
www.allitebooks.com

http://caniuse.com/#feat=css-boxshadow
http://www.allitebooks.org

www.allitebooks.com

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

http://caniuse.com/#feat=css-boxshadow
http://www.allitebooks.org

www.allitebooks.com

iv

Contents at a Glance
About the Authors.. xv
About the Technical Reviewer.. xviii
About the Cover Image Designer.. xix
Acknowledgments... xx
Introduction... xxi

Chapter 1: CSS Basics .. 1

Chapter 2: CSS Selectors ... 25

Chapter 3: Fonts, Text, and Color ... 49

Chapter 4: CSS Typography ... 79

Chapter 5: Tables and Lists .. 99

Chapter 6: CSS Box Model.. 125

Chapter 7: CSS Positioning and Layouts .. 151

Chapter 8: Multidevice Development ... 177

Chapter 9: Transitions and Transformations .. 217

Chapter 10: Multimedia and Accessibility ... 253

Chapter 11: UX Patterns ... 267

Chapter 12: Mobile UX Patterns ... 295

Index .. 309

http://www.allitebooks.org

www.allitebooks.com

xxi

Introduction
CSS3 is the latest standard for CSS, the syntax to control the style and layout of web pages.

CSS3 is completely backward-compatible, so you will not have to change your existing designs. The CSS3
specification is still under development by the World Wide Web Consortium (W3C). However, many of the
new CSS3 properties have been implemented in modern browsers and are available for you to experiment
with today.

The CSS3 specification is made up of several “modules”, such as the following ones:

Selectors■■

Box Model■■

Backgrounds and Borders■■

Text Effects■■

2D/3D Transformations■■

Animations■■

Multiple Column Layout■■

User Interface■■

In this pragmatic book, we have provided a series of solutions to common problems faced by developers
approaching the new features in CSS3. You will therefore find a lot of ready-to-use code that you can build
on in your own web applications.

Who is this book for?
This book is aimed at designers and developers who want to start using CSS3 right now.

CSS3 Solutions is, in fact, intended for readers who want to take their knowledge further with quick-fire
solutions to common problems and best practice techniques to improve their CSS3 skills. The book is full
of solutions with real-world examples and code to support you as you enter the world of CSS3 develop-
ment.

What you need
To follow and create the examples shown in this book, you need a simple text editor. TextMate, UltraEdit,
and Notepad++ are just some examples of powerful text editors with code support.

http://www.allitebooks.org

www.allitebooks.com

xxii

INTRODUCTION

Conventions used in this book
This book uses several of conventions that are worth noting. The following terms are used throughout this
book:

■■ CSS refers to the CSS 3 language.

■■ Modern browsers are considered to be the latest versions of Firefox, Safari, Chrome, and Opera,
along with Internet Explorer 7 and newer (although Internet Explorer 10 is the most “modern” in
terms of support for new features).

It is assumed that all the CSS examples in this book are contained in an external style sheet. Occasionally,
HTML and CSS have been placed in the same code example for brevity.

Sometimes code won’t fit on a single line in a book. Where this happens, we’ve used an arrow to break
the line.

With these formalities out of the way, you’re ready to get started.

questions and Contacts
Please direct any technical questions or comments about the book to m.casario@comtaste.com.

For more information about other CSS Books, see our website: www.apress.com.

mailto:m.casario@comtaste.com
http://www.apress.com
http://www.allitebooks.org

www.allitebooks.com

1

Chapter 1

CSS Basics

Cascading Style Sheets (which we’ll refer to by their acronym, CSS) were created to separate the presen-
tational layer from the logic of an application. Their purpose has always been to provide users with a simple
language to define the styling aspects of web pages and their look and feel. A CSS style declares a series
of properties for content, such as the font family, size of the font, color, and so on.

The World Wide Web Consortium (W3C) has released new versions of CSS over the years that add new
functions. (You can see the W3C’s more recent work at www.w3.org/Style/CSS/current-work.) One great
step forward was the introduction of CSS statements to position the contents of a page.

With these new commands, web developers could finally abandon the approach of generating web page
layouts by using HTML tables. Now developers can use the following three types of positioning:

■■ static: The default positioning of the browser. This refers to the traditional HTML positioning, in
which each element is positioned on the basis of the data flow of the document.

■■ absolute: Allows you to use the content anywhere on the page, completely independent from the
other elements, by specifying the position of each element on a Cartesian axis represented by
the height and width of the browser window.

■■ relative: Allows you to declare an element in a position that is based on the previous element.

Over the past three years, on the other hand, we have witnessed significant acceleration in terms of
new specifications. In fact, the W3C, which is responsible for most web standards, intends to insert an

http://www.w3.org/Style/CSS/current-work
http://www.allitebooks.org

www.allitebooks.com

Chapter 1

2

approach that can be divided into modules as needed. This new approach features properties, techniques,
and methods that are finally tuned to the real needs of those who make web sites.

The World Wide Web Consortium (W3C) is the main international standards organization
for the World Wide Web (abbreviated as WWW or W3).

Founded and headed by Tim Berners-Lee, the consortium is made up of member
organizations that maintain full-time staff who work together to develop standards for
the World Wide Web. As of July 2011, the W3C has 317 members. W3C was created
to ensure compatibility and agreement among industry members in the adoption of new
standards. Prior to its creation, incompatible versions of HTML were offered by different
vendors, increasing the potential for inconsistency between web pages. The W3C works
to get all those vendors to agree on a set of core principles and components that will be
supported by everyone.

Source: Wikipedia http://en.wikipedia.org/wiki/World_Wide_Web_Consortium

CSS3 Modules
With CSS3, instead of writing only one specification divided into chapters, the W3C has changed the
specification to be many separate modules, each of which is dedicated to a particular aspect of the CSS
language. This modular approach relieves companies that make web browsers from having to implement
the specifications in their entirety. Instead, a company can opt to support one module at a time by adding
new CSS modules at every new release of its browser. And this is exactly what is happening now.

Let’s take a closer look at the CSS3 modules that are currently available:

■■ Selectors: This part is the most stable and is implemented best by browsers. CSS3 selectors
were conceived so that they will function even with complex XML documents. They can cross
the hierarchy of a document and select elements based on the relationships between them (for
example, being the nth child of one’s parent). This module is currently at the stage of Candidate
Recommendation.

■■ CSS Template Layout: This module, previously known as Advance Layout, specifies new ways
to place elements based on the relationship between them to guarantee maximum flexibility. It is
currently at the Working Draft phase.

■■ Media Queries: The CSS3 media queries are an addition to the normal @media rules that can
assign styles on the basis of new parameters, such as the size of the screen and its proportions.
This module is currently at the Candidate Recommendation stage.

■■ CSS Backgrounds and Borders: This module describes new functions for backgrounds and
borders, including the possibility of extending background images and rounding border angles. It
is currently at the Last Call stage.

■■ CSS Basic User Interface: New methods and properties have been introduced to this module
to assign styles to the user interface of a web document (such as forms). It is currently at the
Candidate Recommendation stage.

http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://www.allitebooks.org

www.allitebooks.com

 CSS Basics

3

■■ CSS Basic Box Model: This module accounts for differences between horizontal and vertical
writing by defining the box model of the elements. It is currently at the Working Draft stage.

■■ CSS Marquee: This module proposes a CSS solution to avoid the use of the marquee owner
element. It is currently at the Proposed Recommendation stage.

■■ CSS Cascading and Inheritance: This defines the ways in which styles are assigned to ele-
ments via the cascade. It is at the working Draft stage.

■■ CSS Color: This module introduces new concepts and values to describe CSS colors. It’s at the
Last Call stage.

■■ CSS Fonts: This module includes new properties and values for CSS fonts, such as the use of
fonts that can be downloaded with the @font-face directive. It’s at the Working Draft stage.

■■ CSS Generated Content for Paged Media: This module extends the common CSS properties for
printing with the introduction of footnotes and cross-references. It’s at the Working Draft stage.

■■ CSS Generated and Replaced Content: This module introduces the concept of replacing the
effective content of an element with the one generated by CSS. It’s at the Working Draft stage.

■■ CSS Hyperlink Presentation: This module extends the normal way CSS processes hypertext
links, thus providing greater control to the authors regarding their states. This module is at the
Working Draft stage.

■■ CSS Line Layout: In this module, the layout of the inline elements is defined with more precision.
It’s at the Working Draft stage.

■■ CSS Lists: This module deals with list layouts with more detail and precision (ordered and unor-
dered) than in earlier releases. It’s at the Working Draft stage.

■■ CSS Multicolumn Layout: This module defines new properties and values to manage layout
over several columns. It’s at the Last Call stage.

■■ CSS Namespaces: This module defines the ways to select elements on the basis of the pres-
ence of a certain namespace. It’s essential for formatting XML documents and is currently at the
Candidate Recommendation stage.

■■ CSSOM View Module: This module allows authors to obtain information about elements without
resorting to scripting. It’s at the Working Draft stage.

■■ CSS Paged Media: This module extends the CSS properties for print to obtain headers, footers,
and page numbers. It’s at the Working Draft stage.

■■ CSS Presentation Levels: This module introduces the concept of multiple presentations of the
same document. It’s designed to facilitate particular layouts, such as those of presentation slides,
and it’s at the Working Draft stage.

■■ Grid Positioning: In the new CSS3 layout model, one positioned element forms a presentation
grid. This module proposes a series of coordinates for the positioning of the floated elements that
have an absolute position. The module is in the Working Draft stage.

■■ CSS Text: This module addresses the need for internationalization in defining new properties and
values to control the text using CSS. It’s at the Working Draft stage.

http://www.allitebooks.org

www.allitebooks.com

Chapter 1

4

■■ CSS 2D Transforms Module: This module introduces concepts that are already featured in SVG
(Scalable Vector Graphic) to CSS, such as transformation, rotation, and the scaling of elements.
It’s at the Working Draft stage.

■■ CSS 3D Transformations Module: This module extends the previous one with new specifications
for transformations. It’s at the Working Draft stage.

■■ CSS Transitions Module: This module introduces the concepts of transition and delay in transi-
tions between states among the elements (for example, when an element receives focus and
then loses it). It’s at the Working Draft stage.

■■ CSS Animations Module: This module introduces new properties that can control the interme-
diate stages of the animation of the elements (for example, stages in a sequence). It’s at the
Working Draft stage.

Anatomy of a CSS3 declaration
CSS and HTML are inseparable friends. Therefore, to be able to fully take advantage of CSS statements,
it is essential to understand the structure of an HTML document.

After a long period of silence, HTML recently has been brought back to life, thanks to the work of companies
such as Apple, Google, Opera Software, and the Mozilla Foundation. They collaborated under the name of
WHATWG (which stands for the Web Hypertext Application Technology Working Group, whose web site is
at www.whatwg.org/) on the development of an updated and enhanced version of the old HTML.

Following this major interest, the W3C began to work on a new version of HTML, called HTML5. It’s official name
is Web Applications 1.0, and it introduces structural elements to HTML that have not been seen before.

These new elements bridge the gap between structure, defined by the markup; rendering characteristics,
defined by styling directives; and the content of a web page, defined by the text itself. Furthermore, HTML5
introduced a native open standard to deliver multimedia content such as audio and video, collaboration
APIs, local storage, geolocation APIs, and much more.

Each HTML5 document defines a tree structure for a document, known as the Document Object Model
(DOM). The DOM is a programming API for HTML documents, as well as XML. It defines the logical struc-
ture of documents, and web developers can use it to create and build documents, access and modify their
structure, or delete elements and content. You can learn more about the DOM at the W3C DOM page at
www.w3.org/TR/WD-DOM/introduction.html.

CSS takes full advantage of this concept because its fundamental mechanism is based on heredity. This
makes it possible for most properties set for an element to be inherited by its descendants, hence the term
“Cascading.”

Here is some simple HTML5 code:

<!DOCTYPE html>
 <head>
 <title>Page Tile</title>
 </head>
 <body>
 <h1>Title</h1>

http://www.whatwg.org/
http://www.w3.org/TR/WD-DOM/introduction.html
http://www.allitebooks.org

www.allitebooks.com

 CSS Basics

5

 <div>
 <p>My first paragraph</p>
 </div>
 <section>
<h2>My Heading</h2>
 <p>This is a second paragraph</p>
</section>
 </body>
</html>

If you want to learn more about HTML5, Apress has published many books on the subject.
One that I recommend is written by the same authors as this book: HTML5 Solutions
Essential Techniques for HTML5 Developers (http://www.apress.com/9781430233862).

This document, like any valid HTML document, is an ordered hierarchy of elements that are linked to
one another by a parent-child relationship. This hierarchy forms what is defined as the Document Object
Model.

The DOM is a cross-platform and language-independent convention for representing and interacting with
objects in HTML (as well as XML). Web browsers usually use an internal model similar to the DOM to
render a document.

The simple HTML5 code declared earlier can be represented like this:

|-> Document

 |-> Root Element (<html>)

 |-> Element (<head>)

 |-> Element (<body>)

 |-> Element (<div>)

 |-> paragraph

 |-> Section

 |-> header

This hierarchy defines the structure of the document. It’s used by CSS to define the styles of the element
via CSS rules.

A CSS rule is applied using selectors followed by one or more declarations, as shown in Figure 1-1.

Figure 1-1. Declaration rule of a CSS.

http://www.apress.com/9781430233862
http://www.allitebooks.org

Chapter 1

6

Selectors can be any of the following:

■■ Type Selectors: These are represented by the name of a specific HTML element. They are used
to select all specific types of an element in a document—for example:

body {color: red}

■■ Class Selectors: Each HTML can be assigned a class using the class attribute. You then assign
a name to it that can be accessed by CSS—for example:

<h1 class="mytitle">This is a header</h1>

To apply one style to the class declared in HTML in the tag header, you precede the name of the class
with a period (.):

.mytitle {font-family: Verdana}

■■ ID Selectors: Each HTML element can be assigned an ID, which is a unique reference for this
element in the document—for example:

<section id="mystyle"></section>

To select an element that has been assigned a certain ID in CSS, you add the pound key (#) before the
value of the ID:

#mystyle {color: black}

We’ve written this introduction to CSS selectors only to provide some essential concepts for readers who have
never worked with CSS. It is not intended to be—and obviously doesn’t provide—a full overview of selectors.
In fact, there are other types of selectors: descendants, child, and so on. We have dedicated an entire chapter
to this aspect of CSS3. You can find different solutions related to this vast subject in Chapter 2.

At this point, web developers have understood that CSS is an integral part of an HTML document. However,
there are different ways to declare CSS for a document. You can have internal or external style sheets:

■■ External CSS: A style sheet defined in a separate file by the document with a .css extension.

■■ Internal CSS: The styles are included in the HTML document.

As far as external CSS files are concerned, you can link them by creating a <link> tag inside the head
section:

<head>
<link rel="stylesheet" type="text/css" href="mystyle.css" />
</head>

The <link> element has a series of attributes that need to be specified:

■■ rel: compulsory. Describes the type of relation between the document and the linked file. It
accepts the following values: stylesheet and alternate stylesheet.

■■ href: compulsory. Defines the absolute or relative URL of the style sheet.

■■ type: compulsory. Identifies the type of data to be connected. For CSS, the only possible value
is text/css.

■■ media: optional. Declares the type of device to which the style sheet applies, such as the handheld
property for handheld devices (typically, devices with a small screen and limited bandwidth).

 CSS Basics

7

Another way to load external CSS is to use the @import directive in the <style> element:

<style>
@import url(mystyle.css);
</style>

This approach of using the @import statement is one of the safest ways to solve compatibility issues
between old and new browsers.

For internal style sheets, you define internal styles in the head section of an HTML page, by using the
<style> tag, like this:

<head>
<style type="text/css">
body
{
 background: #FFFFCC;
}
</style>
</head>

There is another way to declare an internal style sheet: an inline style. The declaration can be made at the
level of each tag in the page. To use inline styles, you declare the style attribute in the relevant tag:

<h1 style="color: red; font-size: 10px;">My Header</h1>

To conclude this section, we’ll specify how to insert parts of a comment in a CSS. All you need to do is
place the comment between these symbols:

/*
Multiline comment here
*/

Understanding the Box Model
In the previous section, we spoke about the structure of a document and how to apply a CSS rule to ele-
ments within a document. You can also use CSS to position elements within the page. This technique is
called CSS positioning, or CSS-P. To use CSS-P rules, you need to understand how the browser physi-
cally draws the page on the screen based on the HTML code. The whole series of rules that manages the
visual aspect of the elements is generally referred to as the box model.

Each box includes a certain number of basic components, and each can be modified with CSS properties.
Instead of trying to explain with a thousand words what a box model represents, we’ll use Figure 1-2 to
provide a clearer illustration of the concept.

In the innermost part of the figure, you find the area of the page content, where you can see the back-
ground image and the sentence “content goes in here…”. This is the area where the content of the HTML
page is rendered: text, images, sections, paragraphs, media elements, and so on. The size assigned to
this area is determined by the browser if you don’t specify the width and height properties of the content.

On the outside of an element, you find the padding, which is empty space that can be created between the
content and the border of the element to add some space between these elements.

Chapter 1

8

Outside of that, you find the border, which is not an area but a variable line of dimension, style, and color
that surrounds the padding zone and the content area. Finally, you get to the margin, which is a space that
varies in size and separates a certain element from the adjacent areas.

The size of the box model, apart from the width of the content area, is obtained by this sum:

content width + left padding + left border width + right padding + right border width +
margin left + margin right

CSS3 doesn’t introduce many new aspects here, but there are a couple of interesting ones. Later in this
book, you’ll see possible solutions for setting a border background and drawing rounded border corners,
using the border-image and border-radius properties, respectively.

If you want to learn more about the important subject of the box model, you can refer to Chapter 6 or to the
box model described by the W3C at www.w3.org/TR/CSS2/box.html.

Understanding CSS inheritance
Inheritance is one of the key concepts on which CSS techniques are based. In fact, CSS properties can
inherit the display properties of dominant HTML tags, at least until you explicitly set a different value for
a child element. This is why a property is applied to all child elements of the tag body, meaning the entire
content of the page, if you set it to the body element.

Be careful, though, because not all properties are inherited. As a general rule, you can consider that the
ones regarding box-model formatting (padding, margins, and borders) are properties that are not inherited
by the child elements.

Figure 1-2. A CSS 3D box model that was created by redmelon.net and can be found at http://redmelon.net/tstme/
box_model/.

http://www.w3.org/TR/CSS2/box.html
http://redmelon.net/tstme/box_model/
http://redmelon.net/tstme/box_model/

 CSS Basics

9

Earlier in the chapter, you saw that CSS can be declared and applied to the page as an external CSS, or it
can be declared and applied as an internal or inline CSS. The type of declaration influences how a property
will be inherited by an element, as well as how high or low the importance of each statement is.

To understand the way inheritance works, bear in mind that the CSS rule applied will be the one that is
closest to the element in the code of the document. The order, therefore, is the following:

■■ Inline style: The ones that are applied last by the browser. They prevail over those that are
declared in the page.

■■ Internal CSS: These prevail over the styles declared in the external CSS.

Consider the following example of an external style sheet declared as a CSS file named styles.css:

.myclass {
background-color:red;
}

This CSS file is then imported into the HTML page, where an internal and inline declaration has been
added:

<link href="styles.css" type="text/css" rel="stylesheet" />
<style type="text/css">
. myclass {
background-color:white;
}
</style>
<article class="myclass" style="background-color:green; ">
CSS3 Rocks !
</article>

In the preceding example, which color will the web browser render for the article’s background color? Read
the code carefully.

Notice that the article element with the class name "myclass" gets its background color from an external
style sheet, from styles defined on the page, and from an inline style. So the right reply to the question is
that the article will get the background-color: green rule, inherited by the inline declaration, because it’s
the last rule applied by the browser.

Solution 1-1: Discovering CSS3 compatibilities
across browsers

CSS3 provides a new set of tools to empower you to improve the look and feel of your web pages.
However, like all new technology, it suffers from inconsistent cross-browser compatibility. In fact, there are
new CSS3 features that work only on some browser versions, making web developers’ lives more difficult.
Therefore, it’s essential to learn the compatibility matrix by heart for each version of each browser, or use
a tool to help you out.

Chapter 1

10

What’s involved
There are many web sites that provide comparative tables to see at a glance which CSS3 features are
supported by which browser. In this solution, you’ll see some of the most popular ones:

CSS3 Please (which you can check out at css3please.com) a Cross-Browser CSS3 Rule ■■

Generator

CanIUse (which you can check out at ■■ www.caniuse.com) is a compatibility table for support of
HTML5, CSS3, SVG and more in desktop and mobile browsers.

FindmebyIP (which you can check out at ■■ www.findmebyip.com/litmus/) is a cute little app that
presents your browsers’ support for advanced HTML5 and CSS3 features in an easy to read
manner.

HTML5 Please, (which you can check out at html5please.com the new HTML5 and CSS3 fea-■■

tures, knowing if they are ready for use.

How to build it
CSS3 Please is more than just a simple compatibility table to discover the browser support of CSS3. It
allows you to edit CSS3 property values in real time that will be applied to the web page. By doing this,
you can copy the all of the generated CSS values, or only some of them, and paste them into your own
style sheet.

For example, you can interact with a border-radius property by changing the values contained in the fol-
lowing class:

.box_round {
 -webkit-border-radius: 12px; /* Saf3-4, iOS 1-3.2, Android £1.6 */
 -moz-border-radius: 12px; /* FF1-3.6 */
 border-radius: 12px; /* Opera 10.5, IE9, Saf5, Chrome, FF4, iOS 4, Android 2.1+ */

As you can see, the .box_round class provides the code for the various declarations to make the properties
work on all types of browsers, including the following ones:

Safari■■

The iOS browser■■

The Android browser■■

Firefox■■

Opera■■

The values assigned to each property can be changed on the fly, and the upper left box of the web page
will change automatically to show the new values, as you can see in Figure 1-3.

It also comes with the following two interesting features:

[to clipboard] [toggle rule off]

http://www.caniuse.com
http://www.findmebyip.com/litmus/

 CSS Basics

11

You can use the first one to copy the CSS3 code in the clipboard. With the second one, you can decide
whether or not to apply the CSS3 rule to the object.

This tool is essential both as a learning tool as well as a way to improve the productivity of your web devel-
opment effortsbecause it provides cross-browser code.

HTML5 Please, on the other hand, is a traditional but well-built search engine that looks up the features
of CSS3 and HTML5. It allows you to assess the HTML5 and CSS3 compatibility level for each property.
For example, if you search for a CSS3 feature such as border-radius, you’ll get the description shown in
Figure 1-4.

On the lower left side, you can see a link labeled View browser share % that points to the CanIuse.com
table. CanIuse.com is the reference comparison table for HTML5, CSS3, SVG support, and more in desk-
top and mobile browsers.

The CanIuse.com service, like others, is completely free, and you can use it to quickly see HTM5 and
CSS3 features and their compatibility, both as an indexed list and as a table. You also can use it to search
for a particular property by using a search box, as shown in Figure 1-5.

By clicking an item on the list, you get more information and the view switches to Tables mode, as shown
in Figure 1-6.

As a general rule, because CSS3 and HTML5 standards are evolving, you should pay attention to the
features that you want to use in your web pages. In fact, you should apply elements from CSS3 gradually,
as updates become necessary.

Figure 1-3. The CSS3,Please box changes according to the CSS3 values.

Chapter 1

12

Figure 1-4. The HTML5 Please search box.

Figure 1-5. The table reference provided by CanIUse.com.

 CSS Basics

13

Expert tips
CanIuse.com allows you to point directly at the feature you want to check by inserting #feat equal to the
name of the feature in the URL, as follows:

http://caniuse.com/#feat=css-boxshadow

By inserting this URL in the browser, you can obtain the response from the site shown in Figure 1-7.

Solution 1-2: Adding a CSS3 file with JavaScript
Web developers can use JavaScript to load a CSS file dynamically, possibly on the basis of the type of
page that is called by the user or the type of rights that a user has within an application. The following solu-
tion illustrates how to use the JavaScript language to load an external CSS file.

What’s involved
The standard HTML5 procedure to load an external CSS file on a page is to point a reference to it in the
HEAD section of your page with the <script> tag:

<head>
<link rel="stylesheet" type="text/css" href="myCSS.css" />
</head>

Figure 1-6. When you click on a property, you get extra information.

http://caniuse.com/#feat=css-boxshadow

Chapter 1

14

When the browser reads the content of the HTML page that is loaded, the CSS file is added to the page.
Therefore, we could say that the external file is loaded synchronously.

However, with JavaScript, you can load the external file on demand using the createElement() method of
the DOM object document to create the <link> tag that will then load the file:

document.createElement('link');

You can set the properties of the link object that has just been created to specify the type of content to
load, text/css, and the pathway and name of the file to be loaded:

link.rel = 'stylesheet';
link.type = 'text/css';
link.href = 'myFileCSS.css';
link.media = 'all';

To be able to apply the link object to the page and load the CSS file, you have to call the DOM method
appendChild(), which adds a node after the last child node of the specified element node:

document.getElementsByTagName('head')[0].appendChild(link)

Figure 1-7. Calling a property directly from the browser address bar.

www.allitebooks.com

 CSS Basics

15

This method returns the new child node.

Now let’s see how to build the complete solution.

How to build it
In the previous section, we discussed methods that can be used to load a CSS file using JavaScript.

To do this, you create a JavaScript function that accepts two parameters: one is the name of the CSS file
to be loaded, and the other is the ID assigned to the link tag. This second parameter allows you to check
whether the file has already been loaded.

You start by writing the following function:

function loadCSSfile(filename, cssID)
{
var cssId = cssID

Insert an if() control that checks that the ID of the element isn’t already in the page. This would mean that
the CSS file has already been loaded:

if (!document.getElementById(cssId))
{

At this point, you can create the link object and set its properties:

 var head = document.getElementsByTagName('head');
 var link = document.createElement('link');
 link.id = cssId;
 link.rel = 'stylesheet';
 link.type = 'text/css';
 link.href = filename;
 link.media = 'all';
 head[0].appendChild(link);
}
}

To use the JavaScript method you just created, all you have to do is recall it in a JavaScript block and
associate it, for example, to the onload event of the window object:

<!doctype html>
 <html>
 <head>
 <title>onload test</title>
 <script>
function loadCSSfile(filename, cssID)
{

var cssId = cssID

if (!document .getElementById(cssId))
{
 var head = document.getElementsByTagName('head');
 var link = document.createElement('link');

4

http://www.allitebooks.org

Chapter 1

16

 link.id = cssId;
 link.rel = 'stylesheet';
 link.type = 'text/css';
 link.href = filename;
 link.media = 'all';
 head[0].appendChild(link);
}
}
 window.onload = load;
 </script>
 </head>
 <body>
 <p>The CSS file is loaded dynamically via JavaScript!</p>
 </body>
</html>

Or, if you want to insert the loadCSSfile() method in an external JavaScript file, first you have to load it and
then call it like this:

<script type="text/javascript" src="externalJavascript.js"></script>
<script type="text/javascript">loadCSSfile('main.css', 'myCSSId')</script>

Expert tips
To set the properties of the link object, you use setAttribute():

var link=document.createElement('link');
link.setAttribute("rel", "stylesheet")
link.setAttribute("type", "text/css")
link.setAttribute("href", 'myFileCSS')

The problem with this method is that Internet Explorer 6 doesn’t support it consistently. So the script would
not have worked under the aged Internet Explorer 6. If you’re using JQuery or YUI Ajax frameworks, there
are methods you can invoke from these libraries.

For JQuery, there is a plugin that loads CSS files and JavaScript files on demand and keeps track of what
has already been loaded:

code.google.com/p/rloader/

For the Yahoo YUI library (shown in Figure 1-8), you can use the following method, which also supports
cross-domain loading:

yuilibrary.com/yui/docs/get/

Solutions 1-3: Declaring multiple backgrounds for
your web page

The background of a web page gives the finishing touch to a website. With CSS3, you can now use mul-
tiple background images.

 CSS Basics

17

What’s involved
Background image management has always been entrusted to the background property. To be valid,
the declaration doesn’t have to contain references to all its properties, but it has to at least contain
the definition of the background color. For example, to create an image that is repeated horizontally
as a background on the body, with a background color taken from an external image, you can write
the following:

body{background: #7A515A url(gradient.jpg) fixed repeat-x bottom}

To use multiple background images for your pages, you can simply declare a simple comma-separated list
under the background property.

Let’s see how to obtain this result in this solution.

How to build it
To use multiple images as background, all you have to do is use the background property and specify two
or more values in the URL:

background-image: url(myFirstBG.png), url(myFSecondBG.png);

Multiple backgrounds can also be specified using the background shorthand property:

background: url(myFirstBG.png) 0 0 no-repeat, url(mySecondBG.png) 0 0 repeat-x

Here is some detail from the CSS Backgrounds and Borders Level 3 specification (which is available at
www.w3.org/TR/css3-background/#backgrounds):

Figure 1-8. The YUI library page that documents the Get method.

http://www.w3.org/TR/css3-background/#backgrounds

Chapter 1

18

“The number of comma-separated items defines the number of background layers. Given
a valid declaration, for each layer the shorthand first sets the corresponding layer of
each of ‘background-position’, ‘background-size’, ‘background-repeat’, ‘background-
origin’, ‘background-clip’ and ‘background-attachment’ to that property’s initial value, then
assigns any explicit values specified for this layer in the declaration. Finally ‘background-
color’ is set to the specified color, if any, else set to its initial value.

If one <box> value is present then it sets both ‘background-origin’ and ‘background-clip’
to that value. If two values are present, then the first sets ‘background-origin’ and the
second ‘background-clip’”.

Here is a complete example (which works in all new browsers but does not display properly in Internet
Explorer 8):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<title>Solution 1-3: Declaring multiple backgrounds for your web page </title>
<style>
.boxBG{

background-image: url(firstImg.png), url(secondImg.png);
background-position: center bottom, left top;
background-repeat: no-repeat;
}
</style>
</head>
<body>
<section class="boxBG">
<p>
This has multiple backgrounds!
</p>
</section>
</body>
</html>

Expert tips
To make this style also work on old browsers that still don’t support the loading of multiple images, all you
have to do is add a line with the same background property but with only one image:

<style>
.boxBG{

 background: url(apple.jpg) no-repeat;
 background: url(firstImg.jpg) 0 0 no-repeat, url(secondImg.jpg) 100% 0 no-repeat;
 width: 500px;
 height :250px;
}

 CSS Basics

19

Solution 1-4: Controlling the image aspect ratio
Every HTML page works with media elements such as images. Most of the websites that allow users to
upload images have one issue in common: the image’s dimension. In fact, uploaded images might not be
in the right size and can alter or even disrupt your page layout. You have to avoid this scenario.

With CSS3, you can control the image aspect ratio using JavaScript functions.

What’s involved
To maintain the aspect ratio of the images on a page and get them to fit within a fixed area, you can use
the object-fit CSS3 property.

As defined by the W3C, this property specifies how the contents of a replaced element should be fitted to
the box established by its height and width. A replaced element is an element whose content is defined by
an external resource such as an image.

These are the values that object-fit accepts:

■■ fill: The replaced content is sized to fill the element’s content box. The object’s concrete object
size is the element’s width and height.

■■ contain: The replaced content is sized to maintain its aspect ratio while fitting within the element’s
content box. Its concrete object size is resolved as a contain constraint against the element’s
width and height.

■■ cover: The replaced content is sized to maintain its aspect ratio while filling the element’s entire
content box. Its concrete object size is resolved as a cover constraint against the element’s width
and height.

■■ none: The replaced content is not resized to fit inside the element’s content box. The object’s
concrete object size is determined using the default sizing algorithm with no specified size, and
using a default object size equal to the replaced element’s width and height.

■■ scale-down: Size the content as if none or contain was specified, whichever would result in a
smaller concrete object size.

The object-fit property can be applied to images as well as to a video or SVG file.

Suppose that you want to control the aspect ratio of an image with the following CSS statement:

img {
 object-fit: contain;
}

Following is a complete example.

How to build it
In this solution, you create a simple image gallery that contains images of different sizes. Those images
will use the object-fit property that’s set to the value contain. By doing this, you’re forcing all the images
to fit inside the area and maintain the aspect ratio.

Chapter 1

20

This is the complete code for this solution:

<!DOCTYPE html>
<html>
<head>
<title>Solution 1-4: Controlling the image aspect ratio</title>
<style>
div {
 margin-bottom: 20px;
 padding: 20px;
}
img {
 position: absolute;
 width: 100px;
 height: 100px;

 -ms-object-fit: contain;
 -moz-object-fit: contain;
 -o-object-fit: contain;
 -webkit-object-fit: contain;
 object-fit: contain;
}

div p {
 font-family:Arial, Helvetica, sans-serif;
 margin-left: 110px;

}

</style>
</head>
<body>

<h1>Wine Tasting</h1>

<div>

<p>Le Pergole Torte 2004</p>
</div>

<div>

<p>Tenuta San Guido Wines</p>
</div>

<div>

<p>Guidalberto 2004</p>
</div>

<div>

 CSS Basics

21

<p>Vernaccia di San Gimignano 200</p>

</div>
</body>

</html>

If you save and run the application in a web browser, you’ll see that all the images fit inside the DIV and
maintain the aspect ratio.

The CSS object-fit property performs the magic:

img {
 position: absolute;
 width: 100px;
 height: 100px;

 -ms-object-fit: contain;
 -moz-object-fit: contain;
 -o-object-fit: contain;
 -webkit-object-fit: contain;
 object-fit: contain;
}

You’ve declared the object-fit property using various suffixes to make it compatible with all the major
browsers: –ms, –moz, –o, and –webkit.

Expert tips
There is another very useful property you can use with the images to specify their resolution: the image-
resolution property. This property is defined by the W3C as a property that specifies the intrinsic resolu-
tion of all raster images (it cannot be used with vector images such as SVG) used in or on the element.

Reading the definition, you see that you can apply the property to both content images and decorative
images (such as background-image). Its values have the following meanings:

■■ <resolution>: This specifies the intrinsic resolution explicitly. A “dot” in this case corresponds to
a single image pixel.

■■ from-image: The image’s intrinsic resolution is taken as that specified by the image format. If the
image does not specify its own resolution, the explicitly specified resolution is used (if given).
Otherwise, it defaults to 1ddpx.

■■ snap: If the snap keyword is provided, the computed <resolution> (if any) is the specified resolu-
tion rounded to the nearest value that would map one image pixel to an integer number of device
pixels. If the resolution is taken from the image, the intrinsic resolution being used is the image’s
native resolution similarly adjusted.

The following CSS declaration forces the image resolution to 300 dots per inch (dpi):

img { image-resolution: 300dpi }

The resolution in the image, if any, is ignored.

Chapter 1

22

Solution 1-5: Resetting CSS3 default values
It’s a sad reality that each browser uses its own rules to render HTML elements. This introduces a lot of
inconsistency, and web designers and developers have to spend a lot of time making sure their web page
renders the same across browsers.

A common solution to this problem is to use a CSS reset script that removes and neutralizes the inconsis-
tent default styling of elements, margin, padding, font, and so on.

What’s involved
Mainly, the differences across browsers are related to the margin and padding properties because each
browser sets their values in a different way. So the simplest approach is to set a global selector that sets
the margin and padding properties to zero:

* {
 margin: 0;
 padding: 0;
}

Dong this is not enough, however, because other important properties have to be considered, such as out-
line (that is, a line drawn around elements to make the element stand out), border, font-size, and many
more. So you need to use a more sophisticated approach that takes into account all of these properties.

How to build it
The following CSS reset rules are the ones most frequently used by web designers and developers to
reset the CSS properties:

* {
 vertical-align: baseline;
 font-weight: inherit;
 font-family: inherit;
 font-style: inherit;
 font-size: 100%;
 border: 0 none;
 outline: 0;
 padding: 0;
 margin: 0;
}

This approach uses the global selector and sets the properties to their default values. With these CSS
rules, the browsers won’t introduce inconsistencies in properties related to default margins and padding,
line heights, font sizes, headings, and so on.

With the new HTML5 elements, you need to consider new HTML elements to add to your CSS3 reset
rules, such as video, footer, article, audio, and so on.

 CSS Basics

23

So here’s a more complete CSS3 reset script solution that uses these new HTML5 tags:

* { outline: 0; }
html, body, div, span, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
abbr, address, cite, code,
del, dfn, em, img, ins, kbd, q, samp,
small, strong, sub, sup, var,
b, i,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, figcaption, figure,
footer, header, hgroup, menu, nav, section, summary,
time, mark, audio, video {
 margin:0;
 padding:0;
 border:0;
 outline:0;
 font-size:100%;
 vertical-align:baseline;
 background:transparent;
}
input[type="submit"]::-moz-focus-inner, input[type="button"]::-moz-focus-inner { border : 0px; }
input[type="search"] { -webkit-appearance: textfield; }
input[type="submit"] { -webkit-appearance:none; }

If you use Google, you’ll find several CSS reset scripts ready to use in your code. We’ll briefly look at reset
style sheets again in Chapter 7. Here are some of the ones most frequently used by the developer com-
munity:

Eric Meyer’s Reset CSS 2.0■■

HTML5 Doctor CSS Reset■■

Yahoo! CSS Reset (YUI 3)■■

Vanilla CSS Un-Reset■■

Universal Selector ■■ '*' Reset

Tripoli CSS Reset by David Hellsing■■

undohtml.css by Tantek Celik■■

Summary
In this first chapter, you learned that Cascading Style Sheets came about because of the need to sepa-
rate the presentational layer from the logic of the application. Their aim has always been to provide the
users with a simple language to define the styling aspects of web pages. This chapter showed you how

Chapter 1

24

to declare a CSS style as a series of properties for content, such as styles for the font family, size of the
font, color, and so on.

You used basic techniques to do the following:

Discover CSS3 compatibilities across browsers■■

Add a CSS3 file with JavaScript■■

Declare multiple backgrounds for your web page■■

In the next chapter, we’ll take a closer look at CSS selectors and address common issues that developers
have with them.

www.allitebooks.com

25

Chapter 2

CSS Selectors

In the previous chapter, we talked about how to build a CSS rule. You saw how a rule in a style sheet is
made up of one or more selectors and by a group of properties and relevant values, expressed in the fol-
lowing form:

selector {
 property: value;
 }

A selector represents a structure, meaning it specifies which elements of an HTML page the rule will apply
to. The properties and the relevant values deal with the presentation of these elements.

Therefore, one can guess that selectors are a fundamental part of CSS. Indeed, they’ve been around since
the very first CSS specifications. Selectors Level 1 and Selectors Level 2 are defined as the subsets of
selector functionality; that is defined in the CSS1 and CSS2.1 specifications, respectively.

Some new elements have been introduced in the CSS3 version. In this chapter, we’ll address the new
features of CSS3 selectors.

Differences compared to CSS2 selectors
There aren’t many differences between CSS2 selectors and the new CSS3 selectors. From a func-
tional point of view, CSS3 selectors are now a part of the CSS3 Module, which has its own independent
specification.

http://www.allitebooks.org

Chapter 2

26

The small differences are summarized in the following list:

The list of basic definitions (selector, group of selectors, simple selector, and so on) has been ■■

clarified.

An optional namespace component is now allowed in type element selectors, the universal selec-■■

tor, and attribute selectors.

There is a new combinator.■■

There are new simple selectors, including substring-matching attribute selectors, and new ■■

pseudo-classes.

There are new pseudo-elements and the ■■ "::" convention for pseudo-elements.

The selectors grammar has been rewritten.■■

Profiles have been added to specifications integrating selectors and defining the set of selectors ■■

that is actually supported by each specification.

The major novelties are to be found in the attribute selectors, which now have three different types:

■■ [att$="val"] Identifies the elements found by selectors that have an att attribute that ends with
a val string

■■ [att^="val"] Identifies the elements found by selectors that have an att attribute that begins
with a val string

■■ [att*="val"] Identifies the elements found by selectors that have an att attribute that contains
a val string

To remain on the topic of novelties, we must mention the potent pseudo-classes, for which new features
have been introduced.

Pseudo-classes
The pseudo-class was introduced to permit selection based on information that lies outside of the docu-
ment tree or that cannot be expressed using the other simple selectors. A pseudo-class always consists of
a colon (:) followed by the name of the pseudo-class and, optionally, by a value between parentheses. The
pseudo-class of the selector form, on the other hand, is declared with the following syntax:

section div: nth-child(n-3)

The preceding example identifies the div elements within the section that are the first, second, and third
child elements. The following list shows the pseudo-classes:

■■ :root

■■ :nth-child()

■■ :nth-last-child()

■■ :nth-of-type()

■■ :nth-last-of-type()

 CSS Selectors

27

■■ :first-child

■■ :last-child

■■ :first-of-type

■■ :last-of-type

■■ :only-child

■■ :only-of-type

■■ :empty

To learn more about the structural pseudo-classes, you can refer to the following page on the W3C site:
http://www.w3.org/TR/css3-selectors/#structural-pseudos. Other novelties introduced for pseudo-
classes are related to the pseudo-classes that express UI element states. These can create specific rules
for form elements and their dynamic states:

■■ :enabled Defines a rule for the enabled elements identified by the selector (which are necessarily
form elements)

■■ :disabled Defines a rule for the disabled elements identified by the selector (which are neces-
sarily form elements)

■■ :checked Defines a rule for the active elements identified by the selector (which are necessarily
check boxes or radio buttons)

At the moment, there is little support for these pseudo-classes. Only Firefox 2 and Opera 9.2 have partial
support for these pseudo-classes; they support only :checked.

Let’s see how to use CSS3 selectors and the new pseudo-classes in the following solutions.

Solution 2-1: Highlighting selected text
We often read the text of an HTML page and highlight selected text to copy and paste it. The highlight style
is chosen by the browser, and it varies according to the type of browser. CSS3 introduces a pseudo-class
you can use to change the default settings to highlight a portion of text in a web page.

What’s involved
The ::selection pseudo-class allows you to specify the appearance of the selected text for the user.
Mozilla is the only engine that requires the prefix, so two separate rules must be written:

::-moz-selection {…}
::selection {…}

First note the presence of a couple of colons, unlike the other pseudo-classes. Here is an example of how
to draw any selected text as white on black:

/* */
::-moz-selection { color: white; background: black; }
::selection { color: white; background: black; }

http://www.w3.org/TR/css3-selectors/#structural-pseudos

Chapter 2

28

Expert tips
You can’t use all CSS properties with ::selection. In fact, only the following small subset of CSS proper-
ties can be used:

color
background
background-color

The background-image is ignored, like any other property.

How to build it
The ::selection pseudo-class allows you to specify the appearance of text that is selected by the user.
By using the global wildcard *, you can apply the style you want to all the text selected by the user. Here
is the complete code for the solution that uses internal CSS styles:

<html>
<head>
<title>Solution 2-1: Highlighting selected text</title>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
<style type="text/css">
*::selection{background: gold;color: #C00}
*::-moz-selection{background: gold;color: #C00}
</style>
</head>
<body>
<section>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vestibulum
venenatis, orci non scelerisque feugiat, erat purus cursus mauris, vitae
elementum dolor libero non velit. Nam laoreet justo eget ligula vestibulum
egestas. Curabitur in sem. In faucibus, metus a mollis faucibus, metus neque
pharetra odio, nec tempus mauris odio sed sem. Sed posuere. Cras posuere. Nunc
at dolor eget massa pulvinar ornare.</p>
</ section >
</body>
</html>

If you open the HTML page in a browser and select some text, you’ll obtain the result shown
in Figure 2-1.

Figure 2-1. The highlighted text has a custom color specified by the ::selector pseudo-class.

 CSS Selectors

29

Solution 2-2: Enhancing the readability
of tabular data

With the new features introduced by CSS3 selectors, you can create many effects in your web pages. In
fact, you can permit selections based on information that lies in the document tree. In this solution, you’ll
see how to use a structural pseudo-class to add readability to tabular data.

What’s involved
To be able to select an element, you use the :nth-child pseudo-class notation. In the introductory para-
graph regarding CSS pseudo-classes, you saw that it is possible to point to an element identified by a
selector that is the child with an order corresponding to the number or the formula expressed between
parentheses:

section div: nth-child(n-3)

This example identifies the div elements within the selection that are the first, second, or third child ele-
ments. You also can use the nth-child() with “odd” and “even” values as arguments instead. These two
values allow you to change the color of the even (or odd) rows of a table by adding a class to every other
row. For example, the following code colors the odd rows of the cells yellow:

tr:nth-child(odd) td {
 background-color: #86B486;
}

The CSS statement selects the odd rows with the nth-child(odd) selector. Let’s take a look at how to build
a complete example to obtain this result.

Another solution is given in Chapter 5.

How to build it
You start with the creation of the table to show the data. We’ll use the score table of the first 10 teams in
the Italian Serie A soccer league as an example. Here is the HTML code:

<html>

<head>
<title>Solution 2-2: Enhancing readability of tables</title>
</head>

<body>
<table cellpadding="0" cellspacing="0" summary="Championship Table">
<thead>
<tr>
<th scope="col"><abbr title="Position">Position</abbr></th>
<th scope="col"><abbr title="Team">Team</th>
<th scope="col"><abbr title="Points">Points</abbr></th>
<th scope="col"><abbr title="Matches Played">P</abbr></th>
<th scope="col"><abbr title="Matches Won">W</abbr></th>
<th scope="col"><abbr title="Matches Drawn">D</abbr></th>
<th scope="col"><abbr title="Matches Lost">L</abbr></th>
</tr>

Chapter 2

30

</thead>
<tbody>
<tr>
<td>1</td>
<td >Milan

</td>
<td>63</td>
<td>29</td>
<td>19</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td >
Juventus
</td>
<td>59</td>
<td>29</td>
<td>15</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td >
Lazio
</td>
<td>51</td>
<td>29</td>
<td>15</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td >
Napoli
</td>
<td>48</td>
<td>29</td>
<td>12</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td >
Udinese
</td>

 CSS Selectors

31

<td>48</td>
<td>29</td>
<td>13</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td >
Roma
</td>
<td>44</td>
<td>29</td>
<td>13</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td >
Catania
</td>
<td>42</td>
<td>29</td>
<td>10</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td >
Inter
</td>
<td>41</td>
<td>29</td>
<td>12</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td >
Atalanta
</td>
<td>37</td>
<td>29</td>
<td>10</td>
<td>13</td>
<td>6</td>
</tr>
<tr>

Chapter 2

32

<td>10</td>
<td >
Bologna
</td>
<td>36</td>
<td>29</td>
<td>9</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

</body>
</html>
We have created the table and have made 7 columns to represent the different
data for each team:
<th scope="col"><abbr title="Position">Position</abbr></th>
 <th scope="col"><abbr title="Team">Team</th>
 <th scope="col"><abbr title="Points">Points</abbr></th>
 <th scope="col"><abbr title="Matches Played">P</abbr></th>
 <th scope="col"><abbr title="Matches Won">W</abbr></th>
 <th scope="col"><abbr title="Matches Drawn">D</abbr></th>
 <th scope="col"><abbr title="Matches Lost">L</abbr></th>
We start by adding styles, inserting CSS rules directly in the page:
<style type="text/css">
body {
 padding: 10px;
 margin: 0;
 }

table {
 font: 11px/24px Verdana, Arial, Helvetica, sans-serif;
 border-collapse: collapse;
 width: 480px;
 }

th {
 padding: 0 0.5em;
 text-align: center;
 }

td {
 padding: 0 0.5em;

 }

td:first-child {
 width: 30px;
 }

td+td {
 border-left: 1px solid #CCC;

 CSS Selectors

33

The result you want to obtain is to color the background of every other row to improve the readability of the
table. This is why you’ll use the nth-child() with ”odd” and “even” values as arguments.

These two values allow you to change the color of the even (or odd) rows of a table by adding a class to
every other row. Add the following syntax in the style declaration:

tr:nth-child(odd) td {
 border-top: 1px solid black;
 border-bottom: 1px solid black;
 background: #FFC;

With this statement, you changed the background color of the cells, but you also added a solid red, 1-pixel-
high border. If you save the file now and run it in a browser, you’ll see the result shown in Figure 2-3.

Expert tips
The odd and even values are very useful. Consider that you can get the same result using the 2n+1 (equiv-
alent to the value odd) and 2n+0 (which selects every third row, and so on) with the nth-child():

tr:nth-child(2n+1) /* It’s the same as using the odd, in fact it represents
every odd row of an HTML table */
tr:nth-child(2n+0) /* the same as using the even, in fact it represents every
even row of an HTML table */

 text-align: center;
 }
</style>

If you save the HTML page with the CSS styles mentioned earlier, you obtain the result shown in
Figure 2-2:

Figure 2-2. The formatted table.

Chapter 2

34

Solution 2-3: Toggling form elements
It has always been necessary to use JavaScript code to interact dynamically with form styles. Today, with
CSS3 selectors, you can create simple graphics effects by using only style sheets and therefore make the
code lighter.

A common task is to change the style of the form elements according to their state. Users need to have a
visual understanding of whether they can or cannot interact with a form element. In this solution, you’ll see
how to use three new pseudo classes for user-interface element states.

What’s involved
As mentioned earlier, there are three types of pseudo-classes for UI element states:

■■ :enabled Represents user-interface elements that are in an enabled state. Such elements have
a corresponding disabled state.

■■ :disabled Represents user-interface elements that are in a disabled state. Such elements have
a corresponding enabled state.

■■ :checked Radio and check-box elements can be toggled by the user. Some menu items are
marked by a check when the user selects them. When such elements are toggled on, the :checked
pseudo-class applies.

By defining the graphic style of these pseudo-classes, you can dynamically change their look and feel
according to the state they take on over time. For example, you can create a solid, green border in form
elements that the user can interact with (status enabled), and you can create a solid, red border when the

Figure 2-3. The table with the odd rows formatted.

 CSS Selectors

35

form elements cannot be selected (status disabled). Here is an example of CSS code that applies these
rules:

:enabled {
 border: 2px solid green;
}

:disabled {
 border: 2px solid red;
}

Let’s see how to create a complete example to use these selectors.

How to build it
You create a form with a few elements to which you can then apply the styles. Let’s start with the HTML
code:

<!DOCTYPE html>
<html>
 <head>

 <title>Solution 2-3: Toggling Form Elements</title>

 </head>

 <body>

<form id='myForm'>
<fieldset>
 <legend>Solution 2-3: Toggling Form Elements</legend>

 <label for=name class="required">Name</label>
 <input id=name name=name type=text placeholder="Insert your first name" required>

 <label for=email class="required">Email</label>
 <input id=email name=email type=email placeholder="Insert your email" required>

 <label for=blog>Blog</label>
 <input id=blog name=blog type=url placeholder="Insert your blog">

 <label>Receive newsletter</label>
 <input type="checkbox" />
 <p>
 <input type="submit" value="Submit">
 Enable/Disable form fields
 </p>

</fieldset>
</form>

</body>
</html>

Chapter 2

36

We created a form with id equal to myForm. To this form, we assigned three text inputs: a check-box element,
a button and link text, and a simple text link in which we have registered the changeStatus()JavaScript
function to the onClick event. In a little while, we’ll write the JavaScript code we need for this link text. For
now, we apply a few graphical styles to these elements, and we define the styles for the enabled, disabled,
and checked states using the following pseudo-classes:

<style type="text/css">

:enabled {
 border: 2px solid green;
}

:disabled {
 border: 2px solid red;
}

:checked {
 display: inline-block;
 width: 4em;

 background-color:#c11;
 color:#fff;
}

 #myForm .required:after { content: " * "; color:red;}

 #myForm input:required { background:green; }

 #myForm legend {

 font-family: arial, sans-serif;

 font-weight: bold;

 font-size: 90%;

 color: #666;

 background: #eee;

 border: 1px solid #ccc;

 border-bottom-color: #999;

 border-right-color: #999;

 padding: 4px 10px;

 }

</style>

Now we have created a graphical style for each state of the form elements. All we have to do now is write
the JavaScript code to change the state of these elements. We’ll use a simple link button that toggles the
state of the form elements when it is clicked. We insert a script tag within the head tag declaration with the
following code:

 <script type="text/javascript">

 changeStatus.status = false;

 CSS Selectors

37

Expert Tips
As you’ve seen, the :enabled and :disabled CSS3 selectors determine whether or not the input field of
every type can be selected. In the solution, we used and applied them to any element of the user interface
that supported these properties. However, you can specifically apply the enabled and disabled styles to a
certain form type by using the following syntax:

input[type="text"]:enabled
{
background: green;

}

 function changeStatus()
 {

 changeStatus.status = !changeStatus.status;

 var myFormElements = document.getElementById('myForm').elements;

 for (var x=0;x< myFormElements.length;x++)
 {
 myFormElements[x].disabled = changeStatus.status;
 }
 return false;
 }

</script>

The changeStatus function simply uses a for statement on the form elements that are defined in the HTML
form and sets the disabled property of each to the status property. If you save the file and execute it in a
browser, when you click on the Enable/Disable Form Fields link, you obtain the result shown in Figure 2-4,
in which the status of the form elements is set to :disabled.

Figure 2-4. By clicking on the Enable/Disable Form Fields link, you toggle the state of the form elements.

Chapter 2

38

input[type="text"]:disabled
{
background: red;

}

Solution 2-4: Preventing content
from being selectable

There are situations in which you might need to stop the user from being able to highlight text to carry out
the classic copy and paste operations. Another common scenario is one in which you stop the user from
being able to select text to drag and drop elements within a web page. Or you might want to code the
header of an e-mail message window so that the portion that contains the name cannot be selected but the
content following it can be. CSS3 introduced a new property that allows you to control the selection model
and the granularity of an element.

What’s involved
The user-select property controls the appearance of selection. These are the values that this property
accepts:

■■ text The element’s contents follow a standard text content-selection model.

■■ none None of the element’s content can be selected. When this value is set, the user cannot
select any of the content. For example, if a user clicks on an element with user-select: none,
what happens when the pointing device button is “down” is addressed by the user-input prop-
erty, and when that pointing device button is released, this property ensures that no selection of
the contents of the element remain. The value of none is also useful for static text labels in a user
interface that are not meant to be selected.

■■ text toggle The element’s contents follow a standard toggling content model.

■■ element One element at a time can be selected. It’s supported in Firefox and Internet Explorer.

■■ elements One or more elements at a time can be selected.

■■ all Only the entire content as a whole can be selected.

You should bear one thing in mind: user-select is not currently part of any W3C CSS specification.
Therefore, there could be minor differences between browser implementations.

Let’s see how to use this property to make it impossible to select content.

How to build it
Let’s start by creating a simple HTML page with content. All you need is a paragraph with the classic Lorem
Ipsum text:

<html>
<head>
<title>Solution 2-4: Preventing content from being selectable</title>

 CSS Selectors

39

</head>
<body>

<section>
<p class="notselectable">
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vestibulum
venenatis, orci non scelerisque feugiat, erat purus cursus mauris, vitae
elementum dolor libero non velit. Nam laoreet justo eget ligula vestibulum
egestas. Curabitur in sem. In faucibus, metus a mollis faucibus, metus neque
pharetra odio, nec tempus mauris odio sed sem. Sed posuere. Cras posuere. Nunc
at dolor eget massa pulvinar ornare.
</p>
</ section >

</body>
</html>

The only thing worth noting is contained in the tag of the paragraph, which has a CSS class that it uses
called notselectable. Now you need to create the style that sets the user-select property to none to pre-
vent the selection of content. You insert a style block with the following code:

<style type="text/css">
 .notselectable { user-select: none;
 -moz-user-select: none;
 -webkit-user-select: none;
 -khtml-user-select: none;
 -ms-user-select: none;
 }
</style>

The user-select property is not currently part of any W3C CSS specification. It was originally proposed in
the User Interface For CSS3 module, but it has been suppressed. This is why, to make the property work
on different browsers, you need to use –moz endings for Mozilla browsers, –webkit for WebKit’s browsers,
–khtml for Konqueror web browsers, and –ms for Internet Explorer.

When you save the file and run it in a browser that supports the user-select property, you’ll notice that you
cannot select the text with the cursor.

Expert tips
By using this property, you can disable text or image selection on the entire content of the web page except
for a specific element. To do this, you have to use the global selector to define the noneditable content on
the page and then override the property for a specific selector:

* {
-webkit-user-select: none;
-khtml-user-select: none;
-moz-user-select: -moz-none;
-o-user-select: none;
user-select: none;
}

Chapter 2

40

p {
-webkit-user-select: text;
-khtml-user-select: text;
-moz-user-select: text;
-o-user-select: text;
user-select: text;
}

Solution 2-5: Hiding empty elements within a page
When using content-management systems or any web content platform, you might find empty tags in your
code that have no use whatsoever for the semantic purposes of the page. Because they are empty and
unused tags, you might be tempted to leave them in the web page, thinking that they won’t cause any
problems. However, if you applied CSS styles to these empty elements, there are cases in which your
layout might be compromised and you might obtain strange positions. Therefore, you need to find a way to
remove these empty tags. There are new CSS3 selectors that can help you do this.

What’s involved
One of the new CSS3 selectors matches every element that has no child elements. The :empty selector
represents an element that has no child elements at all (including text nodes). It is very simple to use:
because it is a pseudo-class, all you have to do is declare it by using a colon right after the selector:

li:empty { //statement }

With this code, you apply a CSS rule to all the empty elements of a list (that is, to the list items).

Note the empty selector is well supported by all major browsers except Internet Explorer 8 and earlier.

Let’s see a complete example.

How to build it
Create HTML code with paragraphs—some empty and some containing a comment, which will always be
considered an empty element:

<!DOCTYPE html>

<html>

 <head>

<title>Solution 2-5:</title>

 </head>

 <body>

 <p></p>

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam nunc leo,
facilisis ut lacinia quis, pellentesque a eros. Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Cras aliquam viverra arcu ac dictum. Nam volutpat

 CSS Selectors

41

pulvinar magna, et faucibus ligula volutpat a. Cras ultricies pretium ante, in
sagittis odio eleifend at. Praesent aliquam pulvinar metus, nec lacinia diam
tincidunt in. Maecenas nec egestas lectus. Praesent placerat consectetur leo
mollis tempor. Nam a tortor mauris, quis vulputate tellus. Nam rutrum augue
eget lorem vehicula sit amet imperdiet erat rutrum. Nunc ac dui est, in
vestibulum risus. Ut at sagittis ante. Nunc eu mi nibh. Mauris id dui erat.
Nunc et mauris ante. Suspendisse ut leo ut nulla faucibus iaculis vel ut
velit.</p>

<p></p>

 <p>Maecenas vitae sem nec sem convallis aliquet sed non enim. Vivamus nulla
arcu, gravida a molestie id, lacinia nec mi. Nullam ullamcorper accumsan
tristique. In dolor eros, rutrum sit amet iaculis et, venenatis eu enim.
Integer lorem sapien, ultrices pretium luctus eu, ullamcorper quis diam. Ut ac
posuere justo. Ut interdum pellentesque ipsum, facilisis tempus odio euismod
in. In at enim vel arcu pretium luctus. Aliquam pharetra tempor neque, quis
semper nibh feugiat id. Praesent fringilla aliquet viverra.</p>

<p><!-- This is an empty tag --></p>

 <p>Morbi vel tellus eros, nec hendrerit neque. Etiam malesuada lorem sed
lacus posuere ac tincidunt erat ultrices. In ut libero ac metus bibendum
porttitor. Mauris at mi magna. Mauris eu semper enim. Curabitur a nunc euismod
erat commodo vulputate vulputate id leo. Cras nec purus a ipsum porttitor
tincidunt vel quis enim. Nulla facilisi. Proin eu elit ut turpis ultricies
hendrerit vitae et nisi. Aenean semper euismod nibh.</p>

</body>

</html>

Before saving the page and running it in a web browser, to understand the problem we are faced with by
leaving these tags empty, we insert a style block with some simple CSS rules applied to the paragraph:

<style type="text/css">

p

 {
 padding-top:100px;

 background-color:#09C;

 font-family: Arial, Helvetica, sans-serif;

 }

</style>

All we did was add a 100-pixel space on top with the padding-top property and assigned a background
color to the paragraph to get a better visual idea of what happens.

