When developing for Leopard, ver-

sioning is included in the Core Data API, and with a relatively small

amount of effort on our part as the developer, we can easily migrate our

data stores from one version to another. Depending on the complexity

of the migration, the effort required of us, the developer, can be trivial

to rather complex.

Taking the project that we started with in Chapter 2, Getting Started

with Core Data, on page 14, we will be adding some additional features

to it in succeeding versions. In version 2, we will add the ability to tag

an author to a recipe as well as tag a “last used” date. That way, we

know who created the delicious dish as well as the last time we made

it. We certainly wouldn’t want to accidentally make the same dish two

days in a row! Lastly, we will remove the Meat and Fish entries from the

Type attribute of the Recipe entity. Any recipe entries that are flagged

with Meat or Fish will be updated to Entrée instead.

SOME MAINTENANCE BEFORE WE MIGRATE 74

Figure 5.1: Default model issue dialog box

In version 3, we will normalize the repository a bit by extracting the

ingredients and forming a many-to-many relationship back to the reci-

pes. In addition, we will add the concept of a shopping list to make

it easier to ensure we pick up all the ingredients on our next trip to

the store. Finally, we will extract the unitOfMeasure attribute from the

RecipeIngredient entity into its own entity and allow that new entity to

be linked to the new ingredient entity. This will give us one lookup list

for the various units of measure and reduce the risk of human error.

5.1 Some Maintenance Before We Migrate

Before we actually release a new version of our application that mi-

grates the data, we need to first complete a minor “maintenance” update

for our users. Normally we would add this code to the very first version

of our application, but just in case we wrote that first version before

versioning was a consideration (or in case we wrote the first version

for Tiger), we need to go back to our old version and add a very small

amount of code to help our users.

Some users will download the new version of an application to just “try

it out” and see whether it is worth the upgrade price or worth the hassle.

Normally this is not an issue until we upgrade the data underneath our

users. Then things go sideways. What we do not want to happen is the

error message shown in Figure 5.1.

This is a terrible user experience and something we want to avoid. For-

tunately, the way to avoid it is very easy, and we can add it to a point

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=74

SOME MAINTENANCE BEFORE WE MIGRATE 75

release of our application before we do any migration. That way, when

the user opens the first version of our application after “testing” the

second version, they get a friendly error message, or you can take it a

step further and restore/access the older version of their data.

Download GrokkingRecipes_v2/AppDelegate.m

if (![persistentStoreCoordinator addPersistentStoreWithType:NSXMLStoreType

configuration:nil

URL:url

options:dict

error:&error]) {

NSDictionary *ui = [error userInfo];

if (ui) {

NSLog(@"%@:%s %@", [self class], _cmd, [error localizedDescription]);

for (NSError *suberror in [ui valueForKey:NSDetailedErrorsKey]) {

NSLog(@"\t%@", [suberror localizedDescription]);

}

} else {

NSLog(@"%@:%s %@", [self class], _cmd, [error localizedDescription]);

}

NSAlert *alert = [[NSAlert alloc] init];

[alert setAlertStyle:NSCriticalAlertStyle];

[alert setMessageText:@"Unable to load the recipes database."];

NSString *msgText = nil;

msgText = [NSString stringWithFormat:@"The recipes database %@%@%@\n%@",

@"is either corrupt or was created by a newer ",

@"version of Grokking Recipes. Please contact ",

@"support to assist with this error.\n\nError: ",

[error localizedDescription]];

[alert setInformativeText:msgText];

[alert addButtonWithTitle:@"Quit"];

[alert runModal];

exit(1);

}

We have added this code to the -persistentStoreCoordinator method in the

application delegate of our first version of the recipes application. In

the first version of our application, if an error occurred with the adding

of an NSPersistentStore to the NSPersistentStoreCoordinator, we would just

present the error to the user via [[NSApplication sharedApplication] pre-

sentError:error]. With this change, we give the user a little more useful

information as well as dumping quite a bit of useful information to

the logs for us to review. We will also keep this code in all future ver-

sions of our application to help “future proof” it. Naturally, this is the

bare minimum that we can do, and I recommend adding other options.

However, the most important point is in place. We do not let the user

proceed without a Core Data stack in place. The original way that we

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v2/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=75

A SIMPLE MIGRATION 76

Figure 5.2: New, improved error dialog box

were handling this error allowed the user to proceed with our applica-

tion and enter new information only to find out they can’t save it. With

this error message, we stop that from occurring by forcing the user to

quit until they deal with the error. The resulting error message is shown

in Figure 5.2.

We do have one other addition to this error check. Before we present

the NSAlert to the user, we also dump the information about the error to

the console. This is primarily useful during the development cycle but

can also be helpful when we have a user with an unusual issue. When

Core Data fails with more than one error, it will load all the errors into

a single NSError instance that it passes back to us. In that situation, the

top-level -localizedDescription will tell the user only that “Multiple Vali-

dation Errors Occurred,” which is not very useful to us as developers.

However, the other errors are available for display, we can get them

from the userInfo of the NSError, and we can then iterate over them, print

out their -localizedDescription to the console, and reveal the exact prob-

lems. We also check to make sure there are suberrors so that we can

print out the top-level error by itself if there is only one.

5.2 A Simple Migration

To demonstrate a simple migration, we will add the ability to attribute

recipes to authors. To kick off the versioning, the first thing that we

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=76

A SIMPLE MIGRATION 77

Your First Data Model Version

When you first set up versioning, be sure to look inside the tar-
get in Xcode and update the Compile Sources section. If you
do not see the .xcdatamodeld file inside the target, then remove
the xcdatamodel references from it and drag the entire xcdata-

modeld bundle into the target. Otherwise, your application may
complain about being unable to merge entities because it will
treat each version of the model as an independent model.

Once this change has been completed, it is best to clean the
project (delete any previously compiled code) by choosing
Build > Clean All Targets from the main menu.

need to do is create a new managed object model (MOM) based on the

first one. To do this, we need to select the existing model in Xcode and

then choose Design > Data Model > Add Model Version.

Creating a Versioned Data Model

This is the first time we have added a model version, Xcode is going to

create a new bundle for us called DataModel.xcdatamodeld and put the

original MOM inside the bundle along with a new copy of the original

MOM. To make things clearer in the example project, I renamed these

MOM objects to v1.xcdatamodel and v2.xcdatamodel. Next, we need to

select the v2.xcdatamodel and choose Design > Data Model > Set Cur-

rent Version. Like the name suggests, this tells Core Data which version

of the MOM is current.

Now that we have a new version of the MOM, it is time to add the new

entities and attributes. This is going to require the addition of a new

entity and some changes to the Recipe entity. Look at the new model

(Figure 5.3, on the following page) and compare it to the original model

(Figure 2.4, on page 21). In this updated MOM, you’ll find the new

Author entity along with its one-to-many relationship with the Recipe

entity. Also, the Recipe entity has a new attribute called lastUsed, which

is defined as an Date.

We’re not quite done yet. If we were to run the application right now,

we would trip the error that we discussed in Section 5.1, Some Mainte-

nance Before We Migrate, on page 74. Clearly something is missing.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=77

A SIMPLE MIGRATION 78

Figure 5.3: Version 2 of the MOM

Turning on Automatic Data Migration

The first thing we need to do is to tell Core Data to automatically

migrate data when the persistent store is not using the same model as

the current version. To do this, we need to make a small change to the

persistentStoreCoordinator method in our AppDelegate. Previously we were

passing nil to the addPersistentStoreWithType:configuration:URL:options:error:

method for the options parameter. However, we need to change that to

the following:

Download GrokkingRecipes_v2/AppDelegate.m

NSMutableDictionary *dict = [NSMutableDictionary dictionary];

[dict setObject:[NSNumber numberWithBool:YES]

forKey:NSMigratePersistentStoresAutomaticallyOption];

NSError *error = nil;

if (![persistentStoreCoordinator addPersistentStoreWithType:NSXMLStoreType

configuration:nil

URL:url

options:dict

error:&error]) {

This change tells Core Data to attempt an automatic migration when it

encounters a persistent store that does not match the current version

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v2/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=78

A SIMPLE MIGRATION 79

Figure 5.4: Error when we are missing a mapping model

of the MOM. If we try to run our application after this change, we get

something new, as shown in Figure 5.4.

Creating Our First Mapping Model

We’re definitely getting closer but are not quite there yet. We are miss-

ing one more thing, and that is the mapping model. The mapping model

describes how to transition the data from one object model to another.

A mapping model is created by asking Xcode to create a new file and

choosing Mapping Model from the selection. After naming the new file

(I named it v1_to_v2), Xcode asks you to select the source and desti-

nation models. Selecting v1 and v2 appropriately will complete the file

creation. Xcode does some basic building of the mapping model, and

that is nearly sufficient for this migration.

The initial mapping model generated by Xcode handles almost every-

thing that we want to do. It handles the migration of the existing enti-

ties over to the new object model just fine. However, there are a couple

of things we need to do to tweak it.

First, we can remove the Author entity from the mapping model. Since

there is no Author in the original object model and the relationship is

not required, we do not need to deal with it during the migration. We

can also remove the mapping for the author relationship in the Recipe

entity as well as the lastUsed attribute. Again, since these can be nil and

we are not populating them during the migration, they are not needed

in the mapping model.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=79

A SIMPLE MIGRATION 80

Figure 5.5: Mapping model entity list

Second, we can remove the inverse of the relationship between the

Recipe entity and the RecipeIngredient entity. Because this relationship

is two sided (as strongly recommended by Apple), we do not need to

migrate both sides of the relationship. Therefore, we can remove the

RecipeIngredient side of the relationship. This will also remove a poten-

tial issue with the next change. The resulting entity mapping list is

shown in Figure 5.5.

The other change we need to make to the mapping model is a bit more

complicated. To remove the Meat and Fish types from the store during

the migration, we need to employ a filter predicate. Just like the NSFil-

terPredicate object that we are used to working with, a filter predicate

in the model resolves to a boolean expression that determines whether

the source object is included in the mapping. In the recipe mapping, we

will add the following predicate:

type != 'Fish' && type != 'Meat'

This will tell the mapping to migrate all the recipe entities except for

those that have a type of Fish or Meat (see Figure 5.6, on the next

page). Next, we will create a new mapping that is almost identical to the

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=80

A SIMPLE MIGRATION 81

Figure 5.6: Exclusion filter predicate

RecipeToRecipe mapping. This second mapping of the Recipe entity we

will call Fish & Meat, and its predicate will be as follows:

type == 'Fish' || type == 'Meat'

The other difference between the Fish & Meat mapping and the RecipeTo-

Recipe mapping is the type attribute. In the original RecipeToRecipe

mapping, it was set to $source.type, which tells Core Data to copy over

the value of the source object’s type attribute. In the Fish & Meat map-

ping, we will set it to Entrée directly. This will cause any Recipe entity

with a Fish or Meat type to be changed to Entrée during the migration.

Now when we run the application, nothing spectacular happens. The

application opens, the data is displayed, and everything is happy with-

out any noise. That is all there is to it for version 2!

What Did We Just Do?

We have just completed a very simple data migration from version 1 to

version 2 of our data model. Now, when a user runs our application, no

matter what version data model they have, they will automatically be

upgraded to version 2 without any surprises.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=81

FUNDAMENTALS OF CORE DATA VERSIONING 82

Along the way, we learned how to create multiple versions of our data

model and how to create mapping models to describe how to transition

the data between versions.

5.3 Fundamentals of Core Data Versioning

So, what is the magic behind all of this? How does the data migration

actually work? As we already explored in the previous chapters, Core

Data works with MOM objects that describe the data entities, their

attributes, and their relationships. Core Data versioning works with

those same MOM objects but takes the design one step further. Each

entity version in each data model has a unique hash. When Core Data

loads a persistent store from disk, it resolves the matching hashes in

the persistent store against the MOM objects included with the appli-

cation. If the matching MOM is not flagged as the “current” MOM, then

data migration kicks in.

How Data Migration Works

Core Data handles data migration in a very straightforward manner.

Whenever a persistent store needs to be migrated, there are three steps.

Copying of the Entities with Attributes

In the first pass of the migration, Core Data creates new entities in

the new persistent store for every entity in the old store. These entities

have their attributes copied over but not their relationships. During

this phase, Core Data also keeps a reference to the old unique ID for

each entity to be used in phase 2.

Creating Relationships Between the Entities

In the second pass, Core Data builds all the relationships between the

entities based on the previous relationships. This is where the reference

in phase 1 is used.

Validation of the New Store

During the migration, all validation rules are turned off, and Core Data

ignores the child classes defined in the MOM. Therefore, it is possible

that some data validation rules got broken during the migration. In the

final phase of the migration, Core Data goes back through the store and

checks all the validation rules to ensure that the data is in a valid state.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=82

FUNDAMENTALS OF CORE DATA VERSIONING 83

Model Versions and Hashes

The word versioning has been used through this chapter as well as

other material to describe data migration in Core Data. Unfortunately,

it is an inaccurate term. Versioning implies that there is an order or

precedence to the models. This is not accurate when it comes to data

model versioning/migration in Core Data.

Entity Hashes

Instead of keeping track of a version number, creation date, or some

other potentially chronological identifier, Core Data generates a hash

for each entity in a model. Those hashes are then stored within the

persistent stores created with that model for later comparison. When

a persistent store is loaded, the first thing that Core Data does is to

retrieve the metadata from that store. Inside that metadata is a list

of every entity type in the store along with the hash for that entity.

Core Data then compares that list of hashes against the hashes of the

“current” MOM. If they match, then everything is fine, and the store

is loaded. If they do not match, then Core Data checks the options on

the load persistent store call to see whether automatic data migration

is requested. If it is not, then the error message from Section 5.1, Some

Maintenance Before We Migrate, on page 74 is presented to the user.

Changing the Hash Values

Surprisingly, not everything that changes inside a MOM causes the

hash of the entities inside to change. There are actually quite a few

things that we can do to a model that does not trigger data migration

at all.

Changes That Alter the Entity Hash

If any of the following are changed on an entity, the entity will report a

different hash:

• Name: The name of the entity

• Inheritance: Changing who the parent entity is

• Persistent properties: Adding or removing a property

In addition, changing the following for properties will also trigger a

change to the entity hash:

• Name: The name of the property

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=83

FUNDAMENTALS OF CORE DATA VERSIONING 84

• Optionality/read-only: Changing whether the property is optional

or read-only

• Attribute type: Changes to the type of value stored

• Relationship: Changes to the destination, minimum/maximum

count, the delete rule, or the inverse

Changes That Do Not Alter the Entity Hash

The following changes to an entity will not trigger a change to the entity

hash:

• Class name: Changes to the NSManagedObject subclass

• Transient properties: Properties that are not saved in the persis-

tent store

• User info: Adding, removing, or changing the user info keys/values

• Validation predicates: Adding, removing, or changing the valida-

tion rules

• Default values: Adding, removing, or changing the default value of

an attribute

In addition, the following changes to the properties of an entity will also

not change the hash of the entity:

• User info: Adding, removing, or changing the user info key/values

• Validation predicates: Adding, removing, or changing the valida-

tion rules

The general distinction between things that do and do not affect version

hashes is whether the changes impact the store schema. Things such

as the class name impact only the runtime, not the structure of the

persistent data.

Mapping Models

If Core Data detects that an upgrade to the persistent store is needed,

it looks for three files in the application bundle:

• The MOM that matches the hash from the persistent store

• The current MOM

• The mapping model for those two MOM objects

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=84

A MORE COMPLEX MIGRATION 85

Assuming that all three files are located (and if they aren’t, bad things

happen), Core Data will then migrate the data in the persistent store

from the old MOM to the new MOM. Once the migration is complete,

the stack (MOC, PS, and MOM) is fully initialized, and the applica-

tion continues. This, of course, is the happy path, and there are sev-

eral safeguards in place to allow the application developer to control

failures.

5.4 A More Complex Migration

Now that we have gotten our feet wet with data migration and ver-

sioning, it’s time to test the limits of what we can do. To that end,

we will create another migration that is far more complex. Specifically,

the ingredients really should be in another entity with a many-to-many

relationship to the recipe. In addition, the units of measure should also

be in their own table. And since we have the engine apart as it were,

we can put in the cost of the ingredients as well as the unit size for

ordering. This will allow us to estimate the cost per serving.

With these changes in mind, the data model will look like Figure 5.7,

on the next page. As we learned earlier in this chapter, we will need a

mapping model to go from version 2 to version 3. But what about users

who are still on version 1? For automatic versioning to work, we would

also need a mapping model from version 1 to version 3. Since that will

be a variation on our version 2 to version 3 model, we will skip it for the

moment.

The biggest challenge for this migration is the introduction of the new

entities. Unlike the Author entity from before, during this migration, not

only are we creating new entities, but we are having to extract data

from existing entities to build those new entities, and we have to then

properly link the new entities back to their source. To make it even

more interesting, we do not want these new entities duplicated. This

complexity is far beyond the basic migration that we did for version

2, and it is going to require writing a custom NSEntityMigrationPolicy to

handle it.

NSEntityMigrationPolicy

A NSEntityMigrationPolicy allows us to control exactly how a migration is

handled. Although there are quite a few methods that we can override

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=85

A MORE COMPLEX MIGRATION 86

Figure 5.7: Version 3 of the MOM

depending on our needs, the two methods that we need for this migra-

tion are as follows:

- (BOOL)createDestinationInstancesForSourceInstance:(NSManagedObject*)source

entityMapping:(NSEntityMapping*)mapping

manager:(NSMigrationManager*)manager

error:(NSError**)error

- (BOOL)createRelationshipsForDestinationInstance:(NSManagedObject*)dInstance

entityMapping:(NSEntityMapping*)mapping

manager:(NSMigrationManager*)manager

error:(NSError**)error

createDestinationInstancesForSourceInstance:

The first method, createDestinationInstancesForSourceInstance:, is called

for each entity in the source store that is associated with this migration

policy. For example, during the migration of the RecipeIngredient entities

and the creation of the Ingredient entities, this method would be called

for each RecipeIngredient, and it would be expected that an ingredient

entity would be created or associated with the incoming RecipeIngredient

as a result.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=86

A MORE COMPLEX MIGRATION 87

The code to implement this breaks down as follows:

Download GrokkingRecipes_v3/RecipeIngredientToIngredient.m

NSManagedObjectContext *destMOC = [manager destinationContext];

NSString *destEntityName = [mapping destinationEntityName];

//The name of the ingredient

NSString *name = [source valueForKey:@"name"];

In the first part of the method, we are simply setting up references

that will be needed later. Specifically, we are getting a reference to the

destination NSManagedObjectContext, which we will need to create new

entities, the name of the destination entity, and most important the

name value from the incoming entity. Since the incoming entity is a

RecipeIngredient, the name value will be the name of the ingredient that

we now want to reference.

Download GrokkingRecipes_v3/RecipeIngredientToIngredient.m

NSMutableDictionary *userInfo = (NSMutableDictionary*)[manager userInfo];

if (!userInfo) {

userInfo = [NSMutableDictionary dictionary];

[manager setUserInfo:userInfo];

}

NSMutableDictionary *ingredientLookup = [userInfo valueForKey:@"ingredients"];

if (!ingredientLookup) {

ingredientLookup = [NSMutableDictionary dictionary];

[userInfo setValue:ingredientLookup forKey:@"ingredients"];

}

NSManagedObject *dest = [ingredientLookup valueForKey:name];

if (!dest) {

dest = [NSEntityDescription insertNewObjectForEntityForName:destEntityName

inManagedObjectContext:destMOC];

[dest setValue:name forKey:@"name"];

[ingredientLookup setValue:dest forKey:name];

}

In this next section of code, we deal with the possibility that the Ingre-

dient entity that we need to reference has already been created. Rather

than doing a fetch against the destination context every time, we have

a hash built up and stored within the NSMigrationManger. The NSMigra-

tionManager has an NSDictionary called userInfo that is perfectly suited for

this purpose. We first lazily initialize this dictionary, and then we lazily

initialize another NSDictionary inside it to store references to the Ingredi-

ent entities using the name of the ingredient as the key. With this, we

can make sure that each Ingredient is created only once. If the Ingredi-

ent does not exist yet, then we create it and store it back inside of the

userInfo cache.

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v3/RecipeIngredientToIngredient.m
http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v3/RecipeIngredientToIngredient.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=87

AUTOMATIC DATA MIGRATION 88

Download GrokkingRecipes_v3/RecipeIngredientToIngredient.m

[manager associateSourceInstance:source

withDestinationInstance:dest

forEntityMapping:mapping];

return YES;

The last thing that we need to do is to tell the manager about the asso-

ciation. Since the manager keeps track of all associations between the

two NSManagedObjectContext objects, we need to inform it of this new

entity that was just created and that it is associated with the source

entity that was passed in. Once that is complete, we return YES, and we

are done.

createRelationshipsForDestinationInstance:

In a properly designed data model, this method will rarely if ever be

needed. The intention of this method (which is called in the second

pass) is to build any relationships for the new destination entity that

was created in the previous method. However, if all the relationships

in the model are double sided, then this is not necessary because we

already set up one side of them. If for some reason there is an entity

in the model that is not double sided, then additional code would be

required in this method to handle the one-sided relationship. Since we

do not need that functionality in our model, we just return YES.

Download GrokkingRecipes_v3/RecipeIngredientToIngredient.m

- (BOOL)createRelationshipsForDestinationInstance:(NSManagedObject*)dInstance

entityMapping:(NSEntityMapping*)mapping

manager:(NSMigrationManager*)manager

error:(NSError**)error

{

return YES;

}

5.5 Automatic Data Migration

If your data migration needs are easy to handle and your application is

not coming from Tiger, then automatic migration is probably all that is

needed. Automatic migration lets Core Data handle all the details and

assumes the following:

• Every persistent store that the application will come up against

has hash metadata.

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v3/RecipeIngredientToIngredient.m
http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v3/RecipeIngredientToIngredient.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=88

AUTOMATIC DATA MIGRATION 89

• Every persistent store that the application will come up against

has a corresponding model stored inside the application’s bundle.

• Every persistent store that the application will come up against

has a mapping model from its MOM to the current MOM.

If the application can meet these three criteria (and any application that

has begun its life in Leopard should), then automatic migration should

be able to do all of the dirty work for us.

To enable automatic versioning, we need to set a preference on the

NSPersistentStoreCoordinator while adding a persistent store. Previously,

the method that built up the NSPersistentStoreCoordinator in our recipe

application was as follows:

Download GrokkingRecipes_v1/AppDelegate.m

- (NSPersistentStoreCoordinator*)persistentStoreCoordinator;

{

if (persistentStoreCoordinator) return persistentStoreCoordinator;

NSString *filename = @"GrokkingRecipes.xml";

NSFileManager *fileManager = [NSFileManager defaultManager];

NSString *path = [self applicationSupportFolder];

if (![fileManager fileExistsAtPath:path

isDirectory:NULL]) {

[fileManager createDirectoryAtPath:path

attributes:nil];

}

path = [path stringByAppendingPathComponent:filename];

NSURL *url = [NSURL fileURLWithPath:path];

NSManagedObjectModel *mom = [self managedObjectModel];

persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]

initWithManagedObjectModel:mom];

NSError *error = nil;

if (![persistentStoreCoordinator addPersistentStoreWithType:NSXMLStoreType

configuration:nil

URL:url

options:nil

error:&error]) {

[NSApp presentError:error];

}

return persistentStoreCoordinator;

}

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v1/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=89

MANUAL DATA MIGRATION 90

With automatic versioning, we need to make one minor change to this

method. Instead of passing nil as the options value in the call to -addPer-

sistentStoreWithType:configuration:URL:options:error:, we build up an NSDic-

tionary with one key and value. By setting the key NSMigratePersistentStore-

sAutomaticallyOption to YES, Core Data will attempt to migrate the persis-

tent store if needed.

Download GrokkingRecipes_v2/AppDelegate.m

NSMutableDictionary *dict = [NSMutableDictionary dictionary];

[dict setObject:[NSNumber numberWithBool:YES]

forKey:NSMigratePersistentStoresAutomaticallyOption];

NSError *error = nil;

if (![persistentStoreCoordinator addPersistentStoreWithType:NSXMLStoreType

configuration:nil

URL:url

options:dict

error:&error]) {

5.6 Manual Data Migration

If the persistent store that is being migrated was originally written in

Tiger, then it will not contain the hash information that Core Data

needs, and automatic migration will fail. Fortunately, these stores can

still be migrated, but it is a manual process.

Another situation where manual migration will be useful is when deal-

ing with very large stores. During the migration process, the entire store

is pulled into memory. With very large stores, this can cause a perfor-

mance issue as well as a usability issue. Therefore, in those situations,

it may be advantageous to migrate the store in chunks so that the mem-

ory is more manageable. Doing that would require a manual migration

process and a custom NSMigrationManager.

5.7 Progressive Data Migration

What happens when your application is at version 5 of its data model

and someone who has been at version 1 decides to upgrade? Normally

you would need to provide a mapping model for every combination of

source and destination object models. For the first couple of versions,

this is not an issue. However, when you are getting further and fur-

ther away from version 1, this becomes increasingly difficult. Fortu-

http://media.pragprog.com/titles/mzcd/code/GrokkingRecipes_v2/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=90

PROGRESSIVE DATA MIGRATION 91

nately, it is possible to figure out a migration path and do a progressive

migration.

To accomplish this, we will need to handle the migration manually. The

workflow is as follows:

1. If the store’s model is the current model, do nothing.

2. Find a mapping model with the current store’s model as its source.

3. Migrate the data to that mapping model’s destination model.

4. Repeat starting at step 1.

Creating the Migration Method

To begin this monumental task, we will be creating a new method in

the AppDelegate. The method requires several pieces of information:

the source path, the source type (XML, SQL, and so on), and the final

model. In addition, we will pass in an error to be able to report any

failures.

Download ProgressiveMigration/AppDelegate.m

- (BOOL)progressivelyMigrateURL:(NSURL*)sourceStoreURL

ofType:(NSString*)type

toModel:(NSManagedObjectModel*)finalModel

error:(NSError**)error

{

It’s a rather unwieldy method name to be sure, but it contains all the

information that we need to figure out our migration path. Since this is

going to be a recursive method, the first thing we need to do is check to

see whether we are at our goal:

Download ProgressiveMigration/AppDelegate.m

NSDictionary *sourceMetadata =

[NSPersistentStoreCoordinator metadataForPersistentStoreOfType:type

URL:sourceStoreURL

error:error];

if (!sourceMetadata) return NO;

if ([finalModel isConfiguration:nil

compatibleWithStoreMetadata:sourceMetadata]) {

*error = nil;

return YES;

}

http://media.pragprog.com/titles/mzcd/code/ProgressiveMigration/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/ProgressiveMigration/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=91

PROGRESSIVE DATA MIGRATION 92

In this code segment, we first retrieve the metadata from the source

URL. If that metadata is not nil, we ask the final model whether the

metadata is compatible with it. If it is, then we are happy and done.

We then set the error pointer to nil and return YES. If not, then we need

to try to figure out the mapping model and potentially the interim data

model to migrate to.

Finding All the Managed Object Models

To find the next step in the migration, we need to find every managed

object model in the bundle and loop through them. The goal at this

point is to get all the models and then figure out which one we can

migrate to. Since these models will probably be in their own bundles,

we have to first look for the bundles and then look inside each of them.

Download ProgressiveMigration/AppDelegate.m

//Find the source model

NSManagedObjectModel *sourceModel = [NSManagedObjectModel

mergedModelFromBundles:nil

forStoreMetadata:sourceMetadata];

NSAssert(sourceModel != nil, ([NSString stringWithFormat:

@"Failed to find source model\n%@",

sourceMetadata]));

//Find all of the mom and momd files in the Resources directory

NSMutableArray *modelPaths = [NSMutableArray array];

NSArray *momdArray = [[NSBundle mainBundle] pathsForResourcesOfType:@"momd"

inDirectory:nil];

for (NSString *momdPath in momdArray) {

NSString *resourceSubpath = [momdPath lastPathComponent];

NSArray *array = [[NSBundle mainBundle]

pathsForResourcesOfType:@"mom"

inDirectory:resourceSubpath];

[modelPaths addObjectsFromArray:array];

}

NSArray* otherModels = [[NSBundle mainBundle] pathsForResourcesOfType:@"mom"

inDirectory:nil];

[modelPaths addObjectsFromArray:otherModels];

if (!modelPaths || ![modelPaths count]) {

//Throw an error if there are no models

NSMutableDictionary *dict = [NSMutableDictionary dictionary];

[dict setValue:@"No models found in bundle"

forKey:NSLocalizedDescriptionKey];

//Populate the error

*error = [NSError errorWithDomain:@"Zarra" code:8001 userInfo:dict];

return NO;

}

http://media.pragprog.com/titles/mzcd/code/ProgressiveMigration/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=92

PROGRESSIVE DATA MIGRATION 93

In this code block, we first grab all the resource paths from the mainBun-

dle that are of type momd. This will give us a list of all the model bun-

dles. We then loop through this list and look for mom resources inside

each and add those to an overall array. Once those are done, we then

look inside the mainBundle again for any freestanding mom resources.

Finally, we do a failure check to make sure we have some models to

look through. If we can’t find any, then we populate the NSError and

return NO.

Finding the Mapping Model

Now the complicated part comes in. Since it is not currently possible to

get an NSMappingModel with just the source model and then determine

the destination model, we have to instead loop through every model we

find, instantiate it, plug it in as a possible destination, and see whether

there is a mapping model in existence. If there isn’t, we continue to the

next one.

Download ProgressiveMigration/AppDelegate.m

NSMappingModel *mappingModel = nil;

NSManagedObjectModel *targetModel = nil;

NSString *modelPath = nil;

for (modelPath in modelPaths) {

targetModel = [[NSManagedObjectModel alloc]

initWithContentsOfURL:[NSURL fileURLWithPath:modelPath]];

mappingModel = [NSMappingModel mappingModelFromBundles:nil

forSourceModel:sourceModel

destinationModel:targetModel];

//If we found a mapping model then proceed

if (mappingModel) break;

//Release the target model and keep looking

[targetModel release], targetModel = nil;

}

//We have tested every model, if nil here we failed

if (!mappingModel) {

NSMutableDictionary *dict = [NSMutableDictionary dictionary];

[dict setValue:@"No models found in bundle"

forKey:NSLocalizedDescriptionKey];

*error = [NSError errorWithDomain:@"Zarra"

code:8001

userInfo:dict];

return NO;

}

This section is probably the most complicated piece of the progressive

migration routine. In this section, we’re looping through all the models

that were previously discovered. For each of those models, we’re instan-

tiating the model and then asking NSMappingModel for an instance that

will map between our known source model and the current model. If

http://media.pragprog.com/titles/mzcd/code/ProgressiveMigration/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=93

PROGRESSIVE DATA MIGRATION 94

we find a mapping model, we break from our loop and continue. Oth-

erwise, we release the instantiated model and continue the loop. After

the loop, if the mapping model is still nil, we generate an error stating

that we cannot discover the progression between the source model and

the target and return NO. At this point, we should have all the compo-

nents we need for one migration. The source model, target model, and

mapping model are all known quantities. Now it’s time to migrate!

Performing the Migration

In this block, we are instantiating an NSMigrationManager (if we needed

something special, we would build our own manager instead) with the

source model and the destination model. We are also building up a

unique path to migrate to. In this example, we are using the destination

model’s filename as the unique change to the source store’s path. Once

the destination path is built, we then tell the migration manager to

perform the migration and check to see whether it was successful. If

it wasn’t, we simply return NO because the NSError will be populated

by the NSMigrationManager. If it’s successful, there are only three things

left to do: move the source out of the way, then replace it with the new

destination store, and finally recurse.

Download ProgressiveMigration/AppDelegate.m

NSMigrationManager *manager = [[NSMigrationManager alloc]

initWithSourceModel:sourceModel

destinationModel:targetModel];

NSString *modelName = [[modelPath lastPathComponent]

stringByDeletingPathExtension];

NSString *storeExtension = [[sourceStoreURL path] pathExtension];

NSString *storePath = [[sourceStoreURL path] stringByDeletingPathExtension];

//Build a path to write the new store

storePath = [NSString stringWithFormat:@"%@.%@.%@", storePath,

modelName, storeExtension];

NSURL *destinationStoreURL = [NSURL fileURLWithPath:storePath];

if (![manager migrateStoreFromURL:sourceStoreURL

type:type

options:nil

withMappingModel:mappingModel

toDestinationURL:destinationStoreURL

destinationType:type

destinationOptions:nil

error:error]) {

return NO;

}

http://media.pragprog.com/titles/mzcd/code/ProgressiveMigration/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=94

PROGRESSIVE DATA MIGRATION 95

In this final code block, we first create a permanent location for the

original store to be moved to. In this case, we will use a globally unique

string generated from the NSProcessInfo class and attach the destination

model’s filename and the store’s extension to it. Once that path is built,

we move the source to it and then replace the source with the desti-

nation. At this point, we are at the same spot we were when we began

except that we are now one version closer to the current model version.

Now we need to loop back to step 1 again in our workflow. Therefore, we

will recursively call ourselves, returning the result of that recurse. As

you can recall from the beginning of this method, if we are now at the

current version, we will simply return YES, which will end the recursion.

Download ProgressiveMigration/AppDelegate.m

NSString *guid = [[NSProcessInfo processInfo] globallyUniqueString];

guid = [guid stringByAppendingPathExtension:modelName];

guid = [guid stringByAppendingPathExtension:storeExtension];

NSString *appSupportPath = [storePath stringByDeletingLastPathComponent];

NSString *backupPath = [appSupportPath stringByAppendingPathComponent:guid];

NSFileManager *fileManager = [NSFileManager defaultManager];

if (![fileManager moveItemAtPath:[sourceStoreURL path]

toPath:backupPath

error:error]) {

//Failed to copy the file

return NO;

}

//Move the destination to the source path

if (![fileManager moveItemAtPath:storePath

toPath:[sourceStoreURL path]

error:error]) {

//Try to back out the source move first, no point in checking it for errors

[fileManager moveItemAtPath:backupPath

toPath:[sourceStoreURL path]

error:nil];

return NO;

}

//We may not be at the "current" model yet, so recurse

return [self progressivelyMigrateURL:sourceStoreURL

ofType:type

toModel:finalModel

error:error];

This progressive migration can be tested by first running version 1 of

our Grokking Recipes application, entering some data, and then run-

ning the ProgressiveMigration version. You will then see the data model

migrate seamlessly from version 1 to version 3 with no intervention

required.

http://media.pragprog.com/titles/mzcd/code/ProgressiveMigration/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=95

TIPS AND TRICKS 96

5.8 Tips and Tricks

Updating a Mapping Model

As always happens during development, you will want to make changes

to the current object model that of course will then break the mapping

model. Fortunately, it is possible to tell the mapping model to refresh

the source and/or destination data models. This can be done via the

Design > Mapping Model menu.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=96

Chapter 6

Performance Tuning
Brent Simmons, creator of NetNewsWire, once shared a story about

a user who filed a bug report about the poor startup performance of

NetNewsWire. Upon discussion with that user, he discovered that they

had more than 900,000 unread RSS feeds! The lesson I took away from

that story is to expect my users to put thousands of times as much

data into my applications as I would ever consider reasonable.

