
•
•

•

•
•
•

Making .NET skills pay off

in the iOS World

Developing C# Apps
for iPhone and iPad using

MonoTouch
iOS Apps Development for .NET Developers

Bryan Costanich

www.allitebooks.com

http://
http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://
http://www.allitebooks.org

iv

Contents at a Glance

Contents .. v

About the Author ... xiv

About the Technical Reviewer ... xv

Acknowledgments .. xvi

Preface .. xvii

■Chapter 1: Getting Started with MonoTouch ... 1

■Chapter 2: Our First Application .. 11

■Chapter 3: Creating Multi-Screen Applications Using the MVC Pattern 43

■Chapter 4: iPad and Universal (iPhone/iPad) Applications 59

■Chapter 5: More on Views and Controllers .. 73

■Chapter 6: Introduction to Controls ... 93

■Chapter 7: Standard Controls .. 107

■Chapter 8: Content Controls .. 155

■Chapter 9: Working with Tables .. 193

■Chapter 10: Working with Keyboards .. 223

■Chapter 11: Multitasking ... 233

■Chapter 12: Working with Touch ... 247

■Chapter 13: Working with Shared Resources .. 271

■Chapter 14: User and Application Settings .. 303

■Chapter 15: Working with CoreLocation .. 321

■Chapter 16: Drawing with CoreGraphics ... 331

■Chapter 17: Core Animation .. 361

■Chapter 18: Notifications ... 377

■Chapter 19: Working with Data ... 393

■Chapter 20: Publishing to the App Store ... 407

■Chapter 21: Third-Party Libraries .. 419

■Chapter 22: Using Objective-C Libraries and Code 433

Index ... 463

www.allitebooks.com

http://
http://www.allitebooks.org

1

1

 Chapter

Getting Started with
MonoTouch

When most people think about developing applications for the iPhone, iPad, or iPod

Touch, they think of writing applications in a low-level language like Objective-C. But the

truth is, as the iOS ecosystem has matured, a number of ways to develop apps for it has

emerged.

The reason is largely developer-driven. For many developers, learning Objective-C was

seen as a huge barrier to entry. For .NET developers, many of whom have never had to

worry about memory management, pointers, and other C language concepts,

Objective-C also forced on them many responsibilities that they were unfamiliar with.

Many also feel that the tools for developing in Objective-C are lacking. Apple’s XCode
Integrated Development Environment (IDE) lacks many of the features found in other

modern IDEs, such as Visual Studio.

All this has changed, however, as more players have entered the iOS space. In addition

to MonoTouch, Adobe has entered it with Flash CS5, and Unity for the iOS powers some

of the best-selling games available on the iPhone and iPad.

The MonoTouch framework itself is part of Novell’s Mono project. The Mono project is an

open-source implementation of the Microsoft .NET platform published standards. It

allows you to run .NET applications on nearly any platform, including Apple, FreeBSD,

Linux, Unix, and others.

MonoTouch was introduced in the fall of 2009, and extends Mono by allowing you to write

applications using C# and the .NET platform Base Class Library (BCL) that run on the

iOS, using Cocoa Touch’s UIKit API.

1

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1: Getting Started with MonoTouch 2

MonoTouch is an extremely powerful way to write applications for the iOS because it

combines a number of features:

 Ability to call Objective-C, C, and C++: MonoTouch harnesses all the

power of low-level languages such as Objective-C, C, and C++. You

can use libraries written in Objective-C, et al. from your MonoTouch

code.

 Modern language constructs: Because MonoTouch is based on the

.NET Platform, you get nearly all of the modern language features

available from it, such as automatic memory management, typed

exceptions, etc.

 Modern IDE: The MonoDevelop IDE has all the features you have come

to expect in modern development environments, including automatic

code completion, an integrated debugger, intregrated source control,

and code refactoring tools.

Developing for the iPhone and iPad
The iPhone and iPad are tremendous devices, and MonoTouch goes a long way toward

making the transition between traditional .NET applications and applications for the iOS

easier. However, it’s important to take in consideration that developing for these devices

is very different than working with traditional .NET applications. Let's look at how mobile

development for the iOS differs from traditional application development.

Limited Multitasking

While the iOS v4.0 introduced multitasking to the iPhone 3GS (and newer) and the iPad,

it’s not true multitasking. In nearly any modern desktop operating system, multiple

applications can be running at once without issue. However, in the iOS, if your app

needs to keep processing when it’s not the foreground application, it needs to tell the

iOS what type of background tasks it wants to perform, and then it is given limited

processing time. Because of this, if you wish to support background processing, you

have to design your application very carefully. We’ll cover this in greater depth in

Chapter 11.

Limited System Resources

The iPhone has a very small amount of RAM (128MB for the 3G, 256MB for the 3GS and

iPad, and 512 for the iPhone 4). Because of the complex nature of the graphics that

support iPhone applications, and the fact that it’s fairly normal for OS processes to take

up more than half of your RAM, you can run out of memory very quickly on the iOS.

When the device is running low on memory, it will try and terminate known internal

memory-hungry applications (such as Safari) to reduce memory pressure, and then it will

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1: Getting Started with MonoTouch 3

let your application know that the system is low on useable memory and you should

take steps to clean up unused objects in memory.

Small Screen Size

While the iPad sports a much larger screen (1024x768) than the iPhone (960x640 for the

4G and 320x480 for 3Gs and older models), they’re both small by comparison to the

standard screen size many desktop applications are built for.

While the iPad allows some flexibility in how you design screens, in the iPhone it’s

especially important to try to simplify screens into one task at a time in the UI. However,

this limitation is actually mitigated considerably by Apple’s UI Framework controls,

which are designed specifically to provide a pleasant and efficient user experience, even

with the small screen.

Device-specific Technology

Each device that runs the iOS may have different features specific to it. For instance, the

GPS and/or Compass feature isn’t available on all devices. Some devices have a camera

on the front, some devices can shoot video with their camera, some can only do still

photos. Some allow multitasking, some don’t. The list goes on and on.

Because of this, it’s important check for the presence of and ability to use a feature

before actually trying to use it.

Constrained Response Time

In order to retain the responsive feel that users have come to expect from iOS

applications, several operations in iOS are response-time sensitive. For instance, if your

application takes longer than ten seconds to start up, the iOS will abort its launch. When

a user clicks the home button to close your application, you have 5 seconds of

processing time to save any settings or state information before it’s terminated. The

same goes for multitasking features: your application is given a certain amount of time

to perform certain tasks, and if it fails, it can be terminated.

As a result, you need to design your application in such a way as to handle these

transitions very quickly in order to prevent the loss of state and/or data.

Constrained Access

iOS applications run in what’s called a sandbox. That is, they have limited permissions on

the device. For instance, they can only write files to their own directory, and can read

files from their directory and certain system directories. They can’t, for instance, write to

or read from any other application’s sandbox. They also can’t make low-level device

calls, etc. Therefore, when developing iOS applications, you must take this constrained

access into consideration.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1: Getting Started with MonoTouch 4

MonoTouch Background
Now that we have an understanding of the basics of iOS development, let’s examine

some of the basics of developing MonoTouch applications.

iPhone vs. iPod Touch vs iPad?

It’s important to note that developing for the iPod Touch is nearly identical to developing

for the iPhone, except for the fact that it doesn’t have a cellular radio. Additionally, both

the iPhone and the iPad run iOS and, besides User Interface (UI) concerns, developing

for them is nearly identical. We’ll explore the differences between them in Chapter 2.

How Does It Work?

The MonoTouch.dll (the base library that all MonoTouch applications are built against) is

equivalent to the Silverlight .NET 4.0 profile with some things added back in, such as

System.Data and System.Net. This allows you to write applications using many of the

.NET Framework technologies that you’re already familiar with, including Windows
Communication Framework (WCF), Workflow Foundation (WF), etc.

It also includes nearly all of the Base Class Library (BCL), including things like garbage

collection, threading, math functions, cryptography, and parallel processing framework.

For a list of available standard .NET assemblies in MonoTouch see

http://monotouch.net/Documentation/Assemblies.

This is accomplished through a MonoTouch-specific set of base .NET libraries, similar to

how Silverlight and Moonlight (Mono’s implementation of Silverlight) work.

This means that you can compile standard .NET 4.0 code libraries using the MonoTouch

core assemblies and use them in your application. So if, for example, you have a

specialized library that does advanced math functions for engineering problems that you

use for other applications, you can simply include the code library in your MonoTouch

solution, and reference it. When you build your solution, it will compile it using the

MonoTouch libraries, and it will then be available in your application.

MonoTouch also includes wrappers to the native iOS APIs, such as Location (GPS and

Compass), the accelerometer, address book, etc. It also gives you the ability to bind to

native Objective-C libraries that are not wrapped, so you can interop directly with

existing Objective-C code.

How Do I Build a User-Interface (UI); Can I Use Silverlight?

MonoTouch application UIs are typically built using Apple’s Interface Builder (IB)

application that ships with the iOS SDK. Interface Builder uses Cocoa Touch (Apple’s UI
Framework for iOS, also known as UIKit) objects that are native to the iOS. This means

that you have all the standard iOS controls available to your application, including

Pickers, Sliders, and Buttons, etc.

www.allitebooks.com

http://monotouch.net/Documentation/Assemblies
http://
http://www.allitebooks.org

CHAPTER 1: Getting Started with MonoTouch 5

You can also create your interface programmatically by instantiating Cocoa Touch
objects and adding them to your application’s Views (more on Views later).

You cannot, however, create your MonoTouch interface using traditional .NET
technologies such as Silverlight, WPF, or Winforms. You can, however, build games
using Microsoft’s XNA Toolkit that target the Windows 7 phone and port them using the
open-source XNA Touch project (we’ll cover this in Chapter 21). Additionally, there are
indications from the MonoTouch team that Moonlight will be supported at some point in
the future. Time will tell if that bears fruit.

Cocoa Touch uses a rough amalgamation of the Model View Controller (MVC) pattern
that we’ll discuss in Chapter 3.

By utilizing the UIKit, developers can make iOS applications using the same familiar
control set as applications written in Objective-C. However, if you wish to branch
beyond that, you can. MonoTouch also exposes the underlying graphics framework so
that you can create rich 2D and 3D applications that allow you to go well beyond the
UIKit control framework.

How Do I Distribute My Apps?

MonoTouch applications are distributed the exact same way that traditional iOS
applications are distributed, either via the Apple App Store, Enterprise, or ad-hoc
deployment.

The App Store is an online repository that allows users to pay for applications (if they’re
not free), and download them. It is available from within iTunes, or directly from the
iDevice itself. In order to get a license to distribute via the App Store, you must register
with Apple, and pay $99/year. For more information, go to http://developer.apple.com
and read about their development program.

Enterprise deployment is for those wishing to develop internal applications for a
company and distribute them, for example, to employees, without listing them with the
App Store.

Ad-hoc deployment allows you to deploy to a limited number of devices mainly for the
purpose of testing and development.

What Is the Licensing Model?

Unlike Mono, MonoTouch is not open source—it is a commercial product. That means, if
you want to do anything useful with it, you have to purchase a license to use it.
MonoTouch comes in three flavors and prices:

 Professional ($399): A single personal developer license that allows
you to develop applications and distribute them via the Apple App-
Store

www.allitebooks.com

http://developer.apple.com
http://
http://www.allitebooks.org

CHAPTER 1: Getting Started with MonoTouch 6

 Enterprise ($999): A single corporate developer license that allows

you to develop applications and distribute via the App-store, or via

enterprise deployment

 Enterprise, 5 Seat ($3,999): The same as the Enterprise license, but

includes 5 seats

 Academic ($99): A single personal developer license that only allows

non-commercial distribution via ad-hoc deployment

All three options include a year of free updates.

There is also an evaluation edition that allows you deploy to the simulator only (the

simulator is part of the iOS SDK, which I'll talk about later in this chapter). For the

purposes of most of this book, the evaluation edition of MonoTouch is all you need. If you

wish to try out any of your code on an actual device, you will have to purchase a

licensed copy of MonoTouch.

Are There Any Limitations of MonoTouch?

As powerful as MonoTouch is, it has some limations that the larger .NET Framework does

not. Let’s examine them.

No Just-in-Time (JIT) Compilation

Per Apple’s iOS policy, no application can include code that requires just-in-time (JIT)

compilation. But wait a second, that’s exactly how .NET works, right? This is correct;

however, the MonoTouch framework gets around this limitation by compiling your

application down to a native iOS assembly. This, however, introduces several limitations.

 Generics: Generics are instantiated by the JIT compiler at run-time.

However, Mono has an ahead-of-time (AOT) compilation mode that will

generate all the methods and properties for things like List<T>. Other

uses of Generics, such as Generic virtual methods, P/Invokes in

Generic types, and value types that don’t exist in the core library in

Dictionary<TKey, TValue> are not supported (although there is a

workaround for Dictionary<TKey, TValue>).

 Dynamic code generation: Because dynamic code generation

depends on the JIT compiler, there is no support for any dynamic

language compilation. This includes System.Reflection.Emit,
Remoting, runtime proxy generation for WCF, JIT’d RegEx, JIT’d

serializers, and the Dynamic Language Runtime.

C# Is Currently the Only Language

Additionally, currently, the only .NET language available for writing MonoTouch

applications is C#.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1: Getting Started with MonoTouch 7

More Information

For a full list of limitations and more information, including workarounds, see
http://monotouch.net/Documentation/Limitations.

Getting Started
In order to get started building MonoTouch applications for the iPhone we’ll need a few
things:

 An Intel Mac computer running 10.6 (Snow Leopard) or better

 The latest Apple iOS SDK

 The current version of Mono

 The MonoTouch SDK

 An IDE such as MonoDevelop or XCode, or a text editor program

Mac Computer Running Snow Leopard

This is an important and easily missed requirement. While theoretically you could build
most of your application on other platforms, the iOS SDK (and therefore the iOS device
simulator and Interface Builder) are only available for Snow Leopard. Additionally, the
compiler itself uses some low-level magic specific to the Intel Mac machines, so having
one is an absolute must.

MonoTouch is currently working on tools that will allow you to write in Visual Studio via
their MonoTouch Tools for Visual Studio. However, it has yet to be released, and you
will still need a Snow Leopard machine to run the simulator and to compile for the actual
device.

Apple’s iOS SDK

Available at http://developer.apple.com/devcenter/ios, the iOS SDK is a free download,
but you must register with Apple to get access to it. Along the way, Apple may ask you
to pay $99 to get an iOS developer account, which allows you to deploy your
applications, but for the purposes of this tutorial, you just need the SDK. The iOS SDK
includes Interface Builder, the iOS device simulator, Xcode, and a few other things.

After you have installed the iOS SDK, make sure you can launch the iOS Simulator. You
can find the simulator by opening Spotlight and typing “iOS Simulator.”

Mono for OSX

Once you’ve tested out the iOS simulator, install the latest version of Mono for OSX.
Mono can be downloaded from http://mono-project.com/Downloads. Make sure you click

www.allitebooks.com

http://monotouch.net/Documentation/Limitations
http://developer.apple.com/devcenter/ios
http://mono-project.com/Downloads
http://
http://www.allitebooks.org

CHAPTER 1: Getting Started with MonoTouch 8

on the “intel” link, and not the CSDK. Also, install Mono before you install the MonoTouch

SDK. Mono comes in a disk image; double-click the installer package and follow the

instructions.

MonoTouch SDK

Next, download and install the latest MonoTouch SDK. You can either buy it at the

MonoTouch store, http://monotouch.net/Store, and you’ll receive a link to download, or

you can download an evaluation version from http://monotouch.net/DownloadTrial. If

you purchase MonoTouch, you can deploy your applications to a properly configured

device, but for most of the book, the evaluation version is fine.

Text Editor or Integrated Development Environment

If you want to create MonoTouch applications, all you need are the previous items and a

text editor. You could create all your code files and manually compile using the

command line (terminal window). This would be quite a pain, though, so we’re going to

use an integrated development environment (IDE) to develop our applications.

You have several options for this, but all of our examples in this book will be based on

MonoDevelop. I’ve chosen MonoDevelop for two reasons, first, it’s free, and secondly, it’s

the only IDE that completely integrates MonoTouch.

You can find the MonoDevelop install at http://monodevelop.com/Download.

You can also use Visual Studio to write libraries for use in MonoTouch, but it involves

converting your standard C# class library projects to MonoTouch iOS class library

projects. For more information, and a tool to help automate this, check out:

http://manniat.pp-p.net/blog/post/2009/11/18/MonoTouch-in-Visual-Studio.aspx.

You can either modify/hack Xcode (installed with the iOS SDK) to use the MonoTouch

libraries and compiler, or you can use MonoDevelop.

If you have installed Mono correctly, MonoDevelop should open up without error.

Documentation

One of the biggest drawbacks to developing for MonoTouch is that, while there is a wealth

of documentation for developing for the iOS in general, the MonoTouch documentation

itself is lacking. You can access the MonoTouch documentation directly from MonoDevelop

in the Help menu, or you can view it online at http://www.go-

mono.com/docs/index.aspx. You can also find the .NET documentation online at

http://msdn.microsoft.com.

http://monotouch.net/Store
http://monotouch.net/DownloadTrial
http://monodevelop.com/Download
http://manniat.pp-p.net/blog/post/2009/11/18/MonoTouch-in-Visual-Studio.aspx
http://www.go-mono.com/docs/index.aspx
http://www.go-mono.com/docs/index.aspx
http://www.go-mono.com/docs/index.aspx
http://msdn.microsoft.com
http://

CHAPTER 1: Getting Started with MonoTouch 9

Xcode/iOS Documentation

Probably the single most useful source of documentation for developing MonoTouch
applications is the iOS documentation. It’s all based on the Objective-C API and includes

Objective-C samples, but it should be considered the bible for iOS development.

You can access the iOS documentation either online at http://developer.apple.com, or in

Xcode. To view it in Xcode, open Xcode and choose Developer Documentation in the Help

menu.

NOTE: I've included a short Objective-C primer in chapter 21, which deserves a once-over. It will

significantly help to understand the examples in the iOS documentation.

MonoTouch Rosetta Stone

Additionally, Miguel de Icaza (the creator of Mono) keeps a “Rosetta stone” which maps

the MonoTouch API to the underlying iOS API at http://tirania.org/tmp/rosetta.html.

Resources

As you learn and develop with MonoTouch, when you get stuck, and you probably will,

there are quite a few resources online to help you work through it:

 MonoTouch forums: You can find forums dedicated to MonoTouch
development at http://forums.MonoTouch.net

 IRC channel: There is a very active IRC community to be found on the

#MonoTouch channel on the irc.gnome.org and irc.gimp.net servers. The

MonoTouch team themselves are very active on there. You can access

the channel directly from the MonoTouch website at

www.MonoTouch.net/chat, if you’re unfamiliar with IRC.

3rd Party Libraries

There is an active and growing number of open source 3rd party libraries for MonoTouch.

Many of the most popular libraries for Objective-C have been wrapped for native use in

MonoTouch. We’ll cover 3rd party libraries in Chapter 21, but you can also find a current

list at http://wiki.monotouch.net/.

Summary
Congratulations, you’ve made it through the first chapter. By now, you should have a

pretty good understanding of MonoTouch’s place in the world, what tools you need to use

it, and where to go for help when you encounter issues. You should also understand the

basic constraints of developing for the iOS. In the next chapter we’ll leverage what

we’ve learned so far to build our first MonoTouch application.

http://developer.apple.com
http://tirania.org/tmp/rosetta.html
http://forums.MonoTouch.net
http://www.MonoTouch.net/chat
http://wiki.monotouch.net/
http://

11

11

 Chapter

Our First Application

Once you have everything installed from the first chapter, you’re ready to start building

iOS applications. In this chapter, we’re going to build a single-screen “Hello, World”

application specifically for the iPhone/iPod Touch. By the end of this chapter, you’ll be

familiar with:

 Creating MonoTouch projects

 Using Interface Builder to create screens

 Wiring up controls via outlets and creating actions

 Handling UI events in code

 Deploying to and running applications in the iOS Simulator

Without further ado, let’s get started.

Starting the Example
First, launch MonoDevelop. Your screen should show something similar to following

(Figure 2–1).

2

http://

CHAPTER 2: Our First Application 12

Figure 2–1. MonoDevelop

As a standard IDE, it should look pretty familiar. It’s very similar to such environments as

Visual Studio, Eclipse, Visual C# Express, and others.

We’re going to create a new solution in which to put our iPhone project. Solutions are

exactly the same as they are in Visual Studio and, in fact, you can open up solutions you

created in Visual Studio in MonoDevelop. One thing that is different in MonoDevelop,

though, is that you can actually have multiple solutions open in one instance of

MonoDevelop, as illustrated in Figure 2–2.

http://

CHAPTER 2: Our First Application 13

Figure 2–2. MonoDevelop with multiple solutions open

This is a pretty important feature since, in the Mac OS, you cannot have multiple

instances of an application open without terminal or scripting trickery. So, if you need to

switch between solutions (for example, if you want one open for sample code), you can

simply open more than one at once.

Create a New Solution

So, with all that said, let’s create a new solution. In the menu, go to File New Solution.

We want to create an iPhone Window-based Project, as shown in the following figure. Let’s

go ahead and call it Example_HelloWorld_iPhone.

http://

CHAPTER 2: Our First Application 14

Figure 2–3. MonoDevelop new solution dialogue window

Again, this is very similar to Visual Studio’s dialog for creating new solutions. Click OK,

and you should now have a solution view that looks something like the one in Figure 2–4

(note, I’ve expanded the arrows in the solution view to show all the files and references).

Figure 2–4. The solution window

http://

CHAPTER 2: Our First Application 15

Examining the Code

Let’s go through these:

 References: This folder contains the basic references needed for a MonoTouch

application. The MonoTouch assembly includes everything needed that is specific

to the iOS, including all the wrappers to the Cocoa Touch controls and the core

iOS stuff such as Location, Data, etc. The System.* assemblies are the .NET Base

Class Library and runtime that have been tailored to run on iOS devices.

 Main.cs: This is the same as it would be for a console application, a WPF

application, or the like. In here is our static void Main call, which serves as an

entry point for the application. We’ll take a look at this in more detail in a second.

 MainWindow.xib & MainWindow.xib.designer.cs: This is analogous to a

Winforms Window, or a WPF Window. The xib file will actually be edited in

Interface Builder (which we’ll examine in just a bit), and the designer.cs file will

hold our properties for that form.

Let’s examine the code in the Main.cs file, as shown in Listing 2–1.

Listing 2–1. The code in the Main.cs file

using System;
using System.Collections.Generic;
using System.Linq;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

namespace Example_HelloWorld_iPhone
{
 public class Application
 {
 static void Main (string[] args)
 {
 UIApplication.Main (args);
 }
 }

 // The name AppDelegate is referenced in the MainWindow.xib file.
 public partial class AppDelegate : UIApplicationDelegate
 {
 // This method is invoked when the application has loaded its UI
 // and it's ready to run
 public override bool FinishedLaunching (UIApplication app, NSDictionary options)
 {
 // If you have defined a view, add it here:
 // window.AddSubview (navigationController.View);

 window.MakeKeyAndVisible ();

 return true;
 }
 }
}

http://

CHAPTER 2: Our First Application 16

There are two classes in here: the Application class and the AppDelegate class. This is

where things start to get a little different from traditional .NET GUI development.

The way iOS applications work is that your application class contains all your Windows,
Views, Controls, Resources, etc., and then you have an application delegate class

(derived from UIApplicationDelegate) that handles application lifecycle and runtime

events.

Lifecycle events include things like application startup and shutdown, and runtime

events include things like low memory warnings and device orientation changes.

By handling these events in your application delegate class, you have an opportunity to

respond to them. For instance, when your application is shutting down, the

WillTerminate method is called on your application delegate, and you have an

opportunity to save any user data, application state, etc.

In our Application class, we have a Main method. By calling UIApplication.Main, the

Objective-C runtime will look for your MainWindow.xib file (which contains the name of

your UIApplicationDelegate class), instantiate your Application class (as a Singleton)

and then start calling lifecycle events on your AppDelegate class.

NOTE: You don’t have to name your primary window (also known as the Main Interface

File) MainWindow.xib. You can name it whatever you want, but you have to tell the build

system to look for whatever file you create. If you want it to look for a different file, open up the

project options by right-clicking on your project file, click Options, and then in Build iPhone

Application Main Interface File, set that to whatever .xib file you want to be your primary

window. The Objective-C runtime will then try to load that window when your application runs,

and will find your application delegate from the setting in that file.

Additionally, you can name your application delegate class whatever you want. By default it is

called AppDelegate. To change it, open your Main Interface File in Interface Builder, and

change the name of your Application Delegate.

Furthermore, you don’t even need to define your window in a xib file at all. In fact, as a standard

practice, I never define my window in a xib. It’s easier to just do it programmatically. In Chapter 4,

we’ll look at how to do exactly that.

We’ll come back to our Main.cs file in a bit, but first let's dig into the actual GUI of the

application.

Interface Builder
So far we’ve seen a little bit of the code side of our iPhone application, let's dive into

building the interface. Apple’s application design toolset is called Interface Builder.

Interface Builder is loosely coupled to your development environment. It creates xib files

http://

CHAPTER 2: Our First Application 17

that define your applications user interface. MonoDevelop then examines those xib files

and provides hooks in your code for you to access them.

NOTE: Sometimes people refer to xib (pronounced “zib”) files as Nibs, and in this book you’ll

see lots of references to Nibs as well. For practical purposes, they can be used interchangeably.

A xib file is an XML file that defines a user interface in Cocoa Touch, and a Nib file is usually a

compiled collection of xib files.

This is similar to creating XAML in WPF/Silverlight. Your interface is represented by XML nodes.

When your application is built, that XAML is compiled with your code into one assembly.

In Mac OS, a similar thing happens. Your xib files get compiled into a Nib, which is then

packaged with your application bundle into an .app file.

Whether you write Objective-C in XCode, or C# in MonoDevelop, you still use Interface

Builder the same way. This is possible because MonoDevelop listens for changes to the

xib files, and adds/removes the appropriate code to the designer.cs files that map to

the xib files.

You can create your entire GUI programmatically, without ever having to open up

Interface Builder, and in fact, some developers choose to do just that. There are many

things that Interface Builder can’t do, so at some point you’re likely to wind up doing

some things programmatically. Interface Builder hides some of that complexity, though,

so in the beginning it’s easier to use Interface Builder to become familiar with some of

the concepts of iOS application GUIs. We’ll examine this in more detail in Part 2, when

we start looking at controls in more depth.

Exploring Interface Builder

So, with all that said, let’s fire it up. Double-click the MainWindow.xib file. Interface

Builder should launch and you should see something like the Figure 2–5.

Figure 2–5. Interface Builder

http://

CHAPTER 2: Our First Application 18

Let's look at these windows one-by-one. From left to right, these are: the Document

window, the Design window, the Inspector window , and the Library window.

Let’s look at the Document window first (Figure 2–6).

Figure 2–6.The Document window

This window shows all of the objects that are in a xib file. This is the default view, and

while pretty, you’ll find it isn’t very useful because your objects in your interface are

actually a hierarchy, and the icon view only shows one level at a time. As we add

controls to our window, they won’t show up in this view like this. So, let’s change it to

list view by clicking the center icon in the View Mode toolbar. It should now look

something like Figure 2–7.

Figure 2–7. The Document window in list view

The next window is the Designer (Figure 2–8). This is where we’ll actually drag our Cocoa

Touch controls to design our interface.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2: Our First Application 19

Figure 2–8. An empty Designer showing the main window

It is empty right now because we haven’t put any controls onto it.

Our next window is the Library window, as shown in Figure 2–9. The Library window

contains all of the Cocoa Touch controls that we can use on our design surface.

http://

CHAPTER 2: Our First Application 20

Figure 2–9. The Library window

This is the default view of the library, however, just as in the Document window, you can

change its view. To change the view in your Library window, right-click in the control

view and you can choose between a few different styles. You can also click the Gear

button on the bottom left of the window. Figure 2–10 shows the Icons and Labels style.

http://

CHAPTER 2: Our First Application 21

Figure 2–10. The Library window in Icons and Labels view

Our final window is the Inspector window, as shown in Figure 2–11.

Figure 2–11. The Inspector window

http://

CHAPTER 2: Our First Application 22

The Inspector window has four different views, accessible via the tab bar at the top of

the window. These views are called Attribute Inspector, Connections Inspector, Size Inspector,

and Identity Inspector. The Inspector is roughly analogous to the Property Explorer

window in Visual Studio. It shows you all the properties of the currently selected Cocoa

Touch object. With it you can set visual properties, layout, and more. In the previous

figure, we’ve selected the Window object in the Document window, so it’s displaying the

attributes for that object.

Building the Interface

Now that we have an overview of the Interface Builder windows, let's actually build

something. Let’s create an interface, as shown Figure 2–12.

Figure 2–12. Main window interface after controls have been added

1. First, drag a Round Rect Button (UIButton) onto the window from the

Library window. Then, double-click the button to set the text. You will

notice that, as you do this, you’ll start to get little guidelines. These

guidelines are based on Apple’s Human Interface Guidelines (you can

find them in the iOS Developer Documentation in the Human Interface

Guidelines document) and will help you to position your controls on your

view with the appropriate spacing, etc.

http://

CHAPTER 2: Our First Application 23

2. Resize the button by clicking on the button and then dragging the resize

controls.

3. After you’ve got your button on the window, drag a Label (UILabel)

control. Resize the label so it takes up nearly the width of the window.

If you’ve done everything correctly, your Document window should look like Figure 2–13

(click the arrow next to Window to see its child controls).

Figure 2–13. The Document window after controls have been added

We’ve now created our first window interface. However, unlike in traditional .NET GUI

development, you cannot access your controls programmatically yet. For example, if

this were a WPF application, as soon as you drag a control onto the design surface, you

could access it from your code via this.ControlName. Right now, if you view the

MainWindow.designer.cs file, you’ll see that it’s empty, except for a property for window.

So, let's see how to access our controls.

Outlets
In order to make our objects accessible to our code-behind, we have to wire them up via

outlets. An outlet is just a plumbing construct to make interface elements available to

code. When you create an outlet in Interface Builder, MonoDevelop will add a matching

property in the designer.cs file for that class, which then allows you to have

programmatic access to the control.

Let's add outlets for our label and our button, so that we can access them from our

code-behind.

http://

CHAPTER 2: Our First Application 24

1. Select your AppDelegate in the Document window, as shown in Figure 2–14.

Figure 2–14. The Document window with the AppDelegate class selected

2. Select the Identity Inspector tab of the Inspector window (Figure 2–15).

Figure 2–15. Identity Inspector tab showing the selected class from the Document window

3. Click the circled arrow to the right of the AppDelegate class, which will

navigate to that class in the Library window (Figure 2–16).

http://

CHAPTER 2: Our First Application 25

Figure 2–16. The Library window showing the selected class

4. Change the drop-down that says Inheritance to Outlets, as shown in

Figure 2–17.

Figure 2–17. The Library window showing the selected class

http://

CHAPTER 2: Our First Application 26

5. Click the + button twice to create two new outlets.

6. Each outlet has a name and a type. Name represents the name of the

control property, and is analogous to ID in ASP.NET, or Name in WPF.

Type is the actual type of the outlet, such as a UIButton, UILabel,

UITextView, etc. To name them, double-click their name and type in a

name. For our outlets, we’re going to create btnClickMe and lblResult.

7. Right now, both of their types are id. If you leave the type as is, you can

hook the outlet up to anything, because id means the type is dynamic,

and is essentially an object in the .NET world. The type of id is fine, but

we’re going to give one of them an actual type. We’ll see what

difference this makes in a second. For now, double-click the type of our

btnClickMe and type in UIButton for the type. Your Class Outlets window

should now look like Figure 2–18.

Figure 2–18. Newly created outlets

8. Now that we have these outlets created, we need to actually assign

them to our controls. First, click the second tab in the Inspector window

to bring up the Connections Inspector. In the Outlets section, we should

now see the two new outlets that we created. However, they’re not

hooked up to anything.

9. To hook up our outlets, we need to drag from the circle next to the

outlet in the Outlets section, over to the control we want to hook up.

When we do this, we’ll get something like Figure 2–19.

http://

CHAPTER 2: Our First Application 27

Figure 2–19. Newly created outlets

10. We need to do this to both outlets. You can also drag from the

Connections Inspector onto the Document window. This is especially

helpful if you have overlapping controls.

As we do this, you may notice something interesting. Because we gave btnClickMe a

type of UIButton, when we drag the outlet to the window, it will only allow a connection

to be created if the object we’re dragging to is of that type—in this case, UIButton.

lblClickMe, on the other hand, can be dragged onto anything, because it has the

dynamic id type.

Many people strongly type their outlets so that it’s more difficult to accidentally hook

them up to the wrong control. It’s not necessary, but can be a good practice to do so.

Personally, I find it tedious and not worth the effort, since wiring up outlets is pretty

simple.

OK, now that we have our interface created and our outlets hooked up, save your work

in IB and head back over to MonoDevelop to wire everything up.

Outlets Exposed to Code

If you open up MainWindow.designer.cs, you’ll now see two more properties in there, as

shown in Listing 2–2.

Listing 2–2. MonoTouch auto-generated Designer code showing outlets

[MonoTouch.Foundation.Connect("lblResult")]
private MonoTouch.UIKit.UILabel lblResult {
 get {
 this.__mt_lblResult = ((MonoTouch.UIKit.UILabel)(this.GetNativeField("lblResult")));
 return this.__mt_lblResult;
 }
 set {
 this.__mt_lblResult = value;
 this.SetNativeField("lblResult", value);
 }
}

[MonoTouch.Foundation.Connect("btnClickMe")]

http://

CHAPTER 2: Our First Application 28

private MonoTouch.UIKit.UIButton btnClickMe {
 get {
 this.__mt_btnClickMe =
 ((MonoTouch.UIKit.UIButton)(this.GetNativeField("btnClickMe")));
 return this.__mt_btnClickMe;
 }
 set {
 this.__mt_btnClickMe = value;
 this.SetNativeField("btnClickMe", value);
 }
}

These two properties now make our label and our button accessible via our code-

behind. Notice an interesting thing here—even though we declared our lblResult as a

type of id, the property that got created for it is strongly-typed as a UILabel. This is

because MonoDevelop is smart enough to look at the actual underlying type of the

outlet and create a property of the appropriate type. This is good for us, because it

means we don’t have to cast the lblResult property to a UILabel every time we want to

use it as one.

Let’s go back now to our Main.cs file, and look at the AppDelegate. Let’s look at the

FinishedLaunching method (Listing 2–3).

Listing 2–3. FinishedLaunching method

// This method is invoked when the application has loaded its UI and it's ready to run
public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 // If you have defined a view, add it here:
 // window.AddSubview (navigationController.View);

 window.MakeKeyAndVisible ();

 return true;
}

As the comment suggests, this method is called by the Objective-C runtime after the

application is instantiated, and is ready to run. The first call, window.AddSubview, is

commented out, and we’ll look into what that actually does in the next chapter when we

examine the Model View Controller (MVC) pattern in Cocoa Touch.

The next call, window.MakeKeyAndVisible, sets the MainWindow to be the main window

and actually makes it visible. In iOS development, only part of this is actually interesting

because you only ever have one, and only one window. If you want different screens on

an iOS app, you create new views, and have a view controller push them into the front.

However, if you don’t call this method, the iOS won’t send events to your window. So

really, the MakeKey part makes sense, but the AndVisible part is really just vestigial from

the traditional OSX Cocoa framework, in which you might have multiple windows.

We’re going to add some new code to this file. When we created our outlets, we created

them on the AppDelegate. That means that they’re now available in the AppDelegate

class, so we’re going to access them from here.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2: Our First Application 29

NOTE: Ordinarily, when building MonoTouch applications, we would actually have different views

that we would add controls to, and then expose them as outlets on the controllers that manage

them, but for the sake of this simple application, we’ve created our outlets directly in our

AppDelegate class. In Chapter 2, we’ll do this a bit differently, when I introduce controllers.

Let’s change our AppDelegate class to look like Listing 2–4.

Listing 2–4. Our complete AppDelegate class that responds to button clicks and updates the screen

// The name AppDelegate is referenced in the MainWindow.xib file.
public partial class AppDelegate : UIApplicationDelegate
{
 //---- number of times we've clicked
 protected int _numberOfClicks;

 // This method is invoked when the application has loaded its UI and its ready
 // to run
 public override bool FinishedLaunching (UIApplication app, NSDictionary options)
 {
 // If you have defined a view, add it here:
 // window.AddSubview (navigationController.View);

 window.MakeKeyAndVisible ();

 //---- wire up our event handler
 this.btnClickMe.TouchUpInside += BtnClickMeTouchUpInside;

 return true;
 }

 protected void BtnClickMeTouchUpInside (object sender, EventArgs e)
 {
 //---- increment our counter
 this._numberOfClicks++;
 //---- update our label
 this.lblResult.Text = "Hello World, [" + this._numberOfClicks.ToString () + "]
 times";
 }
}

The first thing we added is a variable to track the number of clicks, _numberOfClicks.

Next, we added this line:

this.btnClickMe.TouchUpInside += BtnClickMeTouchUpInside;

This wires up the TouchUpInside event of btnClickMe to be handled by the

BtnClickMeTouchUpInside method.

http://

CHAPTER 2: Our First Application 30

NOTE: We use TouchUpInside rather than TouchDown because it allows a user to cancel an

accidental click of a button by moving their finger off and releasing the button. In other words,

we only want to register a touch if it starts and finishes inside the button. This is in conformance

with Apple’s Human Interface Guidelines, and you should follow this pattern in your applications

as well.

Then, in our BtnClickMeTouchUpInside method we simply update our label with how

many times our button has been clicked.

Running the Application

All right, now that we’ve done all this, let’s build and run the thing. Let’s build first. In the

menu, select Build Build All. If you’ve done everything correctly so far, it should build

without errors. Next, let’s run it on the iPhone Simulator!

In the toolbar, make sure that Debug|iPhoneSimulator is selected, as in Figure 2–20.

Figure 2–20. Build mode set to Debug|iPhone Simulator

To run this, either select Run Run from the menu, or press + enter on the keyboard.

NOTE: In the evaluation version of MonoTouch, you can only run on the simulator; if you try to

run on your device, you’ll get an error.

If everything goes right, the simulator should pop up (it may, in fact, hide behind your

MonoDevelop window, so you might have to switch over to it), and you should see the

following (Figure 2–21).

http://

CHAPTER 2: Our First Application 31

Figure 2–21. Our Hello World application in the simulator

Clicking the button should result in the label text getting updated, as shown in Figure 2–22.

Figure 2–22. Our Hello World application counting our clicks

http://

CHAPTER 2: Our First Application 32

Congratulations! You’ve just created and run your first iPhone application. Let’s look at

two more things, and then we’ll finish this chapter.

Actions
In the application we just created, we have outlets that are accessed via properties in

our code. Just like in other .NET GUI paradigms, we can wire up event handlers to them

and then respond to events. But MonoTouch offers another way to respond to user

input. These are called actions. Actions are similar to commands in WPF, in that they

allow multiple controls to invoke the same method, and then decide how you want to

handle it, depending on who invoked it.

Adding an Action

Let’s look at this in a little more detail.

1. Make sure you have your Example_HelloWorld_iPhone application open

in MonoDevelop.

2. Open up MainWindow.xib in Interface Builder by double-clicking the file.

Now add two buttons below our label, similar to Figure 2–23.

Figure 2–23. Action buttons added to the main window

http://

CHAPTER 2: Our First Application 33

3. Actions are added in the same place outlets are: in the Library window,

make sure you have your AppDelegate selected, and down below select

the Actions tab instead of the Outlets tab. Create a new action called

actnButtonClick. Your Library window should look something like

Figure 2–24.

Figure 2–24. Action actnButtonClick added

IB automatically appends a colon to the end of your action name. You can ignore this,

it’s an Objective-C thing, but our action will work just the same.

What we’ve just done is created a generic action on our AppDelegate called

actnButtonClick. Now what we need to do is associate our buttons’ TouchUpInside

events with it, so when they get clicked, our action is called.

Make sure AppDelegate is selected in the Document window, then drag the

actnButtonClick in the Connections Inspector to the Action 1 button, as shown in Figure 2–25.

Figure 2–25. Wiring up an action

http://

CHAPTER 2: Our First Application 34

When we drag to the button, it gives a list of events to trigger the action. Select Touch Up

Inside, as shown in Figure 2–26.

Figure 2–26. Choosing an event to call the action

Do this for both of the action buttons. If we view the Connections Inspector for our

AppDelegate, it should have the action wired up to both buttons, as shown in Figure 2–27.

Figure 2–27. Action wired up to multiple controls

Save your work in Interface Builder, and then go back to MonoDevelop.

Actions in Code

If we look at MainWindow.designer.cs, we should see a new line of code:

[MonoTouch.Foundation.Export("actnButtonClick:")]
partial void actnButtonClick (MonoTouch.UIKit.UIButton sender);

This is the partial declaration of our action. Notice it’s decorated with the

MonoTouch.Foundation.Export attribute. This allows the Objective-C runtime to find the

appropriate method that is associated with our action.

The compiler actually ignores any partial method declarations that don’t have any

implementation (as we see in this one), so really, this is here so that you get code

http://

CHAPTER 2: Our First Application 35

completion when you go to implement the method. If we go back to Main.cs, we’ll see

this. In your AppDelegate class, notice that if you type partial, you’ll automatically get

the code completion for our actnButtonClick, as shown in Figure 2–28.

Figure 2–28. Code completion for actions

Let’s put the following code in there:

partial void ActionButtonClick (UIButton sender)
{
 //---- show which button was clicked
 this.lblResult.Text = sender.CurrentTitle + " Clicked";
}

Now, if we run the application, and click the action buttons, we should see something

like Figure 2–29.

Figure 2–29. Hello World application after the Action 1 button has been clicked

Choosing Which Device to Simulate
Thus far, we’ve deployed only to the standard resolution iPhone Simulator. However, we

can also deploy to the iPhone 4 (with Retina Display resolution) iPhone Simulator, as

well as the iPad Simulator.

http://

CHAPTER 2: Our First Application 36

To change which device you’d like to deploy to in the simulator, change Project : Active

Simulator Target in the application menu. As of writing, you have three options:

 Default: The iPhone 3G Simulator with a resolution of 320x480

 iPhone Simulator 4.3: The iPhone 4G Simulator with the 640x960

Retina Display

 iPad Simulator 4.3: The iPad Simulator with a 1024x768 resolution

For example, if you choose iPad Simulator 4.3 and then debug it, it will launch the iPad

Simulator with the application running in it (Figure 2–30).

Figure 2–30. Hello World application running on iPad simulator

http://

CHAPTER 2: Our First Application 37

As you can see, while the application runs in the iPad, it’s definitely non-optimal. In the

next chapter, we’re going to take a look at building applications for both the iPhone and

the iPad.

NOTE: If you want to debug your application in the iPhone 4G Simulator with Retina Display, you

must first launch the iOS Simulator and then choose Device : iPhone (Retina) from the Hardware

menu. Then, in MonoDevelop, change your iPhone Simulator Target to iPhone Simulator 4.3 and

run/debug it. If you don’t change the device in the iOS simulator first, it will simulate the iPhone

3G, rather than the iPhone 4G. This is an Apple strangeness and also happens if you’re

developing in Xcode.

Application Name and Icons
The last thing I want to cover in this chapter is how to specify your application name and

icons.

If you run the application as it is, and then click the Home icon on the iOS Simulator,

you’ll notice that our application name is displayed as our project name and the icon is

blank (Figure 2–31).

Figure 2–31. Blank icon and truncated application name

http://

CHAPTER 2: Our First Application 38

Application Name

To specify an application name that’s different from the project, right-click the project

and choose Options. Then choose iPhone Application in the left pane, and specify the

name in the Display name field, as shown in Figure 2–32.

Figure 2–32. Specifying an application display name

Now, when you run your application, you should see the display name you set, under

the icon (Figure 2–33).

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2: Our First Application 39

Figure 2–33. Application with a friendly display name

Application Icons

Applications require a number of icons, each of a different size, depending on the device

and where the icon is displayed. Icons are standard .png files, and for iOS applications,

there are potentially six different icons, depending on whether your application is

intended for consumption on the iPhone, iPad, or both:

 iPhone Icon: This icon shows up on the home screen of the iPhone

3Gs (and below). It should be 57x57 pixels in size.

 iPhone 4 Icon: This icon is the same as the icon, except for Retina

Display devices. It should be 114x114 pixels.

 Settings/Spotlight Icon: This icon shows up in the iOS Settings

Application as well as the Spotlight/Search on the iPhone 3Gs (and

below). It should be 29x29 pixels.

 iPhone 4 Settings/Spotlight Icon: This icon is the same as the

previous, except it’s for the Retina Display devices. It should be 58x58

pixels.

 iPad Icon: This icon shows up on the home screen of the iPad and

should be 72x72 pixels.

http://

CHAPTER 2: Our First Application 40

 iPad Spotlight: This icon shows up in the iOS Settings Application as

well as the Spotlight/Search on the iPad. It should be 50x50 pixels.

The iOS will automatically mask the corners of your icons to make them round and add

the glassy effect, so you don’t have to.

To add icons to your application, right-click your project and choose Add Files. Then,

navigate to your icons and select them. Finally, check Override default build action, set it

to Content, and click Open (Figure 2–34).

Figure 2–34. Adding icons to your application

Setting the build action to Content will make sure that the files are copied into the

application package and made accessible to the iOS. We’ll cover including images in

more depth in Chapter 6.

After you’ve added your images to your project, you can set your icons by going back

into the Project Options dialog and choosing the Icons tab in the iPhone Application

section, as shown in Figure 2–35.

http://

CHAPTER 2: Our First Application 41

Figure 2–35. Specifying the location of your icons

After you specify your icons and run your application, they will show up (Figure 2–36).

Figure 2–36. Application icons on the Home, Spotlight, and Settings screens, respectively

http://

CHAPTER 2: Our First Application 42

Summary
At this point, we’ve gone through making a basic iPhone application using MonoTouch.

You should now have an understanding of the iOS application fundamentals including

the UIApplication, the UIApplicationDelegate, outlets, and actions. You also know how

to run your application on the simulator, set your application display name, and add

icons.

However, there are two things fundamentally missing from the application we built in this

chapter, namely:

 It only has one screen

 It’s really just designed for the iPhone, not the iPad

In Chapter 3, we’re going to address both of those issues as we delve into the Model

View Controller (MVC) pattern and how it’s used in Cocoa Touch.

http://

43

43

 Chapter

Creating Multi-Screen
Applications Using the
MVC Pattern

In the first chapter, we created our first application using MonoTouch for the iOS. We

used outlets and actions, got to know the basic application structure, and made a

simple user interface. However, it had a couple major flaws, one of which is that it only

had one screen. In this chapter, we’re going to look at how to create multi-screened

applications in the iOS using Views and View Controllers.

Specifically, we’ll use the UINavigationController to navigate to two different

pages/screens in our application. Before we begin, however, we need to briefly review

an important design pattern that Cocoa Touch uses, called the Model-View-Controller

(MVC) pattern.

Model-View-Controller (MVC) Pattern
Cocoa Touch uses the MVC pattern to handle the display of their GUI. The MVC pattern

has been around for a long time (since 1979, specifically) and is intended to separate the

burden of tasks necessary to display a user interface and handle user interaction.

As the name implies, the MVC has three main parts, the Model, the View, and the

Controller, as shown in Figure 3–1.

3

3

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 44

Figure 3–1. The constituent parts of the Model, View, Controller pattern

Model

The Model is a domain-specific representation of data. For instance, let’s say we were

making a task-list application. You might store these in a DB, an XML file, or even pull

them from a Web service. The MVC pattern isn't specifically interested in where/how

they're persisted, or even if they are. Rather, it deals specifically with how they’re

displayed and how users interact with them.

If we are persisting the Task items to some sort of storage, one approach might be to

create a TaskManager class that handles persistence and retrieval of them for us via

methods such as TaskManager.Save(Task item) or TaskManager.Get(int itemID). Or

perhaps we might take a different approach and simply add the retrieval and persistence

logic to the Task items themselves via Task.Save() and Task.Get(int itemID).

In the MVC pattern, it doesn’t matter which approach we choose, the only thing that is

important to understanding it is that we have a model representation of our data, in this

case, a Task object.

View

The View is the class or item that is responsible for how our data (or Model) is actually

displayed. In our hypothetical task application, we might display these tasks on a web

page (in HTML), or a WPF page (in XAML), or in a UITableView in an iOS application. If a

user clicks a specific task, say to delete it, typically the view raises an event, or makes a

callback to our Controller.

In many frameworks, views actually contain a hierarchy of other views. For instance, the

page/screen itself is often a view, and it contains a number of controls that are also

views. In this instance, the top-level view is referred to the root view, and the entire set

of views is referred to as the view-hierarchy.

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 45

iOS is no different in this regard, the main page view is the root view, and it can contain

many different controls such as buttons, which are themselves views.

Controller

The Controller is the glue between the Model and the View. It’s the Controller’s job to

take the data in the model and tell the View to display it. It is also the Controller’s job to

listen to the View when our user clicks the task to delete it, and then either delete that

task from the Model, by calling some sort of manager object, or tell the Model to delete

the task itself.

Benefits of the MVC Pattern
By separating the responsibilities of displaying data, persisting data, and handling user

interaction, the MVC pattern tends to create code that is easily understood.

Furthermore, it encourages the decoupling of the View and the Model, so that the Model

can be reused. For example, if in your app you had both a web-based interface and a

WPF interface, you could still use the same code for your Model for both.

Views and View Controllers in MonoTouch
In an iOS application, you only ever have one window, but you can have lots of different

screens. This is accomplished by creating different views that you display when

appropriate.

In Apple’s Cocoa Touch UI framework (also known as the UIKIT), controllers are usually

called ViewControllers, so if you see a class like UIViewController, it’s actually a

controller.

A single controller can manage many different root views, but typically, in order to keep

controller code manageable, they only manage one root view. If the controller does

manage different root views, they’re typically simple derivatives of the other views it

manages. For example, you might have a single view controller that manages four

different views for the different orientations of the device. We’ll explore that in more

depth in Chapter 5 when we examine handling rotation on the device.

In MonoTouch, views are represented by the UIView class, and nearly all controls inherit

from this class. Views handle user interaction and notify their controller via events. For

example, a button raises a TouchDownInside event when a user puts their finger on it,

and a TouchUpInside when the user releases their finger. To make a rough analogy, this

relationship is slightly similar, to the ASP.NET or WPF model, in which the user interface

is defined in HTML or XAML, and then a code-behind page handles events such as

clicks, etc.

In this chapter's sample application, we’re going to use a specialized controller called

the Navigation Controller (UINavigationController) to manage our different screens.

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 46

The UINavigationController manages a stack of view controllers, each of which

represents a screen. When you want to display a new screen, you push a view controller

onto the navigation stack that the navigation controller manages. The navigation

controller then renders a navigation bar control that allows users to click a button to

move backwards through the hierarchy, by removing the top most (visible) controller

from the navigation stack.

The UINavigationController is seen in many of the stock iOS applications. For

example, when you’re viewing a list of your text messages, if you click one, the top bar

gets a left arrow tab at the top that takes you back a view to the message list, as shown

in Figure 3–2.

Figure 3–2. The text message application in iOS uses a navigation controller to handle navigation

It’s worth noting that, in this application, we’re only going to be dealing with views and

controllers. The model portion is not strictly necessary in the MVC pattern, despite its

inclusion in the pattern name. It’s really only used when you want to display data, and in

this case, we’re going to be exploring the navigation hierarchy, and not data.

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 47

Sample Application
Now that we understand how multiple screens work in concept, let’s actually create an

application that utilizes them.

1. First, create a new MonoTouch iPhone solution in MonoDevelop and

name it Example_HelloWorld_iPhone_MultipleScreens (refer to the first

chapter if you’ve forgotten how to do this).

2. Next, create create three View Controllers. To do this, right-click your

project and choose Add New File, then select iPhone and View Interface

Definition with Controller, as shown in Figure 3–3.

Figure 3–3. New View with Controller

Name your three view controllers:

 MainScreen

 HelloWorldScreen

 HelloUniverseScreen

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 48

Adding the Navigation Controller to the Main Screen

Once you have your screens created, open up the MainScreen.xib in Interface Builder.

This is going to be the main screen of our application and will have our Navigation

Controller on it.