We save and run the page in a web browser. The CSS rules will also be applied to the empty para-
graphs or those containing comments, so you will see other spaces occupied by these tags, as shown in
Figure 2-5.

Chapter 2

42

We add the :empty pseudo-class to stop the CSS styles from being applied to the empty tags. We insert
the following code in the style block:

 <style type="text/css">

 p

 {

 padding-top:100px;

 background-color:#09C;

 font-family: Arial, Helvetica, sans-serif;

 }

p:empty {

 display: none;

 }

 </style>

If we save and run the file in a web browser now, we’ll see that the empty tags are ignored, as shown in
Figure 2-6.

Figure 2-5. Empty paragraphs break your layout.

 CSS Selectors

43

Expert tips
You can hide all empty elements without having to specify the selector by using the global selector:

*:empty {
 display: none;
 }

Solution 2-6: Using the sibling combinator
The cascading characteristic of CSS has always brought enormous advantages with regard to styles that
can be applied in a web page. With CSS3, new selectors have been introduced to allow you to declare
styles for elements that precede a specific element. Let’s learn how it’s done with a real example.

What’s involved
There are two new CSS3 sibling combinators:

The adjacent sibling combinator declared with the plus sign (+)■■

The general sibling combinator declared with the tilde sign (~)■■

Let’s look at two practical examples.

The adjacent sibling combinator: ■■ h3 + p { // statement }. This code represents a p element
immediately following an h3 element. Basically, the adjacent sibling combinatory is used to scroll
the DOM tree horizontally by assigning the CSS rule to the elements that are at the same level
as another element.

The general sibling combinator: ■■ h3 p. This code represents a p element following an h3, and it
matches any p element that is preceded by an h3 element. The general sibling combinator is a
generalization of the adjacent sibling combinator. It assigns a style to all sibling elements.

Figure 2-6. Empty tags are now ignored.

Chapter 2

44

Let’s apply this theory to see an example.

How to build it
Take the HTML code of the previous solution, and delete the previous style block. We will obtain the fol-
lowing file:

<!DOCTYPE html>

<html>
<head>
<title>Solution 2-5:</title>
 </head>
 <body>

 <p>Morbi vel tellus eros, nec hendrerit neque. Etiam malesuada lorem sed
lacus posuere ac tincidunt erat ultrices. In ut libero ac metus bibendum
porttitor. Mauris at mi magna. Mauris eu semper enim. Curabitur a nunc euismod
erat commodo vulputate vulputate id leo. Cras nec purus a ipsum porttitor
tincidunt vel quis enim. Nulla facilisi. Proin eu elit ut turpis ultricies
hendrerit vitae et nisi. Aenean semper euismod nibh.</p>

 <h3>This is a Header</h3>

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam nunc leo,
facilisis ut lacinia quis, pellentesque a eros. Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Cras aliquam viverra arcu ac dictum. Nam volutpat
pulvinar magna, et faucibus ligula volutpat a. Cras ultricies pretium ante, in
sagittis odio eleifend at. Praesent aliquam pulvinar metus, nec lacinia diam
tincidunt in. Maecenas nec egestas lectus. Praesent placerat consectetur leo
mollis tempor. Nam a tortor mauris, quis vulputate tellus. Nam rutrum augue
eget lorem vehicula sit amet imperdiet erat rutrum. Nunc ac dui est, in
vestibulum risus. Ut at sagittis ante. Nunc eu mi nibh. Mauris id dui erat.
Nunc et mauris ante. Suspendisse ut leo ut nulla faucibus iaculis vel ut
velit.</p>

 <p>Maecenas vitae sem nec sem convallis aliquet sed non enim. Vivamus nulla
arcu, gravida a molestie id, lacinia nec mi. Nullam ullamcorper accumsan
tristique. In dolor eros, rutrum sit amet iaculis et, venenatis eu enim.
Integer lorem sapien, ultrices pretium luctus eu, ullamcorper quis diam. Ut ac
posuere justo. Ut interdum pellentesque ipsum, facilisis tempus odio euismod
in. In at enim vel arcu pretium luctus. Aliquam pharetra tempor neque, quis
semper nibh feugiat id. Praesent fringilla aliquet viverra.</p>

 <p>Morbi vel tellus eros, nec hendrerit neque. Etiam malesuada lorem sed
lacus posuere ac tincidunt erat ultrices. In ut libero ac metus bibendum
porttitor. Mauris at mi magna. Mauris eu semper enim. Curabitur a nunc euismod
erat commodo vulputate vulputate id leo. Cras nec purus a ipsum porttitor
tincidunt vel quis enim. Nulla facilisi. Proin eu elit ut turpis ultricies
hendrerit vitae et nisi. Aenean semper euismod nibh.</p>

</body>
</html>

 CSS Selectors

45

Note that no styles are applied to the first <p> in the code, whereas they apply to all the others. This
happens because the rule is assigned only to the elements that are child elements and siblings of the h3
element.

Solution 2-7: Putting an icon image next to links
Links and icons have always been a winning team. Web pages often provide an image that identifies the
type of link, which immediately lets the user know what to expect. The PDF icon next to a link that allows
you to download a file, the Facebook icon next to the link to the famous social network’s homepage, and
the link to your own LinkedIn profile with the site logo are all examples in which it is useful to accompany

Now apply a style block and insert CSS statements using the general sibling combinator so that all para-
graphs that follow the declaration of the h3 element have a different graphic style:
<style type="text/css">

body
{
 font-family:Arial, Helvetica, sans-serif;
}

h3 ~ p
{
width: 740px;
border: 5px solid #ccc;
padding-left: 15px;
}

</style>

If you save and run the file in a web browser now, you’ll see the result shown in Figure 2-7.

Figure 2-7. All the p elements declared after the h3 element is formatted.

Chapter 2

46

text with an image. With CSS3, you can authorize this procedure and acknowledge the type of link that is
in your web page by associating it with the relevant image.

What’s involved
The attribute selectors were already part of the CSS 2.1 specifications. Three additional attribute selectors
are provided in the CSS3 version, to match substrings in the value of an attribute. The declaration of an
attribute selector is specified by square parentheses ([]), which have to follow a selector, and the charac-
teristic that a given attribute has to satisfy for the rule to apply:

a[href$=".htm"]

The code declared above represents an HTML anchor a with an href attribute whose value ends with
".htm".

Here are the new attribute selectors defined by CSS3:

■■ [att^="val"] Identifies the elements identified by selectors that have an att attribute beginning
with the val string

■■ [att*="val"] Identifies the elements identified by selectors that have an att attribute containing
the val string

■■ [att$="val"] Identifies the elements identified by selectors that have an att attribute ending with
the val string

In this solution, you’ll apply the attribute selector to the href of the links on the basis of their URL and
type.

How to build it
Create an HTML file containing various kinds of links:

<!DOCTYPE html>
<html>
<head>
<title>Solution 2-7: Putting icon image next to links</title>
</head>
<body>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vestibulum
venenatis, orci non scelerisque feugiat, erat purus cursus mauris, vitae
elementum dolor libero non velit. Nam laoreet justo eget ligula vestibulum
egestas. Curabitur in sem. In faucibus, metus a mollis faucibus, metus neque
pharetra odio, nec tempus mauris odio sed sem. Sed posuere. Cras posuere. </p>
<p>This is a mailto link.

 Download a pdf file(it requires Adobe PDF Reader)</p>

See my LinkedIn Profile

</body>
</html>

 CSS Selectors

47

The content above declares four links:

a ■■ mailto link, which allows you to send an email to some email address (it causes the user agent
to open a mail program with the destination address in the "To:" field)

a link pointing to an external resource (a PDF file)■■

two links pointing to external sites (Adobe and LinkedIn)■■

What you do now is associate each of these links with a different icon according to the type of resource
they point to. You use the attribute selectors to obtain this result. Therefore, insert a style block in the HTML
page we created previously:

<style type="text/css">
body
{
 font-family:Arial, Helvetica, sans-serif;
 font-size:12px;
}

a[href^="mailto:"]{

 padding-right: 16px;
 background: url(mailto.jpg) no-repeat center right
 }

a[href^="http"]{
 padding-right: 20px;
background: url(icon_external.gif) no-repeat center right
 }
a[href*="www.linkedin.com"]{
 padding-right: 16px;
 background: url(linkedin.jpg) no-repeat center right
 }

a[href$=".pdf"]{
padding-right: 22px;
background: url(pdf.jpg) no-repeat center right
}

</style>

We have used all three new attribute selectors of CSS3. In fact, to apply the image to the link pointing to an
external page and the one that executes a mailto action, we used, respectively the following CSS code:

a[href^="http"]

a[href^="mailto:"]

The first represents an element with the href attribute whose value begins with the prefix "http", and the
latter represents an element with the href attribute whose value begins with the prefix "mailto".

For the link pointing to the LinkedIn site, we used the a[href*="www.linkedin.com"] attribute selector,
which represents an element with the href attribute whose value contains at least one instance of the
substring "www.linkedin.com".

Chapter 2

48

Finally, for the link to the PDF file, we used the a[href$=".pdf"] attribute selector , which represents an
element with the href attribute whose value ends with the ".pdf" suffix. By doing so, we were able to
associate a different icon with each type of link by using the following syntax:

background: url(icon.name) no-repeat center right
padding-right: 22px;

Summary
In this chapter, you learned about one of the most powerful tools of Cascading Style Sheets: selectors.
A selector represents a structure, meaning it specifies which elements of an HTML page the rule will apply
to. The properties and the relevant values deal with the presentation of these elements.

You used basic techniques to do the following:

Specify the appearance of the selected text for the user by using the ■■ ::selection pseudo-class

Enhanced the readability of tabular data by using the ■■ nth-child() with “odd” and “even” values
as arguments

Toggled form elements■■

Used the general and adjacent sibling combinators■■

Prevented the user from being able to highlight text to accomplish the classic copy and paste ■■

operations

Put icon image next to links■■

In the next chapter, we’ll take a closer look at CSS selectors and address common issues that developers
have with them.

49

Chapter 3

Fonts, Text, and Color

Interest in typography on the Web has grown heavily over the last few years. Most websites rely on text to
convey their messages, so it’s no surprise that text should be treated with the utmost care. In this chapter,
we’ll look at some useful techniques that use the power of Cascading Style Sheets (CSS) Text Level 3
specification, which give Web designers finer control over text.

Solution 3-1: Using @font-face
The most important new feature of CSS3 has been its full support of @font-face. Forget the classics like
Arial or Verdana: now you can choose from a much wider range of fonts. CSS Fonts Module 3 has made
web designers particularly happy, because they are finally free to create web pages with beautiful and
more accurate typefaces. You no longer need to turn to alternative techniques, such as sIFR (introduced in
2000), which are more complex to implement in your websites than @font-face. You can trust how estab-
lished web fonts are in the specifications of the World Wide Web Consortium (W3C). In this solution, you’ll
see how to use a web font through @font-face.

What’s involved
The @font-face feature was initially proposed for CSS2 specifications, and both Microsoft and Netscape
added web font support to their respective browsers. Instead of supporting the most-used format, TrueType,

Chapter 3

50

they both chose lesser-known and different formats (EOT and TrueDoc, respectively). Web fonts, there-
fore, disappeared from the thoughts of web designers.

Safari 3.1 was the first browser to support any available typeface in TrueType (.ttf) and OpenType (.otf),
which are the most common formats. All other browsers followed Safari’s example, and today we finally
have an incredibly vast selection of web fonts at our disposal.

Generate your own @font-face kit
You can use commercial fonts on the web, but not all of them are freely distributed. Most of them are pro-
tected by restrictive commercial licenses regarding their conditions of use. Many companies list the font’s
copyright information on the Version tab of the fonts’ properties screens, but that means you have another
thing to consider.

Fortunately, the Web offers many resources to obtain freely distributed and usable fonts, such as sites
like 1001FreeFonts (http://www.1001freefonts.com) and FontSpace (http://www.fontspace.com). Another
really interesting and powerful tool is FontSquirrel (http://www.fontsquirrel.com/). Not only does this site
offer a wide range of interesting typeface characters, it also provides the @font-face Kit Generator, which
is a very useful tool for converting fonts to the many formats you might want to support multiple browsers.
This tool lets you upload a properly licensed typeface, and then it gives back the same typeface in web
font formats—plus some demonstration HTML/CSS files that show the font in action. The process is quite
simple: on your computer, select the font you want to convert by clicking the Add Fonts button as shown in
Figure 3-1. Then choose only the font formats you want to support. You’re done!

Figure 3-1. The FontSquirrel @font-face Kit Generator.

http://www.1001freefonts.com
http://www.fontspace.com
http://www.fontsquirrel.com/

 Fonts, Text, and Color

51

Many of these formats exist because a unique format does not yet exist for all browsers. Support for
each format varies from browser to browser and from one browser version to another, as you can see in
Figure 3-2.

Another alternative to purchasing fonts and their respective license for use is to use services like Typekit
(https://typekit.com/) or Font Deck (http://fontdeck.com/). The advantage of using these services rests with
not having to deal with matters such as user licenses, browser support, font hosting, and so on. You only
have to choose the right font for your design.

Font formats
Through @font-face, you can use the formats shown in Table 3-1.

Caution: You cannot upload commercially protected and licensed fonts on FontSquirrel.
You must have previously purchased the required license that is necessary for distributing
the font on the Web.

Table 3-1. List of font formats available with @font-face

StringFont Format Common extensions

"woff" WOFF (Web Open Font Format) .woff

"truetype" TrueType .ttf

"opentype" OpenType .ttf, .otf

"embedded-opentype" Embedded OpenType .eot

"svg" SVG Font .svg, .svgz

Figure 3-2. Browser support for various font formats.

http://https://typekit.com/
http://fontdeck.com/

Chapter 3

52

Browser support
All modern versions of the most popular browsers support @font-face. However, some older browsers
and mobile browsers do not. Using font stacks in a suitable manner, you can define which fonts should be
displayed in place of unsupported ones like so:

h1 {
font-family: MuseoSans, "Helvetica Neue", Arial, sans-serif;
}

In this case, the order of the stack substitutes Helvetica Neue for the font MuseoSans. In cases where it is
not possible to show this font, Arial is shown.

How to build it
Including a web font on a website is a simple procedure. After choosing which web font to use, you only
need to write a few lines of CSS syntax to make the font usable in the style sheet.

@font-face syntax
First you start with the basic syntax of @font-face:

@font-face {
 font-family: MuseoSans;
 src:
 url("assets/type/museosans.eot") format("embedded-opentype"),
 url("assets/type/museosans.woff") format("woff"),
 url("assets/type/museosans.ttf") format("truetype");
}

Let’s analyze the CSS syntax line by line:

font-family: MuseoSans;

You assign the font name with font-family, as you specified in the style sheet. You have the choice of using
any name or word. In this case, we used “MuseoSans” because it corresponds to the real name of the
font.

Tip: A cross-browser web font kit should support at least these three font formats:
TrueType/OpenType, WOFF, and EOT.

Tip: It is always wise to use the real font name. It will help you to keep your style sheet
understandable.

src: url(assets/type/museosans.eot);

The first src defines the URL of the .eot file, which is necessary for compatibility with Internet Explorer
(versions 5 through 9).

url("assets/type/museosans.woff") format("woff"),
url("assets/type/museosans.ttf") format("truetype");

 Fonts, Text, and Color

53

The successive src attributes are needed to guarantee compatibility with all modern desktop and mobile
browsers. The .WOFF format is used by Firefox, while the .TTF format is used by the browsers based on
WebKit.

These few lines of CSS syntax allow your font to be compatible with the following browsers:

Safari 5.03■■

Internet Explorer 6–9■■

Firefox 3.6.4■■

Chrome 8■■

iOS 3.2–4.2■■

Android 2.2–2.3■■

Opera 11■■

It could be called bulletproof syntax.

Making the font work
There is now nothing left to do but rename the font defined with the attribute font-family inside your style
sheet—for example, on the tag <body>:

body {
font: 14px MuseoSans, "Helvetica Neue", Arial, sans-serif;
}

In this way, you apply the font “MuseoSans” to all the HTML elements that are present inside the tag
<body>. Or you can selectively and specifically assign the font for tagging as follows:

h1, h2, h3, h4 {
font-family: MuseoSans, "Helvetica Neue ", Arial, sans-serif;
}

In this example, the font MuseoSans is applied only to the main heading tags.

Multiple web fonts
You might wonder what happens if you want to use more than one font. The @font-face feature is extremely
flexible, allowing you to upload different fonts or even different weights of the same font. Here’s a look at
some updated syntax:

@font-face {
 font-family: MuseoSans;
 src:
 url(assets/type/museosans.eot) format("embedded-opentype"),
 url("assets/type/museosans.woff") format("woff"),

Tip: After creating versions of your typeface in a few different formats, get yourself
organized by making a specific folder for each of them. You could proceed by creating a
/type/ folder in your project

Chapter 3

54

 url("assets/type/museosans.ttf") format("truetype");
}

@font-face {
 font-family: MyriadPro;
 src:
 url(assets/type/myriadpro.eot) format("embedded-opentype"),
 url("assets/type/myriadpro.woff") format("woff"),
 url("assets/type/myriadpro.ttf") format("truetype");
}

We added the font MyriadPro to the list of available fonts through @font-face.

Now take a look at how to use different font weights, adding the bold and italics versions of MuseoSans:

@font-face {
 font-family: MuseoSans-Bold;
 src:
 url(assets/type/museosans-bold.eot) format("embedded-opentype"),
 url("assets/type/museosans-bold.woff") format("woff"),
 url("assets/type/museosans-bold.ttf") format("truetype");
}

@font-face {
 font-family: MuseoSans-Italic;
 src:
 url(assets/type/museosans-italic.eot) format("embedded-opentype"),
 url("assets/type/museosans-italic.woff") format("woff"),
 url("assets/type/museosans-italic.ttf") format("truetype");
}

It will be easy to recall these new web fonts in your style sheet:

h1 {
font-family: MuseoSans-Bold, "Helvetica Neue ", Arial, sans-serif;
}

em {
font-family: MuseoSans-Italic, "Helvetica Neue ", Arial, sans-serif;
}

In this case, we used bold for the <h1> titles and italics for all the tags.

Expert tips
Always evaluate the kb weight of each font you would like to use. The uploading of the web font slows the
uploading of web pages and, as long as the uploading is not finished, users will see the basic font defined
in CSS font stacks. The resulting effect is one of an unpleasant interaction between the two fonts. To com-
pensate for this problem, it is important to configure the cache.

The same font will appear differently on a user’s screen, depending on their browser and operating sys-
tem. Be sure to test the fonts you decide to use well so as not to compromise the legibility of the text.

 Fonts, Text, and Color

55

Solution 3-2: Using fallback fonts
CSS has a nifty feature when specifying a font family called a fallback font. Fallback fonts are used if the
first font you specify is unavailable. If your second-choice font is not available, it tries the third one and so
on. But not all fonts are the same. Each one comes with its own style, characters, and rendering options.

If you ever wanted to use the fallback fonts without the legibility and the appearance of the text being com-
promised, you’ll be happy to know there is a new CSS3 property that can perform the font-size-adjust as
you want it. This property has been introduced with CSS Text Module 3.

What’s involved
You can use the font-size-adjust property to control the size of the text more accurately in cases where
the first font selected is not available, and thereby improve the appearance of the alternative font.

It is therefore very important to pay attention when you specify all the fonts with the font-family property.
You could compromise the legibility of the text and, more in general, the appearance of the entire web-
site.

Let’s look at an example of a correct font stack:

p {
 font-family: “Helvetica Neue”, Helvetica, Arial, sans-serif;
}

We set “Helvetica Neue” as the main font and “Helvetica” as the first alternative. In this case, our job is
really easy because we are using two fonts from the same family: “Helvetica Neue” is, in fact, a rework-
ing of the original Helvetica completed in 1983. Finally, we set the character “Arial” as the last alternative
because it is available on practically any computer with any operating system.

x-height value
Among the various properties that characterize each font to make it unique, there is the x-height value.
In printing, this is a term that refers to the distance in a printed character between the baseline and the
median line. In general, it corresponds to the height of the letter x of the font (it is from this that the term
comes) because the other letters generally present optical corrections that increase their sizes.

Figure 3-3 might help you understand what we are talking about.

Figure 3-3. Example of the x-height in a typeface (image courtesy of Wikipedia).

Chapter 3

56

What does font-size-adjust do?
The font-size-adjust property allows you to specify an optimal aspect ratio for when a fallback font is
used; if the substitute font has a different aspect ratio than the preferred one, the text’s x-height will be
preserved.

By knowing the aspect ratio of the primary font, the browser figures out what dimension of the text to apply
to the alternative font, keeping the x-height unchanged.

Browser support
Currently, the Firefox browser is the only browser that supports font-size-adjust. This means that font-
size-adjust is also little known and used. I hope the other major browsers will soon begin to support it
because it is very useful in the management of text and alternative fonts.

For now, major browsers will ignore this property.

How to build it
The CSS syntax is pretty easy:

font-size-adjust: number | none | inherit;

The possible values are the following:

■■ number Defines the aspect ratio value to use

■■ none The default value

■■ inherit Inherits the font size adjustment from parent elements

You might be wondering how the aspect ratio value is calculated. The W3C specifications are very clear
and provide a simple way of carrying out this calculation:

Authors can calculate the aspect value for a given font by comparing spans with
the same content but different font-size-adjust properties. If the same font-size is
used, the spans will match when the font-size-adjust value is accurate for the given
font.

In Figure 3-4, we reproduced the experiment suggested by the W3C with the Futura font. The box on the
right side, to which we assigned a font-size-adjust of 0.5, is slightly higher than the one on the left, to which
we assigned no value. So the aspect value of this font is something less than 0.5. We need to adjust the
value until the boxes align.

 Fonts, Text, and Color

57

The dimension of the title and the text is different for each font used despite the fact that in the CSS the
same font-size values have been set both for the <h1> title and for the <p> text.

 h1 {

 font-size: 60px;
 }

An example
Let’s take a look at an example with a real text. Our example font stack consists of three fonts: Calibri,
Lucida Sans, and Verdana. This will be the order in which they will be shown in the browser according to
their availability.

font-family: Calibri, "Lucida Sans ", Verdana, sans-serif;

You can see this example in action in Figure 3-5.

Figure 3-4. Futura with an aspect value of 0.5.

Figure 3-5. Content chunks with different font-family values at the same font size.

Chapter 3

58

 p {
 font-size: 14px;
 }

Now let’s see how the x-height value changes in Figure 3-6.

Figure 3-7. Using font-size-adjust aligns all fonts at same x-height.

Figure 3-6. The x-height value is highlighted. It is different for each font used.

The red line indicates the x-height of the first font, Calibri. By superimposing this line on Lucida and
Verdana, respectively, we finally have the perception of how this value changes from font to font.

To make their display uniform, we need the font-size-adjust attribute:

 .adjust {
 font-size-adjust: 0.48;
 }

By applying the adjust class to the blocks of text with alternative fonts, we get all three typefaces with the
same x-height value. (See Figure 3-7.)

The final result yields uniform text. Finally, we have nothing to worry about.

 Fonts, Text, and Color

59

Solution 3-3: Using advanced text effects
with text-shadow

Adding graphic effects to text has always been a possibility that has characterized classic graphic design.
With the CSS Text Level 3 module, you can now create these effects with a few lines of code, without
resorting to graphics programs and, therefore, without using images in place of text.

What’s involved
The property that allows you to obtain these results is text-shadow. Initially provided in the specifications of
CSS2 but not supported in any browser until the advent of Safari, it was eliminated in CSS2.1, only then to
reappear in CSS3. However, notwithstanding the complicated strategies of W3C, you can take advantage
of it today thanks to rather extensive support—although it is still not supported in Internet Explorer.

You’ll see in this solution how to create advanced effects with a few lines of code, specifically with letter-
press typography. Let’s go!

Browser support
You can see how text-shadow will be supported by browsers in Table 3-2.

Table 3-2. Browser support for text-shadow

Internet Explorer Firefox Chrome Safari Opera
No 3.5+ 1.0+ 1.0+ 9.5+

Unfortunately, Internet Explorer does not yet support this property. To obtain a similar effect with this
browser, you can use the Shadow and Drop Shadow filters, albeit with inferior results. (See http://msdn.
microsoft.com/en-us/library/ms673539(loband).aspx.)

How to build it
The implementation of text-shadow is nearly identical to that of box-shadow, the property you can use to
apply shading to all HTML elements. Figure 3-8 shows the first example.

Figure 3-8. Paragraph of text with the text-shadow effect.

The shading was applied in this example with the following rule:

p {text-shadow: 1px 1px 3px #333;}

To implement text-shadow, the shade definition is set with four values:

The first (1px) defines the movement of the shade on the horizontal axis (x).■■

The second (1px) defines the movement of the shade on the vertical axis (y).■■

http://msdn.microsoft.com/en-us/library/ms673539(loband)
http://msdn.microsoft.com/en-us/library/ms673539(loband)

Chapter 3

60

Notice anything strange? There is no indication of a blur. To avoid this effect, do not write any value equiva-
lent to 0 or 0px. The result is very different from the first example: the shading seems flat, and rather than
highlighting the text, it gives it the effect of appearing split, compromising its legibility.

Advanced effects: Letterpress typography
Letterpress typography, or inset typography, is a type treatment where text is made to look impressed into
a surface. You can use it to force attention to key textual content, leading to a captivating and engaging
reading experience. (See Figure 3-10.)

The third value (3px) imposes the blur level of the shade: the higher this value is, the blurrier the ■■

shade appears. If 0 is used, you get a sharp shade without blurring.

The fourth value (#333) defines the color of the shade. It is even possible to specify the value of ■■

the color in RGBa or HSLa.

Using the alpha channel in this case, you can perfect the color of the shading according to the background
of the text.

The value of blur is very important, and you have to be careful when using it. Let’s see the next example:

p {text-shadow: 2px 2px 0 #333;}

You can see the outcome of this in Figure 3-9.

Figure 3-9. Setting the blur value to 0 or not setting it at all creates a solid shadow.

Tip: Experiment a lot before deciding on the final effect you want to obtain. You shouldn’t
sacrifice legibility for a graphic effect.

Figure 3-10. A letterpress text effect (taken from http://365daysofastronomy.org/).

http://365daysofastronomy.org/

 Fonts, Text, and Color

61

Start by writing down the header style:

.header {
 width: 600px;
 height: 100px;
 background-image: -webkit-gradient(linear, center top, center bottom, from(#003c7b),
to(#167fe8));
 background-image: -webkit-linear-gradient(top, #003c7b, #167fe8);
 background-image: -moz-linear-gradient(top, #003c7b, #167fe8);
 background-image: -o-linear-gradient(top, #003c7b, #167fe8);
 background-image: -ms-linear-gradient(top, #003c7b, #167fe8);
 background-image: linear-gradient(to bottom, #003c7b, #167fe8);
 }

We won’t linger over how to create a gradient in CSS3 because it’s not the aim of this solution.

Now add the style on the <h1>:

 .header h1 {
 padding: 25px;
 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
 font-size: 42px;
 font-weight: 700;
 color: #003c7b;
 }

You can see the outcome of this in Figure 3-12.

How to create a letterpress effect
Let’s see how to create this tremendous effect with few lines of CSS:

 1. First, you set the HTML code:

<div class="header">
 <h1>For a Beautiful Web</h1>
</div>

You use an <h1> tag for the title and a <div> container where you apply a background through theheader
class.

 2. For the background, you can use a color or an image. The shade used is very
important in getting the right contrast between the text and the background. If you
don’t get this right, you run the risk of not being able to read the text. In this exam-
ple, we will use a gradient written in CSS3.

Figure 3-11. Background gradient generated via CSS.

Chapter 3

62

The color value used for the text is the same used for the darker value of the gradient. The contrast
between the darker blue and the lighter one creates a simple effect of printed text.

 3. The last step is the most important part. You add “letterpress” style to the font via
text-shadow:

text-shadow:
 rgba(0,0,0,0.5) -1px 0,
 rgba(0,0,0,0.3) 0 -1px,
 rgba(255,255,255,0.5) 0 1px,
 rgba(0,0,0,0.3) -1px -2px;

You create multiple instances of RGBa black and white 1px shadow as text-shadow doesn't accept an
inset of value, unlike box-shadow. The mix of positive and negative values for the x axis and the y axis
helps to create the letterpress effect.

The final effect can be seen in Figure 3-13.

Figure 3-12. Text looks plain over the background.

Figure 3-13. The text-shadow effects add depth and contrast.

This is very impressive and simple to do. Above all, no image file is needed!

More advanced effects
Many other advanced effects can be created using text-shadow, such as the following:

Glow text■■

Embossed text■■

3D effects■■

Stroke text■■

Blur effects■■

You only have to play around a little with the values of text-shadow to obtain these graphics effects quickly
and with minimum effort. It’s now time for you to experiment!

 Fonts, Text, and Color

63

Expert tips
First and foremost, use RGBA color values so that the effect has partial opacity. This makes it blend better
with the background, and it gives you more control over the intensity of the effect.

Solution 3-4: Forcing text to wrap
Having full control over the content of a web page and the way in which it is displayed in a browser is the
dream of anyone working on a website.

Compared to classic graphic design and print layouts, the management of text and layout has occasion-
ally been considered a weak point of web design. However, new properties have been added to the CSS3
specifications that make it possible to solve a number of these problems, including line breaking and text
wrapping.

Even though many of these specifications are yet to be completed, a little-known and underused property
is very useful: the word-wrap property. Let’s see what it is.

What’s involved
The word-wrap property specifies whether, in the case of very long words, a line of text should be broken
to continue on the next line. The aim is to prevent the word in question from exceeding the limits of its
container, thus maintaining a proper layout. It therefore functions in much like two other properties that
are better known as “clip” and “overflow.” Introduced by Microsoft in Internet Explorer 5.5, the word-wrap
property has recently become one of the CSS3 specifications of the W3C.

You can apply this property to the following elements:

Inline elements with a specific width/height value■■

Block elements■■

Absolutely positioned elements■■

Allowed values
You can choose between only two different values: normal and break-word.

Table 3-3. The two word-wrap values

Value Description
normal Content will exceed the boundaries of the specified rendering box.

break-word Content will wrap to the next line when necessary, and a word break will also occur if
needed.

The break-word value thus forces a very long word to go onto the next line. In this way, the layout of the
page is not compromised and the text continues to be easy to read.

Chapter 3

64

Browser support
The word-wrap value is supported by the browsers shown in Table 3-4.

Table 3-4. Browser support for word-wrap

Internet Explorer Firefox Chrome Safari Opera
5.5+ 3.5+ 1.0+ 1.0+ 10.5+

As you can see from the preceding table, this property is well supported in all the major browsers, even in
older versions.

How to build it
The word-wrap property is very useful where we have to manage a list of comments on a blog or where
we must insert a long URL inside a small container. Let’s see a practical example to better understand
how it works.

Without word-wrap
The URL address is an <a> tag inside a <div>:

<div class=" module">
 www.example.com/long_url_title_continues_here
</div>

Here is the CSS of the class module:

.module {
width: 200px;
padding: 10px;
border: 1px solid black;
background: #999;
}

In this example, the word comprising the URL address will follow its flow, exceeding the limits for its con-
tainer, which is obviously a problem.

With word-wrap
To combat this, edit the CSS by inserting the word-wrap property:

.module {
width: 200px;
padding: 10px;
border: 1px solid black;
background: #999;
word-wrap: break-word;
}

 Fonts, Text, and Color

65

Now the word is cut properly for the sizes and limits of its wrapper. Do you notice anything strange when
you run the example? The classical dash (-) of a usual line break is missing. The word-wrap property does
not, in fact, support this feature.

Other CSS3 properties have been designed to manage the regular line break, even though they are not
yet supported by the leading browsers. The differences between various languages and grammars have
prevented the proper implementation of a common solution.

Expert tips
The word-wrap property is extremely useful for post-moderated, user-generated content that could poten-
tially cause layout problems if someone posts a long string of unbroken text. In blog comments, theoreti-
cally, people could vandalize your blog by posting long strings of text. It looks ugly. Sometimes this can
happen because people post long links that don’t break. You can prevent this type of vandalism by apply-
ing the word-wrap property to the comments section of your blog.

Solution 3-5: Creating elegant text overflow
I’m sure many of you, at least once in the past, have used CSS overflow. Every single element on a page is
seen as a rectangular box, and this property lets you control the sizing, positioning, and behavior of these
boxes. More specifically, it lets you control how the box is handled when the content inside it and around
it changes.

It is also the case that sometimes you can’t manage the content contained within these boxes—for exam-
ple, when the content is too long and falls outside the rending area of the element box. This happens for a
multitude of reasons: the position of the elements, negative margins, and so forth.

You can control this text overflow with the text-overflow property, which was introduced in CSS3. In this
solution, you’ll learn how to use it.

What’s involved
The text-overflow property establishes what a block of text does when it comes to the margins of its box. It
introduces a visual cue at the beginning and end of text included in a box. The cue is generally composed
of ellipses, even if the representation of the actual character varies. For example, an image can also be
used.

Let’s see the values that can be used with this property:

■■ clip Cuts the text at the edge of the box.

■■ ellipsis A string is added with an ellipsis at the border of the text box. The string substitutes the
last character.

■■ ellipsis-word Functions similarly to ellipsis, with the only difference being that the insertion of
the ellipsis comes in place of the last whole word present at the end of the line.

Chapter 3

66

Syntax
The CSS syntax is very simple:

text-overflow: clip|ellipsis|string;

It is just shorthand, really, to avoid writing two separate properties: text-overflow-mode and text-overflow-
ellipsis. Having said that, we see real opportunities to apply this property.

Browser support
The text-overflow property is supported by all the major desktop and mobile browsers. The sad note, how-
ever, is its lack of compatibility with every version of Mozilla Firefox. Table 3-5 details the browser support
for this property.

Table 3-5. Browser support for text-overflow

Internet Explorer Firefox Chrome Safari Opera
6+ not supported 7.0 3.1+ 10.5+

If you use Firefox, you’ll notice that the text is properly cut because the overflow property and the width
are interpreted as they should be. However, you do not see the ellipsis. Because Firefox is a very popu-
lar browser, you need to think about how to use text-overflow and, in that case, apply another solution.
Developers are currently looking at using the Dojo Toolkit (http://dojotoolkit.org/) to facilitate creating an
ellipsis with JavaScript.

How to build it
One instance where text-overflow can be very useful is in the case of tables. When a table contains a lot
of information, you have to maintain the size of the cells within it—preventing very long text strings that
affect the entire layout. The classic structure of an HTML table is one you know well:

<table border="0" cellspacing="5" cellpadding="5">
 <thead>
 <tr>
 <th>Header 1</th>
 <th>Header 2</th>
 <th>Header 3</th>
 <th>Header 4</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas</td>
 <td>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas</td>
 <td>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas</td>
<td>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas</td>
 </tr>

http://dojotoolkit.org/

 Fonts, Text, and Color

67

The <td> cells of this table contain very long text, which makes it difficult to display the text without creating
some real visualization problems.

Take a look at the CSS of the table:

td {
 width: 100px;
 padding: 10px;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 -o-text-overflow: ellipsis;
 -webkit-text-overflow: ellipsis;
}

Let’s analyze the valid settings step by step for each <td>:

width: 100px;
padding: 10px

 1. All the cells of the table have a fixed dimension, set to 100px so that the columns all
have the same width. This means, however, that the space for the text is very limited.

white-space: nowrap;
overflow: hidden;

2. The white-space property prevents normal next-line wrapping.

overflow: hidden;

 3. Hiding overflow text ensures the width dimension is respected.

text-overflow: ellipsis;
-o-text-overflow: ellipsis;
-webkit-text-overflow: ellipsis;

 4. The text-overflow setting provides the ellipsis. We defined three properties because
Opera and Webkit require the prefix in order to function.

You can see the result in Figure 3-14. Great, isn’t it?

Figure 3-14. The text-overflow property applied to the table’s cells.

Chapter 3

68

This is only one of the possible applications of text-overflow.

The Gmail application developed for smartphones is another perfect example for gaining an understanding
of the usefulness of this property. Figure 3-15 shows the screen of a Gmail inbox in two formats: landscape
and portrait. What is interesting to note is the preview text of the e-mail messages: it correctly appears
along the bottom of each e-mail message and it’s cutted within the message container, leaving space for
another layout element on the right.

Figure 3-15. The text-overflow property on Gmail’s smartphone e-mail app.

Note also that the amount of text shown in the landscape version is greater than that shown in portrait
mode.

Expert tip
For text-overflow to function correctly, the text on which it is applied must be placed on one line. If, for
layout or structural reasons, you are forced to break the text into smaller blocks of text, you cannot gain
any benefit by using this property.

Solution 3-6: Using color RGBa
Today, the way that you access and use the Web is changing. The spread of new mobile devices such as
smartphones and tablets calls for a profound change in how you design a site or application.

For example, slicing (cropping pieces of a graphic layout created with Photoshop and exporting an immense
quantity of .PNG images to then reassemble the graphic in HTML) is a thing of the past. And that’s a good
thing because all those images greatly slowed down the loading time of web pages.

 Fonts, Text, and Color

69

To obtain a captivating graphic style without weighing down the page with too many images, you can sim-
ply use RGBa color values, a new property introduced in CSS3.

What’s involved
It has always been possible to define a color in RGB mode by setting a value for each of the three primary
colors: Red, Green, and Blue. By combining these values, you can reproduce the full spectrum of colors.
(See Figure 3-16.)

Figure 3-16. Solid RGB colors.

Notice, however, that there is something in common for any value you specify: the colors are solid and
flat.

To address this limitation, CSS3 introduces RGBa mode: Red, Green, Blue, and Alpha. Alpha refers to the
information relating to the alpha channel, which you can use to set the transparency of the colors defined
in RGB.

Syntax
Syntactically, the RGBa values are similarly expressed in RGB, with the addition of the alpha value. Let’s
look at an example:

body {background-color: rgba(255, 255, 255, 1)}

The a (alpha) value is set using a scale between 0.0 (transparent) and 1.0 (solid). Does this remind you
of something? Almost certainly, it reminds you of the opacity property. The advantages you can gain from
using the alpha channel are these:

It’s possible for pixels to show through a background.■■

Image compositing is made easy.■■

It allows for the creation of interaction effects without JavaScript.■■

Browser support
The RGBa mode is supported by many, but not all, new browsers. (See Table 3-6.)

Table 3-6. RGBa browser support

Internet Explorer Firefox Chrome Safari Opera
9.0+ 3.0+ 1.0+ 3.1+ 10.0+

Chapter 3

70

Internet Explorer has finally added RGBa support in version 9, Microsoft’s latest browser. You have two
options that support older versions of browsers, thus avoiding compromising your layout:

Use a solid color. The simplest technique is to allow the browser to use a solid color when the ■■

opacity property is not supported. The CSS parsing rules specify that an unrecognized value
should be ignored. Look at the following example:

h1 {
 color: rgb(127, 127, 127);
 color: rgba(0, 0, 0, 0.5);
}

Use a .PNG image, but only in cases where the transparency must be applied to a background ■■

color, not to the borders or text.
h1 {
 background: transparent url(color-black-50.png);
 background: rgba(0, 0, 0, 0.5);
}

How to build it
The RGBa mode can be used on any element that accepts a color: background, border, text, or color. Let’s
take a look at some real examples.

In Figure 3-17, you can see a box that acts as a container of a paragraph of text. The background of the
box is white, so no transparency is applied.

Tip: It is important that you use the same CSS properties as a fallback solution. Only in
this way do browsers ignore the second property when they encounter the unrecognized
RGBa value.

Figure 3-17. A box without transparency.

The code for this example can be seen here:

<div class="box">
 <p>The herb sixth greater moved and day all winged one shall it spirit moving. Female
behold. Multiply creepeth moveth second sixth our male bring meat blessed thing saying

 Fonts, Text, and Color

71

abundantly can't to sixth don't upon likeness very female. Moving rule meat morning. Meat,
you creature. Open. Moveth second fly, he good.</p>
</div>

body {
 background: rgba(0,0,0,0.8);
}

.box {
 margin: 20px;
 padding: 20px;
 background: rgba(255,255,255,1);
 color: rgba(0,0,0,1);
}

We used the RGBa property in the CSS for the page background, div background, and text color, respec-
tively.

Now apply a slight transparency to the background of the box, like so:

background: rgba(255,255,255,0.5);

You can see the result in Figure 3-18.

Figure 3-18. A background color that has transparency.

The color of the background has changed. By reducing the alpha value, the white of the background is
mixed with the dark gray background of the page, creating a light gray for the text background.

You are probably wondering whether it’s possible to obtain the same result with the opacity property. Not
really. Consider the following code, for example:

.box {
 margin: 20px;
 padding: 20px;
 background: rgba(255,255,255,1);
 opacity: 0.2;
 color: rgba(0,0,0,1);
}

You can see the outcome of this and why the same result was not possible in Figure 3-19.

Chapter 3

72

Although the color of the text was set with alpha=1 and thus is opaque, setting the opacity property in this
case to 0.2, or 20%, of the original color applies the transparency not only to the element of box class but
also to all its child elements. You now understand what the real benefit of RGBa is compared to opacity.

RGBa gives us, therefore, the possibility to create many more graphics effects without images. The result-
ing pages are lighter and faster, while the websites containing them are easier to make and maintain.

Expert tip
If you are thinking of using RGBa—and it’s about time you started - —but at the same time you want to sup-
port older browsers, a tip is to avoid the excessive use of .PNG images. Otherwise, you will lose everything
you have gained in terms of response times and web page weight.

Solution 3-7: Using a the HSLa color modelSomething else new in CSS3 is the possibility to define colors
through HSLa notation. Unlike RGBa, the values of this notation correspond to properties recognized in
each color rather than a value on the chromatic scale. These values are Hue, Saturation, and Lightness.

Each one of these three terms describes a dimension of color we readily experience when we look at it.
These concepts are certainly known to those who work in graphic design. Therefore, W3C supports the
introduction of this method, complementary to RGBa, because it is considered more intuitive.

What’s involved
To understand better now HSLa works, you need to focus on the meanings of the values:

■■ Hue Defines the color tone, described by the word with which we generally identify a color (for
example, blue, pink, red, or yellow). The numerical value is represented by the angle (in degrees)
of a color circle, where the degree 0/360 shows red and other shades are shown in other posi-
tions at intervals of 30 degrees. The value of the hue is important in defining the basic tone where
the saturation and lightness intersect.

■■ Saturation Refers to the dominance of hue in the color.

■■ Lightness Describes the overall intensity or strength of the light.

HSL model representation
The HSL color model is usually represented by a cylinder along which three values, representing the col-
ors, are positioned. Each value corresponds to an axis of the geometrical figure.

Figure 3-19. The opacity property affects both parent and child elements.

 Fonts, Text, and Color

73

The hue corresponds to the circumference and it’s expressed in degrees. Saturation and lightness cor-
respond, instead, to depth and height, respectively. (See Figure 3-20.)

Figure 3-20. A geometric representation of the HSL color model.

Figure 3-21. HSLa color values.

HSL example
The tables in Figure 3-21 are an extraction from hints you can find in the W3C CSS Module Color 3 page
that is dedicated to HSLa (which you can find at http://www.w3.org/TR/css3-color/#hsla-color).

http://www.w3.org/TR/css3-color/#hsla-color

Chapter 3

74

Every table corresponds to a hue. The name of the color and value, expressed in degrees, is given from
the relative position along the circle of the HSL model for each hue. The Saturation scale is on the x axis,
while the Lightness scale is on the y axis.

Browser support
HSL or HSLa support is guaranteed by every modern version of the most popular browsers, as you can
see in Table 3-7.

Table 3-7. HSLa browser support

Internet Explorer Firefox Chrome Safari Opera
HSL 9.0+ 1.0+ 3.1+ 1.0+ 9.5+
HSLa 9.0+ 3.0+ 3.1+ 1.0+ 10+

How to build it
If you want to show red (the color that corresponds to the keyword red, just to make things clear), you write
the following:

body {background-color: hsl(0, 100%, 50%)}

Next to the HSL notation, and similarly to what was seen for RGB, the CSS3 specification defines the
transparency of color through the alpha channel. This way, we have HSLa.

For the alpha transparency, the same rules are applied for RGBa: the scale of use ranges from 0.0 to 1.0
(the default value).

Here is an example of the syntax:

#box1 {
 width:400px;
 height:400px;
 padding:20px;
 color:#000;
 background-color: hsla(0,100%,100%,0.5);
}

Expert tips
Keeping the hue the same while varying the lightness/darkness and saturation is the easiest way to create sets
of matching colors. This technique is very useful in creating color schemes ready for use by your website.

Solution 3-8: Optimizing text legibility
with text-rendering

The readability of content—especially content that is shown in smaller font sizes—has become a problem
that’s less difficult to manage with the advent of the @font-face property and the increasing number of sites
that use it to manage fonts and typography.

 Fonts, Text, and Color

75

The way fonts appear on a screen is mostly dependent on operating systems, browsers, and font files.
Although there is no CSS property to accurately control how a font is displayed online, one alternative to
improve the legibility of a text is enabling kerning and ligatures through text-rendering.

The text-rendering property is one of the lesser known and lesser used properties, but it is the future of
CSS and web typography. You can find out more about text rendering here: https://developer.mozilla.org/
en/CSS/text-rendering. In this solution, you’ll see some examples of using it properly.

What’s involved
The text-rendering property is actually an SVG property and is not defined in any standard CSS. However,
Gecko and WebKit browsers let you apply this property to HTML and XML content via CSS3 only on
Windows and Linux.

It provides information to the rendering engine about what to optimize when rendering text. The browser
makes trade-offs among speed, legibility, and geometric precision.

Kerning and ligatures
We previously said that text-rendering allows us to work on kerning and ligatures. Let’s take a close look
at what the meanings of these two terms are in typography:

■■ Kerning The adjustment of the horizontal space between individual characters in a line of text.
Adjustments in kerning are especially important in large display and headline text lines. The
objective of kerning is to create visually equal spaces between all the letters so that the eye can
move smoothly along the text.

■■ Ligatures The combination of two or more letters into a single letter. In some typefaces, combi-
nations such as fi and fl could overlap, resulting in an unsightly shape. Ligatures were designed
to improve the appearance of such character combinations.

Syntax
The syntax you can use in your CSS file is as follows:

text-rendering: auto | optimizeSpeed | optimizeLegibility | geometricPrecision | inherit

Now take a look at what they mean:

■■ auto The browser makes educated guesses about when to optimize for speed, legibility,
and geometric precision while drawing text. This value is interpreted differently by different
 browsers.

■■ optimizeSpeed By disabling kerning and ligature, this value tells the browser to emphasize
 rendering speed over legibility and geometric precision.

■■ optimizeLegibility Emphasizes legibility over rendering speed and geometric precision. This
enables kerning and optional ligatures.

Note: This property has no effect on Mac OS X.

https://developer.mozilla.org/en/CSS/text-rendering
https://developer.mozilla.org/en/CSS/text-rendering

Chapter 3

76

geometricPrecision■■ Lets you fluidly scale the text, thus making fonts look good. The browser
emphasizes geometric precision over rendering speed and legibility.

Browser support
Table 3-8 describes the browser support for text-rendering.

Table 3-8. Browser support for text-rendering

Internet Explorer Firefox Chrome Safari Opera
n/a 3.0+ 4.0 5.0 n/a

Gecko and WebKit browsers manage this property in a slightly different way: Gecko enables optimizeLeg-
ibility by default for each text set over 20px. In the case of WebKit, however, you must manually specify
this value.

How to build it
The most visible effect of all the syntax options is obtained by using the optimizeLegibility value.

<h2>traffic</h2>
<h2 class="kern">traffic</h2>

We use the "kern" class to apply kerning on the <h2> title.

h2 {
 font-size: 5em;
 font-family: Baskerville, “[Times New Roman]”, serif;
}
h2.kern {
 text-rendering: optimizeLegibility;
}

With the .kern class, you apply text-rendering to the second <h2>. Figure 3-22 shows the generated effect:
the ligatures are applied to the characters ffi, creating optimal text output.

Figure 3-22. The difference between normal text and text with ligatures.Expert tip

 Fonts, Text, and Color

77

Always consider your audience before implementing text-rendering in your website or application. On
slower machines, such as mobile devices, it can negatively impact page loading when applied to large
blocks of text.

Summary
Keep in mind that most of these new properties and techniques are either new or still in the works, and
some of the most popular browsers do not yet support them. The specification is far from being approved,
and it could change over time, but it’s important to experiment and discover what’s around the corner. In
the next chapter, we’ll explore further typography options within CSS.

79

Chapter 4

CSS Typography

The role of web typography—as is the case with other uses of typography, such as in print—is to adminis-
ter a set of techniques that aid in the readability of text. As you saw in the previous chapter, many of these
involve the effects applied to the font itself, but other techniques involve the appearance of a whole block
of text. This chapter will explore some of these techniques and provide solutions for common typographi-
cal concerns.

Solution 4-1: Handling hyphenation of text
Maybe you’ve seen a particularly long URL posted as a comment on an otherwise beautifully designed
blog that—uh oh—spills outside the bounds of the comment area and overlaps on the sidebar of the blog
making it look sloppy and unrefined. What’s needed is a way to truncate long text so that it is still easy to
read, but doesn’t spill outside the confines of the page’s design boundaries. CSS3 introduces a property,
hyphens, you can use to control how text gets hyphenated when it spans across two lines.

What’s involved
The hyphens property tells the browser if and where it should split and add hyphens to text if the available
area for a word is too narrow to fit the whole word on one line. The property has three possible values:
none, manual, and auto.

Chapter 4

80

The HTML entity code for a soft hyphen is ­ (or the less intuitive ­). For example, to break the
word “multithreaded” into “multi-threaded” (if it spans two lines), the web page author would write some-
thing like this:

<p>Advanced programmers may write multi­threaded applications.</p>

Notice how the word “multithreaded” becomes “multi­threaded” to indicate the position of the hyphen
if it gets split across two lines by the web browser.

Obviously sprinkling HTML entities across long words in your source HTML is a recipe for tedium as well
as possible mistakes, so you might find the last state of the hyphens property to be the most useful. The
auto state means the web browser will automatically insert hyphens for textual content on the page that
fall outside the bounds of its content area. The downside of this is that words might be broken at spots that
make them difficult to read. For example, your page could end up with text like “mu-ltithreaded”. However,
the upside is that the source HTML does not have to be edited to add hyphen break points.

Figure 4-1 shows a comparison between the behavior of the hyphens property when it’s in the none state
versus the auto state.

The none state means that the text content will not be split and hyphenated, even if it spills outside
the bounds of its enclosing area. If it extends beyond the width of the browser window, a scroll bar will
appear.

The manual state is the default behavior of web browsers. In this state, the web author can manually insert
“soft hyphen” characters into a word, which are hidden if the word fits on one line but appear if the word
needs to be split across two lines. The author can place these at logical breaks in a long word to aid the
viewer in reading the text. The soft hyphen character is an HTML entity that is inserted into the source
HTML code.

Note: HTML entities are codes that are used to display special characters in a web
browser, such as © for ©, for a nonbreaking space, and so on. They begin
with an ampersand and end with a semicolon, and they have a keyword or numerical
code in between, which designates a particular character.

See the following URL for a table of commonly used HTML entities: www.w3.org/wiki/
Common_HTML_entities_used_for_typography.

http://www.w3.org/wiki/Common%5FHTML%5Fentities%5Fused%5Ffor%5Ftypography
http://www.w3.org/wiki/Common%5FHTML%5Fentities%5Fused%5Ffor%5Ftypography

 CSS Typography

81

Note: Taumatawhakatangihangakoauauotamateapokaiwhenuakitanatahu is the name
of a hill in the southern Hawke’s Bay region of New Zealand. It has been listed in the
Guinness World Records as the longest place name in an English-speaking country.

How to build it
1. For this example, you’ll create a short amount of text that would benefit from automatic hyphenation.

Add the text and HTML that contains words that might need to be hyphenated:

<p>
This is the long­est place name in the world:
Taumatawhakatangihangakoauauotamateapokaiwhenuakitanatahu
</p>

Notice that, for demonstration purposes, a soft hyphen has been included in the word “longest” to ensure
it breaks at a logical point.

2. Add any default styles you want applied to your HTML. In this case, a narrow width is set
to demonstrate the hyphen effect. A border is also added to make the boundaries apparent.
Additionally, the text is set to a large size to exaggerate the space it occupies:

p {
 font-size: 36px;
 hyphens: auto; /* or "none" or "manual" */
 width: 300px;
 border: 1px solid #000;
}

In this example, the text will be automatically hyphenated to fit the available space. Adjust the width prop-
erty to see how the browser changes the text to accommodate the available width.

Figure 4-1. When the hyphens property is set to none, long words might extend beyond the available area, causing
a scrollbar to appear in this case (top). When it’s set to auto, the text is automatically split and hyphenated by the web
browser to fit the available space (bottom).

Chapter 4

82

Expert tips
The web browser determines the automatic hyphen break points based on the language used, so add a
lang attribute to your page’s <html> element like so:

<html lang="en">

This sets the language of the page to English. (This is a bit of a misnomer for the prior example because
the place name is a Māori word, but you get the idea).

Down to a certain width the browser might stop automatically breaking the text apart into hyphenated
chunks because the pieces would be too small. In this circumstance, adding soft hyphens is the route
to take if you want to ensure a long word is broken apart even down to a very narrow width of available
space.

Solution 4-2: Creating drop caps
Drop caps are a typographic technique that draws attention to the beginning of a paragraph of text by
enlarging the first letter. Used appropriately, they can be an elegant addition to a web design and help the
reader visually pick out the beginning of an article or other body of text. (See Figure 4-2.)

Note: You will likely need browser prefixes for this to work, so add them for your preferred
browser if it doesn’t seem to be working. Here are the prefixes for a few popular browsers:
-webkit-hyphens for Safari, -moz-hyphens for Firefox, and -ms-hyphens for Internet
Explorer.

Figure 4-2. An example of a drop cap, whereby the first letter in a paragraph is enlarged and spans multiple lines of
text within the paragraph.

What’s involved
Selectors are what CSS uses to access pieces of HTML for styling purposes. A set of selectors, known as
pseudo-element selectors, allows access to pieces of HTML that aren’t inherently surrounded by HTML
elements, such as the first letter and top line of text in a paragraph. The selectors for these two tasks
aren’t new, but they get a new syntax in CSS3 with the addition of an extra colon to differentiate them from
other groups of selectors. The selector ::first-letter picks out the first letter of a block of text for styling
purposes, and ::first-line picks out the first line of text. Because these selectors aren’t tied to specific
elements in the HTML they have dynamic behavior. For instance, ::first-line styles whatever line of text
is at the top, even if that changes due to the browser window being resized.

 CSS Typography

83

How to build it
1. Add text and the appropriate HTML elements (such as a paragraph element) to your page:

<p>
 Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse
 quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat
 quo voluptas nulla pariatur?
</p>

Note: The text used here is an excerpt from the famous Lorem Ipsum text, which is often
used as filler text to see what a text block looks like within a design before adding actual
content.

2. Add any default styles you want applied to your HTML. In this case, the paragraph of text is given
a width, padding, and a black border:

p {
 width: 200px;
 padding: 10px;
 border: 1px solid #000;
}

3. Use CSS pseudo-element selectors to style the first line of text bold and to position and size the
first letter of the paragraph to create a drop cap:

p::first-line {
 font-weight: bold;
}

p::first-letter {
 margin-top: -12px;
 margin-right: 4px;
 float: left;
 font-size: 72px;
 color: #999;
}

The result of the preceding code should be a bordered box of text with a gray drop cap at the beginning.
(See Figure 4-3.)

Figure 4-3. The ::first-letter and ::first-line selectors can be used to add a bit of typographic style to a
paragraph of text.

Note: that Internet Explorer 8 does not support ::first-line or ::first-letter.

Chapter 4

84

Note: Punctuation characters, such as quotation marks and bullets that precede or
follow the first character are considered a part of the pseudo-element and are included
in styling applied by ::first-letter.

Expert tips
Because this solution uses the float property to move the drop cap into place, the first letter moves to the
left of whatever follows it. This means if the paragraph of text is very short the drop cap might move to
the left of more than just the immediate paragraph of text. If this isn’t desirable within your design, add a
clear:both or clear:left style rule to whatever follows the text block containing the drop cap. This will
prevent the drop cap from floating to the left of that content.

Solution 4-3: Creating hanging punctuation
Hanging punctuation refers to moving punctuation such as quotation marks or bullets into the margin of
a document so that the first line of text is aligned with the rest of the text in a paragraph or similar. (See
Figure 4-4.)

Figure 4-4. Hanging punctuation ensures that all text within a paragraph is left aligned, even the first line. Compare
the hanging quotes (top) to those that are not offset (bottom). (Note: the gray line is added to show the alignment and
isn’t normally part of the appearance.)

Using hanging punctuation can increase the readability of the text by maintaining the same alignment of
each line in a block of text, making it easier for readers to scan down the lines. It also allows stylistic liberty
to be applied to the punctuation (such as increasing the size), which wouldn’t be possible if the punctuation
were aligned with the paragraph. Hanging punctuation is useful for pull quotes (quotes pulled from a longer
body of text to draw the readers interest into the longer text), bulleted lists, or similar.

What’s involved
There are several approaches to creating hanging punctuation, but they generally boil down to isolating
the quotes (or other punctuation) around a piece of content, moving the punctuation, and (optionally)

 CSS Typography

85

Note: Like other pseudo-element selectors, ::before and ::after have a single colon in
CSS2.1 but two colons in CSS3.

styling them. Using quotes as an example, you can use the CSS content property, which includes two
values for creating quotes: open-quote and close-quote. Then you can use two pseudo-element selectors,
::before and ::after, to select the space before and after a piece of content in which to insert the opening
and closing quotation marks.