While we are working with Core Data, we need to consider the per-

formance impacts of our design. We might test with a couple of dozen

recipes and expect our users to load a couple hundred recipes into our

application and test with those expectations. However, our users cannot

read our intentions or expectations. As soon as we ship the application,

some user somewhere will load 100,000 recipes into it and then file a

bug report that it performs poorly.

6.1 Persistent Store Types

Four types of repositories are included with the Core Data API: SQLite,

XML, binary, and in-memory. In-memory is technically not a persistent

store because it is never written out to disk. Binary is effectively a seri-

alized version of the object graph written out to disk. The XML store

writes out the object graph to a human-readable text file, and SQLite

stores the object graph in a relational database. Excluding edge cases,

it is common to use XML as our persistent store while we are in devel-

opment and then to switch over to SQLite once the application is ready

for production use.

PERSISTENT STORE TYPES 98

Atomic Stores

Atomic stores include XML, binary, and custom data stores. All of these

stores are written to disk atomically; in other words, the entire data

file is rewritten on every save. Although these store types have their

advantages, they do not scale as well as the SQLite store. In addition,

they are loaded fully into memory when they are accessed. This causes

atomic stores to have a larger memory footprint than a SQLite store.

However, because they reside completely in memory while the applica-

tion is running, they can be very fast since the disk is hit only when the

file is read into memory and when it is saved back out. SQLite, although

still considered a fast store, is slower when dealing with smaller data

sets because of its inherent disk access. That said, the differences are

measured in fractions of a second, so we cannot expect a large speed

increase by using an atomic store. But if fractions of a second matter,

it may be something to consider.

When deciding between a binary store and an XML store, the format

on disk should be considered. When working with a binary format, the

only way to review the data is via Core Data. XML, on the other hand,

can be reviewed with any text editor, which makes it a superior choice

during development.

SQLite Persistent Store

The single biggest performance boost that we can make to our applica-

tion is to switch its persistent store type from XML to SQLite. SQLite

is a software library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. SQLite is the most

widely deployed SQL database engine in the world. The source code for

SQLite is in the public domain.

Better Scaling

By utilizing a relational database as the persistent store, we no longer

need to load the entire data set into memory to work with it. Because

the data is being stored in a relational database, our application can

scale to a very large size. SQLite itself has been tested with data sets

measured in terabytes and can handle just about anything that we can

realistically develop. Since we are loading only the data we want at a

particular moment, SQLite keeps the memory footprint of our applica-

tion quite low. Likewise, SQLite makes efficient use of its disk space

and therefore has a small footprint on disk as well.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=98

OPTIMIZING YOUR DATA MODEL 99

More Performance-Tuning Options

By working with a database instead of a flat file, we have access to

many more performance-tuning options. For example, we can index

the columns within our entities to enable faster predicates. We can also

control exactly what gets loaded into memory. It is possible to get just

a count of the objects, just the unique identifiers for objects, and more.

This flexibility allows us to tune the performance of our application

more than any other store type. Because the SQLite store is the only

format that is not fully loaded into memory, we get to control the data

flow. All of the other formats require that the entire data file be loaded

into memory before they can be used. The details of how to utilize these

features are discussed in Section 6.3, Fetching, on page 104.

6.2 Optimizing Your Data Model

When we are designing our data model, we need to consider several fac-

tors. Where we put our binary data can be extremely important because

its size and storage location will play a key role in the performance of

our application. Likewise, relationships must be carefully balanced and

used appropriately. Also, entity inheritance, a powerful feature of Core

Data, must be used with a delicate hand because the underlying struc-

ture may be surprising.

Although it is easy to think of Core Data as a database API, we must

remember that it is not and that structuring the data with data normal-

ization may not yield the most efficient results. In many cases, denor-

malizing the data can yield greater performance gains.

Where to Put Binary Data

One of the easiest ways to kill performance in a Core Data application

is to stick large amounts of binary data into frequently accessed tables.

For example, if we were to put the pictures of our recipes into the recipe

table, we would start seeing performance degradation after only a cou-

ple hundred recipes had been added. Every time we accessed a Recipe

entity, we would have to load its image data, even if we were not going

to display the image. Since our application displays all the recipes in a

list, this would mean that every image would reside in memory imme-

diately upon launch and would remain there until the application quit.

Imagine this situation with a few thousand recipes!

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=99

OPTIMIZING YOUR DATA MODEL 100

Joe Asks. . .

What Is a Fault?

Core Data faults are similar to virtual memory page faults.
Faulted objects are scoped objects that may or may not actu-
ally be in memory, or “realized,” until you actually use them.
Although there is no guarantee for when a faulted NSMan-

agedObject will be loaded into memory, it is guaranteed to
be loaded when accessed. However, the object will be an
instance of the appropriate class (either an NSManagedObject

or the designated subclass), but its attributes are not initialized.

But where do we draw the line? What is considered a small enough

piece of binary data to fit into a table, and what should not be put into

the repository at all?

Small Binary Data

Anything smaller than 100 kilobytes is considered to be small binary

data. Icons or small avatars are a couple examples of data of this size.

When working with something this small, it is most efficient to store it

directly as a property value in its corresponding table. The performance

impact of binary data this size is negligible. The transformable attribute

type is ideal for this use.

Medium Binary Data

Medium binary data is anything that is larger than 100 kilobytes and

smaller than 1 megabyte in size. Average-sized images and small audio

clips are a few examples of data in this size range. Data of this size

can also be stored directly in the repository. However, the data should

be stored in its own table on the other end of a relationship with the

primary tables. This allows the binary data to remain a fault until it

is actually needed. In the previous recipe example, even though the

Recipe entity would be loaded into memory for display, the image would

be loaded only when it is needed by the UI.

SQLite has shown itself to be quite efficient at disk access. There are

cases where loading data from the SQLite store can actually be faster

than direct disk access. This is one of the reasons that medium binary

data can be stored directly in the repository.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=100

OPTIMIZING YOUR DATA MODEL 101

Figure 6.1: Entity inheritance example

Large Binary Data

Large binary data is anything greater than 1 megabyte in size. Large

images, audio files, and video files are just some examples of data of this

size. Any binary data of this size should be stored on disk as opposed to

in the repository. When working with data of this size, it is best to store

its path information directly in the primary entity (such as the Recipe

entity) and store the binary data in a known location on disk (such as

in the Application Support subdirectory for your application).

Entity Inheritance

Entity inheritance is a very powerful feature within Core Data. It allows

you to build an object-like inheritance tree in your data model. How-

ever, this feature comes at a rather large cost. For example, let’s look

at an example model that makes moderate use of entity inheritance, as

shown in Figure 6.1.

The object model itself looks quite reasonable. We are sharing name,

desc, and a one-to-many relationship to the ImageEntity. However, the

underlying table structure actually looks like Figure 6.2, on the follow-

ing page. The reason for this is how Core Data handles the object model

to relational table mapping. Instead of creating one table for each child

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=101

OPTIMIZING YOUR DATA MODEL 102

Figure 6.2: SQLite table layout

object, Core Data creates one large table that includes all the proper-

ties for the parent entity as well as its children. The end result is an

extremely wide and tall table in the database with a high percentage of

empty values.

Although the entity inheritance feature of Core Data is extremely use-

ful, we should be aware of what is going on underneath the object model

to avoid a performance penalty. We should not treat entity inheritance

as an equal to object inheritance. There is certainly some overlap, but

they are not equal, and treating them as such will have a negative

impact on the performance of the repository.

Denormalizing Data to Improve Performance

Although the most powerful persistent store available for Core Data is a

database, we must always be conscious of the fact that Core Data is not

just a database. Core Data is an object hierarchy that can be persisted

to a database format. The difference is subtle but important. Core Data

is first a collection of objects that we use to display data in a user

interface of some form and allow the user to access that data. Therefore,

although database normalization might be the first place to look for

performance improvements, we should not take it too far. There are six

levels of database normalization,1 but a Core Data repository should

rarely, if ever, be taken beyond the second level. There are several cases

where we can gain a greater performance benefit by denormalizing the

data.

Search Only Properties

Searching within properties can be quite expensive. For properties that

have a large amount of text or, worse, Unicode text, a single search

field can cause a huge performance hit. One way to improve this sit-

uation is to create a derived attribute based on the text in an entity.

1. See http://en.wikipedia.org/wiki/Database_normalization for details.

http://en.wikipedia.org/wiki/Database_normalization
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=102

OPTIMIZING YOUR DATA MODEL 103

For example, searching in our description property of the Recipe entity

can potentially be very expensive if the user has verbose descriptions

and/or uses Unicode characters in the description.

To improve performance of searches in this field, we could create a

second property on the Recipe entity that strips the Unicode characters

from the description and also removes common words such as a, the,

and etc. If we then perform the search on this derived property, we can

drastically improve search performance.

The downside to using search-only properties is that we need to main-

tain them. Every time the description field is edited, we need to update

the derived property as well.

Expensive Calculations

In a normalized database, calculated values are not stored. It is consid-

ered cheaper to recalculate the value as needed than to store it in the

database. However, from a user experience point of view, the opposite

can frequently be true. In cases where the calculation takes a human-

noticeable amount of time, it may very well be better for the user to

store that calculation in the entity and recalculate it only when one of

its dependent values has changed. For example, if we store the first and

last names of a user in our Core Data repository, then it might make

sense to store the full name as well.

Intelligent Relationships

Relationships in a Core Data Model are like salt in a cooking recipe.

Too much and you ruin the recipe; too little and something is missing.

Fortunately, there are some simple rules we can follow when it comes

to relationships in a Core Data repository.

Follow the Object Model

Core Data is first and foremost an object model. The entities in our

model should represent the data as accurately as possible. Just be-

cause a value might be duplicated across several objects (or rows from

the database point of view) does not mean it should be extruded into

its own table. Many times it is more efficient for us to store that string

several times over in the entity itself than to traverse a relationship to

get it.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=103

FETCHING 104

Traversing a relationship is generally more expensive than accessing

an attribute on the entity. Therefore, if the value being stored is simple,

then leave it in the entity it is associated with.

Separate Commonly Used from Rarely Used Data

If the object design calls for a one-to-many relationship or a many-

to-many relationship, then definitely create a relationship for it. This

is usually the case where the data is more than a single property or

contains binary data or would be difficult to properly model inside the

parent object. For example, if we have a user entity, it is more effi-

cient to store their address in its own object as opposed to having sev-

eral attributes in the user object for address, city, state, postal code,

and so on.

Balance needs to be carefully maintained between what is stored on

the other end of a relationship and what is stored in the primary entity.

Crossing key paths is more expensive than accessing attributes, but

creating objects that are very wide also slows down data access.

6.3 Fetching

Fetching is the term used to describe the resolving of NSManagedObject

objects from the repository. When we retrieve an NSManagedObject, it is

“fetched” into memory, and we can then access its properties. To help

us utilize memory efficiently, fetching may not always happen all at

once. Specifically, when we are using a SQLite store, it is quite possible

that an object we think is in memory is actually only on disk and has

yet to be read into memory. Likewise, objects that we think we are done

with may actually still sit in a cache.

To demonstrate the differences in the ways that we can load data into

memory from our SQLite Store, I used Apple’s demonstration applica-

tion from WWDC 2007 called GoFetch.2 The entire goal of this appli-

cation is to generate a large amount of random data and let us control

how it is fetched back into memory. Each fetch is then timed to demon-

strate the speed of various options. These tests were performed with

3,417 records in the SQLite repository.

2. The source code for this application is available as part of the ADC Headstart package

for Core Data.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=104

FETCHING 105

Loading NSManagedObjectID Objects Only

The smallest amount of data that we can retrieve as part of an NSFetch-

Request is just the NSManagedObjectID. The NSManagedObjectID is the

unique identifier for the record and contains no content. In the test

discussed earlier, it took the test machine 0.004 seconds to retrieve

3,417 records from disk.

How to Retrieve NSManagedObjectID Objects

There is only one change required to retrieve just NSManagedObjectID

objects instead of full NSManagedObject objects:

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

[fetchRequest setEntity:[NSEntityDescription entityForName:@"Person"

inManagedObjectContext:[self managedObjectContext]]];

[fetchRequest setResultType:NSManagedObjectIDResultType];

By changing the -resultType to NSManagedObjectIDResultType, our call to

-executeFetchRequest:error: will return an NSArray of NSManagedObjectID

objects instead of NSManagedObject objects.

Why would we want only the NSManagedObjectID objects? There are

several uses for this:

• Inclusion comparison. Since NSManagedObjectID objects guaran-

tee uniqueness, we can use them to determine whether an object

is included in a set and avoid having to retrieve the entire set for

this comparison.

• Prefetching. Even though the properties for the associated objects

are not loaded into NSManagedObject objects for us to access, they

are loaded into a cache within Core Data. This means that when

we do access the associated NSManagedObject objects via a call

to objectWithID: on NSManagedObjectContext, we will get the results

much faster than if we had to make a full round-trip to the disk.

You can accomplish this by turning on property loading while

keeping the -resultType as NSManagedObjectIDResultType. This is of-

ten referred to as warming up the cache.

Loaded As a Fault

The next smallest amount of data that we can retrieve is referred to as

a faulted NSManagedObject. What this means is that the NSFetchRequest

returns an NSArray of NSManagedObject objects, but those objects con-

tain only the NSManagedObjectID. All the properties and relationships

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=105

FETCHING 106

are empty or in a faulted state. As soon as an attribute is accessed, all

of the attributes on that object are loaded in. Likewise, as soon as a rela-

tionship is accessed, all the NSManagedObject objects on the other end

of that relationship are loaded in as faults. Performing the same query

as earlier in this configuration returned the 3,417 records in 0.007 sec-

onds. Faults will be discussed in greater depth in Section 6.4, Faulting,

on page 108.

How to Retrieve Faulted NSManagedObject Objects

To disable the fetching of attributes as part of the NSFetchRequest, we

need to disable it prior to executing the fetch:

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

[fetchRequest setIncludesPropertyValues:NO];

[fetchRequest setEntity:[NSEntityDescription entityForName:@"Person"

inManagedObjectContext:[self managedObjectContext]]];

Although this seems like a great solution, it can be a bit of a trap.

Because this configuration returns empty skeletons, each object gets

loaded from disk individually. This is significantly slower than loading

all the objects needed at once. However, the time to load the objects is

spread out and can be less noticeable to the user. For raw speed, it is

recommended that we load all the data for the objects in one pass.

Loading Property Values

The next step up from faulted NSManagedObject objects is to prefetch

their property values. This will not retrieve the objects on the other

sides of relationships. Performing this query took 0.021 seconds for

the 3,417 records in the test repository.

How to Retrieve Only Property Values

Retrieving NSManagedObject objects with attributes populated is the

default for NSFetchRequest:

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

[fetchRequest setEntity:[NSEntityDescription entityForName:@"Person"

inManagedObjectContext:[self managedObjectContext]]];

This option is a very good middle ground between fetching faults and

some of the following choices. In situations where only the object re-

quested needs to be displayed right away and its relationships are not

needed right away, this can be the most efficient solution.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=106

FETCHING 107

How to Load Property Values and NSManagedObjectID Objects

We can also combine this option with the NSManagedObjectID retrieval

listed earlier to warm up the cache. The settings to accomplish this are

as follows:

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

[fetchRequest setResultType:NSManagedObjectIDResultType];

[fetchRequest setEntity:[NSEntityDescription entityForName:@"Person"

inManagedObjectContext:[self managedObjectContext]]];

This can be used to excellent effect on a background thread when the

entire fetch is going to take a significant amount of time. Once the

NSManagedObjectID objects are retrieved, they can be safely passed to

the primary thread and used to display the data to the user. Using Core

Data within a multithreaded application is discussed in greater detail

in Chapter 9, Multithreading and Core Data, on page 162.

Loading Relationships

The next step up in the scale of loading data is to prefetch the relation-

ships while loading the targeted entities. This does not fetch them as

fully formed but as faults. This step up can have a significant impact on

the performance of a Core Data application. In the test, this fetch took

1.166 seconds to retrieve 3,417 objects each with only a single object

on the other side of a one-to-one relationship. With a more complex

data model, this becomes an even larger performance hit.

How to Load Relationships

Fortunately, this option gives us some fine-grained control over which

relationships to load. This would allow us to, for example, load only the

addresses associated with a person and skip over their images, phone

numbers, and so on. Accomplishing this requires passing an NSArray of

NSString objects with the names of the relationships to load:

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

NSArray *relationshipKeys = [NSArray arrayWithObject:@"addresses"];

[fetchRequest setRelationshipKeyPathsForPrefetching:relationshipKeys];

[fetchRequest setEntity:[NSEntityDescription entityForName:@"Person"

inManagedObjectContext:[self managedObjectContext]]];

In this example code, we create a new NSArray that has one NSString

within it that corresponds to the name of the relationship within the

Person entity. We can get even more clever with this request by using a

keypath in the NSArray and specifying a second level of objects to include

in the fetch. For example, if our Address entities had a relationship to

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=107

FAULTING 108

a postal code lookup table that contained the city and state, we could

change the NSArray creation line to the following:

NSArray *relationshipKeys = [NSArray arrayWithObject:@"addresses",

@"addresses.postalCode", nil];

That would cause Core Data to retrieve two levels of relationships as

faults. In addition, this call does check for duplication before executing

the requests and thereby can be used safely when mixing keypaths. In

other words, the postalCode relationship, which is probably many-to-

many, will not be retrieved more than once.

NSFetchRequest and Disk Access

Every time an NSFetchRequest is executed, it hits the disk. This is an

important point to keep in mind when we are working with NSManaged-

Object objects. If we are doing joins, adding objects to a relationship,

and so on, it might seem easier and cleaner to perform an NSFetchRe-

quest to check to see whether the object is already in the relationship

or a similar function, but that can hurt performance significantly. Even

if we have all the relevant objects in memory, an NSFetchRequest is still

going to hit the disk. It is far more efficient for us to use that NSPredicate

against a collection that is already in memory.

We have seen in this section that with a SQLite persistent store, we

have a lot of control over how our data is loaded into memory. We can

tailor the load to fit our exacting needs. All of these options can be a

bit overwhelming, but there is one good rule of thumb. Try to load only

the data you need at that moment in one pass. Every fetch request can

take quite a bit of time, and since they are normally performed on the

main thread, they can damage the user experience of your application.

6.4 Faulting

Firing faults individually is one of the most common, if not the most

common, cause for the poor performance of Core Data applications.

Faults are a double-edged sword that can make great improvements to

the speed and performance of our applications or can drag the perfor-

mance down to the depths of the unusable. The single most valuable

performance improvements we can make to a Core Data application is

to make sure we are fetching only the data we need when we need it.

If we fetch too little, then our application will feel unresponsive. If we

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=108

FAULTING 109

Application Context Disk

10E-9
Seconds

10E-3
Seconds

Figure 6.3: Access performance

fetch too much, then our application will stall with the famous Spinning

Beach Ball of Death.

Orders of Magnitude

Disk access is significantly slower than accessing memory. The times

measured for each is six orders of magnitude different. This translates

into disk access being roughly 1 million times slower than accessing

data that is stored in memory, as illustrated in Figure 6.3.

Although the actual retrieval times are closer to a few thousand times

slower, the point is still clear. Avoid accessing the disk if possible. How-

ever, when we have no choice but to access the disk, attempt to get

everything we need in one pass. Repeated small requests to the disk

are significantly slower than one larger request.

Prefetching

In Section 6.3, Fetching, on page 104, we reviewed the different ways

that we can retrieve the data from disk. To expand on that, consider

each request you make from the NSManagedObjectContext and try to

retrieve all the data in one request that the user is going to want to

view. For example, if the user is going to be editing a user record, load

that user and all its relationships at once. This will be significantly

faster than grabbing the Person entity and then going back to grab three

Address entities, then two Phone entities, and so on. Use the relation-

ship prefetching option of NSFetchRequest to grab all of them at once.

If we can predict what the user is going to want to see and load it ahead

of their request, the overall user experience will be vastly improved.

As we are developing our applications, we need to look at each win-

dow, view, or sheet and ask, “What information will this part present?"

and make sure that all of that information is either already in mem-

ory or loaded at once. Having said that, we need to balance this with

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=109

FAULTING 110

information overload, as discussed in Section 6.5, Access Patterns, on

page 112.

Warming Up the Cache

As we discussed in Section 6.3, Fetching, on page 104, it is possible

to preload the data into the cache so that it is in memory when we

need it. The easiest way to perform this is to execute a full fetch on a

background thread. For example, on launch of our recipe application,

we could launch a background thread to retrieve all the Recipe entities.

This would allow us to fill the cache with the Recipe entities that we

know are going to be presented to the user. This would allow the main

thread to grab those recipes from the cache instead of the disk and

give the user a smoother-running application in the process. The magic

behind this is based on how the NSPersistentCoordinator works. Whenever

any request on any thread is performed, the data is held in the NSPersis-

tentStoreCoordinator as part of its cache. When another request is made,

no matter what thread it came from, for that same data it is retrieved

from the cache instead of requiring another hit to the disk.

Saving

The numbers discussed in Section 6.4, Orders of Magnitude, on the

previous page also apply to writing the data back out to the disk. In

fact, writing to the disk is even slower than reading from it. Therefore,

it is more efficient for us to save data back out to disk in batches.

Saving after every record change will cause our entire application to feel

sluggish to the user. Likewise, doing a huge write while the application

is attempting to exit will give the appearance that our application has

stopped responding and risks data loss.

As with most things when it comes to performance tuning, be aware of

your saves and how much data, or how frequently, you are saving data.

Try to do saves during logical pauses in the application flow.

Deleting

It may come as a surprise, but deleting an object can cause a per-

formance issue. Let’s review the data model from Chapter 5, Version-

ing and Migration, on page 73. Imagine that in this later version of

our application we want to delete a recipe from the repository. When

we delete the recipe, we have a cascade rule set up to delete all the

associated RecipeIngredient entities as well. We also need to touch the

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=110

FAULTING 111

Figure 6.4: Impacts of deleting a recipe

Author entity, Ingredient entity, and UnitOfMeasure entity, as shown in

Figure 6.4.

It is obvious why we need to touch the RecipeIngredient entity, but why

do we need to access all the others? This is because of the relation-

ships between the entities. For each relationship, we need to validate

the relationship after the delete and confirm that there are no dan-

gling references. If these objects are not currently in memory, then the

NSManagedObjectContext must retrieve them from the disk to accom-

plish all of this.

Therefore, when we are doing deletes, especially large deletes, it can be

a performance improvement to fetch all the relationships prior to the

delete.

Faulting and Disk Access

Firing a fault does not always mean that the data is going to be read

from disk. Depending on how we have requested the data in the first

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=111

ACCESS PATTERNS 112

place or what happened earlier in the NSManagedObject object’s life

span, it is quite possible that the data will be loaded from cache instead.

Likewise, faulting an NSManagedObject does not guarantee that it will

be written back out to disk nor does it guarantee that it will be removed

from the cache. If the object has no changes, then there is nothing to

write to disk, and it is quite possible that it will remain in the cache for

an unknown period of time.

Easily one of the best ways to check to see whether the firing of a fault

is in fact causing disk access is to monitor our application with instru-

ments. By using the Core Data template, we can use the “cache miss”

instrument to check for disk hits. If we are getting far more calls to the

disk than expected, then we need to consider refactoring the code.

6.5 Access Patterns

Improving performance within Core Data is not necessarily only about

the repository and order of loading the data. There are a number of

things that we can do within the user interface to help performance as

well.

Searching

Searching the repository can be absolute murder on performance.

Whether we are searching at the request of the user or we are per-

forming a search in the background, we need to be very careful to avoid

impacting the performance of our application.

Order Is Important

Just like any conditional, the order of the logic is important. Simple

equality is faster than inclusions such as in, contains, and so on. When

building the predicate, try to order the logic from left to right, simple

to complex. This will allow Core Data to fail quickly and improve the

search performance.

Unicode and Regular Expressions

Unicode is very expensive to work with when we are searching. As sug-

gested earlier in Section 6.2, Search Only Properties, on page 102, try to

avoid searching against Unicode directly. It is cheaper to keep a derived

value that strips off the Unicode than it is to do frequent searches

against the Unicode text.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=112

ACCESS PATTERNS 113

Likewise, regular expressions are expensive. If a situation calls for one,

try to put it at the far right end of the NSPredicate, as discussed in

Section 6.5, Order Is Important, on the previous page.

Limit Queries Across Relationships

Searching across objects that are joined by a relationship can be very

expensive for searching. Although it is impressive to search against per-

son.address.postalCode.city, it may not be the most efficient way to solve

the problem. Consider reversing the query or breaking it down into sev-

eral smaller queries to reduce the complexity of the underlying SQL.

When we are working with a SQLite back end, all of our NSPredicate

calls turn into SQL before hitting the database. The less complex that

SQL is, the faster it will run. It may very well be faster to get an NSArray

of all the Address objects within a specific city and then perform the

rest of the query against that NSArray than it would be to traverse three

relationships in one call.

Information Overload

A busy user interface is more than just a poor user experience; it also

impacts the performance of the application. When we display a large

amount of data on the screen, we must keep that information in mem-

ory, which in turn means we must load a large amount of data from

disk all in one go. It is far better to break an application user interface

up into consumable chunks of information than it is to try to display

every last bit on the screen at once.

The careful use of tabs, sheets, and panels can improve the feel of

a user interface, and that will in turn improve the performance. By

splitting the user interface into smaller pieces, we have finer-grained

control over what data gets loaded when, and we can reduce our disk

access to manageable chunks.

Keep it simple.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=113

Chapter 7

Spotlight, Quick Look,
and Core Data

Developing for Mac OS X is about functionality meeting quality. When

our applications have either without the other, we leave our users want-

ing more. They may not be able to define it, but “something” will be

missing. Spotlight and Quick Look integration are two of those things

that users don’t look for when trying a new application but are pleas-

antly surprised by them when they stumble upon them. Surprisingly,

not a lot of developers handle this integration. Perhaps it is because

Spotlight does not get along with Core Data very well. Perhaps the fea-

ture is too new. But one thing is for certain—integrating with Spotlight

is the right move going forward. Spotlight is here to stay, and users will

be using it more often and in more creative ways.

Unfortunately, for technical reasons, Spotlight and Core Data are at

odds with each other. Spotlight works on the metadata of individual

files, and Core Data stores everything in a single file. Because Spotlight

is designed to work with the metadata of a file to discover things about

the file, it will not work very well with a single file design such as Core

Data. When Tiger was first released, there were a number of applica-

tions (such as Entourage) that, because of their single file design, did

not play nicely with Spotlight. In fact, Apple rearchitected Mail for that

reason.

The incompatibility between Spotlight and Core Data is corrected in

Snow Leopard but unfortunately it’s Snow Leopard only and not back-

ward compatible with plain old vanilla Leopard. How? It’s in a manner

that is very similar to the solution described in this chapter.

CHAPTER 7. SPOTLIGHT, QUICK LOOK, AND CORE DATA 115

Should I Just Use Separate Files?

Throughout this book, the application we are designing uses
a single Core Data file. This is done for the sake of clarity and
focus on Core Data. Depending on the application that is
being designed, it is highly likely that it will be document based,
and therefore it would be appropriate to have one Core Data
repository per document. In that situation, Spotlight and Quick
Look can be a lot easier to integrate.

However, for applications that are not document based, then
it is preferable to use a single Core Data repository as opposed
to individual files. Although individual files will make Spotlight
easier to work with, it would be the tail wagging the dog. The
main focus of object persistence (in other words, data files) is
to quickly and easily access the data in a logical and repro-
ducible manner. Core Data solves all those problems quite
neatly with the unfortunately minor side effect of not being fully
compatible with Spotlight.

In this chapter, we will integrate Spotlight into our recipes application.

Once we are done, our users will be able to search for Pot Roast and

find it in our application. In addition, when they select that search

result, our application will not only open but open to Pot Roast. While

we are solving the Spotlight issue, we are also going to take a look at

Quick Look. Although on the surface these two technologies appear to

be completely different, they are handled in a very similar fashion by

Mac OS X and the Finder. And although it is not 100 percent appro-

priate for our sample application (since we have only a single data file

and that data file is hidden away in the Library/Application Support

directory), it is very useful to understand how Quick Look works for

document-based Core Data applications because it makes them easier

to find in Finder, Spotlight, Time Machine, Mail, and many other appli-

cations. Lastly, Quick Look and Spotlight integrate rather well together.

If our users activate Quick Look on a Spotlight result, we want them to

see information about the recipe, not a picture of a generic file.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=115

INTEGRATING WITH SPOTLIGHT 116

7.1 Integrating with Spotlight

The issue, as mentioned, is one of multiple files. Ideally, for our recipe

application, we want one Spotlight “record” for each recipe in our Core

Data repository. For Spotlight to work properly, we would need one file

on the disk for each recipe along with its associated metadata. There-

fore, to make Spotlight happy, we will do exactly that. However, since

all our data is being stored in a Core Data repository, there is no rea-

son to store any data in these files. These additional files exist purely

for Spotlight (and Quick Look) to utilize. Since Spotlight does not need

any data in the files to work (it just needs metadata), we will create very

simple files and link them back to our Core Data repository.

The other gotcha with Spotlight is that the importer needs to be as

fast as possible. What might be acceptable for processing one file or

ten files is not going to fly when Spotlight has to chug through thou-

sands of files. Since the same importer that we are writing for use

inside our application could potentially be used in a server situation,

it needs to be as fast as we can make it. Therefore, we will cheat a

bit. Instead of looking up the metadata in our Core Data repository

upon request from Spotlight, we will instead store that metadata in the

files we are creating for Spotlight. That way, our importer has to touch

the metadata files only and does not need to initialize the entire Core

Data “stack” (NSManagedObjectContext, NSPersistentStoreCoordinator, and

NSManagedObjectModel).

Creating the Metadata Files

We first need to produce and update the metadata files on the fly. To

keep them as simple as possible, we will just use plist files as opposed to

a binary representation or some other format. Since NSDictionary under-

stands plist files, it will reduce the amount of overhead we have for

loading and saving the files.

To begin with, we will create our first NSManagedObject subclass. This

subclass will handle producing the NSDictionary that will contain all the

metadata. Since we are creating a subclass, we might as well implement

some of the properties we will be using to reduce the code complexity

and make it easier to maintain.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=116

INTEGRATING WITH SPOTLIGHT 117

Figure 7.1: Changing the entity’s class

Therefore, our header file will look as follows:

Download Spotlight/PPRecipe.h

#import <Cocoa/Cocoa.h>

extern NSString *kPPImagePath;

extern NSString *kPPObjectID;

extern NSString *kPPServes;

@interface PPRecipe : NSManagedObject {

}

@property (assign) NSString *desc;

@property (assign) NSString *name;

@property (assign) NSString *type;

@property (assign) NSManagedObject *author;

@property (assign) NSDate *lastUsed;

- (NSDictionary*)metadata;

- (NSString*)metadataFilename;

@end

We need to make sure that we change the class setting in the latest data

model so that Core Data will use our subclass rather than the default

NSManagedObject. See Figure 7.1.

Implementing the Metadata Method

The goal of this metadata file is to contain just enough information to

populate Spotlight and Quick Look but not too much information that

http://media.pragprog.com/titles/mzcd/code/Spotlight/PPRecipe.h
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=117

INTEGRATING WITH SPOTLIGHT 118

the files become large and cumbersome. We always have to pretend that

there will be thousands of these files (even if in reality that would be

impractical), and we do not want to impact the user’s performance or

their hard drive capacity. For our metadata files, we really need only

the following information:

• The name of the recipe

• The number of people it serves

• The image for the recipe

• The last time it was served

• The description of how to prepare it

Most of that list is very light—just text. However, the image is proba-

bly too large to cram into the plist file, especially since we cannot be

sure how large those files will be. In addition, it would complicate the

file format by including binary data. Therefore, we will put in its path

instead of the actual image. Since the image is stored on disk anyway,

we can just access that copy.

In addition to this list, we need to add one more item that is not user

facing. We want a way to link back to the recipe record in our Core

Data repository so that if the user tries to open the metadata file, it will

instead open our application and select the correct record. To do this,

we will use the NSManagedObjectID of the recipe and store its URIRepre-

sentation (which is actually an NSURL) as a string in the metadata.

Download Spotlight/PPRecipe.m

- (NSDictionary*)metadata;

{

NSMutableDictionary *metadataDict = [NSMutableDictionary dictionary];

[metadataDict setValue:[self name]

forKey:(id)kMDItemTitle];

[metadataDict setValue:[self desc]

forKey:(id)kMDItemTextContent];

[metadataDict setValue:[[self author] valueForKey:@"name"]

forKey:(id)kMDItemAuthors];

[metadataDict setValue:[self valueForKey:@"imagePath"]

forKey:kPPImagePath];

[metadataDict setValue:[self lastUsed] forKey:(id)kMDItemLastUsedDate];

[metadataDict setValue:[self valueForKey:@"serves"] forKey:kPPServes];

[metadataDict setValue:[NSString stringWithFormat:@"Recipe: %@", [self name]]

forKey:(id)kMDItemDisplayName];

[metadataDict setValue:[[[self objectID] URIRepresentation] absoluteString]

forKey:kPPObjectID];

return metadataDict;

}

http://media.pragprog.com/titles/mzcd/code/Spotlight/PPRecipe.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=118

INTEGRATING WITH SPOTLIGHT 119

Implementing the metadataName Method

Because we want users to be able to view the actual metadata files in

the Finder, the filenames should represent the recipe rather than an

abstract name. Therefore, we will use the name attribute of the recipe

itself as the filename:

Download Spotlight/PPRecipe.m

- (NSString*)metadataFilename;

{

return [[self name] stringByAppendingPathExtension:@"grokkingrecipe"];

}

Generating and Updating the Metadata Files

Now that we have an implementation for generating the metadata per

recipe, we need to add the ability to populate these files and keep them

up-to-date. Ideally, we want to refresh the metadata files every time

that the NSManagedObjectContext is saved. To do this, we will add a new

-save: method to our AppDelegate and route all of our saves through it:

Download Spotlight/AppDelegate.m

- (BOOL)save:(NSError**)error;

{

NSManagedObjectContext *moc = [self managedObjectContext];

if (!moc) return YES;

if (![moc hasChanges]) return YES;

//Grab a reference to all of the objects we will need to work with

NSSet *deleted = [moc deletedObjects];

NSMutableSet *deletedPaths = [NSMutableSet set];

for (NSManagedObject *object in deleted) {

if (![object isKindOfClass:[PPRecipe class]]) continue;

[deletedPaths addObject:[object valueForKey:@"metadataFilename"]];

}

NSMutableSet *updated = [NSMutableSet setWithSet:[moc insertedObjects]];

[updated unionSet:[moc updatedObjects]];

//Save the context

if (![moc save:error]) {

return NO;

}

return [self updateMetadataForObjects:updated

andDeletedObjects:deletedPaths

error:error];

}

http://media.pragprog.com/titles/mzcd/code/Spotlight/PPRecipe.m
http://media.pragprog.com/titles/mzcd/code/Spotlight/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=119

INTEGRATING WITH SPOTLIGHT 120

In this new -save: method, we are doing a couple of things before calling

save on the NSManagedObjectContext. Since the NSManagedObjectCon-

text knows what objects have been deleted, updated, or inserted, we

want to grab a reference to that information before the -save: occurs.