1. Navigation controllers need to be the root controllers in a screen, so

let’s delete the view from this screen. To do this, select the view object

in the document window and either press the delete key or select the view

and choose Edit Delete from the menu.

2. Next, drag a Navigation Controller item from the library window onto the

document. Your document window should look like Figure 3–4 (I’ve

expanded the tree to show the full hierarchy).

Figure 3–4. Document window showing the Navigation Controller hierarchy

3. As I mentioned before, the UINavigationController actually contains a

number of different items. Now look at your Designer window, where

you’ll see the newly added Navigation Controller (Figure 3–5).

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 49

Figure 3–5. Navigation Controller showing a placeholder for your View

4. While the Navigation Controller comes with a number of controllers and

views, it doesn’t actually contain a view to house your content, so we

need to add one. Simply drag a UIView control from the Library window

onto the View placeholder in the Designer window, or onto the View

Controller in the Document window. Once you’ve done that, your screen

should look like Figure 3–6, and your Document window should look like

Figure 3–7.

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 50

Figure 3–6. Navigation Controller after View has been added

Figure 3–7. Document Window showing the added View in the hierarchy

5. You can change the Root View Controller text by double-clicking it. In this

case, let’s just change it to Hello World. After you’ve changed that text,

add two buttons to the view and set their text to Hello World Screen, and

Hello Universe Screen, respectively. Once you're done, your screen should

resemble Figure 3–8.

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 51

Figure 3–8. Finished MainScreen.xib

6. Next, create three outlets:

 btnHelloWorld

 btnHelloUniverse

 navMain

7. Wire the btn* outlets up to their respective buttons, and wire navMain up

to the Navigation Controller. See Chapter 2 if you forgot how to make

outlets and wire them up.

8. Once you’ve got your outlets created and wired up, save your work.

HelloWorld and HelloUniverse Screens

Now we're ready to do the two subviews, so let's get started.

1. Open up the HelloWorldScreen.xib file in Interface Builder and drop a

label on to the screen that says Hello World!, as shown in figure 3–9.

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 52

Figure 3–9. Finished Hello World screen

2. Since this screen will actually have a navigation bar at the top, you can

make the Designer window show one as well, by selecting

TopBar Navigation Bar in the Simulated User Interface Elements section of the

Attributes Inspector, as shown in figure 3–10.

Figure 3–10. Attributes Inspector showing simulation options

3. The Designer will now show a simulated top bar when you’re designing

your screen. Have a look and you can see how much room you have, as

shown in figure 3–11.

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 53

Figure 3–11. Simulated navigation bar in the designer

4. Once you’ve finshed the Hello World screen, do the same thing with the

Hello Universe screen, except set the text of the label to be Hello Universe!.

5. When you’re done, save your work, and head back over to MonoDevelop.

Showing Different Screens

Now that we’ve got our screens created in Interface Builder, let’s modify the code in the

MainScreen controller to handle our button clicks and show our different screens.

MainScreen.xib.cs

Open up the MainScreen.xib.cs file in MonoDevelop. This file is our controller class for

our main screen. The first thing we’re going to do is change our default constructor to

load our view (as defined in our .xib file) synchronously. The template, in MonoDevelop,

for a UIViewController has the following default constructor, shown in Listing 3–1.

Listing 3–1. Default UIViewController constructor when the view is defined in a .xib file

public [ControllerClassName] () : base("[ControllerClassName]", null)
{
 Initialize ();
}

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 54

This calls the base class’s default constructor and passes the name of the Nib file where

we created our view. The base class then deserializes and loads the view from that file.

Unfortunately, however, the base class implementation loads the view asynchronously.

That is, the actual controls and content on that view aren’t available immediately. This is

typically not a problem, because the UIViewController has a method called ViewDidLoad

that is called once the view has fully loaded.

We’ll see in a moment, when we look at our AppDelegate class, why this can be a

problem, but for now, replace that constructor with the following, shown in Listing 3–2,

which does the same exact thing, but loads the view synchronously (LoadNib doesn’t

return until the view is loaded).

Listing 3–2. Default UIViewController constructor that loads the .xib synchronously

public MainScreen ()
{
 Initialize ();
 NSBundle.MainBundle.LoadNib("MainScreen", this, null);
 this.ViewDidLoad();
}

We made one other change in here that’s important to note as well. If you manually call

LoadNib, the ViewDidLoad method will not be called. Instead, we need to call it ourselves,

after the view has been loaded.

Next, add the following method, shown in Listing 3–3.

Listing 3–3. Wiring up event handlers in the ViewDidLoad method

public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 this.btnHelloUniverse.TouchUpInside += (s, e) => {
 this.navMain.PushViewController (new HelloUniverseScreen (), true); };
 this.btnHelloWorld.TouchUpInside += (s, e) => {
 this.navMain.PushViewController (new HelloWorldScreen (), true); };
}

The ViewDidLoad method is called by the view controller after the view is loaded and fully

initialized. We’ll examine the controller and view lifecycle in more detail in Chapter 5, but

ViewDidLoad is a good place to wire up your event handlers because it is only called

after your controls are instantiated, and is only called once in a view’s lifecycle.

The UINavigationController manages a stack of navigation items, which are typically

controllers. To show a new screen, we can simply push a view controller onto the stack

via the PushViewController method. Our event handler code does exactly that, when a

user clicks one of our buttons.

Next, we need to make our Navigation Controller accessible from our AppDelegate class,

so that we can add the view it manages to our window. Let’s add a property to do just

that, as shown in Listing 3–4.

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 55

Listing 3–4. Exposing our navigation controller

public override UINavigationController NavigationController
{
 get { return this.navMain; }
}

You’ll notice this property is an override. That’s because the UIViewController class

already exposes a NavigationController property. This property will return a

UINavigationController only if this View Controller is currently on a navigation stack.

In our case, our MainScreen.xib actually contains the Navigation Controller. So we

override this property for simplicity.

Next, we’re going to change our AppDelegate class to load our main screen when the

application starts up.

AppDelegate

Open up the Main.cs file in MonoDevelop and add the following declaration to your

AppDelegate class, as shown in Listing 3–5.

Listing 3–5. Declaring a class-level reference to our MainScreen

MainScreen _mainScreen;

NOTE: We’ve declared a reference to our MainScreen as a class-level variable. This is

extremely important. The garbage collector in MonoTouch is very aggressive, and in a moment

we’re going to instantiate our MainScreen in a method and then add it to the navigation stack.

If we declared it within the scope of the method, it could get garbage collected when the method

returns. If this were to happen, if we were to try to do anything with it (like handle a button click),

the application would crash with a null-reference error.

Then, in the FinishedLaunching method, add the code shown in Listing 3–6.

Listing 3–6. Declaring our MainScreen as a class-level variable

this._mainScreen = new MainScreen ();
window.AddSubview (this._mainScreen.NavigationController.View);

The UINavigationController is unique, in terms of controllers, in that you can push other

controllers onto it. It then adds the view of the controller onto its view hierarchy. However,

with most other controllers, and also with the Window, you have to add views instead.

The code we added to our AppDelegate class does just that. It creates a new MainScreen

controller, and then adds the Navigation Controller’s view onto it.

It's important to note here, if we didn’t change our constructor in our MainScreen class

to be synchronous, our NavigationController property would likely be null when we

called the window.AddSubview, and the application would error on starting.

Now, when we run our application, we should see our main screen load, as shown in

figure 3–12.

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 56

Figure 3–12. Application running, displaying the Main Screen

If you click the Hello World Screen button you should get something like figure 3–13.

Figure 3–13. Application running, displaying a sub screen

http://

CHAPTER 3: Creating Multi-Screen Applications Using the MVC Pattern 57

Summary
Congratulations! You know understand how the MVC pattern is used in Cocoa Touch to

create multiple screen applications. In our next chapter, we’ll extend this concept to

build a universal application for both the iPhone and the iPad!

http://

59

59

 Chapter

iPad and Universal
(iPhone/iPad)
Applications

So far we’ve covered a lot of the basics of making an iPhone application using

MonoTouch, including how the MVC pattern fits in, but what about iPad applications? It

turns out, building iPad applications is almost exactly like building iPhone applications,

and, in fact, you can even extend your iPhone applications to run on both the iPhone

and the iPad, and vice-versa.

iPad applications run exactly the same way iPhone (or iPod Touch) applications do. The

only appreciable difference is the form factor. The iPad is nearly the size of a standard

American sheet of paper.

This means that you can fit a lot more on screen, which has a tremendous impact on

how iPad versions of iPhone OS applications differ from their iPhone counterparts. With

the larger screen, you can often combine what would be several screens on the iPhone

into a single screen in an iPad application.

Because of the larger screen size, Apple has given us a couple of additional controls

that are only available on the iPad, the most significant of which is the

UISplitViewController, which is used to manage a master/detail view configuration.

We’ll take a look at that control in more detail in Chapter 8, but other than a couple of

controls, building iPad applications is nearly identical to iPhone applications.

There are a few hardware resource differences between the different devices, so I’ve

included a table here of the major differences to give you an understanding of how they

differ. Most of the time these differences are negligible, but it’s important that, if you

intend for your applications to run on older devices, you test your applications on them.

4

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 60

Table 4–1. iOS device comparison

Device Max. OS Version RAM Processor Speed Screen Size + Resolution

iPhone 3.1.3 128MB 412MHZ 480x320 pixels @ 163ppi

iPhone 3G 4.2.1 128MB 412MHZ 480x320 pixels @ 163ppi

iPhone 3GS 4.3+ 256MB 600MHZ 480x320 pixels @ 163ppi

iPhone 4G 4.3+ 512MB ~1GHZ 960x640 pixels @ 326ppi

iPad 4.3+ 256MB ~1GHZ 1024x768 pixels @ 132ppi

There are other capability differences as well, such as the presence of a compass or

GPS, which we will examine in later chapters that deal with the particular item. For more

information on device particulars, Wikipedia has excellent coverage of the iPhone at

en.wikipedia.org/wiki/Iphone, and the iPad at en.wikipedia.org/wiki/Ipad.

In this chapter we’re going to walk through creating an iPad application, and then go

through a couple of options for creating universal applications that run on both the

iPhone and the iPad.

A Note About Resolution on the iPhone
The iPhone 4G has a high-resolution screen (2x the density of the iPhone 3GS and

below) known as the Retina Display. This means that, while the resolution is twice that of

the earlier iPhone models, the screen size remains the same. We’ll examine how we

account for this in later chapters, but for now, the answer is largely that we don’t have

to. Apple has kept the coordinate system the same for both screens, which means that

the screen space is still 480x320 “points,” whether you’re on the 4G iPhone or an earlier

version.

The most important difference this makes is when it comes to images. In Chapter 6,

when we get introduced to controls, we’ll see that when loading images, the iOS will

automatically look for images with an “@2x” in the filename suffix and load them (as

opposed to images without that suffix) if the current device is a high-density Retina

Display.

Creating an iPad-Only Application
Let’s look at how to create an application that will only run on the iPad. Create a new

solution of type iPad Window-based project under the C# iPhone and iPad templates, as

shown in Figure 4–1.

http://

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 61

Figure 4–1. iPad Window-based project template

The iOS looks for a file named info.plist in your application bundle to determine what

iOS versions and devices your application supports. A .plist file is a special type of file

called a property list. We’ll cover .plist files in more detail in Chapter 14, but

essentially, a .plist file is a place where application settings and information are stored.

Changing Common Settings in MonoDevelop

Most of the time you don’t have to edit the info.plist file directly, because many of the

common settings that you might configure are actually available via the Project Options

dialogue in MonoDevelop. We touched briefly on the Project Options dialog in Chapter 2,

when we covered how to set your application name and icons.

When you build your application, MonoTouch automatically creates an info.plist file

for you if you do not already have one based on your project options, and if you do have

one, it will merge the project options settings with it.

When you create an application using the iPad Window-based project template, it

automatically sets the Target devices setting to iPad only, as shown in Figure 4.2.

http://

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 62

Figure 4–2. Build settings for an iPad-only application

It also sets the Main interface file setting, which contains your Window. This setting is

actually a little confusing, because there is also an iPad interface file setting, as seen in

Figure 4.2. However, if the Target devices setting is set to either iPhone or iPad only, the

only interface file setting that is used is Main interface file. If you’re building a universal

(iPhone and iPad) application, then the Main interface file setting will be used for the

iPhone application, and the iPad interface file setting will be used for the iPad application.

You can also load your Window programmatically, and therefore bypass the interface

settings altogether. We’ll look at that in just a bit when we talk about universal

applications.

iPad Screens in Interface Builder

If you open up your MainWindow.xib file in Interface Builder, you’ll notice that nearly

everything is the same, except that your Designer window is a lot bigger; now add a

UILabel to it, as shown in Figure 4–3. Adding controls is exactly the same as it is for

iPhone applications.

http://

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 63

Figure 4–3. iPad Designer window in Interface Builder

If you save your work in Interface Builder and then run your application just as you

would an iPhone application, the iPhone Simulator will show up, as in Figure 4–4,

running your application.

http://

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 64

Figure 4–4. iPhone Simulator running an iPad application

You’ll notice, however, that this time, instead of getting a simulated iPhone, the

simulator will simulate an iPad.

As you can see, the technical aspect of creating an iPad application is just as easy as it

is for creating an iPhone application.

Now let’s take a look at creating applications that run on both the iPhone and the iPad.

Creating a Universal iPhone/iPad Application
There are a couple of ways to create a universal application that will run on both the

iPhone and iPad.

 The first and easiest is to use the universal project template in

MonoTouch.

http://

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 65

 The second, and much more powerful way, is to detect which device

the application is executing on, and programmatically load the

appropriate UI for that device.

Let’s take a look at using the universal project template first.

Method 1: Universal Project Template

The universal project template can be found in the New Solution dialogue with the other

templates under Universal Window-based Project, as shown in Figure 4–5.

Figure 4–5. Universal project template

When you create a new project based on the universal template, you’ll notice it creates

an AppDelegate class and a MainWindow for both the iPhone and the iPad, as shown in

Figure 4–6.

http://

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 66

Figure 4–6. New universal project showing duplicate AppDelegate and MainWindow files

If you take a look at the build options, you’ll notice that Target Device Setting is set to

iPhone and iPad, and that an interface file is specified for both devices, as shown in

Figure 4–7.

Figure 4–7. Project options in a universal project template-based application

http://

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 67

To specify which device to simulate when running the application on the simulator, set

Project iPhone Simulator Target to either the iPhone or the iPad.

This is a very simple and easy way to create a universal application, but since we have

duplicate AppDelegate classes, it can lead to redundant code being written. If you

wanted to, you could create a single AppDelegate class and reference that class in both

your MainWindowIPad.xib and MainWindowIPhone.xib files. Additionally, you could

simplify your application even further by creating one window based on the dimensions

of the device and loading the appropriate screens based on what device is running,

which is exactly what we’ll do next.

Method 2: Programmatic Device Detection

To create a universal application from scratch that detects the device type and loads

the appropriate screens, start by creating a new Empty MonoTouch Project, as shown in

Figure 4–8.

Figure 4–8. Empty MonoTouch project

http://

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 68

MonoDevelop sets the target device to iPhone by default, so the first thing we need to

do is change that to iPhone and iPad. Right-click your project and choose Options. Then

in the Build iPhone Application tab, change the Target devices setting to iPhone and iPad, as

shown in Figure 4–9.

Figure 4–9. Target devices setting

Determining the Device Type

Because this is an empty template, we need to create our Main method as well as our

AppDelegate class from scratch. First, however, let’s add some classes to help us

determine which device is running. First, add an enum called DeviceType, with the code

shown in Listing 4–1.

Listing 4–1. DeviceType enumeration

using System;
namespace Example_UniversalApplication
{
 public enum DeviceType
 {
 iPhone,
 iPad
 }
}

http://

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 69

To add the enum, simply right-click the project and choose Add New File and choose

General Empty Enumeration, and name it DeviceType.

Next, add a new class called DeviceHelper, with the code shown in Listing 4.2.

Listing 4–2. Deterimining whether the current device is an iPad or an iPhone

using System;
using MonoTouch.UIKit;

namespace Example_UniversalApplication
{
 public static class DeviceHelper
 {
 public static DeviceType DetermineCurrentDevice ()
 {
 //---- figure out the current device type
 if (UIScreen.MainScreen.Bounds.Height == 1024 ||
 UIScreen.MainScreen.Bounds.Width == 1024)
 {
 return DeviceType.iPad;
 } else
 {
 return DeviceType.iPhone;
 }
 }
 }
}

DeviceHelper has one method, DetermineCurrentDevice, which determines what device

the application is executing on by checking the size of the screen. If either the height or

width (the device may be in portrait or landscape mode) is 1024 pixels, then it must be

an iPad. Anything else has to be an iPhone. This seems like a strange way to determine

the current deivce, and it is; however, it is the Apple-recommended method, since they

do not expose an API to query the device type.

Creating a Custom AppDelegate

Next, we need to create an AppDelegate class. If you recall from Chapter 1, the

AppDelegate class is responsible for handling our application events. Put the following

code into your AppDelegate class (Listing 4–3).

Listing 4–3. An AppDelegate class that creates a window and loads the appropriate screen based on the current
device

using System;
using MonoTouch.UIKit;
using MonoTouch.Foundation;

namespace Example_UniversalApplication
{
 [Register("AppDelegate")]
 public class AppDelegate : UIApplicationDelegate
 {
 protected UIWindow _window;

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 70

 public DeviceType CurrentDevice
 {
 get { return this._currentDevice; }
 set { this._currentDevice = value; }
 }
 protected DeviceType _currentDevice;

 public AppDelegate () : base()
 {
 }

 public override bool FinishedLaunching (UIApplication app, NSDictionary options)
 {
 //---- create our window
 this._window = new UIWindow (UIScreen.MainScreen.Bounds);
 this._window.MakeKeyAndVisible ();

 //---- are we running an iPhone or an iPad?
 this.DetermineCurrentDevice ();

 switch (this._currentDevice)
 {
 case DeviceType.iPhone:
 // Load the iPhone home screen
 this._iPhoneHome = new HomeScreen_iPhone ();
 this._window.AddSubview (this._iPhoneHome.View);
 break;
 case DeviceType.iPad:
 // Load the iPad home screen
 this._iPadHome = new HomeScreen_iPad ();
 this._window.AddSubview (this._iPadHome.View);
 break;
 }

 return true;
 }

 protected void DetermineCurrentDevice ()
 {
 this._currentDevice = DeviceHelper.DetermineCurrentDevice ();
 }
 }
}

Since we’re building this from scratch, there are a couple things to be aware of. The first

is the line shown in Listing 4–4.

Listing 4–4. Register attributes make classes visible to the underlying runtime

[Register("AppDelegate")]

In order for the underlying Objective-C runtime to be able to find our class, we need to

make it visible via the Register attribute. We need it here because in just a bit we’re

going to tell iOS to load our AppDelegate in our Main method. If we don’t add the

attribute, iOS won’t be able to locate our class and we’ll get an error when we run the

application.

http://

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 71

Next, we have the following line (Listing 4–5)

Listing 4–5. Declaring our UIWindow

protected UIWindow _window;

In all of our other examples so far, we’ve used a xib file for our window, but in this

example, we’re going to create it programmatically. In our FinishedLaunching method,

we have the following line (Listing 4–6).

Listing 4–6. Instantiating a new UIWindow class based on the current screen resolution

this._window = new UIWindow (UIScreen.MainScreen.Bounds);

This creates a window based on the size of the device. The nice thing about doing it this

way is that now, no matter what device we’re using, whether it’s an iPad or an iPhone,

our window is created correctly.

Next, we call the DetermineCurrentDevice method that we created earlier in our

DeviceHelper class.

Finally, we have a switch block that loads the appropriate screen, based on which

device we're running. If you’re building this application, you’ll want to add the

appropriate screens for your device and load them here.

Note that we’ve exposed the CurrentDevice property as part of our AppDelegate, so we

can access that property from anywhere in our application via the following call, shown

in Listing 4–7.

Listing 4–7. Accessing the current application delegate

((AppDelegate)UIApplication.SharedApplication.Delegate).CurrentDevice

Creating a Custom Main Method

Finally, we need our static Main method that the iOS calls to run our application. This looks

nearly identical to our Main method before, but with one slight change (Listing 4–8).

Listing 4–8. Custom Main method that loads our AppDelegate class

using System;
using MonoTouch.UIKit;

namespace Example_UniversalApplication
{
 public class Application
 {
 public static void Main (string[] args)
 {
 UIApplication.Main (args, null, "AppDelegate");
 }
 }
}

This time, when we tell the iOS to load our application, we need to pass it the name of

our AppDelegate. Ordinarily, it would look at our Main interface file setting in the

http://

CHAPTER 4: iPad and Universal (iPhone/iPad) Applications 72

info.plist and load whatever application delegate class was specified in our window

xib file, but since we don’t have a xib file, we have to set this programmatically.

That’s all it takes to launch our application programmatically without defining a xib file

that contains our window.

One of the nice things about this approach is that instead of being forced to define

separate screens for both devices every single time, you are free to combine screens

when appropriate. You can even extend this pattern by creating two different screens

that implement an interface and then use a single controller to provide unified code-

behind for both devices. In fact, some of the applications in this book are written this

way, so check them out to see how this is accomplished.

Summary
In this chapter we learned how to build applications for the iPad, as well as two different

approaches to building universal applications. You should now have a pretty solid grasp

on how iOS applications work, including how to build them from scratch without using a

xib file to define your window.

Congratultions, you’ve finished your MonoTouch 101 course. This is the last chapter

we’ll go through that will have the walk-through tutorial approach. Most of the rest of

this book will take a reference approach to different parts of a MonoTouch iOS

application.

http://

73

73

 Chapter

More on Views and
Controllers

In Chapter 3 we learned about the MVC pattern in the iOS and we built an application

that uses multiple view controllers coupled with views that enabled us to have multiple

screens. In this chapter, we’re going to explore that relationship a little deeper, which

will help us understand how to effectively work with views in our applications.

NOTE: I use the term control interchangeably with view (UIView or its derivatives) throughout

this book. This is largely because the “Control” paradigm, as we’re used to in the world of

Microsoft UI Development, is largely analogous and provides a nice conceptual equality.

Additionally, Apple’s documentation often refers to various views such as buttons, etc., as

controls.

We’re also going to explore the lifecycle of controllers and views so that we know where

to put our code so that it executes at the proper time. Finally, we’ll take a look at how to

handle rotation of the device to provide a seamless user experience.

Custom UIViewController and UIView
Implementations
Subclassing UIViewController, that is, implementing a custom class that inherits from it,

is an extremely common task in iOS programming, since you need to do it for nearly

every screen. Let’s look at a custom UIViewController and its UIView, to really get a

grasp of the relationship between the two. The simplest case is shown in Listings 5–1

and 5–2.

5

http://

CHAPTER 5: More on Views and Controllers 74

Listing 5–1. Custom UIViewController class

public class MainViewController : UIViewController
{
 public MainViewController () : base()
 {
 }

 public override void LoadView ()
 {
 //---- replace the default view with our custom view
 this.View = new MainView (UIScreen.MainScreen.ApplicationFrame);
 }
}

Listing 5–2. Custom UIView class

public class MainView : UIView
{
 public MainView (RectangleF frame) : base(frame)
 {
 }
}

As you can see, there’s not a whole lot to this. We’re going to explore the lifecycle more

in the next section, but the UIViewController is responsible for managing the view.

When creating UIViews that aren’t defined in Interface Builder, we override LoadView on

the UIViewController, to replace the default view that is baked into UIViewController

with our own, custom one.

Default UIView Constructor for a View Defined in a xib file

The default constructor for a view takes a RectangleF that specifies the size and location

of the view on the screen. In this case we can simply pass in the MainApplicationFrame,

but if you have a tab bar, and/or a navigation controller, you’d have to account for both

of those and change the position and size.

If we are defining the UIView in Interface Builder, the pattern is a little different. When a

UIView is defined in a xib file, the iOS calls a different constructor in our

UIViewController, as shown in Listing 5–3, that passes in the name of the xib file and

loads the view from that, rather than code.

Listing 5–3. Constructor for loading UIView from .xib file

public MainScreen() : base("MainScreen", null)
{
 Initialize ();
}

We don’t really have to worry about this too much, however, because the default

MonoDevelop View Interface Definition with Controller template does this for us, as we’ve

seen in the previous exercises. To see an example of this, check out the

Example_ViewAndViewControllerInCode sample application.

http://

CHAPTER 5: More on Views and Controllers 75

Manually Loading a UIView Defined in a .xib File

You can also load a UIView directly onto a controller’s root view outside of the context of

a constructor, as shown in Listing 5–4.

Listing 5–4. Constructor for loading UIView from .xib file

NSBundle.MainBundle.LoadNib ("LandscapeView", this, null);

However, as we saw in Chapter 3, manually loading the .xib yourself means that the

ViewDidLoad method is not called, so you should call it manually after loading the view.

UIViewController Event Lifecycle

As you can probably tell from the previous code samples, the UIView is in charge of

displaying itself and any views/controls it contains, and the UIViewController is

responsible for managing the UIView. As such, there are a number of events that are

called during the lifecycle of both classes.

Understanding the lifecycle events in the UIViewController is important because you

need to know which ones to override and when, so that your code executes at the

proper time in the lifecycle of the controller. It will also help you understand the

relationship between the UIViewController and UIView.

Let’s take a look at the common UIViewController lifecycle methods.

LoadView

The LoadView method is called by the iOS when a controller's View property is

requested, but is null.

You should only override this method if you’re defining a custom UIView class in code,

rather than in a .xib file that you’ve created in Interface Builder. As shown in Listing 5–1,

LoadView should be used to load your custom UIView class onto the UIViewController.

One important distinction of the LoadView method is that, unlike the other lifecycle

events, you should not call base.LoadView() in the override if you are replacing the

default view with your own. You should call it, however, if you add your view as a

subview, as we’ll see in the "Managing More than One View in a Controller" section.

ViewDidLoad

ViewDidLoad is the single most common method to override in a UIViewController. It is

called after the view has been initialized and loaded. It’s called whether the view has

been defined in Interface Builder (as a .xib file), or in code.

ViewDidLoad is where you should place any code that you want to run after the basic view

stuff has been loaded. For instance, ViewDidLoad is a good place to add any

subviews/controls to your view, wireup event handlers, populate your view with data, etc.

http://

CHAPTER 5: More on Views and Controllers 76

ViewDidUnload

ViewDidUnload is called whenever the view is unloaded. This can happen for a number of

reasons:

 View disposal: If Dispose is called on the view, or any other time the

view is unloaded

 Low memory: If the device is running low on memory, it may unload

views that are not currently on the navigation stack or screen.

This method is extremely important in Objective-C iOS applications, where memory

management is all manually done, but less important with MonoTouch applications

because of the garbage collector.

With that said, however, you should override this method if you have resources

referenced in association with your view that you want to unload or dereference.

ViewWillAppear

ViewWillAppear is called right before the view is going to become visible. Unlike

ViewDidLoad, which only gets called when the view loads, ViewWillAppear will get called

everytime the view is about to be presented. For instance, if your view controller is on a

navigation stack, the view might go in and out of view, depending on if other views are

loaded on top of it, or if yours pops off the stack. However, the view may not unload.

ViewWillAppear is especially useful to refresh any information on your view that might

have changed when a user is viewing another screen/view. This applies equally to data

on the view and other display tasks, such as orientation, status bar style, and navigation

bar customization. Listing 5–5 illustrates hiding the navigation bar when a view appears.

Listing 5–5. Hiding the Navigation Bar when a view appears

public override void ViewWillAppear (bool animated)
{
 base.ViewWillAppear (animated);
 this.NavigationController.SetNavigationBarHidden (true, animated);
}

ViewWillDisappear

ViewWillDisappear is the corollary to ViewWillAppear. It is called every time the view is

about to be removed from presentation or covered by another view. You should override

this method to undo anything that you might have done to the display in

ViewWillAppear. This is also a good method to save any changes that your user might

have performed in the view. Listing 5–6 illustrates showing the navigation bar when a

view disappears.

http://

CHAPTER 5: More on Views and Controllers 77

Listing 5–6. Showing the Navigation Bar when a view disappears

public override void ViewWillDisappear (bool animated)
{
 base.ViewWillDisappear (animated);
 this.NavigationController.SetNavigationBarHidden (false, animated);
}

Other Methods

In addition to the common methods mentioned here, there are more methods that occur

in the UIViewController lifecycle. We’ll cover a group of them related to orientation

changes when a user rotates a device in the upcoming "Handling Rotation" section. The

rest are documented in the UIViewController reference documentation provided by

Apple. For the most part, you won’t need to use them, except in advanced scenarios.

UIView Event Lifecycle

We’ve looked at the UIViewController lifecycle and its role in managing UIViews, so let’s

dig further into the UIView itself now. In addition to the constructor, there are really only

two methods in UIView that we usually concern ourself with. They are:

 Draw

 LayoutSubviews

Constructor

In addition to iniatializing fields or data that you might need in your UIView, the

constructor is also the correct place to initialize your view heirachy, if one exists.

Custom UIViews are often composed of many subviews. For example, you might create

a custom UIView for displaying images that contains a UIImage and a UILabel, showing

the caption. In that case, you would add your UIImage and UILabel to your view

hierarchy by calling AddSubview from within the constructor.

Draw

The Draw method is called the first time the view is displayed, and anytime after that we

tell the iOS that the view needs to be redrawn (by calling SetNeedsDisplay or

SetNeedsDisplayInRect). We’ll examine this in more detail in Chapter 16, when we

discuss CoreGraphics. This is the only time that the iOS allows us direct access to the

drawing surface of the view. For example, the code in Listing 5–7 draws the view

background white.

http://

CHAPTER 5: More on Views and Controllers 78

Listing 5–7. Overriding the Draw method in a UIView control to paint the background

public override void Draw (System.Drawing.RectangleF rect)
{
 using (CGContext context = UIGraphics.GetCurrentContext ())
 {
 context.SetRGBFillColor (0.7f, 0.7f, 0.7f, 1f);
 context.FillRect (rect);
 }
 base.Draw (rect);
}

The Draw method can also be called at other times as well. For example, anytime the

graphics subsystem decides the view is dirty (for instance, something has been drawn

above it), iOS will call Draw.

LayoutSubviews

LayoutSubviews is a convenience method (the default base implementation doesn’t do

anything) that provides you with a known method for modifying the layout (size, location,

etc.) of any subviews. It’s not called unless you invoke the SetNeedsLayout method on

the UIView.

If your view needs to change its layout depending on such alterations as orientation

changes and size changes, then you should call the SetNeedsLayout method, which tells

the OS to invoke this method when it is appropriate.

Managing More than One View in a Controller
So far we’ve seen a 1:1 correlation between controllers and views; that is, for every

controller, we’ve had it manage a single view. This is a pretty common pattern, but a

controller can actually manage multiple views without having a separate controller for

each view. The opposite is not true, however; a single view can only be assigned to one

controller. In fact, one of the approaches to handle device rotation is for a single

controller to have a view for each orientation, and then switch views when the device

rotates. We’ll look at this more in a bit when we talk about handling rotation.

Switching Views

If we want to switch views, it’s easy: simply set the View property on your controller

class to the new UIView. There is a caveat to this, however; if you want to animate the

transition between the views, as shown in Figure 5–1, it’s a little more complex.

http://

CHAPTER 5: More on Views and Controllers 79

Figure 5–1. Transitioning between views with a Flip animation

The problem that arises is that the iOS will only automatically animate property changes

to a view, rather than loading/unloading the view itself. To get around this, we have to

add our initial view to the root view of the controller, rather than replace it, as shown in

Listing 5–8.

Listing 5–8. Adding a custom UIView as a subview on the root view

public class MainViewController : UIViewController
{
 public override void LoadView ()
 {
 this.View.AddSubview (new MainViewOne (new RectangleF (new PointF (0, 0)

, UIScreen.MainScreen.ApplicationFrame.Size)));
 }
}

You’ll notice that we’ve done something a little different here. When we instantiate the

view and pass it the frame, instead of passing the ApplicationFrame, as we did in Listing

5–1, we actually have to modify the origin to be 0,0. If we didn’t do this, the view would

actually be down farther than it shoud be, and we’d see a blank space the size of the

status bar.

http://

CHAPTER 5: More on Views and Controllers 80

This is because the ApplicationFrame has an origin of (0, 20), or 20 points down from

the top. It does this because the status bar is 20 points tall. When we add a view to

another view, the origin is relative to the view that you’re adding it to. So now, if we use

the ApplicationFrame, we’d wind up with it putting our subview 20 points down relative

to the root view.

Animating the Transition

To get this to animate, we wrap it in an animation block. We’ll explore animation in

much more detail later in Chapter 17, but animation blocks are very simple, as shown

in Listing 5–9.

Listing 5–9. Animating a subview transition

protected void SwitchViews ()
{
 //---- begin an animation block
 UIView.BeginAnimations ("View Flip");
 UIView.SetAnimationDuration (1.25);
 UIView.SetAnimationCurve (UIViewAnimationCurve.EaseInOut);
 UIView.SetAnimationTransition (UIViewAnimationTransition.FlipFromRight,
 this.View, true);

this.View.AddSubview (new MainViewTwo (new RectangleF (new PointF (0, 0)
,UIScreen.MainScreen.ApplicationFrame.Size)));

//---- end our animation block
UIView.CommitAnimations ();

}

When using an animation block, which simply call UIView.BeginAnimations, give it a

name, then set up our animation properties such as the duration, the animation type,

etc., then perform the operation that we want to animate, and finally, call

UIView.CommitAnimation. The BeginAnimations and CommitAnimations calls simply tell

the iOS that any applicable operations in between should be animated. For a working

example of this, take a look at the Example_SwitchingViews companion sample

application.

Handling Rotation
One of the nice features of the iPhone, iPod Touch, and the iPad is the inclusion of an

accelerometer that tells the OS which way it’s oriented in space (among other data). In

turn, the OS then tells your application the device has been rotated.

You can see a simple example of this in the Safari Application, shown in Figure 5–2.

http://

CHAPTER 5: More on Views and Controllers 81

Figure 5–2. The Safari application rotated with the iPhone

It’s your choice whether to build your app to rotate to match the device's orientation.

Sometimes it makes sense to have the application support rotation, and sometimes it

doesn't. It can be more work to support rotation, but it’s generally a good idea if it

makes sense for your application, because it can improve your user experience

tremendously.

All devices have four distinct directions, starting with the home button at the bottom,

and rotating clockwise, they are:

 Portrait

 LandscapeRight

 PortraitUpsideDown

 LandscapeLeft

While it’s your choice whether or not you support both landscape and/or portrait mode,

if you’re creating an application that will run on the iPad, you must support both 180º

versions of the particular format you support. For instance, if your app is intended to run

only in portrait mode, you should support both Portrait and PortraitUpsideDown.

What orientations your application can support are configured in the project options

under the iPhone Application tab, as seen in Figure 5–3.

http://

CHAPTER 5: More on Views and Controllers 82

Figure 5–3. Setting the supported orientations in project options

Just setting the supported orientations in your project options, however, does not

automatically mean that all the screens in your application support those orientations. It

may not make sense for every screen to support all orientations. In fact, the OS asks

every view controller in your application what orientations it supports. If you support

more than just the standard profile view, you need to override the

ShouldAutorotateToInterfaceOrientation method, which passes the orientation that

the application is switching to, as shown in Listing 5–10.

Listing 5–10. Specifying what view orientation your view controller supports

public override bool ShouldAutorotateToInterfaceOrientation (UIInterfaceOrientation
toInterfaceOrientation)
{
 switch (toInterfaceOrientation)
 {
 case UIInterfaceOrientation.LandscapeLeft:
 case UIInterfaceOrientation.LandscapeRight:
 case UIInterfaceOrientation.Portrait:
 case UIInterfaceOrientation.PortraitUpsideDown:
 default:
 return true;
 }
}

If you return true, then the OS will try and rotate your view when the device orientation

changes to that orientation.

http://

CHAPTER 5: More on Views and Controllers 83

Rotation Lifecycle Events in UIViewController

There are five rotation specific lifecycle events in a UIViewController. Let’s take a look

at them.

ShouldAutorotateToInterfaceOrientation

As we illustrated in Figure 5–3, ShouldAutorotateToInterfaceOrientation is called by

the iOS to determine whether or not your UIViewController supports a particular

orientation. If you do not override this method, it assumes that the only orientation your

controller supports is portrait mode.

WillAnimateRotation

WillAnimateRotation is where you perform your main rotation logic. It’s called right

before the iOS is going to perform the rotation and gives you an opportunity to move

your controls around or perform any other logic you need to support the rotation of your

view. The nice thing about WillAnimateRotation is that it’s actually wrapped in an

animation block, so you can reposition any controls in this method and they’ll

automatically move smoothly to their new location, as illustrated in Listing 5–11.

Listing 5–11. Moving controls during rotation

public override void WillAnimateRotation (UIInterfaceOrientation toInterfaceOrientation,
double duration)
{
 base.WillAnimateRotation (toInterfaceOrientation, duration);

 switch (toInterfaceOrientation)
 {
 //---- if we're switchign to landscape
 case UIInterfaceOrientation.LandscapeLeft:
 case UIInterfaceOrientation.LandscapeRight:
 //---- reposition your controls
 this._button1.Frame = new System.Drawing.RectangleF
 (10, 10, 100, 33);
 break;

 //---- if we're switching back to portrait
 case UIInterfaceOrientation.Portrait:
 case UIInterfaceOrientation.PortraitUpsideDown:
 //---- reposition your controls
 this._button1.Frame = new System.Drawing.RectangleF
 (10, 10, 100, 33);
 break;
 }
}

http://

CHAPTER 5: More on Views and Controllers 84

WillRotate

WillRotate is called before WillAnimateRotation and provides you with an opportunity

to turn off or disable anything that might otherwise cause issues during the rotation

animation. Unlike WillAnimateRotation, it is not wrapped in an animation block, so this

is a good place to do any processing before you animation occurs.

DidRotate

DidRotate is the corollary to WillRotate. It is called after the rotation animation is

perfomed and gives you an opportunity to undo anything that you did in the WillRotate

method.

WillAnimateFirstHalfOfRotation and
WillAnimateSecondHalfOfRotation

The WillAnimateRotation method was introduced in the 3.0 version of the iOS and

provides us with a single method call to perform our rotation animation. Before that, we

had to implement a two-step process that involved WillAnimateFirstHalfOfRotation

and WillAnimateSecondHalfOfRotation. The new method is much more efficient, and

therefore faster, however, if you’re performing a specialized animation that requires

multiple steps you need to use these two-step method calls.

General Approaches to Rotation

Now that you understand the lifecycle of device rotation, let’s look at some general

approaches to handling rotation. There are three basic ways to support interface rotation

in your app, they are:

 Autosizing

 Moving controls

 Swapping views

Let’s look at each of these approaches in detail.

Autosizing

The easiest way to handle rotation is to let your view and subviews (controls) do it for

you. In the companion Example_HandlingRotation application, this is how the home

screen handles rotation, as seen in Figure 5–4.

http://

CHAPTER 5: More on Views and Controllers 85

Figure 5–4. Controls that are autosized for rotation

To rotate the simulator, select Hardware Rotate Left or Rotate Right from the menu.

When the application rotates from portrait to landscape, the controls stay centered and

expand to fill the screen. This is trivial to configure in Interface Builder, which gives you a

lot of options for how you want to autosize your controls. To configure autosizing, select

the control, and then, in the Size Inspector window, you can configure the relative

position of your control, as well as how it autosizes, as shown in Figure 5–5.

Figure 5–5. Specifying Autosizing options.

http://

CHAPTER 5: More on Views and Controllers 86

The Size & Position settings control where the control is anchored, and its initial size. The

Autosizing settings control how the control resizes when the window changes size (as

happens when the orientation changes). To change the orientation of the view, click the

curved arrow at the top right of the designer. In our case, with the above settings, the

landscape control positions are shown in Figure 5–6.

Figure 5–6. Autosized controls after rotation to landscape

Autosizing is particularly effective for screens where you have a single control that takes

up the entire screen and handle resizing automatically, such as a UITableView, as shown

in Figure 5–7.

Figure 5–7. UITableView automatically autosizes

http://

CHAPTER 5: More on Views and Controllers 87

The autosizing method, while being the easiest, however, is also the method of most

limited use and really only works for the simplest of interfaces, as we’ll see next.

Moving Controls

Autosizing is very easy to configure, but consider the example in Figure 5–8.

Figure 5–8. Autosizing doesn’t work for all interfaces

As you can see, the portrait mode interface doesn’t lend itself well to rotation without

moving the controls around. It’s a fairly common scenario to have to change the location

of the controls in order to maintain an effective user interface. Consider Figure 5–9,

which illustrates the same controls as before, but in a rotatable interface that moves the

controls.

http://

CHAPTER 5: More on Views and Controllers 88

Figure 5–9. Before and after moving controls

As mentioned previously, the WillAnimateRotation method is the correct place to

perform any repositioning of controls for rotation (see Figure 5–4). Because the

WillAnimateRotation method is called from within the context of an animation block,

your controls will reposition themselves with a smooth, cinematic animation.

Additionally, you should do a check during your ViewDidLoad method and position your

controls appropriately based on what position the device is in when the view loads, as

shown in Listing 5–12.

Listing 5–12. Checking the orientation of the device when the view loads

public override void ViewDidLoad ()
{
 base.ViewDidLoad ();

 switch (this.InterfaceOrientation)
 {
 case UIInterfaceOrientation.LandscapeLeft:
 case UIInterfaceOrientation.LandscapeRight:

 //position your controls for landscape mode
 …
 break;

 //---- we're switch back to portrait
 case UIInterfaceOrientation.Portrait:
 case UIInterfaceOrientation.PortraitUpsideDown:

http://

CHAPTER 5: More on Views and Controllers 89

 //position your controls for portrait mode

…
 break;
 }
}

Because this approach is animated, if you can’t use autosizing, this should be your goto

approach for handling rotation because it gives the smoothest user experience:

something that iPhone and iPad users have come to expect.

Swapping Views

Sometimes, you might want to provide a completely different experience in portrait

modes than in landscape modes. This is common in iPad applications where if a user

changes their orientation, they’re presented with a completely different set of options

and/or interface.

It’s also useful when repositioning controls is just too complex or tedious.

In these cases, it can be helpful to swap views entirely, when the device rotates.

Consider Figure 5–10.

Figure 5–10. Swapping views during rotation.

http://

CHAPTER 5: More on Views and Controllers 90

While it would be possible to add those extra buttons programmatically, during the

WillAnimateRotation method, it is far easier to simply define a different view, and then

load that view when the device rotates.

Listing 5–13 illustrates loading different views (defined in xib files) based on the

orientation of the device.

Listing 5–13. Loading different views from an .xib file, based on the orientation

public override void WillAnimateRotation (UIInterfaceOrientation toInterfaceOrientation,
double duration)
{
 base.WillAnimateRotation (toInterfaceOrientation, duration);

 switch (toInterfaceOrientation)
 {
 //---- if we're switchign to landscape
 case UIInterfaceOrientation.LandscapeLeft:
 case UIInterfaceOrientation.LandscapeRight:

 NSBundle.MainBundle.LoadNib ("LandscapeView", this, null);

 break;

 //---- we're switch back to portrait
 case UIInterfaceOrientation.Portrait:
 case UIInterfaceOrientation.PortraitUpsideDown:

 NSBundle.MainBundle.LoadNib ("PortraitView", this, null);

 break;
 }
}

We use the LoadNib method to load a UIView that has been defined in a xib file, and

pass a reference to this (our controller) as the owner. If we’re loading a view that has

been defined in code, it’s even easier: we can just instantiate it without having to do any

special loading, as illustrated in the following code snippet:

this.View = new PortraitView();

While swapping views is an effective approach to handling device rotation, it presents

an interesting problem: if the main view has changed, then so have all of our outlets.

There are a couple different ways to deal with this. If your interface changes

significantly—that is, controls are added or removed—consider creating a controller for

each orientation, and then use your main controller as a parent. That way each

orientation has its own controller whereby you can handle view events, do processing,

etc.

If your interface changes its layout, but doesn’t change its controls, consider creating an

Inteface that both views implement so that you can treat them the same in code. For

example, if you create an interface called IMyScreen, and on that interface, define your

controls, and then in your view, implement that interface, you can keep a class-level

http://

CHAPTER 5: More on Views and Controllers 91

reference to your current view as IMyScreen and treat all of your different views the exact

same way.

Rotation Review

You can see all three of these approaches to rotation in practice in the

Example_HandlingRotation companion application. The approach that you take will

necccessarily be the result of a decision based on different tradeoffs between coding

simplicity, cinematic experience, and complexity of design. Table 5–1 sums up the pros

and cons of each approach.

Table 5–1. Different approaches to rotation

Approach General Use Pros Cons

Autosizing Simple Interfaces Easy to implement,

requires no code, and

provides a cinematic

user experience

Only works on simple

interfaces where

controls don’t have to

move

Repositioning

Controls

Moderate Interfaces Provides a cinematic

user experience, does

not require complex

outlet and action

management.

Can be tedious to

implement the moving

of controls

Swapping Views Complex/Multiple

Interfaces

Only way to handle

multiple views

Complex to

implement; doesn't

provide a cinematic

experience

Summary
Whew, that was an intense chapter! There was a lot of stuff in there, and if you’re just

starting MonoTouch, you’re not likely to soak it all in quite yet. As you work with Cocoa

Touch more, however, you’ll find the things you learned in here invaluable to

understanding how to work with views and controllers in MonoTouch, and the theory will

become practice. I recommend coming back to this chapter again later, as you become

more familiar with building iOS applications, as a lot of the concepts covered here will

make more sense.

This is the last chapter in Part 1 of the book. In the next section, we’re going to start

looking at individual controls and how to use them.

http://

93

93

 Chapter

Introduction to Controls

The concept of a control in MonoTouch is a funny one. In Windows frameworks such as

WPF or ASP.NET, there is an actual Control class that all controls are derived from. Not

so in MonoTouch/CocoaTouch. There is, in fact, a UIControl class, but not all controls

actually inherit from it; some inherit directly from UIVIew.

In MonoTouch the term control is more conceptual, spanning views, controllers, and

even plain old object classes. Ultimately, a control is just an encapsulated object that

either displays stuff or manages stuff that gets displayed.

In this chapter, we’re going to go through some various concepts that will help complete

your understanding of using controls in MonoTouch. Some of these concepts will make

more sense after actually using the controls, so it’s recommended you take a quick read

through this chapter, and then come back to it as a reference as you go through the

next three chapters which cover specific controls.

Coordinate System
Many of the controls that you will use or create in MonoTouch are placed in specific

locations in views in your application. When placing them, their location is based on a

simple x, y Euclidean coordinate space. Each integer on the axis represents one point.

WHAT’S A POINT? Previous to the iPhone 4 (with the Retina Display), all coordinates were

based on pixels, rather than points. However, because the Retina Display has a pixel density

twice that of previous iPhone devices, a pixel has a different meaning between the iPhone 4 and

older iPhone devices. To make things easier, Apple no longer uses the term pixel, and instead

uses point, which is a device/resolution independent abstraction that maps 1:1 to pre-iPhone 4

device pixels. As we’ll see in just a moment, points are specified by floats (they are represented

by the System.Drawing.PointF class), which means that if you need pixel precision on the Retina

Display, you can use decimal numbers, e.g. 0.5 to specify a single pixel in the Retina Display.

6

http://

CHAPTER 6: Introduction to Controls 94

One caveat to the Euclidean coordinate space, however, is that instead of having the

origin (0,0) at the bottom-left and the y-axis increasing as it goes up, the origin is

actually at the top-left, and the y-axis increases as it goes down.

You can see this coordinate space in the following screen shot (Figure 6–1).

Figure 6–1. The view-space coordinate system

http://

CHAPTER 6: Introduction to Controls 95

Frame

The location and size of controls is set via the Frame property, which takes a RectangleF

object. Many controls take a Frame parameter in their constructor so you don’t have to set

it later. For example, the following code snippet (Listing 6–1) creates a UILabel control at

the x,y coordinates of (20, 300), with a size of 280 points wide and 40 points tall.

Listing 6–1. Instantiating a label and setting its frame

this._customLabel = new UILabel (new RectangleF (20, 300, 280, 40));

Some controls, such as the UIPickerView, size themselves, so you can specify a

RectangleF.Empty object as their initial Frame. This will allow you to not have to specify

their size, and if you want to make changes to their location, later on, you can.

Autosizing
We looked at the autosizing stuff briefly in Chapter 5, when talking about handling rotation.

You can set autosizing properties in the Size Inspector window in Interface Builder under

the Autosizing section, as shown in Figure 6–2.

Figure 6–2. Setting autosizing properties in Interface Builder

You can click on the red lines to enable or disable the autosizing features. As you set

them, the animation on the right will show you how your control will react when the view

containing it is resized.

The red lines in the outer square represent the margins on the outside of the control. If

they’re enabled, the control will try to maintain a fixed margin to the respective side that

is enabled.

The red lines in the inner square represent the size of the control. If they’re enabled, the

control will resize itself in the direction that’s enabled.

You can also set these properties in code via the AutoresizingMask property on UIView.

AutoresizingMask takes a bit mask that describes which autoresizing attributes to apply.

You can find the different options in the UIViewAutoresizing enumeration. Because it’s

a bit mask, you can apply several values at once; for example, the following code,

shown in Listing 6–2, tells myControl that its top margin should be flexible, and that it

can resize its width.

Listing 6–2. Setting autosizing properties in code

myControl.AutoresizingMask =
UIViewAutoresizing.FlexibleTopMargin | UIViewAutoresizing.FlexibleWidth;

http://

CHAPTER 6: Introduction to Controls 96

Working with Fonts
The iOS comes with quite a selection of high-quality fonts built in that you can choose

from. To see a full selection, run the Example_Fonts companion application, which

enumerates the entire list, as shown in Figure 6–3.

Figure 6–3. Fonts in the iOS

A font in MonoTouch is represented by the UIFont class, which encapsulates

information such as font face, size, etc. UIFont objects are created via static factory

methods on the UIFont class itself. If you want to create a UIFont from the default font-

face, you can call SystemFontOfSize and pass in the size of the font you want. For

example, the following code, shown in Listing 6–3, will create the default UIFont that’s

20 points in height.

Listing 6–3. Creating the default system font at 20 points in height

UIFont myFont = UIFont.SystemFontOfSize (20);

http://

CHAPTER 6: Introduction to Controls 97

Additionally, you can call BoldSystemFontOfSize to create a bold system font, or

ItalicSystemFontOfSize to create the default italic font.

You can also create a font based on the name via the FromName method. For example, to

create a 20 pixel high Helvetica-Bold font, you can make the following call (Listing 6–4).

Listing 6–4. Creating a font from a known name

UIFont myFont = UIFont.FromName ("Helvetica-Bold", 20);

Font Sizes

Font sizes are specified by the height of a line of text in points. UIFont includes a

number of built-in properties that give you default font sizes:

 SystemFontSize: The default font size for normal text

 SmallSystemFontSize: The default font size for small text

 ButtonFontSize: The default font size for buttons

 LabelFontSize: The default font size for text labels

These properties return float values, so you can use these properties in place of

specifying a specific float size. For example, the following code (Listing 6–5) creates a

default font face at the default font size.

Listing 6–5. Creating a default font with the default size

UIFont myFont = UIFont.SystemFontOfSize (UIFont.SystemFontSize);

Enumerating Fonts

The font selection varies between devices, so you should make sure that a font is

available before trying to use it.

Fonts are categorized by the family that they belong to. For example, the Helvetica

family of fonts includes a normal version, a bold version, an oblique (italic) version, and a

bold-oblique version. Each one of these font faces has a specific name. For example,

the bold version of Helvetica is Helvetica-Bold.

You can enumerate through the font families via the FamilyNames property on the UIFont

class, which returns a string array of every font-family available.

You can enumerate through the fonts in a given family via the FontNamesForFamilyName

property on the UIFont, which takes a string parameter of the family name and returns a

string array of each font face in that family.

To see this in action, check out the Example_Fonts companion application.

http://

CHAPTER 6: Introduction to Controls 98

Tags
Unlike in traditional Windows UI frameworks such as WPF, ASP.NET, etc, controls don’t

have an ID property that you can use to identify them. Instead, the UIView class includes

an integer property called Tag that allows you to give them an identifier. You can use this

to identify controls that have been dynamically generated, such as cells in a table view.