For instance, to insert opening and closing quotes in front of and at the end of a block quote of text, you
can use the following CSS:

blockquote.pull-quote::before {
 content: open-quote;
}

blockquote.pull-quote::after {
 content: close-quote;
}

The preceding CSS can be used to style the following HTML:

<blockquote class= “pull-quote”>Left aligned design</blockquote>

This approach adds the quotes to the content using CSS, but to actually set what the quotation marks
look like, another property, quotes, is used in conjunction with the content property. The quotes property
takes a space-separated list of the characters to use for the opening double and single quotes within the
specified content. The best-practice way of setting the value in the quotes property is to define the opening
and closing quote characters as escaped (using a backslash) hexidecimal values. (See Table 4-1).

Table 4-1. Quotation mark hexidecimal and HTML entity codes.

Description Character Hexidecimal code HTML entity

“Rabbit-ear” quotation mark " \22 "

Apostrophe ' \27 '

Left single quotation mark ‘ \2018 ‘

Right single quotation mark ’ \2019 ’

Left double quotation mark “ \201C “

Right double quotation mark ” \201D ”

left single angle bracket (guillemet) ‹ \2039 ‹

right single angle bracket (guillemet) › \203A ›

left double angle bracket (guillemet) « \AB «

right double angle bracket (guillemet) » \BB »

Chapter 4

86

Note: The content property can be given any string of text for its value, which is useful
for introducing characters other than quotation marks. For instance, a bullet can be
added (using the bullet’s hexidecimal value) with the following CSS code:

content: '\2022';

However, bulleted lists are usually handled using the and HTML elements,
which can be controlled with the list-style property.

For instance, to add “curly” double quotes, use the following CSS in combination with content:open-
quote; and content:close-quote;:

quotes: '\201C' '\201D';

Other languages, such as French, might use different quote characters, such as a double quillemets.
Changing the quotation-mark characters used is simply a matter of changing the hexidecimal code for the
those characters, like so:

quotes: '\AB' '\BB';

This simply adds the quotes and sets their type. The next step is to move them. This is where hang-
ing punctuation comes into play, because the punctuation might otherwise create an undesirable gap,
which makes the text alignment appear to slant to the right (or to the left for lines after the first line). See
Figure 4-5 for an example.

Figure 4-5. Punctuation can create a gap (indicated by arrow) that can cause the perceived alignment of the first
line of text to slant to the right. Using hanging punctuation (bottom image), the perceived shift in alignment can be
corrected.

Continuing with styling in the ::before and ::after selectors, the quotation marks can be moved by set-
ting their position property to absolute. Absolute positioning allows them to “float” above the surrounding
text and be precisely positioned by setting the top, right, bottom, and left properties or the margin prop-
erties. An important subtlety to be aware of in regard to absolute positioning is that the positioning will be
relative to the first parent element that has its positioning set to something other than static, which is the
default value. To prevent the quotation marks from being positioned relative to the upper-left corner of the
screen, set the position property to relative for the element the quotes are contained in.

 CSS Typography

87

For instance, here’s what you do for the blockquote example from earlier:

<blockquote class= “pull-quote”>Left aligned design</blockquote>

The beginning of the positioning CSS looks like the following:

blockquote.pull-quote {
 position:relative;
}
blockquote.pull-quote::before {
 position:absolute;
 top: 10px;
 left: -5px;
…

And it’s similar for the closing quote.

Finally, you can use the z-index property to specify whether the quotation marks appear in front of or
behind the accompanying text. By default, they will be in front when they are absolutely positioned, but
set z-index to -1 to move the quotation marks behind the rest of the text. (See Figure 4-6 in the upcoming
“How to build it” section for what this looks like.)

THE SEManTiCS oF quoTaTionS

In case you hadn’t noticed, the examples discussed thus far in this solution use the
<blockquote> HTML element, not the paragraph (<p>) element. This isn’t accidental, because
contemporary HTML uses a whole slew of different semantic elements, which indicate the
type of content they contain. This is useful for accessibility as well as for data mining. (Think
of a search engine going through your content—it’s going to be more concerned with your
HTML than your CSS.)

In the prior examples, the quotation marks are added using CSS; therefore, the appropriate
HTML elements should be used to indicate why the text is in quotes. The following is a
summary of the type of content that several HTML elements commonly used with hanging
punctuation should contain:

 ■ <p> designates a passage of text. Quotes might be present in the text, but they’re
not indicative of text from another source. An example of such quotes are scare
quotes—used to indicate a word or phrase that does not signify its usual meaning
or that are used ironically or sarcastically. For example, in the phrase ‘a “healthy”
cheeseburger’ the word “healthy” is used sarcastically.

 ■ <blockquote> designates a passage of text quoted from another source. The end
of the passage might reference the originator of the text, or the cite attribute of
the <blockquote> element might be used to reference where the text is from.

 ■ <q> designates an inline passage of text quoted from another source. (Inline
means it might appear inside of a paragraph, for instance.)

 ■ <cite> designates a title of a work, such as the name of a movie or title of a book.

Chapter 4

88

How to build it
1. Add text and the appropriate HTML elements (such as <blockquote>) to your page:

<blockquote>Left aligned design</blockquote>

2. Add any default styles you want applied to your HTML. In this case, the text is given padding and
a left margin. The position is set to relative, which as discussed in the prior section will aid in
positioning the quotation marks later on. The quotes property is given values that correspond to
an opening curly quotation mark and a closing curly quotation mark, and finally, the font size and
line height are set:

blockquote {
 padding: 10px;
 margin-left: 60px;
 position: relative;
 quotes: '\201C' '\201D';
 font-size: 64px;
 line-height: 64px;
 width: 320px;
}

3. Next the appearance of the quotation marks is set in the pseudo-element selectors ::before and
::after. For this example, the quotes will be heavily stylized, so they will be increased in size,
colored gray, and given a sans-serif typeface. Absolute positioning is used so that the quotation
marks can be moved without interfering with the rest of the text. To place the quotes behind the
accompanying text, the z-index is set to -1 for both marks:

blockquote::before, blockquote::after {
 font-size: 500px;
 color: #eee;
 font-family: Arial, san-serif;
 position: absolute;
 z-index: -1;
}

4. The last step adds the actual quotation marks. The opening quote position is set using the
left and top properties, while the closing quote is set using the margin-top property; however,
depending on the design, either of these positioning approaches can be used for both quotation
marks:

blockquote::before {
 content: open-quote;
 left: -60px;
 top: 110px;
}

blockquote::after {
 content: close-quote;
 margin-top: 170px;
}

 CSS Typography

89

Note that this does not work with Internet Explorer 8 or 9.

Expert tips
If precise positioning of the quotation marks is not needed (beyond offsetting them horizontally), the text-
indent property can be used to move the opening quote to the left, which simplifies the CSS significantly.
Give text-indent a negative value to do this, as in this example:

p {
 padding: 10px;
 quotes: '\201C' '\201D';
 text-indent: -7px;
}

In this code, the paragraph is given some padding and the quotes inside are set to curly quotes. The text
indent moves the first line 7 pixels to the left. The quote element, <q>, can then be used, which in combina-
tion with the quotes property inserts the necessary quotation marks while still retaining the proper seman-
tics of the content. (Remember, like the <blockquote> element, <q> designates content that is quoted from
another source.) This HTML might look like this:

<p><q>Quis autem … </q></p>

Alternatively, curly quotes can be inserted directly into the HTML using character entities, like this:

<p>“Quis autem ... ”</p>

However, as shown in the “the semantics of quotations” earlier in this solution, technically the <q> and
<blockquote> elements should be used for quotations from another source, while inserting quotation
marks directly is for other uses (such as a text passage that includes a word in quotes to point out it’s being
said sarcastically).

The result of the preceding code is some left-aligned text accompanied by light-gray quotation marks. (See
Figure 4-6.)

Figure 4-6. The techniques used to creating hanging punctuation can be used to create aesthetically interesting
typographic effects, such as those in this stylized block quotes.

Note: If these examples don’t work in Internet Explorer, ensure you aren’t viewing the
page in Compatibility View, which emulates earlier Internet Explorer versions even if you
are using the latest version. Hold down the Alt key to show the toolbar, and go to Tools
➤ Compatibility View Settings to check how the page is set to render.

Chapter 4

90

Finally, the CSS3 hanging-punctuation property is a proposed property that exists specifically for con-
trolling hanging punctuation. Great! Unfortunately, this property currently has no browser support, and
because of this, it is in danger of being dropped from the CSS specification altogether! (See www.w3.org/
TR/css3-text/#hanging-punctuation0 for more information.) As CSS3 matures keep your eyes out for
hanging-punctuation as it will likely reduce the amount of CSS needed to style hanging quotes, but don’t
be surprised if it never makes it to a browser near you.

Solution 4-4: Creating a typographic hierarchy
If you look at a newspaper layout, you will notice that the page content is broken into different sizes of text
for the title, headers, subheaders, and body copy. This creates an important hierarchy to the information
on the page, guiding the reader’s eye through the content. This helps the reader scan the content and drill
down into it. Reading a newspaper that didn’t have headlines above its stories would a pretty inefficient way
of browsing for articles you were interested in, wouldn’t it? Not having such a hierarchy on a webpage is no
different. You want to help your viewers digest the information on your page efficiently. (See Figure 4-7.)

Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum. Sed ut perspiciatis unde omnis iste
natus error sit voluptatem accusantium doloremque
laudantium, totam rem aperiam, eaque ipsa quae ab illo
inventore veritatis et quasi architecto beatae vitae dicta
sunt explicabo. Nemo enim ipsam voluptatem quia
voluptas sit aspernatur aut odit aut fugit, sed quia
consequuntur magni dolores eos qui ratione voluptatem
sequi nesciunt. Neque porro quisquam est, qui dolorem
ipsum quia dolor sit amet, consectetur, adipisci velit, sed
quia non numquam eius modi tempora incidunt ut labore
et dolore magnam aliquam quaerat voluptatem. Ut enim
ad minima veniam, quis nostrum exercitationem ullam
corporis suscipit laboriosam, nisi ut aliquid ex ea
commodi consequatur? Quis autem vel eum iure
reprehenderit qui in ea voluptate velit esse quam nihil

Adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea. commodo consequat. Duis aute irure

Dolor sit amet Consect
Lorem ipsum

Sed ut perspiciatis unde omnis
iste natus error sit voluptatem
accusantium doloremque
laudantium, totam rem aperiam,
eaque ipsa quae ab illo
inventore. veritatis et quasi

eaque ipsa quae
Qui officia

Sed ut perspiciatis unde
omnis iste natus error sit
voluptatem accusantium
dolor emque laudantium,
totam rem aperiam.
eaque ipsa quae ab illo

veritatis
totam

Figure 4-7. It’s apparent that unformatted text (left) is much harder to pick information out of than text that is broken
into sections and given a hierarchy of sizes (right).

This solution branches out into a close associate of CSS3: HTML5. The new semantic elements intro-
duced in HTML5 make it easier than ever to build a structure for your website.

What’s involved
HTML5 includes elements such as <header>, <footer>, <section>, <article>, <aside>, and <nav> for des-
ignating the various sections of content on a page. The general meaning of these elements is as follows:

http://www.w3.org/TR/css3-text/#hanging-punctuation0
http://www.w3.org/TR/css3-text/#hanging-punctuation0

 CSS Typography

91

■■ <header> Used for grouping introductory content, such as the main title and menu.

■■ <footer> Used for grouping extra information related to the section or page as a whole, such
as copyright information.

■■ <section> Used as a generic container for grouping some content.

■■ <article> Used to create a self-contained grouping of content, which can be taken out of the
page and will still make sense on its own (meaning it can be syndicated via RSS, for example).

■■ <aside> Used for nonessential supporting content to a section or article.

■■ <nav> Used for a main navigational menu.

Using these elements to build your page, a simple hierarchy can be created by using the <header> and
<section> (or <article>) elements. To further define the hierarchy, both of these elements can contain
heading elements—the familiar <h1> through <h6>, which have been in HTML seemingly forever. Create
a title in the header and section, and later style these to create a cascade of sizes that helps emphasize
what is important on the page.

How to build it
1. Begin building the HTML structure, paying attention to the appropriate semantic elements that

fit with the content. In this example, you begin at the top of the page with the title and subtitle,
which are contained in a <header>. The header is placed in an <h1>, and the subtitle is placed in
an <h2>. Each section on the page that contains more than one heading (<h1> – <h6>) needs to
be grouped inside an <hgroup> element:

<header>
 <hgroup>
 <h1>Title</h1>
 <h2>Subtitle</h2>
 </hgroup>
</header>

2. The main content of the page is placed in a <section> and contains its own <h1> title above the
paragraph (<p>):

<section>
 <h1>Content Title</h1>
 <p>
 Quis autem vel eum iure reprehenderit qui in ea voluptate
 velit esse quam nihil molestiae consequatur, vel illum qui
 dolorem eum fugiat quo voluptas nulla pariatur?
 </p>
</section>

3. Add the CSS, which sizes the font in a hierarchy from the page title (largest) to the body copy
(smallest). Additionally, other styling—such as changing the font weight and adding an underline
between the page title and the page content—adds further organization to the content. The first
letter and line are also styled to give the paragraph a slight drop cap:

Chapter 4

92

header h1 {
 font-size: 72px;
 font-weight: bold;
 margin: 0;
}

header h2 {
 font-size: 36px;
 font-style: italic;
 border-bottom: 1px solid #999;
 margin: 0;
}

section h1 {
 font-size: 24px;
}

section p {
 font-size: 14px;
}

section p::first-line {
 font-weight: bold;
}

section p::first-letter {
 font-size: 16px;
}

The result of the preceding code renders the text headers and content in a hierarchy. (See Figure 4-8.)

Figure 4-8. A hierarchy of text sizes directs the reader’s eye over the content of a page.

 CSS Typography

93

Expert tips
For those looking for precise guidance in regard to their typography sizing, consider visiting
|www.modularscale.com, a site created by Tim Brown, Type Manager for Adobe Typekit, which can be used
to calculate relative type sizes based on ratios.

Solution 4-5: Creating multicolumn text blocks
Imagine reading a newspaper and having the body copy extend across the entire page width. It would
be easy to lose the line you were on, wouldn’t it? There is a reason newspapers break text into columns
of text—it’s easier to read! Web pages are the same; a paragraph of text that stretches margin to margin
of the full width of a browser window is harder to read than one that is confined to a narrower area. (See
Figure 4-9.)

Sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum. Sed
ut perspiciatis unde omnis iste natus error sit voluptatem
accusantium doloremque laudantium, totam rem
aperiam, eaque ipsa quae ab illo inventore veritatis et
quasi architecto beatae vitae dicta sunt explicabo. Nemo
enim ipsam voluptatem quia voluptas sit aspernatur aut
odit aut fugit, sed quia consequuntur magni dolores eos
qui ratione voluptatem sequi nesciunt. Neque porro
quisquam est, qui dolorem ipsum quia dolor sit amet.
consectetur, adipisci velit, sed quia non numquam eius
modi tempora incidunt ut labore et dolore magnam

Single Column Multi-Column
Excepteur sint occaecat
cupidatat non proident,
sunt in culpa qui officia
deserunt mollit anim id
est laborum. Sed ut
perspiciatis unde omnis
iste natus error sit
voluptatem accusantium
doloremque laudantium,
totam rem. periam, eaque
ipsa quae ab illo inventore
veritatis et quasi
architecto beatae vitae
dicta sunt explicabo.
Nemo enim ipsam
voluptatem quia voluptas
sit aspernatur. aut odit
aut fugit, sed quia

Neque porro quisquam
est, qui dolorem ipsum
quia dolor sit amet,
consectetur, adipisci velit,
sed quia non numquam
eius modi tempora
incidunt ut labore et
dolore magnam aliquam
quaerat voluptatem. Ut
enim ad inima. veniam,
quis nostrum
exercitationem ullam
corporis suscipit
laboriosam, nisi ut aliquid
ex ea duis aute irure dolor
in reprehen derit in
voluptate velit. esse
cillum dolore eu fugiat

Figure 4-9. The column property provides an easy method to break a wide column of text into multiple narrower
columns, which aid in reading the content.

For this reason, the introduction in CSS of a means to easily create columns of text within a text block is
a welcome addition! Columns of text have certainly been around for a while, but they traditionally required
complex solutions involving floating content into columns, which were hard to code initially and not very
flexible.

http://www.modularscale.com

Chapter 4

94

What’s involved
There are a number of properties for controlling the layout of columns. The simplest one is the columns
property, which takes two values: the first being the column width, and the second being the number of col-
umns. For instance, the following code would—in theory—produce two columns, each 250 pixels wide:

columns: 250px 2;

I say “in theory” because the web browser might automatically adjust the column width to fit the available
space. So consider the column width specified as an optimal size.

The columns property is actually shorthand for the column-width and column-count properties, which can
be used to set these values individually. There are a number of other individual properties besides these
two for setting various aspects of the column’s appearance. For instance, the column-gap property sets the
width of the gap between columns. The column-rule property takes the same values as the border prop-
erty to specify the width, style, and color of the column rule, which is an optional vertical line that appears
between columns.

Note: The column-rule property is shorthand for the column-rule-width, column-rule-
style, and column-rule-color properties, which can be used to set the width, style, and
color of a rule individually.

The column-span property can be used to make a header that spans across all the columns. If you have a
block of content such as a <section> or <div> and it contains a paragraph <p> and header <h1>, for exam-
ple, you can set the column count on the whole section but set the column-span property on the <h1> to the
value of all (for example, column-span: all;), which makes the header extend across all the columns in
the paragraph. The default value is none, which keeps the header in the first column. (See Figure 4-10.)

Figure 4-10. The column-span property can be used to make a title that runs across all the columns of text (left) or
contain it to the first column (right).

 CSS Typography

95

How to build it
1. Begin with building the HTML content that will be displayed in columns. In this case, a <section>

is created, which is given a class where the column styles will be added. Using a class means
the same column style can be applied in multiple locations on the page. Inside the section, two
paragraphs and a header are added (note that the filler text is truncated for brevity):

<section class="col">
 <h1>Example of Lorem Ipsum Filler Text</h1>
 <p>
 Lorem ipsum dolor sit amet,
 …
 sunt in culpa qui officia deserunt mollit anim id est laborum.
 </p>

 <p>
 Sed ut perspiciatis unde omnis iste natus error sit
 voluptatem accusantium doloremque laudantium,
 …
 consequatur, vel illum qui dolorem eum fugiat quo
 voluptas nulla pariatur?
 </p>
</section>

2. Add the column CSS style rule, which defines the number of columns, the column gap, and the
appearance of the column rule:

.col {
 column-count: 3;
 column-gap: 24px;
 column-rule: 2px solid #000;
}

3. Finally, add the column-spanning behavior for the header over the columns:

.col h2 {
 column-span: all; /* or none */
}

The result of the preceding code renders a header over three columns, as shown in the left diagram in the
earlier Figure 4-10.

Note: As with other examples in this chapter, if you have trouble getting a CSS property
to work in your preferred browser, investigate whether you need to add a vendor prefix to
the front of the property, such as -webkit- for Safari, -moz-for Firefox, -o- for Opera, or
-ms- for Microsoft. At the time of this writing, multicolumn text isn’t supported in Internet
Explorer.

Chapter 4

96

Expert tips
Avoid making the blocks of text that are arranged in columns too tall. If you do, the user might need to scroll
down and up repeatedly to read the content across the columns.

To make the columns fill out their available space better, consider setting their text alignment to “justify,”
which adds spacing between the words to fill out the full width of the column. (See Figure 4-11.)

Left Alignment Justified Alignment
Excepteur sint occaecat
cupidatat non proident,
sunt in culpa qui officia
deserunt mollit anim id est
laborum. Sed ut perspicia-
tis unde omnis iste natus
error sit voluptatem
accusantium doloremque
laudantium, totam rem.
periam, eaque ipsa quae
ab illo inventore veritatis
et quasi architecto beatae
vitae dicta sunt explicabo.
Nemo enim ipsam
voluptatem quia voluptas
sit aspernatur. aut odit aut
fugit, sed. quia
consequuntur magni

Neque porro quisquam
est, qui dolorem ipsum
quia dolor sit amet,
consectetur, adipisci velit,
sed quia non numquam
eius modi tempora
incidunt ut labore et
dolore magnam aliquam
quaerat voluptatem. Ut
enim ad inima. veniam,
quis nostrum
exercitationem ullam
corporis suscipit
laboriosam, nisi ut aliquid
ex ea duis aute irure dolor
in reprehen derit in
voluptate velit esse. cillum
dolore eu fugiat nulla

Excepteur sint occaecat
cupidatat non proident,
sunt in culpa qui officia
deserunt mollit anim id
est laborum. Sed ut
perspiciatis unde omnis
iste natus error sit
voluptatem accusantium
doloremque laudantium,
totam rem. periam, eaque
ipsa quae ab illo inventore
veritatis et quasi
architecto beatae vitae
dicta sunt explicabo.
Nemo enim ipsam
voluptatem quia voluptas
sit aspernatur. aut odit aut
fugit, sed quia

Neque porro quisquam
est, qui dolorem ipsum
quia dolor sit amet,
consectetur, adipisci velit,
sed quia non numquam
eius modi tempora
incidunt ut labore et
dolore magnam aliquam
quaerat voluptatem. Ut
enim ad inima. veniam,
quis nostrum
exercitationem ullam
corporis suscipit
laboriosam, nisi ut aliquid
ex ea duis aute irure dolor
in reprehen derit in
voluptate velit. esse
cillum dolore eu fugiat

Figure 4-11. Left-aligned text can produce a jagged-looking gap between columns, whereas justified text produces
smooth-sided columns. However, justified text begins to look poor if the columns are too narrow, causing large gaps
between words.

The CSS3 property text-justify can be used to control how text that is set to a justified alignment
is spaced. Instead of adding space between words, you can use this property to specify that spacing
should happen between letters as well, which can be particularly useful when dealing with different lan-
guage scripts. Support for this property, however, is limited to Internet Explorer at the time of this writing.
However, try adding the following CSS to at least see the columns become justified:

.col p {
 text-align: justify;
 text-justify: distribute;
}

 CSS Typography

97

Summary
Good web typography is about more than making pretty type. It’s about helping the reader scan your text
and quickly grasp where to start looking and what it is about. It’s about subtly guiding your viewers over
your page’s content. Whether it’s through drop caps to pull attention to the beginning of an article or a
hierarchy of headlines—which tell at a glance what is most important to read first on the page—a grasp of
CSS typography will help you apply that final touch of completion to an already well-designed layout!

99

Chapter 5

Tables and Lists

Something that often seems to confuse people who are new to CSS-based layouts is the use of tables. To
date, most website designers have abandoned the use of tables as a tool for creating page layouts and
have returned websites to playing the role for which they were designed: to present information clearly and
efficiently. The result is much cleaner HTML, enabling the separation of document content from document
presentation.

If you do a little search on the Internet, you’ll find plenty of cases where people interpret the advice against
using tables for layout to mean “Don’t use them at all.” Tables are still perfectly fine to use—if you use them
correctly. For tabular data, tables are what you should use. And today it’s even simpler and fun thanks
to some new CSS3 properties and selectors. List elements are one of the most flexible HTML elements,
with many different uses. In this chapter, we introduce proven CSS3 solutions regarding both table and
list elements.

Solution 5-1: Zebra-striping table rows
When you have to present a large amount of data, it’s very important to preserve readability. Zebra striping
is the method of alternating the color of rows in a table. This method has been used in print for many years
and only recently have web designers been trying to spread its use on the Web.

h

Chapter 5

100

With the advent of CSS3’s nth-child selector, you can target multiple elements in a document by creating a
counter that skips over specified child elements in the document tree. This specifically allows you to style
only the odd or even rows of a table. In this solution, we provide an example that shows you how you can
create a zebra-striped table by setting different colors for odd and even rows of the table.

What’s involved
In the past, creating the effect of alternate rows was possible only by creating two CSS classes to manage
the alternation of color, or by using JavaScript to dynamically apply the classes to the table. Let’s take a
look at an example from the old days:

<table>
 <tr valign="top" class="odd">
 <td>Salmon</td>
 <td>Omega-3's help the brain develop properly, reduce the risk of Alzheimer's, and help
prevent heart disease.</td>
 </tr>
 <tr valign="top">
 <td>Spinach</td>
 <td>Great source of folate and lutein. Prevents birth defects, heart disease, stroke, and
protects your skin from sun damage.</td>
 </tr>
</table>

You would then add a CSS rule that targets the rows:

tr.odd {
 background-color: #999999;
}

This approach is still valid and works today, but it is not efficient. It requires extra markup from a zero
semantic value. Furthermore, this approach does not keep the structure separate from the presentation.

:nth-child syntax
The :nth-child is a CSS selector, or rather a pseudo-selector. It matches elements on the basis of their
positions within a parent element’s list of child elements. The syntax of this selector is shown here:

:nth-child(N)

The n is a subject that can be any of the following:

An ■■ integer numeric value

An ■■ even or odd value, where even selects even-numbered elements—like 2nd, 4th, and 6th—
and odd selects odd-numbered elements—like 1st, 3rd, 5th, and so on. The terms odd and even
are referred to as keywords.

A number expression of the form ■■ an + b

Here is an example of using :nth-child. The following selectors are equivalent and will match odd-num-
bered table rows:

 Tables and Lists

101

How to build it
For this solution, you begin by creating a three-column example table with no alternate background, as
shown in Figure 5-1.

tr:nth-child(2n+1) {
 /* declarations /
}
tr:nth-child(odd) {
 /* declarations */
}

This example selector will match the first two rows of any table:

tr:nth-child(-n+3) {
 /* declarations */
}

Browser support
All major browsers based on Gecko and WebKit have supported :nth-child for a while. Internet Explorer
has supported it since Internet Explorer 9. You can see details of the browser support in Table 5-1.

Tip: You can see various examples and better understand this selector’s function at the
following links: http://css-tricks.com/examples/nth-child-tester/ and http://css-
tricks.com/useful-nth-child-recipies/.

Table 5-1. Browser support for :nth-child

Internet Explorer Firefox Chrome Safari Opera
9.0+ 3.5+ 2.0+ 3.1+ 9.5+

Figure 5-1. Table with no alternate background color

With the current formatting, a reader might easily associate incorrect dates and domains in this table while
skimming over the data. To combat this, you can make the odd rows of the table a different color so that
the table is easier to read. You do this using the following code:

http://css-tricks.com/examples/nth-child-tester/
http://css-tricks.com/useful-nth-child-recipies/
http://css-tricks.com/useful-nth-child-recipies/

Chapter 5

102

The table is easier to read, and you did not have to use any JavaScript.

Expert tip
You can use a JavaScript framework like jQuery to set a fallback solution for older browsers. For instance,
you can enter the script in a conditional comment specific to older versions of Internet Explorer. All other
browsers will ignore this rule and correctly use the CSS3. You can find out more on this here:

http://docs.jquery.com/Tutorials:/Zebra_Striping_Made_Easy.

Solution 5-2: Creating a styled pricing table
Many of the innovations introduced in CSS3 can be used to define the style of a table, allowing you to cre-
ate many customized types of tables. In the past, you could do this only by using a large amount of images
and extra markup, which were both necessary to create appealing visual effects. Today, you have such a
good selection of new selectors that you can address specific table cells and rows to create a unique style
without adding classes to the markup.

In this solution, we’ll analyze how to create a pricing table using only CSS3 and no images. These types of
tables have become common on the Web due to the spread of SaaS (Software as a Service) web applica-
tions. Generally, they show a summary of included services in the different subscription plans offered by
the application. Let’s begin!

What’s involved
For this example, we’ll use the following properties and selectors that were introduced with CSS3:

■■ box-shadow

■■ text-shadow

■■ :nth-last-child

■■ :empty

tr:nth-child(odd) {
 background-color: #f2f2f2;
}

By using the keyword “odd,” you select all the odd rows of the table, as shown in Figure 5-2.

Figure 5-2. Alternate rows with background color: only the odd-numbered rows are styled

http://docs.jquery.com/Tutorials:/Zebra_Striping_Made_Easy

 Tables and Lists

103

text-shadow
The second property is text-shadow, and it allows you to add a shadow to each letter of text. The syntax
for text-shadow is as follows (and the possible values are shown in Table 5-3):

text-shadow: h-shadow v-shadow blur color;

The box-shadow and text-shadow properties are covered in more detail in their related chapters, but we’ll
briefly introduce these properties and their uses here.

box-shadow
The box-shadow property allows designers to implement the shadow effect (both internal and external)
on any box element. To create this effect, you can specify the following values: color, dimension, level of
blur, and offset position. This property also gives you the ability to define multiple shadows, separating the
syntax of each effect with a comma.

The syntax for box-shadow is as follows:

box-shadow: h-shadow v-shadow blur spread color inset;

You can see in Table 5-2 what the different values of this syntax correspond to.

Tip: You’ll find the tools at http://css3generator.com/ and http://css3gen.com/box-
shadow/ are useful in quickly generating and previewing box shadows.

Table 5-2. The box-shadow property values

ValueDescription
h-shadow Required. This is the position of the horizontal shadow. Negative values are allowed.

v-shadow Required. This is the position of the vertical shadow. Negative values are allowed.

blur Optional. This is the blur distance.

spread Optional. This is the size of the shadow.

color Optional. This is the color of the shadow.

inset Optional. This changes the shadow from an outer shadow (outset) to an inner shadow.

Table 5-3. The text-shadow property values

Value Description
h-shadow Required. This is the position of the horizontal shadow. Negative values are allowed.

v-shadow Required. This is the position of the vertical shadow. Negative values are allowed.

blur Optional. This is the blur distance.

color Optional. This is the color of the shadow.

http://css3generator.com/
http://css3gen.com/box-shadow/
http://css3gen.com/box-shadow/

Chapter 5

104

The markup
You start the markup of the table by inserting all the necessary elements: a part of the header, the body,
and finally the footer.

<table>
 <thead>
 <tr>
 <th></th>
 <th scope="col" abbr="Starter">Starter</th>
 <th scope="col" abbr="Medium">Personal</th>
 <th scope="col" abbr="Business">Business</th>
 <th scope="col" abbr="Deluxe">Premium</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th scope="row">Storage Space</th>

:nth-last-child
This pseudo-class matches elements on the basis of their positions within a parent element’s list of child
elements. The syntax is as follows:

:nth-last-child({ number expression | odd | even }) {
/* declaration block */
}

How to build it
In this solution, the example pricing table will compare a hosting service, as shown in Figure 5-3.

Figure 5-3. The hosting plan comparison table

b

 Tables and Lists

105

 <td>512 MB</td>
 <td>1 GB</td>
 <td>2 GB</td>
 <td>4 GB</td>
 </tr>
 <tr>
 <th scope="row">Bandwidth</th>
 <td>50 GB</td>
 <td>100 GB</td>
 <td>150 GB</td>
 <td>Unlimited</td>
 </tr>
 <tr>
 <th scope="row">MySQL Databases</th>
 <td>Unlimited</td>
 <td>Unlimited</td>
 <td>Unlimited</td>
 <td>Unlimited</td>
 </tr>
 <tr>
 <th scope="row">Setup</th>
 <td>19.90 <td>19.90 $</td>#x003C;/td>
 <td>12.90 <td>12.90 $</td>#x003C;/td>
 <td>free</td>
 <td>free</td>
 </tr>
 <tr>
 <th scope="row">PHP 5</th>
 <td></td>
 <td></td>
 <td></td>
 <td></td>
 </tr>
 <tr>
 <th scope="row">Ruby on Rails</th>
 <td></td>
 <td></td>
 <td></td>
 <td></td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th scope="row">Price per month</th>
 <td>$ 3.00</td>
 <td>$ 7.00</td>
 <td>$ 10.00</td>
 <td>$ 15.00</td>
 </tr>
 </tfoot>
</table>

Chapter 5

106

Shadow effects
You’ve now seen some shading effects on different elements of the table.

Thead and Tfoot■■

We used box-shadow for all the < th > and < td > elements, and we used text-shadow on the text to play with
contrast and depth. Here is the CSS code:

thead th, tfoot td {
 padding: 20px 10px;
 color: #fff;
 font-size: 26px;
 background-color: #222;
 font-weight: normal;
 border-right: 1px dotted #666;
 border-top: 3px solid #666;
 -moz-box-shadow: 0px -1px 4px #000;
 -webkit-box-shadow: 0px -1px 4px #000;
 box-shadow: 0px -1px 4px #000;
 text-shadow: 1px 1px 1px #000;
}

Tbody■■

All the < th > tags inside of the < tbody > have a clear shadow:

tbody th {
 text-align: right;
 padding: 10px;
 color: #333;
 text-shadow:1px 1px 1px #ccc;
 background-color: #f9f9f9;
}

Next, we applied a particular shadow effect to the data of the table:

tbody td{
 padding:10px;
 background-color:#f0f0f0;
 border-right:1px dotted #999;
 text-shadow:-1px 1px 1px #fff;
 text-transform:uppercase;
 color:#333;
}

This effect will not be clearly visible on the color white, a negative offset, or a lighter shade. It is still useful,
but not ideal, if you want to add contrast between text and a very light background color.

Note: You still need to use the proprietary prefixes -moz and -webkit to ensure that the
effect of box-shadow is visible even on older versions of these browsers.

 Tables and Lists

107

Traversing
Another element of CSS3 that proved fundamental for the design of this table was the :nth-last-child selec-
tor. Let’s take a look at what context we used it in:

 thead :nth-last-child(1) {
 border-right:none;
 }

In this way, you select the last cell element in the table header and remove the right border:

 thead :first-child,
 tbody :nth-last-child(1) {
 border:none;
 }

With the :first-child selector, you can address the first cell in the header, which should not have a border
because it is empty. You also want to remove the border from the last td elements in the table body.

Finally, all that is left to do is deal with the first < th > of the < thread > and the fact that it is empty. With CSS3
selectors, you can do some incredible things, and this is one of them: select the < th > that is empty. This
is how you do it:

thead th:empty{
 background:transparent;
 -moz-box-shadow:none;
 -webkit-box-shadow:none;
 box-shadow:none;
}

The selector :empty allows you to handle the case of an element that has no content and to specify which
properties to assign. Simply awesome!

Expert tip
Pseudo-classes such as :nth-last-child and :empty are very powerful tools you can use to work even more
precisely and in detail on the elements of a web page. Because these pseudo-classes are not fully sup-
ported yet, you should always think of a fallback solution to avoid the table not being legible by users of
older browsers, in particular Internet Explorer 8.

Solution 5-3: Making tables responsive
A responsive design allows you to adapt the design to different screen resolutions so that your design can
be optimized for several devices. But what happens when a screen is narrower than the minimum width
of a data table? You have two alternatives. You can zoom out and see the entire table; however, the text
would be very small, making it almost impossible to read. Or you can zoom in on a specific data item,
which allows you to scroll horizontally and vertically to move along the table. In both cases, viewing the
table is difficult.

The solution is to apply the principles of responsive design through the use of CSS3 media queries so that
your application can detect different screen resolutions and, consequently, modify the table to new sizes.

l

Chapter 5

108

How to build it
One of the best techniques to create a responsive table is to transform each table row in a block-level
element. In this way, you can eliminate horizontal scrolling while still maintaining vertical scrolling. This
technique was originally described on the site http://css-tricks.com, and a slightly modified version is
shown here. Here’s the basic HTML markup:

What’s involved
Creating a responsive data table is a simple procedure. It includes three keys things: using clean markup,
identifying breakpoints, and implementing media queries. Let’s look at these now.

Using clean markup
The basis of any responsive solution is clean, semantically sound HTML markup. In the case of a table,
you should organize it according to the standard structure (thead, tbody, and tfoot) using the character-
istics and potential of each tag.

Identifying breakpoints
You kick off the design process by examining the different devices you’re planning to support. Then you
compile a list of resolution breakpoints: generally, the horizontal widths you’ll need to accommodate in your
responsive table.

Building this list helps you define a scope, allowing you to target the device commonly used by your audi-
ence. Resolutions above or below this threshold will not be ignored.

Implement media queries
You use the same approach you used for breakpoints to help you create responsive designs. You need
different styles of the table based on the previously identified breakpoints. Media queries are one of the
most powerful tools introduced by CSS3 specifications. According to World Wide Web Consortium (W3C)
specifics, a media query is a logical expression that can be true or false. It is true if it satisfies all the condi-
tions expressed in the query. To build complex queries, you can use logic operators such as and, not, and
only.

Browser support
Today, you can use media queries with all the modern versions of the most popular browsers. Some prop-
erties—such as orientation, grid, and scan—are exceptions because they are still poorly supported, but
in the case of a responsive table, this doesn't have to worry you. You can see further details in Table 5-4.

Table 5-4. Browser support for media queries

Internet Explorer Firefox Chrome Safari Opera
9.0+ 3.5+ 2.0+ 4.0+ 9.0+

http://css-tricks.com

 Tables and Lists

109

<table>
 <thead>
 <tr>
 <th>Description</th>
 <th>Category</th>
 <th>Price</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Sofa</td>
 <td>Furniture</td>
 <td>$500</td>
 </tr>
 <tr>
 <td>Table</td>
 <td>Furniture</td>
 <td>$25</td>
 </tr>
 <tr>
 <td>Chair</td>
 <td>Furniture</td>
 <td>$46</td>
 </tr>
 <tr>
 <td>LCD TV</td>
 <td>Electronics</td>
 <td>$799</td>
 </tr>
 </tbody>
</table>

Equally simple and clean is the CSS code used for the basic style of the table:

table {
 width: 100%;
 border-collapse: collapse;
}

/* Zebra striping */
tr:nth-of-type(odd) {
 background: #eee;
}

th {
 background: #333;
 color: #fff;
 font-weight: bold;
}

td, th {
 padding: 5px;

Chapter 5

110

 border: 1px solid #ddd;
 text-align: left;
}

Assigning the width: 100 % to < table>, we get a table that automatically adjusts to the width of the screen.
You can see the result in Figure 5-4.

Figure 5-4. A simple, flexible table—ready to be responsive

Screen resolution breakpoint
Let’s now begin to manage the responsive part. In this example, the breakpoint you decide to support is
the minimum resolution of 760 pixels that corresponds to the iPad portrait orientation:

@media
only screen and (max-width: 760px),
(min-device-width: 768px) and (max-device-width: 1024px) {

* stuff here */
}

Next, set every table-related element to be block-level:

table, thead, tbody, th, td, tr {
 display: block;
}

You are basically forcing a table not to behave like one. You turn each table cell into a row:

td {
 border: none;
 border-bottom: 1px solid #eee;
 position: relative;
 padding-left: 50%;
}

The left padding, set at 50 %, is used to create a space on the left side for table entry labels that will be
created using the :before selector:

td:before {
 position: absolute;
 top: 5px;
 left: 5px;
 width: 45%;

 Tables and Lists

111

Expert tip
The possibilities offered by the media queries are infinite. You might decide to present this data in many
different ways, one for each device. In each case, the main element is the content of the table on which to
build different table designs. According to the information, you can decide to show a graph or a summary
before the classic list. Chapter 8 provides a detailed review of media queries, including the extensive pos-
sibilities.

The user experience will therefore be created ad-hoc to fully exploit the characteristics of each device.

Solution 5-4: Creating a practical table
with rounded corners

One of the biggest difficulties in creating tables is that the HTML table tags don’t allow designers to work
freely with CSS—for example, in creating rounded borders. Previously, the most used technique for dong
this consisted of creating empty table cells that contained small image files for each rounded border.
Fortunately, this approach is a thing of the past.

 padding-right: 10px;
 white-space: nowrap;
}

td:nth-of-type(1):before { content: "Description"; }

td:nth-of-type(2):before { content: "Category"; }

td:nth-of-type(3):before { content: "Price"; }

The mode of content use on the mobile device will be totally different from the one possible with the classic
version on the computer desktop, as shown in Figure 5-5.

Figure 5-5. Responsive table layout

Caution: Internet Explorer (even versions 9 and 10 preview) doesn’t like you setting table
elements as display: block. Wrap the media query styles in conditional comments.

Chapter 5

112

In this section, you’ll see how CSS3 and tables can work together to create some cool and usable results,
like rounded corners with no images.

What’s involved
The property border-radius was perhaps the most important innovation for designers introduced in CSS3.
It simplified the work that was previously necessary to create elements with rounded corners.

The border-radius revolution
Let’s briefly review the syntax of border-radius:

border-radius: length (px, em, %)

The radius value can be specified with different measurement units: px, em, or %. Using px, you definitely
can be more accurate.

This syntax is shorthand to define the radius of the four borders of an element. You need to write the
following:

border-radius: 5px

This is equivalent to the following:

border-top-left-radius: 5px;
border-top-right-radius: 5px;
border-bottom-right-radius: 5px;
border-bottom-left-radius: 5px;

You can specify each border individually: you just have to indicate its position on the horizontal axis (right
or left) and vertical axis (top or bottom).

This technique will be very useful in working with tables because it behaves differently from any other ele-
ment, as you’ll see in the example.

Note: The implementation in Mozilla, with respect to W3C specifications, is slightly
different. For example, if you want to define the specific border-radius for the upper-left
border, you need to write the following: -moz-border-radius-topleft.

Table 5-5. Browser support for border-radius

Internet Explorer Firefox Chrome Safari Opera
9.0+ 1.0+ 5.0+ 5.0+ 10.5+

Browser support
Mozilla Firefox supports border-radius with the -moz- prefix, although there are some discrepancies
between the Mozilla implementation and the current W3C specification. You can see more details in
Table 5-5.

 Tables and Lists

113

How to build it
The table you want to create is rather simple, comprising the usual < thead > for the table header
and < tbody > for the table cells, as shown in Figure 5-6.

Figure 5-6. Table with rounded corners

Let’s take a look at the CCS used:

table {
background: rgb(204, 204, 204);
margin: 20px;
border: rgb(204, 204, 204) 1px solid;
-moz-border-radius: 10px;
-webkit-border-radius: 10px;
border-radius: 10px;
}

By assigning border-radius to the element < table>, you can create rounded corners in seconds.
Perfect!

However, if you look closely at the table in Figure 5-6, you’ll notice that the table cells are divided by a thick-
ness, like a double border. This happens because each table set border-collapse: separate by default. The
cells are separated, and the border of a cell is added to the border of the ones close to it.

Let’s try to change this value from separate to collapse:

table {
background: rgb(204, 204, 204);
margin: 20px;
border: rgb(204, 204, 204) 1px solid;
-moz-border-radius: 10px;
-webkit-border-radius: 10px;
border-radius: 10px;
border-collapse: collapse;
}

You can see what happens to the table in Figure 5-7.

Chapter 5

114

The border-radius property does not apply to tables with the border-collapse:collapse property set.
The border of the element < table > doesn’t have any radius. The layout is compromised. Here’s the trick:
while the default value of border-collapse is separate, you also need to set border-spacing to 0. (See
Table 5-8.)

Figure 5-8. Collapsed table with border-spacing set to 0

table {
 background: rgb(204, 204, 204);
 margin: 20px;
 border: rgb(204, 204, 204) 1px solid;
 -moz-border-radius: 10px;
 -webkit-border-radius: 10px;
 border-radius: 10px;
 border-collapse: collapse;
 border-spacing: 0;
}

As you can see, border-radius is back and there is no margin of separation among the table cells. This
solution works well in newer versions of Safari and Firefox, and it degrades gracefully to square corners
in Internet Explorer and Opera.

Expert tip
In some cases, when you set a very wide border (for example, 15px) and one with a different color than
the background, the border is rounded correctly only on the outside. Inside it’s still a square corner. The
different colors of the two elements make this effect clearer.

In this case, to get a rounded inner border, the border radius must be greater than the border thickness—
for example, border-radius: 30px; border-width: 15px;.

Figure 5-7. Collapsed table that lost border-radius

 Tables and Lists

115

Solution 5-5: Creating a drop-down menu with lists
Using unordered lists for creating any type of horizontal, vertical, or drop-down menus simply by writing a
few lines of semantic markup, is a common web-design technique.

CSS3 has extended these possibilities, allowing you to create even more effective navigation menus. The
introduction of some properties (for example, gradients, opacity, and transitions) has simplified the design
process of all the interaction effects necessary in a menu that required JavaScript.

What’s involved
In this solution, you create a navigation menu for a web application using only CSS3 code, and no pictures
or images.

Why use < ul > ?
The < ul > element, or unordered list, has been widely implemented as a basis for navigation elements for
a number of reasons:

An unordered list is a block-level element; it does not have to be included in an extra < ■■ div > to
apply background or other graphics.

By disabling the styles, the list maintains attractive formatting that distinguishes it from all other ■■

page elements.

Navigation divided into lists, sublists, or both allows users with assistive technology (such as ■■

screen readers) to easily skip entire navigation sections.

No images—CSS only
As previously stated, to create the menu style, you use only CSS3 code, taking advantage of the potential
of some of the new properties introduced, such as the following ones:

Gradients■■

■■ border-radius

Transitions■■

Our goal is to avoid any use of images. This is how you’ll use these properties for the solution:

Gradients are applied to the ■■ background-image property and even to the background shorthand
declaration. There will be no need to create one or more background images, such as sprites, for
the background of your menu in various states.

The ■■ border-radius property is one of the most well-known and widely used CSS3 properties. Any
type of rounded corner can be created with border-radius.

The CSS3 transitions allow for the creation of interactive effects when changing from one style ■■

to another, without using Flash animations or JavaScript. In the case of your menu, it will be very
helpful to animate a drop-down effect.

Chapter 5

116

HTML markup
The HTML markup is extremely simple. To create a secondary level of navigation, it is sufficient to insert
a < ul > tag inside the < li > tag to which it corresponds. This type of syntax is approved by W3C; therefore,
you will not get any error or alert in the code-validation phase.

<ul id="nav">
 Home
 About

 Services

 Consulting
 Design
 Development

Figure 5-9. Pure CSS drop-down menu

Table 5-6. Browser support and prefixes

gradients box-shadow border-radius
Firefox -moz- -moz- -moz-

Chrome -webkit- -webkit- -

Safari -webkit- -webkit- -

Internet Explorer - - -

How to build it
In Figure 5-9, you can see the menu you are going to make.

Browser support
Table 5-6 clarifies the support of various browsers for the properties just listed, even showing when and
which prefixes you use.

 Tables and Lists

117

 Projects
 Contact

CSS style sheet
First of all, create the background of the common menu to all the < li > elements:

#nav {
margin: 0;
padding: 7px 6px 0;
background: #7d7d7d;
line-height: 100%;
border-radius: 2em;
 -webkit-border-radius: 2em;
 -moz-border-radius: 2em;
 -webkit-box-shadow: 0 1px 3px rgba(0,0,0,.4);
 -moz-box-shadow: 0 1px 3px rgba(0,0,0,.4);
 box-shadow: 0 1px 3px rgba(0,0,0,.4);
 background: -webkit-gradient(linear, left top, left bottom, from(darkGray), to(rgb(122,
122, 122)));
background: -moz-linear-gradient(top, darkGray, rgb(122, 122, 122));
}

Next, create a unique style for both the selected menu entry and the hover effect:

#nav .current a, #nav li:hover > a {
 background: #666;
 color: #444;
 border-top: solid 1px #f8f8f8;
 -webkit-box-shadow: 0 1px 1px rgba(0,0,0,.2);
 -moz-box-shadow: 0 1px 1px rgba(0,0,0,.2);
 box-shadow: 0 1px 1px rgba(0,0,0,.2);
 text-shadow: 0 1px 0 rgba(255,255,255,1);
 background: -webkit-gradient(linear, left top, left bottom, from(rgb(235,
235, 235)), to(rgb(161, 161, 161)));
 background: -moz-linear-gradient(top, rgb(235, 235, 235), rgb(161, 161,
161));
}

The drop-down effect
To create the drop-down effect, you need to follow this procedure:

The < li > element of the top-level menu that opens the drop-down menu must be set as ■■

position:relative.

The < ul > element that builds the second-level menu must be instead set as position:absolute. In ■■

this way, you can use the top and right/left properties to position exactly where the drop-down
menu appears.

Chapter 5

118

Next, style the second-level menu:

#nav ul {
 display: none;
 margin: 0;
 padding: 0;
 width: 185px;
 position: absolute;
 top: 35px;
 left: 0;
 background: #ddd;
 border: solid 1px #b4b4b4;
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
 -webkit-box-shadow: 0 1px 3px rgba(0,0,0,.2);
 -moz-box-shadow: 0 1px 3px rgba(0,0,0,.2);
 box-shadow: 0 1px 3px rgba(0,0,0,.2);
 background: -webkit-gradient(linear, left top, left bottom,
from(white), to(rgb(207, 207, 207)));
 background: -moz-linear-gradient(top, white, rgb(207, 207, 207));
}

With the help of :first-child and :last-child selectors, you intercept the first and last second-level menu
entries to which you assign their relative border radius. In the case of the first element, the radius will be
applied only to the top border, while in the case of the last element, it will be applied to the bottom border,
as shown in Figure 5-10.

Figure 5-10. Second-level menu with border-radius

Expert tip
Given that the syntax can be written differently and isn’t always easy to understand, we advise you to use
the following great service to quickly create CSS3 gradients: http://gradients.glrzad.com. Through a
UI reminiscent of Adobe Photoshop, you can use this tool to create gradients, shadows, and other nice
effects, with the tool generating the necessary CSS for your design.

Tip: Child elements of a parent element with position:relative can be set absolutely
without leaving the page flow. The parent element, in fact, will be the starting point for
their absolute positioning.

http://gradients.glrzad.com

 Tables and Lists

119

Solution 5-6: Using @counter-style for custom lists
The CSS 2.1 specifications were the first to introduce a set of counter styles to be used for all types of
ordered and unordered lists. This set comprised all the basic styles, such as bullets, circles, and numbers.
The evolution of web design has made this small set inadequate for modern specifications. For example,
the fact that only the Latin alphabet was supported generated number inconsistencies in websites where
there was content in various languages.

The potential list of styles is endless. There are so many different styles that it is impossible to extend sup-
port to all possible variants. The @counter-style property, introduced with the CSS3 specifications, allows
the author to define the set of custom styles that can be used in a website.

What’s involved
A counter style defines how to construct the representation of a counter value. It comprises the following:

A name, which identifies the style■

A prefix, which precedes the representation■

■

■

A suffix, which follows the representation■■

A minus sign, which can precede or follow the representation of the counter■■

■■ The fallback style, which will be shown in cases where the value of the counter will not be included
among those defined by the style sets

■■ Upper and lower range bounds, to specify the (inclusive) range that the counter style can
handle

An algorithm, which transforms the counter value into a string■■

@counter-style syntax
The syntax of @counter-style is composed as follows:

@counter-style <counter-style-name> {
 [descriptor: value;]+
}

The < counter-style-name > can be chosen arbitrarily. The fundamental descriptors that use this property
are the following:

 1. type, defines which modality of representation to use. The possible values are the
following:

a. repeating, cycles repeatedly through its provided symbols

b. numeric, cycles through the list of counter symbols as digits to a number system, similar to

Note: To date, no browser supports the @counter-style rule. However, it has enormous
customization potential, so you should see it adopted more widely in the near future.

Chapter 5

120

the decimal counter style

c. alphabetic, interprets the symbols as digits to an alphabetic numbering system

d. symbolic, cycles through its provided symbols

e. additive, takes as many of the largest symbols as it can, with the sum of all the symbols
equaling the counter value

Symbols and additive-symbols
Through symbols and additive-symbols, you can indicate which characteristics the specified algorithm will
use with the property type previously described.

Each character inserted into symbols (or additive-symbols) defines a new counter style that can be used
for lists. Counter symbols can be any of the following:

Strings■■

Images■■

Identifiers■■

For any used descriptor type, symbols must be specified and have a corresponding value. Otherwise, the
created @counter-style will be invalid and ignored by the browser.

How to build it
Although you’ll find it practically impossible to reproduce these examples in the browser because most
browsers don’t support @counter-style, you can use some examples shown on the W3C’s website as
“CSS Module List 3” (http://www.w3.org/TR/css3-lists).

Predefined style: circle bullet
To better understand how @counter-style functions, take a look at how the predefined circle style (which
we are currently using in our layouts) is set:

@counter-style disc {
 type: repeating;
 glyphs: '\2022';
 /* '•' */\
 suffix: '';
}

Note: If type is numeric or alphabetic, the symbols descriptor requires at least two
counter symbols.

Tip: You can use a mix of three types of symbols in one descriptor.

Note: Label glyphs have been replaced with symbols in the last W3C revision of the Lists
Module.

http://www.w3.org/TR/css3-lists

 Tables and Lists

121

Triangle bullet
The new counter style we want to create in this example will be called triangle.

The first step consists of setting of the type to be repeated. Thereafter, you assign the character or glyph
you want to use as a marker to the symbol entry:

/* Example from the future */

@counter-style triangle {
 type: repeating;
 symbols: 'ö';
 suffix: '';
}

The result is the following:

One■■

Two■■

Three■■

As the example makes clear, you can create custom lists using few lines of code, choosing the type of list
and symbol to be used.

When this rule is fully supported by every browser, you’ll have more possibilities to control the performance
of lists, as well as their content and formatting.

Expert tips
If you need to cycle through multiple bullets, you have to use the repeating counter type. It cycles through
the provided glyphs, looping back to the beginning when it reaches the end of the list. Doing so, the first
counter glyph is used as the representation of the value 1, the second as the representation of the value
2, and so on.

Solution 5-7: Using a flexible lists marker
Defining a style of ordered and unordered lists can be a difficult and boring task. A design often requires
something more than a dull figure or symbol. It needs to be something you can personalize with a different
background color, size, or font.

Different techniques exist that allow you to personalize list styles, many of which involve the use of the
pseudo-class :before and the content property. The limitation of these techniques is that, if you want them
to work, they require that default numbering be disabled (for example, list-style: none).

The CSS Lists Module 3 introduces the ::marker pseudo-element. It allows you to create custom and
flexible list item markers.

Note: As with @counter-style, the new ::marker pseudo-element is not yet supported by any
browsers.

Chapter 5

122

Let’s take a look at how you can substitute the techniques of list replacement with ::marker.

What’s involved
You can use the ::marker pseudo-element by setting determined properties for the element on which you
want to use it:

The display property must be set to list-item or inline-list-item.■■

The content property shouldn’t be none.■■

Using the content property, this pseudo-element creates a box you can personalize with any CSS style.

The syntax
Let’s take a look at some example CSS syntax:

li::marker {
 content: "(" counter(counter) ")";
}

The property context specifies that the counter

Must be included between the parentheses, inserted as a string of text between quotation marks ■■

(“”)

Is generated though the ■■ counter () function.

You use the counter() function, introduced with CSS2, because it allows you, subsequently, to use other
properties, such as counter-increment, counter-set, and counter-reset. We don’t take these properties into
account very much, because they don’t closely relate to the theme of the proposed solution.

How to build it
Let’s take the case of wanting to insert a note between list items:

Fowl very shall, after earth over after she'd upon bring moved light fish
his years together let for saying. Good god lesser over he.

<li class="note">This is a note.

Third were our very called over wherein.

As the CSS style, use the following:

<style>
li { margin-left: 30px; }

li.note::marker {
 content: "Note " counter(note-counter) ":";
 text-align: left;
 width: 20px;
}

 Tables and Lists

123

li.note {
 display: list-item;
 counter-increment: note-counter;
}
</style>

The paragraph with the class note is the one intended with the use of ::marker. Assigning a specific width
to < li > generates the necessary space to the new counter. Every < p > has a left margin that allows it to
maintain white space between the counter and the text.

Here is how it should appear in the browser:

 Fowl very shall, after earth over after she'd upon bring moved
 light fish his years together let for saying. Good god lesser
 over he.

 Note 1: This is a note
 Third were our very called over wherein.

Note: marker can also be used on other HTML elements such as < p>, not only < li > .

There are many possibilities offered by this pseudo-element. In some ways, these new possibilities allow
you to create new formatting styles, which makes the content of the web page similar to what you have
become used to in print, and with all the advantages.

Expert tips
Markers generate a box that has margins, border, padding, and everything else a box normally has. So you
can take control of them by using any other CSS properties used for block-level elements.

Summary
Today, the recently introduced CSS3 properties make table design even simpler and more fun than in the
past. Feel free to experiment and create your own table styles. The wider range of support among popular
browsers for these properties makes any style ready to use.

The CSS3 properties related to the CSS Lists Module instead are still at the experimental level. We
probably have to wait for a more detailed and complete specification before introducing them in our next
design.

In the next chapter, we’ll take a detailed look at the CSS Box Model and see how it has changed in CSS3
and how you can make it work for you.

125

Chapter 6

CSS Box Model

When viewing the source HTML code of a page, it’s readily apparent that the content is separated using
HTML tags. Paragraphs of text are surrounded by <p> and </p> tags, the main navigational menu is
surrounded by <nav> and </nav> tags, and so forth. The HTML is defining what content is nested inside
what other content on the page—it’s defining the content’s structure. It’s like a rough sketch of the layout
of a house, which shows what rooms go where but doesn’t indicate their exact dimensions, color, or other
properties of their appearance. The task of describing the appearance of a web page is left to the domain
of CSS.

To do this, CSS begins by defining an invisible box around the content inside each opening and closing
HTML tag. How this box is positioned and rendered is defined by the CSS box model, which typically sees
these invisible boxes as having a width, a height, padding, a border, and a margin. The padding is the area
between the border and the content, while the margin is the area between the border and other surround-
ing content. (See Figure 6-1.)

Chapter 6

126

At the box model’s simplest level, each of these values can be given a pixel amount to define how wide
and tall the box is (with the border also generally needing a style and color defined). The layout of the box
in Figure 6-1 can be created in code with the following:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>CSS3 Expert</title>
<style type="text/css">

 body {
 margin: 0px;
 border: 0px;
 padding: 0px;
 }

 div {
 width: 120px;
 height: 100px;
 margin: 10px;
 border: 10px solid grey;
 padding: 10px;
 }
</style>

</head>
<body>
 <div>Content</div>
</body>
</html>

Content

padding

width

height

margin

border

Figure 6-1. The CSS box model describes pieces of content on a web page in terms of a box that can have a margin,
border, and padding.

 CSS Box Model

127

These numbers can be represented as hexadecimal values in the form of #RRGGBB, where RR is the
red value, GG is the green value, and BB is the blue value. Examples of this syntax include #FFFFFF for
white, #000000 for black, #FF0000 for red, and so forth. Using hexadecimal values (known as hexadecimal

As you can see, the HTML defines only that there is a div element with some text (“Content”) inside of it,
and it’s the CSS that defines the dimensions, padding, margin, and border of this content.

Note: You also can add an outline to a CSS box, which appears as an extra line on the
outer edge of the border. (See Solution 6-4.) However, an outline is rendered over the
existing content and, therefore, isn’t involved in the positioning of the box on screen.

This chapter will introduce many properties and effects that work with the CSS box that surrounds HTML
elements. Some properties affect the background, while others affect the border and beyond. Let’s start
our dive into it by examining the background color!