Once the -save: is complete, that information is no longer available.

Therefore, we grab a reference to the NSSet of deleted objects, updated

objects, and inserted objects. Because the deleted objects will be, well,

deleted once the -save: is performed, we want to extract the information

we care about beforehand. Therefore, we loop over the deleted objects

looking for Recipe instances. Whenever we find one, we extract its meta-

dataFilename and store it in a new NSMutableSet. In addition, since we

will be doing the same thing to the inserted and the updated objects, we

merge them into one set. Once we have that information, we go ahead

and save the context. If the save fails, we just abort and let the calling

code handle the error. When the save is successful, it is time to update

the metadata.

Download Spotlight/AppDelegate.m

if ((!updatedObjects || ![updatedObjects count]) &&

(!deletedObjects || ![deletedObjects count])) return YES;

NSString *path = [self metadataFolder:error];

if (!path) return NO;

BOOL directory = NO;

NSFileManager *fileManager = [NSFileManager defaultManager];

if (![fileManager fileExistsAtPath:path isDirectory:&directory]) {

if (![fileManager createDirectoryAtPath:path

withIntermediateDirectories:YES

attributes:nil

error:error]) {

return NO;

}

directory = YES;

}

if (!directory) {

NSMutableDictionary *errorDict = [NSMutableDictionary dictionary];

NSString *msg = NSLocalizedString(@"File in place of metadata directory",

@"metadata directory is a file error description");

[errorDict setValue:msg forKey:NSLocalizedDescriptionKey];

*error = [NSError errorWithDomain:@"pragprog" code:1001 userInfo:errorDict];

return NO;

}

In the habit of assuming nothing, we first check to make sure that

there is something to update or delete. Once we are past that check, we

http://media.pragprog.com/titles/mzcd/code/Spotlight/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=120

INTEGRATING WITH SPOTLIGHT 121

next need to confirm that the cache directory is in place and either our

metadata directory is in place or we can create it. If any of this fails, we

update the NSError object and return.

Download Spotlight/AppDelegate.m

NSString *filePath = nil;

if (deletedObjects && [deletedObjects count]) {

for (NSString *filename in deletedObjects) {

filePath = [path stringByAppendingPathComponent:filename];

if (![fileManager fileExistsAtPath:filePath]) continue;

if (![fileManager removeItemAtPath:filePath error:error]) return NO;

}

}

The next part of updating the metadata is to remove any files that are no

longer appropriate. Therefore, if the passed-in deletedObjects set con-

tains any objects, we need to loop over it. Since we know that the name

of the metadata file is stored in the deletedObjects variable, we append

it to the metadata directory path and check for the existence of the file.

If it exists, we delete it.1 If we run into an issue deleting the file, then

we abort the update and let the calling method handle the error.

Download Spotlight/AppDelegate.m

if (!updatedObjects || ![updatedObjects count]) return YES;

NSNumber *_YES = [NSNumber numberWithBool:YES];

NSDictionary *attributesDictionary = [NSDictionary

dictionaryWithObject:_YES

forKey:NSFileExtensionHidden];

for (NSString *filename in updatedObjects) {

if (![object isKindOfClass:[PPRecipe class]]) continue;

PPRecipe *recipe = (PPRecipe*)object;

NSDictionary *metadata = [recipe metadata];

filePath = [recipe metadataFilename];

filePath = [path stringByAppendingPathComponent:filePath];

[metadata writeToFile:filePath atomically:YES];

[fileManager changeFileAttributes:attributesDictionary atPath:filePath];

}

return YES;

The last part of updating the metadata files is to process existing or

new recipes. As with the deleted objects earlier, we first check to see

whether there are any objects to update, and if there are not, we are

1. It may be possible that a recipe got created and deleted without ever being saved to

disk. It’s unlikely, but why take chances?

http://media.pragprog.com/titles/mzcd/code/Spotlight/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/Spotlight/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=121

INTEGRATING WITH SPOTLIGHT 122

done and successful. If there are new or updated objects, then we again

loop through the NSSet looking for PPRecipe entities. For each recipe that

we find, we request its metadata NSDictionary object from the metadata

method we created earlier. Using that NSDictionary along with the meta-

dataFilename method, we write the NSDictionary to disk. For one last bit

of polish, we update the attributes on the newly created (or updated)

file and tell it to hide its file extension. This will give us the cleanest

appearance when viewed inside the Finder.

Now that the -save: method has been written, we need to route all

the -save: calls that exist to call this method instead of calling -save:

directly on the NSManagedObjectContext. Currently, this requires modi-

fying both the -(NSApplicationTerminateReply)applicationShouldTerminate:

method and the -(IBAction)saveAction: method. In each case, we just need

to change the following:

[[self managedObjectContext] save:&error]

to a message to the -save: method on the AppDelegate itself:

[self save:&error];

There is one last situation we need to handle. If we have existing users

and are adding the Spotlight integration after v1.0, we need some way

to bring our users up to speed. To do this, we need to add a check to

the -(void)applicationDidFinishLaunching: method. If the metadata directory

does not exist, then we need to do a full push of all the metadata in the

persistent store.

Download Spotlight/AppDelegate.m

NSError *error = nil;

NSString *path = [self metadataFolder:&error];

if (!path) {

NSLog(@"%@:%s Error resolving cache path: %@", [self class], _cmd, error);

return;

}

if ([[NSFileManager defaultManager] fileExistsAtPath:path]) return;

NSManagedObjectContext *moc = [self managedObjectContext];

NSFetchRequest *request = [[[NSFetchRequest alloc] init] autorelease];

[request setEntity:[NSEntityDescription entityForName:@"Recipe"

inManagedObjectContext:moc]];

NSSet *recipes = [NSSet setWithArray:[moc executeFetchRequest:request

error:&error]];

if (error) {

NSLog(@"%@:%s Error: %@", [self class], _cmd, error);

return;

}

http://media.pragprog.com/titles/mzcd/code/Spotlight/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=122

INTEGRATING WITH SPOTLIGHT 123

[self updateMetadataForObjects:recipes andDeletedObjects:nil error:&error];

if (error) {

NSLog(@"%@:%s Error: %@", [self class], _cmd, error);

return;

}

Here we are looking for the metadata cache directory, and if it does

not exist, then we fetch every recipe entity in the persistent store and

pass the NSSet to our metadata building method. This will also protect

us from users who like to periodically delete their cache directory. This

method calls the -metadataFolder method to determine where the meta-

data should be stored.

Download Spotlight/AppDelegate.m

- (NSString*)metadataFolder:(NSError**)error

{

NSString *path = [NSSearchPathForDirectoriesInDomains(NSCachesDirectory,

NSUserDomainMask, YES)

lastObject];

if (!path) {

NSMutableDictionary *errorDict = [NSMutableDictionary dictionary];

[errorDict setValue:NSLocalizedString(@"Failed to locate caches directory",

@"caches directory error description")

forKey:NSLocalizedDescriptionKey];

*error = [NSError errorWithDomain:@"pragprog" code:1000 userInfo:errorDict];

return nil;

}

path = [path stringByAppendingPathComponent:@"Metadata"];

path = [path stringByAppendingPathComponent:@"GrokkingRecipes"];

return path;

}

In the -metadataFolder, we first request a list of the cache directories

from the NSSearchPathForDirectoiesInDomain method and append the path

components Metadata and GrokkingRecipes to it. We do not check to see

whether the path exists at this point but instead let our caller decide

how to handle that.

Creating the Spotlight Importer

Now that we have some metadata to work with, it is time to build the

Spotlight importer. To start off this part of the application, we need to

first address UTIs.

Uniform Type Identifiers (UTIs)

Both Spotlight and Quick Look use UTIs rather than filename exten-

sions to connect files on disk with (Spotlight) importers and (Quick

Look) generators. A UTI is a unique string that identifies the type of

http://media.pragprog.com/titles/mzcd/code/Spotlight/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=123

INTEGRATING WITH SPOTLIGHT 124

data stored in a given file. It is recommended that UTIs identify the

company and application that created the data file, and like bundle

identifiers, a reverse domain name is ideal for this purpose.2 Since our

application uses com.pragprog.grokkingrecipes as its unique bundle iden-

tifier, we will use the same UTI as the value of the LSItemContentTypes to

identify the files.

Download Spotlight/Info.plist

<key>CFBundleDocumentTypes</key>

<array>

<dict>

<key>CFBundleTypeExtensions</key>

<array>

<string>grokkingrecipe</string>

</array>

<key>CFBundleTypeIconFile</key>

<string>book.icns</string>

<key>CFBundleTypeName</key>

<string>Grokking Recipe</string>

<key>CFBundleTypeRole</key>

<string>Editor</string>

<key>LSItemContentTypes</key>

<array>

<string>com.pragprog.grokkingrecipe</string>

</array>

<key>NSPersistentStoreTypeKey</key>

<string>XML</string>

</dict>

</array>

The UTExportedTypeDeclarations section is probably very familiar. Xcode

generates it to describe any file that is handled by the application being

built. The one difference is that, instead of defining a file extension (like

.txt), we are defining a UTI that is being handled by our application.

Since this UTI is unknown by the system, we need to describe it, again

in our Info.plist file:

Download Spotlight/Info.plist

<key>UTExportedTypeDeclarations</key>

<array>

<dict>

<key>UTTypeConformsTo</key>

<array>

<string>public.data</string>

<string>public.content</string>

</array>

<key>UTTypeDescription</key>

2. It should be noted that bundle identifiers are in fact UTIs themselves.

http://media.pragprog.com/titles/mzcd/code/Spotlight/Info.plist
http://media.pragprog.com/titles/mzcd/code/Spotlight/Info.plist
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=124

INTEGRATING WITH SPOTLIGHT 125

<string>Grokking Recipe</string>

<key>UTTypeIdentifier</key>

<string>com.pragprog.grokkingrecipe</string>

<key>UTTypeTagSpecification</key>

<dict>

<key>public.filename-extension</key>

<string>grokkingrecipe</string>

</dict>

</dict>

</array>

This key describes exporting our UTI and tells Mac OS X how to link it

to different file extensions. In addition, this section describes the data

to Mac OS X, telling the OS a descriptive name for the data type and

where in the UTI tree it fits.3

Xcode Subproject

Our Spotlight importer is actually its own application. Xcode handles

this by having a separate project for the importer.4 Since we want to

include the importer as part of our primary application and we do not

want to have to remember to rebuild the subproject every time we build

our main project, we will set it up as a dependent or subproject within

our primary project. To do this, we start with creating a project in Xcode

and selecting the Spotlight importer, as shown in Figure 7.2, on the

next page. We want to save this project in a directory inside our primary

recipe project. Don’t be too clever. Give the subproject an obvious name

like SpotlightPlugin, and include it with the Spotlight example project. To

make Xcode build this plug-in every time we build the main project, we

need to link the two together. This is accomplished with the following

steps:

1. Drag the subproject into the main project. See Figure 7.3, on the

following page.

2. Open the target in the main project, and select the General tab.

3. Add the subproject as a dependency.

4. Add a new copy phase to the main project’s target, and set its

destination to wrapper and path to Contents/Library/Spotlight.

3. For more information on UTIs, I suggest reviewing

http://developer.apple.com/documentation/Carbon/Conceptual/understanding_utis/understand_utis_intro/chapter_1_section_1.html#//a

4. It is actually possible to include the plug-in as part of the main application project,

but I have found that to be a complete mess and more hassle than it is worth.

http://developer.apple.com/documentation/Carbon/Conceptual/understanding_utis/understand_utis_intro/chapter_1_section_1.html#//apple_ref/doc/uid/TP40001319-CH201-SW1
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=125

INTEGRATING WITH SPOTLIGHT 126

Figure 7.2: Select the Spotlight template.

Figure 7.3: Drag the subproject into the main project.

Figure 7.4: Drag the plug-in into its build phase.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=126

INTEGRATING WITH SPOTLIGHT 127

5. Drag the Spotlight plug-in into the new build phase. See Fig-

ure 7.4, on the previous page.

Now, whenever we clean or build the main project, the subproject will

be cleaned/built. This will also allow the subproject to be built with the

same settings as the primary project.

Linking the Spotlight Importer to the UTI

With our Spotlight importer subproject in place, it is time to link the

importer to the UTI for our metadata files. To do this, we need to update

the Info.plist of our Spotlight subproject to let the operating system know

which UTIs this importer handles.

<array>

<dict>

<key>CFBundleTypeRole</key>

<string>MDImporter</string>

<key>LSItemContentTypes</key>

<array>

<string>com.pragprog.grokkingrecipe</string>

</array>

</dict>

</array>

Here, we are defining our plug-in as having an MDImporter role, and the

list of UTIs contains just the one for our metadata file. With this change,

Mac OS X will know to use this importer to retrieve the information for

our metadata files.

Building the Spotlight Importer

Now that everything is connected, it is time to build the importer itself.

Fortunately, this is the easiest and shortest part of the entire process.

The Spotlight template created the main.m file that we will be using,

and it contains all the boilerplate code for us. The only code we need to

write for the importer is in the GetMetadataForFile.m file. The template

generates a GetMetadataForFile.c file, and that file will not accept any

Objective-C code. Since I prefer Objective-C over straight C, the first

thing I did was rename the .c file to an .m file. This tells Xcode to com-

pile it as Objective-C rather than C. Since we will be using Foundation

APIs, we need to include Foundation.framework as well.

Download Spotlight/SpotlightPlugin/GetMetadataForFile.m

#include <CoreFoundation/CoreFoundation.h>

#include <CoreServices/CoreServices.h>

#import <Foundation/Foundation.h>

http://media.pragprog.com/titles/mzcd/code/Spotlight/SpotlightPlugin/GetMetadataForFile.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=127

INTEGRATING WITH SPOTLIGHT 128

Boolean GetMetadataForFile(void* thisInterface,

CFMutableDictionaryRef attributes,

CFStringRef contentTypeUTI,

CFStringRef pathToFile)

{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSDictionary *metadata;

metadata = [NSDictionary dictionaryWithContentsOfFile:(NSString*)pathToFile];

for (NSString *key in [metadata allKeys]) {

[(id)attributes setObject:[metadata objectForKey:key] forKey:key];

}

[pool release], pool = nil;

return TRUE;

}

The actual code for the importer is almost laughable. We are simply

loading the metadata file back into an NSDictionary, looping over the

keys using the allKeys method, and adding each associated value to

the passed-in CFMutableDictionaryRef. Once we are done with the NSDic-

tionary, we return TRUE and are done. Since we are running inside a C

function, we need to wrap the entire procedure in an NSAutoreleasePool

so that we are not leaking any memory.

Testing the Spotlight Importer

There are a couple of ways to test the importer to make sure that every-

thing is working properly. The first thing we need to do is to generate

the metadata files. We can do this by running our application. Once the

metadata files are created, we can test the importer.

We can get a lot of information about our importer directly on the com-

mand line. Included with Mac OS X is a command-line tool called mdim-

port. A quick review of the man page will reveal that there are three

switches for this command that are of immediate use. First, we need to

tell Spotlight to load our importer:

mdimport -r ${path to our project}/build/Debug/GrokkingRecipes.app/

Contents/Library/Spotlight/SpotlightPlugin.mdimporter

Once Spotlight is aware of our importer, we can start querying it, again

from the command line using the mdimport command:

cd ~/Library/Caches/Metadata/GrokkingRecipes

mdimport -d2 Test.grokkingrecipe

We can change the debug level from 1 to 4 to display different quanti-

ties of information about the metadata file. However, level 2 will tell us

that the importer is working and give us a basic summary of the data

contained inside the file.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=128

INTEGRATING WITH SPOTLIGHT 129

Figure 7.5: The Pot Roast recipe in Spotlight

The other way to test the importer is to just search for one of our

recipes! Click the spotlight magnifying glass in the upper-right corner,

and enter the name of one of the recipes, as in Figure 7.5. But what

happens when we try to open this file?

Accepting Metadata Files

Since we linked our metadata files to the primary application, Mac OS

X will attempt to open our application and pass the file to us. However,

we have no way of handling that yet.

Download Spotlight/AppDelegate.m

- (BOOL)application:(NSApplication*)theApplication

openFile:(NSString*)filename

{

NSDictionary *metadata = [NSDictionary dictionaryWithContentsOfFile:filename];

NSString *objectIDString = [metadata valueForKey:(id)kPPObjectID];

NSURL *objectURI = [NSURL URLWithString:objectIDString];

NSPersistentStoreCoordinator *coordinator;

coordinator = [[self managedObjectContext] persistentStoreCoordinator];

NSManagedObjectID *objectID;

objectID = [coordinator managedObjectIDForURIRepresentation:objectURI];

NSManagedObject *recipe = [[self managedObjectContext] objectWithID:objectID];

if (!recipe) return NO;

[self performSelector:@selector(selectRecipe:)

withObject:recipe

afterDelay:0.01];

return YES;

}

http://media.pragprog.com/titles/mzcd/code/Spotlight/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=129

INTEGRATING WITH QUICK LOOK 130

In our application delegate, we need to add the method -(BOOL)appli-

cation:openFile: that will be called when the operating system attempts

to open one of our metadata files. In that method, we will load the

metadata file into an NSDictionary and retrieve the URIRepresentation of

the NSManagedObjectID. With the NSManagedObjectID in hand, we can

load the represented Recipe entity and display it to the user. Since we

want to return from this method as quickly as possible (since the oper-

ating system is waiting on an answer), we will display the recipe after

we return from this method. To do that, we wrap the call to display the

recipe in a -(void)performSelector:withObject:afterDelay, which will pass

the recipe to the -(void)selectRecipe: method almost immediately after

this method returns.

The -(void)selectRecipe: method simply sets the selectedObjects on the

recipe’s NSArrayController to the passed-in Recipe, which will then be

reflected in the UI.

Download Spotlight/AppDelegate.m

- (void)selectRecipe:(NSManagedObject*)recipe;

{

[recipeArrayController setSelectedObjects:[NSArray arrayWithObject:recipe]];

}

With that code in place, we can select a recipe from Spotlight, and our

application will open with the correct recipe selected. The first part of

our OS integration is now in place.

7.2 Integrating with Quick Look

There are two different ways to implement Quick Look. The application

can generate images as part of the data bundle, or a generator can be

written that will generate the images on the fly. Storing images with the

data is viable only if the data is stored in a bundle similar to the way

that Pages or Numbers does. When the data is stored in a flat file, like

our metadata files, then a generator is the only way to integrate with

Quick Look. Fortunately, writing a Quick Look generator is only slightly

more complicated than a Spotlight importer.

Adding the Subproject

Just like the Spotlight importer, the Quick Look generator is created

within its own subproject.

http://media.pragprog.com/titles/mzcd/code/Spotlight/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=130

INTEGRATING WITH QUICK LOOK 131

Figure 7.6: The Xcode project tree with all plug-ins added

Like the Spotlight importer subproject we added earlier, we need to

perform the following steps:

1. Create a subproject under our recipes project. Again, I named

mine the very clever name of QuickLookPlugin.

2. Drag the project into the main project, and flag it as a dependency.

3. Add a new copy phase to the main project’s target, and set its

destination to wrapper and path to Contents/Library/QuickLook.

4. Drag the Quick Look plug-in into the new build phase.

If any of these steps are confusing, please see Section 7.1, Xcode Sub-

project, on page 125. Once the Quick Look subproject has been added,

the main project’s tree should look similar to Figure 7.6.

Once the subproject has been set up properly, we will go ahead and

rename the two .c files to .m files so that we can use Objective-C inside

them. We need to also add Foundation.framework to the subproject so

that we can utilize the Foundation APIs.

Unlike Spotlight, Quick Look has two components. There is a thumb-

nail generation and a preview generation. The thumbnail is used by the

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=131

INTEGRATING WITH QUICK LOOK 132

Finder both in place of a standard file icon and in Cover Flow. The pre-

view is used when Quick Look is invoked in Finder, Mail, and so on.

Therefore, the Quick Look template creates two .c (now .m) files, one

for each. We will tackle the thumbnail file first.

Generating the Quick Look Thumbnail

The file GenerateThumbnailForURL.m has one function inside it that is

called by the Quick Look manager (part of the operating system). This

function expects that we will be populating the QLThumbnailRequestRef

and returning the OSStatus of noErr. Based on the documentation for

Quick Look, even if we suffer a complete failure inside of our plug-in,

we should always return noErr.

As you can probably guess, our thumbnail generation code is going to

be very simple. Since we already have an image included with each

recipe, we are simply going to pass that image back whenever it is

requested.

Download Spotlight/QuickLookPlugin/GenerateThumbnailForURL.m

OSStatus GenerateThumbnailForURL(void *thisInterface,

QLThumbnailRequestRef thumbnail,

CFURLRef url,

CFStringRef contentTypeUTI,

CFDictionaryRef options,

CGSize maxSize)

{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

@try {

NSDictionary *metadata;

metadata = [NSDictionary dictionaryWithContentsOfURL:(NSURL*)url];

NSString *pathToImage = [metadata valueForKey:@"kPPImagePath"];

if (!pathToImage) {

//No image available

return noErr;

}

NSData *imageData = [NSData dataWithContentsOfFile:pathToImage];

if (!imageData) {

//Unable to load the data for some reason.

return noErr;

}

QLThumbnailRequestSetImageWithData(thumbnail, (CFDataRef)imageData, NULL);

} @finally {

[pool release], pool = nil;

}

return noErr;

}

http://media.pragprog.com/titles/mzcd/code/Spotlight/QuickLookPlugin/GenerateThumbnailForURL.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=132

INTEGRATING WITH QUICK LOOK 133

Figure 7.7: Basic Quick Look Preview

In this method, we are again retrieving the metadata file and load-

ing it into an NSDictionary. From that dictionary we are retrieving the

path to the image for the recipe and loading the image into an NSData

object. From there, we then call the QLThumbnailRequestSetImageWith-

Data(QLThumbnailRequestRef, CFDataRect, CFDictionaryRef) method, which

will populate the QLThumbnailRequestRef. After that is done, we pop the

NSAutoreleasePool and return noErr. From there Quick Look will use the

image we have provided whenever it needs a thumbnail for the file.

Generating the Quick Look preview

The Quick Look preview is understandably more complex than gener-

ating a thumbnail image. If we do absolutely nothing for this part of

Quick Look, we would still get a rather satisfying preview, as shown in

Figure 7.7. But why stop there when we can do so much more?

Like the thumbnail generator in Section 7.2, Generating the Quick Look

Thumbnail, on the preceding page, the preview generator is contained

within one function call, and we are expected to populate the QLPre-

viewRequestRef and return noErr. Also, like the thumbnail generator, we

will always return noErr no matter what happens within our function

call.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=133

INTEGRATING WITH QUICK LOOK 134

Unlike the thumbnail generator, we are not going to be working with

just the image for the recipe. Instead, we will generate a full HTML

page that contains a large amount of information about the recipe and

use that as our preview. Although it would be possible to generate the

entire HTML page in code, I am rather lazy and would rather avoid

that. Instead, we will be taking advantage of some XPath queries to

locate the correct nodes inside a template HTML file, change the values

to be appropriate for our current recipe, and use that to generate the

QLPreviewRequestRef.

Download Spotlight/QuickLookPlugin/GeneratePreviewForURL.m

NSString *bundleID = @"com.pragprog.quicklook.grokkingrecipe";

OSStatus GeneratePreviewForURL(void *thisInterface,

QLPreviewRequestRef preview,

CFURLRef url,

CFStringRef contentTypeUTI,

CFDictionaryRef options)

{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

@try {

NSDictionary *metadata;

metadata = [NSDictionary dictionaryWithContentsOfURL:(NSURL*)url];

if (!metadata) return noErr;

NSLog(@"metadata: %@", metadata);

NSString *imagePath = [metadata valueForKey:@"kPPImagePath"];

NSData *imageData = [[NSData alloc] initWithContentsOfFile:imagePath];

if (!imageData) return noErr;

To start with, we load the metadata dictionary like we have previously.

We are also going to load the image data into an NSData object again.

Assuming there are no issues with either the metadata or the image

loading, the next step is to set up the options for the HTML page.

Download Spotlight/QuickLookPlugin/GeneratePreviewForURL.m

NSMutableDictionary *imageDict = [NSMutableDictionary dictionary];

[imageDict setValue:imageData

forKey:(id)kQLPreviewPropertyAttachmentDataKey];

if (QLPreviewRequestIsCancelled(preview)) return noErr;

NSMutableDictionary *attachments = [NSMutableDictionary dictionary];

[attachments setValue:imageDict forKey:@"preview-image"];

NSMutableDictionary *properties = [NSMutableDictionary dictionary];

[properties setValue:attachments

forKey:(id)kQLPreviewPropertyAttachmentsKey];

http://media.pragprog.com/titles/mzcd/code/Spotlight/QuickLookPlugin/GeneratePreviewForURL.m
http://media.pragprog.com/titles/mzcd/code/Spotlight/QuickLookPlugin/GeneratePreviewForURL.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=134

INTEGRATING WITH QUICK LOOK 135

[properties setValue:@"text/html"

forKey:(id)kQLPreviewPropertyMIMETypeKey];

[properties setValue:@"UTF-8"

forKey:(id)kQLPreviewPropertyTextEncodingNameKey];

[properties setValue:@"Recipe"

forKey:(id)kQLPreviewPropertyDisplayNameKey];

For Quick Look to be able to use the HTML page that we are handing

to it, it requires that we describe the document to it and include any

attachments it has. This helps improve the performance of the HTML

rendering since it does not have to fetch any of the attachments. There-

fore, in this section, we are setting up the properties for the HTML page

including specifying its encoding, MIME type, and the attachments. We

also give it a display name that will be used outside the HTML page.

Download Spotlight/QuickLookPlugin/GeneratePreviewForURL.m

NSBundle *bundle = [NSBundle bundleWithIdentifier:bundleID];

NSString *templatePath = [bundle pathForResource:@"preview" ofType:@"html"];

NSURL *templateURL = [NSURL fileURLWithPath:templatePath];

NSError *error = nil;

NSXMLDocument *template;

template = [[[NSXMLDocument alloc] initWithContentsOfURL:(NSURL*)templateURL

options:NSXMLDocumentTidyHTML

error:&error] autorelease];

if (!template) {

NSLog(@"Failed to build template: %@", error);

return noErr;

}

Once all the preliminaries are complete, we need to retrieve the HTML

template from our bundle. Since this code is not actually being called

from our bundle, we cannot just perform [NSBundle mainBundle] and get

a reference to our NSBundle.5 Instead, we have to request it by its UTI.

With a reference to the bundle, we can then retrieve the path to the pre-

view.html, which we will be using as our template. Once we have loaded

the HTML file into an NSXMLDocument, it is time to substitute the place-

holders in that file with real data.

Download Spotlight/QuickLookPlugin/GeneratePreviewForURL.m

//Updating the Title

error = nil;

NSXMLElement *element = [[template nodesForXPath:

@"/html/body/div/*[@id='title']"

error:&error] lastObject];

5. If we tried, we would actually get a reference to /usr/bin/qlmanage instead!

http://media.pragprog.com/titles/mzcd/code/Spotlight/QuickLookPlugin/GeneratePreviewForURL.m
http://media.pragprog.com/titles/mzcd/code/Spotlight/QuickLookPlugin/GeneratePreviewForURL.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=135

INTEGRATING WITH QUICK LOOK 136

if (!element) {

NSLog(@"Failed to find element: %@", error);

return noErr;

}

[element setStringValue:[metadata valueForKey:(id)kMDItemDisplayName]];

//Updating the description

error = nil;

element = [[template nodesForXPath:@"/html/body/div/*[@id='description']"

error:&error] lastObject];

if (!element) {

NSLog(@"Failed to find element: %@", error);

return noErr;

}

[element setStringValue:[metadata valueForKey:(id)kMDItemTextContent]];

//Updating the serves value

error = nil;

element = [[template nodesForXPath:@"/html/body/div/*[@id='serves']"

error:&error] lastObject];

if (!element) {

NSLog(@"Failed to find element: %@", error);

return noErr;

}

NSNumber *serves = [metadata valueForKey:@"kPPServes"];

[element setStringValue:[NSString stringWithFormat:@"Serves: %i",

[serves integerValue]]];

//Updating the last served value

error = nil;

element = [[template nodesForXPath:@"/html/body/div/*[@id='last_served']"

error:&error] lastObject];

if (!element) {

NSLog(@"Failed to find element: %@", error);

return noErr;

}

NSDate *lastServedDate = [metadata valueForKey:(id)kMDItemLastUsedDate];

if (lastServedDate) {

NSDateFormatter *dateFormatter;

dateFormatter = [[[NSDateFormatter alloc] init] autorelease];

[dateFormatter setDateStyle:NSDateFormatterMediumStyle];

[dateFormatter setTimeStyle:NSDateFormatterNoStyle];

[element setStringValue:[NSString stringWithFormat:@"Last Served: %@",

[dateFormatter stringFromDate:lastServedDate]]];

} else {

[element setStringValue:@"Last Served: Never"];

}

Since we know the shape of the HTML document, we can build simple

XPath queries to retrieve each part of the document and replace its

value component with data from our metadata in NSDictionary.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=136

INTEGRATING WITH QUICK LOOK 137

Download Spotlight/QuickLookPlugin/GeneratePreviewForURL.m

QLPreviewRequestSetDataRepresentation(preview,

(CFDataRef)[template XMLData],

kUTTypeHTML,

(CFDictionaryRef)properties);

} @finally {

[pool release], pool = nil;

}

return noErr;

}

Once all the data has been put into the HTML document, it is time to

render it and set the QLPreviewRequestRef. As you can see in this section

of code, we are passing in the reference along with the HTML file as

data and the properties NSDictionary. When this is complete, we pop the

NSAutoreleasePool and return noErr. Quick Look will now generate our

preview and present it to the user.

Testing the Quick Look Plug-In

At the time of this writing, testing the Quick Look plug-in is a bit

more challenging than its Spotlight counterpart. Although there is still

a command-line option to test it, getting the system to recognize the

plug-in is a bit trickier. The issue is that the system tends to ignore

what generator you want it to use and will use the generator defined for

the system.

In writing this chapter, I used the following workflow to test the Quick

Look plug-in:

1. Clean and build the main recipe application.

2. On the command line, execute qlmanage -r to reset the Quick Look

generators.

3. Run the recipe application, which causes our Quick Look genera-

tor to get registered.

4. From the command line (can also be done inside of Xcode), I ran

qlmanage -p ${path to metadata test file}, which generated the pre-

view. Using the -t switch instead would produce the thumbnail.

5. Rinse and repeat.

I hope by the time you read this the workflow will have improved. There

is a -g switch available on the qlmanage command line that should

http://media.pragprog.com/titles/mzcd/code/Spotlight/QuickLookPlugin/GeneratePreviewForURL.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=137

PUTTING IT ALL TOGETHER 138

Figure 7.8: Displaying the metadata files in a smart folder

override the system generator, but unfortunately it does not appear to

work at this time.

7.3 Putting It All Together

With a Spotlight importer and a Quick Look generator, it is possible

to do some very interesting things in Mac OS X. For example, we can

build a smart folder that finds all our recipes. We can then put that

smart folder in the sidebar of Finder and be able to easily access all our

recipes directly from the Finder. Further, we can turn on Cover Flow

for this smart folder and smoothly browse through the pictures of our

recipes. See Figure 7.8.

With the included metadata, this opens up quite a few ideas. For exam-

ple, along with each recipe, we are storing the time it was last served in

the metadata. We can use this information to further refine our smart

folder to display only those recipes that we have not served in the last

thirty days. It is possible to get quite creative with metadata now that

the operating system is aware of it.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=138

TAKING IT FURTHER 139

7.4 Taking It Further

Further Use of UTIs

With UTIs it is possible to integrate even further with the operating sys-

tem, Spotlight, and Quick Look. It is possible to publish a full descrip-

tion of the UTI—effectively injecting it into the tree and thus having the

data type appear in Spotlight rules and more. However, this is beyond

the scope of this book.

Decreasing the Size of the Metadata Files

This is probably very

similar to how Core Data

does it internally in

Snow Leopard.

Depending on the application, it is possible to reduce the metadata

files dramatically. Since the importer (and the generator) can stand up

the entire Core Data stack, it is possible to just have the NSManaged-

ObjectID (or even a unique identifier within the Recipe object) stored

in the metadata file and have the importers and generators retrieve

all the metadata information from the Core Data stack instead. This

would also simplify the updating of the metadata since the only action

required at that point would be to delete metadata files for records

that no longer exist. However, care must be taken with this approach

because performance may suffer greatly.

Improving the Quick Look Thumbnail Generator

You may have noticed that we ignored the max size setting of the Quick

Look thumbnail generator. That was done for the sake of clarity, and in

a production system we should be sizing down the image to accommo-

date that setting. By doing so, we would be good citizens as well as be

helping the performance of Quick Look whenever our files are involved.

Document-Based Applications

When writing an application that uses a document model as opposed to

a single repository, then integrating Spotlight and Quick Look is even

easier. Instead of having separate metadata files, we can simply store

the relevant information in the metadata of the actual documents. This

allows the importers to read the metadata without having to initialize

the entire Core Data stack and still allows for very quick access to the

relevant information.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=139

Chapter 8

Sync Services and Core Data
Cloud computing is in our future. Users do not want to have to worry

about which computer they stored their data on. It brings great peace of

mind to me knowing that when I enter a new contact on my laptop while

I am out, it will get synced to my other computers and my phone. For

every application where it makes sense to share data across computers,

it is incumbent upon us as developers to make the option available to

our users.

Fortunately, Apple has made huge advances in Sync Services in Leop-

ard. One of those improvements was to integrate Sync Services with

Core Data. Although it is still nontrivial to utilize Sync Services, it is

significantly simpler than it was in Tiger, and when combined with Core

Data, it is even easier than it would be without that combination.

When our data is stored in Core Data and we are writing an application

that is at least Leopard targeted, Sync Services can use the Core Data

model directly to get information about the data to be synced. In addi-

tion, since the data format of Core Data is known as far as the Sync

Services APIs are concerned, the amount of code required to perform a

sync is one line. For anyone who has written Sync Services code under

a previous version of Mac OS X, this will be a welcome change.

Although the sync operation itself is only one line of code, quite a bit

of work is still required to get syncing working correctly. We will need

to configure our data model properly for Sync Services, create a sync

schema, and add the syncing logic to our application, and we will need

to make a couple of changes to our persistent store coordinator.

Overall, adding syncing to an application can be quite a challenge,

but the end result is definitely worth it. When we are done, our users

SYNC SERVICES FUNDAMENTALS 141

will not have to worry about which Mac they added or updated their

recipe on. Simply updating the recipe on their laptop will cause it to get

updated on every other Mac they have.