Control States
Controls that inherit from UIControl have different states. Some states are the direct

result of user interaction, such as touching a control, and other states are independent

of interaction, such as being disabled.

The various control states are part of the UIControlState enum, and are as follows:

 Normal: The default state of the control, neither selected or highlighted,

but enabled

 Highlighted: The state that a control is in during a touch. It exists to

let users know they’re touching the control. If a control is in this state,

its Highlighted property will return true.

 Disabled: When a control is disabled, a user cannot interact with it.

You can set a control to be disabled or enabled via the Enabled

property.

 Selected: For many controls, this state isn’t really implemented,

meaning it does nothing. For those controls that do use it, you can

access it via the Selected property.

For many controls, you can customize their behavior an appearance per state. For

example, if you’re using a UIButton, you can set the Title and other properties for each

state. In Interface Builder there is a drop-down in the Attributes Inspector that lets you

specify state configuration, as shown in Figure 6–4.

http://

CHAPTER 6: Introduction to Controls 99

Figure 6–4. Attribute Inspector let’s you specify control state properties on controls that support them.

You can also specify them programmatically, for example, the following code (Listing 6–

6) sets the Title of a button for the Normal control state.

Listing 6–6. Setting button text programmatically

button.SetTitle ("My Button", UIControlState.Normal);

Control state is a bit flag, so you can also combine them to refer to more than one state,

as shown in Listing 6–7.

Listing 6–7. Combining control state flags

button.SetTitle ("My Button", UIControlState.Normal | UIControlState.Disabled);

If you don’t explicitly a property for a state, the property value from the Normal state is

used by default.

Working with Images
It’s common to need to customize your interface by displaying images from your project

to it. Most of the time this means loading the image and setting it to the Image property

(or similar) to a control. This necessitates creating a UIImage object that contains your

image.

In order to do this, the UIImage class has two static factory methods, FromFile and

FromBundle that can load your image directly from the filesystem. FromFile and

FromBundle both take a path to your image but work slightly different, as we’ll see in a

moment.

When loading files (including images) from your application, you reference them via the

same path as they are in your project. For example, if you wanted to load the

Lightning_Small.png image from the project, as shown in the following screenshot

(Figure 6–5), you would load it via the Images/Lightning_Small.png path.

http://

CHAPTER 6: Introduction to Controls 100

Figure 6–5. A sample solution with images in it

For example, the following code (Listing 6–8) uses the FromFile method to do just that.

Listing 6–8. Loading an image from file

UIImage myImage = UIImage.FromFile(“Images/Lightning_Small.png”);

With that said, there are a couple of gotchas to know:

 Do not name your folder “Resources”: This causes havoc with

CocoaTouch (it’s actually banned by the iOS) and your items in that

folder won’t actually be accessible. Your application might even crash.

 The device is case-sensitive: However, the simulator is not. So if

you’re not careful to watch your case when loading resources, it may

work in the simulator but fail in the device.

 Build Action must be marked as content: When you add a resource

that you want to use within your project such as an image, you must

set the Build Action to be Content. You can set this during the add files

dialog, or after the file has been added by right-clicking on the file and

choosing Build Action Content.

 Images don’t show up in Interface Builder: When you set the path to

an image in Interface Builder, the image won’t show up. This,

unfortunately, is a MonoTouch limitation and may be fixed in a later

release.

FromFile vs. FromBundle

As mentioned before, there are two standard ways to load an image from a file—

FromFile and FromBundle. They are both very similar, but work slightly differently.

http://

CHAPTER 6: Introduction to Controls 101

FromBundle

FromBundle is a synchronous call that will block the thread while it loads an image. Once

loaded, the image is cached by the iOS. This means that if you call FromBundle again,

with the same image path, it will pull the image from cache rather than disk.

FromBundle also has a little magic up its sleeve. The iPhone 4G has a screen resolution

twice that of the earlier iPhones. To take advantage of the higher resolution, when your

application is running on the iPhone 4G, it should use images that are twice the

resolution of images used on the older iPhones. However, to do a check every time and

load the appropriately sized image would be tedious. Because of this, you can include

images in your application that have an @2x name suffix, and FromBundle will

automatically load those images if it’s being called while on the iPhone 4G. For example,

you might have two images that have the same content but different sizes called

MyImage.png and MyImage@2x.png.

With all that said, FromBundle has some definite drawbacks.

 First, it caches the images that are loaded, but it doesn’t have proper

cache management and won’t clear images, so it can retain them in

memory even after you’re finished using them. Many iPhone

developers have seen this actually crash their apps because of low

memory availability.

 Second, because it’s a synchronous (blocking) call, calling it many

times at once can significantly slow down your application, especially

if you load many at once.

 Third, it can only load images that are contained within your

application’s sandbox, so if content is stored elsewhere, it cannot

access it.

FromFile

Unlike FromBundle, FromFile is an asynchronous, lazy-loading call that won’t actually

load the image until it is requested, such as when it is needs to be displayed.

Additionally, it can load files outside of the application sandbox.

As with FromBundle, FromFile includes some drawbacks.

 First, it doesn’t cache images, so additional loads of the same image

will still incur a disk-read hit.

 Second, it doesn’t include any of the @2x file name magic of

FromBundle.

mailto:MyImage@2x.png
http://

CHAPTER 6: Introduction to Controls 102

Which One?

Generally, you should use FromFile if you need to load many images at once because of

its lazy-loading method. You should use FromBundle if you need to reuse the same

image over and over.

If you want to use the @2x suffix that is automatic in FromBundle, but you need to load

many images, you should use FromFile instead but add code to do a device check and

load the appropriate file based on that.

Subclassing (Creating Custom Controls)
If you’ve been reading the book up this point, you actually already know a lot about

subclassing to create custom controls. Whenever you inherit from UIView or

UIViewController, you’ve subclassed them to perform custom functionality.

There are a couple of things to keep in mind when creating custom controls, however.

Necessary Constructors

In addition to your own constructors that you might want to put on a control, if your

control is going to be initialized from a xib file, you need an additional constructor:

Listing 6–9. NSCoder constructor needed by the Objective-C runtime.

public Foo (NSCoder coder)

This constructor is called by the runtime when your control is instantiated from a xib file.

Registering Your Controls

When creating controls and/or classes that need to be used in Interface Builder, you

need to register them to be visible to the Objective-C runtime. MonoTouch includes the

MonoTouch.Foundation.Register attribute that allows you to give your class an

Objective-C visible name. For example, the following code registers the

TapZoomScrollView control that is in the Example_StandardControls companion code

(Listing 6–10).

Listing 6–10. Using the Register attribute to make a class visible to the Objective-C runtime

[MonoTouch.Foundation.Register("TapZoomScrollView")]
public class TapZoomScrollView : UIScrollView
{
 // implementation
}

http://

CHAPTER 6: Introduction to Controls 103

Using Your Controls in Interface Builder

If you create a control that inherits from UIView, UIController, or one of the existing

controls in the Library window in Interface Builder, such as a UIButton, UILabel, etc.,

you can use your control in place of the control that you inherited from. Interface Builder

is very primitive though, so unlike in traditional Microsoft .NET frameworks such as WPF,

there is no provision for giving you any real design time control, other than what’s

already there for the base control.

To use a custom control, drag the base control (such as a UIView or a UIButton) to the

design surface, and then in the Class specifier in the Identity Inspector window, set your

custom control name. For example, in the following screenshot, I have a custom control

that inherits from UIView called RoundRectangleGroupView. To use it, I’ve drug a UIView

onto the Designer, and then in the Inspector window, I’ve set its class name, as shown

in Figure 6–6.

Figure 6–6. Using a custom control in Interface Builder

In the Design window, the view just shows up as a normal view, but when I run it on the

device or the simulator, I see my customizations.

Prototypes vs. Delegates vs. Events, What?
Objective-C and CocoaTouch have very different conventions for handling user

interaction and databinding than traditional .NET models. For example, when binding to

a DataGrid in ASP.NET, you set the DataSource property and as long as the data source

implements IEnumerable, the grid does the work for you. When a user selects a row, the

grid raises an event telling you which row was selected.

In CocoaTouch it’s a bit different. For example, if you’re working with a table, you assign

a data source to your table, but the table calls methods on your data source asking to

know how many items are in there, how to build each cell, etc. When a user selects a

row on the table, instead of raising an event that you handle, you assign a special class

on the table that it calls a method on to let you know that a row is selected. Because of

this model, your data source in CocoaTouch has to conform to each type of control that

it’s binding to. For this reason, the data source takes on a different meaning, and instead

http://

CHAPTER 6: Introduction to Controls 104

of simply holding data, it is actually an engine that knows how to perform databinding.

Typically you assign a model (your data) to your data source in CocoaTouch so that it

can bridge the gap between just containing data and actually knowing how to databind.

MonoTouch has tried to bridge this gap by preserving the Apple way of doing things

while also providing .NET like methods as well. As such, there are several different ways

to work with controls.

Protocols

In Objective-C programming, you’ll hear a lot about Protocols. In Apple’s world, a protocol

is similar to an interface in .NET. A protocol defines a contract whereby the caller knows

that certain methods will exist on a class that conforms to the contract or interface. For

example, you might define an interface, Iperson, that has the following method:

Run(int howFar)

The difference is, with Apple’s API, the methods on a protocol are actually optional. If

the runtime doesn’t find the Run method, it doesn’t matter; the runtime just won’t call it.

This raises an interesting problem though; if you’re implementing a protocol in

MonoTouch, the Objective-C runtime needs to be able “see” your methods. However,

because the iOS doesn’t have any intrinsic knowledge of C#, your methods aren’t visible

to iOS the way they would be if you were writing Objective-C code.

In order to make your methods visible to the underlying Objective-C runtime, you must

register them by decorating them the MonoTouch.Foundation.Export attribute. For

example, the following code, shown in Listing 6–11, exports a DoSomeRunning method as

the Run method to the Objective-C runtime.

Listing 6–11. Using the Export attribute to make a method visible to the Objective-C runtime

[Export (“Run”)]
public void DoSomeRunning(int howFarToRun) {…}

Notice that the C# method name doesn’t match the exported method name. You can

name your method whatever you want, as long as you export it with the method that the

runtime expects.

Delegates

Marking all your methods with the Export attribute can be pretty tedious. For one thing,

you’d have to know exactly what the method name was that the runtime expects, and

second, you’d have to know what the signatures looked like.

MonoTouch tries to make this a bit easier on us by providing strongly typed delegate base

classes that already have these methods and their respective Export attributes on them.

To use them, we simply write a class that derives from the appropriate base delegate

class, override the methods that we care about, and assign our class to the delegate

property of whatever class that needs it.

http://

CHAPTER 6: Introduction to Controls 105

One of the nice things about this is that, if we’re in MonoDevelop, we simply type

override in our class that derives from the delegate, and it gives us autocomplete, with

options for whatever method we want to override. That way we don’t have to remember

all the methods and their signatures!

NOTE: When overriding strongly typed delegate class methods, you shouldn’t call the base

implementations. For example, if you’re overriding the GetView method, you shouldn’t call

base.GetView() in the overridden GetView implementation.

Weak-Delegates

You don’t have to use a strongly typed delegates that MonoTouch gives you. You can

write your own custom delegate classes and then decorate them with the Export

attribute on methods you want to expose to handle callbacks. To do this, simply create

your class, mark your methods using the Export attribute, and then set your custom

class to the WeakDelegate property of whatever class expects a delegate. For more

information, see: http://monotouch.net/Documentation/API_Design.rf

When doing things this way, you will need to know the exact name that the runtime

expects. Luckily, Miguel de Icaza, the founder of Mono (and MonoTouch) keeps a

Rosetta stone updated online that maps between the MonoTouch methods (used on the

strongly-typed delegates) and the methods that Apple uses. You can find it here:

http://tirania.org/tmp/rosetta.html.

NOTE: Apple’s “methods” are actually called selectors because Objective-C is a message-

based language, whereby you pass messages around, rather than call methods. When you use

the selector names, you must use the entire string, including the trailing colons (if present). For

instance, the following Export declaration, shown in Listing 6–12, is correct for the

titleForHeaderInSection selector that is called by a UITableView to get the header text

for a row.

Listing 6–12. When exporting, the selector name must match exactly, including colons.

[Export(“tableView:titleForHeaderInSection:”)]
protected string GetTitleForHeader(UITableView tableView, int section) {…}

Updating Your Controls from the UI Thread
Often times you will find yourself performing long-running operations and separate

threads, so that you can keep the UI responsive. For instance, let’s say you’re writing a

newsreader application that pulls down feeds from the Internet. You may want to do that

on a background thread so that the user can view or interact with other screens in your

application, or you may want to populate the news items as they come in.

http://monotouch.net/Documentation/API_Design.rf
http://tirania.org/tmp/rosetta.html
http://

CHAPTER 6: Introduction to Controls 106

This is all well and good until you need to update your UI from those threads. A problem

could arise whereby two background processes try to update the UI thread at the same

time, or maybe, a background process tries to update the UI while the UI is performing

an action. This can cause a thread-lock and an application crash. In the best case, the

MonoTouch runtime will actually give you a runtime cross-threading exception telling

you that you shouldn’t update the UI from a background thread, but you may not even

get the courtesy of that: MonoTouch might simply crash with a nonsensical error.

Because of this, you should always update your UI from the main thread (also known as

the UI thread). But how do you do that? Well, just like WPF or Winforms development,

MonoTouch provides a method to do just that. It’s called InvokeOnMainThread and it’s

available on the UIView class. To use InvokeOnMainThread, simply pass a delegate (or a

lambda, or an anonymous method) to it that should run on the main UI thread. The iOS

will then queue and run that method as soon as it has a free moment.

For example, the following method (Listing 6–13) is pulled from the

ActivityIndicatorAlertView class in the Example_StandardControls companion

application.

Listing 6–13. Invoking a method on the main UI thread

public void Hide (bool animated)
{
 this.InvokeOnMainThread (delegate {
 this.DismissWithClickedButtonIndex (0, animated);
 });
}

The ActivityIndicatorAlertView is a custom alert view that shows a spinning activity

indicator. It’s intended to be shown while a background process is running, and then

dismissed from that background process when it’s completed its work. Because the

background process may be on a different thread, the Hide method makes sure that the

alert view is dismissed on the UI thread.

NOTE: You can also use BeginInvokeOnMainThread if you want to make an asynchronous

invocation on the main thread. However, unlike the BeginInvoke/EndInvoke pattern in

normal .NET programming, there is no underlying support for invocation completion notifications,

therefore there is no EndInvorkeOnMainThread or similar.

Summary
This chapter introduced you to controls and gives you some foundation knowledge for

working with them, but a lot of the concepts and information in here will make much

more sense after you’ve worked with the controls for a bit. In the next few chapters we’ll

do just that: we’re going to explore nearly every control in CocoaTouch.

http://

107

107

 Chapter

Standard Controls

Building for iOS devices is very different from building traditional desktop or web

applications. Users have come to expect a very specific set of interaction metaphors

associated with their user experience on the devices. The iOS ships with a number of

applications that utilize a common set of controls that users have become very familiar with.

These controls are built with the form factor and the touch metaphor in mind as first-

class design considerations. As such, they’re different than the standard set of controls

available for desktop and web applications.

Most of these controls are included in CocoaTouch’s UIKit (aka the MonoTouch.UIKit

namespace). These controls should be your first choice for creating your application’s

interface. This will help your application conform to Apple’s Human Interface Guidelines

and make your application feel familiar and understandable.

In this chapter, we’re going to look at many of the controls in the UIKit, including:

 UILabel

 UIButton

 UIImage

 UITextField

 UIScrollView

 UISegmentedControl

 UISwitch

 UISlider

 UIActivityIndicatorView

 UIProgressView

 UIPageControl

 UIAlertView

 UIActionSheet

7

http://

CHAPTER 7: Standard Controls 108

 UIDatePicker

 UIPickerView

 UIToolbar

We’ll go through each one of these and look at the basic mechanism of usage, plus

many of the common advanced scenarios for them. By the end of this chapter, you will

have a solid understanding of each one of these, and know how to customize them.

All samples in this chapter are in the Example_StandardControls companion application

and code.

UILabel
If you’ve made it this far in this book, you’re already familiar with the UILabel control.

The UILabel control displays read-only text for user. A number of label styles are shown

in the following screen shot (Figure 7–1).

Figure 7–1. Various UILabel styles

http://

CHAPTER 7: Standard Controls 109

The UILabel comes with a number of different of customizable properties that change its

behavior and appearance.

Text Wrapping Options

UILabel has a property called AdjustFontSizeToWidth which has a default value of

true—when the text doesn't fit within the given label space, the text is reduced down to

the MinimumFontSize setting and then truncated after that. There are other options,

however, that can be set via the LineBreakMode property:

 WordWrap: The text wraps to the next line, breaking in between words.

 CharacterWrap: Same as WordWrap, but the line breaks at individual

characters, rather than keeping words together.

 Clip: This cuts off the rendering when the text runs out of space. If it

clips where a character is, it will render a partial character.

 HeadTruncation: Truncate the text at the beginning and add an ellipsis

in its place.

 MiddleTruncation: Same as HeadTruncation, but truncates the middle

of the text.

 TailTruncation: Same as other truncation options, but at the end of

the text.

Number of Lines

The UILabel control exposes a property called NumberOfLines that specifies how many

lines the label should display. If you want unlimited lines, set it to 0.

UITextField

UITextField is a common control that you’re no doubt familiar from other programming

environments. It provides a single-line, user-editable text field and is useful for text

input, as shown in Figure 7–2.

http://

CHAPTER 7: Standard Controls 110

Figure 7–2. Various UITextFields with a standard keyboard open

UITextField derives from UIScrollView, so it includes scrolling functionality as a built-in

feature.

Borders

There are a few different border styles for the UITextField:

 RoundedRect: This is the default style and is illustrated in Figure 7–2 in

the first text field.

 Line: Line renders a single pixel-thick border around the text field, as

illustrated in the second text field in Figure 7–2.

 None: None renders a text field with no border, as illustrated in the third

text field in Figure 7–3.

 Bezel: Bezel renders a text field that looks a little like old-school

windows controls, as shown in the fourth text field in Figure 7–4.

http://

CHAPTER 7: Standard Controls 111

Text Value

You can get and set the text in the UITextField via the Text property.

Default Placeholder Text

You can specify text that shows up in the text field until a user selects the text field with

the PlaceHolder property. This text does not show up in the Text property.

Keyboards

When a user selects a text field to edit, an onscreen keyboard may appear (in iPads, you

can use an external keyboard instead, and choose not to show the on-screen one).

There are several different types of keyboards, and working with them is discussed in

the “Working with Keyboards” chapter (Chapter 10).

UIButton
The button control is an extremely common control that you’ll find in a lot of UI

frameworks on different platforms. However, the UIButton control has been designed

specifically for the iOS, and as such, is slightly different.

Handling ‘Clicks’

Instead of having a Click metaphor that is associated with having a mouse input,

UIButton exposes touch events. The most common one, and the one you should use to

handle “clicks,” is called TouchUpInside. TouchUpInside is called when a user touches a

button and then releases the touch while still on the button. This allows users to cancel

accidental button presses by sliding their finger off and then releasing.

The following code (Listing 7–1) shows an alert popup when a button’s TouchUpInside

event is raised.

Listing 7–1. Displaying an alert when a user touches a button

this.btnTwo.TouchUpInside += delegate {
 new UIAlertView ("button two click!", "TouchUpInside Handled", null
 , "OK", null).Show ();
};

As per the Apple Human Interface Guidelines, nearly all of your button usage should be

based on the TouchUpInside event.

http://

CHAPTER 7: Standard Controls 112

Different Types of Buttons

There are a number of different button types, as illustrated in Figure 7–3.

Figure 7–3. Different types of UIButton controls

The button type is specified during instantiation. For example, to create a rounded

rectangle button, you call the FromType static method on a UIButton class as follows

(Listing 7–2).

Listing 7–2. Creating a rounded rectangle button

UIButton button = UIButton.FromType (UIButtonType.RoundedRect);

In Interface Builder, you can specify the type of button in the Type setting on the

Attributes Inspector, as shown in Figure 7–4.

http://

CHAPTER 7: Standard Controls 113

Figure 7–4. Specifying a rounded rectangle button in Interface Builder

Button Text

As mentioned in Chapter 6, buttons have multiple states. In order to set the text for a

button, you have to set it for a particular state. For example, the following sets the

normal text of a button to “MyButton” via the SetTitle method (Listing 7–3).

Listing 7–3. Setting button text programmatically

button.SetTitle ("My Button", UIControlState.Normal);

The Normal state settings are used for any states not explicitly defined.

UIImage
The UIImage control is another familiar control for applications developers. It is just a

container control that displays an image (Figure 7–5).

http://

CHAPTER 7: Standard Controls 114

Figure 7–5. A UIImage control taking up the entire view

In Interface Builder you can set the image it displays in the Image property, as shown in

Figure 7–6.

Figure 7–6. Setting the image to display in Interface Builder

You can also create image views and assign images to them programmatically. The

following code, shown in Listing 7–4, creates an image view control from a UIImage that

we load directly from the file system.

http://

CHAPTER 7: Standard Controls 115

Listing 7–4. Creating an image view in code

this._imageView1 = new UIImageView(
 UIImage. FromBundle ("Images/Icons/Apress-50x50.png"));
this._imageView1.Frame = new RectangleF(

20, 20, this._imageView1.Image.CGImage.Width
 , this._imageView1.Image.CGImage.Height);
this.View.AddSubview(this._imageView1);

NOTE: iOS provides a way to load different images, depending on the current device. This is

especially helpful in dealing with the different resolutions of different devices. I covered this

extensively in the previous chapter, so if you’ve missed it, I recommend reviewing the section on

Images.

Animating an Image View

One cool thing about the image view is that that you can animate it by providing it an

array of UIImage objects on the AnimationImages property and then calling

StartAnimating. You can also specify how many times to repeat the animation via the

AnimationRepeatCount property (use 0 for endless animation), and the duration of time it

takes to cycle through all the images via the AnimationDuration property.

Unfortunately, however, you must set all of the animation properties programmatically, as

there is no way to set them in Interface Builder. The following code, shown in Listing 7–5,

creates a UIImageView that cycles through four images every half a second, endlessly:

Listing 7–5. Creating an image view that animates by cycling through a sequence of images

this._imgSpinningCircle = new UIImageView();
this._imgSpinningCircle.AnimationImages = new UIImage[] {
 UIImage.FromBundle ("Images/Spinning Circle_1.png")
 , UIImage.FromBundle ("Images/Spinning Circle_2.png")
 , UIImage.FromBundle ("Images/Spinning Circle_3.png")
 , UIImage.FromBundle ("Images/Spinning Circle_4.png")
};
this._imgSpinningCircle.AnimationRepeatCount = 0;
this._imgSpinningCircle.AnimationDuration = .5;
this._imgSpinningCircle.Frame = new RectangleF(150, 20, 100, 100);
this.View.AddSubview(this._imgSpinningCircle);
this._imgSpinningCircle.StartAnimating ();

To see this code in action, checkout the Example_StandardControls companion code.

UIScrollView
The UIScrollView control is a wrapper control that is used to contain views that have

content larger than the viewable area and therefore need scrolling functionality to be

able to view all of the content.

http://

CHAPTER 7: Standard Controls 116

Additionally it includes functionality for zooming in and zooming out via the pinch-to-

zoom gesture multi-touch gesture that the iOS is famous for.

The UIScrollView is the basis for both the UITableView and the UITextView, since both

of them need scrolling as a first-class feature.

To use a scroll view, simply add it to your view, and then add the view that needs

scrolling to it. Then, set the ContentSize property to be whatever size your content

area is.

For example, the code shown in Listing 7–6 creates a scroll view, adds it to the main

view on a controller, and then adds an image view to the scroll view.

Listing 7–6. Using a UIScrollView to show an image

//---- create our scroll view
this._scrollView = new UIScrollView (

new RectangleF (0, 0, this.View.Frame.Width, this.View.Frame.Height -
this.NavigationController.NavigationBar.Frame.Height));
this.View.AddSubview (this._scrollView);

//---- create our image view
this._imageView = new UIImageView (UIImage.FromFile ("Images/Apress-512x512.png"));
this._scrollView.ContentSize = this._imageView.Image.Size;
this._scrollView.AddSubview (this._imageView);

Enabling scrolling is easy. You simply have to set the ContentSize property to be larger

than the Frame size of the scroll view and scrolling will be automatically enabled. In the

previous code example, we have an image that is larger than the scroll view, so the

following code line (Listing 7–7) does just that.

Listing 7–7. As long as the ContentSize is larger than the frame size, UIScrollView will automatically provide
scrolling.

this._scrollView.ContentSize = this._imageView.Image.Size;

Zooming

If you want zooming to work, you must implement ViewForZoomingInScrollView callback

and return the view to zoom. For example, the code in Listing 7–8 tells our scroll view

control from the previous code sample that, when a user tries to zoom, it should zoom in

(or out) on the image view it contains.

Listing 7–8. Implementing the ViewForZoomingInScrollView callback method

this._scrollView.ViewForZoomingInScrollView += delegate(UIScrollView scrollView) {
return this._imageView;

};

Additionally, you also have to set the MaximumZoomScale and a MinimumZoomScale

properties so it knows how much it can zoom in or out (Listing 7–9).

Listing 7–9. Setting zoom limits on a scroll view

this._scrollView.MaximumZoomScale = 3f;
this._scrollView.MinimumZoomScale = .1f;

http://

CHAPTER 7: Standard Controls 117

Implementing Tap-to-Zoom

The tap-to-zoom feature—where a user double taps with a finger on something to get it

to zoom—in is not enabled by default by the scroll view, but it’s not difficult to

implement. You simply need to sublass (inherit from) UIScrollView, override the

TouchesBegan method, and when a user taps twice, call SetZoomScale on the scroll view.

The scroll view will then call your ViewForZoomingInScrollView method to try and zoom

your view.

The following code, shown in Listing 7–10, is a complete tap-to-zoom scroll class that

you can use in place of the standard UIScrollView control.

Listing 7–10. Implementing tap-to-zoom

[MonoTouch.Foundation.Register("TapZoomScrollView")]
public class TapZoomScrollView : UIScrollView
{
 public TapZoomScrollView (IntPtr handle) : base(handle) { }
 [Export("initWithCoder:")]
 public TapZoomScrollView (NSCoder coder) : base(coder) { }
 public TapZoomScrollView () { }
 public TapZoomScrollView (RectangleF frame) : base(frame) { }

 public override void TouchesBegan (MonoTouch.Foundation.NSSet touches
 , UIEvent evt)
 {
 base.TouchesBegan (touches, evt);
 UITouch touch = touches.AnyObject as UITouch;
 if (touch.TapCount == 2)
 {
 if (this.ZoomScale >= 2)
 {
 this.SetZoomScale(1, true);
 }
 else
 {
 this.SetZoomScale(3, true);
 }
 }
 }
}

To change the amount of zoom, simply change the SetZoomScale(3, true) call and

pass in a different value for the amount to zoom.

Scroll Paging

The scroll view control has a property called PagingEnabled, that when set to true

‘snaps’ the scrolling to stop at each page of content. A page of content is defined as the

viewable space without scrolling, e.g., the scroll’s frame size.

Enabling paging is cool on its own, but is extremely useful when used in conjunction

with the UIPagerControl, as we’ll see later in this chapter.

http://

CHAPTER 7: Standard Controls 118

UISegmentedControl
The segmented control is a connected set of buttons that, by default, act kind of like a set

of radio buttons. When you select one button in the group, the other buttons become

unselected. The segmented control is useful for when you want your users to select

between a small number of items. It comes in a number of styles, as shown in Figure 7–

7.

Figure 7–7. Various segmented control styles and configurations

In addition to switching between the set of buttons, the segmented control exposes a

property called Momentary that makes the segmented control not track state, such that

they simply act like buttons. If you set Momentary = false, when you click on one, it

doesn’t stay selected.

http://

CHAPTER 7: Standard Controls 119

Configuring the Segmented Control

Configuring the segment control is very easy in Interface Builder—it even gives you a

drop-down in which you can configure each segment individually, specifying the Title,

Image, whether or not it is selected by default, etc., as shown in Figure 7–8.

Figure 7–8. Interface Builder makes configuring a segmented control a snap.

You can also create and configure segmented controls programmatically. For example,

the following code (Listing 7–11) creates a bordered segmented control with two

segments.

Listing 7–11. Creating a segmented control programmatically

this._segControl1 = new UISegmentedControl ();
this._segControl1.ControlStyle = UISegmentedControlStyle.Bordered;
this._segControl1.InsertSegment ("One", 0, false);
this._segControl1.InsertSegment ("Two", 1, false);
this._segControl1.SelectedSegment = 1;
this._segControl1.Frame = new System.Drawing.RectangleF (20, 20, 280, 44);
this.View.AddSubview (this._segControl1);

The ControlStyle property sets the style of the segmented control, InsertSegment

allows you to add segments at specific locations (you can animate their appearance as

well), and SelectedSegment specifies which segment should start out as selected.

Specifying Segment Sizes

When you create a segmented control, by default each button is automatically sized to

be of an equal width; however, you can specify sizes for specific buttons, if you want. In

Interface Builder, the Size Inspector provides a drop-down in which you can select your

segment and set the size, as shown in Figure 7–9.

http://

CHAPTER 7: Standard Controls 120

Figure 7–9. Setting the size of a segment in Interface Builder

You can also set the width of a segment programmatically via the SetWidth method,

which takes a size and the segment index number to specify the size for. For example,

to set the second segment (index of 1, because it starts at 0) to be 100 points, you

would call the following, shown in Listing 7–12.

Listing 7–12. Setting the size of a segment programmatically

mySegementedControl.SetWidth (100f, 1);

Handling Button Presses

Because the segmented control is a set of connected buttons, to listen for button press,

you handle the ValueChanged event and check the SelectedSegment property to

determine which button is selected. For example, the following code (Listing 7–13)

listens for the button press on a segmented control called _segControl1, and then

writes to the console (the Application Output window in MonoDevelop) the segment

that was selected.

Listing 7–13. Handling the ValueChanged event on a segmented control

this._segControl1.ValueChanged += delegate(object sender, EventArgs e) {
 Console.WriteLine ("Item " + (sender as
 UISegmentedControl).SelectedSegment.ToString () + " selected");
};

UISwitch
The UISwitch is the iOS equivalent to a check box. It provides a Boolean on/off switch,

as shown in Figure 7–10.

Figure 7–10. UISwitch in the off and on positions

The current Boolean on/off value can be accessed via the On property, and you can listen

for changes on the ValueChanged event. For example, the code shown in Listing 7–14

shows an alert when the switch is changed, and shows the current on/off value.

http://

CHAPTER 7: Standard Controls 121

Listing 7–14. Listening for a UISwitch change event and displaying the on/off value

this.swchOne.ValueChanged += delegate {
new UIAlertView ("Switch one change!", "is on: " + this.swchOne.On.ToString (),

 null, "OK", null).Show ();
};

UISlider
The slider control provides a mechanism for users to select a numerical value in

between two limits. The nice thing about the slider is that it gives a very analog feeling

while modifying stuff.

By default, the slider has a plain look, which is essentially a progress bar with a slide

button on top, but you can also customize it with images (Figure 7–11).

Figure 7–11. UISlider with and without images

http://

CHAPTER 7: Standard Controls 122

Images

The image on the left is the MinValueImage, and the image on the right is the

MaxValueImage. You can set both of these in Interface Builder, as shown in the following

screenshot (Figure 7–12), but you have to set the thumb button image in code.

Figure 7–12. Setting the min and max images for the slider

To set the thumb image, call SetThumbImage, as shown in Listing 7–15.

Listing 7–15. Setting the thumb image for the slider

this.sldrWithImages.SetThumbImage(UIImage.FromFile("Images/Icons/Apress-29x29.png"),
UIControlState.Normal);

Accessing the Value

You can set the minimum and maximum values that each end of the slider has via the

MinValue and MaxValue properties, respectively.

To get the current value of the slider, use the Value property.

If you want to listen for the value to change, handle the ValueChanged event.

UIActivityIndicatorView
The UIActivityIndicatorView control provides a small spinning activity indicator that is

intended to be used to let the user know that something is happening.

They’re very simple to use. They really have two properties that we care about:

 IsAnimating: If true, the activity indicator will animate (spin); if false, it

will not spin.

 HidesWhenStopped: If true, when the activity indicator is not animating,

it will be invisible.

http://

CHAPTER 7: Standard Controls 123

There are three different styles, as shown in Figure 7–13.

Figure 7–13. The different UIActivityIndicatorView styles (the white style is shown with a brown background for
contrast against the white view)

If you’re creating them in code, you have to specify the style in the constructor if you

want anything other than the default (Gray style), as shown in Listing 7–16.

Listing 7–16. Specifying the style when creating an activity spinner

UIActivityIndicatorView spinner = new UIActivityIndicatorView
 (UIActivityIndicatorViewStyle.WhiteLarge);

Typically, you set HidesWhenStopped to true, which sets their visibility to hidden when

stopped, and then start them just before you make a call that will take some time to

complete, and then stop them when the call is completed (Listing 7–17).

Listing 7–17. Typical activity indicator usage

spinner.HidesWhenStopped = true;
spinner.IsAnimating = true;
// [make long running call, such as a database call, or a web request]
spinner.IsAnimating = false;

http://

CHAPTER 7: Standard Controls 124

If you’re doing any processing that takes longer than about ten seconds, you should use

the UIProgressView instead.

UIProgressView
The UIProgressView provides a mechanism to show progress during long-running

processes. It’s a very simple control. It has two different styles available via the

UIProgressBarViewStyle; Default, and Bar, as shown in Figure 7–14.

Figure 7–14. UIProgressView styles

To create a progress control programmatically as a Bar style, you must pass the style

into the constructor, as shown in Listing 7–18.

Listing 7–18. Creating a UIProgressView with the Bar style in code

UIProgressView progressBar = new UIProgressView (UIProgressViewStyle.Bar);

http://

CHAPTER 7: Standard Controls 125

Setting the Progress Value

The value of the progress bar is set via the Progress property, which must be a float

value from 0.0 to 1.0, inclusive. Progress values are often set when an activity is

happening on a separate thread, so, as outlined in Chapter 6, you should make sure to

invoke any progress updates on the UI thread. This is not strictly necessary with the

progress bar, because it’ll accept cross-thread updates; however, it’s still a good idea,

since many of the other controls require UI-thread updates.

UIPagerControl
The pager control provides users with a way to “page” through screens. It is most

effective when combined with a scroll view that has paging enabled. You can see this in

use on the home screen of the iPhone and iPad.

With a swiping gesture, you can scroll to the next or previous page of icons, with each

page snapping into place. As the pages change, the page indicator at the bottom (the

little gray-and-white dots) keeps tabs on your page. A user can also click directly on

the pager control to advance the page forwards and backwards by one, as shown in

Figure 7–15.

Figure 7–15. Pager control sample in the Example_StandardControls companion application

http://

CHAPTER 7: Standard Controls 126

Each“page” that a pager control manages is usually best created as a view with an

associated controller, but it doesn’t have to be. You can also create one wide view that

is in a scroll view.

The multiple view pattern is much better for encapsulating functionality for each page,

and also allows you to load/unload them one at a time when they’re being displayed in

order to minimize memory usage. However, using one big view is much simpler.

In the Example_StandardControls companion application, we use controllers that

manage a view for each page. The following code (Listing 7–19) loads those controllers

and puts them into a collection that we use later.

Listing 7–19. Using views as pages in a scroll view for the page control

protected void LoadControllers ()
{
 //---- instantiate and add the controllers to our list
 this._controllers.Add (new Controller_1 ());
 this._controllers.Add (new Controller_2 ());
 this._controllers.Add (new Controller_3 ());

 //---- loop through each one
 for (int i = 0; i < this._controllers.Count; i++)
 {
 //---- set their location and size, each one is moved to the
 // right by the width of the previous
 RectangleF viewFrame = new RectangleF (
 this.scrlMain.Frame.Width * i
 , this.scrlMain.Frame.Y
 , this.scrlMain.Frame.Width
 , this.scrlMain.Frame.Height);
 this._controllers[i].View.Frame = viewFrame;

 //---- add the view to the scrollview
 this.scrlMain.AddSubview (this._controllers[i].View);
 }

 //---- set our scroll view content size (width = number of pages * scroll view
 // width)
 this.scrlMain.ContentSize = new SizeF (
 this.scrlMain.Frame.Width * this._controllers.Count,
 this.scrlMain.Frame.Height);
}

After we create the controllers, we add each view as a page by setting the width of the

view to be the same width as the scroll view and adding them side-by-side, increasing

to the right.

Page Changes via the Pager Control

To listen for page changes performed on the pager control itself, we wire up a handler to

the ValueChanged event on the pager control. For page changes performed by the user

scrolling the view, we handle the Scrolled event on the scroll view.

http://

CHAPTER 7: Standard Controls 127

The following code (Listing 7–20) is called in our ViewDidLoad method and wires up

those handlers and then calls our LoadControllers method that we looked at before.

Listing 7–20. Wiring up the ValueChanged and Scrolled event handlers

//---- wire up our pager and scroll view event handlers
this.pgrMain.ValueChanged += HandlePgrMainValueChanged;
this.scrlMain.Scrolled += HandleScrlMainScrolled;

//---- load our controllers (we'll use one per page)
this.LoadControllers ();

Then, in our ValueChanged event handler, we scroll to the view that is associated with the

page that is selected in the pager control, as shown in Listing 7–21.

Listing 7–21. Scrolling to a page in the pager control

/// <summary>
/// Runs when a dot on the pager is clicked. Scrolls the scroll view to the appropriate
/// page, based on which one was clicked
/// </summary>
protected void HandlePgrMainValueChanged (object sender, EventArgs e)
{
 //---- it moves page by page. we scroll right to the next controller
 this.scrlMain.ScrollRectToVisible (

this._controllers[(sender as UIPageControl).CurrentPage].View.Frame,
true);

}

Updating the Pager Control When the Page is Scrolled to
Via a Scroll View

When a user scrolls the page via a swipe gesture in the scroll view, you should update

the pager control with the page number that was scrolled to. Unfortunately, the scroll

view doesn’t have any functionality to tell you which page has been scrolled to, so you

have to calculate it yourself, as shown in Listing 7–22.

Listing 7–22. Updating the pager control with what page has been scrolled to

/// <summary>
/// Runs when the scroll view is scrolled. Updates the pager control so that it's
/// current, based on the page
/// </summary>
protected void HandleScrlMainScrolled (object sender, EventArgs e)
{
 //---- calculate the page number
 int pageNumber = (int)(Math.Floor (

(this.scrlMain.ContentOffset.X - this.scrlMain.Frame.Width / 2)
 / this.scrlMain.Frame.Width) + 1);

 //---- if it's a valid page
 if (pageNumber >= 0 && pageNumber < this._controllers.Count)
 {
 //---- Set the current page on the pager control
 this.pgrMain.CurrentPage = pageNumber;
 }
}

http://

CHAPTER 7: Standard Controls 128

You can set the current page on the pager control via the CurrentPage property.

As you can see, the pager control and the scroll view work hand-in-hand. You can use

the pager control without the scroll view, but it’s generally a much better user

experience to combine them.

UIAlertView
UIAlertView is a simple pop-up control that allows you to provide a modal window to

your users (Figure 7–16).

Figure 7–16. A simple UIAlertVIew with a cancel button

Out of the box, you can add buttons to an alert view, or, by inheriting from UIAlertView,

you can roll your own custom one.

Creating a basic alert is very simple. The following code (Listing 7–23) creates and

shows the alert in the previous screenshot.

http://

CHAPTER 7: Standard Controls 129

Listing 7–23. Creating a simple alert view

UIAlertView alert = new UIAlertView () { Title = "alert title", Message = "this is a
 simple alert" };
alert.AddButton("OK");
alert.Show ();

Alerts and Garbage Collection

The garbage collector in MonoTouch is ferocious. If you create an alert view inside of a

method, and don’t keep a reference to that alert view at your class level, when the

method returns, it’s a good bet that MonoTouch will garbage collect it. Meaning that if

you have any event handlers or delegates wired to it, they’ll get a null reference error.

For this reason, if you’re creating an alert view and you’re also listening to events on it,

make sure that you declare it as a class-level variable, so that it sticks around. For

example, you might do something like the following, shown in Listing 7–24.

Listing 7–24. Declaring an alert at the class level

public class foo
{
 UIAlertView _myAlert;
 public void DoSomething()
 {
 this._myAlert = new UIAlertView() …
 }
}

We’ll see this pattern at work in Listing 7–25.

Working with Buttons

In the previous example, we had only one button, so when the alert was dismissed, we

didn’t really need to know anything about it. But with the AddButton method we can add

more buttons than just one. Consider the following alert, shown in Figure 7–17.

http://

CHAPTER 7: Standard Controls 130

Figure 7–17. An alert view with more buttons

Now that we have three buttons, we probably want to know which one gets pressed, so

that we can do different things based on which button is pressed. For this, we can

handle the Clicked event on the UIAlertView (Listing 7–25).

Listing 7–25. Creating a multi-button alert with a Clicked handler

this._alert = new UIAlertView () { Title = "custom buttons alert", Message = "this alert
has custom buttons" };
this._alert.AddButton("custom button 1");
this._alert.AddButton("custom button 2");
this._alert.AddButton("OK");
this._alert.Clicked += delegate(object a, UIButtonEventArgs b) {

Console.WriteLine ("Button " + b.ButtonIndex.ToString () + " clicked"); };
this._alert.Show ();

The Clicked delegate contains a UIButtonEventArgs parameter, and from that we can

get the ButtonIndex, which tells us which button was pressed.

Notice in this example we created our alert from this._alert, which is a class-level

variable (Listing 7–26).

http://

CHAPTER 7: Standard Controls 131

Listing 7–26. When using callbacks on an alert, you must keep a reference to the alert.

public partial class AlertViewsScreen_iPhone : UIViewController
{
 UIAlertView _alert;
 …
}

As I mentioned before, the reason we created it as a class-level variable is because now

that we have a delegate method, we have to keep a reference to the alert around.

Otherwise the alert would get garbage collected when the method that we created it in

returned. As such, the delegate would also get garbage collected and we’d get a

runtime error when the OS tried to call it on click.

Alert Delegate

As discussed in Chapter six, you can also use a class delegate instead of event

handlers. The code in Listing 7–27 is an example delegate for a UIAlertView.

Listing 7–27. Sample UIAlertViewDelegate

/// <summary>
/// This is our custom buttons alert delegate.
/// </summary>
protected class CustomButtonsAlertDelegate : UIAlertViewDelegate
{
 public CustomButtonsAlertDelegate () : base() { }

 public override void Canceled (UIAlertView alertView)
 {
 Console.WriteLine ("Alert Cancelled");
 }

 /// <summary>
 /// Runs when any of the custom buttons on the alert are clicked
 /// </summary>
 public override void Clicked (UIAlertView alertview, int buttonIndex)
 {
 Console.WriteLine ("Button " + buttonIndex.ToString () + " clicked");
 }

 /// <summary>
 /// Runs right after clicked, and before Dismissed
 /// </summary>
 public override void WillDismiss (UIAlertView alertView, int buttonIndex)
 {

Console.WriteLine ("Alert will dismiss, button "
 + buttonIndex.ToString ());

 }

 /// <summary>
 /// Runs after Clicked
 /// </summary>
 public override void Dismissed (UIAlertView alertView, int buttonIndex)
 {

http://

CHAPTER 7: Standard Controls 132

Console.WriteLine ("Alert Dismissed, button "
 + buttonIndex.ToString ());
 }
}

Customizing the Alert View Even Further

Sometimes you need an alert view that is completely custom. Perhaps you want a

pop-up login screen, or a progress screen, or even a simple wait screen (Figure 7–18).

Figure 7–18. Custom UIAlertView

If you want to customize a UIAlertView, you can simply create a class that inherits from

UIAlertView and override the Draw method. If you want to change the size of the alert,

you should override the LayoutSubview method. Listing 7–28 is the complete class for

the alert shown in the previous screenshot.

http://

CHAPTER 7: Standard Controls 133

Listing 7–28. Implementing a custom UIAlertView

[Register("ActivityIndicatorAlertView")]
public class ActivityIndicatorAlertView : UIAlertView
{
 /// <summary>
 /// our activity indicator
 /// </summary>
 UIActivityIndicatorView _activityIndicator;
 /// <summary>
 /// the message label in the window
 /// </summary>
 UILabel _lblMessage;

 /// <summary>
 /// The message that appears in the alert above the activity indicator
 /// </summary>
 public string Message
 {
 get { return this._message; }
 set { _message = value; }
 }
 protected string _message;

 #region -= constructors =-

 public ActivityIndicatorAlertView (IntPtr handle) : base(handle) {}

 [Export("initWithCoder:")]
 public ActivityIndicatorAlertView (NSCoder coder) : base(coder) {}

 public ActivityIndicatorAlertView () { }

 #endregion

 /// <summary>
 /// we use this to resize our alert view. doing it at any other time has
 /// weird effects because of the lifecycle
 /// </summary>
 public override void LayoutSubviews ()
 {
 base.LayoutSubviews ();
 //---- resize the control
 this.Frame = new RectangleF (this.Frame.X, this.Frame.Y,
 this.Frame.Width, 120);
 }

 /// <summary>
 /// this is where we do the meat of creating our alert, which includes adding
 /// controls, etc.
 /// </summary>
 public override void Draw (RectangleF rect)
 {
 //---- if the control hasn't been setup yet
 if (this._activityIndicator == null)
 {
 //---- if we have a message
 if (!string.IsNullOrEmpty (this._message))

http://

CHAPTER 7: Standard Controls 134

 {
 this._lblMessage = new UILabel (

new RectangleF (20, 10, rect.Width - 40, 33));
 this._lblMessage.BackgroundColor = UIColor.Clear;
 this._lblMessage.TextColor = UIColor.LightTextColor;
 this._lblMessage.TextAlignment = UITextAlignment.Center;
 this._lblMessage.Text = this._message;
 this.AddSubview (this._lblMessage);
 }

 //---- instantiate a new activity indicator
 this._activityIndicator = new UIActivityIndicatorView

(UIActivityIndicatorViewStyle.White);
 this._activityIndicator.Frame = new RectangleF

((rect.Width / 2)
- (this._activityIndicator.Frame.Width / 2)

 , 50, this._activityIndicator.Frame.Width
, this._activityIndicator.Frame.Height);

 this.AddSubview (this._activityIndicator);
 this._activityIndicator.StartAnimating ();
 }
 base.Draw (rect);
 }

 /// <summary>
 /// dismisses the alert view. makes sure to call it on the main UI
 /// thread in case it's called from a worker thread.
 /// </summary>
 public void Hide (bool animated)
 {
 this.InvokeOnMainThread (delegate {
 this.DismissWithClickedButtonIndex (0, animated);
 });
 }
}

To see this class in action, take a look at the Example_StandardControls companion

code and application.

UIActionSheet
The action sheet is one of the few controls that differs significantly in behavior between

the iPhone/iPod Touch and the iPad. In both devices, their use is the same, but their

appearance and behavior is different.

Action sheets are functionally very similar to alerts, but are intended to be used when

you need to present users with options for actions or making decisions in order to

progress through a task.

On iPhone/iPod Touch devices, action sheets are slide-on modal windows. On iPad

devices, they’re popover windows nearly identical to alert views. For example, the

following Figure 7–19 is a screenshot of an action sheet on an iPhone.

http://

CHAPTER 7: Standard Controls 135

Figure 7–19. An action sheet on an iPhone showing a destructive button (delete), a cancel button (cancel), and
two other buttons

Creating the equivalent action sheet on an iPad will result in something slightly different,

as shown in Figure 7–20.

http://

CHAPTER 7: Standard Controls 136

Figure 7–20. The same action sheet on the iPad

The first thing that you notice is that there is no Cancel button. The reason is, in the

iPad, you can actually cancel the action sheet by clicking outside of it, so you typically

don’t include a Cancel button.

Creating a Simple Action Sheet

Using an action sheet is very simple, and similar to using an alert view. For example, the

following code in Listing 7–29 creates an action sheet that has a Delete and Cancel

button (on the iPad, the Cancel button will not be visible).

http://

CHAPTER 7: Standard Controls 137

Listing 7–29. Creating a simple delete/cancel action sheet

this._actionSheet = new UIActionSheet ("simple action sheet", null, "cancel", "delete",
 null);
this._actionSheet.Clicked += delegate(object a, UIButtonEventArgs b) {

Console.WriteLine ("Button " + b.ButtonIndex.ToString () + " clicked");
};
this._actionSheet.ShowInView (this.View);

As with an alert view, the action sheet raises a Clicked event when a user chooses a

button. In the event handler delegate for clicked event a UIButtonEventArgs object is

passed that contains the index of the button that was selected.

NOTE: The action sheet has the same exact issue with garbage collection that the alert view

does, in that you must keep a reference to the action sheet if you are subscribing to events. For

more information, read through the “Alert View” section earlier in this chapter.

Button Types

An action sheet has three different button types:

 Cancel: The button that is used to dismiss the action sheet without

selecting an action. The Cancel button is shown as a black button.

 Destructive: A button the causes the destruction of an item, such as

a Delete button. The destructive button is shown as a red button.

 Other: For any other buttons. Other buttons are shown in white on the

iPad, and a light gray on the iPhone.

If you’re creating an action sheet manually, you can set which button is your destructive

button via the DestructiveButtonIndex property. For example, the following code

(Listing 7–30) sets the first button to be the destructive button.

Listing 7–30. Setting the destructive button

this._actionSheet.DestructiveButtonIndex = 0;

To set your cancel button, you use the CancelButtonIndex in the same manner.

Adding Custom Buttons

To add custom buttons to your action sheet, call the AddButton method ((Listing 7–31).

Listing 7–31. Adding a custom button to an action sheet

this._actionSheet.AddButton ("a different option!");

http://

CHAPTER 7: Standard Controls 138

Displaying an Action Sheet

An action sheet can be shown from a toolbar, tab bar, button bar item, or a view.

Depending on what device you’re on, the animation of its appearance may be different.

For instance, on the iPhone/iPod Touch, the action sheet slides up from the bottom of

the device, but on the iPad, it will appear anchored over what you’ve shown it from.

To show the action sheet, use either the ShowInView, ShowFrom, ShowFromTabBar, or

ShowFromToolbar methods. For example, the following code (Listing 7–32) specifies an

action sheet in the current controller’s view.

Listing 7–32. Showing an action sheet in the current view

this._actionSheet.ShowInView (this.View);

Subclassing

One of the most powerful things about the action sheet is using it as an animating

control that can display other content. For instance, in the UIPickerView section (coming

up), we’ll take a look at how to subclass the action sheet to dynamically show a picker

view.

UIDatePicker
The date picker control is a slot-machine-like spinner control that provides users a way

to enter date and time information, as shown in Figure 7–21.

http://

CHAPTER 7: Standard Controls 139

Figure 7–21. A UIDatePicker control on an iPhone

The date picker control has several different operating modes that you can specify with

the Mode property:

 DateAndTime: In this mode, you get both the date and the time, as

shown in the previous screenshot.

 Time: Only spinners for time data are visible.

 Date: Only spinners for data data are visible.

 CountDownTimer: Only spinners for hours and minutes are visible.

http://

CHAPTER 7: Standard Controls 140

Configuration

The date picker is very easy to configure in Interface Builder (Figure 7–22).

Figure 7–22. Configuring a date picker in Interface Builder

You can also configure it programmatically. You can set the minimum and maximum

dates shown in the picker via the MinimumDate and MaximumDate properties. For example,

the following code (Listing 7–33) configures a picker to only show a week in the future

and a week in the past.

Listing 7–33. Configuring minimum and maximum dates in code

myDatePicker.MinimumDate = DateTime.Today.AddDays (-7);
myDatePicker.MaximumDate = DateTime.Today.AddDays (7);

To get the date or time value, you can access the Date property on the picker. For

example, the code in Listing 7–34 displays the selected date and time from a date picker

on a label.

Listing 7–34. Accessing the Date property of a date picker

myDateLabel.Text = myDatePicker.Date.ToString ();

If you’re in countdown timer mode, you can access the CountDownDuration property,

which gives you the total number of seconds of the timer countdown on the date picker.

