
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

■ About the Author.. ix
■ About the Technical Reviewer .. x
■ Acknowledgments ... xi
■ Preface.. xii
■ Chapter 1: Laying the Groundwork ... 1
■ Chapter 2: Ghost in the Machine... 19
■ Chapter 3: Inside the DEX File... 57
■ Chapter 4: Tools of the Trade.. 93
■ Chapter 5: Decompiler Design... 151
■ Chapter 6: Decompiler Implementation .. 175
■ Chapter 7: Hear No Evil, See No Evil: A Case Study..................................... 229
■ Appendix A: Opcode Tables... 255
■ Index ... 279

www.allitebooks.com

http://www.allitebooks.org

1
Chapter

Laying the Groundwork
To begin, in this chapter I introduce you to the problem with decompilers and
why virtual machines and the Android platform in particular are at such risk. You
learn about the history of decompilers; it may surprise you that they’ve been
around almost as long as computers. And because this can be such an emotive
topic, I take some time to discuss the legal and moral issues behind
decompilation. Finally, you’re introduced to some of options open to you if you
want to protect your code.

Compilers and Decompilers
Computer languages were developed because most normal people can’t work
in machine code or its nearest equivalent, Assembler. Fortunately, people
realized pretty early in the development of computing technology that humans
weren’t cut out to program in machine code. Computer languages such as
Fortran, COBOL, C, VB, and, more recently, Java and C# were developed to
allow us to put our ideas in a human-friendly format that can then be converted
into a format a computer chip can understand.

At its most basic, it’s the compiler’s job to translate this textual representation or
source code into a series of 0s and 1s or machine code that the computer can
interpret as actions or steps you want it to perform. It does this using a series of
pattern-matching rules. A l exical analyzer tokenizes the source code-----and any
mistakes or words that aren’t in the compiler’s lexicon are rejected. These
tokens are then passed to the language parser, which matches one or more
tokens to a series of rules and translates the tokens into intermediate code
(VB.NET, C#, Pascal, or Java) or sometimes straight into machine code
(Objective-C, C++, or Fortran). Any source code that doesn’t match a compiler’s
rules is rejected, and the compilation fails.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Laying the Groundwork 2

Now you know what a compiler does, but I’ve only scratched the surface.
Compiler technology has always been a specialized and sometimes complicated
area of computing. Modern advances mean things are going to get even more
complicated, especially in the virtual machine domain. In part, this drive comes
from Java and .NET. Just in time (JIT) compilers have tried to close the gap
between Java and C++ execution times by optimizing the execution of Java
bytecode. This seems like an impossible task, because Java bytecode is, after
all, interpreted, whereas C++ is compiled. But JIT compiler technology is making
significant advances and also making Java compilers and virtual machines
much more complicated beasts.

Most compilers do a lot of preprocessing and post-processing. The
preprocessor readies the source code for the lexical analysis by stripping out all
unnecessary information, such as the programmer’s comments, and adding any
standard or included header files or packages. A typical post-processor stage is
code optimization, where the compiler parses or scans the code, reorders it,
and removes any redundancies to increase the efficiency and speed of your
code.

Decompilers (no big surprise here) translate the machine code or intermediate
code back into source code. In other words, the whole compiling process is
reversed. Machine code is tokenized in some way and parsed or translated back
into source code. This transformation rarely results in the original source code,
though, because information is lost in the preprocessing and post-processing
stages.

Consider an analogy with human languages: decompiling an Android package
file (APK) back into Java source is like translating German (classes.dex) into
French (Java class file) and then into English (Java source). Along they way, bits
of information are lost in translation. Java source code is designed for humans
and not computers, and often some steps are redundant or can be performed
more quickly in a slightly different order. Because of these lost elements, few (if
any) decompilations result in the original source.

A number of decompilers are currently available, but they aren’t well publicized.
Decompilers or disassemblers are available for Clipper (Valkyrie), FoxPro (ReFox
and Defox), Pascal, C (dcc, decomp, Hex-Rays), Objective-C (Hex-Rays), Ada,
and, of course, Java. Even the Newton, loved by Doonesbury aficionados
everywhere, isn’t safe. Not surprisingly, decompilers are much more common
for interpreted languages such as VB, Pascal, and Java because of the larger
amounts of information being passed around.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Laying the Groundwork 3

Virtual Machine Decompilers
There have been several notable attempts to decompile machine code. Cristina
Cifuentes’ dcc and more recently the Hex-Ray’s IDA decompiler are just a
couple of examples. However, at the machine-code level, the data and
instructions are comingled, and it’s a much more difficult (but not impossible)
task to recover the original code.

In a virtual machine, the code has simply passed through a preprocessor, and
the decompiler’s job is to reverse the preprocessing stages of compilation. This
makes interpreted code much, much easier to decompile. Sure, there are no
comments and, worse still, there is no specification, but then again there are no
R&D costs.

Why Java with Android?
Before I talk about ‘‘Why Android?’’ I first need to ask, ‘‘Why Java?’’ That’s not
to say all Android apps a re written in Java-----I cover HTML5 apps too. But Java
and Android are joined at the hip, so I can’t really discuss one without the other.

The original Java virtual machine (JVM) was designed to be run on a TV cable
set-top box. As such, it’s a very small-stack machine that pushes and pops its
instructions on and off a stack using a limited instruction set. This makes the
instructions very easy to understand with relatively little practice. Because
compilation is now a two-stage process, the JVM also requires the compiler to
pass a lot of information, such as variable and method names, that wouldn’t
otherwise be available. These names can be almost as helpful as comments
when you’re trying to understand decompiled source code.

The current design of the JVM is independent of the Java Development Kit
(JDK). In other words, the language and libraries may change, but the JVM and
the opcodes are fixed. This means that if Java is prone to decompilation now,
it’s always likely to be prone to decompilation. In many cases, as you’ll see,
decompiling a Java class is as easy as running a simple DOS or UNIX
command.

In the future, the JVM may very well be changed to stop decompilation, but this
would break any backward compatibility and all current Java code would have
to be recompiled. And although this has happened before in the Microsoft world
with different versions of VB, many companies other than Oracle have
developed virtual machines.

What makes this situation even more interesting is that companies that want to
Java-enable their operating system or browser usually create their own JVMs.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Laying the Groundwork 4

Oracle is only responsible for the JVM specification. This situation has
progressed so far that any fundamental changes to the JVM specification would
have to be backward compatible. Modifying the JVM to prevent decompilation
would require significant surgery and would in all probability break this
backward compatibility, thus ensuring that Java classes will decompile for the
foreseeable future.

There are no such compatibility restrictions on the JDK, and more functionality
is added with each release. And although the first crop of decompilers, such as
Mocha, dramatically failed when inner classes were introduced in the JDK 1.1,
the current favorite JD-GUI is more than capable of handling inner classes or
later additions to the Java language, such as generics.

You learn a lot more about why Java is at risk from decompilation in the next
chapter, but for the moment here are seven reasons why Java is vulnerable:

 For portability, Java code is partially compiled and then
interpreted by the JVM.

 Java’s compiled classes contain a lot of symbolic information
for the JVM.

 Due to backward-compatibility issues, the JVM’s design isn’t
likely to change.

 There are few instructions or opcodes in the JVM.

 The JVM is a simple stack machine.

 Standard applications have no real protection against
decompilation.

 Java applications are automatically compiled into smaller
modular classes.

Let’s begin with a simple class-file example, shown in Listing 1-1.

Listing 1-1. Simple Java Source Code Example

public class Casting {
 public static void main(String args[]){
 for(char c=0; c < 128; c++) {
 System.out.println("ascii " + (int)c + " character "+ c);
 }
 }
}

Listing 1-2 shows the output for the class file in Listing 1-1 using javap, Java’s
class-file disassembler that ships with the JDK. You can decompile Java so
easily because-----as you see l ater i n the book-----the JVM is a simple stack

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Laying the Groundwork 5

machine with no registers and a limited number of high-level instructions or
opcodes.

Listing 1-2. Javap Output

Compiled from Casting.java
public synchronized class Casting extends java.lang.Object
 /* ACC_SUPER bit set */
{
 public static void main(java.lang.String[]);
/* Stack=4, Locals=2, Args_size=1 */
 public Casting();
/* Stack=1, Locals=1, Args_size=1 */
}

Method void main(java.lang.String[])
 0 iconst_0
 1 istore_1
 2 goto 41
 5 getstatic #12 <Field java.io.PrintStream out>
 8 new #6 <Class java.lang.StringBuffer>
 11 dup
 12 ldc #2 <String "ascii ">
 14 invokespecial #9 <Method java.lang.StringBuffer(java.lang.String)>
 17 iload_1
 18 invokevirtual #10 <Method java.lang.StringBuffer append(char)>
 21 ldc #1 <String " character ">
 23 invokevirtual #11 <Method java.lang.StringBuffer append(java.lang.String)>
 26 iload_1
 27 invokevirtual #10 <Method java.lang.StringBuffer append(char)>
 30 invokevirtual #14 <Method java.lang.String toString()>
 33 invokevirtual #13 <Method void println(java.lang.String)>
 36 iload_1
 37 iconst_1
 38 iadd
 39 i2c
 40 istore_1
 41 iload_1
 42 sipush 128
 45 if_icmplt 5
 48 return

Method Casting()
 0 aload_0
 1 invokespecial #8 <Method java.lang.Object()>
 4 return<

It should be obvious that a class file contains a lot of the source-code
information. My aim in this book is to show you how to take this information and

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Laying the Groundwork 6

reverse-engineer it into source code. I’ll also show you what steps you can take
to protect the information.

Why Android?
Until now, with the exception of applets and Java Swing apps, Java code has
typically been server side with little or no code running on the client. This
changed with the introduction of Google’s Android operating system. Android
apps, whether they’re written in Java or HTML5/CSS, are client-side
applications in the form of APKs. These APKs are then executed on the Dalvik
virtual machine (DVM).

The DVM differs from the JVM in a number of ways. First, it’s a register-based
machine, unlike the stack-based JVM. And instead of multiple class files
bundled into a jar file, the DVM uses a single Dalvik executable (DEX) file with a
different structure and opcodes. On the surface, it would appear to be much
harder to decompile an APK. However, someone has already done all the hard
work for you: a tool called dex2jar allows you to convert the DEX file back into a
jar file, which then can be decompiled back into Java source.

Because the APKs live on the phone, they can be easily downloaded to a PC or
Mac and then decompiled. You can use lots of different tools and techniques to
gain access to an APK, and there are many decompilers, which I cover later in
the book. But the easiest way to get at the source is to copy the APK onto the
phone’s SD card using any of the file-manager tools available in the
marketplace, such as ASTRO File Manager. Once the SD card is plugged into
your PC or Mac, it can then be decompiled using dex2jar followed by your
favorite decompiler, such as JD-GUI.

Google has made it very easy to add ProGuard to your builds, but obfuscation
doesn’t happen by default. For the moment (until this issue achieves a higher
profile), the code is unlikely to have been protected using obfuscation, so
there’s a good chance the code can be completely decompiled back into
source. ProGuard is also not 100% effective as an obfuscation tool, as you see
in Chapter 4 and 7.

Many Android apps talk to backend systems via web services. They look for
items in a database, or complete a purchase, or add data to a payroll system, or
upload documents to a file server. The usernames and passwords that allow the
app to connect to these backend systems are often hard-coded in the Android
app. So, if you haven’t protected your code and you leave the keys to your
backend system in your app, you’re running the risk of someone compromising
your database and gaining access to systems that they should not be
accessing.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Laying the Groundwork 7

It’s less likely, but entirely possible, that someone has access to the source and
can recompile the app to get it to talk to a different backend system, and use it
as a means of harvesting usernames and passwords. This information can then
be used at a later stage to gain access to private data using the real Android
app.

This book explains how to hide your information from these prying eyes and
raise the bar so it takes a lot more than basic knowledge to find the keys to your
backend servers or locate the credit-card information stored on your phone.

It’s also very important to protect your Android app before releasing it into the
marketplace. Several web sites and forums share APKs, so even if you protect
your app by releasing an updated version, the original unprotected APK may still
be out there on phones and forums. Your web-service APIs must also be
updated at the same time, forcing users to update their app and leading to a
bad user experience and potential loss of customers.

In Chapter 4, you learn more about why Android is at risk from decompilation,
but for the moment here is a list of reasons why Android apps are vulnerable:

 There are multiple easy ways to gain access to Android APKs.

 It’s simple to translate an APK to a Java jar file for subsequent
decompilation.

 As yet, almost nobody is using obfuscation or any form of
protection.

 Once the APK is released, it’s very hard to remove access.

 One-click decompilation is possible, using tools such as
apktool.

 APKs are shared on hacker forums.

Listing 1-3 shows the dexdump output of the Casting.java file from Listing 1-1
after it has been converted to the DEX format. As you can see, it’s similar
information but in a new format. Chapter 3 looks at the differences in greater
detail.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Laying the Groundwork 8

Listing 1-3. Dexdump Output

Class #0 -
 Class descriptor : 'LCasting;'
 Access flags : 0x0001 (PUBLIC)
 Superclass : 'Ljava/lang/Object;'
 Interfaces -
 Static fields -
 Instance fields -
 Direct methods -
 #0 : (in LCasting;)
 name : '<init>'
 type : '()V'
 access : 0x10001 (PUBLIC CONSTRUCTOR)
 code -
 registers : 1
 ins : 1
 outs : 1
 insns size : 4 16-bit code units
 catches : (none)
 positions :
 0x0000 line=1
 locals :
 0x0000 - 0x0004 reg=0 this LCasting;
 #1 : (in LCasting;)
 name : 'main'
 type : '([Ljava/lang/String;)V'
 access : 0x0009 (PUBLIC STATIC)
 code -
 registers : 5
 ins : 1
 outs : 2
 insns size : 44 16-bit code units
 catches : (none)
 positions :
 0x0000 line=3
 0x0005 line=4
 0x0027 line=3
 0x002b line=6
 locals :
 Virtual methods -
 source_file_idx : 3 (Casting.java)

History of Decompilers
Very little has been written about the history of decompilers, which is surprising
because for almost every compiler, there has been a decompiler. Let’s take a

CHAPTER 1: Laying the Groundwork 9

moment to talk about their history so you can see how and why decompilers
were created so quickly for the JVM and, to a lesser extent, the DVM.

Since before the dawn o f the humble PC------scratch that, since before the dawn
of COBOL, decompilers have been around in one form or another. You can go
all the way back to ALGOL to find the earliest example of a decompiler. Joel
Donnelly and Herman Englander wrote D-Neliac at the U.S. Navy Electronic
Labs (NEL) laboratories as early as 1960. Its primary function was to convert
non-Neliac compiled programs into Neliac-compatible binaries. (Neliac was an
ALGOL-type language and stands for Navy Electronics Laboratory International
ALGOL Compiler.)

Over the years there have been other decompilers for COBOL, Ada, Fortran, and
many other esoteric as well as mainstream languages running on IBM
mainframes, PDP-11s, and UNIVACs, among others. Probably the main reason
for these early developments was to translate software or convert binaries to run
on different hardware.

More recently, reverse-engineering to circumvent the Y2K problem became the
acceptable face o f decompilation------converting legacy code to get around Y2K
often required disassembly or full decompilation. But reverse engineering is a
huge growth area and didn’t disappear after the turn of the millennium.
Problems caused by the Dow Jones hitting the 10,000 mark and the introduction
of the Euro have caused financial programs to fall over.

Reverse-engineering techniques are also used to analyze old code, which
typically has thousands of incremental changes, in order to remove
redundancies and convert these legacy systems into much more efficient
animals.

At a much more basic level, hexadecimal dumps of PC machine code give
programmers extra insight into how something was achieved and have been
used to break artificial restrictions placed on software. For example, magazine
CDs containing time-bombed or restricted copies of games and other utilities
were often patched to change demonstration copies into full versions of the
software; this was often accomplished with primitive disassemblers such as the
DOS’s debug program.

Anyone well versed in Assembler can learn to quickly spot patterns in code and
bypass the appropriate source-code fragments. Pirate software is a huge
problem for the software industry, and disassembling the code is just one
technique employed by professional and amateur bootleggers. Hence the
downfall of many an arcane copy-protection technique. But these are primitive
tools and techniques, and it would probably be quicker to write the code from
scratch rather than to re-create the source code from Assembler.

CHAPTER 1: Laying the Groundwork 10

For many years, traditional software companies have also been involved in
reverse-engineering software. New techniques are studied and copied all over
the world by the competition using reverse-engineering and decompilation tools.
Generally, these are in-house decompilers that aren’t for public consumption.

It’s likely that the first real Java decompiler was written in IBM and not by
Hanpeter van Vliet, author of Mocha. Daniel Ford’s white paper ‘‘Jive: A Java
Decompiler’’ (May 1996) appears in IBM Research’s search engines; this beats
Mocha, which wasn’t announced until the following July.

Academic decompilers such as dcc are available in the public domain.
Commercial decompilers such as Hex-Ray’s IDA have also begun to appear.
Fortunately for the likes of Microsoft, decompiling Office using dcc or Hex-Rays
would create so much code that it’s about as user friendly as debug or a
hexadecimal dump. Most modern commercial software’s source code is so
huge that it becomes unintelligible without the design documents and lots of
source-code comments. Let’s face it: many people’s C++ code is hard enough
to read six months after they wrote it. How easy would it be for someone else to
decipher without help C code that came from compiled C++ code?

Reviewing Interpreted Languages More Closely: Visual
Basic
Let’s look at VB as an example of an earlier version of interpreted language.
Early versions of VB were interpreted by its runtime module vbrun.dll in a
fashion somewhat similar to Java and the JVM. Like a Java class file, the source
code for a VB program is bundled within the binary. Bizarrely, VB3 retains more
information than Java-----even the programmer comments are included.

The original versions of VB generated an intermediate pseudocode called p-
code, which was in Pascal and originated in the P-System
(www.threedee.com/jcm/psystem/). And before you say anything, yes, Pascal and all
its derivatives a re j ust as vulnerable to decompilation-----that includes early
versions of Microsoft’s C compiler, so nobody feels left out. The p-codes aren’t
dissimilar to bytecodes and are essentially VB opcodes that are interpreted by
vbrun.dll at run time. If you’ve ever wondered why you needed to include
vbrun300.dll with VB executables, now you know. You have to include vbrun.dll
so it can interpret the p-code and execute your program.

Doctor H. P. Diettrich, who is from Germany, is the author of the eponymously
titled DoDi-----perhaps the most famous VB decompiler. At one time, VB had a
culture of decompilers and obfuscators (or protection tools, as they’re called in
VB). But as VB moved to compiled rather than interpreted code, the number of

http://www.threedee.com/jcm/psystem/

CHAPTER 1: Laying the Groundwork 11

decompilers decreased dramatically. DoDi provides VBGuard for free on his site,
and programs such as Decompiler Defeater, Protect, Overwrite, Shield, and
VBShield are available from other sources. But they too all but disappeared with
VB5 and VB6.

That was of course before .NET, which has come full circle: VB is once again
interpreted. Not surprisingly, many decompilers and obfuscators are again
appearing in the .NET world, such as the ILSpy and Reflector decompilers as
well as Demeanor and Dotfuscator obfuscators.

Hanpeter van Vliet and Mocha
Oddly enough for a technical subject, this book also has a very human element.
Hanpeter van Vliet wrote the first public-domain decompiler, Mocha, while
recovering from a cancer operation in the Netherlands in 1996. He also wrote an
obfuscator called Crema that attempted to protect an applet’s source code. If
Mocha was the UZI machine gun, then Crema was the bulletproof jacket. In a
now-classic Internet marketing strategy, Mocha was free, whereas there was a
small charge for Crema.

The beta version of Mocha caused a huge controversy when it was first made
available on Hanpeter’s web site, especially after it was featured in a CNET
article. Because of the controversy, Hanpeter took the very honorable step of
removing Mocha from his web site. He then allowed visitor’s to his site to vote
about whether Mocha should once again be made available. The vote was ten
to one in favor of Mocha, and soon after it reappeared on Hanpeter’s web site.

However, Mocha never made it out of Beta. And while doing some research for
a Web Techniques article on this subject, I learned from his wife, Ingrid, that
Hanpeter’s throat cancer finally got him and he died at the age of 34 on New
Year’s Eve 1996.

The source code for both Crema and Mocha were sold to Borland shortly before
Hanpeter’s death, with all proceeds going to Ingrid. Some early versions of
JBuilder shipped with an obfuscator, which was probably Crema. It attempted
to protect Java code from decompilation by replacing ASCII variable names with
control characters.

I talk more about the host of other Java decompilers and obfuscators later in the
book.

CHAPTER 1: Laying the Groundwork 12

Legal Issues to Consider When Decompiling
Before you start building your own decompiler, let’s take this opportunity to
consider the legal implications of decompiling someone else’s code for your
own enjoyment or benefit. Just because Java has taken decompiling technology
out of some very serious propeller-head territory and into more mainstream
computing doesn’t make it any less likely that you or your company will be sued.
It may make it more fun, but you really should be careful.

As a small set of ground rules, try the following:

 Don’t decompile an APK, recompile it, and then pass it off as
your own.

 Don’t even think of trying to sell a recompiled APK to any third
parties.

 Try not to decompile an APK or application that comes with a
license agreement that expressly forbids decompiling or
reverse-engineering the code.

 Don’t decompile an APK to remove any protection
mechanisms and then recompile it for your own personal use.

Protection Laws
Over the past few years, big business has tilted the law firmly in its favor when it
comes to decompiling software. Companies can use a number of legal
mechanisms to stop you from decompiling their software; you would have little
or no legal defense if you ever had to appear in a court of law because a
company discovered that you had decompiled its programs. Patent law,
copyright law, anti-reverse-engineering clauses in shrinkwrap licenses, as well
as a number of laws such as the Digital Millennium Copyright Act (DMCA) may
all be used against you. Different laws may apply in different countries or states:
for example, the ‘‘no reverse engineering clause’’ software license is a null and
void clause in the European Union (EU). But the basic concepts are the same:
decompile a program for the purpose of cloning the code into another
competitive product, and you’re probably breaking the law.The secret is that
you shouldn’t be standing, kneeling, or pressing down very hard on the
legitimate rights (the copyright) of the original author. That’s not to say it’s never
ok to decompile. There are certain limited conditions under which the law favors
decompilation or reverse engineering through a concept known as fair use.
From almost the dawn of time, and certainly from the beginning of the Industrial
Age, many of humankind’s greatest inventions have come from individuals who

CHAPTER 1: Laying the Groundwork 13

created something special while Standing on the Shoulders of Giants. For
example, the invention of the steam train and the light bulb were relatively
modest incremental steps in technology. The underlying concepts were
provided by other people, and it was up to someone like George Stephenson or
Thomas Edison to create the final object. (You can see an excellent example of
Stephenson’s debt to many other inventors such as James Watt at
www.usgennet.org/usa/topic/steam/Early/Time.html). This is one of the
reasons patents appeared: to allow people to build on other creations while still
giving the original inventors some compensation for their initial ideas for period
of, say, 20 years.

Patents
In the software arena, trade secrets are typically protected by copyright law and
increasingly through patents. Patents can protect certain elements of a program,
but it’s highly unlikely that a complete program will be protected by a patent or
series of patents. Software companies want to protect their investment, so they
typically turn to copyright law or software licenses to prevent people from
essentially stealing their research and development efforts.

Copyright
But copyright law isn’t rock solid, because otherwise there would be no
inducement to patent an idea, and the patent office would quickly go out of
business. Copyright protection doesn’t extend to interfaces of computer
programs, and a developer can use the fair-use defense if they can prove that
they have decompiled the program to see how they can interoperate with any
unpublished application programming interfaces (APIs) in a program.

Directive on the Legal Protection of Computer Programs
If you’re living in the EU, then you more than likely come under the Directive on
the Legal Protection of Computer Programs. This directive states that you can
decompile programs under certain restrictive circumstances: for example, when
you’re trying to understand the functional requirements to create a compatible
interface to your own program. To put it another way, you can decompile if you
need access to the internal calls of a third-party program and the authors refuse
to divulge the APIs at any price. But you can only use this information to create
an interface to your own program, not to create a competitive product. You also
can’t reverse-engineer any areas that have been protected in any way.

http://www.usgennet.org/usa/topic/steam/Early/Time.html

CHAPTER 1: Laying the Groundwork 14

For many years, Microsoft’s applications had allegedly gained unfair advantage
from underlying unpublished APIs calls to Windows 3.1 and Windows 95 that
are orders of magnitude quicker than the published APIs. The Electronic Frontier
Foundation (EFF) came up with a useful road-map analogy to help explain this
situation. Say you’re travelling from Detroit to New York, but your map doesn’t
show any interstate routes; sure, you’ll eventually get there by traveling on the
back roads, but the trip would be a lot shorter if you had a map complete with
interstates. If these conditions were true, the EU directive would be grounds for
disassembling Windows 2000 or Microsoft Office, but you’d better hire a good
lawyer before you try it.

Reverse Engineering
Precedents allow legal decompilation in the United States, too. The most
famous case to date is Sega v. Accolade (http://digital-law-
online.info/cases/24PQ2D1561.htm). In 1992, Accolade won a case against
Sega; the ruling said that Accolade’s unauthorized disassembly of the Sega
object code wasn’t copyright infringement. Accolade reverse-engineered Sega’s
binaries into an intermediate code that allowed Accolade to extract a software
key to enable Accolade’s games to interact with Sega Genesis video consoles.
Obviously, Sega wasn’t going to give Accolade access to its APIs or, in this
case, the code to unlock the Sega game platform. The court ruled in favor of
Accolade, judging that the reverse engineering constituted fair-use. But before
you think this gives you carte blanche to decompile code, you might like to
know that Atari v. Nintendo (http://digital-law-
online.info/cases/24PQ2D1015.htm) went against Atari under very similar
circumstances.

The Legal Big Picture
In conclusion-----you can tell t his i s the l egal section-----both the court cases in the
United States and the EU directive stress that under certain circumstances,
reverse engineering can be used to understand interoperability and create a
program interface. It can’t be used to create a copy and sell it as a competitive
product. Most Java decompilation doesn’t fall into the interoperability category.
It’s far more likely that the decompiler wants to pirate the code or, at best,
understand the underlying ideas and techniques behind the software.

It isn’t clear whether reverse-engineering to discover how an APK was written
would constitute fair use. The US Copyright Act of 1976 excludes ‘‘any idea,
procedure, process, system, method of operation, concept, principle or
discovery, regardless of the form in which it is described,’’ which sounds like the

http://digital-law-online.info/cases/24PQ2D1561.htm
http://digital-law-online.info/cases/24PQ2D1561.htm
http://digital-law-online.info/cases/24PQ2D1561.htm
http://digital-law-online.info/cases/24PQ2D1015.htm
http://digital-law-online.info/cases/24PQ2D1015.htm
http://digital-law-online.info/cases/24PQ2D1015.htm

CHAPTER 1: Laying the Groundwork 15

beginning of a defense and is one of the reasons why more and more software
patents are being issued. Decompilation to pirate or illegally sell the software
can’t be defended.

But from a developer’s point of view, the situation looks bleak. The only
protection-----a user l icense-----is about as useful as the laws against copying
MP3s. It won’t physically stop anyone from making illegal copies and doesn’t
act as a real deterrent for the home user. No legal recourse will protect your
code from a hacker, and it sometimes seems that the people trying to create
today’s secure systems must feel like they’re Standing on the Shoulder of
Morons. You only have to look at the investigation into eBook-protection
schemes (http://slashdot.org/article.pl?sid=01/07/17/130226) and the
DeCSS fiasco (http://cyber.law.harvard.edu/openlaw/DVD/resources.html) to
see how paper-thin a lot of so-called secure systems really are.

Moral Issues
Decompiling is an excellent way to learn Android development and how the
DVM works. If you come across a technique that you haven’t seen before, you
can quickly decompile it to see how it was accomplished. Decompiling helps
people climb up the Android learning curve by seeing other people’s
programming techniques. The ability to decompile APKs can make the
difference between basic Android understanding and in-depth knowledge. True,
there are plenty of open source examples out there to follow, but it helps even
more if you can pick your own examples and modify them to suit your needs.

But no book on decompiling would be complete if it didn’t discuss the morality
issues behind what amounts to stealing someone else’s code. Due to the
circumstances, Android apps come complete with the source code: forced open
source, if you wish.

The author, the publisher, the author’s agent, and the author’s agent’s mother
would like to state that we are not advocating that readers of this book
decompile programs for anything other than educational purposes. The purpose
of this book is to show you how to decompile source code, but we aren’t
encouraging anyone to decompile other programmers’ code and then try to use
it, sell it, or repackage it as if it was your own code. Please don’t reverse-
engineer any code that has a licensing agreement stating that you shouldn’t
decompile the code. It isn’t fair, and you’ll only get yourself in trouble. (Besides,
you can never be sure that the decompiler-generated code is 100% accurate.
You could be in for a nasty surprise if you intend to use decompilation as the
basis for your own products.) Having said that, thousands of APKs are available

http://slashdot.org/article.pl?sid=01/07/17/130226
http://cyber.law.harvard.edu/openlaw/DVD/resources.html

CHAPTER 1: Laying the Groundwork 16

that, when decompiled, will help you understand good and bad Android
programming techniques.

To a certain extent, I’m pleading the ‘‘Don’t shoot the messenger’’ defense. I’m
not the first to spot this flaw in Java, and I certainly won’t be the last person to
write about the subject. My reasons for writing this book are, like the early days
of the Internet, fundamentally altruistic. In other words, I found a cool trick, and I
want to tell everyone about it.

Protecting Yourself
Pirated software is a big headache for many software companies and big
business for others. At the very least, software pirates can use decompilers to
remove licensing restrictions; but imagine the consequences if the technology
was available to decompile Office 2010, recompile it, and sell it as a new
competitive product. To a certain extent, that could easily have happened when
Corel released the Beta version of its Office for Java.

Is there anything you can do to protect your code? Yes:

 License agreements: License agreements don’t offer any real
protection from a programmer who wants to decompile your
code.

 Protection schemes in your code: Spreading protection
schemes throughout your code (such as checking whether the
phone is rooted) is useless because the schemes can be
commented out of the decompiled code.

 Code fingerprinting: This is defined as spurious code that is
used to mark or fingerprint source code to prove ownership. It
can be used in conjunction with license agreements, but it’s
only really useful in a court of law. Better decompilation tools
can profile the code and remove any spurious code.

 Obfuscation: Obfuscation replaces the method names and
variable names in a class file with weird and wonderful names.
This can be an excellent deterrent, but the source code is
often still visible, depending on your choice of obfuscator.

 Intellectual Property Rights (IPR) protection schemes: These
schemes, such as the Android Market digital rights
management (DRM), are usually busted within hours or days
and typically don’t offer much protection.

CHAPTER 1: Laying the Groundwork 17

 Server-side code: The safest protection for APKs is to hide all
the interesting code on the web server and only use the APK
as a thin front-end GUI. This has the downside that you may
still need to hide an API key somewhere to gain access to the
web server.

 Native code: The Android Native Development Kit (NDK)
allows you to hide password information in C++ files that can
be disassembled but not decompiled and that still run on top
of the DVM. Done correctly, this technique can add a
significant layer of protection. It can also be used with digital-
signature checking to ensure that no one has hijacked your
carefully hidden information in another APK.

 Encryption: Encryption can also be used in conjunction with
the NDK to provide an additional layer of protection from
disassembly, or as a way of passing public and private key
information to any backend web server.

The first four of these options only act as deterrents (some obfuscators are
better than others), and the remaining four are effective but have other
implications. I look at all of them in more detail later in the book.

Summary
Decompilation is one of the best learning tools for new Android programmers.
What better way to find out how to write an Android app than by taking an
example off your phone and decompiling it into source code? Decompilation is
also a necessary tool when a mobile software house goes belly up and the only
way to fix its code is to decompile it yourself. But decompilation is also a
menace if you’re trying to protect the investment of countless hours of design
and development.

The aim of this book is to create dialogue about decompilation and source-code
protection-----to separate fact from fiction and show how easy it is to decompile
an Android app and what measures you can take to protect your code. Some
may say that decompilation isn’t an issue and that a developer can always be
trained to read a competitor’s Assembler. But once you allow easy access to the
Android app files, anyone can download dex2jar or JD-GUI, and decompilation
becomes orders of magnitude easier. Don’t believe it? Then read on and decide
for yourself.

www.allitebooks.com

http://www.allitebooks.org

2
Chapter

Ghost in the Machine
If you’re trying to understand just how good an obfuscator or decompiler really
is, then it helps to be able to see what’s going on inside a DEX file and the
corresponding Java class file. Otherwise you’re relying on the word of a third-
party vendor or, at best, a knowledgeable reviewer. For most people, that’s not
good enough when you’re trying to protect mission-critical code. At the very
least, you should be able to talk intelligently about the area of decompilation and
ask the obvious questions to understand what’s happening.

‘‘Pay no attention to the man behind the curtain.’’

The Wizard of Oz

At this moment there are all sorts of noises coming from Google saying that
there isn’t anything to worry about when it comes to decompiling Android code.
Hasn’t everyone been doing it for years at the assembly level? Similar noises
were made when Java was in its infancy.

In this chapter, you pull apart a Java class file; and in the next chapter, you pull
apart the DEX file format. This will lay the foundation for the following chapters
on obfuscation theory and help you during the design of your decompiler. In
order to get to that stage, you need to understand bytecodes, opcodes, and
class files and how they relate to the Dalvik virtual machine (DVM) and the Java
virtual machine (JVM).

There are several very good books on the market about the JVM. The best is Bill
Venners’ Inside the Java 2 Virtual Machine (McGraw-Hill, 2000). Some of the
book’s chapters are available online at www.artima.com/insidejvm/ed2/. If you
can’t find the book, then check out Venners’ equally excellent ‘‘Under the Hood’’

http://www.artima.com/insidejvm/ed2/

CHAPTER 2: Ghost in the Machine 20

articles on JavaWorld.com. This series of articles was the original material that
he later expanded into the book. Sun’s Java Virtual Machine Specification, 2nd
edition (Addison-Wesley, 1999), written by Tim Lindholm and Frank Yellin, is
both comprehensive and very informative for would-be decompiler writers. But
being a specification, it isn’t what you would call a good read. This book is also
available online at http://java.sun.com/docs/books/vmspec.

However, the focus here is very different from other JVM books. I’m
approaching things from the opposite direction. My task is getting you from
bytecode to source, whereas everyone else wants to know how source is
translated into bytecode and ultimately executed. You’re interested in how a
DEX file can be converted to a class file and how the class file can be turned
into source rather than how a class file is interpreted.

This chapter looks at how a class file can be disassembled into bytecodes and
how these bytecodes can be turned into source. Of course, you need to know
how each bytecode functions; but you’re less interested in what happens to
them when they’re in the JVM, and the chapter’s emphasis differs accordingly.

The JVM: An Exploitable Design
Java class files are designed for quick transmission across a network or via the
Internet. As a result, they’re compact and relatively simple to understand. For
portability, a class file is only partially compiled into bytecode by javac, the Java
compiler. This is then interpreted and executed by a JVM, usually on a different
machine or operating system.

The JVM’s class-file interface is strictly defined by the Java Virtual Machine
Specification. But how a JVM ultimately turns bytecode into machine code is left
up to the developer. That really doesn’t concern you, because once again your
interest stops at the JVM. It may help if you think of class files as being
analogous to object files in other languages such as C or C++, waiting to be
linked and executed by the JVM, only with a lot more symbolic information.

There are many good reasons why a class file carries so much information.
Many people view the Internet as a bit of a modern-day Wild West, where
crooks are plotting to infect your hard disk with a virus or waiting to grab any
credit-card details that might pass their way. As a result, the JVM was designed
from the bottom up to protect web browsers from rogue applets. Through a
series of checks, the JVM and the class loader make sure no malicious code
can be uploaded onto a web page.

But all checks have to be performed lightning quick, to cut down on the
download time, so it’s not surprising that the original JVM designers opted for a

http://java.sun.com/docs/books/vmspec

CHAPTER 2: Ghost in the Machine 21

simple stack machine with lots of information available for those crucial security
checks. In fact, the design of the JVM is pretty secure even though some of the
early browser implementations made a couple or three serious blunders. These
days, it’s unlikely that Java applets will run in any browsers, but the JVM design
is still the same.

Unfortunately for developers, what keeps the code secure also makes it much
easier to decompile. The JVM’s restricted execution environment and
uncomplicated architecture as well as the high-level nature of many of its
instructions all conspire against the programmer and in favor of the decompiler.

At this point it’s probably also worth mentioning the fragile superclass problem.
Adding a new method in C++ means that all classes that reference that class
need to be recompiled. Java gets around this by putting all the necessary
symbolic information into the class file. The JVM then takes care of the linking
and f inal name resolution, l oading a ll t he required classes-----including any
externally referenced f ields and methods-----on the fly. This delayed linking or
dynamic loading, possibly more than anything else, is why Java is so much
more prone to decompilation.

By the way, I ignore native methods in these discussions. Native methods of
course are native C or C++ code that is incorporated into the application. Using
them spoils Java application portability, but it’s one surefire way of preventing a
Java program from being decompiled.

Without further ado, let’s take a brief look at the design of the JVM.

Simple Stack Machine
The JVM is in essence a simple stack machine, with a program register to take
care of the program flow thrown in for good luck. The Java class loader takes
the class and presents it to the JVM.

You can split the JVM into four separate, distinct parts:

 Heap

 Program counter (PC) registers

 Method area

 JVM stack

Every Java application or applet has its own heap and method area, and every
thread has its own register or program counter and JVM stack. Each JVM stack
is then further subdivided into stack frames, with each method having its own

CHAPTER 2: Ghost in the Machine 22

stack frame. That’s a lot of information in one paragraph; Figure 2-1 illustrates in
a simple diagram.

Figure 2-1. The Java virtual machine

The shaded sections in Figure 2-1 are shared across all threads, and the white
sections are thread specific.

Heap
Let’s deal with the heap first to get it out of the way, because it has little or no
effect on the Java decompilation process.

Unlike C or C++ developers, Java programmers can’t allocate and deallocate
memory; it’s taken care of by the JVM. The new operator allocates objects and
memory on the heap, which are then automatically freed by the JVM garbage
collector when an object is no longer being referenced by the program.

There are several good reasons for this; security dictates that pointers aren’t
used in Java so hackers can’t break out of an application and into the operating
system. No pointers means that something e lse-----in this case, the JVM-----has to
take care of the allocating and freeing memory. Memory leaks should also
become a thing of the past, or so the theory goes. Some applications written in
C and C++ are notorious for leaking memory like a sieve because programmers
don’t pay a ttention to f reeing up unwanted memory a t the appropriate t ime-----not
that anybody reading this would be guilty of such a sin. Garbage collection
should also make programmers more productive, with less time spent on
debugging memory problems.

If you do want to know more about what’s going on in your heap, try Oracle’s
Heap Analysis Tool (HAT). It uses the hprof file dumps or snapshots of the JVM
heap that can be generated by Java 2 SDK version 1.2 and above. It was
designed-----get this-----‘‘to debug unnecessary object retention’’ (memory leaks to

CHAPTER 2: Ghost in the Machine 23

you and me). See, garbage-collection algorithms, such as reference-counting
and mark-and-sweep techniques, aren’t 100% accurate either. Class files can
have threads that don’t terminate properly, ActionListeners that fail to de-
register, or static references to an object that hang around long after the object
should have been garbage collected.

HAT has little or no impact on the decompilation process. I mention it only
because i t’s something interesting to p lay with-----or a crucial utility that helps
debug your Java code, depending on your mindset or where your boss is
standing.

This leaves three areas to focus on: program registers, the stack, and the
method area.

Program Counter Registers
For simplicity’s sake, the JVM uses very few registers: the program counter that
controls the flow of the program, and three other registers in the stack. Having
said that, every thread has its own program counter register that holds the
address of the current instruction being executed on the stack. Sun chose to
use a limited number of registers to cater to architectures that could support
very few registers.

Method Area
If you skip to the ‘‘Inside a Class File’’ section, you see the class file broken
down into its many constituents and exactly where the methods can be found.
Within every method is its own code attribute, which contains the bytecodes for
that particular method.

Although the class file contains information about where the program counter
should point for every instruction, the class loader takes care of where the code
is placed in the memory area before the code begins to execute.

As the program executes, the program counter keeps track of the current
position of the program by moving to point to the next instruction. The bytecode
in the method area goes through its assembler-like instructions, using the stack
as a temporary storage area as it manipulates its variables, while the program
steps through the complete bytecode for that method. A program’s execution
isn’t necessarily linear within the method area; jumps and gotos are very
common.

CHAPTER 2: Ghost in the Machine 24

JVM Stack
The stack is no more than a storage area for temporary variables. All program
execution and variable manipulation take place via pushing and popping the
variables on and off a stack frame. Each thread has its very own JVM stack
frame.

The JVM stack consists of three different sections for the local variables (vars),
the execution environment (frame), and the operand stack (optop). The vars,
frame, and optop registers point to each different area of the stack. The method
is executed in its own environment, and the operand stack is used as the
workspace for the bytecode instructions. The optop register points at the top of
the operand stack.

As I said, the JVM is a very simple machine that pops and pushes temporary
variables off and on the operand stack and keeps any local variables in the vars,
while continuing to execute the method in the stack frame. The stack is
sandwiched between the heap and the registers.

Because the stack is so simple, no complex objects can be stored there. These
are farmed out to the heap.

Inside a Class File
To get an overall view of a class file, let’s take another look at the Casting.java
file from Chapter 1, shown here in Listing 2-1. Compile it using javac, and then
make a hexadecimal dump of the binary class file, shown in Figure 2-2.

Listing 2-1. Casting.java, Now with Fields!

public class Casting {

 static final String ascStr = "ascii ";
 static final String chrStr = " character ";

 public static void main(String args[]){

 for(char c=0; c < 128; c++) {
 System.out.println(ascStr + (int)c + chrStr + c);
 }
 }
}

CHAPTER 2: Ghost in the Machine 25

Figure 2-2. Casting.class

As you can see, Casting.class is small and compact, but it contains all the
necessary information for the JVM to execute the Casting.java code.

To open the class file further, in this chapter you simulate the actions of a
disassembler by breaking the class file into its different parts. And while we

CHAPTER 2: Ghost in the Machine 26

break down Casting.class we’re also going to build a primitive disassembler
called ClassToXML, which outputs the class file into an easy-to-read XML
format. ClassToXML uses the Java Class File Library (jCFL) from
www.freeinternals.org to do the heavy lifting and is available as a download
from the book’s page on Apress.com.

You can break the class file into the following constituent parts:

 Magic number

 Minor and major version numbers

 Constant-pool count

 Constant pool

 Access flags

 this class

 Superclass

 Interfaces count

 Interfaces

 Field count

 Fields

 Methods count

 Methods

 Attributes count

 Attributes

The JVM specification uses a struct-like format to show the class file’s different
components; see Listing 2-2.

Listing 2-2. Class-file Struct

Classfile {
 int magic,
 short minor_version,
 short major_version,
 short constant_pool_count,
 cp_info constant_pool[constant_pool_count-1],
 short access_flags,
 short this_class,
 short super_class,
 short interfaces_count,

http://www.freeinternals.org

CHAPTER 2: Ghost in the Machine 27

 short interfaces [interfaces_count],
 short fields_count,
 field_info fields [fields_count],
 short methods_count,
 method_info methods [methods_count],
 short attributes_count
 attributes_info attributes[attributes_count]
}

This has always seemed like a very cumbersome way of displaying the class file,
so you can use an XML format that allows you to traverse in and out of the class
file’s inner structures much more quickly. It also makes the class-file information
easier to understand as you try to unravel its meaning. The complete class-file
structure, with all the XML nodes collapsed, is shown in Figure 2-3.

Figure 2-3. XML representation of Casting.class

You look next at each of the different nodes and their form and function. In
Chapter 6 , you l earn to create C lassToXML for a ll Java c lass f iles-----the code in
this chapter works on Casting.class only. To run the code for this chapter, first
download the jCFL jar file from www.freeinternals.org and put it in your
classpath. Then execute the following commands:

javac ClassToXML.java
java ClassToXML < Casting.class > Casting.xml

Magic Number
It’s pretty easy to find the magic and version numbers, because they come at
the start o f t he c lass f ile-----you should be able to make them out in Figure 2-2.
The magic number in hex is the first 4 bytes of the class file (0xCAFEBABE), and
it tells the JVM that it’s receiving a class file. Curiously, these are also the first
four bytes in multiarchitecture binary (MAB) files on the NeXT platform. Some

http://www.freeinternals.org

CHAPTER 2: Ghost in the Machine 28

cross-pollination of staff must have occurred between Sun and NeXT during
early implementations of Java.

0xCAFEBABE was chosen for a number of reasons. First, it’s hard to come up
with meaningful eight-letter words out of the letters A through F. According to
James Gosling, Cafe Dead was the name of a café near their office where the
Grateful Dead used to perform. And so 0xCAFEDEAD and shortly thereafter
0xCAFEBABE became part of the Java file format. My first reaction was to think
it’s a pity 0xGETALIFE isn’t a legitimate hexadecimal string, but then I couldn’t
come up with better hexadecimal names either. And there are worse magic
numbers out there, such as 0xFEEDFACE, 0xDEADBEEF, and possibly the
worst, 0xDEADBABE, which are used at Motorola, IBM, and Sun, respectively.

Microsoft’s CLR files have a similar header, BSJB, which was named after four
of the original developers of the .Net platform: Brian Harry, Susan Radke-
Sproull, Jason Zander, and Bill Evans. OK, maybe 0xCAFEBABE isn’t so bad
after all.

Minor and Major Versions
The minor and major version numbers are the next four bytes 0x0000 and
0x0033, see Listing 2-2, or minor version 0 and major version 51, which means
the code was compiled by the JDK 1.7.0. These major and minor numbers are
used by the JVM to make sure that it recognizes and fully understands the
format of the class file. JVM’s will refuse to execute any class file with a higher
major and minor number.

The minor version is for small changes that require an updated JVM, the major
number is for wholesale fundamental changes requiring a completely different
and incompatible JVM.

Constant-Pool Count
All class and interface constants are stored in the constant pool. And surprise,
surprise, the constant-pool count, taking up the next 2 bytes, tells you how
many variable-length elements follow in the constant pool.

0x0035 or integer 53 is the number in the example. The JVM specification tells
you that constant_pool[0] is reserved by the JVM. In fact, it doesn’t even
appear in the class file, so the constant pool elements are stored in
constant_pool[1] to constant_pool[52].

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Ghost in the Machine 29

Constant Pool
The next item is the constant pool itself, which is of type cp_info; see
Listing 2-3.

Listing 2-3. cp_info Structure
cp_info {
 byte tag,
 byte info[]
}

The constant pool is made up of an array of variable-length elements. It’s full of
symbolic references to other entries in the constant pool, later in the class file.
The constant-pool count telling you how many variables are in the constant
pool.

Every constant and variable name required by the class file can be found in the
constant pool. These are typically strings, integers, floats, method names, and
so on, all of which remain fixed. Each constant is then referenced by its
constant-pool index everywhere else in the class file.

Each element of the constant pool (remember that there are 53 in the example)
begins with a tag to tell you what type of constant is coming next. Table 2-1 lists
the valid tags and their corresponding values used in the class file.

Table 2-1. Constant-Pool Tags

Constant Pool Tag Value

Utf8 1

Integer 3

Float 4

Long 5

Double 6

Class 7

String 8

Fieldref 9

Methodref 10

CHAPTER 2: Ghost in the Machine 30

Constant Pool Tag Value

InterfaceMethodref 1 1

NameAndType 1 2

Many of the tags in the constant pool are symbolic references to other members
of the constant pool. For example each String points at a Utf8 tag where the
string is ultimately stored. The Utf8 has the data structure shown in Listing 2-4.

Listing 2-4. Utf8 Structure

Utf8 {
 byte tag,
 int length,
 byte bytes[length]
}

I’ve collapsed these data structures wherever possible in my XML output of the
constant pool (see Listing 2-5) so you can read it easily.