Solution 6-1: Setting background color and opacity
When decorating a room, a good place to start is with painting the walls. The same could be said with the
boxes in CSS. Giving them a background color allows you to quickly break your page design into visual
sections. A wonderful thing about coding in CSS is that it’s quite flexible—even the simplest and most read-
able solutions, such as the following one, will work:

div {
 background-color:red;
}

If you add this to the code shown in the chapter introduction, it would—no surprise—turn the background
of the box red. But the advances that have come with CSS3 add several new options for formatting the
background. Among these is the ability to precisely control the components that make up a color and the
option to add transparency to a color.

What’s involved
As you may recall from Solution 3.6 in Chapter 3, a long-standing approach to web color is to break a color
into its red, green, and blue color channels (the primary colors that make up a particular hue). To expand a
bit on what was covered in Chapter 3, each of these colors is given a range from 0 to 255, with 0 being no
intensity of the color and 255 being the full intensity of the color (meaning it has full saturation).

Note: Color on screen is an additive color process, meaning that differing intensities of
the primary colors of red, green, and blue are mixed to produce the colors you see on
screen. The full intensity of all three channels of color produces pure white, while the
lowest intensity of each produces pure black.

Chapter 6

128

 notation) is all well and good, but it loses some of the readability that just using set color names (“red,”
“black,” “green,” and so on) provides. As noted in Chapter 3, an alternative is to use rgb(R,G,B) notation,
where R is the red channel, G is the green channel, and B is the blue channel. Again, the values are
between 0 and 255, but they’re given in decimal, not hexadecimal form—for instance, green looks like
this:

background-color: rgb(0,255,0);

This still isn’t much more readable than hexadecimal notation; it’s just an alternative way of formatting the
color value. What’s interesting here is that percentages can be used. For instance, the preceding pure
green color could be rendered as follows:

background-color: rgb(0%,100%,0%);

You may find thinking of color in terms of percentages to be a more intuitive approach than a range of 0 –
255 or 0 – F. However, adjusting colors by adjusting the component parts of red, green, and blue can still
be unintuitive, because to simply shift the shade of a color, for instance, the component values may seem
to arbitrarily go up or down. Yuck! A newer way of adjusting color—Hue, Saturation, Lightness (HSL)—
makes this process of selecting shades and tints much more intuitive. If you use this method, the hue (the
actual color), the saturation of the color, and the lightness of the color can all be adjusted independently.
HSL notation looks like hsl(H,S,L), or like this more concrete example:

background-color: hsl(0,100%,50%);

As was shown in Chapter 3, in the HSL color model, all the available colors are rendered in a cylinder.
If you look down on the cylinder, you see all colors (otherwise known as hues) in a color wheel. Moving
around the cylinder from 0 to 360 degrees changes the hue. You can increase or decrease the saturation
of each hue (color) by moving outward or inward toward the center of the cylinder from 0% to 100% satu-
ration, and you can adjust the lightness by moving up or down the cylinder from 0% (pure black) to 100%
(pure white). (See Figure 3-20 in Chapter 3 for a diagram of this color model).

Note: You’ll notice in the preceding code snippet that the lightness was set at
50% to set it halfway between white and black so that the pure hue shines through
without becoming a shade (the color mixed with black) or a tint (the color mixed with
white).

As shown in Chapter 3, if you want to add an alpha channel, RGB notation becomes rgba(R,G,B,A) and
HSL notation becomes hsla(H,S,L,A), where A is the alpha channel value in the range of 0.0 to 1.0. This
range corresponds to 0% for a completely transparent color (in other words, 0% opaque) to 100% for a
fully opaque color. Any values in between render the color as semitransparent. For instance, a value of
0.25 is 75% transparent (25% opaque), while a value of 0.9 is 90% opaque, barely letting any of the under-
lying background show through. Table 6-1 summarizes these different notations.

 CSS Box Model

129

How to build it
1. Add the HTML you want to apply the colors to. In this case, you create four spans with text, all

inside a div:

<div>
 White
 White, 50% transparent
 Black
 Black, 50% transparent
</div>

2. Add any default styles you want applied to your HTML. In this case, a neutral grey color is added
to the background of the page so that the transparent elements are more apparent. Also, the
spans are given margin and padding and the text color is set:

body {
 background-color: #808080;
}

span {
 margin: 5px;
 padding: 15px;
 color: #808080;
}

3. For demonstration purposes, each of the RGB and HSL style notation colors are added to the
span boxes. The first two are white, and the last two are black:

span:nth-child(1) {
 background-color: rgb(255,255,255);
}

span:nth-child(2) {
 background-color: rgba(255,255,255,0.5);
}

Table 6-1. Background color values

Syntax Description

rgb(R,G,B) Set the red, green, and blue channels for a color in the range of 0–255.

rgba(R,G,B,A) Set the red, green, and blue channels for a color in the range of 0–255. Set the
alpha channel in the range of 0.0–1.0.

hsl(H,S,L) Set the hue, saturation, and lightness for a color in the range of 0–360 (degrees) for
the hue and 0%–100% for the saturation and lightness.

hsla(H,S,L,A) Set the hue, saturation, and lightness for a color in the range of 0–360 (degrees) for
the hue and 0%–100% for the saturation and lightness. Set the alpha channel in the
range of 0.0–1.0.

Chapter 6

130

span:nth-child(3) {
 background-color: hsl(0,0%,0%);
}

span:nth-child(4) {
 background-color: hsla(0,0%,0%,0.5);
}

In this example, the result is four boxes, the first two of which are white, and the last two of which are
black. The second box of each set is semitransparent and therefore blends with the background gray. (See
Figure 6-2.) Note that this example does not work in Internet Explorer 8 or earlier.

Figure 6-2. Example of setting the color and alpha channel in the background of some HTML elements. Notice
how the background gray bleeds through on the semitransparent boxes, which is particularly noticeable on the
semitransparent white box.

Expert tips
In addition to setting an alpha channel, you may recall from Chapter 3 that you can use another CSS prop-
erty, opacity, to make a particular element semitransparent. However, this property changes the opacity
of the entire element, not just the background. Therefore, if a background should be semitransparent, the
hsla() or rgba() notation should be used; otherwise, the textual content within the element will become
semitransparent as well!

Lastly, if you use hexadecimal notation, it can be shortened to three characters where there are repeating
digits in a particular channel. For instance, #CCCCCC could be shortened to #CCC, or #FFCC99 could be
shortened to #FC9, and so forth.

Solution 6-2: Creating background gradients
Traditionally, images were the sole way of adding a gradient to a web design, but that has changed with
the addition of CSS properties for creating them dynamically. The ability to create gradients on the fly in a
web browser is a powerful graphical tool for creating tonal changes in your web design.

What’s involved
Two types of gradients are available: linear and radial. At their most basic level, linear gradients start at one
color and transition over a distance into another color in a linear fashion. Radial gradients do the same,
except the transition is in a radial direction, meaning the starting color begins as a circle and radiates out-
ward in all directions over its transition to the ending color.

 CSS Box Model

131

As with defining solid colors, gradients have a very flexible syntax. Gradients may specify two or more
colors to transition through as a comma-separated list, as shown in the following example:

background-image: linear-gradient(white, black);
background-image: linear-gradient(rgb(255,255,255), rgb(0,0,0));
background-image: linear-gradient(#fff, #f00, #000);

Or for a radial gradient:

background-image: radial-gradient(white, black);
background-image: radial-gradient(rgb(255,255,255), rgb(0,0,0));

As you can see, they are set as the value for the background-image property, which fills in the background
of a CSS box with the gradient.

Each color in the gradient can be given a color stop value. By default, the color stop value for the first color
is 0% and the color stop value for the last color is 100%, which specifies that these colors begin at the
beginning and end of the gradient. However, these values can be adjusted to start a color further into the
gradient, compressing the amount of distance over which the colors transition. By setting the first color to,
say, 30%, you’re specifying that the transition from that color to the second color happens 30% of the dis-
tance into the gradient. When specified, a color stop value immediately follows the declaration of a color.

Additionally, an angle can be added before any of the colors to specify the slope between the starting and
ending color when setting a linear gradient. The angle can be given as a positive or negative value fol-
lowed by the text “deg” to specify the angle, as you can see in this example:

background-image: linear-gradient(-45deg, white 30%, black 90%);

This code creates the gradient shown in Figure 6-3.

Rotation
0–360°

-45°

30%
color stop

90%
color stop

Starting Color

Ending Color

Figure 6-3. A linear gradient rotated –45 degrees creates a slanted gradient between the starting and ending color.
The starting color has a color stop at 30%, and the ending color has a color stop at 90%, which move both colors in
toward the center of the gradient, compressing the distance of the transition.

Chapter 6

132

An alternative to using a specific degree value is to use keywords to tell the browser where the gradient
should start from. The keywords are left, right, top, and bottom:

background-image: linear-gradient(top, white, black);

This gradient begins at the top with white and transitions straight downward into black.

How to build it
1. Add the HTML you want to apply gradients to. This example uses a navigational menu of links:

<nav>
 Home
 About
 Gallery
 Contact
</nav>

2. Add any default styles you want applied to your HTML. In this case, padding and a border are
added. Additionally, the text is given a black color and the default underline under the link text is
removed:

a {
 padding:2px 10px;
 border:1px solid #ccc;
 color:#000;
 text-decoration:none;
}

3. For demonstration purposes, each of the menu item links after the first (for comparison) are
selected using an nth-child selector and given a different gradient:

a:nth-child(2) {
 background-image: radial-gradient(#fff, #ccc);
}

a:nth-child(3) {
 background-image: linear-gradient(top, #fff 40%, #ccc 60%);
}

a:nth-child(4) {
 background-image: linear-gradient(-45deg, #fff, #ccc);
}

The result of this example is a line of links, each with a different gradient background. (See Figure 6-4.)

Figure 6-4. Example of the subtle tonal changes that gradients can provide. From left to right, you see the following:
a button with a plain background; a button with a radial gradient background; a button with a linear gradient
background moving from top to bottom (with a strong transition); a button with a linear gradient background running
from upper-left to lower-right (with a soft transition).

 CSS Box Model

133

Expert tips
ColorZilla is a great plug-in for Firefox and Chrome that helps you deal with web colors. The ColorZilla
website publishes a CSS gradient generator at www.colorzilla.com/gradient-editor/ that takes the
guesswork out of creating gradients using CSS.

Note: ColorZilla (www.colorzilla.com) also has a handy plug-in for Firefox and Chrome
that includes a color picker that makes it easy to select color values for inclusion in your
CSS style sheet.

Solution 6-3: Setting background size
In the past, creating background images that seamlessly covered the available area might have involved
a fancy tiling pattern or a very large image that was cropped into view. In modern CSS, another option is
to scale the background image to fit the available area, which is particularly useful for fluid layouts that
change size based on the size of the browser window.

What’s involved
The background-size property is used to scale and set the size of background images. It takes two values.
The first is the sizing behavior for the image along the horizontal plane (the width), while the second is
the sizing behavior for the image along the vertical plane (the height). A specific length can be given, as
shown here:

background-size: 100px 50px;

This code sets the background image to 100-pixels wide by 50-pixels tall (and tiles it by default). More
interesting is the dynamic setting that can be used to size the image based on the dimensions of the box
it’s applied to. You can use two keywords, contain and cover, to automatically size the image to its sur-
roundings. The contain keyword scales the image while maintaining the aspect ratio of the image (that is,
it won’t be squashed or stretched) to the largest size such that both its width and its height can fit inside
the available background area. This means that the image will be scaled so that its longest dimension fits.
The cover keyword is similar in that it scales the image and maintains the aspect ratio of the image, but it
covers the available area by scaling the image so that the shortest dimension fits in the view, which likely
means the image will become partially clipped from view along its other dimension. Both of these keywords
can be given as one keyword, indicating they apply to both the width and height, or each dimension of the
image can be treated differently:

background-size: contain; /* contain the image in both dimensions */
background-size: cover; /* cover the image in both dimensions */
background-size: contain cover; /* contain the width and cover the height */
background-size: cover 100px; /* cover the width and set the height to 100-pixels */

http://www.colorzilla.com/gradient-editor/
http://www.colorzilla.com

Chapter 6

134

How to build it
1. Add the HTML you want to apply a background image to. For demonstration purposes, this

example uses a series of empty divs:

<div></div>
<div></div>
<div></div>

2. Add any default styles you want applied to your HTML. For this example, the divs are given
a width, height, margin, and border. They are also given a background image, which you’ll
manipulate next with the background-size property:

div {
 width: 500px;
 height: 200px;
 margin: 5px;
 border: 1px solid #000;
 background-image: url("tree.png");
}

3. For each div, experiment with the different possible values for background-size and notice the
differences:

div: nth-child(1) {
 background-size: contain;
}

div: nth-child(2) {
 background-size: cover;
}

div: nth-child(3) {
 background-size: 100% 100%;
}

In the example, the result shows the following (from top to bottom): the tree being contained to its full
height within the available space; the tree enlarged so that its full width fills the available space; and the
tree stretched out so that its width and height fill the entire available space. (See Figure 6-5.)

Note: The background-size property is not supported in Internet Explorer prior to version 9.

In addition to these two keywords, percentages can be used to scale the image to a percentage of its
containing background area. Also, the auto keyword can be used, which means the original dimensions
of the image will be used.

 CSS Box Model

135

Expert tips
Use caution when stretching the background image using background-size. It can be easy to make the
image look really terrible because an image that is enlarged beyond its original resolution will begin looking
pixelated. Also, not maintaining the aspect ratio really works only for abstract background imagery, where
it won’t be apparent that the image is being squashed. (To convince yourself a squashed image looks ter-
rible, compare the first and last examples in the prior code snippet.) If you are using percentage scaling, try
viewing your layout on a large desktop display and check how the images look. Start with an image sized
to fit this scenario so that it will be scaled down in other situations; however, maintain a balance between
the size of the image and file size.

Figure 6-5. The results of the example (from top-to-bottom): the contain keyword maintains the aspect ratio of the
image while fitting its longest side (its height in this case) within the available space; the cover keyword maintains the
aspect ratio of the image as well but fills the available space with the shortest side, clipping the image if necessary;
and giving the image a percentage size stretches the image to fit the available space.

Chapter 6

136

Solution 6-4: Creating multiple backgrounds
Layering images on top of each other is a common process when developing a design, but until recently
overlapping images on top of each other meant that HTML elements had to be positioned on top of each
other using CSS positioning, which could be a real pain! Thankfully, it’s now possible to embed multiple
images into the background of a single element.

What’s involved
Creating multiple backgrounds is quite straightforward. The background-image property can be used with
url() notation to embed each image. You use url() notation to specify the URLs of the images to embed in
the background as a comma-separated list. Each image referenced is layered behind the one that comes
before it. Therefore, the first image in the URL list is layered on top of all the subsequent images. For
example, in the following code snippet, the image file “star.png” would appear in front of “circle.png” and
“circle.png” would appear in front of “square.png”:

background-image: url("star.png") , url("circle.png") , url("square.png");

Other background properties—such as background-position, background-repeat, and so on—can have
their properties listed in a comma-separated list as well, to apply specific values to each image within the
composition. For instance, the following code repeats the back-most image (the last one in the list), but not
the first image and second image:

background-repeat: no-repeat , no-repeat , repeat;

If a particular property needs to be applied to all images, one value can be specified that applies to all
images in a multi-image composition. This following code aligns all the images along the bottom, for
instance:

background-position: bottom;

How to build it
1. Add the HTML you want to apply multiple background images to. For demonstration purposes,

this example applies backgrounds to two empty divs:

<div></div>
<div></div>

2. Add any default styles you want applied to your HTML. For this example, the divs are given a
width, height, padding, margin, and border. Lastly, each div is given two background images.
Ensure you have two images created that are saved in the same folder as the web page (named
“star.png” and “circle.png” in this case):

div {
 width: 500px;
 height: 200px;
 padding: 20px;
 margin: 5px;
 border: 1px solid #000;
 background-image: url("star.png") , url("circle.png");
}

 CSS Box Model

137

For contrast, the images in the second div will be repeated horizontally for the first image and vertically
for the second image, and each will be centered. This is in contrast to the default behavior of the first
div, which will repeat the images starting at the upper-left corner. Notice that two values are given for the
background-repeat property while only one value is set for the background-position property, because
both images will get the same value for that property:

div:nth-child(2)
{
 background-repeat: repeat-y , repeat-x;
 background-position: center;
}

The result of testing this example shows the following (from top to bottom): the first image shows the two
images layered on top of each other, with the first image referenced (“star.png”) being in front of later images;
the second image shows the same layering, but the images are repeated along different planes and both
are centered. (See Figure 6-6.) Note that this example does not work in Internet Explorer 8 or earlier.

Note: There are two new values available for the background-repeat property: round
and space. The round keyword specifies that the background image should be repeated
as often as possible to fit the available area; if it doesn’t fit a whole number of times (for
example, the images repeating on the edges are cropped), the images are rescaled until
they do fit. The space keyword is similar, but instead of rescaling the images, the largest
number of images that fit within the available space are placed in the background and
then are spaced out until they evenly fill the area.

Figure 6-6. Two examples of using multiple backgrounds. The top one shows the default behavior of repeating
the backgrounds over the top of each other. The bottom includes the addition of the background-repeat and
background-position properties to change the repeating behavior and to center the graphics.

Chapter 6

138

Expert tips
You can use the background-origin and background-clip properties to fine-tune where a background
image begins and where it is cropped into view. You can use the keywords border-box, padding-box, and
content-box for either property. The border-box keyword means the content is cropped at the outer edge
of the border; padding-box means it starts/is cropped at the outer edge of the padding (inside edge of the
border); and content-box means it starts/is cropped at the outer edge of the content area (where the pad-
ding begins). For instance, consider the following code added to the example code given earlier in this
solution and see if you can figure out how it creates the image in Figure 6-7:

div:nth-child(1) {
 width: 506px;
 height: 202px;
 padding: 20px;
 border: 20px solid hsla(0 , 0% , 0% , 0.5);
 background-image: url("star.png") , url("circle.png");
 background-clip: border-box , content-box;
 background-origin: padding-box , content-box;
}

Figure 6-7. By using the background-origin and background-clip properties, you can create some interesting
tiling behaviors. Notice how the stars begin tiling inside the border edge and the circles are cropped to the content
area and don’t extend into the padding area.

One last note in regard to multiple backgrounds, as well as background images in general, is that one
should remember that for accessibility reasons the content on a web page should be understandable even
if the CSS on the page is disabled. For this reason, you should not use background images for conveying
information that is critical to understanding the content on a web page.

Solution 6-5: Creating border outlines
An outline is an extra border that can be laid over the top of an HTML element’s box model boundaries. It
doesn’t factor into the size of the element, but instead is rendered on top of the existing layout. The ability
to add outlines to HTML elements through CSS has existed since CSS2. What’s new is that CSS3 adds
the ability to move an outline inward or outward through the use of an outline offset property.

 CSS Box Model

139

What’s involved
The outline property can be used in the same manner as the border property to create the outline around
an HTML element. Set the width of the outline, the style, and lastly the color as shown here, which creates
a one-pixel, solid gray outline:
outline: 1px solid #ccc;

Then you can use the new outline-offset property to move the outline inward or outward from the outer
border edge. Negative values move it inward, while positive values move it outward:
outline-offset: 5px;

The preceding code moves the outline outward by five pixels.

How to build it
1. Add the HTML you want to apply the outline to—in this case, a main navigational menu of links:

<nav>
 Home
 About
 Gallery
 Contact
</nav>

2. Add any default styles you want applied to your HTML. In this case, a margin, padding, and a
border are added and the default underline under the link text is removed:

a {
 margin: 5px;
 padding: 5px;
 border: 1px solid #000;
 text-decoration: none;
}

3. Add the outline properties to a :hover selector or wherever you would like the outlines to show
up:

a:hover
{
 outline: 5px dotted #999;
 outline-offset: -3px;
}

In the example, the result is a menu that shows a dotted gray line around each link the user rolls over.
Notice how the offset was set to a negative value, which moved the outline inward into the border area (as
you can see in Figure 6-8).

Figure 6-8. Example of adding a dotted outline when rolling over a link in a menu. Notice how the outline is layered
on top of the border because the outline offset in this example is set to a negative value.

Chapter 6

140

Expert tips
Pragmatically, an outline may seem just like a duplicate of the border property, with possibly even more
flexibility because it won’t interfere with the layout of the element. If you ever added a border on a mouse-
over of a link in a menu and were dismayed to see the whole menu shift to accommodate the extra width
of the border, you know that it’s appealing to have the option of a border that doesn’t interfere with the
layout of the HTML elements. However, there currently is a limitation to outlines that is worth noting when
compared to borders. Outlines do not follow the curvature of boxes with rounded corners, unlike standard
borders that can make use of the border-radius property. (See Solution 6-6.) Firefox has introduced a
property, -moz-outline-radius, to allow rounding of outlines, but as you can tell by the property name, this
is not a standardized property.

Another aspect of outlines, which is standardized but poorly supported, is the keyword invert. Using this
keyword in place of the color specified in the outline property sets the color of the border to the inverse
of the color it is over. For instance, an outline that overlaps a black border appears white and vice versa.
Major browsers such as Chrome, Safari, and Firefox do not currently support it; however, Opera and
Internet Explorer 9 and later do.

Solution 6-6: Creating rounded corners
For many years, creating a web design that included nice rounded corners was a delight for web designers
to dream up and a complete pain to implement. The solution was to create a grid of several boxes to hold
each edge and each corner around the main content, which resulted in up to nine HTML elements for one
box with rounded corners! Yuck! Not only was this a pain to make, but it also wasn’t semantically sound
because HTML elements were used for the sole purpose of supporting the page’s appearance. Thankfully,
in modern web browsers the need for this process has been scrapped in favor of a single CSS property for
adding rounded corners directly to an element’s CSS box.

What’s involved
The border-radius property is applied to an element, typically with a border or background, to adjust the
amount of curvature to apply to the corners. The corners don’t need to be symmetrical; in fact, experiment-
ing with the values given to border-radius can create some interesting border shapes! At its simplest, the
border-radius property takes one value that determines the curvature of all four corners in a CSS box at
once. The value is usually a length (pixels, ems, and so forth), but it may also be a percentage, in which
case the curvature shrinks or grows based on the width and height of the box overall. The value given is
the radius of an ellipse used to calculate the curvature of the corner. As you can see in Figure 6-9, you can
give two values for each corner to specify the vertical radius and the horizontal radius.

If the corners are curved individually, up to four values can be given to the border-radius property. The
values start with the upper-left corner and move clockwise. For example, to give a uniform curvature to all
four corners, the following two code snippets are equivalent:

/* set the border radius for all four corners */
border-radius: 10px;

/* set the border radius for the upper-left, upper-right, lower-right, and
lower-left corners, respectively */
border-radius: 10px 10px 10px 10px;

 CSS Box Model

141

Additionally, a forward slash can be added to adjust the horizontal radius and the vertical radius individually
(as seen in Figure 6-9), like so:

border-radius: 50px 50px 50px 50px / 25px 25px 25px 25px;

This means each curve has a 50-pixel radius curve in the horizontal direction and a 25-pixel radius curve
in the vertical direction. This could be shortened to border-radius: 50px / 25px;, but separating the four
values in each radius direction means each component can be adjusted individually, which can lead to
some interesting border shapes!

How to build it
1. Add the HTML you want to apply the rounded corners to. This example uses the same familiar set

of menu of links used throughout this chapter:

<nav>
 Home
 About
 Gallery
 Contact
</nav>

2. Add any default styles you want applied to your HTML. In this case, a margin, padding, and
background color are added to the link area. Additionally, the text is given a black color and the
default underline under the link text is removed:

a {
 margin: 5px;
 padding: 15px;
 background-color: #ccc;
 color: #000;
 text-decoration: none;
}

35px

60px

Figure 6-9. In this box, the curvature of the upper-left corner is set by adding a horizontal border radius of 60 pixels
and a vertical border radius of 35 pixels. The code for this look like border-radius: 60px 0px 0px 0px / 35px
0px 0px 0px;.

Chapter 6

142

3. For demonstration purposes, each of the menu item links are selected using an nth-child
selector and given a different border radius:

a:nth-child(1) {
 border-radius: 50px;
}

a:nth-child(2) {
 border-radius: 50px 25px;
}

a:nth-child(3) {
 border-radius: 50px / 25px;
}

a:nth-child(4) {
 border-radius: 50px 0px 30px 10px / 25px 0px 15px 5px;
}

The result of this example is a line of links, each with a different border curvature. (See Figure 6-10.) Note
that this example does not work in Internet Explorer 8 or earlier.

Figure 6-10. A variety of border shapes that can be created by experimenting with the values in the border-radius
property.

Solution 6-7: Creating image borders
The border (or border-style) property can be used to create a variety of fancy borders, but it doesn’t
take long to discover these border effects are quite limited in their design depth! There are dots, dashes,
grooves, and embossed ridges, but not much else that can be done. For anything fancier than this, you will
likely want to turn to using an image to create a custom border style.

What’s involved
The border-image property is used to create custom-designed borders. As the name implies, it loads an
image and applies this to the border around an HTML element’s CSS box. The image is sliced, and each
corner is placed in the corners of the box, while the sides may be repeated or stretched to fill in changes in
the width and height of the box. For example, consider an image that is made of a grid of squares. Using
border-image, the squares at the corners can be placed in the corners of the CSS box while those on the
top, bottom, left, and right sides can fill in the box’s sides. Figure 6-11 shows what this looks like if the
source image’s sides are repeated to fill in the box.

To create the border shown in Figure 6-11, two properties need to be used. First, you use the border-width
property to set the width of the border, and the border-image property is just for specifying the image to
embed and how it should be handled—it’s up to the border-width property to set the actual width:

border-width:27px;

 CSS Box Model

143

Next, use the border-image property to reference the image file, set its clipping width relative to the border
width, and specify whether the sides will be repeated or stretched:

border-image:url("grid-border.png") 27 repeat;

You might be asking yourself why the width needs to be set a second time when you just set the border-
width property for that purpose? The reason for this is that the number used in border-image is needed to
tell the web browser where the source image should be sliced. Without this value, it wouldn’t automatically
know what constituted a corner square in the image. It doesn’t actually represent the width as a distance,
but instead represents a multiple of the border-width value, which then is calculated to be a pixel value.
This is why the value (“27” in this case) doesn’t have “px” appended to it. Instead, the web browser divides
and multiplies the value in border-image by the border width to determine where the slice should happen
on the source image. For practical purposes, you can think of this value as a pixel distance on the source
image, but don’t include the “px” at the end like you would in border-width.

To make this clearer, let’s consider another example where the source image is not uniform. Figure 6-12
shows a source image that is a grid of nonuniform blocks, but which are scaled to fit uniformly around a
CSS box.

Figure 6-11. The image on the left is sliced, and the sides are repeated to fit around the dimensions of the larger
CSS box on the right. Observe where the numbers end up, each of which is inside one of the grid squares.

Figure 6-12. The image on the left is sliced, and the sides are repeated to fit around the dimensions of the larger
CSS box on the right. Observe how the grid boxes are scaled to fit the uniform dimensions of the larger box.

Chapter 6

144

The relevant code for producing the shape in Figure 6-13 looks like this:

border: 27px solid black;
border-image: url("offset-border.png") 49 38 27 28 repeat;

The four values in the border-image property represent the inward offset clipping value for the top, right,
bottom, and left edges of the image. So the web browser clips the image 49 pixels down from the top for
the top part of the border, 38 pixels from the right for the right side of the border, and so forth. These values
are diagrammed in the image on the left in Figure 6-12. Once the image is sliced, it’s fit into the border
width area, which means that slices that don’t match the border width distance are rescaled, as you can
see in Figure 6-12 when comparing the size of the numbers in the source image to those in the CSS box
(for example, compare the rescaling that happens to grid number “2” with grid number “8”).

Instead of repeating the sides of the image around the sides of the CSS box, you can stretch the sides
using the stretch keyword in place of the repeat keyword. For instance, Figure 6-13 shows an image
border that is stretched to fit the dimensions of the CSS box it’s applied to.

Figure 6-13. The image on the left is the original source image, while the image on the right is the CSS box it’s
applied to using border-image. Notice how the sides of the image are stretched to fit the dimensions of the box.

Note: You should stretch borders with caution because doing so can result in undesirable
distortion and pixelation of the source image. However, images that do not have repeating
border patterns often need to be stretched to create a continuous border, so it’s well
worth experimenting with the stretch keyword to see if it fits with your chosen border
image.

You can specify two keywords in the border-image property to create a combination of repeating and
stretched borders. Here’s an example:

border-image: url("grid-border.png") 27 repeat stretch;

The first value (repeat in this case) is applied to the top and bottom border, while the second value
(stretch in the example) is applied to the left and right borders.

 CSS Box Model

145

How to build it
1. Add the HTML you want to apply the border images to. This example uses three divs for

demonstration purposes:

<div></div>
<div></div>
<div></div>

2. Add any default styles you want applied to your HTML. In this case, a width, height, and margin
are added to the div’s CSS boxes. The border width is set here as well. Instead of using border-
width, you should use the border property to specify a regular border fallback for browsers that
don’t support the border-image property:

div {
 width: 235px;
 height: 135px;
 margin: 10px;
 border: 27px solid #000;
}

3. Next, each box is given a border image:

div:nth-child(1) {
 border-image: url("grid-border.png") 27 repeat stretch;
}

div:nth-child(2) {
 border-image: url("offset-border.png") 49 38 27 28 repeat;
}

div:nth-child(3) {
 border-image: url("wavy-border.png") 21 stretch;
}

The result of this looks very much like the examples shown in the figures in the “What’s involved” section
of this solution, with the exception that the first example has a stretched left border and right border.

Expert tips
In addition to using the stretch and repeat keywords for handling the sides of an image border, you can
use the round keyword, which is used to repeat the image a whole number of times—preventing an extra
clipped copy of the border from appearing along one of the joints between a side and a corner. The round
keyword is a desirable alternative to use in place of the repeat keyword because it makes the CSS box
more accommodating to changes in size without messing up the appearance of the border. However,
currently on webkit-based browsers (Google Chrome and Apple Safari), the round keyword is not distin-
guished from the repeat keyword and both are treated as if repeat has been specified.

Note: If the border image does not show up in your preferred web browser, check whether
you need to include a browser-specific prefix, such as -moz-border-image (for Firefox) or
-o-border-image (for Opera). Note that this example does not work in Internet Explorer
9 or earlier.

s

Chapter 6

146

Solution 6-8: Creating drop shadows
As with rounded corners, creating a drop shadow traditionally was a task that always seemed more difficult
than it should be, particularly if it needed to accommodate changes in size to the box it surrounded. As with
rounded corners, CSS3 makes drop shadows considerably easier with the box-shadow property.

What’s involved
A drop shadow has five values that can be adjusted to attain the desired effect (as illustrated in
Figure 6-14):

The color of the shadow. It’s often desirable to use rgba() or hsla() notation to make the shadow ■■

semitransparent. (See Solution 6-1.)

The distance the shadow should be offset horizontally.■■

The distance the shadow should be offset vertically.■■

The distance (inward and outward) the edge of the shadow should be blurred.■■

The last value is the distance the shadow should spread, meaning how far it should grow outward ■■

or inward from the silhouette of the box it’s applied to.

Additionally, you can use the keyword inset to indicate the shadow should be rendered inside the target
box instead of outside of it.

Spread

Horizontal
Offset

Target Box

Box Shadow

Vertical
Offset

Blur

Figure 6-14. A box’s drop shadow can be offset horizontally and vertically, spread to larger dimensions than the
original shape, and blurred at the edges.

 CSS Box Model

147

How to build it
1. Add the HTML you want to apply a drop shadow to. This example uses the same familiar set of

menu of links used in other solutions in this chapter:

<nav>
 Home
 About
 Gallery
 Contact
</nav>

2. Add any default styles you want applied to your HTML. In this case, a margin, padding, and
background color are added to the link area. Additionally, the text is given a black color and the
default underline under the link text is removed:

a {
 margin: 5px;
 padding: 15px;
 background-color: #ccc;
 color: #000;
 text-decoration: none;
}

3. For demonstration purposes, each of the menu item links are selected using an nth-child
selector and given a different drop shadow style:

a:nth-child(1) {
 box-shadow:
 rgba(0,0,0,0.4)
 5px 5px; /* 5-pixel horizontal and vertical offset */
}

a:nth-child(2) {
 box-shadow:
 rgba(0,0,0,0.4)
 5px 5px 10px; /* 5-pixel horizontal and vertical offset with a 10-pixel blur */
}

a:nth-child(3) {
 box-shadow:
 rgba(0,0,0,0.4)
 0px 0px 3px 5px; /* 0-pixel offset with a 3-pixel blur with a 5-pixel spread */
}

a:nth-child(4) {
 box-shadow:
 rgba(0,0,0,0.4)
 3px 5px
 inset; /* inset shadow with a 3-pixel horizontal 5-pixel vertical offset */
}

The result of this example is a line of links, each with a different drop shadow effect. (See Figure 6-15.)
Note that this example does not work in Internet Explorer 8 or earlier.

Chapter 6

148

Expert tips
More than one shadow can be applied at the same time by using a comma-separated list of shadow prop-
erties after the box-shadow property. For example, the last two shadows (the spread and inset shadows) in
the prior example could be combined and applied to one box like so:

a:nth-child(4) {
 box-shadow:
 rgba(0,0,0,0.4) 0px 0px 3px 5px ,
 rgba(0,0,0,0.4) 3px 5px inset;
}

Solution 6-9: Creating resizable boxes
Sometimes you want the user to be able to resize a content area—for instance, when displaying a large
amount of text on a web form. Allowing the user to resize such a text block enables them to expand the
text area to read it and then collapse it back down when done.

What’s involved
Resizing behavior is quite straightforward. The resize property controls whether a user can drag the
corner of an HTML element to resize it. You can control the resizing behavior using one of three keyword
values. The keyword horizontal allows resizing in the horizontal direction only, the keyword vertical
allows resizing in the vertical direction only, and the keyword both allows resizing in both directions. The
only other requirement is that you must set the overflow property to something other than visible so that
the content outside the bounds of the CSS box is hidden.

Give the CSS box a width and height that is smaller than the content it contains and scrollbars will appear
as needed, allowing the user to scroll to the content and to resize the content area. (See Figure 6-16.)

Figure 6-15. A variety of drop shadows applied to a menu of links. From left to right, you see the following: a shadow
with just an offset; a shadow with an offset and blur; a shadow without an offset or blur, but with a spread; and finally
an inset shadow.

Figure 6-16. Some filler text showing the scrollbar and resize tab that appear in the lower-right of an HTML div
element that has its resize CSS property set.

 CSS Box Model

149

You can set the max-width and max-height properties to limit the extent to which the user can resize the
content area. By limiting the box width and height, you can prevent the user from resizing the box over
other content on the page.

How to build it
1. Add the HTML you want to allow the user to resize. This example uses a div with some filler text

inside for demonstration purposes:

<div>
 Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
 nisi ut aliquip ex ea commodo consequat.
</div>

2. Set a width and height for the element. Consider adding a border so that the element’s bounds
are more visible. Set the resizing behavior (both in this case, but it could be set to horizontal or
vertical), and set the overflow property to something other than visible. Lastly, consider setting
a maximum width and height so that the box can’t be resized too far:

div {
 width: 100px;
 height: 100px;
 border: 1px solid #000;
 resize: both;
 overflow: auto;
 max-width: 300px;
 max-height: 300px;
}

That’s it! This creates a box 100 pixels by 100 pixels that is resizable in both the horizontal and vertical
directions up to 300 pixels by 300 pixels. A scrollbar appears when the content is clipped, as shown in
Figure 6-16. Note that this example does not currently work in Opera or Internet Explorer.

Expert tips
You can use a new notation called calc() notation in place of a specific length to calculate a distance on
the fly. The calc() notation takes an arithmetic expression inside the parentheses to determine the exact
distance. For example, the following code sets a maximum width of 10 pixels less than the current browser
window width (100% width):

max-width: calc(100% - 10px);

you can use the calc() notation for addition (+), subtraction (–), multiplication (*), and division (/) of length
values, and you can use it anywhere a length is expected as a value for a CSS property. Unfortunately,
browser support is rather limited at this stage, being confined to Internet Explorer 9 and later and Firefox
8 and later.1

1 In Firefox, the calc() notation requires a vendor prefix, so only –moz-calc() will be recognized.

Chapter 6

150

Summary
As you have seen throughout this chapter, many new properties added in CSS3 have significantly expanded
the possibilities of what can be done with pure CSS. Effects such as transparency, gradients, rounded cor-
ners, and drop shadows can now be created without the need of images, as once was the case. Where
images are still used, the options for sizing, tiling, and layering them have been significantly expanded.
No doubt, many of these effects will be useful additions to your digital toolkit when you bring your website
designs from the drawing board to the web page.

More fundamentally, this chapter showed the box model, which provides an intuitive and manageable way
of designing blocks of content on a web page. It’s the foundational building block upon which your page
layouts will be built—but it doesn’t end there. In the next chapter, the layout and positioning of content will
be more thoroughly explored. Read on for more insight into managing your web page layouts!

151

Chapter 7

CSS Positioning and Layouts

In this chapter, we’ll explore creating CSS-based layouts. Using CSS to create pixel-perfect flexible layouts
that look the same on all target browsers is one of the most common uses of CSS, but it’s also one of the
most difficult. The key to understanding how to create such layouts with CSS lies in understanding one of
the most basic features of the browser: the default document flow.

Without any CSS, browsers will lay out semantically marked-up content in a fairly predictable way. This
default layout is often referred to as the “default document flow” or just the “default flow.” The default flow
is based almost entirely on the inherent display properties of the content in question. Every HTML tag has
a default display property that is either inline or block.

Block elements appear as blocks on the screen. By default, they are as wide as their containing element,
and as high as necessary to display their content. They stack vertically on the screen, top to bottom, with
each block element starting on a new line below the previous element within a given container. Block ele-
ments flow just like blocks, as shown in Figure 7-1.

Chapter 7

152

Inline elements include anchor tags, images, and many form elements like labels, inputs, and selects.

As a simple demonstration, consider this basic markup, which we will be using throughout this chapter:

<header>
 <h1>Sample Page</h1>
 <nav>

 Return Home
 Find out About our project
 Contact someone

 </nav>
</header>

<article>
 <h2>Header for This Article</h2>
 <p>This is a sample page to demonstrate the document flow for a combination of inline and
block elements.</p>

block 1

block 2

block 4

block 3

block 5

Figure 7-1. Block elements stack like blocks from top to bottom.

inline 1 inline 2

inline 4

inline 3 ...

inline 3 (cont’d)

Figure 7-2. Inline elements stack up next to each other left to right, one line on top of the other, like a fill.

Many HTML elements are, by default, block elements, including all header tags (h1 through h6), paragraph
tags, lists and list items, and form and fieldset tags.

Inline elements differ in that they line up next to each other within their container, left to right, top to bottom.
Inline elements are just high and wide enough for their content, as show in Figure 7-2.

 CSS Positioning and Layouts

153

 <h2>Lorem Ipsum Dolor Sit</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus
tincidunt suscipit orci, id porttitor orci lobortis in.
Integer eget nulla orci, faucibus ornare leo. Class aptent
taciti sociosqu ad litora torquent per conubia nostra, per inceptos
himenaeos. Ut id sem est, ultrices cursus neque. Donec
consectetur dui sit amet arcu consectetur ac pharetra purus faucibus.
Sed pharetra imperdiet risus. Morbi consequat tempor facilisis. Quisque quis
dui pulvinar orci congue vehicula. Cras nulla risus, rhoncus ut viverra ac,
facilisis non mi. Duis scelerisque luctus felis sit amet tempus. Vestibulum
egestas, ipsum et condimentum aliquet, massa elit convallis velit, quis
posuere est metus sit amet nibh. Nullam tincidunt ornare enim non interdum.
Maecenas lacinia, tortor sed consectetur lacinia, enim libero congue dui,
mollis sollicitudin ligula dolor ut diam. Curabitur et mi arcu, ut tincidunt
risus. Curabitur at lorem eu magna porta sodales eget at mi. </p>
</article>

This markup has a combination of tags in it. Some are, by default, block elements (like the paragraph and
list tags), and some are, by default, inline elements (like the anchor and span tags). The browser will lay
these elements out in the default flow predictably, as you can see in Figure 7-3.

Figure 7-3. The default flow.

Chapter 7

154

Using CSS, you can easily modify the default flow to suit your needs.

Solution 7-1: Changing the display property
One of the simplest ways to modify the document flow is to control whether or not a given element is block
or inline. CSS allows you to do this using the display property: you can tell the browser to lay out an ele-
ment as a block element by setting the display: block rule. Similarly, you can tell the browser to lay out
an inline element as a block element by setting the display: inline rule.

What’s involved
Changing the display property of an element changes the way the browser lays it out in the default flow.
The display property can be set to the values listed in Table 7-1

Note: This example uses HTML 5 tags, and some older browsers (particularly earlier
versions of Internet Explorer) might not display them correctly. If you are using an older
browser, you can alter the markup to use other tags, or you can use one of the many
JavaScript solutions that enable older browsers to recognize and style HTML 5 tags.

Table 7-1. Valid values for the CSS display property

Value Result
none Do not display the element at all. The element will be removed

entirely from the default flow, as if it weren’t there.

inline Display the element as an inline element.

block Display the element as a block element.

inline-block Display the element inline, but allow the element to have values
for width, height, margin, padding, and so on.

list-item Display the element as a list item—for example, with a bullet in
front of it.

inherit Display the item with the same display value as its immediate
parent.

Tabular display values: table, table-
caption, table-row, table-cell,
and so forth

Display the content using a tabular layout. Using tabular
display rules is of limited use for a couple of reasons. First and
foremost, if you are marking up tabular data, semantics will
dictate that you use tabular markup. Second, these properties
do not provide the same control over layout that tabular markup
does, so they’re not really a complete replacement.

How to build It
Consider the previous example markup. If you add the following rules to the CSS for the document to
change some block elements to inline, and some inline elements to block, and add a little background
coloring, you make the differences easier to see:

 CSS Positioning and Layouts

155

li {
 display: inline;
}
span {
 display: block;
}
li, span {
 background-color: #ccc;
}

When applied to the previous example, the browser will now render them as shown in Figure 7-4.

Figure 7-4. Altered document flow.

Chapter 7

156

It’s a simple change, but it produces a very different layout. The background coloring also helps illustrate
the essential difference between inline and block elements.

Expert tips
The display property also determines whether or not the element can take on certain other CSS proper-
ties. Inline elements, for example, have no values for width or height. If you attempt to specify a width or
height on them (using, for example, width: 500px or height: 500px), those rules will be ignored.

Because they have no concept of width or height, inline elements have no concept of CSS properties that
are related to width and height. For example, the overflow property has little meaning for inline elements,
because it is directly related to the width and height of an element.

Applying a top or bottom margin or top or bottom padding to an inline element will not alter its position in
the document flow. The rule will be applied, but the margin or padding will be laid underneath the preceding
content (in the case of a top margin or padding) or laid on top of proceeding content (in the case of bottom
margin or padding). Left and right margins and padding will behave as expected.

Solution 7-2: Using CSS positioning
Another way to modify the default document flow is with positioning rules. CSS positioning allows you to
position elements relative to some specific origin (their default position in the document flow, for example)
or to the browser window.

What’s involved
The CSS position property is used to specify the positioning origin of the element. By default, HTML
elements are all position: static, which means they are positioned according to their actual place in
the default flow. Statically positioned elements cannot have their top, left, right, and bottom properties
modified.

To modify the actual position of an element, you have to set its position property to one of relative,
absolute, or fixed.

By specifying position: relative on an element, you tell the browser to position it relative to its default
position in the document flow. You can now apply left, top, right, or bottom rules to the element and it
will move out of its location as you specify. The rest of the content will not reflow, and the original location
of the positioned element will remain open.

Absolute positioning, on the other hand, does affect the default flow. When an element is absolutely posi-
tioned, it is pulled out of the document flow, causing the remaining content to reflow and close up the “hole”
where the positioned content was. Then, the content is positioned absolutely according to a coordinate
origin, which is determined by the following rule:

Note: By default, all elements are statically positioned. However, if you apply a top, left,
right, or bottom rule to an element without a position rule, the browser will automatically
change its position property to relative.

 CSS Positioning and Layouts

157

The coordinate origin for a given absolutely positioned element is the upper left
corner of the first parent element that has any position other than static. If no such
element is found, the upper left corner is that of the HTML element.

In other words, the browser will look through the markup tree of the document to find the first parent ele-
ment that has a non-static position rule and use that element’s upper left corner as the coordinate origin.
If the browser does not find a parent with a non-static position rule, it will default to the upper left corner
of the HTML element.

How to build It
Positioning is easy to use. Consider the current example: it would be easy to move the h2 tags up 50 pixels
from their current positions by applying a relative positioning rule:

h2 {
 position: relative;
 top: -50px;
}

The browser will move the tag as instructed, but it will not reflow the surrounding content. You can see the
result in Figure 7-5.

Figure 7-5. Relatively positioned elements.

Chapter 7

158

The h2 tags are now displayed underneath the content above them.

Absolute positioning is similarly easy. Instead, you apply absolute positioning to the h2 elements:

h2 {
 position: absolute;
 top: 0px;
 left: 0px;
}

This will alter the layout so that the h2 elements are positioned at the coordinate origin. Because the h2
elements have no parents with a non-static position applied, the coordinate origin will be the upper left
corner of the HTML element. (See Figure 7-6.)

Figure 7-6. Absolutely positioned elements.

 CSS Positioning and Layouts

159

Note also how the rest of the content has reflowed so that the original position of the element has closed,
unlike with relative positioning.

Instead, add a position: relative rule to a containing element:

article {
 position: relative;
}
h2 {
 position: absolute;
 top: 0px;
 left: 0px;
}

The layout will be altered to look like Figure 7-7.

Figure 7-7. Absolutely positioned elements within a relatively positioned element.

Chapter 7

160

Now the coordinate origin for the absolutely positioned element is the article element, which has the
position: relative rule.

Expert tips
If you wish to make a containing element the absolute positioning coordinate origin for its child elements, all
you have to do is apply a position: relative rule to it. You do not need to change its position. This allows
you to position things relative to elements in the default flow, allowing for more flexibility in your layouts.

Solution 7-3: Floating elements with CSS
Floating elements are one of the most misunderstood features of CSS. They are also one of the most pow-
erful, because through the use of floating content you can create flexible layouts that account for changes
in content and viewport size.

What’s involved
When you float an element, the browser modifies the default flow as follows.

First, the element is moved to the far left (for float: left) or right (for float: right) boundary of the con-
taining element. Then the element is given a somewhat nonintuitive combination of both inline and block
display properties:

Unless otherwise specified using a ■■ width rule, the width of the floated element will collapse to be
just as wide as the content requires. (Recall that, by default, block elements are as wide as their
containing elements.)

The browser then attempts to reflow the content that follows the floated element in such a way as ■■

to allow inline content to flow around the outside of the floated element, while still removing the
floated element from the default document flow.

Floated elements were originally conceived for things like images and pull quotes floating within blocks of
text, which explains their somewhat nonintuitive behavior.

How to build It
Floating content is easy, but the results are complex. To start, let’s begin with some new markup:

<div class="float-left">Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Sed adipiscing auctor porta.</div>
<div class="float-left">Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Sed adipiscing auctor porta.</div>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed adipiscing
auctor porta. In lobortis ligula vitae felis feugiat fringilla. Phasellus nunc
ipsum, mattis ut tempus ut, aliquet et velit. Cras condimentum augue at felis
dignissim pellentesque. Donec egestas, odio eget ornare eleifend, nulla erat
laoreet nulla, et sollicitudin leo nisi at tellus. Sed pharetra lobortis lorem
a venenatis. Fusce condimentum ultricies enim placerat ultrices. Suspendisse
lacus justo, aliquet non accumsan vitae, porta non tellus. In blandit dictum
sapien, a consectetur nisl aliquam ut. Pellentesque ullamcorper vestibulum
nulla, at accumsan sem scelerisque varius. </p>

 CSS Positioning and Layouts

161

<div class="float-right">Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Sed adipiscing auctor porta.</div>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed adipiscing
auctor porta. In lobortis ligula vitae felis feugiat fringilla. Phasellus nunc
ipsum, mattis ut tempus ut, aliquet et velit. Cras condimentum augue at felis
dignissim pellentesque. Donec egestas, odio eget ornare eleifend, nulla erat
laoreet nulla, et sollicitudin leo nisi at tellus. Sed pharetra lobortis lorem
a venenatis. Fusce condimentum ultricies enim placerat ultrices. Suspendisse
lacus justo, aliquet non accumsan vitae, porta non tellus. In blandit dictum
sapien, a consectetur nisl aliquam ut. Pellentesque ullamcorper vestibulum
nulla, at accumsan sem scelerisque varius. </p>

This markup renders a predictable default flow, as shown in Figure 7-8.

Figure 7-8. Rendering of example markup.

Chapter 7

162

Now, you apply a float rule to the float-left and float-right classes:

.float-left,

.float-right {
 background-color: blue;
}
.float-left {
 float: left;
}
.float-right {
 float: right;
}

We also applied some coloring to make the floated elements a little more obvious. This layout renders as
shown in Figure 7-9.

Figure 7-9. Floated elements.

The floated elements now are altering the flow as expected. However, they are stretched to be as wide as
their content. If you give the floated elements a width, you can further alter the flow:

.float-left,

.float-right {

 CSS Positioning and Layouts

163

 background-color: blue;
 width: 100px;
}
.float-left {
 float: left;
}
.float-right {
 float: right;
}

Now the content will reflow as shown in Figure 7-10.

Figure 7-10. Floated elements with widths.

The content that follows the float has reflowed around the floated element, while the floated element itself
has been removed from the document flow. Adding some coloring and margins will help make this more
obvious, and give you full insight into how the floats are behaving:

body {
 background-color: #ccc;
}

Chapter 7

164

p {
 background-color: #fff;
}
.float-left,
.float-right {
 background-color: blue;
 width: 100px;
 margin: 10px;
}
.float-left {
 float: left;
}
.float-right {
 float: right;
}

Now the page renders as shown in Figure 7-11.

Figure 7-11. Adding color and margins to illustrate floats.

 CSS Positioning and Layouts

165

You can see that the blue boxes of the floated elements are actually being laid out inside of the white boxes
of the unfloated elements that follow them, with the content of the unfloated elements flowing around them.
This is a key behavior to remember with floating content.

Expert tips
Floated elements are great for producing layouts that flex according to the browser viewport width. They
are also an important part of laying out pages in columns, where their flexible nature provides for flowing
variably-sized content better than absolutely positioned layouts.

Solution 7-4: Clearing floats
CSS also provides a feature for modifying the default behavior of floats with the clear rule. The concept
behind clearing floats is to specify what content can flow around the floated element and what content
should not.

What’s involved
The clear rule can take values similar to float: inherit, left, and right as well as both and none.

By applying a clear rule to an element, you tell the browser to lay that element out clear of any preced-
ing element that has a matching float. Because the default document flow is from top to bottom, applying
a clear rule to an element causes it to lay out underneath the floated elements. For example, clear:
left causes an element to lay out clear from any previous element with a float: left. A clear: right
rule causes the element to lay out clear from any preceding element that had a float: right rule applied
to it.

How to build It
Now you add a clear: right rule to the CSS used in the previous example and apply it to the very last
paragraph:

body {
 background-color: #ccc;
}
p {
 background-color: #fff;
}
.float-left,
.float-right {
 background-color: blue;
 width: 100px;
 margin: 10px;
}
.float-left {
 float: left;
}

Chapter 7

166

.float-right {
 float: right;
}
.clear-right {
 clear: right;
}

<div class="float-left">Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Sed adipiscing auctor porta.</div>
<div class="float-left">Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Sed adipiscing auctor porta.</div>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed adipiscing
auctor porta. In lobortis ligula vitae felis feugiat fringilla. Phasellus nunc
ipsum, mattis ut tempus ut, aliquet et velit. Cras condimentum augue at felis
dignissim pellentesque. Donec egestas, odio eget ornare eleifend, nulla erat
laoreet nulla, et sollicitudin leo nisi at tellus. Sed pharetra lobortis lorem
a venenatis. Fusce condimentum ultricies enim placerat ultrices. Suspendisse
lacus justo, aliquet non accumsan vitae, porta non tellus. In blandit dictum
sapien, a consectetur nisl aliquam ut. Pellentesque ullamcorper vestibulum
nulla, at accumsan sem scelerisque varius. </p>
<div class="float-right">Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Sed adipiscing auctor porta.</div>
<p class="clear-right">Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Sed adipiscing auctor porta. In lobortis ligula vitae felis feugiat
fringilla. Phasellus nunc ipsum, mattis ut tempus ut, aliquet et velit. Cras
condimentum augue at felis dignissim pellentesque. Donec egestas, odio eget
ornare eleifend, nulla erat laoreet nulla, et sollicitudin leo nisi at tellus.
Sed pharetra lobortis lorem a venenatis. Fusce condimentum ultricies enim
placerat ultrices. Suspendisse lacus justo, aliquet non accumsan vitae, porta
non tellus. In blandit dictum sapien, a consectetur nisl aliquam ut.
Pellentesque ullamcorper vestibulum nulla, at accumsan sem scelerisque varius.
</p>

This causes that last paragraph to lay out clear of the preceding right-floated elements that might other-
wise affect it, as shown in Figure 7-12.

 CSS Positioning and Layouts

167

Figure 7-12. Clearing the right float.

Chapter 7

168

Similarly, applying a clear: left rule to the first paragraph causes it to lay out clear of both of the floated
elements that precede it, as you can see in Figure 7-13.

Figure 7-13. Clearing all floats.

 CSS Positioning and Layouts

169

With a bit of practice, you can use floats and clears, along with positioning and display properties, to create
any design in the browser.

Expert tips
When you float an element, the default flow reflows as if the element has been absolutely positioned and
the space it would have taken up in the layout closes. This can cause containing elements to collapse and
create confusing results.

To illustrate this, consider the first example in the chapter:

<header>
 <h1>Sample Page</h1>
 <nav>

 Return Home
 Find out About our project
 Contact someone

 </nav>
</header>

<article>
 <h2>Header for This Article</h2>
 <p>This is a sample page to demonstrate the document flow for a
combination of inline and block elements.</p>
 <h2>Lorem Ipsum Dolor Sit</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus
tincidunt suscipit orci, id porttitor orci lobortis in.
Integer eget nulla orci, faucibus ornare leo. Class aptent
taciti sociosqu ad litora torquent per conubia nostra, per inceptos
himenaeos. Ut id sem est, ultrices cursus neque. Donec
consectetur dui sit amet arcu consectetur ac pharetra purus faucibus.
Sed pharetra imperdiet risus. Morbi consequat tempor facilisis. Quisque quis
dui pulvinar orci congue vehicula. Cras nulla risus, rhoncus ut viverra ac,
facilisis non mi. Duis scelerisque luctus felis sit amet tempus. Vestibulum
egestas, ipsum et condimentum aliquet, massa elit convallis velit, quis
posuere est metus sit amet nibh. Nullam tincidunt ornare enim non interdum.
Maecenas lacinia, tortor sed consectetur lacinia, enim libero congue dui,
mollis sollicitudin ligula dolor ut diam. Curabitur et mi arcu, ut tincidunt
risus. Curabitur at lorem eu magna porta sodales eget at mi. </p>
</article>

Chapter 7

170

If you apply a background color to the nav element, it renders as shown in Figure 7-14.

Figure 7-14. Navigation background.

Now float the unordered list within the nav element:

nav {
 background-color: #ccc;
}
nav ul {
 float: right;
}

 CSS Positioning and Layouts

171

The nav element will now collapse, and all of the content will rise up and reflow around the floating list, as
shown in Figure 7-15.

Figure 7-15. Collapsing the nav container.

If you want to maintain the integrity of the navigation container, you can easily apply a small bit of extra
markup to clear the float after the floated list. First add a clear rule to the CSS:

.clear {
 clear: both;
}

Chapter 7

172

And then add a bit of extra markup after the list to apply it:

<header>
 <h1>Sample Page</h1>
 <nav>

 Return Home
 Find out About our project
 Contact someone

 <div class="clear"></div>
 </nav>
</header>

Now the page renders the way you expect it to, as you can see in Figure 7-16.

Figure 7-16. Clearing a containing element to prevent collapse.

 CSS Positioning and Layouts

173

It’s common to need to prevent a containing element from collapsing when all of its child elements are
floating, and this is one of the more common solutions. Another solution involves modifying the overflow
property of the containing element but has cross-browser issues and requires extra CSS to account for
them.

Solution 7-5: Using a CSS reset
The ultimate goal of many projects is to produce a layout that renders exactly the same in all target
browsers. This can be a real challenge if some of the target browsers are particularly old, because older
browsers have bugs in their CSS implementations that can cause them to behave incorrectly. Many of
these problems are easily fixed with various techniques, and it is beyond the scope of this chapter to cover
them.

There is, however, one big secret to cross-browser layouts: managing the default browser style sheet.

What’s involved
Every browser has a default set of styles that it applies to many elements. These styles specify font size,
margins, and padding for elements, and every browser manufacturer applies different values. The differ-
ences aren’t radical, but they are enough to throw off pixel perfection, especially in tight layouts with floated
elements.

For example, consider our original example of basic markup. That example renders slightly differently in
Chrome, Firefox, and Internet Explorer. It’s most easy to see with all of the windows stacked on top of each
other, as shown in 7-17.

Figure 7-17. Illustrating the subtle rendering differences between browsers.

Chapter 7

174

As you can see, the sizes of the bullets in the list are different, the margins are different on many elements,
and the font sizes are slightly different. These variations are subtle, but in a tight layout that employs
floated elements you could easily have problems with some elements falling out of alignment in one
browser but not others, creating a nightmare of browser-dependent bugs to fix.

How to build It
The most common and effective technique for dealing with these style variations is to zero them out in your
CSS. In our example, we could add the following CSS:

h1, h2, p, body, ul {
 margin: 0px;
 padding: 0px;
 line-height: 1em;
 font-size: 1em;
}

Then the renderings are almost exactly the same in all browsers, as you can see in Figure 7-18.

Figure 7-18. The effects of a basic CSS reset.

 CSS Positioning and Layouts

175

Now, everything is exactly the same in all three browsers. This technique is called a CSS reset. By reset-
ting all the browsers’ default CSS to be the same, you start with a truly blank canvas. You can then set
font sizes, margins, and paddings to suit your needs and be assured that they will behave the same in all
browsers. This technique is great for eliminating browser-dependent layout problems.

Expert tips
One of the most commonly used CSS resets is Eric Meyer’s CSS Reset, available at http://meyerweb.com/
eric/tools/css/reset/. Eric Meyer’s CSS Reset takes into account HTML 5 tags in older browsers as well.