8.1 Sync Services Fundamentals

Conceptually, Sync Services works on the principle of a single source

of truth. That truth is stored at the operating system level and operates

very much like a database. Each entity for each application is stored in

the truth as a single record, and the truth keeps track of every change

to every entity.

Sync Clients

Every application, device, server, or peer1 is considered a client to Sync

Services and talks to the truth. Even if an application is the source of

that data, like our recipes application is, it is still considered a client of

the truth, and therefore it syncs to that truth.

As a client, it is expected that our application will register with the truth

and give it a description. That description will let the truth know our

name, the image to use when talking about us, and what entities we

care about. The entities part is what makes Sync Services very power-

ful. We can subscribe to more data than we produce. For instance, we

could receive sync notifications for calendars, contacts, or bookmarks

if we were interested. Although we will be paying attention to only our

recipe objects at this time, it is definitely possible to listen for more.

As part of the registration, each client defines a callback method that

Sync Services will use to let the client know that a sync is about to

happen. The client can choose not to participate in the sync at that

time, but generally, it is a good idea to be part of the sync. Sync Services

will not call a client unless data it cares about is being synced.

When a sync is performed, there are three steps to the sync process:

push, mingle, and pull. During the push phase, each client pushes all

changes it has that have occurred since the last sync. Once the truth

has received all the changes from all the clients, a mingle is performed.

The mingle merges all the changes from all the clients into a single data

set. This mingle happens entirely within the truth, and clients simply

wait for this phase to be over. Once the mingle phase is complete, the

1. Currently the only server available is MobileMe, and there are no provisions for peers.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=141

SYNC SERVICES FUNDAMENTALS 142

pull phase occurs. In the pull phase, each client pulls down the changes

from the truth and updates their internal data stores to match. When

the pull phase is complete, then the sync is finished.

Sync Schemas

A sync schema has a lot of similarities to a database schema. Each sync

schema describes how data is structured for one or more data classes.

These data classes are not objects but are types of data. For instance,

contacts is one class of data. Calendar data is also one class of data.

Our recipes will also be one class of data. It is possible to have more

than one data class in a schema, but for our application we will have

only one.

In addition to describing the data class, the sync schema will also define

all the entities that are part of that data class. For our application, each

of the entities that is in our data model will also be in our sync schema.

For each entity, all of its attributes and its relationships are described.

For each of those, all of the details are made available. For instance,

an attribute would be described as required, string, and so on. For a

relationship, it would describe what it is a relationship to, whether it is

one-to-one, one-to-many, and so on.

Finally, a sync schema contains the name of the schema and an image

associated with the schema that Sync Services can use when asking

for user input. If we look at the Sync tab of MobileMe in the system

preferences, we can see an example of this interaction, as shown in

Figure 8.1, on the following page.

Don’t Panic!

I am sure, after reading all of this, that the thought of adding Sync

Services to your application is absolutely terrifying. I know that when I

did it the first time, it certainly was. However, there is a light at the end

of the tunnel for those of us who are fortunate enough to be using Core

Data. With Leopard, most of this has already been done for us!

Since Core Data represents a known data structure, the engineers

within Apple were kind enough to do all of the heavy lifting for us to

integrate Sync Services into our applications. All that is required of us

is to link everything together.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=142

UPDATING OUR DATA MODEL 143

Figure 8.1: MobileMe system preferences

8.2 Updating Our Data Model

The first step in making our application ready for Sync Services is to

update the data model to reflect what we want synced, what is consid-

ered an identity item (similar in concept to a primary key in database

terms), and what triggers a “data changed” notification. All of this is

configured directly with the data model, and fortunately making these

changes does not trigger a version difference in the data model itself,

so we do not have to create new data and mapping models.

Setting the Data Class

One of the confusing things about Sync Services is some of the ter-

minology that is used. One example of that is the data class. Coming

from Core Data, one would think this refers to an object class that

describes the data. That, unfortunately, is not its meaning with Sync

Services. Instead, it is a unique identifier that defines a logical grouping

of data. For instance, the entire Address Book’s data model is called the

com.apple.contacts data class. For our application, our data class will

be com.pragprog.GrokkingRecipes. This is the value that we will assign

to every entity in the data model. You will note that when we enter

this value, Xcode automatically appends the name of the entity itself to

the end of the data class’s name. This creates a unique name for each

entity.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=143

UPDATING OUR DATA MODEL 144

Attribute and Relationship Names

Each attribute and relationship within each entity also has
its own unique name. The format for the attributes and
relationships is DataClass.EntityName/AttributeName. For exam-
ple, the name of the recipe entity would be referred to as
com.pragprog.GrokkingRecipes.Recipe/name.

Figure 8.2: Setting the data class

Setting the Identity Properties

Once the data class has been set for each entity in the data model, the

next step is to set which attributes and/or relationships are identity

properties for the sake of Sync Services. The purpose of this setting is

to tell Sync Services which attributes or relationships it should use to

match up records between applications, servers, or peers. When Sync

Services attempts to merge data from two different sources, it looks to

these identity properties to find records that would be considered the

same. For example, if we were merging recipe data from two computers

via MobileMe and we were looking at the Author entities, we would com-

pare the name attribute of each author. If the name is the same, then

we would consider it to be the same record for syncing purposes.

Author Settings

For the author, the settings are very simple since the object itself is very

simple. We set the name attribute to be the identity property, and nei-

ther the name nor the recipes is excluded from the data change alerts.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=144

UPDATING OUR DATA MODEL 145

Ingredient Settings

The ingredient entity is configured virtually identically to the Author

entity. The name attribute will still be used as the identity property;

all the rest of the attributes and relationships will be included for sync-

ing, and none of them is excluded from data change alerts.

Recipe Settings

The Recipe entity has a special situation. First, the imagePath is very

specific to the machine that the recipe is being stored on. It is unlikely

(and unnecessary) that this path will be the same on more than one

machine. Therefore, we will not be syncing this attribute. However, we

do want the image itself to be synced across the machines. To accom-

plish this, we will change the entity slightly; we’ll add a new attribute

called image and configure it as optional and transient. By flagging it

as transient, we will not have to worry about a version change for the

data model. As you will recall, setting it as transient will also mean

that it is not stored in our repository, which is exactly what we want.

Although we do not want it stored in the repository, we do want to sync

it across machines. Therefore, we will make sure that the Synchronize

option is set to YES. To complete this attribute, we need to add logic to

our PPRecipe object to handle the image.

Download SyncServices/PPRecipe.m

- (NSData*)image

{

NSLog(@"%@:%s entered", [self class], _cmd);

if (image) return image;

NSString *path = [self primitiveValueForKey:@"imagePath"];

if (!path) return nil;

image = [[NSData alloc] initWithContentsOfFile:path];

return image;

}

- (void)setImage:(NSData*)data

{

NSLog(@"%@:%s entered", [self class], _cmd);

NSString *destPath = [self primitiveValueForKey:@"imagePath"];

if (!destPath) {

//Build the path we want the file to be at

destPath = [[NSApp delegate] applicationSupportFolder];

NSString *guid = [[NSProcessInfo processInfo] globallyUniqueString];

destPath = [destPath stringByAppendingPathComponent:guid];

[self setValue:destPath forKey:@"imagePath"];

}

[data writeToFile:destPath atomically:NO];

http://media.pragprog.com/titles/mzcd/code/SyncServices/PPRecipe.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=145

CREATING THE SYNC SCHEMA 146

[data retain];

[image release];

image = data;

}

In the accessor methods that we added to the PPRecipe object, we are

retrieving the image data that is stored on the disk at imagePath. When

the data is being set and the imagePath is not set, then we will create a

new file in our Application Support directory and save it. These acces-

sors now allow for the image to be passed around for Sync Services

without it being stored in the repository.

As for the rest of the attributes and relationships, they are all flagged

to be synced, and only the name attribute is flagged to be an identity

property.

RecipeIngredient Settings

The RecipeIngredient entity is an unusual one to sync. Since it is basi-

cally a join table (to borrow from database terminology), there is no

attribute that identifies it as unique. Therefore, we will sync its one

attribute, quantity, but we will flag its relationships as the identity prop-

erties. By flagging all three relationships as the identity of the record, we

are guaranteed uniqueness for each combination of Ingredient, Recipe,

and UnitOfMeasure.

Type Settings

For the Type entity, we are syncing this object only to preserve the rela-

tionships across sync clients. Although this data will never change and

therefore does not really need to be synced, we do want to sync the

relationships between Type entities and Recipe entities. Therefore, we

flag the name as the identity property and include its relationships in

the sync.

UnitOfMeasure

Like the Author entity, this entity has the name attribute as its identity

property and has its relationships included in the sync.

8.3 Creating the Sync Schema

Now that our data model is ready for syncing, it is time to build the sync

schema itself. The sync schema is used by Mac OS X to describe our

interaction with and integration into the syncing ecosystem. If we were

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=146

CREATING THE SYNC SCHEMA 147

not using Core Data, we would be describing every entity, attribute, and

relationship inside of the sync schema. Fortunately, since we are using

Core Data, that part is not necessary. What this leaves to be included

in the schema is to define the data classes, the localization, and the

icon to be used by Sync Services whenever it is talking about our data

class. When we are done, we will have another bundle to be included in

our application that we will reference when dealing with Sync Services.

Setting Up the Sync Schema Subproject

Just like the Spotlight and Quick Look subprojects that we created in

Chapter 7, Spotlight, Quick Look, and Core Data, on page 114, we will

add a third subproject to our recipes application. Just like the previ-

ous two, the sync schema project template is under the Standard Apple

Plugins section in Xcode. Once the subproject is created, we drag the

project into our main project and define it as a dependency in the appli-

cation target. Once the dependency is set up, then add the .syncschema

bundle to the Copy Bundle Resources phase of the target.

Creating the Schema.plist

Although it is possible to add custom code to a sync schema to help dis-

play the data when the sync error dialog box is displayed, for our pur-

poses we really need to set up only the Schema.plist file. The header and

implementation files that are created with the template can be removed

because we will not be needing them.

The Schema.plist file describes everything that Sync Services needs to

know about our data. For our needs, we need to set three keys within

this plist: DataClasses, ManagedObjectModels, and Name.

DataClasses Key

The DataClasses key has two values, a Name and an ImagePath. The

Name value is meant to be localized and therefore does not need to

be user friendly in this file. For our recipes, I named the data class

com.pragprog.GrokkingRecipes. The only requirement is that this name

be unique. Therefore, a reverse dot notation will help to guarantee that.

The other value, ImagePath, needs to point to an image file that Sync

Services will use whenever it is referring to our data. For example, this

image is used in the system preferences and in the data change alert

dialog boxes. For our needs, the application icon is sufficient for this,

so we include a copy of it within the sync schema bundle.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=147

CREATING THE SYNC SCHEMA 148

ManagedObjectModels Key

The ManagedObjectModels key is an array of file references pointing to

.mom files. Note that this key will not accept versioned managed object

model bundles, and therefore we need to point to a specific version of

our model. Since we are currently on version 3 of the model, we will

point this to that model. This key can accept more than one model, so

if we had split up our data model into multiple managed object model

files, we would add all of them here.

Name Key

This name attribute refers to the name of the schema as opposed to the

name of the data. This name is used internally in Sync Services and

is not exposed to the user at all. Since we have only one data class in

our application, we can name the schema the same as the data class,

com.pragprog.GrokkingRecipes.

Localizing Schema.strings

Although our application is not localized for any language other than

English, we need to create a strings file for the sync schema. This local-

ization file will translate the unique identifiers into human-readable

names when Sync Services displays information about our data. Just

like other localization files, this file is a list of name-value pairs with the

unique names of our data class, entities, attributes, and relationships

as the name half and the human-readable counterpart as the value.

/* Localized strings for GrokkingRecipes */

"com.pragprog.GrokkingRecipes" = "Grokking Recipes";

"com.pragprog.GrokkingRecipes.Author" = "Author Entity";

"com.pragprog.GrokkingRecipes.Author/name" = "Author Name";

"com.pragprog.GrokkingRecipes.Ingredient" = "Ingredient Entity";

"com.pragprog.GrokkingRecipes.Ingredient/cost" = "Cost";

"com.pragprog.GrokkingRecipes.Ingredient/name" = "Ingredient Name";

"com.pragprog.GrokkingRecipes.Ingredient/quantity" = "Quantity";

"com.pragprog.GrokkingRecipes.Recipe" = "Recipe Entity";

"com.pragprog.GrokkingRecipes.Recipe/type" = "Recipe Type";

"com.pragprog.GrokkingRecipes.Recipe/desc" = "Description";

"com.pragprog.GrokkingRecipes.Recipe/lastUsed" = "Last Used";

"com.pragprog.GrokkingRecipes.Recipe/name" = "Recipe Name";

"com.pragprog.GrokkingRecipes.Recipe/serves" = "Serves";

"com.pragprog.GrokkingRecipes.RecipeIngredient" = "Quantity Entity";

"com.pragprog.GrokkingRecipes.RecipeIngredient/quantity" = "Quantity";

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=148

CREATING THE CLIENT DESCRIPTION FILE 149

"com.pragprog.GrokkingRecipes.Type" = "Type Entity";

"com.pragprog.GrokkingRecipes.Type/name" = "Name";

"com.pragprog.GrokkingRecipes.UnitOfMeasure" = "Unit of Measure Entity";

"com.pragprog.GrokkingRecipes.UnitOfMeasure/name" = "Name";

8.4 Creating the Client Description File

Now that we have our schema put together, it is time to build the client

description file. This file is different from the sync schema we just built

because it is coming at the sync from the client’s point of view. The sync

schema tells Sync Services what data will be synced, and the client

description tells Sync Services what data this application will be sync-

ing. It is quite possible to have a client that wants only a subset of the

data and does not care about certain parts. For example, if we wanted to

build a dashboard widget that displayed recipes, it may not care about

the author and therefore would not add it to its client description.

Since we are the primary application for this schema, we will sync all

the data available. This file is called ClientDescription.plist, and it is part

of the primary application bundle and will be included in the Resources

subdirectory of the application bundle. Inside of this plist are four keys:

DisplayName, ImagePath, Type, and Entities. DisplayName and ImagePath

are both used when Sync Services needs to display specific informa-

tion about this client as opposed to information about the schema

itself. However, since our application is the primary application for this

schema (as opposed to calendar or contact data), we can use the same

name and image that we used for the schema. The Type key defines

what type of client we are, with options of app, device, server, or peer.

For our application, that answer is app.

This leaves the Entities key. The Entities key tells Sync Services which

entities our client cares about and the attributes/relationships of those

entities. Since we are the primary application, we care about all the

entities, their attributes, and the relationships.

Download SyncServices/ClientDescription.plist

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>DisplayName</key>

http://media.pragprog.com/titles/mzcd/code/SyncServices/ClientDescription.plist
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=149

CREATING THE CLIENT DESCRIPTION FILE 150

<string>Grokking Recipes</string>

<key>ImagePath</key>

<string>App.icns</string>

<key>Type</key>

<string>app</string>

<key>Entities</key>

<dict>

<key>com.pragprog.GrokkingRecipes.Author</key>

<array>

<string>com.apple.syncservices.RecordEntityName</string>

<string>name</string>

<string>recipes</string>

</array>

<key>com.pragprog.GrokkingRecipes.Ingredient</key>

<array>

<string>com.apple.syncservices.RecordEntityName</string>

<string>cost</string>

<string>name</string>

<string>quantity</string>

<string>recipes</string>

<string>unitOfMeasure</string>

</array>

<key>com.pragprog.GrokkingRecipes.Recipe</key>

<array>

<string>com.apple.syncservices.RecordEntityName</string>

<string>desc</string>

<string>lastUsed</string>

<string>name</string>

<string>serves</string>

<string>type</string>

<string>author</string>

<string>ingredients</string>

<string>image</string>

</array>

<key>com.pragprog.GrokkingRecipes.RecipeIngredient</key>

<array>

<string>com.apple.syncservices.RecordEntityName</string>

<string>quantity</string>

<string>unitOfMeasure</string>

<string>ingredient</string>

<string>recipe</string>

</array>

<key>com.pragprog.GrokkingRecipes.Type</key>

<array>

<string>com.apple.syncservices.RecordEntityName</string>

<string>name</string>

</array>

<key>com.pragprog.GrokkingRecipes.UnitOfMeasure</key>

<array>

<string>com.apple.syncservices.RecordEntityName</string>

<string>name</string>

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=150

MODIFYING THE NSPERSISTENTSTORECOORDINATOR 151

<string>ingredients</string>

<string>recipeIngredients</string>

</array>

</dict>

</dict>

</plist>

8.5 Modifying the NSPersistentStoreCoordinator

One thing that always has to be remembered about Sync Services is

that we want it to be fast—the faster, the better. If it gets slowed down,

then all kinds of bad things can happen. For instance, the computer

can go to sleep in the middle of the sync, the user can quit the appli-

cation, network connections can go down—the list goes on. Therefore,

we want to make sure that when a sync actually happens, it happens

very quickly. Unfortunately, Core Data, although being a fast process in

its own environment, can be too slow for syncing purposes. To address

this, the NSPersistentStoreCoordinator has an additional method included

in a category as part of the Sync Services framework. This method, set-

StoresFastSyncDetailsAtURL:forPersistentStore:, defines an additional store to

be used by Sync Services to store information in preparation for the

next sync operation. This additional store is not a copy of the data but

has similarities to notes about the various objects in our NSPersistentStore

that can be used during the sync process to speed things up.

It should be noted that without this additional setting, syncing of a Core

Data repository will not work. If you run into an issue with another

application and syncing is not working, be sure to check that the fast

sync store is being set and created.

Adding this store to our application requires a small change to our

-persistentStoreCoordinator method.

Download SyncServices/AppDelegate.m

NSPersistentStore *store;

store = [persistentStoreCoordinator addPersistentStoreWithType:NSXMLStoreType

configuration:nil

URL:url

options:nil

error:&error];

if (!store) {

NSLog(@"%@:%s presenting error no store", [self class], _cmd);

[[NSApplication sharedApplication] presentError:error];

return nil;

}

http://media.pragprog.com/titles/mzcd/code/SyncServices/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=151

CREATING THE SYNC HELPER 152

NSString *fss = @"GrokkingRecipes.fastsyncstore";

fss = [applicationSupportFolder stringByAppendingPathComponent:fss];

NSURL *fsdURL = [NSURL fileURLWithPath:fss];

[persistentStoreCoordinator setStoresFastSyncDetailsAtURL:fsdURL

forPersistentStore:store];

return persistentStoreCoordinator;

In this code snippet there are two important changes. First, instead

of checking to see whether the call to addPersistentStoreWithType:configu-

ration:URL:options:error: returned a nil or not, we assign its result to a local

variable. We do this so that we can pass it into the setStoresFastSyncDe-

tailsAtURL:forPersistentStore: method further down. Next we build a path

for the fast sync store to be written to. Since we are storing our data in

the Application Support folder, it makes sense to just store it alongside

the primary persistent store. If we were using a document application,

then it might make sense to store it somewhere else or with a unique

filename. Once the path is built, we pass that path along with our ref-

erence to the NSPersistentStore to the category method setStoresFastSyncDe-

tailsAtURL:forPersistentStore: on our NSPersistentStoreCoordinator. That is the

only change we need to make to our Core Data stack to enable Sync

Services support.

8.6 Creating the Sync Helper

Now it is time to put all the pieces together. Although this piece can be

put just about anywhere, I decided to separate all the sync code into its

own class for clarity. When I originally wrote this code, I had put it into

the AppDelegate.m but quickly decided that it was causing that object

to be too complex and hard to follow. Therefore, I decided to separate

the syncing code into a small helper class.

NSPersistentStoreCoordinatorSyncing

As I mentioned in the fundamentals (Section 8.1, Sync Services Funda-

mentals, on page 141), Sync Services needs a callback to let our client

know what is going on. To be completely accurate, we need both a call-

back and a protocol. The callback is used by Sync Services to let our

application know that a sync is about to happen. The protocol allows

us to listen in to that sync and answer questions as things go by. Our

sync helper will implement that protocol named NSPersistentStoreCoordi-

natorSyncing.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=152

CREATING THE SYNC HELPER 153

Every method within this protocol is considered optional, but there are

two that I think should be considered required. Although I have imple-

mented all the methods in the example project, it is the following two

methods that are most important:

• -managedObjectContextsToMonitorWhenSyncingPersistentStoreCo-

ordinator:. This method, in our application, returns our single

NSManagedObjectContext. The purpose of this method is to tell

Sync Services which contexts to monitor during the sync just in

case our user gets clever (and quick!) and alters the data during

a sync. Without implementing this method, it is quite possible to

get conflicts between the truth and our internal NSManagedObject-

Context.

• -managedObjectContextsToReloadAfterSyncingPersistentStoreCo-

ordinator:. This is similar to the previous method mentioned; our

implementation of this method simply returns our single NSMan-

agedObjectContext. Also, like the previous method, I consider this

one required because we want our context reloaded after the sync

has completed so that our user can see the updated information.

I can certainly imagine situations where we would not want this,

but for our application, none of those situations applies.

The rest of the methods in the protocol allow us to be notified when a

sync has finished and tell us what is being pushed, pulled, and can-

celed. By using the rest of this protocol, we can provide feedback to the

user, inject special case changes to the sync itself, or just monitor its

progress. Although I have implemented these methods in the example

code, they are optional and can be removed for brevity.

Registering as a Sync Client

When our application starts up and after we have checked our meta-

data per Chapter 7, Spotlight, Quick Look, and Core Data, we want to

register our application as a sync client. Since all the sync-handling

code is contained within SyncHelper, the only thing we need to do here

is initialize an instance of it.

Download SyncServices/AppDelegate.m

NSError *error = nil;

syncHelper = [[SyncHelper alloc] initWithDelegate:self error:&error];

if (!syncHelper) {

NSLog(@"%@:%s presenting error sync helper failed", [self class], _cmd);

NSDictionary *ui = [error userInfo];

http://media.pragprog.com/titles/mzcd/code/SyncServices/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=153

CREATING THE SYNC HELPER 154

for (NSError *suberror in [ui valueForKey:NSDetailedErrorsKey]) {

NSLog(@"subError: %@", suberror);

}

[NSApp presentError:error];

}

error = nil;

Our SyncHelper takes two parameters on initialization: a reference to

our AppDelegate and a pointer to an NSError. If something goes wrong in

the registration, the NSError will get populated, and the SyncHelper will

return nil. If that occurs, then we will present the error to the user and

continue.

Inside the SyncHelper, we assign the reference to the AppDelegate to an

ivar and attempt to register ourselves as a client to Sync Services and

start a sync.

Download SyncServices/SyncHelper.m

- (id)initWithDelegate:(id)_delegate error:(NSError**)error

{

if (!(self = [super init])) return nil;

delegate = _delegate;

ISyncClient *client = [self syncClient:error];

if (!client) {

[self autorelease];

return nil;

}

[client setSyncAlertHandler:self

selector:@selector(client:mightWantToSyncEntityNames:)];

if (![self performSync:error]) {

[self autorelease];

return nil;

}

return self;

}

In this method, we set this instance of the SyncHelper to be the call-

back for Sync Services to notify when a sync is about to start exter-

nal to our application. When that occurs, we will receive a message to

-client:mightWantToSyncEntityNames:, and we can react accordingly. The

most complex part of this object initialization is getting a reference

to the ISyncClient object. Since getting this reference will occur several

times within the life cycle of our application, it has been put into its

own method.

http://media.pragprog.com/titles/mzcd/code/SyncServices/SyncHelper.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=154

CREATING THE SYNC HELPER 155

Download SyncServices/SyncHelper.m

- (ISyncClient*)syncClient:(NSError**)error

{

NSString *ident = [[NSBundle mainBundle] bundleIdentifier];

ISyncClient *client;

NSDictionary *dict;

ISyncManager *manager = [ISyncManager sharedManager];

NSBundle *mainBundle = [NSBundle mainBundle];

@try {

client = [manager clientWithIdentifier:ident];

if (client) return client;

The first thing that we do when trying to get a reference to our ISyncClient

is to request it from the ISyncManager using our bundle identifier as our

name. If we have previously registered with the ISyncManager, then this

will return our client, and we are done. If this is our first time through

this process, then that call will return a nil, and we will have to register

with the ISyncManager.

Download SyncServices/SyncHelper.m

NSString *path = [mainBundle pathForResource:@"GrokkingRecipes"

ofType:@"syncschema"];

if (![manager registerSchemaWithBundlePath:path]) {

NSString *err = NSLocalizedString(@"Failed to register the schema",

@"Failed to register the schema error message");

dict = [NSDictionary dictionaryWithObject:err

forKey:NSLocalizedDescriptionKey];

*error = [NSError errorWithDomain:@"PragProg"

code:8001

userInfo:dict];

return nil;

}

This is where the sync schema that we built comes into play. Since

our client has not been registered, then we know, since we are the

originator of the data, that our schema has also not been registered.

Therefore, the first step is to find the GrokkingRecipes.syncschema bundle

within our application and register it with the ISyncManager. If this is

not successful, then we populate the NSError and return nil. Assuming

that it is successful, the next step is to register our client.

Download SyncServices/SyncHelper.m

path = [mainBundle pathForResource:@"ClientDescription"

ofType:@"plist"];

client = [manager registerClientWithIdentifier:ident

descriptionFilePath:path];

http://media.pragprog.com/titles/mzcd/code/SyncServices/SyncHelper.m
http://media.pragprog.com/titles/mzcd/code/SyncServices/SyncHelper.m
http://media.pragprog.com/titles/mzcd/code/SyncServices/SyncHelper.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=155

CREATING THE SYNC HELPER 156

With the schema registered, we need to now register our client. Here we

grab a reference to the ClientDescription.plist that we created previously

and pass it to the ISyncManager along with our unique identifier. This

will register our client and return a reference to our ISyncClient object.

Now that our client is registered, we need to turn on syncing with all of

the other client types. This allows us to decide which syncs we want to

be involved in. Again, since we are the originator of the data, we want

to be involved in every sync.

Download SyncServices/SyncHelper.m

[client setShouldSynchronize:YES

withClientsOfType:ISyncClientTypeApplication];

[client setShouldSynchronize:YES

withClientsOfType:ISyncClientTypeDevice];

[client setShouldSynchronize:YES

withClientsOfType:ISyncClientTypeServer];

[client setShouldSynchronize:YES

withClientsOfType:ISyncClientTypePeer];

The last step in this method is to capture and handle any exceptions

that we receive. As of the writing of this book, there are still a few

exceptions that this process can throw, so we want to be sure to capture

those, wrap them up in an NSError,2 and hand the back to our caller.

Assuming nothing has blown up on us, we return the ISyncClient.

Download SyncServices/SyncHelper.m

} @catch (NSException *exception) {

dict = [NSDictionary dictionaryWithObject:[exception reason]

forKey:NSLocalizedDescriptionKey];

*error = [NSError errorWithDomain:@"PragProg"

code:8002

userInfo:dict];

return nil;

}

return client;

}

Performing a Sync

Now that we have registered our schema and our sync client, we need

to be able to handle the two ways a sync can occur. We can either

initiate the sync or receive a notification that a sync is about to occur.

Fortunately, we handle both of these situations in the same manner.

2. Where they belong anyway.

http://media.pragprog.com/titles/mzcd/code/SyncServices/SyncHelper.m
http://media.pragprog.com/titles/mzcd/code/SyncServices/SyncHelper.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=156

CREATING THE SYNC HELPER 157

When a sync is about to start, the first thing we want to do is perform a

save on our NSManagedObjectContext. Once that is completed, then we

can tell Sync Services that we are ready to perform a sync. Therefore,

we need to make a small alteration to our global save method. Since

we already put all our save logic in one method in Chapter 7, Spotlight,

Quick Look, and Core Data, on page 114, it makes perfect sense to kick

off our sync operations from there.

Download SyncServices/AppDelegate.m

NSLog(@"%@:%s Performing sync", [self class], _cmd);

if (![syncHelper performSync:error]) {

return NO;

}

As soon as the save operation returns, we want to call our SyncHelper

and ask it to -performSync:. We pass in an NSError into this method so

that we can be notified if an error occurred during the sync.

Download SyncServices/SyncHelper.m

- (BOOL)performSync:(NSError**)err;

{

ISyncClient *client = [self syncClient:err];

if (!client) return NO;

NSLog(@"Starting sync");

NSPersistentStoreCoordinator *store = [delegate persistentStoreCoordinator];

return [store syncWithClient:client

inBackground:YES

handler:self

error:err];

}

In the -performSync: method, we grab a fresh reference to our ISyncClient

and a reference to our NSPersistentStoreCoordinator. With both of those,

we will use the second method added to the NSPersistentStoreCoordina-

tor in the Sync Services category and request a sync via the syncWith-

Client:inBackground:handler:error: method. If there is a failure in the sync,

then a NO will be returned to the caller, and the NSError will be popu-

lated. Since we are passing the SyncHelper as the handler for this sync, it

will receive all of the notifications discussed earlier because of it imple-

menting the NSPersistentStoreCoordinatorSyncing protocol.

To make sure that our metadata is up-to-date, we want to flesh out one

of the delegate callback methods, specifically, -persistentStoreCoordinator:

didFinishSyncSession:. In this method, we want to check to see whether our

http://media.pragprog.com/titles/mzcd/code/SyncServices/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/SyncServices/SyncHelper.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=157

THE SYNCROSPECTOR 158

NSManagedObjectContext has any changes in it and, if it does, update

the metadata and save the context.

The last thing we need to do is handle an external sync request. Since

we already defined -client:mightWantToSyncEntityNames: as the method to

be called when an external sync starts, we need to request a save at

that point.

Download SyncServices/SyncHelper.m

- (void)client:(ISyncClient*)client mightWantToSyncEntityNames:(NSArray*)names

{

NSError *error = nil;

if (![delegate save:&error]) {

[NSApp presentError:error];

}

}

Since our call to save the NSManagedObjectContext will also kick off a

sync, there is nothing more that we need to do.

8.7 The Syncrospector

Sync Services has the added complexity of being rather difficult to

debug and test. Since the truth is effectively a black box, normally

all we can do is poke at it and watch the responses. Fortunately, in

the more recent builds of Xcode, Apple has given us a working copy

of a development tool called Syncrospector. You can locate the Syn-

crospector in the Developer directory (wherever you decided to install

it, normally at /Developer), in the Applications folder, and finally in the

Utilities subfolder. This tool allows us to peek inside the truth and even

reset data or force different types of syncs.

Clients Pane

The Clients pane shows all the known clients of Sync Services. Within

this pane we can see whether our client is registered properly, what

data classes it has registered, and the state of each entity. We can also

force a sync of the client from this pane. See Figure 8.3, on the following

page. Of all the panes available inside the Syncrospector, this is one of

the two that I use most often.

Truth Pane

The Truth pane allows us to look at the data that is currently in the

truth. We can see, for each entity, when it was last updated and who

http://media.pragprog.com/titles/mzcd/code/SyncServices/SyncHelper.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=158

THE SYNCROSPECTOR 159

Figure 8.3: Syncrospector Clients pane

changed it. I find this pane to be useful when trying to figure out what

went wrong with my data and to see who mucked it up.

History Pane

The History pane allows us to see every transaction that has ever oc-

curred inside the truth. With this pane, it is possible to track down

where data got mangled and by whom, no matter how long ago it

occurred.

Schema Pane

The Schema pane is the other that I use very frequently. It shows all the

schemas that are registered within the truth and allows us to inspect

all their details. In addition, it is possible to delete a schema from the

truth via this pane. Finally, this pane is useful for clearing data from

the truth and clients. This is very helpful during testing.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=159

WRAPPING UP 160

Figure 8.4: Syncrospector Schema pane

8.8 Wrapping Up

Since this book is focused on Core Data, we haven’t covered quite a

few areas of Sync Services. For a true breadth of knowledge on this

framework, you should research the following subjects in more depth.

Schema Versioning

This subject is currently in flux and may change by the time you read

this book. As it stands today, if your schema needs to change, then

ideally all your clients of that data should get updated to the latest

schema. If they don’t, then your users may get inconsistent results.

In addition, schemas are tied to a particular version of the NSManaged-

ObjectModel. Therefore, if the data model changes, then chances are a

new schema will be needed, or at least it will need to reference the latest

data model.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=160

WRAPPING UP 161

Syncing with Devices, Servers, and Peers

This chapter covers syncing with the truth. The truth can also sync

with MobileMe (currently one of the most useful features of Sync Ser-

vices), devices, and peers. Although there are no peers defined at this

time, it does not mean there never will be. In addition, it is quite com-

mon to sync with devices, and I suspect that Sync Services will become

available for the iPhone at some time in the near future.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=161

Chapter 9

Multithreading and Core Data
Chances are your primary machine has at least two cores in it. I also

would not be surprised if every machine you develop on has at least

two cores or even more. Multithreading is soon going to be necessary

for every moderately complex application that runs on Mac OS X. This

is something that we as developers need to accept and plan for while

developing our applications. Fortunately, there are new features in Mac

OS X that make multithreading easier for us and less error prone.

The problem, however, is that Core Data is not inherently thread safe.

It still wants and expects to be run in a single thread. Therefore, when

we start multithreading our applications, we must take care to work

with Core Data properly to avoid threading issues.

9.1 Why Isn’t Core Data Thread Safe?

You may be surprised to learn that there are a lot of things in Cocoa

and Objective-C that are not thread safe and that Core Data is only one

of many. For instance, whenever you make a change to a GUI widget, it

is recommended that you be on the main thread because the UI is not

thread safe.

The biggest issue with dealing with Core Data in multiple threads is

keeping the NSManagedObjectContext in sync. When a change is made

to an NSManagedObject on a thread that is different from the one that

created the NSManagedObjectContext, the context is not aware of it and

can have potentially stale data. This is the part of Core Data that is not

thread safe. The NSPersistentStore, NSPersistentStoreCoordinator, and NSMan-

agedObjectModel are all perfectly thread safe, but the NSManagedOb-

jectContext is not.

CREATING MULTIPLE CONTEXTS 163

NSOperation and NSOperationQueue

Throughout this chapter we will be using NSOperation and NSOp-

erationQueue quite heavily. These are classes that were added
to Cocoa as part of Mac OS X 10.5 Leopard specifically to
make threading easier. Although we will not be going into
detail on how to use these classes, it is of extreme value to fully
learn these classes so that you can use them properly in your
own projects.

Often one naming issue causes some confusion while using
NSOperation. The NSOperation uses a method named -main as
the entry point for the work that the NSOperation is to complete
while running on a background thread. The NSOperationQueue

calls this method directly.

Another issue is one of concurrency. If an NSManagedObject is updated

on more than one thread, then the results of one or more of those

updates is undetermined and unpredictable. Therefore, it is recom-

mended that NSManagedObject instances do not cross thread

“boundaries.”

9.2 Creating Multiple Contexts

Currently, there is one approved method for using Core Data across

multiple threads. This method involves creating a separate NSManaged-

ObjectContext for each thread that will be interacting with Core Data.