Listing 2-5. Constant Pool for Casting.class

<ConstantPool>
<ConstantPoolEntry>
<id>1</id>
<Type>Methodref</Type>
<ConstantPoolAddress>13,27</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>2</id>
<Type>Fieldref</Type>
<ConstantPoolAddress>28,29</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>3</id>
<Type>Class</Type>
<ConstantPoolAddress>30</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>4</id>
<Type>Methodref</Type>
<ConstantPoolAddress>3,27</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>5</id>
<Type>String</Type>
<ConstantPoolAddress>31</ConstantPoolAddress>

CHAPTER 2: Ghost in the Machine 31

</ConstantPoolEntry>
<ConstantPoolEntry>
<id>6</id>
<Type>Methodref</Type>
<ConstantPoolAddress>3,32</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>7</id>
<Type>Methodref</Type>
<ConstantPoolAddress>3,33</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>8</id>
<Type>String</Type>
<ConstantPoolAddress>34</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>9</id>
<Type>Methodref</Type>
<ConstantPoolAddress>3,35</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>10</id>
<Type>Methodref</Type>
<ConstantPoolAddress>3,36</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>11</id>
<Type>Methodref</Type>
<ConstantPoolAddress>37,38</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>12</id>
<Type>Class</Type>
<ConstantPoolAddress>39</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>13</id>
<Type>Class</Type>
<ConstantPoolAddress>40</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>14</id>
<Type>Utf8</Type>
<ConstantPoolValue>ascStr</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>15</id>
<Type>Utf8</Type>
<ConstantPoolValue>Ljava/lang/String</ConstantPoolValue>

CHAPTER 2: Ghost in the Machine 32

</ConstantPoolEntry>
<ConstantPoolEntry>
<id>16</id>
<Type>Utf8</Type>
<ConstantPoolValue>ConstantValue</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>17</id>
<Type>Utf8</Type>
<ConstantPoolValue>chrStr</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>18</id>
<Type>Utf8</Type>
<ConstantPoolValue><init></ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>19</id>
<Type>Utf8</Type>
<ConstantPoolValue>V</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>20</id>
<Type>Utf8</Type>
<ConstantPoolValue>Code</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>21</id>
<Type>Utf8</Type>
<ConstantPoolValue>LineNumberTable</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>22</id>
<Type>Utf8</Type>
<ConstantPoolValue>main</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>23</id>
<Type>Utf8</Type>
<ConstantPoolValue>Ljava/lang/String</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>24</id>
<Type>Utf8</Type>
<ConstantPoolValue>StackMapTable</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>25</id>
<Type>Utf8</Type>
<ConstantPoolValue>SourceFile</ConstantPoolValue>

CHAPTER 2: Ghost in the Machine 33

</ConstantPoolEntry>
<ConstantPoolEntry>
<id>26</id>
<Type>Utf8</Type>
<ConstantPoolValue>Casting</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>27</id>
<Type>NameAndType</Type>
<ConstantPoolAddress>18,19</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>28</id>
<Type>Class</Type>
<ConstantPoolAddress>41</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>29</id>
<Type>NameAndType</Type>
<ConstantPoolAddress>42,43</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>30</id>
<Type>Utf8</Type>
<ConstantPoolValue>java/lang/StringBuilder</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>31</id>
<Type>Utf8</Type>
<ConstantPoolValue>ascii</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>32</id>
<Type>NameAndType</Type>
<ConstantPoolAddress>44,45</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>33</id>
<Type>NameAndType</Type>
<ConstantPoolAddress>44,46</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>34</id>
<Type>Utf8</Type>
<ConstantPoolValue>character</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>35</id>
<Type>NameAndType</Type>
<ConstantPoolAddress>44,47</ConstantPoolAddress>

CHAPTER 2: Ghost in the Machine 34

</ConstantPoolEntry>
<ConstantPoolEntry>
<id>36</id>
<Type>NameAndType</Type>
<ConstantPoolAddress>48,49</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>37</id>
<Type>Class</Type>
<ConstantPoolAddress>50</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>38</id>
<Type>NameAndType</Type>
<ConstantPoolAddress>51,52</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>39</id>
<Type>Utf8</Type>
<ConstantPoolValue>Casting</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>40</id>
<Type>Utf8</Type>
<ConstantPoolValue>java/lang/Object</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>41</id>
<Type>Utf8</Type>
<ConstantPoolValue>java/lang/System</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>42</id>
<Type>Utf8</Type>
<ConstantPoolValue>out</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>43</id>
<Type>Utf8</Type>
<ConstantPoolValue>Ljava/io/PrintStream</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>44</id>
<Type>Utf8</Type>
<ConstantPoolValue>append</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>45</id>
<Type>Utf8</Type>
<ConstantPoolValue>Ljava/lang/StringBuilder</ConstantPoolValue>

CHAPTER 2: Ghost in the Machine 35

</ConstantPoolEntry>
<ConstantPoolEntry>
<id>46</id>
<Type>Utf8</Type>
<ConstantPoolValue>Ljava/lang/StringBuilder</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>47</id>
<Type>Utf8</Type>
<ConstantPoolValue>Ljava/lang/StringBuilder</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>48</id>
<Type>Utf8</Type>
<ConstantPoolValue>toString</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>49</id>
<Type>Utf8</Type>
<ConstantPoolValue>Ljava/lang/String</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>50</id>
<Type>Utf8</Type>
<ConstantPoolValue>java/io/PrintStream</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>51</id>
<Type>Utf8</Type>
<ConstantPoolValue>println</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>52</id>
<Type>Utf8</Type>
<ConstantPoolValue>Ljava/lang/String</ConstantPoolValue>
</ConstantPoolEntry>
</ConstantPool>

It’s a simple yet elegant design when you take the time to examine the output of
the class file. Take the first method reference, constant_pool[1]:

<ConstantPoolEntry>
<id>1</id>
<Type>Methodref</Type>
<ConstantPoolAddress>13,27</ConstantPoolAddress>
</ConstantPoolEntry>

This tells you to look for the class in constant_pool[13] as well as the class
name and type in constant_pool[27]

CHAPTER 2: Ghost in the Machine 36

<ConstantPoolEntry>
<id>13</id>
<Type>Class</Type>
<ConstantPoolAddress>40</ConstantPoolAddress>
</ConstantPoolEntry>

which points to constant_pool[40]:

<ConstantPoolEntry>
<id>40</id>
<Type>Utf8</Type>
<ConstantPoolValue>java/lang/Object</ConstantPoolValue>
</ConstantPoolEntry>

But you also have constant_pool[27] to resolve, which gives you the name and
type of the method:

<ConstantPoolEntry>
<id>27</id>
<Type>NameAndType</Type>
<ConstantPoolAddress>18,19</ConstantPoolAddress>
</ConstantPoolEntry>

Elements 18 and 19 of the constant pool contain the method name and its
descriptors. According to the JVM specification, method descriptors take the
following form:

(ParameterDescriptor *) ReturnDescriptor

The return descriptor can be either V for void or one of the FieldTypes (see
Table 2-2):

<ConstantPoolEntry>
<id>18</id>
<Type>Utf8</Type>
<ConstantPoolValue><init></ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>19</id>
<Type>Utf8</Type>
<ConstantPoolValue>V</ConstantPoolValue>
</ConstantPoolEntry>

In this case, the name of the method is <init>, an internal JVM method that is in
every class file; its method descriptor is ()V, or void, for the field descriptor
mapping (see Table 2-2).

So you can now re-create the method as follows:

void init()

CHAPTER 2: Ghost in the Machine 37

Table 2-2. Field Descriptors

Descriptor Name

B Byte

C Char

D Double

F Float

I Int

J Long

L<classname> Class

S Short

Z Boolean

[Array

You can try to unravel some other classes too. It may help if you work backward
from the target class or method. Some of the strings are pretty unintelligible, but
with a little practice the method signatures become clear.

The earliest types of obfuscators simply renamed these strings to something
completely unintelligible. This stopped primitive decompilers but didn’t harm the
class file, because the JVM used a pointer to the string in the constant pool and
not the string itself as long as you didn’t rename internal methods such as
<init> or destroy the references to any Java classes in an external library.

You already know what classes you need for your import statements from the
following entries: constant_pool[36, 37, 39, 46]. Note that there are no
interfaces or static final classes in the Casting.java example (see Listing 2-1).
These would come up as field references in the constant pool, but so far the
simple class parser is complete enough to handle any class file you care to
throw at it.

CHAPTER 2: Ghost in the Machine 38

Access Flags
Access flags contain bitmasks that tell you whether you’re dealing with a class
or an interface, and whether it’s public, final, and so on. All interfaces are
abstract.

There are eight access flag types (see Table 2-3), but more may be introduced in
the future. ACC_SYNTHETIC, ACC_ANNOTATION, and ACC_ENUM were relatively recent
additions in JDK 1.5.

Table 2-3. Access Flag Names and Values

FLAG NAME Value Description

ACC_PUBLIC 0x0001 Public class

ACC_FINAL 0x0010 Fina l class

ACC_SUPER 0x0020 Always set; used for
compatibility with older Sun
compilers

ACC_INTERFACE 0x0200 In terface class

ACC_ABSTRACT 0x0400 Always set for interfaces

ACC_SYNTHETIC 0x1000 Class generated by the
compiler

ACC_ANNOTATION 0x2000 Code annotations; always an
interface

ACC_ENUM 0x4000 Enumerated type class

Access flags are or’d together to come up with a description of the modifier
before the this class or interface. 0x21 tells you that the this class in
Casting.class is a public (and super) class, which you can verify is correct by
going all the way back to the code in Listing 2-1:

<AccessFlags>0x21</AccessFlags>

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Ghost in the Machine 39

The this Class and the Superclass
The next two values point at the constant pool index for the this class and the
superclass.

<ThisClass>12</ThisClass>
<SuperClass>13</SuperClass>

If you follow the XML output in Listing 2-5, constant_pool[12] points at
constant_pool[39]; here the Utf8 structure contains the string Casting, telling
you that this is the Casting class. The superclass is in constant_pool[13],
which points at constant_pool[40]; here the Utf8 structure contains
java/lang/Object because every class has object as its superclass.

Interfaces and Interface Count
The Casting.java example in Listing 2-1 doesn’t have any interfaces, so you
have to look at a different example to get a better understanding of how
interfaces are implemented in the class file (see Listing 2-6).

Listing 2-6. Interface Example

interface IProgrammer {
 public void code();
 public void earnmore();
}

interface IWriter {
 public void pullhairout();
 public void earnless();
}

public class Person implements IProgrammer, IWriter {

 public Person() {
 Geek g = new Geek(this);
 Author t = new Author(this);
 }

 public void code() { /* */ }
 public void earnmore() { /* */ }
 public void pullhairout() { /* */ }
 public void earnless() { /* */ }

}

CHAPTER 2: Ghost in the Machine 40

class Geek {
 IProgrammer iprog = null;

 public Geek(IProgrammer iprog) {
 this.iprog = iprog;
 iprog.code();
 iprog.earnmore();
 }
}

class Author {
 IWriter iwriter = null;

 public Author(IWriter iwriter) {
 this.iwriter = iwriter;
 iwriter.pullhairout();
 iwriter.earnless();
 }
}

Listing 2-6 has two interfaces, IProgrammer and IWriter. Running ClassToXML
against the class files gives the following information in the interfaces section:

<InterfaceCount>2</InterfaceCount>
<Interfaces>
 <Interface>8</Interface>
 <Interface>9</Interface>
</Interfaces>

This resolves to the IProgrammer and IWriter strings in the constant pool as
follows:

<ConstantPoolEntry>
<id>8</id>
 <Type>Class</Type>
 <ConstantPoolAddress>27</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>9</id>
 <Type>Class</Type>
 <ConstantPoolAddress>28</ConstantPoolAddress>
</ConstantPoolEntry>

<ConstantPoolEntry>
<id>27</id>
 <Type>Class</Type>
 <ConstantPoolAddress>27</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>28</id>

CHAPTER 2: Ghost in the Machine 41

 <Type>Class</Type>
 <ConstantPoolAddress>28</ConstantPoolAddress>
</ConstantPoolEntry>

Fields and Field Count
The field_info structure is shown in Listing 2-7.

Listing 2-7. field_info Data Structure

field_info {
u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];

}

Casting.class as it stands has two static and final fields, ascStr and chrStr
(see Listing 2-1). I also made them static and final, to force a ConstantValue field
attribute.

Now, if you pull out the relevant section in the XML, you see that there are two
fields (Listing 2-8). Let’s focus on the first.

Listing 2-8. Casting.java Field Information

<FieldCount>2</FieldCount>
<Fields>
<Field>
<AccessFlags>ACC_STATIC, ACC_FINAL</AccessFlags>
<Name>ascStr</Name>
<Descriptor>java.lang.String</Descriptor>
<Attributes>
<Attribute>
<AttributeType>String</AttributeType>
<AttributeName>ascii</AttributeName>
</Attribute>
</Attributes>
</Field>
<Field>
<AccessFlags>ACC_STATIC, ACC_FINAL</AccessFlags>
<Name>chrStr</Name>
<Descriptor>java.lang.String</Descriptor>
<Attributes>
<Attribute>
<AttributeType>String</AttributeType>
<AttributeName>character</AttributeName>
</Attribute>

CHAPTER 2: Ghost in the Machine 42

</Attributes>
</Field>
</Fields>

Field access flags (see Table 2-4) tell you whether the field is public, private,
protected, static, final, volatile, or transient.

Table 2-4. Field Access Flag Names and Values

FLAG NAME Value Description

ACC_PUBLIC 0x0001 Public field

ACC_PRIVATE 0x0002 Priva te field

ACC_PROTECTED 0x0004 Prote cted field

ACC_STATIC 0x0008 Sta tic field

ACC_FINAL 0x0010 Fina l field

ACC_VOLATILE 0x0040 Volatile field; can’t be
cached

ACC_TRANSIENT 0x0080 Transient field

ACC_ENUM 0x0100 Enum element

The first five and the last keywords should be obvious to anyone who has
written Java. The volatile keyword tells a thread that the variable may be
updated by another thread, and the transient keyword is used in object
serialization. An access flag of 0x0018 in this example denotes a static final field.

Go back to Table 2-2 to refresh your mind before you unravel the different field
descriptors:

<Field>
<AccessFlags>ACC_STATIC, ACC_FINAL</AccessFlags>
<Name>ascStr</Name>
<Descriptor>java.lang.String</Descriptor>
<Attributes>
<Attribute>
<AttributeType>String</AttributeType>
<AttributeName>ascii</AttributeName>
</Attribute>
</Attributes>

CHAPTER 2: Ghost in the Machine 43

</Field>

The descriptor points back to the constant_pool[14] field ascStr, which has the
field descriptor constant_pool[15] or Ljava/lang/String; this is an instance of a
String class.

Field Attributes
The attribute count is, no surprise, the number of attributes, which is
immediately followed by the attributes themselves. Attributes throughout the
class file are in the format shown in Listing 2-9.

Listing 2-9. attribute-info Structure

attribute_info {
u2 attribute_name_index;
u4 attribute_length;
u1 info[attribute_length];

}

Several different attribute types are found in the field data structure, the method
data s tructure, and the a ttribute data structure-----the final element of the class-
file data structure. But there are really only two field attributes, ConstantValue
and Synthetic, of interest here. ConstantValue is used for constant variables,
such as those declared as static and final in the current example. The Synthetic
variable was introduced in JDK 1.1 to support inner classes.

Signature and Deprecated attributes are also possible and users can also define
their own attribute types, but they’re irrelevant to the current discussion.

Listing 2-11. Field Attribute Data

<Attributes>
<Attribute>
<AttributeType>String</AttributeType>
<AttributeName>ascii</AttributeName>
</Attribute>
</Attributes>

The attribute for the first field (see Listing 2-11), is a constant that can be found
in constant_pool[5] (see Listing 2-12), a string, which in turn points at the string
‘‘ascii ’’.

CHAPTER 2: Ghost in the Machine 44

Listing 2-12. Fields in the Constant Pool

<ConstantPoolEntry>
<id>5</id>
<Type>String</Type>
<ConstantPoolAddress>31</ConstantPoolAddress>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>31</id>
<Type>Utf8</Type>
<ConstantPoolValue>ascii</ConstantPoolValue>
</ConstantPoolEntry>

You have now decompiled the first field into its original format:

static final String ascStr = "ascii ";

Methods and Method Count
And now for the most important part of the class file: the methods. All the
source code is converted into bytecode and stored or contained in the
method_info area. (Well, it’s actually in the code attribute within the methods,
but you’re getting very close.) If someone can get at the bytecode, then they can
try to convert it back into source. The Methods element is preceded by a method
count and the data structure (see Listing 2-13) and is not dissimilar to the
field_info structure in the previous section. Three types of attributes normally
appear at the method_info level: Code, Exceptions, and once again Synthetic for
inner classes.

Listing 2-13. method_info Structure

method_info {
u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];

}

The methods in Listing 2-1’s Casting.class are as shown in Listing 2-14.

Listing 2-14. Casting.class Method Information

<MethodCount>2</MethodCount>
<Methods>
<Method>
<Attributes>
<Attribute>

CHAPTER 2: Ghost in the Machine 45

<AttributeName>Code:</AttributeName>
<Max_Stack>1</Max_Stack>
<Max_Locals>1</Max_Locals>
<Method_Args>1</Method_Args>
<Method_Code>
 0: aload_0
 1: invokespecial #1
 4: return
</Method_Code>
<Method_LineNumberTable>line 1: 0</Method_LineNumberTable>
</Attribute>
</Attributes>
<AccessFlags>public</AccessFlags>
<Name>Casting</Name>
<Descriptor>();</Descriptor>
</Method>
<Method>
<Attributes>
<Attribute>
<AttributeName>Code:</AttributeName>
<Max_Stack>3</Max_Stack>
<Max_Locals>2</Max_Locals>
<Method_Args>1</Method_Args>
<Method_Code>
 0: iconst_0
 1: istore_1
 2: iload_1
 3: sipush 128
 6: if_icmpge 51
 9: getstatic #2
 12: new #3
 15: dup
 16: invokespecial #4
 19: ldc #5
 21: invokevirtual #6
 24: iload_1
 25: invokevirtual #7
 28: ldc #8
 30: invokevirtual #6
 33: iload_1
 34: invokevirtual #9
 37: invokevirtual #10
 40: invokevirtual #11
 43: iload_1
 44: iconst_1
 45: iadd
 46: i2c
 47: istore_1
 48: goto 2
 51: return

CHAPTER 2: Ghost in the Machine 46

</Method_Code>
<Method_LineNumberTable>
 line 8: 0
 line 9: 9
 line 8: 43
 line 11: 51
</Method_LineNumberTable>
<Method_StackMapTableEntries>2</Method_StackMapTableEntries>
<Method_StackMapTable>
 frame_type = 252 /* append */
 offset_delta = 2
 locals = [int]
 frame_type = 250 /* chop */
 offset_delta = 48</Method_StackMapTable>
</Attribute>
</Attributes>
<AccessFlags>public, static</AccessFlags>
<Name>main</Name>
<Descriptor>(java.lang.String[]);</Descriptor>
</Method>
</Methods>

Different access flags are set for each method depending on what modifiers
were used in the original source; see Table 2-5. A number of restrictions exist,
because some of the access flags are mutually exclusive—in other words, a
method can’t be declared as both ACC_PUBLIC and ACC_PRIVATE or even
ACC_PROTECTED. However, you won’t normally be disassembling illegal
bytecodes, so you’re unlikely to come across any such eventualities.

The first methods in the example is public; the second is a public static method.

Table 2-5. Method Access Flags

FLAG NAME Value Description

ACC_PUBLIC 0x0001 Class or interface

ACC_PRIVATE 0x0002 Cla ss

ACC_PROTECTED 0x0004 Cla ss

ACC_STATIC 0x0008 Sta tic field

ACC_FINAL 0x0010 Fina l field

CHAPTER 2: Ghost in the Machine 47

FLAG NAME Value Description

ACC_SYNCHRONIZED 0x0020 Cla ss

ACC_BRIDGE 0x0040 Compile r generated

ACC_VARARGS 0x0080 Variable number of arguments

ACC_NATIVE 0x0100 Class or interface

ACC_ABSTRACT 0x0400 Abstract

ACC_STRICT 0x0800 Stric t

ACC_SYNTHETIC 0x1000 Synthe tic

You can now find the name and the method descriptors of the final method:

<Name>main</Name>
<Descriptor>(java.lang.String[]);</Descriptor>

You pull out the name and description of the method from constant_pool[22]
and constant_pool[23], as shown in Listing 2-15.

Listing 2-15. Casting.class Method Name and Descriptor Constant-Pool Information

<ConstantPoolEntry>
<id>22</id>
<Type>Utf8</Type>
<ConstantPoolValue>main</ConstantPoolValue>
</ConstantPoolEntry>
<ConstantPoolEntry>
<id>23</id>
<Type>Utf8</Type>
<ConstantPoolValue>Ljava/lang/String</ConstantPoolValue>
</ConstantPoolEntry>

You can now reassemble the method without any of the underlying code:

public static void main(java.lang.String args[]) {
 /* */
}

CHAPTER 2: Ghost in the Machine 48

or simply:

import java.lang.String;
...
public static void main(String args[]) {
 /* */
}

The remaining methods fall out of the constant pool in a similar fashion.

Method Attributes
Attributes appear in the field, method, and attributes elements of the class-file
structure. Each attribute begins with an attribute_name_index that references
the constant pool and an attribute length. But the meat of the class file is in the
method attributes (see Listing 2-16).

Listing 2-16. Init Method Attributes

<Attributes>
<Attribute>
<AttributeName>Code:</AttributeName>
<Max_Stack>1</Max_Stack>
<Max_Locals>1</Max_Locals>
<Method_Args>1</Method_Args>
<Method_Code>
 0: aload_0
 1: invokespecial #1
 4: return
</Method_Code>
<Method_LineNumberTable>line 1: 0</Method_LineNumberTable>
</Attribute>
</Attributes>

The attribute type in this example is a code attribute. The code attribute is
shown in Listing 2-17.

Listing 2-17. Code Attribute

Code_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 max_stack;
u2 max_locals;
u4 code_length;
u1 code[code_length];
u2 exception_table_length;
{

u2 start_pc;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Ghost in the Machine 49

u2 end_pc;
u2 handler_pc;
u2 catch_type;

} exception_table[exception_table_length];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

The attribute_length is the length of the code attribute minus the first 6 bytes.
The attribute_type and the attribute_name take up the first 6 bytes and aren’t
included in the attribute_length. The max_stack and max_locals give the
maximum number of variables on the operand stack and local variable sections
of the stack frame. This tells you how deep the stack will go and how many
variables will be pushed on and off the stack.

The code length gives the size of the following code array. The code array is
simply a series of bytes where each bytecode is a reserved byte value or
opcode followed by zero or more operands-----or, to put it another way:

opcode operand

Looking at the output (Listing 2-14) from running ClassToXML on
Casting.class, you see that there are two methods, main and init which is the
empty constructor that the Java compiler always adds when the developer
chooses not to add their own constructor. Each method has its own Code array.

<init> method
Before I explain what bytecode maps onto which opcode, let’s look at the
simplest method to unravel, which is the first code segment:

2ab70001b1

When you convert this into opcodes and operands, it becomes

2a aload 0
b70001 invokespecial #1
b1 return

2a becomes aload 0. This loads the local variable 0 onto the stack, required by
invokespecial. b70001 becomes invokespecial #1, where invokespecial is
used to invoke a method in a limited number of cases such as an instance-
initialization method (<init> to you and me), which is what you have here. #1 is a
reference to constant_pool[1], which is a CONSTANT_Methodref structure. Listing
2-18 collects together all the related constant-pool entries for constant_pool[1].

CHAPTER 2: Ghost in the Machine 50

Listing 2-18. <init> Method Constant-Pool Resolution

<ConstantPoolEntry>
<id>1</id>
<Type>Methodref</Type>
<ConstantPoolAddress>13,27</ConstantPoolAddress>
</ConstantPoolEntry>

<ConstantPoolEntry>
<id>13</id>
<Type>Class</Type>
<ConstantPoolAddress>40</ConstantPoolAddress>
</ConstantPoolEntry>

<ConstantPoolEntry>
<id>40</id>
<Type>Utf8</Type>
<ConstantPoolValue>java/lang/Object</ConstantPoolValue>
</ConstantPoolEntry>

<ConstantPoolEntry>
<id>27</id>
<Type>NameAndType</Type>
<ConstantPoolAddress>18,19</ConstantPoolAddress>
</ConstantPoolEntry>

<ConstantPoolEntry>
<id>18</id>
<Type>Utf8</Type>
<ConstantPoolValue>init</ConstantPoolValue>
</ConstantPoolEntry>

<ConstantPoolEntry>
<id>19</id>
<Type>Utf8</Type>
<ConstantPoolValue>V</ConstantPoolValue>
</ConstantPoolEntry>

You can resolve the symbolic references by hand to

<Method java.lang.Object.<init>()V>

This is the empty constructor that the javac compiler adds to all classes that
don’t already have a constructor. The final b1 opcode is a simple return
statement. So the first method can be converted straight back into the following
code, an empty constructor:

 public class Casting()
 {
 return;

CHAPTER 2: Ghost in the Machine 51

 }

main method
The second code attribute is less trivial. To get any further, you need to know
what each hexadecimal value maps onto what opcode.

NOTE: Although the example list is shorter than most other opcode
lists (you’re ignoring any opcodes above 201), it still runs on for several
pages; you can reference it in Appendix A and at www.apress.com.
Note that opcodes beyond 201 are reserved for future use, because
they have no effect on the original bytecode in a class file and can be
safely ignored.

You also need to know how each element of the Java language is compiled into
bytecode so you can reverse the process. Then you can see how the remaining
code attributes can be turned into opcodes and their operands.

The main method has the following 52-byte byte_code attribute, which is broken
down in Listing 2-19 into opcodes and operands

033c1b110080a2002db20002bb000359b700041205b600061bb600071208b600061bb60009b6000a
b6000b1b0460923ca7ffd2b1

Listing 2-19. Main Method

<Method>
<Attributes>
<Attribute>
<AttributeName>Code:</AttributeName>
<Max_Stack>3</Max_Stack>
<Max_Locals>2</Max_Locals>
<Method_Args>1</Method_Args>
<Method_Code>
 0: iconst_0
 1: istore_1
 2: iload_1
 3: sipush 128
 6: if_icmpge 51
 9: getstatic #2
 12: new #3
 15: dup
 16: invokespecial #4
 19: ldc #5
 21: invokevirtual #6

http://www.apress.com

CHAPTER 2: Ghost in the Machine 52

 24: iload_1
 25: invokevirtual #7
 28: ldc #8
 30: invokevirtual #6
 33: iload_1
 34: invokevirtual #9
 37: invokevirtual #10
 40: invokevirtual #11
 43: iload_1
 44: iconst_1
 45: iadd
 46: i2c
 47: istore_1
 48: goto 2
 51: return
</Method_Code>
<Method_LineNumberTable>
 line 8: 0
 line 9: 9
 line 8: 43
 line 11: 51
</Method_LineNumberTable>
<Method_StackMapTableEntries>2</Method_StackMapTableEntries>
<Method_StackMapTable>
 frame_type = 252 /* append */
 offset_delta = 2
 locals = [int]
 frame_type = 250 /* chop */
 offset_delta = 48</Method_StackMapTable>
</Attribute>
</Attributes>
<AccessFlags>static</AccessFlags>
<Name>main</Name>
<Descriptor>(java.lang.String[]);</Descriptor>
</Method>
</Methods>

You can reverse engineer the opcodes and operands in a similar fashion to the
previous method, as you can see in Table 2-6.

Table 2-6. Main Code Attribute Breakdown

PC Bytecode Opcode Operand Constant Pool Resolution

(if applicable)

0 03 iconst_0

1 3c istore_1

CHAPTER 2: Ghost in the Machine 53

2 1b iload_1

3 110080 sipush 128

6 a2002d if_icmpge 51

9 b20002 getstatic #2 Field
java/lang/System.out:Ljav
a/io/PrintStream;

12 bb0003 new #3 class
java/lang/StringBuilder

15 59 dup

16 b70004 invokespecial #4 Method
java/lang/StringBuilder."
<init>":()V

19 1205 ldc #5 String ascii

21 b60006 invokevirtual #6 Method
java/lang/StringBuilder.a
ppend:(Ljava/lang/String;
)Ljava/lang/StringBuilder
;

24 1b iload_1

25 b60007 invokevirtual #7 Method
java/lang/StringBuilder.a
ppend:(I)Ljava/lang/Strin
gBuilder;

28 1208 ldc #8 String character

30 b60006 invokevirtual #6 Method
java/lang/StringBuilder.a
ppend:(Ljava/lang/String;
)Ljava/lang/StringBuilder
;

33 1b iload_1

CHAPTER 2: Ghost in the Machine 54

PC Bytecode Opcode Operand Constant Pool Resolution

(if applicable)

34 b60009 invokevirtual #9 Method
java/lang/StringBuilder.a
ppend:(C)Ljava/lang/Strin
gBuilder;

37 b6000a invokevirtual #10 Method
java/lang/StringBuilder.t
oString:()Ljava/lang/Stri
ng;

40 b6000b invokevirtual #11 Method
java/io/PrintStream.print
ln:(Ljava/lang/String;)V

43 1b iload_1

44 04 iconst_1

45 60 iadd

46 92 i2c

47 3c istore_1

48 a7ffd2 goto 2

51 b1 return

iconst_0 and istore_1 push the number 0 onto the stack, sipush pushes the
number 128 onto the stack, and if_icmpge compares the two numbers and the
goto program counter or PC = 51 (that is, returns if the numbers are equal). This
is the following code snippet from the Casting.class code:

for(char c=0; c < 128; c++) {
}

In the same manner, you can complete the analysis to return the complete main
method. The aim of this book is to show you how to do that programmatically.

CHAPTER 2: Ghost in the Machine 55

ClassToXML, available from the downloads area of the Apress site, outputs
bytecode like a true disassembler. And now that you’ve seen how easy it is to
create a disassembler, you can probably see why so many disassemblers have
user interfaces.

Attributes and Attributes Count
The final two elements contain the number of class-file attributes and the
remaining attributes, which are usually SourceFile and InnerClasses.

SourceFile is the name of the Java file that was used to originally generate the
code. The InnerClasses attribute is a bit more complicated and is ignored by
several decompilers that can’t handle inner classes.

You’re not limited to the SourceFile and InnerClasses attribute. New attributes
can be defined here or in any of the field or methods attribute sections.
Developers may want to store information in a custom attribute, perhaps using it
for some low-level check or for storing encrypted code attributes to possibly
prevent decompilation. Assuming your new code attribute follows the format of
all other attributes, you can add any attribute you want, which will be ignored by
the JVM. Each attribute needs 2 bytes that provide a number pointing into the
constant pool to give the name of the attribute, attribute_name_index; and 4
bytes giving the length of the remaining bytes in the attribute, attribute_length.

Summary
You’ve finally come to the end of the guts of the class file and manually
disassembled ClassToXML in the process (refer to the appropriate files on
www.apress.com). I hope you begin to see how it all fits together. Although the
design of the class file is neat and compact, because of the split between the
initial and final compilation stages you have an awful lot of information to help
you recover the source. For many years, programmers have been protected by
the encoding that compiling to an executable usually offers, but splitting the
compilation and carrying around so much information at the intermediate stage
is asking for trouble.

Chapter 3 looks at unraveling the DEX file format to help you understand how to
reverse-engineer that back into Java source code.

http://www.apress.com

3
Chapter

Inside the DEX File
It might seem odd that we would need another virtual machine for Android
phones and that the Java virtual machine (JVM) wouldn’t be good enough. But
for optimization and performance, the Dalvik virtual machine (DVM) is used on all
Android phones. It was named after a place in the Icelandic homeland of one the
original developers and is considerably different in design from the JVM. Instead
of a push-pop stack machine, the DVM uses registers. The corresponding DVM
bytecode or DEX files are also a completely different design than Java class
files.

But all is not lost. There is more than enough information about the DEX file
specification to repeat the same exercise you looked at for the class file in
Chapter 2 and come to the same happy conclusion that lets you gain access to
the DEX file bytecode and convert it back into Java source code, even if you are
doing it manually in this chapter. The DEX file can be unraveled into its different
sections: the header and the DEX version of the constant pool, which houses
pointers for strings, fields, methods, and class information in its data section.

Ghost in the Machine, Part Deux
When you download an application from the Android Market or Amazon
Marketplace onto your Android phone, you’re downloading an Android package
(APK) file. Each and every APK file is in a zip format. Change the .apk file
extension to .zip, and unzipping the file gives you the resources, the images,
the AndroidManifest.xml file, and the classes.dex file contained in the APK, in a
structure similar to that shown in Figure 3-1.

CHAPTER 3: Inside the DEX File 58

Figure 3-1. Unzipped APK file

Whereas a Java jar file has many class files, each APK file has only a single
classes.dex file, as shown in Figure 3-2. According to Google, the APK format
differs from the class-file format for performance and security reasons. But
regardless of what the reasons are, from a reverse-engineering perspective it
means your target is now the classes.dex file. You have moved completely
away from the Java class-file format and now need to understand what is inside
the classes.dex file so you can decompile it back into Java source.

Figure 3-2. Class file vs DEX file

CHAPTER 3: Inside the DEX File 59

Chapter 4 looks at many Android and third-party tools that are available to help
you pull apart APKs and classes.dex files. In this chapter, you manually create
your own classes.dex disassembler.

Converting Casting.class
To begin, you need to convert your Casting.class file from Chapter 3 into a
classes.dex file so you have something to work with. This classes.dex file will
run on the command line on an Android phone, but it’s not a classic APK file.
However, the classes.dex format will be the same, so it’s a good place to start
your DEX file investigation.

You do this conversion using the dx program, which comes with the Android
platform tools. Make sure the Casting.class file is in the casting folder, and
execute the following command:

javac c:\apress\chap3\casting\Casting.java

dx --dex --output=c:\temp\classes.dex C:\apress\chap3\casting

Figure 3-3 shows the resulting classes.dex file for the Casting.java code in
Listing 3-1, in hexadecimal format.

Listing 3-1. Casting.java

public class Casting {

 static final String ascStr = "ascii ";
 static final String chrStr = " character ";

 public static void main(String args[]){
 for(char c=0; c < 128; c++) {
 System.out.println("ascii " + (int)c + " character "+ c);
 }
 }
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Inside the DEX File 60

Figure 3-3. classes.dex

To open the DEX file further, in this chapter you simulate the actions of a
disassembler by breaking the DEX file into its parts. You do this by building your
own primitive disassembler called DexToXML, which takes the DEX file and
outputs the code into an easy-to-read XML format.

CHAPTER 3: Inside the DEX File 61

Breaking the DEX File into Its Constituent
Parts
You can break the class file into the following constituent parts:

 header

 string_ids

 type_ids

 proto_ids

 field_ids

 method_ids

 class_defs

 data

 link_data

The header section contains a summary of the file’s information, its sizes, and
pointers or offsets to where the other information can be found. String_ids lists
all the strings in the file, and the Java types are found in the type_ids section.
You see later how the proto_ids for prototypes, field_ids, method_ids, and
class_defs sections let you reverse-engineer the class names, method calls,
and fields back into Java. The data section is the Android version of the
constant pool. The link_data section is for statically linked files and isn’t
relevant to this discussion, so no related section is provided in this chapter.

The DEX file format specification
(http://source.android.com/tech/dalvik/dex-format.html) uses a struct-like
format to show the DEX file’s components; see Listing 3-2.

Listing 3-2. DEX File Struct

Dexfile {
header header_item,
string_ids string_id_item[],
type_ids type_id_item[],
proto_ids proto_id_item[],
field_ids field_id_item[],
method_ids method_id_item[],
class_defs class_def_item[],
data ubyte[],
link_data ubyte[]

}

http://source.android.com/tech/dalvik/dex-format.html

CHAPTER 3: Inside the DEX File 62

And as in the last chapter, you use an XML format because it allows you to
traverse in and out of the DEX file’s inner structures much more quickly. It also
makes the DEX file information easier to understand as you unravel its meaning.
The DEX f ile s tructure-----with a ll the XML nodes collapsed-----is shown in
Listing 3-3.

Listing 3-3. DexToXML

<root>
<header />
<string_ids />
<type_ids />
<proto_ids />
<field_ids />
<method_ids />
<class_defs />
<data />
</root>

The following sections explain what is in each of the nodes.

The Header Section
The header section contains the top-level information for the remainder of the
file. The structure of the DEX file is dramatically different than its original-format
Java class file and resembles the metadata section of a Microsoft .Net PE file
more than what you saw in the last chapter. The header preamble contains the
magic number, checksum, signature, and size of the class file. The remaining
information tells you how big the strings, types, protos, methods, and classes
are and provides an address pointer or offset to where you can find the actual
strings, types, protos, methods, and classes in the classes.dex file. There is also
a pointer to the map info in the data section, which repeats much of the
information in the header section.

Listing 3-4 uses a struct-like format to show how the header is laid out.

Listing 3-4. Header Section Struct

DexfileHeader{
ubyte[8] magic,
int checksum,
ubyte[20] signature,
uint file_size,
uint header_size,
uint endian_tag,
uint link_size,
uint link_off,

CHAPTER 3: Inside the DEX File 63

uint map_off,
uint string_ids_size,
uint string_ids_off,
uint type_ids_size,
uint type_ids_off,
uint proto_ids_size,
uint proto_ids_off,
uint field_ids_size,
uint field_ids_off,
uint method_ids_size,
uint method_ids_off,
uint class_defs_size,
uint class_defs_off,
uint data_size,
uint data_off

}

The header fields are detailed in Table 3-1.

Table 3-1. Dex File Header

Name Format Hex Value Comments

magic 8
bytes

64 65 78 0A 30 33 35
00

dex\n035\0 Similar to the
CAFEBABE magic
number in the class file

checksum 4
bytes

62 8B 44 18 0x18448B62 Checksum, not
including magic. Little-
endian.

signature 20
bytes

DA A9 21 CA 9C 4F B4
C5 21 D7 77 BC 2A 18
4A 38 0D A2 AA FEW

0xDAA921CA
9C4FB4C5
21D777BC
2A184A38
0DA2AAFE

SHA-1 signature not
including the magic
and checksum fields.

file_size 4
bytes

50 04 00 00 0x450 Little-endian.

header_size 4
bytes

70 00 00 00 0x70 Always 0x70; little-
endian again.

endian_tag 4
bytes

78 56 34 12 0x12345678 classes.dex uses
little_endian to store
the data.

CHAPTER 3: Inside the DEX File 64

Name Format Hex Value Comments

link_size 4
bytes

00 00 00 00 0x0 Size of the link data at
the end of the file.

link_offset 4
bytes

00 00 00 00 0x0 Address of the
link_data section.

map_off 4
bytes

a4 03 00 00 0x3a4 Address of the map
area in the data
section.

string_ids_size 4
bytes

1a 00 00 00 0x1a or 26 Number of strings.

string_ids_off 4
bytes

70 00 00 00 0x70 Address of the strings
section.

type_ids_size 4
bytes

0a 00 00 00 0xa or 10 Number of types.

type_ids_off 4
bytes

d8 00 00 00 0d8 Address of the types
section.

proto_ids_size 4
bytes

07 00 00 00 0x7 or 7 Number of prototypes.

proto_ids_off 4
bytes

00 01 00 00 0x100 Address of the proto
section.

fields_ids_size 4
bytes

03 00 00 00 0x3 or 3 Number of fields.

field_ids_off 4
bytes

54 01 00 00 0x154 Address of the fields
section.

method_ids_size 4
bytes

09 00 00 00 0x9 or 9 Number of methods.

method_ids_off 4
bytes

6c 01 00 00 0x16c Address of the methods
section.

class_defs_size 4
bytes

01 00 00 00 0x1 or 1 Number of classes.

CHAPTER 3: Inside the DEX File 65

class_defs_off 4
bytes

b4 01 00 00 0x1b4 Address of the classes
section.

data_size 4
bytes

7c 02 00 00 0x27c 676 bytes of data.

data_off 4
bytes

d4 01 00 00 0x1d4 Data section address.

The header section in the DEX file is highlighted in Figure 3-4, and you can just
about follow where each field appears using Table 3-1. But reading hexadecimal
requires a certain type of masochism, which is why DexToXML outputs the
same data in a much easier to read XML format. The DexToXML header fields
are shown in Listing 3-5.

Figure 3-4. Header fields in classes.dex

CHAPTER 3: Inside the DEX File 66

Listing 3-5. DexToXML Output of the header Section

<root>
<header>
 <magic>dex\n035\0</magic>
 <checksum>628B4418</checksum>
 <signature>DAA921CA9C4FB4C521D777BC2A184A380DA2AAFE</signature>
 <file_size>0x00000450</file_size>
 <header_size>112</header_size>
 <endian_tag>0x12345678</endian_tag>
 <link_size>0</link_size>
 <link_offset>0x00000000</link_offset>
 <map_offset>0x000003A4</map_offset>
 <string_ids_size>26</string_ids_size>
 <string_ids_offset>0x00000070</string_ids_offset>
 <type_ids_size>10</type_ids_size>
 <type_ids_offset>0x000000D8</type_ids_offset>
 <proto_ids_size>7</proto_ids_size>
 <proto_ids_offset>0x00000100</proto_ids_offset>
 <field_ids_size>3</field_ids_size>
 <field_ids_offset>0x00000154</field_ids_offset>
 <method_ids_size>9</method_ids_size>
 <method_ids_offset>0x0000016C</method_ids_offset>
 <class_defs_size>1</class_defs_size>
 <class_defs_offset>0x000001B4</class_defs_offset>
 <data_size>0x0000027C</data_size>
 <data_offset>0x000001D4</data_offset>
</header>
<string_ids />
<type_ids />
<proto_ids />
<field_ids />
<method_ids />
<class_defs />
<data />
<link_data />
</root>

Several of these fields require further explanation: magic, checksum, header_size,
and Endian_tag. The remaining fields in the header section are sizes and offsets
into other sections.

Magic
The DEX file magic number is the first 8 bytes and is always 64 65 78 0A 30 33
35 00 in hex or the string dex\n035\0. The specification mentions that a newline
and \0 are there to prevent certain types of corruption. The 035 is expected to
change over time like the major and minor version in the class file.

CHAPTER 3: Inside the DEX File 67

Checksum
The checksum is an Adler32 checksum of the file, not including the magic
number. In the classes.dex file in Figure 3-4, the hexadecimal on the first line in
the second block is 62 8B 44 18. But the data is stored little-endian, so the real
checksum is reversed and is the value 0x18448B62.

Header_size
Header size is the same for all classes.dex files: 0x70.

Endian_tag
The endian_tag in all classes.dex files is 0x12345678, which tells you that the
data is stored little-endian (reversed). This won’t necessarily always be the case
for future DEX files. But for the time being, you can assume it’s little-endian.

The string_ids Section
You know from the header section that there are
<string_ids_size>26</string_ids_size> strings in this classes.dex file, which
you can find at the following address:
<string_ids_offset>0x00000070</string_ids_offset>. Conveniently, this is at
the end of the header section. But you already knew that from the header size:
<header_size>0x00000070</header_size>.

Each of these 26 entries in the classes.dex file is an 8 byte address offset or
string_data_off that points at the actual string in the data section. In Figure 3-
5, you can see that the first string_ids entry is 72 02 00 00. Remembering that
the storage is little-endian, this tells you that the first string can be found at
address 0x00000272, further down the file in the data section. The last strings
entry is 73 03 00 00, which tells you that the last string is at an offset or address
of 0x00000373.

CHAPTER 3: Inside the DEX File 68

Figure 3-5. string_ids section of classes.dex

Listing 3-6 shows the strings_ids section in XML format as you continue to
build out the XML representation of the file.

Listing 3-6. DexToXML string_ids Section

<root>
<header />
<string_ids>
 <string>
 <id>0</id>
 <address>0x00000272</address>
 </string>
 <string>
 <id>1</id>
 <address>0x0000027F</address>
 </string>

CHAPTER 3: Inside the DEX File 69

 <string>
 <id>2</id>
 <address>0x00000287</address>
 </string>
 <string>
 <id>3</id>
 <address>0x0000028A</address>
 </string>
 <string>
 <id>4</id>
 <address>0x00000298</address>
 </string>
 <string>
 <id>5</id>
 <address>0x0000029B</address>
 </string>
 <string>
 <id>6</id>
 <address>0x0000029E</address>
 </string>
 <string>
 <id>7</id>
 <address>0x000002A2</address>
 </string>
 <string>
 <id>7</id>
 <address>0x000002A2</address>
 </string>
 <string>
 <id>8</id>
 <address>0x000002AD</address>
 </string>
 <string>
 <id>9</id>
 <address>0x000002B1</address>
 </string>
 <string>
 <id>10</id>
 <address>0x000002B5</address>
 </string>
 <string>
 <id>11</id>
 <address>0x000002CC</address>
 </string>
 <string>
 <id>12</id>
 <address>0x000002E0</address>
 </string>
 <string>
 <id>13</id>

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Inside the DEX File 70

 <address>0x000002F4</address>
 </string>
 <string>
 <id>13</id>
 <address>0x000002F4</address>
 </string>
 <string>
 <id>14</id>
 <address>0x0000030F</address>
 </string>
 <string>
 <id>15</id>
 <address>0x00000323</address>
 </string>
 <string>
 <id>16</id>
 <address>0x00000326</address>
 </string>
 <string>
 <id>17</id>
 <address>0x0000032A</address>
 </string>
 <string>
 <id>18</id>
 <address>0x0000033F</address>
 </string>
 <string>
 <id>19</id>
 <address>0x00000347</address>
 </string>
 <string>
 <id>20</id>
 <address>0x0000034F</address>
 </string>
 <string>
 <id>21</id>
 <address>0x00000357</address>
 </string>
 <string>
 <id>22</id>
 <address>0x0000035F</address>
 </string>
 <string>
 <id>23</id>
 <address>0x00000365</address>
 </string>
 <string>
 <id>24</id>
 <address>0x0000036A</address>
 </string>

CHAPTER 3: Inside the DEX File 71

 <string>
 <id>25</id>
 <address>0x00000373</address>
 </string>
</string_ids>
......
</root>

Unlike in the class file, the strings aren’t intermixed in the constant pool. The
string_ids section consists entirely of pointers to the strings stored in the data
section. The strings can be found in the data section beginning at 0x00000272
and are also presented in Listing 3-7.

Listing 3-7. Strings in the data Section

string[0]: character
string[1]: <init>
string[2]: C
string[3]: Casting.java
string[4]: I
string[5]: L
string[6]: LC
string[7]: LCasting;
string[8]: LI
string[9]: LL
string[10]: Ljava/io/PrintStream;
string[11]: Ljava/lang/Object;
string[12]: Ljava/lang/String;
string[13]: Ljava/lang/StringBuilder;
string[14]: Ljava/lang/System;
string[15]: V
string[16]: VL
string[17]: [Ljava/lang/String;
string[18]: append
string[19]: ascStr
string[20]: ascii
string[21]: chrStr
string[22]: main
string[23]: out
string[24]: println
string[25]: toString

The type_ids Section
The header section tells you there are 10 type_ids that start at an offset of
0x000000D8 (Listing 3-8). The first type_id, as you can see in Figure 3-6, is 02 00
00 00. That points to string_id[2], which points to C in the data section (see
strings_ids). The remaining type_ids fall out in a similar fashion.

CHAPTER 3: Inside the DEX File 72

Figure 3-6. type_ids section of classes.dex

Listing 3-8. DexToXML type_ids Section

<root>
<header />
<string_ids />
<type_ids>
 <type>
 <id>0</id>
 <string_id>2</string_id>
 </type>
 <type>
 <id>1</id>
 <string_id>4</string_id>
 </type>
 <type>
 <id>3</id>
 <string_id>10</string_id>
 </type>

CHAPTER 3: Inside the DEX File 73

 <type>
 <id>4</id>
 <string_id>11</string_id>
 </type>
 <type>
 <id>5</id>
 <string_id>12</string_id>
 </type>
 <type>
 <id>6</id>
 <string_id>13</string_id>
 </type>
 <type>
 <id>7</id>
 <string_id>14</string_id>
 </type>
 <type>
 <id>8</id>
 <string_id>15</string_id>
 </type>
 <type>
 <id>9</id>
 <string_id>17</string_id>
 </type>
</type_ids>
...
</root>

As you saw in the last section, the strings are found in the data section at the
offset or address given in the string_ids section. I’ve pulled out the strings that
are type_ids so you can more easily follow the reverse-engineering process; see
Listing 3-9.

Listing 3-9. Types in the data Section

type[0]: C
type[1]: I
type[2]: LCasting;
type[3]: Ljava/io/PrintStream;
type[4]: Ljava/lang/Object;
type[5]: Ljava/lang/String;
type[6]: Ljava/lang/StringBuilder;
type[7]: Ljava/lang/System;
type[8]: V
type[9]: [Ljava/lang/String;

CHAPTER 3: Inside the DEX File 74

The proto_ids Section
Proto_ids contain the prototype methods in Casting.java. The DVM uses the
Proto_ids together with the relevant type_ids to assemble the method_ids.
Figure 3-7 shows once again where these are located in the classes.dex file.

Each proto_id has three parts, shown in the ProtoID struct in Listing 3-10.
These are pointers to the string_id for the short description or ShortyDescriptor
(see Table 2-2) of the method parameter, a pointer to the type_id for the return
type, and an address offset into the data section to find the parameter list.

Figure 3-7. proto_ids section of classes.dex

Listing 3-10. proto_id Struct

ProtoID{
uint shorty_idx,
uint return_type_idx,
uint parameters_off
}

CHAPTER 3: Inside the DEX File 75

In this example, there are seven proto_ids according to the header file. These
are shown in DexToXML in Listing 3-11; the prototypes themselves are shown in
Listing 3-12.