Most CSS resets set all font sizes, margins, and paddings to be the same, and sometimes this is too much.
Eric Meyer’s reset, for example, makes all h header tags (h1, h2, h3, and so on) have the same font size. If
you want to keep different font sizes but have them be consistent across all browsers, you can normalize
your CSS instead of completely resetting it. The Normalize CSS project provides a complete solution for
CSS normalization and is available at http://necolas.github.com/normalize.css/.

Regardless of which solution you choose, resetting or normalizing your CSS is an important step in cre-
ating layouts that render consistently across browsers and will take care of most of the cross-browser
problems you encounter.

Summary
The key to CSS layouts is to understand the document flow, which is how browsers will lay out content by
default.

The document flow can be modified with display, position, and float, and clear rules. Combining these
techniques gives you all the power needed to produce complex, flexible layouts.

All browsers have default styles applied to elements, and each browser manufacturer’s default styles are
different. Applying a CSS reset or normalization helps level the playing field, providing a blank canvas to
work with.

A successful CSS layout takes into account the screen size of the devices that will be used to access it. In
the next chapter, “Multidevice Development,” we will discuss various techniques for deploying your CSS
layouts on different devices.

http://meyerweb.com/eric/tools/css/reset/
http://meyerweb.com/eric/tools/css/reset/
http://necolas.github.com/normalize.css/

177

Chapter 8

Multidevice Development

Not long ago, developing web content essentially meant creating content that would be viewed on regular
computer screens (desktops or laptops) and possibly on small mobile screens with limited graphics capac-
ity. As a web designer, you more or less had to come up with a single fixed layout that displayed equally
well on a range of desktop screen sizes and a limited mobile version (for a limited audience). Nowadays,
with the advent of advanced mobile devices and increased connectivity, the web experience is undergoing
a widespread transformation.

Users will access your content on smartphones, digital tablets, or even their TVs, not only on their desk-
tops or laptop computers. In fact, some studies show that, in the near future, mobile devices are likely to
take over the web experience and become the primary source of web browsing. This means there are a
lot of new devices and configurations developers have to take into consideration. Each device can have
several screen sizes, from a small mobile screen to a large digital desktop one, as well as different resolu-
tions. Also, on mobile devices, users have the option to rotate the screen, changing from a portrait view
to a landscape one. In parallel, the user interaction has been evolving as well, and you have to consider
touch screens, both on desktop and mobile devices.

The content you want to deliver has to adjust to a wide range of new factors to offer users a satisfying
experience, and one that’s the same no matter how they access that content. And there are quite a few
challenges here for web developers. Fortunately, CSS level 3 (CSS3) brings along a couple of new rules
and features that will prove extremely useful to you in facing this new world of greatly varying devices.
In particular, it offers media queries, which you can use to determine a user’s media type to best display
content for that device.

Chapter 8

178

In this chapter, you will see how to adapt your HTML content for multiples screens and devices, and how
to handle some of those major challenges by using CSS3, and without relying on any external script.
Using this approach, you give your content valuable independence and universality among browsers and
devices.

Solution 8-1: Defining different style sheets to target
different devices with media queries

An important aspect of style sheets is that they let you define how your content will be displayed on dif-
ferent media. Since CSS2.1, using the media attribute, you have been able to target several media types
and provide specific style sheets so that your document displays properly on a screen, on paper, on a
projector, or on TV. It’s already a common and good practice to enable different style sheets depending
on which media type is targeted. Since CSS3, the use of the media types has been extended and you can
target them in a more precise way, providing specific style sheets for more specific situations and device
output. In this solution, you will see the basic syntax of the media queries and learn how to use them on
all major browsers.

What’s involved
Serving different styles for different media types is not new to CSS3. Ever since CSS2.1, you could target
several media types and specify how documents are presented in the media types listed in Table 8-1.

Table 8-1. Various media types in CSS2.1

Media Type Description

screen For color computer screens

print For printed material

aural/speech For speech synthesizers

braille For Braille tactile feedback devices

embossed For paged Braille printers

projection For projected presentations

tty For teletypes, terminals, and other devices with limited display capabilities

tv For televisions and television-like devices

all For all the media types listed above

handheld Intended for handheld devices (typically, devices with small screens and limited bandwidth)

 Multidevice Development

179

The screen media type: From desktop to mobile screens
At the time of the elaboration of the CSS2.1 specifications, the screen media type was meant for desktops
and laptop computers and the media type used to target mobile devices was the handled type and was,
as stated by the W3C specification, "intended for handheld devices (typically small screen with a limited
bandwidth)".

To define different styles for each of those types of devices, desktops, and mobile devices, you just attach
different style sheets like this:

<link rel="stylesheet" type="text/css" media="screen" href="style.css">

<link rel="stylesheet" type="text/css" media="handheld" href="mobile.css">

Or, if you want to attach just a single style sheet, you do so as follows:

@media screen {

 /* rules specific for screen devices */
}

@media handheld {

 /* rules specific for handled devices */

}

The situation has evolved a lot in the last four years, especially since the first iPhone came on the market
in 2007 and with the ensuing appearance of various smartphones. The screen media type now targets
many more devices:

■■ Computers. This includes desktops, laptops, and netbooks. They use all the major browsers
you’re already familiar with, and there’s nothing new beyond what you’re used to.

■■ Mobile devices. This category includes smartphones and digital tablets. They don’t recognize
the older handled media type. They run on a mobile operating system (such as the ones listed in
Table 8-3), and the mobile browser is usually embedded. (The iPhone, for instance, comes with

You can target different media types in two ways:

Use the ■■ @media or @import rules within the style sheet itself as follows:

@import url("screenStyles.css") screen;

@media print {

 /* style sheet for print goes here */
}

Or you can accomplish the same result within the web document by using the ■■ <link> tag,
specifying the target media of an external style sheet:

<link href="style.css" rel="stylesheet" type="text/css" media="screen">

Tip:  If not otherwise specified, all major browsers use the screen media as their default 
type and will apply it when viewing a web page.

Chapter 8

180

Today, a style sheet targeting the screen media type is now applied similarly, for instance, on an iPhone
with a screen width of 320 pixels, a desktop with a screen width of 1368 pixels, and a Galaxy Tab tablet 8.9
with a screen width of 800 pixels (when in portrait orientation). Obviously, the old days of one fixed layout
are gone, and you can’t have the same content fitting equally on such a wide range of screens with a single
set of style rules. So how can you adapt your web content to display on all those screen media types?

One of the great features of CSS3 is that it introduces media queries that you can use to add selective
parameters to the media attribute, and thus specify more precise conditions on the media that’s being tar-
geted, such as its resolution, orientation, and its display screen size. With these parameters, you can now
serve different style sheets with those specified values, without relying on any client or server script.

The syntax of media queries
A media query is a Boolean logical expression (either true or false) used in conjunction with one of the
media types. It tests one feature or more of the output device and, if the expression is true, applies the
subsequent specified style rules.

Table 8-2 describes the features that can be tested when you use media queries.

Safari Mobile.) Even if users have the option to install a multiplatform browser (like Opera Mini or
Fennec, the Firefox mobile browser), most of them will just rely on the preinstalled browser and will
hardly change their default configuration. The browser installed can differ even on similar devices.
For instance, Android has a native browser, but it isn’t necessarily the default one on all mobile
devices running Android. It’s beyond the scope of this book to go deeply into the evolution of mobile
devices, but you can get a better idea of what the mobile landscape looks like in Figure 8-1, which
shows the statistics for mobile browsers from February 2011 through February 2012)

Figure 8-1. Top 9 mobile browsers from February 2011 to February 2012 (data taken from statcounter.com).

 Multidevice Development

181

You should use the following syntax structure for a media query:

@media media type and (criteria targeted) {
 rules that will apply only to the devices fitting those criteria
}

Or, if you decide to have a separate style sheet for each query, use the following syntax:

<linkrel="stylesheet" type="text/css" media="media type and (criteria
targeted)" href="specific_stylesheet.css" />

Table 8-2. Fea tures of the output device that can be tested in CSS3 using media queries

Feature Description Value Min/Max Prefixes

width Width of the display area of the
output device

Integer expressing pixels, cm
or em depending on the media
type (for example, width:300px).

Yes

height Height of the display area of the
output device

Integer. Yes

device-height Height of the rendering surface
of the output device

Integer. Yes

device-width Width of the rendering surface
of the output device

Integer. Yes

orientation Orientation of the output device Portrait or landscape. No

aspect-ratio Ratio of the width to the height Integer/integer (for example,
16/9).

Yes

device-
aspect-ratio

Ratio of the device width to the
device height

Integer/integer (ex:16/9). Yes

color The number of bits per color
component of the output device

Integer. If there’s no color, the
value is 0.

No

color-index Number of entries in the color
lookup table of the output device

Integer. No

monochrome Number of bits per pixel in a
monochrome frame buffer

Integer. No

resolution Density of pixels of the output
device

Integer value in dots per inch
(dpi)—for example, resolution:
300dpi).

Yes

scan Scanning process of TV output
devices

Progressive or interlace. No

grid Query whether the output device
is grid or bitmap

0 for grid; 1 for bitmap. No

Chapter 8

182

Furthermore, you can target some devices more precisely by adding specific conditions with the use of
the following logical operators: and, not, and only. You can also achieve functionality that’s equal to theOR
logical operator by separating all the conditions with a comma (and if one condition is met, the subsequent
style rule or rules will be applied).

To refine your queries further, you also have the option of adding min– or max– prefixes to express “greater
or equal to” and “smaller or equal to” constraints for some features. (Refer to Table 8-2 to see which fea-
tures allow the use of those prefixes.)

For a more concrete example of how queries are constructed, let’s look at a few queries that use the dif-
ferent operators and prefixes (although some of those that follow don’t make practical sense for a project
and are presented for the sake of demonstration):

Media query with the logical operator ■■ and:

@media only screen and (device-width:900px) {
 rules to be applied
}

This code example targets screen devices only, with an exact device width of 900 pixels.

Caution: If you decide to use different external style sheets depending on your media 
queries, keep in mind that browsers, including mobile ones, will load all the style sheets 
whether they’re needed or not for the current output device and scenario.  In terms of 
performance and  to  limit  the number of HTTP requests,  it’s usually better  to have all 
your styles and media queries  in a single style sheet. On  the other hand,  for certain 
situations such as  for  larger websites with significant  content and content  types,  this 
might cause you  to end up with an extremely huge stylesheet  that will be heavy and 
difficult to maintain. Depending on your particular project, you can choose what is the 
most suitable approach.

Note: Older browsers ignore the. only keyword and won’t read this kind of query.

Media query with the logical operators ■■ and and not:

@media screen and (not device-width:900px) {
 /* rules to be applied */
}

This code example targets any screen for which the exact device width is not 900 pixels.

Media query with the equivalent of the ■■ OR operator:

@media projector and (color), screen and (color) {
 /* rules to be applied */
}

This code example targets a projector or a screen that has color capabilities.

 Multidevice Development

183

Media query with the ■■ and operator, the min– prefix, and the equivalent of the OR operator:

@media screen and (min-width:900px), print, tv {
 /* rules to be applied */
}

This code example targets the screen media type for a screen with a minimum display width of 900 pixels,
and/or print devices (setting style rules for a printed version of your web content), and/or TV.

In the preceding examples, the media queries are written as they would appear inside a single style sheet.
However, if you prefer to have an external style sheet associated with a media query, the syntax is as fol-
lows:

<linkrel="stylesheet" type="text/css" media=" screen and (width:900px), print,
tv { rules to be applied " href="specific_stylesheet.css" />

This style sheet targets the screen media type for a screen with a minimum display width of 900 pixels,
and/or paper (on a printer), and/or TV.

Browser support of media queries
Media queries are supported by all the browsers shown in Table 8-3.

Table 8-3. Browser support for media queries

Internet
Explorer Firefox Chrome Safari Opera

iOS
Safari

Opera
mini

Opera
Mobile Android

9+ 5.0+ 12.0+ 4.0+ 10.6+ 3.2+ 5.0+ 11.5+ 2.3+

As you can see, the support is pretty good with modern browsers, especially with mobile browsers. The
main exceptions are Internet Explorer versions prior to 9. Unsupported browsers will just ignore the rules
included within media queries. IEMobile, the browser present on Windows phones, prior to version 9 (which
is based on the rendering engine of Internet Explorer 9) won’t support media queries either. To address this
issue, you can simply define regular style rules that will apply to all browsers, so that user devices with a
noncompliant browser will display your content using those rules and you can still use media queries for
supporting browsers. Because the support for media queries is very good on mobile browsers, you will
then be able to target most devices.

Another way is to define a specific style sheet for the Internet Explorer versions that don’t support media
queries (specifically, versions 6 through 8) and IEMobile by using a conditional comment as follows:

<!--[if lt IE 9 & !IEMobile]>
 <link href="stylesForIE.css" rel="stylesheet" type="text/css">
<![endif]-->

Older mobile phones won’t support media queries either, and you can still target them with the handled
media type as before:

<link href="older_devices.css" rel="stylesheet" type="text/css" media="handled">

Chapter 8

184

How it works
To see the preceding strategies in action, let’s create a simple HTML document and attach style sheets
destined for devices with three different screen sizes—mobile devices, tablets, and desktops—as well as
printing devices and older mobile phones.

1. Create a basic HTML document with a header and some simple content. (See the file solution_8_1.
html in the download pack for this chapter.)

<!DOCTYPE HTML>
<html>
<head>
 <meta charset="utf-8">
 <title>Solution 8-1</title>
</head>
<body>
 <header><h1>CSS3 Media Queries</h1></header>
 <section></section>
 <footer></footer>
</body>
</html>

2. Add the link to the general style sheet meant for every device:

<link href="css/style.css" rel="stylesheet" type="text/css" />

This style sheet contains the style rules you want to apply regardless of the device output.

3. Set the different style rules for the various screen sizes using media queries:

<!-- Smartphones -->
<link href="css/phone_style.css" rel="stylesheet" type="text/css"
media="only screen and (max-device-width:320px)" />

<!-- Tablets -->

<link href="css/tablet_styles.css" rel="stylesheet" type="text/css"
media="only screen and (min-device-width:321px) and (max-device-width:768px)" />

<!-- Desktops -->
<link href="css/style.css" rel="stylesheet" type="text/css"
media="only screen and (min-width:769px)" />

Here you have a style sheet specifically targeting smartphones, another one for digital tablets, and one for
desktops (and laptops).

4. Internet Explorer versions 6 through 8 will ignore any media queries and skip the related style
rules. So you need to create a style sheet for them using a conditional statement:

<!--[if It IE 9>
 <link href="stylesForIE.css" rel="stylesheet" type="text/css">
<![endif]-->

 Multidevice Development

185

5. Now add a style sheet for older mobile models as well, by using the handled media type:

<!—Older mobile phones -->
<link href="css/old_mobiles.css" rel="stylesheet"
type="text/css" media="handled" />

5. Finally, add the link to the style sheet destined for the print media type:

<!-- Print -->
<link href="css/printer_style.css" rel="stylesheet"
type="text/css" media="print" />

You have now provided specific style sheets for a wide range of devices by using the different media types
as well as media queries.

In this example, you loaded different style sheets. You also could just load a single style sheet for the
screen media type and add the same media queries in it.

Expert tips
If you want to reap the benefits of media queries on Internet Explorer versions 6 through 8, you can rely
on a third-party script to do so. One example is Respond, a great script released by Scott Jehl, a designer
who leads the design team at JQuery. It’s straightforward to use and provides almost native behaviors of
media queries to unsupported browsers. You can download it and find its documentation here: https://
github.com/scottjehl/Respond.

To use Respond, write your CSS rules using media queries as you usually would, but use the min-
width/max-width features to target different screen sizes:

@media screen and (min-width: 320px){
}

Then reference the respond.min.js script after all of your CSS:

<script type="text/javascript" src="respond.min.js"></script>

And that’s it! Your media queries will now be taken into consideration by Internet Explorer versions 6
through 8.

Solution 8-2: Adapting a layout for different screen
sizes with CSS3

Nowadays, any web content you develop has to be made available for mobile devices as well as desktops
and laptops. To achieve this, there are several options available to developers. One approach, which is
commonly used, is to detect the device (by using server or client scripts) and redirect users to a version
of the site for mobile browsers when necessary. Without detailing the maintenance difficulty and SEO
(Search Engine Optimization) problems you might encounter with this approach, it was an acceptable
option when mobile devices were not very different from one another. But today, new devices with new
screen sizes and new configurations are developed at an incredibly fast pace. Moreover, when you talk
about mobile devices, you are not only talking about smartphones anymore, but digital tablets as well.

https://github.com/scottjehl/Respond
https://github.com/scottjehl/Respond

Chapter 8

186

As of this writing, several new models with different sizes and resolutions are coming out every few months,
and nobody knows for sure what the next popular models will be. As a developer, creating custom con-
tent for each available device would be both impossible and unproductive. Another way you had at your
disposal was to detect the screen size with the use of JavaScript and to call different styles rules, or style
sheets, accordingly. CSS3 and its new media queries now let you achieve this directly without having to
rely on any script. In this solution, you will see how you can adapt your web content for several screen
devices by using media queries.

What’s involved
When designing and developing web content adapted to multiple screen sizes, you have to consider sev-
eral things from a design and visual point of view, as well as considering layout restrictions and possibili-
ties. Let’s see what is involved.

Responsive design
The concept of responsive design recognizes the increased need for web content to be available for mul-
tiple devices. It is, in fact, a whole new approach to conceiving web content, more than a sole group of web
development techniques. Its objective is to create a single design that can adapt its content to any kind of
display resolution and device. (You can see an example of a site with a responsive design in Figure 8-2.)
It requires thinking in terms of an adaptive and flexible layout, the appropriate typography, the handling of
images, and so on. The concept also takes into consideration the page weight and optimal performance
for any device. It requires developers to rethink the way they conceive their designs in the first place to
achieve this increased level of flexibility.

Responsive design achieves this goal by using a couple of techniques and tools, including the new CSS3
media queries, to change the layout of a web document according to CSS rules based on the width of the
browser or device.

If you want to see great examples of websites using responsive design, you can visit http://mediaqueri.
es/ which presents a collection of websites using media queries and responsive web design. It is regularly
updated with new examples, and it can be a great source of inspiration if you’re new to the concept.

Figure 8-2. Example of a website using responsive design, from www.mediaqueri.es.

http://mediaqueri.es/
http://mediaqueri.es/
http://www.mediaqueri.es

 Multidevice Development

187

Responsive design and its principles are a vast subject that goes beyond CSS3 alone. If you want to go more
deeply into the topic, we encourage you to read Ethan Marcott’s book Responsive Web Design (A Book
Apart, 2011). You will also find plenty of resources about it on the Web when reading about the evolution of
browsers and devices. One good place to start with is the blog “A List Apart” at www.alistapart.com.

Let’s take a look at how you can use CSS3 media queries to build multiple layouts using the same HTML
document by selectively serving style sheets based on the user’s screen device, and thus having a respon-
sive design.

The device size and the viewport
The first obvious difference between various devices that designers have to deal with when targeting sev-
eral devices is the screen size. As you saw in the previous solution, you can use media queries to serve
different style sheets based on the features and conditions you choose. Among those features, you can
use the following ones to target different device sizes:

■■ width. The width of the targeted display area of the output device

■■ device-width. The width of the rendering surface of the output device (the physical screen size
in its current orientation or its page width on paper)

■■ height. The height of the targeted display area of the output device

■■ device-height. The height of the rendering surface of the output device (the physical screen size
or page width on paper)

All of these features accept the use of the min- and max- prefixes for refining the query further.

Here you have to clearly distinguish between those features and what they imply, which at first can be a
bit confusing.

The width feature of media queries detects the display width, which corresponds to the viewport width.
(The viewport is the area in which the web content is actually displayed.) The device-width feature, on the
other hand, detects the rendered width (which will be the actual width of the device screen).

More concretely, on a computer screen, thewidth feature is the width of the browser window and the
device-width is the width of the device’s screen (and they will often be different because you can’t expect
everybody to open their browser in full screen, especially on big screens). On mobile devices, you would
expect it to be the same—and moreover to be of the same value—because you can’t resize the browser
window. But that’s not the case. On most of mobile devices, the viewport, by default, will be larger than the
actual device size. Take, for instance, the iPhone 3GS: its screen’s width is 320 pixels, whereas the default
viewport width of its browser is 980 pixels. (See Figure 8-3.)

This means that a web document will be displayed on a viewport of 980 pixels and then rendered on a
screen of 320 pixels. (For the time being, just assume we’re talking about portrait mode; to see how you
deal with orientation, refer to Solution 8-3.) So in order to fit in the content needs to be rescaled.

That goes for all mobile browsers. Table 8-4 lists the major mobile browsers and their respective viewport
size.

http://www.alistapart.com

Chapter 8

188

The reason for this difference in values and this virtual viewport is that there are a lot of websites (prob-
ably a majority of them as of the writing of this book) that are not adapted for smartphones or tablets at all
and were designed for computer screens. This larger viewport size lets them fit on small screens. But the
obvious inconvenience is that the content is rescaled down, displaying as tiny content on the screen that’s
difficult to read, not to speak of the poor touch interactivity that results from this.

Figure 8-3. The device width and default viewport width on the iPhone 3GS.

Table 8-4. Major mobile browsers and their default viewport size

Mobile Browser Viewport Size

iPhone/iPod Touch Safari 980 pixels

iPad Safari 980 pixels

Android browser 800 pixels

Internet Explorer mobile browser 320 pixels

Opera Mobile 850 pixels

Windows 7 mobile browser 1024 pixels

To avoid this situation, you have to change the viewport size to make it fit the device width. This can be
achieved easily through the viewport meta tag in your HTML document and its contentattribute, as fol-
lows:

<meta name="viewport" content="width=content-width" />

 Multidevice Development

189

By adding this tag in the head of your HTML document, the viewport size will be the same as the rendering
size, on any device. If you load a page on a smartphone’s browser with this change of viewport size, the
content will be displayed with a normal size and won’t be shrunk anymore.

Note: This is the only solution as of the writing of this book, but it might change soon as 
a @viewport rule is now being defined by the World Wide Web Consortium (W3C) CSS 
Device Adaptation specification. (This specification  is still  in a draft stage as we write 
these lines.) The new specification should allow you to set the viewport to fit the width of 
the device within your style sheet itself.

With the viewport size correctly set, you can now apply different style rules according to the width of the
display area:

@media screen and (min-device-width:1025px){
 */
 set of style rules to be applied for desktop and laptops
 /*
}
@media screen and (min-device-width:320px) {
 */
 set of style rules to be applied for smartphones

 /*
}
@media screen and (min-device-width:600px){
 */
 set of style rules to be applied for tablets

 /*
}

Here you are defining three main groups of devices: desktops and laptops, tablets, and smartphones. You
can refine the categories further, of course, depending on your design and project.

Tip: The viewport size  is equal  to  the browser’s size. So when  it comes  to computer 
screens, you might want to use the. width  feature  instead of device-width when you 
target  large  desktop  screens,  because  you  can’t  assume  that  users  will  use  their 
browsers in full screen all the time, especially if they have a wide desktop screen.

Some design and styles considerations
Even if detecting different screen sizes and applying different style rules accordingly is in fact straightfor-
ward when you use of media queries, you still need to consider different aspects of this approach to create
a flexible layout that is suited to any device. Media queries alone will not solve everything. Here are some
important points to consider when you write your style sheets for different devices:

Your HTML document has to be correctly structured. The more well-constructed your document is ■■

semantically, the better its visual flexibility will be with CSS. This seems like an obvious statement,
but it is an important point to keep in mind to be able to easily apply different views to the same

Chapter 8

190

content. Validating your document with the Markup Validation Service provided by the W3C
(http://validator.w3.org/ and http://html5.validator.nu/ for HTML5 documents) to ensure
its markup is well formed is a recommended good practice.

When applying different style sheets, an easy way to manage layouts is to choose whether or not ■■

to display some elements depending on the device targeted. You can do this by playing with the
display attribute and its none property. However, you have to be very careful with that because
an element that is not displayed is still loaded with the page, as along with all the assets it may
contain. Therefore, the strategy of designing web content for the maximum size and then choos-
ing just not to display the elements that won’t suit some devices can prove to be very bad in terms
of performance on small devices. Here, again, the best approach is to design for multiple devices
at the time of conception, if possible.

The mobile web experience and desktop web experience are radically different. You will prefer to ■■

use a single-column layout for smartphone devices and avoid floating elements on small screens.
This can be easily achieved by playing with the float property depending on your media queries.
You also have to take great care of the navigation functions and make them suitable to a mobile
user experience when you define your style rules for small mobile devices.

The text size is also a crucial aspect. Prefer percentage or ■■ em values instead of pixels to provide
resizable text across all browsers and devices.

Take advantage of the new CSS3 capabilities to have better performance when defining styles for ■■

mobile devices. For example, use the box radius, gradients, and text-shadow properties instead
of loading assets to achieve a similar effect. Because CSS3 is well supported on mobile brows-
ers, you can safely choose to use these properties when targeting those devices.

Don’t forget to pay attention to the content that can’t be displayed universally on all devices. IOS ■■

and some other mobile operating systems do not support Flash Player mobile. Furthermore,
Adobe announced in November 2011 that it won’t continue to provide support for mobile Flash
Player anymore. So animations, games, and video relying on Flash Player won’t be displayed on
several mobile devices.

When it comes to touch screens, the size of buttons and links play an important part in usability. ■■

You will have to rethink their design and make them broader and more appropriate to touch
interaction. Also, note that the hover capability will not work the same on touch screens as it does
on desktops because a touch is equal to a click event.

This being said, let’s go over a concrete example with a simple HTML document.

How it works
1. Create a simple HTML document with your usual text editor:

<!DOCTYPE HTML>
<html>
<head>
 <meta charset="utf-8">
 <title>Solution 8_2</title>
</head>

http://validator.w3.org/
http://html5.validator.nu/

 Multidevice Development

191

<body>
 <div id="wrapper">
 <header>
 <div id="logo">Logo</div>
 </header>
 <nav>
 <!-- Navigation -->
 Link
 Link
 Link
 </nav>
 <section>
 <h2>Adapting a layout on multiple devices</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin
iaculis dui vel massa tempor sagittis. Donec a dui nibh, vitae congue lorem.
Praesent porta gravida arcu vel lacinia. Vivamus euismod auctor mauris a
rhoncus. Mauris venenatis venenatis ante at facilisis. Pellentesque habitant
morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nullam
ac diam nec odio euismod iaculis nec sit amet nibh. Ut eu risus eget elit
volutpat vulputate ac et lorem. Cras dignissim viverra mauris sed euismod.
Pellentesque consequat, ante ac porta venenatis, eros orci viverra nisi,
ac iaculis lectus urna ac massa.
 </p>
 <figure>

 <figcaption>A photo</figcaption>
 </figure>
 </section>
 <aside>
 <!-- Sidebar -->
 <h4>Sidebar</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin
iaculis dui vel massa tempor sagittis. Donec a dui nibh, vitae congue lorem.
Praesent porta gravida arcu vel lacinia. Vivamus euismod auctor mauris a
rhoncus. Mauris venenatis venenatis ante at facilisis.
 </p>
 </aside>
 <footer>
 <!-- Footer -->
 css3 solutions - Apress -
 </footer>
 </div>
</body>
</html>

This document is simply structured and contains a header, main content that includes text and an image, a
sidebar, and a footer. All of the elements are inside a div with an ID named wrapper. You’ll find it useful to
manage the content based on the device screen size. In this example, you are using an HTML5 document
to take advantage of its powerful, semantic structural elements.

Chapter 8

192

2. Add a link to an external style sheet that you simply name style.css within the <head> element
of the document:

<link rel="stylesheet" type="text/css" href="style.css" />

For this example and for readability’s sake, you will have a single external style sheet that contains all your
style rules and media queries (for the screen media type).

3. Now adjust the viewport within the <head> element so that its default value on mobile devices
will be equal with regard to the device-width and override the virtual default viewport size of the
devices:

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

Here you also define the initial scale of your page as 1, which means that when loaded the document won’t
be rescaled in any way (which could be the case by default on some mobile devices).

4. That’s about it as far as your HTML document is concerned. Now that you have the structure,
let’s specify its appearance by first creating a style sheet. Start by setting general rules that will
be applied on any device, regardless of its screen size:

*{
 margin:0;
 padding:0;
}

img{
 max-width: 100%;
}

body{
 font-family:verdana;
 font-size:100%;
}

header,footer,nav,a,#wrapper,figure,img{
 display:block;
}

header{
 background:#6C0;
 color:#fff;
 height:70px;
 margin-bottom:10px;
 width:100%;
}

#logo{
 margin:0;
 padding:10px;
 font-size:1.8em;
 font-weight:bold;
}

 Multidevice Development

193

nav a{
 display:block;
 float:left;
 text-decoration:none;
 font-size:1em;
 font-weight:bold;
 border-radius: 10px;
 background-color:#abc;
 color:#fff;

}

p{
 padding:10px 10px;
 font-size:0.85em;
 }

section {
 color:#333333;
 border-radius:10px;
 background:#EEE;
 padding:12px;
}

section img {
 margin: 0 auto;
}

figure{
 font-size:0.75em;
 text-align:center;
}

footer {
 border-radius:7px;
 background:#333333;
 margin:10px auto;
 padding:10px 5%;
 color: #ccc;
 font-size: 0.9em;
 width:90%;
}

Here you are just setting regular style rules for your elements that will be the same no matter what device
your content is displayed on: background, margin, padding, and font-size. So that it can be resized across
all browsers, set your text size using em units.

Also, to make sure that your images won’t exceed the page size, regardless of the display screen size, set
its max-width to 100%. (We advise you to do the same with video elements, embedded elements, tables,
and so on if you have those elements in your document.)

Chapter 8

194

5. Now add specific rules for specific device widths using media queries. Let’s start with desktop and
laptop screens. Assume that a screen with a width greater than 1025 pixels is a computer screen,
and add rules to be applied for this specific query:

@media screen and (min-width:1025px){

 #wrapper{
 width:960px;
 margin:0 auto;

 }

 nav{
 display:block;
 height:30px;
 margin:0 0 0 20px;
 }

 nav a{
 float:left;
 margin:0 10px 10px 0;
 height:25px;
 line-height:25px;
 padding:6px 14px;
 font-size:0.85em;
 }

 section{
 clear:both;
 width:600px;
 float:left;
 border-radius:10px;
 margin:0 15px 10px 0;
 }

 aside{
 display:block;
 width:200px;
 float:left;
 padding:10px;
 }

 footer{
 clear:both;
 }
}

Here you have a rather simple layout. Your navigation bar has inline text links. You place your sidebar to
the left of the main content. You give your wrapper div a standard width of 960 pixels with auto margins so
that it’s in the center of the screen. It is pretty traditional.

6. Now add specific styles to target smartphones. Assume that a screen with a width less than 600
pixels is a smartphone screen, which seems like a safe assumption. (For the moment, we won’t
discuss the device orientation, which will be covered in the next solution.) Note that you use both

 Multidevice Development

195

the max-device-width and max-width features. Using this approach, even desktop and laptop
browsers will apply the styles if the content is resized at that size (which is a bit unlikely but a good
way to test your style sheet). It also lets you test your layout with emulators like Protofluid (which
you can read more about in the “Expert tips” section of this solution):

@media only screen and (max-device-width:600px),(max-width:600px){

 body{
 margin:0;
 padding:0;
 }

 #wrapper{
 width:100%;
 }

 nav a{
 display:block;
 font-size:1em ;
 float:none;
 width:90%;
 height:40px;
 line-height:40px;
 margin:0 auto 3px auto;
 padding:6px 14px;
 }

 aside{
 display:none;
 }
}

On small devices, space is very limited. Elements should be designed so that they’re easily spotted and
read. The first thing you do here is set a width of 100% to your wrapper div so that you use all the width
of the screen. The sidebar would take up too much space, so you simply don’t display it. Moreover, when
browsing on their smartphones, users usually look for the main information, and sidebars do not usually
contain such data.

In the code shown earlier, we also changed the navigation. Having three text links, one after another, would
neither be easy to read nor to touch. So instead we made them as a list of more broad blocks, one below
the other, by changing the floatproperty from left to none and by changing the size of the <a>elements. It
is visually easier to read on a small display, and the links now have a surface more suitable for interaction
on small touch screens.

You can see the result in Figure 8-4.

All our content is in one, single long column that the user can scroll easily with a swipe touch. And as you
can see, our photo fits properly because it can never have a width greater than the screen size.

7. Let’s now take care of tablet screens. Assume that the screen width of tablets will be between 601
pixels and 1024 pixels (but here again you will deal only with the portrait mode).

@media only screen and (min-device-width:601px) and
(max-device-width:1024px),(min-width:601px) and (max-width:1024px) {

Chapter 8

196

 body{
 margin:0;
 padding:0;
 }
 #wrapper{
 width:100%;
 }

 section,aside{
 clear:both;
 background:#EEE;
 border-radius:10px;
 margin:15px auto;
 padding:10px;
 width:90%;
 float:none;
 }

Figure 8-4. Our layout displayed in Safari on an iPod Touch.

 Multidevice Development

197

 nav a{
 float:left;
 display:block;
 -webkit-text-size-adjust: 100%;
 font-weight:bold;
 border-radius: 10px;
 background-color:#abc;
 color:#fff;
 height:50px;
 line-height:50px;
 margin:0 6px 8px 6px;
 padding:6px 14px;

 }

 nav{
 width:90%;
 margin:0 auto;
 }
}

Just like with smartphones, you set the wrapper div’s width to be 100%, the full width of the screen, to use
all the space available.

You have more space than on an average smartphone screen, so position the navigation links on a single
line using the float property, just as you did for desktop and laptop screens. However, because we’re still
dealing with a touch screen here, define a bigger touch area for the links than you did for desktops.

Here you display the content of the sidebar, but you position it below the main content to give the maximum
readability to the latter.

You can see the result on an iPad (in portrait mode) in Figure 8-5.

In this simple example, you managed to display your HTML document on different screen devices, from
smartphones to computer screens, and you adapted your layout to each in a pretty easy way by using only
CSS3 and its media queries. You can see that, depending on the complexity of your design and content,
you can rearrange your elements for specific screen ranges in an easy way without using any external
script. (See Figure 8-6.)

Caution: Browsers that don’t support media queries won’t display this example properly 
on desktops (like Internet 8 and earlier). Depending on your project and the document 
structure, you may have to add a specific style sheet for older browsers.

Chapter 8

198

Figure 8-5. Our layout displayed in Safari on an iPad (in portrait mode).

 Multidevice Development

199

Expert tips
If you are heavily involved in mobile development, you probably have several devices at your disposal to
work and test your projects. Other than that, you probably won’t be able to test your design on various
devices. Fortunately, you can find great online tools that will imitate the performance on tablets, on smart-
phones, with different resolutions, with various orientations, and so on.

A convenient and complete tool for doing this is Protofluid, which is available at http://protofluid.com.
It lets you test your online document on a multitude of device screen sizes, orientations, and browsers.
You just have to enter the URL you want to see, and then select the size, orientation, and browser of the
device to test it on.

One thing though, you will have to define you screen’s width with the width feature instead of device-width,
to be able to test your queries.

You can also find a very extensive list of mobile emulators and simulators at www.mobilexweb.com/
emulators.

If you have multiple devices at your disposal and want to test your layouts locally, Adobe has released a
very interesting and useful tool, Shadow, to view and inspect your web content. You also can use Shadow
to test it simultaneously on multiple devices (Android and iOS). At the time of this writing, you can down-
load Shadow 1.0 from Adobe Labs at http://labs.adobe.com/technologies/shadow/.

Solution 8-3: Handling layout orientation on mobile
devices with CSS3

In the previous solution, you saw how to apply specific styles according to different screen devices, from
desktop computers to smartphones. But what happens when users rotate the screen with mobile devices?
In this solution, you will see how you can adapt your layout for different orientations with CSS3.

Figure 8-6. The same web document on a smartphone, tablet, and desktop screen using different styles rules,
depending on the screen size, with media queries.

http://protofluid.com
http://www.mobilexweb.com/emulators
http://www.mobilexweb.com/emulators
http://labs.adobe.com/technologies/shadow/

Chapter 8

200

What’s involved
Here, again, the new CSS3 media queries give you the option of targeting devices based on their orienta-
tion. The feature created for that very purpose is the orientation feature. As you might have guessed, it
can take one of two values: portrait or landscape And just like any media queries you’ve seen, it lets you
set specific styles accordingly.

Syntax
Its syntax is pretty simple and can be described as follows:

This ■■ orientation value lets you target devices in portrait orientation:

@media screen and (orientation:portrait){
 /*
 style rules for any screen media in portrait orientation
 */
}

This ■■ orientation value lets you target devices in landscape orientation:

@media screen and (orientation:landscape){
 /*
 style rules for any screen media in landscape orientation
 */
}

Note that the orientation query lets you target which orientation the device has, but it won’t take care of the
actual width of the device’s screen (which is targeted by the device-width feature as seen in solution 8-2).
Table 8-5 lists the portrait and landscape widths of some popular mobile devices.

Table 8-5. Mobile device widths in pixels (portrait and landscape)

Device Screen Portrait Width Screen Landscape Width

iPhone 320 pixels 480 pixels

iPad 768 pixels 1024 pixels

Samsung Galaxy Tab 10.1 800 pixels 1280 pixels

Samsung Galaxy S 480 pixels 800 pixels

LG Optimus 3D 400 pixels 800 pixels

device-width vs. orientation
When you rotate most devices, the device-width changes accordingly, and if you set media queries with
the device-width feature, you can serve styles for each orientation without needing to use the orienta-
tionfeature. The following code sample shows how this is done:

 Multidevice Development

201

/* Smartphones (portrait and landscape) ----------- */

@media only screen and (min-device-width:320px) and (max-device-width:600px) {
 /* Style rules */
}

/* Smartphones (landscape) ----------- */

@media only screen and (min-device-width:481px){
 /* Style rules */
}

/* Smartphones (portrait) ----------- */

@media only screen and (max-device-width:480px) {
 /* Style rules */
}

At first, you might wonder if there is an actual use for this orientation feature. However, iOS devices
don’t follow that behavior and the device-width of an iPhone, when doesn’t change when it’s in landscape
orientation—it’s still 320 pixels, just like in portrait orientation. This goes for iPads as well (for which the
width is 768 pixels). In those cases, you have to use the orientation feature and make specific queries
for the iPhone or the iPad as follows:

@media only screen (max-device-width: 320px) and (max-device-width:480px) and
(orientation:portrait) {

 / styles for the iPhone/iPod in portrait orientation /
}

@media only screen and (min-device-width:321px) and (max-device-width:480px) and
(orientation:landscape) {

 / styles for the iPhone/iPod in landscape orientation /
}

Note: The orientation feature of CSS3 media queries has been supported on iOS since 
iOS4.

By combining both the device-width and orientation features, you can target iOS mobile devices and
others as well, like this:

@media only screen and (max-device-width:600px) and (orientation:landscape){

 */ style rules for device with a screen width below (or equal to)
600 pixels in landscape orientation /*

}

@media only screen and (max-device-width:600px) and (orientation:portrait){

 */ style rules for device with a screen width below (or equal to)
600 pixels in portrait orientation /*

}

Chapter 8

202

Another peculiarity on iOS devices is that they automatically zoom in when the user rotates the device into
landscape mode, and it’s up to users to zoom out to come back to the original scale. You can prevent this
by locking the maximum scale of the viewport and specifying that it should not exceed 1, thus preventing
rescaling. You can do this within the viewport tag, as follows:

<meta name="viewport" content="width=device-width,initial-scale=1.0,maximum-scale=1.0" />

Preventing users from zooming is not always advisable and could raise some issues, but because it seems
to be the only way to fix this behavior at the moment of this writing, we are mentioning it.

How it works
To see how to adapt a document based on the orientation of mobile devices, let’s take the same HTML
document as in the previous solution and add style rules for this purpose.

1. Create a new HTML document in your text editor:

<!DOCTYPE HTML>
<html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,initial-scale=1.0,
 maximum-scale=1.0" />
 <link rel="stylesheet" type="text/css" href="style.css" />
 <title>Solution 8_3</title>
</head>
<body>
 <div id="wrapper">
 <header>
 <div id="logo">Logo</div>
 </header>
 <nav>
 Link
 Link
 Link
 </nav>
 <section>
 <h2>Adapting a layout on multiple devices</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin
iaculis dui vel massa tempor sagittis. Donec a dui nibh, vitae congue lorem.
Praesent porta gravida arcu vel lacinia. Vivamus euismod auctor mauris a
rhoncus. Mauris venenatis venenatis ante at facilisis. Pellentesque habitant
morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nullam
ac diam nec odio euismod iaculis nec sit amet nibh. Ut eu risus eget elit
volutpat vulputate ac et lorem. Cras dignissim viverra mauris sed euismod.
Pellentesque consequat, ante ac porta venenatis, eros orci viverra nisi, ac
iaculis lectus urna ac massa.
 </p>
 <figure>

 <figcaption>A photo</figcaption>
 </figure>

 Multidevice Development

203

 </section>
 <aside>
 <!-- Sidebar -->
 <h4>Sidebar</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin
iaculis dui vel massa tempor sagittis. Donec a dui nibh, vitae congue lorem.
Praesent porta gravida arcu vel lacinia. Vivamus euismod auctor mauris a
rhoncus. Mauris venenatis venenatis ante at facilisis.
 </p>
 </aside>
 <footer>
 <!-- Footer -->css3 solutions - Apress -
 </footer>
 </div>
</body>
</html>

It’s the same document as in the previous solution, but it now has a header, a navigation bar, a section
element containing some text and a photo, a sidebar, and a footer.

2. Now add a link to an external style sheet, named style.css, within the <head> element of the
document:

<link rel="stylesheet" type="text/css" href="style.css" />

3. Adjust the viewport within the <head> element so that its default value on mobile devices will be
equal to the device-width:

<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0" />

That’s it for our HTML document. Now let’s take care of our style sheet.

4. First add style rules that will be commonly applied regardless of the device size and orientation:

*{
 margin:0;
 padding:0;
}

img{
 max-width: 100%;
}

body{
 font-family:verdana;
 font-size:100%;
}

header,footer,nav,a,#wrapper,figure,img{
 display:block;
}

header{
 background:#6C0;
 color:#fff;

Chapter 8

204

 height:70px;
 margin-bottom:10px;
 width:100%;
}

#logo{
 margin:0;
 padding:10px;
 font-size:1.8em;
 font-weight:bold;
}

nav a{
 display:block;
 float:left;
 text-decoration:none;
 font-size:1em;
 font-weight:bold;
 border-radius: 10px;
 background-color:#abc;
 color:#fff;
}

p{
 padding:10px 10px;
 font-size:0.85em;
}

section {
 color:#333333;
 border-radius:10px;
 background:#EEE;
 padding:12px;
}

section img {
 margin: 0 auto;
}

figure{
 font-size:0.75em;
 text-align:center;
}

footer {
 border-radius:7px;
 background:#333333;
 margin:10px auto;
 padding:10px 5%;
 color: #ccc;
 font-size: 0.9em;
 width:90%;

}

 Multidevice Development

205

5. Now let’s write a media query to target smartphones in portrait orientation and write the style rules
we want to be applied specifically for this situation. Just like in the previous solution, you assume
that screens with a maximum size of 600 pixels are considered to be smartphones:

@media only screen and (max-device-width:600px) and
(orientation:portrait),(max-width:600px){
 body{
 margin:0;
 padding:0;
 }
 #wrapper{
 width:100%;
 }

 nav a{
 font-size:1em ;
 float:none;
 width:90%;
 height:40px;
 line-height:40px;
 margin:0 auto 3px auto;
 padding:6px 14px;
 }

 aside{
 display:none;
 }
}

Here you just kept the same style rules that you defined in the previous solution, which are meant for
small screens in portrait orientation. The navigation bar is now a list of links, with a suitable area for touch
screens, and you removed the sidebar by setting the display property of the aside element to none.

6. Now let’s write the media query to target smartphones in landscape orientation:

@media only screen and (max-device-width:600px) and (orientation:landscape){

 #wrapper{
 width:100%;
 }

 nav a{
 margin:0px 12px 10px 0px;
 width:100px;
 padding:8px;
 height:30px;
 line-height:30px;
 font-size:1em ;
 font-weight:bold;
 text-align:center;
 float:left;
 }

Chapter 8

206

 section{
 clear:both;
 }

aside{
 display:none;
 }
}

You just take care of the navigation by specifying the use of a navigation bar when the device is in land-
scape, because the width is greater in that scenario. But you still don’t display the sidebar.

7. Now let’s take care of digital tablets in portrait orientation mode:

@media only screen and (min-device-width:601px) and (max-device-width:1024px)
and (orientation:portrait) {
 body{
 margin:0;
 padding:0;
 }

 section,aside{
 clear:both;
 background:#EEE;
 border-radius:10px;
 margin:15px auto;
 padding:10px;
 width:90%;
 float:none;
 }

 nav a{
 float:left;
 margin:0px 12px 10px 0px;
 font-weight:bold;
 height:50px;
 line-height:50px;
 margin:0 6px 8px 6px;
 padding:6px 14px;
 }

 nav{
 width:90%;
 margin:0 auto;
 }
}

Here you display all the elements because a tablet provides enough space—you just rearrange the way
they are displayed compared to a desktop or laptop screen because the screen space is a bit more lim-
ited. Also, you place the sidebar below the section element. Again, you adapt the navigation: you keep a
navigation bar but make the links with a broader area so that they are more suitable for touch events and
proportionate to a tablet size.

 Multidevice Development

207

 8. Finally, add a media query to target tablet devices in landscape orientation:

@media only screen and (min-device-width:601px) and (max-device-width:1024px)
and (orientation:landscape),(min-width:601px) and (max-width:1024px) and
(orientation:landscape){

 nav a{
 margin:0px 12px 10px 0px;
 font-weight:bold;
 height:35px;
 padding:15px 20px 5px 20px;
 }

 nav{
 margin-left:30px;
 }

 section{
 clear:both;
 float:left;
 width:70%;
 border-radius:10px;
 background:#ccc;
 margin:0 15px 10px 30px;
 }

 p{
 font-size:1em;
 }

 aside{
 width:20%;
 float:left;
 border-radius:10px;
 background:#ccc;
 padding:10px;
 }

 footer{
 clear:both;
 }
}

When the device is in landscape orientation on tablets, the display size is really close to what is available
on a laptop or on a desktop. So you have the sidebar on the left, like a regular sidebar, and a navigation bar
as well. Here, again, because you are dealing with a touch screen, you make the size of the links broader
than you would for a desktop.

Figure 8-7 shows the result on an Android smartphone in landscape and an iPad in portrait.

Chapter 8

208

Expert tips
Depending on the orientation and the space available on the screen, you may want to place your content
elements in a different order. You can find great benefits in this regard by using the CSS3 box-ordinal-
group property, which specifies the display order of the child elements of a box.

In the example you just used, if you wanted to display the menu so that the section element content would
be the first thing users see when viewing your page on a smartphone in portrait orientation, you would just
have to add the following rules within the relevant media query:

#wrapper{
 display: -moz-box;
 display: -webkit-box;
 display: box;
 -moz-box-orient: vertical;
 -webkit-box-orient: vertical;
 box-orient: vertical;
}

nav{
 margin:0 auto;
 text-size:120%;
 -moz-box-ordinal-group: 2;
 -webkit-box-ordinal-group: 2;
 box-ordinal-group: 2;
 }

Figure 8-7. Our document on a Nexus One (Android) in portrait mode and on an iPad in landscape mode.

 Multidevice Development

209

section{
 -moz-box-ordinal-group: 1;
 -webkit-box-ordinal-group: 1;
 box-ordinal-group: 1;
}

footer{
 -moz-box-ordinal-group: 3;
 -webkit-box-ordinal-group: 3;
 box-ordinal-group: 3;
}

Now the nav element will be positioned below the section element. Depending on the complexity of your
layout, using this property can be very helpful in organizing your different elements according to the device
and its orientation. You could put the navigation menu, as you do here, at the end of your document on a
smartphone in portrait mode and on top display an anchor link to it (that would be displayed only on smart-
phones). By doing this, the small space available on the screen would be first used for your main content,
while users could browse easily within your content by jumping to the navigation block.

Solution 8-4: Defining style rules for high-density
pixel screens

In recent years, we’ve seen the arrival of smartphones and then of smartphones with high-pixel-density
screens—for example, the iPhone 4 and its retina display. As a matter of fact, it is more than likely that an
increasing number of devices will come with high-density mobile screens in the future. The iPad, with its
third-generation device, is already evolving in this way. Dealing with such screens requires changing your
design and style sheet. In this solution, you will see how you can target devices based on their pixel density
with CSS3 and how to apply specific styles to those devices.

What’s involved
High-pixel-density screens imply that a given number of pixels will occupy less physical space than it
would on a lower pixel-density screen.

Device pixel and CSS pixel
Take, for example, the iPhone. The iPhone 3 has a resolution of 480 by 320 pixels, whereas the iPhone
4 is 960 by 640 pixels in height and width but still has the same display area of 320 by 480 pixels. So you
have more pixels for the same display area. Let’s not get confused about the pixel unit though—when it
comes to CSS, a pixel remains a pixel.

The CSS2.1 specification defines a “CSS pixel” as follows:

Pixel units are relative to the resolution of the viewing device, i.e., most often a computer
display. If the pixel density of the output device is very different from that of a typical
computer display, the user agent should rescale pixel values.

Chapter 8

210

Basically, it means that that one CSS pixel corresponds to one or more device pixels, depending on the
device, and is a relative value. Going back to our iPhone example, 1 CSS pixel actually corresponds to 4
device pixels (2x2). If you want to adjust some styles to take advantage of this high density of pixels—for
example, on some background images (which would appear kind of blurry otherwise when the user zooms
in on them)—the device-pixel-ratio feature of media queries is what you need.

The query syntax is similar to the other media query features you saw earlier, and the device-pixel-ratio
value corresponds to the number of device pixels per CSS pixel. So if you want to target the iPhone 4, you
write a query with a device-pixel-ratio of 2, like this:

@media only screen and (max-device-width: 480px) and (min-device-pixel-ratio: 2){
/style rules to be applied/
}

As you can see, this is pretty easy. Let’s now look at an example of utilizing this feature.

How it works
1. Create a simple HTML document with your text editor. For readability’s sake, write only style rules

destined for smartphones:

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<link rel="stylesheet" type="text/css" href="s_8_4_style.css" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<title>Solution 8_4</title>
</head>

<body>
<div id="wrapper">

 <li id="elem_1"> Images
 <li id="elem_2"> Videos

</div>
</body>
</html>

You are just making a simple document containing a list of two elements, and in the background of each
you put an image. You can then see how to adapt those background images for high-pixel-density mobile
screens.

2. Now attach a style sheet, and add your common style rules destined for all devices, whatever
their screen density:

#wrapper{
 width:100%;
 }

li{
 display:block;

 Multidevice Development

211

 padding:16px 0 0 75px;
 height:64px;
 background-size:64px 64px;
 list-style-type:none;
 width:80%;
}

The elements listed have a background size of 64 pixels, and you just put the text content 70 pixels from
the left to leave room for the list icons.

3. Now add your media query to target smartphones with non-high-density screens:

@media only screen and (min-device-width:320px){
 #elem_1{
 background-size: 64px 64px;
 background:url(img/icon_1_64.png) no-repeat ;
 }

 #elem_2{
 background-size: 64px 64px;
 background:url(img/icon_2_64.png) no-repeat ;
 }
}

4. Finally, add your media query to target high-pixel-density screen for smartphones with a pixel
device ratio of 2 (like the iPhone 4):

@media only screen and (min-device-width:320px) and (device-pixel-ratio:2){
 #elem_1{
 background-size: 64px 64px;
 background:url(img/icon_1_128.png) no-repeat ;
 }

 #elem_2{
 background-size: 64px 64px;
 background:url(img/icon_2_128.png) no-repeat ;
 }
}

The background size is the same as on screens of regular smartphones, but our background images are
twice as big (128 by 128 pixels) and our image resolution is adapted to the screen resolution, therefore
taking advantage of the retina display.

Expert tips
Some designers are tempted to use this technique to display all, or some, of their images at different
resolutions in their document. They do this by using the image-background rule with empty div elements
instead of the img tag, and using the device-pixel-ratio feature to display images of a specific resolution.
We don’t advise you to adopt this practice because you should always separate the view and the content,
and not mix them in any way.

Chapter 8

212

Solution 8-5: Styling a document for printing devices
with CSS3

Even though users are accessing your content on the Web, they may want to print a page of your website
to keep some information, photos, or other content. A layout adapted for a computer screen will not neces-
sarily be adapted for a printer version (and most likely will not be at all). In this solution, you will see how
you can serve a style sheet specifically for print devices.

What’s involved
The capability to target a print device is not new, and the print media type has been around since the
CSS2 specification. It is already a common, and good, practice to have a style sheet dedicated to print
devices. The syntax for doing this is as follows:

<link rel="stylesheet" type="text/css" href="print.css" media="print" />

You can also have all the style rules targeting printing devices in the same style sheet you are using for
screen devices like this:

<link rel="stylesheet" type="text/css" href="styles.css" media="all" />

with the following @media rule syntax:

@media print {
 /* specific style rules for print devices*/
}

CSS3 offers the following new properties and features that can help improve your printable content:

Media queries■■

 Just like with screen devices, you can choose to target specific page sizes with the use of media
queries and specify sizes in centimeters or inches, as follows:

 /* style sheet for "A4" printing */
 @media print and (width: 21cm) and (height: 29.7cm) {

 }

 /* style sheet for "letter" printing */
 @media print and (width: 8.5in) and (height: 11in) {

 }

You can use the ■■ image-orientationproperty to specify a rotation to be applied to an image when
printing your document. (Do not confuse this capability with transformations, and use it only to
correct a layout.)

.class { image-orientation: 90deg ; // will rotate the image of 90 degrees}

Unfortunately, at the time of this writing, no browsers support this property.

The ■■ size property relates to options for specifying page size. The CSS3 specification defines that
a page size can now be specified with values likeA4, A5,letter, or legal, and these options can
be used in conjunction with an orientation (portrait or landscape) like this:

 Multidevice Development

213

@page {
 size: A4 landscape;
}

This sample code sets the width of the page box to be 297 mm and the height to be 210 mm. The
page box in this example should be rendered on a page sheet size of 210 mm by 297 mm.

It can be extremely useful to reposition your layout based on a common format for paper, making your web
document even more suitable for printing.

Like the image-rotation property, this is not yet supported by any browsers at the time of this writing. But
if you want to read details about those new properties, you can read the Paged Media specification (still
in its draft stage) at www.w3.org/TR/css3-page/ or the cssPrint Profile of the W3C at this address: www.
w3.org/TR/css-print/.

What to print
When users print a web document page, they are mainly interested in the main content, text, or images,
and the navigation bar or the footer will have hardly any use for them. So it’s better just to not display them.
If you have a sidebar containing aside information, a group of social network sharing buttons, or any web
interaction specific content, it won’t be of any use either on paper.

When it comes to hyperlinks, they won’t be very useful the way they are displayed on screen. However, the
hyperlink in itself might be something users are interested in and that you want to display in full instead.
You can do this by using the pseudo elements and contentproperties.

Suppose you have the following hyperlink in your HTML document:

the address of my blog

Now add the following rule for a elements for print devices:

@media print {
 a:after {
 content: ": " attr(href);
 }
}

This code sample generates the following result when printed, giving your users the description of the link
followed by the hyperlink itself:

The address of my blog: http://myblog.com

Font size
You may want to redefine the text size in your document specifically for print. Here it will be interesting to
use the point unit because it is more suited for printing (but it’s not the best option for screen devices). A
font size of 12 points in the body of your document is the usual size for a printed web document, but you
can change this according to your content.

http://www.w3.org/TR/css3-page/
http://www.w3.org/TR/css-print/
http://www.w3.org/TR/css-print/
http://myblog.com

Chapter 8

214

How does it work
1. First create an HTML document. Here you will just take the web document you used in the two

previous solutions and add a style sheet for printing devices:

<!DOCTYPE HTML>
<html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,initial-scale=1.0,
 maximum-scale=1.0" />
 <link rel="stylesheet" type="text/css" href="style.css" />
 <title>Solution 8_5</title>
</head>
<body>
 <div id="wrapper">
 <header>
 <div id="logo">Logo</div>
 </header>
 <nav>
 Link
 Link
 Link
 </nav>
 <section>
 <h2>Adapting a layout on multiple devices</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin
iaculis dui vel massa tempor sagittis. Donec a dui nibh, vitae congue lorem.
Praesent porta gravida arcu vel lacinia. Vivamus euismod auctor mauris a
rhoncus. Mauris venenatis venenatis ante at facilisis. Pellentesque habitant
morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nullam
ac diam nec odio euismod iaculis nec sit amet nibh. Ut eu risus eget elit
volutpat vulputate ac et lorem. Cras dignissim viverra mauris sed euismod.
Pellentesque consequat, ante ac porta venenatis, eros orci viverra nisi, ac
iaculis lectus urna ac massa.
 </p>
 <figure>

 <figcaption>One photo</figcaption>
 </figure>
 Link to the other
 photos
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin iaculis dui
vel massa tempor sagittis. Donec a dui nibh, vitae congue lorem. Praesent
porta gravida arcu vel lacinia. Vivamus euismod auctor mauris a rhoncus.
Mauris venenatis venenatis ante at facilisis. Pellentesque habitant morbi
tristique senectus et netus et malesuada fames ac turpis egestas. Nullam ac
diam nec odio euismod iaculis nec sit amet nibh. Ut eu risus eget elit
volutpat vulputate ac et lorem. Cras dignissim viverra mauris sed euismod.
Pellentesque consequat, ante ac porta venenatis, eros orci viverra nisi, ac
iaculis lectus urna ac massa. </p>

 Multidevice Development

215

</section>
<aside>
 <h4>Sidebar</h4>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin iaculis dui vel
massa tempor sagittis. Donec a dui nibh, vitae congue lorem. Praesent porta gravida arcu
vel lacinia. Vivamus euismod auctor mauris a rhoncus. Mauris venenatis venenatis ante at
facilisis.
 </p>
 </aside>
 <footer>
 css3 solutions - Apress -
 </footer>
 </div>
</body>

</html>

2. That’s about it as far as our HTML document is concerned. You can now write the style rule in the
style.css file. First you write a media query stating that you want this style to apply to pages that
have a maximum width of 21 cm and a maximum height of 29.7 cm (the A4 paper size).