Showing Dynamically

One of the most common scenarios with having a date picker is showing it dynamically—

like how a keyboard slides up onscreen, rather than having it onscreen at all times. To do

this, the easiest way is to modify an action sheet so that it has a picker on it, and then

display the action sheet, as shown in the following screenshot (Figure 7–23).

http://

CHAPTER 7: Standard Controls 141

Figure 7–23. Displaying a picker on an action sheet

The following code in Listing 7–35 is a control that does just that. This works on the

iPhone, but you could extend this to work on the iPad as well.

Listing 7–35. Action sheet date picker control code

/// <summary>
/// A class to show a date picker on an action sheet. To use, create a new
/// ActionSheetDatePicker, set the Title, modify any settings on the DatePicker
/// property, and call Show(). It will automatically dismiss when the user clicks
/// "Done," or you can call Hide() to dismiss it manually.

/// </summary>
[MonoTouch.Foundation.Register("SlideOnDatePicker")]
public class ActionSheetDatePicker
{
 #region -= declarations =-

 UIActionSheet _actionSheet;

http://

CHAPTER 7: Standard Controls 142

UIButton _doneButton = UIButton.FromType (UIButtonType.RoundedRect);
 UIView _owner;

UILabel _titleLabel = new UILabel ();

 #endregion

#region -= properties =-

 /// <summary>

/// Set any datepicker properties here
 /// </summary>

public UIDatePicker DatePicker
 {

get { return this._datePicker; }
set { this._datePicker = value; }

 }
UIDatePicker _datePicker = new UIDatePicker(RectangleF.Empty);

 /// <summary>

/// The title that shows up for the date picker
 /// </summary>

public string Title
 {

get { return this._titleLabel.Text; }
set { this._titleLabel.Text = value; }

 }

 #endregion

#region -= constructor =-

 /// <summary>
 ///
 /// </summary>

public ActionSheetDatePicker (UIView owner)
 {

//---- save our uiview owner
 this._owner = owner;

//---- configure the title label
 this._titleLabel.BackgroundColor = UIColor.Clear;
 this._titleLabel.TextColor = UIColor.LightTextColor;

this._titleLabel.Font = UIFont.BoldSystemFontOfSize (18);

//---- configure the done button
 this._doneButton.SetTitle ("done", UIControlState.Normal);

this._doneButton.TouchUpInside += (s, e) => {
this._actionSheet.DismissWithClickedButtonIndex (0, true); };

//---- create + configure the action sheet
this._actionSheet = new UIActionSheet () {

Style = UIActionSheetStyle.BlackTranslucent };

//---- add our controls to the action sheet
 this._actionSheet.AddSubview (this._datePicker);
 this._actionSheet.AddSubview (this._titleLabel);
 this._actionSheet.AddSubview (this._doneButton);

http://

CHAPTER 7: Standard Controls 143

 }

 #endregion

 #region -= public methods =-

 /// <summary>
 /// Shows the action sheet picker from the view that was set as the owner.
 /// </summary>
 public void Show ()
 {
 //---- declare vars
 float titleBarHeight = 40;
 SizeF doneButtonSize = new SizeF (71, 30);
 SizeF actionSheetSize = new SizeF (

this._owner.Frame.Width, this._datePicker.Frame.Height
 + titleBarHeight);

 RectangleF actionSheetFrame = new RectangleF (
0, this._owner.Frame.Height - actionSheetSize.Height

 , actionSheetSize.Width, actionSheetSize.Height);

 //---- show the action sheet and add the controls to it
 this._actionSheet.ShowInView (this._owner);

 //---- resize the action sheet to fit our other stuff
 this._actionSheet.Frame = actionSheetFrame;

 //---- move our picker to be at the bottom of the actionsheet

// (view coords are relative to the action sheet)
 this._datePicker.Frame = new RectangleF (this._datePicker.Frame.X,

 titleBarHeight, this._datePicker.Frame.Width
 , this._datePicker.Frame.Height);

 //---- move our label to the top of the action sheet
 this._titleLabel.Frame = new RectangleF (10, 4, this._owner.Frame.Width
 - 100, 35);

 //---- move our button
 this._doneButton.Frame = new RectangleF (actionSheetSize.Width -

doneButtonSize.Width - 10, 7, doneButtonSize.Width,
oneButtonSize.Height);

 }

 /// <summary>
 /// Dismisses the action sheet date picker
 /// </summary>
 public void Hide (bool animated)
 {
 this._actionSheet.DismissWithClickedButtonIndex (0, animated);
 }

 #endregion
}

You can find this code (and its use) in the companion Example_StandardControls

application and code.

http://

CHAPTER 7: Standard Controls 144

UIPickerView
The picker view is very similar to the date picker. In fact, the date picker actually uses a

picker view under the hood. The picker view lets you create an arbitrary number of

spinners and put text or images into the rows of each one. The following screenshot

(Figure 7–24) is a simple custom picker view with just one spinner that shows text items.

Figure 7–24. A simple custom picker view

When working with picker views, each spinner is called a component, and each item

within the component is called a row.

Populating the Picker

In order to build out its items, and to let your code know when a user interacts with it,

you have to implement callback methods that the picker calls. To implement these

methods, you have different options. As discussed in Chapter 6, you can use various

http://

CHAPTER 7: Standard Controls 145

techniques, such as implementing a strongly-typed-delegate, a weak-delegate, or wiring

up event handlers to the picker events.

No matter what method you choose, there are several important callbacks or events that

you need to implement in order to populate the items in a picker view:

 GetRowsInComponent: Called by the picker to determine how many

items (rows) are in a given spinner (component)

 GetTitle: Called by the picker to retrieve the text for a particular row

in a component. If you don’t implement this, you need to implement

the GetView method.

 GetView: Called by the picker to retrieve the view for a particular row

in a component. If you implement GetView, do not implement

GetTitle. Use this if you want to use images or other custom things in

your picker view. You can use any thing that implements UIView such

as a UIImageView if you want to put an image in, or even a custom

view.

 GetComponentCount: Called by the picker to determine how many

components to render

Additionally there are optional methods that allow you to further customize the picker:

 GetComponentWidth: Used to specify the width of a given component

 GetRowHeight: Used to specify the height of a given row in the

specified component

Finally, there are methods to handle user interaction:

 Selected: Called when any of the spinners change value and passes

the component index as well as the row

UIPickerViewModel

One of the easiest ways to implement these methods is to create a class that inherits

from UIPickerViewModel (which contains all these methods), and then assign it to the

Model property on your picker control. For example, Listing 7–36 is a very simple picker

view model that manages the data for a picker that has a single component.

Listing 7–36. A simple picker view model

/// <summary>
/// This is our simple picker model. it uses a list of strings as it's data
/// </summary>
protected class PickerDataModel : UIPickerViewModel
{

 public event EventHandler<EventArgs> ValueChanged;

 /// <summary>
 /// The items to show up in the picker

http://

CHAPTER 7: Standard Controls 146

 /// </summary>
 public List<string> Items
 {
 get { return this._items; }
 set { this._items = value; }
 }
 List<string> _items = new List<string>();

 /// <summary>
 /// The current selected item
 /// </summary>
 public string SelectedItem
 {
 get { return this._items[this._selectedIndex]; }
 }
 protected int _selectedIndex = 0;

 /// <summary>
 /// default constructor
 /// </summary>
 public PickerDataModel ()
 {
 }

 /// <summary>
 /// Called by the picker to determine how many rows are in a given spinner item
 /// </summary>
 public override int GetRowsInComponent (UIPickerView picker, int component)
 {
 return this._items.Count;
 }

 /// <summary>
 /// called by the picker to get the text for a particular row in a particular
 /// spinner item
 /// </summary>
 public override string GetTitle (UIPickerView picker, int row, int component)
 {
 return this._items[row];
 }

 /// <summary>
 /// called by the picker to get the number of spinner items
 /// </summary>
 public override int GetComponentCount (UIPickerView picker)
 {
 return 1;
 }

 /// <summary>
 /// called when a row is selected in the spinner
 /// </summary>
 public override void Selected (UIPickerView picker, int row, int component)
 {
 this._selectedIndex = row;
 if (this.ValueChanged != null)
 {

http://

CHAPTER 7: Standard Controls 147

 this.ValueChanged (this, new EventArgs ());
 }
 }
}

To populate the model, we simply add strings to the items collection and then set it to

the Source property of the picker object, as shown in Listing 7–37.

Listing 7–37. Populating the model

this._pickerDataModel = new PickerDataModel ();
this._pickerDataModel.Items.Add ("item the first!");
this._pickerDataModel.Items.Add ("item the second!");
this._pickerDataModel.Items.Add ("item the third!");
this._pickerDataModel.Items.Add ("fourth item!");
this.pkrMain.Source = this._pickerDataModel;

To listen for picker changes, we could then handle the ValueChanged event. For example,

the following code in Listing 7–38 writes the currently selected item text to a label.

Listing 7–38. Handling the ValueChanged event

this._pickerDataModel.ValueChanged += (s, e) => {
 this.lblSelectedItem.Text = this._pickerDataModel.SelectedItem;
};

UIToolbar
The toolbar control is a placeholder for buttons that perform commands specific to the

screen that’s displaying. For example, the bar along the bottom with the back, forward,

etc. buttons in Mobile Safari is a toolbar, as shown in Figure 7–25.

http://

CHAPTER 7: Standard Controls 148

Figure 7–25. A toolbar in Mobile Safari

Toolbars are specific to the screen they’re on. If you want to make a toolbar that

appears on all screens, use a tab bar instead (see Chapter 8).

Item Types

Toolbars are extremely powerful. When you create a toolbar you assign an array of

UIBarButtonItem objects to it. Out of the box there are a bunch of different built-in item

types, including basic text buttons, buttons with images, and spacing separators. There

are a ton of built-in styles, as illustrated by the following screenshot (Figure 7–26), which

includes some of them.

http://

CHAPTER 7: Standard Controls 149

Figure 7–26. Some of the built-in options for toolbar items

However, a toolbar item can even be assigned a custom view, so anything that you can

build into a view, can go on the toolbar. Because of this, the toolbar is almost infinitely

customizable.

Toolbars in Interface Builder

Configuring a toolbar in Interface Builder is very easy, although to do anything fancy,

such as using a custom view, you’ll have to modify the toolbar items in code.

When putting items on toolbars in Interface Builder, you have three control choices:

 Bar Button Item: An extensible button item that can be modified both

in Interface Builder and in code

 Flexible Space Bar Button Item: A space between items that

expands or shrinks based on how much room on the toolbar there is.

This is very useful when handling rotation and you want to maintain

spacing ratios.

 Fixed Space Bar Button Item: A space between items that retains its

size, despite toolbar growth or shrinkage

The toolbar controls in Interface Builder are as shown (Figure 7–27).

http://

CHAPTER 7: Standard Controls 150

Figure 7–27. Toolbar controls in Interface Builder

For example, the following toolbar (Figure 7–28) has (in this order):

 Button : Fixed Space : Button : Flexible Space : Button : Button

http://

CHAPTER 7: Standard Controls 151

Figure 7–28. A sample toolbar with buttons and spacing in portrait mode

If we look at the toolbar as designed in Interface Builder, the spacing controls are

apparent, as shown in Figure 7–29.

http://

CHAPTER 7: Standard Controls 152

Figure 7–29. A sample toolbar in Interface Builder

If we rotate the view, the toolbar will resize and the fixed width spacing control stays the

same size, but the flexible size control expands, as shown in Figure 7–30.

Figure 7–30. The flexible space control expands with the toolbar.

http://

CHAPTER 7: Standard Controls 153

Programmatic Creation

You can also create toolbars programmatically. Even though in Interface Builder we had

several controls to choose from, all toolbar items are actually UIBarButtonItem objects.

To set an item to be a preset image or spacing item, we can use a constructor that takes

UIBarButtonSystemItem type. For example, to create a fixed width space item, we would

do the following (Listing 7–39).

Listing 7–39. Creating a system toolbar item

UIBarButtonItem fixedWidth = new UIBarButtonItem (UIBarButtonSystemItem.FixedSpace);

If we want to create a normal button, we use a constructor that takes a

UIBarButtonItemStyle type. For example, to create a standard button with a label, we

would create a new UIBarButtonItem, passing in the title of the button, the button style,

and the event handler (if there is one), as shown in Listing 7–40.

Listing 7–40. Creating a normal button toolbar item

string buttonTitle = "One";
UIBarButtonItem btnOne = new UIBarButtonItem (buttonTitle,
UIBarButtonItemStyle.Bordered, null);

If we wanted to create an item from a custom view, we can use the constructor that

takes a view item, or we could assign the view to the CustomView property. For example,

the following code in Listing 7–41 creates an item from a view.

Listing 7–41. Creating a toolbar item that has a custom view

UIBarButtonItem customViewButton = new UIBarButtonItem(new MyCustomView());

Once you have all your items created, you put them into an array and then set them on

the toolbar (Listing 7–42).

Listing 7–42. Adding items to a toolbar

UIBarButtonItem[] items = new UIBarButtonItem[] { btnOne, fixedWidth, btnTwo,
 flexibleWidth, btnThree, btnFour };
this._toolbar.SetItems (items, false);

There are a number of different constructors for toolbar button items—check out the

MonoTouch docs for more info.

Sizing

If you’re creating your toolbar in code and you want to support autosizing to handle

rotation, you should set the AutoresizingMask property, which takes one or more flags

describing the resizing behavior. For example, the following code in Listing 7–43 tells the

toolbar to automatically move down or up depending on the height of the view and to

automatically resize the width to fill up the appropriate space.

Listing 7–43. Common auto sizing settings for a toolbar

this._toolbar.AutoresizingMask = UIViewAutoresizing.FlexibleTopMargin |
UIViewAutoresizing.FlexibleWidth;

http://

CHAPTER 7: Standard Controls 154

Handling Clicks

An important thing to know is that, unlike normal buttons, toolbar items do not raise the

TouchUpInside event, but instead raise Clicked events. The CocoaTouch API may be

powerful, but is not consistent.

For instance, the following code (Listing 7–44) raises an alert when a button is clicked.

Listing 7–44. Handling the Clicked event on a toolbar item

btnOne.Clicked += (s, e) => { new UIAlertView ("click!", "btnOne clicked", null, "OK",
 null).Show (); };

I’ve used the C# lambda syntax to save space in the previous code example.

Summary
This was a monster chapter that gave a pretty in-depth introduction to all of the basic

controls in CocoaTouch; however, it is by no means exhaustive. We could have gone

deeper into nearly every single one of these controls. The UIKit is extremely powerful,

and with each subsequent release of the iOS, more controls are added and existing

controls become more powerful.

In the next chapter we’re going to continue our control review and look at even more

controls that deal with managing screens and content.

http://

155

155

 Chapter

Content Controls

In the previous chapter, we looked at the standard controls in the CocoaTouch UIKit. In

this chapter, we’re going to continue our journey through the UIKit control ecosystem

and look at controls whose job it is to manage content, be it other views or controllers.

Specifically, in this chapter we’re going to cover the following controls:

 Navigation controller

 Tab bar controller

 Split view controller

 Web view

 Map view

 Search bar

We’ve already used some of these in the example applications, or at least talked about

them in examples. In this chapter, we’re going to dig into each one of them in more

detail, examine their capabilities, and explore how to work with them.

You can find all of the examples in this chapter in the Example_ContentControls

companion application and code to see these explorations in action.

Navigation Controller
The UINavigationController is the easiest way to handle navigation between

hierarchical screens in iOS, because it manages the complexity of navigation,

breadcrumbing, and display for you. You simply create a new UINavigationController

and then push a UIViewController onto it using the PushViewController method. The

first one you create is known as the root view controller. When you push a view

controller onto a navigation controller, the navigation controller automatically displays

the controller’s view. To add a new controller, you just call PushViewController again.

When you push a second view controller onto the stack, the navigation controller

automatically adds a Back button, which will pop that controller off the view stack when

8

http://

CHAPTER 8: Content Controls 156

that button is clicked. You can also manually pop a controller off the stack by calling the

PopViewController method, although in practice, that’s rarely used.

Generally, the Navigation Controller is used to display screens that contain hierarchical

data. For example, in the Settings Application, the navigation controller is used to drill

down through settings, as shown in Figure 8–1.

Figure 8–1. A Navigation Controller in the Settings application.

As you push view controllers onto the navigation stack, their title appears in the

navigation bar and a Back button appears with the title of the previous controller. When

a user clicks the Back button, the current screen is popped off the stack, which shows

the previous screen. It encapsulates all the controls and logic needed to handle all this

for you.

Unlike other controllers, it’s not meant to be subclassed, but rather you can set

properties and call methods on it to modify its behavior and appearance.

Unfortunately, this means that it’s not extremely customizable, presumably because

Apple wants to control the navigation experience and make it consistent across

applications.

Parts of the Navigation Controller

Before we get into using and customizing the navigation controller, let’s first examine

the different parts of it.

The navigation controller consists of four main components:

http://

CHAPTER 8: Content Controls 157

 Navigation view: This is the entire view presented by the navigation

controller and contains all other controls and views. The navigation

view is available via the View property on the navigation controller, and

is what you add to your window or other parent when you want to

actually display the navigation controller.

 Navigation bar: The navigation bar is the area at the top of the

navigation view that displays any navigation items, such as the Back

button, the current controller title, and, optionally, a button on the

right. Displaying the navigation bar is optional, and it’s very common

to hide it when displaying the root view controller, and then animate it

into view when the first subcontroller is pushed onto the navigation

stack.

 Navigation toolbar: The navigation toolbar appears at the bottom of

the navigation view and provides a controller-specific set of toolbar

items that are relevant for the current controller that’s displayed on the

stack. The navigation toolbar isn’t displayed by default.

 Content view: The content view is the main area of the navigation

view. It’s where the top controller on the view stack’s view is

displayed.

Figure 8–2 illustrates the relationship between these components.

Figure 8–2. Components of the navigation controller

http://

CHAPTER 8: Content Controls 158

Using the Navigation Controller

You can create a navigation controller in Interface Builder, but because it’s so simple,

and there’s very little you can customize in Interface Builder on it, it’s far easier to create

it in code. The basic pattern for using a navigation controller is as follows:

 Instantiate it.

 Push the root View Controller onto it.

 Add its View to the window or other parent controller (such as a Tab

Bar).

Listing 8–1 (from the AppDelegate class in the Example_StandardControls companion

code) does just that.

Listing 8–1. Creating a navigation controller on the window

…
this._mainNavController = new UINavigationController ();
…
this._mainNavController.PushViewController (this._iPhoneHome, false);
…
this._window.AddSubview (this._mainNavController.View);

When you add view controllers to a navigation controller, you can get a reference to the

navigation controller (to push more controllers onto, or to modify it) via the

NavigationController property on the UIViewController that has been pushed on it.

For example, Listing 8–2 is in a custom view controller that sets the transparency of the

navigation bar.

Listing 8–2. Accessing the navigation controller from a view controller that is on its stack

this.NavigationController.NavigationBar.Translucent = true;

When designing screens in Interface Builder that are meant to be used in a navigation

controller, you can simulate the navigation controller so you get a more accurate idea of

the screen size that your view will have by setting the Simulated User Interface Elements

settings, as shown in Figure 8–3.

Figure 8–3. Simulating the navigation controller components in Interface Builder

After you change these settings, you’ll see the appropriate element simulated in the

designer window, shown in Figure 8–4.

http://

CHAPTER 8: Content Controls 159

Figure 8–4. Simulated navigation bar in Interface Builder

Because it’s simulated, it only gives you a blank area of the appropriate size.

Modifying the Navigation Bar

The navigation controller allows you to modify a few things on the navigation bar,

including the following:

 Title text

 Navigation bar style

 Navigation bar color

 Transparency of the navigation bar

 Right button

http://

CHAPTER 8: Content Controls 160

Title

By default, the title text comes from the Title property of the UIViewController that is

topmost on the view stack (the currently displayed one). However, you can also set it

directly via the Title property on the navigation controller’s NavigationItem. See Listing

8–3.

Listing 8–3. Setting the navigation item title

this.NavigationItem.Title = "Customizing Nav Bar";

Setting it directly is useful when you want it to differ from title text that appears

elsewhere, such as when you’re using the tab bar controller, which we’ll explore later.

Style

The navigation bar itself can be set to one of two styles, Default, or Black, which are

included in the UIBarStyle enumeration. See Figure 8–4.

Figure 8–5. Default and Black navigation bar styles

http://

CHAPTER 8: Content Controls 161

Default gives the bar and its buttons a gray-blue theme, and Black gives the bar and its

buttons a black/dark-gray theme. To set the style, set the BarStyle property of the

navigation bar to a value from the UIBarStyle enumeration (see Listing 8–4).

Listing 8–4. Setting the navigation bar style to black

this.NavigationController.NavigationBar.BarStyle = UIBarStyle.Black;

TintColor

In addition to the two color choices in the BarStyle property, you can set the navigation

bar to use a specific color via the TintColorProperty. See Figure 8–6.

Figure 8–6. Custom tint color for the navigation bar

For example, Listing 8–5 sets the bar tint color to be red.

Listing 8–5. Setting the navigation bar tint to red

this.NavigationController.NavigationBar.TintColor = UIColor.Red;

http://

CHAPTER 8: Content Controls 162

To reset the color back to the default, simply set the TintColor property to null.

Opacity

You can specify the navigation bar to take on a partially transparent quality by setting

the Translucent property to true (see Listing 8–6).

Listing 8–6. Making the navigation bar translucent

this.NavigationController.NavigationBar.Translucent = true;

However, when you do this, the content view area of the navigation controller is

enlarged to also include the top bar area; so if you have any controls at the top of the

view, they will appear behind the top bar! To account for this, make sure to leave extra

room at the top of your view. If you’re designing your view in Interface Builder, you can

set the Top Bar property of the Simulated User Interface Elements section to Translucent Black

Navigation Bar to see what this looks like.

Right Button

In addition to the Back button and the title on the navigation bar, you can add a custom

button to the right-hand portion of the bar. This is especially useful if you want to add an

Edit button or the like. To set the button, call the SetRightBarButtonItem on the

navigation item and pass in a UIBarButtonItem, and determine whether you want it to

animate on or off (via a fade). You can either use a custom UIBarButtonItem, or you can

use one of the built-in ones via the UIBarButtonSystemItem enumeration as shown in

Listing 8–7.

Listing 8–7. Adding a button to the navigation bar

this.NavigationItem.SetRightBarButtonItem(
new UIBarButtonItem(UIBarButtonSystemItem.Action, null), true);

To remove the button, call the method again, but pass in a null for the button (see

Figure 8–8).

Listing 8–8. Removing a button from the navigation bar

this.NavigationItem.SetRightBarButtonItem(null, true);

Navigation Toolbar

The navigation controller can optionally show a toolbar at the bottom of view. The

toolbar works exactly the same way the regular toolbar does, as described in the last

chapter. The only difference is that the navigation controller gets its toolbar items from

the toolbar items collection on the current view controller that is displayed. For example,

Listing 8–9 crates the toolbar items collection on a custom UIViewController.

http://

CHAPTER 8: Content Controls 163

Listing 8–9. Creating a toolbar items collection on a UIViewController for use in a navigation controller’s toolbar

this.SetToolbarItems(new UIBarButtonItem[] {
 new UIBarButtonItem(UIBarButtonSystemItem.Refresh)
 , new UIBarButtonItem(UIBarButtonSystemItem.FlexibleSpace) { Width = 50 }
 , new UIBarButtonItem(UIBarButtonSystemItem.Pause)
}, false);

You can then show the toolbar by setting the ToolbarHidden property on the navigation

controller to false, and it will show the items (see Listing 8–10).

Listing 8–10. Showing a navigation controller’s toolbar

this.NavigationController.ToolbarHidden = false;

Tab Bar Controller
The navigation controller works great for hierarchal navigation across screens, but

sometimes you want to split your application into different areas. The

UITabBarController is designed to do just that. It allows you to separate your

application into different areas and navigate between them. You can even combine the

use of the tab bar controller with the navigation controller and you can have different

tabs control different groups of hierarchal screens.

The tab bar controller resides at the bottom of the device, and displays a set of tabs that

you define. See Figure 8–7.

Figure 8–7. Tab bar controller in the iPhone

It also provides functionality for reordering the tabs. See Figure 8–8.

http://

CHAPTER 8: Content Controls 164

Figure 8–8. Tab bar reordering is a built-in feature of the tab bar controller

You can have up to five items on the tab bar at any one time. If you add more, it puts a

More tab on the tab bar and, when you click it, you get a navigation table with the other

tabs. See Figure 8–9.

Figure 8–9. The More tabs screen

http://

CHAPTER 8: Content Controls 165

Creating a Tab Bar Controller

Using the tab bar controller is very straightforward. You simply subclass it, set its

ViewControllers property with an array of view controllers, and then add its view to a

window. You do not manage the tabs directly; instead, you set the TabBarItem

properties on each of your controllers that are associated with the tab bar controller, and

the tab bar controller picks up those items and displays them.

As with the navigation controller, it’s much easier to use programmatically rather than in

Interface Builder. In fact, for a variety of reasons, Apple encourages you to use it

programmatically.

To create a custom tab bar controller, define a new class that inherits from

UITabBarController, then override the ViewDidLoad method, instantiate your controllers,

and add them to the class via the UITabBarController’s ViewControllers property. For

example, Listing 8–11 is a custom tab bar controller that has two tabs: one contains a

navigation controller, and the second tab contains just a custom view controller screen.

Listing 8–11. A custom tab bar controller

public class MyTabBarController : UITabBarController
{
 //---- screens
 UINavigationController _browsersTabNavController;
 Browsers.BrowsersHome _browsersHome;
 Search.SearchScreen _searchScreen;

 public override void ViewDidLoad ()
 {
 base.ViewDidLoad ();

 //---- browsers tab
 // in this case, we create a navigation controller and then add our
 // screen to that
 this._browsersTabNavController = new UINavigationController();
 this._browsersTabNavController.TabBarItem = new UITabBarItem();
 this._browsersTabNavController.TabBarItem.Title = "Browsers";
 this._browsersHome = new Browsers.BrowsersHome();
 this._browsersTabNavController.PushViewController(this._browsersHome,
 false);

 //---- search
 this._searchScreen = new Search.SearchScreen();
 this._searchScreen.TabBarItem = new
 UITabBarItem(UITabBarSystemItem.Search, 1);
 //---- create our array of controllers
 var viewControllers = new UIViewController[] {
 this._browsersTabNavController,
 this._searchScreen,
 };

 //---- attach the view controllers
 this.ViewControllers = viewControllers;

http://

CHAPTER 8: Content Controls 166

 //---- set our selected item
 this.SelectedViewController = this._browsersTabNavController;
 }
}

When using a navigation controller with a tab controller (as with the first tab item we just

looked at), the navigation controller should always be a child of the tab bar controller.

Tab Bar Items

The tab bar picks up the tab bar item information from each controller you add to it via

the TabBarItem property. When creating tab bar items, you can create them from built-in

system items, or you can create them from scratch, specifying the title text and the

image. You can find the available system items in the UITabBarSystemItem enumeration.

Using a Custom Tab Bar Controller

Once you’ve defined your custom tab bar controller, using it is very easy. Simply

instantiate it and then add its view to your window or view, just as you would if you were

using a navigation controller. For example, the example application delegate in Listing

8–12 uses the custom tab bar controller we defined as the root view controller on a

window.

Listing 8–12. Using a tab bar controller as the root view controller in an application

public class AppDelegate : UIApplicationDelegate
{
 protected UIWindow _window;
 protected MyTabBarController _tabs;

 …

public override bool FinishedLaunching (UIApplication app, NSDictionary options)
 {
 //---- create our window
 this._window = new UIWindow (UIScreen.MainScreen.Bounds);
 this._window.MakeKeyAndVisible ();

 this._ tabs = new MyTabBarController();
 this._window.AddSubview (this._ tabs.View);

 return true;
 }
}

User Customizable Tabs

As mentioned before, the tab bar controller supports user rearranging of the tabs out of

the box. This is accomplished via the CustomizableViewControllers property of the tab

bar controller. Any controllers that are a part of this collection are reorderable. If you

don’t set this property directly, it automatically gets its values from the ViewControllers

property. If you want to make only a subset of your tabs rearrangeable, then you need to

http://

CHAPTER 8: Content Controls 167

specify which ones are customizable. For example, Listing 8–13 specifies that only the

third and fourth items in the view controllers should be customizable.

Listing 8–13. Specifying only certain controller as customizable

var customizableControllers = new UIViewController[] {
 viewControllers[2],
 viewControllers[3]
};
this.CustomizableViewControllers = customizableControllers;

Tab Badges

The tab bar controller allows you to add a badge to tab bar items in order to bubble up

information to the user that pertains to that particular tab. The badges show up as a red

circle with white text on the upper-right portion of the tab icon. See Figure 8–10.

Figure 8–10. Badges on tab bar items

To specify a badge value, the tab bar item exposes a property called BadgeValue that

takes a string. See Listing 8–14.

http://

CHAPTER 8: Content Controls 168

Listing 8–14. Setting a badge value

myController.TabBarItem.BadgeValue = "3";

Simply set your value to that property and a badge will appear on the tab bar item.

Split View Controller
The UISplitViewController is a specialized controller available only on the iPad that

allows you to present a master-detail view where in landscape view, two views are

shown onscreen, and in portrait view, one view is shown with the option to show the

second view. See Figures 8–11 and 8–12.

Figure 8–11. Split view controller in landscape mode, showing the master and detail views.

http://

CHAPTER 8: Content Controls 169

Figure 8–12. Split view controller in portrait mode, showing the master overlayed on the detail view.

The split view was created specifically for the iPad to take advantage of its screen size

being larger than that of the iPhone and iPod Touch.

The master/detail user interface pattern exploits the metaphor that in a user interface

you have a master view that allows you to choose from a number of detail views. In the

example given in the Example_SplitView companion code and application, there is a

table view as the master view. When you click on an item in that table, the detail view

changes to reflect the selection. As you can see in figure 8–12 both the master and the

detail view are automatically shown in landscape view. However, by default when you

rotate your device to portrait mode, the master view is hidden.

The split view is meant to be used such that in portrait mode, you provide a button that

your users can touch to show the master view in a UIPopover control. The split view

provides you with events (or delegate methods) that provide you with a button that is

http://

CHAPTER 8: Content Controls 170

already wired up to show the master view; you just have to consume them and add the

button to your detail view.

Using the Split View

Like other controllers, the split view is easiest to use in code. Simply create a class that

subclasses UISplitViewController and assign your controllers that it will manage to the

ViewControllers property. The ViewControllers takes an array of two controllers: the

first one being the controller that contains the master view, and the second one

containing the detail view. For example, the custom split view class in Listing 8–15

comes from the Example_SplitView companion code and application.

Listing 8–15. Implementing a custom split view and assigning the views to it

public class MainSplitView : UISplitViewController
{
 protected Screens.MasterView.MasterTableView _masterView;
 protected Screens.DetailView.DetailViewScreen _detailView;

 public MainSplitView () : base()
 {
 //---- create our master and detail views
 this._masterView = new Screens.MasterView.MasterTableView ();
 this._detailView = new Screens.DetailView.DetailViewScreen ();

 //---- create an array of controllers from them and then assign it
 // to the controllers property
 this.ViewControllers = new UIViewController[] { this._masterView,
 this._detailView };

…
 }
}

Creating Views for the Split View

If you’re using Interface Builder to create your master and detail view controllers, it will

automatically size your views appropriately if you change the Split View setting in the

Simulated User Interface Elements in the Attributes Inspector. See Figure 8–13.

Figure 8–13. Changing the Split View setting will automatically resize your view in Interface Builder

http://

CHAPTER 8: Content Controls 171

That way, your view is automatically sized to simulate the actual size it will be in the split

view.

Showing and Hiding the Button to Show the Master View

Out of the box, the split view doesn’t automatically add the button to your detail view

that shows the master view. However, it does provide an event that gives you a button

that is already wired up to show the view in a popover controller. In order to use this

button, you should first define a place for it in your detail view, and then provide a

method to add the button to that place. For example, in Listing 8–16, I put a toolbar at

the top of the detail view, and then provided the following methods to add and remove

the button.

Listing 8–16. Providing methods in a detail view controller to add and remove the button to show the master
view

public void AddContentsButton (UIBarButtonItem button)
{
 button.Title = "Contents";
 this.tlbrTop.SetItems(new UIBarButtonItem[] { button }, false);
}
public void RemoveContentsButton ()
{
 this.tlbrTop.SetItems(new UIBarButtonItem[0], false);
}

How and where you add the button is your choice, but for consistency purposes, it’s a

good idea to show it in the upper left corner.

Next, in your split view controller, you should handle the WillHideViewController and

WillShowViewController events to call the methods that you define in your detail view

controller.

this.WillHideViewController += (object sender, UISplitViewHideEventArgs e) => {
 this._detailView.AddContentsButton(e.BarButtonItem);
};
this.WillShowViewController += (object sender, UISplitViewShowEventArgs e) => {
 this._detailView.RemoveContentsButton();
};

You could also handle this in the delegate, but in this case it’s simplest to use the

events. WillHideViewController is raised when the device is rotated into portrait mode,

and therefore the master view will be hidden, so in that event handler you should call

your method to show the button.

WillShowViewController is raised when the device is rotated into landscape mode, and

therefore the master controller will be shown, so in that event handler you should call

your method to remove/hide the button.

http://

CHAPTER 8: Content Controls 172

Communicating Between the Master and Detail View

Once you have your master and detail view up and running, it quickly becomes

necessary to formulate a way for them to communicate with each other. There are a

couple ways to handle this, depending on your needs. One way is to pass a reference to

the other controller in each controller; however, the problem with this is that when

something occurs in one of the controllers – say a button click that should affect the

other controller – the split view controller doesn’t know that anything has occurred.

Therefore, the best practice is to raise events in each controller, and then have the split

view controller handle them and call the appropriate methods on the appropriate

controller, thereby acting as a controller/mediator between the two child controllers. For

example, in Listing 8–17, when a user clicks on a row in the master view, I raise an event

that is handled in the split view controller and sets the appropriate data on the detail

controller.

Listing 8–17. Handling an event on the split view controller to affect the detail controller

this._masterView.RowClicked +=
(object sender, MasterView.MasterTableView.RowClickedEventArgs e) => {
this._detailView.Text = e.Item;

};

The nice thing about this pattern is that, because the split view controller is the main

controller, you can then swap out detail controllers based on what’s happening in the

master controller. For instance, say you had several different options on the master

view, that when clicked, each one should show a different detail view.

Web View
The iOS has one of the best built-in mobile browsers available. It ships with Mobile

Safari, which bases its rendering engine on WebKit, the same rendering engine used in

Safari, Google Chrome, and others.

Apple makes the core browser functionality available via the UIWebView control. With it,

it’s easy to integrate a full-featured browser directly into your application. Not only can

you use it to display web pages, but it also provides a rich document display engine.

You can display HTML documents complete with images, JavaScript, and other content,

directly from your application. Taking it one step further, you can package your content

as XML and use the XSL transform feature in .NET to style your content and display it to

your users.

Additionally, the web view also supports a number of non-web document formats,

including Microsoft Word, Microsoft Excel, Rich Text Format (RTF), Portable Document

Format (PDF), and a number of other document formats.

In this chapter, we’ll take a look at how to use the web view, including loading web

pages, navigation, handling interaction, and so on. Then we’ll cover loading local

content, other document types, and finally, I’m going to talk about some magic that we

http://

CHAPTER 8: Content Controls 173

can do to listen for events on the page and actually run JavaScript that allow you to

deeply interact with the web view to use it as a powerful content rendering engine.

Using the Web View

Using the web view control is very easy, all you have to do is add it to your view

controller and call LoadRequest, passing a URL and it will load your web page (see

Listing 8–18).

Listing 8–18. Loading a web request of www.google.com in a web view

myWebView.LoadRequest (new NSUrlRequest (new NSUrl (“http://www.google.com”)));

The hardest part about loading a web page is actually constructing a URL. LoadRequest

takes an NSUrlRequest object. The NSUrlRequest only has one interesting constructor,

and that takes an NSUrl object. Let’s take a moment to look at NSUrl.

NSUrl

NSUrl represents a URL in CocoaTouch and has a couple of different constructors,

depending on what kind of URL you’re creating. If you just want to do a plain-old web

URL, you can use it by simply supplying the fully qualified web address (in this case,

www.google.com.)

We’ll look at some of the other constructors in just a bit.

Navigation

Just like a browser, the web view control shares the concept of navigating backward

and forward through page history. To this end, it exposes two methods, GoBack and

GoForward, which navigate backward and forward in the page history. Before you call

them, you should check the CanGoBack and CanGoForward properties to see if navigation

in that particular direction is allowed. For example, Listing 8–19 handles the back and

forward button clicks in the web browser example in the Example_ContentControls

companion application and code:

Listing 8–19. Navigating backwards and forwards in a web view control

this.btnBack.TouchUpInside += (s, e) => {
if (this.webMain.CanGoBack) { this.webMain.GoBack (); } };

this.btnForward.TouchUpInside += (s, e) => {
if (this.webMain.CanGoForward) { this.webMain.GoForward (); } };

If you want to stop a request while it’s loading, you can call the StopLoading method on

the web view. For example, Listing 8–20 handles the stop button click in the sample web

browser.

Listing 8–20. Stopping the loading of a request

this.btnStop.TouchUpInside += (s, e) => { this.webMain.StopLoading (); };

http://www.google.com
http://www.google.com%E2%80%9D%00%00%00%00
http://www.google.com
http://

CHAPTER 8: Content Controls 174

Events

The web view exposes events related to loading that allow you to respond to various

states and inform users of the loading process. As with other controls, you can either

choose to handle them as events, assign a strongly-typed delegate, or use a weak

delegate (see chapter 6 for more information on this pattern). The events are described

in the following sections.

LoadStarted

LoadStarted is raised at the beginning of the request. You can handle this event to let

your user know that the request is loading by showing an activity spinner, or other

indicator. For example, the handler in Listing 8–21 is from the web browser sample. It

enables the Stop button, enables the navigation buttons based on navigation availability,

and starts the animation of an activity spinner.

Listing 8–21. Handling the LoadStarted method

public void LoadStarted (object source, EventArgs e)
{
 this.btnStop.Enabled = true;
 this.SetBackAndForwardEnable ();
 this.imgBusy.StartAnimating ();
}
protected void SetBackAndForwardEnable ()
{
 this.btnBack.Enabled = this.webMain.CanGoBack;
 this.btnForward.Enabled = this.webMain.CanGoForward;
}

LoadingFinished

LoadingFinished is raised when the request has completed loading. You can handle this

event to stop or hide any activity indicator that you may have shown while the request

was loading. For example, Listing 8–22 is from the web browser sample. It disables the

Stop button (since the request is no longer loading), enables the Back and Forward

button based on navigation availability (see previous code sample for the

SetBackAndForwardEnable method), and then stops the activity spinner.

Listing 8–22. Handling the LoadingFinished method

public void LoadingFinished (object source, EventArgs e)
{
 this.btnStop.Enabled = false;
 this.SetBackAndForwardEnable ();
 this.imgBusy.StopAnimating ();
}

LoadError

The LoadError event is raised when there is a problem with the request. This most

commonly happens if the device does not have connectivity. As per the Apple Human

http://

CHAPTER 8: Content Controls 175

Interface Guidelines, you are required to handle this event and notify the user if they do

not have connectivity. If you load internet requests, Apple will test your application with

and without connectivity, and if you don’t fail gracefully and let your user know that they

don’t have connectivity, your application is almost certain to be rejected.

For example, Listing 8–23 is again from the web browser sample. It alerts the user with

the reason why their web request failed to load.

Listing 8–23. Handling the LoadError method

public void LoadError (object sender, UIWebErrorArgs e)
{
 this.imgBusy.StopAnimating ();
 this.btnStop.Enabled = false;
 this.SetBackAndForwardEnable ();
 //---- show the error
 UIAlertView alert = new UIAlertView ("Browse Error"
 , "Web page failed to load: " + e.Error.ToString ()
 , null, "OK", null);
 alert.Show ();
}

Running this with no Internet connectivity will result in the alert shown in Figure 8–14.

Figure 8–14. Alerting the user that there is no Internet connection

http://

CHAPTER 8: Content Controls 176

Loading Local Content

One of the most powerful uses of the web view control is to use it as a content rendering

engine. You can format your content as HTML and then display it in the web view.

Because it’s a full-featured browser engine, it supports everything that would normally

work in Mobile Safari, such as rich CSS integration, JavaScript, and the like.

You can even take it one step further and store your content as XML and then use

.NET’s built-in support for applying XSL style sheets to transform the XML into XHTML,

and then display it in the web view. As you can imagine, with this technique, you could

build content-rich applications very easily.

There are two ways to load local content: you can either call LoadRequest and give it a

path to a file, or you can load content directly from a string. When you pass a path to

load from, you should use the BundlePath property of the MainBundle object to get the

local directory of your application. From there, you can append the path to your content

as it appears in your project file. For example, Listing 8–24 loads the Home.html file from

the Content directory of the project.

Listing 8–24. Loading local content in a web view

string homePageUrl = NSBundle.MainBundle.BundlePath + "/Content/Home.html";
this.webMain.LoadRequest (new NSUrlRequest (new NSUrl (homePageUrl, false)));

When storing and loading content, there are two things that you should keep in mind:

first, while the simulator is not case-sensitive, the device is, so make sure you have all

your casing correct; otherwise, it’ll work in the simulator but not on your device. Second,

you content must have a build action of Content, or it won’t get compiled into your

application.

When you load HTML content into the web view directly from a string, you call

LoadHtmlString and pass your HTML as well as a path in which you want it to execute

in. For example, Listing 8–25 loads a page of HTML directly from a string, and sets the

base directory to be the Content directory, so any links from the page will be relative to

that directory.

Listing 8–25. Loading content directly from a string of HTML

string contentDirectoryPath = NSBundle.MainBundle.BundlePath + "/Content/";
this.webMain.LoadHtmlString ("<html>Click Me"

, new NSUrl (contentDirectoryPath, true));

In this case, we used a different NSUrl constructor where the second parameter is a

boolean value indicating whether or not the path was a directory.

Interacting with Page Content

While the web view makes a great content rendering engine, there are times in which it

would be really nice if you could interact with the content. For instance, say you want to

run a script on the page, or you want to listen for a user click on an element to launch

something in the application.

http://

CHAPTER 8: Content Controls 177

Apple makes the first scenario very easy by allowing us to run a script on the page, but

the second scenario is a little more complex. Let’s look at the first scenario.

Running JavaScript

The web view exposes a method called EvaluateJavascript that allows you to run

JavaScript code within the context of the page. You can pass the function any

executable script in the method and the web view will run it. This can be extremely

effective if you have methods that you want to call on the page. For instance, say that

you have the JavaScript shown in Listing 8–26 in your page.

Listing 8–26. Executing JavaScript in the web view

<script language="javascript">
 function RunAction()
 {
 alert('RunAction javascript method called');
 }
</script>

You can run that script by calling:

myWebView.EvaluateJavascript ("RunAction();");

Listening for Events

Unfortunately, the web view doesn’t give us an easy way to listen for events the way it

allows us to run JavaScript, so we have to get a little crafty.

The web view exposes an event called ShouldStartLoad that we can use for just this

purpose. You can use ShouldStartLoad to intercept load requests by the web view,

figure out what the request is, and then return false if you want to handle the request,

instead of letting the browser do it. For example, let’s say that we have the following

link, and we want to handle it by loading a screen in the application:

action test

One of the parameters of ShouldStartLoad is a UIWebViewNavigationType enumeration

which tells us whether the request was from a link, a form submission, or something

else. It’ll even tell us if the user is navigating backward or forward (via the GoBack or

GoForward methods). You can then use this, in conjunction with the NSUrlRequest

parameter, to parse the request and then handle it in the application. For example,

Listing 8–27 looks for the link that we just defined and shows an alert when it’s clicked:

Listing 8–27. Handling a link click in a web view by your application

public bool HandleStartLoad (UIWebView webView, NSUrlRequest request
 , UIWebViewNavigationType navigationType)
{
 Console.WriteLine (navigationType.ToString ());

 //---- first, we check to see if it's a link
 if (navigationType == UIWebViewNavigationType.LinkClicked)
 {

http://

CHAPTER 8: Content Controls 178

 //---- next, we check to see if it's a link with //LOCAL in it.
 if(request.Url.RelativeString.StartsWith("file://LOCAL"))
 {

new UIAlertView ("Action!", "You clicked an action.", null,
 "OK", null).Show();

 //---- return false so that the browser doesn't try to navigate
 return false;
 }
 }
 //---- if we got here, it's not a link we want to handle
 return true;
}

Loading Non-Web Documents

In addition to HTML, the web view supports the rendering of the following document

types:

 Microsoft Excel (.xls)

 Microsoft Word (.doc)

 Microsoft PowerPoint (.ppt)

 Apple Numbers (.numbers and .numbers.zip)

 Apple Keynote (.keynote and .keynote.zip)

 Apple Pages (.pages and .pages.zip)

 Portable Document Format (.pdf)

 Rich Text Format (.rtf)

 Rich Text Format Directory (.rtfd.zip)

You can load these documents just as you would any other local content. Simply call

LoadRequest and pass the path to the file.

Map View
CocoaTouch UIKIt includes the UIMapView control, which gives you the same powerful,

easy to use map control that is used in the Maps Application. See Figure 8–15.

http://

CHAPTER 8: Content Controls 179

Figure 8–15. Map view control in an application

Just like with the Maps Application, the map control supports pinch and zoom touches,

as well as scrolling via touch. By default, both zooming and scrolling are enabled, but

you can turn them off via the ZoomEnabled and ScrollEnabled properties.

Using the Map View

Using the map view is easy. Simply drop the view into your controller and set the Region

property, passing in a CLLocationCoordinate2D that specifies the latitude/longitude of

the center of the map, and an MKCoordinateSpan that specifies the size of the area to

zoom to. For example, Listing 8–28 displays the map of Paris.

Listing 8–28. Setting the map to display Paris, with a zoom level of 20 miles

//---- create our location and zoom for paris
CLLocationCoordinate2D coords = new CLLocationCoordinate2D(48.857, 2.351);
MKCoordinateSpan span = new MKCoordinateSpan(

MilesToLatitudeDegrees(20), MilesToLongitudeDegrees(20, coords.Latitude));

http://

CHAPTER 8: Content Controls 180

//---- set the coords and zoom on the map
this.mapMain.Region = new MKCoordinateRegion(coords, span);

Creating an MKCoordinateSpan requires the degrees, in latitude and longitude, of the area

to display (thus creating the zoom level); however, if you want to convert miles to

degrees, you can use the methods shown in Listing 8–29.

Listing 8–29. Converting miles to latitudinal and longitudinal degrees

public double MilesToLatitudeDegrees(double miles)
{
 double earthRadius = 3960.0;
 double radiansToDegrees = 180.0/Math.PI;
 return (miles/earthRadius) * radiansToDegrees;
}
public double MilesToLongitudeDegrees(double miles, double atLatitude)
{
 double earthRadius = 3960.0;
 double degreesToRadians = Math.PI/180.0;
 double radiansToDegrees = 180.0/Math.PI;

 //---- derive the earth's radius at that point in latitude
 double radiusAtLatitude = earthRadius * Math.Cos(atLatitude * degreesToRadians);
 return (miles / radiusAtLatitude) * radiansToDegrees;
}

Different Map Modes

The map view supports the display of the map in the following three modes, contained

in the MKMapType enumeration:

 Regular: The normal map mode that displays geographic features in

an illustrated depiction.

 Satellite: Renders the map using satellite images of the area.

 Hybrid: A mix between Regular and Satellite, Hybrid mode renders the

map using satellite images and then overlays geographic information,

annotating the satellite view.

You can set the current map view mode via the MapType property. For example, Listing

8–30 handles the ValueChanged even on a button segment control and updates the map

display to the appropriate type, depending on which segment is selected.

Listing 8–30. Updating the map display type depending on what is selected

this.sgmtMapType.ValueChanged += (s, e) => {
 switch(this.sgmtMapType.SelectedSegment)
 {
 case 0:
 this.mapMain.MapType = MKMapType.Standard;
 break;
 case 1:
 this.mapMain.MapType = MKMapType.Satellite;
 break;

http://

CHAPTER 8: Content Controls 181

 case 2:
 this.mapMain.MapType = MKMapType.Hybrid;
 break;
 }
};

When Hybrid is selected, the view looks like Figure 8–16.

Figure 8–16. The map view in Hybrid mode showing a satellite image with features overlayed.

Using Device Location

The map can automatically display the location of the device by setting the

ShowsUserLocation property to true (see Listing 8–31).

Listing 8–31. Centering the map at the device location

this.mapMain.ShowsUserLocation = true;

The map will then center on the location of the device; as the device moves, the map will

update, keeping the map centered on the device location.

http://

CHAPTER 8: Content Controls 182

Annotating the Map

You can add annotations to the map such as pins that mark locations on the map. See

Figure 8–17.

Figure 8–17. A pin annotation on the map view

To add an annotation to the map view, first create a class that subclasses the

MKAnnotation class. See Listing 8–32.

Listing 8–32. A custom MKAnnotation class

/// <summary>
/// MonoTouch doesn't provide even a basic map annotation base class, so this can
/// serve as one.
/// </summary>
protected class BasicMapAnnotation : MKAnnotation
{

/// <summary>
/// The location of the annotation
/// </summary>
public override CLLocationCoordinate2D Coordinate { get; set; }

http://

CHAPTER 8: Content Controls 183

 /// <summary>
 /// The title text
 /// </summary>
 public override string Title
 { get { return this._title; } }
 protected string _title;

 /// <summary>
 /// The subtitle text
 /// </summary>
 public override string Subtitle
 { get { return _subtitle; } }
 protected string _subtitle;

 /// <summary>
 ///
 /// <summary>
 public BasicMapAnnotation (CLLocationCoordinate2D coordinate, string title,
 string subTitle)
 : base()
 {
 this.Coordinate = coordinate;

this._title = title;
 this._subtitle = subTitle;
 }
}

MKAnnotation has the following three properties that are important:

 Coordinate: The only required property, Coordinate specifies the

location of the annotation.

 Title: Optional, Title specifies the first line of text in an annotation

callout.

 SubTitle: Optional, Subtitle specifies the second line of text in an

annotation callout.

You can then add your annotation objects to your map view via the AddAnnotation

method, shown in Listing 8–33.

Listing 8–33. Adding an annotation to a map view

this.mapMain.AddAnnotation(new BasicMapAnnotation(
new CLLocationCoordinate2D(34.120, -118.188), "Los Angeles", "City of Demons"));

You should add all of your annotations when you create your map view; the map view

will handle cleaning them up when they go off screen, and re-adding them when they

come back into view.

GetViewForAnnotation

The previous example will get you a basic annotation, but to really customize it, you

need to implement an MKMapViewDelegate and override the GetViewForAnnotation

http://

CHAPTER 8: Content Controls 184

method. GetViewForAnnotation is exactly like the GetCell method in the table delegate,

but instead returning a cell, you return an MKAnnotationView object.

GetViewForAnnotation is called by the map view whenever an annotation needs to be

retrieved to display on the screen. This can happen quite often, as a user scrolls around

on the map because just as with table cells, when the annotation goes out of view, the

iOS scavenges its object and puts it in a pool so that it can be reused for other

annotations.

Listing 8–34 is a sample map view delegate that implements the GetViewForAnnotation

method and returns an MKPinAnnotationView as the annotation view.

Listing 8–34. Implementing GetViewForAnnotation in a custom map delegate

protected class MapDelegate : MKMapViewDelegate
{
 protected string _annotationIdentifier = "BasicAnnotation";

 public override MKAnnotationView GetViewForAnnotation (

MKMapView mapView, NSObject annotation)
 {
 //---- try and dequeue the annotation view
 MKAnnotationView annotationView =

mapView.DequeueReusableAnnotation(this._annotationIdentifier);

 //---- if we couldn't dequeue one, create a new one
 if (annotationView == null)
 {

annotationView =
new MKPinAnnotationView(annotation, this._annotationIdentifier);

}
else //---- if we did dequeue one for reuse, assign the annotation to it
{ annotationView.Annotation = annotation; }

 //---- configure our annotation view properties
 annotationView.CanShowCallout = true;
 (annotationView as MKPinAnnotationView).AnimatesDrop = true;
 (annotationView as MKPinAnnotationView).PinColor =
 MKPinAnnotationColor.Green;
 annotationView.Selected = true;

 return annotationView;
 }
}

The pattern in this code example is almost exactly the same pattern for table cells. The

iOS keeps a pool of annotation view objects for the map, and you can reuse them via

the DequeueReusableAnnotation method in conjunction with a reuse identifier (for more

context see Chapter 9). To understand the rest of the code, though, we need to examine

annotation views.

http://

CHAPTER 8: Content Controls 185

Annotation Views

An MKAnnotationView object is different from an MKAnnotation in that it contains the

callout view that the annotation displays when it’s selected, as well as the MKAnnotation

object that specifies the coordinates. When you create an MKAnnotation, you pass it

your MKAnnotation (it can later be found on the read-only Annotation property), and a

reuse identifier. The reuse identifier is used to identify the type of annotation view so that

you can reuse them like templates.