Listing 3-11. DexToXML proto_ids Section

<root>
<header />
<string_ids />
<type_ids />
<proto_ids>
 <proto>
 <id>0</id>
 <string_id>5</string_id>
 <type_id>5</type_id>
 <address>0x0</address>
 </proto>
 <proto>
 <id>1</id>
 <string_id>6</string_id>
 <type_id>6</type_id>
 <address>0x254</address>
 </proto>
 <proto>
 <id>2</id>
 <string_id>8</string_id>
 <type_id>6</type_id>
 <address>0x25c</address>
 </proto>
 <proto>
 <id>3</id>
 <string_id>9</string_id>
 <type_id>6</type_id>
 <address>0x264</address>
 </proto>
 <proto>
 <id>4</id>
 <string_id>15</string_id>
 <type_id>8</type_id>
 <data_off>0x0</data_off>
 </proto>
 <proto>
 <id>5</id>
 <string_id>10</string_id>
 <type_id>8</type_id>
 <address>0x264</address>
 </proto>
 <proto>
 <id>6</id>
 <string_id>10</string_id>

CHAPTER 3: Inside the DEX File 76

 <type_id>8</type_id>
 <address>0x26c</address>
 </proto>
</proto_ids>
....
</root>

Listing 3-12 shows the prototypes from the data section.

Listing 3-12. Prototypes in the data Section

proto[0]: Ljava/lang/String; proto()
proto[1]: Ljava/lang/StringBuilder; proto(C)
proto[2]: Ljava/lang/StringBuilder; proto(I)
proto[3]: Ljava/lang/StringBuilder; proto(Ljava/lang/String;)
proto[4]: V proto()
proto[5]: V proto(Ljava/lang/String;)
Proto[6]: V proto(Ljava/lang/String;)

The field_ids Section
Next up are the field_ids. Each field_id has three parts: the name of the
class, the type of the field, and the name of the field. Listing 3-13 shows this in a
struct format.

Listing 3-13. field_id Struct

FieldID{
ushort class_idx,
ushort type_idx,
uint name_idx
}

Figure 3-8 shows the location of the field_ids section in the classes.dex file.

CHAPTER 3: Inside the DEX File 77

Figure 3-8. field_ids section of classes.dex

In this example, there are three fields_ids according to the header file. These
are shown in DexToXML in Listing 3-14, and the fields themselves are shown in
Listing 3-15.

Listing 3-14. DexToXML field_ids Section

<root>
<header />
<string_ids />
<type_ids />
<proto_ids />
<fields>
 <field>
 <id>0</id>
 <type_id>2</type_id>

CHAPTER 3: Inside the DEX File 78

 <type_id>5/type_id>
 <string_id>19</string_id>
 </field>
 <field>
 <id>1</id>
 <type_id>2</type_id>
 <type_id>5</type_id>
 <string_id>21</string_id>
 </field>
 <field>
 <id>2/id>
 <type_id>7</type_id>
 <type_id>3</type_id>
 <string_id>23</string_id>
 </field>
</fields>
...
</root>

In this section, you can assemble the fields from the information in the previous
string_ids and type_ids sections. For field [0], you can see that the name of
the class is type_id[2] or Casting, the type of the field is type_id[5] or string,
and the name of the field is string_id[19] or ascStr:

type_id[2] = LCasting;
type_id[5] = Ljava/lang/String;
string_id[19] = ascStr

Listing 3-15 shows this and the similarly resolved remaining fields.

Listing 3-15. Fields Information

field_ids[0]: Casting.ascStr:Ljava/lang/String;
field_ids[1]: Casting.chrStr:Ljava/lang/String;
field_ids[2]: java.lang.System.out:Ljava/io/PrintStream;

The method_ids Section
Each method_id has three parts: the name of the class, the prototype of the
method from the proto_ids section, and the name of the method. Listing 3-16
shows this in a struct format.

Listing 3-16. method_id Struct

MethodIDStruct{
ushort class_idx,
ushort proto_idx,
uint name_idx
}

CHAPTER 3: Inside the DEX File 79

Figure 3-9 shows the location of the method_ids section in the classes.dex file.

Figure 3-9. method_ids section of classes.dex

In this example, there are nine method_ids according to the header file. These
are shown in DexToXML in Listing 3-17, and the methods themselves are shown
in Listing 3-18.

Listing 3-17. DexToXML method_ids Section

<root>
<header />
<string_ids />
<type_ids />

CHAPTER 3: Inside the DEX File 80

<proto_ids />
<fields />
<methods>
 <method>
 <id>0</id>
 <type_id>2</type_id>
 <proto_id>4</proto_id>
 <string_id>1</string_id>
 </method>
 <method>
 <id>1</id>
 <type_id>2</type_id>
 <proto_id>6</proto_id>
 <string_id>22</string_id>
 </method>
 <method>
 <id>2</id>
 <type_id>3</type_id>
 <proto_id>5</proto_id>
 <string_id>24</string_id>
 </method>
 <method>
 <id>3</id>
 <type_id>4</type_id>
 <proto_id>4</proto_id>
 <string_id>1</string_id>
 </method>
 <method>
 <id>4</id>
 <type_id>6</type_id>
 <proto_id>4</proto_id>
 <string_id>1</string_id>
 </method>
 <method>
 <id>5</id>
 <type_id>6</type_id>
 <proto_id>1</proto_id>
 <string_id>18</string_id>
 </method>
 <method>
 <id>6</id>
 <type_id>6</type_id>
 <proto_id>2</proto_id>
 <string_id>18</string_id>
 </method>
 <method>
 <id>7</id>
 <type_id>6</type_id>
 <proto_id>3</proto_id>
 <string_id>18</string_id>

CHAPTER 3: Inside the DEX File 81

 </method>
 <method>
 <id>8</id>
 <type_id>6</type_id>
 <proto_id>0</proto_id>
 <string_id>25</string_id>
 </method>
</methods>
</root>

You can manually assemble the methods from the information in the previous
sections without having to go to the data section. For method [0], the name of
the class is type_id[2] or LCasting, the prototype of the method is proto_id[4]
or V proto (), and the name of the method is string_id[1[<init>:

type_id[2] = LCasting;
proto_id[4] = V proto()
string_id[1] = <init>

Listing 3-18 shows this and the similarly resolved remaining methods.

Listing 3-18. Methods

method[0]: Casting.<init> (<init>()V)
method[1]: Casting.main (main([Ljava/lang/String;)V)
method[2]: java.io.PrintStream.println (println(Ljava/lang/String;)V)
method[3]: java.lang.Object.<init> (<init>()V)
method[4]: java.lang.StringBuilder.<init> (<init>()V)
method[5]: java.lang.StringBuilder.append (append(C)Ljava/lang/StringBuilder;)
method[6]: java.lang.StringBuilder.append (append(I)Ljava/lang/StringBuilder;)
method[7]: java.lang.StringBuilder.append
(append(Ljava/lang/String;)Ljava/lang/StringBuilder;)
method[8]: java.lang.StringBuilder.toString (toString()Ljava/lang/String;)

The class_defs Section
Each class_def has eight parts: the id of the class, the access_flags of the
class, a type_id for the superclass, an address for the interfaces list, a
string_id for the source file name, another address for any annotations (which
aren’t relevant for reverse-engineering source code), an address for the class
data (where you can find more class information), and a final address where you
can find the data with the initial values of any static fields. Listing 3-19 shows
this in a struct format.

CHAPTER 3: Inside the DEX File 82

Listing 3-19. class_defs Struct

ClassDefsStruct {
uint class_idx,
uint access_flags,
uint superclass_idx,
uint interfaces_off,
uint source_file_idx,
uint annotations_off,
uint class_data_off,
uint static_values_off,
}

Figure 3-10 shows the location of the class_defs section in the classes.dex file.

Figure 3-10. class_defs section of classes.dex

In this example there is only one class, shown in DexToXML in Listing 3-20.

CHAPTER 3: Inside the DEX File 83

Listing 3-20. DexToXML class_defs Section

<root>
<header />
<string_ids />
<type_ids />
<proto_ids />
<fields />
<methods />
<classes>
 <class>
 <id>0</id>
 <type_id>2</type_id>
 <access_flags>
 <access_flag>public</access_flag>
 </access_flags>
 <type_id>4</type_id>
 <address>0x0</address>
 <string_id>3</string_id>
 <address>0x0</address>
 <address>0x00000392</address>
 <address>0x0000038D</address>
 </class>
</classes>
...
</root>

In classes.dex, the access_flags value for the class Casting is 0x00000001.
Table 3-2 lists the conversions for access flags; in this case, the access flag is
public.

Table 3-2. Access Flags

Name Value For Classes For Fields For Methods

ACC_PUBLIC 0 x1 public public public

ACC_PRIVATE 0 x2 private private private

ACC_PROTECTED 0 x4 protected protected protected

ACC_STATIC 0 x8 static static static

ACC_FINAL 0 x10 final final final

ACC_SYNCHRONIZED 0x20 synchronized

CHAPTER 3: Inside the DEX File 84

Name Value For Classes For Fields For Methods

ACC_VOLATILE 0x40 volatile

ACC_BRIDGE 0x40

ACC_TRANSIENT 0x80 transient

ACC_VARARGS 0x80 Variable
method args

ACC_NATIVE 0x100 native

ACC_INTERFACE 0x200 interface

ACC_ABSTRACT 0 x400 abstract abstract

ACC_STRICT 0x800 strictfp

ACC_SYNTHETIC 0 x1000

ACC_ANNOTATION 0x2000

ACC_ENUM 0 x4000

(Unused) 0x8000

ACC_CONSTRUCTOR 0x10000 constructor

ACC_DECLARED_SYNCHRONIZED 0x20000

By manually assembling the Java code you can see that the class is defined as
public class Casting from type_id[2], the superclass is java/Lang/Object from
type_id[4], and the source file is Casting.java from string_id[3]:

access_flags = public
type_id[2] = LCasting;
type_id[4] = Ljava/lang/Object;
string_id[3] = Casting.java

CHAPTER 3: Inside the DEX File 85

The data Section
You’re now in the data section, which is the real meat of classes.dex. The
earlier information has led to this point. And you have a choice as you parse the
remainder of the file: you can either parse it sequentially or begin following the
addresses in the data offsets to find the bytecodes you want to decompile.

The most obvious thing to do is to follow the data offsets, so let’s try that
approach. First on the agenda is class_data_item from class_defs, given that
you’re looking for the bytecode. The class_data_item section contains
information about the fields and methods; this is followed by the code_item
section, which has the bytecode.

class_data_item
From disassembling class_defs, you know that the address of the only class in
this file, Casting.java, is 0x392. The information is in a class_data_item
structure, similar to Listing 3-21.

Listing 3-21. class_data_item Struct

ClassDataItemStruct {
uleb128 static_fields_size,
uleb128 instance_fields_size,
uleb128 direct_method_size,
uleb128 virtual_method_size,
encoded_field[static_fields_size] static_fields,
encoded_field[instance_fields_size] instance_fields,
encoded_method[direct_fields_size] direct_methods,
encoded_method[virtual_fields_size] virtual_methods
}

Uleb128 is an unsigned little-endian base 128 encoding format for storing large
integers. To convert an integer to uleb128, you convert it to binary, pad it to a
multiple of 7 bits, split it into seven bit groups, add a high 1 bit on all but the last
group to form bytes (that is, 8 bits), convert to hexadecimal, and then flip the
result to be little-endian. This makes a lot more sense if you look at an example.
The following example comes from Wikipedia
(http://en.wikipedia.org/wiki/LEB128):

10011000011101100101 In raw binary
010011000011101100101 Padded to a multiple of 7 bits
0100110 0001110 1100101 Split into 7-bit groups
00100110 10001110 11100101 Add high 1 bits on all but last group to form
bytes
0x26 0x8E 0xE5 In hexadecimal

CHAPTER 3: Inside the DEX File 86

0xE5 0x8E 0x26 Output stream

Thanks to the small integer in the example, the conversion is much easier: 0x2 in
uleb128 is 2.

There are two other structures for encoded_field and encoded_method, which
take the format shown in Listings 3-22 and 3-23. Field_idx_diff is unusual in
that although the first entry is the direct field_id[] reference, any subsequent
field_id[] entries are listed as the difference from the previous listed field_id.
Method_idx_diff follows the same pattern.

Listing 3-22. encoded_field Struct

EncodedFieldStruct{
 uleb128 field_idx_diff, (explain that it's diff and directly for the
first)
 uleb128 access_flags
}

Listing 3-23. encoded_method Struct

EncodedMethodStruct{
 uleb128 method_idx_diff, (explain that it's diff and directly for the
first)
 uleb128 access_flags,
 uleb128 code_off
}

Figure 3-11 shows where you are in the classes.dex file: right in the middle of
the data section.

Figure 3-11. class_data_item section of classes.dex

Listing 3-24 shows the DexToXML output for the class_defs section.

CHAPTER 3: Inside the DEX File 87

Listing 3-24. DexToXML class_defs

<root>
<header />
<string_ids />
<type_ids />
<proto_ids />
<fields />
<methods />
<classes />
<data>
 <class_data_items>
 <class_data_item>
 <static_field_size>2</static_field_size>
 <instance_field_size>0</instance_field_size>
 <direct_method_size>2</direct_method_size>
 <virtual_method_size>0</virtual_method_size>
 <static_fields>
 <static_field>
 <id>0</id>
 <field_id>0</field_id>
 <access_flags>
 <access_flag>static</access_flag>
 <access_flag>final</access_flag>
 </access_flags>
 </static_field>
 <static_field>
 <id>1</id>
 <field_id>1</field_id>
 <access_flags>
 <access_flag>static</access_flag>
 <access_flag>final</access_flag>
 </access_flags>
 </static_field>
 </static_fields>
 <instance_methods />
 <direct_methods>
 <direct_method>
 <id>0</id>
 <method_id>0</method_id>
 <access_flags>
 <access_flag>public</access_flag>
 <access_flag>constructor</access_flag>
 </access_flags>
 <address>0x1d4</address>
 </direct_method>
 <direct_method>
 <id>1</id>
 <method_id>1</method_id>
 <access_flags>

CHAPTER 3: Inside the DEX File 88

 <access_flag>public</access_flag>
 <access_flag>static</access_flag>
 </access_flags>
 <address>0x1ec</address>
 </direct_method>
 </direct_methods>
 <virtual_methods />
 </data>
</root>

Manually assembling the information, you can see the static field and method
information shown here:

static_field[0]
field[0]: Casting.ascStr:Ljava/lang/String;
access_flags = static & final

static_field[1]
field[1]: Casting.chrStr:Ljava/lang/String;
access_flags = static & final

direct_method[0]
method[0]: Casting.<init> (<init>()V)
access_flags = public & constructor
code_offset = 0x00001d4

direct_method[1]
method[1]: Casting.main (main([Ljava/lang/String;)V)
access_flags = public & static
code_offset = 0x00001ec

You now have all the information about the methods and fields in your class; in
case it’s not obvious, you’re re-creating the Casting.java code from the outside
in. You should also take special note of the code_offset, because that’s where
the bytecode resides that will be used to re-create the source code. That’s
where you’re going next.

code_item
class_data_item told you that code_item begins at 0x1d4 for the first <init>
method and 0x1ec for the main method. The information is in a code_item
structure, similar to Listing 3-25.

Listing 3-25. code_item Struct

CodeItemStruct {
ushort registers_size,
ushort ins_size,
ushort outs_size,
ushort tries_size,
uint debug_info_off,

4

CHAPTER 3: Inside the DEX File 89

uint insns_size,
ushort[insns_size] insns,
ushort padding,
try_item[tries_size] tries,
encoded_catch_handler_list handlers
}

It took some time getting here, but pay special attention to the insns element in
CodeItemStruct: that is where classes.dex stores the bytecode instructions.

Figure 3-12 shows the location of the code_item sections (init and main) in the
classes.dex file. This highlighted area is for both code_items, which are stored
one after the other.

Figure 3-12. code_item section of classes.dex

CHAPTER 3: Inside the DEX File 90

Listing 3-26 shows the DexToXML output for each code_item section.

Listing 3-26. DexToXML code_item

<root>
<header />
<string_ids />
<type_ids />
<proto_ids />
<fields />
<methods />
<classes />
<data>
 <class_data_items />
 <code_items>
 <code_item>
 <id>0</id>
 <registers_size>1</registers_size>
 <ins_size>1</ins_size>
 <outs_size>1</outs_size>
 <tries_size>0</tries_size>
 <debug_info_off>0x37d</debug_info_off>
 <insns_size>4</insns_size>
 <insns>
 <insn>invoke-direct {v0},java/lang/Object/<init> ;
<init>()V</insn>
 <insn>return-void</insn>
 </insns>
 <padding />
 <handlers />
 </code_item>
 <code_item>
 <id>1</id>
 <registers_size>5</registers_size>
 <ins_size>1</ins_size>
 <outs_size>2</outs_size>
 <tries_size>0</tries_size>
 <debug_info_off>0x382</debug_info_off>
 <insns_size>44</insns_size>
 <insns>

 <insn>const/4 v0,0</insn>
 <insn>const/16 v1,128</insn>
 <insn>if-ge v0,v1,l252</insn>
 <insn>sget-object v1,java/lang/System.out
Ljava/io/PrintStream;</insn>
 <insn>new-instance v2,java/lang/StringBuilder</insn>
 <insn>invoke-direct {v2},java/lang/StringBuilder/<init> ;
<init>()V</insn>
 <insn>const-string v3,"ascii "</insn>

CHAPTER 3: Inside the DEX File 91

 <insn>invoke-virtual {v2,v3},java/lang/StringBuilder/append ;
append(Ljava/lang/String;)Ljava/lang/StringBuilder;</insn>
 <insn>move-result-object v2</insn>
 <insn>invoke-virtual {v2,v0},java/lang/StringBuilder/append ;
append(I)Ljava/lang/StringBuilder;</insn>
 <insn>move-result-object v2</insn>
 <insn>const-string v3," character "</insn>
 <insn>invoke-virtual {v2,v3},java/lang/StringBuilder/append ;
append(Ljava/lang/String;)Ljava/lang/StringBuilder;</insn>
 <insn>move-result-object v2</insn>
 <insn>invoke-virtual {v2,v0},java/lang/StringBuilder/append ;
append(C)Ljava/lang/StringBuilder;</insn>
 <insn>move-result-object v2</insn>
 <insn>invoke-virtual {v2},java/lang/StringBuilder/toString ;
toString()Ljava/lang/String;</insn>
 <insn>move-result-object v2</insn>
 <insn>invoke-virtual {v1,v2},java/io/PrintStream/println ;
println(Ljava/lang/String;)V</insn>
 <insn>add-int/lit8 v0,v0,1</insn>
 <insn>int-to-char v0,v0</insn>
 <insn>goto l1fe</insn>
 <insn>return-void</insn>

 </insns>
 <padding />
 <handlers />
 </code_item>
 </code_items>
</data>
</root>

NOTE: Table A-2, "DVM bytecode to opcode mapping,” in the
appendix lists the DVM opcodes you can use to convert the hex code
to the equivalent opcode or bytecode and complete the disassembly.
Refer to that when making your conversions.

You know that the first method in Listing 3-26, <init>, has four instructions,
based on <insns_size />. You can see from the hex file that the four hex codes
are 7010 0300 0000 0e00. You can manually convert this into the following:

 7010 invoke-direct 10 string[16]: VL
 0003 method[3]: java.lang.Object.<init> (<init>()V)
 0000 no argument
 0e00 return-void

This is the empty constructor that the javac compiler adds to all classes that
don’t already have a constructor. So, your first method can be converted
straight back into the following code, which is an empty constructor:

CHAPTER 3: Inside the DEX File 92

 public class Casting()
 {
 }

Summary
This completes your unraveling of the classes.dex file. The complete DexToXML
parser code is on the Apress website (www.apress.com). It includes other
sections such as map_data and debug_info, which are also in the classes.dex
file but aren’t relevant to the decompilation process. The next chapter discusses
all the tools and techniques available in the world of Android disassembly,
decompilation, and obfuscation. You return to DexToXML and DexToSource,
your Android decompiler, in Chapter 5 and 6.

http://www.apress.com

4
Chapter

Tools of the Trade
This chapter looks at some of the tools as well as some simple techniques that
hackers use to reverse-engineer the underlying source code from an Android
package file (APK). It also takes a brief look at the major open source and
commercial obfuscators, because obfuscation is far and away the most popular
tool for protecting source code. In addition, the chapter covers the theory
behind these obfuscators so you’re better informed about what you’re buying.

Let’s begin the chapter by looking at how someone might crack your Android
APK file. That way, you can begin to avoid some of the most obvious pitfalls
when you’re attempting to protect your code.

Downloading the APK
It has been no secret for many years that Java code can be decompiled or
reverse-engineered into something that’s often very close to the original code.
But it’s never been a burning issue since browser applets went out of favor
years ago. The reason for that is plain and simple: access. Most Java code on
the Internet lives on servers and not in the browser. Some desktop applications
are written in Java Swing, such as Corel’s WordPerfect. But these are notable
exceptions, and most Java code lives on web servers behind firewalls. So, you
would have to hack into a server to get access to the class files before you
could decompile them. This is an unlikely scenario; and frankly, if someone has
gained access to your class files by hacking into your server, then you have
worse things to worry about than them decompiling your code.

But this is no longer the case on Android phones. In Chapter 3, you saw how
Java code is compiled down into a classes.dex file. The classes.dex file is then
bundled together with all the other resources, such as images, strings, files, and

CHAPTER 4: Tools of the Trade 94

so on, into the APK that your customer downloads onto their phone. Your
Android app is client side; given the right knowledge, anyone can gain access to
the APK and, ultimately, your code.

There are three ways to gain access to an APK: by backing it up onto an SD
card; via Internet forums; and by using Android’s platform tools, which come
with the Android SDK. These options are discussed in the following sections.

Backing Up the APK
Perhaps the simplest way to gain access to an APK is to use a backup tool to
download the APK onto a micro SD card for later examination on a PC. The
steps are as follows:

1. Download and install the free edition of ASTRO File Manager
from the Android Market.

2. Insert micro SD card into phone

3. Open ASTRO, and press the Menu button on the phone.

4. Choose Tools Application Manager/Backup.

5. Select the check box beside the target APK, and click Backup,
see Figure 4-1.

6. Close ASTRO File Manager.

7. Remove the micro SD Card, and plug it into the computer.
Alternatively, if you don’t have an SD card, e-mail the APK to
yourself.

CHAPTER 4: Tools of the Trade 95

Figure 4-1. Backing up an APK using ASTRO File Manager

Forums
If you’re looking for one of the more popular APKs, it’s probably readily available
on Web. For example, the XDA Developers forum at http://forum.xda-
developers.com is a place where developers share old and new APKs.

Platform Tools
If you develop Android apps, then it’s more likely that you’re going to want to
use the Android platform tools to gain access to the APK. This is trivial way to
download an APK, but only when you’ve gained root or admin access to the
phone, which is known as rooting the phone. In my not-so-scientific opinion,
Android phones are more likely to be rooted or jailbroken than iPhones or
Windows mobile phones because of the open source nature of the Android
platform. Open source attracts more developers who typically want to know (or
have the option to know, if they ever have time) how their phone works by

http://forum.xda-developers.com
http://forum.xda-developers.com
http://forum.xda-developers.com

CHAPTER 4: Tools of the Trade 96

pulling the software or hardware apart. Others may simply want to tether their
phone and get free Wi-Fi, which the carriers discourage.

Rooting is easy on the Android and has been encouraged by Google since the
early days with its unlocked Nexus phone line. The next section shows how
easy it is to root a phone; I can’t cover every device and Android version, but
they all follow a similar pattern. The hardest thing about rooting a phone is often
getting the right USB driver for your device.

Keep in mind that there are risks involved when rooting your phone. Among
other things, doing so may invalidate the warranty; so if anything goes wrong,
you may be left with a dead device.

Rooting the Phone
There are a number of different options when it comes to rooting your phone.
The best approach for your phone depends on the phone type as well as the
version of Android running on the phone. The most straightforward way is to
download Z4Root, SuperOneClick, or Universal Androot Android app from the
XDA Developers forums and install it on your phone. For a while, Z4Root was
available in the Android market; but, not surprisingly, it and other APKs that will
root your phone can no longer be found there.

Z4Root worked well on early Droids running Android 2.2 (Froyo) and used the
RageAgainstTheCage virus to gain root access. This was fixed by Google in
Android 2.3 (Gingerbread). But GingerBreak was then created to allow hackers
to gain access to phones running Gingerbread. And on and on it goes to the
present day, with Superboot now available to gain root access to Android 4.0
(Ice Cream Sandwich) phones.

Let’s look at how Z4Root works on Android 2.2.1 or Froyo. Although it’s an early
version of Android, the process is the same when using GingerBreak on
Gingerbread or Honeycomb or Superboot on Ice Cream Sandwich.

The steps to install Z4Root on your Android 2.2.1 phone are as follows:

1. Back up your phone.

2. Download the APK from http://forum.xda-developers.com. If
you have a virus scanner on your PC, it will pop up a message
saying you’ve downloaded a file with the RageAgainstTheCage
virus, which is the exploit that Z4Root uses to hack the phone.

3. Copy the APK onto an SD card from your computer.

http://forum.xda-developers.com

CHAPTER 4: Tools of the Trade 97

4. Put the SD card into your phone, and install Z4Root using
ASTRO File Manager.

5. Follow the steps in Z4Root, as shown in Figures 4-2 and 4-3.
Choose Root on the first screen; then, choose Temporary Root
to root your phone until your phone is rebooted, or choose
Permanent Root to keep it rooted. It can take several minutes
for Z4Root to root your phone, but if it’s successful, the device
will reboot and the phone will be rooted.

Figure 4-2. Z4Root install

CHAPTER 4: Tools of the Trade 98

Figure 4-3. Choosing a temporary or permanent root in Z4Root

If you run Z4Root after the phone has been rooted, it offers you the option to
unroot the phone. This is useful in case you need to replace your phone and
don’t want to invalidate the warranty (see Figure 4-4).

CHAPTER 4: Tools of the Trade 99

Figure 4-4. Disabling root using Z4Root

The RageAgainstTheCage virus that Z4Root uses spawns numerous adb
(Android Debug Bridge) processes until the phone maxes out on the number of
processes it can handle. Z4Root kills the last process; then, due to a bug in
Android 2.2.1, the last adb process remains running as root and also allows adb
to run as root when rebooted, so the phone is compromised.

Installing and Using the Platform Tools
To see if your phone has been successfully rooted, you need to install the
Android SDK from http://developer.android.com. You can find lots of goodies
in the platform-tools and tools directories of the SDK, including the Dalvik
Debug Monitor Service (DDMS), which lets you debug the phone as well as take

http://developer.android.com

CHAPTER 4: Tools of the Trade 100

screen captures; phone emulators; and the dedexer tool, which helps you see
inside the classes.dex file.

The adb tool, briefly mentioned earlier, connects your computer to the phone.
Using adb, you can connect to the phone or tablet and execute Unix commands
from its command line; see Listing 4-1, shown using a Windows 7 machine. If
you get the # prompt after running the su command, as shown, then your phone
is successfully rooted.

Listing 4-1. Rooted Phone

C:\Users\godfrey>adb devices
List of devices attached
0A3A9B900A01F014 device
C:\Users\godfrey>adb shell
$ su
su

A rooted phone connected to a computer gives you easy access to all the APKs
on the phone. You can find your target APK by executing the command ls
/data/app or ls /data/app-private for the paid or protected apps on your
device using the adb shell; see Listing 4-2.

Listing 4-2. Finding the APK to Download

c:\android\android-sdk\platform-tools>adb shell
$ su
ls /data/app
com.apps.aaa.roadside-1.apk
com.pyxismobile.Ameriprise.ui.activity-1.zip
com.s1.citizensbank-1.zip
com.hungerrush.hungryhowies-1.apk
com.huntington.m-1.apk
com.netflix.mediaclient-1.apk
com.priceline.android.negotiator-1.apk
com.google.android.googlequicksearchbox-1.apk
ls /data/app-private
com.s1.citizensbank-1.apk
com.pyxismobile.Ameriprise.ui.activity-1.apk

If you see a .zip file in the /data/app directory, then the APK is in the
/data/app-private directory.

Exit the adb shell, and, from your computer’s command line, use the adb pull
command to copy the APK to your local folder; see Listing 4-3.

CHAPTER 4: Tools of the Trade 101

Listing 4-3. Using the adb pull Command

c:\android\android-sdk\platform-tools>adb pull data/app/com.riis.mobile.apk

Decompiling an APK
In Chapter 3, you saw that the format of classes.dex is a distinct break from the
Java class-file format. But currently there are no classes.dex decompilers------only
Java class-file decompilers. You have to wait until Chapters 5 and 6 to build
your own decompiler. In the meantime, you can use dex2jar to convert the
classes.dex back into a class file.

dex2jar is a tool for converting Android’s .dex format to Java’s .class format. It
converts from one binary format to another binary format, not to source. and is
available from http://code.google.com/p/dex2jar. Once you convert to a class-
file format, you still need to use a Java decompiler like JD-GUI to see the Java
source.

From the command line, run the following commands on your APK:

c:\temp>dex2jar com.riis.mobile.apk
c:\temp>jd-gui com.riis.mobile.apk.dex2jar

Alternatively, you can use apktool from Ryszard Wiśniewski, which is available
from http://code.google.com/p/android-apktool. On Windows, after installing
apktool, you can decompile an APK with a right-click of the mouse. apktool
unzips the APK, runs baksmali (a disassembler), decodes the
AndroidManifest.xml file using AXMLPrinter2, converts classes.dex to a jar file
using dex2jar, and then pops up the Java code in JD-GUI.

What’s in an APK File?
APKs are in a zipped format. You can unzip the file by changing the extension to
.zip and using your favorite unzipping tool. (Many tools, such as 7-Zip, will
recognize that it’s a zip file and upzip it without your needing to change the
extension.) The contents of such a zip file are shown in Figure 4-5.

http://code.google.com/p/dex2jar
http://code.google.com/p/android-apktool

CHAPTER 4: Tools of the Trade 102

Figure 4-5. Content of an unzipped APK file

The META-INF directory includes a manifest.mf or manifest file, which contains a
manifest digest for all the files. cert.rsa has the certificate used to sign the files,
and cert.sf has the list of resources in the APK along with the SHA-1 digest for
each of the files. The res directory contains all the APK resources, such as XML
layout-definition files and related images, and assets contains images and
HTML, CSS, and JavaScript files. AndroidManifest.xml contains the name,
version number, and access rights of the APK. This is usually in a binary format
and needs to be converted to a readable format using AXMLPrinter2. Finally you
have the classes.dex file with the compiled Java class files; and
resources.asrc, which contains any precompiled resources not in the resources
directory. AXMLPrinter2 is available at http://code.google.com/p/android4me.
Listing 4-4 shows how to use it to decode the AndroidManifest.xml file.

Listing 4-4. AXMLPrinter2.jar Command

java -jar AXMLPrinter2.jar AndroidManifest.xml > AndroidManifest_decoded.xml

Listing 4-5 shows an AndroidManifest.xml file after it has been decoded using
AXMLPrinter2.

Listing 4-5. Decoded AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0"
 package="com.riis.agile.agileandbeyond.android"
 >
 <application
 android:label="@7F070000"
 android:icon="@7F020015"
 android:name=".OpenSourceBridgeApplication"

http://code.google.com/p/android4me
http://schemas.android.com/apk/res/android

CHAPTER 4: Tools of the Trade 103

 android:debuggable="true"
 >
 <activity
 android:theme="@android:01030006"
 android:label="@7F070000"
 android:name=".LaunchActivity"
 >
 <intent-filter
 >
 <action
 android:name="android.intent.action.MAIN"
 >
 </action>
 <category
 android:name="android.intent.category.LAUNCHER"
 >
 </category>
 </intent-filter>
 </activity>
 <activity
 android:theme="@android:01030006"
 android:label="@7F070000"
 android:name=".ScheduleActivity"
 >
 </activity>
 </application>
 <uses-sdk
 android:minSdkVersion="3"
 >
 </uses-sdk>
</manifest>

There can be other directories in an APK. If the file is a HTML5/CSS app, then it
will have an assets library with the HTML pages and JavaScript code. If the APK
uses other Java libraries or any C++ code in a native library, there will be .jar
and .so files in a lib folder.

Random APK Issues
Of a random sample of 50 APKs that I downloaded, only 1 had any sort of
protection. This is likely to change as the issue of decompiling Android code
becomes better understood. This section outlines some of the issues I
encountered in my sample. All company names, web service URLs, and API
keys or login information have been modified to protect the innocent.

CHAPTER 4: Tools of the Trade 104

Web Service Keys and Logins
Although many Android apps are stand-alone, many are classic client-side
applications that communicate via web-service keys to back-end systems.
Listing 4-6 shows decompiled source code with an API key to the production
web service as well as help and support information. This might not be enough
to hack into the web service, but it’s an invitation for the hacker to explore the
API some more.

Listing 4-6. Exposed Web-Service API Keys

public class PortalInfoBuilder
{
 public static List a(Context paramContext)
 {
 ArrayList localArrayList = new ArrayList();
 Boolean localBoolean = Boolean.valueOf(0);
 PortalInfo localPortalInfo = new PortalInfo("Production",

 "https://runapiportal.riis.com/portal.svc",
"d3IWwZ9TjkoNFtNYtwsLYM+gk/Q=", localBoolean);

 localPortalInfo.b("https://support.riis.com/riis_payroll//%d/help.htm");
 localPortalInfo.c("http://www.riis.com/ /guided_tours.xml");
 boolean bool = localArrayList.add(localPortalInfo);
 return localArrayList;
 }
}

Listing 4-7 shows an API that is protected by a username and password. But by
decompiling the APK, the hacker gains access to the any information streamed
by the API. In this case, the API didn’t check to see if the browser was from a
mobile device and the information could be repurposed from a web site. If the
information served up by your API is valuable, then it’s better to hide the
usernames and passwords; you see how to do this in the ‘‘Protecting Your
Source’’ section later in this chapter.

Listing 4-7. Exposed API Username and Password

 private String Digest(ArrayList<String> paramArrayList)
 {
 // setup
 String str5 = "CB8F9322-0C1C-4B28A4:" + str2 + ":" + "cxYacuzafrabru5a1beb";
 String str7 = "POST:" + "https://www.riis.com/api/";
 }

Listing 4-8 shows the same username and password, which were duplicated in
a configuration file for no good reason. Make sure all usernames and passwords
are properly protected wherever they appear before you release an app.

https://runapiportal.riis.com/portal.svc
https://support.riis.com/riis_payroll//%d/help.htm
http://www.riis.com/
https://www.riis.com/api/

CHAPTER 4: Tools of the Trade 105

Listing 4-8. Exposed Web Service Username and Password

public static final String USER_NAME = ”CB8F9322-0C1C-4B28A4";
public static final String PASSWORD = " cxYacuzafrabru5a1beb";

Database Schemas
Another area of concern is databases, where sensitive information is often
stored. Decompiling the APK allows the hacker to see the database schema
information for a SQLite or other database that is stored on the phone. A
number of APKs store an individual’s credit-card information in the local
database. Gaining access to that data might require someone to either steal
your phone or create an Android virus, which may not be very likely; but again,
it’s another piece of information that shouldn’t be exposed.

Listing 4-9 shows some database schema information for a phone app, and
Listing 4-10 shows information for an HTML5 app that stores credit-card
information locally.

Listing 4-9. Creating Schemas and Database Location Information

public class DB
{
 public static final String ACTIVATION_CODE = "activationcode";
 public static final String ALLOWEDIT = "allowedit";
 private static final String ANYWHERE_CREATE = "create table %s

(_id integer primary key autoincrement, description text,
phoneNumber text not null, isActive text not null);";

 private static final String ANYWHERE_TABLE = "anywhere";
 private static final String AV_CREATE = "create table SettingValues

(_id integer primary key autoincrement, keyname text not null,
attribute text not null, value text not null);";

 private static final String AV_TABLE = "SettingValues";
 private static final String CALLCENTER_CREATE = "create table callcenters

(_id integer primary key autoincrement, ServiceUserId text not null,
Name text, PhoneNumber text, Extension text,
Available text not null, LogoffAllowed text not null);";

 private static final String DATABASE_NAME = "settings.db";
 private static final int DATABASE_VERSION = 58;
}

CHAPTER 4: Tools of the Trade 106

Listing 4-10. Storing Credit-Card Information

// ****************************** Credit Cards Table

api.createCustCC = function (email,name,obj){
var rtn=-1;
try{
 api.open();
 conn.execute('INSERT INTO CustomerCC (Email,CCInfo,Name)
 VALUES(?,?,?)',email,JSON.stringify(obj),name);

 rtn=conn.lastInsertRowId;
}

HTML5/CSS
A significant number of Android APKs are originally written in HTML5/CSS.
Using tools such as PhoneGap, the HTML5/CSS files are converted into APKs
and then uploaded into the Android market. The Java code in these apps is a
framework that simply calls the HTML5 app from within an Android frame.
Unzipping the APK you can find the original JavaScript in the assets folder.

Sometimes JavaScript contains even more dangerous information than Java
source code, because the comments typically aren’t removed before the APK is
created. Using a JavaScript compressor helps solve this issue (see the
‘‘Obfuscators’’ section later in this chapter).

Fake Apps
Decompiling APKs doesn’t often result in 100% of the code being reverse-
engineered. dex2jar often fails to completely convert classes.dex to the Java jar
files. But with some effort, it’s possible to tweak the resulting Java source to get
it to recompile into a stolen or hijacked APK that can then be resubmitted to the
Android market under a different name. Fake apps can also be created to
capture usernames and passwords from banking applications or any application
that requires a login.

The most famous fake app to date was a phony Netflix app that collected Netflix
account information. That particular example didn’t use any decompiled code,
but a hijacked app that looked like the real app would offer a level of
sophistication that would fool most people into giving up login information. Fake
apps would also be good vehicles for uploading malware onto the phone or
device with little chance of being detected, because there is no preapproval on
the Android market. Note, though, that the wonderfully name Android Bouncer is
now catching some of these fake apps.

CHAPTER 4: Tools of the Trade 107

Disassemblers
If you spend any time with Android bytecode, you gradually notice different
patterns and language constructs. With practice and a lot of patience, bytecode
becomes just another language.

So far, you’ve seen two disassemblers: dx, which comes as part of the Android
SDK; and DexToXML, which disassembles classes.dex into an XML structure.
You used Android’s dx tool in Chapter 3 to compile Casting.class into a
classes.dex format, but it can also disassemble the classes.dex file into text.

Let’s take a brief look at the dx output and some other alternatives to show
whether they’re better than DexToXML. To begin, don’t forget about
hexadecimal editors, which often provide all the information a hacker needs.

Hex Editors
For many years, hackers have been using hexadecimal editors and other more
sophisticated tools such as Numega’s SoftICE and more recently Hex-Rays’ IDA
to get around licensing schemes on time-bombed versions of all kinds of
software. Cracking demonstration versions of the games that came with almost
every computer magazine in the late 1980s and 1990s was a rite of passage for
many of my fellow programmers.

Typically, programmers tried to protect their games and utilities by checking to
see if the date was 30 days after the installation date. After 30 days, the
evaluation copy ceased to run. If you just couldn’t afford to buy the real thing,
you’d set the time on your computer to be permanently a couple of days before
the evaluation expired. Or, if you were clever, you’d realize that the developer
had to store the install date somewhere: if you were lucky, it was somewhere
simple like in the .ini file or the registry, and you could permanently set it to
some far-off future date such as 1999.

The rite of passage was truly complete when you could just about read
assembler; set a breakpoint to narrow in on the security functions; and find the
piece of code that checked the evaluation date and disable it or create a serial
number or key that the program would accept, so the evaluation copy became a
fully functional version of the software.

There were countless more sophisticated mechanisms for protecting more
expensive programs; the dongle used on many expensive CAD programs
immediately springs to mind. Usually, most protection mechanisms did little
more than keep the average person from disabling or cracking them. The tool of

CHAPTER 4: Tools of the Trade 108

choice for attacking such mechanisms in the Java world is the hexadecimal
editor.

Far from learning from the past, most programmers are condemned to repeat it.
The vast majority of license-protection examples out there rely on something as
simple as a conditional jump. In Listing 4-11, the modified sample code from
Google shows how to expire a demo at the end 2012.

Listing 4-11. Timebombed Trial App Code

if (new Date().after(new GregorianCalendar(2012,12,31).getTime())) {
 AlertDialog.Builder ad = new AlertDialog.Builder(SomeActivity.this);
 ad.setTitle("App Trial Expired");
 ad.setMessage("Please download Full App from Android Market.");
 ad.setPositiveButton("Get from Market", new
DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton) {
 Intent i = new Intent(Intent.ACTION_VIEW,
Uri.parse("http://market.android.com/search?q=pname:com.riis.app_full"));
 startActivity(i);
 finish();
 }
}).show();
}

Using the information in Chapter 3 makes it possible to find the Android
bytecode. Then a quick peek and a poke, changing after to before using a
hexadecimal editor, turns the trial app into a full version. Some hexadecimal
editors such as IDA make this very simple to do; see Figure 4-6.

Figure 4-6. IDA hexadecimal editor

CHAPTER 4: Tools of the Trade 109

dx and dexdump
Dx is part of the Android SDK and can be found in the platform-tools directory
along with dexdump. The dx command with the verbose option completely
unravels any classes.dex file and is currently the best disassembler if you’re
trying to see inside classes.dex. The following command outputs a
disassembled version of classes.dex: it compiles the Casting.class file in the
casting directory and outputs casting.dump:

dx --dex --verbose-dump --dump-to=c:\temp\casting.dump c:\temp\casting

Listing 4-12 shows the output of the header section for the file.

Listing 4-12. Dx Output of the Header Section of classes.dex

000000: 6465 780a 3033 |magic: "dex\n035\0"
000006: 3500 |
000008: 628b 4418 |checksum
00000c: daa9 21ca 9c4f |signature
000012: b4c5 21d7 77bc |
000018: 2a18 4a38 0da2 |
00001e: aafe |
000020: 5004 0000 |file_size: 00000450
000024: 7000 0000 |header_size: 00000070
000028: 7856 3412 |endian_tag: 12345678
00002c: 0000 0000 |link_size: 0
000030: 0000 0000 |link_off: 0
000034: a403 0000 |map_off: 000003a4
000038: 1a00 0000 |string_ids_size: 0000001a
00003c: 7000 0000 |string_ids_off: 00000070
000040: 0a00 0000 |type_ids_size: 0000000a
000044: d800 0000 |type_ids_off: 000000d8
000048: 0700 0000 |proto_ids_size: 00000007
00004c: 0001 0000 |proto_ids_off: 00000100
000050: 0300 0000 |field_ids_size: 00000003
000054: 5401 0000 |field_ids_off: 00000154
000058: 0900 0000 |method_ids_size: 00000009
00005c: 6c01 0000 |method_ids_off: 0000016c
000060: 0100 0000 |class_defs_size: 00000001
000064: b401 0000 |class_defs_off: 000001b4
000068: 7c02 0000 |data_size: 0000027c
00006c: d401 0000 |data_off: 000001d4

Dexdump is the Android SDK equivalent of javap, the Java class-file
disassembler. The dexdump command to produce the output in Listing 4-13 is
as follows:

dexdump -d -h classes.dex

CHAPTER 4: Tools of the Trade 110

Listing 4-13. Plain Dexdump Output with Disassembled File Header

Processing 'classes.dex'...
Opened 'classes.dex', DEX version '035'
Class #0 header:
class_idx : 2
access_flags : 1 (0x0001)
superclass_idx : 4
interfaces_off : 0 (0x000000)
source_file_idx : 3
annotations_off : 0 (0x000000)
class_data_off : 914 (0x000392)
static_fields_size : 2
instance_fields_size: 0
direct_methods_size : 2
virtual_methods_size: 0

Class #0 -
 Class descriptor : 'LCasting;'
 Access flags : 0x0001 (PUBLIC)
 Superclass : 'Ljava/lang/Object;'
 Interfaces -
 Static fields -
 #0 : (in LCasting;)
 name : 'ascStr'
 type : 'Ljava/lang/String;'
 access : 0x0018 (STATIC FINAL)
 #1 : (in LCasting;)
 name : 'chrStr'
 type : 'Ljava/lang/String;'
 access : 0x0018 (STATIC FINAL)
 Instance fields -
 Direct methods -
 #0 : (in LCasting;)
 name : '<init>'
 type : '()V'
 access : 0x10001 (PUBLIC CONSTRUCTOR)
 code -
 registers : 1
 ins : 1
 outs : 1
 insns size : 4 16-bit code units
0001d4: |[0001d4] Casting.<init>:()V
0001e4: 7010 0300 0000 |0000: invoke-direct {v0},
 Ljava/lang/Object;.<init>:()V //
method@0003
0001ea: 0e00 |0003: return-void
 catches : (none)
 positions :
 0x0000 line=1

CHAPTER 4: Tools of the Trade 111

 locals :
 0x0000 - 0x0004 reg=0 this LCasting;

 #1 : (in LCasting;)
 name : 'main'
 type : '([Ljava/lang/String;)V'
 access : 0x0009 (PUBLIC STATIC)
 code -
 registers : 5
 ins : 1
 outs : 2
 insns size : 44 16-bit code units
0001ec: |[0001ec]
Casting.main:([Ljava/lang/String;)V
0001fc: 1200 |0000: const/4 v0, #int 0 // #0
0001fe: 1301 8000 |0001: const/16 v1, #int 128 //
#80
000202: 3510 2800 |0003: if-ge v0, v1, 002b //
+0028
000206: 6201 0200 |0005: sget-object v1,
Ljava/lang/System;.out:Ljava/io/PrintStream; // field@0002
00020a: 2202 0600 |0007: new-instance v2,
Ljava/lang/StringBuilder; // type@0006
00020e: 7010 0400 0200 |0009: invoke-direct {v2},
Ljava/lang/StringBuilder;.<init>:()V // method@0004
000214: 1a03 1400 |000c: const-string v3, "ascii "
// string@0014
000218: 6e20 0700 3200 |000e: invoke-virtual {v2, v3},
Ljava/lang/StringBuilder;.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
// method@0007
00021e: 0c02 |0011: move-result-object v2
000220: 6e20 0600 0200 |0012: invoke-virtual {v2, v0},
Ljava/lang/StringBuilder;.append:(I)Ljava/lang/StringBuilder; // method@0006
000226: 0c02 |0015: move-result-object v2
000228: 1a03 0000 |0016: const-string v3, "
character " // string@0000
00022c: 6e20 0700 3200 |0018: invoke-virtual {v2, v3},
Ljava/lang/StringBuilder;.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
// method@0007
000232: 0c02 |001b: move-result-object v2
000234: 6e20 0500 0200 |001c: invoke-virtual {v2, v0},
Ljava/lang/StringBuilder;.append:(C)Ljava/lang/StringBuilder; // method@0005
00023a: 0c02 |001f: move-result-object v2
00023c: 6e10 0800 0200 |0020: invoke-virtual {v2},
Ljava/lang/StringBuilder;.toString:()Ljava/lang/String; // method@0008
000242: 0c02 |0023: move-result-object v2
000244: 6e20 0200 2100 |0024: invoke-virtual {v1, v2},
Ljava/io/PrintStream;.println:(Ljava/lang/String;)V // method@0002
00024a: d800 0001 |0027: add-int/lit8 v0, v0, #int
1 // #01

CHAPTER 4: Tools of the Trade 112

00024e: 8e00 |0029: int-to-char v0, v0
000250: 28d7 |002a: goto 0001 // -0029
000252: 0e00 |002b: return-void
 catches : (none)
 positions :
 0x0000 line=8
 0x0005 line=9
 0x0027 line=8
 0x002b line=11
 locals :

 Virtual methods -
 source_file_idx : 3 (Casting.java)

dedexer
Dedexer is an open source disassembler tool from Gabor Paller, who is an
engineer in Hungary. It’s available at http://dedexer.sourceforge.net. Dedexer
works as an excellent alternative to dx. Listing 4-14 shows the Dedexer dex.log
output file after executing the following:

java -jar ddx1.18.jar -o -d c:\temp casting\classes.dex

Listing 4-14. Dedexer Header Section Output

00000000 : 64 65 78 0A
 30 33 35 00
 magic: dex\n035\0
00000008 : 62 8B 44 18
 checksum
0000000C : DA A9 21 CA
 9C 4F B4 C5
 21 D7 77 BC
 2A 18 4A 38
 0D A2 AA FE
 signature
00000020 : 50 04 00 00
 file size: 0x00000450
00000024 : 70 00 00 00
 header size: 0x00000070
00000028 : 78 56 34 12
 00 00 00 00
 link size: 0x00000000
00000030 : 00 00 00 00
 link offset: 0x00000000
00000034 : A4 03 00 00
 map offset: 0x000003A4
00000038 : 1A 00 00 00
 string ids size: 0x0000001A

http://dedexer.sourceforge.net

CHAPTER 4: Tools of the Trade 113

0000003C : 70 00 00 00
 string ids offset: 0x00000070
00000040 : 0A 00 00 00
 type ids size: 0x0000000A
00000044 : D8 00 00 00
 type ids offset: 0x000000D8
00000048 : 07 00 00 00
 proto ids size: 0x00000007
0000004C : 00 01 00 00
 proto ids offset: 0x00000100
00000050 : 03 00 00 00
 field ids size: 0x00000003
00000054 : 54 01 00 00
 field ids offset: 0x00000154
00000058 : 09 00 00 00
 method ids size: 0x00000009
0000005C : 6C 01 00 00
 method ids offset: 0x0000016C
00000060 : 01 00 00 00
 class defs size: 0x00000001
00000064 : B4 01 00 00
 class defs offset: 0x000001B4
00000068 : 7C 02 00 00
 data size: 0x0000027C
0000006C : D4 01 00 00
 data offset: 0x000001D4
00000070 : 72 02 00 00

baksmali
Backsmali is Icelandic for disassembler and continues the Icelandic theme of
names associated with the Dalvik virtual machine, which you may remember
was named after an Icelandic village where the one of original programmers’
(Dan Bornstein) ancestors hailed from. Baksmali was written by someone called
JesusFreke and is available at http://code.google.com/p/smali along with
smali, which is assembler in Icelandic. Listing 4-15 shows the baksmali output
for classes.dex when the following command is executed:

java -jar baksmali-1.3.2.jar -o c:\temp casting\classes.dex

Listing 4-15. Casting.smali

.class public LCasting;

.super Ljava/lang/Object;

.source "Casting.java"

static fields

http://code.google.com/p/smali

CHAPTER 4: Tools of the Trade 114

.field static final ascStr:Ljava/lang/String; = "ascii "

.field static final chrStr:Ljava/lang/String; = " character "

direct methods
.method public constructor <init>()V
 .registers 1

 .prologue
 .line 1
 invoke-direct {p0}, Ljava/lang/Object;-><init>()V

 return-void
.end method

.method public static main([Ljava/lang/String;)V
 .registers 5
 .parameter

 .prologue
 .line 8
 const/4 v0, 0x0

 :goto_1
 const/16 v1, 0x80

 if-ge v0, v1, :cond_2b

 .line 9
 sget-object v1, Ljava/lang/System;->out:Ljava/io/PrintStream;

 new-instance v2, Ljava/lang/StringBuilder;

 invoke-direct {v2}, Ljava/lang/StringBuilder;-><init>()V

 const-string v3, "ascii "

 invoke-virtual {v2, v3}, Ljava/lang/StringBuilder;-
>append(Ljava/lang/String;)Ljava/lang/StringBuilder;

 move-result-object v2

 invoke-virtual {v2, v0}, Ljava/lang/StringBuilder;-
>append(I)Ljava/lang/StringBuilder;

 move-result-object v2

 const-string v3, " character "

CHAPTER 4: Tools of the Trade 115

 invoke-virtual {v2, v3}, Ljava/lang/StringBuilder;-
>append(Ljava/lang/String;)Ljava/lang/StringBuilder;

 move-result-object v2

 invoke-virtual {v2, v0}, Ljava/lang/StringBuilder;-
>append(C)Ljava/lang/StringBuilder;

 move-result-object v2

 invoke-virtual {v2}, Ljava/lang/StringBuilder;->toString()Ljava/lang/String;

 move-result-object v2

 invoke-virtual {v1, v2}, Ljava/io/PrintStream;->println(Ljava/lang/String;)V

 .line 8
 add-int/lit8 v0, v0, 0x1

 int-to-char v0, v0

 goto :goto_1

 .line 11
 :cond_2b
 return-void
.end method

Decompilers
Since the early 1990s, at least a dozen decompilers have been released: Mocha,
WingDis, Java Optimize and Decompile Environment (JODE), SourceAgain,
DejaVu, Jad, Homebrew, JReveal, DeCafe, JReverse, jAscii, and JD-GUI. There
are a lso a number o f p rograms-----Jasmine and NMI, for example-----that provide a
front end to Jad or Mocha for the command-line impaired. Some, like the one
that is perhaps the most famous, Mocha, are hopelessly out of date; and most
decompilers other than JD-GUI and Jad are no longer available. The following
sections review some of them.