The creation of the separate context on a background thread is quite

straightforward and is nearly identical to the creation of the NSManage-

dObjectContext on the main thread.

Download MultiThreading/PPImportOperation.m

- (NSManagedObjectContext*)newContextToMainStore

{

NSPersistentStoreCoordinator *coord = nil;

coord = [appDelegate persistentStoreCoordinator];

NSManagedObjectContext *moc = [[NSManagedObjectContext alloc] init];

[moc setPersistentStoreCoordinator:coord];

return [moc autorelease];

}

http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPImportOperation.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=163

CREATING MULTIPLE CONTEXTS 164

Joe Asks. . .

When Do I Need to Worry About Threading?

The point at which threading is appropriate is a hard one to
decide upon. As a rule, I will put an operation into another
thread any time that it blocks the UI thread from drawing or
causes the operating system to think that the application is
nonresponsive. When an application starts “beach-balling,” it
is time to optimize the application and look at threading.

As shown in the method -newContextToMainStore, we grab a reference to

the existing NSPersistentStoreCoordinator and use that in the initialization

of a new NSManagedObjectContext.

Although the NSPersistentStoreCoordinator is not thread safe either, the

NSManagedObjectContext knows how to lock it properly when in use.

Therefore, we can attach as many NSManagedObjectContext objects to a

single NSPersistentStoreCoordinator as we want without fear of collision.

Cross-Thread Communication

There is one major catch when standing up multiple NSManagedOb-

jectContext instances. Each instance is unaware of the existence and

activity of the other instances. This means that when an NSManage-

dObject is created, edited, or deleted by one NSManagedObjectContext,

the other instances aren’t aware of the change.

Fortunately, Apple has given us a relatively easy way to keep all the

NSManagedObjectContext instances in sync. Every time that an NSMan-

agedObjectContext completes a save operation, it will broadcast an

NSNotification with the key NSManagedObjectContextDidSaveNotification.

In addition, the NSNotification instance will contain all the information

about what is occurring in that save.

To complement this NSNotification broadcast, the NSManagedObjectCon-

text has a method that is designed to consume this NSNotification and

update itself based on its contents. This method, -mergeChangesFrom-

ContextDidSaveNotification:, will update the NSManagedObjectContext

with the changes and will also notify any observers of those changes.

This means that our main NSManagedObjectContext can be updated

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=164

EXPORTING RECIPES 165

with a single call whenever the background NSManagedObjectContext

instances perform a save, and our user interface will be updated auto-

matically.

9.3 Exporting Recipes

In this first demonstration of multithreading, we will be adding the abil-

ity to export recipes from our database so that they can be shared. In

this new section of the application, we will be creating an NSOperation,

which will create its own NSManagedObjectContext, and use it to copy

the selected recipes into a new NSManagedObjectContext, which is then

saved to a location specified by the user.

To implement this addition to our application, we need to make a few

changes to the user interface. We want to add a menu item for the user

to select when they want to export a recipe, and we want to display a

sheet for the user to select which recipe(s) they want to extract.

Before we can add the menu item, we want to add a method to the

AppDelegate header for the menu item to be bound to.

Download MultiThreading/AppDelegate.h

- (IBAction)exportRecipes:(id)sender;

- (IBAction)exportApproved:(id)sender;

- (IBAction)exportCancelled:(id)sender;

We have added three new methods to our AppDelegate. The first,

-exportRecipes:, will be called by the new menu item and will display our

sheet allowing the user to select which recipe(s) to export. The second,

-exportApproved:, will be called from the export button on that sheet,

and the third, -exportCancelled:, will be called from the cancel button of

that same sheet.

Updating the User Interface

To kick off the export, the user will select a menu item under the File

menu.

We will bind this menu item to the -exportRecipes: method that we added

to our AppDelegate header (shown in Figure 9.5, on page 174). When

this menu item is selected, we want a sheet to drop down with a list

that the user can select from. To do this, we will need to add a new

NSArrayController to our xib file, naming it export list, and bind it to our

AppDelegate. We will also need to create a new NSPanel, named Export

http://media.pragprog.com/titles/mzcd/code/MultiThreading/AppDelegate.h
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=165

EXPORTING RECIPES 166

Figure 9.1: Linking the Import menu item

Sheet, that will be used as our sheet. On this sheet, we will add an

NSTableView and two buttons, one named Cancel and the other named

Export, as demonstrated in Figure 9.2, on the following page.

Note that we have two columns in the table with a checkbox in the first

column. The second column is going to display the name of the recipe.

We want to bind each of these columns to the export list’s NSArrayCon-

troller that we added earlier. The checkbox column should be bound to

the model key path of selected, and the name column should be bound

to the model key path of name. Both columns should have their con-

troller key set to arrangedObjects.

The Export button needs to be bound to the -exportApproved: method

we added to our AppDelegate. Likewise, the Cancel button needs to be

bound to the -exportCancelled: method. The one last change we need to

make is to turn off Visible At Launch and Release When Closed. We

want to reuse this NSPanel and therefore do not want to release it, and

we also do not want it displayed when our application first launches.

Implementing the Export Methods

Now that we have updated our UI, we need to implement the new meth-

ods in our AppDelegate.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=166

EXPORTING RECIPES 167

Figure 9.2: New NSPanel for the export list

Download MultiThreading/AppDelegate.m

#pragma mark Export methods

#pragma mark -

- (IBAction)exportRecipes:(id)sender;

{

NSFetchRequest *request = [[NSFetchRequest alloc] init];

NSManagedObjectContext *moc = [self managedObjectContext];

[request setEntity:[NSEntityDescription entityForName:@"Recipe"

inManagedObjectContext:moc]];

NSError *error = nil;

NSArray *recipes = [moc executeFetchRequest:request

error:&error];

if (error) {

[NSApp presentError:error];

return;

}

The first step in our export is to grab all the recipes. We accomplish

this by doing an NSFetchRequest with the Recipe entity and without a

predicate. This will give us an NSArray of all the recipes in our NSMan-

agedObjectContext.

Download MultiThreading/AppDelegate.m

NSMutableArray *exportList = [NSMutableArray array];

for (NSManagedObject *recipe in recipes) {

NSMutableDictionary *entry = [NSMutableDictionary dictionary];

http://media.pragprog.com/titles/mzcd/code/MultiThreading/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/MultiThreading/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=167

EXPORTING RECIPES 168

[entry setValue:[NSNumber numberWithBool:NO]

forKey:@"selected"];

[entry setValue:[recipe valueForKey:@"name"]

forKey:@"name"];

[entry setValue:[recipe objectID]

forKey:@"objectID"];

[exportList addObject:entry];

}

[exportArrayController setContent:exportList];

Now that we have an NSArray of the recipes, we need to store the recipes

in our NSArrayController. However, the Recipe entity does not have any

way to specify whether it has been selected, so we will load NSDictionary

objects into the NSArrayController instead. Therefore, we will create a new

NSMutableArray and start looping over the results of our fetch. For each

result, we grab the name and the NSManagedObjectID and store both in

a new NSMutableDictionary. We also need to add an NSNumber into the

NSMutableDictionary set to NO with the key selected. This NSNumber will

be used to determine whether the user has selected that recipe.

Once we have added all the recipes to the NSMutableArray, we can then

set it as the content of the NSArrayController that is being used to display

the export list in our UI. Calling the -setContent: of the NSArrayController

will trigger the KVO and cause the NSTableView to be updated for us.

Download MultiThreading/AppDelegate.m

[NSApp beginSheet:exportSheet

modalForWindow:window

modalDelegate:nil

didEndSelector:NULL

contextInfo:nil];

Once the NSArrayController has been loaded, we need to display the sheet.

This is performed by a call to the shared NSApplication. Now when our

user selects Export Recipe(s) from the File menu, they will be presented

with a sheet to select from, as shown in Figure 9.3, on the next page.

The -exportCancelled: method involves only closing the sheet and return-

ing control to the user. Doing this requires two calls in the resulting

method.

Download MultiThreading/AppDelegate.m

- (IBAction)exportCancelled:(id)sender;

{

[exportSheet orderOut:sender];

[NSApp endSheet:exportSheet];

[exportArrayController setContent:nil];

}

http://media.pragprog.com/titles/mzcd/code/MultiThreading/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/MultiThreading/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=168

EXPORTING RECIPES 169

Figure 9.3: Displaying the export sheet

The -exportApproved: method is also quite brief. In this method we want

to also close the sheet, but we want to then present an NSSavePanel as

a sheet to the user so that they can tell us where to save the exported

recipes. Since the NSSavePanel will be asynchronous as a sheet, we need

to pass along the selected recipe’s NSManagedObjectID objects so that

the callback can use them to do the actual export.

Download MultiThreading/AppDelegate.m

- (IBAction)exportApproved:(id)sender;

{

[exportSheet orderOut:sender];

[NSApp endSheet:exportSheet];

NSArray *content = [exportArrayController content];

NSPredicate *pred = [NSPredicate predicateWithFormat:@"selected == YES"];

NSArray *filtered = [content filteredArrayUsingPredicate:pred];

NSArray *exportIDs = [filtered valueForKeyPath:@"objectID"];

NSSavePanel *savePanel = [NSSavePanel savePanel];

[savePanel setExtensionHidden:YES];

[savePanel setRequiredFileType:@"grx"];

[savePanel setCanSelectHiddenExtension:NO];

http://media.pragprog.com/titles/mzcd/code/MultiThreading/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=169

EXPORTING RECIPES 170

SEL select = @selector(exportSaveDidEnd:returnCode:contextInfo:);

[savePanel beginSheetForDirectory:nil

file:nil

modalForWindow:window

modalDelegate:self

didEndSelector:select

contextInfo:[exportIDs retain]];

[exportArrayController setContent:nil];

}

Kicking Off the NSOperation

The last change we need to make to the AppDelegate is the callback for

our NSSavePanel. In this last method, we are grabbing both the filename

and the context from the NSSavePanel and constructing an instance of

a new class: PPExportOperation. During the initialization, we are passing

in a reference to the AppDelegate, the save path, and the NSManaged-

ObjectID objects for the recipes that need to be exported. After the PPEx-

portOperation has been constructed, we can hand it off to an NSOpera-

tionQueue. This will cause the PPExportOperation to be run on another

thread, allowing the UI to proceed.

Download MultiThreading/AppDelegate.m

- (void)exportSaveDidEnd:(NSSavePanel*)savePanel

returnCode:(NSInteger)returnCode

contextInfo:(NSArray*)exportIDs

{

if (returnCode == NSCancelButton) {

[exportIDs release];

return;

}

PPExportOperation *op = nil;

op = [[PPExportOperation alloc] initWithDelegate:self

objectIDs:exportIDs

saveFilePath:[savePanel filename]];

if (!genericOperationQueue) {

genericOperationQueue = [[NSOperationQueue alloc] init];

}

[genericOperationQueue addOperation:op];

[exportIDs release];

[op release];

}

http://media.pragprog.com/titles/mzcd/code/MultiThreading/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=170

EXPORTING RECIPES 171

Making the Copy One-Way

When we are performing this copy, it would be very easy to
copy the entire Core Data repository. Because all our objects
are linked via two-way relationships, if we built a recursive
method to copy the objects and follow their relationships, we
would end up with a complete duplicate of all the recipes.

To prevent that, we added a check into each object copy.
Whenever it follows a relationship, it first checks to make sure
that the destination entity of that relationship is not the same
entity as the parent entity that called it. By doing this, we guar-
antee that the entity tree is copied in only one direction, as
shown in Figure 9.4, on the following page

Although quite a bit of code is involved in the export operation, we will

touch on only a couple parts of it that are relevant to the manipulation

of the Core Data elements.

Download MultiThreading/PPExportOperation.m

- (void)main

{

NSManagedObjectContext *exportMOC = [self managedObjectContext];

if (!exportMOC) return;

NSPersistentStoreCoordinator *sourceStore = nil;

sourceStore = [appDelegate persistentStoreCoordinator];

NSManagedObjectContext *sourceMOC = [[NSManagedObjectContext alloc] init];

[sourceMOC setPersistentStoreCoordinator:sourceStore];

Before we can start the export, we can build the NSManagedObjectCon-

text for the export file. Once we have constructed the new Core Data

stack for the export file, the next step is to construct a new NSManage-

dObjectContext that is associated with the primary NSPersistentStoreCo-

ordinator for the application. To this end, we obtain a reference to the

primary NSPersistentStoreCoordinator from the AppDelegate reference that

was passed in when we initialized the NSOperation. With that reference

obtained, we next instantiate a new NSManagedObjectContext and set

the NSPersistentStoreCoordinator. We now have two NSManagedObjectCon-

text instances talking to the same NSPersistentStoreCoordinator.

http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPExportOperation.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=171

EXPORTING RECIPES 172

Recipe

RecipeIngredient

Ingredient

Author

UnitOfMeasure

Figure 9.4: The flow of the copy

Download MultiThreading/PPExportOperation.m

for (NSManagedObjectID *objectID in [self objectIDs]) {

NSManagedObject *object = [sourceMOC objectWithID:objectID];

[self copyObject:object

toContext:exportMOC

parent:nil];

}

[sourceMOC release], sourceMOC = nil;

Although this part of the -main performs all the work for the export, it

is actually very quick. Since we are not writing anything to disk yet and

the Recipe objects are already in memory, we are performing this sec-

tion of code very quickly. This copy operation will duplicate not only the

Recipe entity that we are exporting but all the other entities associated

with that recipe. Once all the selected Recipe objects have been copied

into the new NSManagedObjectContext, it is time to unlock the primary

NSManagedObjectContext.

Download MultiThreading/PPExportOperation.m

NSError *error = nil;

if (![exportMOC save:&error]) {

[NSApp presentError:error];

}

}

http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPExportOperation.m
http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPExportOperation.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=172

IMPORTING RECIPES 173

Once the copy is complete, we can write the new context to disk. If

there is an error during the save, we notify the user and finish the

operation. Once the -main method exits, the instance will be released

by the NSOperationQueue, and all the temporary objects we used will be

freed in our -dealloc method.

9.4 Importing Recipes

Being able to export recipes is a great addition to our application. It not

only makes it easier for our users to share recipes, but it also promotes

the application itself. Existing users can share their recipes with new

users, and those new users will have to use our application to view the

recipes. It’s a great little micro market of its own. However, users also

need the ability to import these recipes to complete the circuit.

While implementing the import feature, we will also build a second

NSManagedObjectContext. This will allow us to add records as needed,

and when we are done with our manipulations, we can notify the main

thread of those changes. By putting the import on a separate thread,

the user can continue to operate the UI while the import is occurring.

When we are done with the import, the user will just see the recipes

added.

As with the earlier export operation, quite a bit of code is involved in

the import. I recommend reviewing the full process because we will be

touching only lightly on the mechanics here. The full implementation

of this process is included with the example code.

Updating the User Interface

Adding the import functionality requires a minor change to the user

interface. Like the export feature, we want to add another NSMenuItem

to the File menu called Import Recipe(s). We also want to bind that

NSMenuItem to a new method in our AppDelegate called -importRecipes:

(see Figure 9.5, on the next page). In that method, we want to display

an NSOpenPanel to the user as a sheet and force it to allow only selection

of our export records.

Download MultiThreading/AppDelegate.m

#pragma mark Import methods

#pragma mark -

http://media.pragprog.com/titles/mzcd/code/MultiThreading/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=173

IMPORTING RECIPES 174

Figure 9.5: Linking the Import menu item

- (IBAction)importRecipes:(id)sender;

{

NSOpenPanel *openPanel = [NSOpenPanel openPanel];

[openPanel setCanChooseDirectories:NO];

[openPanel setCanCreateDirectories:NO];

[openPanel setRequiredFileType:@"grx"];

SEL selector = @selector(importSheetDidEnd:returnCode:context:);

[openPanel beginSheetForDirectory:nil

file:nil

modalForWindow:window

modalDelegate:self

didEndSelector:selector

contextInfo:nil];

}

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=174

IMPORTING RECIPES 175

For the import, there is nothing we need to do before showing the

NSOpenPanel to the user. All of the work is done after our user has

selected a file to import.

Download MultiThreading/AppDelegate.m

- (void)importSheetDidEnd:(NSOpenPanel*)openPanel

returnCode:(NSInteger)returnCode

context:(void*)context

{

if (returnCode == NSCancelButton) return;

PPImportOperation *op = nil;

op = [[PPImportOperation alloc] initWithDelegate:self

filePath:[openPanel filename]];

if (!genericOperationQueue) {

genericOperationQueue = [[NSOperationQueue alloc] init];

}

[genericOperationQueue addOperation:op];

[op release], op = nil;

}

When the NSOpenPanel calls back to our AppDelegate, we first check

to see whether the user canceled the sheet. If they did not, then we

grab the filename from the NSOpenPanel and pass it into a new instance

of PPImportOperation along with a reference to the AppDelegate. After

the PPImportOperation has been initialized, we hand it off to the NSOp-

erationQueue and return control to the user. The rest of the import is

performed within the PPImportOperation.

Performing the Import Operation

The import is a fair bit more complicated than the export. Although

the concept is the same, we are copying NSManagedObject objects from

one NSManagedObjectContext to another. In this case, we need to worry

about certain objects being duplicated. We do not care if the Recipe

and RecipeIngredient objects are duplicated, but we don’t want to dupli-

cate UnitOfMeasure, Author, or Ingredient entities. Therefore, as part of the

import, whenever one of these objects is run across, it is searched for

in the primary NSManagedObjectContext before being created.

To help keep the -main as clean as possible, a lot of the initialization is

going to be done in the -initWithDelegate:filePath: instead.

http://media.pragprog.com/titles/mzcd/code/MultiThreading/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=175

IMPORTING RECIPES 176

Download MultiThreading/PPImportOperation.m

- (id)initWithDelegate:(AppDelegate*)delegate

filePath:(NSString*)filePath

{

if (!(self = [super init])) return nil;

appDelegate = delegate;

[self setFilePath:filePath];

[self setImportContext:[self managedObjectContext]];

NSManagedObjectContext *mainMOC = [self newContextToMainStore];

NSNotificationCenter *center = [NSNotificationCenter defaultCenter];

[center addObserver:self

selector:@selector(contextDidSave:)

name:NSManagedObjectContextDidSaveNotification

object:mainMOC];

[self setMainContext:mainMOC];

[self setLookup:[NSMutableDictionary dictionary]];

return self;

}

Once the [super init] has returned, we set the filePath to an ivar, con-

struct an NSManagedObjectContext for it, and set that to another ivar.

Once we have the NSManagedObjectContext instantiated for the file to

be imported, we also want to start listening for NSNotification broadcasts

from that NSManagedObjectContext.

Download MultiThreading/PPImportOperation.m

- (void)main

{

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:@"Recipe"

inManagedObjectContext:[self importContext]]];

NSError *error = nil;

NSArray *incomingRecipes = [[self importContext] executeFetchRequest:request

error:&error];

[request release], request = nil;

if (error) {

[NSApp presentError:error];

return;

}

At the start of our -main, we need to grab a reference to all the Recipe

entities that are in the import file. Since we have an NSManagedOb-

jectContext attached to the file, we need to perform an NSFetchRequest

against that NSManagedObjectContext and retrieve an array of NSMan-

agedObject references for the Recipe objects.

http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPImportOperation.m
http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPImportOperation.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=176

IMPORTING RECIPES 177

Download MultiThreading/PPImportOperation.m

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

for (NSManagedObject *recipe in incomingRecipes) {

[self copyRecipe:recipe];

[pool drain], pool = nil;

pool = [[NSAutoreleasePool alloc] init];

}

[pool drain], pool = nil;

Once we have all the recipes, we need to loop over them and copy each

one to the main NSManagedObjectContext. This copy operation is fairly

complicated, but the basic flow is this:

1. Copy the Recipe entity and its property attributes.

2. Copy each relationship, searching for existing objects by name

if they are not RecipeIngredients. If they are RecipeIngrdients, copy

them without searching.

3. For each object in the relationship, copy its relationships, taking

care to never copy parent objects.

This copy is one-way, as discussed in the sidebar on page 171. Once

the copy is complete, we need to save the main NSManagedObjectContext

and get ready to update the main thread and its NSManagedObjectCon-

text.

Download MultiThreading/PPImportOperation.m

error = nil;

if (![[self mainContext] save:&error]) {

[NSApp presentError:error];

return;

}

Once we have completed the import, it is time to save the context and

confirm that it was successful. Once the save is complete, we can exit

the -main method and complete the NSOperation. The only question that

remains is, how do we update the main NSManagedObjectContext and

thereby the UI?

When we wrote the -initWithDelegate:filePath:, we added the NSOperation

as an observer to its own NSManagedObjectContextDidSaveNotification

broadcasts. When we performed the -save: in the -main method, the

notification was automatically fired. To update the main NSManagedOb-

jectContext, we need to forward that notification along.

http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPImportOperation.m
http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPImportOperation.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=177

THE RECURSIVE COPY REVIEWED 178

Download MultiThreading/PPImportOperation.m

- (void)contextDidSave:(NSNotification*)notification

{

SEL selector = @selector(mergeChangesFromContextDidSaveNotification:);

[[appDelegate managedObjectContext] performSelectorOnMainThread:selector

withObject:notification

waitUntilDone:YES];

}

In the implementation of the -contextDidSave: method, we only need to

pass along the notification to the main NSManagedObjectContext and

make sure that the -mergeChangesFromContextDidSaveNotification: is

called on the main thread. Once that call is complete, the main NSMan-

agedObjectContext will be up-to-date as will any observers it has, in-

cluding the user interface.

9.5 The Recursive Copy Reviewed

Although not strictly relevant to the subject of multithreading, it is valu-

able to review how the recursive copy that is used in these operations

works. Of the two, the recursive copy in the PPImportOperation is more

complex, so we will review that one.

-copyRecipe:

Download MultiThreading/PPImportOperation.m

- (void)copyRecipe:(NSManagedObject*)recipe

{

NSString *entityName = [[recipe entity] name];

NSManagedObject *newObject = [NSEntityDescription

insertNewObjectForEntityForName:entityName

inManagedObjectContext:[self mainContext]];

[[self lookup] setObject:newObject forKey:[recipe objectID]];

//Catch 22 Need to copy properties before changing the name but that

//loads it into the context causing an infinite loop

[self copyPropertiesFromObject:recipe toObject:newObject parent:entityName];

[newObject setValue:@"untitled recipe" forKey:@"name"];

NSUInteger index = 1;

NSString *newName = [recipe valueForKey:@"name"];

while ([self objectOfType:entityName withName:newName]) {

NSString *origName = [recipe valueForKey:@"name"];

newName = [NSString stringWithFormat:@"%@-%u", origName, index];

++index;

}

[newObject setValue:newName forKey:@"name"];

}

http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPImportOperation.m
http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPImportOperation.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=178

THE RECURSIVE COPY REVIEWED 179

The recursive copy starts out by copying the Recipe object. Since we

know that we will always be copying the Recipe object, there is no

check, in the beginning, to see whether it already exists. Therefore, a

new NSManagedObject is created on the correct NSManagedObjectCon-

text, and then its properties and relationships are copied, which we will

review in a moment.

One thing to note is that as soon as we create the new NSManagedOb-

ject, we insert it into the lookup dictionary using the object’s NSManage-

dObjectID as the key. This NSDictionary will be used as a lookup later for

relationships.

After the copy is complete, the name of the new Recipe entity is changed

to “untitled recipe,” and a search is done on the NSManagedObjectCon-

text to see whether another recipe exists with the same name. The name

is changed first to ensure that we do not find this recipe in that search.

If a recipe is found, then we loop over the name, incrementing an index

and adding that index to the name in each pass until we find a variant

of the name that does not exist. Once that is found, or if the name is

not a duplicate, we reset the name onto the NSManagedObject.

-copyPropertiesFromObject:toObject:parent:

This method is at the heart of the recursive copy. There are two parts

to the copy operation.

Download MultiThreading/PPImportOperation.m

- (void)copyPropertiesFromObject:(NSManagedObject*)oldObject

toObject:(NSManagedObject*)newObject

parent:(NSString*)parentEntity

{

NSString *entityName = [[oldObject entity] name];

NSArray *attKeys = [[[oldObject entity] attributesByName] allKeys];

NSDictionary *attributes = [oldObject dictionaryWithValuesForKeys:attKeys];

[newObject setValuesForKeysWithDictionary:attributes];

In the first part of the copy operation, we will retrieve all the names of

the attributes in the object. This information is stored in the NSEntity-

Description, which can be referenced from the NSManagedObject via the

-entity method. Once we have an NSArray of all the attribute names, we

can get their values stored in an NSDictionary. We can then pass this

dictionary to the new NSManagedObject and thereby update all of its

attributes.

http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPImportOperation.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=179

THE RECURSIVE COPY REVIEWED 180

Download MultiThreading/PPImportOperation.m

id oldDestObject = nil;

id temp = nil;

NSDictionary *relationships = [[oldObject entity] relationshipsByName];

for (NSString *key in [relationships allKeys]) {

NSRelationshipDescription *desc = [relationships valueForKey:key];

NSString *destEntityName = [[desc destinationEntity] name];

if ([destEntityName isEqualToString:parentEntity]) continue;

if ([desc isToMany]) {

NSMutableSet *newDestSet = [NSMutableSet set];

for (oldDestObject in [oldObject valueForKey:key]) {

temp = [[self lookup] objectForKey:[oldDestObject objectID]];

if (!temp) {

temp = [self associateObject:oldDestObject

parent:entityName];

}

[newDestSet addObject:temp];

}

[newObject setValue:newDestSet forKey:key];

} else {

oldDestObject = [oldObject valueForKey:key];

if (!oldDestObject) continue;

temp = [[self lookup] objectForKey:[oldDestObject objectID]];

if (!temp) {

temp = [self associateObject:oldDestObject

parent:entityName];

}

[newObject setValue:temp forKey:key];

}

}

}

The second half of the copy is quite a bit more complicated. The first

issue is that a relationship can be pointing to one object or multiple

objects, and each of those possibilities needs to be handled differently.

Second, the object on the other end of that relationship may or may

not exist. If the destination object exists, then we can just set the rela-

tionship. If it does not exist, then we need to create it, which is done

in the -associateObject:parent: method discussed in a moment. It is here

that we use the lookup dictionary. By using the NSManagedObjectID as

the key, we can ensure that different relationships pointing to the same

object remain intact.

One important thing to note here is the parentEntity variable that is being

passed in. This variable is checked at the start of each relationship

copy. If the destination object for that relationship matches this vari-

able, then the relationship is skipped. This guarantees that the copy is

performed only down the tree and never back up.

http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPImportOperation.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=180

THE RECURSIVE COPY REVIEWED 181

-associateObject:parent:

This method is called from the -copyPropertiesFromObject:toObject:parent:

method whenever it fails to find a destination object in the lookup dic-

tionary.

Download MultiThreading/PPImportOperation.m

- (id)associateObject:(NSManagedObject*)object parent:(NSString*)name

{

NSManagedObjectContext *moc = [self mainContext];

NSString *entityName = [[object entity] name];

id temp = nil;

if ([entityName isEqualToString:@"RecipeIngredient"]) {

temp = [NSEntityDescription insertNewObjectForEntityForName:entityName

inManagedObjectContext:moc];

[[self lookup] setObject:temp forKey:[object objectID]];

[self copyPropertiesFromObject:object toObject:temp parent:name];

return temp;

}

if (temp = [self objectOfType:entityName

withName:[object valueForKey:@"name"]]) {

[[self lookup] setObject:temp forKey:[object objectID]];

return temp;

}

temp = [NSEntityDescription insertNewObjectForEntityForName:entityName

inManagedObjectContext:moc];

[[self lookup] setObject:temp forKey:[object objectID]];

[self copyPropertiesFromObject:object toObject:temp parent:name];

return temp;

}

In this method, unlike the previous method discussed, we care what

kind of entity we are working with. If we are working with a RecipeIn-

gredient, then we know to just blindly create a new object. However, for

any other object, we need to first check to see whether it already exists

in the NSManagedObjectContext. We do this by calling -objectOfType:with-

Name:, and if it returns a nil, then we need to create a new object. If

it returns an NSManagedObject, then we associate that returned object

with the original object passed in so that future calls against it will be

found in the lookup dictionary.

There are a couple of things to note. First, no matter whether we are

creating a new object or associating an existing object, we always store

http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPImportOperation.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=181

THE RECURSIVE COPY REVIEWED 182

the reference in our lookup dictionary. This makes sure we do not dupli-

cate the work and that we can refresh the object later as needed.

The other important thing to note here is the recursion. If we create

a new object, we call copyPropertiesFromObject:toObject:parent: on that

object even though that is the method that we just came from. However,

because of the parent reference, we guarantee that the copy loop never

goes back up the chain.

-objectOfType:withName:

The final method in this copy routine is called from the -associateObject:

parent: method. This method determines whether an object already

exists in the NSManagedObjectContext to avoid duplication.

Download MultiThreading/PPImportOperation.m

- (id)objectOfType:(NSString*)entityName withName:(NSString*)name

{

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:entityName

inManagedObjectContext:[self mainContext]]];

[request setPredicate:[NSPredicate predicateWithFormat:@"name = %@", name]];

NSError *error = nil;

id result = [[[self mainContext] executeFetchRequest:request

error:&error] lastObject];

return result;

}

In our data model, almost every object has a name property. Fortu-

nately, in the one case that this is not true, we don’t care whether there

are duplicate objects. Therefore, this method gets rather heavily used

during the import operation to help guarantee that we are not creating

more than one object with the same name.

We accomplish this check by creating an NSFetchRequest using the name

as the test in the predicate and using the passed-in entityName to con-

struct the NSEntityDescription. We then return the -lastObject of the NS-

Array returned from the fetch. By using -lastObject, we can avoid hav-

ing to check the length of the returned array. -lastObject will check the

length for us automatically and return a nil if the NSArray has no objects.

http://media.pragprog.com/titles/mzcd/code/MultiThreading/PPImportOperation.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=182

WRAPPING UP 183

9.6 Wrapping Up

In this chapter, we reviewed how to use Core Data in a multithreaded

application and added some very useful features to our recipes appli-

cation. We have learned that each thread needs to have its own NS-

ManagedObjectContext and that NSManagedObject instances should

never cross threads. We also learned how to send notifications across

threads so that changes in one NSManagedObjectContext can be up-

dated in other NSManagedObjectContext instances.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=183

Chapter 10

Core Data and iPhone
Core Data is now available on the iPhone. Introduced as part of the

iPhone 3.0 SDK, the API is nearly identical to the desktop version. There

are, however, some very important differences that we will review in this

chapter.

This chapter assumes that you have at least a basic understanding of

how code is written for the Cocoa Touch devices and are comfortable

with the UIViewController design. If you are not, then I highly recom-

mend reading Bill Dudney and Chris Adamson’s iPhone SDK Develop-

ment (also from the Pragmatic Bookshelf) before proceeding with this

chapter.

10.1 Similarities and Differences

The Core Data API is nearly identical on both the desktop and Cocoa

Touch devices. Of course, “nearly identical” and “identical” are not the

same thing. We need to be conscious of a few very important differences

between the desktop and Cocoa Touch before designing an application

to run on Cocoa Touch.

Creating a New Core Data Cocoa Touch Project

When starting a new Cocoa Touch project, it is possible to add Core

Data to many of the existing templates. To do this, select the template

that you want to start with, and then select the “Use Core Data for

storage” checkbox before progressing in the creation of the template.

To demonstrate using Core Data on the iPhone, we will be using the

Navigation-based Application template with the “Use Core Data for stor-

age” box selected, as shown in Figure 10.1, on the next page. We’ll start

this project in Section 10.4, Recipes for the iPhone, on page 195.

SIMILARITIES AND DIFFERENCES 185

Figure 10.1: iPhone OS New Project dialog box

Upgrading an Existing Application to Core Data

Many of us have been developing iPhone applications since the SDK’s

original release, so it is quite likely that you have an existing application

that you want to integrate with Core Data. Fortunately, it does not take

very much code to build up the Core Data stack in an existing project.

Adding a Data Model to the Project

Just like on the desktop, Core Data on Cocoa Touch requires a data

model to define the structure of the data entities. Therefore, the first

step is to add a data model to the project by selecting File > New File.

Within the dialog box that appears, if we select the Resources section,

we can then create a new data model, as shown in Figure 10.2, on the

next page.

In addition to creating a new data model, we can also use an existing

data model from an existing application. Later in this chapter, in Sec-

tion 10.4, Recipes for the iPhone, on page 195, we use the data model

from our desktop recipes application in our new iPhone application.

The data models are compatible between the desktop and Cocoa Touch,

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=185

SIMILARITIES AND DIFFERENCES 186

Figure 10.2: Adding a data model to the project

which allows us to share not only models but the underling persistent

stores as well.

Adding the Core Data Code

Once we have a data model to work with, we next need to add the code

to load the Core Data stack. The exact placement of this code depends

on the design of your application. Since there are no document-style

applications on the iPhone, it is most common to have a single data

model and a single persistent store per Cocoa Touch application. Al-

though I still like to put the Core Data code in the application delegate,

it might make sense to put it somewhere else. No matter where the code

is placed, it is very similar to the desktop. First we need to initialize the

data model.

Download RecipeCT/Classes/AppDelegate.m

- (NSManagedObjectModel*)managedObjectModel

{

if (managedObjectModel) return managedObjectModel;

NSString *path = [[NSBundle mainBundle] pathForResource:@"DataModel"

ofType:@"momd"];

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=186

SIMILARITIES AND DIFFERENCES 187

if (!path) {

path = [[NSBundle mainBundle] pathForResource:@"DataModel"

ofType:@"mom"];

}

NSAssert(path != nil, @"Unable to find DataModel in main bundle");

NSURL *url = [NSURL fileURLWithPath:path];

managedObjectModel = [[NSManagedObjectModel alloc] initWithContentsOfURL:url];

return managedObjectModel;

}

This should look quite familiar because it is identical to the way you

would build the NSManagedObjectModel on the desktop. We get the path

for the .mom file (or the .momd if there are multiple versions of the data

model) and use it to initialize the NSManagedObjectModel.

Download RecipeCT/Classes/AppDelegate.m

- (NSString*)documentsFolder

{

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES);

NSString *filePath = [paths objectAtIndex:0];

return filePath;

}

Before we construct the NSPersistentStoreCoordinator, we need to decide

where to store the persistent store file. On the desktop in an applica-

tion with a single persistent store, we would save the file to the Applica-

tion Support folder. However, on Cocoa Touch devices, there is no such

location. Instead, each application has its own sandboxed Documents

directory designed for the storage of files. This is where we will write our

persistent store. Using code similar to what we used on the desktop to

find the Application Support folder, we will find the Documents folder

specific to our application.