The easiest way to customize an annotation view is to set properties on it that control its

display. For example, the following are some common properties that you can set on an

annotation view:

 CanShowCallout: Whether the callout will be displayed when a user

clicks on the marker on the map.

 Image: You can specify an image that will be displayed in the callout

via the Image property. If you provide an image, the callout will

automatically resize itself to fit the image.

 RightCalloutAccessoryView and LeftCalloutAccessoryView: These

two properties allow you to set a custom view on either the right or left

side of the annotation view.

For example, setting the properties shown in Listing 8–35 will result in a callout similar to

the one in Figure 8–18.

Listing 8–35. Customizing an annotation view

annotationView.CanShowCallout = true;
annotationView.RightCalloutAccessoryView =
UIButton.FromType(UIButtonType.DetailDisclosure);
annotationView.LeftCalloutAccessoryView =

 new UIImageView(UIImage.FromBundle("Images/Apress-29x29.png"));

http://

CHAPTER 8: Content Controls 186

Figure 8–18. A customized annotation view with left and right accessories set

If the basic annotation view isn’t quite enough for what you need, you can also subclass

it and do the rendering yourself during the Draw method.

MKPinAnnotationView

In the delegate in figure 8–18, we created an MKPinAnnotationView.

MKPinAnnotationView is a specialized that annotation view that gave us a few more

options. Specifically, by using a pin annotation, we were able to do the following (see

Listing 8–36).

Listing 8–36. An MKpinAnnotationView gives us a little more control over the marker on the map.

(annotationView as MKPinAnnotationView).AnimatesDrop = true;
(annotationView as MKPinAnnotationView).PinColor = MKPinAnnotationColor.Green;

If you set the AnimatesDrop property to true, when the map is first displayed, the

annotation marker (pin) will drop onto the map.

The PinColor property allows us to select from three different colors for the pin,

available in the MKPinAnnotationColor enumeration (Red, Green, and Blue).

http://

CHAPTER 8: Content Controls 187

Handling Annotation Callout Clicks

In figure 8–18, we gave the annotation view a detail disclosure button as its right

accessory view. The detail disclosure indicates that clicking on the button will result in a

detail information screen for that particular item. To handle the click, simply add a

handler as you would any other button. For instance, Listing 8–37 creates the button,

adds a handler that shows an alert when clicked that displays the coordinates, and then

adds that button as the right callout accessory view.

Listing 8–37. Handling user interaction on a callout

UIButton detailButton = UIButton.FromType(UIButtonType.DetailDisclosure);
detailButton.TouchUpInside += (s, e) => { new UIAlertView("Annotation Clicked", "You
clicked on " +
 (annotation as MKAnnotation).Coordinate.Latitude.ToString() + ", " +
 (annotation as MKAnnotation).Coordinate.Longitude.ToString() , null, "OK",
 null).Show(); };
annotationView.RightCalloutAccessoryView = detailButton;

Clicking on the detail disclosure button would then result in the alert shown in Figure 8–19.

Figure 8–19. Showing an alert when an annotation has been clicked.

http://

CHAPTER 8: Content Controls 188

Annotation Performance Considerations

Because the map allows an unlimited number of annotations, there are two

optimizations that you should consider to ensure a responsive map view as well as a

pleasant user experience.

 Annotation Reuse: When implementing GetViewForAnnotation, make

sure to make use of the DequeueReusableAnnotation so that your

annotation objects are put in the pool when not onscreen, and are

reused when they come into view.

 Annotation Display: Because a user can zoom in and out on the map

view, you should consider overriding the RegionChanged method in the

map view delegate and managing the number of annotations that are

on the map via the AddAnnotation and RemoveAnnotation methods. For

example, as a user zooms out (and more of the map becomes visible),

you may want to reduce the number of annotations displayed. This not

only helps with performance, but also provides a much nicer

experience for the user, because they aren’t inundated with too many

pins when they zoom out, and when they zoom in, they’re able to see

more detail.

User Overlays

Overlays are a special kind of annotation that allow you to draw shapes on the map,

such as lines, circles, rectangles, polygons, and so on, and then optionally fill them in.

For example, Figure 8–20 shows the Pyramids at Giza with a circle overlay.

http://

CHAPTER 8: Content Controls 189

Figure 8–20. A circle overlay above the Pyramids at Giza.

Overlays are available in iOS 4.0 and later and are useful in showing all kinds of data that

is best illustrated on a map such as routes, population distribution, and the like.

Overlays are similar to annotations, and in fact, under the hood they’re treated nearly

identically. The general pattern to using overlays is as follows:

1. Create an overlay shape.

2. Add the overlay to the Map view.

3. Implement the GetViewForOverlay delegate.

Creating the Overlay

When creating an overlay, you can choose from a number of built-in shapes, or you can

define your own custom shape. The built-in overlay shapes are contained in the

following classes:

 MKCircle: Defines a circular area that can optionally be filled. You

create an MKCircle via the static Circle method on the MKCircle class.

http://

CHAPTER 8: Content Controls 190

 MKPolygon: Defines a polygon area that can optionally be filled. You

can mask out areas within the polygon by adding interior polygons via

the InteriorPolygons property. You created an MKPolygon via the

static FromPoints or FromCoordinates methods on the MKPolygon

class.

 MKPolyline: Defines a multi-segment line. You create an MKPolyline

from the static FromCoordinates method on the MKPolyline class.

For example, Listing 8–38 is from the Example_ContentControls companion code and

application and creates the circle overlay seen in figure 8–20.

Listing 8–38. Creating a circle overlay

CLLocationCoordinate2D coords = new CLLocationCoordinate2D(29.976111, 31.132778);
this._circleOverlay = MKCircle.Circle(coords, .5);

In addition to the built-in shapes, you can define your own via a CGPath object and then

use the MKOverlayPathView class in the GetViewForOverlay method. For more

information on how to use a CGPath, see Chapter 14.

Adding the Overlay

Once you’ve created your overlay shape, you can add it to the map view via either the

AddOverlay method, or the AddOverlays method if you have more than one overlay to

add. For example, Listing 8–39 adds the circle overlay we just created.

Listing 8–39. Adding a circle overlay to a map view

this.mapMain.AddOverlay(this._circleOverlay);

Implementing GetViewForOverlay

Once you’ve created and added your overlay to the map view, you need to implement

the GetViewForOverlay method as part of your map view delegate (or handle the

GetViewForOverlay event, and so on). GetViewForOverlay is different than

GetViewForAnnotation in that there is no template reuse, so you don’t have to worry

about the deque reusable calls or reuse identifiers.

Instead, you simply have to instantiate a view that contains your shape. Each shape

has an associated view class: MKCircleView, MKPolygonView, and MKPolylineView. If

you’re using a custom CGPath, then you use an MKOverlayPathView object. For

example, Listing 8–40 uses a Lamda delegate to handle the GetViewForOverlay event.

http://

CHAPTER 8: Content Controls 191

Listing 8–40. Implementing GetViewForOvlerlay to configure the view to hold our circle overlay

this.mapMain.GetViewForOverlay += (m, o) => {
 if(this._circleView == null)
 {
 this._circleView = new MKCircleView(this._circleOverlay);
 this._circleView.FillColor = UIColor.LightGray;
 }
 return this._circleView;
};

In this code, we create a view for the shape, assign any display properties we want,

such as fill color, line width, color, and so on, and then return that view. In this case, I’ve

defined the view at the class level, so that I check to see if it’s already been initialized,

and if it hasn’t I configure it.

Of course, as specified in Chapter 6, you could also implement a map view delegate and

override the GetViewForOverlay method in there as well.

Search Bar
The UISearchBar control is a very simple control that is really just a text box with a

magnifier glass icon and an “x” button. It’s commonly paired with a table control to

display search results. See Figure 8–21.

Figure 8–21. Search bar with a table view displaying results

http://

CHAPTER 8: Content Controls 192

Despite its name, the search control doesn’t actually provide any search functionality.

It’s really just a fancy text box. To use it, you simply listen for the TextChanged event and

display (in your choice of format) the appropriate search results to the user. For

example, in the Example_ContentControls companion code and application, I’ve paired

the search bar with a table view and when the text changes, I update the table based on

the value of the Text property. See Listing 8–41.

Listing 8–41. Updating a table with search results when the text changes in a search bar

this.srchMain.TextChanged += (s, e) => {
//---- select our words
this._tableSource.Words = this._dictionary

 .Where(w => w.Contains(this.srchMain.Text)).ToList();

//---- refresh the table
 this.tblMain.ReloadData();
};

You can also use the SearchButtonClicked event to show results; however, it is much

better to give instant feedback by updating the results more during editing. Then, when

a user clicks the search button, simply dismiss the keyboard, so that the results are in

view. See Listing 8–42.

Listing 8–42. Dismissing the keyboard when a user clicks the search button

this.srchMain.SearchButtonClicked += (s, e) => { srchMain.ResignFirstResponder(); };

Summary
With this chapter, we’ve finished off the last of the controls in MonoTouch. If you’ve

been reading this book through from front to back you should now have a solid

understanding of nearly every control in the UIKit, how to use them and, when

appropriate, how to extend them. In the next chapter, we’re going to finish our journey

through the user experience layer by examining working with keyboards.

http://

193

193

 Chapter

Working with Tables

Tables are the workhorse control of iOS applications. In fact, it’s hard to find a non-

game application that doesn’t use tables in some manner. And because they’re so

customizable, you may not even know that you’re using a table!

Although tables certainly aren’t a new invention by any means in terms of application

development, tables in iOS are very specific. Unlike tables in other application

development frameworks that you might be familiar with, tables in iOS can have many

rows, but only one column. This may seem like a limitation, but you can actually put just

about anything you want in a row, so you can actually imitate columns, if need be.

In this chapter we’re going to first look at the different parts of a table, as well as the

common classes you use to work with them. Next, we’ll cover how to customize tables,

and finally, we’re going to look at how to make them editable. By the end of the chapter

there will be very little about tables we haven’t covered.

Parts of the UITableView
When working with tables, it’s important to understand the constituent parts, as tables in

iOS are a bit different than tables you might be used to. Tables in iOS consist of the

following pieces:

 Sections

 Rows

 Headers

 Footers

These pieces are seen in the following screen shot (Figure 9–1).

9

http://

CHAPTER 9: Working with Tables 194

Figure 9–1. The constituent parts of a table

While Rows, Headers, and Footers are a common occurrence in tables across

platforms, Apple introduces the Section concept as something that is fairly proprietary

to their control set. Sections provide a way to logically group rows together. This

concept extends beyond just the display of the table on screen to the underlying data

source. When you bind data to a table in MonoTouch, you provide sections, which

contain rows.

Populating a Table
To populate a table you have to provide a data source to it. I mentioned, in Chapter 6,

that a data source in CocoaTouch is a little different. Unlike in traditional .NET UI

frameworks, where a data source is typically just a collection of domain objects that

implements IEnumerable, a data source in CocoaTouch is a specialized interface that

that implements specific methods that tell the OS how to handle the binding and display

of data.

http://

CHAPTER 9: Working with Tables 195

In MonoTouch, there are two base classes that provide the framework for implementing

a data source—they are UITableViewDataSource and UITableViewDelegate. The table

view populates itself by calling methods on these two classes. It’s actually a bit

confusing, because while UITableViewDelegate is intended to be used to support user

interaction, such as when a user clicks on a row, UITableViewDelegate actually contains

a number of methods that also pertain to databinding.

The MonoTouch team has gone pretty far in simplifying this by combining the

UITableViewDataSource and UITableViewDelegate into one class called

UITableViewSource.

UITableViewSource

By using UITableViewSource you don’t need two different classes to handle your table

binding logic (as well as your user interaction).

When subclassing UITableViewSource, there are a number of methods that you can

override to provide data binding functionality. There are also a number of other methods

on UITableViewSource that cover other aspects of working with tables, such as allowing

rows to be edited, moved, and deleted, as well as methods that pertain to user

interaction. We’ll cover those methods in their respective sections in this chapter, but for

the sake of simplicity, the following methods only include databinding/display

functionality:

 RowsInSection: Called by the table view to determine how many cells

to create for that particular section. This method is required.

 GetCell: Called by the table view to get the actual UITableViewCell to

render for the particular section and row. This method is required.

 NumberOfSections: Called by the table view to determine how many

sections (groups) there are.

 TitleForHeader: Called by the table view to retrieve the header text for

the particular section (group).

 TitleForFooter: Called by the table view to retrieve the footer text for

the particular section (group).

 GetHeightForRow: Override this method if you need to specify a

custom height for a row.

 GetHeightForFooter: Similar to GetHeightForRow, override if you need

a custom height for a footer row.

 GetHeightForHeader: Similar to GetHeightForFooter, override if you

need a custom height for a header row.

 GetViewForFooter: If you want to provide a custom view for your

footer, you can override this method.

http://

CHAPTER 9: Working with Tables 196

 GetViewForHeader: Same as GetViewForFooter, except it gets a

custom view for the header.

To use the UITableViewSource base class, you simply create a class that inherits from it,

and then override the methods you want to provide implementation for.

For example, let’s say we wanted to create a simple class that represents table data,

whereby each row is represented as a string, and we wrap those items in a item group,

as shown in the following class in Listing 9–1.

Listing 9–1. Sample table item data object

public class TableItemGroup
{
 public string Name { get; set; }
 public string Footer { get; set; }

 public List<string> Items
 {
 get { return this._items; }
 set { this._items = value; }
 }
 protected List<string> _items = new List<string> ();
}

We’ve also made a variable for the footer and header text in this class. This is of course,

just a simple class to store data. You could use whatever class you want to store your

data, but this simple example will give us a good example of how to use it with a data

source to perform the actual databinding.

To populate the data as shown in Figure 9–1, we would do the following (Listing 9–2).

Listing 9–2. Populating our sample data

List<TableItemGroup> tableItems = new List<TableItemGroup> ();

//---- declare vars
TableItemGroup tGroup;

//---- Section 1
tGroup = new TableItemGroup() { Name = "Section 0 Header", Footer = "Section 0
 Footer" };
tGroup.Items.Add ("Row 0");
tGroup.Items.Add ("Row 1");
tGroup.Items.Add ("Row 2");
tableItems.Add (tGroup);

//---- Section 2
tGroup = new TableItemGroup() { Name = "Section 1 Header", Footer = "Section 1
 Footer" };
tGroup.Items.Add ("Row 0");
tGroup.Items.Add ("Row 1");
tGroup.Items.Add ("Row 2");
tableItems.Add (tGroup);

//---- Section 3
tGroup = new TableItemGroup() { Name = "Section 2 Header", Footer = "Section 2
 Footer" };

http://

CHAPTER 9: Working with Tables 197

tGroup.Items.Add ("Row 0");
tGroup.Items.Add ("Row 1");
tGroup.Items.Add ("Row 2");
tableItems.Add (tGroup);

Given the previous data, we can then create a UITableViewSource as follows (Listing 9–

3).

Listing 9–3. A sample UITableViewSource that uses our TableItemGroup class

public class TableSource : UITableViewSource
{
 protected List<TableItemGroup> _tableItems;
 protected string _cellIdentifier = "TableCell";

public TableSource (List<TableItemGroup> items) { this._tableItems = items; }

 public override int NumberOfSections (UITableView tableView) { return
 this._tableItems.Count; }

 public override int RowsInSection (UITableView tableview, int section)
 {
 return this._tableItems[section].Items.Count;
 }

 public override string TitleForHeader (UITableView tableView, int section)
 {
 return this._tableItems[section].Name;
 }

 public override string TitleForFooter (UITableView tableView, int section)
 {
 return this._tableItems[section].Footer;
 }

 public override UITableViewCell GetCell (

UITableView tableView, MonoTouch.Foundation.NSIndexPath indexPath)
 {
 //---- declare vars
 UITableViewCell cell = tableView.DequeueReusableCell
 (this._cellIdentifier);

 //---- if there are no cells to reuse, create a new one
 if (cell == null)
 {
 cell = new UITableViewCell

(UITableViewCellStyle.Default, this._cellIdentifier);
 }

 //---- set the item text
 cell.TextLabel.Text =
 this._tableItems[indexPath.Section].Items[indexPath.Row];

 return cell;
 }
}

http://

CHAPTER 9: Working with Tables 198

The code is fairly simple—we only needed to override a few of the methods mentioned

earlier to get all the functionality we needed. The only tricky thing is the GetCell call, so

let’s look at that in detail in Listing 9–4. The first line is a little strange.

Listing 9–4. Dequeing a cell

UITableViewCell cell = tableView.DequeueReusableCell (this._cellIdentifier);

Because iDevices have limited processing power, if we had to create a new

UITableViewCell control each time one needed to be displayed, there would be

tremendous processing overhead and memory usage when trying to render long lists.

To counteract this, under the hood, the UITableView control keeps a pool of

UITableViewCell controls, and when a cell scrolls out of view, it goes into the pool for

reuse. By calling DequeueReusableCell we can attempt to pull an already initialized cell

out of the reuse pool.

This is also where our _cellIdentifier comes into play. By giving our cell an identifier,

they essentially become templates that we can reuse by pulling them out of the cell

pool. At first, there won’t be any cells to reuse, however, so in the next line, we check to

see if the cell is null, and if it is, we create a new UITableViewCell control, specifying

its style, and the CellIdentifier.

Finally, we set our properties on the cell. In this case we simply set the text that is

displayed, but as we’ll see in the “Customizing Tables” section, we can actually do quite

a bit here to customize each cell if we wanted to.

That’s all there is to creating a UITableViewSource or UITableViewDataSource. Of course

this is just the basics, and you can take it much further, as we’ll see in the following

sections.

To see a table source in action, checkout the Example_TableParts companion code and

application.

Responding to User Interaction
Oftentimes, just populating a table is only part of the battle; you also need to respond to

when users click on items, etc. As part of the contract defined by UITableViewDelegate

(and therefore also UITableViewSource), there are a number of methods that are related

to user interaction. They are as follows:

 RowSelected: Called when a user touches a row. Use this method to

respond to row selection.

 WillSelectRow: Called just before RowSelected. This method is useful if

you need to modify the selection index that gets passed to

RowSelected.

 RowDeselected: Called when a row loses selection. This happens when

another row is selected.

http://

CHAPTER 9: Working with Tables 199

 WillDeselectRow: Called just before RowDeselected. Just as with

WillSelectRow, this method gives you an opportunity to modify the

selection index that gets passed to RowDeselected.

When the selection methods are called, they’re passed an NSIndexPath that contains

Section and Row properties that describe what was selected/deselected.

To see this in action, check out the Example_TableParts companion code and

application.

UITableViewController
UIKit includes a controller built specifically to manage table views called

UITableViewController. The UITableViewController is a specialized UIViewController

that contains a UITableView as its root view, accessible via its TableView property.

In the Objective-C world, the UITableViewController implements the

UITableViewDataSource and UITableViewDelegate protocols, so you can add your

binding methods directly to a subclass of the controller. Unfortunately, however, in

MonoTouch, this is not the case. While this is a limitation, it’s easy enough to simply add

a UITableViewSource class to your UITableViewController so that you can have that

functionality built in, as shown in the following code snippet (Listing 9–5).

Listing 9–5. Adding a UITableViewSource to a UITableViewController

public class HomeScreen : UITableViewController
{
 …
 public override void ViewDidLoad ()
 {
 base.ViewDidLoad ();
 this.TableView.Source = new TableSource();
 // populate table source with data
 …
 }

 public class TableSource : UITableViewSource
 {
 // TableViewSource implementation
 …
 }
}

Generally, when working with tables, it’s a good idea to use a UITableViewController,

rather than a UITableView directly, because you can encapsulate your databinding and

user interaction code into the controller.

http://

CHAPTER 9: Working with Tables 200

Refreshing the Table When Data Changes
If the underlying data that is used to populate your table changes, you can refresh the

table by calling the ReloadData method, as shown in Listing 9–6.

Listing 9–6. Refreshing a table when the underlying data changes

this.tblMain.ReloadData();

As with all UI updates, however, you should make sure the ReloadData method is called

on the main UI thread. For more information about cross-thread UI updates, see Chapter

6.

Customizing the Appearance of a Table View
Tables in CocoaTouch are incredibly powerful because they’re extremely customizable.

You have several options for controlling the appearance of tables:

 Table Styles

 Cell Styles

 Custom Cells

Table styles and cell styles require no custom code, they’re simply style properties that

are applied. With custom cells, you actually create your own custom cell views that are

displayed.

All code for customizing the appearance of a table can be found in the

Example_TableAndCellStyles companion code and application.

Let’s look at each one of the options in detail.

Table Styles

Tables in CocoaTouch come in two flavors, plain and grouped. The plain table style is a

more space-efficient style because it takes up the entire table area and there is little

unused space; however, the grouped style is more effective in visually separating

sections (groups) of rows, as shown in Figure 9–2.

http://

CHAPTER 9: Working with Tables 201

Figure 9–2. Plain table style and Grouped table style, respectively

In either style, the headers and footers are optional, but I included them in the previous

screenshot to show how they display.

To specify the table style in IB, select the table view and change the Style in the Attribute

Inspector window, as shown in Figure 9–8.

Figure 9–3 Specifying table style in Interface Builder.

To set a table style in code, you need to set it in the constructor of the table view, or the

table view controller. For example, the following constructor is for a custom

http://

CHAPTER 9: Working with Tables 202

UITableViewController that takes a UITableViewStyle parameter and passes it to the

base implementation (Listing 9–7).

Listing 9–7. Specifying the table style in a UITableViewController constructor

public SimpleTableScreen (UITableViewStyle tableStyle) : base (tableStyle) {}

The following code in Listing 9–8 creates a new UITableView with the specified

UITableViewStyle.

Listing 9–8. Specifying the table style on a UITableView

UITableView myTableView = new UITableView(this.View.Frame, UITableViewStyle.Grouped);

Providing a Table Index

You can provide a table index for your users, which is a list of clickable section indexes

that runs down the right side of the table, as shown in Figure 9–3.

Figure 9–4. Table indexes

http://

CHAPTER 9: Working with Tables 203

In order to provide a table index, there are two methods that should be implemented in

your table delegate (or table source):

 SectionIndexTitles: Called by the table view to retrieve a list of titles

to display on the index list. This method should return an array of

string values that it will use to populate the index list.

 SectionFor: Called by the table view to retrieve the section number for

the given index title and section number. This method should return an

integer that maps to the appropriate section number in your table for

the passed in title and/or index number.

Your section index titles don’t need to map 1:1 to your actual sections. This is why the

SectionFor method exists. SectionFor gives you an opportunity to map whatever

indices are in your index list to whatever sections are in your table. For example, you

may have a “z” in your index, but you may not have a table section for every letter, so

instead of “z” mapping to 26, it may map to 25 or 24, or whatever section index “z”

should map to.

For example, we can extend the data source that we created in Listing 9–2 to support a

table index, as shown in Listing 9–9.

Listing 9–9. Extending the data source from 9–2 to support a table index

public class TableSourceWithIndex : TableSource
{
 Dictionary<string, int> _indexSectionMap = null;

 public TableSourceWithIndex (List<TableItemGroup> items

, Dictionary<string, int> indexSectionMap)
 {
 this._tableItems = items;
 this._indexSectionMap = indexSectionMap;
 }

 public override string[] SectionIndexTitles (MonoTouch.UIKit.UITableView
 tableView)
 {
 return new List<string>(this._indexSectionMap.Keys).ToArray();
 }

public override int SectionFor (MonoTouch.UIKit.UITableView tableView, string
 title, int atIndex)
 {
 return this._indexSectionMap[title];
 }
}

In this example we store our index list as a Dictionary<string, int> that contains the

section names and the section index they map to. In the SectionIndexTitles method,

we return the list of keys as a string array. Then, in the SectionFor method, we look up

the section title and return the index of the section for that title.

To see this code in action, checkout the Example_TableAndCellStyles companion code

and application.

http://

CHAPTER 9: Working with Tables 204

Cell Styles

We’ve seen that you can change the overall style of the table via table styles, but you

can also change the style of each individual row (or cell). There are several different cell

styles out of the box. They are contained in the UITableViewCellStyle enumeration,

which has the following values:

 Default: Allows for an image, a heading, and a cell accessory

 Subtitle: The same as the default style, except that it allows for a

subheading below the main text

 Value1: Also known as the Right-Aligned Subtitle style, this style is the

same as the Subtitle style, except that the subheading is in the right

portion of the cell, rather than under the main text.

 Value2: Also known as the Contact style, this style doesn’t support

images, but it supports main text and a subheading. The main text is

on the left and is small and blue, the subheading text is on the right in

bold.

These four cell styles are shown in the following illustration (Figure 9–4).

Figure 9–5. Default, Subtitle, Value1, and Value2 cell styles

You set the style of a table cell via the style parameter in the UITableCellView

constructor. Typically, this is done during the GetCell method on your

UITableViewDataSource, when you create your cells. For example, the following code in

Listing 9–10 creates a new subtitle style table style with the identifier of

mySubtitleCellTemplate.

Listing 9–10. Specifying a style when creating a table cell

UITableViewCell myTableCell = new UITableViewCell(UITableViewCellStyle.Subtitle
 , "mySubtitleCellTemplate");

http://

CHAPTER 9: Working with Tables 205

Cell Accessories

All of the out-of-the-box cell styles support an accessory view on the cell. An accessory

view is a control that appears to the right of the main cell content, as shown in Figure 9–5.

Figure 9–6. Standard table cell construction

If the cell isn’t in editing mode (which we’ll talk about in the “Editable Tables” section),

you can set either a custom view as the accessory via the AccessoryView property, or

you can set a built in accessory via the Accessory property. The Accessory property

takes a value from the UITableViewCellAccessory enumeration, which has several

options:

 Checkmark: Puts a check mark in the accessory view. Used to display

row selection for checked lists.

 DetailDisclosureButton: Puts a blue circle with a white chevron in the

accessory view. Used to indicate that selecting the row will result in

getting a detail view screen for the item being clicked.

 DisclosureIndicator: Puts a gray chevron in the accessory view. Used

to indicate that selecting the row will result in another table of options.

These three options are shown in their respective order in the following screen shot

(Figure 9–6).

Figure 9–7. Built-in Accessory view options

http://

CHAPTER 9: Working with Tables 206

One important thing to know: when a user clicks an accessory view, the RowSelected

method in the table delegate is not called. Instead, if you want to respond to accessory

selection, you should override the AccessoryButtonTapped method in your table delegate

(or UITableViewSource). For example, the following method in Listing 9–11 writes out the

section and row to the console when an accessory view is clicked.

Listing 9–11. Handling an accessory click

public override void AccessoryButtonTapped (UITableView tableView
 , NSIndexPath indexPath)
{
 Console.WriteLine("Accessory for Section, " + indexPath.Section.ToString()

+ " and Row, " + indexPath.Row.ToString() + " tapped");
}

Other Cell Customizations

Since the 3.0 release of iOS, Apple has exposed APIs to customize a number of other

things including TextColor, SelectedTextColor, SelectedImage, BackgroundView,

SelectedBackgroundView, and others.

Custom Cells

The built-in cell styles, in conjunction with the customizable properties, provide a pretty

flexible palette with which to work; however, sometimes you need something that is just

not possible out of the box.

Fortunately for us, Apple gives us a pretty easy way to do this by allowing us to create

our own custom UITableViewCell controls and use them in our table views.

You can define your custom cells in either Interface Builder as .xib files, or you can

create them completely in code.

The basic pattern is to create a view controller that manages a UITableViewCell as its

view, then, in your GetCell method in your data source, you return the table cell that

you’ve defined in the custom view controller.

There is a bit of trickiness with this however. When using a controller to manage your

cell, you have to keep track of the controllers in your datasource because while the table

contains a collection of cells, it doesn’t maintain the controllers that own them. This is

easier to understand if we look at the code needed to support this pattern.

First, in your data source class, you should create some kind of collection that will hold

your cell controllers, as shown in Listing 9–12.

Listing 9–12. A generic dictionary that tracks cell controllers

protected Dictionary<int, CustomCellController> _cellControllers =
new Dictionary<int, CustomCellController>();

In the previous code sample, I’ve defined a generic Dictionary that contains a collection

of CustomCellController (the class name of my custom cell controller) obects and is

http://

CHAPTER 9: Working with Tables 207

indexed by integers. I use an int index because I will create a unique index for each one

via Environment.TickCount.

Then, the GetCell method looks like the one we created before when we talked about

data sources, except this time we store and retrieve our custom cell controllers and

utilize our custom cells (Listing 9–13).

Listing 9–13. A sample GetCell implementation when using custom cells

public override UITableViewCell GetCell (UITableView tableView, NSIndexPath indexPath)
{
 //---- declare vars
 UITableViewCell cell = tableView.DequeueReusableCell (this._cellIdentifier);
 TableItem item = this._tableItems[indexPath.Section].Items[indexPath.Row];
 CustomCellController1 cellController = null;

 //---- if there are no cells to reuse, create a new one
 if (cell == null)
 {
 cellController = new CustomCellController1();
 cell = cellController.Cell;
 cell.Tag = Environment.TickCount;
 this._cellControllers[cell.Tag] = cellController;
 }
 else //---- if we did get one, we also need to lookup the controller
 {
 cellController = this._cellControllers[cell.Tag];
 }

 //---- set the properties on the cell
 cellController.Heading = item.Heading;
 cellController.SubHeading = item.SubHeading;

 //---- if the item has a valid image
 if(!string.IsNullOrEmpty(item.ImageName))
 {
 if(File.Exists(item.ImageName))
 { cellController.Image = UIImage.FromBundle(item.ImageName); }
 }

 return cell;
}

Let’s examine how to create our actual cell controller. First we’ll look at defining one in a

.xib file using Interface Builder, and then we’ll look at how to create them directly in

code.

Creating a Custom Cell in Interface Builder

To create a custom cell controller in Interface Builder:

1. Start with an iPhone View with Controller (or iPad, it doesn’t matter)

template.

http://

CHAPTER 9: Working with Tables 208

2. Next, delete the default view that’s in there and add a UITableViewCell

from the Library window, as shown in Figure 9–7.

Figure 9–8. A table cell in the Library window

3. Once you’ve added your cell view, you can put controls on it as you

would any other view, as shown in Figure 9–8.

Figure 9–9 A custom table cell and controller in Interface Builder

4. In order for the cell to be reused as a template, you should set the cell

identifier. To set it in Interface Builder, there is an Identifier property in

the Attributes Inspector, as shown in Figure 9–9.

Figure 9–10. Setting the cell identifier in Interface Builder

5. Add outlets in Interface Builder and wire them up to any controls you

want to be able to access.

6. Next, in your controller, expose your cell view (and any other properties

you want), as shown in Listing 9–14.

Listing 9–14. Exposing the custom cell in a controller (and other properties)

public partial class CustomCellController1 : UIViewController

{
 public UITableViewCell Cell
 {

http://

CHAPTER 9: Working with Tables 209

 get { return this.celMain; }
 }
 public string Heading
 {
 get { return this.lblHeading.Text; }
 set { this.lblHeading.Text = value; }
 }
 public string SubHeading
 {
 get { return this.lblSubHeading.Text; }
 set { this.lblSubHeading.Text = value; }
 }

 public UIImage Image
 {
 get { return this.imgMain.Image; }
 set { this.imgMain.Image = value; }
 }
 …
}

7. Finally, as we’ve done with other controllers (and we talked about in

Chapter 5), we need to make the .xib constructor synchronous

(blocking) rather than asynchronous, a shown in Listing 9–15.

Listing 9–15. Forcing the default constructor to be synchronous

public CustomCellController1 ()
{
 //---- this next line forces the loading of the xib file to be synchronous
 MonoTouch.Foundation.NSBundle.MainBundle.LoadNib ("CustomCellController1", this
 , null);
 Initialize ();
}

If we left it asynchronous (public CustomCellController1 () :
base("CustomCellController1", null), when we accessed any of the controls that were

defined in the .xib after we instantiated it, we would get a null reference exception. For

instance, on these lines in our GetCell method, we would get an error when cell.Tag

was accessed because the .xib hadn’t fully loaded yet, as shown in Listing 9–16.

Listing 9–16. When we make our constructor synchronous, this won’t error.

cellController = new CustomCellController1();
cell = cellController.Cell;
cell.Tag = Environment.TickCount;

That’s all that is needed to create and use a custom cell that we created in Interface

Builder. Using the same data as before, but with the custom cell, our table now looks

like the following (Figure 9–10).

http://

CHAPTER 9: Working with Tables 210

Figure 9–11. A table with custom cells

Next, let’s look at how to do the same thing, but in code.

Creating a Custom Cell in Code

Creating a custom cell without Interface Builder is a little more difficult in terms of laying

out your controls because you don’t have a designer to work with. On the other hand,

when you create a custom cell in code, you don’t have to worry about the asynchronous

.xib constructor, since you’re not loading your interface from a file.

Other than that, it’s the exact same thing. Simply create a new class that inherits from

UIViewController and manages a UITableViewCell as its view. One thing to note, if you

want to specify the cell identifier so that you can reuse your cells, you must do it in the

cell constructor, as shown in Listing 9–17.

Listing 9–17. Specifying a cell identifier in the cell constructor

UITableViewCell _cell = new UITableViewCell(UITableViewCellStyle.Default
 , "CustomCell2");

http://

CHAPTER 9: Working with Tables 211

To create the same cell controller that we built before in Interface Builder, but in code, all

we need is the following (Listing 9–18).

Listing 9–18. Creating a custom cell controller in code

using System;
using MonoTouch.UIKit;
using System.Drawing;

namespace Example_TableAndCellStyles.Code.CustomCells
{
 public class CustomCellController2 : UIViewController
 {
 UILabel _lblHeading = new UILabel(new RectangleF(11, 0, 195, 46));
 UILabel _lblSubHeading = new UILabel(new RectangleF(20, 45, 186, 30));
 UIImageView _imgMain = new UIImageView(new RectangleF(214, 5, 100, 75));

 public UITableViewCell Cell
 { get { return this._cell; } }
 UITableViewCell _cell =

new UITableViewCell(UITableViewCellStyle.Default,
"CustomCell2");

 public string Heading
 {
 get { return this._lblHeading.Text; }
 set { this._lblHeading.Text = value; }
 }
 public string SubHeading
 {
 get { return this._lblSubHeading.Text; }
 set { this._lblSubHeading.Text = value; }
 }

 public UIImage Image
 {
 get { return this._imgMain.Image; }
 set { this._imgMain.Image = value; }
 }

 public CustomCellController2 () : base()
 {
 base.View.AddSubview(this._cell);
 this._cell.AddSubview(this._lblHeading);
 this._cell.AddSubview(this._lblSubHeading);
 this._cell.AddSubview(this._imgMain);

 this._imgMain.AutoresizingMask =
 UIViewAutoresizing.FlexibleLeftMargin;
 this._lblHeading.TextColor = UIColor.Brown;
 this._lblHeading.Font = UIFont.SystemFontOfSize(32);
 this._lblSubHeading.TextColor = UIColor.DarkGray;
 this._lblSubHeading.Font = UIFont.SystemFontOfSize(13);

 }
 }
}

http://

CHAPTER 9: Working with Tables 212

Editable Tables
Tables in iOS have an edit mode that allows you to insert, delete, and re-order rows.

When you put a table in edit mode, the cell width is shortened horizontally, an edit

control (such as a “+” for insertion, or “-“ for deletion) appears to the left of the cell

content, and a reordering control appears to the right of the cell content, as shown in

Figure 9–11.

Figure 9–12. A cell in edit mode

The controls appear regardless of whether the table is set to the plain or the grouped

style (Figure 9–12).

Figure 9–13. Tables in edit mode

http://

CHAPTER 9: Working with Tables 213

To put a table into editing mode, call the SetEditing method on the table view. For

example, the following code in Listing 9–19 toggles the edit mode of a table.

Listing 9–19. Toggling the edit mode of a table

myTable.SetEditing (!myTable.Editing, true);

The first parameter is whether or not the table should be put into edit mode, and the

second parameter is whether or not to animate the transition.

Editing Methods

There are a number of methods related to table editing that are defined in the table view

delegate contract:

 CanEditRow: Called by the table view to determine whether or not the

given row is editable, and therefore should get an editing control

 CanMoveRow: Called by the table view to determine whether or not the

given row is moveable, and therefore should get a reordering control

 TitleForDeleteConfirmation: Called by the table view to determine

the title for the delete confirmation button during swipe-to-delete

gestures

 EditingStyleForRow: Called by the table view to determine whether

the editing style for the given row should be insertion or deletion.

Return either UITableViewCellEditingStyle.Insert or

UITableViewCellEditingStyle.Delete. If you don’t implement this

method, the iOS will assume that the editing method should always be

Delete.

 CommitEditingStyle: Called by the table view after a user has clicked

on the editing control. Gives you an opportunity to edit the table and

your underlying data source in response to the action.

 MoveRow: Called by the table view after a user has reordered a row.

Gives you an opportunity to modify your underlying data source to

stay in sync with the user’s action

As with the other methods mentioned earlier in this chapter, they are all defined in the

UITableViewSource base class, so the easiest way to implement them is to subclass that

and override the methods.

Most of the methods are pretty simple, but a couple of them—CommitEditingStyle and

MoveRow—can be tricky.

http://

CHAPTER 9: Working with Tables 214

CommitEditingStyle Method

The CommitEditingStyle method is passed an enumeration value that describes the edit

that was made, an NSIndexPath describing what row and section the edit was made on,

and a reference to the table that was edited.

The basic pattern for implementing this method is to:

 Determine what kind of edit was made

 Modify the underlying data source in response to the edit

 Modify the table based on the edit

For example, the following method uses the same data structure we’ve used throughout

the chapter to handle Delete and Insert edits on a table, as shown in Listing 9–20.

Listing 9–20. Sample implementation of CommitEditingStyle

public override void CommitEditingStyle (UITableView tableView,
UITableViewCellEditingStyle editingStyle, MonoTouch.Foundation.NSIndexPath indexPath)
{
 switch (editingStyle)
 {
 case UITableViewCellEditingStyle.Delete:
 //---- remove the item from the underlying data source
 this._tableItems[indexPath.Section].Items
 .RemoveAt (indexPath.Row);
 //---- delete the row from the table
 tableView.DeleteRows (new NSIndexPath[] { indexPath }

, UITableViewRowAnimation.Fade);
 break;

 case UITableViewCellEditingStyle.Insert:
 //---- create a new item and add it to our underlying data
 this._tableItems[indexPath.Section].Items.Insert (indexPath.Row

, new TableItem ());
 //---- insert a new row in the table
 tableView.InsertRows (new NSIndexPath[] { indexPath }

, UITableViewRowAnimation.Fade);
 break;

 case UITableViewCellEditingStyle.None:
 Console.WriteLine ("CommitEditingStyle:None called");
 break;
 }
}

It’s important to note that you need to call the DeleteRows and InsertRows methods on

the table manually— the table does not do it automatically. This is so you can have

control over what rows are inserted or deleted.

MoveRow Method

When MoveRow is called, the method is passed the index of a row before and after it was

moved. Unlike CommitEditingStyle, the table handles the moving of the item in the table

http://

CHAPTER 9: Working with Tables 215

as part of the user interaction (the user actually drags the item from one spot to another).

However, you still need to implement the logic to move your item from one spot to

another. For example, the following implementation in Listing 9–21 handles moving of

items in response to the source and destination index.

Listing 9–21. Sample implementation of the MoveRow method

public override void MoveRow (UITableView tableView, NSIndexPath sourceIndexPath,
NSIndexPath destinationIndexPath)
{
 //---- get a reference to the item
 var item = this._tableItems[sourceIndexPath.Section].Items[sourceIndexPath.Row];
 int deleteAt = sourceIndexPath.Row;

 //---- if we're moving within the same section, and we're inserting it before
 if ((sourceIndexPath.Section == destinationIndexPath.Section)

&& (destinationIndexPath.Row < sourceIndexPath.Row))
 {

 //---- add one to where we delete, because we're increasing the index by
 // inserting
 deleteAt = sourceIndexPath.Row + 1;
 }

 //---- copy the item to the new location
 this._tableItems[destinationIndexPath.Section].Items
 .Insert (destinationIndexPath.Row, item);

 //---- remove from the old
 this._tableItems[sourceIndexPath.Section].Items.RemoveAt (deleteAt);

}

Deleting Items

It’s important to note that there are two ways to delete rows in a table. The first way is

as we’ve seen in the previous screen shot, that is, put the table in edit mode and click

the “-“ button.

The second way is known as the swipe-to-delete gesture. If the editing method for a row

is Delete and the table isn’t in edit mode, then you can swipe your finger horizontally

across a row, which will show a Delete button, as shown in Figure 9–13.

http://

CHAPTER 9: Working with Tables 216

Figure 9–14. Delete confirmation button after a swipe-to-delete gesture

The text of the Delete button is specified in the TitleForDeleteConfirmation method.

Advanced Table Editing

We’ve covered basic table editing, but there’s one more editing trick up the iOS’s

sleeve. If you’ve ever edited a contact in the iOS, you may have noticed that when you

put the contact table into edit mode, new rows magically appear. For instance, after the

phone numbers, a new row appears, giving you a chance to add another phone number,

as shown in Figure 9–14.

http://

CHAPTER 9: Working with Tables 217

Figure 9–15. When editing a contact, some rows change and new rows appear.

This functionality can be extremely useful in certain situations; however, on first glance

there doesn’t appear to be any way to accomplish it. The problem is, when you put a

table into edit mode, it doesn’t raise any event or call any methods letting you know that

it is changing modes.

The workaround here is to implement these methods yourself and then call them when

you toggle the table editing mode. For example, if I define the following methods on my

table source, I can modify the table when it goes in and out of editing mode (Listing 9–22).

Listing 9–22. Adding methods to be notified when a table’s edit mode is changed

public void WillBeginTableEditing (UITableView tableView)
{
 …
}
public void DidFinishTableEditing (UITableView tableView)
{
 …
}

http://

CHAPTER 9: Working with Tables 218

Then, in the same method that toggles the edit mode of the table (in our case, the

handler for the button click), you can call those methods, as shown in Listing 9–23.

Listing 9–23. Manually calling methods on the table source to let it know when it is going in or out of editing
mode

this.btnEdit.Clicked += (s, e) => {
 this.tblMain.SetEditing (!this.tblMain.Editing, true);

 if (this.tblMain.Editing)
 { this._tableSource.WillBeginTableEditing (this.tblMain); }
 else
 { this._tableSource.DidFinishTableEditing (this.tblMain); }
};

Implementing the table changes within those methods then becomes just like

implementing the CommitEditingStyle method; you make any relevant changes to the

table, and then the same changes to the underlying data source. The only difference is

that, if you want your changes to be animated (and you should, to create a cinematic

user experience), you need to wrap your edits in a table update animation.

To animate your edits, you simply call BeginUpdates on the table view before you make

your changes, and then call EndUpdates after you’ve made your changes. For example,

the following code in Listing 9–24 inserts a new row into the table (just like in the

contacts application) with a smooth animation.

Listing 9–24. Wrapping manual table changes in an animation block

public void WillBeginTableEditing (UITableView tableView)
{
 //---- start animations
 tableView.BeginUpdates ();

 //---- insert a new row in the table
 tableView.InsertRows (new NSIndexPath[] { NSIndexPath.FromRowSection (1, 1) }

, UITableViewRowAnimation.Fade);
 //---- create a new item and add it to our underlying data
 this._tableItems[1].Items.Insert (1, new TableItem ());

 //---- end animations
 tableView.EndUpdates ();
}

Hopefully, one day, the MonoTouch team will add these methods to the

UITableViewDelegate and wrap them in an animation block so we don’t have to do them

manually, but for now at least we have a workaround.

Table Performance Considerations
While tables are probably the most versatile tool in CocoaTouch, they’re also where you

can get in the most trouble in terms of performance, if not done properly. This is

especially true if you have many rows. While the iDevices get more and more powerful

with each successive generation, you still have to optimize your code to get that

responsiveness and cinematic feel that users have come to expect from iOS

http://

CHAPTER 9: Working with Tables 219

applications. This is especially true with older generation iDevices, where the display of

rows in a table can be downright taxing.

It is advisable to deploy to the device early and often to evaluate the performance of

your table. The simulator is just that, a simulator, and not the actual device. It operates

much faster than the device does, and if you rely on it to gauge the performance of your

application, you will almost certainly be disappointed when you deploy to the device.

Furthermore, when you do test your tables, if the users can add their own rows, you

should test your application with many more rows than you expect a user to add. If it is

still snappy and responsive, you know that you’ve built it correctly, and your users won’t

be disappointed with its performance.

Let’s examine a number of performance optimizations for tables.

Cell Reuse

Cell reuse is the first technique to employ to have a responsive table. This is especially

true if you have lots of rows. If you do not reuse your cells, the iOS has to instantiate

new ones each time one is displayed. This can become a huge problem very quickly. In

order to determine if your cells are being reused, it is advisable to use a

Console.WriteLine call in your cell-reuse code to write out to the application console as

a cell is being reused when it scrolls onto the page. Make sure you have enough rows

that some first appear off the screen, so that when they scroll onto the screen the OS

has an opportunity to reuse old ones that have already scrolled off. The examples in this

chapter show how to properly reuse cells; if your cells aren’t being reused, study the

code samples and make sure your implementation is correct.

Cache the Row Height

The table can request the height of your rows quite often. In fact, it will likely request it at

least every time the cell is created, and in some cases can request it more often than

that. If you are calculating the row height based on cell contents, be sure and cache that

value, so you don’t have to recalculate it. You may want to create a property on your

custom cell controller that calculates and then caches it.

Cache Images

If you’re using images, consider caching them so that they don't have to be loaded from

a file each time they’re displayed. If your cells share images, consider putting them into

a Dictionary object and pull them from there. Be wary of loading too many, though. It’s

not unusual to only have half of the device’s useable memory at your disposal, so if you

have a lot of images, you may have no choice but to load them from file, or at least have

a collection where you only store a certain number, and load the least-used from files.

http://

CHAPTER 9: Working with Tables 220

Avoid Transparency

One of the most expensive operations to perform in the iOS is the rendering of

transparency. There are two drawing systems on the iOS, CoreGraphics, and

CoreAnimation. CoreGraphics utilizes the GPU and CoreAnimation utilizes either the

main processor, or the GPU, depending on what it thinks will be fastest, and usually this

is the GPU. The problem with this is that the device GPU is not optimized for blending.

Because of this, you should try and avoid transparency where possible. If you absolutely

cannot avoid transparency, you should do the drawing yourself, which we’ll examine

next.

Manually Draw the Cell

As a last-ditch effort for performance, you can do the drawing yourself by subclassing

UITableViewCell and overriding the Draw method so that you can do the drawing

manually. This technique has its drawbacks, however.

 First, it can be technically complex.

 Second, if you’re using Draw to create an image and paint it on the

view, it can utilize a LOT of memory if you have lots of rows.

For more information on this technique, check out the fifth example in Apple’s sample

app TableViewSuite, noted below.

Avoid Complex Graphical Computations

As with the transparency issue, stay away from graphical elements that require

computation, such as a gradient that isn’t already baked into the image you’re

displaying.

Create Your Cell in Code

If you’re running out of optimizations, and you’re still needing a performance boost, you

can scrap the custom UITableViewCell that you created in Interface Builder altogether

and hand-create the controls programmatically.

Further Optimizations

For more examples showing performance optimizations, check out Apple’s

TableViewSuite example application at

http://developer.apple.com/iphone/library/samplecode/TableViewSuite/index.html.

http://developer.apple.com/iphone/library/samplecode/TableViewSuite/index.html
http://

CHAPTER 9: Working with Tables 221

Summary
This was a lot of content for a single control, but at this point it should be clear why. The

table view is the single most versatile and useful control in the entire CocoaTouch UIKit.

Not only does it have quite a bit of flexibility out of the box, but you can create your own

custom cells to take customization to the next level.

http://

223

223

 Chapter

Working with Keyboards

iOS devices are equipped with software keyboards that automatically appear onscreen

when a control that can receive text input receives focus. Additionally, all iDevices

support hardware keyboards via Bluetooth or the 30pin accessory connector. When a

hardware keyboard is attached to an iPad, users can configure the onscreen (software)

keyboard to not show.

There are three main tasks associated with the onscreen keyboard:

Configuring the correct keyboard

Scrolling to the input control

Dismissing the keyboard when editing is finished

In this chapter, we’re going to examine all three of these items, plus show you how to

customize the keyboard. First, let’s take a look at the different types of keyboards and

text input mechanisms.

Keyboard/Input Properties
The keyboard automatically appears for input controls so you don’t ever use it directly.

However, you can modify properties on your input controls that determine which

keyboard to use. In Interface Builder you can find these properties in the Attributes

Inspector under Text Input Traits. See Figure 10–1.

10

http://

CHAPTER 10: Working with Keyboards 224

Figure 10–1. Text Input Traits control the keyboard appearance and type.

Capitalization

The capitalization setting controls whether (and how) characters that are input are to be

capitalized.

The capitalization setting can also be set programmatically via the

AutocapitalizationType property, and has the following options (available via the

UITextAutocapitalizationType enumeration):

 AllCharacters: When set to AllCharacters, every character entered

will be capitalized.

 None: When set to None, text entered will be unchanged.

 Sentences: When set to Sentences, the first word after a sentence’s

termination punctuation will have its first letter capitalized.

 Words: When set to Words, every word will have the first letter

capitalized.

Correction

The correction setting determines whether the text input will be given word correction

options. You can also set it programmatically via the AutocorrectionType property, and

it has the following options (available via the UITextAutocorrectionType enumeration):

 Default: When set to Default, correction will occur on most input

types.

 No: When set to No, correction will not occur.

 Yes: When set to Yes, correction will occur.

http://

CHAPTER 10: Working with Keyboards 225

Keyboard

The keyboard setting specifies what type of keyboard is displayed. The iOS provides

several different keyboards that are specific to the input task; for example, there is a

URL keyboard that includes keys specific to URLs such a “.com.”

You can also set the keyboard type programmatically via the KeyboardType property,

which has the following options (available via the UIKeyboardType enumeration):

 Default: When set to Default, the keyboard is typically the standard

QWERTY layout.

 ASCIICapable: ASCIICapable is the keyboard that is usually shown

when Default is set, and shows a standard QWERTY keyboard.

 NumbersAndPunctuation: When set to NumbersAndPunctuation, the

keyboard shows numbers and various punctuation symbols. This

keyboard is also accessible via the ASCII keyboard when the “123”

button is pressed.

 URL: When set to URL, the keyboard shows a QWERTY layout with the

addition of common URL characters such as “.” and even “.com.”

 NumberPad: When set to NumberPad, the keyboard shows 0-9 and a

backspace key.

 PhonePad: When set to PhonePad, the keyboard shows the Number

Pad with a “+*#” key that brings up common phone punctuation.

 NamePhonePad: When set to NamePhonePad, the keyboard shows a

standard QWERTY layout with a “123” button that brings up a Number

Pad keyboard. This keyboard is intended to be used for entering

phone numbers and names.

 EmailAddress: When set to EmailAddress, the keyboard shows a

standard QWERTY layout along with an “@” and a “.” key.

Figure 10–2 illustrates several of these keyboard types.

http://

CHAPTER 10: Working with Keyboards 226

Figure 10–2. The ASCIICapable, URL, and PhonePad keyboards

Return Key

In addition to the different keyboard types, you can further customize the keyboard by

specifying the type of key that inhabits the “return” key’s spot. You can also set the

return key via the ReturnKeyType property, which has the following options (available via

the UIReturnKeyType enumeration):

 Default

 Go

 Google

 Join

 Next

 Route

 Search

 Send

 Yahoo

 EmergencyCall

http://

CHAPTER 10: Working with Keyboards 227

Changing the return key type has no effect on the behavior of the keyboard; it simply

changes the appearance of the return key.