@media print and (max-width: 21cm) and (max-height: 29.7cm){

3. Now add the style rules. First you choose not to display the navigation bar, because it’s of no
use on paper. Do this by setting its display property to none. You display the sidebar under the
main content by overriding the float property and setting it to none. You also set the background
of section elements to be white. (Normally, browsers won’t take care of background colors or
background images, but Opera does.)

nav,aside{
 display:none;
}
section{
background:none;
}

4. You will now take care of the link displayed under the photo. You want its hyperlink to be displayed
in full next to it so that users have it on paper for further use and reference. You also set the link
color style to be the same as the rest of your document text, but you specify it to be underlined so
that users can easily identify the hyperlink compared to regular text:

#photo_link:after {
 content: ": " attr(href);
 }

5. Set the font size to be more appropriate for print devices. Instead of using em (which you used for
other devices), you use point units because that’s more appropriate for print documents:

 p, { font-size: 12pt; }
 h1 { font-size: 24pt; }
 h2 { font-size: 18pt; }

Chapter 8

216

6. Define the margins, and set them to 2 cm on each side for readability:

@page {
 margin: 2cm 2cm;
}

7. Close the media query:
}

This example is a simple one, and you can add more queries based on your web document content.

Expert tips
If your website content is rather simple and you don’t want to write specific CSS for print devices, you can
embed a badge from www.printfriendly.com/ that will format your web pages for print. It removes ads,
navigation, and other such information for users who want to print some pages of your web content.

Summary
As you can see, developing web content for multiple devices, screens, and resolutions (both for mobile
and desktop) presents a lot of new challenges for web developers. New CSS3 modules like media queries
offer easy-to-implement solutions to make your designs and content adaptable for a wide range of devices.
In this chapter, you saw how to adapt your document style sheet for multiple devices, screen sizes, and
orientations (on mobile devices), as well as how to format it for paper and printing devices, creating a
responsive design.

In the next chapter, you will see how, with CSS, you can now bring animations and transformations to your
web document elements.

http://www.printfriendly.com/

217

Chapter 9

Transitions and Transformations

When developing web applications and content, a rich user interface can make your project both appealing
and easy to use. More often than not, you’ll want to add some animation and nice visual effects to your
elements. So far to achieve this, even basically, you have needed to use JavaScript or an external plug-in
(like Adobe Flash). Moreover, you often had to turn text into images and use all kinds of small hacks and
tedious tricks (which almost always have an impact on your page accessibility or page loads or have some
Search Engine Optimization issues).

CSS3 introduces some awesome new modules you can use to manipulate and animate HTML document
elements, as well as to apply transformations and animations in 2D and 3D directly with simple CSS dec-
larations. In this chapter, you’ll see how you can rotate, translate, and apply several transformations to any
element or to text in 2D and 3D, and how to animate elements, directly in CSS, without having to rely on
any external script or plug-in.

Solution 1: Applying simple 2D transformations
on HTML elements with CSS3

When using the previous versions of CSS, whenever you wanted to add simple transformations and move-
ment to your HTML document elements—for instance, to add a simple rotation when the mouse hovered
over a navigation menu link—you had to write some external script using JavaScript or use an external
plug-in like Flash. Either way, this could cause potential compatibility problems and, to work as expected,

Chapter 9

218

your web document was dependent on an external technology. In some cases, even with using JavaScript
to achieve some effects, you had to use images containing text instead of text, thereby losing the SEO
benefits of having clean, simple content, having to load your document with extra assets, and introducing
accessibility issues. All in all, this created a lot of problems to solve.

With CSS3, you now have the capability to perform several transformations, in two-dimensional (2D)
space, on your document elements, in a very simple way—without relying on any external technology. In
this solution, you’ll see how you can rotate, skew, scale, and translate HTML elements with the single use
of the CSS 2D Transforms Module.

What’s involved
Applying transformations to a document element in CSS3 is straightforward. You use two major properties:
transform and transform-origin.

The transform property
With this property, you can translate, rotate, scale, or skew any element directly with CSS from your HTML
document. What the property does, in fact, is modify the coordinate space of the element it targets. Its
general syntax is very simple:

transform: transform function(value);

The transform property contains several transform functions you use to perform the following transforma-
tions:

Rotating an element: The ■■ rotate() transform function applies a 2D rotation of a specified angle,
from the origin of the element. The angle is expressed in degrees. You’ll see how to move the
origin later on.

The syntax is as follows: transform:rotate(angle).

Here is an example: transform:rotate(45 deg). This rotates the targeted element 45 degrees clockwise.
(See Figure 9-1.)

Scaling an element: The ■■ scale() transform function defines a scaling transformation on the
targeted element using the scaling vectors passed as parameters. The first parameter is the
scaling factor along the X axis, while the second one concerns the Y axis. If the second parameter
is not provided, its default value is equal to the first parameter. A scaling vector of (1) leaves the
element unchanged. The use of negative values produces a reflection effect.

The syntax is as follows: transform scale(X scale vector, Y scale vector).

You also can transform an element on only one axis by using the following syntax:

transform:scaleX(X scale factor);
transform:scaleY(Y scale factor);

Here’s an example:

#element{
 transform: scale(2,4);
}

 Transitions and Transformations

219

This causes the targeted element to appear twice as long in the X axis and four times as long on the Y
axis. (See Figure 9-1.)

#element{
 transform: scaleX(2);
}

This causes the targeted element to appear twice as long in the X axis but won’t change its size along the
Y axis.

Note: Scaling an element doesn't correspond to changing its height and width (which
would constrain only the width and height values but not resize the element)

Skewing an element: You can apply a skew transformation on an element by using one of the ■■

following transform functions:

■■ skew(x-angle,y-angle): This defines a 2D skew transformation along the X axis and the Y
axis.

■■ skewX(angle): This defines a 2D skew transformation along the X axis.

■■ skewY(angle): This defines a 2D skew transformation along the Y axis.

The transformation is applied from the default center point of the element. Here are some examples:

#element{
 transform: skew(25deg,20deg);
}

This causes the element targeted to be skewed by 25 degrees on the X axis (for example, to lean to
the left at 25 degrees) and 20 degrees on the Y axis, (for example, to slope from top to bottom). (See
Figure 9-1.)

#element{
 transform: skewX(25deg);
}

This causes the targeted element to be skewed 25 degrees on the X axis only (for example, to lean to the
left 25 degrees).

Translating an element: You can translate an element (that is, move the entire element starting ■■

from its default position) by using one of the following transform functions:

■■ translate(x translation value,y translation value): This defines a 2D translation along
the X axis and the Y axis. If the second parameter is not specified, its default value is 0.

■■ translateX(x translation value): This defines a 2D translation transformation along the
X axis.

■■ translateY(y translation value): This defines a 2D translation transformation along the
Y axis.

Chapter 9

220

You can also apply several transformations on the same element by writing the transform functions one
after another, separated by a space, like this:

transform:rotate(45deg) scale(2);

This code rotates an element 45 degrees clockwise and scales it to twice its original size.

The transform-origin property
Every element is positioned in a 2D coordinate space, and they each have an origin point. You can move
this origin when performing any transformation by using the transform-origin property. The coordinates
of this point are based on a regular 2D coordinate system: a vertical Y axis, a horizontal X axis, and an
initial transform-origin value of 50% 50 %, which is the center of the element.

As you would logically expect, the transform-origin property takes two parameters: the X-axis coordinate
value and the Y-axis coordinate value. It accepts the following two types of values (and if only one param-
eter is given, it assumes the second one is the center):

Numeric (expressed in pixels or percentages): A value pair of ■■ 100% 100% places the transform-
origin in the bottom right corner.

Keywords: The keywords you can use are ■■ top, bottom, center, left, and right. A value pair of
right bottom, for instance, places the transform-origin in the bottom right corner (just like a
value pair of 100% 100 %).

The default value can be then expressed like this: (50 %,50 %) or (center,center).

The translation values are defined as length or percentage values. (You can also use negative values,
which move the element in the opposite direction along the axis—that is, up or to the left.) Here’s an
example:

#element{
 transform: translate(10px,40px);
}

This code causes the targeted element to appear 10 pixels below its original position on the X axis and 40
pixels to the right of its original position on the Y axis. (See Figure 9-1.)

Figure 9-1. The scale(), rotate(), skew(), and translate() transform functions applied to an HTML document
element

 Transitions and Transformations

221

Versions of Internet Explorer prior to 9.0 don’t support 2D transformations, so you have to fall back to some
equivalent in JavaScript or an Adobe Flash animation. The Modernizr library (which you can download at
www.modernizr.com/download/)) will be of great help when you are trying to add a fallback script. Here’s
an example:

<script type="text/javascript" language="javascript" src="modernizr.js"></script>
<script type="text/javascript" language="javascript">
if (!Modernizr.csstransforms) {
 // the browser doesn't support 2D transforms
 // add your fall-back script according to the transformation you want to achieve
 }
</script>

To change the default origin value on a transform operation and define a specific point as the origin, you
must follow a particular sequence. First perform your transform operation, and only then reposition your
element by changing the origin point as follows (that is, the transform-origin has to be applied after the
transformation itself):

#element{
 transform: scale(0.5);
 transform-origin:20px 40px;
}

The preceding code scales the element to half its original size, and then repositions it as if its origin is
placed 20 pixels to the right of the upper left corner of the element and 40 pixels below it.

Note that when you transform an element, all its child elements will be subjected to the transformation as
well. One great thing is that when an element is subject to transformation, its structure is not changed in
any way. (Remember that you’re dealing only with the view here.) Text, for instance, will remain selectable
and so forth. Transformations let you create great, SEO-friendly designs at the same time, as well as ones
that are highly accessible.

Browser support
At the time of this writing, 2D transforms are available in all current modern browsers including Internet
Explorer 9. (See the compliant browsers list on the Table 9-1.) As you can see, the support is pretty good,
including on mobile browsers. However at the time of the writing of this book the specification of the mod-
ule is still at a Working Draft stage, and each of those browsers will require the use of its vendor prefix to
apply them.

Table 9-1 lists browsers that are compatible with this property, including the specific prefix for each.

Table 9-1. Browser compatibility with CSS3 transforms

Internet
Explorer Firefox Chrome Safari Opera iOS Safari Opera Mobile Android Browser

9+ 3.5+ 4+ 3.1+ 10.5+ 3.2+ 11+ 2.1+

–ms –moz –webkit –webkit –o –webkit –webkit

http://www.modernizr.com/download/

Chapter 9

222

You can also use the Microsoft proprietary Matrix filter to apply matrices to elements in most cases,
because this filter has been supported since Internet Explorer 5.5. To learn more about transformations
with matrices and how to use them, refer to Solution 9-2. (Of course, this filter won’t work with any browser
other than Internet Explorer.)

How it works
Now that we’ve covered the rather simple syntax of 2D transforms and their transform functions, let’s take
a look at a concrete example. To illustrate their use, this example builds a navigation bar, with links that
appear by rotation in response to a hover action:

 1. First create a basic HTML5 document with your text editor, containing a nav element with two links,
and a link to the style sheet:

<!DOCTYPE HTML>
<html>
<head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="style.css" type="text/css"/>
 <script type="text/javascript" language="javascript" src="modernizr.js"></script>
 <script type="text/javascript" language="javascript">

 if (!Modernizr.csstransforms) {
 // the browser doesn't support 2D transforms
 // add your fall-back script according to the transformation you want to achieve
 }
 </script>
 <title>Solution_9_1</title>
</head>
<body>
<nav>
 <li class="element home">
 Link

 <li class="element contact">
 Link

</nav>
</body>
</html>

 Basically, you’re using your style sheet to build links that are half hidden behind a block and reveal
themselves in response to a hover action, so you add a div behind which your links will be
displayed.

 That’s it as far as your HTML document is concerned. Again, note that you’re separating your
content from its view, and the combination of HTML5 and CSS3 makes it more structured and
easier to work with.

 2. Now create a CSS file. Start by styling the links so that they appear by default upside down. (The
aim is to rotate them so that they’re readable and clickable in response to a mouse hover action.)
To achieve this behavior, apply two transformations—a rotation with the rotate() transform

 Transitions and Transformations

223

function, and a reverse effect with the scale() transform function—so that the text of the link will
be upside down but you can still give a hint to users that they need to hover over the link:

.element{
 display:block;
 position:absolute;
 background:#ccc;
 width:100px;
 height:70px;
 padding:5px;
 margin:55px 0 0 20px;
 -moz-transform:scale(-1) rotate(45deg);
 -webkit-transform:scale(-1) rotate(45deg);
 -o-transform:scale(-1) rotate(45deg);
 -ms-transform:scale(-1) rotate(45deg);
 border-radius:12px;

}

a{
 text-decoration:none;
 font-family:Tahoma, Geneva, sans-serif;
 color:#fff;
 margin-left:60px;
 margin-top:5px;
 display: inline-block;
 -webkit-transform:rotate(-90deg);
 -webkit-transform-origin:bottom right;
 -moz-transform: rotate(-90deg);
 -moz-transform-origin:bottom right;
 -ms-transform: rotate(-90deg);
 -ms-transform-origin:bottom right;
 -o-transform: rotate(-90deg);
 -o-transform-origin:bottom right;
}

.contact{
 margin-left:140px;
}

li::after{ content:"Hover"; }

This code sets your transform functions for the two nav elements. It also uses the :after pseudo selector
to add a reminder for the user to hover the mouse over the link.

Practically, what you did here is apply a rotation of 45 degrees and then reverse the list elements by apply-
ing a scale factor of –1. You also transformed the < a > elements by changing their rotation by –90 degrees
with a new transform-origin on the bottom right to follow your reversal effect.

After those transformations, your navigation elements look like the ones you see in Figure 9-2.

Chapter 9

224

 1. Now you just need to add the style rules to hide half of the elements so that only the desired half
is visible in both static and hover states. (See Figure 9-4.) You achieve this by positioning the
navmask div appropriately, like this:

#navmask{
 position:absolute;
 z-index:50;
 width:100%;
 height:109px;
 background:#627878;
}

 3. Almost all the hard work is done, and you just need to add the appropriate rotation on :hover to
read the link:

.element:hover{
 position:absolute;
 background:#990000;
 -moz-transform:translateY(20px) rotate(90deg);
 -o-transform:translateY(20px) rotate(90deg);
 -webkit-transform:translateY(20px) rotate(90deg);
 -ms-transform:translateY(20px) rotate(90deg);
}

Now in response to :hover, your elements look like the ones shown in Figure 9-3.

Figure 9-3. Element being transformed on :hover

Figure 9-2. Several transformation functions applied to your navigation elements

 Transitions and Transformations

225

Expert tips
If you want to try transformation values or don’t want to calculate the values for a specific effect or combi-
nation of transform functions by yourself, you can use a handy 2D transform tool to manipulate all the 2D
transformation values on an element and see the result in real time. It’s available at the following website:
www.westciv.com/tools/transforms/.

Solution 9-2: Using matrix 2D
transformations in CSS3

In the previous solution, you saw how you can apply several 2D transformations on the HTML document
element by using specific transformation functions. You also can apply combined transformations with a
single function by using matrices, and thus increase the complexity and precision of your 2D transforma-
tions of an element. In this solution, you’ll see how you can use the matrix function to apply 2D transfor-
mations.

This example is a rather simple one without any real design concerns and presented just for the sake of
demonstration, but it shows how you can combine different transform functions to add effects to your ele-
ments without having to change the content itself in any way or use any external scripts. In later solutions,
you’ll see how you can animate your transformations, thereby greatly expanding your design possibilities.
This example won’t work on versions of Internet Explorer prior to 9.0. So you’ll have to either add some
JavaScript to re-create the effect or use the Microsoft Matrix filter. (Matrix transformations are covered in
Solution 9-2.)

Figure 9-4. Both elements with transformations depending on their state (either hover off or hover on)

Caution: Because this example uses the :hover selector, it won’t work on mobile devices
like smartphones or digital tablets. This is a situation where media queries come to the
rescue. You can use them to design a menu specific for those devices, while still using
the same HTML document. You can learn more about media queries in Chapter 8.

http://www.westciv.com/tools/transforms/

Chapter 9

226

The first two columns of a 3 by 3 transformation relate to linear transformations, whereas the third one
deals with translations. By applying different values to your matrix, you can achieve different types of trans-
formations. (With 2D transformations, the last row of values is always equal to 0, 0, 1.)

Now for the hard part. Each point of the element being transformed is represented by a vector (x, y, 1),
where x and y are the coordinates of the point on the coordinate system (because we are dealing with 2D
transformations the third coordinate is always equal to 1). All the transformations you do to an element
(rotation, translation, and so on) are calculated as individual matrices, which are themselves multiplied
together to make a master matrix of transformation. To produce the transformed element, each point of
the element is multiplied by that matrix, and the transform matrix function, in fact, maps coordinates and
lengths from a new coordinate system into the current coordinate system, giving new coordinates to the
transformed element in the current coordinate system. The calculation will be the matrix multiplication
shown in Figure 9-6.

What’s involved
We won’t cover the subject of transformation matrices from a mathematical point of view in depth in this
book. First of all, it is quite a complex subject that goes beyond the scope of this book, and people who are
not familiar with linear algebra probably will find the topic too abstruse. Moreover, a full-length explanation
probably would require a full chapter. We’ll just go over the basics so that you understand how transforma-
tion matrices work, which will enable you to use them in a better way. As you’ll see, this knowledge will be
very useful for applying transformations in Internet Explorer.

Matrices and the 2D coordinate system
As you saw in the previous solution, you can easily apply transformations such as rotation, scale, transla-
tion, and skew on an HTML document element with CSS3-specific transformation functions. Actually, all
those transformation functions can be represented directly by a matrix value (which will render faster).

A matrix is an array of numbers used to transform coordinates, and the CSS3 2D transformations can be
represented as 3 by 3 transformation matrices as shown in Figure 9-5.

a b e
c d f
0 0 1

Figure 9-5. A 2D CSS3 matrix array

a b e
c d f
0 0 1

[x,y,1] * = [a*x+c*y+e,b*x+d*y+f,1]

Figure 9-6. Matrix transformation calculation

 Transitions and Transformations

227

This means that every point (x, y) of the targeted element moves to the following point (a*x + c*y + e,
b*x + d*y + f).

Let’s take a simple, but rather clear and demonstrative, example and apply an identity matrix—for exam-
ple, (1,0,0,1,0,0)—to a point with coordinates (10,10) on a 2D coordinate system. (When a matrix causes
no transformations, you have what is known as an identity matrix. Therefore, applying this matrix to your
point should give you back the same exact new coordinates):

The matrix (1 * 10 + 0 * 10 + 0, 0 * 10 + 1 * 10 + 0) does, indeed, give us a transformed point of (10, 10).

Let’s take another example now that translates a point with the coordinates (5,5) by 10 pixels on both axes.
Because this is a standard translation, you know without any calculation the new coordinates are (15,15),
but let’s take a look at the calculation. Your matrix is (1, 0, 0, 1, 10, 10). When you apply it, you get (1 * 5 +
0 * 5 + 10, 0 * 5 + 1 * 5 + 10), which give you new coordinates of (15,15) for the translated point.

Now that you’ve seen briefly the theory behind matrices and how new coordinates are calculated with
their use, let’s go over their concrete use in CSS3. If you want to go more deeply into the calculation of
matrices and linear transformations, you can refer to the following link: http://en.wikipedia.org/wiki/
Transformation_matrix). But be prepared for headaches if you are not familiar with math! Don’t worry,
though, as you’ll see in the upcoming paragraphs, you can use the matrix transformation function without
any calculations.

Syntax
The matrix transform function in CSS3 has the following syntax and is equal to applying the transformation
matrix [a b c d e f]:

#element{
 transform: matrix(a, c, b, d, e, f);
}

In the code example, a, b, c, d builds the transformation matrix with linear transformation, whereas e and
f are the translation values.

To make use of transformation matrices by calculating them according to the desired effect, you need to
have a good understanding of linear algebra. Even if you do, though, this would take quite a bit of calcula-
tion. If you are not familiar with this or don’t want to deal with heavy calculations to perform a simple trans-
formation, it doesn’t mean you can’t use them. First, you can find the known matrix values for common
effects and just use them without bothering with the math.

Here is a list of matrix values you can use to achieve common transformation effects:

A translation is equivalent to the following matrix:■■

matrix(1, 0, 0, 1, x, y)

In this matrix, x and y are the translation values added successively on the x and y axes, measured in
pixels.

To scale an element, you use the following matrix■■ :

matrix(x, 0, 0, y, 0, 0)

In this matrix, x and y are the scale factor added successively on the x and y axes.

http://en.wikipedia.org/wiki/Transformation_matrix
http://en.wikipedia.org/wiki/Transformation_matrix

Chapter 9

228

To rotate an element, use the following matrix:■■

matrix(cos(a), sin(a), –sin(a), cos(a), 0, 0)

Here, a is the value in degrees of your desired rotation angle.

To skew an element on the X axis, you use the following matrix:■■

matrix(1, 0, tan(a), 1, 0, 0)

Here, a is the angle value along the X axis.

To skew an element on the Y axis, you use the following matrix:■■

matrix(1, tan(a), 0,1, 0, 0)

In this matrix, a is the angle value along the Y axis.

You also might want to apply more complex and combined matrices transformations to some elements
without turning yourself into a math nerd. Thankfully, there are several nice tools on the web that do all the
tedious calculation for you, like the following ones:

“Playing with matrices,” which is coded by a talented front-end developer named Peter Nedrlof, ■■

is a small online application you can use to apply all kinds of 2D transformations directly to a
square element using drag-and-drop interactions. It generates the associated matrix CSS3 code
on the fly, which you can then copy and paste into your own style sheet. Check it out at http://
peterned.home.xs4all.nl/matrices/.

Another great online tool, which is similar but lets you go further, is the Matrix Construction ■■

Set, written by web developers Zoltan Hawryluk (creator of several JavaScript libraries) and Zoe
Mickley Gillenwater (a web and graphic designer specializing in CSS). You can see it at www.
useragentman.com/matrix/.) This tool provides the matrices values and even the cross-browser
code to use to achieve the same effect in your own document. (At the time of this writing, this tool
doesn’t work in Opera and has some issues in some versions of Chrome.)

As you can see, understanding matrices can be a bit of a challenge, but you can manage to use CSS3
matrix functions without it.

Browser support
The support is the same as for the transform functions you saw in the previous solution, so Internet
Explorer versions prior to 9.0 don’t support CSS3 transforms. However, you can get the same results by
using its proprietary Matrix filter in your CSS.

The matrix filter syntax is quite similar to the transform matrix. Because we are using matrices, you can
apply the same values you use for other browsers with regular matrix transforms to have them as well in
Internet Explorer. The matrix filter syntax is as follows:

filter: progid:DXImageTransform.Microsoft.Matrix(sizingMethod='auto expand',
 M11=a, M12=-b,
 M21=c, M22=d);

You can read the documentation for this filter on the Microsoft website at http://msdn.microsoft.com/
en-us/library/ms533014%28VS.85%29.aspx).

http://peterned.home.xs4all.nl/matrices/
http://peterned.home.xs4all.nl/matrices/
http://www.useragentman.com/matrix/.
http://www.useragentman.com/matrix/.
http://msdn.microsoft.com/en-us/library/ms533014%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms533014%28VS.85%29.aspx

 Transitions and Transformations

229

How it works
To give you a concrete example of matrix usage, this example shows you how to apply a matrix transfor-
mation to an image and give it a complete reflection effect in response to a mouse hover.

 1. Create a simple HTML5 document with your usual text editor, with a figure element containing an
image and its legend:

<!DOCTYPE HTML>
<html>
<head>
 <meta charset="utf-8">
 <link rel="stylesheet" type="text/css" href="style.css" />
 <title>Solution 9.2</title>
</head>
<body>
 <figure id="image-wrap">

 <figcaption>This is going upside down !!</figcaption>
 </figure>
</body>
</html>

 2. That’s about it for the HTML part. Now create your style sheet, and name it style.css. First take
care of the matrix transformation for all browsers compliant with the CSS3 transforms module:

#image-wrap{

 -moz-transform:matrix(1,0,0,-1,0,0);
 -o-transform:matrix(1,0,0,-1,0,0);

There is still an issue, though. The matrix filter doesn’t handle translation in the same way as CSS3
 transform functions. To handle the translation issue, you can use that great tool known as the Internet
Explorer CSS3 Transforms Translator (again, coded by Zoltan Hawryluk) to generate the CSS adapted to
your transformation with a translation. It’s available at www.useragentman.com/IETransformsTranslator/
index.html). This tool can recalculate the top and left margins of your transformed element to correspond
to the translatetransform function. Enter your regular CSS3 matrix transform function, and it will provide
you with the equivalent code for Internet Explorer versions earlier than 9.0 to render. (You will notice that
the values M11, M12, M21, and M22 are equal to the values a, b, c, and d from your matrix.) The good
point about using this filter is that it’s compatible with versions of Internet Explorer since 5.5!

Caution: The proprietary Microsoft Matrix filter is not valid CSS. So if you really want to
keep your document valid, you have to rely on another workaround to be cross-browser
compatible. One option is to use a JQuery plug-in such as jquery.transform.js, which you
can find at https://github.com/louisremi/jquery.transform.js). Or you can propose
an alternative CSS rule by detecting whether the browser detects transforms with the
use of the Modernizr library like you saw in the previous solution.

http://www.useragentman.com/IETransformsTranslator/index.html
http://www.useragentman.com/IETransformsTranslator/index.html
https://github.com/louisremi/jquery.transform.js

Chapter 9

230

 -webkit-transform: matrix(1,0,0,-1,0,0);
 -ms-transform: matrix(1,0,0,-1,0,0);
 transform:matrix(1,0,0,-1,0,0);

What you’re doing here is applying a matrix transformation to the whole figure element. It means that
the < figcaption > element will be subjected to it as well. Your matrix is transforming the element in such a
way that it will appear upside down. Because the specification is not a recommendation yet, you need to
add all the vendor prefixes for each browser.

 3. Now apply the same effect for Internet Explorer 8 and earlier by using the Matrix filter:

 filter: progid:DXImageTransform.Microsoft.Matrix(
 M11=1,
 M12=0,
 M21=0,
 M22=-1,
 SizingMethod='auto expand');
}

As you can see, you’re using the same matrix values with the Internet Explorer proprietary Matrix filter as
you did with the matrix transformation function. Other browsers will just ignore this code.

That’s it. If you load your document, you’ll have your image and its legend reversed in a kind of mirror effect
on all browsers, and without the use of any external script.

Expert tips
If you don’t want to write multiple versions of CSS attributes all the time, you might want to consider using
cssSandpaper, which generates all the different vendor-specific and standard syntaxes so that they work
in a cross-browser way. In addition, it also translates the World Wide Web Consortium (W3C) syntax into
DirectX filters to make transforms work with Internet Explorer just as you saw earlier. All you need to do is
import the associated libraries and add the –sand– prefix to any transform method you want to use, and it
will work on any browser.

Let’s take the example of this solution. If you want to have only a single CSS matrix function that works in
a cross-browser way, first you need to download the JavaScript files necessary from this site: www.user-
agentman.com/blog/csssandpaper-a-css3-javascript-library/). Then load them within the head tag of
your document:

<script type="text/javascript" src="js/EventHelpers.js"></script>
<script type="text/javascript" src="js/cssQuery-p.js"></script>
<script type="text/javascript" src="js/sylvester.js"></script>
<script type="text/javascript" src="js/cssSandpaper.js"></script>

Then the same reflection matrix will be applied as follows:

-sand-transform: matrix(1,0,0,-1,0,0);

And that’s it. This effect works on any browser. (Because of security rules, this plug-in cannot load embed-
ded style sheets when the page is not on a web server, so it won’t work when tested locally.) It couldn’t be
simpler!

http://www.useragentman.com/blog/csssandpaper-a-css3-javascript-library/
http://www.useragentman.com/blog/csssandpaper-a-css3-javascript-library/

 Transitions and Transformations

231

Solution 9-3: Making elements move with CSS3
transitions

In the previous solutions in this chapter, you saw how to transform elements, and it’s already pretty amaz-
ing to be able to do that now directly with CSS3 without having to load external assets, and in such a
simple way. One other great feature of CSS3 is the capability to add smooth transitions between two ren-
dering states of an element and obtain very nice animation effects without using any JavaScript or external
plug-ins. In this solution, you’ll see how to use transitions and create some pretty cool effects directly within
your style sheet.

What’s involved
Basically, a transition is the animation of an element going from one style property to another (for example,
a div element changing its width property from 10 pixels to 100 pixels).

Transition properties
To create a transition for a property with CSS3 is pretty straightforward. The transition is defined using the
following new properties:

■■ transition-property: This property defines the CSS property you add a transition to. The different
possible values are all (all the properties are animated by a transition), none(no properties are
animated by a transition), or a specific property. All the CSS properties cannot be subject to
transitions, and you can find those that are listed in Table 9-2. Here’s an example of its use:

transition-property:width;

transition-duration: This property defines the duration elapsed from the starting state to the new ■■

one. It is expressed in seconds, s, or milliseconds, ms. Here’s an example:

transition-duration:2s;

transition-timing-function: This property defines how the speed will be calculated during the ■■

transition (and allows for a transition to change speed over its duration). The possible values
are :ease (starts slowly, and then goes fast and ends slowly), linear (goes at the same speed
from start to end), ease-in (start slowly), ease-out (ends slowly), ease-in-out (starts slowly
and ends with a slight speed difference from the ease value), and cubic-bezier. The cubic-
bezier timing function requires four numeric values to calculate the speed of your transition. In
fact, all timing function values are defined by using a specific cubic-bezier curve, which is itself
defined by four control points—for instance, the ease function is equivalent to cubic-bezier(0.25,
0.1, 0.25, 1.0). We won’t go into cubic bezier curves and their calculation in detail here. But
you can read more about them at http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B.
C3.A9zier_curves). You can read about a useful tool for visualizing all the preset cubic Bezier
curves that you can use with CSS3 transitions at http://cssglue.com/cubic). This tool lets you
create custom ones by attributing your own values to the control points with the cubic-bezier
function (as the transitions module is not yet supported in Internet Explorer, and won't be until the
10th version, this tool won't work in this browser below IE10). Here are a few examples:

http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B.C3.A9zier_curves
http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B.C3.A9zier_curves
http://cssglue.com/cubic

Chapter 9

232

transition-timing-function:linear;

transition-timing-function: cubic-bezier(0,0,1,1);

Table 9-2. CSS properties that can be subjected to CSS3 transitions

background-color background-image

background-position border-bottom-color

border-bottom-width border-color

border-left-color border-left-width

border-right-color border-right-width

border-spacing border-top-color

border-top-width border-width

bottom length color

crop font-size

font-weight grid

left length letter-spacing

line-height margin-bottom

margin-left margin-right

margin-top max-height

max-width min-height

min-width opacity

outline-color outline-offset

outline-width padding-bottom

padding-left padding-right

padding-top right length

text-indent text-shadow

top length vertical-align

visibility width length, percentage

word-spacing length, percentage z-index integer

zoom number

transition-delay: This property defines when the transition will start and is expressed in seconds. ■■

(The default value is 0.) Here’s an example:

transition-delay:2s;

 Transitions and Transformations

233

Because a transition is an element going from an old state to a new state over time, logically to make it
work two of the properties just listed are compulsory: transition-property and transition-duration.

At the time of this writing, the specification for the the CSS Transitions module is still in the draft stage, and
you’ll have to use the vendor prefixes to use transition properties with different browsers.

Syntax
Now let’s take a look at the full syntax to apply the properties shown in Table 9-2.

First of all, to go from one state to another, you need to have two states: a starting one and an ending
one. In plain CSS, this could be achieved with the use of the following pseudo-selectors: :hover, :focus,
and :target.These pseudo-selectors let you define two states of the same element. For example, with
the :target pseudo selector, you can define the style of an element when it’s the target element of the
referring URI, which would be a state of an element after a user’s interaction. All you have to do is define
a transition, specify the property you want to animate, specify its duration, and then specify the transition
timing function, as well as a delay if you want to.

Let’s look at an example. Suppose you have an element with the id #element and with an initial width of
10 pixels and you want to expand its width by 200 pixels on :hoverin a smooth transition. Here’s the code
you would use to achieve this:

#element{

 width:10px;
 height:20px;
 display:block;
 background:#ccc;
 transition-property:width;
 transition-duration:1s;
 transition-timing-function: linear;
 transition-delay:1s;

 -moz-transition-property:width;
 -moz-transition-duration:1s;
 -moz- transition-timing-function: linear;
 -moz-transition-delay:1s;

 -webkit-transition-property:width;
 -webkit-transition-duration:1s;
 -webkit- transition-timing-function: linear;
 -webkit- transition-delay:1s;

 -o-transition-property:width;
 -o-transition-duration:1s;
 -o-transition-timing-function: linear;
 -o-transition-delay:1s;

}

Chapter 9

234

#element:hover{

 width:200px;

}

The preceding code expands your element’s width from 10 pixels to 200 pixels in response to a hover
event with a transition. The transition will start one second after the hover event is triggered and will be
linear. It’s as easy as that. Note that you define the transition rule with the first state of the element so that
the transition will apply when the width changes from 10 pixels to 200 pixels, and when it’s changing back
from 200 pixels to 10 pixels as well (when the element isn’t on hover anymore).

You can also use a shorter notation with the following syntax:

transition: transition-property transition-duration transition-timing-function transition-
delay;

The preceding example can then be shortened as follows:

#element{
 width:10px;
 height:20px;
 display:block;
 background:#ccc;
}

#element:hover{
 width:200px;
 -moz-transition:width 1s linear 1s;
 -webkit-transition:width 1s linear 1s;
 -o-transition:width 1s linear 1s;
 transition:width 1s linear 1s;
}

Browser support
CSS transitions support is shown in Table 9-3.

Table 9-3. CSS transitions module browser support

Firefox Chrome Safari Opera
Internet
Explorer iOS Safari Opera Mini

Opera
Mobile

Android
Browser

3.7+ 4.0+ 3.1+ 10.5+ Internet
Explorer 10+

3.2 No support 10.0 2.1

–moz –webkit- –webkit- –o– –ms– –webkit– –o– –webkit–

Almost all modern versions of major browsers support the CSS3 transitions module. Still, Internet Explorer
doesn’t support transitions in versions earlier than Internet Explorer 10, and there is no support what-
soever in Opera Mobile yet. If you use a transition, noncompliant browsers will just go from one state to
another directly. If you want to have the same smooth effect with noncompliant browsers, you have to

 Transitions and Transformations

235

detect the transitions’ support and add some JavaScript or Flash animation fall-back code. To detect the
support for this feature, the Modernizr library is once again a great option (which you can download from
www.modernizr.com/download/)):

<script type="text/javascript" src="modernizr.js"></script>
<script type="text/javascript">
 if(!Modernizr.csstransitions) {
 // the browser doesn't support CSS3 transitions
 // add a JavaScript fall-back script or a Flash animation
 }
</script>

Moreover, the combination of the Modernizr library and the JQuery animate method (the documentation
for which you can find at http://api.jquery.com/animate/)) can be a good option for a fall-back plan. For
instance, to reproduce the transition we just wrote, add the following:

$(document).ready(function() {
 if(!Modernizr.csstransitions) {
 $("#element").mouseenter(function() {
 $(this).animate({ width: "200px",}, 1000);
 }).mouseleave(function() {
 $(this).animate({
 width: "10px",
 }, 1000);
 });
 });
 }

Of course, depending on the transition you want to apply and your project, you might have to use different
JQuery methods in addition to the animate() method.

How it works
To see transitions in action, this example builds a simple accordion menu in pure CSS:

 1. First create an HTML document with your text editor that contains three section elements wrapped
in a div named wrapper, with each containing a panel with what will be the clickable header and
its associated content:

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<title>Solution_9_3</title>
<link rel="stylesheet" href="style.css" type="text/css"/>
<script type="text/javascript" src="modernizr.js"></script>
<script type="text/javascript">
 if(!Modernizr.csstransitions) {
 window.alert('your browser doesn't support CSS3 Transitions');
 // the browser doesn't support CSS3 transitions
 // add a JavaScript fall back script or a Flash animation
 }

http://www.modernizr.com/download/
http://api.jquery.com/animate/

Chapter 9

236

</script>
</head>
<body>
 <div id="accordion">
 <section id="blog" class="block">
 Link 1
 <div class="content">
 <p>Text link 1</p>
 </div>
 </section>

 <section id="contact" class="block">
 Link 2
 <div class="content">
 <p>Text Link 2</p>
 </div>
 </section>

 <section id="link" class="block">
 Link 3
 <div class="content">
 <p>Text Link 3</p>
 </div>
 </section>
 </div>
</body>
</html>

It is a rather simple markup. And that’s all you need to create an accordion. The principle is that in response
to clicking a link, its associated content will slide down and reveal the text it contains.

 2. Create your CSS file, and name it style.css. First just add some rules to design your accordion
a little bit. Nothing fancy or particular here, you are just shaping the section’s panels and the
links:

#accordion a{
 display:block;
 height:23px;
 padding:5px 5px 0 5px;
 color:#333333;
 text-decoration:none;
 border-right:1px solid rgba(255,255,255,0.35);
 border-left:1px solid #000;
 border-left:1px solid #000;
 border-radius:4px;
 background:#FC0;
 margin-bottom:2px;
}

#accordion a:hover{
 color: #333333;

 Transitions and Transformations

237

 font-weight:500;
 text-shadow: 1px 0px 0px rgba(0, 0, 0, 0.25);
 background:#FC0;

}

 3. Now you’ll start to take care of the mechanism of the accordion. You want each panel to be closed,
so set their height to 0 pixels. The transition you apply will affect the height because you want to
slide it down in response to a click but slide it up when another link is clicked. So add a transition
here that will apply each time the height is back to 0 pixels to create a smooth effect. Use the ease-
in timing function. Your transition will last 0.3 seconds and target the height property. Also, you
don’t want the content of any panel content to be displayed when the panel is closed, so set the
overflow to hidden:

.block .content{
 height: 0px;
 -webkit-transition: height 0.3s ease-in;
 -moz-transition:height 0.3s ease-in;
 -o-transition:height 0.3s ease-in;
 transition:height 0.3s ease-in;
 overflow:hidden;
}

 4. Next you need to handle the slide down of each panel when the corresponding heading is clicked.
For this effect, you use another great feature of CSS3: the :target pseudo-selector and a transi-
tion. You use the same timing function and duration to have the same effect on the slide down and
slide up effect:

.block:target .content {
 background: #ccc;
 height: 100px;
 -webkit-transition: height 0.3s ease-in;
 -moz-transition:height 0.3s ease-in;
 -o-transition:height 0.3s ease-in;
 transition:height 0.3s ease-in;
 border-radius:4px;
 margin-bottom:2px;
 overflow:auto;
 padding:8px;
 font-family:Tahoma, Geneva, sans-serif;
 color:#333;
}

And that's it! When clicked, each panel, when targeted, will have a height of 100 pixels and the transition
will be applied, giving this downward slide a smooth effect. When it is not targeted, each panel height will
be set to 0 pixels, and another transition will be applied if its height was different from 0 (i.e. if it was the last
panel targeted), giving this slide up effect. With the overflow set to auto, the content of the selected blockis
now visible and scrollable in case its height is bigger than the block's height.

Chapter 9

238

Expert tips
In the previous solutions, you saw how to apply transformations to HTML elements. In this one, you saw
how to use transitions to animate your elements to some extent. Because transformations are modifying
several properties of an element, you can, of course, apply transitions on transformed elements, and this
opens up a lot of possibilities! Let’s see an example.

Suppose that you have a div element with some basic text inside:

<div id="element">
 Animate me!
 </div>

Now apply the following style rules:

#element{
 display:block;
 width:90px;
 height:80px;
 background:#ccc;
 -moz-transition:all 0.7s ease;
 -o-transition:all 0.7s ease;
 -webkit-transition:all 0.7s ease;
}

#element:hover{
 background:#F00;
 -moz-transform:scale(1.5) rotate(360deg);
 -ms-transform:scale(1.5) rotate(360deg);
 -o-transform:scale(1.5) rotate(360deg);
 -webkit-transform:scale(1.5) rotate(360deg);

}

Now, in response to a hover event, your element will be rescaled by 1.5 from its original size and rotate on
itself at the same time in a transition that’s 0.7 seconds in duration. Because you placed the transition on
the original element state, when the hover event ends it returns to its original state with the same transition
values, providing a nice, small animated effect with only a few CSS declarations.

Solution 9-4: Going further with animations in CSS3
In the previous solutions of this chapter, you saw that you can transform elements, animate them with
transitions, and combine those two properties. These capabilities already give you the ability to create
stunning effects in your HTML documents without any external scripts. But so far when you wanted to add
some animation, you needed an event to be triggered in one way or another (either with pseudo-selectors
in CSS or with JavaScript) to create a transition from one state to another, and thus an animation. There

Note: The transitions will not work in Internet Explorer 9. (Internet 8 and earlier also won’t
support the :target pseudo-selector). So you’ll have to rely on JavaScript or Adobe
Flash to be completely cross-browser compatible.

 Transitions and Transformations

239

is another great module in CSS3 that lets you go beyond this and enable standalone animations: the
Animations module. In this solution, you’ll see how you can build animations with the Animations CSS3
module.

What’s involved
The Animations CSS3 module is an extension that has been brought to the Transitions module (that we
covered in Solution 9-3). To create animations, whatever language is used (or even on simple paper),
you have to use key frames in one way or another. A key frame is an image or a state, and basically an
animation is a sequence of several key frames rendered or viewed one after another over time. In fact,
the transitions you saw in the previous solutions are animations made of two key frames only. With the
CSS3 Animations module, you can go further and define more than two states—that is, more than two key
frames—and thus create more complex animations.

The keyframes rule
To create animations containing more than two states with CSS3, you have to use the new @keyframes
rule. As mentioned, an animation is a succession of states over time that give the illusion of movement.
With the @keyframe rule, you can define the different states you want to have in your animation. Its syntax
is straightforward and consists of the keyword @keyframes followed by an identifier defined by you that
gives the animation a name:

@keyframes myFirstAnimation{

}

Each state then is defined by the block of style rules having its place over time defined in % as a selector.
Each value in % defines the place over time of a key frame in the animation, with 0% being the starting
key frame (or 0% can be replaced by the keyword from) and 100% being the last key frame (or 100% can
be replaced by the keyword to). To be valid, a @keyframes declaration must contain at least one starting
state (0% or from) and one ending state (100% or to). Whatever style rules you set within a block will be
applied to the targeted element in this specific key frame. Every key frame will be treated after another one
chronologically according to its selector value and not necessarily in the order you write them.

@keyframes myFirstAnimation{

 0%{
 margin-left:0
 }
 50%{
 margin-left:10px;
 }

 100%{
 margin-left:20px;
 }

}

This example sets three states for the animation named myFirstAnimation. In the first state, the element has
a left margin of 0 pixels; in the second, it has (50 %) of 10 pixels; and in the third, it has one of 20 pixels.

Chapter 9

240

Binding the animation to an element
Once the animation and its different states are created in the @keyframes, you need to bind it to the ele-
ment you want to animate. To achieve that, you have to specify several animation properties within your
element selector:

■■ animation-name: The name of the animation, which is the identifier following the @keyframe
keyword.

■■ animation-duration: The duration of the animation, expressed in seconds or milliseconds. All the
states defined within the animation will occur during this lapse of time; its default value is 0.

■■ animation-timing-function: Sets how the animation will progress over the time of its duration.
Its possible values are linear, ease, ease-in, ease-out, ease-in-out, and cubic-bezier.
(See Solution 9-3 for more details.)

■■ animation-delay: Defines when the animation will start. The default value is 0.

■■ animation-iteration-count: Defines how many times the animation is to be played. The value
must be an integer or infinite for an infinite loop. The default value is 1.

■■ animation-direction: Defines whether the animation should play in reverse on alternate cycles
or not. The possible values are alternate or normal (by default).

■■ animation-play-state: Defines whether the animation is running (by default) or paused. (This
property might be removed from the specification.)

The animation-name and animation-duration properties are, quite logically, compulsory for an animation
to occur. The others are optional.

If not specified otherwise (through JavaScript or with a pseudo-selector), the animation will start on the
document load. (Note that the animation-delay, if any, is part of the animation.)

Now let’s bind the previous small animation named myFirstAnimationto an element having element for its
id as an example:

#element{
 animation-name: myFirstAnimation;
 animation-duration: 2s;
 animation-timing-function: linear;
 animation-delay: 1s;
 animation-iteration-count: 2;
 animation-direction: alternate;
 animation-play-state: running;
}

Here the element will go through all the states defined in the animation myFirstAnimation—that is, move
from its original position to 20 pixels to the right and then come back (because the animate-direction is
defined as alternate), with a linear speed. The first state will be played after a 2-second delay, and the
whole animation will be played twice.

By playing with the different states, properties, and delays, you can create stunning animations in
plain CSS.

 Transitions and Transformations

241

Multiple animations
You can bind multiple animations to an element by using a comma-separated list:

#element{
 animation-name: myFirstAnimation, mySecondAnimation;
 animation-duration: 2s,1s;
 animation-timing-function: linear,ease;
 animation-delay: 1s,2s;
 animation-iteration-count: 2,1;
 animation-direction: alternate;
 animation-play-state: running;
}

There is also an animation shorthand property you can use to combine the animation properties into a
single property like this:

animation : animation-name animation-duration animation-timing-function animation-delay
animation-iteration-count animation-direction ;

Browser support
CSS3 Animations is not supported by all major browsers yet. Opera doesn’t support it at all for the moment,
and Internet Explorer supports it as of version 10. (See Table 9-4.) This specification is still in a draft stage
at the time of this writing, so you need to use the vendor prefixes for each browser.

Table 9-4. CSS3 Animations browser support

Firefox Opera Safari Chrome Internet Explorer iOS Safari Android Browser Opera Mobile
7+ no 4.0 14.0 10+ 3.3 2.1 no
–moz- –webkit– –webkit– –ms– –webkit– –webkit–

If CSS3 Animations are not supported, you can fall back to JavaScript time-based animations or use an
external plug-in like Adobe Flash. However, you should be aware that fall-back animations might have a
different performance profile than your CSS3 animations. To check if the browser supports animation and
add a fallback solution if necessary, the Modernizr library is once again a great asset:

<script type="text/javascript" language="javascript" src="js/modernizr.js"></script>
<script type="text/javascript" language="javascript">
if(!Modernizr.cssanimations){
 //the current browser doesn't support CSS Animations
 // add a JavaScript fall-back script or a Flash animation
 window.alert('Your browser doesn't CSS3 animations');
}

</script>

How it works
To illustrate all this, the next example shows you how to build a slideshow photo gallery using only CSS3
and, in particular, the animation properties:

Chapter 9

242

 1. First create an HTML5 document with your usual text editor. In it, add a simple div containing what
will be your slideshow with three figure elements and their respective figcaption, all wrapped in a
div container. Within your head tag, detect whether the browser supports the CSS3 animation
property. (We won’t cover the fall-back code in this solution, but it can be easily done with pure
JavaScript or any framework like jQuery or with a Flash animation.)

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<link rel="stylesheet" type="text/css" href="style.css" />
<script type="text/javascript" language="javascript" src="js/modernizr.js"></script>
<script type="text/javascript" language="javascript">
if(!Modernizr.cssanimations){
 //the current browser doesn't support CSS Animations
 // add a JavaScript fall back script or a Flash animation
 window.alert('Your browser doesn't CSS3 animations');
}

</script>
<title>Solution 9_4</title>
</head>
<body>
 <div id="wrapper">
 <div id="slideshow">
 <figure>

 <figcaption>Photo 1 : Legend</figcaption>
 </figure>
 <figure>

 <figcaption>Photo 2 : Legend</figcaption>
 </figure>
 <figure>

 <figcaption>Photo 3 : Legend</figcaption>
 </figure>
 </div>
 </div>
</body>
</html>

What you have here is three photos with their legends, nested in a div that you name slideshow. That’s
about it. Your elements are ready. Now you need to take care of the view of your document.

 2. Create the CSS file style.css. First set the style rules of the wrapper div so that only one photo of
your slideshow appears at a time. This is easily achieved by applying an absolute position and
setting the overflow as hidden. You also style your figure elements a little bit by adding a border:

*{ margin:0; padding:0;}

#wrapper{
 position: absolute;

 Transitions and Transformations

243

 display:block;
 background:#333;
 width:620px;
 height:380px;
 overflow:hidden;
}

 figure{
 width:620px;
 height:380px;
}

figcaption{
 text-align:center;
 padding:3px 0;
 color:#fff;
}

img{
 border:10px #333 solid;
}

 3. Now let’s get to the animation part. You have three photos, one below another. To create a slide-
show, you need to create an animation that will start on the first photo and then a couple of sec-
onds later slide the container up, stop on the next photo, stop again for a couple of seconds, and
so on, until the last one. (Here, you have only three.) When the last photo is in view, it needs to
slide down to the first photo and start all over again. You’ll achieve just that with different key
frames:

@-moz-keyframes slideshow {
 0%,30%,100%{
 margin-top: 0 ;
 }
 35%,65%{
 margin-top: -380px;
 }
 70%,98% {
 margin-top: -760px;
 }
}

@-webkit-keyframes slideshow {
 0%,30%,100%{
 margin-top: 0 ;
 }
 35%,65%{
 margin-top: -380px;
 }
 70%,98% {
 margin-top: -760px;
 }
}

Chapter 9

244

To shorten the notation, we have been grouping the key frames having the same values, but what we did
chronologically is move the container as follows:

First frame (0 %): ■■ margin-top: 0 px;. Our first photo is in view.

Second frame (value 30 %) ■■ margin-top:0 pixels.It doesn’t move. Our photos have to be visible
for a couple of seconds. Here we are using timing values, but we don’t change the position of the
element to produce a pause on the photo.

Third frame (35 %): ■■ margin-top: -380px;.This brings up the container so that our second photo
is in view. It takes 5% of our animation, and we want it to move rather fast because it’s a transition
from one photo to another.

Fourth frame (65 %): Here, again, we don’t change a property, simulating a pause on our second ■■

photo.

Fifth frame (70 %): ■■ margin-top:-760px. This brings our container up by 380 pixels from its last
position, or by 760 pixels from its original position. This brings in view our third photo. Again, the
duration is 5 %, like the previous transition.

Sixth frame (98 %): We simulate another pause by not changing any value.■■

Seventh frame (100 %): ■■ margin-top: 0;. We bring our container back to its original position dur-
ing the last 2% of our animation to have a visual fast-rewind effect.

4 We have defined all the states of our animation. We now need to bind the animation to the
slideshow div element, because it is the container of our photos:

#slideshow {
 position: absolute;
 margin:0;
 width: 620px;
 -moz-animation-name: slideshow;
 -moz-animation-duration: 20s;
 -moz-animation-iteration-count:infinite;
 -moz-animation-timing-function: linear;
 -webkit-animation-name: slideshow;
 -webkit-animation-duration: 20s;
 -webkit-animation-iteration-count:infinite;
 -webkit-animation-timing-function: linear;
}

Through the animation-name property, we bind the element with the animation we defined in the previous
step. We set a duration of 20 seconds for our animation, and we want our slideshow to run indefinitely
on our page, so we define the animation-iteration-count as infinite. Our timing function is a basic
linear one.

That’s it! Our slideshow is ready to be played continuously on our page now.

Note that this won’t work on Internet Explorer versions prior to 10, and it won’t work at all on Opera. So you
have to write fall-back solutions either in JavaScript or Adobe Flash.

 Transitions and Transformations

245

Expert tips
By playing with all the transitions, animations, and transform properties and functions, you saw that it’s
possible to build real and rather long animations with CSS only. Here is an example, based on a Spiderman
cartoon and made by Anthony Calzadilla: www.optimum7.com/css3-man/animation.html). He explained all
the steps he took to put this animation up using only CSS3 and a bit of jQuery: www.optimum7.com/inter-
net-marketing/web-development/pure-css3-spiderman-ipad-cartoon-jquery-html5-no-flash.html).

Solution 9-5: Applying 3D transformations in CSS3
In Solution 9-1, you saw that you can apply 2D transformations to any HTML document element in CSS3.
One other cool new CSS3 feature is the possibility to apply 3D transformations to HTML document ele-
ments with the CSS3 3D transforms module. In this solution, you’ll see how to manipulate elements in a
three-dimensional (3D) space.

What’s involved
The CSS3 3D transforms module is quite similar to 2D transformations (which we covered in Solution
9-1) and provides functions to rotate, translate, scale, and apply matrix transformations in a 3D Cartesian
coordinate system to any element. (See Figure 9-7.) First of all, it is worth pointing out that if the CSS3
3D transforms module allow transformations in a three-dimensional space, the transformed elements are
then represented as usual, on a two-dimensional plane. A div element, for instance, remains a flat element
without any real depth, and we are still dealing with regular HTML. And CSS3 3D transforms give you the
capability to transform elements along three axes: the X and Y axes as in 2D, as well as along the Z axis,
providing a sense of depth. Let’s see how to do that in a really simple way with CSS3.

Y-Axis

Z-Axis

X-Axis

rotateY()

translateX()translateY()

translateZ()
rotateX()

rotateZ()

Figure 9-7. 3D space coordinates and 3D transform functions

http://www.optimum7.com/css3-man/animation.html
http://www.optimum7.com/internet-marketing/web-development/pure-css3-spiderman-ipad-cartoon-jquery-html5-no-flash.html
http://www.optimum7.com/internet-marketing/web-development/pure-css3-spiderman-ipad-cartoon-jquery-html5-no-flash.html

Chapter 9

246

The 3D transform functions
The 3D transform functions are similar to the ones used in 2D transformation that we covered in Solution
9-1: rotate(), scale(), translate(), skew(), and matrix(). Here, they are extended to include the 3D
space through a parameter corresponding to the Z coordinate. The additional transform functions are the
following:

■■ rotateZ(angle): Defines a clockwise rotation by the angle given as a parameter along the Z axis.
(If the value is negative, the rotation will be counter-clockwise.)

■■ rotate3D(angleX,angleY,angleZ):Defines a 3D rotation along the three axes.

■■ translateZ(z value): Defines a translation along the Z axis. If the value is negative, the element
will seem to move away from the user. If it’s a positive value, it will seem to move closer to the
user. (It is expressed in pixels. We are still in the CSS visual formatting model, but percentage
values are not allowed here.)

■■ translate3D(x value, y value, z value): Defines a 3D translation along the three axes accord-
ing to the three values given as parameters.

■■ scaleZ(z vector): Defines a scale operation using its parameter as scaling vector. A value of 1
will leave the element unchanged.

■■ scale3D(x vector, y vector,z vector): Defines a 3D scale transformation along the three axes
according to the three vectors given as parameters.

■■ matrix3D(a, b, 0, 0, c, d, 0, 0, 0, 0, 1, 0, e, f, 0, 1): Defines a 3D transformation,
using a 4 by 4 matrix (16 values). The matrix3D function is rather complex to use and master, so
we won’t be covering it in this book.

Perspective
Because we’re dealing with a 3D space, another factor to take into consideration is perspective. In this
sense, perspective is an artificial vanishing point from where the user will view the 3D object, giving the
illusion of depth. The higher the perspective value, the further the depth of the vanishing point. It can be
set in two ways:

Through the transform function ■■ perspective(), as follows:

transform: perspective(value in pixels);

You use this notation to apply a 3D transformation to a group of elements, by applying it to the parent ele-
ment. (If the value is ‘none’,0 or negative, no perspective transform is applied.) Here’s an example:

#parent{
 perspective:500px;
}

This applies a perspective of 500 pixels to all the child elements of the #parent element.

Through the perspective transform property as follows:■■

transform:perspective: value in pixels ;

You use this notation when you want to target only an element. Here’s an example:

 Transitions and Transformations

247

#element{
 transform:perspective(500px) rotateX(45deg);
}

This applies a perspective of 500 pixels only to this element. (See Figure 9-8.)

Figure 9-8. An element with a perspective of 500 pixels and rotated by 45 degrees on the X axis

Perspective origin
By default, the origin of the perspective point is 50% 50% (the center of the element), but just like the
transform origin in 2D transformations, you can change this value and reset the X and Y positions at which
the viewer appears to be looking at the elements. You do this using the perspective-origin property:

perspective-origin:top left;

This example sets the perspective origin point on the upper left corner of the element.

The transform-style property
When you apply any 3D transformations to children of an element, they are, by default, rendered into the
plane of their parent and therefore remain flat. For instance, if you apply a rotation on the Z axis (with the
rotateZ() transform function) to an element that is a child of another element, it won’t appear rotated
and your element will remain flat on its parent. That’s where the transformation function transform-style
comes into action. Through it, you can control whether the children of an element remain flat on their par-
ent or not. It can have two values:

■■ flat: This is the default value, and it specifies that transformed children of an element are flattened
into the plane of their parent.

■■ preserve-3d: This specifies that the element to which it is assigned does not flatten its child
elements.

Chapter 9

248

Figure 9-9 shows a visual example of a div containing a child div element being transformed, with the two
transform-stylevalues applied successively.

Figure 9-9. The two transform-style values applied successively on the same group of elements

The backface-visibility property
When you are in 3D, you’ll be able to position elements in such a way that in some situations their reverse
side will then be visible. However, that might not be suitable all the time (in some animations for instance).
The backface-visibility property gives you the ability to control the visibility of the back face of an
element when transformed. It can have two obvious values: hidden or visible(by default). Here’s an
example:

#element{
 backface-visibility: hidden;
}

3D transforms and animation
One really cool thing is that just as you added animations to elements (transformed or not), you can
animate your 3D transformed elements in exactly the same way, creating stunning effects within your
style sheet through the @keyframes rule. (See Solution 9-4.) Or you can do it by adding a transition. (See
Solution 9-3.)

Browser support
It is probably not an option to use 3D transforms in production at the time of this writing because all the
major modern browsers don’t support it yet. (See Table 9-5.) However, we can safely expect that it will be

 Transitions and Transformations

249

You can detect the browser support with the usual Modernizr JavaScript library and add a fall-back solution
very easily, as follows:

<script type="text/javascript" language="javascript" src="js/modernizr.js"></script>
<script type="text/javascript" language="javascript">
if(!Modernizr. csstransforms3d){
 //the current browser doesn't support CSS 3D Transforms
 // add a JavaScript fall-back script or a Flash animation
 window.alert('Your browser doesn't CSS3 3D Transforms');
}

</script>

How it works
To see the preceding functions and properties in action, the next example shows you how to create a div
element that will flip in response to a mouse hover event, with the single use of CSS3. On one side, it
will display an image, and on the other side, it will display some text. On mouse out, it will flip back to its
original display state.

 1. Start by creating an HTML document containing your elements with your text editor. In the < head >
of your document, detect the 3D transforms support with the Modernizr library. (We won’t cover the
fall-back part here).

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<title>Solution 9_5</title>
<link rel="stylesheet" type="text/css" href="style.css" />
<script type="text/javascript" language="javascript" src="modernizr.js"></script>
<script type="text/javascript" language="javascript">

if(!Modernizr.csstransforms3d){
 //the current browser doesn't support CSS 3D Transforms
 // add a JavaScript fall-back script or a Flash animation
 window.alert('Your browser doesn't CSS3 3D Transforms');
}
</script>
</head>
<body>
<div id="container">

Table 9-5. CSS3 3D Transforms browser support

Firefox Opera Safari Chrome Internet Explorer iOS Safari Android Browser Opera Mobile
10+ no 4.0+ 14.0+ 10+ 3.2+ 3+ no
–moz– –webkit– –webkit– –ms– –webkit– –webkit–

the case soon and that we will be able to use those great features easily. Note that this specification is still
in the draft stage, so you’ll have to use the vendor prefixes.