Mocha
Many of the earliest decompilers have long since disappeared; Jive never even
saw the light of day. Mocha’s life, like that of its author, Hanpeter Van Vliet, was
short. The original beta from June 1996 had a sister program, Crema, which

CHAPTER 4: Tools of the Trade 116

cost $39; it protected class files from being decompiled by Mocha using
obfuscation.

As one of the earliest decompilers, Mocha is a simple command-line tool with
no front-end GUI. It uses JDK 1.02 and was distributed as a zip file of classes,
which were obfuscated by Crema. Mocha is primed to recognize and ignore
class files obfuscated by Crema. Not surprisingly, jar files aren’t supported by
Mocha, because they didn’t exist when Mocha was originally written. And like all
early decompilers, Mocha can’t decompile inner classes, which only appeared in
the JDK 1.1.

To decompile a file using Mocha, make sure the mocha.zip file is in your
classpath, and decompile using the following command:

java mocha.Decompiler [-v] [-o] Casting.class

The decompiler was only released as a beta; its author met with an untimely
demise before he could turn it into what you could call production quality.
Mocha’s flow analysis is incomplete, and it fails on a number of Java constructs.
Several individuals have tried to patch Mocha in the past, but these efforts have
been largely wasted. It makes much more sense these days to use either JD-
GUI or Jad.

Just before he passed away from cancer at the age of only 34, Hanpeter sold
the code for Mocha and Crema to Borland; some of the Crema obfuscation
code made it into early versions of JBuilder. Just a few weeks after Hanpeter’s
death on New Year’s Eve 1996, Mark LaDue’s HoseMocha appeared, which
allowed anyone to protect their files from being decompiled with Mocha without
having to pay for Crema.

Jad
Jad is fast, free, and very effective, and was one of the first decompilers to
handle inner classes properly. It’s the work of Pavel Kouznetsov, a graduate
from the Faculty of Applied Mathematics at Moscow State Aviation School, who
was living in Cyprus when Jad was released. It’s available from
www.varaneckas.com/jad and is probably the simplest command-line tool to use
in this chapter.

The last available version of Jad is v1.58, from 2001. According to the FAQ, the
major known bug is that it doesn’t handle inline functions very well; this
shouldn’t be an issue because most compilers leave it to the JIT engines to
perform inlining.

In most cases, all you need to do is type the following:

http://www.varaneckas.com/jad

CHAPTER 4: Tools of the Trade 117

jad target.class

For a one-man show, Jad is remarkably complete. Its most interesting feature is
that it can annotate source code with the relevant parts of a class file’s
bytecode so you can see where each part of the decompiled code came from.
This is a great tool for understanding bytecode; Listing 4-16 shows an example.

Listing 4-16. Casting.class Decompiled by Jad

// Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http://www.kpdus.com/jad.html
// Decompiler options: packimports(3)
// Source File Name: Casting.java

import java.io.PrintStream;

public class Casting
{

 public Casting()
 {
 }

 public static void main(String args[])
 {
 for(char c = '\0'; c < 128; c++)
 System.out.println((new StringBuilder()).append("ascii
").append(c).append(" character ").append(c).toString());

 }

 static final String ascStr = "ascii ";
 static final String chrStr = " character ";
}

JD-GUI
In 2012, JD-GUI is the de facto Java decompiler. It was written by Emmanual
Dupuy, of Paris, and is available from http://java.decompiler.free.fr.

Drag and drop your Java class files, and they’re immediately decompiled. JD-
GUI also has an eclipse plugin, JD-Eclipse, as well as a core library that can be
integrated with other applications.

JD-GUI was written for JDK 1.5 and has all of the modern constructs up to that
point. It also works seamlessly with jar files. Figure 4-7 shows JD-GUI in action.

http://www.kpdus.com/jad.html
http://java.decompiler.free.fr

CHAPTER 4: Tools of the Trade 118

Figure 4-7. Casting.class decompiled by JD-GUI

dex2jar
Dex2jar is a tool for converting Android’s .dex format to Java’s .class format-----
just one binary format to another binary format, not to Java source. You still
have to run a Java decompiler on the resulting jar file to view the source.
Dex2jar is available from http://code.google.com/p/dex2jar/ and was written
by Panxiaobo, a graduate of Zhejiang University of Science and Technology
who is currently working for a computer security company in China.

Dex2jar isn’t perfect: it fails to convert a not-insignificant number of methods in
a classes.dex file. But if it wasn’t for dex2jar and, to a lesser extent, undx, (See
section below) there wouldn’t be any Android decompilation.

To convert an APK file to a jar file for further decompilation, run the following
command:

c:\temp>dex2jar com.riis.mobile.apk
c:\temp>jd-gui com.riis.mobile.apk.dex2jar

undx
Undx is another, lesser-known DEX-file-to-class-file converter. It was originally
written by Marc Schoenefeld in 2009 and was available at

http://code.google.com/p/dex2jar/

CHAPTER 4: Tools of the Trade 119

www.illegalaccess.org. It now seems to be a dead project and predates the
move of dexdump in the Android SDK folder from tools to the platform-tools
directory.

apktool
Apktool is a frightening addition to the decompiler’s arsenal. Once it’s installed,
a right-click of a mouse will unzip the APK, run baksmali followed by
AXMLPrinter2 and dex2jar, and l aunch JD-GUI-----it completely automates the
process of decompiling an APK. This moves the decompilation process from an
art to a mouse-click and allows anyone who can install ASTRO File Manager the
ability to see an APK’s source. Apktool is available from
http://code.google.com/p/android-apktool/.

Protecting Your Source
Now that you understand the problem and have seen how effective dex2jar and
JD-GUI can be, you’re probably wondering if there’s any way code can be
protected. If you’re at the point of asking why you should write Android apps,
this is the section for you.

The following quote will help define what I mean when I talk about protecting
your source:

[We want] to protect [the] code by making reverse engineering
so technically difficult that it becomes impossible or at the very
least economically inviable.

-----Christian Collberg, Clark Thomborson, and Douglas Low1

You probably have a foot in one of two camps: programmers may be interested
in understanding how others achieve interesting effects, but from a business
point of view nobody wants someone else to rebadge their code and sell it to
third parties as their own. Even worse, under certain circumstances,
decompiling Android code can allow someone to attack other parts of your
systems by gaining access to back-end web-service APIs.

1 ‘‘A Taxonomy of Obfuscating Transformations,’’ Computer Science Technical Reports
148 (1997), https://researchspace.auckland.ac.nz/handle/2292/3491.

http://www.illegalaccess.org
http://code.google.com/p/android-apktool/
https://researchspace.auckland.ac.nz/handle/2292/3491

CHAPTER 4: Tools of the Trade 120

You’ve seen in the previous chapters that for a number of reasons, Android
classes.dex files contain an unusually large amount of symbolic information.
And as you’ve seen, DEX files that aren’t protected in some way return code
that i s a lmost identical to the o riginal-----except, of course, for a complete lack of
programmer comments. This section looks at the steps you can take to limit the
amount of information in the dex file and make the decompiler’s job as difficult
as possible.

The ideal solution would be a black-box application that would take a DEX file
as input and output an equivalent protected version. Unfortunately, as yet,
nothing out there can offer complete protection.

It’s difficult to define criteria for evaluating each currently available protection
strategy. But you can measure just how effective each tool or technique is using
the following three criteria:

 How confused is the decompiler (potency)?

 Can it repel all attempts at decompilation (resilience)?

 What is the application overhead (cost)?

If the performance of the code is badly degraded, then that’s probably too high
a cost. Or if you convert your code into server-side code using web services, for
example, then that will incur a much greater ongoing cost than a stand-alone
application.

Let’s look at the open source and commercial obfuscators and other tools
available on the market and how effective they are at protecting your code.
Chapter 1 looked at legal means of protecting your code. The following is a
technical list of ways to protect your Android source code:

 Writing two versions of the Android app

 Obfuscation

 Web services and server-side execution

 Fingerprinting your code

 Native methods

Writing Two Versions of the Android App
Standard marketing practice in the software industry, especially on the Web, is
to allow users to download a fully functional evaluation copy of the software that
stops working after a certain period of time or number of uses. The theory
behind this try-as-you-buy system is that after the allotted time, say 30 days, the

CHAPTER 4: Tools of the Trade 121

user has become so accustomed to your program that they happily pay for a full
version.

But most software developers realize that these full-version evaluation programs
are a double-edged sword. They show the full functionality of the program but
are often very difficult to protect, no matter what language you’re talking about.
Earlier in this chapter, you saw seen how handy hexadecimal editors are at
ripping through licensing schemes, whether written in C++, Visual Basic, or
Java.

Many different types of protection schemes are employed, but in the world of
Java you have only one very simple protection tool:

if boolean = true
 execute
else
 exit

These types of schemes have been cracked since the first time they appeared in
VB shareware. The protection is modified by flipping a bit in the hexadecimal
editor to

if boolean = false
 execute
else
 exit

How much better it would be to write a demonstration applet or application that
gives the potential customer a taste of the product without giving away the
goods. Consider crippling the demo by removing all but the basic functionality
while leaving in the menu options. If that’s too much, then think about using a
third-party vendor such as WebEx or Citrix so the potential customer gets to see
your application but never has a chance to run it against a decompiler.

Of course, this doesn’t stop anyone from decompiling a legitimate copy of the
fully functional version after they’ve bought it, removing any licensing schemes,
and then passing the app on to other third parties. But they will have to pay to
get that far, and often that is enough of an impediment that hackers look
elsewhere.

Obfuscation
A dozen or so Java obfuscators have seen the light of day. Most of the earlier
versions of this type of technology are now difficult to locate. You can still find
traces of them on the Web if you look hard enough, but apart from one or two
notable exceptions, Java obfuscators have mostly faded into obscurity.

CHAPTER 4: Tools of the Trade 122

This leaves the interesting problem of how to tell whether any of the remaining
handful of obfuscators are any good. Perhaps something very useful in the
original obfuscators has been lost that would have protected your code but
couldn’t hold on long enough when the market took a turn for the worse. You
need to understand what obfuscation means, because otherwise you have no
way of knowing whether one obfuscator is better than another (unless market
demand is your deciding factor).

When obfu scation is outlawed, only outlaw s will sifj difdm
wofiefiemf eifm.

-----Paul Tyma, PreEmptive Software

This section looks at obfuscation theory. I’ll borrow from Collberg, Thomborson,
and Low to help shed some light on where I stand. In their paper, the authors
split obfuscation into three distinct areas:

 Layout obfuscation

 Control obfuscation

 Data obfuscation

Table 4-1 lists a reasonably complete set of obfuscations separated into these
three types and in some cases further classified. Some transformation types
from the paper that are particularly ineffective for Java are omitted from the
table.

Table 4-1. Obfuscation Transformations

Obfuscation Type Classification Transformation

Layout Scramble identifiers.

Control Computations Insert dead or irrelevant
code.

 Extend a loop condition.

 Reducible to non-reducible.

 Add redundant operands.

 Remove programming

CHAPTER 4: Tools of the Trade 123

 idioms.

 Parallelize code.

 Aggregations Inline and outline methods.

 Interleave methods.

 Clone methods.

 Loop transformations.

 Ordering Reorder statements.

 Reorder loops.

 Reorder expressions.

Data Storage and encoding Change encoding.

 Split variables.

 Convert static data to
procedural data.

 Aggregation Merge scalar variables.

 Factor a class.

 Insert a bogus class.

 Refactor a class.

 Split an array.

CHAPTER 4: Tools of the Trade 124

 Merge arrays.

 Fold an array.

 Flatten an array.

 Ordering Reorder methods and
instance variables.

 Reorder arrays.

Most Java obfuscators only perform layout obfuscation, with some limited data
and control obfuscation. This is partly due to the Java verification process
throwing out any illegal bytecode syntax. The Java Verifier is very important if
you write mostly applets because remote code is always verified. These days,
when there are fewer and fewer applets, the main reason Java obfuscators don’t
feature more high-level obfuscation techniques is that the obfuscated code has
to work on a variety of Java virtual machines (JVMs).

Although the JVM specification is pretty well defined, each JVM has its own
slightly different interpretation of the specification, leading to lots of
idiosyncrasies when it comes to how a JVM will handle bytecode that can no
longer be represented by Java source. JVM developers don’t pay much
attention to testing this type of bytecode, and your customers aren’t interested
in whether the bytecode i s syntactically correct-----they just want to know why it
won’t run on their platform.

Remember that there is certain degree of tightrope-walking in advanced forms
of obfuscation-----what I call high-mode obfuscation-----so you need to be very
careful about what these programs can do to your bytecode. The more vigorous
the obfuscation, the more difficult the code is to decompile, but the more likely it
is to crash a DVM.

The best obfuscators perform multiple transformations without breaking the
DVM. Not surprisingly, the obfuscation companies err on the side of caution,
which inevitably means less protection for your source code.

CHAPTER 4: Tools of the Trade 125

Layout Obfuscations
Most obfuscators work by obscuring the variable names or scrambling the
identifiers in a class file to try and make the decompiled source code useless.
As you saw in Chapter 3, this doesn’t stop the bytecode from being executed
because the DEX file uses pointers to the methods names and variables in the
data section rather than the actual names.

Obfuscated code mangles the source-code output from a decompiler by
renaming the variables in the constant pool with automatically generated
garbage variables while leaving the code syntactically correct. This then ends up
in the data section of a DEX file. In effect, the process removes all clues that a
programmer gives when naming variables (most good programmers choose
meaningful variable names). It also means the decompiled code requires some
rework before the code can be recompiled, because of duplicate names.

Most capable programmers can make their way through obfuscated code, with
or without the aid of hints from the variable names. With due care and attention,
perhaps the aid of a profiler to understand the program flow, and maybe a
disassembler to rename the variables, most obfuscated code can be changed
back into something that’s easier to handle no matter how significant the
obfuscation.

Early obfuscators such as JODE replaced method names with a, b, c, d ... z().
Crema’s identifiers were much more unintelligible, using Java-like keywords to
confuse the reader (see Listing 4-17). Several other obfuscators went one step
further by using Unicode-style names, which had the nice side effect of crashing
many of the existing decompilers.

Listing 4-17. Crema-Protected Code

private void _mth015E(void 867 % static 931){
 void short + = 867 % static 931.openConnection();
 short +.setUseCaches(true);
 private01200126013D = new DataInputStream(short +.getInputStream());
 if(private01200126013D.readInt() != 0x5daa749)
 throw new Exception("Bad Pixie header");
 void do const throws = private01200126013D.readShort();
 if(do const throws != 300)
 throw new Exception("Bad Pixie version " + do const throws);
 _fld015E = _mth012B();
 for = _mth012B();
 _mth012B();
 _mth012B();
 _mth012B();
 short01200129 = _mth012B();
 _mth012B();

CHAPTER 4: Tools of the Trade 126

 _mth012B();
 _mth012B();
 _mth012B();
 void |= = _mth012B();
 _fld013D013D0120import = new byte[|=];
 void void = |= / 20 + 1;
 private = false;
 void = = getGraphics();
 for(void catch 11 final = 0; catch 11 final < |=;){
 void while if = |= - catch 11 final;
 if(while if > void)
 while if = void;
 private01200126013D.readFully(_fld013D013D0120import, catch 11 final,
while if);
 catch 11 final += while if;
 if(= != null){
 const = (float)catch 11 final / (float)|=;
 =.setColor(getForeground());
 =.fillRect(0, size().height - 4, (int)(const * size().width), 4);
 }
 }
}

Most obfuscators are much better at reducing the size of a class file than
protecting the source. But PreEmptive Software holds a patent that breaks the
link between the original source and obfuscated code and goes some way
toward protecting your code. All the methods are renamed to a, b, c, d, and so
on. But unlike other programs, PreEmptive renames as many methods as
possible using operator overloading. Overloaded methods have the same name
but different numbers of parameters, so more than one method can be renamed
a():

getPayroll() becomes a()
makeDeposit(float amount) becomes a(float a)
sendPayment(String dest) becomes a(String a)

An example from PreEmptive is shown in Listing 4-18.

Listing 4-18. Operator Overloading

// Before Obfuscation

private void calcPayroll(RecordSet rs) {

 while (rs.hasMore()) {
 Employee employee = rs.getNext(true);
 employee.updateSalary();
 DistributeCheck(employee);
 }
}

CHAPTER 4: Tools of the Trade 127

// After Obfuscation

private void a(a rs) {

 while (rs.a()) {
 a = rs.a(true);
 a.a();
 a(a);
 }
}

Giving multiple names to the different methods can be very confusing. True, the
overloaded methods are difficult to understand, but they aren’t impossible to
comprehend. They too can be renamed into something easier to read. Having
said that, operator overloading has proved to be one of the best layout-
obfuscation techniques to beat because it breaks the link between the original
and the obfuscated Java code.

Control Obfuscations
The concept behind control obfuscations is to confuse anyone looking at
decompiled source by breaking up the control flow of the source. Functional
blocks that belong together are broken apart, and functional blocks that don’t
belong together are intermingled to make the source much more difficult to
understand.

Collberg et al’s paper broke down control obfuscations into a further three
classifications: computation, aggregation, and ordering. Let’s look at some of
the most important of these obfuscations or transformations in a little more
detail.

Computation Obfuscation
Let’s look at computation obfuscation, which attempts to hide the control flow
and sprinkles in additional code to throw hackers off the scent.

(1) Inserting Dead or Irrelevant Code

You can insert dead code or dummy code to confuse your attacker; it can be
extra methods or simply a few lines of irrelevant code. If you don’t want the
performance of your original code to be affected, then add the code in such a
way that it’s never executed. But be careful, because many decompilers and
even obfuscators remove code that never gets called.

CHAPTER 4: Tools of the Trade 128

Don’t l imit yourself to i nserting Java code-----there’s no reason you can’t insert
irrelevant bytecode. Mark Ladue wrote a small program called HoseMocha that
altered a class file by adding a pop bytecode instruction at the end of every
method. As far as most JVMs were concerned, this instruction was irrelevant
and was ignored. But Mocha couldn’t handle it and crashed. No doubt if
Mocha’s author had survived, the problem could have been easily fixed, but he
didn’t.

(2) Extending Loop Conditions

You can obfuscate code by making loop conditions much more complicated.
You do this by extending the loop condition with a second or third condition that
doesn’t do anything. It shouldn’t affect the number of times the loop is executed
or decrease the performance. Try to use bitshift or ? operators in your extended
condition for some added spice.

(3) Transforming Reducible to Non-Reducible

The holy grail of obfuscation is to create obfuscated code that can’t be
converted back into its original format. To do this, you need to break the link
between the bytecode and the original Java source. The obfuscator transforms
the bytecode control flow from its original reducible flow to something
irreducible. Because Java bytecode in some ways is more expressive than Java,
you can use the Java bytecode goto statement to help.

Let’s revisit an old computing adage, which states that using the goto statement
is the biggest sin that can be committed by any self-righteous computer
programmer. Edsger W. Dijkstra’s paper ‘‘Go To Statement Considered
Harmful’’ (http://dl.acm.org/citation.cfm?doid=362929.362947) was the
beginning of this particular religious fervor. The anti-goto statement camp
produced enough anti-goto sentiment in its heyday to put it right up there with
the best iPhone versus Android flame wars.

Common sense says it’s perfectly acceptable to use the goto statement under
certain limited circumstances. For example, you can use goto to replace how
Java uses the break and continue statements. The issue is in using goto to
break out of a loop or having two goto statements operate within the same
scope. You may or may not have seen it in action, but bytecode uses the goto
statement extensively as a means to control the code flow. But the scopes of
two gotos never cross. The Fortran statement in Listing 4-18 illustrates a goto
statement breaking out of a control loop.

http://dl.acm.org/citation.cfm?doid=362929.362947

CHAPTER 4: Tools of the Trade 129

Listing 4-18. Breaking Out of a Control Loop Using a goto Statement

do 40 i = 2,n
if(dx(i).le.dmax) goto 50

dmax = dabs(dx(i))
40 continue
50 a = 1

One of the principal arguments against using this type of coding style is that it
can make it almost impossible to model the control flow of a program and
introduces an a rbitrary nature i nto the program-----which almost by definition is a
recipe for disaster. The control flow has become irreducible.

As a standard programming techniques, it’s a very bad idea to attempt to do
this because not only i s i t l ikely to i ntroduce unforeseen s ide e ffects-----it’s no
longer possible to reduce the f low into a s ingle f low graph-----but it also makes
the code unmanageable.

But there is an argument that this is the perfect tool for protecting bytecode if
you can assume that the person who is writing the protection tool to produce
the illegal gotos knows what they’re doing and won’t introduce any nasty side
effects. It certainly makes the bytecode much harder to reverse-engineer
because the code flow does indeed become irreducible; but it’s important that
any new constructs added be as similar as possible to the original.

A few words of warning before I leave this topic. Although a traditionally
obfuscated class file is almost certainly functionally the same as its original
counterpart, the same can’t be said of a rearranged version. You have to place a
large amount of trust in the protection tool, or it will be blamed for odd
intermittent behavior. If possible, always test your transformed code on your
target devices.

(4) Adding Redundant Operands

Another approach is to add extra insignificant terms to some of your basic
calculations and round up the result before you use the result. For example, the
code in Listing 4-19 prints ‘‘k = 2’’.

Listing 4-19. Before Redundant Operands

import java.io.*;

public class redundantOperands {
 public static void main(String argv[]) {
 int i=1;
 int j=2;
 int k;

CHAPTER 4: Tools of the Trade 130

 k = i * j;
 System.out.println("k = " + k);
 }
}

Add some redundant operands to the code, as shown in Listing 4-20, and the
result will be exactly the same because you cast k to an integer before you print
it.

Listing 4-20. After Redundant Operands

import java.io.*;

public class redundantOperands {

 public static void main(String argv[]) {
 int i = 1, j = 2;
 double x = 0.0007, y = 0.0006, k;

 k = (i * j) + (x * y);
 System.out.println(" k = " + (int)k);
 }
}

(5) Removing Programming Idioms (or Writing Sloppy Code)

Most good programmers amass a body of knowledge over their careers. For
increased productivity, they use the same components, methods, modules, and
classes over and over again in a slightly different way each time. Like osmosis, a
new language gradually evolves until everyone decides to do some things in
more or less the same way. Martin Fowler et al’s book Refactoring: Improving
the Design of Existing Code (Addison-Wesley, 1999) is an excellent collection of
techniques that take existing code and refactor it into shape.

But this type of language standardization creates a series of idioms that give the
hacker way too many helpful hints, even if they can only decompile part of your
code. So throw out all your programming knowledge, stop using design patterns
or classes that you know have been borrowed by lots of other programmers,
and defactor your existing code.

Writing sloppy code, or defactoring the code, is easy. It’s a heretical approach
that gets under my skin and ultimately affects the performance and long-term
maintenance of code, but it may work well if you use some sort of automated
defactoring tool.

g

CHAPTER 4: Tools of the Trade 131

(6) Parallelizing Code

Converting your code to threads can significantly increase its complexity. The
code doesn’t necessarily have to be thread-compatible, as you can see in the
HelloThread example in Listing 4-21. The flow of control has shifted from a
sequential model to a quasi-parallel model, with each thread being responsible
for printing a different word.

Listing 4-21. Adding Threads

import java.util.*;

public class HelloThread extends Thread
{
 private String theMessage;

 public HelloThread(String message) {
 theMessage = message;
 start();
 }

 public void run() {
 System.out.println(theMessage);
 }

 public static void main(String []args)
 {
 new HelloThread("Hello, ");
 new HelloThread("World");
 }
}

The downside of this approach is the programming overhead involved to make
sure the threads are timed correctly and any interprocess communication is
working correctly so the program executes as intended. The upside is that it in a
real-world example, it can take significantly longer to realize that the code can
be collapsed into a sequential model.

Aggregation Obfuscation
In aggregation obfuscation, you take code that should belong together and split
it up. You also merge methods that wouldn’t normally or logically belong
together.

CHAPTER 4: Tools of the Trade 132

(1) Inlining and Outlining Methods

Inlining methods-----replacing every method call with the actual body of the
method-----is often used to optimize code because doing so removes the
overhead of the call. In Java code, this has the side effect of ballooning the
code, often making it much more daunting to understand. You can also balloon
the code by creating a dummy method that takes some of the inlined methods
and outlines them into a dummy method that looks like it’s being called but
doesn’t actually do anything.

Mandate’s OneClass obfuscator took this transformation to the extreme by
inlining every class in an application into a single Java class. But like all early
obfuscation tools, OneClass is no longer with us.

(2) Interleaving Methods

Although it’s a relatively simple task to interleave two methods, it’s much more
difficult to break them apart. Listing 4-22 shows two independent methods; in
Listing 4-23, I’ve interleaved the code together so the methods appear to be
connected. This example assumes you want to show the balance and e-mail the
invoice, but there is no reason it couldn’t be interleaved to allow you to only
email the invoice.

Listing 4-22. showBalance and emailInvoice

void showBalance(double customerAmount, int daysOld) {
 if(daysOld > 60) {
 printDetails(customerAmount * 1.2);
 } else {
 printDetails(customerAmount);
 }
}
void emailInvoice(int customerNumber) {
 printBanner();
 printItems(customerNumber);
 printFooter();
}

Listing 4-23. showBalanceEmailInvoice

void showBalanceEmailInvoice(double customerAmount, int daysOld, int
customerNumber) {
 printBanner();
 if(daysOld > 60) {
 printItems(customerNumber);
 printDetails(customerAmount * 1.2);
 } else {
 printItems(customerNumber);

CHAPTER 4: Tools of the Trade 133

 printDetails(customerAmount);
 }
 printFooter();
}

(3) Cloning Methods

You can clone a method so that the same code but different methods are called
under nearly identical circumstances. You could call one method over another
based on the time of day to give the appearance that there are external factors
when there really aren’t. Use a different style in the two methods, or use cloning
in conjunction with the interleaving transformation so the two methods look very
different but really perform the same function.

(4) Loop Transformations

Compiler optimizations often perform a number of loop optimizations. You can
perform the same optimizations by hand or code them in a tool to obfuscate the
code. Loop unrolling reduces the number of times a loop is called, and loop
fission converts a single loop into multiple loops. For example, if you know
maxNum is divisible by 5, you can unroll the for loop as shown in Listing 4-23.
Listing 4-24 shows an example of loop fission.

Listing 4-23. Loop Unrolling

// Before
for (int i = 0; i<maxNum; i++){
 sum += val[i];
}
// After
for (int i = 0; i<maxNum; i+=5){
 sum += val[i] + val[i+1] + val[i+2] + val[i+3] + val[i+4];
}

Listing 4-24. Loop Fission

// Before
for (x=0; x < maxNum; x++){
 i[x] += j[x] + k[x];
}
// After
for (x=0; x < maxNum; x++) i[x] += j[x];
for (x=0; x < maxNum; x++) i[x] += k[x];

h

CHAPTER 4: Tools of the Trade 134

Ordering Obfuscation

With this technique, you reorder variables and expressions into odd
combinations and formats to create confusion in the decompiler’s mind.

(1) Reordering Expressions

Reordering statements and expressions has a very minor effect on obfuscating
the code. But there is one example where reordering the expressions at a
bytecode level can have a much more significant impact when it once again
breaks the link between bytecode and Java source.

PreEmptive software uses a concept known as transient variable caching (TVC)
to reorder a bytecode expression. TVC is a straightforward technique that has
been implemented in DashO. Say you want to swap two variables, x and y. The
easiest way to accomplish this is to use a temporary variable, as shown in
Listing 4-24. Otherwise you may end up with both variables containing the same
value.

Listing 4-24. Variable Swapping

temp = x;
x = y;
y = temp;

This produces the bytecode in Listing 4-25 to complete the variable swap.

Listing 4-25. Variable Swapping in Bytecode

iload_1
istore_3
iload_2
istore_1
iload_3
istore_2

But the stack behavior of the JVM means there isn’t any need for a temporary
variable. The temporary or transient variable is cached on the stack, and the
stack now doubles as a memory location. You can remove the load and store
operations for the temporary variable, as shown in Listing 4-26.

Listing 4-26. Variable Swapping in Bytecode Using DashO’s TVC

iload_1
iload_2
istore_1
istore_2

CHAPTER 4: Tools of the Trade 135

(2) Reordering Loops

You can transform a loop, making it go backward (see Listing 4-27). This
probably won’t do much in the way of optimization, but it’s one of the simpler
obfuscation techniques.

Listing 4-27. Loop Reversals

// Before
x = 0;
while (x < maxNum){
 i[x] += j[x];
 x++;
}
// After
x = maxNum;
while (x > 0){
 x--;
 i[x] += j[x];
}

Data Obfuscations
Collberg et al’s paper breaks data obfuscations into a further three different
classifications: storage and encoding, aggregation, and ordering. Many of the
transformations you’ve looked at so far exploit the fact that there are standard
conventions to how programmers write code. Turn these conventions on their
head, and you have the basis of a good obfuscation process or tool. The more
transformations you employ, the less likely it will be that anyone or any tool can
understand the original source. This section looks at data obfuscations that
reshape the data into less natural forms.

(1) Storage and Encoding

Storage and encoding looks at unusual ways of storing the data by encoding it
in bitmasks or by splitting variables. The data should always end up the same as
it was originally. It’s often difficult to understand someone else’s or even your
own code 6 to 12 months after it was written, but if it’s stored in these novel
ways then this type of encoding makes it a lot harder to understand.

(2) Changing Encoding

Collberg et al’s paper shows a simple encoding example: an integer variable int
i = 1 is transformed to i' = x*i + y. If you choose x = 8 and y =3, you get the
transformation shown in Listing 4-28.

CHAPTER 4: Tools of the Trade 136

Listing 4-28. Variable Obfuscations

// Before

int i = 1;

while (i < 1000) {

 val = A[i];

 i++;

}

// After

int i = 11;

while (i<8003) {

 val = A[(i-3)/8];

 i+=8;

}

(3) Splitting Variables

Variables can also be split into two or more parts to create a further level of
obfuscation. Collberg suggests a lookup table. For example, if you’re trying to
define the Boolean value of a= true, then you split the variable into a1=0 and
a2=1 and do a lookup on the table in Table 4-2 to convert it back into the
Boolean value.

Table 4-2. Boolean Split

a1 a2 A

1 0 false

0 1 true

(4) Converting Static to Procedural Data

An interesting if not very practical transformation is to hide the data by
converting it from static data to procedural data. For example, the copyright
information in a string could be generated programmatically in your code,
possibly using a combination interleave transformations as discussed earlier.
The method to output the copyright notice could use a lookup-table method or
combine the string from several different variables spread throughout the
application.

(5) Aggregation

In data aggregation, you hide the data structures by merging variables, putting
variables into arrays of unrelated variables, and adding threads where they
aren’t needed.

CHAPTER 4: Tools of the Trade 137

(6) Merging Scalar Variables

Variables can be merged together or converted to different bases and then
merged. The variables values can be stored in a series of bits and pulled out
using a variety of bitmask operators.

(7) Class Transformations

One of my favorite transformations is to use threads to confuse a hacker who is
trying to steal code. There is an overhead because threads are harder to
understand and harder to get right. If someone is dumb enough to try to
decompile code instead of writing their own code, then the likelihood is that
they’ll be scared off by lots of threads.

Sometimes threads aren’t practical because the overhead is just too big; the
next best obfuscation is to use a series of class transformations. The complexity
of a class increases with the depth of a class. Many of the transformations I’ve
discussed go against the programmer’s natural sense of what’s good and right
in the world, but if you use inheritance and interfaces to the extreme, then you’ll
be glad to hear that this creates deep hierarchies that the hacker will need time
to understand.

You also don’t have to defactor (see the section ‘‘Removing Programming
Idioms’’) if you don’t want to; you can refactor too. Refactor two similar classes
into a parent class, but leave behind a buggy version of one or more of the
refactored classes. You can also refactor two dissimilar classes into a parent
class.

(8) Array Transformations

Like variables, arrays can be split, merged, or interleaved into a single array;
folded into multiple dimensions; or flattened into a one- or two-dimensional
array. A straightforward approach is to split an array into two separate arrays,
one containing even and the other the odd indices of the array. A programmer
who uses a two-dimensional array does so for a purpose; changing the
dimension of the array creates a significant impediment in trying to understand
your code.

Ordering
Ordering data declarations removes a lot of the pragmatic information in any
decompiled code. Typically, data is declared at the beginning of a method or
just before it’s first referenced. Spread the data declarations throughout your
code, while still keeping the data elements in the appropriate scope

CHAPTER 4: Tools of the Trade 138

Obfuscation Conclusion
The best obfuscator would use a number of the techniques this section has
looked a t. But you don’t need to buy an obfuscator-----you can add lots of these
transformations yourself. The aim is to confuse the would-be decompiler as
much as possible by removing as much information as you can. You can do this
programmatically or as you write your code. Some of the transformations ask
the developer to simulate what happens in an optimization stage of a compiler;
others are simply bad coding practice to throw the hacker off the scent.

A couple of caveats before you leave this section. First, remember that if you
obfuscate your code by using the same identifier multiple times in the constant
pool, you might want to talk to PreEmptive Software first because it holds the
patent on this technique. Second, you take your chances with any form of high-
mode obfuscation because usually you won’t have the luxury of insisting that
your code be run only on certain specific phone or device.

Finally, writing really bad code makes your code very difficult to read. Be careful
that you don’t throw the baby out with the bath water. Obfuscated code is hard
to maintain and, depending on the transformation, could destroy the
performance of your code. Be careful what transformations you apply.
Automating defactoring so it can be refactored automatically will help you in the
long run. Both ProGuard and DashO let you revert your obfuscations if you need
to do it.

Web Services
Sometimes the simplest ideas are the most effective. One of the simpler ideas
for protecting code is to split your Android source code and keep much of the
functionality on a remote server away from any prying eyes. The downloaded
APK is then a straightforward GUI front end without any interesting code. The
server code doesn’t have to be written in Java, and the web service can be
written in a lightweight RESTful API. But as you saw earlier in this chapter, be
careful to hide any usernames and passwords so hackers don’t attack your web
service. There are some drawbacks to splitting your code though, as it won’t
work if the device is offline.

Fingerprinting Your Code
Although it doesn’t actually protect your code, putting a digital fingerprint in your
software allows you to later prove that you wrote your code. Ideally, this
fingerprint-----usually a copyright notice-----acts like a software watermark that you
can retrieve at any time even if your original code went through a number of

CHAPTER 4: Tools of the Trade 139

changes or manipulations before it made it into someone else’s Java application
or applet. As I’ve said several times, there is no 100% surefire way of protecting
your code, but that might not matter if you can recover some losses by proving
you wrote the original code.

If you’re confused, note that digitally fingerprinting your code is completely
different than signing your applet or application. Signed applets don’t have any
effect when it comes to protecting your code. Signing an applet helps the
person downloading or installing the software decide whether to trust an applet
by looking at the digital certificate associated with the software. It’s a protection
mechanism for someone using your software to certify that this application was
written by XYZ Widget Corp. The user can then decide whether they trust XYZ
Widget Corp before they continue downloading the applet or launching the
application. A digital fingerprint, on the other hand, is typically recovered using a
decoding tool. It helps protect the developer’s copyright, not the end user’s
hard drive.

Several attempts at fingerprinting attempt to protect the entire application using,
for example, a defined coding style. More primitive types of fingerprinting
encode the fingerprint into a dummy method or variable name. This method
name or variable may be made up of a variety of parameters such as the date,
developer’s name, name of the application, and so on. But this approach can
create a Catch-22. Suppose you put a dummy variable in your code and
someone just happens to cut and paste the decompiled method, complete with
the dummy variable, into their program. How can you know it’s your code
without decompiling their code and probably breaking the law in the process?

Most decompilers and even some obfuscators strip this information, because it
doesn’t play an active role as the code is interpreted or executed. Ultimately,
you need to be able to convince the decompiler or obfuscator that any
protected method is part of the original program by invoking the dummy method
or using a fake conditional clause that will never be true so the method will never
get called:

if(false) then{
 invoke dummy method
}

A smart individual can see a dummy method even if the decompiler can’t see
that the previous clause will never be true. They will come to the conclusion that
the dummy method is probably some sort of fingerprint. So, you need to attach
the fingerprint information at the method level for a more robust fingerprint.

Finally, you don’t want the fingerprint to damage the functionality or
performance of your application. As you’ve seen, the Java Verifier often plays a
significant role in determining what protection mechanisms you can apply to

CHAPTER 4: Tools of the Trade 140

your code, so you need to make sure your fingerprint doesn’t stop your
bytecode from making it through the Verifier.

Let’s use this discussion to define the criteria for a good digital-fingerprinting
system:

 It doesn’t use dead-code dummy methods or dummy
variables.

 The fingerprint needs to work even if only part of the program
is stolen.

 The performance of the application shouldn’t be affected. The
end user shouldn’t notice a difference between the
fingerprinted and non-fingerprinted code.

 The fingerprinted code should be functionally equivalent to the
original code.

 The fingerprint must be robust or obscure enough to survive a
decompilation attack as well as any obfuscation tools.
Otherwise it can simply be removed.

 The bytecode should be syntactically correct to get past the
Java Verifier.

 The class file needs to be able to survive someone else
fingerprinting the code with their own fingerprint.

 You need a corresponding decoding tool to recover and view
the fingerprint using, preferably, a secret key. The fingerprint
shouldn’t be visible to the naked eye or other hackers.

You don’t need to be worried about whether the fingerprint is highly visible. On
the one hand, if it’s both visible and robust, then it’s likely to scare off the casual
hacker. But then, the more seasoned attacker will know exactly where to attack.
If the casual hacker doesn’t know the application is protected, then there’s no
up-front deterrent to look elsewhere. PreEmptive’s DashO has a fingerprinting
option.

Native Methods
An approach to help obscure critical information, such as login usernames and
passwords, is to move the passwords to a native library. Native code
decompiles into assembly code, which is much harder to read and can only be
disassembled, not decompiled.

CHAPTER 4: Tools of the Trade 141

The Android Native Development Kit (NDK) is a companion tool to the Android
SDK that lets a developer create portions of their app in native code. To create a
native library that uses the Java Native Interface (JNI), create a folder called jni
at the root of the project. The JNI file can be called decompilingandroid-jni.c.
It must have the suffix -jni.c for the NDK to pick it up. Listing 4-29 is an
example of a simple method in decompilingandroid-jni.c to return a string.

Listing 4-29. Native Method decompilingandroid-jni.c

jstring Java_com_riis_decompilingandroid_getPassword(JNIEnv* env, jobject thiz)
{
 return (*env)->NewStringUTF(env, "password");
}

The reference to this method is handled in com.riis.decompilingandroid:

static
{
 // Load JNI library
 System.loadLibrary("decompilingandroid-jni");
}

/* Native methods that is implemented by the
 * 'decompilingandroid-jni' native library, which is packaged
 * with this application.
 */
public native String getPassword();

The return type is jstring, and the method name is prefaced with Java_
followed by the classpath, class name, and method. This full name is important
for the JNI to map this method to the com.riis.example class.

Create a make file called Android.mk that describes the native sources to the
NDK build:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := decompilingandroid-jni
LOCAL_SRC_FILES := decompilingandroid-jni.c
include $(BUILD_SHARED_LIBRARY)

Build your native code by running the ndk-build script from your project’s
directory. The ndk-build script is installed as part of the NDK SDK and must to
be run under the Linux, OS X, or Windows (with Cygwin) platform:

cd <project>
<ndk>/ndk-build

If the build is successful, you end up with the following file:

<project>/libs/armeabi/libdecompilingandroid-jni.so

CHAPTER 4: Tools of the Trade 142

Simply moving the static string into a native library doesn’t necessarily eliminate
the problem of insecure strings. In the previous example, the string ‘‘password’’
can be easily found by viewing libdecompilingandroid-jni.so in a text editor.
To secure the password even further, break it up into multiple chunks and
concatenate the results back together. Listing 4-30 is an example of breaking up
the cxYacuzafrabru5a1beb web service API password.

Listing 4-30. Hiding Passwords from Disassemblers

char str[80];
char *str1 = "bru";
char *str2 = "1beb";
char *str3 = "5a";
char *str4 = "fra";
char *str5 = "cxY";
char *str6 = "uza";
char *str7 = "ac";

strcpy(str, str5);
strcat(str, str7);
strcat(str, str6);
strcat(str, str4);
strcat(str, str1);
strcat(str, str3);
strcat(str, str2);

return (*env)->NewStringUTF(env, str);

Native code will only run on a specific processor that it was targeted for at
compile time. Every Android device runs on an ARM processer except a few that
aren’t generally available, but that may change in the future. Google TV doesn’t
support the NDK.

Non-Obfuscation Strategies Conclusion
The fact that the Java class file and now the DEX file contain so much
information makes it exceptionally difficult to protect the underlying source. And
yet most software developers continue to ignore the consequences, leaving
their intellectual property at risk. A good obfuscation process should take
polynomial time to produce and exponential time to reverse. I hope this
section’s fairly exhaustive list of obfuscation transformations helps you
approach something nearing that goal. At the very least, Collberg et al’s paper
contains enough information for any developer who wants to get started in this
area.

CHAPTER 4: Tools of the Trade 143

Table 4-3 summarizes the approaches discussed in this chapter. It’s worth
noting that many of the original obfuscation tools didn’t survive the dot-com
implosion, and the companies have either folded or moved into other areas of
specialization.

Table 4-3. Protection Strategies Overview

Strategy Potency Resilience Cost Notes

Writing two versions of the
applet or application

High High Medium

Obfuscation Medium Medium Me dium Ma y break DVM

Web services and server-
side execution

High High High

Fingerprinting your code Low Low Low Useful for legal protection

Native methods High High Low Breaks code portability

One final word: be very careful about relying on obfuscation as your only
method of protection. Remember that disassemblers can also be used to rip
apart your classes.dex file and allow someone to edit the bytecode directly.
Don’t forget that interactive demonstrations over the Web or limited-functionality
demonstration versions of your software can be very effective.

Obfuscators
Based on your newfound understanding of obfuscation techniques, let’s take a
quick tour of the available Android obfuscators.

Crema
Although it won’t work for Android APKs, it’s worth mentioning Crema for
historical reasons. Like many of the Java obfuscators of its day, it’s no longer
around. As mentioned earlier in the chapter, Crema was the original obfuscator
and was a complementary program to the oft-mentioned Mocha, written by the
late Hanpeter Van Vliet. Mocha was given away free, but Crema cost
somewhere around $30. To safeguard against Mocha, you had to buy Crema.

Crema performs some rudimentary obfuscation and has one interesting side
effect: it flags class files so that Mocha refuses to decompile any applets or

CHAPTER 4: Tools of the Trade 144

applications that were previously run through Crema. But other decompilers
soon came onto the market that were not so Crema friendly.

ProGuard
ProGuard is an open source obfuscator that ships with the Android SDK. In
order to enable it in your build process, add the following to your
project.properties file before building a release build. Everyone should do this
to get basic obfuscation into their Android projects:

proguard.config=proguard.cfg

ProGuard provides mostly layout obfuscation protection, as you can see from
Figure 4-8. It doesn’t hide usernames and passwords but renames the methods
and strings so that they no longer provide any contextual information to the
hacker.

Figure 4-8. ProGuard-protected code

CHAPTER 4: Tools of the Trade 145

If you’re using ProGuard, be careful how many public classes you use, because
by default they won’t be obfuscated. Practicing good object-oriented design
pays off when using ProGuard. A good rule of thumb is to always decompile you
APK after obfuscation to make sure it’s doing exactly what you think it’s doing.

DashO
DashO is a commercial obfuscator from PreEmptive software that has been
around since the early Java days. It performs layout, control, and data
obfuscations. Use the wizard to get DashO to obfuscate an Android app. Figure
4-9 shows the DashO GUI; in the left menu you can see the Control Flow,
Renaming, and String Encryption options.

Figure 4-9. DashO GUI

Figure 4-10 uses the same app as in Figure 4-8, but this time it’s been
obfuscated using DashO instead of ProGuard. Note the string encryption.

CHAPTER 4: Tools of the Trade 146

Figure 4-10. DashO-protected code

JavaScript Obfuscators
Just like Java obfuscators, there are a wide variety of JavaScript obfuscators. If
you’re using a HTML5/CSS approach to coding your Android app, then it would
benefit you to use a JavaScript obfuscator or compressor to at least remove the
comments from your code. Comments are simply too useful to someone who is
trying to hack your app. Hackers also don’t need to decompile a HTML5/CSS
app-----all they need to do is unzip it. This makes it very easy to create a fake
version of your app.

Here are two JavaScript obfuscators are worth investigating:

 YUI Compressor, available from
https://github.com/yui/yuicompressor

 JSMin, available from
www.crockford.com/javascript/jsmin.html

I didn’t include any web-based products because you want to be able to run an
obfuscator from the command line to include it in your build process. That way,
you can make sure your JavaScript is always obfuscated.

https://github.com/yui/yuicompressor
http://www.crockford.com/javascript/jsmin.html

CHAPTER 4: Tools of the Trade 147

YUI Compressor is called as follows, where the minimized versions of the
JavaScript files are named decompilingandroid-min.js instead of
decompilingandroid.js:

java -jar yuicompressor.jar -o '.js$:-min.js' *.js

Listing 4-31 shows the code before YUI Compressor, and Listing 4-32 shows
the code after YUI Compressor.