Languages

In addition to the different keyboard types, users can configure additional keyboard

languages in the iOS settings application. When any of the non-number type keyboards

are displayed, a globe button is shown on the keyboard that allows the user to switch to

different languages. The keyboards in different languages can be radically different from

the English ones, and even can have multiple steps to input a single character. Some

example keyboards are shown in Figure 10–3.

Figure 10–3. The Japanese Kana, Chinese Handwriting, and Swedish keyboards

You don’t have to worry about doing anything special generally for these keyboards, but

you should know that they exist and make sure that, if you are developing applications

for a multi-lingual audience, you always save your text data in Unicode. See the .NET

documentation on localization for more information on international encoding.

Hiding the Keyboard
While the keyboard appears automatically, it doesn’t automatically disappear when

the return key is pressed. Instead, you need to call the ResignFirstResponder

method on the input that has focus when the ShouldReturn method is raised. For

example, Listing 10–1 uses an anonymous method (passed as a Lambda expression) to

http://

CHAPTER 10: Working with Keyboards 228

hide the keyboard when the return key is pressed while the txtDefault text field has

focus:

Listing 10–1. Dismissing the keyboard when the return key is pressed

this.txtDefault.ShouldReturn += (textField) => { textField.ResignFirstResponder();
 return true; };

Making Input Fields Visible When the Keyboard
Covers Them
When the keyboard slides up on the screen, it can hide input controls that are

underneath it. If a control that has focus is underneath, it might be hidden, which means

the user won’t be able to see what they’re typing. If the control in question is in a table,

this isn’t an issue, because the table has built-in functionality to scroll the control into

the viewable space automatically. However, if it’s not in a table, you have to manage this

yourself.

The basic pattern to accomplish this is as follows:

 Use a scroll view: Your controls should be in a scroll view so you can

scroll them into view when the keyboard appears.

 Handle keyboard events: The iOS raises notifications when the

keyboard is about to appear or disappear. You should listen for these

notifications in order to adjust your controls.

 Resize the scroll view frame: When the keyboard pops up, you

should adjust the frame of the scroll view to shrink to the smaller

display area. The iOS automatically centers the control that has focus

in the frame; however, if you don’t resize the view, the center will be

under the keyboard. When the keyboard goes away, you can reset

your scroll view frame back to normal.

For example, Listing 10–2 is from the Example_Keyboards companion code and

application, and does just that.

Listing 10–2. Resizing the scroll view when the keyboard is shown or hidden

public partial class HomeScreen : UIViewController
{
 /// <summary>
 /// Track the content size so we can reset to this
 /// </summary>
 RectangleF _contentViewSize = RectangleF.Empty;

 …

 void Initialize ()
 {
 this._contentViewSize = this.View.Frame;
 this.scrlMain.ContentSize = this._contentViewSize.Size;
 }

http://

CHAPTER 10: Working with Keyboards 229

 #endregion

 public override void ViewDidLoad ()
 {
 base.ViewDidLoad ();

 …

 //---- wire up our keyboard events
 NSNotificationCenter.DefaultCenter.AddObserver

(UIKeyboard.WillShowNotification, delegate(NSNotification n) {
this.KeyboardOpenedOrClosed (n, "Open"); });

 NSNotificationCenter.DefaultCenter.AddObserver
 (UIKeyboard.WillHideNotification, delegate(NSNotification n) {
 this.KeyboardOpenedOrClosed (n, "Close"); });

 }

 /// <summary>

/// resizes the view when the keyboard comes up or goes away, allows our
/// scroll view to work

 /// </summary>
 protected void KeyboardOpenedOrClosed (NSNotification n, string openOrClose)
 {
 //---- if it's opening
 if (openOrClose == "Open")
 {
 //---- declare vars
 RectangleF kbdFrame = UIKeyboard.BoundsFromNotification (n);
 double animationDuration =

UIKeyboard.AnimationDurationFromNotification (n);

 //---- get the current view's bounds
 RectangleF newFrame = this.View.Bounds;
 //---- shrink the frame's height
 newFrame.Height -= kbdFrame.Height;

 //---- apply the size change
 UIView.BeginAnimations ("ResizeForKeyboard");
 UIView.SetAnimationDuration (animationDuration);
 this.scrlMain.Frame = newFrame;
 UIView.CommitAnimations ();
 }
 else //---- if it's closing, resize
 {
 //---- declare vars
 double animationDuration =

UIKeyboard.AnimationDurationFromNotification (n);

 //---- reset the content size back to what it was before
 UIView.BeginAnimations ("ResizeForKeyboard");
 UIView.SetAnimationDuration (animationDuration);
 this.scrlMain.Frame = this._contentViewSize;
 UIView.CommitAnimations ();
 }
 }

http://

CHAPTER 10: Working with Keyboards 230

 public override void DidRotate (UIInterfaceOrientation fromInterfaceOrientation)
 {
 base.DidRotate (fromInterfaceOrientation);
 }

 public override bool ShouldAutorotateToInterfaceOrientation (

UIInterfaceOrientation toInterfaceOrientation)
 {
 return true;
 }

}

Wow! That was a wall of code. Let’s break it down and examine it in pieces. The first

thing we do is create a class level variable to hold our content frame (see Listing 10–3).

Listing 10–3. Creating a variable to track our scroll view’s content size

RectangleF _contentViewSize = RectangleF.Empty;

During the Initialize method (which is called by the constructors), we then initialize that

variable with the view’s frame and then set the content size on the scroll view from it

(see Listing 10–4).

Listing 10–4. Setting the scroll view’s content size

this._contentViewSize = this.View.Frame;
this.scrlMain.ContentSize = this._contentViewSize.Size;

We do this for two reasons; first, we track the content size in a variable so that we can

reset the scroll view size back to it when the keyboard goes away. Second, in order for

the scroll view to work, you have to set the content size. In this case, the content size is

the same as the view size. For more information on the scroll view, check out Chapter 7,

where the scroll view is covered.

Next, we wire up handlers for our keyboard events (see Listing 10–5).

Listing 10–5. Adding observers to the notification center for keyboard events

NSNotificationCenter.DefaultCenter.AddObserver (UIKeyboard.WillShowNotification
, delegate(NSNotification n) { this.KeyboardOpenedOrClosed (n, "Open"); });

NSNotificationCenter.DefaultCenter.AddObserver (UIKeyboard.WillHideNotification
, delegate(NSNotification n) { this.KeyboardOpenedOrClosed (n, "Close"); });

Keyboard events are interesting, because there is no accessible keyboard object and

therefore you can’t just add an event handler directly. Instead, you have to add an

observer via the AddObserver method on the NSNotificationCenter. The notification

center is an application-wide event subscription manager. System notifications occur on

the DefaultCenter. When you register your observer, you pass a delegate method that

has a single NSNotification parameter.

In this case, we’re calling our KeyboardOpenedOrClosed method and pass either “Open” or

“Close” as a parameter, depending on whether the keyboard is opening or closing.

http://

CHAPTER 10: Working with Keyboards 231

Finally, the real work is done during the KeyboardOpenedOrClosed method. If the

keyboard is opening, we get our keyboard from the notification parameter via the code

in Listing 10–6.

Listing 10–6. Getting the keyboard frame information from the notification

RectangleF kbdFrame = UIKeyboard.BoundsFromNotification (n);

Next, we create a new RectangleF to hold the new frame of the scroll view and then

resize the height to account for the keyboard (see Listing 10–7).

Listing 10–7. Creating a new frame size for the scroll view that takes into account the keyboard

RectangleF newFrame = this.View.Bounds;
newFrame.Height -= kbdFrame.Height;

We pull the frame from the Bounds property of the view, because during rotation, the

Bounds property changes, but the frame size stays the same.

Finally, we apply the new frame size to the scroll view and wrap it in an animation block

that has the same duration as the keyboard appearance (see Listing 10–8).

Listing 10–8. Applying the new size to the scroll view

double animationDuration = UIKeyboard.AnimationDurationFromNotification (n);
UIView.BeginAnimations ("ResizeForKeyboard");
UIView.SetAnimationDuration (animationDuration);
this.scrlMain.Frame = newFrame;
UIView.CommitAnimations ();

If the keyboard is going away, it’s much simpler; you don’t need to calculate the new

size, you simply pull it from the variable we declared earlier to reset it (see Listing 10–9).

Listing 10–9. Resetting the scroll view size when the keyboard goes away

double animationDuration = UIKeyboard.AnimationDurationFromNotification (n);
UIView.BeginAnimations ("ResizeForKeyboard");
UIView.SetAnimationDuration (animationDuration);
this.scrlMain.Frame = this._contentViewSize;
UIView.CommitAnimations ();

Again, we wrap it in an animation block so that the scrolling happens smoothly with the

keyboard’s animation.

Summary
With this chapter, we bring the second part of the book to a close. If you’ve been

reading from the beginning, you should now have a very solid understanding of how to

build applications for the iOS with MonoTouch. You should now have a comprehensive

understanding of how projects are set up, the ins and outs of building applications, and

a nearly exhaustive knowledge of the UIKit.

The next chapter begins section three, in which we’ll examine a number of specialized

topics for building iOS applications.

Congratulations, you’re halfway through!

http://

233

233

 Chapter

Multitasking

It’s hard to imagine a modern computing device that doesn’t allow you to run multiple

applications at one time; however, up until v4.0 of the iOS for the iPhone and iPod Touch,

and v4.2 for the iPad, you could only run one application at a time. Because of this,

multitasking was one of the most aniticipated updates that have come out for the iOS.

Multitasking in the iOS is a different than the traditional concept of multitasking, in which

multiple applications can be open at the same time and have equal access to computing

resources. Instead, in the iOS, when an application is put into the background because

another application has been brought to the foreground (or if the device receives a

phone call), the application running in the background has a tightly controlled set of

things it can do.

This design is intentional, and serves two purposes. First, as the iOS devices have

limited processing power, this assures that the foreground application gets enough

access to it to remain snappy and responsive. Second, it helps to conserve the battery

by reducing power consumption.

Because of this design, unlike traditional applications, your application has certain

design guidelines and responsibilities that it must adhere to in order to play well in the

iOS playground.

The iOS has a mixed model for allowing programs in the background to perform tasks.

When developing iOS applications that need to perform background processing, there

are three different models:

 Register as a Background Neccesary Application: There are three

types of applications that are allowed continuous background

processing; Location, Audio, and VOIP applications.

 Register a Task with iOS that Needs to be Completed: You can tell

the iOS that a particular task needs time to complete, and request that

it not put that task to sleep if the application moves to the background.

 Notifications: You can also either schedule a local notification, or

send a remote notification (from a server application) that will give the

option to the user to bring the application to the foreground.

11

http://

CHAPTER 11: Multitasking 234

Notifications are covered in Chapter 18. In this chapter we’re going to take a look at the

various ways that an application can perform tasks while in the background, and the

various responsibilities it has in the iOS framework.

All samples in this chapter can be found in the Example_BackgroundExecution
companion application and code.

Application States
Prior to the multitasking iOS update, there were only three states an application could

be in:

Running/Active: The application is running in the foreground.

Inactive: The application has been interrupted and is “paused.” An

interruption can happen when a user receives a phone call or a text

message, or an alert is raised by the iOS. If you don’t accept accept

the interruption, it goes back to the active state.

Terminated/Not Running: The application has either not yet been

launched, or it was terminated by accepting an interruption (such as a

phone call), or the user has closed it by hitting the home button.

However, with the multitasking update, applications got a new state known as

background or suspended. The background state means that the application is still loaded,

but is not generally allowed to do any processing. As we’ll explore in this chapter,

however, there are ways to actually prevent an application from going into a suspended

state, or even continuing to do processing, if it has.

Figure 11–1. Multitasking application states in the iOS

This fundamentally changed the behavior of applications. Prior to multitasking, if a user

hit the Home button or accepted an interruption, the application was shut down

completely.

After the multitasking update, however, when the user clicks the Home button or

accepts an interruption, the application will enter a background state whereby the

application can actually continue processing, if it received permission from the iOS.

Additionally, by double-clicking the home button, you can switch between running

applications. Only one application can be in the active state at any one time, however,

http://

CHAPTER 11: Multitasking 235

and that designation goes to the application whose interface is currently displayed in the

window, or the application that is currently being used.

Understanding Background Tasks
Before we get into how to actually develop for background execution, first we need to

understand the options and limitations. There are a few different approaches on how to

execute while in the background. The first approach is to tell the iOS that you need

background processing time to perform a particular task.

By doing this, the iOS will treat your application in a certain way, depending on the

particular task that allows your application to be able to accomplish what it needs to do.

The following task categories are available in the iOS:

 Audio: Audio applications are allowed to continue processing as long

as they’re playing audio. When they stop playing audio, the iOS will

suspend them.

 Location: Location applications will continue to receive location

updates from the iOS and, depending on the application, can either be

suspended between updates, or remain running.

 VoIP: Voice Over Internet Protocol (VoIP) applications are given

opportunities to respond at registered intervals in order to keep their

connection alive to the VoIP services that power them. Additionally,

many VoIP applications also need the privileges extended to Audio

applications in order to process audio while in the background.

We’ll take a look at each of these in more detail later in this chapter.

http://

CHAPTER 11: Multitasking 236

Checking for Multitasking Capability

Because multitasking support is dependent on both OS version and hardware, if your

application relies on it and must change its behavior if multitasking support is not

available, you can check to see availability via the IsMultitaskingSupported property on

the UIDevice class, as shown in Listing 11–1.

Listing 11–1. Determining if multitasking support is available

if(UIDevice.CurrentDevice.IsMultitaskingSupported)
{
 // code dependent on support
}

Application Delegate Methods

The iOS notifies your application of changing application states via event methods in the

AppDelegate class. You handle these just as you would the other ones, such as the

FinishedLaunching method. The following application delegate methods are relevant to

state changes:

 OnResignActivation: This method is called when the application is

about to enter the inactive state, either because it’s being temporarily

inactivated (due to an event such as a phone call), or it’s going into a

background state. If your application is a game, this is the time to

pause it and throttle down your frame rates while the application waits

to either become active again, or go into the background.

 DidEnterBackground: If the device your application is running on

supports multitasking, this method is called instead of WillTerminate.

You should use this method to stop updating the interface and save

any state that is necessary to resume the application where it was left

off, should it get terminated. You have approximately 5 seconds to

finish this method or your application or your application’s process will

be killed. Also, once your application is in background mode, any

attempt to update the interface (or make an OpenGL ES call), will also

cause the process to be killed.

 WillEnterForeground: This method is called when your application is

about to transition from the background to the inactive state. You

should use this method to reverse any teardown and rehydrate any

state saved during the DidEnterBackground state.

http://

CHAPTER 11: Multitasking 237

 OnActivated: This method is called when the application is moved to

the active state by either being launched by the user, or when an

interruption (such as a phone all or an SMS message) is ignored.

OnActivated is the place to start updating your applications interface

again; for example, if you’re building a game, this is the method to

throttle your frame rates back up and present your user with the option

to resume (unpause).

 WillTerminate: If the device the application is running on does not

support multitasking, this method is called when the user closes the

application, either because they’ve hit the Home button, or they’ve

accepted an interruption. If the device does support multitasking, it’s

rare for this method to be called, but not unheard of, as the iOS might

need to free up resources. You should use this method to save any

data, release any resources, etc. As with DidEnterBackground, you

have approximately 5 seconds to complete this method, otherwise

your application’s process could be killed.

As you can see, Apple is serious about applications conforming to their restrictions and

will terminate your application’s process if it does not behave well. This is to ensure that

the device will be responsive to users, regardless of what your application is doing.

Multitasking Guidelines and Requirements

In addition to the previous notes, there are other behaviors and requirements that your

application should adhere to in order to be a good citizen with the iOS. The following

guidelines should be adhered to when building iOS applications that rely on background

processing:

 Don’t update your UI or make OpenGL ES calls while in the

Background state: While in the background state, if you attempt to

udate the UI, your application will likely be terminated without warning.

Likewise, if you attempt to make an OpenGL ES call while in the

background state, the same thing will happen.

 Save application state before moving to Background: In order to

provide your users with a seemless experience, make sure to save

enough application state before moving to the background to be able

to rehydrate the application in a state that makes sense. Ideally, this

means that when your application is moved back into the foreground,

it starts right where it left off.

 Stop using shared resources when moving to Background:

Applications that are in the active state have priority access to shared

resources such as the Address Book, etc. If your application attempts

to access a shared resource while in the background state, it will likely

be terminated.

http://

CHAPTER 11: Multitasking 238

 Remove sensitive information from View: The iOS takes a snapshot

of the window when it moves into the background state (right after

DidEnterBackground is called). When the application transitions out of

the background state, the system shows that that snapshot briefly.

During the DidEnterBackground method, make sure to hide or obscure

any sensitive information such as passwords.

 Cancel/close network service calls: When your application moves to

the background (during DidEnterBackground), it should close any

network connections and unregister from any Bonjour-related

services. This is not a requirement, however, if you’ve registered your

application as either an Audio or VOIP background application.

 Be prepared for network connection failures: If you have any

sockets open, you should not rely on them continuing to be open

when your application goes into the background state. Good

programming practice dictates that you should always check a

connection before using it; so as long as you adhere to that principle,

your application should be OK.

 Register and respond to external accessory notifications: If your

application uses the External Accessory Framework, you should make

sure to register for the disconnect notification which will be called

when your application moves to the background state. Likewise, when

your application transitions into the active state, it will receive a

reconnect notification if registered. You should make sure to handle

these appropriately in your application, based on the notion that

accessories will be disconnected when the application is suspended.

 Do minimal processing when in the background: If your application

is registered for a particular task, such as playing audio, it should do

just enough work to accomplish that task and save non-essential

processing for when your application is in the foreground/active state.

If your application has asked permission to finish a long-running task,

it should finish that task and then not do any more processing. If your

application is seen by the iOS to be consuming excessive processing

power, it will be terminated. Apple doesn’t define what that threshold

is, so it’s best to err on doing the least amount of work possible.

 Handle alert state: When applications move into the inactive state,

their alerts and action sheets are not dismissed. However, if the

application then transitions into the background state, those views will

be dismissed. Therefore, during DidEnterBackground, you should save

enough state such that, when the application moves out of the

background state, you can show the alert or action sheet (if

appropriate).

Following these guidelines is important not only to to have a well-functioning

application, but, if you’re submitting to the App Store, your application will also be

http://

CHAPTER 11: Multitasking 239

tested for compliance and, if it does not pass, it won’t be accepted. Therefore, it’s a

good idea to be pre-emptive and follow these guidelines the first time, rather than

getting rejected and having to resubmit.

Asking the iOS for Time to Complete a Task
If you have a long-running process that you want to complete before the application

shuts down, you can ask the iOS for time to finish that task. To request that a task be

allowed to complete before putting the application into a backgroud state, you make a

call to the static BeginBackgroundTask method on the UIApplication object, which

returns you an integer that represents a unique task identifier. Then, when your task is

complete, you call the EndBackgroundTask method (again, on UIApplication) and pass

the id of the task that you received when you started it.

If you make a call to BeginBackgroundTask to register your task, the iOS will then

generally not suspend your application (it will, however, suspend the UI thread —so UI

updates are generally not possible) until all your registered tasks are completed. That

means that you can start a task and, if the user clicks the Home button, your application

will become inactive, but not suspended.

The following code in Listing 11–2 illustrates this pattern.

Listing 11–2. Registering a task that will prevent the application from being suspended while it finishes

int taskID = UIApplication.SharedApplication.BeginBackgroundTask(
 () => { /* code to run when remaining time is low*/ });
// perform your task
//---- tell the iOS you’re done
UIApplication.SharedApplication.EndBackgroundTask(taskID);

NOTE: You must couple any BeginBackgroundTask call with an EndBackgroundTask call. If

you don’t call EndBackgroundTask, your application wlll be terminated, rather than put into a

background state.

Task Execution Expiration Time

Notice how, in the preceding sample, we passed in an anonymous lambda delegate when

we called BeginBackgroundTask. That’s because the method expects an expiration

parameter that takes a block of code that will execute when the time allotted for your

application to complete tasks is nearly up. This is set up this way because the iOS only

gives your application a limited amount of time to complete tasks. Just before that time

expires, it lets you know by executing the code in the expiration block. This allows you to

cancel your long-running task and clean up any resources associated with it.

Generally, the iOS will give you 600 seconds (10 minutes) to finish background tasks, but

you’re not guaranteed that amount. You can check to see how much time you have

remaining by accessing the static BackgroundTimeRemaining property of the UIApplication

http://

CHAPTER 11: Multitasking 240

class. That property will return the number of seconds that you have before the iOS will

put your application into the background state. For example, the code in Listing 11–3

writes the amount of time remaining to the Application Output window.

Listing 11–3. Determining how much time your application has before the iOS puts it into the background state

Console.WriteLine("Background time remaining: "
 + UIApplication.SharedApplication.BackgroundTimeRemaining.ToString());

Task Completion Patterns

There are two general places that you would want to tell the iOS that you want to allow

your application to complete tasks:

 During uninterruptable processes: Anywhere that you’re performing

a long-running task that you don’t want interrupted in the case that the

app might move to the background, such as downloading a file.

 During DidEnterBackground: If your application is entering a background state

(your DidEnterBackground method is called), and you know that you have to do

some work that will take longer than 5 seconds (the execution threshold for that

method before your app is terminated), then you can register and invoke long-

running tasks. Examples of such tasks might be releasing resources, uploading

scores to a server (in the case of a game), or long-running cleanup.

The first scenario is rather straightforward to implement: you simply wrap your calls in

the BeginBackgroundTask/EndBackgroundTask methods, as shown in Listing 11–4. The

second scenario requires that you spawn your tasks on a new thread, so that

DidEnterBackground can return. The following example illustrates this pattern:

Listing 11–4. Scheduling a long running task when the application is about to enter the background state

public override void DidEnterBackground (UIApplication application)
{
 //---- register a long running task, and then start it on a new thread so that
 this method can return
 int taskID = UIApplication.SharedApplication.BeginBackgroundTask(
 () => {});
 Thread task = new Thread(new ThreadStart(()=>
 { FinishLongRunningTask(taskID);}));
 task.Start();
}

protected void FinishLongRunningTask(int taskID)
{
 Console.WriteLine("Starting task " + taskID.ToString());

 //---- sleep for 5 seconds to simulate a long running task
 Thread.Sleep(5000);

 Console.WriteLine("Task " + taskID.ToString() + " finished");

 //---- call our end task

http://

CHAPTER 11: Multitasking 241

 UIApplication.SharedApplication.EndBackgroundTask(taskID);
}

If you put that code in your application delegate, launch your application, and click the

Home button, the Application Output window in MonoDevelop should output

something similar to the following (Listing 11–5).

Listing 11–5. Application Output from Listing 11–4

App entering background state.
Thread started:
Starting task 1
Task 1 finished

As you can see, even though the Home button was clicked, to put your application in

the background state, the registered task was still allowed to complete.

Registering Your Application to be Allowed to
Perform a Particular Background Task Category
Registering long-running tasks is fine for certain scenarios such as one-off task

processing, but sometimes you’re building an application in which you need constant

background processing based around a specific task, without your application moving

to a background state. Apple has made a concession for certain types of applications to

be allowed to do just that.

In order to let the iOS know what knd of task(s) you want to be able to execute in the

background, you must add a UIBackgroudnModes key (array type) to the info.plist file

and specify at least one of the following values:

 audio

 voip

 location

To edit the info.plist file, double-click it in the project explorer and Xcode’s Property

List Editor will open up. Add a new key by clicking Add Child. You’ll need to type in the

UIBackgroundModes key by hand, because it likely won’t be in the list of values you can

select. After you’ve named the key, you need to right-click it and change the Value Type

to Array (Figure 11–2).

http://

CHAPTER 11: Multitasking 242

Figure 11–2. Specifying a UIBackgroundModes key as an array type

After you’ve created the key and specified its type, you can then add your values by

clicking on the arrow to the left of the key to expand it, and then clicking on the + button

on the right. Your info.plist should then look something like Figure 11–3.

Figure 11–3. Specifying an “audio” type application

http://

CHAPTER 11: Multitasking 243

The property list editor is not one of Apple’s finest software products, hence the

convoluted steps necessary to do simple tasks.

Audio Applications
As long as audio is specified in the UIBackgroundModes array, and your application is

playing audio, the iOS will keep your application running in the inactive state and will not

move it to the background. This means that all audio callbacks will operate normally,

and for all intents and purposes, your application will, generally, operate normally. For

instance, if your application requires that it download music from a server, it can

continue to do so.

Because of this, however, it’s especially important not to update your UI and adhere to

all the other guidelines outlined previously.

NOTE: There are some caveats to this. Audio applications are given a lot of flexibility in what

they’re allowed to do. For instance, you can access network resources (specifically so that you

can play audio from network and Internet locations). However, you can’t use Mono/.NET Sockets.

Instead you have to use the NSStream class for network streams.

Location Applications
Location applications are applications that depend on location updates to function.

There are two general categories of background operational behavior that an application

can follow:

 Significant location changes only: Your application can be notified

only when a significant change in location occurs. This is only available

in iOS v4.0-and later-on devices that have a cellular radio (iPhone,

iPad 3G, etc.). In this mode, you do not need to register your

application as a location tasked application in the info.plist file.

Your application will be moved to the background state normally, and

then automatically be woken up when significant changes occur, as

long as you subscribe with the

StartMonitoringSignificantLocationChanges method on the

CLLocationManager class. For more information on this, see Chapter 13

(“Core Location”).

 Continuous location updates: Your application can continuously

receive location updates and, generally, will never get moved to the

suspended state. In order to utilize the mode of operation, your

application must register a location value in the UIBackgroundModes

key in the info.plist file.

http://

CHAPTER 11: Multitasking 244

Location services is one of the most draining tasks you can perform on an iOS device;

therefore, unless your application needs continuous, precise location information, the

recommended approach is to subscribe to signification location changes only while in

the background. This method allows the device to power down the radio hardware

necessary to receive precise location data, and instead rely on cell tower changes to

indicate a significant change in location.

One of the main advantages of subscribing to significant location changes is that the

iOS will actually move your application to the inactive state so that it can handle location

updates if it’s in the background state. If the application has been terminated, it will

actually relaunch the application as pass in the location changes in via the options

parameter in the FinishedLaunching method in your application delegate.

For more information on working with location services. see Chapter 13.

VoIP Applications
VoIP applications require that a persistent connection be kept between the device and

the service that powers it; that way the VoIP account can retain its “online” status, even

if the application is not the active application. In order to facilitate this, the iOS provides

several allowances and abilities specifically for VoIP applications to keep a connection

open.

In order to let the iOS know that your application is a VoIP application, you must specify

a voip value in the UIBackgroundModes key in the info.plist file. Additionally, if your

application needs to play sound while in the background (as some VoIP applications do),

you should also include the audio value.

By registering your application as a VoIP application, you get another benefit—the iOS

will actually launch your application when the device is rebooted, so that your user can

remain online with your VoIP service.

VoIP Socket Handling

If your application is registerd as a VoIP application, the system will automatically

manage the underlying socket if your application is suspended. This means that if new

data arrives and your application is suspended, it will move your application to the

inactive state so your application can process the data. Typically, if the data that has

been received is a phone call or other message that needs user notification, your

application should schedule an immediate local notification so that the user is presented

with an option answer the call, or handle the message. If the user accepts the

notification, then the application will be moved to the active state.

VoIP Keep-alive

In order to keep an “online” status with a VoIP service, VoIP applications typically need

to contact the service periodically to keep the connection alive. In order to facilitate this,

http://

CHAPTER 11: Multitasking 245

the iOS has a method that you can call, called SetKeepAliveTimeout, that will wake your

application (move it to the inactive state) if it’s been suspended and allow you to execute

code to keep your connection online:

bool SetKeepAliveTimout (double timeout, NSAction handler);

When you call this method, you pass in the duration of time (in seconds) between calls,

and an anonymous delegate (which is automatically converted to an NSAction)

containing the code to run when the time is up. Typically, you would call this method in

the DidEnterBackground method, as shown in Listing 11–

Listing 11–6. Specifying a keep-alive handler and scheduling it

public override void DidEnterBackground (UIApplication application)
{
 UIApplication.SharedApplication.SetKeepAliveTimeout(600, () => {
 /* keep alive handler code*/ });
}

You should set the timeout parameter to be the largest amount possible, which must be

at least 600 seconds (10 minutes). The iOS guarantees that your handler will be called

before the expiration timeout has been met, but it might be called considerably sooner

because it is typically batched up with a number of other system calls in order to

conserve battery.

Additionally, your handler has 30 seconds to complete, otherwise your application will

be terminated, and so you may want to set a timeout on your network calls to be less

than that.

Summary
In this chapter we learned that mutlittasking in the iOS means something different than

traditional computing and that with it comes certain responsibilities and requirements

that we must adhere to in order to play well with other applications. We also covered the

various types of background tasks you can perform and how to register with the iOS in

order to be able to do them.

In the next chapter, we’re going to take a look at storage in the iOS.

http://

247

247

 Chapter

Working with Touch

Probably the single most renown feature of the iPhone and other iOS devices is the

capacitive touch screen. Instead of using a mouse that has a constant cursor on the

screen, the iOS devices respond to touches directly on the device itself. You can use

one or more fingers and perform complex moves that translate into application actions,

or gestures.

This carries with it a number of interesting implications and differences from traditional

computing. For one, there is no mouseover state, since there is no cursor on the screen,

so a touch can occur anywhere. Furthermore, it introduces a whole set of possibilities

that would be impossible with a mouse. For instance, pinch-to-zoom (whereby a user

can pinch or expand two fingers to zoom out and in) has become a staple of iOS

interaction, yet something as basic as that (in iOS terms) would be impossible with a

traditional mouse.

To deal with this, the CocoaTouch API has been created to specifically handle touch.

Originally, the API consisted of a set of methods that were called when specific touch

events occurred (such as touch start, touch move, and so on), but the iOS v3.2 release

included a much higher-level API based around Gesture Recognizers, which

encapsulated the lower-level events and provided a much simpler way to deal with

complex touch interactions. The iOS ships with a number of common built-in gesture

recognizers, and it allows you to create your own custom ones when you need

something that doesn’t already exist.

In this chapter we’re going to look at when it’s appropriate to use which method and, of

course, how to use them. All of the examples in this chapter can be found in the

Example_Touches companion code and application.

When to Use Which?
With the two options of how to handle touches – either working with the events or using

gesture recognizers – the question is, which one do should you use?

The answer is that you should use gesture recognizers everywhere. However, if there

isn’t a stock recognizer for the gesture that you want to allow your users to use, you

12

http://

CHAPTER 12: Working with Touch 248

need to understand the touch events so that you can build your own custom gesture

recognizers.

One of the biggest advantages of using gesture recognizers is their encapsulation. You

define a gesture recognizer as a discrete class, which gives you major advantages over

using touch events. First, because it’s a class, you can reuse it across multiple screens.

With touch events, if you want to provide the same touch functionality across multiple

views, you’d have to copy your touch event handling code to each view. With a gesture

recognizer, however, you can define it in one place and then use it across many views.

Second, the recognizer pattern encapsulates gesture events into a single callback for

recognition events, rather than multiple events, allowing you consume them with much

less code.

We’re going to take a look at touch events first, since they’re the foundation of handling

touch in the iOS. But before that, we need to cover something very important: enabling

touch.

Enabling Touch
By default, many of the controls in the UIKit do not have touch enabled. This can be

especially frustrating – I’ve spent many an hour trying to figure out why my touches

don’t work. To enable touch in Interface Builder, you need to check the User
Interaction Enabled checkbox in the Interaction section of the Attribute Inspector,

shown in Figure 12–1.

Figure 12–1. Enabling touch on a control in Interface Builder

If you’re building things in code, you should set the UserInteractionEnabled property on

your UIView class to true.

Also, if you set enable touch on a control in Interface Builder and then duplicate or copy

and paste that control, it will lose the enabled value. Therefore, if something isn’t

working, check this first.

Okay, now that we’ve got that out of the way, let’s look at the touch events.

http://

CHAPTER 12: Working with Touch 249

Touch Events
There are three phases of touch (and one cancel event) in the iOS that occur when a

user touches a view, moves their finger(s), or removes their finger(s). When these phases

occur, the iOS calls their associated methods on the UIView and UIViewController. You

can override these methods to intercept the event and handle it accordingly.

 TouchesBegan: This is called when a user’s finger(s) first touches the

screen.

 TouchesMoved: This is called when the location of the touch

changes, but the finger(s) hasn’t been lifted from the screen (as in

sliding the finger around the screen).

 TouchesEnded: This is called when the user’s finger(s) is lifted off the

screen.

 TouchesCancelled: This is called when iOS cancels the touch. This

can occur for a number of reasons, including putting the device near

the face (in the case of the phone devices), the application entering a

background state (for instance, if the device is a phone and the user

receives a call), or terminating in response to a low-memory situation.

Touch events bubble down through the stack, meaning that the touch event occurs on

the topmost UIView or UIViewController, and then get called on the UIViews and

UIViewControllers below them.

The UITouch Class

When a touch event occurs, a set of UITouch objects are passed to the method that

handles the event. The iOS creates a UITouch object for every finger that is on the screen

of the device. The UITouch object includes a rather useful set of methods that allow you

to determine where the touch occurred (and where the previous touch occurred, if there

was one), whether the user tapped more than once, and whether the touch was a swipe

(and in what direction), among other things.

Using Touch Events

When you override a touch event, you should first call the base implementation, and

then the next thing you typically need to do is to get the touch information. Often, you

only want the first touch, so you call the AnyObject method on the touches set to return

the root touch object, and then do a null check, just to make sure for some reason the

touch event was valid. See Listing 12–1.

http://

CHAPTER 12: Working with Touch 250

Listing 12–1. Overriding a touch event method and retrieving the root touch

public override void TouchesBegan (NSSet touches, UIEvent evt)
{
 base.TouchesBegan (touches, evt);

UITouch touch = touches.AnyObject as UITouch;
if (touch != null)
{

 //code here to handle touch
}

}

Multi-Taps

The iOS automatically recognizes successive quick touches on the device as a tap and

aggregates it as one event. If you need to determine if the touch was a double-tap, you

can simply check the TapCount property on the UITouch object, as shown in Listing 12–2.

Listing 12–2. Getting the number of taps of a touch

if(touch.TapCount == 2)
{…}

This greatly simplifies having to count touch events on your own.

Multi-Touch

The iOS supports multiple fingers at the same time. This is why the touches are passed

as a set. However, multiple touch is disabled on controls by default, so if you need to

support it, you have to enable it. To enable multi-touch in Interface Builder, select your

control that you want to receive multiple touches, and then in the Attributes Inspector,

under the Interaction heading, enable Multiple Touch (see Figure 12–2).

Figure 12–2. Enabling multi-touch in Interface Builder for your view

You can also enable multi-touch programmatically via the MultipleTouchEnabled

property (see Listing 12–3).

Listing 12–3. Enabling multi-touch programmatically for your view

this.View.MultipleTouchEnabled = true;

You can get the number of fingers touching via the Count property on the touches

parameter, and of course if you want to do something with more than just the first touch,

you don’t have to call AnyObject to get just one.

http://

CHAPTER 12: Working with Touch 251

Determining Touch Location

UITouch has a method called LocationInView that will return a PointF object that

contains the coordinates in the particular view that you pass in (views can have different

coordinate spaces). Additionally, you can test to see if that location is within a control by

calling the Contains method on the Frame. For example, to test whether the touch

occurs on an image view, you could use the code snippet in Listing 12–4.

Listing 12–4. Testing to see if a touch occurred on an image view

if (this.imgTouchMe.Frame.Contains (touch.LocationInView (this.View)))
{ … }

Now that you understand the constituent parts of the touch events and the UITouch

object, let’s actually put it all together.

Example Application

The best way to understand how to use the touch events is to look at the code. In the

example application, we have a screen that has three images: a Touch Me image, a

Double-Tap Me image, and a Drag Me image. See Figure 12–3.

Figure 12–3. The Example_Touches companion application and code

http://

CHAPTER 12: Working with Touch 252

For each one of these images, we’re going to use the events differently.

 Touch Me: When a touch event occurs on this image, we’ll write out

to the screen what event is happening.

 Double-Tap Me: When this image is double-tapped, it will switch to

another image, showing a highlighted state.

 Drag Me: When a finger is placed on this image and then the finger is

moved, it will move the image along with the finger.

Touch Me Image

In order to determine what event is firing on the Touch Me image, we use the code in

Listing 12–5.

Listing 12–5. Handling different touch events

public override void TouchesBegan (NSSet touches, UIEvent evt)
{
 base.TouchesBegan (touches, evt);
 UITouch touch = touches.AnyObject as UITouch;
 if (touch != null)
 {
 if (this.imgTouchMe.Frame.Contains (touch.LocationInView (this.View)))
 { this.lblTouchStatus.Text = "TouchesBegan"; }
 }
}
public override void TouchesMoved (NSSet touches, UIEvent evt)
{
 base.TouchesMoved (touches, evt);
 UITouch touch = touches.AnyObject as UITouch;
 if (touch != null)
 {
 if (this.imgTouchMe.Frame.Contains (touch.LocationInView (this.View)))
 { this.lblTouchStatus.Text = "TouchesMoved"; }
 }
}
public override void TouchesEnded (NSSet touches, UIEvent evt)
{

base.TouchesEnded(touches, evt);
 UITouch touch = touches.AnyObject as UITouch;
 if (touch != null)
 {
 if (this.imgTouchMe.Frame.Contains (touch.LocationInView (this.View)))
 { this.lblTouchStatus.Text = "TouchesEnded"; }
 }
}

Nothing should be too surprising here. We’ve overridden the three main touch events,

and in each one we’ve done the following:

1. Retrieved the Root (First) Touch.

2. Tested for null.

http://

CHAPTER 12: Working with Touch 253

3. Tested to see if the Touch Occurred within the Bounds of the Control.

4. Updated a Label to Show Touch Status.

If you run the application, you should see the label to the left of the Touch Me image

updated with the current event.

Double-Tap Me Image

In order to change the Double-Tap Me image when it’s double-tapped, we use the code

shown in Listing 12–6.

Listing 12–6. Changing an image when it’s double-tapped

protected bool _imageHighlighted = false;
public override void TouchesBegan (NSSet touches, UIEvent evt)
{
 base.TouchesBegan (touches, evt);
 UITouch touch = touches.AnyObject as UITouch;
 if (touch != null)
 {
 if(touch.TapCount == 2 && this.imgTapMe.Frame.Contains(

touch.LocationInView(this.View)))
 {
 if(this._imageHighlighted)
 { this.imgTapMe.Image =

UIImage.FromBundle("Images/DoubleTapMe.png"); }
 else { this.imgTapMe.Image =

UIImage.FromBundle("Images/DoubleTapMe_Highlighted.png")
; }

 this._imageHighlighted = !this._imageHighlighted;
 }
 }
}

As with before, we get our touch and do the null check, but then we check to see if the

TapCount is equal to 2, and if the touch occurred on the Tap Me image. If yes, we check

out bool flag to see whether we’re displaying the normal or the highlighted image, and

simply show the other one.

Drag Me Image

Dragging is a little bit more complicated, because we have to track state across touch

events. Specifically, we need to track whether a touch began in a particular object (that

is going to be dragged), then move the object when the touch moves, and finally, reset

our state when the touch ends or is cancelled.

Dragging also requires knowledge of where the touch was in the previous

TouchesMoved event so that we can calculate the change in location and apply that

change to the object. For that, we can use the PreviousLocationInView method on the

UITouch object, which works exactly like LocationInView, except that it gives us the

most recent updated location before the current.

http://

CHAPTER 12: Working with Touch 254

For example, Listing 12–7 supports dragging by checking whether a touch started in the

particular object we want to move (in this case, the imgDragMe image view); then when

the touch moves, it moves the object along with the touch.

Listing 12–7. Using touch events to drag an image view around the main view

protected bool _touchStartedInside;
public override void TouchesBegan (NSSet touches, UIEvent evt)
{
 base.TouchesBegan (touches, evt);
 UITouch touch = touches.AnyObject as UITouch;
 if (touch != null)
 {
 if (this.imgDragMe.Frame.Contains(touch.LocationInView (this.View)))
 { this._touchStartedInside = true; }
 }
}
public override void TouchesMoved (NSSet touches, UIEvent evt)
{
 base.TouchesMoved (touches, evt);
 //---- get the touch
 UITouch touch = touches.AnyObject as UITouch;
 if (touch != null)
 {
 if (this._touchStartedInside)
 {
 //---- move the shape
 float offsetX = touch.PreviousLocationInView(this.View).X

- touch.LocationInView(this.View).X;
 float offsetY = touch.PreviousLocationInView(this.View).Y

- touch.LocationInView(this.View).Y;
 this.imgDragMe.Frame = new System.Drawing.RectangleF(

new PointF(this.imgDragMe.Frame.X – offsetX
, this.imgDragMe.Frame.Y - offsetY),

this.imgDragMe.Frame.Size);

 }
 }
}
public override void TouchesEnded (NSSet touches, UIEvent evt)
{
 base.TouchesEnded(touches, evt);
 this._touchStartedInside = false;
}
public override void TouchesCancelled (NSSet touches, UIEvent evt)
{
 base.TouchesCancelled (touches, evt);
 this._touchStartedInside = false;
}

In this example, we also utilized the TouchesCancelled event method to reset our

_touchStartedInside flag, in the event that the touch was cancelled.

As you can see, this required quite a bit of code just to drag an object. We had to

override all four of the touch event methods in order to accomplish it. It’s for this very

reason that Apple created gesture recognizers, which simplify this process considerably.

http://

CHAPTER 12: Working with Touch 255

Gesture Recognizers
Gesture recognizes greatly simplify performing actions in your applications in response

to complicated touches, because they encapsulate them into a single touch event,

called a gesture. The iOS has a number of built-in gestures that it understands, which

are encapsulated in various UIGestureRecognizer classes. The built-in gesture

recognizers include the following:

UITapGesturesRecognizer: For taps, one or more

UIPinchGestureRecognizer: Pinching and spreading apart fingers (to

zoom, for example)

UIPanGestureRecognizer: Panning or dragging

UISwipeGestureRecognizer: Swiping in any direction

UIRotationGestureRecognizer: Rotating two fingers (like spinning an

image)

UILongPressGestureRecognizer: Press and hold

Additionally, you can define your own gesture recognizers for custom touch actions and

use them as you would the built-in gestures recognizers.

Using Gesture Recognizers

Always use gesture recognizers for the actions for which they were designed, because

users expect them to work a certain way. For example, the pinching gesture should

zoom out, or have similar functionality, and the rotation gesture should rotate an object

or the screen in some way. This doesn’t mean that you can’t get creative with them, but

if you stray too far away from their intended use, Apple could reject your application.

Plus, if you use them the way they were intended, your users will find your app more

intuitive, and that could go a long way to making your app successful in terms of

adoption.

Gesture recognizers are applied to views in which they listen to touch events, and when

a gesture occurs they call a method (known as a target) that you’ve wired up to handle

the event. It’s not that different from the standard .NET eventing model, but since the

underlying mechanism is Objective-C, as we’ll see, it’s a little strange.

The basic pattern to using gesture recognizer is as follows:

1. Create the gesture recognizer: Simply declare the type of gesture you

want to recognize and instantiate it.

http://

CHAPTER 12: Working with Touch 256

2. Configure target: Gesture recognizers can execute code, known as a

target, that you configure when the status of gesture recognition occurs.

You can have a gesture call many targets; you’re not limited to just one.

Within that target, you should check to see what it’s status is (via its

State property, which we’ll examine shortly), and update your

application accordingly.

3. Configure any gesture settings: Depending on the gesture, there

might be properties that you’ll want to set. For example, if you’re using a

swipe gesture, you would specify which direction of swipe you want to

recognize; if you’re using a tap gesture, you might want to tell it how

many taps to listen for.

4. Enable it: Once the gesture is configured, you must tell it that it’s okay

to receive touches.

5. Add it to the view: The final step is to add the gesture recognizer to the

actual view that you want to listen for gestures on. For example, if we

want to listen for the pan/drag gesture on an image view to move it

when the user moves his finger, we would add it to the image view.

Let’s take a look at each one of these steps in more detail.

Creating the Gesture Recognizer

Creating a gesture recognizer is easy: simply declare the gesture, whether built-in or

custom, and instantiate it. See Listing 12–8.

Listing 12–8. Declaring and instantiating a gesture

UITapGestureRecognizer tapGesture = new UITapGestureRecognizer();

A reference to the gesture recognizer will get attached to the view that you add it to

later, so it’s kept around by the MonoTouch runtime and won’t be garbage collected

until the view is gone. Therefore, you don’t have to worry about creating it as a class-

level variable.

Configuring the Gesture

After you’ve instantiated the gesture recognizer, you should configure any properties

that you need to control the gesture’s recognition behavior. Tables 12–1 through 12–4

list a set of common properties for the built-in gesture recognizers that have

configurable properties.

http://

CHAPTER 12: Working with Touch 257

Table 12–1. UITapGestureRecognizer

Property Name Purpose

NumberOfTapsRequired Specifies the number of times a user taps the view in order to

fire the gesture. The Default is one.

NumberOfTouchesRequired Specifies the number of fingers required to qualify as a tap. The

Default is one.

Table 12–2. UIPanGestureRecognizer

Property Name Purpose

MinimumNumberOfTouches The minimum number of fingers necessary for the gesture to be

recognized. Typically one finger should be used to drag an

object or to scroll, and two fingers should navigate or flip

pages, and so on. The Default is one.

MaximumNumberOfTouches The maximum number of fingers allowed to qualify as a pan

gesture.

Table 12–3. UISwipeGestureRecognizer

Property Name Purpose

Direction The direction of the swipe necessary to be recognized as the

gesture. Valid values are Up, Down, Left, and Right, and are

contained the in the UISwipeGestureRecognizerDirection

enumeration.

NumberOfTouchesRequired Specifies the number of fingers required to qualify as a swipe.

The Default is one.

Table 12–4. UILongPressGestureRecognizer

Property Name Purpose

MinimumPressDuration The minimum time interval, in seconds, of the touch required

before the gesture is recognized. The default is 0.4 seconds.

NumberOfTouchesRequired The number of fingers necessary for the gesture to be

recognized. The default is one.

NumberOfTapsRequired The number taps necessary for the gesture to be recognized.

The default is one.

AllowableMovement The allowed movement of the fingers (in pixels) before the

gesture is cancelled. The default is 10 pixels.

http://

CHAPTER 12: Working with Touch 258

Configuring the Target

When a gesture has been recognized, iOS will call each target that is wired up to

execute. A target is a lot like an event handler – however, because the iOS is responsible

for managing gestures and Objective-C doesn’t have the concept of eventing, it’s a little

different. Instead of the traditional .NET handler syntax (+=), you have to call the

AddTarget method on the gesture recognizer and pass it one of the following two things:

 An Anonymous Delegate or Lambda

 An Objective-C Selector

The easiest (and most .NET-like) way is to use an anonymous delegate or Lambda, but

I’ll cover both methods.

Using an Anonymous Delegate or Lambda

Configuring an anonymous delegate or Lambda to execute when a gesture is

recognized is very easy, and it works conceptually just like an event. One of the

overloads of AddTarget takes an NSAction. MonoTouch has an implicit conversion from

delegate to NSAction, so you can pass your delegate (or in the case of the following

code, a Lambda), directly to the AddTarget method. For example, Listing 12–9 updates

a label when a tap gesture is recognized.

Listing 12–9. Adding a Lambda target to a gesture

tapGesture.AddTarget(() => {
 this.lblGestureStatus.Text = "tap me image tapped @" +
 tapGesture.LocationOfTouch(0, this.imgTapMe).ToString();
});

Using the Selector Pattern

If you want to configure an Objective-C selector to execute when the gesture is

recognized, it’s a little more complicated.

A selector is simply a method that is visible to the underlying iOS runtime. Objective-C

doesn’t have the concept of methods and parameters; instead, it has selectors to which

messages are passed. In order to make a method visible to the runtime, MonoTouch

includes an ExportAttribute with which you decorate your method. See Listing 12–10.

Listing 12–10. Making your method visible to the underlying Objective-C runtime as a selector

[Export("HandleTap")]
public void HandleTap(UITapGestureRecognizer recognizer)
{
 …
}

If you read the first section of this book, this should look familiar to you, because this is

how outlets are made visible to .xib files.

http://

CHAPTER 12: Working with Touch 259

Once you’ve created your handler and attributed it, you can add it as a target, and

simply create a new Selector object with the name of the handler. See Listing 12–11.

Listing 12–11. Wiring up a selector target for the gesture recognizer to call when it occurs

tapGesture.AddTarget(this, new Selector("HandleTap"));

In this case, the first parameter is a reference to the current view controller, where our

HandleTap method resides.

Enabling Gesture Recognition

Gestures will only be enabled if touch interactions are enabled on the view that you’re

adding a gesture to. See the “Enabling Touch” section in the beginning of this chapter

for more information.

Adding the Gesture to a View

The final step in using gesture recognizers is to add the gesture to the view that you

actually want the gesture to be recognized on. To do this, simply call the

AddGestureRecognizer on the view object that you want to listen for the gesture on, and

pass your configured gesture. See Listing 12–12.

Listing 12–12. Adding a gesture recognizer to a view

this.imgDragMe.AddGestureRecognizer(gesture);

That’s it! Now you can use your gesture recognizer. Now let’s look at what information

we get when a gesture occurs, so we can have an idea of how to actually create our

handlers, and then we’ll walk through a couple examples of actually using them.

Retrieving Gesture Information

When the gesture target event handler/subscriber is called, a reference to the gesture

that occurred is passed to the handler. Depending on the gesture type, you can get

different information about the gesture via properties and methods on that gesture

object. Tables 12–5 through 12–8 list the common information available on the built-in

gestures.

Table 12–5. UIPinchGestureRecognizer

Name Type Purpose

Scale Property The scale factor of how far the user moved their fingers.

Velocity Property The speed at which the user moved their fingers.

http://

CHAPTER 12: Working with Touch 260

Table 12–6. UIPanGestureRecognizer

Name Type Purpose

TranslationInView Method Returns a System.Drawing.PointF object describing

the offset of movement from the original location in

the coordinate system of the view passed in.

VelocityInView Method The speed at which the user moved their fingers in

both the horizontal and vertical directions. Also

returns a System.Drawing.PointF object; however,

instead of coordinate values, the X and Y properties

represent the velocity along those axis.

Table 12–7. UISwipeGestureRecognizer

Name Type Purpose

LocationInView Method Returns a System.Drawing.PointF object describing

the center of the touch (or touches) in the coordinate

system of the view passed in.

LocationOfTouch Method Returns a System.Drawing.PointF object describing

the location of a given touch.

Table 12–8. UIRotationGestureRecognizer

Property Name Purpose

Rotation The angle, in radians, of the rotation of the gesture.

Velocity The speed in which the fingers were moved.

In addition to the information just referenced, all gestures have a property called State

that gives you important information on what their status is.

Gesture Recognizer States

Gesture recognizers are state machines. That’s really just a fancy way of saying that

they have various states and they keep track of what state they are currently in. Gesture

recognizer state is important, because every time it changes, the iOS calls its

subscribing method (or Selector) giving it an update. In fact, if you’re creating a custom

gesture and you never change the state, the subscriber is never called, thereby making

the gesture recognizer useless.

The states that a gesture can have are dependent on what type of gesture it is

recognizing, either discrete or continuous. A discrete gesture is a gesture that fires

once after it has been recognized, and a continuous gesture is a gesture that continues

to fire as it changes. For example, a tap gesture is discrete because once the tap(s)

http://

CHAPTER 12: Working with Touch 261

occur, the gesture recognizer’s target event handler/consumer is called one time. On the

other hand, the pan gesture is continuous, because once it begins, it continues to fire

and send updates as the user moves her finger around.

The states that a gesture recognizer can exist in are contained in the

UIGestureRecognizerState enumeration and include the following:

 Possible: This is state that all gesture recognizers start in. If you’re

creating a custom gesture, you don’t have to set this yourself in your

derived class, because the base class starts in Possible.