Chapter 9

250

 <div id="card">
 <div id="face1"></div>
 <div id="face2"><p>CSS3 Solutions </p><p>Essential Techniques for CSS3 Developers</p></
div>
 </div>
 </div>
</body>
</html>

Here you created your two sides—named face1 and face2–nested inside a div, with the div itself in a
container. This is pretty simple. And that’s all you need in your HTML document.

 2. Now you can create your style sheet document. First set rules for the main container. Because you
want the perspective to be applied to all the container’s child elements, you use the perspective
property and define it here as 500 pixels. (Use the vendor prefixes for each browser.)

#container{
 width: 300px;
 height: 300px;
 position: relative;
 margin: 100px auto;
 -webkit-perspective: 500px;
 -moz-perspective: 500px;
 -ms-perspective: 500px;
}

 3. Now take care of the pseudo-card you want to flip. In fact, each side is two separate divs contain-
ing what will be on one side (here, an image and a plain text). You rotate the div that will be the
back face of the pseudo-card (the element with the ID of face2) so that the front face of each ele-
ment is now opposite of the other with the rotateY transform function. You also define the back-
face-visibility of each element to be hidden. For all this to take effect, you need to define the
transform-style property of their parent element, #card, to preserve-3d. Now each time you
rotate the parent element, #card, the front side of one of its child elements will be displayed. You
add a small, smooth transition to have nice flip effect, which is linear with a duration of 1 second.

#face1, #face2{
 display:block;
 width:100%;
 height:100%;
 position:absolute;
 -webkit-backface-visibility: hidden;
 -moz-backface-visibility: hidden;
 -ms-backface-visibility: hidden;

}

#face2{
 background:#eee;
 padding:12px;
 -webkit-transform:rotateY(180deg);
 -moz-transform:rotateY(180deg);
 -ms-transform:rotateY(180deg);

 Transitions and Transformations

251

}

#card{
 width: 300px;
 height: 300px;
 position:absolute;
 -webkit-transform-style: preserve-3d;
 -webkit-transition:all 1s linear;
 -moz-transform-style: preserve-3d;
 -moz-transition:all 1s linear;

 }

Now what you have is like a card with two sides. But so far you see only one of them, the front face of your
element named face1 that contains your image.

 4. It's almost done. You just need to define the second state of your pseudo-card, by flipping it in
response to a mouse hover action, which is pretty easy to do.

#container:hover #card{
 -webkit-transform:rotateY(180deg);
 -moz-transform:rotateY(180deg);
 -ms-transform:rotateY(180deg);
}

That’s it. If you load your document, you’ll see the image. In response to a mouse hover event, it will flip
to the other side (in fact, the div face2), which contains a small amount of text. You are still using regular
elements, and the text is selectable just as any text is.

At the time of this writing, this solution won’t work in Opera; it will work only in really modern browsers.

Expert tips
If you want to see what 3D transforms can do, you can use the following online tool: www.westciv.com/
tools/3Dtransforms/index.html). It lets you manipulate all the transform function values with a simple
interface, and you can even add animations and see the result instantly. Moreover, it generates the cor-
responding CSS code with all the vendor prefixes.

Summary
In this chapter, you saw how to use some of the exciting new CSS3 features, which you can use to add
some pretty amazing visual assets to your HTML document elements. You saw how to transform elements
in a 2D space as well as in 3D, and how to animate them from a simple transition to a more complex ani-
mation of several key frames. Using your creativity, and depending on your projects, you can combine all
of them to produce really exciting visual assets to your website and applications, both on desktops and
mobile devices, without having to rely on any external script or plug-in. CSS is all about the visual aspect
and disposition of your document elements, and in the next chapter you’ll see what the CSS3 modules
involve in terms of accessibility. You will see solutions to handle accessibility with multimedia elements,
both audio and video, and how CSS3 modules can help you to make an interface consistent with the web
accessibility principles, thereby making your web document adaptable for all users.

http://www.westciv.com/tools/3Dtransforms/index.html
http://www.westciv.com/tools/3Dtransforms/index.html

253

Chapter 10

Multimedia and Accessibility

On the Internet, you can often find multimedia elements embedded in web pages, and modern web brows-
ers support a wide variety of multimedia formats. CSS3 introduces new, interesting, and solid techniques
to style all those media elements, such as music or video players.

In addition, CSS provides benefits in terms of accessibility, primarily by separating the document structure
from its presentation. Style sheets were designed to allow precise control of all elements on web pages,
outside the markup. In this chapter, we’ll round up some good practices and look at to how to improve
website accessibility using CSS3.

Solution10-1: Building a custom video player
The HTML5 < video > component represents a revolution in the management and distribution of video con-
tent on web browsers. There are many advantages to having a natively embedded video in a browser,
including mobile support. As such, many developers have started to take advantage of this possibility.

Creating a customized video player was a difficult task that initially discouraged people from working with
HTML5 video. In contrast, the Flash integrated development environment (IDE) is very powerful, and you
can use it to create a personalized player in no time at all. The situation has changed, though.

The introduction of CSS3, together with HTML5 and JavaScript, has made this process much more simple.
In this solution, you will look at building an easily customizable HTML5 < video > player, including packaging
it as a simple jQuery plug-in, choosing control types, and outputting custom CSS for your own situation.

Chapter 10

254

All media components support the media elements API, which you can access using JavaScript and use
to create functions to replicate play, start, or stop buttons using simple HTML elements.

Browser support
The failure among browser manufacturers to support a common codec is the main obstacle in creating a
cross-browser video player, with clashes especially notable between Opera/Firefox and Internet Explorer/
Safari. Fortunately, Google recently released a new codec (VP8) along with the WebM project (http://www.
webmproject.org/), giving rise for the first time to a single codec for everything. Opera, Firefox, Chrome,
and Internet Explorer 9 all have this support in the latest builds. Even Flash will be able to read this new
codec.

This means that soon you can create a single version of video that will be reproduced in the < video > ele-
ment in most browsers, and in Flash Player in browsers that don’t natively support WebM.

How it works
First, you need to create the actual markup for the video controls. You need a Play/Pause button, a search
bar, a timer, as well as volume and cursor buttons. You must insert the markup for the controls after
the < video > element within a < div > container.

What’s involved
As a professional web designer, you want to create a video player that seems consistent among brows-
ers. However, each browser supplies a different look and feel for a player, from a minimal approach in
Firefox and Chrome to more complex controls in Opera and Safari. (See the controls in each browser in
Figure 10-1.) If you want your controls to look the same in every browser and be integrated in your design,
you must create them from scratch. Don’t worry—it isn’t as difficult as it sounds.

Figure 10-1. A variety of native browser video controls

http://www.webmproject.org/
http://www.webmproject.org/

 Multimedia and Accessibility

255

<div class="video-controls">

 <div class="video-seek"></div>
 <div class="video-timer">00:00</div>
 <div class="volume-box">
 <div class="volume-slider"></div>

 </div>
</div>

jQuery stuff
After you create the markup, you must prepare all the elements for the multimedia API in order to control
the behavior of the video file. This solution prepares the player as a jQuery plug-in, which enables it to
be reused in many elements. In this solution, you won’t deal with every part of JavaScript; if you want
to deepen your knowledge on this topic, you can read “Develop a jQuery plug-in” (http://docs.jquery.
com/Plugins/Authoring).

I will quickly summarize the necessary steps to create the slider:

 1. Target each control by its class to add listeners; keep the controls hidden until
everything is ready.

2. Bind the three events (Play, Pause, and Ended), adding and removing classes from the button to
change the look of it, depending on the state of the video (Playing or Paused).

3. Use the jQuery UI Slider component to create the seek slider.

4. Use the jQuery UI Slider and a custom function on the volume button to create volume controls for
muting and unmuting the video.

 5. Once the video is ready, initialize the slider and show the controls.

Look and feel
Here’s the fun part—the look and feel of the video player. Once the plug-in is ready, personalizing the com-
mands is extremely simple thanks to the use of CSS3.

First, add a style to the parent container of the video player:

.video-player {
 float: left;
 padding: 10px;
 border: 5px solid #61625d;

Note: We’ve used classes instead of IDs for all the elements to be able to use the same
code for multiple video players on the same page.

Note: You remove the controls feature from the < video > at this point because you will
use a set of custom controls created via JavaScript, overwriting the default ones from
each browser.

Chapter 10

256

 -moz-border-radius: 5px;
 ms-border-radius: 5px;
 -webkit-border-radius: 5px;
 border-radius: 5px;

 background: #000000;
 background-image: -moz-linear-gradient(top, #313131, #000000);
 background-image: -webkit-gradient(linear,left top,left bottom,color-stop(0, #313131),
color-stop(1, #000000));
 box-shadow: inset 0 15px 35px #535353;
}

Set float: left to avoid expanding the entire width of the player. This keeps the size the same for the actual
video element. You use gradient attributes and border-radius to create a sleek style.

Align the controls to the left and horizontally. You use opacity and transitions on the Play/Pause and
Volume Mute/Unmute buttons to create a nice hover effect:

.video-play {
 display: block;
 width: 22px;
 height: 22px;
 margin-right: 15px;
 background: url(play-icon.png) no-repeat;
 opacity: 0.7;
 -moz-transition: all 0.2s ease-in-out;
 -ms-transition: all 0.2s ease-in-out;
 -o-transition: all 0.2s ease-in-out;
 -webkit-transition: all 0.2s ease-in-out;
 transition: all 0.2s ease-in-out;
}

 .paused-button {
 background: url(pause-icon.png) no-repeat;
}

.video-play:hover {
 opacity: 1;
}

As mentioned previously, you use the jQuery framework both for the video and volume navigation bars for
the sliders. You completely overwrite the default style defined in the jQuery library:

.video-seek .ui-slider-handle {
 width: 15px;
 height: 15px;
 border: 1px solid #333;
 top: -4px;

 -moz-border-radius:10px;
 -ms-border-radius:10px;
 -webkit-border-radius:10px;
 border-radius:10px;

 background: #e6e6e6;

 Multimedia and Accessibility

257

 background-image: -moz-linear-gradient(top, #e6e6e6, #d5d5d5);
 background-image: -webkit-gradient(linear,left top,left bottom,color-stop(0, #e6e6e6),
color-stop(1, #d5d5d5));
 box-shadow: inset 0 -3px 3px #d5d5d5;
}

 .video-seek .ui-slider-handle.ui-state-hover {
 background: #fff;
}

.video-seek .ui-slider-range {
 -moz-border-radius:15px;
 -ms-border-radius:15px;
 -webkit-border-radius:15px;
 border-radius:15px;

 background: #4cbae8;
 background-image: -moz-linear-gradient(top, #4cbae8, #39a2ce);
 background-image: -webkit-gradient(linear,left top,left bottom,color-stop(0, #4cbae8),
color-stop(1, #39a2ce));

 box-shadow: inset 0 -3px 3px #39a2ce;
}

You add a touch of interactivity by animating the activation of the slider for the volume, according to the
mouse effect over the Mute/Unmute button.

Then hide the volume slider, assigning a fixed height to its container to ensure that it remains aligned with
the volume button. The desired effect is tied to the hovering of the mouse, in which case the volume bar
will be shown through the use of CSS3 transitions:

.volume-box {
 height: 30px;

 -moz-transition: all 0.1s ease-in-out; /* Firefox */
 -ms-transition: all 0.1s ease-in-out; /* IE future proofing */
 -o-transition: all 0.2s ease-in-out; /* Opera */
 -webkit-transition: all 0.1s ease-in-out; /* Safari and Chrome */
 transition: all 0.1s ease-in-out;
}

.volume-box:hover {
 height: 135px;
 padding-top: 5px;
}

.volume-slider {
 visibility: hidden;
 opacity: 0;

 -moz-transition: all 0.1s ease-in-out; /* Firefox */
 -ms-transition: all 0.1s ease-in-out; /* IE future proofing */
 -o-transition: all 0.1s ease-in-out; /* Opera */

Chapter 10

258

 -webkit-transition: all 0.1s ease-in-out; /* Safari and Chrome */
 transition: all 0.1s ease-in-out;
}

.volume-box:hover .volume-slider {
 position: relative;
 visibility: visible;
 opacity: 1;
}

Thanks to basic CSS knowledge and some new properties introduced with CSS3, you can finally personal-
ize a video player to your liking.

Expert tip
As you might have noticed, you chose to create a jQuery plug-in for the successful outcome of this tech-
nique, which in turn creates the need to define a series of default options. These options are theme and
childtheme, which are then applied when the plug-in is recalled. You can therefore create different themes
and specifically recall them according to your needs.

Solution 10-2: A CSS3 music player
Before HTML5 came on to the scene, it was a fairly awkward task to add audio to web pages. Adobe
Flash was the only way to provide audio content in any kind of interactive way. With the introduction of
the < audio > element in HTML5, however, audio playback can now be done natively. You can create cus-
tom buttons using CSS and HTML, and give them appropriate functionality using the HTML5 audio API. It
is nice not having to go back into Flash every time you want to make some changes to the audio content.

In this solution, you’ll see how to use CSS3 to style a music player built with the HTML5 < audio > ele-
ment.

What’s involved
The following sections detail the elements you’ll use in this solution.

The < audio > element
The < audio > element is simple to use. You can simply write the following:

<audio src="http://yourserver/rockandroll.ogg" controls preload> </audio>

Figure 10-2. A basic < audio > element rendered in Opera

 Multimedia and Accessibility

259

The browser then provides a simple player element in the web page, as shown in Figure 10-2.

The < audio > element has five attributes:

src contains the path to the audio file you want to play.■■

autoplay is a Boolean attribute specifying whether the source file should start to play automatically ■■

at page load or not.

preload tells the browser to make an informed decision about how much data to download. A mobile ■■

browser might decide to preload nothing to conserve bandwidth, while a desktop browser on a
fast connection might begin loading immediately.

loop is a Boolean attribute specifying whether the source file should start to play all over again ■■

when the end of the source file has been reached.

controls is a Boolean attribute specifying whether or not the browser should display its default ■■

media controls. If you don’t specify this, no controls are shown, and you need to create your own
controls using the handy audio JavaScript API along with HTML, CSS, and whatever other web
standards you want to draw the controls with.

A little bit of JavaScript
The < audio > element exposes a powerful JavaScript API. By accessing the methods audio.play() and
audio.pause(), you can start and pause the playback of the source file. The audio.volume method provides
access to the volume.

We will be using the jPlayer plug-in for jQuery (http://www.jplayer.org/). It serves a common interface for
both the native < audio > element and the Flash fallback. So you are able to create a common design, made
with JavaScript, CSS, and HTML on your player without worrying about if the native part or the fallback
is used for playback. The jPlayer plug-in is supported on all major browsers, including iOS, Android, and
Internet Explorer 6 too!

The following script will construct an < audio > element and assign event handlers to some simple HTML
buttons that you can then use to control the audio playback:

 // Invoke new Audio object
var audio = new Audio('music.ogg');

// Get the play button and append an audio play method to onclick
var play = document.getElementById('play');
play.addEventListener('click', function(){
 audio.play();
}, false);

// Get the pause button and append an audio pause method to onclick
var pause = document.getElementById('pause');
pause.addEventListener('click', function(){

Note: Autoplay forces audio to play without the interaction of the user and can interfere
with other audio sources the user might be listening to. Using it is typically considered a
bad practice to follow.

http://www.jplayer.org/

Chapter 10

260

 audio.pause();
}, false);

// Get the HTML5 range input element and append audio volume adjustment to onchange
var volume = document.getElementById('volume');
volume.addEventListener('change', function(){
 audio.volume = parseFloat(this.value / 10);
}, false);

// Get where one are in playback and push the time to an element
audio.addEventListener("timeupdate", function() {
 var duration = document.getElementById('duration');
 var s = parseInt(audio.currentTime % 60);
 var m = parseInt((audio.currentTime / 60) % 60);
 duration.innerHTML = m + '.' + s + 'sec';
}, false);

Then you apply this script to the HTML/CSS structure and design as described in the following sections.

How it works
Start by setting up the HTML structure of the player:

<div>
 <input id="play" type="button" value="Play" />
 <input id="pause" type="button" value="Pause" />

</div>
<div>
 Volume:
 <input id="volume" type="range" min="0" max="10" value="5" />
</div>

Each < input > element is given an ID so that you can easily style the elements and assign JavaScript func-
tions to them for interacting with the < audio > element via the audio API, as you’ll see in a moment.

Figure 10-3. Simple audio player rendered in a browser

Figure 10-3 shows how it will be rendered on any browser.

Awesome! You now have all the controls you need. You can start styling each element using CSS3 proper-
ties instead of using static background image files.

One small detail worth noting is that you can use a class attribute on the < div > element that wraps the
whole player. Doing so, you can use the class value as a CSS style prefix like this:

.dark-player #play{
 /* some different style */
}

 Multimedia and Accessibility

261

By doing so, you can create infinite skins for this player simply by adding a few lines of CSS code. Pretty
cool, isn’t it?

Solution 10-3: Improve the form accessibility
with CSS3 validation

Forms are used for all kinds of interactive purposes on the web. Forms allow users to select and purchase
merchandise, fill in surveys and questionnaires, register for courses, search for information on the web, as
well as perform a long list of other actions.

When it comes to the accessibility of a form, you often immediately think of using it with a screen reader.
You must remember, however, that anyone can benefit from a well-organized, highly usable form, espe-
cially those with cognitive disabilities.

One aspect of forms you will examine in this solution is the management of error and validation field mes-
sages. We’ll start with the first server-side error messages and move to the client-side, managed validation
that interacts with the user while she is filling out the fields of your form.

On one hand, the HTML5 specifications have introduced new types of inputs and attributes you can use to
insert specific constraints in the module to handle the increased complication and consequent validation.
On the other hand, the CSS Basic User Interface Module 3 (http://www.w3.org/TR/css3-ui/) provides
several useful pseudo-classes to apply to the different validation states and to change the appearance of
the fields according to the user’s actions.

Let’s see how to combine these two technologies to create a form validator based on CSS that has broad
support in current browsers. The more help users receive in real time when filling out a form, the less prob-
able it is that they will make mistakes.

What’s involved
We’ll make use of both HTML5 type attributes for input fields and CSS3 pseudo-classes. The following
sections provide an overview.

CSS3 pseudo-classes for the user interface
The UI module presents several pseudo-classes that help you apply specific styles to the fields of a form
in various stages of completion:

valid, identifies a valid element according to the specification of the form■■

invalid, identifies an invalid element■■

required, identifies a mandatory field■■

optional, identifies an optional field■■

in-range■■

out-of-range■■

http://www.w3.org/TR/css3-ui/

Chapter 10

262

read-only■■

read-write■■

The pseudo-classes in-range and out-of-range should be used with the attributes min and max—for
example, on an input based on an interval, on a field for the input of numbers, or on all types of inputs that
accept those attributes. For instance, if a user inserts a value that is out of range, you can use the pseudo-
class to change the style that reflects the state; you can do the same for values that are in range. Only
Opera supports the pseudo-classes related to range at the moment.

New type of inputs and attributes with HTML5
The specification on HTML5 forms also introduce new types of inputs, such as email, url, and number. For
example, email activates the pseudo-class that’s valid only when the user inserts a valid e-mail address;
the same principle applies to the number or url field.

There are also some features that facilitate validation, such as placeholder, required, maxlength, pattern,
min, max, and step.

Browser support
Browser support for HTML5 forms and the UI module of CSS3 is becoming more widespread. Opera 9 was
the first browser to implement Web Forms 2.0 (http://www.whatwg.org/specs/web-apps/current-work/
multipage/) before it was incorporated in the HTML5 specifications, but only starting from version 9.6 does
it support the UI module of CSS3.

Chrome offers support from version 4 onward. Safari has recently implemented everything in its version 5.
Firefox will introduce external support with its version 4.0. Internet Explorer 9, if it continues on this same
road of standard support, should have basic support for this functionality in its next release.

How it works
In this solution, you will examine three uses:

Creating a validation style for an < input>■

Showing dedicated messages using the pattern feature■

■

■

Adding contextual help during the compilation of a form■■

Validation input message
The objective is to move the focus to the field on the form that has been identified as invalid.

Using multiple combinations of the following three pseudo-classes, you can apply the necessary style to
the input in the case of validation:

:focus■

:required■

■

■

:invalid■■

http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.whatwg.org/specs/web-apps/current-work/multipage/

 Multimedia and Accessibility

263

Take a look at the necessary CSS code:

input:focus:required:invalid {
 background: red url(invalid-input.png) 0 0 no-repeat;
}

The first line moves the focus to a field marked as mandatory, which isn’t valid and activates the style that
displays an exclamation mark in < input>, clearly informing the user where the error occurred.

input:required:valid {
 background-color: #fff;
}

In cases where the input doesn’t violate any constraints, the pseudo-class valid is activated.

Finding the pattern
The HTML5 pattern feature offers you the ability to customize error messages for particular fields, such
as a telephone number or a password. To do this, you combine the invalid pseudo-class with a pattern to
apply a regular expression to a field:

<input type="tel" id="tel" name="tel" pattern="\d{10}" placeholder=
"Please enter a ten digit phone number" required />

The regular expression used simply says, “No more than ten characters are allowed.” Therefore, the field
will always be invalid until the regular expression requirements are met.

You can take full advantage of the pattern attribute by applying a more complex regular expression, such
as on this field for passwords:

<input id="password" name="password" type="password" title="Minimum 8
characters, one number, one uppercase and one lowercase letter" required
pattern="(?=^.{8,}$)((?=.*\d)|(?=.*\W+))(?![.\n])(?=.*[A-Z])
(?=.*[a-z]).*" />

Right from the moment you have specific conditions that restrict what can be inserted by the users—
forcing them to create a more secure password—you define a regular expression like the one just shown.
The password must have at least eight characters, contain a number, and contain both a lowercase letter
and uppercase letter.

To help a user meet these conditions, you use a title attribute to help them exactly understand what the
requirements are. In this case, you don't use a placeholder attribute, because you need a longer explana-
tion and placeholder should be used only for short tips.

Adding help
Contextual help is often given to the user through the title attribute. However, if the user doesn’t pass over
the field with the mouse and moves to it instead with the Tab key, he will never see the help instructions
included in the attribute. You can see that on the telephone, postal code, and password fields, the text
“help” appears when the field needs further explanation.

<input id="password" type="password" />

<p class="validation01">
 Minimum 8 characters, one number, one uppercase

Chapter 10

264

letter and one lowercase letter
 Your password meets our requirements, thank you.

</p>

The preceding markup introduces an extra container with a help box for when the field is valid and for
when it’s invalid. In this way, when the field is not valid, it will contain additional information to help the
user. When everything is correct, the message and green sign assure the user that the compilation was
successful:

.validation01 {
 background: red;
 color: #fff;
 display: none;
 font-size: 12px;
 padding: 3px;
 position: absolute;
 right: -110px;
 text-align: center;
 top: 0;
 width: 100px;
}
input:focus + .validation01 {
 display: block;
}
input:focus:required:valid + .validation01 {
 background: green;
}
input:focus:required:valid + .validation01 .invalid {
 display: none;
}
input:focus:required:invalid + .validation01 .valid {
 display: none;
}

To show or hide the help box according to the state of the field, you can make the field a target by turning
to the pseudo-classes. You do this by using the adjacent element of the (+) selector. Once the field has
correctly been filled in, the background becomes green and a valid message is displayed.

Solution 10-4: An unobtrusive skip navigation link
One of the most frequent problems in many design templates is that the main content isn’t usually the first
thing you see on a page. People who use a screen reader are often forced to scroll through a long list of
navigation links, business icons, search boxes, and other items before they even get to the main content.

There exists a simple solution to solve this problem: providing a link at the top of the page that refers to
the main content through an anchor. Because of its simplicity, this solution can be implemented in different
ways. However, some techniques are better than others. The technique discussed here makes the link
invisible until it receives keyboard focus. You obviously manage this kind of effect with some CSS3 code.

 Multimedia and Accessibility

265

What’s involved
The main idea of this approach consists of hiding the link until the user passes over it using the Tab key.
Mouse users never see the link, because it isn’t activated by the mouse movements.

Users who do not need skip navigation links will never realize that a link is there at all. Perhaps this is
how it should be because these users might not understand what skip navigation links are supposed to
accomplish. For these users, such a link might slightly decrease usability by confusing them a little. Most
users will simple ignore the link, but some might wonder.

To display the link, you will use the CSS3 opacity property. The link will always be present in the HTML
code of the page. However, it will be completely transparent by default.

How it works
Let’s take the case of inserting the link above the menu navigation, at the top of a page:

<div id="navigation">
 Skip to content

 Home

 About

 Services

 Contact

</div>

Assign the class .skip to the link to manage its visualization through the opacity property:

.skip {
 opacity: 0;
 }

 .skip:focus {
 opacity: 1;
 }

A value of 0 (zero) makes the link completely invisible. With the help of the pseudo-class :focus, you can
change the value of opacity in cases where a user moves between the links of the page with the Tab key.
In such cases, the “skip to content” link becomes visible immediately.

The link is also the first link on the page, so screen-reader users will always hear it first. This seems to be
a perfect solution.

Chapter 10

266

Clicking on the link in question, the user is brought to the anchor height specified in the attribute href:

Skip to content

In this case, the content area will be made initially available to the user and conceivably it will be of more
interest to them.

Summary
There has been much fragmentation in the format of video and audio required for web delivery. Historically,
this variation also came with a lack of control for how the media will be displayed and the requirement for
extra plug-ins. This situation makes it more costly for service providers and makes media experiences less
than seamless for the end user.

We’re still in the early days for native video support. Videos can be embedded within the page much like
you currently embed images in the page. By standardizing the media support within a web environment,
this fragmentation can be brought under control, making video easily accessible to all and making the
online viewing experience more pleasurable for the user.

What’s more, CSS3 provides better and more precise control over element styles, text, fonts, an object’s
position on the page, and audio and speech output. That means you could really separate style from
markup, simplifying and cleaning up the HTML and making documents more accessible at the same
time.

Notes: The same effect can be achieved by using a combination of CSS and JavaScript.
The addition of JavaScript adds another layer of complexity that may or may not add any
additional benefit, depending on how it is implemented.

267

Chapter 11

UX Patterns

You know a bad software experience when you use one. Whether you’re instructed to call Customer
Service just to retrieve your password or the functions you need to use just never seem to be located in the
places you expect, bad experiences can turn your users away in a heartbeat. And good examples of bad
user experience (UX) are everywhere. This chapter goes beyond just looking at the code and explores how
you should think about creating great user experiences on the Web. The key to designing great software
experiences is to constantly play the role of a typical user and, most importantly, to trust your gut. Common
sense always prevails in great UX, and the following concepts will help to implement it in your interface.

Rules of thumb
Although technology and hardware have advanced with increasing speed over the past 20 years, the
design principles exhibited in solid user experiences have changed very little. The rules of thumb outlined
in this chapter should be considered when designing the interface and interactions that make up your
user’s experience.

Note: These rules should be used as guidelines, with some being emphasized more
heavily than others, according to the focus of your application. Use these rules when
designing new interfaces or redesigning existing ones. In the case of an existing interface,
first evaluate the interface against the rules of thumb, and then focus on improvement in
the areas that rate the poorest.

Chapter 11

268

Solution 11-1: Ensuring visibility of system status
The system should always keep users informed about what is going on, through appropriate feedback
within reasonable time. From time to time, your experience is going to require the user to wait, while a
back-end process completes or when a credit card is being authorized, for example. During these times,
it is critical that your user is assured that something is happening, and that the system has not frozen up
or failed to receive her input. Figure 11-1 shows a loading indicator in the Google Chrome web browser,
indicating to the user that the requested file is being retrieved for display.

Figure 11-1. Google Chrome displays a loading indicator when a PDF is opened in the browser

What’s involved
When displaying system status indicators, you should be as specific as possible. Remember, you’re mak-
ing a user wait, and it’s always nice to know whether it will just be a few seconds or if it’s time to go get
another cup of coffee. A simple, indeterminate indicator is good, but a fixed-width progress bar, as shown
in Figure 11-2 is even better. In some instances, providing a percentage of completion or estimated time
to completion is important as well. Think about who your users are and how much information they’ll want
to see.

 UX Patterns

269

How to build it
Identify the main navigation model in your experience and all of the elements that make it up. In this case,
you’re designing a shopping experience that sells clothing. The CSS and HTML for the navigational ele-
ments could look like this:

CSS
nav li {
 float: left;
 list-style: none;
 font-size: 15px;
 margin-right:2px;
}
nav a {
 display: block;
 width:100px;
 padding:5px;
 text-decoration:none;
 text-align:center;
 color:#333333;
 background-color:#CCCCCC;
 /* Browser Filters */

Figure 11-2. 37 Signals Basecamp shows the progress of a file upload. The speed at which the bar is filled provides
a sense of how long the upload might take to complete

Chapter 11

270

 -moz-border-radius: 8px 8px 0px 0px;
 -webkit-border-radius: 8px 8px 0px 0px;
 -khtml-border-radius: 8px 8px 0px 0px;
 border-radius: 8px 8px 0px 0px;
}
nav .current {
 color:#CCCCCC;
 background-color:#333333;
}
HTML
<nav>

 Men
 Women
 Children

</nav>

Make sure that your navigation is displayed in a persistent location, and ensure that the current view is
highlighted to clearly illustrate the user’s position in the system. In this example, you’ll use tabs to navigate
between views and show the Men view as the current view. (See Figure 11-3.)

Men Women Children

Figure 11-3. Example of tabbed navigation with a tab for the selected view (Men) highlighted

Identify the processes your users must go through in your experience and the steps that make them up.
In this shopping experience, users can customize t-shirts. The simple CSS and HTML for the steps could
be as shown here:

CSS
p {
 font-size: 15px;
 color:#999999
}
/* completed selector and attributes */
p a {
 text-decoration:none;
 color:#333333;
}
/* current selector and attributes */
p span {
 color: #006600;
}
HTML
<p>

 UX Patterns

271

 Select Size >
 Select Color >
 Select Front Image >
 Select Back Image
</p>

1. Clearly display indicators that demonstrate the total number of steps in the process and which
step the user is currently on. In this example, the user has selected his size and is currently
choosing a color for his shirt. (See Figure 11-4.)

Size Color Front Back Complete

Figure 11-4. Example of process indicator with completed (Size) and current (Color) steps shown

Expert tips
In addition to indicating position in a process, you need to let your users know when the system is working,
as shown in Figures 11-1 and 11-2. A good rule of thumb is that a progress or working indicator should
be shown for any processing expected to take longer than 500 milliseconds (a half of a second). Starting
there, you can determine your users’ expectations and tolerance for waiting when you take an early ver-
sion of your experience out to them for evaluation. If you can, watch some people using your site. Look at
their faces while they interact with your experience. Puzzled looks are great indicators that they are waiting
longer than they expected to.

Solution 11-2: Matching the system to the real world
The system should speak the users’ language, with words, phrases, and concepts that are familiar to them,
rather than system-oriented terms. Follow real-world conventions, making information appear in a natural
and logical order.

Whatever the goal of your application is, somewhere it is rooted in the replication of an analog experience.
And further, your application is being built for humans to use. Based on these two notions, designing an
interface that appeals to your users’ existing context and conceptual framework of the task at hand will help
your experience win. There’s nothing worse than trying to complete a task, only to learn that the memoriza-
tion of an entirely new vocabulary is required. Figure 11-5 shows the Apple iTunes software, whose Library
menu organizes media into categories its users are familiar with (for example, Music, Movies, Podcasts),
rather than system-centric categories like MP3, MOV, and AAC.

Chapter 11

272

What’s involved
Beyond using terms and concepts your user is familiar with in the real world, providing a digital re-creation
of an analog object is a powerful way to connect with your user. By referencing an object that she is already
familiar with, your user can hit the ground running in your new experience. It is critical to consider the
interactions you provide when replicating an analog object. Take care to ensure that your user can interact
with the digital version in the same way she expects to interact with the analog one. Figure 11-6 shows
the Google Maps pushpin functionality. This interface successfully replicates the analog map-pushpin
metaphor, and it provides a set of actions (unpinning and moving, naming, and so on) that feel natural to
anyone who has ever placed a pin on a paper map.

Figure 11-5. Apple’s iTunes software uses real-world vocabulary in its Library menu

 UX Patterns

273

How to build it
1. Identify the major tasks your user will use your experience to complete and the subtasks that

make them up. In this case, your application allows users to create grocery lists on a desktop and
retrieve them later on a mobile device. The tasks and subtasks are as follows:

Create a list.■■

Find an existing list.■■

Add an item.■■

Delete an item.■■

Add a quantity for items.■■

Add categories for items.■■

Reorder items.■■

Check off items.■■

Delete a list.■■

Figure 11-6. Google Maps allows users to drop “pins” at custom locations

Chapter 11

274

2. Ask five potential users to describe their grocery list-making routine to you, recording what they
say. Pay particular attention to the verbs they use for the actions they take while list-making.
Compare these responses to your task list, and update your list with the terms most familiar to
your users. Here is an example of how you might rewrite your list using terms most commonly
employed by users in your survey:

“Create a list” changes to “Write a grocery list”■■

“Find an existing list” changes to “Open my list”■■

“Add an item” we’ll remove and replace this with a click/tap below the latest item. Users just ■■

go to the next line on their paper lists to add an item.

“Delete an item” changes to “Cross out an item”■■

“Add quantity for items” changes to “Number”■■

“Add categories for items” → “Aisle”■■

“Reorder items” is removed because nobody does this.■■

“Check off items” changes to “Item has been picked up”■■

“Delete a list” changes to “List is done”■■

Expert tips
Collect any artifacts (old shopping lists) from your users that you can. These will serve as good visual
guidelines for the design of your experience. In this case, we collected a number of torn-off pieces from
yellow legal pads and a few old envelopes with lists on the back. Making the application background look
like one of these yellow scraps of paper will create a strong association for users between their real-world
process and the shopping-list experience you create for them.

Solution 11-3: Building in user control and freedom
Users often choose system functions by mistake and need a clearly marked emergency exit to leave the
unwanted state without having to go through an extended series of dialog boxes or options. Support the
undo and redo capabilities.

One of the worst feelings we all have as users is that of being stuck in an application. There will always
be times when we feel overwhelmed (but you can ensure these instances are few and far between in your
experience), get interrupted, or have to complete the task at a later date and time. Considering these real-
world occurrences in your application will help you to meet expectations your users might not even know
they have. Sometimes even the best-designed experiences require some exploration by their users, and
ensuring that users feel safe in doing so is a winning tactic. Figure 11-7 shows the search capabilities of

 UX Patterns

275

the Apple OS X Finder application. As the user types in a search term, results are displayed in real time
(which is a great example of error prevention, and I’ll say more about that later). The small, round cancel
(X) button in the search box is an important nod to its users. By allowing the user to cancel a search at any
time and return the results window to its previous view, the finder builds a sense of confidence in its user
that she can easily exit from a mistaken search without penalty or consequence.

What’s involved
Providing the freedom to exit an unintended action is good. Providing a pathway to reinstate the results
of that action if the user decides it was correct is even better. Providing undo and redo capabilities might
seem like a standard operating procedure, but you’ll be surprised at how many experiences don’t support
it now that you’re clued in. A good undo/redo scheme supports an appropriate amount of each capabil-
ity based on the tasks at hand and should be as descriptive as possible. Figure 11-8 shows the Adobe
InDesign undo and redo capabilities, which supports a large number of each capability, as well as provid-
ing context for what can be undone or redone.

Figure 11-7. The Apple OS X Finder search box allows a user to cancel her seach easily

Chapter 11

276

How to build it
1. Identify opportunities for users to produce results they might not have intended in your experience.

In this case, you are designing an experience for small clinics to manage their information. Search
will be a primary way to locate information. From talking to the administrators at the clinic, you
know that:

Admins don’t always know whether they are searching for general patient information or ■■

information related to a specific transaction.

Admins will perform hundreds of different searches each day■■

Choose controls that allow flexibility and movement around the identified areas of risk. In this ■■

example, instead of creating an experience where admins must first choose what type of infor-
mation to search and then enter search terms, we’ve added a “type” drop-down menu to our
search field to help admins filter results before or after terms are entered. (See Figure 11-9.)

Figure 11-8. The Adobe InDesign Undo and Redo functions provide valuable freedom of movement to their users

 UX Patterns

277

Expert tips
Avoiding modal states (views in which Close or Back are the only actions available to your user) is a good
way to increase the flexibility of your experience. Unless you can justify a specific situation or need where
you should not do this, choose controls that allow your user to move from one area of your experience to
another without closing the interface or application.

Solution 11-4: Establishing error prevention
Even better than providing good error messages is creating a careful design that prevents a problem from
occurring in the first place. Either eliminate error-prone conditions or check for them and present users with
a confirmation option before they commit to an action.

I hope you’re beginning to see that it’s the little things that make great experiences. Error handling is prob-
ably one of the least sexy and most overlooked tasks. Even so, as a UX designer, your job is to not only
handle the errors gracefully, but to prevent users from making as many of them as possible. On the error-
handling side, good form validation is one of the easiest ways you can guarantee getting the data you need
in the format you need it to be in. Figure 11-10 shows the Mint.com account registration form. Not only
does it validate each field once it loses focus (which you should do whenever you can), it also promotes
successful error recovery (which I’ll say more about later).

Figure 11-9. Example of a Search box with an attached filter, allowing for flexible searches and quick error recovery

Chapter 11

278

What’s involved
Although it might seem to be less efficient, breaking lengthy data-entry tasks into multiple steps, or simpli-
fying them to gather only the most critical information, helps users to digest the task and pay attention to
the rules of the data entry process. Figure 11-11 shows the tumblr blog registration page. With only three
fields for the user to complete, it doesn’t get much simpler than that! All of the other settings and prefer-
ences that might normally appear on a registration page are populated with intelligent defaults and left for
the user to peruse once he’s familiar with the application.

Figure 11-10. Mint.com form validation

 UX Patterns

279

How to build it
1. Identify locations in your experience that will require user input, and specify what the elements of

that input are. In this case, we’re designing a bookmark manager that requires users to create an
account. We’ll need them to create the following:

User Name■■

Password■■

2. For each input required, define the exact format of the data you want to get from users and design
messages that let users know whether they’ve entered the data correctly or not. In this case, the
User Name text box can contain any characters the user wants to use at any length the user
prefers. The Password text box, however, needs to contain at least six characters. (That’s what
our security guy told us.) We’ve included an upfront note letting users know this so that they can
avoid errors. (See Figure 11-12.)

Figure 11-11. tumblr’s blog registration—as simple as it gets

Chapter 11

280

3. For each required input, design short, clear messages to reinforce the formatting requirements
in case your user’s entries are poorly formatted. Display these messages as quickly as possible
after your user enters the data (on submission of the form is good, and on loss of focus from
the specific field is even better). In this case, our user has entered a password containing only
five characters and we display the error message immediately after the user clicks outside of the
field. (See Figure 11-13.) You could also use Cascading Style Sheets (CSS) here to style the field
differently if there was an error.

Figure 11-12. An example of an account creation form, indicating the rules for creating a password

Figure 11-13. An example of an account creation form with a clear, contextual error message

Expert tips
Determining what defines an error is almost as important as handling the errors themselves. It’s easy to
determine an error on the system side (for example, a dollar amount that’s entered in a format the data-
base isn’t expecting or a failure to connect to a web service), but determining what constitutes an error
to your users is more nuanced. An error from your user’s perspective could be an improperly displayed
layout or an errant piece of reference data that’s been truncated strangely. Reviewing, and re-reviewing
your experience with an eye toward these smallest of details (even if they’re “being worked on”) will help
you prevent errors before they occur.

Solution 11-5: Promoting recognition over recall
Minimize the user's memory load by making objects, actions, and options visible. The user should not have
to remember information from one part of a dialog box to another. Instructions for using the system should
be visible or easily retrievable whenever appropriate.

Your users have enough to remember without having to store information that your experience could just
as easily hold on to. It’s commonly understood that most users have a cognitive load (the number of items
they can be expected to remember at any given time) of five to seven pieces of information. With this fact
in mind, the best experiences are designed to request information from users that can be easily recalled
based on cues. Figure 11-14 shows the inline Attributes menu from Adobe Dreamweaver. As the user

 UX Patterns

281

writes code, the interface recognizes the tags being edited and suggests attributes that are pre-validated
(which is a good error-prevention practice), without the user having to mentally catalog and locate the
proper attribute and determine whether it has well-formed syntax.

What’s involved
Recognition does not need to be limited to textual cues. In many cases, the best uses of recognition rely
on nontextual cues, such as images or sounds. Consider all the ways a user might interact with your
experience and how you might engage them with textual and nontextual cues. An excellent example of
this is the WYSIWYG styles incorporated into recent versions of the Microsoft Office Suite. Figure 11-15
shows the Microsoft Word Home Ribbon and the Styles palette within it. Instead of describing each text
style via its font attributes, the palette displays a representative example of each style, allowing the user
to bypass the step of mentally building an image based on a list of attributes, as was common in the
past.

Figure 11-14. The Adobe Dreamweaver inline Attributes menu suggests attributes for the selected tag

Chapter 11

282

How to build it

Departure Date■

1. Look for opportunities to show your users what you want them to do, even after the first time they
walk through your experience. In this case, we’re designing a travel experience where users can
search for vacation packages. There are two places in particular we’ve identified as opportunities
to demonstrate the data entry process we’re looking for:

■

Return Date■■

2. For each opportunity, choose controls that mimic the expected data or demonstrate it in easily
recognizable ways. Instead of hoping that the user can recall the departure date format that
the system prefers, we’ve included a calendar widget in this example that can be used to auto-
populate the Departure field. (See Figure 11-16.)

Figure 11-15. The Microsoft Word Styles palette displays representative examples of each available text style

 UX Patterns

283

Whenever possible, draw a connection for the user between the control you offer them and the result that
it delivers. In this example, the selected departure date on the calendar is displayed, as well as the well-
formatted numeric date in the Departure field. (See Figure 11-17.)

Figure 11-16. An example of a calendar widget that aids users in entering the correct date format

Figure 11-17. An example of a calendar widget displaying the desired date format, as well as the selected calendar date

Expert tips
Let’s talk about icons. Arguably, icons live and die by the principle of “recognition over recall.” Good icons
are universally recognized by your user base, while bad ones are just…weird. Many of the best icons—the
classics—take their recognition cues directly from the real world. The best example of this is the classic
“cut” icon with its offset, open-scissors imagery. But this isn’t the only way to create a good icon. The clas-
sic refresh icon, with its semi-circular arrows has no basis in the physical world. However, after years of
use, it is commonly recognized as “refresh.” So what should you stay away from?

The best advice I can give is to steer clear of modifying something users already strongly associate with
another action. For example, if your menu browser experience shows a steak for the meat options on a
menu and a carrot for vegetarian options, you’re probably better off choosing something totally new for
vegan options rather than showing a purple carrot or something of that nature. As always, let common
sense be your guide.

Chapter 11

284

Solution 11-6: Designing for efficiency of use
Accelerators—unseen by the novice user—often speed up the interaction for the expert user such that the
system can cater to both inexperienced and experienced users. Allow users to tailor frequent actions.

Determining (and sticking to) a closely defined set of target users for your experience is one of the more
difficult tasks for any designer. There will always be pressure to include additional subtargets and, gen-
erally, to design for everybody. Although part of your job certainly is to help mitigate this onslaught of
requests, another part involves designing for various skill levels. In the book About Face: The Essentials
of Interaction Design (Wiley, 2007), Alan Cooper states the following:

Most users are neither beginners nor experts: instead they are intermediates. The experience
level of people performing an activity tends, like most population distributions, to follow the classic
statistical bell curve. For almost any activity requiring knowledge or skill, if we graph number of
people against skill level, a relativity small number of beginners are on the left side, a few experts
on the right, and the majority—intermediate users—are in the center…

Although everybody spends some minimum time as a beginner, nobody remains in that state for
long. People don’t like to be incompetent, and beginners, by definition, are incompetent.

–Alan Cooper

What’s involved
The concept encapsulated in the preceding quote is often referred to as “designing for the perpetual
intermediates.” In practice, this theory can be applied in several ways. One of the simplest and most often
employed approaches is known as progressive disclosure. By hiding more advanced functionality until a
user explicitly requests it, the experience can be kept simple for beginners but scale up for intermediate
and advanced users looking for efficiencies. Figure 11-18 shows the Adobe Photoshop Actions palette.
This palette is hidden by default and must be explicitly invoked by the user. When it is, the powerful capa-
bilities of keystroke recording are exposed, and the user can repeat complex actions again and again on
an unlimited number of files.

 UX Patterns

285

Power users can also be accommodated through thoughtful, contextual cues to more advanced function-
ality. Mint.com’s budgeting view achieves this well, by introducing functionality for power users into an
interface that is already targeted toward intermediate users. Figure 11-19 shows Mint.com’s budgeting
view. When the user rolls over a budget item, arrows appear preceding and following the budgeted total.
These arrows allow advanced users to quickly increase or decrease the amount budgeted for that item
without having to enter a dialog box.

Figure 11-18. The Adobe Photoshop Actions palette

Chapter 11

286

How to build it
1. Simplify, simplify, simplify. This might seems like an odd approach to accommodating advanced

users, but it’s truly the key. With your feature list in hand, rank each feature on its frequency of
use and its criticality to completing the core tasks of your experience—for both your novice and
advanced users. In this case, we’re designing a photo-taking experience and have ranked the
feature set accordingly. (See Table 11-1.)

Figure 11-19. Mint.com’s budgeting view provides intermediate and advanced functionality together

 UX Patterns

287

2. Analyze the key differences for each feature between novice and advanced users. Where there
is a large discrepancy between the two, consider placing small cues in the basic interface to
the more advanced functionality. In this example, exposure adjustment appears to be a feature
that is important solely for the advanced user. With this in mind, you could place a small icon
in the upper left corner of the interface to access exposure controls, out of sight of novices but
discoverable for advanced users who are looking for it.

Expert tips
Don’t fear the V2. Remember that adding to a wildly successful app is much easier than scaling back one
that is performing poorly because of users’ confusion with the interface. All too often, experiences are
delayed in their release because, even though they’re good enough, someone has decided they need to
be absolutely perfect. If you’re confident that your experience is satisfying the core of your users’ needs,
send it out. This will give them time to respond to your hard work, and it will give you more time to refine
the next set of features.

Solution 11-7: Helping users recognize, diagnose,
and recover from errors

Error messages should be expressed in plain language (no codes), precisely indicate the problem, and
constructively suggest a solution.

Although we’ve already spent a good deal of time talking about errors, it’s time to get down to the busi-
ness of actually presenting them. Although your goal, no doubt, is to build error-free software, the reality
is that the system will fail sometimes. This familiar inevitability, when properly handled, can be turned from
a user-experience dead-end into a learning opportunity and a chance to connect with your users. Error
handling, in this sense, is a powerful way to let your user know that the experience will be there to support

Table 11-1. An example Frequency/Criticality Matrix for a photo experience

Novice User Advanced User
Task Frequency Criticality Frequency Criticality

Take Photos High High High High

Adjust Aperture Low Low Medium Medium

Zoom In/Out Medium Low High High

Adjust Exposure Low Low Medium High

Take Several Photos at Once Low Low Medium Medium

Edit Photos Medium Low High High

Share Photos High Medium High Medium

Delete Photos High Low High Low

Organize Photos into Albums Low Low High High

Chapter 11

288

her tasks not only when they are successful, but also when the system fails. Figure 11-20 shows one of
Twitter’s famous error messages. Real-time feature deployment is a reality for Twitter, so in those few
minutes in which code is being updated and the service is inaccessible, the interface provides the user
with a proper explanation, takes responsibility for the error, and provides instructions and actions to help
resolve the issue.

Figure 11-20. Twitter provides well-formed error messages when its service goes down

What’s involved
Sometimes, an error can also be an opportunity to present core functionality to the user, allowing him to
completely bypass the error state itself. Google Chrome’s Page Not Found error page not only displays
the hallmarks of a well-handled error, it also provides the ability to execute another search without having
to return to the home page. Figure 11-21 shows this best-case scenario, which helps to minimize the fact
that an error was even encountered in the first place.

 UX Patterns

289

How to build it
1. Clearly identify what error the user has encountered. Remember that, even though error states

can be powerful tools to help developers debug and improve experiences, your user is still the
primary target for your error messages. State the problem in language users will understand. In
this case, we’re designing an e-reader experience that produces an error when the user attempts
to open a book whose file has been corrupted. The problem statement is as follows:

“Something went wrong! Bram Stoker’s Dracula can’t be opened.”■■

Figure 11-21. Google Chrome’s Page Not Found error page helps users continue searching

Note: Use personal, conversational language as appropriate for your audience. A puzzle
game’s users might appreciate a snarky “OMG…We’ve got a problem!” at the beginning
of an error message, while a legal-document browser would likely benefit from something
a bit more terse.

2. Help your user diagnose the problem, if possible. In this example, the error could be related to an
actual corrupt file or a file type that wasn’t expected. The diagnosis is stated as follows:

“This may be due to a corrupt file or unexpected file type.”

Chapter 11

290

The last part of an error message is the most important—provide a clear, direct course of action
for addressing the problem. In this case, re-downloading the file is the easiest, most likely way to
resolve the issues. The resolution is stated as follows:

“Re-download the book by clicking here. If the problem persists, please call support at
1-888-xxx-xxxx.”

3. Combine each of the three components to create a clear, cohesive error message that helps your
user recover from the error state. The error message is:

“Something went wrong! Bram Stoker’s Dracula can’t be opened. This may be due to a ■■

corrupt file or unexpected file type. Re-download the book by clicking here. If the problem
persists, please call support at 1-888-xxx-xxxx.”

Expert tips
Providing guidance to direct the user toward the action most likely to resolve the error state he has encoun-
tered is good, and providing a secondary option is even better. In the error message shown in step 3 the
final sentence provides a catch-all solution for the rare cases that the primary solution does not work for
the user. By providing support contact information (where appropriate), you can ensure that all of your
users will be covered even when your experience is throwing errors. Oftentimes, a user who is able to
recover from an error state quickly and easily will become your number one fan.

Solution 11-8: Help and documentation
Even though it is better if the system can be used without documentation, you might need to provide help
and documentation. Any such information you provide should be easy to search, focused on the user's
task, include a list of concrete steps to be carried out, and not be too large.

Gone are the days of installation disks and several-hundred-page software manuals to accompany them.
And I say, “Good riddance.” This doesn’t mean, however, that help is dead. If anything, providing guidance
and assistance throughout your experience has become a more nuanced challenge to tackle.

What’s involved
Your user expects to find an answer to her question immediately, in the same place on the interface where
she finds herself stuck. The moment she moves to her search engine of choice for the answer is a chance
for you to lose her. Help should strive to be contextual and, as stated, not too long. To meet this criteria,
video is an excellent option. Figure 11-22 shows the Apple OS X Trackpad Preferences. Because multiple
trackpad gestures were added to the operating system, the ability to describe each one with text alone
decreased. So Apple chose to include small, looping videos to accompany each gestural preference.

 UX Patterns

291

How to build it
1. Provide help for your users before they even ask. Identify tasks for which this might be appropriate.

In this example, we’re designing a retirement-planning experience. The design is well executed,
but it covers a wide range of functionality. We’ve identified one area where most users are likely
to benefit from some upfront help:

Getting started for the first time■■

With the tasks/areas identified provide concise tips and help, in as many ways as appropriate. In
this case, we have step-by-step instructions, walkthrough videos, and forums to offer our user.
(See Figure 11-23.)

Figure 11-22. Apple OS X Trackpad Preferences—A picture’s worth a thousand words

Chapter 11

292

Roth IRA■

2. Providing contextual help for your users along the way is also a crucial component of a good
support system. Identify terms, concepts, and controls that might not be immediately familiar to your
target users. In this case, we’ve identified several terms that might require further explanation:

■

SEP

Money Market Account

Annuity

As the terms, concepts, and controls are displayed, provide nondestructive,
nonmodal opportunities for your user to learn more. In this case, an overlay window
appears when the user hovers over the help icon. (See Figure 11-24.)

Figure 11-23. An example message providing upfront help to users getting started in the system

Note: This particular example of providing help when getting started is one place where
modal dialogs and windows can be beneficial. By forcing your user to slow down and, at
the very least, close the window, you can create greater probability that more users will
pause to read the tips.

 UX Patterns

293

Expert tips
Don’t feel like you have to build your own help and support system from the ground up for your new
experience. Online tools such as GetSatisfaction (www.getsatisfaction.com) provide help, support, and
knowledge-base service platforms for reasonable fees. By combining interfaces that allow users to engage
in self-service help, as well as to get support if problems persist, these platforms can provide you with a
virtual helpdesk without adding to your organization’s headcount.

Summary
Creating a great user experience is not achieved by blindly implementing an idea that sounds great on
paper. It is achieved by careful, methodical attention to detail at each design decision along the way. The
rules of thumb we reviewed in this chapter can direct many of your design decisions. As you’ve seen, some
of the biggest names in creating online user experiences present excellent examples of how to follow
these guidelines. Following these guidelines and developing a thorough knowledge of who your users are
and how they work will help to make your experience stand out.

Figure 11-24. An example contextual help message for an unfamiliar term

http://www.getsatisfaction.com

295

Chapter 12

Mobile UX Patterns

“We need a mobile app. Yesterday!” If I had a dollar for every client call that started out with that phrase, I’d
definitely be on a beach somewhere sipping cold drinks for the rest of my days. While there’s no doubt that
much of the competition in developing applications that enrich the user experience has moved away from
desktop apps, there’s certainly no worse reason to build a mobile experience than to simply achieve parity.
The emerging, as well as the established, mobile channels provide us, as designers, with unparalleled
access to our users in their chosen contexts rather than one dictated by technology (i.e., a desk to accom-
modate a desktop computer and monitor). With this access, though, comes a host of additional consider-
ations and approaches to explore.

Considering mobile
I once had the opportunity to work on a project whose basis was ideally suited to the mobile context:
exercise. My client, let’s call them Sweat, had a successful online presence from which they distributed
proprietary audio and video based workouts for users to follow at home or on the road. As expected, the
online presence also included articles on fitness and nutrition, a workout tracker, calorie calculator, and
host of other peripheral support tools. When it came time to create a mobile experience, I couldn’t wait. It
seemed so right to port this core functionality to a platform where users could be much more mobile than
when tied to a laptop or desktop computer.

When we first met to discuss the project, my client eagerly passed across the table a full set of design
comps that Sweat’s in-house designer had produced. He thought that after a simple UX review and

Chapter 12

296

signoff we would be done. The comps looked great, with an unobtrusive visual design and access to all
of the workout content Sweat had online. All of it: the calculators, the articles, the About Us content, and
 background on the owners, trainers, and investors. We had a miniature version of the web experience in
front of us—all of the content that any user of any kind could ever want, and so much that none of them
would ever find any of it on their phones.

Solution 12-1: Scope. Cut. Repeat.
As discussed in Chapter 11, scoping to user needs is critical to designing the best user experience for your
product. The mobile context amplifies this even further. Because attention spans are getting shorter online,
you can bank on about half of the normal online attention span in the use of your mobile app. You have one
chance to grab your user, and that’s it.

What’s involved
As I found with Sweat, presenting all of your functionality in the mobile context actually dilutes your mes-
sage and overall brand value rather than bolstering it. Presenting a focused, targeted, and yes, limited set
of functionality can greatly increase your users’ satisfaction with their experience. So, how do you do this?
As with UX design in general, you need to trust your gut.

How to build it
The following two exercises will help to create a conceptual framework for your experience. Identifying the
most critical and highest frequency tasks for your users will create the focus that will help make your expe-
rience successful. Further grooming of this list will ensure that scope will not hold your experience back
from your users any longer than necessary, and can help guide an on-going product roadmap.

 Assuming you’ve identified your target users, list the major tasks those users will want to complete 1.
in your mobile experience. You can do this for an online experience that is being reimagined for
mobile or a brand new product that will go to mobile first. For Sweat, the list was as follows:

Find a workout.■■

Listen to or view a workout.■■

Track your progress.■■

Track your calorie intake or diet.■■

 If your list contains more than three or four items, consider removing one or moving the items 2.
into groups. Use your instincts here, and carefully consider and vet each area of focus. It’s good
to consult a friend or colleague here and justify to them each of the task areas you want to keep
in the mobile experience. In the case of Sweat, we couldn’t come up with a compelling enough
case to keep the diet-tracking functionality. It didn’t seem critical to the success of completing a
workout, and the functionality quickly got complicated even as we tried to pare it down for mobile.
We ended up with a small, targeted scope, which was ideal for our mobile audience:

 Mobile UX Patterns

297

Find a workout.■■

Listen to or view a workout.■■

Track your progress.■■

Track calorie intake/diet■■

Expert tips
Chances are good that you’ll be approaching mobile with an original scope that contains at least 10–20
items rather than an ideal 3–4. If you find yourself with a larger scope to start from, consider removing 4–6
items, scaling up as necessary to accommodate the size of the original scope. You might also have the
opportunity to create multiple apps. Try card-sorting your features into two or three groups if you have a
larger scope. You just might find that there’s a lot more opportunity for great mobile experiences than you
initially expected. Figure 12-1 shows the SoundCloud iPhone app, which trades in a long list of functional-
ity for a direct focus on the things its users do most: listen and record.

Figure 12-1. The SoundCloud iPhone app focuses on the listening experience

Solution 12-2: Design for context
As you saw in Solution 12-1, reducing scope and being hyper vigilant about the included functionality in
your mobile experience helps to create a great foundation to build upon. The most critical tool, by far, to
help determine scope and to answer almost any mobile design question you might have down the road is
an intimate knowledge of your user’s context for use.

Chapter 12

298

How to build it
Imagination is key to the process of identifying triggers and distractions. While you have, hopefully, had
some contact with your users, you’ll still need to paint yourself a cinematic view of what their daily lives
look and feel like. Don’t be afraid to literally sketch the pictures that come to mind, or even to cover a spare
wall in photos or magazine clippings that help to bring to life the real-world scenarios in which your users
find themselves.

 Determine the triggers that cause your users to open your experience on their mobile device. 1.
Take your best, educated guess if you haven’t had direct access to your users yet. If you’ve
interviewed a few, you have this information in hand already. Maybe your users saw a print or

What’s involved
Although we can reasonably assume that Sweat’s online users interact with the website while seated at a
desk, table, or couch while looking at their laptop, the context for mobile use has many more possibilities.
Are users at the gym, standing on a treadmill? At the grocery store, standing in line? Or are they in bed,
planning how to fit in tomorrow morning’s cardio session before the kids wake up? Knowing what these
possible contexts are and designing specifically for them increases the probability of success for your
mobile experience, in the form of continued engagement and usage. Figure 12-2 shows Mint.com’s iPhone
app. The powerful Mint.com interface has been reimagined to provide just those things that users on the
go would be most interested in—like checking the details of a recent transaction.