Download RecipeCT/Classes/AppDelegate.m

- (NSPersistentStoreCoordinator*)persistentStoreCoordinator;

{

if (persistentStoreCoordinator) return persistentStoreCoordinator;

NSFileManager *fileManager = [NSFileManager defaultManager];

NSString *docFolder = [self documentsFolder];

if (![fileManager fileExistsAtPath:docFolder]) {

[fileManager createDirectoryAtPath:docFolder attributes:nil];

}

NSString *filePath = nil;

filePath = [docFolder stringByAppendingPathComponent:@"recipes.sqlite"];

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=187

SIMILARITIES AND DIFFERENCES 188

if (![fileManager fileExistsAtPath:filePath]) {

NSString *defaultDB = [[NSBundle mainBundle] pathForResource:@"recipes"

ofType:@"sqlite"];

NSError *error = nil;

if (![[NSFileManager defaultManager] copyItemAtPath:defaultDB

toPath:filePath

error:&error]) {

NSLog(@"%@:%s Error copying file %@", [self class], _cmd, error);

}

}

NSURL *url = [NSURL fileURLWithPath:filePath];

NSManagedObjectModel *mom = [self managedObjectModel];

persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]

initWithManagedObjectModel:mom];

NSError *error = nil;

if ([persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType

configuration:nil

URL:url

options:nil

error:&error]) {

return persistentStoreCoordinator;

}

[persistentStoreCoordinator release], persistentStoreCoordinator = nil;

NSDictionary *ui = [error userInfo];

if (![ui valueForKey:NSDetailedErrorsKey]) {

NSLog(@"%@:%s Error adding store %@", [self class], _cmd,

[error localizedDescription]);

} else {

for (NSError *suberror in [ui valueForKey:NSDetailedErrorsKey]) {

NSLog(@"%@:%s Error: %@", [self class], _cmd,

[suberror localizedDescription]);

}

}

NSAssert(NO, @"Failed to initialize the persistent store");

return nil;

}

Once we have the NSManagedObjectModel constructed, the next step

is to build the persistent store coordinator. Again, this code is nearly

identical to the desktop version but with a few differences. First, for the

moment, I have turned off the versioning check because we have only

one version on the iPhone. When we release version 2 in the future, we

will need to turn that back on.

The second major difference has to do with default settings. We initially

check for the existence of a database file in the application’s Docu-

ments directory, but if it does not exist, then we copy one from within

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=188

SIMILARITIES AND DIFFERENCES 189

the bundle of the application itself. This gives us a set of “defaults” or

“samples” for the user who is accessing the iPhone application for the

very first time. By doing this, we can present the user with an inviting

list of recipes when they launch our application instead of an empty

table view.

Download RecipeCT/Classes/AppDelegate.m

- (NSManagedObjectContext*)managedObjectContext

{

if (managedObjectContext) return managedObjectContext;

NSPersistentStoreCoordinator *coord = [self persistentStoreCoordinator];

if (!coord) return nil;

managedObjectContext = [[NSManagedObjectContext alloc] init];

[managedObjectContext setPersistentStoreCoordinator:coord];

return managedObjectContext;

}

The last method we need to implement is the -managedObjectContext

method. Since we did all the hard work either in the -managedObject-

Model method or in the -persistentStoreCoordinator method, this method

is even simpler than its desktop cousin. We request a reference to the

NSPersistentStoreCoordinator, and assuming that it is not nil, we initialize

an NSManagedObjectContext, add the NSPersistentStoreCoordinator to it,

and return the resulting NSManagedObjectContext. Since we will either

have an existing persistent store from the last time the user ran the

application or have a default store copied over, there is no need to check

the Type table as we have previously. It is guaranteed either to be there

or to be intentionally cleared out by the user.

Persistent Store Formats

Similar to Core Data on the desktop, several persistent formats are

available on Cocoa Touch devices. However, one format is missing that

I have grown to love. The XML format is not available currently on the

iPhone. I suspect this is to force us to use something that is far more

memory efficient such as the SQLite store. It is also possible that it was

skipped because of dependencies on other APIs that are also not avail-

able at this time. Whatever the reason, the XML store is not available to

us, and we should be using the SQLite store in every situation possible.

Besides the SQLite persistent store format, we also have access to the

binary and in-memory formats. However, both of these formats require

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=189

MEMORY MANAGEMENT 190

that the entire object hierarchy be loaded into memory, and that is

something we generally cannot afford on a Cocoa Touch device. There-

fore, unless there is a very solid design reason to use another store

format, SQLite should be used.

10.2 Memory Management

One of the most important differences we need to keep in mind while

working with Core Data on the iPhone is the management of memory.

Depending on which Cocoa Touch device is targeted, we could have

as little as 20MB of memory to work with. This is drastically different

from the modern desktop that measures memory in gigabytes! There-

fore, Core Data, to be a good citizen on this much smaller device, must

handle memory differently.

The best way to handle memory management is to let someone else do

it. Fortunately, Apple has stepped up to the plate and done most of the

heavy lifting for us. As we will discuss in depth in Section 10.3, Using

the NSFetchedResultsController, on page 194, the new class, NSFetched-

ResultsController, does a lot of the memory management work for us as

long as we play by its rules. These rules break down into two separate

sections.

Grab Only What You Need

Because we have such a small amount of memory to work with, it is

very important that we keep only the entities in memory that we abso-

lutely need for that view. What this means is that if we are working in a

view (or a page, as some refer to a single screen of information), then we

should be retaining only the entities that are needed for that view. In the

case of a view that is a table, then that becomes a bit trickier. But fortu-

nately, the NSFetchedResultsController helps us solve that problem as well.

Handling Data Changes

The second rule of working with Core Data on the iPhone has to do

with the notification of changes to the data entities. On the desktop

our view elements are bound directly to the data entities, and when

an entity changes, all the view elements associated with that entity

are automatically updated through KVO, as discussed in Chapter 3,

Core Data and Bindings, on page 34. However, on a CocoaTouch device,

those bindings do not currently exist, and updates to visual elements

need to be coded.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=190

MEMORY MANAGEMENT 191

Figure 10.3: Contacts table view

When we’re working within one view, this isn’t too much of an issue.

We have a direct relationship between the view elements being manipu-

lated by the user and the elements displayed by the view. However, what

about any other view that exists in the hierarchy that is not currently

being displayed but still has elements that are being manipulated?

A good example of this is the Contacts application that exists on every

Cocoa Touch device. The primary view for this application is a table

listing all the contacts in the database, as shown in Figure 10.3.

In addition to this table view, we also have a detail view that displays

a single contact, as shown in Figure 10.4, on the following page. It is

this detail view that handles all the editing of a contact. However, when

a detail of that contact gets edited that is also displayed in the parent

table view, how does that table view get notified to update its display

values?

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=191

DATA CHANGE NOTIFICATIONS 192

Figure 10.4: Contacts detail view

Without the use of Cocoa Bindings, we need to handle the updates

ourselves. We can handle this in several ways, and we will review each

of them in Section 10.3, Data Change Notifications.

10.3 Data Change Notifications

As we discovered in Section 10.2, Handling Data Changes, on page 190,

without Cocoa Bindings, we need to consider and design for the situa-

tion where our data has changed in one location, and we need to notify

another location of that change so that it may also update itself.

However, there are a few catches we have to consider when looking

at this problem. The first catch is the one of design elegance. For any

application to be elegant on the outside, it must also be elegant on the

inside. Therefore, we definitely want to avoid strong references between

view controllers.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=192

DATA CHANGE NOTIFICATIONS 193

The second catch has to again do with memory. The Cocoa Touch sys-

tem has some great memory management features built right into it,

and we need to be conscious of them. For example, if we have a UIView-

Controller stack that is very deep and we start to hit the memory limits,

it is quite possible that the operating system will decide to drop some of

our views from memory. If each view is a self-contained island of data,

this is generally not a problem. However, if we want to start broadcast-

ing data change notifications back up the stack, this is something we

need to be aware of and check for; otherwise, a data notification could

cause the entire application to crash.

Using the Delegate Design Pattern

One of the most common solutions to this problem is to use a delegate.

In fact, Apple uses this pattern very frequently. Ideally, when using

a delegate design, we want to keep a separation between the delegate

and the calling object. This will avoid having a strong link between view

controllers and allows for the flow of the view controllers to be changed

if needed in some future release. With Cocoa Touch, Apple has started

using protocols to define delegate methods. Prior to Cocoa Touch (and

Objective-C 2.0), it was far more common to add a category to NSObject

to define the methods that are called upon the delegate.

With the addition of Objective-C 2.0, we can now have optional meth-

ods in a protocol, which makes it easier to use protocols instead of

categories. We can now define which methods are required, testing at

compile time, and which methods are optional. Previously with cate-

gories we had to define which were required and which were optional

through runtime checks and documentation.

Unfortunately, using a delegate design does have one fairly major issue.

We can have just one delegate being notified when the data changes. If

we have a deep stack of view controllers, then we would need to build

up a cascade of change notifications up the stack. It’s certainly possible

but not the most elegant solution in that situation.

Using the NSNotificationCenter

When a delegate won’t do, then a notification usually will. The NSNotifi-

cation API has the advantage of being able to handle multiple observers

and notify each of them in turn. In an NSNotification design, each view

would add itself as an observer to a specific key. When a notification

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=193

DATA CHANGE NOTIFICATIONS 194

with that key is broadcast, then the view would receive a callback and

be allowed to handle the notification as needed.

The NSNotification API is quite elegant for a number of reasons. Each

observer can decide on its own how to handle the notification that it

receives. In addition, the object that posts the notification does not need

to know anything about the consumers of that notification. It does not

even need to know what method is being called on the consumer. The

producer simply sends out the notification and carries on. This provides

excellent separation of the view controllers.

Using the NSFetchedResultsController

With the release of 3.0 for Cocoa Touch, Apple has provided us with a

third solution to this problem. This third solution is provided via the

NSFetchedResultsController and is recommended for most standard Cocoa

Touch application designs.

The NSFetchedResultsController is specifically designed to manage a result

set of entities from an NSManagedObjectContext and provides methods

to query the result set for the number of entities and to keep them

in order.

In addition, the NSFetchedResultsController also provides means for a UI-

ViewController to be notified when any of the entities in the result set are

modified including the addition or deletion of entities. The best way to

look at the NSFetchedResultsController is as a layer between the NSMan-

agedObjectContext and the UIViewController, as depicted in Figure 10.5,

on the next page.

To construct an NSFetchedResultsController, we need to first construct an

NSFetchRequest and pass that request into the NSFetchedResultsController.

Once that is accomplished, we can query the NSFetchedResultsController

for the number of entities in the results and retrieve individual entities.

In our example application, RecipesCT, we will be using the NSFetched-

ResultsController to manage the main table view as well as to receive

events when the detail view changes one of the entities. This project

is discussed in greater detail in Section 10.4, Recipes for the iPhone, on

the following page.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=194

RECIPES FOR THE IPHONE 195

Table
View

Detail
View

NSManagedObjectContext

Recipe RecipeRecipeRecipe

NSFetchedResultsController

Figure 10.5: NSFetchedResultsController depiction

10.4 Recipes for the iPhone

To demonstrate how to use Core Data in a Cocoa Touch application,

we will be taking our recipe application that we have been developing

throughout this book and build a Cocoa Touch version. We will start

by using the existing data model that we developed for the desktop and

copy it to the iPhone. We will also use a SQLite version of our persistent

store from the desktop as the sample database for our Cocoa Touch

application. Those two steps were already discussed in Section 10.1,

Similarities and Differences, on page 184.

The next step in our application is to initialize and display the table

view, which is the primary view of our application. Once we have com-

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=195

RECIPES FOR THE IPHONE 196

pleted building the table view, we will then construct a detail view,

which will display a single recipe. Although we will not be developing

every aspect of this application, we will touch on the key points that

involve working with the Core Data portion of the application.

Preparing the NSFetchedResultsController

As soon as the application launches, we want to display a table view of

all the available recipes. To do this, we need to construct an NSFetched-

ResultsController that manages all the Recipe entities and that the UITable-

ViewController will query to display the recipes.

Download RecipeCT/Classes/AppDelegate.m

- (void)applicationDidFinishLaunching:(UIApplication*)application

{

window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

NSFetchedResultsController *results = [self fetchedResultsController];

MainViewController *controller = nil;

controller = [[MainViewController alloc] initWithFetchController:results];

nav = [[UINavigationController alloc] initWithRootViewController:controller];

[controller release], controller = nil;

// Override point for customization after app launch

[window addSubview:[nav view]];

[window makeKeyAndVisible];

}

Most of this is familiar to you if you’ve developed a Cocoa Touch appli-

cation. Once the application has finished launching, we need to build

the user interface. To do that, we initialize the window to be the size of

the screen, and we then construct our MainViewController, which is the

controller managing the main table view. Then we place that MainView-

Controller into a UINavigationController so that we can easily transition to

the detail view. Once the UINavigationController has been initialized, we

add its -view to the window and request that the window become visible.

The one interesting or different part of this method is the initialization

of the MainViewController. In this example, it accepts an NSFetchedResults-

Controller as part of its initialization. It is expected that the MainView-

Controller will retain this NSFetchedResultsController and use it to populate

the table view.

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=196

RECIPES FOR THE IPHONE 197

The code to construct this NSFetchedResultsController is most interesting.

Download RecipeCT/Classes/AppDelegate.m

- (NSFetchedResultsController*)fetchedResultsController

{

NSManagedObjectContext *context = [self managedObjectContext];

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

[fetchRequest setEntity:[NSEntityDescription entityForName:@"Recipe"

inManagedObjectContext:context]];

// Configure the request's entity, and optionally its predicate.

NSSortDescriptor *sortDescriptor = nil;

sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"name" ascending:YES];

NSArray *sortDescriptors = nil;

sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor, nil];

[sortDescriptor release], sortDescriptor = nil;

[fetchRequest setSortDescriptors:sortDescriptors];

[sortDescriptors release], sortDescriptors = nil;

NSFetchedResultsController *controller = [[NSFetchedResultsController alloc]

initWithFetchRequest:fetchRequest

managedObjectContext:context

sectionNameKeyPath:nil

cacheName:@"Recipe"];

[fetchRequest release];

NSError *error = nil;

BOOL success = [controller performFetch:&error];

if (!success) {

NSLog(@"Error fetching request %@", [error localizedDescription]);

}

return [controller autorelease];

}

As discussed, an NSFetchedResultsController takes an NSFetchRequest as

part of its initialization. This NSFetchRequest is used to determine what

entities are to be included in the NSFetchedResultsController. In this exam-

ple, we configure the NSFetchRequest to request all the Recipe entities

and to sort them based on the name attribute in ascending order.

Once the NSFetchRequest is constructed, we then pass it along to the

NSFetchedResultsController along with a reference to the NSManagedOb-

jectContext. We also give it a name for the cache. This cache can be

shared across NSFetchedResultsController objects if appropriate, although

we will not be doing that in this example.

Once the NSFetchedResultsController has been initialized, we then request

that it perform the fetch that will load the entities into memory. It

should be noted that the NSFetchedResultsController is very conscious of

the available memory on the device, and it will keep only the entities

in memory that are currently needed. Therefore, we can expect at this

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=197

RECIPES FOR THE IPHONE 198

point that it has loaded only the faulted objects into memory and that

they are not fully realized yet.

Building the Main Table View

Now that we have the NSFetchedResultsController being passed into the

MainViewController, we need to build the main table view. The header for

this UITableViewController is very simple. Because we are displaying only

a UITableView and nothing else, we can use a UITableViewController instead

of its parent, UIViewController. The UITableViewController will handle the

reference to the UITableView for us, and it is already declared as both

a UITableViewDelegate and a UITableViewDatasource. The resulting header

file is as follows:

Download RecipeCT/Classes/MainViewController.h

@interface MainViewController : UITableViewController

{

NSFetchedResultsController *resultsController;

}

@property (retain) NSFetchedResultsController *resultsController;

- (id)initWithFetchController:(NSFetchedResultsController*)controller;

@end

In this class, the only thing we are retaining is the NSFetchedResultsCon-

troller, which will be driving the model for our application. From the

header, we can then construct the -initWithFetchController: method, which

takes a single parameter, the NSFetchedResultsController constructed in

the AppDelegate. Once we have initialized the UITableViewController sub-

class by calling -initWithStyle: on the superclass, we then set the results-

Controller property with the passed-in parameter. We also set our Main-

ViewController instance as the delegate to the NSFetchedResultsController

so that we receive callbacks when any of the entities managed by the

NSFetchedResultsController change.

Download RecipeCT/Classes/MainViewController.m

- (id)initWithFetchController:(NSFetchedResultsController*)controller

{

if (!(self = [super initWithStyle:UITableViewStylePlain])) return nil;

[self setResultsController:controller];

[controller setDelegate:self];

return self;

}

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/MainViewController.h
http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/MainViewController.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=198

RECIPES FOR THE IPHONE 199

The next interesting parts of the MainViewController that we need to

implement are the UITableViewDelegate and UITableViewDataSource

methods.

Implementing the -numberOfSectionsInTableView: Method

Download RecipeCT/Classes/MainViewController.m

- (NSInteger)numberOfSectionsInTableView:(UITableView*)tableView

{

return [[[self resultsController] sections] count];

}

To be able to ask for the number of rows in a section, the UITableView

must first know the number of sections. In this method, we request

the sections property of the NSFetchedResultsController, which returns an

NSArray of NSFetchedResultsSectionInfo implementations. Since we need to

know only the number of sections, we return a call to -count on the

resulting NSArray.

Implementing the -tableView:numberOfRowsInSection: Method

One of the first methods that gets called as the table view is being

realized is the -tableView:numberOfRowsInSection: method, which tells the

UITableView how many rows are going to be displayed.

Download RecipeCT/Classes/MainViewController.m

- (NSInteger)tableView:(UITableView*)table

numberOfRowsInSection:(NSInteger)section

{

id <NSFetchedResultsSectionInfo> sectionInfo = nil;

sectionInfo = [[[self resultsController] sections] objectAtIndex:section];

return [sectionInfo numberOfObjects];

}

In this method, we request a reference to the NSFetchedResultsSectionInfo

instance for the specified section. The result is an implementation of the

protocol that contains a count of the number of objects in the section as

well as a reference to the objects and the name of the section. For this

method, we return the result of a call to the numberOfObjects property.

Implementing the -tableView:cellForRowAtIndexPath: Method

The one method that tends to be the most complex in a UITableView-

Controller is the -tableView:cellForRowAtIndexPath: method. This method is

responsible for initializing (or dequeuing) the UITableViewCell object that

will be displaying a particular row in the table.

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/MainViewController.m
http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/MainViewController.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=199

RECIPES FOR THE IPHONE 200

Download RecipeCT/Classes/MainViewController.m

- (UITableViewCell*)tableView:(UITableView*)tableView

cellForRowAtIndexPath:(NSIndexPath*)indexPath

{

static NSString *cellIdentifier = @"cellIdentifier";

UITableViewCell *cell = nil;

cell = [tableView dequeueReusableCellWithIdentifier:cellIdentifier];

if (!cell) {

cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle

reuseIdentifier:cellIdentifier] autorelease];

[cell setAccessoryType:UITableViewCellAccessoryDisclosureIndicator];

}

[self updateCell:cell fromRecipe:[[self resultsController]

objectAtIndexPath:indexPath]];

return cell;

}

Because our table has only one style of row, it makes this class simpler

than it tends to be in tables that have multiple row types. We start off

by attempting to dequeue a UITableViewCell so that we can reuse it. If

there is not one available to dequeue, we construct a new one. Since

every cell will display a disclosure indicator, we configure that as part

of the initialization of the new cell.

Once the cell is obtained, we need to populate it. Since we will be popu-

lating and/or updating cells in more than one location in our controller,

the populating of the cell has been abstracted into its own method.

Therefore, our -tableView:cellForRowAtIndexPath: needs to obtain a refer-

ence to the entity for the row and pass it to the -updateCell:fromRecipe:

method.

Because the NSFetchedResultsController class is UITableView aware, we do

not need to do any complicated code to obtain the specified object. A

single call to -objectAtIndexPath: passing in the referenced NSIndexPath

object will yield the relevant recipe.

Implementing the -updateCell:fromRecipe: Method

Whenever a cell is created or updated, its contents need to be config-

ured. Fortunately, we are using one of the new table view cell styles

included in 3.0 so that we do not need to do any complicated view con-

struction and layout. However, since the update of a cell can occur in

more than one point in our MainViewController, we have move the imple-

mentation to its own method.

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/MainViewController.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=200

RECIPES FOR THE IPHONE 201

Download RecipeCT/Classes/MainViewController.m

- (void)updateCell:(UITableViewCell*)cell fromRecipe:(RecipeEntity*)recipe

{

[[cell textLabel] setText:[recipe name]];

NSString *text = nil;

text = [NSString stringWithFormat:@"Serves: %@", [recipe serves]];

[[cell detailTextLabel] setText:text];

}

Because we are using one of the standard cell layouts, the population

of the cell merely requires setting the textLabel property and the detail-

TextLabel property.

Implementing the -controllerWillChangeContent: Method

With the more interesting UITableViewDatasource methods reviewed, the

only thing left is to implement the NSFetchedResultsControllerDelegate

methods. There are four methods that we need to implement. The first

is the -controllerWillChangeContent: method. This method is called once

per notification cycle (which can include multiple changes), and it gives

us the opportunity to set up our view for the changes that are about to

be performed. Because we have only a UITableView displayed, our setup

for these changes is very simple.

Download RecipeCT/Classes/MainViewController.m

- (void)controllerWillChangeContent:(NSFetchedResultsController*)controller

{

[[self tableView] beginUpdates];

}

Implementing the -controller:didChangeObject:atIndexPath:for-

ChangeType:newIndexPath: Method

This method is where the meat of the NSFetchedResultsController lies.

Whenever an entity is inserted, deleted, changed, or moved, this method

will be called. The exact firing of this method occurs after the changes

have been saved via the -save: method of the NSManagedObjectContext.

Once that occurs, each change is then passed through this method.

Download RecipeCT/Classes/MainViewController.m

- (void)controller:(NSFetchedResultsController*)controller

didChangeObject:(id)anObject

atIndexPath:(NSIndexPath*)indexPath

forChangeType:(NSFetchedResultsChangeType)type

newIndexPath:(NSIndexPath*)newIndexPath

{

NSArray *paths = [NSArray arrayWithObject:newIndexPath];

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/MainViewController.m
http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/MainViewController.m
http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/MainViewController.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=201

RECIPES FOR THE IPHONE 202

NSIndexSet *section = [NSIndexSet indexSetWithIndex:[newIndexPath section]];

switch (type) {

case NSFetchedResultsChangeInsert:

[[self tableView] insertRowsAtIndexPaths:paths

withRowAnimation:UITableViewRowAnimationFade];

break;

case NSFetchedResultsChangeDelete:

[[self tableView] deleteRowsAtIndexPaths:paths

withRowAnimation:UITableViewRowAnimationFade];

break;

case NSFetchedResultsChangeMove:

[[self tableView] deleteRowsAtIndexPaths:paths

withRowAnimation:UITableViewRowAnimationFade];

[[self tableView] reloadSections:section

withRowAnimation:UITableViewRowAnimationFade];

break;

case NSFetchedResultsChangeUpdate:

[self updateCell:[[self tableView] cellForRowAtIndexPath:indexPath]

fromRecipe:[[self resultsController] objectAtIndexPath:indexPath]];

break;

}

}

For each change, we first determine what type of change has occurred.

If an insert or deletion has occurred, then we pass that information onto

the UITableView so that the UITableView can then handle the change. In

the case of an insertion, the table view would then query the

-tableView:numberOfRowsInSection: and -tableView:cellForRowAtIndexPath:

methods, respectively. In each of those cases, the UITableView will ani-

mate the row change if it is visible on the screen.

In the case of a row being moved (as would occur if the sort property

changed sufficiently to warrant a reorder), the UITableView would handle

the animation of the rows changing position (again, if they are currently

visible on the screen).

In the last possible situation, a change to the properties of the entity, we

call our -updateCell:fromRecipe: method and pass it the relevant Recipe

entity and UITableViewCell.

Implementing the -controller:didChangeSection:atIndex:forChange-

Type: Method

In addition to changing entities, it is also possible that a change in the

NSFetchedResultsController could result in a change to the number of sec-

tions. For example, if each section represented a letter in the alphabet

and we add a new recipe that is the first for that letter, it could cause a

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=202

RECIPES FOR THE IPHONE 203

new section to be created. Likewise, if we removed the last recipe for a

letter, that would cause a section to be deleted.

When a situation occurs that causes a section to be added or removed, a

call to the -controller:didChangeSection:atIndex:forChangeType: method will

occur. Like the -controller:didChangeObject:atIndexPath:forChange-

Type:indexPath: method, we handle calls to this method by determining

what type of change is occurring. In both cases, regardless of whether

it is a deletion or insertion, we are passing only that information to the

UITableView so that it can update the display.

Download RecipeCT/Classes/MainViewController.m

- (void)controller:(NSFetchedResultsController*)controller

didChangeSection:(id <NSFetchedResultsSectionInfo>)sectionInfo

atIndex:(NSUInteger)sectionIndex

forChangeType:(NSFetchedResultsChangeType)type

{

NSIndexSet *sections = [NSIndexSet indexSetWithIndex:sectionIndex];

switch (type) {

case NSFetchedResultsChangeInsert:

[[self tableView] insertSections:sections

withRowAnimation:UITableViewRowAnimationFade];

break;

case NSFetchedResultsChangeDelete:

[[self tableView] deleteSections:sections

withRowAnimation:UITableViewRowAnimationFade];

break;

}

}

Implementing the -controllerDidChangeContent: Method

The final method that we need to implement is the -controllerDidChange-

Content method. Like its partner method, -controllerWillChangeContent:,

this method is called once all the changes for the current cycle are com-

pleted. For our MainViewController, we need to notify the UITableView that

all the changes are complete and it can begin displaying the changes.

Note that since all changes to this table view can occur only while the

table view is off-screen (only the detail view is editable), there will not be

any animation occurring. The UITableView will update its state, but the

actual drawing will occur once the UITableView reappears on the screen.

Once the MainViewController is finished, the resulting view should look

similar to Figure 10.6, on the following page. Although we did not review

every method needed to complete this view, we did touch on each view

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/MainViewController.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=203

RECIPES FOR THE IPHONE 204

Figure 10.6: Cocoa Touch recipes application table view

that is impacted by Core Data. The rest of the methods are implemented

in the included example code.

Building the Detail View Controller

The good news is that nearly all the interaction with Core Data is com-

plete. The bad news is that the detail view has the most complex user

interface code in the application. Although we are not implementing

the entire user interface in this example, there is still quite a bit of code

dealing with the editing of fields.

The basic design of the detail view is shown in Figure 10.7, on the

next page. The primary section of the view is a table view along with

a custom header view. Within the header view is a UIImageView, a UI-

Label, and a UITextField. The name of the recipe is contained within the

UITextField, which is disabled by default. When the edit button is clicked,

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=204

RECIPES FOR THE IPHONE 205

Figure 10.7: Cocoa Touch recipes application detail view

the UITextField in the header is enabled so that the user can change the

name of the recipe.

If we were to complete this application, there would be a lot more editing

capabilities. However, the code is kept to a minimum to help keep the

focus on the Core Data changes.

Implementing the -setEditing:animated: Method

All the interaction with the Core Data underpinnings occurs in the

-setEditing:animated: method. In this method, in addition to flipping the

UITextField between enabled and nonenabled, we also have a check at

the very end of the method. If we are going from an edited state to a

nonedited state, then the method will perform a save on the NSMan-

agedObjectContext. It is this save that triggers the notifications to the

parent table view and causes the updates.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=205

GOING FURTHER 206

Download RecipeCT/Classes/RecipeDetailViewController.m

- (void)setEditing:(BOOL)editing animated:(BOOL)animated

{

[super setEditing:editing animated:animated];

[self.navigationItem setHidesBackButton:editing animated:YES];

[[self titleLabel] setEnabled:editing];

if (editing) return;

NSManagedObjectContext *context = recipe.managedObjectContext;

NSError *error = nil;

if ([context save:&error]) return;

NSLog(@"save error %@, %@", error, [error userInfo]);

exit(-1); // Fail

}

Because we are using an NSFetchedResultsController, it automatically

monitors the NSManagedObjectContext for changes and broadcasts

them to its delegate. Therefore, a simple save of the NSManagedObject-

Context automatically takes care of any change notifications in the other

view controllers.

Overview

In this section, we looked into the impacts that adding Core Data to a

Cocoa Touch application has. Similar to the desktop, Core Data helps to

eliminate a large portion of the code dealing with the object hierarchy

and persisting data to disk. By adding Core Data to a Cocoa Touch

project, we can further reduce the amount of code required to develop

an application and reduce the time to market even further.

10.5 Going Further

Because of our focus purely on Core Data in this chapter, we did not

cover all aspects of this application. We also did not complete the appli-

cation and make it consumer ready.

Interestingly enough, with the release of v3.0 for Cocoa Touch, Apple

also released a sample recipes application for the iPhone that uses Core

Data. This application is available to everyone who has an iPhone devel-

oper account, and I highly recommend reviewing the solutions provided

in that project.

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/RecipeDetailViewController.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=206

Chapter 11

Recipe: Distributed Core Data
Imagine if all the users in a family had our recipe application and

wanted to be able to see everyone else’s recipes. You can probably come

up with many such scenarios for sharing data across a local area net-

work. If your application sits on a user’s desktop and laptop, then there

is a fair chance that the user wants to keep that data in sync. Of course,

this can be done with a form of cloud syncing, but imagine a small office

environment or family of computers. Not every user has the same cloud

account (whether it be MobileMe, Dropbox, or some other cloud stor-

age), and you may not want to share the entire data set to every user.

Being able to set up a local area sharing can solve the need to share

partial or complete data in a local environment.

Core Data is generally considered to be a single-user/single-application

persistent store. However, as we explored in Chapter 10, Core Data

and iPhone, on page 184, Core Data can be used beyond the single-

user/single-application design. In this chapter, we are going to explore

using Core Data with distributed objects. Distributed objects enable a

Cocoa application to call an object in a different Cocoa application (or a

different thread in the same application). The applications can even be

running on different computers on a network.

To take this idea one step further, we are going to add Bonjour into the

design. Bonjour, also known as zero-configuration networking, enables

automatic discovery of computers, devices, and services on IP networks.

With this combination, we can provide access to a Core Data repository

to any client on the network “automatically” without user interaction.

CHAPTER 11. RECIPE: DISTRIBUTED CORE DATA 208

Figure 11.1: Distributed server UI

Before we go into the details, I want to mention the cons for this design.

• Scalability: This design does not scale very well at all. When we are

working with a couple of clients on a network, then it will perform

just fine. When we start scaling it to half a dozen or more clients, it

starts to slow down very quickly. There are optimizations that we

can do, but if you have more than a couple of clients, you should

use a full database solution instead of Core Data.

• Threading: Although all the calls to the server are performed on

the main thread, calls within objects passed by reference are not

by their very nature. Therefore, if we pass an NSManagedObject

by reference to a client and that client makes a change to the

NSManagedObject, we are in a worst-case situation with regard to

threading.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=208

BUILDING THE SERVER 209

Figure 11.2: Distributed server data model

11.1 Building the Server

In a normal client-server application, the server would be a background

or GUI-less application. In this demonstration, we are going to start

with a normal single persistent store Cocoa application instead. There

is no benefit to having a UI for a server in a production environment,

but for testing, it is useful to see the activity on the server. Therefore,

we start with creating a Core Data Cocoa application called Distributed-

CDServer. The user interface for the server is a single window with a

table view displaying the list of items in the Core Data persistent store,

as shown in Figure 11.1, on the previous page.

The data model for this example is composed of two entities. The top-

level entity is named Test and has two properties: name and children.

The second entity is called Child and also has two properties: name

and parent. The two objects share a many-to-one relationship between

the properties children and parent. The resulting model is shown in Fig-

ure 11.2.

Distributed Objects Protocol

When I am working with distributed objects, I prefer to contain the

contract between the client and the server within a protocol. For this

application, we are going to have a few methods that the clients can use

to query the server, but we are not going to have any server to client

queries.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=209

BUILDING THE SERVER 210

The resulting protocol is as follows:

Download DistributedCDServer/PPDistributedProtocol.h

#define kDomainName @"local."

#define kServiceName @"_pragProgExample._tcp"

@protocol PPDistributedProtocol

- (oneway void)ping;

- (byref NSManagedObject*)createObject;

- (byref NSManagedObject*)createChildForObject:(byref NSManagedObject*)parent;

- (oneway void)deleteObject:(byref NSManagedObject*)object;

- (byref NSArray*)allObjects;

- (byref NSArray*)objectsOfName:(bycopy NSString*)name

withPredicate:(bycopy NSPredicate*)predicate;

@end

When we are working with distributed objects, we need to define how

nonscalar attributes are handled.1 In our protocol, we are passing most

of the objects byref, which means that an NSDistantObject is created on

the receiver as a proxy to the object that is residing on the server. This

is different from bycopy, which will make a copy of the object on the

receiving end. One of the interesting differences between these is that

KVO works across a distributed object when it is passed byref. This will

be demonstrated as we build the application.

Broadcasting the Service

Distributed objects work by using good old Unix sockets. Fortunately,

these are wrapped with NSSocketPort for us so that we do not need to

use the raw C functions and all the complexity that entails. To use

sockets, we need to know the address and port of the socket to talk to.

This can be entered by the user, which is a suboptimal experience, or

we can discover it using Bonjour. To use Bonjour, we need to set up a

broadcast on the server for the client to discover.

Download DistributedCDServer/AppDelegate.m

- (void)startBroadcasting

{

receiveSocket = [[NSSocketPort alloc] init];

int receivePort = [self portFromSocket:receiveSocket];

myConnection = [[NSConnection alloc] initWithReceivePort:receiveSocket

sendPort:nil];

1. These are discussed in depth in Apple’s documentation.

http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/PPDistributedProtocol.h
http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=210

BUILDING THE SERVER 211

[myConnection setRootObject:self];

myService = [[NSNetService alloc] initWithDomain:kDomainName

type:kServiceName

name:kServerName

port:receivePort];

[myService setDelegate:self];

[myService publish];

}

In the -startBroadcasting method, we first initialize a new NSSocketPort.

When we use the default -init method, the NSSocketPort will choose a

random open port for us to use. However, we need to broadcast this

port information as part of the Bonjour service. Therefore, we need to

extract the port information from the NSSocketPort object. In a produc-

tion environment, we probably want to define a port to use instead of

selecting one at random.

Download DistributedCDServer/AppDelegate.m

- (int)portFromSocket:(NSSocketPort*)socket

{

struct sockaddr *address = (struct sockaddr*)[[receiveSocket address] bytes];

uint16_t port;

if (address->sa_family == AF_INET) {

port = ntohs(((struct sockaddr_in*)address)->sin_port);

} else if (address->sa_family == AF_INET6) {

port = ntohs(((struct sockaddr_in6*)address)->sin6_port);

} else {

@throw [NSException exceptionWithName:@"Socket Error"

reason:@"Unknown network type"

userInfo:nil];

}

return port;

}

This bit of C code determines whether the address received from the

NSSocketPort is IPv4 or IPv6 and based on that decision extracts the port

information from the address and returns it to the caller.