 Began: When a continuous gesture is first recognized, the state is set

to Began, so that the subscribers to that gesture can differentiate

between data when the gesture recognition started, and when it

changed. This is important for features like dragging, when you need

to know when the gesture began so that you can cache the original

location of the object you’re moving. We’ll look at this in a bit.

 Changed: After a continuous gesture has begun, but hasn’t finished,

the state will be set to Changed every time a touch moves or changes,

as long as it’s still within the expected parameters of the gesture.

 Cancelled: The Cancelled state should be set if the recognizer went

from Began to Changed, but then the touches changed in such a way

as to no longer fit the pattern expected for the gesture.

 Recognized: When a recognizer detects a set of matching touch data

for the particular gesture for which it’s listening, it will change its state

to Recognized, which tells the consuming handler that the gesture has

finished.

 Ended: The Ended state is an alias for the Recognized state, and

therefore does the same thing.

 Failed: When the touches don’t match the particular gesture a

recognizer is listening for, the state will change to Failed, which

means that the iOS will continue to try and recognize other gestures

and call touch events.

The possible state transitions are illustrated as shown in Figure 12–4.

http://

CHAPTER 12: Working with Touch 262

Figure 12–4. Possible gesture recognition states, depending on gesture type.

Example Using the Tap Gesture

Now that you understand the pieces of using a gesture recognizer, let’s put it all

together and look at a couple examples. This first example creates a tap gesture

recognizer that requires a double-tap and then updates a label with the location of the

touch (in the local coordinate system of the image view) when it fires. See Listing 12–13.

Listing 12–13. Setting up a tap gesture recognizer

UITapGestureRecognizer tapGesture = new UITapGestureRecognizer();
tapGesture.AddTarget(() => {
 this.lblGestureStatus.Text = "tap me image tapped @"

+ tapGesture.LocationOfTouch(0, this.imgTapMe).ToString();
});
tapGesture.NumberOfTapsRequired = 2;
this.imgTapMe.AddGestureRecognizer(tapGesture);

As you can see, using gesture recognizers can greatly simplify handling touch actions as

compared to handling the events yourself.

Example Using the Pan Gesture to Drag an Object

Earlier, we looked at how to handle dragging of objects using touch events. Now let’s do

the same thing, except with a gesture recognizer. For dragging, we’ll use the

UIPanGestureRecognizer, which recognizes when a finger touches the screen and is

then moved around.

http://

CHAPTER 12: Working with Touch 263

Unfortunately, the pan gesture recognizer doesn’t give us the previous touch location,

so instead, every time the gesture begins, we have to cache the location of the object

we want to move and then calculate the offset. As such, the first thing we need to do is

declare a class-level variable to cache our object location. See Listing 12–14.

Listing 12–14. Creating a class variable to cache our object’s location

System.Drawing.RectangleF _originalImageFrame = System.Drawing.RectangleF.Empty;

Next, we create, configure, enable, and add the gesture recognizer to our image. See

Listing 12–15.

Listing 12–15. Creating a class variable to cache our object’s location

UIPanGestureRecognizer gesture = new UIPanGestureRecognizer();
gesture.AddTarget(() => { HandleDrag(gesture); });
this.imgDragMe.AddGestureRecognizer(gesture);

Finally, in our HandleDrag method, we check move our object based on the state of the

recognizer. See Listing 12–16.

Listing 12–16. Moving an object during a pan gesture recognizer handler method

protected void HandleDrag(UIPanGestureRecognizer recognizer)
{
 //---- if it's just began, cache the location of the image
 if(recognizer.State == UIGestureRecognizerState.Began)
 { this._originalImageFrame = this.imgDragMe.Frame; }

 if(recognizer.State != (UIGestureRecognizerState.Cancelled
 | UIGestureRecognizerState.Failed
 | UIGestureRecognizerState.Possible))
 {
 //---- move the shape by adding the offset to the object's frame
 System.Drawing.PointF offset
 = recognizer.TranslationInView(this.imgDragMe);
 System.Drawing.RectangleF newFrame = this._originalImageFrame;
 newFrame.Offset(offset.X, offset.Y);
 this.imgDragMe.Frame = newFrame;
 }
}

There we have it! We’ve successfully implemented dragging without having to handle

the event methods ourselves and keep track of state, and so on.

Working with Multiple Gesture Recognizers

Sometimes you need to apply multiple gesture recognizers to a single view. For

example, you might want allow both panning and pinching gestures on scroll view to

allow users to move the view about and also zoom in/out. When working with multiple

gestures in one view, there are a few considerations and opportunities.

http://

CHAPTER 12: Working with Touch 264

Allowing Simultaneous Gesture Recognition

By default, gesture recognizers do not run simultaneously. That is, if you have two

gesture recognizers attached to a view, each one is given the opportunity to receive

touch events in a non-deterministic order, but they won’t receive events simultaneously.

If, in the rare instance, you do want them to have the opportunity to operate

simultaneously, you must override the ShouldRecognizeSimultaneously property and

return true. See Listing 12–17.

Listing 12–17. Allowing a gesture recognizer to operate simultaneously

gesture.ShouldRecognizeSimultaneously += (UIGestureRecognizer r) => { return true; };

Note, however, that returning true will guarantee that the recognizer can operate

concurrently with other recognizers, but returning false does not guarantee non-

concurrent operation, because other recognizers can return true, allowing them to

operate concurrently.

Disabling Another Gesture

Sometimes you may want to prevent a gesture recognizer from functioning. For

example, you may have multiple gesture recognizers attached to a view, but depending

on what’s going on in the view, you may only want certain gestures to be recognized at

any given time. Also, sometimes you want even finer control, in which you wish to allow

what touches another gesture receives, or even how it processes the touches.

Because of this, gesture recognizes implement two delegate properties that allow you to

examine the state of your application and of the current touch events and make

decisions on how and whether to recognize gestures. These two events are the

following:

 ShouldReceiveTouch: The ShouldReceiveTouch delegate method is

called right before the recognizer is passed a touch event and allows

you to examine the touches and decide whether each one can be sent

to the recognizer. One possible use of this is if you have two gesture

recognizers and you want to enable simultaneous recognition, but you

want to split the touches between the gestures. You can also use this

method to disable a gesture recognizer altogether, by simply returning

false without being discriminate about the particular touch.

 ShouldBegin: The ShouldBegin delegate method is called when a

recognizer attempts to change state from Possible, to another state.

Returning false will force the state to be changed to Failed, no matter

what state it was getting changed to. This provides you with an

opportunity to examine the state of your application and the gesture,

and cancel the recognition event at the last possible moment.

You can override these methods via a strongly typed UIGestureRecognizerDelegate

class, a weak delegate (with the proper Selector Export attributes), or you can simply

bind via the event handler syntax. For example, Listing 12–18 overrides the

http://

CHAPTER 12: Working with Touch 265

ShouldReceiveTouch method to disable the recognition by preventing any touch events

from reaching it.

Listing 12–18. Preventing a recognizer from receiving any touches

gesture.ShouldReceiveTouch += (UIGestureRecognizer r, UITouch t) => { return true; };

Requiring Another Gesture to Fail Before One Succeeds

Sometimes, as a requirement of a gesture recognition succeeding, you might want

another to fail. For instance, say you have a two gesture recognizers on a single view;

one that recognizes a single tap, and one that recognizes a double-tap. You likely don’t

want the single tap gesture to succeed unless the double-tap gesture fails.

To require another gesture to fail before a gesture succeeds, you can call the

RequireGestureRecognizerToFail method and pass in the gesture that must fail. See

Listing 12–19.

Listing 12–19. Requiring another gesture to fail before the current one succeeds

gesture.RequireGestureRecognizerToFail(otherGesture);

Allowing Gestures and Touch Events Simultaneously

If you add a gesture recognizer to a view, the view (and any views below it) will not

receive touch events. This can especially be a problem if you have layered views in

which you want a transparent view on top to listen for gestures, but you need to listen

for touch events on a view underneath. In order to allow touch events simultaneously

with gestures, you need to set the CancelsTouchesInView property on the gesture to

false, as in Listing 12–20.

Listing 12–20. Enabling touch events even when a gesture recognizer is enabled

this._tapGesture.Recognizer.CancelsTouchesInView = false;

Creating a Custom Gesture

Although the built-in gesture recognizers cover a lot of the common tasks, sometimes

you want to create a custom gesture recognizer that doesn’t exist. For example, let’s

say you want to create a checkmark gesture, whereby a user makes a “V” with their

finger. In this section you’re going to learn how to do just that.

Creating a custom gesture recognizer is actually fairly easy if you understand the touch

events, because it’s little more than a wrapper around them. You simply inherit from

UIGestureRecognizer, override the touch event methods, and then bubble up your

recognition status via the base class’ State property.

http://

CHAPTER 12: Working with Touch 266

Checkmark Gesture Recognizer Example

Let’s take everything that we’ve learned about touch and put it together in a custom

gesture recognizer that recognizes “V” gestures for checkmarks. We create a custom

class that inherits from UIGestureRecognizer and overrides the touch events, keeping

track internally of the actual gesture movements. See Listing 12–21.

Listing 12–21. A custom gesture recognizer for checkmarks

public class CheckmarkGestureRecognizer : UIGestureRecognizer
{
 //---- declarations
 protected bool _strokeUp = false;
 protected PointF _midpoint = PointF.Empty;

 public CheckmarkGestureRecognizer () { }

 /// <summary>
 /// Is called when the fingers touch the screen.
 /// </summary>
 public override void TouchesBegan (MonoTouch.Foundation.NSSet touches,
 UIEvent evt)
 {
 base.TouchesBegan (touches, evt);
 //---- we want one and only one finger
 if(touches.Count != 1)
 { base.State = UIGestureRecognizerState.Failed; }
 }

 /// <summary>
 /// Called when the fingers move
 /// </summary>
 public override void TouchesMoved (MonoTouch.Foundation.NSSet touches,
 UIEvent evt)
 {
 base.TouchesMoved (touches, evt);

 //---- if we haven't already failed
 if(base.State != UIGestureRecognizerState.Failed)
 {
 //---- get the current and previous touch point
 PointF newPoint = (touches.AnyObject as UITouch)

.LocationInView(this.View);
 PointF previousPoint = (touches.AnyObject as UITouch).

PreviousLocationInView(this.View);

 //---- if we're not already on the upstroke
 if(!this._strokeUp)
 {
 //---- if we're moving down, just continue to set the
 // midpoint at whatever point we're at. when we start
 // to stroke up, it'll stick as the last
 // point before we upticked
 if(newPoint.X >= previousPoint.X

&& newPoint.Y >= previousPoint.Y)
 { this._midpoint = newPoint; }

http://

CHAPTER 12: Working with Touch 267

 //---- if we're stroking up (moving right x and up y
 // [y axis is flipped])
 else if (newPoint.X >= previousPoint.X

&& newPoint.Y <= previousPoint.Y)
 { this._strokeUp = true; }
 //---- otherwise, we fail the recognizer
 else { base.State = UIGestureRecognizerState.Failed; }
 }
 }
 }

 /// <summary>
 /// Called when the fingers lift off the screen
 /// </summary>
 public override void TouchesEnded (MonoTouch.Foundation.NSSet touches,
 UIEvent evt)
 {
 base.TouchesEnded (touches, evt);
 //---- if the gesture is possible, and it stroked upwards, we
 // recognized!
 if(base.State == UIGestureRecognizerState.Possible && this._strokeUp)
 { base.State = UIGestureRecognizerState.Recognized; }
 }

 /// <summary>
 /// Called when the touches are cancelled due to a phone call, etc.
 /// </summary>
 public override void TouchesCancelled (MonoTouch.Foundation.NSSet touches,
 UIEvent evt)
 {
 base.TouchesCancelled (touches, evt);
 //---- we fail the recognizer so that there isn't unexpected behavior
 // if the application comes back into view
 base.State = UIGestureRecognizerState.Cancelled;
 }

 /// <summary>
 /// Called when the state transitions to ended or recognized
 /// </summary>
 public override void Reset ()
 {
 base.Reset ();

 this._strokeUp = false;
 this._midpoint = PointF.Empty;
 }
}

If you’ve been reading this chapter from the beginning, nothing here should be

surprising, except for one override method, Reset.

http://

CHAPTER 12: Working with Touch 268

Reset Method

The Reset method is called when the State property changes to either Recognized or

Ended, the Reset method is called, giving you a chance to reset any internal state that

you’ve set in your custom gesture recognizer. That way your class can start fresh when

the user interacts with the application again and it can be ready to re-attempt at

recognizing the gesture.

Using the Custom Gesture Recognizer

The custom gesture recognizer can be used just as you would any of the built-in

recognizers. Listing 12–22 toggles an image between checked and unchecked, every

time the user makes a checkmark gesture on it.

Listing 12–22. Using a custom gesture recognizer

this._checkmarkGesture = new CheckmarkGestureRecognizer();
this._checkmarkGesture.AddTarget(() => {
 if(this._checkmarkGesture.State == (UIGestureRecognizerState.Recognized

| UIGestureRecognizerState.Ended))
 {
 if(this._checked)
 { this.imgCheckmark.Image =

UIImage.FromBundle("Images/CheckBox_Unchecked.png"); }
 else { this.imgCheckmark.Image =
 UIImage.FromBundle("Images/CheckBox_Checked.png"); }
 this._checked = !this._checked;
 }
});
this.imgCheckmark.AddGestureRecognizer(this._checkmarkGesture);

If you run the Example_Touches companion application, click Custom Gesture

Recognizer on the home page, it takes you to a screen where you can test out the

checkmark recognizer to toggle the image. See Figure 12–5.

http://

CHAPTER 12: Working with Touch 269

Figure 12–5. Custom gesture recognizer in action

As you can see, you can add some pretty cool functionality to your applications using

custom gesture recognizers which can be reused across pages.

Summary
The iOS includes two different ways to handle touch interactions: via events and gesture

recognizers. In this chapter we looked at working with both, as well as how to create

custom gesture recognizers when you need to recognize a gesture that isn’t built in.

http://

271

271

 Chapter

Working with Shared
Resources

iOS contains a number of shared resources that you can access from your application.

In this chapter, we’re going to look at using the following iOS resources:

 File system

 Battery

 Contacts

 Photos and camera

 Network indicator

 Accelerometer

File System
Working with the file system in iOS is not unlike working with the file system in .NET

from Windows. You can still use the System.IO classes that you’re used to working with,

such as Directory, File, and the like, but there are a few restrictions to be aware of.

Additionally, it’s important to understand the directory structure specific to iOS

applications in order to know where and when to store things.

Case-Sensitivity

Before delving into the file system, an important point should be noted: although the

simulator’s file system is case-insensitive, the device’s file system is case-sensitive. For

this reason, it’s very important to pay attention to file casing and to test on an actual

device early and often in the development cycle.

13

http://

CHAPTER 13: Working with Shared Resources 272

Application Sandbox

When your application is installed, iOS creates a directory for it from a GUID and then

copies in the .app package, which contains your application source and any embedded

resources. It also creates a number of key directories, which we’ll look at in the next

section.

The directory to which your application is installed is part of the Application Sandbox.

The sandbox is a general set of rules and restrictions. For example, say your application

is given a sandbox in which it can play, but it can do limited things outside of that

sandbox. In the case of iOS, you can read and write files to your application directory

(and sub-directories), but you can generally only read files from other locations.

This is part of Apple’s security model, and it’s intended to prevent malicious programs

and code from compromising the integrity of other applications and system data.

Application Directories

The directories listed in Table 13–1 are created in your application’s root directory when

the application is installed and they’re available for your application to use.

Table 13–1. Application Directories

File Location Description

[ApplicationName].app This is your applications bundle. It contains your

application executable and all resources included in

the build. You can get the path to this directory via

the NSBundle.MainBundle.BundlePath property.

Documents Use this directory to store documents and application

data files. This directory can be made available for

access and sharing via iTunes so that users can copy

files to and from it from their computer. In order to

enable sharing on this directory, add a

UIFileSharingEnabled boolean key to your info.plist

file and set it to true/yes.

You can get the path to this directory via an
Environment.GetFolderPath

(Environment.SpecialFolder.MyDocuments) call.

Library This is the top-level directory for two other important

directories: Preferences and Caches. You can put

files in this directory that you don’t want shared via

iTunes. You can also create other directories in here if

you need them to support your application.

http://

CHAPTER 13: Working with Shared Resources 273

File Location Description

Library/Preferences/ The preferences directory is where iOS stores your

application settings. You shouldn’t access this

directory directly; instead, you should use the settings

API. See Chapter 14 for more information.

Library/Caches/ The Caches directory should be used for transient

files that need to be persisted in between launches,

but not backed up.

For instance, if you’re creating an RSS feed reader

that caches RSS feeds, this would be a good folder in

which to store them.

Files in this directory will be removed when a device

is restored, so you should always check for an

expected file’s existence and be able to rebuild them

if they’ve been deleted.

Additionally, files in this folder aren’t deleted unless

the device is restored, so your application is

responsible for deleting these files when they’re no

longer needed.

tmp The tmp directory should be used for temporary files

that don’t need to be retained between application

launches.

For instance, if your application downloads files from

the Internet, this is a good folder in which to store the

files during download, until they’re finished and

you’ve moved them to their appropriate place.

Generally, you should delete files placed in this

directory when they’re no longer needed; however,

iOS may remove them when your application isn’t

running.

Backup/Restore

When a user backs up their device in iTunes, all directories except for the following are

backed up:

 Application Bundle

 Library/Caches

 tmp

http://

CHAPTER 13: Working with Shared Resources 274

Backing up large files can take a considerable amount of time, so if your application

creates large files that can be recreated, you should consider putting them in the

Library/Caches folder instead of the Documents folder.

Application Updates

When a new version of your application is downloaded, iOS installs the application into a

new folder, moves the following folders over, and then deletes the old installation:

 Documents

 Library

Other folders and data may be moved over, but they’re not guaranteed, so you should

make sure that you put any data or documents that need to be persisted across updates

in those folders.

Device Battery
You can check the current status of the battery, including its charge amount, as well as

whether it’s plugged in and charging. In order to make battery information available to

your application, you must first enable battery monitoring setting the

BatteryMonitoringEnabled property on the UIDevice class. See Listing 13–1.

Listing 13–1. Enabling battery monitoring

UIDevice.CurrentDevice.BatteryMonitoringEnabled = true;

Battery Level

Once you’ve enabled battery monitoring, you can get the current charge level via the

BatteryLevel property. Listing 13–2 comes from the Example_SharedResources

application and sets a progress bar to match the current battery level.

Listing 13–2. Retrieving the battery charge level

this.barBatteryLevel.Progress = UIDevice.CurrentDevice.BatteryLevel;

The value returned is a float value between 0 and 1, with 0 being empty, 1 being

completely charged, and .5 being 50% charged. If monitoring hasn’t been enabled, it

will return -1. Figure 13–1 is a screenshot from the Example_SharedResources

application showing the battery charge level and battery state.

http://

CHAPTER 13: Working with Shared Resources 275

Figure 13–1. Battery charge level and current battery state shown

Battery State

You can get the current state of the battery via the BatteryState property on the

UIDevice class, which will return one of the following UIDeviceBatteryState enumeration

values:

 Charging: The device is plugged in and actively charging.

 Full: The device has a fully-charged battery, it may or may not be

plugged in.

 Unknown: The battery status is unknown; this happens if you haven’t

enabled monitoring.

 Unplugged: The device is unplugged and is not charging.

Listing 13–3 comes from the Example_SharedResources application and sets a text label

to show the current battery state.

Listing 13–3. Retrieving the current battery state

this.lblBatteryState.Text = UIDevice.CurrentDevice.BatteryState.ToString();

http://

CHAPTER 13: Working with Shared Resources 276

Getting Battery Change Notifications

You can receive notifications when the battery level or the battery state changes from

iOS. Unfortunately, it’s not as easy as just subscribing to an event. Instead, you must

add an Observer to the NSNotificationCenter class and listen for

BatteryLevelDidChangeNotification or BatteryStateDidChangeNotification
notifications. For example, Listing 13–4 is from the Example_SharedResources
application, and updates the battery level and state, respectively, when they change.

Listing 13–4. Subscribing to battery change notifications

//---- add a notification handler for battery level changes
NSNotificationCenter.DefaultCenter.AddObserver
(UIDevice.BatteryLevelDidChangeNotification

, (NSNotification n) => {
this.barBatteryLevel.Progress = UIDevice.CurrentDevice.BatteryLevel;

 n.Dispose();
});
//---- add a notification handler for battery state changes
NSNotificationCenter.DefaultCenter.AddObserver
(UIDevice.BatteryStateDidChangeNotification

, (NSNotification n) => {
this.lblBatteryState.Text = UIDevice.CurrentDevice.BatteryState.ToString();

 n.Dispose();
});

Address Book/Contacts
iOS has a concept of a shared contact database known as the Address Book. Address

book/contact data is shared across many different applications that ship with iOS

including the Contacts Application, Mail, and even the Phone Dialer (for those devices

that include cellular support).

iOS offers the following two ways to work with the shared address book:

Utilize the address book controllers: You may have noticed that all

of the built-in applications share many of the same screens for contact

searching and editing. Apple makes available these screens via built-in

controllers that you can create and show, much as you would your

own custom screens, but they encapsulate all of the functionality for

working with the address book and simplify contact management

greatly.

Access the address book directly: In addition to the screens that

iOS provides you, there is a lower-level API, called the Address Book

API, that allows you to query and modify the address book directly.

For most scenarios, using the address book controllers is the recommended way.

They’re very powerful and give you a ton of functionality for free. However, sometimes

it’s inappropriate to show the standard screens; or, in some cases, you simply need to

query the address book database. For that scenario, you should use the API directly.

http://

CHAPTER 13: Working with Shared Resources 277

In this section, we’re going to look at the different types of address book controllers and

how to use them, and then we’re going to explore the address book API, for when the

controllers don’t do what you need.

Address Book Controllers

There are four main controllers that you can invoke from your application and each one

is designed for a specific address book related task:

 ABPeoplePickerNavigationController: Also known as the contact

picker, this controller is used to allow your users to choose a contact

from the address book. After the user chooses a contact, it’s returned

to your application.

 ABPersonViewController: The person view controller is used to

display a single contact and, optionally, to allow edits.

 ABNewPersonViewController: The new person view controller is

used to add a new contact to the address book.

 ABUnknownPersonViewController: The unknown person view

controller shows a screen with limited contact data that gives the

option to add the data to an existing contact, or create a new contact,

and then manages the screens that enable those tasks.

All these controllers can be found in the MonoTouch.AddressBookUI namespace.

Let’s take a look at each one of these in detail.

People Picker View Controller (Contact Picker)

The contact picker view controller presents the same view as the home screen of the

Contacts Application (minus the “groups” button), shown in Figure 13–2.

http://

CHAPTER 13: Working with Shared Resources 278

Figure 13–2. The people picker view controller showing a list of contacts

When using the address book controllers, you should declare them as class-level

variables, so that they (and their associated event handlers) don’t get garbage-collected

when the method that declares them returns. See Listing 13–5.

Listing 13–5. You should declare your address book controllers as class-level members

public partial class MyScreen : UIViewController
{
 protected ABPeoplePickerNavigationController _ addressBookPicker;
 …
}

To use the contact picker, instantiate an ABPeoplePickerNavigationController and then

display it by calling PresentModalViewController on the UIViewController that

represents your current screen.

For example, Listing 13–6 comes from the Example_SharedResources application, and

shows the contact picker when a button is touched.

http://

CHAPTER 13: Working with Shared Resources 279

Listing 13–6. Presenting the contact picker when a button is pressed

this.btnChooseContact.TouchUpInside += (s, e) => {
 this._addressBookPicker = new ABPeoplePickerNavigationController();
 this.NavigationController.PresentModalViewController(this._addressBookPicker
 , true);
};

There are two important events exposed by the contact picker: the Cancelled and

SelectPerson events. Let’s take a look at each of these.

Cancelled Event

The cancelled event is raised when the user clicks the Cancel button in the contact

picker. The contact picker will not dismiss itself, so you should handle the Cancelled

event and call the DismissModalViewControllerAnimated method to dismiss the contact

picker (see Listing 13–7).

Listing 13–7. Dismissing the contact picker when cancel is clicked

this._addressBookPicker.Cancelled += (sender, eventArgs) => {
this.NavigationController.DismissModalViewControllerAnimated(true); };

SelectPerson Event

The SelectPerson event is raised when a contact is clicked and the selected person is

passed to the event handler via the Person property of the

ABPeoplePickerSelectPersonEventArgs object. As with the Cancelled event, the picker

will not dismiss itself, so you should dismiss it as part of the event handler. For example,

Listing 13–8 comes from the Example_SharedResources companion code, and shows

populates text fields with the first and last name of the selected contact and then

dismisses the picker when the SelectPerson event is raised.

Listing 13–8. Handling the SelectPerson event

this._addressBookPicker.SelectPerson += (object sender,
ABPeoplePickerSelectPersonEventArgs args) => {
 ABPerson selectedPerson = args.Person;
 this.lblFirstName.Text = selectedPerson.FirstName;
 this.lblLastName.Text = selectedPerson.LastName;
 this.NavigationController.DismissModalViewControllerAnimated(true);
};

Person View Controller

The person view controller is likely familiar to you as well; it shows contact details and

allows you to edit them, just as in the contact application. See Figure 13–3.

http://

CHAPTER 13: Working with Shared Resources 280

Figure 13–3. The person view controller in detail and edit mode

Using the person view controller is even easier than the contact picker, because it

manages its own dismissal. However, because it has a nested screen, you must use it in

conjunction with a navigation controller, and push it onto the navigation stack via the

PushViewController method.

To use the person view controller, instantiate a new ABPersonViewController, set the

ABPerson you want to display on the DisplayedPerson property, and then push the

controller onto your screen’s navigation controller. Additionally, if you want to allow

users to edit the contact, you should enable editing by setting the AllowsEditing

property to true.

For example, Listing 13–9 comes from the Example_SharedResources application, and

shows an editable person view controller when a button is clicked.

http://

CHAPTER 13: Working with Shared Resources 281

Listing 13–9. Showing an editable person view controller when a button is clicked

this.btnViewSelectedContact.TouchUpInside += (s, e) => {
 this._addressBookViewPerson = new ABPersonViewController();
 this._addressBookViewPerson.DisplayedPerson = this._selectedPerson;
 this._addressBookViewPerson.AllowsEditing = true;
 this.NavigationController.PushViewController(this._addressBookViewPerson, true);
};

New Person View Controller

The new person view controller presents a New Contact screen that you can optionally

pre-populate with data. See Figure 13–4.

Figure 13–4. The new person view controller

As with the person view controller, the new person view controller requires a navigation

controller to function properly; without one, the Cancel and Done buttons will not be

displayed. However, unlike the person view controller, the new person view controller

needs to manually be dismissed.

http://

CHAPTER 13: Working with Shared Resources 282

To use it, instantiate a new ABNewPersonViewController, push it onto the navigation

stack via PushViewController, and handle the NewPersonComplete event. See Listing 13–

10.

Listing 13–10. Showing the new person view controller when a button is clicked

this.btnCreateNewContact.TouchUpInside += (s, e) => {
 this._addressBookNewPerson = new ABNewPersonViewController();
 this.NavigationController.PushViewController(this._addressBookNewPerson, true);

 this._addressBookNewPerson.NewPersonComplete += (object sender

, ABNewPersonCompleteEventArgs args) => {
 this.NavigationController.PopViewControllerAnimated(true);
 };
};

Additionally, you can prepopulate the controller with contact data by creating a new

ABPerson object and assigning it to the DisplayedPerson property. See Listing 13–11.

Listing 13–11. Showing an editable the person view controller when a button is clicked

ABPerson person = new ABPerson();
person.FirstName = this.txtFirstName.Text;
person.LastName = this.txtLastName.Text;
this._addressBookNewPerson.DisplayedPerson = person;

NewPersonComplete Event

The NewPersonComplete event is raised when either the Cancel or Done buttons are

clicked. If a new contact has been created, it can be found in the Person property of the

ABNewPersonCompleteEventArgs parameter passed to the event handler, however,

because the user could have cancelled out of the new person screen, it may be null.

For this reason, you should check the Completed property of the event args before

accessing the contact information. For example, the event handler in Listing 13–12

displays the new contact ID in an alert box if the new contact was created successfully.

Listing 13–12. Showing the new person view controller when a button is clicked

this._addressBookNewPerson.NewPersonComplete += (object sender
, ABNewPersonCompleteEventArgs args) => {

 if(args.Completed)
 {
 new UIAlertView("Alert", "New contact created, ID: "
 + args.Person.Id.ToString(), null

, "OK", null).Show();
 }
 this.NavigationController.PopViewControllerAnimated(true);
};

http://

CHAPTER 13: Working with Shared Resources 283

Unknown Person View Controller

The unknown person view controller has the following two purposes.

 It can be used to take contact data that isn’t in the address book, and

either use it to create a new contact or add the data to an existing contact.

 It can be used to share a contact via e-mail by bundling the contact

into a .vcf file and attaching it to an e-mail.

If the user chooses to create a new contact, they’re presented with the new contact

screen, pre-populated with whatever data has been set. If they choose to add to an

existing contact, they are presented with the contact picker controller, which allows

them to choose a contact. That data is then merged with the existing contact. If the user

chooses to share the contact, the edit e-mail screen is shown with the contact

information attached as a .vcf file.

You can configure the unknown person view controller to allow users to add to the

address book, to share contacts, or both. Figure 13–5 shows the first screen of it with

both address book adding and sharing enabled.

Figure 13–5. The unknown person contact controller presents a choice to add the contact or share it

http://

CHAPTER 13: Working with Shared Resources 284

The unknown person view controller works much like the person view controller in that it

needs to be pushed onto a navigation controller to work properly, and it handles its own

dismissal.

To use the unknown person view, instantiate a new ABUnknownPersonViewController,

specify any known contact data via the DisplayedPerson property, and then push the

controller onto your navigation controller via the PushViewController method.

Additionally, you should set at least AllowsAddingToAddressBook or AllowsActions to

true, in order to display the Create/Add or Share buttons on the controller.

For example, Listing 13–13 comes from the Example_SharedResources application, and

shows the unknown person view controller when a button is pressed. It sets a first and

last name and allows both adding to the address book, as well as sharing, and the like.

Listing 13–13. Showing the unknown person view controller when a button is pressed

this.btnPromptForUnknown.TouchUpInside += (s, e) => {
 this._addressBookUnknownPerson = new ABUnknownPersonViewController();

 ABPerson person = new ABPerson();
 person.FirstName = this.txtFirstName.Text;
 person.LastName = this.txtLastName.Text;
 this._addressBookUnknownPerson.DisplayedPerson = person;

 this._addressBookUnknownPerson.AllowsAddingToAddressBook = true;
 this._addressBookUnknownPerson.AllowsActions = true;

 this.NavigationController.PushViewController(this._addressBookUnknownPerson
 , true);
};

PersonCreated Event

The PersonCreated event is similar to the NewPersonComplete event on the new person

view controller. It’s actually raised when either the Cancel or Done button is clicked in the

new person screen and the contact that was created is passed in via the Person

property on the ABUnknownPersonCreatedEventArgs parameter. However, unlike the

NewPersonComplete event, there is no Completed property passed to check to see if a

person was actually created, so you should do a null check on the property before

trying to access it. For example, Listing 13–14 is from the Example_SharedResources

code, and displays an alert with the ID of the contact that was created from the

unknown person view controller.

Listing 13–14. You should always do a null check on the Person property when handling the PersonCreated event

this._addressBookUnknownPerson.PersonCreated += (object sender
, ABUnknownPersonCreatedEventArgs args) => {

 if(args.Person != null)
 {
 new UIAlertView("Alert", "New contact created, ID: "
 + args.Person.Id.ToString(), null

, "OK", null).Show();
 }
};

http://

CHAPTER 13: Working with Shared Resources 285

Working Directly with the Address Book

The Address Book Controllers give you quite a bit of functionality for free; however,

sometimes you need to go to the metal, as they say, and need to work with the address

book directly. For example, you might want to query the address book without ever

opening a controller and displaying options to the user. For this reason, iOS exposes an

API for querying and updating the address book database directly.

There are the following four main classes that you’ll need to understand in order to work

with the address book API directly:

 AddressBook: Represents the database of contacts available on an

iOS device.

 Records: Each entry in the address book is represented by a record,

which contains data for that particular contact or group.

 Single-Value Properties: Single-value properties are simple

properties on a record, such as FirstName.

 Multivalue Properties: Multivalue properties are special collections for

properties that can have multiple values. For instance, a contact can have

many phone numbers associated with it, each with its own label such as

“Home” or “Mobile.” This data is stored as multivalue properties.

Working with address book data typically requires you to work with each one of these

classes in that order; first you need to get a reference to the address book, then you

typically retrieve a particular record for a contact (or loop through them), and then you

access the properties. Let’s look at each one of these classes and steps in detail.

Address Books (ABAddressBook)

In order to work with the address book, you need to instantiate a new ABAddressBook

object, which creates a connection to the underlying database. From there you can

query, update, and so on. Changes that you make to the address book are journaled.

That is, If you make changes that you wish to push back to the database, you must call

the Save method for them to be committed. If you want to revert any changes back to

the original state, you can call Revert. The basic pattern is illustrated in Listing 13–15.

Listing 13–15. Pattern for working with the address book database

//---- instantiate a reference to the address book
using(ABAddressBook addressBook = new ABAddressBook())
{
 //---- make changes
 // code

 //---- save changes
 addressBook.Save();
 //---- or cancel them
 addressBook.Revert();
}

http://

CHAPTER 13: Working with Shared Resources 286

Notice that I used the using statement. ABAddressBook implements IDisposable,
because it keeps an unmanaged connection open to the underlying database. The using

statement will ensure that the connection is closed via the Dispose method on the object

when the using block completes.

NOTE: When using the address book in a multi-threaded scenario, you must create a separate

connection (ABAddressBook instance) for each thread you wish to access it on. This goes for

objects that are created from it as well. For instance, you cannot pass a record across a thread

boundary. Instead, you should pass the ID of the record and get a new reference to it via the

ABAddressBook instance created in that thread. Failure to isolate instances between threads

will cause a crash in your application. This is a limitation in the underlying Objective-C runtime

and you will experience it regardless of whether you’re coding in C# with MonoTouch, or

Objective-C.

Change Notifications

Because the address book is a shared resource, data in it can be changed by iOS or by

other applications. When a change occurs, the ExternalChange event is raised. See

Listing 13–16.

Listing 13–16. Handling external address book changes.

addressBook.ExternalChange += (object sender, ExternalChangeEventArgs e) => {
// code to deal with changes

};

If you have unsaved changes and you want to save them, iOS will attempt to merge your

changes with the other changes; however, it’s not guaranteed that your changes will go

into effect.

In practice, you can avoid having to worry about this by not keeping address book

connections open. You should simply get a reference, query/make changes, and

dispose of the reference. This will minimize the opportunity for external changes

impacting your code.

However, if you do keep a persistent connection to the contacts database open, you

can make sure that you have the latest changes by calling Revert, which will update

your connection to point to the latest version of the database.

Records

Once you have a reference to the address book, you’ll see that it implements

IEnumerable with each item being an ABRecord. See Listing 13–17.

http://

CHAPTER 13: Working with Shared Resources 287

Listing 13–17. The address book implements IEnumerable; every item is an ABRecord.

foreach(ABRecord item in addressBook)
{

if(item.Type == ABRecordType.Person)
{
 // do something
}

}

A record can either be a Group or a Person record. You can test via the Type property,

which is an ABRecordType enumeration.

Record Properties

Many of the properties on records are simple single-value properties such as FirstName,

LastName, and so on. However, for items that can have multiple values, such as phone

numbers, they’re exposed as ABMultiValue properties. Multivalue properties are similar

to arrays of dictionaries. An ABMultiValue object implements IEnumerable and exposes

a collection of ABMultiValueEntry objects that contain Label and Value properties.

They’re exposed via get methods, such as the GetPhones method to retrieve a contact’s

phone numbers.

For example, Listing 13–18 loops through each record in the address book. If a record is

a person record, it writes each contact’s name and each of their phone numbers to the

application console.

Listing 13–18. Writing contact names and phone numbers to the Application Output console

//---- for each record
foreach(ABRecord item in addressBook)
{
 Console.WriteLine(item.Type.ToString() + " " + item.Id);
 //---- there are two possible record types, person and group
 if(item.Type == ABRecordType.Person)
 {
 //---- since we've already tested it to be a person, just create a
 // shortcut to that type
 ABPerson person = item as ABPerson;
 Console.WriteLine(person.FirstName + " " + person.LastName);

 //---- get the phone numbers
 ABMultiValue<string> phones = person.GetPhones();
 foreach(ABMultiValueEntry<string> val in phones)
 {
 Console.Write(val.Label + ": " + val.Value);
 }
 }
}

In looking at this code, working with multivalue properties seem pretty straightforward –

until you want to make changes. The problem is, they’re immutable (unchangeable), so

the Label and Value properties are read only, and there’s no way to add or remove items

from the collection.

http://

CHAPTER 13: Working with Shared Resources 288

In order to make changes, you actually have to copy the ABMultiValue object to an

ABMutableMultiValue object via the ToMutableMultiValue method, make your changes,

and then call the Set method to attach them back to the record. For example, Listing

13–19 comes from the Example_SharedResources application, and adds a phone number

to a contact.

Listing 13–19. Adding a phone number to a contact

//---- get a reference to the contact
using(ABAddressBook addressBook = new ABAddressBook())
{
 //---- get the contact
 ABPerson contact = addressBook.GetPerson(this._contactID);

 //---- get the phones and copy them to a mutable set of multivalues
 // (so we can edit)
 ABMutableMultiValue<string> phones = contact.GetPhones().ToMutableMultiValue();

 //---- add the phone number to the phones via the multivalue.Add method
 phones.Add(new NSString(this.txtPhoneLabel.Text)
 , new NSString(this.txtPhoneNumber.Text));

 //---- attach the phones back to the contact
 contact.SetPhones(phones);

 //---- save the address book changes
 addressBook.Save();
}

If this isn’t more proof that Apple hates us, I’m not sure what is.

Deleting is similar (see Listing 13–20).

Listing 13–20. Deleting a phone number from a contact

using(ABAddressBook addressBook = new ABAddressBook())
{
 ABPerson contact = addressBook.GetPerson(this._contactID);

 //---- get the phones and copy them to a mutable set of multivalues
 // (so we can edit)
 ABMutableMultiValue<string> phones = contact.GetPhones().ToMutableMultiValue();

 //---- loop backwards and delete the phone number
 for(int i = phones.Count - 1; i >= 0 ; i--)
 {
 if(phones[i].Identifier == phoneNumberID)
 { phones.RemoveAt(i); }
 }

 //---- attach the phones back to the contact
 contact.SetPhones(phones);

 //---- save the changes
 addressBook.Save();
}

Once you understand this pattern, working with the address becomes a lot easier.

http://

CHAPTER 13: Working with Shared Resources 289

Photos and Camera
Just like with the address book, there are two ways to work with the camera and photos:

you can use the built-in UIImagePickerController, which allows you to pick from existing

photos in the user photo library and take pictures, or you can use the AV Foundation

Framework, which provides a set of API calls to access photos/videos and the camera

directly.

We’re going to take a look first at the UIImagePickerController, and then we’ll take a

quick look at the AV Foundation Framework.

UIImagePickerController

In addition to being It also allows you to customize the camera view so you can provide

a custom photo taking experience.

To use the image picker, you generally use the following pattern:

 Determine support: Not all devices have the same features – some

have front cameras, some have camera flash, some allow video

recording, and on and on. Before you try to use the image picker, you

should determine if the device supports what you want to do with it.

 Instantiate the picker: An instance of the UIImagePickerController

needs to be created in order to be used.

 Configure the picker: Once you’ve instantiated the picker, you need

to tell it which interface to display by setting its MediaTypes property

and set any other options.

 Provide a custom camera view (optional): You can optionally show

a custom view on top of the camera screen. This gives you the

opportunity to customize the picture taking/video recording

experience.

 Present the controller: After you’ve configured the picker, you show

it by calling PresentModalController on your view controller and

passing it the picker object.

 Implement a picker celegate: After the picker is displayed, the user

can either cancel out of it or, depending on how you’ve configured it,

take a photo or a video, or select an existing photo or video. When any

of these things happen, an appropriate method on the picker delegate

will be called to notify the application. If the user hasn’t cancelled, you

likely want to do something with the resulting video or photo.

Let’s take a look at each of these steps in more detail.

http://

CHAPTER 13: Working with Shared Resources 290

Determining Support

There are the following three basic things that you check before trying to use the image

picker:

 Sources

 Cameras and flash

 Media types

If you attempt to configure an image picker with an item that is unsupported, when you

display the picker controller, your application will likely crash; you should therefore make

sure you check to see if that particular item is available on the device that your

application is running on. Let’s take a look at each of these items in more detail.

Sources

There are three sources from which you can pull images and media: the Cameras (back,

and front), the Photo Library, and the Saved Albums Photos. Each one of these items is

available via the UIImagePickerControllerSourceType enumeration, and to check if it’s

available, you call the static IsSourceTypeAvailable method on the

UIImagePickerController class. For example, Listing 13–21 checks to see if a picker

controller can be created that takes photos.

Listing 13–21. Determining whether a particular source is available

bool isCameraAvailable = UIImagePickerController.IsSourceTypeAvailable(
UIImagePickerControllerSourceType.Camera);

Cameras and Flash

The location and availability of cameras and camera flash varies between devices. For

example, the iPhone 3Gs and below only have a rear camera, and don’t have a flash.

The iPhone 4, however, has both a front and a rear camera, as well as a rear flash. The

first generation iPad doesn’t have a camera at all. To determine whether a particular

camera or flash is available, you call the static IsCameraDeviceAvailable and

IsFlashAvailableForCameraDevice methods, respectively, which are available on the

UIImagePickerController class. You pass a value from the

UIImagePickerControllerCameraDevice enumeration that contains Front and Rear

values. For instance, Listing 13–22 determines whether or not the rear flash is available

on the current device.

Listing 13–22. Determining whether flash is available

bool isRearFlashAvailable = UIImagePickerController.IsFlashAvailableForCameraDevice(
UIImagePickerControllerCameraDevice.Rear);

http://

CHAPTER 13: Working with Shared Resources 291

Media Types

iOS supports two media types: still images and videos. The availability of each is

dependent on the source. For example, first generation iPhones are able to play video,

but not record it. Therefore, in order to determine what media type is available, you have

to specify the source. To get the available media types, call the static

AvailableMediaTypes method on the UIImagePickerController class and pass in a

source type available in the UIImagePickerControllerSrouceType enumeration. See

Listing 13–23.

Listing 13–23. Determining which media types are available from the camera

string[] mediaTypes = UIImagePickerController.AvailableMediaTypes(
UIImagePickerControllerSourceType.Camera);

We’ll see in just a moment how we can use these types when we configure the image

picker.

Creating the Image Picker

Once you’ve determined feature availability, you need to instantiate the picker controller.

Creating a picker controller is very easy, but you should declare it at the class level so it

doesn’t get garbage collected when your method that instantiates it returns. See Listing

13–24.

Listing 13–24. Creating an image picker controller

public partial class ImagePickerScreen : UIViewController
{
 protected UIImagePickerController _imagePicker;

…
 protected void SomeMethod()

{
this._imagePicker = new UIImagePickerController();
…

}
}

Configuring the Image Picker

There are a number of different settings and configurations that you can specify on the

image picker, each of which affects its behavior, including the following:

 Media source

 Allowable media types

 Whether to show camera controls

Source

The first thing you should set is the source of the media you’d like to access, such as

from the Camera or from the Photo Library. You specify the source via the SourceType

http://

CHAPTER 13: Working with Shared Resources 292

property, which takes a UIImagePickerControllerSourceType enumeration value. What

you specify for here determines what picker screen comes up and you have three

options:

 Camera: Specifying camera will bring up the camera screen with the

appropriate camera you’ve configured.

 PhotoLibrary: Specifying photo library will bring up the thumbnail view

controller showing images and videos in the user’s photo library.

 SavedPhotosAlbum: Specifying saved photos album will bring up the

thumbnail view controller showing images and videos from the user’s

camera roll.

For example, Listing 13–25 configures the image picker to bring up the camera view.

Listing 13–25. Configuring the image picker to show the camera controller screen

this._imagePicker.SourceType = UIImagePickerControllerSourceType.Camera;

Media Types

Once you’ve configured your media source, you should configure which media types

you want your user to be able to select. You can set this via the MediaTypes property,

and if you want to allow a user to be able to select whatever is available, you can use

the AvailableMediaTypes method from before. For example, Listing 13–26 allows a user

to select either video or images from the photo library.

Listing 13–26. Configuring the media types

this._imagePicker.MediaTypes = UIImagePickerController.AvailableMediaTypes(
UIImagePickerControllerSourceType.PhotoLibrary);

If you need to specify only either images or video, you can specify public.image or

public.video, respectively.

Camera Controls

If you’ve specified that the media source should be from the camera, you can specify

whether the user gets camera controls via the ShowsCameraControls property. See

Listing 13–27.

Listing 13–27. Disabling camera controls

this._imagePicker.ShowsCameraControls = false;

The default is true and you should only set it to false if you’re going to provide custom

controls in a custom camera view overlay.

http://

CHAPTER 13: Working with Shared Resources 293

Providing a Custom Camera Overlay

The image picker also allows you to customize the camera view so you can provide a

custom photo taking experience. If you set the SourceType to

UIImagePickerControllerSourceType.Camera, you can set a custom overlay view that

gets layered on top of the camera view. To specify an overlay view, all you have to do is

set the CameraOverlayView property to the initialized view that you want to display. See

Listing 13–28.

Listing 13–28. Disabling camera controls

this._imagePicker.CameraOverlayView = overlay;

If you choose to display the camera controls (ShowsCameraControls = true), you should

make sure that don’t cover them up so they can still be used.

If you choose to display your own controls you can take a picture when a user clicks

your picture button by calling TakePicture on the image picker. Additionally, if you want

to implement a zoom, or change the camera viewport, you can create a

CGAffineTransformation and assign it to the CameraViewTransform property on the

image picker controller.

Displaying the Image Picker

After you’ve configured your image picker, when you’re ready to display it, simply call

PresentModalViewController on your screen view controller (or navigation controller), to

display it. See Listing 13–29.

Listing 13–29. Disabling camera controls

this.NavigationController.PresentModalViewController(this._imagePicker, true);

Handling Image Picker Events

As with most controls, you have a few options for handling image picker events; you can

either wire up the events directly, or implement either a strong or a weak delegate (see

Chapter 6 for more information on delegates).

Either way, there are two important events/methods that you should handle, which

represent the different paths a user can take via the picker:

 Canceled

 FinishedPickingMedia

NOTE: There is an additional method called FinishedPickingImage that is called when a

photo is picked, but it has been deprecated in v3.0 of iOS. You should instead use

FinishedPickingMedia which will be called when either an image or a video is chosen.

http://

CHAPTER 13: Working with Shared Resources 294

Implementing a UIImagePickerControllerDelegate

Implementing the picker controller delegate is like implementing any other delegate –

simply create a class that inherits from UIImagePickerControllerDelegate and override

the methods that you care about. See Listing 13–30.

Listing 13–30. Implementing an image picker delegate

protected class PickerDelegate : UIImagePickerControllerDelegate
{
 public override void Canceled (UIImagePickerController picker)
 {
 Console.WriteLine("picker canceled");
 }

 public override void FinishedPickingMedia (UIImagePickerController picker
 , NSDictionary info)
 {
 Console.WriteLine("User picked a video.");
 }
}

You should declare you delegate at the class level so that it doesn’t get garbage

collected. See Listing 13–31.

Listing 13–31. Declaring an image picker delegate

public partial class ImagePickerScreen : UIViewController
{
 protected PickerDelegate _pickerDelegate;
 …
}

And then when you configure your picker, you can attach the delegate. See Listing 13–32.

Listing 13–32. Attaching an image picker delegate to the image picker

this._pickerDelegate = new ImagePickerScreen.PickerDelegate();
this._imagePicker.Delegate = this._pickerDelegate;

Let’s take a look at each of the delegate/event methods in more detail.

Canceled Event/Method

The Canceled event (or method if you’re using a delegate) is raised when the user

cancels out of the picker screens without picking any media. You should use the

Canceled method to dismiss the picker. See Listing 13–33.

Listing 13–33. Dismissing the picker when the user cancels out of it

this._imagePicker.Canceled += (s,e) => {
this._imagePicker.DismissModalViewControllerAnimated(true);

};

http://

CHAPTER 13: Working with Shared Resources 295

FinishedPickingMedia Event/Method

The FinishedPickingMedia event (or method if you’re using a delegate) is raised when

the user picks or takes either a video or an image. The method is passed a reference to

the image picker that was used, and an info parameter of type NSDictionary that

contains information and content pertaining to the chosen/taken media.

The info dictionary parameter the contains the following keys, which can be found as

static properties on the UIImagePickerController:

 MediaType: Let’s you know whetherthe item chosen is an image or a

video. The value is an NSString that evaluates to either public.image

or public.video, respectively.

 ReferenceUrl: An NSUrl of the location in the filesystem of the original

version of the picked item. For example, if the item is edited (such as

cropping an image, or editing a movie) in the controller, the

ReferenceUrl value points to the unedited item.

 OriginalImage: If the item is an image, the OriginalImage key points

to the UIImage value of the actual image before it was edited.

 EditedImage: Similar to OriginalImage, except that it points to the

UIImage after it has been cropped.

 CropRect: A System.Drawing.RectangleF describing the crop that was

applied to the original image.

 MediaMetadata: MediaMetadata points to an NSDictionary of

metadata information if an image was chosen.

The general pattern in accessing the info parameter is to extract the value via the key, cast

to the appropriate underlying object, and then test for null. For example, Listing 13–34

grabs the MediaUrl value and writes it out to the console.

Listing 13–34. Accessing the info parameter’s data

NSUrl mediaURL = info[UIImagePickerController.MediaURL] as NSUrl;
if(mediaURL != null)
{
 Console.WriteLine(mediaURL.ToString());
}

AV Foundation Framework

The AV Foundation Framework is a set of APIs that allow you to directly access the

audio/visual capabilities and libraries (including the user’s iTunes/iPod library) in the iOS.

It allows you a lot more control when dealing with multimedia in the iOS.

The first pieces of the AV Foundation Framework was introduced in iOS v3.0, but really

didn’t fully mature until v4.1. With the AV Foundation Framework, you can do a number

of things, including:

http://

CHAPTER 13: Working with Shared Resources 296

Query, enumerate, and write to a user’s media (photo and video)

albums.

Get direct access to iDevice cameras and tweak settings for both still

photos and video recording. As well as have direct access to the

output.

Edit multimedia assets such as videos and audio.

Unfortunately, because the MonoTouch wrapping of the AV Foundation Framework

(which is now complete, at the time of writing), happened very near the end of writing

this book, I’m only going to briefly introduce it. For a more complete introduction, see

the AV Foundation Framework Programming Guide in the Apple Developer

Documentation at:

http://developer.apple.com/library/ios/#documentation/AudioVideo/Conceptual/AVFoun

dationPG/Articles/00_Introduction.html.

In this section, we’re going to examine how to enumerate multimedia assets instead of

using the UIImagePickerController.

Enumerating User Albums

In order to enumerate user photos and videos in the iOS, you must first create an

instance of the ALAssetsLibrary class, which provides access to user albums. See

Listing 13–35.

Listing 13–35. Instantiating a reference to the ALAssetsLibrary

this._assetsLibrary = new ALAssetsLibrary();

Once you have a reference to the ALAssetsLibrary, you call the Enumerate method,

which will loop through each album on the iDevice, passing in:

The type of assets to enumerate

A delegate method to execute for each item

A delegate to execute in the case of an error

For example, the call in Listing 13–36 enumerates all the albums on a user’s device. For

each album, the GroupsEnumerator method is invoked, and in the case of an error, the

anonymous lambda delegate is executed that writes out the error to the console.

Listing 13–36. Calling the Enumerate method on the ALAssetsGroup to get a list of all the user photo/video
albums

this._assetsLibrary.Enumerate(ALAssetsGroupType.All
, this.GroupsEnumerator
, (NSError e) => { Console.WriteLine("Could not enumerate albums: " +

 e.LocalizedDescription); });

The GroupsEnumerator method is passed a reference to the ALAssetsGroup, which

represents an album, and a Boolean reference parameter allowing you to halt the

enumeration if you want.

http://developer.apple.com/library/ios/#documentation/AudioVideo/Conceptual/AVFoun
http://

CHAPTER 13: Working with Shared Resources 297

Once you have a group (album) reference, you can then enumerate through the

individual items in that group, by calling the Enumerate method on the Group object,

and passing a delegate to execute for the asset enumeration.