Figure 12-2. The Mint.com iPhone app promotes the information that users on the go want to see

 Mobile UX Patterns

299

online ad. Or they could be responding to an environmental cue (i.e., wanting to know the name
of a song that’s playing on the car radio). In our case, we determined Sweat users would most
often think to launch the app in the following scenarios:

Once they are dressed and ready to work out■■

When they finish work for the day■■

When their kids are eating dinner■■

2. Determine where your users are when they use your experience. Keep in mind the same rules
as before—guess if you need to. For Sweat, our users told us that they most often used the app
in the following situations:

At home■■

On the bus or subway■■

 Based on your determinations in the previous steps, identify environmental distractions that pose 3.
a threat to completing the task, as well as benefits that support task completion. Because you’re
designing for a handheld device where, literally, you can expect your users to be mobile, all of
the distractions we encounter every day when we’re not planted in front of our computers are
fair game for planning around. Deliberately identifying and designing your app to combat these
distractions is a must if you want to create lasting, meaningful user engagement. In the case of
Sweat, the list looked something like this:

Waking up too late to work out in the morning [distraction]■■

Working late [distraction]■■

Kids need help with school project [distraction]■■

Fixed amount of personal time on bus or subway [benefit]■■

No need to travel to gym when working out at home [benefit]■■

Familiar equipment/space at home [benefit]■■

 As your designs come together through implementation, use the list created in step 3 as a point 4.
of validation. Ensure that the functionality and overall experience specifically mitigate each
distraction and amplify each benefit.

Expert tips
Take as much advantage as you can of the hardware that your selected mobile platform provides. Mobile
doesn’t simply mean that your users can interact with your experience from new places. It means that
they can do new things in those places. One of the most interesting options available to designers and
developers is the possibility of augmented-reality views. Apps that provide augmented-reality features take
advantage of the hardware’s camera as an input device.

Escapist Games’ Star Chart is a great example of this. By not only taking advantage of the fact that users
are outdoors with their mobile device, but also that the camera can be used as an input device, Star Chart
can decode and display complex constellations for anyone looking to identify formations in the night sky.

Chapter 12

300

(See Figure 12-3.) Other standout augmented-reality views overlay additional, relevant information, such
as restaurants, reviews, and directions over cityscapes for travelers and locals alike.

Figure 12-3. The Star Chart app for Android takes input from the device’s camera and displays an overlay of the
constellations the user can currently view

Solution 12-3: Craft the right approach
With your thoughts on scope and context in hand, the next phase of the design process you want to con-
sider (before you get to the nuts and bolts of laying out views) is how best to approach your users. This is
the time to start considering the actual devices your users will use to interact with your designed experi-
ence. Will it be iPhone-only? What about tablets? How much Android adoption is expected?

What’s involved
Even though the decision about which platforms to support might have already been made by the time
you begin designing and developing your experience, you still have an opportunity to influence future
versions and, maybe, with the right information, the current approach. If these decisions are not yet set
in stone, your platform approach should be heavily based on the responses from your users about the
contexts in which they will use your app. (Much of this will be contained in the information you gathered
for Solution 12-2.) You need to decide whether to build native applications for each platform, to go with

 Mobile UX Patterns

301

an HTML5/CSS3 approach that many different platforms can adapt to, or a hybrid that sits somewhere in
between. Armed with user-derived information, you can make a decision that accommodates the great-
est number of users and user needs while keeping a close eye on efficient spending for development.

How to build it
The father of modern industrial design and a great influence on 20th century product design, Raymond
Loewy, once proclaimed that

Ugliness does not sell.

The thing is, he’s right. Without question, many of your users will react more negatively to a bad experience
than to no experience at all. With this fact in mind consider, as EffectiveUI’s Shane Church suggests, that
your options for determining a proper mobile approach represent a continuum rather than a discrete set of
choices. (See Figure 12-4.)

Figure 12-4. The options for a mobile approach are best represented as a continuum

Ultimately, the following considerations need to be addressed to determine where on the continuum your
mobile experience approach falls:

Determine whether your experience requires access to specific hardware that is not universally ■■

available on all devices/platforms. In the case of Sweat, we did not need access to anything
special like the iPhone’s accelerometer. If any of the core features identified in Solutions 12-1 and
12-2 require specific hardware, you’ll likely need to build a native mobile solution. If not, consider
the rest of the following questions.

Does the app need to be functional offline? To what degree?■■

If yes, some sort of hybrid approach—such as using an app shell to house offline functions—will
be needed.

How sensitive is the app to variances in network performance?■■

If it is moderately to highly sensitive, a hybrid approach might need to be considered.

Does the app need to perform any processor or graphics-intensive operations like 3D graphics or ■■

real-time calculations (i.e., most games)?

The more processor-intensive requirements that exist, the closer to native you will likely need to
skew for your experience approach.

Chapter 12

302

What is your tolerance for supporting multiple applications and operating systems?■■

Keep in mind that building multiple experiences is only one side of the coin. Make sure to con-
sider maintenance and support costs. A mobile web approach can help cut down on the costs of
maintaining several platforms.

Do you need a presence in the app stores (Google Play, iTunes, Windows Phone Marketplace)?■■

If yes, a native or hybrid approach is required.

Do the majority of your users favor a single device or platform currently? Do you expect this to ■■

change?

The more platforms you find necessary to support, the more attractive a mobile web solution may be.

Expert tips
Tablets are not giant mobile phones. (See Figure 12-5.) That’s an overstatement of the obvious, of course,
but it’s critical to keep in mind that designing for tablets is a very different context from that of mobile
phones. Trying to take your mobile phone experience directly to tablet, or vice versa, often results in a
subpar experience. If you do need to rapidly deploy to both sets of form factors, strongly consider get-
ting periodic user feedback during the design stages using a rapid prototyping tool such as Field Test
(http://fieldtestapp.com/). Field Test allows you to take your wireframes and quickly link them together.
With the mobile-friendly links it provides, you can deploy test interfaces directly onto the target device,
complete with hotspots to simulate button actions.

Figure 12-5. Four iPhones does not an iPad make

http://fieldtestapp.com/

 Mobile UX Patterns

303

The beauty of this approach, however, becomes apparent when viewing the mobile version of the site.
Navigate your smartphone to www.bostonglobe.com and you’ll quickly see that there is no branched,
mobile-specific version of the site at all. Your smartphone will resolve directly to www.Bostonglobe.com, as
shown in Figure 12-7, and you’ll notice that the layout looks very similar to the one shown at the right in
Figure 12-6. This is the holy grail of responsive design. The design, with its content properly prioritized,
accommodates viewports of any size, not just on the desktop, but for mobile and tablet as well. The con-
sistency in experience that is established through this type of approach adds serious value to all channels
of your user’s experience.

Solution 12-4: Respond to the target view
Designing a miniature version of your website should not be your guiding principle for mobile development.
And although we’ve reviewed some of the best techniques to help determine what content and function-
ality should flow from your online experience into your mobile experience, it does not mean that the two
can’t be harmonious, or even based on the same front-end codebase. In his landmark 2010 article, Ethan
Marcotte makes the case for “Responsive Web Design” based on the principles of building “flexible foun-
dations” and executing in a way that aims to “Adapt, respond, and overcome.” Just as in the transition from
print to web, where old layout constraints were broken and new ones introduced, he argues, the inclusion
of mobile and other non-desktop viewing contexts in the mix of potential endpoints for your online experi-
ences introduces an opportunity and a need to adapt. While a number of core UX design concepts predate
the coining of “Responsive Web Design” as a term, the emergence of this approach is greatly tied to the
rising popularity of HTML5 and, especially, CSS3 as viable languages for creating dynamic user experi-
ences across digital channels.

What’s involved
In theory, responsive design embraces architecture that accommodates the lowest common denomina-
tor in your multichannel approach (i.e., smartphone) and then progressively enhances the experience as
it scales up to more robust channels (i.e., desktop browsers). In practice, this often means that content,
in addition to straight functionality, must be prioritized. The Boston Globe, as shown in Figure 12-6, has
embodied the principles of responsive design beautifully on Bostonglobe.com. As the size of the viewport
changes, the content shifts, disappears, and reorders itself in an intelligent manner, with the most impor-
tant articles and headlines remaining in primary view.

Figure 12-6. Bostonglobe.com’s responsive design accommodates a variety of desktop browser viewport sizes

http://www.bostonglobe.com
http://www.Bostonglobe.com

Chapter 12

304

How to build it
The media query can be used to support style sheets created for different device expressions. By using the
media query, a whole range of device expressions can be supported with compatible css files.

In this example, the media query is written to link the "smartphone.css" file with any device that expresses
that it is screen based and has a maximum device width of 480 pixels:

<link rel = "stylesheet" type = "text/css"
 media = "screen and (max-device-width: 480px)"
 href = "smartphone.css" />

Also, the media query can be used directly in the CSS. This could prove useful if minor tweaks to the layout
are desired:

@media screen and (max-device-width: 480px) {
.content-body {
 width: 100%;

}
}

The media query uses media features to define the expressions of output device. Media features like
device-width, device-height, orientation, aspect-ratio, and so on can be used to link to the correct style
information for a device that expresses the values that are defined in the media query. For more informa-
tion, visit http://www.w3.org/TR/css3-mediaqueries.

Figure 12-7. Bostonglobe.com’s responsive design responds to any viewport size, even those of smartphones

http://www.w3.org/TR/css3-mediaqueries

 Mobile UX Patterns

305

Expert tips
Identify the devices that will be supported prior to the design phase. By identifying the devices and their
screen requirements, this will drive design and define how the media queries are implemented. For
instance, if a device is orientation aware, a design that takes that into account can be created and a media
query can be set up to direct the device to CSS that will support that design.

Solution 12-5: Go mobile first
Perhaps the best way to harness the power of a responsive-design approach is to adopt one of its related
principles, Mobile First. Popularized by Luke Wroblewski, this foundational approach flips the traditional
mobile/desktop design workflow on its head and calls for designing and deploying on mobile first, and then
considering your traditional web presence—as an extension of the mobile rather than vice versa. If your
application is new and you anticipate heavy mobile usage, consider this approach.

Don’t assume usage on the desktop just out of habit. Try making the case for a desktop version in the same
way you might have to today for a mobile version. You might be surprised at how difficult it can be. Conversely,
if you’re looking to bring an existing desktop web experience to mobile, think about continuing to innovate and
push the product and design forward through the mobile experience, rather than just creating a stripped-down
version of the original. In this way, you can offset the balance of power between desktop and mobile, setting up
the potential to begin leading future design efforts with mobile, and then extending back to the desktop.

What’s involved
Figure 12-8 shows the up-and-coming social network, Path. Though the functional nuances of Path differ from
Facebook and the like, its true differentiator is its mobile-first (and only) approach. Rather than launch mobile
and desktop web experiences together, the Path team chose to pare down the social feature set to only those
things that matter in a mobile context (check-in, photos, comments, music the user is listening to). The more
robust features like planning events, sharing articles, and playing Farmville are left out completely.

Figure 12-8. Path embraces a mobile-only approach

Chapter 12

306

Path also provides a great example of light desktop web integration, while maintaining a mobile founda-
tion. Figure 12-9 shows the web view for a Path “moment.” This is the primary web view for Path, created in
part to support its e-mail-notification functionality. Where, in the past, mobile might have been adopted only
as a way to see read-only content from a desktop experience, Path has relegated the desktop to read-only
status as a pathway to drive traffic back to the more robust mobile experience.

How to build it
Many of the new mobile-only sites are using fluid layouts that can accommodate various screen widths.
Elements like buttons and form fields are built to expand and contract using simple CSS layouts. Fluid lay-
outs will only go so far. Many of the new devices have much greater resolutions that can contain as much
as 326-ppi screens. In many cases, just simply viewing a site with one of these screens forces the screen
to either vertically scroll or display very small.

Mobile Safari introduced the viewport meta tag to allow control of the viewport’s scale and size. Technically,
the meta tag is not a part of the web standard, although many mobile browsers have begun to use it. The
following meta tag is a typical example:

<meta name = "viewport" content = "width = device-width, initial-scale = 1, maximum-scale = 1">

The width if the viewport is set to "device-width", which sets the width to the width of the screen in CSS
at a scale of 100%.

Figure 12-9. Path’s desktop experience drives traffic back to the mobile experience

 Mobile UX Patterns

307

The "initial-scale" sets the view port to the zoom level of 1, and the "maximum-scale" locks the zoom
level to 1. This setting displays on mobile devices like iPhone and Android at about the correct physical
pixel dimensions despite the higher dots-per-inch (dpi) values of the device.

Expert tips
To capitalize on the increased resolution of these new devices, designers have been designing comps
at twice the resolution of the traditional design compositions. Icons and other image-based elements
are sliced and kept at that higher resolution. Maintaining the higher resolution gives the images a much
smoother and less pixelated look on these higher resolution screens.

If an image is going to be used as a background the background-size attribute can prove useful.

.my-icon-button{
 background: url('myicon.png') left top norepeat;
 background-size: 10px 20px;
}

In the preceding code, the image myicon.png is used as a background image. The original size of this
image was 20 pixels by 40 pixels. The background-size attribute is used to reduce the image to work on
devices with less screen resolution while giving the higher-display-density screens enough visual informa-
tion to display the higher quality of the image without it looking pixelated.

Summary
As you’ve seen, designing for mobile presents much more than just another opportunity to get your brand
in front of your users. It has the potential to encourage user engagement with your experience in meaning-
ful ways that aren’t possible on the desktop. Knowing that mobile devices are highly personal, you can
see how designing experiences that fit this personal context will help your experience win. By presenting
a tightly focused scope that speaks intelligently to the contexts on which your users will engage with your
experience, you increase your opportunity to delight them. As you approach your mobile experience, con-
sider it a first-class citizen alongside the desktop experience and strive to create harmony between the
two. In some cases, you might decide that mobile-only is the strongest move for your brand.

309

Index

■ A
Absolute positioning, browser, 1
Accessibility of forms. See Form accessibility
Animations module, CSS3, 238

key frame, 239
animation-delay, 240
animation-direction, 240
animation-duration, 240
animation-iteration-count, 240
animation-name, 240
animation-play-state, 240
animation-timing-function, 240
multiple animations with

comma-separated list, 241
rule, 239
slideshow photo gallery, 241–244

Spiderman cartoon, 245
Autoplay, 259

■ B
Border-radius property, 10–11
Border-radius revolution, 112

Bostonglobe.com, 303–304
Box model

background color and opacity, 127–130
background gradients, 130–133
background size, 133–135
border outlines, 138–140
drop shadows, 146–148
image border creation, 142–145
margin, border and padding, 125
multiple background creation, 136–138
resizable boxes, 148–149
rounded corner creation, 140–142

■ C
CanIuse.com, 11–13
Cascading Style Sheets (CSS), 1

box model, 7–8, 125
background color and opacity, 127–130
background gradients, 130–133
background size, 133–135
border outlines, 138–140
drop shadows, 146–148
image border creation, 142–145

Index

310

Cascading Style Sheets (CSS) (cont.)
margin, border and padding, 125
multiple background creation, 136–138
resizable boxes, 148–149
rounded corner creation, 140–142

CSS3
cross-browser compatibility, 9–13
declaration rule, 4–5
default values, 22–23
image aspect ratio, 19–21
with JavaScript, 13–16
modules, 2–4
multiple background image, 16–18
selectors, 6

inheritance, 8–9
positioning types, 1
purpose, 1
typography, 79

drop cap creation, 82–84
hanging punctuation, 84–90
hierarchy, 90–93
multicolumn text blocks, 93–96
text hyphenation handling, 79–82

Class selectors, 6
Color, RGBa, 68

alpha transparency, 74
browser support, 69–70
HSLa works, 72
HSL model representation, 72–74
limitations, 69
syntax, 69

ColorZilla, 133
Contextual help, 263–264
@Counter-style for custom lists, 119

circle bullet, 120
counter value representation, 119
repeating counter type, 121
symbols and additive-symbols, 120
syntax, 119–120
triangle bullet, 121

CSS-based layouts, 151
block elements, 151
clearing floats, 165–173
default flow, 151, 153
display property, 154

altered document flow, 155
values, 154

inline elements, 152
reset, 173–175

CSS positioning, 151, 156
absolute, 158
relative, 156, 157
relative positioning rule, 157
static, 156
statically positioned elements, 156

CSS reset, 173–175

■ D
Design for context, 297

Mint.com iPhone app, 298
Star Chart app, augmented-reality

views, 299–300
Design for user, 300

mobile experience approach,
301–302

platform choice approach, 300–301
tablets, 302

Document Object Model (DOM), 4–5
Drop-down menu with lists, 115

border-radius property, 115
browser support and prefixes, 116
CSS style sheet, 117
CSS3 gradients, 118
CSS3 transitions, 115
drop-down effect, 117–118
gradients, 115
HTML markup, 116–117
 element, 115

2D transformations, CSS3, 217
browser compatibility, 221–222
2D transform tool, 225
HTML5 document, mouse hover,

222–225
matrix, 225

browser support, 228–229
cssSandpaper, 230
2D coordinate system, 226–227
HTML5 document, mouse hover,

229–230
syntax, 227–228

transform property, 218
rotate() transform function, 218
scale() transform function, 218–219

 Index

311

skew() transform function, 219
translate() transform function, 219–220

transform-origin property, 220–221
3D transformations, CSS3, 245

animation, 248
backface-visibility property, 248
browser support, 248–249
CSS3 3D transforms module, 245
3D transform functions, 246

matrix3D() function, 246
rotate3D() function, 246
rotateZ() function, 246
scale3D() function, 246
scaleZ() function, 246
translate3D() function, 246
translateZ() function, 246

flipping, HTML element, 249–251
online tool, 251
perspective origin, 247
perspective value, 246–247
transform-style property, 247–248

■ E
Error handling, UX patterns, 277

account creation form, 279–280
Mint.com form validation, 278
reviewing and re-reviewing, 280
tumblr blog registration, 278

External CSS, 6

■ F, G
Flexible lists marker, 121

box generation, 123
class note insertion, 122–123
marker pseudo-element, 122
syntax, 122

@font-face Kit Generator, 50
Form accessibility, 253, 261

browser support, 262
cognitive disabilities, 261
contextual help, title attribute, 263–264
CSS3 pseudo-classes, 261–262
error management, 261
form validator, 261
HTML5 pattern feature, 263

HTML5 specifications, 261, 262
validation input message, 262–263
validation management, 261

Floating elements, 160
markups, 160–165
nonintuitive behavior, 160

Fonts, 49
fallback fonts, 55

browser support, 56
CSS syntax, 56
font stack, 57–58
font-size-adjust property, 56
x-height value, 55

@font-face, 49
browser support, 52
bulletproof syntax, 53
formats, 51
Kit Generator, 50
multiple web fonts, 53–54
OpenType (.otf), 50
rename, 53
syntax, 52
TrueType (.ttf), 50
.TTF format, 53
.WOFF format, 53

FontSquirrel, 50

■ H
High-pixel-density screens

device pixel and CSS pixel, 209–210
image-background rule, 211
working principle, 210–211

HSLa
browser support, 74
color values, 73
geometric representation, 73
Hue, 72
Lightness, 72
Saturation, 72

HTML5, 4
Hue, saturation, lightness (HSL) color model, 128

■ I, J
ID selectors, 6
Image-resolution, 21

Index

312

Interactive forms. See Form accessiblity
Internal CSS, 6

■ K
Key frame, animation, 239

animation-delay, 240
animation-direction, 240
animation-duration, 240
animation-iteration-count, 240
animation-name, 240
animation-play-state, 240
animation-timing-function, 240
browser support, 241
multiple animations with comma-separated

list, 241
rule, 239
slideshow photo gallery, 241–244

■ L
Linear gradients, box model, 130
Lists. See Drop-down menu with lists, Flexible

lists marker

■ M, N
Matrix 2D transformations, CSS3, 225

browser support, 228–229
cssSandpaper, 230
HTML5 document, mouse hover, 229–230
matrices and 2D coordinate system, 226–227
syntax, 227–228

Matrix() transform function, 227–228
Media queries, 177

browser support, 183
mobile devices, tablets and desktops,

184–185
Respond, 185

features, 181
high-pixel-density screens (see High-pixel-

density screens)
layout orientation, CSS3, 199

box-ordinal-group property, 208–209
device width feature, 200–202
landscape orientation, 200
portrait orientation, 200
working principle, 202–208

operators and prefixes, 182–183
printing devices, 212

properties and features, 212–213
pseudo elements and content

properties, 213
text size, 213
working principle, 214–216

screen size layout, CSS3, 185
design and styles considerations,

189–190
device size and viewport, 187–189
Protofluid, 199
responsive design, 186–187
working principle, 190–199

style sheets, 178
CSS2.1 media types, 178
link tag, 179
media/import rules, 179
screen media type, 179–180

syntax structure, 181
Mint.com iPhone app, 298
Mobile experience approach, 301–302
Mobile First approach, 305
Mobile-only approach, 305–306
Mobile user experience, 295

conceptual framework creation,
296–297

SoundCloud iPhone app, 297
user satisfaction, 296

Mobile UX Patterns, 267, 295
design for context, 297

Mint.com iPhone app, 298
Star Chart app, augmented-reality

views, 299–300
triggers and environmental

distractions, 298–299
design for user, 300

mobile experience approach,
301–302

platform approach, 300–301
tablets, 302

efficiency of use, 284
Adobe Photoshop Actions palette, 285
concepts, 284
Mint.com’s budgeting view, 285
for photo experience, 287
progressive disclosure, 284

 Index

313

error handling, 277
account creation form, 279–280
Mint.com form validation, 278
reviewing and re-reviewing, 280
tumblr blog registration, 278

error messages, 287–290
help and documentation, 290

Apple OS X Trackpad preferences, 290
contextual help message, 293
GetSatisfaction tool, 293
upfront help message, 291

loading indicator, system status
in Google Chrome web browser, 268
navigational elements, 269
process indicator, 271
signals Basecamp, 269
tabbed navigation, 270

mobile user experience, 295
conceptual framework creation,

296–297
SoundCloud iPhone app, 297
user satisfaction, 296

mobile web experience, 295–296
real-world conventions

analog object, digital re-creation of,
272

Apple iTunes software, 271
artifacts collection, 274
Google Maps pushpin function, 272
tasks and subtasks, 273–274

recognition over recall, 280
Adobe Dreamweaver, inline Attributes

menu, 280, 281
data entry process, 282
icons, 283
Microsoft word Styles palettes, 281

responsive web design, 303
Bostonglobe.com, 303–304
device resolution, 307
devices and screen requirements, 305
fluid layouts, 306–307
media query, 304
Mobile First approach, 305
Path social network, mobile-only

approach, 305–306
rules of thumb, 267

search capabilities, 274
administrators, 276
Adobe InDesign undo/redo

capabilities, 275
Apple OS X Finder search box, 275
avoiding modal states, 277

Mobile web experience, 295–296
Multidevice development. See Media queries
Multimedia, CSS3, 253

music player, 258
<audio> element, 258–259
creating infinite skins, 261
HTML structure, 260
jPlayer plug-in, 259–260
rendering in browser, 260

video player design, 253
browser support, 254
jQuery plug-in, 255
markup, 254–255
native browser video controls, 254
themes creation, 258

Music player, 258
<audio> element, 258

autoplay attribute, 259
controls attribute, 259
loop attribute, 259
preload attribute, 259
rendering in Opera, 258
src attribute, 259

creating infinite skins, 261
HTML structure, 260
jPlayer plug-in, 259–260
rendering in browser, 260

■ O
Online forms. See Form accessiblity

■ P, Q
Path social network, 305–306
Pricing table creation, 102

box-shadow property, 103
hosting plan comparison table, 104

markup, 104–105
shadow effects, 106
traversal, 107

Index

314

Pricing table creation (cont.)
nth-last-child, 104
pseudo-classes, 107
text-shadow property, 103

Protofluid, 199
Pseudo-selector, 100–101

■ R
Radial gradients, box model, 130
Relative positioning, browser, 1
Respond script, 185
Responsive table design, 107

breakpoint identification, 108
browser support, 108
clean markup, 108
flexible table, 110
HTML markup, 108–110
media queries, 108, 111
screen resolution breakpoint, 110–111
table layout, 111

Responsive web design, 303
Bostonglobe.com, 303–304
device resolution, 307
devices and screen requirements, 305
fluid layouts, 306–307
media query, 304
Mobile First approach, 305
Path social network, mobile-only approach,

305–306
Rotate() transform function, 218

■ S
Scale() transform function, 218–219
Selectors, 25

CSS2 vs. CSS3, 26
pseudo-classes, 26–27

checked, 27
disabled, 27
empty selector, 40–43
enabled, 27
highlighting selected text, 27–28
links and icons, 45–48
readability of tabular data, 29–34
sibling combinator, 43–45
user-interface element states, 34–38
user-select property, 38–40

Skew() transform function, 219
Skip navigation links, CSS3, 264

fragmentation in audio and video formats, 266
invisible until keyboard focus, 264
menu navigation, 265
opacity property, 265
pseudo-class focus, 265

SoundCloud iPhone app, 297
Star Chart app, 299–300
Static positioning, browser, 1

■ T
Tables, CSS3, 99

@counter-style for custom lists, 119
circle bullet, 120
counter value representation, 119
repeating counter type, 121
rule, 119
symbols and additive-symbols, 120
syntax, 119–120
triangle bullet, 121

creating tables with rounded corners, 111
border-collapse, 114
border-radius revolution, 112
browser support, 112
collapsed table, 114
CSS, 113
table layout, 113
wide border radius, 114

drop-down menu with lists, 115
border-radius property, 115
browser support and prefixes, 116
CSS drop-down menu, 116
CSS style sheet, 117
CSS3 gradients, 118
CSS3 transitions, 115
drop-down effect, 117–118
gradients, 115
HTML markup, 116–117
 element, 115

flexible lists marker, 121
box generation, 123
class note insertion, 122–123
marker pseudo-element, 122
pseudo-class, before and content

property, 121

 Index

315

responsive design, 107
breakpoint identification, 108
browser support, 108
clean markup, 108
flexible table, 110
HTML markup, 108–110
media queries, 108, 111
screen resolution breakpoint, 110–111
table layout, 111

styled pricing table creation, 102
box-shadow property, 103
hosting plan comparison table, 104
nth-last-child, 104
pseudo-classes, 107
text-shadow property, 103

zebra-striping table rows, 99
alternate rows with background

color, 101
alternate rows without background

color, 101
browser support, 101
example, 100
jQuery, 102
nth-child syntax, 100–101

Text, 49
text overflow property, 65

browser support, 66
clip value, 65
CSS syntax, 66
ellipsis value, 65
ellipsis-word value, 65
on Gmail’s smartphone e-mail app, 68
HTML table, structure of, 66–68
to table’s cells, 67

text-rendering property, 74
browser support, 76
CSS syntax, 75–76
kerning, 75
ligatures, 75
optimizeLegibility value, 76–77

text-shawdow, 59
advanced effects, 62
browser support, 59
implementation, 59–60
letterpress effect, 61–62
letterpress typography, 60

word-wrap property, 63
browser support, 64
clip and overflow property, 63
normal and break-word values, 63
working principle, 64–65

Transformations. See 2D transformations,
CSS3; 3D transformations, CSS3

Transform-origin property, 220–221
Transform property

rotate() transform function, 218
scale() transform function, 218–219
skew() transform function, 219
translate() transform function,

219–220
Transitions, CSS3, 231

accordion menu, 235–238
browser support, 234–235
CSS properties, 232
HTML element animation, 238
syntax, 233–234
transition-delay, 232
transition-duration, 231
transition-property, 231
transition-timing-function, 231

Type selectors, 6
Typography

drop cap
description, 82
example, 82
float property, 84
pseudo-element selectors, 82

hanging punctuation
absolute positioning, 86
description, 84
hexidecimal and HTML entity

codes, 85
light-gray quotation marks, 89
pseudo-element selectors, 85
semantics of quotations, 87
text-indent property, 89
z-index property, 87

hierarchy, 90
multicolumn text blocks, 93–96
text hyphenation

none vs. auto state, 80–81
valus of, 79

Index

316

■ U
User interface

CSS3 pseudo-classes, 261–262
HTML5 specifications, 262

■ V
Video player design, 253

browser support, 254
jQuery plug-in, 255

hover effect, 256
Mute/Unmute button, animation, 257
parent container style, 255–256
set float, 256
sleek style, 256
video and volume navigation bars for

sliders, 256
volume slider, hide/unhide, 257–258

markup, 254–255
native browser video controls, 254
themes creation, 258

■ W, X
Web forms. See Form accessiblity
World Wide Web Consortium

(W3C), 2

■ Y
YUI library page, Get method, 17

■ Z
Zebra striping, 99

CSS3 Solutions
Essential Techniques for CSS3 Developers

Marco Casario, Nathalie Wormser, Dan Saltzman,
Anselm Bradford, Jonathan Reid, Francesco Improta,

and Aaron Congleton

CSS3 SolutIoNS: ESSENtIAl tEChNIquES FoR CSS3 DEvElopERS
Copyright © 2012 by Marco Casario, Nathalie Wormser, Dan Saltzman, Anselm Bradford, Jonathan Reid,

Francesco Improta, Aaron Congleton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction

on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal

reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,

in its current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the

respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4335-9

ISBN-13 (electronic): 978-1-4302-4336-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logos, or image we use the names, logos, or images only in an editorial fashion

and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, service marks, and similar terms, even if they are not identified as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions

that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit

www.springeronline.com.

For information on translations, please e-mail rights@apress.com or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing

web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at www.
apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/source-code.

Credits
president and publisher:

Paul Manning

lead Editor:
Ben Renow-Clarke

technical Reviewers:
Andrew Zack

Editorial Board:
Steve Anglin, Ewan Buckingham, Gary Cornell,

Louise Corrigan, Morgan Ertel, Jonathan Gennick,
Jonathan Hassell, Robert Hutchinson, Michelle Lowman,

James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick,

Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor:
Jennifer Blackwell, Anamika Panchoo

Copy Editor:
Roger LeBlanc

Compositor:
SPi Global

Indexer:
SPi Global

Artist:
SPi Global

Cover Image Artist:
Corné van Dooren

Cover Designer:
Anna Ishchenko

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com
http://www.apress.com/source-code

To my girlfriend, Katia, for always supporting me in my book projects.
—Marco Casario

To my parents.
—Nathalie Wormser

To my sister, who told me I could.
—Jonathan Reid

To Serena and Alessandro, my life.
—Francesco Improta

v

Contents
About the Authors.. xv
About the Technical Reviewer.. xviii
About the Cover Image Designer.. xix
Acknowledgments... xx
Introduction... xxi

Chapter 1: CSS Basics .. 1

CSS3 Modules .. 2
Anatomy of a CSS3 declaration .. 4
Understanding the Box Model ... 7
Understanding CSS inheritance .. 8

Solution 1-1: Discovering CSS3 compatibilities across browsers 9
What’s involved ... 10
How to build it .. 10
Expert tips .. 13

Solution 1-2: Adding a CSS3 file with JavaScript ... 13
What’s involved ... 13
How to build it .. 15
Expert tips .. 16

Solutions 1-3: Declaring multiple backgrounds for your web page 16
What’s involved ... 17
How to build it .. 17
Expert tips .. 18

Solution 1-4: Controlling the image aspect ratio .. 19
What’s involved ... 19
How to build it .. 19
Expert tips .. 21

Solution 1-5: Resetting CSS3 default values .. 22
What’s involved ... 22
How to build it .. 22

Summary .. 23

Chapter 2: CSS Selectors ... 25

Differences compared to CSS2 selectors.. 25
Pseudo-classes ... 26

CONTENTS

vi

Solution 2-1: Highlighting selected text .. 27
What’s involved ... 27
How to build it .. 28
Expert tips .. 28

Solution 2-2: Enhancing the readability of tabular data 29
What’s involved ... 29
How to build it .. 29
Expert tips .. 33

Solution 2-3: Toggling form elements .. 34
What’s involved ... 34
How to build it .. 35
Expert Tips ... 37

Solution 2-4: Preventing content from being selectable 38
What’s involved ... 38
How to build it .. 38
Expert tips .. 39

Solution 2-5: Hiding empty elements within a page ... 40
What’s involved ... 40
How to build it .. 40
Expert tips .. 43

Solution 2-6: Using the sibling combinator .. 43
What’s involved ... 43
How to build it .. 44

Solution 2-7: Putting an icon image next to links ... 45
What’s involved ... 46
How to build it .. 46

Summary .. 48

Chapter 3: Fonts, Text, and Color ... 49

Solution 3-1: Using @font-face .. 49
What’s involved ... 49
How to build it .. 52
Expert tips .. 54

Solution 3-2: Using fallback fonts .. 55
What’s involved ... 55
Browser support .. 56
How to build it .. 56

CONTENTS

vii

Solution 3-3: Using advanced text effects with text-shadow 59
What’s involved ... 59
Browser support .. 59
How to build it .. 59
Expert tips .. 63

Solution 3-4: Forcing text to wrap .. 63
What’s involved ... 63
Browser support .. 64
How to build it .. 64
Expert tips .. 65

Solution 3-5: Creating elegant text overflow ... 65
What’s involved ... 65
Syntax .. 66
Browser support .. 66
How to build it .. 66
Expert tip .. 68

Solution 3-6: Using color RGBa ... 68
What’s involved ... 69
Browser support .. 69
How to build it .. 70
Expert tip .. 72
What’s involved ... 72
HSL model representation ... 72
HSL example .. 73
Browser support .. 74
How to build it .. 74
Expert tips .. 74

Solution 3-8: Optimizing text legibility with text-rendering 74
What’s involved ... 75
Syntax .. 75
Browser support .. 76
How to build it .. 76

Summary .. 77

CONTENTS

viii

Chapter 4: CSS Typography ... 79

Solution 4-1: Handling hyphenation of text .. 79
What’s involved ... 79
How to build it .. 81
Expert tips .. 82

Solution 4-2: Creating drop caps ... 82
What’s involved ... 82
How to build it .. 83

Solution 4-3: Creating hanging punctuation ... 84
What’s involved ... 84
How to build it .. 88
Expert tips .. 89

Solution 4-4: Creating a typographic hierarchy .. 90
What’s involved ... 90
How to build it .. 91
Expert tips .. 93

Solution 4-5: Creating multicolumn text blocks ... 93
What’s involved ... 94
How to build it .. 95
Expert tips .. 96

Summary .. 97

Chapter 5: Tables and Lists .. 99

Solution 5-1: Zebra-striping table rows .. 99
What’s involved ... 100
Browser support .. 101
How to build it .. 101
Expert tip .. 102

Solution 5-2: Creating a styled pricing table ... 102
What’s involved ... 102
How to build it .. 104
Expert tip .. 107

Solution 5-3: Making tables responsive .. 107
What’s involved ... 108
Browser support .. 108
How to build it .. 108
Expert tip .. 111

CONTENTS

ix

Solution 5-4: Creating a practical table with rounded corners 111
What’s involved 112
Browser support . .. 112
How to build it . .. 113
Expert tip . .. 114

Solution 5-5: Creating a drop-down menu with lists . .. 115
What’s involved 115
Browser support . .. 116
How to build it . .. 116
Expert tip . .. 118

Solution 5-6: Using @counter-style for custom lists 119
What’s involved 119
How to build it . .. 120
Expert tips . .. 121

Solution 5-7: Using a flexible lists marker 121
What’s involved 122
How to build it . .. 122
Expert tips . .. 123

Summary .. 123

Chapter 6: CSS Box Model.. 125

Solution 6-1: Setting background color and opacity. .. 127
What’s involved 127
How to build it . .. 129
Expert tips . .. 130

Solution 6-2: Creating background gradients 130
What’s involved 130
How to build it . .. 132
Expert tips . .. 133

Solution 6-3: Setting background size 133
What’s involved 133
How to build it . .. 134
Expert tips . .. 135

Solution 6-4: Creating multiple backgrounds . .. 136
What’s involved 136
How to build it . .. 136
Expert tips . .. 138

CONTENTS

x

Solution 6-5: Creating border outlines ... 138
What’s involved ... 139
How to build it .. 139
Expert tips .. 140

Solution 6-6: Creating rounded corners .. 140
What’s involved ... 140
How to build it .. 141

Solution 6-7: Creating image borders .. 142
What’s involved ... 142
How to build it .. 145
Expert tips .. 145

Solution 6-8: Creating drop shadows .. 146
What’s involved ... 146
How to build it .. 147
Expert tips .. 148

Solution 6-9: Creating resizable boxes .. 148
What’s involved ... 148
How to build it .. 149
Expert tips .. 149

Summary .. 150

Chapter 7: CSS Positioning and Layouts .. 151

Solution 7-1: Changing the display property .. 154
What’s involved ... 154
How to build It .. 154
Expert tips .. 156

Solution 7-2: Using CSS positioning ... 156
What’s involved ... 156
How to build It .. 157
Expert tips .. 160

Solution 7-3: Floating elements with CSS ... 160
What’s involved ... 160
How to build It .. 160
Expert tips .. 165

CONTENTS

xi

Solution 7-4: Clearing floats ... 165
What’s involved ... 165
How to build It .. 165
Expert tips .. 169

Solution 7-5: Using a CSS reset ... 173
What’s involved ... 173
How to build It .. 174
Expert tips .. 175

Summary .. 175

Chapter 8: Multidevice Development ... 177

Solution 8-1: Defining different style sheets to target different
devices with media queries ... 178

What’s involved ... 178
How it works .. 184
Expert tips .. 185

Solution 8-2: Adapting a layout for different screen sizes with CSS3 185
What’s involved ... 186
How it works .. 190
Expert tips .. 199

Solution 8-3: Handling layout orientation on mobile devices with CSS3 199
What’s involved ... 200
How it works .. 202
Expert tips .. 208

Solution 8-4: Defining style rules for high-density pixel screens 209
What’s involved .. 209

Device pixel and CSS pixel .. 209
How it works .. 210
Expert tips .. 211

Solution 8-5: Styling a document for printing devices with CSS3 212
What’s involved .. 212

What to print .. 213
How does it work ... 214
Expert tips .. 216

Summary .. 216

CONTENTS

xii

Chapter 9: Transitions and Transformations .. 217

Solution 9-1: Applying simple 2D transformations
on HTML elements with CSS3 .. 217

What’s involved ... 218
How it works .. 222
Expert tips .. 225

Solution 9-2: Using matrix 2D transformations in CSS3 225
What’s involved ... 226
How it works .. 229
Expert tips .. 230

Solution 9-3: Making elements move with CSS3 transitions 231
What’s involved ... 231
How it works .. 235
Expert tips .. 238

Solution 9-4: Going further with animations in CSS3 .. 238
What’s involved ... 239
How it works .. 241
Expert tips .. 245

Solution 9-5: Applying 3D transformations in CSS3 .. 245
What’s involved ... 245
How it works .. 249
Expert tips .. 251

Summary .. 251

Chapter 10: Multimedia and Accessibility ... 253

Solution10-1: Building a custom video player .. 253
What’s involved ... 254
Browser support .. 254
How it works .. 254
Expert tip .. 258

Solution 10-2: A CSS3 music player .. 258
What’s involved ... 258
How it works .. 260

Solution 10-3: Improve the form accessibility with CSS3 validation 261
What’s involved ... 261
Browser support .. 262
How it works .. 262

CONTENTS

xiii

Solution 10-4: An unobtrusive skip navigation link ... 264
What’s involved ... 265
How it works .. 265

Summary .. 266

Chapter 11: UX Patterns ... 267

Rules of thumb... 267
Solution 11-1: Ensuring visibility of system status ... 268

What’s involved ... 268
How to build it .. 269
Expert tips .. 271

Solution 11-2: Matching the system to the real world .. 271
What’s involved ... 272
How to build it .. 273
Expert tips .. 274

Solution 11-3: Building in user control and freedom ... 274
What’s involved ... 275
How to build it .. 276
Expert tips .. 277

Solution 11-4: Establishing error prevention .. 277
What’s involved ... 278
How to build it .. 279
Expert tips .. 280

Solution 11-5: Promoting recognition over recall ... 280
What’s involved ... 281
How to build it .. 282
Expert tips .. 283

Solution 11-6: Designing for efficiency of use ... 284
What’s involved ... 284
How to build it .. 286
Expert tips .. 287

Solution 11-7: Helping users recognize, diagnose,
and recover from errors ... 287

What’s involved ... 288
How to build it .. 289
Expert tips .. 290

CONTENTS

xiv

Solution 11-8: Help and documentation ... 290
What’s involved ... 290
How to build it .. 291
Expert tips .. 293

Summary .. 293

Chapter 12: Mobile UX Patterns ... 295

Considering mobile ... 295
Solution 12-1: Scope. Cut. Repeat. .. 296

What’s involved ... 296
How to build it .. 296
Expert tips .. 297

Solution 12-2: Design for context ... 297
What’s involved ... 298
How to build it .. 298
Expert tips .. 299

Solution 12-3: Craft the right approach ... 300
What’s involved ... 300
How to build it .. 301
Expert tips .. 302

Solution 12-4: Respond to the target view .. 303
What’s involved ... 303
How to build it .. 304
Expert tips .. 305

Solution 12-5: Go mobile first ... 305
What’s involved ... 305
How to build it .. 306
Expert tips .. 307

Summary .. 307

Index .. 309

xv

About the Authors
Marco Casario has been passionate
about informatics since he was little more
than a child and used to program games
in Basic for the Commodore 64. That was
before dedicating himself, while still very
young, to innovative projects for the Web
using JavaScript and Flash.

In 2001, he began to collaborate with
Macromedia. Since that year, he has pro-
duced and headed a long series of presen-
tations, conferences, and articles, which
you can find listed in detail on his blog
(casario.blogs.com).

In 2005, Marco founded Comtaste (www.comtaste.com) a company dedicated to exploring new frontiers
in Rich Internet and Mobile Applications and the convergence between the Web and the world of mobile
devices. Now his focus is on User Experience (UX) aspects to make sure that enterprise software running
on several different devices is easy and pleasurable to use, as well as on cloud computing with the Google
Apps platform APIs and Google App Engine.

He is also the founder and manager of the biggest worldwide Flash Lite user group, the Italian community
of Adobe Flex users (www.augitaly.com/flexgala), and the Italian HTML5 Meetup.

Marco is an Adobe Certified Instructor for Flex 4, LCDS 3, and AIR (ACI), and an Adobe Certified Expert
for the LiveCycle Platform, Flash, and Dreamweaver. He is also a SCRUM Master.

Marco is author of several books, including HTML5 Solutions: Essential Techniques for HTML5 Developers
(Apress), Flex 4 Cookbook (O’Reilly), Professional Flash Catalyst: Building User Experiences for Rich
Internet Applications (Wrox), Adobe AIR 1.5 Cookbook: Solutions and Examples for Rich Internet Application
Developers (O’Reilly), Flex 4 Solutions: Essential Techniques for Flex Developers (friendsofED), AdvancED
AIR Applications (friendsofED), The Essential Guide to Flash CS4 AIR Development (friendsofED), and
Flex Solutions: Essential Techniques for Flex 2 and 3 Developers (friendsofED).

His speaking engagements include international conferences such as FlashOnTheBeach, AJAXWorld
Conference, O'Reilly Web 2.0 Summit, FITC, Adobe MAX, FATC New York, FlexCamp, 360Flex, TAC
Singapore, MultiMania Belgium, Adobe CEM, and many others.

Nathalie Wormser is a freelance web developer who is passionate about
emerging multimedia technologies , games, and digital educational appli-
cations. She is the co-founder of Project Cocoon Multimedia, a develop-
ment and web design company based in Pondicherry, South India.

http://www.comtaste.com
http://www.augitaly.com/flexgala

xvi

ABOUT THE AUTHORS

Dan Saltzman is a User Experience Architect and Strategist in Denver,
Colorado.

Anselm Bradford is a lecturer in digital media at the Auckland University of
Technology (AUT) in New Zealand, where he researches interactive media,
web media, and visual communication. His experience with Internet-related
development stretches back to 1996, when he hand-coded his first website. He
may be found on Twitter @anselmbradford, and he occasionally blogs at
AnselmBradford.com.

Jonathan Reid has been developing web-based applications in HTML and
JavaScript since 1996 and is passionate about creating awesome and compel-
ling user experiences on the Web. He is a firm believer in user-centered cre-
ative processes and is an advocate for standards and accessibility. Jon has a
wide variety of experience building web applications, ranging from genetic anal-
ysis software to cutting-edge interactive advertising. Jon teaches courses in
jQuery and has written extensively about jQuery Mobile.

Jon is an alumnus of the University of Colorado, Boulder, where he graduated
with a degree in physics and mathematics. He currently works as a Senior
Software Engineer for Motorola Mobility and lives in Sunnyvale, California with
his partner of 13 years. You can follow him on Twitter at @jreid01 and read his

blog at webdev.dreamwidth.org.

Francesco Improta lives in Rome, Italy.

He designs interfaces for all devices, from mobile touchscreen to desktop. He
calls himself a “user interface craftsman” and is passionate about the Web,
typography, and new technologies.

Francesco’s spare time is given to his family, sharing great moments with his
wife and his little boy. He’s addicted to sports and is currently practicing swim-

ming, windsurfing, and snowboarding.

xvii

ABOUT THE AUTHORS

Aaron Congleton is currently working for Closely Inc. as a Senior Web Engineer. He has developed
websites for the likes of Cisco, DaVita, Denver Art Museum, FedEx, Qwest, Comcast, and National
Geographic.

xviii

About the technical Reviewer
Andrew Zack is the CEO of ZTMC, Inc. (www.ztmc.com), which specializes in search engine optimization
(SEO) and Internet marketing strategies. His project background includes almost 20 years of site develop-
ment and project management experience and over 15 years as an SEO and Internet marketing expert.

Andrew has been very active in the publishing industry, having coauthored Flash 5 Studio (Apress, 2001)
and served as a technical reviewer on more than 10 books and industry publications.

Having started working on the Internet close to its inception, Andrew continually focuses on the cutting
edge and beyond, concentrating on new platforms and technology to stay at the forefront of the industry.

http://www.ztmc.com

xix

about the Cover image designer
Corné van dooren designed the front cover image for this book. After
taking a break from friends of ED to create a new design for the Foundation
series, he worked at combining technological and organic forms, with the
results now appearing on the cover of this and other books.

Corné spent his childhood drawing on everything at hand and then began
exploring the infinite world of multimedia—and his journey of discov-
ery hasn’t stopped since. His mantra has always been “the only limit to
multimedia is the imagination,” a saying that keeps him moving forward
constantly.

Corné works for many international clients, writes features for multimedia
magazines, reviews and tests software, authors multimedia studies, and

works on many other friends of ED books. If you like Corné’s work, be sure to check out his chapter in New
Masters of Photoshop: Volume 2 (friends of ED, 2004). You can see more of his work (and contact him) at
his website, www.cornevandooren.com.

xx

Acknowledgments
It happens all the time. During the writing of a book, I often have the feeling that I will never reach the end.
It is only with the help and support of many people who tirelessly work behind the scenes that the book is
ready on time and in good form.

I would like to thank my coauthors for their hard work.

I want to thank Ben Renow-Clarke and Dominic Shakeshaft, and everyone on the friendsofED team for giv-
ing me the opportunity and the support to write and improve this book. Their guidance and input throughout
the development of this book was essential. It's awesome and incredible how their work in coordinating the
editing effort with authors across different continents and time zones made collaboration so easy.

Also, special thanks are due to my technical editor, Andrew Zack, who contributed to making the content
and the examples easy to understand and follow.

And, of course, thank you to my Mom for having always pushed me to improve myself and to see beyond
the surface of things.

To my brother, Alessio, for understanding why sometimes I did not have enough time for him.

To Katia, for her patience with all the weekend and night hours spent working on this book in the past
several months.

This book is significantly better because of these great people.

Marco Casario

I would like to thank Ben Renow-Clarke and the entire friendsofED team for giving me the opportunity to
co-write and work on this book.

Nathalie Wormser

I would like to thank R.J. Owen for his help and encouragement with my writing. I would also like to thank
Ben Renow-Clarke and the friendsofED team for making this book possible.

Jonathan Reid

Thanks to the friendsofED/Apress team and my co-authors for their assistance and effort in coordinating
the many chapters of this book. It has been a pleasure to work with many of the same people who helped
on HTML5 Mastery. Thanks to my colleagues at AUT University, specifically Gudrun Frommherz, who
allows me the time and flexibility of schedule to write and keep my web skills current.

Anselm Bradford

	CSS3 Solutions
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	About the Cover Image Designer
	Acknowledgments
	Introduction
	Who is this book for?
	What you need
	Conventions used in this book
	Questions and Contacts

	Chapter 1: CSS Basics
	CSS3 Modules
	Anatomy of a CSS3 declaration
	Understanding the Box Model
	Understanding CSS inheritance
	Solution 1-1: Discovering CSS3 compatibilities across browsers
	What’s involved
	How to build it
	Expert tips

	Solution 1-2: Adding a CSS3 ﬁle with JavaScript
	What’s involved
	How to build it
	Expert tips

	Solutions 1-3: Declaring multiple backgrounds for your web page
	What’s involved
	How to build it
	Expert tips

	Solution 1-4: Controlling the image aspect ratio
	What’s involved
	How to build it
	Expert tips

	Solution 1-5: Resetting CSS3 default values
	What’s involved
	How to build it

	Summary

	Chapter 2: CSS Selectors
	Differences compared to CSS2 selectors
	Pseudo-classes

	Solution 2-1: Highlighting selected text
	What’s involved
	How to build it
	Expert tips

	Solution 2-2: Enhancing the readability of tabular data
	What’s involved
	How to build it
	Expert tips

	Solution 2-3: Toggling form elements
	What’s involved
	How to build it
	Expert Tips

	Solution 2-4: Preventing content from being selectable
	What’s involved
	How to build it
	Expert tips

	Solution 2-5: Hiding empty elements within a page
	What’s involved
	How to build it
	Expert tips

	Solution 2-6: Using the sibling combinator
	What’s involved
	How to build it

	Solution 2-7: Putting an icon image next to links
	What’s involved
	How to build it

	Summary

	Chapter 3: Fonts, Text, and Color
	Solution 3-1: Using @font-face
	What’s involved
	Generate your own @font-face kit
	Font formats
	Browser support

	How to build it
	@font-face syntax
	Making the font work
	Multiple web fonts

	Expert tips

	Solution 3-2: Using fallback fonts
	What’s involved
	x-height value
	What does font-size-adjust do?

	Browser support
	How to build it
	An example

	Solution 3-3: Using advanced text effects with text-shadow
	What’s involved
	Browser support
	How to build it
	Advanced effects: Letterpress typography
	How to create a letterpress effect
	More advanced effects

	Expert tips

	Solution 3-4: Forcing text to wrap
	What’s involved
	Allowed values

	Browser support
	How to build it
	Without word-wrap
	With word-wrap

	Expert tips

	Solution 3-5: Creating elegant text over ﬂ ow
	What’s involved
	Syntax
	Browser support
	How to build it
	Expert tip

	Solution 3-6: Using color RGBa
	What’s involved
	Syntax

	Browser support
	How to build it
	Expert tip
	What’s involved
	HSL model representation
	HSL example
	Browser support
	How to build it
	Expert tips

	Solution 3-8: Optimizing text legibility with text-rendering
	What’s involved
	Kerning and ligatures

	Syntax
	Browser support
	How to build it

	Summary

	Chapter 4: CSS Typography
	Solution 4-1: Handling hyphenation of text
	What’s involved
	How to build it
	Expert tips

	Solution 4-2: Creating drop caps
	What’s involved
	How to build it
	Expert tips

	Solution 4-3: Creating hanging punctuation
	What’s involved
	How to build it
	Expert tips

	Solution 4-4: Creating a typographic hierarchy
	What’s involved
	How to build it
	Expert tips

	Solution 4-5: Creating multicolumn text blocks
	What’s involved
	How to build it
	Expert tips

	Summary

	Chapter 5: Tables and Lists
	Solution 5-1: Zebra-striping table rows
	What’s involved
	:nth-child syntax

	Browser support
	How to build it
	Expert tip

	Solution 5-2: Creating a styled pricing table
	What’s involved
	box-shadow
	text-shadow
	:nth-last-child

	How to build it
	The markup
	Shadow effects
	Traversing

	Expert tip

	Solution 5-3: Making tables responsive
	What’s involved
	Using clean markup
	Identifying breakpoints
	Implement media queries

	Browser support
	How to build it
	Screen resolution breakpoint

	Expert tip

	Solution 5-4: Creating a practical table with rounded corners
	What’s involved
	The border-radius revolution

	Browser support
	How to build it
	Expert tip

	Solution 5-5: Creating a drop-down menu with lists
	What’s involved
	Why use < ul > ?
	No images—CSS only

	Browser support
	How to build it
	HTML markup
	CSS style sheet
	The drop-down effect

	Expert tip

	Solution 5-6: Using @counter-style for custom lists
	What’s involved
	@counter-style syntax
	Symbols and additive-symbols

	How to build it
	Predeﬁned style: circle bullet
	Triangle bullet

	Expert tips

	Solution 5-7: Using a ﬂ exible lists marker
	What’s involved
	The syntax

	How to build it
	Expert tips

	Summary

	Chapter 6: CSS Box Model
	Solution 6-1: Setting background color and opacity
	What’s involved
	How to build it
	Expert tips

	Solution 6-2: Creating background gradients
	What’s involved
	How to build it
	Expert tips

	Solution 6-3: Setting background size
	What’s involved
	How to build it
	Expert tips

	Solution 6-4: Creating multiple backgrounds
	What’s involved
	How to build it
	Expert tips

	Solution 6-5: Creating border outlines
	What’s involved
	How to build it
	Expert tips

	Solution 6-6: Creating rounded corners
	What’s involved
	How to build it

	Solution 6-7: Creating image borders
	What’s involved
	How to build it
	Expert tips

	Solution 6-8: Creating drop shadows
	What’s involved
	How to build it
	Expert tips

	Solution 6-9: Creating resizable boxes
	What’s involved
	How to build it
	Expert tips

	Summary

	Chapter 7: CSS Positioning and Layouts
	Solution 7-1: Changing the display property
	What’s involved
	How to build It
	Expert tips

	Solution 7-2: Using CSS positioning
	What’s involved
	How to build It
	Expert tips

	Solution 7-3: Floating elements with CSS
	What’s involved
	How to build It
	Expert tips

	Solution 7-4: Clearing ﬂ oats
	What’s involved
	How to build It
	Expert tips

	Solution 7-5: Using a CSS reset
	What’s involved
	How to build It
	Expert tips

	Summary

	Chapter 8: Multidevice Development
	Solution 8-1: Deﬁning different style sheets to target different devices with media queries
	What’s involved
	The screen media type: From desktop to mobile screens
	The syntax of media queries
	Browser support of media queries

	How it works
	Expert tips

	Solution 8-2: Adapting a layout for different screen sizes with CSS3
	What’s involved
	Responsive design
	The device size and the viewport
	Some design and styles considerations

	How it works
	Expert tips

	Solution 8-3: Handling layout orientation on mobile devices with CSS3
	What’s involved
	Syntax
	device-width vs. orientation

	How it works
	Expert tips
	Device pixel and CSS pixel

	Solution 8-4: Deﬁning style rules for high-density pixel screens
	What’s involved
	How it works
	Expert tips
	What to print
	Font size

	Solution 8-5: Styling a document for printing devices with CSS3
	What’s involved
	How does it work
	Expert tips

	Summary

	Chapter 9: Transitions and Transformations
	Solution 1: Applying simple 2D transformations on HTML elements with CSS3
	What’s involved
	The transform property
	The transform-origin property
	Browser support

	How it works
	Expert tips

	Solution 9-2: Using matrix 2D transformations in CSS3
	What’s involved
	Matrices and the 2D coordinate system
	Syntax
	Browser support

	How it works
	Expert tips

	Solution 9-3: Making elements move with CSS3 transitions
	What’s involved
	Transition properties
	Syntax
	Browser support

	How it works
	Expert tips

	Solution 9-4: Going further with animations in CSS3
	What’s involved
	The keyframes rule
	Binding the animation to an element
	Multiple animations
	Browser support

	How it works
	Expert tips

	Solution 9-5: Applying 3D transformations in CSS3
	What’s involved
	The 3D transform functions
	Perspective
	Perspective origin
	The transform-style property
	The backface-visibility property
	3D transforms and animation
	Browser support

	How it works
	Expert tips

	Summary

	Chapter 10: Multimedia and Accessibility
	Solution10-1: Building a custom video player
	What’s involved
	Browser support
	How it works
	jQuery stuff
	Look and feel
	Thanks to basic CSS knowledge and some new properties introduced with CSS3, you can ﬁnally personalize a video player to your liking.

	Expert tip

	Solution 10-2: A CSS3 music player
	What’s involved
	The < audio > element

	How it works

	Solution 10-3: Improve the form accessibility with CSS3 validation
	What’s involved
	We’ll make use of both HTML5 type attributes for input ﬁelds and CSS3 pseudo-classes. The following sections provide an overview.
	CSS3 pseudo-classes for the user interface
	New type of inputs and attributes with HTML5

	Browser support
	How it works
	Validation input message
	Finding the pattern
	Adding help

	Solution 10-4: An unobtrusive skip navigation link
	What’s involved
	How it works

	Summary

	Chapter 11UX Patterns
	Rules of thumb
	Solution 11-1: Ensuring visibility of system status
	What’s involved
	How to build it
	Expert tips

	Solution 11-2: Matching the system to the real world
	What’s involved
	How to build it
	Expert tips

	Solution 11-3: Building in user control and freedom
	What’s involved
	How to build it
	Expert tips

	Solution 11-4: Establishing error prevention
	What’s involved
	How to build it
	Expert tips

	Solution 11-5: Promoting recognition over recall
	What’s involved
	How to build it
	Expert tips

	Solution 11-6: Designing for efﬁciency of use
	What’s involved
	How to build it
	Expert tips

	Solution 11-7: Helping users recognize, diagnose, and recover from errors
	What’s involved
	How to build it
	Expert tips

	Solution 11-8: Help and documentation
	What’s involved
	How to build it
	Expert tips

	Summary

	Chapter 12: Mobile UX Patterns
	Considering mobile
	Solution 12-1: Scope. Cut. Repeat.
	What’s involved
	How to build it
	Expert tips

	Solution 12-2: Design for context
	What’s involved
	How to build it
	Expert tips

	Solution 12-3: Craft the right approach
	What’s involved
	How to build it
	Expert tips

	Solution 12-4: Respond to the target view
	What’s involved
	How to build it
	Expert tips
	Solution 12-5: Go mobile ﬁrst
	What’s involved
	How to build it
	Expert tips

	Summary

	Index