With the port number in hand, we next construct an NSConnection and

assign the AppDelegate as the root object. The root object is what will

be “proxied” to any clients, and any methods they call on that proxy

object will be transferred to the root object on the receiver. In a more

complex example, it would make sense to have a separate object used

as the proxy instead of the AppDelegate. With the NSConnection cre-

ated, we can initialize the NSNetService. The NSNetService is what han-

dles the broadcasting using Bonjour. Bonjour requires four pieces of

http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=211

BUILDING THE SERVER 212

information: the domain, type, name, and port. The port we discovered

previously, and the domain and type we defined within the PPDistributed-

Protcol. The last value is the name of server and should be unique per

machine. With this information, we can instantiate the NSNetService, set

its delegate, and publish it. Once we call -publish, other machines can

see the service.

Starting the Server

The -startBroadcasting method is invoked from -applicationDidFinishLanching:

Download DistributedCDServer/AppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification*)notification

{

[self startBroadcasting];

saveTimer = [NSTimer scheduledTimerWithTimeInterval:5.0

target:self

selector:@selector(saveAction:)

userInfo:nil

repeats:YES];

}

In addition to broadcasting the service on startup, we also schedule an

autosave of the NSManagedObjectContext. In this example, we automat-

ically save every five minutes:

Download DistributedCDServer/AppDelegate.m

- (IBAction)saveAction:(id)sender

{

NSError *error = nil;

NSManagedObjectContext *context = [self managedObjectContext];

if (![context hasChanges]) return;

if (![context save:&error]) {

[self logError:error];

}

}

The -saveAction: is similar to a save we would see in any Core Data appli-

cation. There are a couple of changes that we made just for protection.

Before we attempt a save call, we first check to see whether there are

any changes to save. In addition, instead of handing off the error (if

there is one) to the NSApplication to present via the UI, we instead log

the error to the console via a call to -logError:. By logging the error, we

can see all the issues in a more programmer-friendly setup.

http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=212

BUILDING THE SERVER 213

Download DistributedCDServer/AppDelegate.m

- (void)logError:(NSError*)error

{

id sub = [[error userInfo] valueForKey:@"NSUnderlyingException"];

if (!sub) {

sub = [[error userInfo] valueForKey:NSUnderlyingErrorKey];

}

if (!sub) {

NSLog(@"%@:%s Error Received: %@", [self class], _cmd,

[error localizedDescription]);

return;

}

if ([sub isKindOfClass:[NSArray class]] ||

[sub isKindOfClass:[NSSet class]]) {

for (NSError *subError in sub) {

NSLog(@"%@:%s SubError: %@", [self class], _cmd,

[subError localizedDescription]);

}

} else {

NSLog(@"%@:%s exception %@", [self class], _cmd, [sub description]);

}

}

The -logError: attempts to extract the NSUnderlyingException from the user-

Info of the passed-in NSError. If something goes wrong within Core Data

that is not part of the normal failure path, it is possible to get infor-

mation about the failure via the NSUnderlyingException stored. If there is

no NSUnderlyingException, then we look for a value stored under the key

NSUnderlyingErrorKey. If we get something back from that key, we check

to see whether it is a collection, which would indicate multiple valida-

tion errors and print the -localizedDescription to the console. If we cannot

locate either an NSUnderlyingException or an NSUnderlyingErrorKey, then we

dump the -localizedDescription for the NSError that is passed in.

Once the Bonjour service has started and the save thread has started,

the server waits for requests from clients. In a distributed object appli-

cation, the server does not get notified when a client connects; it simply

starts getting calls to the exposed methods.

Receiving Requests from Clients

Working with distributed objects is deceptively easy. Other than the

minor changes to the method signatures, there are no other changes

to the methods and how they are handled. However, whenever we write

http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=213

BUILDING THE SERVER 214

a method that is going to be accessed via distributed objects, we need

to remember that it is not being called locally and keep a few things in

mind:

• The server configuration we have built in this example has one

incoming socket. That means that it can process only one request

at a time. If a request takes too long (which we demonstrate in a

moment), all the other clients wait in line; this includes calls from

the same client.

• Although we can pass objects by reference to the client, if those

objects get passed back to the server by reference, it can cause

confusion. This is especially true when dealing with NSManage-

dObject objects. Therefore, whenever we receive an NSManagedOb-

ject back from the client, we resolve a local reference and perform

any actions on the local reference instead of trying to use the client

reference a second time on the server.

-ping Implementation

The first method I always implement when building a distributed object

application is -ping. I use this method to test the connectivity between

the client and the server. Since this method does nothing other than

print out a console message, I am guaranteed that no other program-

ming errors will be introduced while I test the connectivity.

Download DistributedCDServer/AppDelegate.m

- (oneway void)ping

{

NSLog(@"%@:%s received", [self class], _cmd);

}

-allObjects Implementation

This is one of those methods that is at risk of taking too long:

Download DistributedCDServer/AppDelegate.m

- (byref NSArray*)allObjects

{

NSManagedObjectContext *context = [self managedObjectContext];

NSFetchRequest *request = [[NSFetchRequest alloc] init];

NSEntityDescription *entity = [NSEntityDescription entityForName:@"Test"

inManagedObjectContext:context];

[request setEntity:entity];

NSError *error = nil;

http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=214

BUILDING THE SERVER 215

Joe Asks. . .

Can We Pass the NSManagedObjectContext by Refer-
ence?

Although this is feasible, it is not recommended. When we pass
objects by reference, a proxy object is created on the receiver
that sends all messages back to the server to be performed. This
is fine for objects with low complexity, but when dealing with
highly complex objects, such as the NSManagedObjectContext,
it will perform rather poorly. During experimentation, I received
some very unusual errors deep within the Core Data API when
the NSManagedObjectContext was passed by reference. There-
fore, I do not recommend this approach.

NSArray *objects = [context executeFetchRequest:request error:&error];

[request release], request = nil;

if (error) {

NSLog(@"%@:%s error: %@", [self class], _cmd, error);

return nil;

}

return objects;

}

In this method, we retrieve a reference to the NSManagedObjectContext

and build an NSFetchRequest to retrieve all the Test entities from the

persistent store. If there are any errors, we log them and return nil.

Otherwise, we return the resulting NSArray.

This method, although useful for demonstrating distributed objects and

Core Data, is a very poor performer. When we start working with tens

of thousands of entities in the persistent store, they take a long time

to pass over the network. This will hamper the performance of not just

the client making the request but of every client waiting in line to make

a request on the server. If our requirements involve data of this size,

then we should consider other options. One that has met great success

is to keep a local copy of the entire repository on each machine and

when they sync to merely pass deltas back and forth instead of a true

client-server environment.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=215

BUILDING THE SERVER 216

-createObject Implementation

Download DistributedCDServer/AppDelegate.m

- (byref NSManagedObject*)createObject;

{

NSManagedObjectContext *context = [self managedObjectContext];

NSManagedObject *object = nil;

object = [NSEntityDescription insertNewObjectForEntityForName:@"Test"

inManagedObjectContext:context];

return object;

}

The -createObject method demonstrates a more performant distributed

object method. In this method, we again retrieve a reference the NSMan-

agedObjectContext and then use that reference to create a new Test

object. We create and delete all objects on the server as opposed to

pulling the NSManagedObjectContext over to the client and trying to

delete it remotely. This helps prevent any threading issues while work-

ing with the NSManagedObjectContext.

-deleteObject Implementation

Download DistributedCDServer/AppDelegate.m

- (oneway void)deleteObject:(byref NSManagedObject*)object;

{

NSManagedObjectContext *context = [self managedObjectContext];

NSManagedObject *local = [context objectWithID:[object objectID]];

if ([local isDeleted]) {

return;

}

if (![local isInserted]) {

[self saveAction:self];

}

[context deleteObject:local];

}

The -deleteObject is similar to the -createObject discussed earlier. How-

ever, in this method, we need to retrieve a local reference to a passed-

in NSManagedObject. If we attempted to delete the referenced NSMan-

agedObject directly, the NSManagedObjectContext implodes deep within

the API. No doubt this is caused by the double proxy of looping to

the remote and then back again to the server. To solve this issue, we

retrieve the NSManagedObjetID from the referenced NSManagedObject

and use it to retrieve a local reference to the NSManagedObject via the

-objectWithID: of the NSManagedObjectContext. Once we have a local ref-

erence to the NSManagedObjet, we check to see whether it is freshly

inserted or already deleted. If it is freshly inserted, we need to persist

http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=216

BUILDING THE SERVER 217

it before we can delete it. Therefore, we save the NSManagedObjectCon-

text and then delete the NSManagedObject. If the NSManagedObject has

already been deleted, then we return to the caller.

-createChildForObject: Implementation

Download DistributedCDServer/AppDelegate.m

- (byref NSManagedObject*)createChildForObject:(byref NSManagedObject*)parent;

{

NSManagedObjectContext *context = [self managedObjectContext];

NSManagedObject *localParent = [context objectWithID:[parent objectID]];

NSManagedObject *object = nil;

object = [NSEntityDescription insertNewObjectForEntityForName:@"Child"

inManagedObjectContext:context];

[object setValue:localParent forKey:@"parent"];

return object;

}

The -createChildForObject: implementation is similar to the -createObject

implementation discussed earlier. There is one important difference,

though. Since we defined the Child entity to have a nonoptional parent

property, we set it immediately while we are still on the main thread of

the server. This again is a protection against the uncontrollably mul-

tithreaded nature of distributed objects. We could just create the Child

entity and return it to the caller, but there is a fair chance that a save

will occur before the relationship is updated on the client and an error

would result.

In addition to setting the parent property on the Child object, we also

grab a local reference to the passed-in NSManagedObject. Although I

did not receive any errors during testing of this method by using the

remote proxy, there is no reason to risk it.

-objectsOfName:withPredicate: Implementation

Download DistributedCDServer/AppDelegate.m

- (byref NSArray*)objectsOfName:(bycopy NSString*)name

withPredicate:(bycopy NSPredicate*)predicate;

{

NSManagedObjectContext *context = [self managedObjectContext];

NSError *error = nil;

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:name

inManagedObjectContext:context]];

[request setPredicate:predicate];

NSArray *results = [context executeFetchRequest:request error:&error];

[request release], request = nil;

http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/DistributedCDServer/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=217

BUILDING THE CLIENT 218

if (error) {

NSLog(@"%@:%s Error on fetch %@", [self class], _cmd, error);

return nil;

}

return results;

}

In this last example method, we deal with a more complicated situa-

tion. During the development of this method, I started with passing an

NSFetchRequest around between the server and clients. This resulted in

some terminal errors within the Core Data stack and led me to this

solution instead. Based on these experiments, it is clear to me that

passing around the NSManagedObjectContext itself results in some risky

situations and should be avoided. However, NSPredicate objects can be

passed around without any issue. Therefore, in this method, we accept

the name of the entity and the NSPredicate to use in the NSFetchRequest.

From this we build the NSFetchRequest and execute it against the local

NSManagedObjetContext. If there is an error, we print it to the console

and return nil. Otherwise, we return the resulting array.

11.2 Building the Client

The client side of this application is both easier and more complicated

than the server. Configuring Bonjour and setting up the distributed

objects is a bit more complicated than it is on the server. However, once

the distributed object is configured, the rest is significantly easier.

In this example, we are going to build a client that is designed to stress

test the server as opposed to being truly functional in a user perspec-

tive. Our client is going to connect to the first server that it finds,

and once the connection is complete, it will run NSTimer objects to fire

against each of the methods on the server in quick succession. With

this type of client, we can stress test the server with multiple clients

and look for race conditions and threading/locking issues.

Configuring the Xcode Project

Unlike the server, the client is going to start with a Cocoa non–Core

Data application. Because the server is maintaining the Core Data

repository, the client does not need to be configured as a Core Data

application. However, like the server, our user interface is a single win-

dow with a single table displaying the results of one of the method calls

to the server. See Figure 11.3, on the next page.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=218

BUILDING THE CLIENT 219

Figure 11.3: The Distributed Client user interface

Once the DistributedCDClient project has been created, we need copy the

PPDistributedProtocol.h file from the server into the project. Normally I

would just reference the file directly from the server project so that both

are using the same file, but the example has a copy in each project to

prevent any errors in the referencing. Next we need create a new class

called AppDelegate and add it to the project. Once the AppDelegate has

been added to the project, we will need to configure the user interface.

Opening the MainMenu.xib file in Interface Builder, we will want to add a

new NSObject to the xib and set its class to AppDelegate. We then need

to bind the NSApplication delegate outlet to the AppDelegate. Next we

need to add an NSArrayController to the xib and bind its content array to

the AppDelegate with a model key of filteredObjects. Lastly, we need to

add an NSTableView to the window, expanding it to take up the entire

window and assigning the first column to the NSArrayController with a

controller key of arrangedObjects and the model key path set to child-

Count. The second column’s value should also be set to the NSArrayCon-

troller with a controller key of arrangedObjects and the model key path

set to name. Once that is complete, we can close Interface Builder and

open the AppDelegate.

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=219

BUILDING THE CLIENT 220

-applicationDidFinishLaunching: Implementation

Like most application delegate objects, our custom code will start in

the -applicationDidFinishLaunching:. The first thing that our client needs

to do is find a server to connect to. To accomplish this, we initialize

an NSNetServiceBrowser and set our AppDelegate as its delegate. We then

configure it to search for our server using the #define settings in the pro-

tocol that we imported. That browser will then run in the background

and start searching for servers on the local network. If it finds a server,

it will call -netServiceBrowser:didFindService:moreComing:.

Download DistributedCDClient/AppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification*)notification

{

NSNetServiceBrowser *myBrowser = [[NSNetServiceBrowser alloc] init];

[myBrowser setDelegate:self];

[myBrowser searchForServicesOfType:kServiceName inDomain:kDomainName];

}

-netServiceBrowser:didFindService: Implementation

Every time that the NSNetServiceBrowser finds a service, it will call this

method. If it finds more than one server in a single sweep of the net-

work, then it will call this method once per service, and the didFindSer-

vice: will be set to YES.

Download DistributedCDClient/AppDelegate.m

- (void)netServiceBrowser:(NSNetServiceBrowser*)browser

didFindService:(NSNetService*)service

moreComing:(BOOL)more

{

[service retain];

[service setDelegate:self];

[service resolveWithTimeout:5.0];

[service startMonitoring];

[browser stop];

[browser release], browser = nil;

}

In our implementation, as soon as we find a server, we want to connect

to it. We are not worried about multiple servers on the network, so the

first one that comes in will do. Once we receive notice that a service

matching our search criteria is available, we start monitoring it. This

will cause the NSNetServiceBrowser to attempt to resolve the service. Once

the service is resolved, the service’s delegate will receive notification.

Therefore, we set the AppDelegate as the delegate to the service. Since

http://media.pragprog.com/titles/mzcd/code/DistributedCDClient/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/DistributedCDClient/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=220

TESTING THE NETWORKING CODE 221

we care about only a single service, we shut down the browser and

release it.

-netServiceDidResolveAddress: Implementation

Once the service has been resolved, the NSNetService will call -netService-

DidResolveAddress: on its delegate. When this method is called, we can

retrieve the address and port information about the service, which will

let us connect to it and begin using distributed objects.

Download DistributedCDClient/AppDelegate.m

- (void)netServiceDidResolveAddress:(NSNetService*)service

{

NSConnection *clientConnection = nil;

NSSocketPort *socket = nil;

NSData *address = [[service addresses] lastObject];

u_char family = ((struct sockaddr*)[address bytes])->sa_family;

socket = [[NSSocketPort alloc] initRemoteWithProtocolFamily:family

socketType:SOCK_STREAM

protocol:IPPROTO_TCP

address:address];

clientConnection = [NSConnection connectionWithReceivePort:nil

sendPort:socket];

[clientConnection enableMultipleThreads];

server = [clientConnection rootProxy];

[socket release], socket = nil;

[service stop];

[service release];

[self startTestTimers];

}

Once the NSNetService has been resolved, we can retrieve its addresses

and connect to it. With access to the address from the NSNetService, we

can initialize an NSSocketPort to connect to the server hosting the service.

With the NSSocketPort initialized, we can then initialize an NSConnection

and finally get a reference to the -rootProxy of the NSConnection, which is

actually an NSDistantObject proxy for the AppDelegate of the server. Once

we have the server referenced properly, we can shut down the Bonjour

NSNetService and start our tests.

11.3 Testing the Networking Code

Whenever I build an application that needs to communicate to a server

or another device, I always start off with simple tests to confirm that

http://media.pragprog.com/titles/mzcd/code/DistributedCDClient/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=221

TESTING THE NETWORKING CODE 222

the connection is working. I generally leave these tests in place until

the code goes to production. This both provides me with a simple way

to test the connectivity and gives me a base to fall back upon if some of

the higher-level functions start to fail. For this application, we will start

with setting up a group of timers that will fire off our test methods.

-startTestTimers Implementation

To simulate a large amount of client-server traffic, this application runs

several timers at a fairly high pace. This will help us catch any race con-

ditions or other issues with the distributed nature of this application.

Download DistributedCDClient/AppDelegate.m

- (void)startTestTimers

{

SEL selector = @selector(testPing);

pingTimer = [NSTimer scheduledTimerWithTimeInterval:0.5

target:self

selector:selector

userInfo:nil

repeats:YES];

selector = @selector(testObjectInsertion);

insertTimer = [NSTimer scheduledTimerWithTimeInterval:0.5

target:self

selector:selector

userInfo:nil

repeats:YES];

selector = @selector(testObjectDeletion);

deleteTimer = [NSTimer scheduledTimerWithTimeInterval:1.0

target:self

selector:selector

userInfo:nil

repeats:YES];

selector = @selector(testChildInsertion);

childInsertTimer = [NSTimer scheduledTimerWithTimeInterval:1.0

target:self

selector:selector

userInfo:nil

repeats:YES];

selector = @selector(testChildDeletion);

childDeleteTimer = [NSTimer scheduledTimerWithTimeInterval:1.0

target:self

selector:selector

userInfo:nil

repeats:YES];

http://media.pragprog.com/titles/mzcd/code/DistributedCDClient/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=222

TESTING THE NETWORKING CODE 223

selector = @selector(testObjectFetch);

fetchTimer = [NSTimer scheduledTimerWithTimeInterval:15.0

target:self

selector:selector

userInfo:nil

repeats:YES];

}

The -startTestTimers fires up a number of timers that will continuously

call our test methods. We retain a reference to each of these timers so

that we can later shut them down gracefully.

-disconnect Implementation

Whenever we shut down the client application, we want to shut down

the timers, and we want to close the connection to the server. The -

disconnect walks through each of the NSTimer references and invalidates

them. Once all the timers are shut down, it then retrieves the NSCon-

nection from the server proxy and invalidates it.

Download DistributedCDClient/AppDelegate.m

- (void)disconnect

{

[pingTimer invalidate], pingTimer = nil;

[fetchTimer invalidate], fetchTimer = nil;

[insertTimer invalidate], insertTimer = nil;

[deleteTimer invalidate], deleteTimer = nil;

[childDeleteTimer invalidate], childDeleteTimer = nil;

[childInsertTimer invalidate], childInsertTimer = nil;

NSConnection *connection = [(NSDistantObject*)server connectionForProxy];

[connection invalidate];

server = nil;

}

-testPing Implementation

The first of our test methods is also the simplest. We call the -ping

method on the server and nothing else. We do not expect a return from

the server at all. What this method will do is cause a log statement to

be generated on the server. This allows us to watch the server and see

that connections are in fact coming in. The other benefit is that it keeps

the testing simple. With this method, we can confirm that the Bonjour

service and the distributed objects are working properly without having

to wonder whether some other logic in some other part of our applica-

tion is the real source of a failure. If the ping is not getting through,

http://media.pragprog.com/titles/mzcd/code/DistributedCDClient/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=223

TESTING THE NETWORKING CODE 224

we know that either the Bonjour service or the distributed objects are

failing.

Download DistributedCDClient/AppDelegate.m

- (void)testPing

{

[server ping];

}

-testObjectFetch Implementation

The -testObjectFetch is the first complicated method that we are test-

ing across the distributed objects link. In this test, we construct an

NSPredicate that we pass to the server to be executed against the NSMan-

agedObjectContext. As I mentioned, passing the NSManagedObjectCon-

text itself across distributed objects produced some terminal exceptions

within the Core Data stack itself, so we are avoiding this by perform-

ing as much of the Core Data work as possible on the server. Here we

are passing in the name of the entity we want to search against and

the NSPredicate. The server will return an NSArray of the entities that fit

the NSPredicate. One interesting thing to note in this method is that we

are not using the new for loop to access the returned NSArray. Since the

NSArray is actually an NSDistant proxy for the NSArray on the server, the

new for loop does not handle it properly. Therefore, we need to use the

older NSEnumerator instead.

Download DistributedCDClient/AppDelegate.m

- (void)testObjectFetch

{

NSString *test = [GUID substringToIndex:3];

NSPredicate *predicate = nil;

predicate = [NSPredicate predicateWithFormat:@"name contains[c] %@", test];

NSArray *results = [server objectsOfName:@"Test" withPredicate:predicate];

NSEnumerator *enumerator = [results objectEnumerator];

NSManagedObject *object;

while (object = [enumerator nextObject]) {

[object setValue:GUID forKey:@"name"];

}

[self setFilteredObjects:results];

}

To show and test KVO across the distributed objects, we loop over the

NSManagedObject objects within the NSArray and update their name to a

http://media.pragprog.com/titles/mzcd/code/DistributedCDClient/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/DistributedCDClient/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=224

TESTING THE NETWORKING CODE 225

globally unique string that we retrieve from NSProcessInfo using a #define

to make it a little easier to read. The #define is as follows:

#define GUID [[NSProcessInfo processInfo] globallyUniqueString]

-testObjectInsertion Implementation

Testing object creation is only a single call to the server. However, to

test that we can start using the object immediately, we also set its name

using a globally unique string received from the NSProcessInfo. In addi-

tion, we also added a random into this method so that approximately

50 percent of the time it would not do an insertion. This adds a bit of

randomness into the data testing and helps keep the number of Test

entities on the server low.

Download DistributedCDClient/AppDelegate.m

- (void)testObjectInsertion

{

if ((rand() % 2) == NO) return;

NSManagedObject *object = [server createObject];

[object setValue:GUID forKey:@"name"];

}

-testObjectDeletion Implementation

-testObjectDeletion is a fair bit more complicated than -testObjectInsertion

because we need to have a reference to an object first before we can

delete it. Therefore, this method starts off by calling -allObjects on the

server to get an NSArray of Test entities. From that NSArray, we randomly

select an entity to delete and call -deleteObject: on the server.

Download DistributedCDClient/AppDelegate.m

- (void)testObjectDeletion

{

NSArray *objects = [server allObjects];

if (![objects count]) return;

int index = (rand() % [objects count]);

NSManagedObject *toBeDeleted = [objects objectAtIndex:index];

[server deleteObject:toBeDeleted];

}

-testChildInsertion Implementation

To test relationships, we have two methods: child creation and child

deletion. In the first one, -testChildInsertion, we start off by getting an

http://media.pragprog.com/titles/mzcd/code/DistributedCDClient/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/DistributedCDClient/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=225

TESTING THE NETWORKING CODE 226

NSArray of all the Test entities. From there, we call -createChildForObject:

on the server, randomly using one of the Test entities from the retrieved

NSArray. We let the server handle the actual creation of the relation-

ship between these objects to ensure that there are no issues with

the distributed objects themselves. During testing, Core Data got con-

fused when the relationship was created on the client as opposed to

the server. Therefore, to avoid any risks in this area, we pass the par-

ent back to the server to let the server both create the child and set the

relationship between the two objects.

Download DistributedCDClient/AppDelegate.m

- (void)testChildInsertion

{

NSArray *objects = [server allObjects];

id object = [objects objectAtIndex:(rand() % [objects count])];

id child = [server createChildForObject:object];

[child setValue:GUID forKey:@"name"];

}

-testChildDeletion Implementation

The last test method is the deletion of a child object. In this test, we

again retrieve all the Test entities from the server and randomly select

one. We then check to see whether the Test entity has a child, and if

it does, then we grab one of them and call -deleteObject: on the server

with that child as the parameter.

Download DistributedCDClient/AppDelegate.m

- (void)testChildDeletion

{

NSArray *objects = [server allObjects];

int index = (rand() % [objects count]);

id object = [objects objectAtIndex:index];

NSSet *children = [object valueForKey:@"children"];

if (![children count]) return;

id child = [children anyObject];

[server deleteObject:child];

}

http://media.pragprog.com/titles/mzcd/code/DistributedCDClient/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/DistributedCDClient/AppDelegate.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=226

WRAPPING UP 227

11.4 Wrapping Up

Whenever we start working with multiple computers on a network or

interapplication communication, the code starts to get extremely com-

plex. However, at least with this design, we can keep the Core Data/

persistence separated from the distributed objects/networking as much

as possible. By doing so, we avoid the need for a large number of locks

and synchronization that would otherwise be required.

As we discussed at the beginning of this chapter, it is not a very scal-

able design, but in situations where a formal stand-alone database is

overkill, this design actually works quite well. There is no user con-

figuration, and there is no need to set up an external application; we

just start one application on one machine and another application on

another and let them talk. The biggest gotcha is with the NSManagedOb-

jectContext. As long as we do not try to share it across the distributed

objects, we can use Core Data fairly transparently.

The design that we built here can also be used in a peer environment as

opposed to the client-server design. Multiple peers could use Bonjour

to discover each other and use distributed objects to sync their data

stores so that each device has a complete and up-to-date copy of the

data set. In a situation like that, a user could have our application on

each of their machines, and whenever they are near each other (that

is, on the same local network), they would automatically update each

other. Talk about a pleasant user experience!

http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=227

Chapter 12

Recipe: Dynamic Parameters
If you have a document-style application, you will need to work with

document-specific parameters or settings. For example, in a word pro-

cessor, some settings are specific to one document, and some settings

apply to the entire application. When it comes to storing application-

level parameters, we have a great implementation: NSUserDefaults. How-

ever, when it comes to document-level parameters, there is no reusable

storage system for them provided by the APIs. In this chapter, we’ll

build that reusable storage system within Core Data.

System-level and user-level preferences are extremely useful and easy

to access on OS X. One call to standardDefaults on NSUserDefaults from

anywhere in the application instantly gives you access to the defaults

for the currently logged in user. However, sometimes we don’t want to

store preferences at the user level but would prefer to store them at the

file level.

When we are working with a Core Data application, the first thought is

to just create a table for these parameters and access them from within

the Core Data API. However, the problem comes when we are accessing

those parameters. No longer is it a single call to standardDefaults on

NSUserDefaults; now it looks more like this:

Download CDPreferences/MyDocument.m

- (void)clunkyParameterAccess

{

NSManagedObjectContext *moc = [self managedObjectContext];

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:@"parameter"

inManagedObjectContext:moc]];

http://media.pragprog.com/titles/mzcd/code/CDPreferences/MyDocument.m

CHAPTER 12. RECIPE: DYNAMIC PARAMETERS 229

[request setPredicate:[NSPredicate predicateWithFormat:@"name == %@",

@"default1"]];

NSError *error = nil;

NSManagedObject *param = [[moc executeFetchRequest:request

error:&error] lastObject];

if (error) {

NSLog(@"%@:%s Error fetching param: %@", [self class], _cmd, error);

return;

}

NSLog(@"%@:%s Parameter value %@", [self class], _cmd,

[param valueForKey:@"value"]);

}

Worse is when we need to set a parameter:

Download CDPreferences/MyDocument.m

- (void)clunkyParameterWrite

{

NSManagedObjectContext *moc = [self managedObjectContext];

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:@"parameter"

inManagedObjectContext:moc]];

[request setPredicate:[NSPredicate predicateWithFormat:@"name == %@",

@"default1"]];

NSError *error = nil;

NSManagedObject *param = [[moc executeFetchRequest:request

error:&error] lastObject];

if (error) {

NSLog(@"%@:%s Error fetching param: %@", [self class], _cmd, error);

return;

}

if (!param) {

param = [NSEntityDescription insertNewObjectForEntityForName:@"Parameter"

inManagedObjectContext:moc];

[param setValue:@"default1" forKey:@"name"];

}

[param setValue:@"SomeValue" forKey:@"value"];

}

The most obvious solution to this is to abstract away this code some-

where so that we can hit it with only one line of code. Wouldn’t it be

http://media.pragprog.com/titles/mzcd/code/CDPreferences/MyDocument.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=229

BUILDING THE XCODE EXAMPLE PROJECT 230

nice if we could access our document-level parameters with code like

this:

Download CDPreferences/MyDocument.m

if ([[[self defaults] valueForKey:@"default1"] boolValue]) {

//Do something clever

}

and be able to set them with something like this:

Download CDPreferences/MyDocument.m

[[self defaults] setValue:@"New Value" forKey:@"newKey"];

In this example, that is exactly what we are going to do. As we discussed

briefly in Chapter 3, Core Data and Bindings, on page 34, every object

responds to the -valueForUndefinedKey: and -setValue:forUndefinedKey:

methods. We can use (or abuse) these methods and make them do all

of the heavy lifting for us.

12.1 Building the Xcode Example Project

To start this project, we’ll use the Core Data Document-based Appli-

cation template from within Xcode. In a document-based application,

each document object has its own Core Data stack as opposed to having

a single Core Data stack for the entire application.

Once we have created the project, named CDPreferences, we need to

create the data model. For this example, we are going to focus only on

the parameters and build the parameters table shown in Figure 12.1,

on the next page. Each parameter has two properties: a name that is a

nonoptional string and a value that is an optional string. By making the

value optional, we can have parameters that are nullable.

With no additional code changes, our application will correctly start up

and display an empty document. Since each document has its own per-

sistent store, the persistent store becomes the document that is being

saved to disk. The next step is to build the object that will manage the

parameters.

12.2 The DocumentPreferences Object

To build a system that imitates the NSUserDefaults, we need to have a

single object that manages the parameters table for us. By doing so, we

can treat the entire parameters table as if it were a single object with

http://media.pragprog.com/titles/mzcd/code/CDPreferences/MyDocument.m
http://media.pragprog.com/titles/mzcd/code/CDPreferences/MyDocument.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=230

THE DOCUMENTPREFERENCES OBJECT 231

Figure 12.1: Parameter table model

a dynamic number of accessors. However, we do not want to have to

write an accessor every time that we add a parameter; ideally, we want

to just call -valueForKey: and -setValue:forKey: and not worry about the

persistence of these values. Lastly, we want to be able to set up some

default values.

An important point about the defaults is that they are not persisted to

disk. If they get persisted, then later versions that change the default

would require additional code to check for persisted defaults and reset

them. If, however, we do not persist them, then users of newer versions

of the application automatically get the newer defaults for free and,

more important, do not get their preferences destroyed if they have

changed the value from its default.

The DocumentPreferences object will accomplish all of these goals:

Download CDPreferences/DocumentPreferences.h

@interface DocumentPreferences : NSObject

{

NSDictionary *_defaults;

NSPersistentDocument *_associatedDocument;

}

@property (assign) NSPersistentDocument *associatedDocument;

@property (assign) NSDictionary *defaults;

- (id)initWithDocument:(NSPersistentDocument*)associatedDocument;

- (NSArray*)allParameterNames;

- (NSDictionary*)allParameters;

@end

http://media.pragprog.com/titles/mzcd/code/CDPreferences/DocumentPreferences.h
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=231

THE DOCUMENTPREFERENCES OBJECT 232

Our DocumentPreferences object expects to receive a reference to its

NSPersistentDocument upon initialization. From the passed-in reference,

our DocumentPreferences will be able to access the underlying NSMan-

agedObjectContext. We could also just incorporate this design directly

into a subclass of NSPersistentDocument; however, that can cause the

document object to become quite large and difficult to maintain. There-

fore, even though there is a one-to-one relationship between NSPersis-

tentDocument objects and DocumentPreferences objects, we keep them

separate to reduce code complexity.

The one thing that’s missing from this header file is any way to access

the parameters themselves. There are no methods for this access be-

cause we are going to take advantage of KVC. Whenever another piece

of code requests a parameter from our DocumentPreferences object, the

-valueForUndefinedKey: method will get called, and that is where we han-

dle access to the parameters table.

-valueForUndefinedKey:

Download CDPreferences/DocumentPreferences.m

- (id)valueForUndefinedKey:(NSString*)key

{

id parameter = [self findParameter:key];

if (!parameter && [[self defaults] objectForKey:key]) {

return [[self defaults] objectForKey:key];

}

return [parameter valueForKey:@"value"];

}

In this method, we receive the name of the value that the caller is

attempting to retrieve. We use this name to retrieve the NSManage-

dObject via the -findParameter: method and return the NSManagedOb-

ject object’s value property. If there is no parameter with the passed-in

name, then we check the defaults NSDictionary to see whether there is a

default for it. If there is no default set, we let the -valueForKey: method

return nil to the caller.

-findParameter:

Download CDPreferences/DocumentPreferences.m

- (NSManagedObject*)findParameter:(NSString*)name;

{

NSManagedObjectContext *moc;

NSManagedObject *param;

NSError *error = nil;

moc = [[self associatedDocument] managedObjectContext];

http://media.pragprog.com/titles/mzcd/code/CDPreferences/DocumentPreferences.m
http://media.pragprog.com/titles/mzcd/code/CDPreferences/DocumentPreferences.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=232

THE DOCUMENTPREFERENCES OBJECT 233

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:@"Parameter"

inManagedObjectContext:moc]];

[request setPredicate:[NSPredicate predicateWithFormat:@"name == %@", name]];

param = [[moc executeFetchRequest:request error:&error] lastObject];

if (error) {

NSLog(@"%@:%s Error fetching parameter: %@", [self class], _cmd, error);

return nil;

}

[request release], request = nil;

return param;

}

In the -findParameter: method, we construct an NSFetchRequest against

the parameters table using a compare on the name property to filter it

down to a single result. Assuming there is no error on the fetch, we

return the NSManagedObject that is returned. In this method, we are

using the -lastObject method on the resulting array as a convenience.

-lastObject automatically checks for an empty array and will return nil if

the array is empty. This reduces the code complexity and gives us the

result we want in a single call. If there is an error accessing the Core

Data stack, we report the error and return nil. Note that we do not create

a parameter if there is not one in this method. We intentionally separate

this out so that we are not creating potentially empty parameters. This

allows us to request a parameter and check whether it is nil without

concern of parameters being generated unnecessarily.