Listing 4-31. Before YUI Compressor

window.$ = $telerik.$;
$(document).ready(function() {
movePageElements();

var text = $('textarea').val();

if (text != "")
$('textarea').attr("style", "display: block;");
else
$('textarea').attr("style", "display: none;");

//cleanup
text = null;
});

function movePageElements() {
var num = null;
var pagenum = $(".pagecontrolscontainer");
if (pagenum.length > 0) {
var num = pagenum.attr("pagenumber");
if ((num > 5) && (num < 28)) {
var x = $('div#commentbutton');
$("div.buttonContainer").prepend(x);
}
else {
$('div#commentbutton').attr("style", "display: none;");
}
}

//Add in dropshadowing
if ((num > 5) && (num < 28)) {
var top = $('.dropshadow-top');
var middle = $('#dropshadow');
var bottom = $('.dropshadow-bottom');
$('#page').prepend(top);
$('#topcontainer').after(middle);
middle.append($('#topcontainer'));
middle.after(bottom);
}

CHAPTER 4: Tools of the Trade 148

//cleanup
num = null;
pagenum = null;
top = null;
middle = null;
bottom=null;
}

function expandCollapseDiv(id) {
$telerik.$(id).slideToggle("slow");
}

function expandCollapseHelp() {
$('.helpitems').slideToggle("slow");

//Add in dropshadowing
if ($('#helpcontainer').length) {
$('#help-dropshadow-bot').insertAfter('#helpcontainer');
$('#help-dropshadow-bot').removeAttr("style");
}
}

function expandCollapseComments() {
var style = $('textarea').attr("style");
if (style == "display: none;")
$('textarea').fadeIn().focus();
else
$('textarea').fadeOut();

//cleanup
style = null;
}

Listing 4-32. After YUI Compressor

window.$=$telerik.$;$(document).ready(function(){movePageElements();var
a=$("textarea").val();if(a!=""){$("textarea").attr("style","display:
block;")}else{$("textarea").attr("style","display: none;")}a=null});function
movePageElements(){var e=null;var
b=$(".pagecontrolscontainer");if(b.length>0){var
e=b.attr("pagenumber");if((e>5)&&(e<28)){var
a=$("div#commentbutton");$("div.buttonContainer").prepend(a)}else{$("div#comment
button").attr("style","display: none;")}}if((e>5)&&(e<28)){var f=$(".dropshadow-
top");var d=$("#dropshadow");var c=$(".dropshadow-
bottom");$("#page").prepend(f);$("#topcontainer").after(d);d.append($("#topconta
iner"));d.after(c)}e=null;b=null;f=null;d=null;c=null}function
expandCollapseDiv(a){$telerik.$(a).slideToggle("slow")}function
expandCollapseHelp(){$(".helpitems").slideToggle("slow");if($("#helpcontainer").
length){$("#help-dropshadow-bot").insertAfter("#helpcontainer");$("#help-

CHAPTER 4: Tools of the Trade 149

dropshadow-bot").removeAttr("style")}}function expandCollapseComments(){var
a=$("textarea").attr("style");if(a=="display:
none;"){$("textarea").fadeIn().focus()}else{$("textarea").fadeOut()}a=null};

Whereas YUI Compressor obfuscates as well as minimizes, JSMin just
minimizes the JavaScript. Be warned that there are also JavaScript beautifiers
that can reverse the process; see http://jsbeautifier.org.

Summary
In this chapter, you’ve learned how to root a phone, download and decompile
an APK, and obfuscate the APK using a couple of tools. That’s a lot to digest. In
the next two chapters, you build your own Android obfuscator and decompiler.
In Chapter 5, you work on the design, and in Chapter 6 you complete the
decompiler implementation. In the final chapter of the book, you return to the
many of the tools you first used in this chapter to see how effective they are
against a series of real-world Android apps. Each of them will act as a case
study in which you have the original source code to test your source protection
against the decompilers and disassemblers.

http://jsbeautifier.org

5
Chapter

Decompiler Design
The next two chapters focus on how to create the decompiler, which is in fact a
cross-compiler that translates bytecode to source code. I cover the theory
behind the relevant design decisions as they arise, but the intention is to provide
enough background information to get you going rather than give you a full-
blown chapter on compiler theory.

Don’t expect your decompiler, DexToSource to be more comprehensive or
better than anything currently on the market; to be honest, it’s probably closer
to Mocha than Jad or JD-GUI. As with most things, the first 80---90% is the
easiest, and the last 10---20% takes much longer to complete. But DexToSource
shows you in basic steps how to write a simple Android decompiler that can
reverse-engineer the majority of code you’ll come across. And it’s also the first
pure classes.dex decompiler-----everything else requires that you translate the
classes.dex to Java class files before you can decompile it.

I cover the general design of the DexToSource decompiler in this chapter and
delve into its implementation in the next. I’ll round off the book by showing you
how to decompile some open source APKs and looking at what the future may
have in store for Android decompilers, obfuscators, and bytecode rearrangers.

The tone of the next two chapters is as practical as possible; I try not to burden
you with too much theory. It’s not that it isn’t tempting to pad the book with
endless pages of compiler theory; it’s just that there are too many other good
books on the subject. Compilers: Principles, Techniques, and Tools by Alfred
Aho, Ravi Sethi, and Jeffrey Ullman (Prentice Hall, 2006), also known as the
Dragon book because of its cover design, is just one of the better examples that
quickly springs to mind. Andrew Appel’s Modern Compiler Implementation in
Java (Cambridge University Press, 2002) is another highly recommended tome.
I’m going more for the style of Crafting a Compiler With C by Charles Fischer
and Richard LeBlanc (Addison Wesley, 1991). Having said that, when there are

CHAPTER 5: Decompiler Design 152

theoretical considerations that you need to know about, I discuss them as
necessary.

Theory Behind the Design
As mentioned earlier, writing a decompiler is pretty similar to writing a compiler
or cross-compiler because both translate data from one format to another. The
essential difference between a decompiler and a compiler is that they go in
opposite directions. In a standard compiler, source code is converted to tokens
and then parsed and analyzed to finally produce a binary executable.

As it happens, decompiling is a very similar process to compilation, but in this
case the back end of the compiler is changing the intermediary symbols back
into source code rather than into assembler. Because of the binary format of an
Android classes.dex file, you can quickly transform the binary into bytecode;
then you can treat the bytecode as just another language, and the decompiler
becomes a cross-compiler or source code translator that transforms bytecode
to Java.

An abundance of other source code translators translate between different
languages: for example, from COBOL to C, or even from Java to Ada or C,
which gives you plenty of places to look for ideas.

In case you’re confused about the difference between opcodes and bytecodes,
an opcode is a single instruction such as sget-object that may or may not be
followed by a data value or operand. Opcodes and operands together are
generally referred to as bytecodes. [max 255]

Defining the Problem
At its simplest, the problem you’re trying to solve is how to convert classes.dex
into a series of files of corresponding Java source code. Listing 5-1 shows the
bytecode from a disassembled version of the classes.dex file of the
Casting.java source code from the previous chapter’s Listing 4-15. These are
your before (bytecode) and after (Casting.java) pictures.

Listing 5-1. Casting Bytecode

const/4 v0,0
const/1 6 v1 ,1 28
if-ge v0,v1,28
sget-object v1 , field[2]
new-instance v2, type[6]
invoke-direct method[4], {v2}

CHAPTER 5: Decompiler Design 153

const-string v3, string[20]
invoke-virtual method[7], {v2, v3}
move-result-object v2
invoke-virtual method[6], {v2, v0}
move-result-object v2
const-string v3, string[0]
invoke-virtual method[7], {v2, v3}
move-result-object v2
invoke-virtual method[5], {v2, v0}
move-result-object v2
invoke-virtual method[8], {v2}
move-result-object v2
invoke-virtual method[2], {v1,v2}
add-int/lit8 v0, v0, 1
int-to-char v0, v0
goto d7
return-void

Filling in the overall structure of the file, field, and the method names looks
straightforward enough; you can get that information from DexToXML. But the
real meat of the problem is converting the opcodes and operands into Java. You
need a parser that can match these opcodes and convert the data back into
Java source. You also need to be able to mirror the control flow and any explicit
transfers (note the goto statements) as well as handle any corresponding labels.

Opcodes can be broken down into the following types:

 Load and save instructions

 Arithmetic instructions

 Type-conversion instructions

 Object creation and manipulation

 Operand stack-management instructions

 Control-transfer instructions

 Method-invocation and return instructions

 Handling exceptions

 Implementing finally

 Synchronization

Every opcode has a defined behavior that you use in the parser to re-create the
original Java. Google’s ‘‘Bytecode for the Dalvik VM’’ at
www.netmite.com/android/mydroid/dalvik/docs/dalvik-bytecode.html does a
good job of describing Dalvik opcodes in what can only be termed Technicolor

http://www.netmite.com/android/mydroid/dalvik/docs/dalvik-bytecode.html

CHAPTER 5: Decompiler Design 154

detail. You’ll use this information in the decompiler’s grammar to create a parser
that will convert the opcodes and operands in Listing 5-1 back into the original
source.

The goal of this chapter is to show you how to achieve this. The structure of
your parser at its most basic will be similar to Figure 5-1.

Figure 5-1. DexToSource parser

The incoming character stream of bytecode needs to be split into a token
stream (what is known as the lexer) for the parser to analyze. The parser
consumes this token stream and outputs Java source based on a series of rules
defined in the parser.

This chapter explains how to create the lexer and parser and discusses whether
this approach makes the most sense and how you can tweak it to create
something more robust. To begin, the next section talks about the compiler
tools available to help you create the lexer and parser pieces of Figure 5-1,
rather than building them by hand.

(De)Compiler Tools
You need to make a number of choices before writing your decompiler. You
could code the entire decompiler by hand, as has been done for several Java
decompilers; or you can look at tools that help make the job a lot easier to code.
These tools are called compiler-compilers, and they’re defined as any tools that
help create a parser, interpreter, or compiler. This is the approach I outline here,
focusing on the following tools:

 Lex

 Yacc

 JLex

 CUP

 ANTLR

The most common of these tools are Lex and Yacc (Yet Another Compiler-
Compiler). Such compiler-compiler tools can be used to scan and parse the
bytecode and have been used by many developers for more complex tasks. Lex
and Yacc operate on textual input files. The Lex input file defines how the input

CHAPTER 5: Decompiler Design 155

character stream is to be tokenized using pattern matching. The Yacc input file
consists of a series of production rules for the tokens. These define the
grammar, and the corresponding actions generate a user-defined output.

The tokenizing rules and the pattern matching rules defined in Lex and Yacc are
used to generate typically C files that are then compiled and used to transform
the input files into the desired target output. For your purposes, the compiler-
compiler tools will generate Java files, not C files, which will become the source
for your decompiler engine.

There are two principal reasons for using compiler-compiler tools. First, these
tools dramatically reduce the number of lines of code, which makes it a lot
easier for readers to understand concepts. Second, using such tools cuts
development time in half.

On the negative side, the generated code, once compiled, can be much slower
than what can be achieved by handcrafting a compiler front end. But making the
code easy to follow i s a p rerequisite o f this book-----nobody wants to read reams
of code to understand what is happening. So, the book uses a version or
derivative of Lex and Yacc.

Myriad alternatives are based on Lex and Yacc. If you take Java as the target
output language, then your choices are JLex or JFlex and CUP (Construction of
Useful Parsers) or BYACC/J as classic Lex and Yacc variants. Then there is
Another Tool for Language Recognition (ANTLR, www.antlr.org), the compiler-
compiler tool formerly known as PCCTS, and JavaCC
(http://javacc.java.net), which combine the lexer and parser steps into one
file.

Lex and Yacc
Lex and Yacc work together. Lex parses the incoming stream into tokens, and
Yacc parses these tokens and generates output. Lex and Yacc are Unix
command-line tools that come with most variations of Unix and Linux, although
they’re oddly absent on Mac OSs.

Lex uses regular expressions to break up the incoming stream into tokens, and
Yacc tries to take these tokens and match them to a number of production rules
using a shift/reduce mechanism. Most production rules are associated with an
action, and it’s these context-sensitive actions that output, in this case, Java
source code.

Tokens are also known as terminals. Production rules are identified by a single
non-terminal. Each non-terminal is made up of a series of terminals and other

http://www.antlr.org
http://javacc.java.net

CHAPTER 5: Decompiler Design 156

non-terminals. An analogy that most people use is to think of terminals (tokens)
as leaves and non-terminals as branches on a tree.

Yacc is a bottom-up LALR(1) parser. Bottom up means you construct the parse
tree from the leaves, whereas a top-down parser tries to construct the tree from
the root. LALR(1) means this type of parser processes tokens supplied by the
scanner Lex from left to right (LALR(1)) using the rightmost derivation and can
look ahead one token (LALR(1)). An LR parser is also known as a predictive
parser, and an LALR is the result of merging two LR sets whose items are
identical except for the lookahead sets. It’s very similar to an LR(1) parser, but
LALR(1) parsers are typically much smaller because the lookahead token helps
reduce the number of possible patterns.

LALR(1) parser generators are the de facto standard in the rest of the computing
world. But Java parsers are more likely to fall into the LL(k) category. LL(k)
parsers are top-down parsers, scanning from left to right (LL(k)) using the
leftmost derivation (LL(k))-----which i s where the top down comes from-----and
looking ahead k tokens.

Many of the standard compiler-construction books heavily feature Lex and Yacc
rather than any other LL(k) alternatives. See
http://dinosaur.compilertools.net/ for more information and links to some
excellent resources.

Stephen Johnson at AT&T Bell Laboratories in New Jersey wrote the original
version of Yacc. Lex and Yacc as well as Sed and Awk were have been included
in every Unix implementation since the early days of Berkeley in the 1980s. Sed
and Awk were typically used for simple command-line parsing tools, and Lex
and Yacc were reserved for complicated parsers. Unix system administrators
and developers typically use some or all of these tools from time to time in an
effort to transform or translate an input file into some other format. These days
Perl, Python and Ruby have largely taken over from such utilities with Lex and
Yacc being reserved for only the most difficult of tasks (if they’re used at all).

Lex and Yacc have been copied many times and are available on many
platforms. Commercial and public-domain variants a re available on Windows-----
for example, from MKS and GNU (Flex/Bison).

It’s doubtful that are many commercial compilers are built around Lex and Yacc,
because they have limited functionality and can’t deal with quirky aspects of
some programming languages. Fortran, for example, is a nightmare to tokenize,
because (among other things) it’s oblivious to whitespace.

http://dinosaur.compilertools.net/

CHAPTER 5: Decompiler Design 157

JLex and CUP Example
Whereas Lex and Yacc generate C code, JLex and CUP are versions of Lex and
Yacc that generate Java code. Elliot Berk originally developed JLex at Princeton
University; JLex has also been maintained by Andrew Appel (also at Princeton),
the author of Modern Compilers in Java/ML/C (Cambridge University Press,
2002); and C. Scott Ananian, who is a director at the One Laptop per Child.

Like all versions of Lex, JLex allows you to use regular expressions to break up
the input stream and turn it into tokens. It can be used in conjunction with CUP
to define grammars, but first let’s use JLex on its own as a simple scanner.

Lex, whether it’s running on Unix or DOS in C or in Java, is a preprocessing
language that transforms the specification or rules into the target language. A C
language specification becomes lex.yy.c and a Java specification becomes
filename.lex.java after it’s run through the Lex program. The code output then
needs to be compiled like any other C or Java program. Lex is normally used in
conjunction with Yacc, but it can also be used on its own for simple tasks such
as removing comments from source code. If you need to attach any logic to the
program, you’ll almost certainly need to hook it up to some sort of parser, such
as Yacc or, in this case, CUP.

Earlier, the chapter mentioned that Lex and Yacc have been used for many
years by compiler developers in the Unix community. If you’re used to Lex, JLex
does differ in a number of ways. Let’s take a closer look.

JLex
A JLex file is split into three sections:

 User code

 JLex directives

 Regular-expression rules

Although the structure (shown later, in Listing 5-3) is different from the Unix
version of Lex typically compiled using C instead of Java, and the definitions
and macros are quite different too, fortunately the regular-expression rules use
standard regular expressions. So, if you’re familiar with Lex or even vi or Perl, it
won’t seem as though you’ve strayed too far from familiar ground. If you haven’t
come across regular expressions before, then the JLex manual
(www.cs.princeton.edu/~appel/modern/java/JLex/current/manual.html) is a
great place to start.

http://www.cs.princeton.edu/~appel/modern/java/JLex/current/manual.html

CHAPTER 5: Decompiler Design 158

Everything that precedes the first %% is user code. It’s copied ‘‘as is’’ into the
generated Java file. Typically, this is a series of import statements. And because
you’re using JLex in conjunction with CUP, your user code consists of the
following:

import java_cup.runtime.Symbol;

The directives section is next, beginning after the first %% and ending with
another %%. This series of directives or flags tells JLex how to behave. For
example, if you use the %notunix operating system compatibility directive, then
JLex expects a newline to be represented by \r\n and not \n as it is in the Unix
world. The remaining directives, listed next, allow you to enter your own code
into various parts of the generated file or change the default name of the
generated lex class, function, or type (for example, from yylex to scanner):

 Internal code

 Init class code

 End of file class

 Macro definitions

 State declarations

 Character counting

 Line counting

 Java CUP compatibility

 Component titles

 Default token type

 End of file

 Operating system compatibility

 Character sets

 Format to and from file

 Exceptions code

 End-of-file return value

 Interface to implement

 Making the generated class public

CHAPTER 5: Decompiler Design 159

This example is only interested in a few of the directives, such as the %cup (CUP
compatibility) directive. For your purposes, the directives section is something
as simple as Listing 5-2.

Listing 5-2. JLex Directives

%%

%cup

digit = [0-9]
whitespace = [\ \t\n\r]
%%

The regular-expressions section is where the real scanning takes place. The
rules are a collection of regular expressions that break up the incoming stream
into tokens for the parser to do its job. As a simple example to put this all
together, Listing 5-3 adds line numbers to any file input from the command line.

Listing 5-3. JLex Scanner that Adds Line Numbers to Files

import java.io.IOException; // include the import statement in the
generated scanner

%% // start of the directives

%public // define the class as public
%notunix // example is running on Windows
%class Num // rename the class to Num

%type void // Yytoken return type is void
%eofval{ // Java code for execution at end-of-
file
 return;
%eofval}

%line // turn line counting on

%{ // internal code to add to the scanner
 // to make it a standalone scanner
public static void main (String args []) throws IO Exception{
 new Num(System.in).yylex();
}
%}

%% // regular expressions section
^\r\n { System.out.println((yyline+1)); }
\r\n { ; }
\n { System.out.println(); }

CHAPTER 5: Decompiler Design 160

.*$ { System.out.println((yyline+1)+"\t"+yytext()); }

Install JLex by obtaining a copy of Main.java from
www.cs.princeton.edu/~appel/modern/java/JLex/. Copy it into a directory
called JLex, and compile it using your favorite Java compiler. Save the Num.lex
file (see Listing 5s-3), removing all the comments, and compile it as follows:

java JLex.Main Num.lex
mv Num.lex.java Num.java
javac Num.java

Now you can add line numbers to your file by typing

java Num < Num.java > Num_withlineno.java

Normally, in a scanner/parser combination, the scanner operates as parser
input. In the first example, you didn’t even generate a token, so there is nothing
to pass to CUP, your Java parser. Lex generates a yylex() function that eats
tokens and passes them on to yyparse(), which is generated by Yacc. You’ll
rename these functions or methods scanner() and parse(), but the idea is the
same.

CUP
CUP, being a Yacc parser, is closest to an LALR(1) (lookahead left-right) parser.
It’s one of a number of Yacc parser generators written for the Java language;
BYACC and Jell are two other examples. If you’re happier with an LL parser and
don’t want to use an LALR grammar, then you might want to look at ANTLR or
JavaCC.

As explained earlier, Yacc lets you define grammar rules to parse incoming
lexical tokens and produce the desired output as defined by your grammar. CUP
is a public-domain Java variant of Yacc, which because of Java’s portability
compiles on any machine that has a JVM and JDK.

Be warned: CUP doesn’t have exactly the same functionality or format as a
Yacc grammar written for any C compiler, but it does behave in a somewhat
similar fashion. CUP can be compiled on any operating system that supports a
JDK.

To install CUP, copy the source files from
http://www2.cs.tum.edu/projects/cup/. Compile by typing the following in the
CUP root directory:

javac java_cup/*java java_cup/runtime/*.java

CUP files are made up of the following four sections:

http://www.cs.princeton.edu/~appel/modern/java/JLex/
http://www2.cs.tum.edu/projects/cup/

CHAPTER 5: Decompiler Design 161

 Preamble or declarations

 User routines

 List of symbols or tokens

 Grammar rules

The declarations section consists of a series Java package and import
statements that vary depending on what other packages or classes you want to
import. Assuming the CUP classes are in your classpath, add the following line
of code to include the CUP classes:

import java_cup.runtime*;

All other imports or package references are optional. A start declaration tells
the parser where to look for the start rule if you want it to start with some other
parser rule. The default is to use the top production rule, so in most grammars
you’ll come across the start rule is redundant information.

Four possible user routines are allowed in CUP: action and parser are used to
insert new code and override default scanner code and variables, init is used
for any parser initialization, and scan is used by the parser to call the next token.
All of these user routines are optional (see Listing 5-4).

Listing 5-4. CUP User Routines

action code {:
 // allows code to be included in the parser class
 public int max_narrow = 10;
 public double narrow_eps = 0.0001;
:};

parser code {:
 // allows methods and variables to be placed
 // into the generated parser class
 public void report_error(String message, Token tok) {
 errorMsg.error(tok.left, message);
 }
:};

// Preliminaries to set up and use the scanner.
init with {: scanner.init(); :};
scan with {: return scanner.yylex(); :};

Both init and scan are commonly used, even if only to change the name of the
scanner/lexer to something more meaningful than Yylex(). Any routines within
init are executed before the first token is requested.

CHAPTER 5: Decompiler Design 162

Most parsers have a series of actions defined in the grammar section. CUP puts
all these actions in a single class file. The action user routine allows you to
define variables and add extra code, such as symbol-table manipulation
routines, that can be referenced in the non-public action class. Parser routines
are used to add extra code to the generated parser c lass------don’t expect to use
them often, if at all, except perhaps for better error handling.

CUP, like the original Yacc, acts like a stack machine. Every time a token is
read, it’s converted into a symbol and placed or shifted onto the stack. These
tokens are defined in the symbols section.

Unreduced symbols are called terminal symbols, and symbols that have been
reduced into some sort of rule or expression are called non-terminal symbols.
To put it another way, terminal symbols are the symbols/tokens used by the
JLex scanner, and non-terminal symbols are what the terminals become after
they satisfy one of the patterns or rules in the grammar section. Listing 5-5
shows a good example of both terminal and non-terminal tokens.

Symbols can have associated integer, float, or string values that are propagated
up the grammar rules until the group of tokens either satisfies a rule and can be
reduced or alternatively crashes the parser if no rule is ever satisfied.

Listing 5-5. Parser.CUP

import java_cup.runtime.*;

// Interface to scanner generated by JLex.
parser code {:
 Parser(Scanner s) { super(); scanner = s; }
 private Scanner scanner;
:};
scan with {: return scanner.yylex(); :};

terminal NUMBER, BIPUSH, NEWARRAY, INT, ASTORE_1, ICONST_1;
terminal ISTORE_2, GOTO, ALOAD_1, ILOAD_2, ISUB, IMUL;
terminal IASTORE, IINC, IF_ICMPLE, RETURN, END;

non terminal function, functions, keyword;
non terminal number;

functions ::= function
 | functions function
 ;

function ::= number keyword number number END
 | number keyword number END
 | number keyword keyword END
 | number keyword END

CHAPTER 5: Decompiler Design 163

 | END
 ;

keyword ::= BIPUSH
 | NEWARRAY
 | INT
 | ASTORE_1
 | ICONST_1
 | ISTORE_2
 | GOTO
 | ALOAD_1
 | ILOAD_2
 | ISUB
 | IMUL
 | IASTORE
 | IINC
 | IF_ICMPLE
 | RETURN
 ;

number ::= NUMBER
 ;

A parser’s functionality depends on its ability to interpret a stream of input
tokens and turn these tokens into the desired output as defined by the
language’s grammar. In order for the parser to have any chance of success, it
needs to know every symbol along with its type before any shift/reduce cycles
can take place. This symbol table is generated from the symbol list in the
previous section.

The list of terminals in the symbol table is used by CUP to generate its own Java
symbol table (Sym.java), which needs to be imported into the JLex scanner for
JLex and CUP to work together.

As mentioned earler, CUP is an LALR(1) machine, meaning it can look ahead
one token or symbol to try to satisfy a grammar rule. If a production rule is
satisfied, then the symbols are popped off the stack and reduced with the
production rule. The aim of every parser is to convert these input symbols into a
series of reduced symbols, right back to the start symbol or token.

In layman’s terms, given a string of tokens and a number of rules, the goal is to
trace the rightmost derivation in reverse by starting with the input string and
working backward to the start symbol. You reduce the series of non-terminals to
a terminal using bottom-up parsing. All input tokens are terminal symbols that
are subsequently combined into non-terminals or other intermediate terminals
using this shift/reduce principle. As each group of symbols is matched to a
production rule, it ultimately kicks off an action that generates some sort of
output defined in the production-rule action.

CHAPTER 5: Decompiler Design 164

The parser in Listing 5-5 parses the input from the main method bytecode
shown in Listing 5-6. The corresponding scanner is shown in Listing 5-7. It
doesn’t produce any output, to keep it as simple as possible.

Listing 5-6. Main Method Bytecode

0 getstatic #7 <Field java.io.PrintStream out>
3 ldc #1 <String "Hello World">
5 invokevirtual #8 <Method void println(java.lang.String)>
8 return

Listing 5-7. Decompiler.lex

package Decompiler; // create a package for the
Decompiler
import java_cup.runtime.Symbol; // import the CUP classes

%%
%cup // CUP declaration
%%

"getstatic" { return new Symbol(sym.GETSTATIC, yytext()); }
"ldc" { return new Symbol(sym.LDC, yytext()); }
"invokevirtual" { return new Symbol(sym.INVOKEVIRTUAL, yytext()); }
"Method" { return new Symbol(sym.METHOD, yytext()); }
"return" { return new Symbol(sym.RETURN, yytext()); }
\"[a-zA-Z]+\" { return new Symbol(sym.BRSTRING, yytext()); }
[a-zA-Z\.]+ { return new Symbol(sym.BRSTRING, yytext()); }
\< { return new Symbol(sym.LABR, yytext()); }
\> { return new Symbol(sym.RABR, yytext()); }
\({ return new Symbol(sym.LBR, yytext()); }
\) { return new Symbol(sym.RBR, yytext()); }
\#[0-9]+|[0-9]+ { return new Symbol(sym.NUMBER, yytext());}
[\t\r\n\f] { /* ignore white space. */ }
. { System.err.println("Illegal character: "+yytext()); }

Under certain circumstances, it’s possible that input tokens or intermediate
symbols can satisfy multiple production rules: this is known as an ambiguous
grammar. The precedence keyword in the symbol section allows the parser to
decide which symbol takes h igher p recedence-----for example, giving the
symbols for multiplication and division precedence over the addition and
subtraction symbols.

It’s worth mentioning that CUP lets you dump the shift/reduction table for
debugging purposes. The command to produce a human-readable dump of the
symbols and grammar, the parse-state machine, and the parse tables and show

CHAPTER 5: Decompiler Design 165

the complete transitions is as follows (some of the output is shown in
Listing 5-8):

java java_cup.Main -dump < Parser.CUP

Listing 5-8. Partial CUP Debug Output

-------- ACTION_TABLE --------
From state #0
 [term 2:SHIFT(to state 2)] [term 18:SHIFT(to state 5)]
From state #1
 [term 0:REDUCE(with prod 0)] [term 2:REDUCE(with prod 0)]
 [term 18:REDUCE(with prod 0)]
From state #2
 [term 2:REDUCE(with prod 23)] [term 3:REDUCE(with prod 23)]
 [term 4:REDUCE(with prod 23)] [term 5:REDUCE(with prod 23)]
 [term 6:REDUCE(with prod 23)] [term 7:REDUCE(with prod 23)]
 [term 8:REDUCE(with prod 23)] [term 9:REDUCE(with prod 23)]
 [term 10:REDUCE(with prod 23)] [term 11:REDUCE(with prod 23)]
 [term 12:REDUCE(with prod 23)] [term 13:REDUCE(with prod 23)]
 [term 14:REDUCE(with prod 23)] [term 15:REDUCE(with prod 23)]
 [term 16:REDUCE(with prod 23)] [term 17:REDUCE(with prod 23)]
 [term 18:REDUCE(with prod 23)]
From state #3
 [term 3:SHIFT(to state 13)] [term 4:SHIFT(to state 14)]
 [term 5:SHIFT(to state 8)] [term 6:SHIFT(to state 18)]
 [term 7:SHIFT(to state 11)] [term 8:SHIFT(to state 10)]
 [term 9:SHIFT(to state 23)] [term 10:SHIFT(to state 12)]
 [term 11:SHIFT(to state 17)] [term 12:SHIFT(to state 15)]
 [term 13:SHIFT(to state 20)] [term 14:SHIFT(to state 9)]
 [term 15:SHIFT(to state 19)] [term 16:SHIFT(to state 22)]
 [term 17:SHIFT(to state 21)]
From state #4
 [term 0:SHIFT(to state 7)] [term 2:SHIFT(to state 2)]
 [term 18:SHIFT(to state 5)]
From state #5
 [term 0:REDUCE(with prod 7)] [term 2:REDUCE(with prod 7)]
 [term 18:REDUCE(with prod 7)]
From state #6
 [term 0:REDUCE(with prod 2)] [term 2:REDUCE(with prod 2)]
 [term 18:REDUCE(with prod 2)]
From state #7
 [term 0:REDUCE(with prod 1)]

CHAPTER 5: Decompiler Design 166

ANTLR
ANTLR stands for ANother Tool for Language Recognition. It’s available for
download at www.antlr.org. ANTLR is a recursive descent, LL(k), or top-down
parser, whereas Yacc is an LR or bottom-up parser. ANTLR starts at the
uppermost rule and tries to recognize the tokens, working outward to the leaves;
Yacc starts with the leaves and works up to the highest rule.

ANTLR also differs fundamentally from JLex and CUP in that the lexer and
parser are in the same file. Lexical rules that create tokens are all uppercase (for
example, IDENT), and the token-parsing rules are all lowercase (for example,
program).

The next example uses ANTLR v3, which was a complete rewrite of ANTLR v2.
v3 also includes some very useful additional functionality, such as
StringTemplates that pull your output statements out of the parser.

Figure 5-2 shows ANTLR integration with the Eclipse IDE. Scott Stanchfield has
some excellent videos of setting up ANTLR in Eclipse and creating a parser at
http://vimeo.com/groups/29150. This is one of best ANTLR resources to hit the
ground running regardless of whether you’re using Eclipse as your IDE. If you
don’t want to use Eclipse, ANTLRWorks is an excellent alternative.

http://www.antlr.org
http://vimeo.com/groups/29150

CHAPTER 5: Decompiler Design 167

Figure 5-2. ANTLR plug-in for Eclipse

Terence Parr, the main force behind ANTLR, has also published two books on
ANTLR: The Definitive ANTLR Reference (Pragmatic Bookshelf, 2007) and
Language Implementation Patterns (Pragmatic Bookshelf, 2010).

ANTLR Example
DexToXML is the classes.dex parser from Chapter 3. DexToXML is completely
written in ANTLR v3; here it parses dedexer output and converts the text into
XML.

The way DexToXML parses hexadecimal digits serves as a simple example of
how you can put together an ANTLR grammar file. The first line of the dedexer
output shows the magic number header line from the classes.dex file:

00000000 : 64 65 78 0A 30 33 35 00 magic: dex\n035\0

ANTLR, like most other parsers, uses regular expressions (regex) in its lexer. The
lexer breaks the input stream into tokens that are then consumed by rules in the
parser. You can use the following regex to recognize the hex digit pairs in your
ANTLR grammar:

CHAPTER 5: Decompiler Design 168

HEX_DIGIT : ('0'..'9'|'a'..'f'|'A'..'F')('0'..'9'|'a'..'f'|'A'..'F') ;

Unlike Lex and Yacc, in ANTLR the lexer and parser are in the same file (see
Listing 5-9). The lexer uses the uppercase rules, and the parser works with the
lowercase rules.

Listing 5-9. DexToXML.g

grammar DexToXML;
options {
 language = Java;
}
@header {
 package com.riis.decompiler;
}
@lexer::header {
 package com.riis.decompiler;
}
rule: HEX_PAIR+;

HEX_PAIR : ('0'..'9'|'a'..'f'|'A'..'F')('0'..'9'|'a'..'f'|'A'..'F') ;
WS : ' '+ {$channel = HIDDEN;};

Each ANTLR parser has a number of sections. At its most basic, the grammar
section defines the name of the parser. The output language of the generated
ANTLR parser is set to Java in the options section, and the package name for
the parser and lexer are set in the @header and @lexer::header sections. These
are followed by the parser and lexer rules. The lexer recognizes groups of two
hexadecimal digits, and the rule recognizes multiple groups of these
hexadecimal pairs. Any whitespace is ignored by the WS rule and placed on a
hidden channel.

For example, suppose you pass 64 65 78 0A. Figure 5-3 illustrates what the
parser sees.

Figure 5-3. Parsed pairs of hexadecimal numbers

CHAPTER 5: Decompiler Design 169

Strategy: Deciding on your Parser Design
ANTLR has been completely rewritten and continues to be developed; it also
has many extras such as the ANTLRWorks tool and Eclipse plug-ins that make
debugging parsers a treat. As you’ve seen, debugging Yacc output isn’t for the
faint hearted.

So, you’ll build the parser using ANTLR v3. Doing so offers a number of
benefits:

 Lexer and parser are in the same file

 StringTemplates functionality pulls the output functionality
from the parser

 ANTLRWorks tool allows you to debug your parser

 Plenty of parser patterns to use

 Simple AST integration

 Eclipse integration

Adding StringTemplates and AST to the original design in Figure 5-1 yields a
new parser design, shown in Figure 5-4.

Figure 5-4. Final decompiler design

StringTemplates means there is no longer any need for endless
System.out.println statements in the parser to output the Java code. From a
programmer’s point of view, those printlns always troubled me when I
designed parsers in the past. They have a bad code smell. StringTemplates
allow you to separate the output from the logic that produces it. That alone is a
good enough reason to choose ANTLR over JLex and CUP because it
dramatically increases your ability to understand how the parser grammar
works. It’s also another reason why the parser is called DexToSource and not
DexToJava: you could potentially write your own templates that would output
C# or C++ by retargeting the templates to write the output in a different
language.

For simplicity’s sake, you can use one of the disassamblers such as DexToXML,
baksmali, dedexer, or dx from the Android toolkit to provide the bytecode as a
character stream rather than making your decompiler parse binary files. Then
your ANTLR parser will convert the bytecode files into Java source.

CHAPTER 5: Decompiler Design 170

A significant part of the problem with building a decompiler is making it general
enough to deal with arbitrary cases. When Mocha comes across an unexpected
language idiom, it either aborts or shoots out illegal gotos. Ideally, you should be
able to code a general-solution decompiler rather than one that is little more
than a series of standard routines and an awful lot of exception cases. You don’t
want DexToSource to fail on any construct, so a general solution is very
attractive.

Before you take that approach, though, you need to know whether it has any
disadvantages and whether you’ll gain a better solution at the expense of
outputting illegible code that looks nothing like the original source. Or, worse
still, will it take an inordinate amount of time to get there? You could replace all
the control structures in a program with a program counter and a single while
loop, but that would destroy the mapping-----and losing structural or syntactical
equivalence is definitely not your goal, even if it’s a general solution.

From my discussion, you know that unlike in other languages, you don’t have
the headache of separating data and instructions because all the data is in the
data section. The remainder of this chapter and the next also show that
recovering source-level expressions is relatively easy. So it seems that your
main problem and any corresponding strategy you use mainly involve handling
the bytecode’s control flow.

The focus here is on the simpler approach where high-level structures are hard-
coded, because it fits well with the parser methodology I’ve discussed. But this
chapter also looks at some advanced strategies where the decompiler infers all
complicated high-level structures from the series of goto statements in the
bytecode.

This section looks at a couple of different strategies you can use to overcome
this problem of synthesizing high-level control constructs from goto-like
primitives. As I said, an ideal general solution would let you decompile every
possible if-then-else or for loop combination without requiring any exception
cases, while keeping the source as close as possible to the original. The
alternative is to attempt to anticipate all high-level control idioms.

You may wonder why you need to have a s trategy-----why can’t you just build a
grammar in ANTLR and see what comes out the other side? Unfortunately, the
parser can recognize only sequential instruction sequences. So, you might not
be able to parse all Dalvik instructions in a single pass, because bytecodes have
an awful habit of branching. Registers are used as temporary storage areas, and
you need to be able to control what happens to that partial sequence when the
code branches. ANTLR on its own doesn’t offer that level of functionality, so you
need to figure out what approach you need to take to store these partially
recognized sequences.

CHAPTER 5: Decompiler Design 171

Choice One
The first choice is to use the techniques based on Cristina Cifuentes’ and K.
John Gough’s work described in the paper ‘‘A Methodology for Decompilation,’’
available from www.itee.uq.edu.au/~cristina/clei1.ps. The paper describes
dcc, Cifuentes’ decompiler for C programs on Intel boxes. Although dcc recovers
C and not Java code, a great deal of the discussion and design of this universal
decompiler is directly applicable to the task at hand.

Choice Two
The second choice is more general----- you transform goto statements into
equivalent forms. It would be much simpler if you could fire off an ANTLR
scanner and parser at the classes.dex file and decompile the code in a single
pass or at the very least dispense with any control-flow analysis. Well, that’s
what Todd Proebsting and Scott Watterson attempt to do in their paper
‘‘Krakatoa: Decompilation in Java,’’ available at
www.usenix.org/publications/library/proceedings/coots97/full_papers/proe
bsting2/proebsting2.pdf.

Krakatoa, an early decompiler and now part of the Sumatra/Toba project, uses
Ramshaw’s algorithm to transform gotos into loops and multilevel breaks. It
claims to offer a neat one-pass solution while still keeping the original structure.
The Krakatoa approach is tempting, because it’s less likely to fail due to control-
flow analysis problems.

Choice Three
The third choice comes from Daniel Ford of IBM Research and was part of
possibly the very f irst decompiler, J ive-----which I believe never made it out of
IBM Research. In his paper ‘‘Jive: A Java Decompiler,’’ Ford puts forward a truly
multipass decompiler that ‘‘integrates its parse state information with the
sequence of machine instructions it is parsing.’’ Jive decompiles by reducing
tokens as more and more information becomes available with each successive
pass.

Choice Four
A final choice is to use the concept of abstract syntax trees (AST) to help you
generalize your decompiler. Rather than having a single-pass parser, you can
abstract out the meaning of the tokens into an AST; then a second parser writes

http://www.itee.uq.edu.au/~cristina/clei1.ps
http://www.usenix.org/publications/library/proceedings/coots97/full_papers/proe

CHAPTER 5: Decompiler Design 172

out the tokens in Java source code. Figure 5-5 shows an AST of (2+3). You can
output this in a number of different ways, as shown in Listing 5-10.

Figure 5-5. AST of (2+3)

Listing 5-10. Possible Outputs for the AST in Figure 5-3

2 + 3
(2 3 +)
bipush 2
bipush 3
iadd

The example in Listing 5-10 expresses the AST in standard mathematical
notation, in reverse Polish or postfix notation, and finally in Java bytecode. All
the outputs are representations of the same AST, but they aren’t cluttered with
any output language implementation. Like StringTemplates, but at a higher
level, the output is divorced from the parsing, giving you a more concise or
abstract representation of what you’re trying to model in your parser.

Parser Design
The main difference between understanding a conversation and a compiler
generating machine code is that the compiler requires many fewer keywords
and rules to produce output the computer can understand------what is called its
native format. If compiling a computer program is a smaller subset of
understanding a human language, then decompiling Dalvik bytecode is a still
smaller subset.

The number of keywords and the limited number of grammar rules allow you to
easily tokenize the input and subsequently parse the tokens into Java phrases.
Turning that back into code requires some further analysis, but I get to that a
little later. You need to turn the input data stream into tokens. Listing 5-10
shows some Dalvik bytecode from the Casting.java file.

CHAPTER 5: Decompiler Design 173

Listing 5-10. Casting.smali Method

sget-object v1, field[2]
new-instance v2, type[6]
invoke-direct method[4], {v2}
const-string v3, string[20]
invoke-virtual method[7], {v2, v3}

Looking at the bytecode, you see that tokens can be split into the following
types:

 Identifiers: Typically, references that take the form {v1} or
{v2}.

 Integers: Usually the data or numbers that follow the opcode
to make up a complete bytecode statement. Good examples
are numbers that are placed on the stack or labels for a goto
statement, such as goto_1.

 Keywords: The 200 or so opcodes that make up the bytecode
language. You look at these and their constructs in Chapter 6.

 Whitespace: Includes tabs, blank spaces, newlines, and
carriage returns if you’re using DOS or Windows. Most
decompilers don’t encounter a lot of whitespace in a real
classes.dex, but you need to deal with it in Dalvik bytecode

All these tokens are crucial for the parser to be able to do its job and try to
match them with the predefined grammatical rules.

The design of the decompiler is shown in Figure 5-4. Everything starts with the
bytecode file or character stream. ANTLR parses this into a token stream, which
is converted into an AST. The AST is parsed by a second parser that converts
the abstract representation into Java; and the templates written using the
StringTemplate library output the tokens into Java text.

Summary
So far, I’ve talked about the tools that are available to help you create a working
decompiler. You’ve seen the different strategies you may choose to employ. I’ve
included alternatives to our design in case you want to take one of the other
options and run with it yourself. If you’re more comfortable with Lex and Yacc
then you’re likely to want to use JLex and CUP and not ANTLR. Personally I
think that JLex and CUP have not changed much in recent years which is why
I’m recommending ANTLR now. And now you have a decompiler design to
implement. By the end of the next chapter, you’ll have a working decompiler

CHAPTER 5: Decompiler Design 174

that can handle the simple classes.dex files. Chapter 6 looks at the various
internal structures and gradually walks through creating a more effective
decompiler that can handle more than the Casting.java example.

6
Chapter

Decompiler
Implementation
You’re now at the point where you learn to deal with the individual bytecodes
and decompile the opcodes into partial statements and expressions and,
ultimately (that’s the plan, anyway), back into complete blocks of source code.

If I’m gauging my audience correctly, this chapter, and possibly the Chapter 5,
will appeal to a significant cross section of readers. This is the nub of the
problem of how to implement a decompiler using a parser built using ANTLR.

To keep this chapter as practical as possible, you use a test suite of simple
programs, each with a different language construct. For each program, you
reconstruct the original source gradually, building the decompiler as you go.
Each program is first compiled and then disassembled. You then look at the
Java source code and the corresponding method bytecode and create a parser
specification for each example to convert the bytecode back into source.

Because the classes.dex file is more than method bytecode, you also need to
be able to incorporate the remaining information in the class file to recover
import statements, package names, and variable names from the non-data
section of the file.

You start by getting more comfortable with ANTLR by completing the
implementation of DexToXML from Chapter 3. DexToXML is a basic ANTLR
parser with no bells and whistles. After that you look at DexToSource (the
decompiler) to decompile the bytecode instructions back into Java source.

CHAPTER 6: Decompiler Implementation 176

DexToXML
DexToXML functions as an easy introduction to ANTLR parsing. It uses ANTLR
as its parser technology. The earlier version of this book used JLex and CUP,
which were d ifficult to get working and even more d ifficult to debug-----you could
spend hours trying to figure out why adding a simple change to a rule broke the
entire parser. A lot has changed since 2004, and ANTLR now offers excellent
integration with Eclipse as well as ANTLRWorks, a standalone ANTLR tool that
turns the art of creating a parser back into a simpler coding task.

ANTLR is also an excellent technology to create your own parsers for all sorts of
domain-specific language (DSL) tools. These are typically one-off mini-
programming languages, rules engines, graphing tools, and so on that are
created to solve a particular problem; they’re often used when scripting tools
such as grep, sed, and awk aren’t up to the job.

Let’s first look at parsing dex.log, which is one of the outputs from the dedexer
tool. Dedexer is a dex file disassembler that is typically used to generate smali-
like disassembler output in a DDX file but can also give you complete output of
classes.dex in the dex.log file. You could also use the output from the
dexdump file that is part of the Android SDK, but personally I prefer the simpler
output of the dex.log file.

Parsing the dex.log Output
dex.log is the log file created when you run the following dedexer command on
the compiled version of your Casting.java file:

c:\temp>java -jar ddx1.18.jar -o -d c:\temp casting\classes.dex

dex.log is raw output of a classes.dex file that allows you to decompile without
the overhead of parsing the bytes, which is just what you want. Listing 6-1
shows the output of the header of the classes.dex file.

Listing 6-1. Header of the Class

00000000 : 64 65 78 0A
 30 33 35 00
 magic: dex\n035\0
00000008 : 62 8B 44 18
 checksum
0000000C : DA A9 21 CA
 9C 4F B4 C5
 21 D7 77 BC
 2A 18 4A 38

CHAPTER 6: Decompiler Implementation 177

 0D A2 AA FE
 signature
00000020 : 50 04 00 00
 file size: 0x00000450
00000024 : 70 00 00 00
 header size: 0x00000070
00000028 : 78 56 34 12
 00 00 00 00
 link size: 0x00000000
00000030 : 00 00 00 00
 link offset: 0x00000000
00000034 : A4 03 00 00
 map offset: 0x000003A4
00000038 : 1A 00 00 00
 string ids size: 0x0000001A
0000003C : 70 00 00 00
 string ids offset: 0x00000070
00000040 : 0A 00 00 00
 type ids size: 0x0000000A
00000044 : D8 00 00 00
 type ids offset: 0x000000D8
00000048 : 07 00 00 00
 proto ids size: 0x00000007
0000004C : 00 01 00 00
 proto ids offset: 0x00000100
00000050 : 03 00 00 00
 field ids size: 0x00000003
00000054 : 54 01 00 00
 field ids offset: 0x00000154
00000058 : 09 00 00 00
 method ids size: 0x00000009
0000005C : 6C 01 00 00
 method ids offset: 0x0000016C
00000060 : 01 00 00 00
 class defs size: 0x00000001
00000064 : B4 01 00 00
 class defs offset: 0x000001B4
00000068 : 7C 02 00 00
 data size: 0x0000027C
0000006C : D4 01 00 00
 data offset: 0x000001D4

Let’s begin by taking a look at the magic number section, which is at the start of
the file; see Listing 6-2.

Listing 6-2. Magic Number

00000000 : 64 65 78 0A
 30 33 35 00
 magic: dex\n035\0

CHAPTER 6: Decompiler Implementation 178

The format is the same for all classes.dex files. The goal is to parse the magic
number and output

<root><header><magic>dex\n035\0</magic></header></root>

using this information:

 Eight hexadecimal digits, the address in the file

 A colon

 Two series of eight hexadecimal digits

 The magic keyword

 Another colon

 The classes.dex magic number

ANTLR at Work
ANTLR works by first tokenizing the input and then, through a series of parsing
rules, producing the desired output. The first step is to break the information
into tokens. An obvious token is a hexadecimal digit (HEX_DIGIT) along with the
WS or whitespace that you want the parser to ignore. The ANTLR parser for
tokenizing the magic-number header information is shown in Listing 6-3. The
grammar, the options, and @header and @lexer tell the parser the name of the
grammar, the language in which the parser will be generated, and the package
names for the parser and lexer, respectively.

Listing 6.3. ANTLR Magic-Number Parser

grammar DexToXML;
options {language = Java;}
@header {package com.riis.decompiler;}
@lexer::header {package com.riis.decompiler;}

rule : header
 ;

header : magic
 ;

magic: address eight_hex eight_hex IDENT ':' MAGIC_NUM
 ;

hex_address: '0x' eight_hex
 ;

CHAPTER 6: Decompiler Implementation 179

address
 : eight_hex ':'
 ;

eight_hex
 : DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT
 ;

IDENT: ('a'..'z')+;
MAGIC_NUM: 'dex\\n035\\0';
DIGIT : ('0'..'9'|'A'..'F');
WS: (' ' | '\t' | '\n' | '\r' | '\f' | ',')+ {$channel = HIDDEN;};

Working from the bottom up in Listing 6-3, WS defines what you mean by
whitespace that is sent to a hidden channel and is ignored. DIGIT defines a
hexadecimal digit as being 0---F. MAGIC_NUM is the escaped version of dex\n035\0;
and finally, IDENT is any string of characters. The parser rules take these tokens
and arrange them into an expected pattern. For example, you know from Listing
6-2 that the hexadecimal digits are grouped in eights for the addresses and the
magic number. And an address has a colon after it. Listing 6-2 looks something
like Listing 6-4 when it’s tokenized.