-setValue:forUndefinedKey:

Download CDPreferences/DocumentPreferences.m

- (void)setValue:(id)value forUndefinedKey:(NSString*)key

{

[self willChangeValueForKey:key];

NSManagedObject *parameter = [self findParameter:key];

if (!parameter) {

if ([[self defaults] valueForKey:key] &&

[value isEqualTo:[[self defaults] valueForKey:key]]) {

[self didChangeValueForKey:key];

return;

}

parameter = [self createParameter:key];

} else {

if ([[self defaults] valueForKey:key] &&

[value isEqualTo:[[self defaults] valueForKey:key]]) {

[self didChangeValueForKey:key];

[[[self associatedDocument] managedObjectContext] deleteObject:parameter];

http://media.pragprog.com/titles/mzcd/code/CDPreferences/DocumentPreferences.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=233

THE DOCUMENTPREFERENCES OBJECT 234

[self didChangeValueForKey:key];

return;

}

}

if ([value isKindOfClass:[NSNumber class]]) {

[parameter setValue:[value stringValue] forKey:@"value"];

} else if ([value isKindOfClass:[NSDate class]]) {

[parameter setValue:[value description] forKey:@"value"];

} else {

[parameter setValue:value forKey:@"value"];

}

[self didChangeValueForKey:key];

}

In addition to being able to access a parameter, we also need to set

parameters. This is done in the counterpart method of -valueForUn-

definedKey: called -setValue:forUndefinedKey:. In this method, we first

notify the system that we are going to be changing the value associ-

ated with the passed-in key. This is part of KVO and is required so

that notifications work correctly. After starting the KVO notification, we

attempt to retrieve the NSManagedObject from the parameters table. If

there is no NSManagedObject for the passed-in key, we then check the

defaults NSDictionary to see whether there is a default. If there is a default

set and the passed-in value matches the default, we complete the KVO

notification and return. If the default value does not match the passed-

in value, we create a new NSManagedObject for the passed-in key.

If there is an NSManagedObject and a default set for the key, we com-

pare the default value to the passed-in value. If they match, we then

delete the NSManagedObject, which effectively resets the parameter to

the default. Once we pass the checks against default and/or create the

NSManagedObject, we test the value to see whether it is an NSNumber or

NSDate. If it is, then we pass in its -stringValue or -description as the value

for the NSManagedObject. Otherwise, we pass in the value directly to the

NSManagedObject. Once the value is set, we call -didChangeValueForKey:

to complete the KVO notification.

-createParameter:

Download CDPreferences/DocumentPreferences.m

- (NSManagedObject*)createParameter:(NSString*)name

{

NSManagedObject *param;

NSManagedObjectContext *moc;

http://media.pragprog.com/titles/mzcd/code/CDPreferences/DocumentPreferences.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=234

THE DOCUMENTPREFERENCES OBJECT 235

moc = [[self associatedDocument] managedObjectContext];

param = [NSEntityDescription insertNewObjectForEntityForName:@"Parameter"

inManagedObjectContext:moc];

[param setValue:name forKey:@"name"];

return param;

}

The -createParameter: method creates a new NSManagedObject and sets

the name property with the passed-in value. It does not set the value

property, leaving that up to the caller. This allows us to set a nil param-

eter if we really need one.

-allParameters

Download CDPreferences/DocumentPreferences.m

- (NSDictionary*)allParameters;

{

NSManagedObjectContext *moc;

NSError *error = nil;

moc = [[self associatedDocument] managedObjectContext];

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:@"Parameter"

inManagedObjectContext:moc]];

NSArray *params = [moc executeFetchRequest:request error:&error];

if (error) {

NSLog(@"%@:%s Error fetching parameter: %@", [self class], _cmd, error);

return nil;

}

NSMutableDictionary *dict = [[self defaults] mutableCopy];

for (NSManagedObject *param in params) {

NSString *name = [param valueForKey:@"name"];

NSString *value = [param valueForKey:@"value"];

[dict setValue: value forKey:name];

}

return dict;

}

In addition to the primary function of this class, we have a couple of

convenience methods that have proven useful. The first one, -allPara-

meters, returns an NSDictionary of all the parameters, including the de-

faults. In this method, we create an NSFetchRequest for the Parameter

entity without an NSPredicate. We take the resulting NSArray from the

fetch and loop over it. Within that loop, we add each NSManagedOb-

ject to an NSMutableDictionary derived from the default NSDictionary. This

ensures that we have both the default values and the Parameter entries

included in the final NSDictionary.

http://media.pragprog.com/titles/mzcd/code/CDPreferences/DocumentPreferences.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=235

REVIEW 236

-allParameterNames

Download CDPreferences/DocumentPreferences.m

- (NSArray*)allParameterNames;

{

NSManagedObjectContext *moc;

NSError *error = nil;

moc = [[self associatedDocument] managedObjectContext];

NSFetchRequest *request = [[NSFetchRequest alloc] init];

[request setEntity:[NSEntityDescription entityForName:@"Parameter"

inManagedObjectContext:moc]];

NSArray *params = [moc executeFetchRequest:request error:&error];

if (error) {

NSLog(@"%@:%s Error fetching parameter: %@", [self class], _cmd, error);

return nil;

}

NSMutableArray *keys = [[[self defaults] allKeys] mutableCopy];

for (NSManagedObject *param in params) {

NSString *name = [param valueForKey:@"name"];

[keys addObject:name];

}

return keys;

}

Like -allParameters, -allParameterNames is a convenience method that re-

turns an NSArray of the keys currently set or defaulted. Just like the

-allParameters method, it retrieves all the parameter NSManagedObject

objects and loops over them. Within that loop, it adds the name property

to an NSMutableArray derived from the defaultsNSDictionary.

12.3 Review

With this design, we can access our parameters within each document

without having to worry about the underlying structure. We also don’t

need to stop coding just to hop over and add a parameter to the object.

We can work with DocumentPreferences in the same manner that we

work with NSUserDefaults.

This same design can be used in a nondocument application by chang-

ing the DocumentPreferences object into a singleton or by adding the

-valueForUndefinedKey: and -setValue:forUndefinedKey: methods directly to

the NSApplication delegate along with the NSManagedObjectContext.

http://media.pragprog.com/titles/mzcd/code/CDPreferences/DocumentPreferences.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=236

REVIEW 237

Whether we are working in a document model or not, we can now access

persistent store–specific parameters with a single call similar to the

following:

NSString *value = [[self preferences] valueForKey:@"exampleKey1"];

We can also set them with a call similar to the following:

[[self preferences] setValue:@"someValue" forKey:@"someKey"];

In both of these examples, we are calling -valueForKey: and -setValue:for-

Key: directly on the DocumentPreferences object and not worrying about

whether the value exists. If it does not exist, we will receive a nil. If it

has been set as a default, we will get the default back, and if we have

overridden the default or previously set the property, it will be returned.

Lastly, like the NSUserDefaults, the default values are not persisted to

disk. Therefore, we need to set them every time we initialize the Docu-

mentPreferences:

Download CDPreferences/MyDocument.m

NSMutableDictionary *defaults = [NSMutableDictionary dictionary];

[defaults setValue:[NSNumber numberWithBool:YES] forKey:@"default1"];

[defaults setValue:@"DefaultValue2" forKey:@"default2"];

[defaults setValue:@"DefaultValue3" forKey:@"default3"];

[_preferences setDefaults:defaults];

However, we do not need to worry about changing the defaults at a

later date. If we change the defaults in a subsequent version, they will

automatically be updated if the user has not overridden them.

http://media.pragprog.com/titles/mzcd/code/CDPreferences/MyDocument.m
http://books.pragprog.com/titles/mzcd/errata/add?pdf_page=237

Index
A
access patterns, 112–113

add: method (NSArrayController), 26, 29

addImage: method, 31

addObserver:forKeyPath: method, 39

addPersistentStoreWithType: method, 90,

152

Address Book application, 16

allObjects implementation

(DistributedCDServer), 214

allParameterNames implementation

(CDPreferences), 236

allParameters implementation

(CDPreferences), 235

AppDelegate objects

adding to xib file, 22

image path, in header, 30

applicationDidFinishLaunching: method,

212, 220

applicationDidFinishLaunching: method,

122

applicationShouldTerminate: method, 122

associateObject:parent: method, 181

atomic stores, 98

attribute properties (data models), 18

Attributes inspector, 44

attributes of data class entities, 144

attributes of NSManagedObject objects,

52–54

primitive access, 53

automatic data migration, 88–90

turning on, 78

awakeFromFetch: method, overriding, 59

awakeFromInsert: method, overriding, 59

B
binary data, where to store, 99

binary stores, 97, 98, 189

Bonjour, 207, 210

broadcasting service (distributed Core

Data), 210–212

buttons, 26

C
caching data, 110

calculated values, storing, 103

cascade option (delete rules), 19

CDPreferences application

building, 230–237

DocumentPreferences objects, 230–236

allParameterNames, 236

allParameters, 235

createParameter:, 235

findParameter:, 233

setValue:forUndefinedKey:, 234, 236

valueForUndefinedKey:, 232, 236

client, distributed Core Data, 218–221

allObjects, 214

applicationDidFinishLaunching:, 220

createChildForObject:, 217

createObject, 216

deleteObject:, 216

netServiceBrowser:didFindService:, 220

netServiceDidResolveAddress:, 221

objectsOfName:withPredicate:, 218

ping, 214

ping implementation

testing, 223

receiving requests from, 213

client description files (Sync Services),

149

ClientDescription.plist file, 149

clients, sync, 141

registering as, 153–156

Clients pane (Syncrospector), 158

Cocoa Application template, 16

Cocoa Bindings, 34–49

Key Value Coding (KVC), 34–38

COCOA TOUCH PROJECTS DISCONNECT METHOD

Key Value Observing (KVO), 39–40

with NSArrayController objects, 42

with NSFormatter objects, 43

with NSObjectController objects, 46

with NSOutlineView objects, 46

with NSSearchField objects, 48

with NSTableView objects, 41

with NSTreeController objects, 48

primitive access to NSManagedObject

attributes, 53

primitive access to NSManagedObject

relationships, 56

for recipe application, 40–49

Cocoa Touch projects, creating, 184

combo boxes (user interface), 28

binding to Type entity, 66

commonly used data, storing, 104

Compile Sources section, 77

contextDidSave: method, 178

controller layer, building, 22–25

adding objects to xib file, 22

controllerDidChangeContent: method, 203

controllerWillChangeContent: method, 201

copyPropertiesFromObject:toObject:parent:

method, 179–180

copyRecipe: method, 178

Core Data, defined, 9–10

Core Data API (stack), 51

adding to Cocoa Touch projects,

186–189

NSManagedObjectContext, about,

64–67

NSManagedObjectModel, about, 68–69

NSPersistentStoreCoordinator, about,

69–71

requiring, 75

Core Data Application template, 16

createChildForObject: implementation

(DistributedCDServer), 217

createDestinationInstancesForSourceInstance:

method, 86–88

createObject implementation

(DistributedCDServer), 216

createParameter: implementation

(CDPreferences), 235

createRelationshipsForDestinationInstance:

method, 88

cross-thread communication, 164, 177

custom data stores, 98

D
data change notifications, iPhone,

192–194

delegate design pattern, 193

NSFetchedResultsController objects, 194

NSNotificationCenter objects, 193

data classes (sync schemas), 142, 143

data denormalization, 102

data migration, 73

automatic, 88–90

turning on, 78

complex migration, example, 85–88

manual, 90

process of, 82

progressive, 90–95

creating migration method, 91

finding managed object models, 92

finding mapping model, 93

simple migration, example, 76–82

creating first mapping model,

79–81

creating versioned data models,

77

turning on automatic migration,

78

data model

adding to Cocoa Touch projects, 185

building, 16–21

adding entities to models, 17–21

for DistributedCDServer application

(example), 209

updating for syncing, 143–146

data model optimization, 99–104

denormalizing data, 102

entity inheritance, 101

intelligence relationships, 103

storing binary data, 99

data objects, 21

DataClasses key (Schema.plist), 147

DataModel.xcdatamodel file, 17

dealloc: method, not overriding, 58

delegate design (iPhone), 193

delete rules, 19

deleteObject: implementation

(DistributedCDServer), 216

deleting objects, 110

denormalizing data, 102

description: method, not overriding, 57

destination entities, 19

didTurnInfoFault: method, overriding, 58

disconnect method, 223

239

DISK ACCESS FETCHED PROPERTIES

disk access, 109

faults and, 111

fetch requests and, 108

SQLite stores, 100

writing to disk, 110

DisplayName key (ClientDescription.plist),

149

distributed objects, Core Data with,

207–227

building the client, 218–221

applicationDidFinishLaunching:, 220

netServiceBrowser:didFindService:, 220

netServiceDidResolveAddress:, 221

building the server, 209–218

allObjects, 214

broadcasting the service, 210–212

createChildForObject, 217

createObject, 216

deleteObject:, 216

distributed objects protocol, 209

objectsOfName:withPredicate:, 218

ping, 214, 223

receiving requests from clients,

213

starting the server, 212–213

disadvantages with, 208

testing networking code, 222–226

disconnect method, 223

startTestTimers method, 222

testChildDeletion method, 226

testChildInsertion method, 225

testObjectDeletion method, 225

testObjectFetch method, 224

testObjectInsertion method, 225

testPing method, 223

distributed objects protocol, 209

DistributedCDClient project, 218–221

applicationDidFinishLaunching:, 220

netServiceBrowser:didFindService:, 220

netServiceDidResolveAddress:, 221

DistributedCDServer application,

209–218

DistributedCDServer application

allObjects, 214

broadcasting the service, 210–213

createChildForObject:, 217

createObject, 216

deleteObject:, 216

distributed objects protocol, 209

objectsOfName:withPredicate:, 218

ping, 214

ping implementation

testing, 223

receiving requests for clients, 213

document-based applications, 139, 228

@dynamic keyword, 38, 53

dynamic parameters, 228–237

building project for, 230

DocumentPreferences objects, 230–236

allParameterNames, 236

allParameters, 235

createParameter:, 235

findParameter:, 233

setValue:forUndefinedKey:, 234, 236

valueForUndefinedKey:, 232, 236

E
Enterprise Objects, 10

entities, adding to data models, 17–21

entities in data classes, 142

Entities key (ClientDescription.plist), 149

entity hashes, 83

entity inheritance, 101

entityForName:inManagedObjectContext:

method, 60

errors, presenting, 76

executeFetchRequest:error: method, 60

exporting recipes (multithreading

example), 165–173

F
faulted NSManagedObject objects, 105

faults, 108–112

disk access and, 111

fetch performance, 104–108

disk access and, 108

of faulted NSManagedObject objects,

105

loading NSManagedObjectID objects,

105

property values, prefetching, 106

relationships, prefetching, 107, 109

fetch requests, 59–63

disk access and, 108

executing, 60

for exporting recipes (example), 167

for importing recipes (example), 176

narrowing search or filtering results,

61

setting entity to fetch, 60

storing, 62

fetched properties, 71

240

FETCHREQUESTTEMPLATEFORNAME: METHOD MENU ITEMS (USER INTERFACE)

fetchRequestTemplateForName: method,

63

File menu, adding item to, 31

filenames for Spotlight metadata, 119

files, creating for Spotlight, 116

filtering

NSFetchRequest searches, 61

objects in an NSArrayController, 48

finalize: method, not overriding, 58

findParameter: implementation

(CDPreferences), 233

formats for persistent stores, 97–99,

189

G
GenerateThumbnailForURL.m file, 132

generating Spotlight metadata files, 119

GetMetadataForFile.m file, 127

H
Harrington, Tom, 8

hashes (versioning), 83

History pane (Syncrospector), 159

HTML pages for recipes, 134

I
IBAction objects, 30

IBOutlet objects, 30

identity properties, for Sync Services,

144

ImagePath key (ClientDescription.plist), 149

images, adding to user interface, 30

importer, Spotlight

building, 123–130

performance requirements, 116

importing images, 30

importing recipes (multithreading

example), 173–178

in-memory stores, 97, 189

Info.plist, populating Type table from, 66

information overload, 113

Ingredients property, 19

inheritance, entity, 101

initWithFetchController: method, 198

initXXX: methods, not overriding, 57

inspectors, 26

intelligent relationships, 103

Interface Builder, 9, 22

inverse relationships, 19, 20

iPhone, 184–206

data change notifications, 192–194

delegate design pattern, 193

NSFetchedResultsController objects,

194

NSNotificationCenter objects, 193

memory management, 190–192

recipe application on, 195–206

building detail view controller,

204–206

building main table view, 198–204

preparing NSFetchedResultsController,

196–198

upgrading applications to Core Data,

185–189

K
Key Value Coding (KVC), 34–38

primitive access to NSManagedObject

attributes, 53

primitive access to NSManagedObject

relationships, 56

Key Value Observing (KVO), 39–40

primitive access to NSManagedObject

attributes, 53

primitive access to NSManagedObject

relationships, 56

L
large binary data, storing, 101

localization file (syncing), 148

localizedDescription method, 76, 213

logError: method, 212

M
main method (NSOperation), 163

MainMenu element, 31

managedObjectContext: method, 189

managedObjectContextsToMonitorWhen-

SyncingPersistentStoreCoordinator:

method, 153

managedObjectContextsToReloadAfter-

SyncingPersistentStoreCoordinator:

method, 153

ManagedObjectModels key (Schema.plist),

148

manual data migration, 90

mapping models, 84

first, creating, 79–81

updating, 96

medium binary data, storing, 100

memory management, iPhone, 190–192

menu items (user interface), 31

241

MENU ITEMS (USER INTERFACE) NSMANAGEDOBJECT OBJECTS

menu items (user interface), 165, 173

mergeChangesFromContextDidSaveNotification:

method, 164, 178

metadata files for Spotlight integration,

116–123, 129, 139

metadataFolder: method, 123

methods, overriding

methods good for, 58

methods not safe for, 57

mingle phase (sync process), 141

.mom files, 68

entity hashes, 83

multithreading, 162–183

creating multiple contexts, 163–165

distributed objects and, 208

exporting recipes (example), 165–173

importing recipes (example),

173–178

NSManagedObjectContext objects and,

65, 162

NSPersistentStoreCoordinator objects

and, 69

recursive copy, 178–182

why Core Data is thread unsafe,

162–163

mutable access, to-many relationships,

55

mutableSetValueForKey: method, 56

N
name attribute (Schema.plist), 148

name attribute, Type entity, 21

names for Spotlight metadata files, 119

netServiceBrowser:didFindService:

implementation

(DistributedCDClient), 220

netServiceDidResolveAddress:

implementation

(DistributedCDClient), 221

networking code for distributed Core

Data, testing, 222–226

disconnect method, 223

startTestTimers method, 222

testChildDeletion method, 226

testChildInsertion method, 225

testObjectDeletion method, 225

testObjectFetch method, 224

testObjectInsertion method, 225

testPing method, 223

new projects, creating, 16

newContextToMainStore method, 164

nonatomic option (property definitions),

38

notifications with KVO, avoiding, 53, 56

NSAddTemplate image, 26

NSAlert objects, 76

NSArray objects

for exporting recipes (example), 167

for importing recipes (example), 176

sorting, 63

NSArrayController objects, 23

for exporting recipes (example), 168

using Cocoa Bindings with, 42

NSAttributedString objects, 27

NSButton objects, 26

NSComboBox objects, 28

binding to Type entity, 66

NSConnection objects, 221

NSDateFormatter objects, Cocoa Bindings

with, 44

NSDictionary objects, for Spotlight

integration, 116

NSEntityDescription objects, for fetch

requests, 60

NSEntityMigrationPolicy objects, 85–88

NSFetchedResultsController objects, 64,

190, 194, 196–198

NSFetchRequest objects, 59–63

disk access and, 108

executing fetch requests, 60

for exporting recipes (example), 167

of faulted NSManagedObject objects,

105

for importing recipes (example), 176

setting entity to fetch, 60

storing fetch requests, 62

using NSPredictate objects with, 61

NSFileManager objects, 33

NSFormatter objects, Cocoa Bindings

with, 43

NSImageView objects, 30

NSManagedObjects objects, 52–59

accessing attributes, 52–54

primitive access, 53

accessing relationships, 54–56

primitive access, 56

property accessors, 56

to-many relationships, 55

to-one relationships, 55

subclassing, 57–59

NSManagedObject objects

faulted, 105

242

NSMANAGEDOBJECTCONTEXT OBJECTS OVERRIDING METHODS

Key Value Coding with, 35

prefetching property values, 106

NSManagedObjectContext objects, 64–67

creating multiple, 163–165

for export files, 171

passing by reference, 215

updating Spotlight metadata files,

119

NSManagedObjectContextDidSaveNotification

key, 164, 177

NSManagedObjectID objects, 105

prefetching, 107

NSManagedObjectModel objects, 68–69

finding, for progressive migration, 92

iPhone projects, 187

as thread safe, 162

NSMappingModel objects

finding, for progressive migration, 93

updating, 96

NSMenuItem objects, 165, 173

NSMigratePersistentStoresAutomaticallyOption

key, 90

NSMigrationManager objects, 94

NSMutableSet objects, 55

NSNetService objects, 211, 221

NSNetServiceBrowser objects, 220

NSNotification API, 193

NSNotification objects, multithreading

and, 164, 177

NSNotificationCenter objects, 193

NSNumberFormatter objects, 28, 29

using Cocoa Bindings with, 43

NSObject objects

Key Value Coding implementation,

34

Key Value Observing

implementation, 39

NSObjectController objects, Cocoa

Bindings with, 46

NSOpenPanel objects, 32

NSOperation objects, 163, 170

NSOperationQueue objects, 163

NSOutlineView objects, Cocoa Bindings

with, 46

NSPersistentCoordinator objects, 110

NSPersistentDocument objects, 232

NSPersistentStore objects

adding to NSPersistentStoreCoordinator,

71, 75

as thread safe, 162

NSPersistentStoreCoordinator objects,

69–71

enabling automatic versioning, 89

iPhone projects, 187

modifying for syncing, 151–152

as thread safe, 162

NSPersistentStoreCoordinatorSyncing

protocol, 152

NSPredicate objects, 48

focusing fetch requests with, 61

NSRemoveTemplate image, 26

NSSavePanel objects, 169

NSScrollView objects, 26

NSSearchField objects, Cocoa Bindings

with, 48

NSSet objects, 55

NSSocketPort objects, 210, 211

NSSortDescriptor objects, 63–64

NSTableColumn objects, 26

NSTableView objects, 26

using Cocoa Bindings with, 41

NSTreeController objects, 47

using Cocoa Bindings with, 48

NSUnderlyingErrorKey key, 213

NSUnderlyingException objects, 213

NSURL objects, for

NSManagedObjectModel, 69

NSUserDefaults objects, 228

numberOfSectionsInTableView: method,

199

O
object deletion, 110

objectOfType:withName: method, 182

objectsOfName:withPredicate:

implementation

(DistributedCDServer), 218

one-to-many relationships, 20

one-way copies of repository, 171

optimizing data model, 99–104

denormalizing data, 102

entity inheritance, 101

intelligent relationships, 103

storing binary data, 99

order of magnitude (performance), 109

ordering data

with NSSortDescriptor, 63–64

performance and, 112

outline views (user interface), 46

overriding methods

methods good for, 58

243

PATH RECIPE APPLICATION

methods not safe for, 57

P
path, image, 30

:pathForResource:ofType: method, 68

patterns of access, 112–113

peers, syncing with, 141n, 161

performance tuning, 97–113

access patterns, 112–113

faults, 108–112

fetching, 104–108

loading NSManagedObjectID

objects, 105

optimizing data model, 99–104

persistent store types, 97–99, 189

Spotlight integration, 116

performing sync, 156–158

persisted defaults, 231

persistent store types, 97–99, 189

persistentStoreCoordinator: method, 75

turning on automatic migration, 78

persisting data to repository, 69

pictures, adding to user interface, 30

ping implementation

(DistributedCDServer), 214

testing, 223

plist files

defined, 68

as Spotlight metadata files, 116

PPDistributedProtocol.h file, 219

PPDistributedProtocol protocol, 209

PPExportOperation objects, 170

PPImportOperation objects, 175

predicates, 48

focusing fetch requests with, 61

preferences, system- and user-level,

228

prefetching, 105, 109

NSManagedObjectID objects, 107

property values, 106

relationships, 107, 109

preloading data into cache, 110

prepopulating repository, 66

preview, Quick Look, 133–137

primitive access

to NSManagedObject attributes, 53

to NSManagedObject relationships, 56

primitiveValueForKey: method, 54

progressive data migration, 90–95

creating migration method, 91

finding managed object models, 92

finding mapping model, 93

projects, creating, 16

properties (data models), 18

properties optimized for search, 102

@property keyword, 36–38, 57

property values, prefetching, 106

pull phase (sync process), 142

push phase (sync process), 141

Q
Quick Look, 115, 130–138

generating preview, 133–137

generating thumbnail, 132

with Spotlight importer, 138–139

testing plug-in, 137

R
rarely used data, storing, 104

recipe application

automatic migration, 88–90

turning on, 78

building controller layer for, 22–25

building data model for, 16–21

adding entities to models, 17–21

building NSPersistentStoreCoordinator,

70

Cocoa Bindings with, 40–44

NSArrayController objects, 42

NSFormatter objects, 43

NSTableView objects, 41

Cocoa Touch version, 195–206

building detail view controller,

204–206

building main table view, 198–204

preparing NSFetchedResultsController,

196–198

complex migration, with

NSEntityMigrationPolicy, 85–88

controller layer, building

adding objects to xib file, 22

with document-level parameters,

228–237

building project for, 230

DocumentPreferences objects,

230–236

exporting recipes (multithreading),

165–173

generating HTML pages for recipes,

134

importing recipes (multithreading),

173–178

244

RECIPE ENTRY STACK (CORE DATA API)

maintenance update, 74–76

manual migration, 90

pictures of recipes, 30–33

progressive migration, 90–95

creating migration method, 91

finding managed object models, 92

finding mapping model, 93

simple migration, 76–82

creating first mapping model,

79–81

creating versioned data models,

77

turning on automatic migration,

78

updating data model for syncing,

144–146

user interface, 14, 25–29

ingredients lists, 28–29

recipe details, 27–28

recipe source list, 26–27

Recipe entry, creating, 17

RecipeIngredient entity, 19

recursive copy, 178–182

registering as sync clients, 153–156

registering with truth (syncing), 141

regular expressions, performance and,

112

relational database as persistent store,

98

relationship properties, 19–20

need for inverse relationships, 20

Relationship property, 20

relationships

in data class entities, 144

limiting queries across, 113

prefetching, 107, 109

relationships of NSManagedObject

objects, 54–56

primitive access, 56

primitive access to, 56

property accessors, 56

to-many relationships, 55

to-one relationships, 55

remove: method (NSArrayController), 26,

29

removeObserver:forKeyPath: method, 39

repository

one-way copies, 171

persisting data to, 69

prepopulating objects into, 66

using multiple files instead of, 115

rootProxy method (NSConnection), 221

S
save dialogs (user interface), 169

saveAction: method, 122, 212

scalability, distributed objects and, 208

schema, sync, 146–148

Schema pane (Syncrospector), 159

Schema.strings file, 148

Schema.plist file, 147

search fields (user interface), 48

search-only properties, 102

search performance, 112

server, distributed Core Data, 209–218

allObjects, 214

broadcasting the service, 210–212

createChildForObject:, 217

createObject, 216

deleteObject:, 216

distributed objects protocol, 209

objectsOfName:withPredicate:, 218

ping, 214

ping implementation

testing, 223

receiving requests for clients, 213

starting, 212–213

setEditing:animated: method, 205

setPrimitiveValue:forKey: method, 54

setStoresFastSyncDetailsAtURL:forPersistentStore:

method, 151, 152

setValue:forKey: method, 36

imitating NSUserDefaults, 231

setValue:forUndefinedKey: implementation

(CDPreferences), 234, 236

setValue:forUndefinedKey: method, 36

single persistent store, 70, 187

small binary data, storing, 100

sorting data

with NSSortDescriptor, 63–64

performance and, 112

Spotlight, 114–130

building importer, 123–130

creating metadata files, 116–123

with Quick Look generator, 138–139

testing importer, 128

SQLite stores, 97, 98, 189

stack (Core Data API), 51

adding to Cocoa Touch projects,

186–189

NSManagedObjectContext objects,

64–67

245

STANDARDDEFAULTS METHOD (NSUSERDEFAULTS) USER INTERFACE

NSManagedObjectModel objects,

68–69

NSPersistentStoreCoordinator objects,

69–71

requiring, 75

standardDefaults method (NSUserDefaults),

228

startBroadcasting method, 211

startTestTimers method, 222

store types, persistent, 97–99, 189

storing binary data, 99

storing calculated values, 103

storing fetch requests, 62

strings, localizing (syncing), 148

sync clients, 141

registering as, 153, 156

sync helper, creating, 152–158

performing sync, 156–158

registering as sync client, 153–156

sync schemas, 142

creating, 146–148

versioning, 160

viewing in Syncrospector, 159

Sync Services, 140–161

creating client description files, 149

creating sync helper, 152–158

performing sync, 156–158

registering as sync client, 153–156

creating sync schema, 146–148

fundamentals, 141–142

modifying NSPersistentStoreCoordinator,

151–152

updating data model for syncing,

143–146

using Syncrospector, 158–159

Syncrospector tool, 158–159

@synthesize keyword, 37

system-level preferences, 228

T
tableView:cellForRowAtIndexPath: method,

199

tableView:numberOfRowsInSection:

method, 199

testChildDeletion method, 226

testChildInsertion method, 225

testing networking code (distributed

Core Data), 222–226

disconnect method, 223

startTestTimers method, 222

testChildDeletion method, 226

testChildInsertion method, 225

testObjectDeletion method, 225

testObjectFetch method, 224

testObjectInsertion method, 225

testPing method, 223

testing Quick Look plug-in, 137

testing Spotlight importer, 128

testObjectDeletion method, 225

testObjectFetch method, 224

testObjectInsertion method, 225

testPing method, 223

text fields (user interface), 27

thread unsafe, Core Data as

distributed objects and, 208

thread unsafe, Core Data as, 162–163

NSManagedObjectContext objects, 65,

162

NSPersistentStoreCoordinator objects, 69

thumbnail, Quick Look, 132, 139

to-many relationships, 19, 55

to-one relationships, 55

truth (syncing with), 141, 161

Truth pane (Syncrospector), 158

Type entity, 21

Type key (ClientDescription.plist), 149

Type table, 66

U
UIViewController objects, 194

Unicode, performance and, 112

updateCell:fromRecipe: method, 200

updating mapping models, 96

updating Spotlight metadata files, 119

upgrading iPhone applications,

185–189

URIRepresentation objects, 118

user interface

for exporting and importing recipes,

165, 173

building, 25–29

ingredients lists, 28–29

recipe details, 27–28

recipe source list, 26–27

information overload, 113

presenting error data, 76

showing pictures in, 30

using Cocoa Bindings with, 40–49

NSArrayController objects, 42

NSFormatter objects, 43

NSObjectController objects, 46

NSOutlineView objects, 46

246

USER-LEVEL PREFERENCES ZERO-CONFIGURATION NETWORKING

NSSearchField objects, 48

NSTableView objects, 41

NSTreeController objects, 48

user-level preferences, 228

UTIs (uniform type identifiers), 123,

139

linking Spotlight importer to, 127

V
valueForKey: method, 35, 55

imitating NSUserDefaults, 231

valueForUndefinedKey: implementation

(CDPreferences), 232, 236

valueForUndefinedKey: method, 36

versioning

automatic migration, 88–90

turning on, 78

complex migration, example, 85–88

fundamentals of, 82–85

model versions and hashes, 83

process of data migration, 82

manual migration, 90

NSManagedObjectModel and, 69

progressive migration, 90–95

creating migration method, 91

finding managed object models, 92

finding mapping model, 93

simple migration, example, 76–82

creating first mapping model,

79–81

creating versioned data models,

77

turning on automatic migration,

78

of sync schema, 160

W
Web Objects, 10

willTurnIntoFault: method, overriding, 58

writing to disk, 110

X
.xcdatamodel files, 17, 68

.xcdatamodeld file, 77

Xcode projects, creating, 16

xib files, adding objects to, 22

XML stores, 97, 98, 189

XPath for recipe pages, 134

Z
zero-configuration networking, 207

247

More Mac OS X Titles...
For more books and screencasts on XCode, Cocoa, the iPhone, TextMate and other Mac

topics, please visit www.pragprog.com.

Cocoa Programming
Cocoa Programming shows you how to get

productive with Cocoa–fast! You’ll learn to use the

Apple developer tools to design your user interface,

write the code, and create the data model. We’ll

show you Objective-C concepts when you are ready

to apply them throughout the book. By the end of

the book, you’ll be a Cocoa programmer.

Cocoa Programming: A Quick-Start Guide for

Developers

Daniel H Steinberg

(280 pages) ISBN: 978-19343563-0-2. $32.95

http://pragprog.com/titles/dscpq

Core Animation for OS X/iPhone
Have you seen Apple’s Front Row application and

Cover Flow effects? Then you’ve seen Core

Animation at work. It’s about making applications

that give strong visual feedback through movement

and morphing, rather than repainting panels. This

comprehensive guide will get you up to speed

quickly and take you into the depths of this new

technology.

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

Bill Dudney

(220 pages) ISBN: 978-1-9343561-0-4. $34.95

http://pragprog.com/titles/bdcora

www.pragprog.com
http://pragprog.com/titles/dscpq
http://pragprog.com/titles/bdcora

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Core Data’s Home Page

http://pragprog.com/titles/mzcd

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/mzcd.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/mzcd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/mzcd
www.pragprog.com/catalog

	Core Data
	Contents
	Introduction
	What Is Core Data?
	In This Book
	Acknowledgments

	Getting Started with Core Data
	Our Application
	Our Application Design
	Advanced Readers
	Creating Our Xcode Project
	Building the Data Model
	Building the Controller Layer
	Building the User Interface
	Adding a Splash of Code

	Core Data and Bindings
	Key Value Coding
	Key Value Observing
	Cocoa Bindings and Core Data
	Other Elements That Use KVO, KVC, and Core Data

	Under the Hood of Core Data
	NSManagedObject
	NSFetchRequest
	NSSortDescriptor
	NSManagedObjectContext
	NSManagedObjectModel
	NSPersistentStoreCoordinator
	Fetched Properties
	Wrapping Up

	Versioning and Migration
	Some Maintenance Before We Migrate
	A Simple Migration
	Fundamentals of Core Data Versioning
	A More Complex Migration
	Automatic Data Migration
	Manual Data Migration
	Progressive Data Migration
	Tips and Tricks

	Performance Tuning
	Persistent Store Types
	Optimizing Your Data Model
	Fetching
	Faulting
	Access Patterns

	Spotlight, Quick Look, and Core Data
	Integrating with Spotlight
	Integrating with Quick Look
	Putting It All Together
	Taking It Further

	Sync Services and Core Data
	Sync Services Fundamentals
	Updating Our Data Model
	Creating the Sync Schema
	Creating the Client Description File
	Modifying the NSPersistentStoreCoordinator
	Creating the Sync Helper
	The Syncrospector
	Wrapping Up

	Multithreading and Core Data
	Why Isn't Core Data Thread Safe?
	Creating Multiple Contexts
	Exporting Recipes
	Importing Recipes
	The Recursive Copy Reviewed
	Wrapping Up

	Core Data and iPhone
	Similarities and Differences
	Memory Management
	Data Change Notifications
	Recipes for the iPhone
	Going Further

	Recipe: Distributed Core Data
	Building the Server
	Building the Client
	Testing the Networking Code
	Wrapping Up

	Recipe: Dynamic Parameters
	Building the Xcode Example Project
	The DocumentPreferences Object
	Review

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