Listing 6-4. Tokenized Magic Number

address eight_hex
 eight_hex
 IDENT MAGIC_NUM

Rules
In ANTLR, as in all parsers, you need a rule to tell the parser where to start
parsing. The rule says that the incoming file consists of a header; and that
header, for the moment only, has a magic number. The magic rule expects the
incoming file to be formatted as in Listing 6-4. See http://vimeo.com/8001326
for directions on how to set up an ANTLR project in Eclipse. Using Eclipse, the
incoming tokens from Listing 6-2 are parsed as shown in Figure 6-1.

http://vimeo.com/8001326

CHAPTER 6: Decompiler Implementation 180

Figure 6-1. Magic-number parsing rules

Now that the magic number has been successfully parsed, the next step is to
output it in the correct format.

Outputting the Magic Number
Listing 6-5 is updated with the System.out.println statements. Use the @init
and @after ANTLR statements to print the <root> and <header> statements in
the correct order. You can also use ANTLR StringTemplates to remove all the
println statements if you don’t like all the extra Java code in your parser.

Listing 6-5. DexToXML Magic-Number Parser

grammar DexToXML;
options {language = Java;}
@header {package com.riis.decompiler;}
@lexer::header {package com.riis.decompiler;}

rule
 @init {System.out.println("<root>");}
 @after {System.out.println("</root>");}
 : header
 ;

header
 @init {System.out.println("<header>");}
 @after {System.out.println("</header>");}
 : magic
 ;

magic: address eight_hex eight_hex IDENT ':' id=MAGIC_NUM
 {System.out.println("<magic>" + id.getText() + "</magic>");}
 ;

CHAPTER 6: Decompiler Implementation 181

hex_address: '0x' eight_hex
 ;

address
 : eight_hex ':'
 ;

eight_hex
 : DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT
 ;

IDENT: ('a'..'z')+;
MAGIC_NUM: 'dex\\n035\\0';
DIGIT : ('0'..'9'|'A'..'F');
WS: (' ' | '\t' | '\n' | '\r' | '\f' | ',')+ {$channel = HIDDEN;};

Listing 6-6 has the Java code necessary to call the ANTLR code from the
command line outside of Eclipse. This takes the input from c:\temp\input.log.

Listing 6-6. DexToXML.java

package com.riis.decompiler;

import java.io.*;

import org.antlr.runtime.ANTLRInputStream;
import org.antlr.runtime.CommonTokenStream;
import org.antlr.runtime.RecognitionException;
import org.antlr.runtime.TokenStream;

public class DexToXML {

 public static void main(String[] args) throws RecognitionException, IOException {
 DexToXMLLexer lexer = new DexToXMLLexer(new ANTLRInputStream(System.in));
 TokenStream tokenStream = new CommonTokenStream(lexer);
 DexToXMLParser parser = new DexToXMLParser(tokenStream);

 parser.rule();
 }

}

Compile the code in a com\riis\decompiler directory using the following
commands, making sure the ANTLR v3.4 library is in your classpath. The first
command generates the lexer and parser, and the second command compiles
the DexToXML code:

java org.antlr.Tool DexToXML.g
javac DexToXMLLexer.java DexToXMLParser.java DexToXML.java

CHAPTER 6: Decompiler Implementation 182

Save Listing 6-2 as magic.log, and run the following command in the top-level
directory to get the DexToXML output shown in Listing 6-7:

java com.riis.decompiler.DexToXML < magic.log

Listing 6-7. DexToXML Output

<root>
<header>
<magic>dex\n035\0</magic>
</header>
</root>

Next create the grammar for the rest of the header. Initially you can set up the
rule to break out the header as shown in Listing 6-8.

Listing 6-8. Header Rule

header
 @init {System.out.println("<header>");}
 @after {System.out.println("</header>");}
 : magic
 checksum
 signature
 file_size
 header_size
 link_size
 link_offset
 map_offset
 string_ids_size
 string_ids_offset
 type_ids_size
 type_ids_offset
 proto_ids_size
 proto_ids_offset
 fields_ids_size
 fields_ids_offset
 method_ids_size
 method_ids_offset
 class_defs_size
 class_defs_offset
 data_size
 data_offset
 ;

But many o f the patterns a re repeated------for example, the sizes and offsets are
very similar, so you can refactor the parser by pulling out the name of the node.
You can put these patterns together as shown in Listing 6-9, which matches the
different header entries.

CHAPTER 6: Decompiler Implementation 183

Listing 6-9. Refactored header_entry Rule

header_entry
 : address eight_hex IDENT
 | address eight_hex xml_id ':' hex_address
 | address eight_hex eight_hex xml_id ':' hex_address
 ;

Putting this code together into the modified parser, you get the complete header
shown in Listing 6-10.

Listing 6-10. Refactored DexToXML Header Grammar

grammar DexToXML;
options {language = Java;}
@header {package com.riis.decompiler;}
@lexer::header {package com.riis.decompiler;}

rule
 : header
 ;

header
 : magic
 header_entry
 signature
 header_entry+
 ;

magic: address eight_hex eight_hex IDENT ':' MAGIC_NUM
 ;

header_entry
 : address eight_hex IDENT
 | address eight_hex xml_id ':' hex_address
 | address eight_hex eight_hex xml_id ':' hex_address
 ;

xml_id
 : IDENT IDENT
 | IDENT IDENT IDENT
 ;

signature: address signature_hex 'signature'
 ;

CHAPTER 6: Decompiler Implementation 184

signature_hex: eight_hex eight_hex eight_hex eight_hex eight_hex
 ;

hex_address: '0x' eight_hex
 ;

address
 : eight_hex ':'
 ;

eight_hex
 : DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT
 ;

IDENT: ('a'..'z')+;
MAGIC_NUM: 'dex\\n035\\0';
DIGIT : ('0'..'9'|'A'..'F');
WS: (' ' | '\t' | '\n' | '\r' | '\f' | ',')+ {$channel = HIDDEN;};

More of the file is parsed in Listing 6-11, right up to the code_item section. I’ve
also included the code to output the XML so you can see how that is done.

Listing 6-11. DexToXML ANTLR Grammar

grammar DexToXML;

options {
 language = Java;
}

@header {
 package com.riis.decompiler;
}

@lexer::header {
 package com.riis.decompiler;
}

rule
 @init {System.out.println("<root>");}
 @after {System.out.println("</root>");}
 : header
 string_ids
 type_ids
 proto_ids
 field_ids
 method_ids
 class_defs
 data
 ;

CHAPTER 6: Decompiler Implementation 185

header
 @init {System.out.println("<header>");}
 @after {System.out.println("</header>");}
 : magic
 header_entry
 signature
 header_entry+
 ;

magic: address eight_hex eight_hex IDENT ':' id=MAGIC_NUM
 {System.out.println("<magic>" + id.getText() + "</magic>");}
 ;

header_entry
 : address id1=eight_hex id2=IDENT
 {System.out.println("<" + $id2.text + ">" + $id1.text + "</" +
$id2.text + ">");}
 | address eight_hex id3=xml_id ':' id4=hex_address
 {System.out.println("<" + $id3.result + ">" + $id4.text + "</" +
$id3.result + ">");}
 | address eight_hex eight_hex id5=xml_id ':' id6=hex_address
 {System.out.println("<" + $id5.result + ">" + $id6.text + "</" +
$id5.result + ">");}
 ;

xml_id returns [String result]
 : id1=IDENT id2=IDENT
 {$result = id1.getText() + "_" + id2.getText();}
 | id1=IDENT id2=IDENT id3=IDENT
 {$result = id1.getText() + "_" + id2.getText() + "_" +
id3.getText();}
 ;

signature: address id=signature_hex 'signature'
 {System.out.println("<signature>" + $id.text + "</signature>");}
 ;

signature_hex: eight_hex eight_hex eight_hex eight_hex eight_hex
 ;

string_ids
 @init {System.out.println("<string_ids>");}
 @after {System.out.println("</string_ids>");}
 : string_address+
 ;

string_address
 : address eight_hex IDENT id1=array_digit ':' 'at' id2=hex_address
 {System.out.println("<string>\n<id>" + $id1.result +

CHAPTER 6: Decompiler Implementation 186

"</id>\n<address>" + $id2.text + "</address>\n</string>");}
 ;

type_ids
 @init {System.out.println("<type_ids>");}
 @after {System.out.println("</type_ids>");}
 : type_address+
 ;

type_address
 : address eight_hex IDENT id1=array_digit 'index:' id2=eight_hex '('
id3=proto_type_string ')'
 {int addr = Integer.parseInt($id2.text,16);
 System.out.println("<type>\n<id>" + $id1.result +
"</id>\n<string_id>"
 + addr + "</string_id>\n<string>" +
$id3.text + "<string>\n</type>");}
 ;

proto_ids
 @init {System.out.println("<proto_ids>");}
 @after {System.out.println("</proto_ids>");}
 : proto_address+
 ;

proto_address
 : address eight_hex eight_hex eight_hex IDENT id1=array_digit ':'
 'short signature:' id2=proto_type_string ';'
 'return type:' id3=proto_type_string ';'
 'parameter block offset:' eight_hex
 {System.out.println("<proto>\n<id>" + $id1.result +
"</id>\n<string>"
 + $id3.text + "</string>\n<signature>" + $id2.text +
"<signature>\n</proto>");}
 ;

field_ids
 @init {System.out.println("<field_ids>");}
 @after {System.out.println("</field_ids>");}
 : field_address+
 ;

field_address
 : address eight_hex eight_hex IDENT id1=array_digit ':'
id2=proto_type_string id3=proto_type_string
 {System.out.println("<field>\n<id>" + $id1.result +
"</id>\n<name>"
 + $id2.text + "</name>\n<type>" + $id3.text +

q

CHAPTER 6: Decompiler Implementation 187

"<type>\n</field>");}

 ;

method_ids
 @init {System.out.println("<method_ids>");}
 @after {System.out.println("</method_ids>");}
 : method_address+
 ;

method_address
 : address eight_hex eight_hex IDENT id1=array_digit ':'
id2=proto_type_string '(' id3=proto_type_string ')'
 {System.out.println("<method>\n<id>" + $id1.result +
"</id>\n<name>"
 + $id2.text + "</name>\n<proto>" + $id3.text +
"<proto>\n</method>");}
 ;

class_defs
 @init {System.out.println("<classes>");}
 @after {System.out.println("</classes>");}
 : class_address+
 ;

class_address
 : address id1=eight_hex id2=eight_hex id3=eight_hex id4=eight_hex
id5=eight_hex id6=eight_hex id7=eight_hex id8=eight_hex id9=IDENT id10=IDENT
 {System.out.println("<class>\n"
 +"<class_id>" + $id9.text + " " + $id10.text +
"</class_id>\n"
 +"<type_id>" + $id1.text + "</type_id>\n"

 +"<access_flags>" + $id2.text +
"</access_flags>\n"
 +"<superclass_id>" + $id3.text +
"<superclass>\n"
 +"<interfaces_offset>" + $id4.text +
"<interfaces_offset>\n"
 +"<source_file_id>" + $id5.text +
"<source_file_id>\n"
 +"<annotations_offset>" + $id6.text +
"<annotations_offset>\n"
 +"<class_data_offset>" + $id7.text +
"<class_data_offset>\n"
 +"<static_values_offset>" + $id8.text +
 +"<static_values_offset>\n" + "</class>");}
 ;

CHAPTER 6: Decompiler Implementation 188

data
 @init {System.out.println("<data>");}
 @after {System.out.println("</data>");}
 : class_+
 ;

class_
 @init {System.out.println("<class>");}
 @after {System.out.println("</class>");}
 : class_data_items
 ;

class_data_items
 @init {System.out.println("<class_data_items>");}
 @after {System.out.println("</class_data_items>");}
 : class_data_item
 ;

class_data_item
 @init {System.out.println("<class_data_item>");}
 @after {System.out.println("</class_data_item>");}
 : class_data_item_header static_fields //instance_methods
 direct_methods // virtual_methods
 encoded_arrays
 ;

class_data_item_header
 : address HEX_DOUBLE 'static fields size:' id1=DIGIT
 address HEX_DOUBLE 'instance fields size:' id2=DIGIT
 address HEX_DOUBLE 'direct methods size:' id3=DIGIT
 address HEX_DOUBLE 'virtual methods size:' id4=DIGIT
 {System.out.println("<static_field_size>" + $id1.getText()

+ "</static_field_size>\n"
+"<instance_field_size>" + $id2.getText() +
"</instance_field_size>\n"
+"<direct_methods_size>" + $id3.getText() +
"</direct_methods_size>\n"

 +"<virtual_methods_size>" + $id4.getText() +
"</virtual_methods_size>");}
 ;

static_fields
 @init {System.out.println("<static_fields>");}
 @after {System.out.println("</static_fields>");}
 : static_field+
 ;

static_field
 @init {System.out.println("<static_field>");}
 @after {System.out.println("</static_field>");}

CHAPTER 6: Decompiler Implementation 189

 : address id1=HEX_DOUBLE id2=HEX_DOUBLE
 {System.out.println("<field_id>" + $id1.getText() +
"</field_id>\n"
 +"<access_flags>" + $id2.getText() +
"</access_flags>");}
 ;

direct_methods
 @init {System.out.println("<direct_methods>");}
 @after {System.out.println("</direct_methods>");}
 : direct_method+
 ;

direct_method
 @init {System.out.println("<direct_method>");}
 @after {System.out.println("</direct_method>");}
 : address id1=HEX_DOUBLE id2=HEX_DOUBLE

id3=HEX_DOUBLE id4=HEX_DOUBLE id5=HEX_DOUBLE id6=HEX_DOUBLE
 {System.out.println("<method_id>" + $id1.getText() +
"</method_id>\n"

+"<access_flags>" + $id2.getText() + $id3.getText() +
$id4.getText()

+ "</access_flags>\n"
 +"<address>0x" + $id5.getText() + $id6.getText() +
"</address>");}
 | address id1=HEX_DOUBLE id2=HEX_DOUBLE id3=HEX_DOUBLE id4=HEX_DOUBLE
 {System.out.println("<method_id>" + $id1.getText() +
"</method_id>\n"
 +"<access_flags>" + $id2.getText() +
"</access_flags>\n"
 +"<address>0x" + $id3.getText() + $id4.getText() +
"</address>");}
 ;

encoded_arrays
 : address HEX_DOUBLE 'array item count:' DIGIT encoded_array+
 ;

encoded_array
 : address HEX_DOUBLE HEX_DOUBLE IDENT IDENT array_digit ':' '"' IDENT
'"'
 ;

proto_type_string
 : IDENT
 | IDENT ';'
 | IDENT '.' IDENT
 | IDENT '/' IDENT
 | IDENT '/' '<' IDENT '>'
 | '<' IDENT '>' '()' IDENT

CHAPTER 6: Decompiler Implementation 190

 | IDENT '/' IDENT '/' IDENT ';'
 | '[' IDENT '/' IDENT '/' IDENT ';'
 | IDENT '()' IDENT '/' IDENT '/' IDENT ';'
 | IDENT '/' IDENT '/' IDENT '.' IDENT
 | IDENT '/' IDENT '/' IDENT '/' IDENT
 | IDENT '/' IDENT '/' IDENT '/' '<' IDENT '>'
 | IDENT '(' IDENT '/' IDENT '/' IDENT ';' ')' IDENT
 | IDENT '(' '[' IDENT '/' IDENT '/' IDENT ';' ')' IDENT
 | IDENT '(' IDENT ')' IDENT '/' IDENT '/' IDENT ';'
 | IDENT '(' IDENT '/' IDENT '/' IDENT ';' ')' IDENT '/' IDENT '/' IDENT
';' ;

hex_address: '0x' eight_hex
 ;

address
 : eight_hex ':'
 ;

eight_hex
 : HEX_DOUBLE HEX_DOUBLE HEX_DOUBLE HEX_DOUBLE
 ;

array_digit returns [String result]
 : id=ELEMENT
 {String str = id.getText(); $result = str.substring(1,
str.length()-1);}
 ;

HEX_DOUBLE:
('0'..'9')('0'..'9')|('0'..'9')('A'..'F')|('A'..'F')('0'..'9')|('A'..'F')('A'..'
F');
MAGIC_NUM: 'dex\\n035\\0';
IDENT: ('a'..'z'|'A'..'Z')+;
DIGIT: ('0'..'9');
ELEMENT: ('[')('0'..'9')+(']');
CONST_4: 'const/4';
CONST_16: 'const/16';
CONST_HIGH_16: 'const/high16';
COMMENT: '//' ~('\r' | '\n')* {$channel = HIDDEN;};
WS: (' ' | '\t' | '\n' | '\r' | '\f' | ',' | '-' | '*')+ {$channel = HIDDEN;};

Listing 6-12 shows the XML output from the grammar from Listing 6-11. This
doesn’t include all the XML nodes as we already covered that in Chapter 3 and it is
lengthy.. The larger and more complete DexToXML that parses all classes.dex
files and not just Casting.java is available in the source code on the Apress
web site (www.apress.com).

http://www.apress.com

CHAPTER 6: Decompiler Implementation 191

Listing 6-12. DexToXML Output

<root>
<header>
<magic>dex\n035\0</magic>
<checksum>62 8B 44 18</checksum>
<signature>DA A9 21 CA 9C 4F B4 C5
 21 D7 77 BC
 2A 18 4A 38
 0D A2 AA FE</signature>
<file_size>0x00000450</file_size>
<header_size>0x00000070</header_size>
<link_size>0x00000000</link_size>
<link_offset>0x00000000</link_offset>
<map_offset>0x000003A4</map_offset>
<string_ids_size>0x0000001A</string_ids_size>
<string_ids_offset>0x00000070</string_ids_offset>
<type_ids_size>0x0000000A</type_ids_size>
<type_ids_offset>0x000000D8</type_ids_offset>
<proto_ids_size>0x00000007</proto_ids_size>
<proto_ids_offset>0x00000100</proto_ids_offset>
<field_ids_size>0x00000003</field_ids_size>
<field_ids_offset>0x00000154</field_ids_offset>
<method_ids_size>0x00000009</method_ids_size>
<method_ids_offset>0x0000016C</method_ids_offset>
<class_defs_size>0x00000001</class_defs_size>
<class_defs_offset>0x000001B4</class_defs_offset>
<data_size>0x0000027C</data_size>
<data_offset>0x000001D4</data_offset>
</header>
<string_ids>
<string>
<id>0</id>
<address>0x00000272</address>
</string>
<string>
<id>1</id>
<address>0x0000027F</address>
</string>
<string>
<id>2</id>
<address>0x00000287</address>
</string>
<string>
<id>3</id>
<address>0x0000028A</address>
</string>
<string>
<id>4</id>
<address>0x00000298</address>

CHAPTER 6: Decompiler Implementation 192

</string>
<string>
<id>5</id>
<address>0x0000029B</address>
</string>
<string>
<id>6</id>
<address>0x0000029E</address>
</string>
<string>
<id>7</id>
<address>0x000002A2</address>
</string>
<string>
<id>8</id>
<address>0x000002AD</address>
</string>
<string>
<id>9</id>
<address>0x000002B1</address>
</string>
<string>
<id>10</id>
<address>0x000002B5</address>
</string>
<string>
<id>11</id>
<address>0x000002CC</address>
</string>
<string>
<id>12</id>
<address>0x000002E0</address>
</string>
<string>
<id>13</id>
<address>0x000002F4</address>
</string>
<string>
<id>14</id>
<address>0x0000030F</address>
</string>
<string>
<id>15</id>
<address>0x00000323</address>
</string>
<string>
<id>16</id>
<address>0x00000326</address>
</string>
<string>

CHAPTER 6: Decompiler Implementation 193

<id>17</id>
<address>0x0000032A</address>
</string>
<string>
<id>18</id>
<address>0x0000033F</address>
</string>
<string>
<id>19</id>
<address>0x00000347</address>
</string>
<string>
<id>20</id>
<address>0x0000034F</address>
</string>
<string>
<id>21</id>
<address>0x00000357</address>
</string>
<string>
<id>22</id>
<address>0x0000035F</address>
</string>
<string>
<id>23</id>
<address>0x00000365</address>
</string>
<string>
<id>24</id>
<address>0x0000036A</address>
</string>
<string>
<id>25</id>
<address>0x00000373</address>
</string>
</string_ids>
<type_ids>
<type>
<id>0</id>
<string_id>2</string_id>
<string>C<string>
</type>
<type>
<id>1</id>
<string_id>4</string_id>
<string>I<string>
</type>
<type>
<id>2</id>
<string_id>7</string_id>

CHAPTER 6: Decompiler Implementation 194

<string>LCasting;<string>
</type>
<type>
<id>3</id>
<string_id>10</string_id>
<string>Ljava/io/PrintStream;<string>
</type>
<type>
<id>4</id>
<string_id>11</string_id>
<string>Ljava/lang/Object;<string>
</type>
<type>
<id>5</id>
<string_id>12</string_id>
<string>Ljava/lang/String;<string>
</type>
<type>
<id>6</id>
<string_id>13</string_id>
<string>Ljava/lang/StringBuilder;<string>
</type>
<type>
<id>7</id>
<string_id>14</string_id>
<string>Ljava/lang/System;<string>
</type>
<type>
<id>8</id>
<string_id>15</string_id>
<string>V<string>
</type>
<type>
<id>9</id>
<string_id>17</string_id>
<string>[Ljava/lang/String;<string>
</type>
</type_ids>
<proto_ids>
<proto>
<id>0</id>
<string>Ljava/lang/String;</string>
<signature>L<signature>
</proto>
<proto>
<id>1</id>
<string>Ljava/lang/StringBuilder;</string>
<signature>LC<signature>
</proto>
<proto>

CHAPTER 6: Decompiler Implementation 195

<id>2</id>
<string>Ljava/lang/StringBuilder;</string>
<signature>LI<signature>
</proto>
<proto>
<id>3</id>
<string>Ljava/lang/StringBuilder;</string>
<signature>LL<signature>
</proto>
<proto>
<id>4</id>
<string>V</string>
<signature>V<signature>
</proto>
<proto>
<id>5</id>
<string>V</string>
<signature>VL<signature>
</proto>
<proto>
<id>6</id>
<string>V</string>
<signature>VL<signature>
</proto>
</proto_ids>
<field_ids>
<field>
<id>0</id>
<name>Casting.ascStr</name>
<type>Ljava/lang/String;<type>
</field>
<field>
<id>1</id>
<name>Casting.chrStr</name>
<type>Ljava/lang/String;<type>
</field>
<field>
<id>2</id>
<name>java/lang/System.out</name>
<type>Ljava/io/PrintStream;<type>
</field>
</field_ids>
</root>

CHAPTER 6: Decompiler Implementation 196

DexToSource
To implement DexToSource, the Android decompiler, this section looks at three
examples of how the code was compiled into the classes.dex file; then you
reverse-engineer it back into Java and code your ANTLR parser to automate the
process. The three examples are the Casting.java code from Chapters 2 and 3;
Hello World Android; and an if statement from the WordPress Android app (an
open source Android app), which is available at
http://android.svn.wordpress.org/trunk/src/org/wordpress/android/.

The analysis of each example starts with a raw bytecode that is then broken
down and parsed into something resembling the original Java source code. Two
resources are very helpful when pulling apart the bytecode: Google’s bytecode
for the Dalvik virtual machine (DVM), at
www.netmite.com/android/mydroid/dalvik/docs/dalvik-bytecode.html; and
Gabor Paller’s excellent ‘‘Dalvik Opcodes’’ paper from his blog, which you can
find at http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html.

Example 1: Casting.java
Each example starts with the original Java code followed by the bytecode you
want to reverse-engineer from classes.dex, the parser, and finally the reverse-
engineered Java source. See Listing 6-13 for the Casting.java code.

Listing 6-13. Casting.java

public class Casting {

 static final String ascStr = "ascii ";
 static final String chrStr = " character ";

 public static void main(String args[]){

 for(char c=0; c < 128; c++) {
 System.out.println(ascStr + (int)c + chrStr + c);
 }
 }
}

Compiling Casting.java into classes.dex and running it through dedexer results
in the bytecode shown in Listing 6-14.

http://android.svn.wordpress.org/trunk/src/org/wordpress/android/
http://www.netmite.com/android/mydroid/dalvik/docs/dalvik-bytecode.html
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html

CHAPTER 6: Decompiler Implementation 197

Listing 6-14. Casting.ddx

.class public Casting

.super java/lang/Object

.source Casting.java

.field static final ascStr Ljava/lang/String; = "ascii "
.field static final chrStr Ljava/lang/String; = " character "

.method public <init>()V
.limit registers 1
; this: v0 (LCasting;)
.line 1
 invoke-direct {v0},java/lang/Object/<init> ; <init>()V
 return-void
.end method

.method public static main([Ljava/lang/String;)V
.limit registers 5
; parameter[0] : v4 ([Ljava/lang/String;)
.line 8
 const/4 v0,0
l1fe:
 const/16 v1,128
 if-ge v0,v1,l252
.line 9
 sget-object v1,java/lang/System.out Ljava/io/PrintStream;
 new-instance v2,java/lang/StringBuilder
 invoke-direct {v2},java/lang/StringBuilder/<init> ; <init>()V
 const-string v3,"ascii "
 invoke-virtual {v2,v3},java/lang/StringBuilder/append ;
append(Ljava/lang/String;)Ljava/lang/StringBuilder;
 move-result-object v2
 invoke-virtual {v2,v0},java/lang/StringBuilder/append ;
append(I)Ljava/lang/StringBuilder;
 move-result-object v2
 const-string v3," character "
 invoke-virtual {v2,v3},java/lang/StringBuilder/append ;
append(Ljava/lang/String;)Ljava/lang/StringBuilder;
 move-result-object v2
 invoke-virtual {v2,v0},java/lang/StringBuilder/append ;
append(C)Ljava/lang/StringBuilder;
 move-result-object v2
 invoke-virtual {v2},java/lang/StringBuilder/toString ;
toString()Ljava/lang/String;
 move-result-object v2
 invoke-virtual {v1,v2},java/io/PrintStream/println ;
println(Ljava/lang/String;)V
.line 8
 add-int/lit8 v0,v0,1

CHAPTER 6: Decompiler Implementation 198

 int-to-char v0,v0
 goto l1fe
l252:
.line 11
 return-void
.end method

Bytecode Analysis
Before you can begin coding the parser, you need to understand bytecode.
Table 6-1 shows the raw bytecode along with the corresponding opcodes and
operands and a running tally of the values in the Program Counter (PC), v0, v1,
v2, and v3 DVM registers.

Table 6-1. Casting.java Android Bytecode Analysis

PC RawBy Opcode Operand v0 v1 v2 v3 Comments

0 1200 const/4 v0, 0 0 Put the integer 0
into register v0

1 1301
0800

const/16 v1, 128 128 Put the integer
128 into register
v1

3 3510
2800

if-ge v0, v1, 28 Jump to PC 2b
(plus 28) if
v0>=v1

5 6201
0200

sget-
object

v1,
field[2]

 java.lang
.System.o
ut:Ljava/
io/PrintS
tream

 Read the object
in field[2],
java.lang.Syste
m.out:Ljava/io/
PrintStream,
and store in v1

7 2202
0600

new-
instance

v2, type[6] java/l
ang/St
ringBu
ilder

 Create an object
type[6],
java/lang/Strin
gBuilder, and
store in v2

9 7010
0400
0200

invoke-
direct

method[4],
{v2}

 Call method[4]
with one
argument,
java/lang/Strin

CHAPTER 6: Decompiler Implementation 199

PC RawBy Opcode Operand v0 v1 v2 v3 Comments

gBuilder/<init>
(<init>()V) with
parameters {v2}

c 1a03
1400

const-
string

v3,
string[20]

 "asci
i"

Store
string[20],
"ascii " in v3

e 6e20
0700
3200

invoke-
virtual

method[7],
{v2, v3}

 Call method[7],
java/lang/Strin
gBuilder/append
(append(Ljava/l
ang/String;)Lja
va/lang/StringB
uilder;), with
parameters {v2,
v3}

11 0c02 move-
result-
object

v2 "ascii
" +

 Move the result
of the previous
method call to
v2

12 6e20
0600
0200

invoke-
virtual

method[6],
{v2, v0}

 Call method[6],
java/lang/Strin
gBuilder/append
(append(I)Ljava
/lang/StringBui
lder;), with
parameters {v2,
v0}

15 0c02 move-
result-
object

v2 "ascii
" +
"0"

 Move the result
of the previous
method call to
v2

16 1a03
0000

const-
string

v3,
string[0]

 "
chara
cter"

Store string[0],
" character" in
v3

CHAPTER 6: Decompiler Implementation 200

PC RawBy Opcode Operand v0 v1 v2 v3 Comments

18 6e20
0700
3200

invoke-
virtual

method[7],
{v2, v3}

 Call method[7],
java/lang/Strin
gBuilder/append
(append(Ljava/l
ang/String;)Lja
va/lang/StringB
uilder;), with
parameters {v2,
v3}

1b 0c02 move-
result-
object

v2 "ascii
" +
"0" +
"
charac
ter"

 Move the result
of the previous
method call to
v2

1c 6e20
0500
0200

invoke-
virtual

method[5],
{v2, v0}

 Call method[5],
java/lang/Strin
gBuilder/append
(append(C)Ljava
/lang/StringBui
lder;), with
parameters {v2,
v0}

1f 0c02 move-
result-
object

v2 "ascii
" +
"c" +
"
charac
ter" +
"c"

 Move the result
of the previous
method call to
v2

20 6e10
0800
0200

invoke-
virtual

method[8],
{v2}

 Call method[8],
java/lang/Strin
gBuilder/toStri
ng
(toString()Ljav
a/lang/String;)
, with
parameters {v2}

CHAPTER 6: Decompiler Implementation 201

PC RawBy Opcode Operand v0 v1 v2 v3 Comments

23 0c02 move-
result-
object

v2 "ascii
" +
"c" +
"
charac
ter" +
"c".to
String
()

 Move the result
of the previous
method call to
v2

24 6e20
0200
2100

invoke-
virtual

method[2],
{v1,v2}

 printl
n

 Call method[2],
java/io/PrintSt
ream/println
(println(Ljava/
lang/String;)V)
, with
parameters {v1,
v2}

27 d800
0001

add-
int/lit8

v0, v0, 1 Add int 1 to v0

29 8e00 int-to-
char

v0, v0 Convert v0 to
char and store
in v0

2a 28d7 goto d7 Goto PC = 1 (go
back –29)

2b 0e00 return-
void

 Return

Parser
Much of the outside shell of the Java code, such as the name of the class and
the name of the strings, methods, fields, and so on, seen in the Casting.ddx file.
Listing in 6-14 can be transformed using the parser in Listing 6-15. The output is
shown in Listing 6-16.

Listing 6-15. Casting.java Without Bytecode Parser

grammar DexToSource;

CHAPTER 6: Decompiler Implementation 202

options {language = Java;}
@header {package com.riis.decompiler;}
@lexer::header {package com.riis.decompiler;}
@members{String flag_result = "";}

rule
 @after {System.out.println("}");}
 : class_name super_ source fields methods+
 ;

class_name
 : CLASS f1=flags id2=IDENT
 {System.out.println($f1.text + " class " + $id2.text + " {");}
 ;

super_: SUPER package_;
source: SOURCE IDENT '.java';
fields: field+ ;

methods: method_start method_end;

field: FIELD f1=flags id2=IDENT p1=package_ ';' '=' '"' id4=IDENT '"'
 {System.out.println($f1.text + " " + $p1.result + " " + $id2.text + " =
\"" + $id4.text + "\"");}
 ;

method_start: METHODSTRT f1=flags INIT p1=params r1=return_
 {System.out.println($f1.text + " " + $r1.result + " init " + $p1.result
+ " {");}
 | METHODSTRT f1=flags id1=IDENT p1=params r1=return_
 {System.out.println($f1.text + " " + $r1.result + " " + $id1.text + " ("
+ $p1.result + ") {");}
 ;

method_end
 @after {System.out.println("}");}
 : METHODEND
 ;

flags: flag+;

flag returns [String flag_result]
 : f1='public' {flag_result += $f1.text;}
 | f1='static' {flag_result += $f1.text;}
 | f1='final' {flag_result += $f1.text;}
 ;

params returns [String result]
 : '(' ')' {$result = "()";}

CHAPTER 6: Decompiler Implementation 203

 | '(' '[L' id1=package_ ';' ')' {$result = $id1.result + " args[]";}
//([Ljava/lang/String;)
 ;

package_ returns [String result]
 : IDENT '/' IDENT '/' id1=IDENT {$result = id1.getText();}
 ;

return_ returns [String result]
 : 'V' {$result = "void";}
 ;

CLASS: '.class';
PUBLIC: 'public';
STATIC: 'static';
FINAL: 'final';
SUPER: '.super';
SOURCE: '.source';
FIELD: '.field';
METHODSTRT: '.method';
METHODEND: '.end method';
INIT: '<init>';
IDENT: ('a'..'z'|'A'..'Z')+;
COMMENT: '//' ~('\r' | '\n')* {$channel = HIDDEN;};
WS: (' ' | '\t' | '\n' | '\r' | '\f' | ',')+ {$channel = HIDDEN;};

The structure of the file, before parsing any bytecode, is now shown in
Listing 6-16.

Listing 6-16. Casting.java Without Pytecode

public class Casting {
static final String ascStr = "ascii"
static final String chrStr = "character"
public void init () {
}
public static void main (String args[]) {
}
}

But the core logic of the Java code is in the opcodes at the end of the DDX file.
Looking at Table 6-1, it should be clearer how the opcodes map to the target
Java code Casting.java; see Listing 6-13, which you’ve been using throughout
the book.

The method code has two parts: the for loop and the System.out.println
statement within the for loop. From the parser’s perspective, you can create the
for loop as follows in Listing 6-17. Note that reserved keywords such as return

CHAPTER 6: Decompiler Implementation 204

have an added underscore so the generated ANTLR code compiles without any
errors.

Listing 6-17. for Loop Parser

rule: class_name super_ source fields methods+ ;

class_name : CLASS flags IDENT ;

super_: SUPER package_;

source: SOURCE IDENT '.java';

fields: field+ ;

field: FIELD flags IDENT package_ ';' '=' '"' IDENT '"';

methods: method_start scrap* method_end
 | method_start scrap* for_start for_body scrap* for_end method_end
 ;

method_start: METHODSTRT flags INIT params return_
 | METHODSTRT flags IDENT params return_
 ;

method_end: METHODEND;

for_start : put_in_reg label put_in_reg if_ge scrap*;

const_string: CONST_STRING reg ddx_string;

ddx_string: '"' IDENT '"';

for_end : add_int int_to_char goto_ label scrap*;

new_instance: NEW_INSTANCE reg package_ scrap*;

add_int: ADD_INT reg reg DIGIT;

int_to_char: INT_TO_CHAR reg reg;

goto_: GOTO label;

if_ge: IF_GE reg reg label;

put_in_reg: const_ reg DIGIT;

reg_args: '{' reg+ '}';

label: LABEL

CHAPTER 6: Decompiler Implementation 205

 | LABEL ':'
 ;

invoke_direct: INVOKE_DIRECT regs package_ ;

flags: flag+;

flag : f1='public'
 | f1='static'
 | f1='final'
 ;

params : '(' ')'
 | '(' '[L' package_ ';' ')'
 | '(' IDENT ';' ')'
 | IDENT '(' package_ ';' ')'
 | IDENT '(' IDENT ')'
 | IDENT '(' ')'
 ;

package_
 : IDENT '/' IDENT '/' IDENT
 | IDENT '/' IDENT '/' IDENT '/' IDENT
 | IDENT '/' IDENT '/' IDENT '.' IDENT
 | IDENT '/' IDENT '/' IDENT '/' '<init>'
 | 'L' IDENT '/' IDENT '/' IDENT
 ;

return_ : 'V';

regs: '{' reg+ '}';

reg : 'v' DIGIT;

const_ : CONST_4
 | CONST_16
 | CONST_HIGH_16
 ;

scrap: LIMIT REGISTERS DIGIT
 | ';' 'this:' reg params
 | LINE DIGIT+
 | invoke_direct ';' '<init>' params return_
 | RETURN_VOID
 | ';' 'parameter[' DIGIT ']' ':' reg params
 ;

CLASS: '.class';
PUBLIC: 'public';
STATIC: 'static';

CHAPTER 6: Decompiler Implementation 206

FINAL: 'final';
SUPER: '.super';
SOURCE: '.source';
FIELD: '.field';
METHODSTRT: '.method';
METHODEND: '.end method';
INIT: '<init>';
LIMIT: '.limit';
REGISTERS: 'registers';
LINE: '.line';
INVOKE_DIRECT: 'invoke-direct';
RETURN_VOID: 'return-void';
IF_GE: 'if-ge';
ADD_INT: 'add-int/lit8';
INT_TO_CHAR: 'int-to-char';
GOTO: 'goto';
CONST_STRING: 'const-string';
CONST_4: 'const/4';
CONST_16: 'const/16';
CONST_HIGH_16: 'const/high16';
DIGIT: ('0'..'9')+;
IDENT: ('a'..'z'|'A'..'Z')+;
LABEL: 'l' ('0'..'9'|'a'..'f')('0'..'9'|'a'..'f')('0'..'9'|'a'..'f');
COMMENT: '//' ~('\r' | '\n')* {$channel = HIDDEN;};
WS: (' ' | '\t' | '\n' | '\r' | '\f' | ',')+ {$channel = HIDDEN;};

The lexer tokens are in uppercase, and the parser rules are in lowercase.
for_start is a greater-than-or-equal-to condition followed by a label to jump to if
the condition is true. The for_end rule, as you saw in the table breakdown, adds
1 to the variable c and then jumps back to the for_start condition. Note this
isn’t generic: it won’t work for any other for loop. I’m showing it to give you an
idea of how to put the parser together.

Next you need to add the parser code for the System.out.println or for_body
statement, which you place between the for_start and for_end parts of the
for_loop rule; see Listing 6-18.

Listing 6-18. Casting.java Parser

for_body: sget stmt_builder invoke_virtual;

stmt_builder returns : new_instance invoke_move+;

invoke_move
 : invoke_virtual move_result
 | const_string invoke_virtual move_result
 ;

CHAPTER 6: Decompiler Implementation 207

move_result: MOVE_RESULT_OBJECT reg;

const_string: CONST_STRING reg ddx_string;

ddx_string: '"' IDENT '"';

new_instance: NEW_INSTANCE reg package_ scrap*;

sget : SGET_OBJECT reg package_ package_ ';';

invoke_virtual
 : INVOKE_VIRTUAL reg_args package_ ';' params 'V'
 | INVOKE_VIRTUAL reg_args package_ ';' params package_ ';'
 ;

Now that the opcodes can be parsed, you can add your own println statements
to output the Java code; see Listing 6-19. Although this listing is long, it is one of the
most complete parsers provided and thus important to review in its entirety.

Listing 6-19. Casting.ddx Parser

grammar DexToSource;

options {language = Java;}
@header {package com.riis.decompiler;}
@lexer::header {package com.riis.decompiler;}
@members{String flag_result = "";}

rule
 @after {System.out.println("}");}
 : class_name super_ source fields methods+
 ;

class_name
 : CLASS f1=flags id2=IDENT
 {System.out.println($f1.text + " class " + $id2.text + " {");}
 ;

super_: SUPER package_;
source: SOURCE IDENT '.java';
fields: field+ ;

field: FIELD f1=flags id2=IDENT p1=package_ ';' '=' '"' id4=IDENT '"'
 {System.out.println($f1.text + " " + $p1.result + " " + $id2.text + " =
\"" + $id4.text + "\"");}
 ;

CHAPTER 6: Decompiler Implementation 208

methods: method_start scrap* method_end
 | method_start scrap* for_start for_body scrap* for_end method_end
 ;

method_start: METHODSTRT f1=flags INIT p1=params r1=return_
 {System.out.println($f1.text + " " + $r1.result + " init " + $p1.result
+ " {");}
 | METHODSTRT f1=flags id1=IDENT p1=params r1=return_
 {System.out.println($f1.text + " " + $r1.result + " " + $id1.text + " ("
+ $p1.result + ") {");}
 ;

method_end
 @after {System.out.println("}");}
 : METHODEND
 ;

for_start : id1=put_in_reg label id2=put_in_reg if_ge scrap*
 {System.out.println("for(a=" + $id1.result + "; a < " +
$id2.result + "; a++){");}
 ;

for_body: id1=sget id3=stmt_builder id2=invoke_virtual
 {System.out.println($id1.result + "." + $id2.result + "(" +
$id3.result);}
 ;

stmt_builder returns [String result]
 : new_instance id1=invoke_move id2=invoke_move id3=invoke_move

id4=invoke_move id5=invoke_move
{$result = "\"" + $id1.result + "\" + " + $id2.result + " + \"" + $id3.result +
"\" +" + $id4.result + ")";}
 ;

invoke_move returns [String result]
 : id1=invoke_virtual move_result
 {$result = $id1.result;}
 | id1=const_string invoke_virtual move_result
 {$result = $id1.result;}
 ;

move_result: MOVE_RESULT_OBJECT reg
 ;

const_string returns [String result]
 : CONST_STRING reg id1=ddx_string {$result = $id1.result;}
 ;

CHAPTER 6: Decompiler Implementation 209

ddx_string returns [String result]
 : '"' id1=IDENT '"' {$result = $id1.getText();}
 ;

for_end : add_int int_to_char goto_ label scrap*
 {System.out.println("}");}
 ;

new_instance: NEW_INSTANCE reg package_ scrap*;

sget returns [String result]
 : SGET_OBJECT reg id1=package_ id2=package_ ';' {$result = $id1.result;}
 ;

invoke_virtual returns [String result]
 : INVOKE_VIRTUAL reg_args id1=package_ ';' params 'V' {$result =
$id1.result;}
 | INVOKE_VIRTUAL reg_args package_ ';' id1=params package_ ';' {if
($id1.result.compareTo("I") == 0) { $result = "(int)a"; } else {$result =
"(char)a";}}
 ;

add_int: ADD_INT reg reg DIGIT
 ;

int_to_char: INT_TO_CHAR reg reg
 ;

goto_: GOTO label
 ;

if_ge: IF_GE reg reg label
 ;

put_in_reg returns [String result]
 : const_ reg id1=DIGIT {$result = $id1.getText();}
 ;

reg_args: '{' reg+ '}'
 ;

label: LABEL
 | LABEL ':'
 ;

invoke_direct: INVOKE_DIRECT regs package_
 ;

flags: flag+;

CHAPTER 6: Decompiler Implementation 210

flag returns [String flag_result]
 : f1='public' {flag_result += $f1.text;}
 | f1='static' {flag_result += $f1.text;}
 | f1='final' {flag_result += $f1.text;}
 ;

params returns [String result]
 : '(' ')' {$result = "()";}
 | '(' '[L' id1=package_ ';' ')' {$result = $id1.result + " args[]";}
 | '(' id2=IDENT ';' ')' {$result = $id2.getText();}
 | IDENT '(' id3=package_ ';' ')' {$result=$id3.result;}
 | IDENT '(' id4=IDENT ')' {$result = $id4.getText();}
 | IDENT '(' ')' {$result = "()";}

;

package_ returns [String result]
 : IDENT '/' IDENT '/' id1=IDENT {$result = id1.getText();}
 | IDENT '/' IDENT '/' IDENT '/' id1=IDENT {$result =
id1.getText();}
 | IDENT '/' IDENT '/' id1=IDENT '.' id2=IDENT{$result = id1.getText() +
"." + id2.getText();}
 | IDENT '/' IDENT '/' IDENT '/' '<init>' {$result = "init";}
 | 'L' IDENT '/' IDENT '/' id1=IDENT {$result =
$id1.getText();}
 ;

return_ returns [String result]
 : 'V' {$result = "void";}
 ;

regs: '{' reg+ '}';

reg : 'v' DIGIT;

const_ : CONST_4
 | CONST_16
 | CONST_HIGH_16
 ;

scrap: LIMIT REGISTERS DIGIT
 | ';' 'this:' reg params
 | LINE DIGIT+
 | invoke_direct ';' '<init>' params return_
 | RETURN_VOID
 | ';' 'parameter[' DIGIT ']' ':' reg params
 ;

CHAPTER 6: Decompiler Implementation 211

CLASS: '.class';
PUBLIC: 'public';
STATIC: 'static';
FINAL: 'final';
SUPER: '.super';
SOURCE: '.source';
FIELD: '.field';
METHODSTRT: '.method';
METHODEND: '.end method';
INIT: '<init>';
LIMIT: '.limit';
REGISTERS: 'registers';
LINE: '.line';
INVOKE_DIRECT: 'invoke-direct';
INVOKE_VIRTUAL: 'invoke-virtual';
MOVE_RESULT_OBJECT: 'move-result-object';
NEW_INSTANCE: 'new-instance';
RETURN_VOID: 'return-void';
IF_GE: 'if-ge';
SGET_OBJECT: 'sget-object';
ADD_INT: 'add-int/lit8';
INT_TO_CHAR: 'int-to-char';
GOTO: 'goto';
CONST_STRING: 'const-string';
CONST_4: 'const/4';
CONST_16: 'const/16';
CONST_HIGH_16: 'const/high16';
DIGIT: ('0'..'9')+;
IDENT: ('a'..'z'|'A'..'Z')+;
LABEL: 'l' ('0'..'9'|'a'..'f')('0'..'9'|'a'..'f')('0'..'9'|'a'..'f');
COMMENT: '//' ~('\r' | '\n')* {$channel = HIDDEN;};
WS: (' ' | '\t' | '\n' | '\r' | '\f' | ',')+ {$channel = HIDDEN;};

Java
The generated Java code is shown in Listing 6-20. Note that dedexer made
some subtle changes to the opcodes, so you lost the variables in the print
statement. The Java code also needs some tabs to make it more readable, but
you should see that classes.dex has been transformed back into Java.

Listing 6-20. Generated Casting.java

public class Casting {
static final String ascStr = "ascii"
static final String chrStr = "character"
public void init () {
}
public static void main (String args[]) {

CHAPTER 6: Decompiler Implementation 212

for(a=0; a < 128; a++){
System.out.println("ascii" + (int)a + "character" +(char)a)
}
}
}

Example 2: Hello World
The Android SDK comes with a simple Hello World application, shown in Figure
6-2. The next example takes the code and reverse-engineers it.

Figure 6-2. Hello Android screen

The original Java code is shown in Listing 6-21.

Listing 6-21. Hello.java

package org.example.Hello;

import android.app.Activity;
import android.os.Bundle;

public class Hello extends Activity {
 /** Called when the activity is first created. */
 @Override

CHAPTER 6: Decompiler Implementation 213

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

The corresponding DDX file is shown in Listing 6-22.

Listing 6-22. HelloWorld.ddx

.class public org/example/Hello/Hello

.super android/app/Activity

.source Hello.java

.method public <init>()V
.limit registers 1
; this: v0 (Lorg/example/Hello/Hello;)
.line 6
 invoke-direct {v0},android/app/Activity/<init> ; <init>()V
 return-void
.end method

.method public onCreate(Landroid/os/Bundle;)V
.limit registers 3
; this: v1 (Lorg/example/Hello/Hello;)
; parameter[0] : v2 (Landroid/os/Bundle;)
.line 10
 invoke-super {v1,v2},android/app/Activity/onCreate ;
onCreate(Landroid/os/Bundle;)V
.line 11
 const/high16 v0,32515
 invoke-virtual {v1,v0},org/example/Hello/Hello/setContentView ;
setContentView(I)V
.line 12
 return-void
.end method

Bytecode Analysis
Table 6-2 explains what each bytecode segment from Listing 6-22 means and
presents a running tally of the values in the v0, v1, and v2 DVM registers.

CHAPTER 6: Decompiler Implementation 214

Table 6-2. HelloWorld.java Android Bytecode Analysis

PC Raw Bytecode Operand Opcode v0 v1 v2 Comments

0 6 f20 0100
2100

invoke-super {v1, v2} this savedInstanceSt
ate

Invoke the virtual
method of the
parent (v1) with
method[1]
Landroid/app/Ac
tivity;.onCreat
e:(Landroid/os/
Bundle;)V with
argument v2

3 1 500 037f const/high16 v0, 32515 32515 Put constant
#7f03 or 32515 in
v0

5 6 e20 0500
0100

invoke-
virtual

{v1, v0} 32515 Invoke virtual
method[5]
Lorg/example/He
llo/Hello;.setC
ontentView:(I)V
with argument v0

8 0 e00 return-void Return

Parser
To parse HelloWorld, you need to add support for the invoke-super and new
const16/high keywords as well as the contentView structure. The parser is
shown in Listing 6-23.

Listing 6-23. Hello World and Casting Parser

rule : for_loop return_
 | super_stmt return_
 ;

super_stmt : invoke_super invoke_virtual_content
 ;

CHAPTER 6: Decompiler Implementation 215

for_loop : put_in_reg+ for_start println for_end
 ;

for_start: 'if-ge' reg reg HEX_DIGIT+
 ;

for_end: add_int int_to_char goto_
 ;

put_in_reg : const_ reg HEX_DIGIT+
 ;

reg : 'v' HEX_DIGIT
 ;

const_ : CONST_4
 | CONST_16
 | CONST_HIGH_16
 ;

add_int : ADD_INT reg reg HEX_DIGIT
 ;

int_to_char: 'int-to-char' reg reg
 ;

goto_: 'goto' HEX_DIGIT+
 ;

return_: 'return-void'
 ;

println: sget new_instance invoke_direct const_string invoke_virtual_move+
 ;

sget: SGET reg obj
 ;

new_instance: NEW_INSTANCE reg obj
 ;

invoke_direct: INVOKE_DIRECT obj param
 ;

invoke_super: INVOKE_SUPER param
 ;

invoke_virtual_move: invoke_virtual
 | invoke_virtual move_result_object

CHAPTER 6: Decompiler Implementation 216

 | invoke_virtual move_result_object const_string
 ;

invoke_virtual_content: content_view invoke_virtual
 ;

content_view: const_ reg HEX_DIGIT+
 ;

invoke_virtual: INVOKE_VIRTUAL obj param
 | INVOKE_VIRTUAL param
 ;

move_result_object: MOVE_RESULT_OBJECT reg
 ;

const_string: CONST_STRING reg obj
 ;

obj : IDENT '[' HEX_DIGIT+ ']'
 ;

param : '{' reg '}'
 | '{' reg reg '}'
 ;

INVOKE_DIRECT: 'invoke-direct';
INVOKE_SUPER: 'invoke-super';
INVOKE_VIRTUAL: 'invoke-virtual';
NEW_INSTANCE: 'new-instance';
MOVE_RESULT_OBJECT: 'move-result-object';
SGET: 'sget-object';
CONST_STRING: 'const-string';
HEX_DIGIT: ('0'..'9'|'A'..'F'|'a'..'f');
IDENT: ('a'..'z')+;
ADD_INT: 'add-int/lit8';
CONST_4: 'const/4';
CONST_16: 'const/16';
CONST_HIGH_16: 'const/high16';

Java
The generated Java code is shown in Listing 6-24. classes.dex tells you that
savedInstanceState is in v2 when the method is first invoked and
setContentView is calling the numeric value of R.layout.Main.

CHAPTER 6: Decompiler Implementation 217

Listing 6-24. Generated HelloWorld.java

super.onCreate(savedInstanceState);
setContentView(32515);

Example 3: if Statement
To complete these examples, you need an if statement. The open source
Android app from WordPress is a great resource because it’s a professional app
that gives you access to the source code. escapeHTML.java in Listing 6-25 has a
simple if conditions.

Listing 6-25. escapeHTML Method

public static void escapeHtml(Writer writer, String string) throws IOException {
 if (writer == null) {
 throw new IllegalArgumentException ("The Writer must not be null.");
 }
 if (string == null) {
 return;
 }
 Entities.HTML40_escape.escape(writer, string);
}

The bytecode from the dex file is shown in Listing 6-26.

Listing 6-26. escapeHTML.ddx

.method public static escapeHtml(Ljava/io/Writer;Ljava/lang/String;)V

.throws Ljava/io/IOException;

.limit registers 4
; parameter[0] : v2 (Ljava/io/Writer;)
; parameter[1] : v3 (Ljava/lang/String;)
.line 27
 if-nez v2,l7ba4c
.line 28
 new-instance v0,java/lang/IllegalArgumentException
 const-string v1,"The Writer must not be null."
 invoke-direct {v0,v1},java/lang/IllegalArgumentException/<init>
 ; <init>(Ljava/lang/String;)V
 throw v0
l7ba4c:
.line 30
 if-nez v3,l7ba52
l7ba50:
.line 34
 return-void
l7ba52:

CHAPTER 6: Decompiler Implementation 218

.line 33
 sget-object v0,org/wordpress/android/util/Entities.HTML40_escape
Lorg/wordpress/android/util/Entities;
 invoke-virtual {v0,v2,v3},org/wordpress/android/util/Entities/escape
 ; escape(Ljava/io/Writer;Ljava/lang/String;)V
 goto l7ba50
.end method

Bytecode Analysis
Table 6-3 explains what each bytecode segment from Listing 6-23 means along
with a running tally of the values in the v0, v1, v2, and v3 DVM registers. The
only real puzzle in reverse-engineering the bytecode is the last instruction: 28fa.
The 28 opcode translates to goto with an operand of fa. The operand is stored
in two’s complement format (see
http://en.wikipedia.org/wiki/Twos_complement for more information). To get
the address, you need to convert each of the hexadecimal digits to binary, flip
the bits, and add 1. In this example, fa = 11111010, which when the bits are
flipped becomes 00000101. If you add 1, the number is 00000110 or decimal 6.
Go back six words, and you have your address: 000c.

Table 6-3. escapeHTML Android Bytecode Analysis

PC Bytecode Opcode Operand v0 v1 v2 v3 Comments

0 3 902 0a00 if-nez v2, 000a 0 write
r
Ljava
/io/W
riter
;

string
Ljava/
lang/S
tring;

Jump to PC=a if v2 is
null

2 2200 0202 new-instance v0, type[514] Ljava/la
ng/Illeg
alArgume
ntExcept
ion;

 Put type[514]
(0x202) into v0

4 1 a01 bf0d const-string v1,
string[3519]

 " The
Writer
must
not be
null"

 Put string[3519]
(0x0dbf) into v1

http://en.wikipedia.org/wiki/Twos_complement

CHAPTER 6: Decompiler Implementation 219

PC Bytecode Opcode Operand v0 v1 v2 v3 Comments

6 7 020 fe0b
1000

invoke-
direct

{v0, v1} Call method[3070]
0x0bfe with 2 arg,
Ljava/lang/IllegalAr
gumentException;.<in
it>:(Ljava/lang/Stri
ng;)V with
parameters {v0, v1}

9 27 00 throw v0 Throw exception
object v0

a 3 903 0300 if-nez v3, 000d Jump to PC=d if v3 is
null

c 0 e00 return-void Return

d 6 200 260a sget-object v0,
field[2598]

org/word
press/an
droid/ut
il/Entit
ies.HTML
40_escap
e
Lorg/wor
dpress/a
ndroid/u
til/Enti
ties;

 Read the object in
field[2598] (0xa26),
org/wordpress/androi
d/util/Entities.HTML
40_escape
Lorg/wordpress/andro
id/util/Entities;,
and store in v0

f 6 e30 4115
2003

invoke-
virtual

{v0, v2, v3}
method[5441]

 Call method[5441]
(0x1541),
org/wordpress/androi
d/util/Entities/esca
pe
(escape(Ljava/io/Wri
ter;Ljava/lang/Strin
g;)V), with
parameters {v0, v2,
v3}

CHAPTER 6: Decompiler Implementation 220

PC Bytecode Opcode Operand v0 v1 v2 v3 Comments

12 2 8fa goto 000c Go to address c; fa is
stored as two’s
complement

Parser
To parse the if not equal then branch as well as the goto statements, you
need to add them to the parser. You also need to add more parameter options
to the invoke-virtual statements; see Listing 6-27.

Listing 6-27. Hello World, Casting, and If Parser

rule : for_loop return_
 | super_stmt return_
 | if_stmt+
 ;

if_stmt: if_ new_instance const_string invoke_direct throw_
 | if_ return_ goto_stmt
 ;

goto_stmt: sget invoke_virtual goto_
 ;

if_ : IF_NEZ reg HEX_DIGIT+
 ;

throw_ : THROW reg
 ;

CHAPTER 6: Decompiler Implementation 221

super_stmt : invoke_super invoke_virtual_content
 ;

for_loop : put_in_reg+ for_start println for_end
 ;

for_start: 'if-ge' reg reg HEX_DIGIT+
 ;

for_end: add_int int_to_char goto_
 ;

put_in_reg : const_ reg HEX_DIGIT+
 ;

reg : 'v' HEX_DIGIT
 ;

const_ : CONST_4
 | CONST_16
 | CONST_HIGH_16
 ;

add_int : ADD_INT reg reg HEX_DIGIT
 ;

int_to_char: 'int-to-char' reg reg
 ;

goto_: 'goto' HEX_DIGIT+
 ;

return_: 'return-void'
 ;

println: sget new_instance invoke_direct const_string invoke_virtual_move+
 ;

sget: SGET reg obj
 ;

new_instance: NEW_INSTANCE reg obj
 ;

invoke_direct: INVOKE_DIRECT obj param
 | INVOKE_DIRECT param
 ;

invoke_super: INVOKE_SUPER param
 ;

CHAPTER 6: Decompiler Implementation 222

invoke_virtual_move: invoke_virtual
 | invoke_virtual move_result_object
 | invoke_virtual move_result_object const_string
 ;

invoke_virtual_content: content_view invoke_virtual
 ;

content_view: const_ reg HEX_DIGIT+
 ;

invoke_virtual: INVOKE_VIRTUAL obj param
 | INVOKE_VIRTUAL param
 | INVOKE_VIRTUAL param obj
 ;

move_result_object: MOVE_RESULT_OBJECT reg
 ;

const_string: CONST_STRING reg obj
 ;

obj : IDENT '[' HEX_DIGIT+ ']'
 ;

param : '{' reg '}'
 | '{' reg reg '}'
 | '{' reg reg reg '}'
 ;

CONST_STRING: 'const-string';
IF_NEZ: 'if-nez';
INVOKE_DIRECT: 'invoke-direct';
INVOKE_SUPER: 'invoke-super';
INVOKE_VIRTUAL: 'invoke-virtual';
NEW_INSTANCE: 'new-instance';
MOVE_RESULT_OBJECT: 'move-result-object';
SGET: 'sget-object';
THROW: 'throw';
HEX_DIGIT: ('0'..'9'|'A'..'F'|'a'..'f');
IDENT: ('a'..'z')+;
ADD_INT: 'add-int/lit8';
CONST_4: 'const/4';
CONST_16: 'const/16';
CONST_HIGH_16: 'const/high16';
WS: (' ' | '\t' | '\n' | '\r' | '\f' | ',')+ {$channel = HIDDEN;};

CHAPTER 6: Decompiler Implementation 223

Java
The generated Java code is shown in Listing 6-28.

Listing 6-28. Generated escapeHTML.java

if (writer == null) {
 throw new IllegalArgumentException ("The Writer must not be null.");
}
if (string == null) {
 return;
}
Entities.HTML40_escape.escape(writer, string);

Refactoring
As you build the parser, it quickly becomes clear that you need to put the
instructions into different families. Otherwise, the parser may end up being
unmanageable, and you’ll also end up hard-coding the structures to match the
input files. Without some refactoring, you’ll never have a generic solution to
reverse-engineering the Android APKs. Gabor Paller has split the instructions as
shown in Table 6-4.

Table 6-4. Opcode Classifications

Classification Opcodes

Moving between registers move, move/from16, move-wide, move-wide/from16, move-
object, move-object/from16

Obtaining and setting the
result value

move-result, move-result-wide, move-result-object,
return-void, return, return-wide, return-object

Exception handling throw, move-exception

Constants to registers const/4, const/16, const, const/high16, const-wide/16,
const-wide/32, const-wide, const-wide/high16, const-
string, const-class

Synchronization monitor-enter, monitor-exit

Type checking check-cast, instance-of

CHAPTER 6: Decompiler Implementation 224

Classification Opcodes

Array manipulation new-array, array-length, filled-new-array, filled-new-
array/range, fill-array-data

Instance creation new-instance

Execution control goto, goto/16, packed-switch, sparse-switch, if-eq, if-
ne,if-lt, if-ge, if-gt, if-le, if-eqz, if-nez, if-ltz, if-
gez, if-gtz, if-lez

Comparisons cmpl-float, cmpg-float, cmpl-double, cmpg-double, cmp-
long

Read/write member fields iget, iget-wide, iget-object, iget-boolean, iget-byte,
iget-char, iget-short, iput, iput-wide, iput-object,
iput-boolean, iput-byte, iput-char, iput-short

Read/write array elements aget, aget-wide, aget-object, aget-boolean, aget-byte,
aget-char, aget-short, aput, aput-wide, aput-object,
aput-boolean, aput-byte, aput-char, aput-short

Read/write static fields sget, sget-wide, sget-object, sget-boolean, sget-byte,
sget-char, sget-short, sput, sput-wide, sput-object,
sput-boolean, sput-byte, sput-char, sput-short

Method invocation invoke-virtual, invoke-super, invoke-direct, invoke-
static, invoke-interface, invoke-virtual/range, invoke-
super/range, invoke-direct/range, invoke-static/range,
invoke-interface/range

Operations on int, long,
float, double

add, sub, mul, div, rem, and, or, xor, shl, shr, ushr, neg-
(int, long, float, double), not-(int, long)

The refactored parser is shown in Listing 6-29. Now that you have a small test
suite of code from the examples, you can use it to test whether any changes
have broken the parser.

Listing 6-29. Refactored Parser

rule : for_loop return_
 | stmt return_
 | stmt+
 ;

CHAPTER 6: Decompiler Implementation 225

for_loop : put_in_reg+ for_start stmt for_end
 ;

stmt : if_stmt
 | super_stmt
 | println
 ;

if_stmt: if_ new_instance const_string invoke throw_
 | if_ return_ goto_stmt
 ;

println: sget new_instance invoke const_string invoke_move+
 ;

super_stmt : invoke invoke_content
 ;

goto_stmt: sget invoke goto_
 ;

for_start: 'if-ge' reg reg HEX_DIGIT+
 ;

for_end: add_int int_to_char goto_
 ;

put_in_reg : const_ reg HEX_DIGIT+
 ;

add_int : ADD_INT reg reg HEX_DIGIT
 ;

int_to_char: 'int-to-char' reg reg
 ;

invoke_move: invoke
 | invoke move_result_object
 | invoke move_result_object const_string
 ;

invoke_content: content_view invoke
 ;

invoke : invoke_virtual
 | invoke_direct
 | invoke_super
 ;

CHAPTER 6: Decompiler Implementation 226

invoke_virtual: INVOKE_VIRTUAL obj param
 | INVOKE_VIRTUAL param
 | INVOKE_VIRTUAL param obj
 ;

invoke_direct: INVOKE_DIRECT obj param
 | INVOKE_DIRECT param
 ;

invoke_super: INVOKE_SUPER param
 ;

content_view: const_ reg HEX_DIGIT+
 ;

sget: SGET reg obj
 ;

new_instance: NEW_INSTANCE reg obj
 ;

if_ : IF_NEZ reg HEX_DIGIT+
 ;

reg : 'v' HEX_DIGIT
 ;

const_ : CONST_4
 | CONST_16
 | CONST_HIGH_16
 ;

move_result_object: MOVE_RESULT_OBJECT reg
 ;

const_string: CONST_STRING reg obj
 ;

obj : IDENT '[' HEX_DIGIT+ ']'
 ;

//helper functions
param : '{' reg+ '}'
 ;

goto_: 'goto' HEX_DIGIT+
 ;

throw_ : THROW reg
 ;

CHAPTER 6: Decompiler Implementation 227

return_: 'return-void'
 ;

CONST_STRING: 'const-string';
IF_NEZ: 'if-nez';
INVOKE_DIRECT: 'invoke-direct';
INVOKE_SUPER: 'invoke-super';
INVOKE_VIRTUAL: 'invoke-virtual';
NEW_INSTANCE: 'new-instance';
MOVE_RESULT_OBJECT: 'move-result-object';
SGET: 'sget-object';
THROW: 'throw';
HEX_DIGIT: ('0'..'9'|'A'..'F'|'a'..'f');
IDENT: ('a'..'z')+;
ADD_INT: 'add-int/lit8';
CONST_4: 'const/4';
CONST_16: 'const/16';
CONST_HIGH_16: 'const/high16';
WS: (' ' | '\t' | '\n' | '\r' | '\f' | ',')+ {$channel = HIDDEN;};

At the moment the parser only handles 3 simple program structures and is
missing complete coverage of all Dalvik bytecodes. If included it would make
this chapter longer than the rest of the book. But for those inclined to learn
more the completed decompiler is available on the Apress web site
(www.apress.com), along with a larger test suite and instructions on how to
run it.

Summary
In this chapter, you’ve created DexToXML and DexToSource using the dedexer
outputs, both of that are available on the Apress web site. These can be used to
break down the classes.dex file into XML and Java source, respectively. The
DexToSource code on the web site uses an AST and StringTemplates for the
more complicated test-suite examples.

The next chapter finishes this book with a case study of the arguments for and
against obfuscation as well as best practices to obfuscate your code using open
source or a commercial obfuscator.

http://www.apress.com

7
Chapter

Hear No Evil, See No
Evil: A Case Study
You’re now almost at the end of your journey. By now you should have a sound
understanding of the overall principles of how to decompile and how to make
some attempts at protecting your code. Having said that, I’ve found from
working with clients and colleagues that even if you understand what
decompilation and obfuscation really mean, it doesn’t help you figure out what
practical measures you can take to protect your code. A little knowledge can
often create more questions than answers.

As the Competency Centre for Java (JCC) says on its deCaf website FAQ:

Is it true that no one will ever b e able to decompile my deCaf
protected application? NO. de Caf does no t make decompilat ion
impossible. It make Is it true that no one will ever be able to decompile
my deCaf protected application s it d ifficult. Maki ng d ecompilation
impossible is impossible.

The goal of this book is to help raise the bar and make it more difficult for
anyone to decompile your code. Currently in the Android world there seems to
be a ‘‘hear no evil, see no evil’’ approach to decompilation, but sooner or later
that will change. After reading this book you should be forewarned and, more
important, forearmed about the best practical approach to safeguard your code,
given your specific circumstances.

This chapter examines a case study to help overcome this conundrum. Almost
everyone who tries to protect their code does so using some sort of obfuscation

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 230

tool. The case study looks at this approach in more detail to help you come to a
conclusion about how to best protect your code. It has the following format:

 Problem description

 Myths

 Proposed solutions: ProGuard and DashO

Obfuscation Case Study
For many people, the fear of someone decompiling their Android application is
nowhere near the top of the list of things they’re worrying about. It ranks way
below installing the latest version of Maven or Ant. Sure, they’d like to protect
against decompilation, but nobody has the t ime-----and doesn’t ProGuard take
care of that anyway?

There are two simple options in this scenario: use obfuscation to protect the
application, or ignore decompilation as if it’s not a problem. The latter, of
course, isn’t a recommended choice for obvious reasons.

Myths
Over the years, I’ve heard many different arguments about whether it makes
sense to protect your code. The most common one today is that if you create a
good Android application and continue to improve it, that will safeguard you
against anyone decompiling your code. It’s a common belief that if you write
good applications, the source will protect itself-----that upgrades and good
support are much better ways of protecting your code than using obfuscation or
any of the other techniques discussed in this book.

Other arguments are that software development is about how you apply your
knowledge, not getting access to someone else’s applications. The original
code these days may come from a well-described design pattern, so nobody
cares if it’s hacked. And all developers (the good ones, anyway) can always
think of a better way of doing something after it’s completed, so why worry?
Chances are that if someone is so unimaginative that they have to resort to
stealing your code, they won’t be capable of building on the code and turning it
into something useful. And it’s impossible for you to read your own code six
months after it’s developed, so how would anyone else make sense of it?

Obfuscated code can also be very difficult to debug. Error reports from the field
need to be traced back to the correct method so the developer can debug and

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 231

fix the code. If not handled correctly, this can become a maintenance nightmare
and make support challenging.

But surely the p roblem i s someone c racking the p rogram-----and that can happen
on iOS as well as Android. It’s not like the newspapers are full of reports of
people decompiling a product and rebadging it as their own; and we’re forever
hearing about the latest Microsoft exploit, so it can’t be a problem. For me, this
argument is valid for code running on web servers but not for code running on
Android devices. In Chapter 4, you saw how easy it is to gain access to the
code and resources in an APK. If it contains any clues to gaining access to
backend systems, such as API keys or database logins, or if your application
has any customer information that needs to be secure, then you owe it to your
customers to take basic steps to protect your code.

If used correctly, obfuscation significantly raises the bar and stops the majority
of people from recovering your source code. This chapter’s case study uses the
open source WordPress Android application from the last chapter as a good
sample app to obfuscate. Because it’s open source, you have the original
source code, which you can compare against the obfuscated code to see if
obfuscation is effective. The case study examines how ProGuard (which ships
with the Android SDK) and DashO (a commercial obfuscator) munge the class
files.

Download the WordPress source code from
http://android.svn.wordpress.org/. The case study uses the build from March
17, 2012.

Use android update project to update the project for your environment:

android update project -t android-15 -p ./

Solution 1: ProGuard
By default, ProGuard isn’t turned on. To enable ProGuard for obfuscation, edit
the project.properties file and add the following line:

proguard.config=proguard.cfg

We’ll cover the settings in proguard.cfg in more detail later in this chapter. Only
production or release APKs are ever obfuscated, so make sure the
android:debuggable flag is set to false in the AndroidManifest.xml file. Compile
the application using the ant release command, assuming Ant is your build
tool.

http://android.svn.wordpress.org/

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 232

SDK Output
ProGuard obfuscates the Java jar file before it’s converted to a classes.dex file.
The original and obfuscated files can be found in the bin\proguard folder if
you’re using Ant or \proguard under the project folder if you’re using Eclipse.

ProGuard also outputs the following files:

 dump.txt

 seeds.txt

 usage.txt

 mapping.txt

What would be useful is an obfuscation-coverage tool similar to a code-
coverage tool, to show you how much code has been obfuscated. But such a
tool doesn’t exist yet, so these files are the closest to a coverage tool that you
have.

dump.txt contains the output of all the information in the class files, not unlike a
Java class-file disassembler; it isn’t much help for your purposes. seeds.txt
lists the classes and methods that weren’t obfuscated. It’s vitally important to
understand why some code is obfuscated and other code isn’t; more on that
later in the ‘‘Double-Checking Your Work’’ section. But you need to check, for
example, that the methods with your API keys aren’t in seeds.txt, because as
otherwise they won’t be protected in any way.

ProGuard not only obfuscates but also shrinks jar files by removing any log files,
classes, or code that were in the original code but never called, and so on.
usage.txt lists all the unnecessary information that was stripped from the
original jar. Because storage is at a premium on Android devices, this alone is a
good reason to use an obfuscator on your code. But be careful that it doesn’t
remove code you might want to keep.

mapping.txt is probably the most useful file in this directory because it maps the
original method name to the obfuscated method name. ProGuard, like most
obfuscators, heavily renames methods; and if you need to do any debugging in
the fields, mapping.txt is necessary to trace back to the original method. You
use this in the next section to see how effective the obfuscation can be for the
WordPress application.

Listing 7-1, using ProGuard 4.4, shows the Ant output during a build; this can
also be useful for seeing how much or how little work ProGuard is doing. If the
obfuscate section is blank, you can be sure that ProGuard isn’t being called
correctly. If you try this yourself, don’t worry if the numbers are slightly different:

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 233

you’re probably using a more recent version of ProGuard and/or the WordPress
code.

Listing 7-1. Ant Output

-obfuscate:
 [mkdir] Created dir: G:\clients\apress\chap7\wordpress\bin\proguard
 [jar] Building jar:
G:\clients\apress\chap7\wordpress\bin\proguard\original.jar
 [proguard] ProGuard, version 4.4
 [proguard] ProGuard is released under the GNU General Public License. The
authors of all
 [proguard] programs or plugins that link to it (com.android.ant, ...) therefore
 [proguard] must ensure that these programs carry the GNU General Public License
as well.
 [proguard] Reading input...
 [proguard] Reading program jar
[G:\clients\apress\chap7\wordpress\bin\proguard\original.jar]
 [proguard] Reading program jar [G:\clients\apress\chap7\wordpress\libs\CWAC-
AdapterWrapper.jar]
 [proguard] Reading program jar [G:\clients\apress\chap7\wordpress\libs\CWAC-
Bus.jar]
 [proguard] Reading program jar [G:\clients\apress\chap7\wordpress\libs\CWAC-
Task.jar]
 [proguard] Reading program jar [G:\clients\apress\chap7\wordpress\libs\android-
support-v4.jar]
 [proguard] Reading program jar
[G:\clients\apress\chap7\wordpress\libs\httpmime-4.1.2.jar]
 [proguard] Reading program jar [G:\clients\apress\chap7\wordpress\libs\tagsoup-
1.2.1.jar]
 [proguard] Reading library jar [C:\Program Files (x86)\Android\android-
sdk\platforms\android-14\android.jar]
 [proguard] Initializing...
 [proguard] Note: the configuration refers to the unknown class
'com.android.vending.licensing.ILicensingService'
 [proguard] Note: there were 1 references to unknown classes.
 [proguard] You should check your configuration for typos.
 [proguard] Ignoring unused library classes...
 [proguard] Original number of library classes: 3133
 [proguard] Final number of library classes: 888
 [proguard] Printing kept classes, fields, and methods...
 [proguard] Shrinking...
 [proguard] Printing usage to
[G:\clients\apress\chap7\wordpress\bin\proguard\usage.txt]...
 [proguard] Removing unused program classes and class elements...
 [proguard] Original number of program classes: 644
 [proguard] Final number of program classes: 469
 [proguard] Optimizing...
 [proguard] Number of finalized classes: 331
 [proguard] Number of vertically merged classes: 0 (disabled)

q

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 234

 [proguard] Number of horizontally merged classes: 0 (disabled)
 [proguard] Number of removed write-only fields: 0 (disabled)
 [proguard] Number of privatized fields: 520 (disabled)
 [proguard] Number of inlined constant fields: 1196 (disabled)
 [proguard] Number of privatized methods: 163
 [proguard] Number of staticized methods: 61
 [proguard] Number of finalized methods: 1062
 [proguard] Number of removed method parameters: 98
 [proguard] Number of inlined constant parameters: 61
 [proguard] Number of inlined constant return values: 15
 [proguard] Number of inlined short method calls: 9
 [proguard] Number of inlined unique method calls: 169
 [proguard] Number of inlined tail recursion calls: 2
 [proguard] Number of merged code blocks: 6
 [proguard] Number of variable peephole optimizations: 1434
 [proguard] Number of arithmetic peephole optimizations: 0 (disabled)
 [proguard] Number of cast peephole optimizations: 31
 [proguard] Number of field peephole optimizations: 3
 [proguard] Number of branch peephole optimizations: 416
 [proguard] Number of simplified instructions: 196
 [proguard] Number of removed instructions: 1074
 [proguard] Number of removed local variables: 184
 [proguard] Number of removed exception blocks: 8
 [proguard] Number of optimized local variable frames: 493
 [proguard] Shrinking...
 [proguard] Removing unused program classes and class elements...
 [proguard] Original number of program classes: 469
 [proguard] Final number of program classes: 455

Double-Checking Your Work
To see how effective ProGuard can be, let’s look at what it did against the
EscapeUtils.java method that you used in Chapter 6. Listing 7-2 shows the
original WordPress source.

Listing 7-2. Original EscapeUtils.java Code

package org.wordpress.android.util;

import java.io.IOException;
import java.io.StringWriter;
import java.io.Writer;

public class EscapeUtils
{
 public static String escapeHtml(String str) {
 if (str == null) {

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 235

 return null;
 }
 try {
 StringWriter writer = new StringWriter ((int)(str.length() *
1.5));
 escapeHtml(writer, str);
 return writer.toString();
 } catch (IOException e) {
 //assert false;
 //should be impossible
 e.printStackTrace();
 return null;
 }
 }

 public static void escapeHtml(Writer writer, String string) throws
IOException {
 if (writer == null) {
 throw new IllegalArgumentException ("The Writer must not be
null.");
 }
 if (string == null) {
 return;
 }
 Entities.HTML40_escape.escape(writer, string);
 }

 public static String unescapeHtml(String str) {
 if (str == null) {
 return null;
 }
 try {
 StringWriter writer = new StringWriter ((int)(str.length() * 1.5));
 unescapeHtml(writer, str);
 return writer.toString();
 } catch (IOException e) {
 //assert false;
 //should be impossible
 e.printStackTrace();
 return null;
 }
 }

 public static void unescapeHtml(Writer writer, String string) throws
IOException {
 if (writer == null) {
 throw new IllegalArgumentException ("The Writer must not be null.");
 }

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 236

 if (string == null) {
 return;
 }
 Entities.HTML40.unescape(writer, string);
 }

}

Listing 7-3 shows the unobfuscated code decompiled by JD-GUI. The best way
to see how well your obfuscation works is to first look at the decompiled code
from the jar file before it has been transformed into a classes.dex file. This
removes any unintended obfuscation that the dx process introduces. You can
see that it’s identical to the original code; the only difference is that there are no
comments in the decompiled version.

Listing 7-3. Unobfuscated EscapeUtils.java

package org.wordpress.android.util;

import java.io.IOException;
import java.io.StringWriter;
import java.io.Writer;

public class EscapeUtils
{
 public static String escapeHtml(String str)
 {
 if (str == null)
 return null;
 try
 {
 StringWriter writer = new StringWriter((int)(str.length() * 1.5D));
 escapeHtml(writer, str);
 return writer.toString();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }return null;
 }

 public static void escapeHtml(Writer writer, String string)
 throws IOException
 {
 if (writer == null) {
 throw new IllegalArgumentException("The Writer must not be null.");
 }
 if (string == null) {
 return;

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 237

 }
 Entities.HTML40_escape.escape(writer, string);
 }

 public static String unescapeHtml(String str) {
 if (str == null)
 return null;
 try
 {
 StringWriter writer = new StringWriter((int)(str.length() * 1.5D));
 unescapeHtml(writer, str);
 return writer.toString();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }return null;
 }

 public static void unescapeHtml(Writer writer, String string) throws
IOException
 {
 if (writer == null) {
 throw new IllegalArgumentException("The Writer must not be null.");
 }
 if (string == null) {
 return;
 }
 Entities.HTML40.unescape(writer, string);
 }
}

Listing 7-4 shows the code obfuscated by ProGuard. I used the mapping.txt file
to get the name of the obfuscated file, which is t.java. There is a certain
randomness to the choice of filename, and it probably won’t be t.java if you
obfuscate the WordPress code yourself.

Listing 7-4. Obfuscated t.java (EscapeUtils.java)

package org.wordpress.android.util;

import java.io.IOException;
import java.io.StringWriter;

public final class t
{
 public static String a(String paramString)
 {
 if (paramString == null)
 return null;

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 238

 try
 {
 StringWriter localStringWriter;
 String str = paramString;
 paramString = localStringWriter = new
StringWriter((int)(paramString.length() * 1.5D));
 if (str != null)
 r.b.a(paramString, str);
 return localStringWriter.toString();
 }
 catch (IOException localIOException)
 {
 localIOException.printStackTrace();
 }
 return null;
 }

 public static String b(String paramString)
 {
 if (paramString == null)
 return null;
 try
 {
 StringWriter localStringWriter;
 String str = paramString;
 paramString = localStringWriter = new
StringWriter((int)(paramString.length() * 1.5D));
 if (str != null)
 r.a.b(paramString, str);
 return localStringWriter.toString();
 }
 catch (IOException localIOException)
 {
 localIOException.printStackTrace();
 }
 return null;
 }
}

The public static String escapeHtml(String str) and public static String
unescapeHtml(String str) methods look very similar to the originals. But the
public static void escapeHtml(Writer writer, String string) and public
static void unescapeHtml(Writer writer, String string) methods have
been pushed to a separate file r.java, which is unintelligible (see Listing 7-5).

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 239

Listing 7-5. r.java Class

package org.wordpress.android.util;

import java.io.Writer;

final class r
{
 private static final String[][] c = { { "quot", "34" }, { "amp", "38" }, {
"lt", "60" }, { "gt", "62" } };
 private static final String[][] d = { { "apos", "39" } };
 private static String[][] e = { { "nbsp", "160" }, { "iexcl", "161" }, {
"cent", "162" }, { "pound", "163" }, { "curren", "164" }, { "yen", "165" }, {
"brvbar", "166" }, { "sect", "167" }, { "uml", "168" }, { "copy", "169" }, {
"ordf", "170" }, { "laquo", "171" }, { "not", "172" }, { "shy", "173" }, {
"reg", "174" }, { "macr", "175" }, { "deg", "176" }, { "plusmn", "177" }, {
"sup2", "178" }, { "sup3", "179" }, { "acute", "180" }, { "micro", "181" }, {
"para", "182" }, { "middot", "183" }, { "cedil", "184" }, { "sup1", "185" }, {
"ordm", "186" }, { "raquo", "187" }, { "frac14", "188" }, { "frac12", "189" }, {
"frac34", "190" }, { "iquest", "191" }, { "Agrave", "192" }, { "Aacute", "193"
}, { "Acirc", "194" }, { "Atilde", "195" }, { "Auml", "196" }, { "Aring", "197"
}, { "AElig", "198" }, { "Ccedil", "199" }, { "Egrave", "200" }, { "Eacute",
"201" }, { "Ecirc", "202" }, { "Euml", "203" }, { "Igrave", "204" }, { "Iacute",
"205" }, { "Icirc", "206" }, { "Iuml", "207" }, { "ETH", "208" }, { "Ntilde",
"209" }, { "Ograve", "210" }, { "Oacute", "211" }, { "Ocirc", "212" }, {
"Otilde", "213" }, { "Ouml", "214" }, { "times", "215" }, { "Oslash", "216" }, {
"Ugrave", "217" }, { "Uacute", "218" }, { "Ucirc", "219" }, { "Uuml", "220" }, {
"Yacute", "221" }, { "THORN", "222" }, { "szlig", "223" }, { "agrave", "224" },
{ "aacute", "225" }, { "acirc", "226" }, { "atilde", "227" }, { "auml", "228" },
{ "aring", "229" }, { "aelig", "230" }, { "ccedil", "231" }, { "egrave", "232"
}, { "eacute", "233" }, { "ecirc", "234" }, { "euml", "235" }, { "igrave", "236"
}, { "iacute", "237" }, { "icirc", "238" }, { "iuml", "239" }, { "eth", "240" },
{ "ntilde", "241" }, { "ograve", "242" }, { "oacute", "243" }, { "ocirc", "244"
}, { "otilde", "245" }, { "ouml", "246" }, { "divide", "247" }, { "oslash",
"248" }, { "ugrave", "249" }, { "uacute", "250" }, { "ucirc", "251" }, { "uuml",
"252" }, { "yacute", "253" }, { "thorn", "254" }, { "yuml", "255" } };
 private static String[][] f = { { "fnof", "402" }, { "Alpha", "913" }, {
"Beta", "914" }, { "Gamma", "915" }, { "Delta", "916" }, { "Epsilon", "917" }, {
"Zeta", "918" }, { "Eta", "919" }, { "Theta", "920" }, { "Iota", "921" }, {
"Kappa", "922" }, { "Lambda", "923" }, { "Mu", "924" }, { "Nu", "925" }, { "Xi",
"926" }, { "Omicron", "927" }, { "Pi", "928" }, { "Rho", "929" }, { "Sigma",
"931" }, { "Tau", "932" }, { "Upsilon", "933" }, { "Phi", "934" }, { "Chi",
"935" }, { "Psi", "936" }, { "Omega", "937" }, { "alpha", "945" }, { "beta",
"946" }, { "gamma", "947" }, { "delta", "948" }, { "epsilon", "949" }, { "zeta",
"950" }, { "eta", "951" }, { "theta", "952" }, { "iota", "953" }, { "kappa",
"954" }, { "lambda", "955" }, { "mu", "956" }, { "nu", "957" }, { "xi", "958" },
{ "omicron", "959" }, { "pi", "960" }, { "rho", "961" }, { "sigmaf", "962" }, {
"sigma", "963" }, { "tau", "964" }, { "upsilon", "965" }, { "phi", "966" }, {
"chi", "967" }, { "psi", "968" }, { "omega", "969" }, { "thetasym", "977" }, {
"upsih", "978" }, { "piv", "982" }, { "bull", "8226" }, { "hellip", "8230" }, {

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 240

"prime", "8242" }, { "Prime", "8243" }, { "oline", "8254" }, { "frasl", "8260"
}, { "weierp", "8472" }, { "image", "8465" }, { "real", "8476" }, { "trade",
"8482" }, { "alefsym", "8501" }, { "larr", "8592" }, { "uarr", "8593" }, {
"rarr", "8594" }, { "darr", "8595" }, { "harr", "8596" }, { "crarr", "8629" }, {
"lArr", "8656" }, { "uArr", "8657" }, { "rArr", "8658" }, { "dArr", "8659" }, {
"hArr", "8660" }, { "forall", "8704" }, { "part", "8706" }, { "exist", "8707" },
{ "empty", "8709" }, { "nabla", "8711" }, { "isin", "8712" }, { "notin", "8713"
}, { "ni", "8715" }, { "prod", "8719" }, { "sum", "8721" }, { "minus", "8722" },
{ "lowast", "8727" }, { "radic", "8730" }, { "prop", "8733" }, { "infin", "8734"
}, { "ang", "8736" }, { "and", "8743" }, { "or", "8744" }, { "cap", "8745" }, {
"cup", "8746" }, { "int", "8747" }, { "there4", "8756" }, { "sim", "8764" }, {
"cong", "8773" }, { "asymp", "8776" }, { "ne", "8800" }, { "equiv", "8801" }, {
"le", "8804" }, { "ge", "8805" }, { "sub", "8834" }, { "sup", "8835" }, {
"sube", "8838" }, { "supe", "8839" }, { "oplus", "8853" }, { "otimes", "8855" },
{ "perp", "8869" }, { "sdot", "8901" }, { "lceil", "8968" }, { "rceil", "8969"
}, { "lfloor", "8970" }, { "rfloor", "8971" }, { "lang", "9001" }, { "rang",
"9002" }, { "loz", "9674" }, { "spades", "9824" }, { "clubs", "9827" }, {
"hearts", "9829" }, { "diams", "9830" }, { "OElig", "338" }, { "oelig", "339" },
{ "Scaron", "352" }, { "scaron", "353" }, { "Yuml", "376" }, { "circ", "710" },
{ "tilde", "732" }, { "ensp", "8194" }, { "emsp", "8195" }, { "thinsp", "8201"
}, { "zwnj", "8204" }, { "zwj", "8205" }, { "lrm", "8206" }, { "rlm", "8207" },
{ "ndash", "8211" }, { "mdash", "8212" }, { "lsquo", "8216" }, { "rsquo", "8217"
}, { "sbquo", "8218" }, { "ldquo", "8220" }, { "rdquo", "8221" }, { "bdquo",
"8222" }, { "dagger", "8224" }, { "Dagger", "8225" }, { "permil", "8240" }, {
"lsaquo", "8249" }, { "rsaquo", "8250" }, { "euro", "8364" } };
 private static r g;
 private static r h;
 public static final r a;
 public static final r b;
 private s i = new ag();

 private void a(String[][] paramArrayOfString)
 {
 for (int j = 0; j < paramArrayOfString.length; j++)
 {
 int k = Integer.parseInt(paramArrayOfString[j][1]);
 String str = paramArrayOfString[j][0];
 this.i.a(str, k);
 }
 }

 public final void a(Writer paramWriter, String paramString)
 {
 int j = paramString.length();
 for (int k = 0; k < j; k++)
 {
 int m = paramString.charAt(k);
 int n = m;
 String str;
 if ((str = this.i.a(n)) == null)

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 241

 {
 if (m > 127)
 {
 paramWriter.write("&#");
 paramWriter.write(Integer.toString(m, 10));
 paramWriter.write(59);
 }
 else
 {
 paramWriter.write(m);
 }
 }
 else
 {
 paramWriter.write(38);
 paramWriter.write(str);
 paramWriter.write(59);
 }
 }
 }

 public final void b(Writer paramWriter, String paramString)
 {
 int j;
 if ((j = paramString.indexOf('&')) < 0)
 {
 paramWriter.write(paramString);
 return;
 }
 int k = j;
 String str1 = paramString;
 paramString = paramWriter;
 paramWriter = this;
 paramString.write(str1, 0, k);
 int m = str1.length();
 while (k < m)
 {
 int n;
 String str2;
 if ((n = str1.charAt(k)) == '&')
 {
 int i1 = k + 1;
 String str4;
 if ((str4 = str1.indexOf(';', i1)) == -1)
 {
 paramString.write(n);
 }
 else
 {
 int i2;

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 242

 if (((i2 = str1.indexOf('&', k + 1)) != -1) && (i2 < str4))
 {
 paramString.write(n);
 }
 else
 {
 str2 = str1.substring(i1, str4);
 n = -1;
 if ((i1 = str2.length()) > 0)
 if (str2.charAt(0) == '#')
 {
 if (i1 > 1)
 {
 n = str2.charAt(1);
 try
 {
 switch (n)
 {
 case 88:
 case 120:
 n = Integer.parseInt(str2.substring(2), 16);
 break;
 default:
 n = Integer.parseInt(str2.substring(1), 10);
 }
 if (n > 65535)
 n = -1;
 }
 catch (NumberFormatException localNumberFormatException)
 {
 n = -1;
 }
 }
 }
 else
 {
 String str3 = str2;
 n = paramWriter.i.a(str3);
 }
 if (n == -1)
 {
 paramString.write(38);
 paramString.write(str2);
 paramString.write(59);
 }
 else
 {
 paramString.write(n);
 }
 str2 = str4;

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 243

 }
 }
 }
 else
 {
 paramString.write(n);
 }
 str2++;
 }
 }

 static
 {
 (r.g = new r()).a(c);
 g.a(d);
 (r.h = new r()).a(c);
 h.a(e);
 r localr;
 (localr = r.a = new r()).a(c);
 localr.a(e);
 localr.a(f);
 b = new r();
 (localr = a).a(e);
 localr.a(f);
 }
}

From Chapter 4, you can see that ProGuard is using layout obfuscation by
renaming the variables, which is only mildly effective. But it also employs some
impressive data obfuscation by splitting variables and converting static data to
procedural data. Round 1 to ProGuard.

Look at the left menu in Figure 7-1, which shows the obfuscated jar file opened
in JD-GUI. A significant number of the class names haven’t been obfuscated.
The methods have some layout obfuscation, but the class names contain
information that makes it easy to understand what the methods are doing. By
default, all Activity, Application, Service, BroadcastReceiver, and
ContentProvider classes listed in the manifest.xml file aren’t obfuscated by
ProGuard. The best solution is to minimize these type of classes.

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 244

Figure 7-1. Obfuscated WordPress jar file in JD-GUI

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 245

Configuration
ProGuard is configured in the proguard.cfg file. The default configuration file is
shown in Listing 7-6. At its simplest, the file tells ProGuard not to use mixed-
case class names (which can cause problems on Windows when the jar file is
unzipped); not to perform the preverify step; to keep the class names for
Activity, Application, Service, BroadcastReceiver, and ContentProvider
classes; not to remove any native classes; and much more.

Listing 7-6. proguard.cfg File for the WordPress App

-optimizationpasses 5
-dontusemixedcaseclassnames
-dontskipnonpubliclibraryclasses
-dontpreverify
-verbose
-optimizations !code/simplification/arithmetic,!field/*,!class/merging/*

-keep public class * extends android.app.Activity
-keep public class * extends android.app.Application
-keep public class * extends android.app.Service
-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.content.ContentProvider
-keep public class * extends android.app.backup.BackupAgentHelper
-keep public class * extends android.preference.Preference
-keep public class com.android.vending.licensing.ILicensingService

-keepclasseswithmembernames class * {
 native <methods>;
}

-keepclasseswithmembers class * {
 public <init>(android.content.Context, android.util.AttributeSet);
}

-keepclasseswithmembers class * {
 public <init>(android.content.Context, android.util.AttributeSet, int);
}

-keepclassmembers class * extends android.app.Activity {
 public void *(android.view.View);
}

-keepclassmembers enum * {
 public static **[] values();
 public static ** valueOf(java.lang.String);
}

-keep class * implements android.os.Parcelable {

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 246

 public static final android.os.Parcelable$Creator *;
}

A good configuration settings resource for Android APKs that echoes many of
these settings can be found at
http://proguard.sourceforge.net/manual/examples.html#androidapplication.
It’s useful especially if your APK fails on your device after using ProGuard.

An easier option is to use the ProGuard GUI, which walks you through the
configuration settings with much more explanation. For example, the
optimization settings in proguard.cfg are arcane, but they’re much easier to
understand and set in the GUI (see Figure 7-2).

Figure 7-2. ProGuard GUI

To launch the GUI, first make sure you’ve downloaded from SourceForge at
http://proguard.sourceforge.net. Unzip it and execute the following command
in the lib folder, assuming you’ve copied your target proguard.cfg file into the
proguard\lib folder. You should see that many of the optimization options are
straight out of the obfuscation transformations from Chapter 4:

http://proguard.sourceforge.net/manual/examples.html#androidapplication
http://proguard.sourceforge.net

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 247

java -jar proguardgui.jar proguard.cfg

Debugging
You may find that your APK fails in the field after it’s been obfuscated.
Debugging the code is difficult because many of the method names are
changed by ProGuard. Fortunately, ProGuard has a retrace option that allows
you to get back to the original names. The command is as follows:

java -jar retrace.jar mapping.txt stackfile.trace

mapping.txt is in the bin\proguard folder, and stackfile.trace is the stack
trace saved when the application crashed.

Solution 2: DashO
ProGuard isn’t your only obfuscation option. Commercial obfuscators such as
PreEmptive’s DashO, available at www.preemptive.com, are worthy alternatives
that do much more control-flow and string-encryption obfuscation than
ProGuard. Figure 7-3 shows the DashO interface, which includes Control Flow,
Renaming, and String Encryption obfuscation options.

http://www.preemptive.com

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 248

Figure 7-3. DashO GUI

The Control Flow option reorders the bytecode and aims to make it impossible
to decompile. The String Encryption option encrypts many of the strings, which
can be very useful as another defense against someone stealing API keys or
passwords. Overload Induction (one of the Renaming options) is a more intense
form of class renaming: more than one class can be named a() or b() because
doing so is legal Java, as long as the classes have different method parameters.

The simplest way to obfuscate an Android project in DashO is to use the DashO
wizard (see Figure 7-4). Later, you can use the GUI to tweak any options you
may want to set.

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 249

Figure 7-4. DashO wizard

Output
DashO outputs a project report file and a mapreport or mapping file into the ant-
bin\dasho-results folder. For example, the mapreport file tells me that the
EscapeUtils.class has been renamed to i_:

org.wordpress.android.i_ public org.wordpress.android.util.EscapeUtils

Listing 7-7 shows the JD-GUI output after decompilation.

Listing 7-7. EscapeUtils, Obfuscated by DashO

package org.wordpress.android;

import java.io.IOException;
import java.io.StringWriter;
import java.io.Writer;

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 250

public class i_
{
 public static String e(String paramString)
 {
 if (paramString != null);
 try
 {
 StringWriter localStringWriter = new
StringWriter((int)(paramString.length() * 1.5D));
 o(localStringWriter, paramString);
 return localStringWriter.toString();
 return null;
 }
 catch (IOException localIOException)
 {
 localIOException.printStackTrace();
 }
 return null;
 }

 public static void o(Writer paramWriter, String paramString)
 throws IOException
 {
 if (paramWriter == null)
 break label24;
 do
 return;
 while (paramString == null);
 xd.v.v(paramWriter, paramString);
 return;
 label24: throw new
IllegalArgumentException(R.endsWith("Rom)]yeyk}0|g``5xxl9x~<sksl/", 554 / 91));
 }

 // ERROR //
 public static String f(String paramString)
 {
 // Byte code:
 // 0: aload_0
 // 1: ifnonnull +16 -> 17
 // 4: goto +10 -> 14
 // 7: astore_1
 // 8: aload_1
 // 9: invokevirtual 33 java/io/IOException:printStackTrace ()V
 // 12: aconst_null
 // 13: areturn
 // 14: aconst_null
 // 15: areturn
 // 16: areturn
 // 17: new 7 java/io/StringWriter

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 251

 // 20: dup
 // 21: aload_0
 // 22: invokevirtual 29 java/lang/String:length ()I
 // 25: i2d
 // 26: ldc2_w 3
 // 29: dmul
 // 30: d2i
 // 31: invokespecial 30 java/io/StringWriter:<init> (I)V
 // 34: astore_1
 // 35: aload_1
 // 36: aload_0
 // 37: invokestatic 37 org/wordpress/android/i_:d
(Ljava/io/Writer;Ljava/lang/String;)V
 // 40: aload_1
 // 41: invokevirtual 32
java/io/StringWriter:toString()Ljava/lang/String;
 // 44: goto -28 -> 16
 //
 // Exception table:
 // from to target type
 // 17 477 java/io/IOException
 }

 public static void d(Writer paramWriter, String paramString)
 throws IOException
 {
 if (paramWriter != null)
 {
 if (paramString != null)
 {
 xd.t.h(paramWriter, paramString);
 return;
 }
 }
 else
 throw new IllegalArgumentException(d9.insert(49 * 25, "\035\".l\032<&$4 s9
%#x75/|?;•.4./j"));
 }
}

The most obvious thing in the code is that either the escapeHTML or unescapeHTML
method failed to decompile. There is also some interesting use of Java, such as
variable names labels and string encryption. The following code snippet is a
good example of the confusing code when decompiled using JD-GUI:

 label24: throw new
IllegalArgumentException(R.endsWith("Rom)]yeyk}0|g``5xxl9x~<sksl/", 554 / 91));

It would take some effort to recompile this code. Round 2 to DashO.

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 252

Reviewing the Case Study
I hope this case study has shown you how much code JD-GUI can recover from
unprotected code and how close that code is to the original source. In this
chapter’s random sample, the only difference between the two source files was
the missing comments. ProGuard and DashO make any decompiled code much
more difficult to understand. At the very least, you should add
proguard.config=proguard.cfg to your project.properties file; and commercial
obfuscators can offer additional protection.

Always double check that any sensitive information has been protected by
downloading the production APK and decompiling it. If you have any API keys
or usernames to backend systems, and they aren’t hidden to your satisfaction
by ProGuard or DashO, you might want to consider hiding the code in C++
using the Android Native Development Kit (NDK; see Chapter 4 for more
information).

Summary
When the idea for this book was conceived, it seemed that Java decompilation
was going to be a significant issue. But that never happened. Sure, there were
some desktop applications; but most of the code was written for web servers,
and jar files were firmly locked away behind firewalls.

It’s fair to say that with Android, Java has outgrown its early roots. Android
APKs are readily accessible on a user’s device, and the decompilation
techniques first developed for Java now make it very easy to recover any
unprotected APKs. These APKs are typically small enough that a programmer or
hacker can quickly understand how they work. If you’re trying to hide anything in
an APK, you need to protect it.

Will this situation change in the near future? Not if there is still the link between
the DVM, the JVM, and Java code. I predict that the tools will move to the DVM,
and, if anything, the situation will probably get worse. The arms race between
obfuscation and decompilation will be played out in fast motion, replicating
many o f the same s teps that took p lace in the last 10 years-----but this time on
the DVM.

The premise of this book is to show individual users how to decompile code
from classes.dex files, what protection schemes are available, and what they
mean. In general, people are much more curious than fraudulent, and it’s highly
unlikely that anyone will use a decompiler to steal a software company’s crown
jewels. I nstead, they just want to take a peek and see how i t a ll f its together-----

CHAPTER 7: Hear No Evil, See No Evil: A Case Study 253

Java decompilers enable the average programmer to look much further into
what are normally black boxes. This book helps you peek over that edge.

Things to try from here include using ANTLR and extending the code if it doesn’t
decompile your particular classes.dex file. There are also several open source
decompilers available on the Web------such as JODE, available at
http://jode.sourceforge.net------that provide a wealth of information. Smali and
baksmali, available at http://code.google.com/p/smali/, are also excellent
places to begin your research.

I’ve tried my best to make this book easy to read. I consciously decided to make
it more practical than theoretical while trying to avoid it becoming Android
Decompilers for Dummies. I hope it was worth the effort on my part and yours.
Just remember, things change quickly around here, so keep on eye on the
Apress website for updates.

http://jode.sourceforge.net----that
http://code.google.com/p/smali/

A

Appendix

Opcode Tables
In Chapter 2, you saw that Java bytecode is found in the code attribute part of
the Java class file. Table A-1 lists all the possible Java bytecodes. The hex value
for each opcode is shown along with the assembler-like opcode mnemonic.

Table A-1. Java Bytecode-to-Opcode Mapping

Opcode Hex Value Opcode Mnemonic

0 (0x00) Nop

1 (0x01) aconst_null

2 (0x02) iconst_m1

3 (0x03) iconst_0

4 (0x04) iconst_1

5 (0x05) iconst_2

6 (0x06) iconst_3

7 (0x07) iconst_4

8 (0x08) iconst_5

9 (0x09) lconst_0

APPENDIX A: Opcode Tables 256

Opcode Hex Value Opcode Mnemonic

10 (0x0a) lconst_1

11 (0x0b) fconst_0

12 (0x0c) fconst_1

13 (0x0d) fconst_2

14 (0x0e) dconst_0

15 (0x0f) dconst_1

16 (0x10) bipush

17 (0x11) sipush

18 (0x12) ldc

19 (0x13) ldc_w

20 (0x14) ldc2_w

21 (0x15) iload

22 (0x16) lload

23 (0x17) fload

24 (0x18) dload

25 (0x19) aload

26 (0x1a) iload_0

27 (0x1b) iload_1

28 (0x1c) iload_2

29 (0x1d) iload_3

30 (0x1e) lload_0

APPENDIX A: Opcode Tables 257

31 (0x1f) lload_1

32 (0x20) lload_2

33 (0x21) lload_3

34 (0x22) fload_0

35 (0x23) fload_1

36 (0x24) fload_2

37 (0x25) fload_3

38 (0x26) dload_0

39 (0x27) dload_1

40 (0x28) dload_2

41 (0x29) dload_3

42 (0x2a) aload_0

43 (0x2b) aload_1

44 (0x2c) aload_2

45 (0x2d) aload_3

46 (0x2e) iaload

47 (0x2f) laload

48 (0x30) faload

49 (0x31) daload

50 (0x32) aaload

51 (0x33) baload

52 (0x34) caload

APPENDIX A: Opcode Tables 258

Opcode Hex Value Opcode Mnemonic

53 (0x35) saload

54 (0x36) istore

55 (0x37) lstore

56 (0x38) fstore

57 (0x39) dstore

58 (0x3a) astore

59 (0x3b) istore_0

60 (0x3c) istore_1

61 (0x3d) istore_2

62 (0x3e) istore_3

63 (0x3f) lstore_0

64 (0x40) lstore_1

65 (0x41) lstore_2

66 (0x42) lstore_3

67 (0x43) fstore_0

68 (0x44) fstore_1

69 (0x45) fstore_2

70 (0x46) fstore_3

71 (0x47) dstore_0

72 (0x48) dstore_1

73 (0x49) dstore_2

APPENDIX A: Opcode Tables 259

74 (0x4a) dstore_3

75 (0x4b) astore_0

76 (0x4c) astore_1

77 (0x4d) astore_2

78 (0x4e) astore_3

79 (0x4f) iastore

80 (0x50) lastore

81 (0x51) fastore

82 (0x52) dastore

83 (0x53) aastore

84 (0x54) bastore

85 (0x55) castore

86 (0x56) sastore

87 (0x57) pop

88 (0x58) pop2

89 (0x59) dup

90 (0x5a) dup_x1

91 (0x5b) dup_x2

92 (0x5c) dup2

93 (0x5d) dup2_x1

94 (0x5e) dup2_x2

95 (0x5f) swap

APPENDIX A: Opcode Tables 260

Opcode Hex Value Opcode Mnemonic

96 (0x60) iadd

97 (0x61) ladd

98 (0x62) fadd

99 (0x63) dadd

100 (0x64) isub

101 (0x65) lsub

102 (0x66) fsub

103 (0x67) dsub

104 (0x68) imul

105 (0x69) lmul

106 (0x6a) fmul

107 (0x6b) dmul

108 (0x6c) idiv

109 (0x6d) ldiv

110 (0x6e) fdiv

111 (0x6f) ddiv

112 (0x70) irem

113 (0x71) lrem

114 (0x72) frem

115 (0x73) drem

116 (0x74) ineg

APPENDIX A: Opcode Tables 261

117 (0x75) lneg

118 (0x76) fneg

119 (0x77) dneg

120 (0x78) ishl

121 (0x79) lshl

122 (0x7a) ishr

123 (0x7b) lshr

124 (0x7c) iushr

125 (0x7d) lushr

126 (0x7e) iand

127 (0x7f) land

128 (0x80) ior

129 (0x81) lor

130 (0x82) ixor

131 (0x83) lxor

132 (0x84) iinc

133 (0x85) i2l

134 (0x86) i2f

135 (0x87) i2d

136 (0x88) l2i

137 (0x89) l2f

138 (0x8a) l2d

APPENDIX A: Opcode Tables 262

Opcode Hex Value Opcode Mnemonic

139 (0x8b) f2i

140 (0x8c) f2l

141 (0x8d) f2d

142 (0x8e) d2i

143 (0x8f) d2l

144 (0x90) d2f

145 (0x91) i2b

146 (0x92) i2c

147 (0x93) i2s

148 (0x94) lcmp

149 (0x95) fcmpl

150 (0x96) fcmpg

151 (0x97) dcmpl

152 (0x98) dcmpg

153 (0x99) ifeq

154 (0x9a) ifne

155 (0x9b) iflt

156 (0x9c) ifge

157 (0x9d) ifgt

158 (0x9e) ifle

159 (0x9f) if_icmpeq

APPENDIX A: Opcode Tables 263

160 (0xa0) if_icmpne

161 (0xa1) if_icmplt

162 (0xa2) if_icmpge

163 (0xa3) if_icmpgt

164 (0xa4) if_icmple

165 (0xa5) if_acmpeq

166 (0xa6) if_acmpne

167 (0xa7) goto

168 (0xa8) jsr

169 (0xa9) ret

170 (0xaa) tableswitch

171 (0xab) lookupswitch

172 (0xac) ireturn

173 (0xad) lreturn

174 (0xae) freturn

175 (0xaf) dreturn

176 (0xb0) areturn

177 (0xb1) return

178 (0xb2) getstatic

179 (0xb3) putstatic

180 (0xb4) getfield

181 (0xb5) putfield

APPENDIX A: Opcode Tables 264

Opcode Hex Value Opcode Mnemonic

182 (0xb6) invokevirtual

183 (0xb7) invokespecial

184 (0xb8) invokestatic

185 (0xb9) invokeinterface

186 (0xba) invokedynamic

187 (0xbb) new

188 (0xbc) newarray

189 (0xbd) anewarray

190 (0xbe) arraylength

191 (0xbf) athrow

192 (0xc0) checkcast

193 (0xc1) instanceof

194 (0xc2) monitorenter

195 (0xc3) monitorexit

196 (0xc4) wide

197 (0xc5) multianewarray

198 (0xc6) ifnull

199 (0xc7) ifnonnull

200 (0xc8) goto_w

201 (0xc9) jsr_w

APPENDIX A: Opcode Tables 265

Table A-2 lists all the possible Dalvik bytecodes encountered first in Chapter 3
and then throughput the book. The hex value for each opcode is shown along
with the assembler-like opcode mnemonic.

Table A-2. Dalvik Bytecode-to-Opcode Mapping

Opcode Hex Value Opcode Mnemonic

1 (0x00) Nop

2 (0x01) move vx, vy

3 (0x02) move/from16 vx, vy

4 (0x03) move/16

5 (0x04) move-wide

6 (0x05) move-wide/from16 vx, vy

7 (0x06) move-wide/16

8 (0x07) move-object vx, vy

9 (0x08) move-object/from16 vx, vy

10 (0x09) move-object/16

11 (0x0A) move-result vx

12 (0x0B) move-result-wide vx

13 (0x0C) move-result-object vx

14 (0x0D) move-exception vx

15 (0x0E) return-void

16 (0x0F) return vx

17 (0x10) return-wide vx

18 (0x11) return-object vx

19 (0x12) const/4 vx, lit4

APPENDIX A: Opcode Tables 266

Opcode Hex Value Opcode Mnemonic

20 (0x13) const/16 vx, lit16

21 (0x14) const vx, lit32

22 (0x15) const/high16 v0, lit16

23 (0x16) const-wide/16 vx, lit16

24 (0x17) const-wide/32 vx, lit32

25 (0x18) const-wide vx, lit64

26 (0x19) const-wide/high16 vx, lit16

27 (0x1A) const-string vx, string_id

28 (0x1B) const-string-jumbo

29 (0x1C) const-class vx, type_id

30 (0x1D) monitor-enter vx

31 (0x1E) monitor-exit

32 (0x1F) check-cast vx, type_id

33 (0x20) instance-of vx, vy, type_id

34 (0x21) array-length vx, vy

35 (0x22) new-instance vx, type

36 (0x23) new-array vx, vy, type_id

37 (0x24) filled-new-array {parameters}, type_id

38 (0x25) filled-new-array-range {vx..vy}, type_id

39 (0x26) fill-array-data vx, array_data_offset

40 (0x27) throw vx

APPENDIX A: Opcode Tables 267

41 (0x28) goto target

42 (0x29) goto/16 target

43 (0x2A) goto/32 target

44 (0x2B) packed-switch vx, table

45 (0x2C) sparse-switch vx, table

46 (0x2D) cmpl-float

47 (0x2E) cmpg-float vx, vy, vz

48 (0x2F) cmpl-double vx, vy, vz

49 (0x30) cmpg-double vx, vy, vz

50 (0x31) cmp-long vx, vy, vz

51 (0x32) if-eq vx, vy, target

52 (0x33) if-ne vx, vy, target

53 (0x34) if-lt vx, vy, target

54 (0x35) if-ge vx, vy, target

55 (0x36) if-gt vx, vy, target

56 (0x37) if-le vx, vy, target

57 (0x38) if-eqz vx, target

58 (0x39) if-nez vx, target

59 (0x3A) if-ltz vx, target

60 (0x3B) if-gez vx, target

61 (0x3C) if-gtz vx, target

62 (0x3D) if-lez vx, target

APPENDIX A: Opcode Tables 268

Opcode Hex Value Opcode Mnemonic

63 (0x3E) unused_3E

64 (0x3F) unused_3F

65 (0x40) unused_40

66 (0x41) unused_41

67 (0x42) unused_42

68 (0x43) unused_43

69 (0x44) aget vx, vy, vz

70 (0x45) aget-wide vx, vy, vz

71 (0x46) aget-object vx, vy, vz

72 (0x47) aget-boolean vx, vy, vz

73 (0x48) aget-byte vx, vy, vz

74 (0x49) aget-char vx, vy, vz

75 (0x4A) aget-short vx, vy, vz

76 (0x4B) aput vx, vy, vz

77 (0x4C) aput-wide vx, vy, vz

78 (0x4D) aput-object vx, vy, vz

79 (0x4E) aput-boolean vx, vy, vz

80 (0x4F) aput-byte vx, vy, vz

81 (0x50) aput-char vx, vy, vz

82 (0x51) aput-short vx, vy, vz

83 (0x52) iget vx, vy, field_id

APPENDIX A: Opcode Tables 269

84 (0x53) iget-wide vx, vy, field_id

85 (0x54) iget-object vx, vy, field_id

86 (0x55) iget-boolean vx, vy, field_id

87 (0x56) iget-byte vx, vy, field_id

88 (0x57) iget-char vx, vy, field_id

89 (0x58) iget-short vx, vy, field_id

90 (0x59) iput vx, vy, field_id

91 (0x5A) iput-wide vx, vy, field_id

92 (0x5B) iput-object vx, vy,field_id

93 (0x5C) iput-boolean vx, vy, field_id

94 (0x5D) iput-byte vx, vy, field_id

95 (0x5E) iput-char vx, vy, field_id

96 (0x5F) iput-short vx, vy, field_id

97 (0x60) sget vx, field_id

98 (0x61) sget-wide vx, field_id

99 (0x62) sget-object vx, field_id

100 (0x63) sget-boolean vx, field_id

101 (0x64) sget-byte vx, field_id

102 (0x65) sget-char vx, field_id

103 (0x66) sget-short vx, field_id

104 (0x67) sput vx, field_id

105 (0x68) sput-wide vx, field_id

APPENDIX A: Opcode Tables 270

Opcode Hex Value Opcode Mnemonic

106 (0x69) sput-object vx, field_id

107 (0x6A) sput-boolean vx, field_id

108 (0x6B) sput-byte vx, field_id

109 (0x6C) sput-char vx, field_id

110 (0x6D) sput-short vx, field_id

111 (0x6E) invoke-virtual { parameters }, methodtocall

112 (0x6F) invoke-super {parameter}, methodtocall

113 (0x70) invoke-direct { parameters }, methodtocall

114 (0x71) invoke-static {parameters}, methodtocall

115 (0x72) invoke-interface {parameters}, methodtocall

116 (0x73) unused_73

117 (0x74) invoke-virtual/range {vx..vy}, methodtocall

118 (0x75) invoke-super/range

119 (0x76) invoke-direct/range {vx..vy}, methodtocall

120 (0x77) invoke-static/range {vx..vy}, methodtocall

121 (0x78) invoke-interface-range

122 (0x79) unused_79

123 (0x7A) unused_7A

124 (0x7B) neg-int vx, vy

125 (0x7C) not-int vx, vy

126 (0x7D) neg-long vx, vy

APPENDIX A: Opcode Tables 271

127 (0x7E) not-long vx, vy

128 (0x7F) neg-float vx, vy

129 (0x80) neg-double vx, vy

130 (0x81) int-to-long vx, vy

131 (0x82) int-to-float vx, vy

132 (0x83) int-to-double vx, vy

133 (0x84) long-to-int vx, vy

134 (0x85) long-to-float vx, vy

135 (0x86) long-to-double vx, vy

136 (0x87) float-to-int vx, vy

137 (0x88) float-to-long vx, vy

138 (0x89) float-to-double vx, vy

139 (0x8A) double-to-int vx, vy

140 (0x8B) double-to-long vx, vy

141 (0x8C) double-to-float vx, vy

142 (0x8D) int-to-byte vx, vy

143 (0x8E) int-to-char vx, vy

144 (0x8F) int-to-short vx, vy

145 (0x90) add-int vx, vy, vz

146 (0x91) sub-int vx, vy, vz

147 (0x92) mul-int vx, vy, vz

148 (0x93) div-int vx, vy, vz

APPENDIX A: Opcode Tables 272

Opcode Hex Value Opcode Mnemonic

149 (0x94) rem-int vx, vy, vz

150 (0x95) and-int vx, vy, vz

151 (0x96) or-int vx, vy, vz

152 (0x97) xor-int vx, vy, vz

153 (0x98) shl-int vx, vy, vz

154 (0x99) shr-int vx, vy, vz

155 (0x9A) ushr-int vx, vy, vz

156 (0x9B) add-long vx, vy, vz

157 (0x9C) sub-long vx, vy, vz

158 (0x9D) mul-long vx, vy, vz

159 (0x9E) div-long vx, vy, vz

160 (0x9F) rem-long vx, vy, vz

161 (0xA0) and-long vx, vy, vz

162 (0xA1) or-long vx, vy, vz

163 (0xA2) xor-long vx, vy, vz

164 (0xA3) shl-long vx, vy, vz

165 (0xA4) shr-long vx, vy, vz

166 (0xA5) ushr-long vx, vy, vz

167 (0xA6) add-float vx, vy, vz

168 (0xA7) sub-float vx, vy,vz

169 (0xA8) mul-float vx, vy, vz

APPENDIX A: Opcode Tables 273

170 (0xA9) div-float vx, vy, vz

171 (0xAA) rem-float vx,vy,vz

172 (0xAB) add-double vx, vy, vz

173 (0xAC) sub-double vx, vy, vz

174 (0xAD) mul-double vx, vy, vz

175 (0xAE) div-double vx, vy, vz

176 (0xAF) rem-double vx, vy, vz

177 (0xB0) add-int/2addr vx, vy

178 (0xB1) sub-int/2addr vx, vy

179 (0xB2) mul-int/2addr vx, vy

180 (0xB3) div-int/2addr vx, vy

181 (0xB4) rem-int/2addr vx, vy

182 (0xB5) and-int/2addr vx, vy

183 (0xB6) or-int/2addr vx, vy

184 (0xB7) xor-int/2addr vx, vy

185 (0xB8) shl-int/2addr vx, vy

186 (0xB9) shr-int/2addr vx, vy

187 (0xBA) ushr-int/2addr vx, vy

188 (0xBB) add-long/2addr vx, vy

189 (0xBC) sub-long/2addr vx, vy

190 (0xBD) mul-long/2addr vx, vy

191 (0xBE) div-long/2addr vx, vy

APPENDIX A: Opcode Tables 274

Opcode Hex Value Opcode Mnemonic

192 (0xBF) rem-long/2addr vx, vy

193 (0xC0) and-long/2addr vx, vy

194 (0xC1) or-long/2addr vx, vy

195 (0xC2) xor-long/2addr vx, vy

196 (0xC3) shl-long/2addr vx, vy

197 (0xC4) shr-long/2addr vx, vy

198 (0xC5) ushr-long/2addr vx, vy

199 (0xC6) add-float/2addr vx, vy

200 (0xC7) sub-float/2addr vx, vy

201 (0xC8) mul-float/2addr vx, vy

202 (0xC9) div-float/2addr vx, vy

203 (0xCA) rem-float/2addr vx, vy

204 (0xCB) add-double/2addr vx, vy

205 (0xCC) sub-double/2addr vx, vy

206 (0xCD) mul-double/2addr vx, vy

207 (0xCE) div-double/2addr vx, vy

208 (0xCF) rem-double/2addr vx, vy

209 (0xD0) add-int/lit16 vx, vy, lit16

210 (0xD1) sub-int/lit16 vx, vy, lit16

211 (0xD2) mul-int/lit16 vx, vy, lit16

212 (0xD3) div-int/lit16 vx, vy, lit16

APPENDIX A: Opcode Tables 275

213 (0xD4) rem-int/lit16 vx, vy, lit16

214 (0xD5) and-int/lit16 vx, vy, lit16

215 (0xD6) or-int/lit16 vx, vy, lit16

216 (0xD7) xor-int/lit16 vx, vy, lit16

217 (0xD8) add-int/lit8 vx, vy, lit8

218 (0xD9) sub-int/lit8 vx, vy, lit8

219 (0xDA) mul-int/lit8 vx, vy, lit8

220 (0xDB) div-int/lit8 vx, vy, lit8

221 (0xDC) rem-int/lit8 vx, vy, lit8

222 (0xDD) and-int/lit8 vx, vy, lit8

223 (0xDE) or-int/lit8 vx, vy, lit8

224 (0xDF) xor-int/lit8 vx, vy, lit8

225 (0xE0) shl-int/lit8 vx, vy, lit8

226 (0xE1) shr-int/lit8 vx, vy, lit8

227 (0xE2) ushr-int/lit8 vx, vy, lit8

228 (0xE3) unused_E3

229 (0xE4) unused_E4

230 (0xE5) unused_E5

231 (0xE6) unused_E6

232 (0xE7) unused_E7

233 (0xE8) unused_E8

234 (0xE9) unused_E9

APPENDIX A: Opcode Tables 276

Opcode Hex Value Opcode Mnemonic

235 (0xEA) unused_EA

236 (0xEB) unused_EB

237 (0xEC) unused_EC

238 (0xED) unused_ED

239 (0xEE) execute-inline {parameters}, inline ID

240 (0xEF) unused_EF

241 (0xF0) invoke-direct-empty

242 (0xF1) unused_F1

243 (0xF2) iget-quick vx, vy, offset

244 (0xF3) iget-wide-quick vx, vy, offset

245 (0xF4) iget-object-quick vx, vy, offset

246 (0xF5) iput-quick vx, vy, offset

247 (0xF6) iput-wide-quick vx, vy, offset

248 (0xF7) iput-object-quick vx, vy, offset

249 (0xF8) invoke-virtual-quick {parameters}, vtable offset

250 (0xF9)
invoke-virtual-quick/range {parameter range}, vtable
offset

251 (0xFA) invoke-super-quick {parameters}, vtable offset

252 (0xFB)
invoke-super-quick/range {register range}, vtable
offset

253 (0xFC) unused_FC

254 (0xFD) unused_FD

APPENDIX A: Opcode Tables 277

255 (0xFE) unused_FE

256 (0xFF) unused_FF

Index

 A
Abstract syntax trees (AST), 171–172
Aggregation obfuscation, 131

cloning methods, 133
inlining and outlining methods,

132
interleaving methods, 132–133
loop transformations, 133

Android application, decompilers
APKs, 6
backend systems via web

services, 6
DEX file, 6
dexdump output, 7–8
DVM, 6
ProGuard, 6
reasons for vulnerable, 7

Android bytecode analysis
Casting.java, 198–201
Hello World application, 213–214
if statement, 218–220

Android Native Development Kit
(NDK), 17, 141–142

Android package file (APK), 93
adb pull Command, 101
AXMLPrinter2.jar Command, 102
Decoded AndroidManifest.xml,

102–103
decompilers, 6

apktool, 119
dex2jar, 118

Jad, 116–117
JD-GUI, 117–118
Mocha, 115
undx, 118

decompiling, 101
DEX file, 57

casting.class conversion, 59–
60

classes.dex file, 58
class file vs. DEX file, 58
unzipped, 58

downloading
backup tool, 94–95
description, 93–94
forums, 95
platform tools, 95–101

issues, 103
baksmali, 113–115
database schemas, 105
dedexer, 112–113
Dexdump, 109–112
disassemblers, 107
Dx, 109
fake apps, 106
hex editors, 107–108
HTML5/CSS, 106
web service keys and logins,

104–105
obfuscators

Crema, 143–144
DashO, 145–146

INDEX 280

APK, obfuscators (cont.)
JavaScript obfuscators, 146–

149
ProGuard, 144–145

source code protection
description, 119–120
fingerprinting your code, 138–

140
native methods, 140–142
non-obfuscation strategies,

142–143
obfuscation, 121–138
web services, 138
writing two versions, 120–121

unzipped, 102
YUI compressor, 147–149
zipped format, 101

Another Tool for Language
Recognition (ANTLR)

description, 166
DexToXML, 167–168
plug-in for Eclipse, 166–167

Apktool, 119

 B
Ball
Baksmali, 113–115

 C
Casting.java

Android bytecode analysis, 198–
201

Casting.ddx, 197–198
code, 196
Java, 211–212
parser, 201

Casting.ddx Parser, 207–211
for Loop Parser, 204–206
Without Bytecode Parser,

201–203
Without Pytecode, 203

Class file

access flags, 38
attributes and attributes count,

55
casting.class, 25
casting.java, 24
constant pool, 29

count, 28
cp_info Structure, 29
field descriptors, 37
for Casting.class, 30–36
tags, 29
Utf8 structure, 30

field attributes, 43–44
fields and field count, 43

Casting.java field information,
41–42

field access flag names and
values, 42

field_info data structure, 41
interfaces and interface count,

39–41
magic number, 27
method attributes

Code Attribute, 48–49
description, 48
<init> method, 49–51
init method attributes, 48
main method, 51–55

methods and method count
access flags, 46
Casting.class method

information, 44–46
method_info structure, 44
method name and descriptor

constant-pool information,
47

minor and major version
numbers, 28

parts, 26
struct, 26
superclass, 39
this class, 39
XML representation, 27

INDEX 281

Code fingerprinting, 16
Computation obfuscation

dead or irrelevant code insertion,
127

extending loop conditions, 128
parallelizing code, 131
programming idioms removal,

130
reducible to non-reducible

transformation, 128
redundant operands, 129

Construction of Useful Parsers (CUP)
Decompiler.lex, 164
description, 160
example, 157
main method bytecode, 164
Parser.CUP, 162
Partial CUP Debug Output, 165
sections, 160

declaration, 161
grammar rules, 164–165
list of symbols and tokens,

162–164
user routines, 161–162

Control obfuscations
aggregation, 131

cloning methods, 133
inlining and outlining

methods, 132
interleaving methods, 132–

133
loop transformations, 133

classifications, 127
computation

dead or irrelevant code
insertion, 127

extending loop conditions, 128
parallelizing code, 131
programming idioms removal,

130
reducible to non-reducible

transformation, 128
redundant operands, 129

description, 127
ordering, 134

reordering expressions, 134
reordering loops, 135

Copyright law, 13
CUP. See Construction of Useful

Parsers (CUP)

 D, E
Dalvik executable (DEX) file, 6

APK file, 57
casting.class conversion, 59–

60
classes.dex file, 58
class file vs. DEX file, 58
unzipped, 58

class_defs section
access flags, 83–84
classes.dex, 82
description, 81
DexToXML, 83
struct, 82

data section
class_data_item, 85–88
code_item, 88–92
description, 85

DexToXML, 62
DVM, 57
field_ids section

classes.dex, 77
fields information, 78
struct, 76

header section
checksum, 67
classes.dex, 65
description, 62
DexToXML Output, 65–66
Endian_tag, 67
fields, 63–65
Header_size, 67
magic number, 66
struct, 62–63

INDEX 282

DEX file (cont.)
method_ids section

classes.dex, 79
DexToXML, 79–81
methods, 81
struct, 78

parts, 61
proto_ids section

classes.dex, 74
data section, 76
description, 74
DexToXML, 75–76
struct, 74

specification, 57
string_ids section

classes.dex, 67–68
data Section, 71
DexToXML, 68–71

struct, 61
type_ids section, 71

classes.dex, 72
data Section, 73
DexToXML, 72–73

Dalvik virtual machine (DVM)
APKs, 6
backsmali, 113
DEX file, 57

DashO, 247
control flow option, 248
description, 145
GUI, 145, 248
output

description, 249
JD-GUI output, 249–251

protected code, 146
wizard, 249

Data obfuscations
aggregation, 136

array transformations, 137
class transformations, 137
merging scalar variables, 137

classifications, 135
ordering, 137

storage and encoding
changing encoding, 135–136
splitting variables, 136
static to procedural data

conversion, 136
Data section, DEX file

class_data_item
classes.dex, 86
DexToXML, 87–88
encoded_field, 86
encoded_method, 86
static field and method

information, 88
struct, 85
Uleb128, 85

code_item
classes.dex, 89
DexToXML, 90–91
struct, 88

description, 85
Dcc decompilers, 10
Decompilation, 17
Decompilers

Android application
APKs, 6
backend systems via web

services, 6
DEX file, 6
Dexdump Output, 7–8
DVM, 6
ProGuard, 6
reasons for vulnerable, 7

apktool, 119
defining the problem

casting bytecode, 152–153
DexToSource parser, 154
opcodes, 153

description, 2
design

parser design, 169–173
theory, 152

dex2jar, 118
DexToSource, 151

INDEX 283

history of, 8
academic decompilers, 10
ALGOL, 9
dcc, 10
Hanpeter van Vliet and Mocha,

11
pirate software, 9
reverse-engineering

techniques, 9
VB, 10–11

implementation, 175
DexToSource (see

DexToSource)
DexToXML (see DexToXML

functions)
refactoring, 223–227

Jad, 116–117
JD-GUI, 117–118
JVM

description, 3
Javap Output, 5
JDK, 3
reasons for vulnerable, 4
Simple Java Source Code, 4
specification, 4

legal issues
ground rules, 12
protection laws, 12–14

Mocha, 115
moral issues, 15–16
opcode

definition, 152
types, 153

pirated software, 16–17
protection

code fingerprinting, 16
encryption, 17
IPR protection schemes, 16
license agreements, 16
native code, 17
obfuscation, 16
pirated software, 16
schemes, 16

server-side code, 17
tools

ANTLR, 165–168
compiler-compilers, 154
CUP, 160–165
JLex, 157–160
Lex and Yacc, 155–156
types, 154

types, 2
undx, 118
virtual machine, 3

Dedexer, 112–113
dex.log file, 176

Header of the Class, 176–177
magic number

ANTLR Magic-Number Parser,
178–179

DexToXML ANTLR Grammar,
184–195

DexToXML Magic-Number
Parser, 180

DexToXML.java, 181
header rule, 182
parsing output, 177–178
parsing rules, 180
Refactored DexToXML Header

Grammar, 183–184
Refactored header_entry Rule,

183
tokenized, 179

Dex2jar, 118
Dexdump, 109–112
DexToSource

Casting.java
Android bytecode analysis,

198–201
Casting.ddx, 197–198
code, 196
Java, 211–212
parser, 201–211

description, 151, 196
Hello World application

INDEX 284

DexToSource, Hello World application
(cont.)

Android bytecode analysis,
213–214

Android screen, 212
HelloWorld.ddx, 213
Java, 216
parser, 214–216

if statement, 217
Android bytecode analysis,

218–220
escapeHTML.ddx, 217
escapeHTML Method, 217
Java, 223
parser, 220–222

parser, 154
DexToXML functions

description, 176
dex.log output parsing

ANTLR, 178–179
Header of the Class, 176–177
magic number, 177–178, 180–

195
rules, 179

Digital Millennium Copyright Act
(DMCA), 12

Disassemblers, 107
DVM. See Dalvik virtual machine

(DVM)
Dx command, 109

 F, G
Fingerprinting your code

description, 138
digital-fingerprinting system

criteria, 140

 H
Heap analysis tool (HAT), 22–23
Hexadecimal editors

description, 107
IDA, 108

Timebombed Trial App Code, 108

 I
If statement

Android bytecode analysis, 218–
220

escapeHTML.ddx, 217
escapeHTML Method, 217
Java, 223
parser, 220–222

Intellectual Property Rights (IPR)
protection schemes, 16

 J, K
Jad decompilers, 116–117
Java

Casting.java, 211–212
decompiler, 171
Hello World application, 216
if statement, 223

JavaScript obfuscators, 146–149
Java virtual machine (JVM)

block diagram, 22
class file

access flags, 38
attributes and attributes

count, 55
casting.class, 25
casting.java, 24
constant pool count, 28–37
field attributes, 43
fields and field count, 41
interfaces and interface

count, 39–41
magic number, 27
method attributes, 48–55
methods and method count,

44–48
minor and major version

numbers, 28
parts, 26
struct, 26

INDEX 285

superclass, 39
this class, 39
XML representation, 27

description, 19–20
design, 20–21
Javap Output, 5
JDK, 3
reasons for vulnerable, 4
simple java source code, 4
simple stack machine

heap, 22–23
JVM stack, 24
method area, 23
parts, 21
PC registers, 23

specification, 4, 20
JD-GUI decompiler, 117–118
JLex compiler

example, 157
sections

directives, 158–159
regular-expressions, 159–160
user code, 158

 L
Layout obfuscations

Crema-Protected Code, 125–126
description, 125
Operator Overloading, 126

Lex and Yacc tool
description, 155
LALR(1) parser, 156
LL(k) parsers, 156
Sed and Awk, 156
tokens, 155

 M, N
Magic number, dex.log

ANTLR Magic-Number Parser,
178–179

DexToXML ANTLR Grammar,
184–195

DexToXML Magic-Number
Parser, 180

DexToXML.java, 181
header rule, 182
parsing output, 177–178
parsing rules, 180
Refactored DexToXML Header

Grammar, 183–184
Refactored header_entry Rule,

183
tokenized, 179

Mocha decompiler, 115
Myths, Android, 230–231

 O
Obfuscation

case study, 230
code, 230
control, 127–135
data, 135–137
decompilers, 16
description, 122
JVM, 124
layout, 125–127
techniques, 138
transformations types, 122–124

Obfuscators
Crema, 143–144
DashO, 145–146
JavaScript obfuscators, 146–149
ProGuard, 144–145

Opcode
definition, 152
types, 153

Ordering obfuscation
reordering expressions, 134
reordering loops, 135

 P, Q
Parser design

Casting.java
Casting.ddx Parser, 207–211

INDEX 286

Parser design, Casting.java (cont.)
for Loop Parser, 204–206
Without Bytecode Parser,

201–203
Without Pytecode, 203

Casting.smali Method, 173
Hello World application, 214–216
identifiers, 173
if statement, 220–222
integers, 173
keywords, 173
native format, 172
strategy

AST, 171–172
benefits, 169
choice one, 171
choice three, 171–172
choice two, 171
disadvantages, 170
final decompiler design, 169
StringTemplates, 169

token types, 173
whitespace, 173

Patent law, 13
Platform tools, APK

description, 95
installation and usage, 99–101
rooting, 96–99
Z4Root

disabling root, 99
installation, 96–97
temporary or permanent root,

98
Program counter (PC) registers, 23
ProGuard, 6, 231

configuration
default, 245
GUI, 246
proguard.cfg file, 245

debugging, 247
double-checking your work

Obfuscated t.java, 237–238

obfuscated WordPress jar file,
243–244

Original EscapeUtils.java
Code, 234–236

r.java Class, 238–243
Unobfuscated

EscapeUtils.java, 236–237
SDK output, 232–234

Protection laws, decompilers
copyright, 13
description, 12
DMCA, 12
fair use, 12
Legal Protection of Computer

Programs, 13
patents, 13
reverse engineering, 14

 R
Refactoring

opcode classifications, 223
refactored parser, 224–227

Reverse engineering, 14
Reverse-engineering techniques, 9

 S
Server-side code, 17
Simple stack machine

heap, 22–23
JVM stack, 24
method area, 23
parts, 21
PC registers, 23

 T
Tools

backup tool, APK, 94–95
decompilers

ANTLR, 165–168
CUP, 160–165
JLex, 157–160

INDEX 287

Lex and Yacc, 155–156
HAT, 22–23
platform, APK

description, 95
installation and usage, 99–101
rooting, 96–99
Z4Root, 96

 U
Undx converter, 118

 V
Visual Basic (VB), 10–11

 W, X
Web services, APK, 138

 Y
YUI compressor, 147–149

 Z
Z4Root

disabling root, 99
installation, 96–97
temporary or permanent root, 98

 i

Decompiling Android

■ ■ ■

Godfrey Nolan

ii

Decompiling Android

Copyright © 2012 by Godfrey Nolan

This work is subject to copyright. A ll rights are reserved by the Publisher, whether the whole or pa rt of the materia l is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microf ilms or in any other physical way, and transm ission or inf ormation storag e and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or he reafter developed. Exempted
from this legal r eservation are b rief ex cerpts in connection with reviews or scholarly an alysis o r mate rial supplie d
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of
the Publisher's location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obt ained through RightsLink at the Copyright Clea rance C enter. Violations are liable t o
prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4248-2

ISBN-13 (electronic): 978-1-4302-4249-9

Trademarked n ames, logos, an d image s may ap pear in this bo ok. Rathe r than use a tra demark sy mbol with e very
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

The images of the Android Robot (0 1 / Android Robot) are reproduced from work created and shared by Google an d
used accordin g to te rms de scribed in the Cre ative Commons 3 .0 A ttribution Lice nse. Android an d all A ndroid an d
Google-based m arks are trademarks or re gistered trademarks of Google, Inc ., in the U.S. and other countries. Apress
Media, L.L.C. is not affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, servic e marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and inf ormation in this book are believed to be true and accurat e at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: James Markham
Technical Reviewer: Martin Larochelle
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Tiffany Taylor
Compositor: Bytheway Publishing Services
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book tr ade worldwide by Spri nger Science+Business Media New York, 23 3 Spring Street , 6th Floor,
New Y ork, N Y 10013. Phone 1-80 0-SPRINGER, f ax (2 01) 34 8-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most title s. For more information, reference our Specia l Bulk Sales –eBook Licensing
web page at www.apress.com/bulk-sales.

Any source cod e or other supp lementary materials referenced by the author i n this te xt is available to re aders at
www.apress.com. For d etailed inf ormation about how to lo cate your book’s source code, go to
www.apress.com/source-code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code

 iii

For Nancy, who was there when I wrote my first published article, gave my first talk at a conference,

and wrote my first book, and is still here for my second. Here’s to the next one.

–Godfrey Nolan

v

Contents

■ About the Author.. ix
■ About the Technical Reviewer .. x
■ Acknowledgments ... xi
■ Preface.. xii
■ Chapter 1: Laying the Groundwork ... 1
Compilers and Decompilers .. 1
Virtual Machine Decompilers.. 3
Why Java with Android?... 3
Why Android?.. 6
History of Decompilers ... 8

Reviewing Interpreted Languages More Closely: Visual Basic ...10
Hanpeter van Vliet and Mocha..11

Legal Issues to Consider When Decompiling .. 12
Protection Laws..12
The Legal Big Picture..14

Moral Issues ... 15
Protecting Yourself ... 16
Summary... 17
■ Chapter 2: Ghost in the Machine... 19
The JVM: An Exploitable Design.. 20
Simple Stack Machine .. 21

Heap ...22
Program Counter Registers ..23
Method Area ...23
JVM Stack...24

Inside a Class File ... 24
Magic Number ..27
Minor and Major Versions...28

 CONTENTS

vi

Constant-Pool Count...28
Constant Pool..29
Access Flags...38
The this Class and the Superclass..39
Interfaces and Interface Count ...39
Fields and Field Count ..41
Methods and Method Count ...44
Attributes and Attributes Count ..55

Summary... 55
■ Chapter 3: Inside the DEX File... 57
Ghost in the Machine, Part Deux... 57

Converting Casting.class ..59
Breaking the DEX File into Its Constituent Parts... 61

The Header Section ..62
The string_ids Section..67
The type_ids Section ..71
The proto_ids Section...74
The field_ids Section ..76
The method_ids Section...78
The class_defs Section ..81
The data Section...85

Summary... 92
■ Chapter 4: Tools of the Trade.. 93
Downloading the APK ... 93

Backing Up the APK..94
Forums ...95
Platform Tools ..95

Decompiling an APK.. 101
What’s in an APK File?..101
Random APK Issues..103

Disassemblers .. 107
Hex Editors ...107
dx and dexdump ...109
dedexer...112
baksmali ...113

Decompilers .. 115
Mocha...115
Jad..116
JD-GUI ..117
dex2jar..118
undx..118

 CONTENTS

 vii

apktool..119
Protecting Your Source... 119

Writing Two Versions of the Android App ...120
Obfuscation ..121

Summary... 149
■ Chapter 5: Decompiler Design... 151
Theory Behind the Design ... 152
Defining the Problem .. 152
(De)Compiler Tools.. 154

Lex and Yacc ..155
JLex and CUP Example ...157
ANTLR...166

Strategy: Deciding on your Parser Design .. 169
Choice One ...171
Choice Two ...171
Choice Three...171

Parser Design.. 172
Summary... 173
■ Chapter 6: Decompiler Implementation .. 175
DexToXML ... 176

Parsing the dex.log Output ...176
DexToSource ... 196
Example 1: Casting.java.. 196

Bytecode Analysis ..198
Parser ...201
Java ..211

Example 2: Hello World ... 212
Bytecode Analysis ..213
Parser ...214
Java ..216

Example 3: if Statement.. 217
Bytecode Analysis ..218
Parser ...220
Java ..223

Refactoring ... 223
Summary... 227
■ Chapter 7: Hear No Evil, See No Evil: A Case Study..................................... 229
Obfuscation Case Study .. 230

 CONTENTS

viii

Myths .. 230
Solution 1: ProGuard... 231

SDK Output ...232
Double-Checking Your Work...234
Configuration ..245
Debugging ..247

Solution 2: DashO.. 247
Output...249

Reviewing the Case Study... 252
Summary... 252
■ Appendix A: Opcode Tables... 255
■ Index ... 279

 ix

About the Author

 Godfrey Nolan is the founder and president of RIIS LLC in Southfield,
MI. He has over 20 years of experience running software development
teams. Originally from Dublin, Ireland, he has a degree in mechanical
engineering from University College Dublin and a masters in computer
science from the University of the West of England. He is also the author
of Decompiling Java, published by Apress in 2004.

x

About the Technical Reviewer

 Martin Larochelle has more than 10 years of experience in
software development in project leader and architect roles.
Currently, Martin works at Macadamian as a solutions
architect, planning and supporting projects. His current focus
is on mobile app development for Android and other
platforms. Martin’s background is in C++ and VoIP
development on soft clients, hard phones, and SIP servers.

 xi

Acknowledgments

Thanks to my technical reviewer, Martin Larochelle, for all the suggestions and support. Book
writing can be like pulling teeth, so it’s always easier when the reviewer comments are logical and
nudge the author in the right direction. I still have some teeth left—no hair, but some teeth.

Thanks to the Apress staff: Corbin Collins and James Markham for all the help and Steve Anglin
for helping me get the book accepted in the first place. I hope your other authors aren’t as
difficult to work with as I.

Thanks to Rory and Dayna, my son and daughter, for making me laugh as much as you do.
Thanks to Nancy, my wife, for putting up with the endless hours spent writing when I should
have been spending them with you.

Thanks to all the staff at RIIS who had to put up with my book deadlines more than most.

xii

Preface

Decompiling Java was originally published in 2004 and, for a number of reasons, became more of
an esoteric book for people interested in decompilation rather than anything approaching a
general programming audience.

When I began writing the book way back in 1998, there were lots of applets on websites,
and the thought that someone could download your hard work and reverse-engineer it into Java
source code was a frightening thought for many. But applets went the same way as dial-up, and I
suspect that many readers of this book have never seen an applet on a web page.

After the book came out, I realized that the only way someone could decompile your Java
class files was to first hack into your web server and download them from there. If they’d
accomplished that, you had far more to worry about than people decompiling your code.

With some notable exceptions—applications such as Corel’s Java for Office that ran as a
desktop application, and other Swing applications—for a decade or more Java code primarily
lived on the server. Little or nothing was on the client browser, and zero access to class files
meant zero problems with decompilation. But by an odd twist of fate, this has all changed with
the Android platform: your Android apps live on your mobile device and can be easily
downloaded and reverse-engineered by someone with very limited programming knowledge.

An Android app is downloaded to your device as an APK file that includes all the images
and resources along with the code, which is stored in a single classes.dex file. This is a very
different format from the Java class file and is designed to run on the Android Dalvik virtual
machine (DVM). But it can be easily transformed back into Java class files and decompiled back
into the original source.

Decompilation is the process that transforms machine-readable code into a human-
readable format. When an executable or a Java class file or a DLL is decompiled, you don’t quite
get the original format; instead, you get a type of pseudo source code, which is often incomplete
and almost always without the comments. But, often, it’s more than enough to understand the
original code.

Decompiling Android addresses an unmet need in the programming community. For
some reason, the ability to decompile Android APKs has been largely ignored, even though it’s
relatively easy for anyone with the appropriate mindset to decompile an APK back into Java code.
This book redresses the balance by looking at what tools and tricks of the trade are currently
being employed by people who are trying to recover source code and those who are trying to
protect it using, for example, obfuscation.

This book is for those who want to learn Android programming by decompilation, those
who simply want to learn how to decompile Android apps into source code, those who want to
protect their Android code, and, finally, those who want to get a better understanding of .dex
bytecodes and the DVM by building a .dex decompiler.

This book takes your understanding of decompilers and obfuscators to the next level by

 xiii

• Exploring Java bytecodes and opcodes in an approachable but detailed manner

• Examining the structure of DEX files and opcodes and explaining how it differs

from the Java class file

• Using examples to show you how to decompile an Android APK file

• Giving simple strategies to show you how to protect your code

• Showing you what it takes to build your own decompiler and obfuscator

Decompiling Android isn’t a normal Android programming book. In fact, it’s the complete
opposite of a standard textbook where the author teaches you how to translate ideas and
concepts into code. You’re interested in turning the partially compiled Android opcodes back
into source code so you can see what the original programmer was thinking. I don’t cover the
language structure in depth, except where it relates to opcodes and the DVM. All emphasis is on
low-level virtual machine design rather than on the language syntax.

The first part of this book unravels the APK format and shows you how your Java code is
stored in the DEX file and subsequently executed by the DVM. You also look at the theory and
practice of decompilation and obfuscation. I present some of the decompiler’s tricks of the trade
and explain how to unravel the most awkward APK. You learn about the different ways people try
to protect their source code; when appropriate, I expose any flaws or underlying problems with
the techniques so you’re suitably informed before you use any source code protection tools.

The second part of this book primarily focuses on how to write your own Android
decompiler and obfuscator. You build an extendable Android bytecode decompiler. Although the
Java virtual machine (JVM) design is fixed, the language isn’t. Many of the early decompilers
couldn’t handle Java constructs that appeared in the JDK 1.1, such as inner classes. So if new
constructs appear in classes.dex, you’ll be equipped to handle them.

	Cover
	Contents at a Glance

	Contents

	About the Author

	About the Technical Reviewer

	Acknowledgments

	Preface

	Laying the Groundwork
	Compilers and Decompilers
	Virtual Machine Decompilers
	Why Java with Android?
	Why Android?
	History of Decompilers
	Reviewing Interpreted Languages More Closely: Visual Basic
	Hanpeter van Vliet and Mocha

	Legal Issues to Consider When Decompiling
	Protection Laws
	The Legal Big Picture

	Moral Issues
	Protecting Yourself
	Summary

	Ghost in the Machine
	The JVM: An Exploitable Design
	Simple Stack Machine
	Heap
	Program Counter Registers
	Method Area
	JVM Stack

	Inside a Class File
	Magic Number
	Minor and Major Versions
	Constant-Pool Count
	Constant Pool
	Access Flags
	The this Class and the Superclass
	Interfaces and Interface Count
	Fields and Field Count
	Methods and Method Count
	Attributes and Attributes Count

	Summary

	Inside the DEX File
	Ghost in the Machine, Part Deux
	Converting Casting.class

	Breaking the DEX File into Its Constituent Parts
	The Header Section
	The string_ids Section
	The type_ids Section
	The proto_ids Section
	The field_ids Section
	The method_ids Section
	The class_defs Section
	The data Section

	Summary

	Tools of the Trade
	Downloading the APK
	Backing Up the APK
	Forums
	Platform Tools

	Decompiling an APK
	What’s in an APK File?
	Random APK Issues

	Disassemblers
	Hex Editors
	dx and dexdump
	dedexer
	baksmali

	Decompilers
	Mocha
	Jad
	JD-GUI
	dex2jar
	undx
	apktool

	Protecting Your Source
	Writing Two Versions of the Android App
	Obfuscation

	Summary

	Decompiler Design
	Theory Behind the Design
	Defining the Problem
	(De)Compiler Tools
	Lex and Yacc
	JLex and CUP Example
	ANTLR

	Strategy: Deciding on your Parser Design
	Choice One
	Choice Two
	Choice Three
	Choice Four

	Parser Design
	Summary

	Decompiler Implementation
	Hear No Evil, See No Evil: A Case Study
	Opcode Tables
	Index
	A

	B
	C
	D, E
	F, G
	H
	I
	J, K
	L
	M, N
	O
	P, Q
	R
	S
	T
	U
	V
	W, X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