For example, the method in Listing 13–37 will write out the name of the group and then

enumerate the assets within that group.

Listing 13–37. A method that executed for each asset group/album enumerated

protected void GroupsEnumerator(ALAssetsGroup group, ref bool stop)
{

//---- when the enumeration is completed, this method is invoked with group set
 // to null
 if (group != null)
 {
 //---- don't stop, baby
 stop = false;

 //---- write out the group type and name
 Console.WriteLine("Group found: " + group.Type.ToString());
 if(group.Name != null) { Console.WriteLine("Group Name: "
 + group.Name); }

 //---- photos and videos. could also pass AllVideos, AllVideos, etc.
 group.SetAssetsFilter(ALAssetsFilter.AllAssets);
 //---- enumerate each asset within the group
 group.Enumerate(this.AssetEnumerator);

}
 else
 { Console.WriteLine("Group enumeration completed."); }
}

The method is called for each album/group, and then will be called one additional time,

passing a null reference for the group, to signal that it has finished.

The delegate called for each asset is similar to the group enumeration delegate, except

that instead of being passed a reference to the group, it’s passed an ALAsset object,

which is a reference to the photo or video in the album. See Listing 13–38.

Listing 13–38. A method that is executed for each asset within an album

protected void AssetEnumerator(ALAsset asset, int index, ref bool stop)
{

//---- when the enumeration is completed, this method is invoked with group set
 // to null
 if(asset != null)
 {
 Console.WriteLine("Found asset: " + index.ToString());
 //---- keep going
 stop = false;
 }
 else { Console.WriteLine("Asset enumeration completed."); }
}

When enumerating the individual assets, you can get a reference to the thumbnail of the

item via the Thumbnail property on the ALAsset object. This allows you to create your

own custom asset display screens. For example, in the Example_SharedResources

http://

CHAPTER 13: Working with Shared Resources 298

companion code and application, I display a list of albums and their items in tables. See

Figure 13–6.

Figure 13–6. Listing albums and their assets (photos and videos)

As I mentioned, this is just the tip of the iceberg of what you can do with the AV Assets

Framework, I encourage you to take a look at the documentation on it for more

information.

Network Activity Indicator
iOS devices have a network activity indicator in the status bar that informs the user that

a network operation is taking place. See Figure 13–7.

http://

CHAPTER 13: Working with Shared Resources 299

Figure 13–7. Network activity indicator in the on state

Apple recommends that if your application performs a network activity that takes more

than a couple of seconds, you should turn the activity indicator on. You can enable it by

simply setting the NetworkActivityIndicatorVisible property on the UIApplication

class to true. See Listing 13–39.

Listing 13–39. Turning the network activity indicator on

UIApplication.SharedApplication.NetworkActivityIndicatorVisible = true;

This works just fine when you only have one network activity happening at any on time;

however, many times you might have several asynchronous activities at once and you

don’t want to turn off the network activity indicator when one finishes but the others are

still active. For this reason, you should keep an application wide counter that you

increment and decrement, depending on whether an activity is happening. For example,

the AppDelegate class in Listing 13–40 exposes a method called

SetNetworkActivityIndicator that does just that.

Listing 13–40. Managing the network activity indicator based on a reference counter

public class AppDelegate : UIApplicationDelegate
{
 protected int _networkActivityCount = 0;
 …
 public void SetNetworkActivityIndicator(bool onOrOff)

http://

CHAPTER 13: Working with Shared Resources 300

 {
 //---- increment or decrement our reference count
 if(onOrOff)
 { this._networkActivityCount++; }
 else { this._networkActivityCount--; }

 //---- set it's visibility based on whether or not there is still
 // activity
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible =
 (this._networkActivityCount > 0);
 }
}

Then, you can call the method and pass whether or not you want to turn the activity

indicator on or off.

(UIApplication.SharedApplication.Delegate as AppDelegate).SetNetworkActivityIndicator(
this.swtchActivityIndicator2.On);

When as long as the count is greater than zero (any activities are executing) then the

indicator will show, but when it drops to zero (no activities are executing), then the

activity indicator will no longer be visible.

NOTE: As with most controls, you should set the activity indicator’s visibility on the main thread.

For more information, see Chapter 6.

Accelerometer
All iOS devices contain a 3-axis accelerometer, which measures g-forces in 3-axis. See

Figure 13–8.

Figure 13–8. Accelerometer axis

http://

CHAPTER 13: Working with Shared Resources 301

The forces are reported in the direction that the force is being exerted, for example, an

iPhone at rest on it’s back would experience the following g-forces:

 X = 0

 Y = 0

 Z = -1

This is because “down” would be felt in the Z-axis, in the negative direction (toward the

back).

These forces are represented by a UIAcceleration object that contains X, Y, and Z

properties, containing the g-force in their respective axis.

The accelerometer is accessible via the static SharedAccelerometer property of the

UIAccelerometer class. In order to use it, you simply handle the Acceleration event,

which passes you the UIAcceleration object as the Accleration property on the

UIAccelerometerEventArgs. For example, the following code writes the real-time 3-axis

acceleration forces to label. See Listing 13–41.

Listing 13–41. Handling the Acceleration event

UIAccelerometer.SharedAccelerometer.Acceleration += (object sender,
UIAccelerometerEventArgs e) => {
 this.lblX.Text = e.Acceleration.X.ToString();
 this.lblY.Text = e.Acceleration.Y.ToString();
 this.lblZ.Text = e.Acceleration.Z.ToString();
};

Additionally, you can optionally specify how often you want to receive updates by

specifying a value, in milliseconds to the UpdateInterval property. For example, Listing

13–42 tells iOS that every 100 milliseconds (10 times a second), it should raise the

Acceleration event.

Listing 13–42. Specifying the acceleration update interval

UIAccelerometer.SharedAccelerometer.UpdateInterval = 100;

Shake Gesture

The shake gesture has become a staple of iOS applications, especially for iPhone and

iPod touch. Since iOS v3.0, Apple has made it easy to recognize a shake of the device

by listening for it and then notifying you when it occurs, rather than you having to

manually listen for acceleration events and calculate movement. Unfortunately, however,

it’s not quite as easy as just listening for an event, so there are several things you have

to do in order to handle the shake gesture. Specifically you need to override the

following four items in your UIViewController:

 CanBecomeFirstResponder: CanBecomeFirstResponder is a property

that tells iOS whether or not your view controller can receive touch

events and action messages (such as motion events). You must

override this property and return a true value.

http://

CHAPTER 13: Working with Shared Resources 302

 ViewDidAppear: In the ViewDidAppear method, you must call

BecomeFirstResponder so that your controller will receive motion

events.

 ViewWillDisappear: In your ViewWillDisappear, you should call

ResignFirstResponder so that your controller releases it’s subscription

to motion events and allows other controllers to get them.

 MotionEnded: The MotionEnded event runs after iOS determines if the

motion the device experienced was just noise (such as walking up

stairs), and recognizes the motion as a gesture. You must override this

method and check the UIEventSubtype enumeration parameter to see

if it’s of the type MotionShake.

For example, Listing 13–43 comes from the Example_SharedResources companion

application’s ShakeScreen.cs UIViewController class. It registers itself as a first

responder and then updates a label on the screen when the controller experiences a

shake event.

Listing 13–43. Recognizing shake events

public override bool CanBecomeFirstResponder { get { return true; } }
public override void ViewDidAppear (bool animated)
{
 base.ViewWillAppear (animated);
 this.BecomeFirstResponder();
}
public override void ViewWillDisappear (bool animated)
{
 base.ViewWillDisappear (animated);
 this.ResignFirstResponder();
}
public override void MotionEnded (UIEventSubtype motion, UIEvent evt)
{
 base.MotionEnded(motion, evt);
 if(motion == UIEventSubtype.MotionShake)
 {
 this.lblShakeStatus.Text = "Shook!";
 }
}

Summary
In this chapter we looked at a number of shared resources, how to use them, and your

responsibilities when using them. In the next chapter we’re going to shift gears a bit and

cover application settings.

http://

303

303

 Chapter

User and Application
Settings

When you build an application of any complexity, you often quickly realize a need to

allow users to set preferences and settings for how the application is configured and

behaves. In Mac programs, these are usually found in the menu under the program

name, and then in Preferences. In Windows, it’s often under Tools Options.

iOS applications are no different in their need for application settings and preferences;

however, the way users set preferences can be slightly different. In iOS applications,

there are usually two ways to set preferences. First, you can provide your users a screen

or set of screens in the application to change settings, and second, Apple gives us a

special application called Settings that allow users to edit preferences when their

application is not running.

In this chapter we’ll look at how to work with application settings in the iOS, with and

without using the Settings Application. By the end of the chapter you will be able to

use the NSUserDefaults API to access settings, and also to register them to show up in

the Settings Application, if you like.

You can find code for this chapter in the Example_AppSettings companion code and

application.

Working with Settings in the iOS
Apple’s recommendation is that, generally, for settings that are set once for the lifecycle

of the application, you use the Settings Application, and for things that change often, or

that the user may need to change while using the application, you should provide users

with an interface within the application.

Let’s say that, for instance, you’re building an e-mail application. Account settings like

username and password would probably go into the Settings Application, whereas if you

14

http://

CHAPTER 14: User and Application Settings 304

allowed your users to change between application skins, you would probably put that

inside the application.

Regardless of where you allow users to edit settings, whether in the Settings

Application, in your application (using custom screens), or both, you work with the

settings API the same way.

You can find the Settings Application on the home screen of your device. If you’ve used

your device much at all, you’re probably familiar with this screen (Figure 14–1).

Figure 14–1. Settings Application showing applications below iOS settings

If you scroll down, however, you’ll see that there are also application-specific settings. If

you click an application you will get application settings, as seen in Figure 14–2 for the

iPhone, and Figure 14–3 for the iPad.

http://

CHAPTER 14: User and Application Settings 305

Figure 14–2. Settings for an application on the iPhone

http://

CHAPTER 14: User and Application Settings 306

Figure 14–3. Settings for an application on the iPad

While there are generally two ways for the user to configure settings, as a developer,

Apple provides us a single, unified API, called NSUserDefaults, in which to retrieve and

persist them. So whether the user configures a particular setting in the Settings

Application, or within your application, you still access it the same way. This means that

you can even allow the user to configure a particular setting in either location.

For example, in the Example_AppSettings companion application and code, I provide a

screen that allows a user to edit a subset of the settings that are also editable in the

Settings Application, as shown in Figure 14–4.

http://

CHAPTER 14: User and Application Settings 307

Figure 14–4. Some settings should be able to be changed in your application

Registering Settings with the Settings Application
You get the Settings Application UI for free with your application as part of the iOS, but

you have to create and configure a special XML file, named Root.plist, in order for

your settings to show up in there. You can still use the API to save and retrieve

settings, even if they’re not in this XML file, but they will only show up in the

Settings Application if they’re in this file.

The steps to create this file are as follows.

1. Create a Settings.bundle folder in your project.

2. Add a file named Root.plist in Settings.bundle.

3. Edit the file in the property list editor and save as XML.

4. Mark the Root.plist file’s build-type as content.

http://

CHAPTER 14: User and Application Settings 308

Creating a Settings Bundle

The iOS looks in your application bundle for a settings bundle. A settings bundle is just a

folder with the name Settings.bundle. To create one, simply right-click your project in

MonoDevelop and create a new folder with that name, as shown in Figure 14–5.

Figure 14–5. Settings.bundle in a MonoTouch project

If you look at your project folder in the Finder, you’ll notice something strange (Figure 14–6).

Figure 14–6. Settings.bundle in the Finder

The Finder shows it not as a folder, but as a file. It is still just a folder, however, and you

can even right-click it and choose Show Package Contents to view what’s inside of it. OSX

is just collapsing it in the UI.

Creating the Property List File

Once you’ve created your Settings.bundle folder, you need to create a new, empty text

file called Root.plist in it. To do this, right-click the folder in MonoDevelop and create a

new text file, and then rename it Root.plist.

The iOS looks for this file to find your settings. As soon as you create this file,

MonoDevelop will automatically open it up in the Property List Editor application that

ships with Xcode. When you create a new plist file, it will be blank, but the following

screenshot (Figure 14–7) shows what the editor looks like with settings added.

http://

CHAPTER 14: User and Application Settings 309

Figure 14–7. Property List Editor with settings specified

Property list (.plist) files are Apple’s way of storing settings and properties for

applications. In fact, in your application bundle there is an Info.plist file that has

settings such as what the name of your application is, what icon to use for it, etc.

For settings, you must follow a specific schema in order for the iOS to parse this file

correctly. Your file must start with a key called Root, of type Dictionary, which has a

child node called PreferenceSpecifiers, of type Array.

All your properties go under the PreferenceSpecifiers node. Every setting is stored as a

Dictionary item that contains a set of of key/value pairs that describe that setting.

http://

CHAPTER 14: User and Application Settings 310

Plist files are stored by default in a format that is not compatible with the iOS, so in order

for them to work, you need to save them as XML by choosing File Save As in the menu,

and choosing XML Property List as the file format (Figure 14–8).

Figure 14–8. Saving a property list file as XML

Because this file is a plain-text XML file, you can also edit it in any text editor. For

example, the sample application for this chapter has the following content in its

Root.plist file, as shown in Listing 14–1.

Listing 14–1. A sample settings file showing the raw XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>PreferenceSpecifiers</key>
 <array>
 <dict>
 <key>Type</key>
 <string>PSGroupSpecifier</string>
 <key>Title</key>
 <string>Main Settings</string>
 </dict>
 <dict>
 <key>Type</key>
 <string>PSTextFieldSpecifier</string>
 <key>Title</key>
 <string>Username</string>
 <key>Key</key>
 <string>username</string>
 </dict>
 <dict>
 <key>Type</key>
 <string>PSTextFieldSpecifier</string>
 <key>Title</key>
 <string>Password</string>
 <key>Key</key>
 <string>password</string>
 <key>IsSecure</key>
 <true/>
 </dict>
 <dict>
 <key>Type</key>

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://

CHAPTER 14: User and Application Settings 311

 <string>PSToggleSwitchSpecifier</string>
 <key>Title</key>
 <string>Stay Signed-in</string>
 <key>Key</key>
 <string>staySignedIn</string>
 <key>DefaultValue</key>
 <true/>
 </dict>
 … (Code Omitted)
 </array>
</dict>
</plist>

Each setting must have a Type key that specifies what kind of setting it is, followed by

other fields that describe things like the title and default value. Let’s look at the different

setting types that we can use.

Property Specifier Schema

The following setting types are available for use in the Settings Application.

 Group (PSGroupSpecifier): Adding a group combines a set of items

into a grouped table. Groups are not nested, so they are just specified

sequentially, e.g., any settings that are specified after a group specifier

will get put into that group. When you want to add another group, you

simply add another group specifier item.

 Text Field (PSTextFieldSpecifier): A simple text field where the user

can enter a string of text

 Title (PSTitleValueSpecifier): A read-only line of text that has a title

on the left and optional text on the right

 Slider (PSSliderSpecifier): A slider control

 Toggle Switch (PSToggleSwitchSpecifier): A Boolean (on/off) toggle

switch control

 Multi-Value (PSMultiValueSpecifier): A multiple-value option that, if

you click it, it opens a new screen and allows you to make a choice

from different values

 Child Pane (PSChildPaneSpecifier): Gives you another, nested,

settings screen on which you can put additional settings. For each

child pane, you need an associated .plist file. As part of the setting

parameters, you specify the name of the file that holds the child

settings.

Each settings type uses different keys to define the options in that setting, as described

in the following sections.

One very important thing to know is that, even though you can provide default values for

your settings, the iOS won’t load them until you access them from the Settings

http://

CHAPTER 14: User and Application Settings 312

Application. So even though you specify DefaultValue keys, they will actually be null

the first time your application runs! There is a way around this, however, which we’ll

discuss in the “Initializing Settings” section, just a bit later in this chapter.

PSGroupSpecifier

Table 14–1. PSGroupSpecifier schema

Key Name Data Type Description

Type (required) String The value should always be PSGroupSpecifier.

Title String The title of the group. If you don’t specify a title, a

gap will appear between settings items.

PSTextFieldSpecifier

Table 14–2. PSTextFieldSpecifier schema

Key Name Data Type Description

Type (required) String The value should always be PSTextFieldSpecifier.

Title String The text that will display to the left of the text field.

If you don’t specify a title, the text field will expand

to fill the entire row.

Key (required) String The identifier that is used to retrieve the setting

DefaultValue String The default value of the setting

IsSecure Boolean Whether or not the text field will be in password-

mode, whereby text typed is replaced with bullet

characters in the UI

KeyboardType String Type of keyboard to use for the text field. Available

options are: Alphabet, NumbersAndPunctuation,

NumberPad, URL, and EmailAddress. If not specified,

Alphabet is used.

Autocapitalization-

Type

String The style of capitalization to apply to the entered

text. Available options are: None, Sentences, Words,

and AllCharacters. If not specified, None is used.

AutocorrectionType String The auto-correction option to apply to the entered

text. Available options are: Default, No, and Yes. If

not specified, Default is used, which means Yes,

unless it’s configured as IsSecure.

http://

CHAPTER 14: User and Application Settings 313

PSTitleValueSpecifier

Table 14–3. PSTitleValueSpecifier schema

Key Name Data Type Description

Type (required) String The value should always be

PSTitleValueSpecifier.

Title String The title of the group. If you don’t specify a

title, a gap will appear between settings items.

Key (required) String The identifier that is used to retrieve the

setting

DefaultValue

(required)

String The default value of the setting. If you have

specified a list of values, this should match

one of the items in the Values list. Otherwise,

the text that you specify in DefaultValue will

display.

Titles Array An array of strings that are used for the

possible text strings that can be displayed to

the right of the title

Values Array An array of strings that are used as keys for

the Titles. There must be the same number

of Values as Titles.

When using the Title setting, if you specify Titles and Values, you can set a title to a

predefined string by setting its value key. If you don’t want to include the Titles and

Values, however, it’s easier just to set the DefaultValue key.

You can also use the Title setting to insert gaps into a group of settings, although

generally, it’s better to simply group them via a Group setting.

PSSliderSpecifier

Table 14–4. PSSliderSpecifiers schema

Key Name Data Type Description

Type (required) String The value should always be

PSSliderSpecifier.

Key (required) String The identifier that is used to retrieve the

setting

DefaultValue

(required)

String The default value of the setting

http://

CHAPTER 14: User and Application Settings 314

Key Name Data Type Description

MinimumValue

(required)

Number The value when the slider is all the way to the

left

MaximumValue

(required)

Number The value when the slider is all the way to the

right

MinimumValueImage String The path to the image to display on the left

side of the slider. The image should be 21x21

pixels for non-retina displays, and 42x42

pixels for retina display.

MaximumValueImage String The path to the image to display on the right

side of the slider. The image should be 21x21

pixels for non-retina displays, and 42x42

pixels for retina display.

The Slider setting doesn’t allow for a title, so it’s a good idea to put a Title setting

before it so your users know what the slider is for.

PSToggleSwitchSpecifier

Table 14–5. PSToggleSwitchSpecifier schema

Key Name Data Type Description

Type (required) String The value should always be

PSToggleSwitchSpecifier.

Title (required) String The title of the group. If you don’t specify a

title, a gap will appear between settings items.

Key (required) String The identifier that is used to retrieve the

setting

DefaultValue

(required)

Any The default value of the setting. It’s generally

a good idea to use the same data type as

your TrueValue and FalseValue keys.

TrueValue Any Scalar Type The value returned when the toggle switch is

in the ON position

FalseValue Any Scalar Type The value returned when the toggle switch is

in the OFF position

http://

CHAPTER 14: User and Application Settings 315

PSMultiValueSpecifier

Table 14–6. PSMultiValueSpecifier schema

Key Name Data Type Description

Type (required) String The value should always be

PSMultiValueSpecifier.

Title (required) String The text that will appear as the setting name.

This string will also be used as the title of the

sub-page that is displayed with the values

that you can select from.

Key (required) String The identifier that is used to retrieve the

setting

DefaultValue

(required)

String The default value of the setting. If you have

specified a list of values, this should match

one of the items in the Values list. Otherwise,

the text that you specify in DefaultValue will

display.

Titles Array An array of strings that are used for the

possible text strings that will be displayed as

value options

Values Array An array of strings that are used as keys for

the Titles. There must be the same number

of Values as Titles

The items that a user can choose from on a Multi-Value setting are displayed on a sub-screen.

PSChildPaneSpecifier

Table 14–7. PSChildPaneSpecifier schema

Key Name Data Type Description

Type (required) String The value should always be

PSChildPaneSpecifier.

Title (required) String The text that will appear as the setting name.

This string will also be used as the title of the

sub-page that will display the settings

specified in the File key.

File (required) String The name of the .plist file (minus the .plist file

extension) that contains the settings that will

be used to populate the child pane

For every Child Pane setting you have, you must create a .plist file that it will use.

x

http://

CHAPTER 14: User and Application Settings 316

Accessing Settings
Application settings are accessed via the StandardUserDefaults property of the

NSUserDefaults object. There are two ways of accessing any setting. You can access

the StandardUserDefaults directly as a dictionary, which returns NSObject objects, or

you can use helper methods on it to retrieve your settings already cast as a type.

If you access the dictionary directly, you must check to see if the value is null, as in

Listing 14–2.

Listing 14–2. You should check for null when accessing the settings directly.

if (NSUserDefaults.StandardUserDefaults["password"] != null)
{

this.txtPassword.Text = NSUserDefaults.StandardUserDefaults["password"]
 .ToString ();
}

If you access the data via one of the typed calls, e.g., StringForKey, BoolForKey, you

don’t have to do a null check first, as in the following example (Listing 14–3).

Listing 14–3. If you access the settings via the typed calls, you don’t have to check for null.

this.txtUsername.Text = NSUserDefaults.StandardUserDefaults.StringForKey ("username");

If the setting is empty or doesn’t exist, you will get the default value for that type, e.g.,

String.Empty if it’s a string, or false, if it’s a Boolean, etc.

Saving Settings
If you’re providing an in-application interface for users to edit settings, it’s important to

be able to not only read settings, but also to save them. To save a setting, call the

Set[Type] methods on the StandardUserDefaults property, as in the following example

(Listing 14–4).

Listing 14–4. Saving settings using the user defaults API

NSUserDefaults.StandardUserDefaults.SetString (“bryancostanich”, "username");
NSUserDefaults.StandardUserDefaults.SetBool (true, "staySignedIn");

Initializing Settings
As I mentioned before, even if you set defaults, the iOS won’t load them until the

Settings Application is accessed for your application.

To get around this, we need to initialize our defaults before they're accessed. One of the

easiest places to do this is in your AppDelegate constructor, because it runs when your

application starts up.

You can use the following class (Listing 14–5) to load your app settings directly from

your settings file.

http://

CHAPTER 14: User and Application Settings 317

Listing 14–5.

public static class UserDefaultsHelper
{
 /// <summary>
 /// Loads the default settings from the Settings.bundle/Root.plist file. Also
 /// calls nested settings (referred to in child pane items) recursively, to
 /// load those defaults.
 /// </summary>
 public static void LoadDefaultSettings ()
 {
 //---- check to see if they've already been loaded for the first time
 if (!NSUserDefaults.StandardUserDefaults
 .BoolForKey ("__DefaultsLoaded"))
 {
 string rootSettingsFilePath = NSBundle.MainBundle.BundlePath

+ "/Settings.bundle/Root.plist";

 //---- check to see if there is event a settings file
 if (System.IO.File.Exists (rootSettingsFilePath))
 {
 //---- load the settings
 NSDictionary settings =

NSDictionary.FromFile (rootSettingsFilePath);
 LoadSettingsFile (settings);
 }

 //---- mark them as loaded so this doesn't run again
 NSUserDefaults.StandardUserDefaults
 .SetBool (true, "__DefaultsLoaded");
 }
 }

 /// <summary>
 /// Recursive version of LoadDefautSetings
 /// </summary>
 private static void LoadSettingsFile (NSDictionary settings)
 {
 //---- declare vars
 bool foundTypeKey;
 bool foundDefaultValue;
 string prefKeyName;
 NSObject prefDefaultValue;
 NSObject key;

 //---- get the preference specifiers node
 NSArray prefs = settings.ObjectForKey (

new NSString ("PreferenceSpecifiers")) as NSArray;

 //---- loop through the settings
 for (uint i = 0; i < prefs.Count; i++)
 {
 //---- reset for each setting
 foundTypeKey = false;
 foundDefaultValue = false;
 prefKeyName = string.Empty;
 prefDefaultValue = new NSObject ();

http://

CHAPTER 14: User and Application Settings 318

 //----
 NSDictionary pref = new NSDictionary (prefs.ValueAt (i));

 //---- loop through the dictionary of any particular setting
 for (uint keyCount = 0; keyCount < pref.Keys.Length; keyCount++)
 {
 //---- shortcut reference
 key = pref.Keys[keyCount];

 //---- get the key name and default value
 if (key.ToString () == "Key")
 {
 foundTypeKey = true;
 prefKeyName = pref[key].ToString ();
 }
 else if (key.ToString () == "DefaultValue")
 {
 foundDefaultValue = true;
 prefDefaultValue = pref[key];
 }
 else if (key.ToString () == "File")
 {

 NSDictionary nestedSettings =
 NSDictionary.FromFile
 (NSBundle.MainBundle.BundlePath
 + "/Settings.bundle/"
 + pref[key].ToString () + ".plist");
 LoadSettingsFile (nestedSettings);
 }

 //---- if we've found both, set it in our user preferences
 if (foundTypeKey && foundDefaultValue)
 {
 NSUserDefaults.StandardUserDefaults[prefKeyName]

= prefDefaultValue;
 }
 }
 }
 }
}

You can find this code in Example_AppSettings companion code. It loads the Root.plist

file, loops through all the settings and saves the defaults. It then calls itself recursively

for any settings stored in other files that are referenced via Child Pane settings. Call it in

your AppDelegate constructor, as in Listing 14–6.

Listing 14–6. Loading default settings when the application starts

public AppDelegate () : base()
{
 //---- set any user default values
 UserDefaultsHelper.LoadDefaultSettings ();

 //---- initialize our user settings, which loads them from the file
 // (if they exist)
 NSUserDefaults.StandardUserDefaults.Init ();
}

http://

CHAPTER 14: User and Application Settings 319

After you load your application defaults, you should also call the Init method on the

StandardUserDefaults class, as shown in the following example (Listing 14–7).

Listing 14–7.

NSUserDefaults.StandardUserDefaults.Init ();

This loads any settings that have been saved. It’s important to call it after your defaults

have been loaded, so that any saved changes override the defaults.

Summary
In this chapter you learned how to persist and retrieve user settings, as well as how to

register settings to display in the Settings Application.

In the next chapter we’re going to take a look at one of the most powerful libraries

baked into the iOS, CoreAnimation, which provides us a rich framework for providing

complex animations with very little code.

http://

321

321

 Chapter

Working with
CoreLocation

The iOS utilizes several hardware and software technologies to allow you to locate it in

the world, tell you which way you’re traveling, and know which way the phone is

pointing. The underlying technologies are fairly complex, but Apple abstracts most of

this complexity away and gives us an easy API called CoreLocation to get location and

heading information.

In this chapter, we’re going to look at working with the location features in the iOS via

the CoreLocation API.

All the code in this chapter is taken from the Example_CoreLocation companion code

and application. While this example is simple, the application possibilities for this data

are endless. For example, you could write an application that computes the distance

and direction to known locations from where the user is, or you could create an

application that shows which stars are in the sky based on the user’s location and

heading. The applications that can be built are limited only by your imagination.

Under the Hood
Under the hood, the iOS utilizes the following location technologies:

 Wi-Fi Positioning Service (WPS): Available on all iPhones since an

early OS update, and all iPad devices. WPS uses a database lookup of

nearby Wi-Fi access point MAC addresses with known locations. It

then computes the location based on a proprietary algorithm. In a

densely packed urban center, with lots of Wi-Fi access points, the

accuracy of WPS is often 20–30 meters.

15

http://

CHAPTER 15: Working with CoreLocation 322

 Global Positioning System (GPS): Available since the iPhone 3G and

iPad 3G models, GPS uses a system of orbiting satellites that

broadcast time and location signals to Earth. GPS receives these

signals and then performs triangulation based on the latency of the

signals. GPS is much more reliable than WPS in that it will work

anywhere in the world where the GPS receiver has an unobstructed

view of at least three satellites. The accuracy of GPS is usually within

20 meters, since the year 2000, when the U.S. government stopped

degrading location data for civilian use.

 Compass: Available since the iPhone 3Gs and all iPad models, the

compass enables the device to know its orientation to the magnetic

poles (magnetic heading). Coupled with its location information, it can

also tell you its true heading, based on the known magnetic variation

of the location.

Having to work with these directly would be pretty tedious, but fortunately for us, all of

this functionality is wrapped up in the CoreLocation API. MonoTouch exposes this API

via the MonoTouch.CoreLocation namespace, and the most important class is

CLLocationManager.

Usage Pattern
The general pattern for working with CoreLocation is as follows:

1. Instantiate a CLLocationManager object.

2. Configure any settings on CLLocationManager, such as the level of

accuracy you want.

3. Wire up event handlers to the update methods on the

CLLocationmanager object to handle the location updates (or assign a

CLLocationManagerDelegate if you want to use the delegate pattern as

described in Chapter 6).

4. Tell CLLocationManager to start feeding you location and/or heading

updates.

5. Do something interesting with the location information.

6. Tell CLLocationManager to stop updating you with information (this saves

on battery, as we’ll examine later).

Instantiating CLLocationManager
The CLLocationManager class is the workhorse of the CoreLocation API, but it’s very

easy to instantiate, as it has no arguments in its constructor. For example, Listing 15–1

comes from the Example_CoreLocation companion code and application.

http://

CHAPTER 15: Working with CoreLocation 323

Listing 15–1. Creating a new CLLocationManager Object

public class MainViewController : UIViewController
{
 CLLocationManager _iPhoneLocationManager = null;
 …

public override void ViewDidLoad ()
 {

…
this._iPhoneLocationManager = new CLLocationManager ();

 }
}

Configuring the Location Manager
Once you’ve instantiated the location manager object, the next step is to configure any

custom settings. There are two main settings that you can configure:

 Update Threshold

 Accuracy

Update Threshold

By default, location and heading data will be updated constantly. You can set a

threshold level for how often you want the location and heading to be updated.

CLLocationManager exposes the DistanceFilter and HeadingFilter properties, to set

location and heading update threshold, respectively.

 CLLocationManager.DistanceFilter: The value, in meters, of how far

the device has to move laterally before a location update is sent. A

value of -1 will cause it to update continuously.

 CLLocationManager.HeadingFilter: The value, in degrees, of how far

the device has to rotate before a heading update is sent. A value of -1

will cause it to update continuously.

Listing 15–2 tells the location manager to not update until it’s either moved 10 meters or

the heading has changed by 3 degrees.

Listing 15–2. Setting the update threshold on the location manager

this._iPhoneLocationManager.DistanceFilter = 10;
this._iPhoneLocationManager.HeadingFilter = 3;

Accuracy

By default, the location data given by the iOS will strive to be as accurate as possible.

This may mean trying to poll more satellites, resolving more Wi-Fi access points, and so

on. You can control what accuracy level the location manager tries to achieve via the

http://

CHAPTER 15: Working with CoreLocation 324

DesiredAccuracy property. It expects a setting in meters; so setting it to 1,000 will give it

kilometer-level accuracy. Setting to -1 will force it to be as accurate as possible. For

example, Listing 15–3 sets the location manager to a desired accuracy of 1 kilometer.

Listing 15–3. Setting the desired accuracy to 1 kilometer

this._iPhoneLocationManager.DesiredAccuracy = 1000;

There are also the following static properties on the CLLocation object that you can use:

 AccuracyBest: Returns -1, for the best possible accuracy.

 AccuracyNearestTenMeters: Returns 10.

 AccuracyHundredMeters: Returns 100.

 AccuracyKilometer: Returns 1,000 (1 kilometer).

 AccuracyThreeKilometers: Returns 3000 (3 kilometers).

For example, Listing 15–4 sets the desired accuracy to 10 meters.

Listing 15–4. Setting the desired accuracy using the typed properties

this._iPhoneLocationManager.DesiredAccuracy = CLLocation.AccuracyNearestTenMeters;

The more accurate you tell the location manager to be, the faster it will drain battery, so

you should set your desired accuracy level to the most that you will need. For example,

if you are trying to determine location to a street level, you should set the accuracy to

best (-1). However, if you’re building an application that only needs to locate users

within a city, you should consider setting it to three kilometers or more.

Listening for Updates
The location manager object exposes two events, UpdatedLocation and

UpdatedHeading, that give you location and heading information, respectively.

UpdatedLocation

The UpdatedLocation event is raised when new location information is received, and

from it we get things like location coordinates, altitude, and if we’re moving, a course

and heading. The UpdatedLocation event passes a CLLocationUpdatedEventArgs
parameter, which contains two properties: NewLocation and OldLocation. Both are of

type CLLocation. The NewLocation property has the latest location data, and

OldLocation contains data from the previous update.

http://

CHAPTER 15: Working with CoreLocation 325

CLLocation

The CLLocation class exposes a number of useful properties including the following:

 Altitude: The height of the current location in meters above sea level.

 Coordinate: The latitude and longitude coordinates of the current

location.

 Course: The current direction of travel in degrees.

 Speed: The current speed of travel in meters per second.

 HorizontalAccuracy: The accuracy of the coordinate data in meters.

 VerticalAccuracy: The accuracy of the altitude data in meters.

In addition to the location properties, you can use the CLLocation class to determine the

distance between two points via the DistanceFromLocation method.

For example, Listing 15–5 updates some labels with current location information, as well

as the distance, in kilometers, from the current location to Paris, France, when the

UpdatedLocation event is raised.

Listing 15–5. Handling UpdatedLocation to display current location information

this._iPhoneLocationManager.UpdatedLocation += (object sender
 , CLLocationUpdatedEventArgs e) => {
 this._mainScreen.LblAltitude.Text = e.NewLocation.Altitude.ToString ()
 + "meters";
 this._mainScreen.LblLongitude.Text = e.NewLocation.Coordinate.Longitude
 .ToString () + "º";
 this._mainScreen.LblLatitude.Text = e.NewLocation.Coordinate.Latitude
 .ToString () + "º";
 this._mainScreen.LblCourse.Text = e.NewLocation.Course.ToString () + "º";
 this._mainScreen.LblSpeed.Text = e.NewLocation.Speed.ToString () + "meters/s";

this._mainScreen.LblDistanceToParis.Text = (e.NewLocation.DistanceFrom(
new CLLocation(48.857, 2.351)) / 1000).ToString() + "km";

};

UpdatedHeading

The UpdatedHeading method is called when new heading information is received (which

comes from the compass), and passes a CLHeadingUpdatedEventArgs parameter, which

has a NewHeading property that is a CLHeading class.

Unlike UpdatedLocation, it only gives us our current heading, and not the last heading

as well, so if you want to track changes, you’ll have to store them yourself. Fortunately

that’s not a common need.

http://

CHAPTER 15: Working with CoreLocation 326

CLHeading

The CLHeading class exposes a number of useful properties including the following:

 HeadingAccuracy: The accuracy, in degrees, of the heading data.

 MagneticHeading: The heading, in degrees, relative to magnetic

north.

 TrueHeading: The heading, in degrees, relative to true north.

For example, Listing 15–6 handles the UpdatedHeading event and updates the interface

with the magnetic and true headings.

Listing 15–6. Handling the UpdatedLocation and UpdatedHeading events

this._iPhoneLocationManager.UpdatedHeading += (object sender
 , CLHeadingUpdatedEventArgs e) => {
 this._mainScreen.LblMagneticHeading.Text = e.NewHeading.MagneticHeading
 .ToString () + "º";
 this._mainScreen.LblTrueHeading.Text = e.NewHeading.TrueHeading
 .ToString () + "º";
};

Starting the Location Service Updates
Once you’re ready to receive location and heading information, you call

StartUpdatingLocation or StartUpdatingHeading on your configured location manager

class. However, before we look at that, we must look at one very important thing:

capabilities.

Capabilities

The iPhone/iPad user can turn off location services altogether from the Settings

application, or they can disallow them in specific applications. Some users do this for

privacy or battery life reasons. Additionally, the compass is not available on iPhone

models previous to the 3Gs.

Because of this, before you tell the iOS to start updating you with location and/or

heading information, you should first check to see whether these capabilities are

available.

For this reason, the CLLocationManager exposes two static properties,

LocationServicesEnabled and HeadingAvailable, to give you information regarding

CoreLocation feature availability.

 LocationServicesEnabled: If it is false, the user has this turned off,

and if your application attempts to access location information via

StartUpdatingLocation, the user will be given a prompt to allow the

application to use location services.

http://

CHAPTER 15: Working with CoreLocation 327

HeadingAvailable: This is false on the versions of the iPhone that do

not have a built-in compass. If it’s false, then you won’t be able to get

any meaningful heading data. Unlike the location services, the

compass cannot be turned off; this property will only be false if there is

no compass.

Because the location services may not be available, you should check them before

starting your updates. See Listing 15–7.

Listing 15–7. Checking for feature availability before attempting to use them

if (CLLocationManager.LocationServicesEnabled)
{ this._iPhoneLocationManager.StartUpdatingLocation (); }
if (CLLocationManager.HeadingAvailable)
{ this._iPhoneLocationManager.StartUpdatingHeading (); }

Once you’ve started your location updates, it can take a second or two for the location

manager to acquire location and heading information before it starts updating.

If you run this in the simulator, it doesn’t actually have access to location and heading

information, so it gives you simulated data, which returns the lat/long of Apple’s

headquarters in Cupertino, California, and made up data for the rest. See Figure 15–1.

Figure 15–1. Location data in the simulator shows Cupertino, CA.

If you were to deploy this to an actual device, however, you would get actual location

information, as shown in Figure 15–2.

http://

CHAPTER 15: Working with CoreLocation 328

Figure 15–2. Location data in the iPhone shows actual location data.

Stopping Updates
In addition to the StartUpdatingHeading and StartUpdatingLocation methods, there are

corresponding StopUpdatingHeading and StopUpdatingLocation methods that you

should call when you no longer need heading and/or location data. The location services

can be a tremendous drain on battery life and prudent use of these methods will help

you to cut down on battery drain.

Battery Drain
I’ve mentioned battery drain in this chapter several times. This is because location

services is one of the most draining features on the iDevice.

Because of this, it’s important to use it as little as possible. Performing the following can

help reduce usage, and therefore battery drain:

 Only check when needed: By calling StartUpdatingLocation and

StartUpdatingHeading only when you need the information, and calling

StopUpdatingLocation and StopUpdatingHeading when you’re finished

with the data, the iOS can actually turn off the underlying hardware

that makes these calls. This can make the battery last significantly

longer.

http://

CHAPTER 15: Working with CoreLocation 329

 Set your accuracy: By setting the desired accuracy to the lowest you

need, you can cut down considerably on battery drain, because the

iOS will reduce the number of datapoints and potentially the actual

hardware used to determine location.

Summary
In this chapter, you saw just how easy it is to get location information from the

CoreLocation API. In the next chapter, we’re going to look at one of the most powerful

libraries in the iOS – CoreGraphics, which you can use to do 2D drawing, image

manipulation, and the like.

http://

331

331

 Chapter

Drawing with
CoreGraphics

Up until this point, any graphics we’ve drawn have been intrinsically handled by the

controls we’ve used. For example, we’ve created plenty of buttons, but we’ve never had

to draw them ourselves. Sometimes, however, we need to do custom drawing beyond

what the controls offer out of the box. For example, let’s say that you want to build a

view that has a rounded rectangle border. You could do this with images, but for

maximum configurability, you could draw the lines and corners using CoreGraphics.

That way, you could vary the radius of the corners, as well as the color and thickness of

the lines, without having to do new images every time.

We have several options to do custom drawing, including CoreGraphics, OpenGL, and

the XNA Toolkit. CoreGraphics is the simplest option, as it is designed only for 2D

drawing. We will explore CoreGraphics in this chapter.

CoreGraphics is also known as the Quartz drawing system, as it inherits its design and

functionality from the Quartz framework on the Mac OS.

Entire books have been written on Quartz, and while this chapter will give a solid

foundation on how to use CoreGraphics in MonoTouch, as well as introduce you to its

common features, it is by no means exhaustive. The Quartz API is massive. Covering it

in detail goes far beyond the scope of this book. With that said, however, if you’re

looking for a more thorough reference once you’re through this chapter, check out

Apple’s Quartz 2D Programming Guide. It’s part of the documentation that ships with

the Xcode SDK, and is an invaluable asset for advanced drawing tasks.

If you’re familiar with System.Drawing, you’ll no doubt find Quartz API similar, but it is

exponentially more powerful. This chapter will get you well on your way with Quartz. By

the end, you’ll have a good, solid grasp on all the important fundamentals, and be able

to do most common drawing tasks.

You can find examples of all the code in this chapter in use in the Example_Drawing

companion application.

16

http://

CHAPTER 16: Drawing with CoreGraphics 332

Let’s first look at some fundamental concepts of CoreGraphics, and then we’ll dig into

some code.

Painter’s Model
CoreGraphics uses what is known as the painter’s model. As you draw, each

subsequent drawing operation is applied on top of the previous one.

Unlike layers in programs such as Photoshop, once you have drawn something, you

can’t undraw it, or pull layers out. If you want to build an application like that, you either

need to store a list of your draw operations and then re-draw each of the ones that you

want to apply, or use multiple drawing surfaces, which we will explore in the “Drawing

Context” section later in this chapter.

If you’ve used System.Drawing, or any other modern 2D drawing frameworks, this model

will be very familiar to you. And in fact, many of the same techniques and tools apply.

Performance
Another important thing to know about CoreGraphics is that, while it is highly optimized

for the iPhone, it is not guaranteed to use hardware acceleration. The iPhone and iPad

have a dedicated GPU to handle drawing operations, and some operations that you do

in CoreGraphics might be accelerated (handled by the GPU), but you never know what

will be accelerated and what won’t.

For most uses, this doesn’t matter, as the iPhone and iPad handle drawing operations

quite well. However, for high-performance 2D or 3D drawing, like the kind you see in

games, you should instead use OpenGL or the XNA Toolkit for MonoTouch (which also

uses OpenGL under the hood). These toolkits have a number of other features that make

them much more suitable for game development. Unfortunately, they’re also more

complicated, which is why CoreGraphics is very useful.

Colors
Most of the time, when doing computer graphics, we deal in what’s known as the RGB

color space, or color model. If you’ve done much modern programming, you’re likely to

be at least somewhat familiar with the RGB color model. But if you’re not, or you want to

know it better, a little color theory is helpful.

A Bit o’ Color Theory

If you look very closely at an LCD screen, you’ll see that each individual pixel is actually

made up of three distinct colors – red, green, and blue (hence, RGB). These are known

as the three additive primary colors. Combining varying amounts of light in this color

triangle creates the largest number of colors available (gamut) that are visible to the

http://

CHAPTER 16: Drawing with CoreGraphics 333

human eye. The RGB model is called an additive model because of the varying degrees

of light that are added to create the range of colors.

Similarly, most tube televisions and computer monitors use a cathode ray tube (CRT)

that has three-color guns of red, green, and blue that emit light toward the front of the

screen.

You may have been taught in school that the three primary colors were red, yellow, and

blue; however, this notion predates modern color theory and is actually derived from

light absorption (subtracting light) by mixing pigments as you would in painting or

printing. For this reason, they are often called the historical subtractive primary colors.

We still use a subtractive model when printing, because we’re mixing pigments rather

than light, but the most common one is the cyan, magenta, yellow, and key black

(CMYK) model, which is similar to the historical model.

There are a number of different additive models, but by far the most commonly used

one in computers is RGB, because of its direct mapping to display technology.

We refer to each portion of our color as a channel or a component, interchangeably. For

example, we might reference the red channel, or the red component, which simply refers

to the amount of red light in a particular color representation.

Each component is defined by a float value between 0.0 and 1.0, inclusive. 1.0 means

that the component should include as much light of that color as possible. A component

value of 0.0 means that there is no light of that color added.

Alpha RGB

Most of the code that we will look at uses an alpha RGB or an alpha RGB (ARGB)

model. I mentioned that CoreGraphics uses what’s known as the painter’s model. The

alpha channel specifies how much transparency/opacity to use when drawing on top of

something.

An alpha value of 0.0 means that the color application should be completely transparent

(the colors underneath will show through 100%). An alpha value of 1.0 means that it

should be applied completely opaquely (the colors underneath will be completely

covered by the color applied on top).

Often, as a developer, you’re given hexadecimal values from designers for colors,

because RGB colors are specified in hex values in web development. Colors specified in

hex are base-16 representations of a value between 0–255. In order to convert them to

RGB values that we can use in MonoTouch, we have to first convert from base-16 (hex)

to base-10 (decimal), and then divide by 255. We do this for each channel.

To convert from hex to decimal, we can use the Calculator program provided in OSX.

You can get change it into Programmer View by selecting View Programmer in the

menu. Select the 16 button in the upper right for hex mode, and 10 for decimal mode. If

you enter a value in either mode, it will be automatically converted when you switch

modes.

6

http://

CHAPTER 16: Drawing with CoreGraphics 334

For example, the color #ffcc00 can be converted by splitting it up into its constituent

RGB channels: ff, cc, and 00. ff in hex is 255 in decimal. When we divide it by 255, we

get 1, so the red component is 1.0. Doing this for cc and 00 get us 0.8 and 0.0,

respectively. Therefore, ffcc00 converts to 1.0, 0.8, 0.0 RGB component values.

UIColor and CGColor

For most MonoTouch programming, we use the UIColor class when we want to specify

a color. However, when working with CoreGraphics, many calls require a CGColor object.

Fortunately though, UIColor wraps CGColor, so anytime you need a CGColor and you

have UIColor, you can simply use the CGColor property of the UIColor object.

Drawing Context
Whenever you draw in CoreGraphics, you must draw onto some kind of surface. In

CoreGraphics, that surface is a CGContext. You can think of it kind of like the canvas in

our painter’s model. Like a canvas, it has parameters such as size, but it also has other

things, such as what colors are available to you.

There are generally two places you can create a context to draw on: onscreen or off-

screen. When you draw onscreen, your drawing happens directly on your view. When

you draw off-screen, you create a canvas (or canvases) in memory and then draw onto

that.

You might be asking yourself why you would ever want to draw off-screen. You might

do so in the following instances:

 When creating images: You might sometimes want to use

CoreGraphics to create an image for use in other places. If you draw

off-screen, you can then save whatever you’ve drawn as an image

when you’re done and use it elsewhere.

 When you want multiple copies: In CoreGraphics there is an off-

screen drawing object called a CGLayer that is used when you want to

draw multiple copies of the same item. The iOS caches your layer so

it’s much faster to draw multiple copies of the same item by using a

CGLayer.

 When drawing to a PDF: In addition to images, CoreGraphics allows

you to create PDF files and draw directly to them.

You can draw off-screen anytime you want by simply creating a new CGContext (or

CGLayer from an existing CGContext) and setting its properties. However, if you want to

draw onscreen, you must do it during the Draw method of your UIView, because the

drawing lifecycle is tightly controlled, and it’s the only place you can get a reference to

the onscreen context.

http://

CHAPTER 16: Drawing with CoreGraphics 335

Drawing Onscreen

In order to create the onscreen context, you call UIGraphics.GetCurrentContext in the

Draw method of your UIView. See Listing 16–1.

Listing 16–1. Creating a CGContext in the Draw method

public override void Draw (RectangleF rect)
{
 base.Draw (rect);
 using (CGContext context = UIGraphics.GetCurrentContext ())
 {
 // do your drawing
 }
}

This will allow you to draw directly on the view. We’ll look at how to do the actual

drawing in just a moment.

Notice that we’re using a using statement. This is because CGContext implements

IDisposable and is a non-managed resource. By wrapping our context in a using

statement, we’ve made sure that it gets properly disposed and we don’t have any

memory leaks.

Drawing Off-Screen

There are two ways to draw off screen. The first is to create a CGBitmapContext class, do

your drawing on that context, convert it to an image, and then draw that image onto

your screen (or save to a file). The second is to create a CGLayer, do your drawing on

that, and then draw that layer onto either an off-screen CGBitmapContext or your

onscreen CGContext.

CGBitmapContext

Creating a drawing context from a view is very easy, because all of the properties for the

context are pulled from the view, such as the size, the colorspace, and so on. However,

creating a context off-screen involves a few more steps, because you need to tell the

OS exactly how your in-memory drawing surface needs to be set up.

Listing 16–2 creates a new 32-bit RGB CGBitmapContext.

Listing 16–2. Creating a 32bit RGB CGBitmapContext

IntPtr data = IntPtr.Zero;
SizeF bitmapSize = new SizeF (200, 300);
int bitsPerComponent = 8;
int bytesPerRow = (int)(4 * bitmapSize.Width);
CGColorSpace colorSpace = CGColorSpace.CreateDeviceRGB ();
CGImageAlphaInfo alphaType = CGImageAlphaInfo.PremultipliedFirst;

using(CGBitmapContext context = new CGBitmapContext (data, (int)bitmapSize.Width,

(int)bitmapSize.Height, bitsPerComponent, bytesPerRow, colorSpace, alphaType))
{
 // do any drawing
}

http://

CHAPTER 16: Drawing with CoreGraphics 336

Let’s look at each line in more detail.

1. The first line is a zeroed-out IntPtr. When you create an off-screen

context, the first parameter takes an intPtr to existing data. You can

create a CGBitmapContext from an existing in-memory data structure.

However, doing so has a big drawback: since the release of iOS 4.0,

CoreGraphics will try to render your context using OpenGL (which is

hardware-accelerated), but if you do it this way, CoreGraphics won’t use

OpenGL to render your context. This means that any hardware

acceleration that you might have had won’t happen. Because of this,

you’ll nearly always want to pass a zero IntPtr for the data parameter.

2. The next line is just setting up the size that we’re going to use for the

context.

3. Next we specify our number of bits per component. Because we’re

using an ARGB space, there are four components, or channels: alpha

(the transparency), red, green, and blue. If we specify 8 bits per channel,

and have 4 channels, that’s a 32-bit color space.

4. Line 3 is bytes per row. Since there are 8 bits in a byte, and we have 4

components in each pixel, we have 4 bytes per pixel (32bits = 4bytes).

To determine how many bytes we’ll need for each row, we multiply the

number of pixels by how many bytes are in each pixel.

5. In line 4 we specify that we want to create a standard RGB color space,

using the device’s RGB profile.

6. The next parameter that we store is the CGImageAlphaInfo. This

specifies how the transparency is used. Since we’re going to use the

ARGB space, where the alpha component is first, we use

PremultipliedFirst. PremultipliedLast would be RGBA, which means

the last component alpha. There are a number of other alpha options,

but we’re not concerned with them, because this is the one you’ll likely

use 99% of the time.

7. The final line is instantiating the CGBitmapContext with all our

parameters.

Obviously you can collapse all of this code into a single line, but I’ve broken it out so you

can see what each parameter is.

After you’ve created your CGBitmapContext object, you can draw on it, just as you would

an onscreen CGContext.

When you’re ready to use what you’ve drawn, you can use the ToImage method to

convert your CGBitmapContext into an image that you can display onscreen or save to a

file.

http://

CHAPTER 16: Drawing with CoreGraphics 337

CGLayer

CGLayers are useful when you want to make multiple copies of what you’ve drawn in a

layer, because they’re cached. For instance, let’s say you want to draw a star, and then

reuse it over and over. See Figure 16–1.

Figure 16–1. Creating a CGContext in the Draw method

Creating a CGLayer is very easy, but it must be created from an existing context. See

Listing 16–3.

Listing 16–3. Creating a CGLayer from an existing context

using (CGLayer starLayer = CGLayer.Create (context, rect.Size))
{
 // do your drawing on starLayer.Context
}

http://

CHAPTER 16: Drawing with CoreGraphics 338

Once you create a CGLayer, it contains a Context property that you can draw on, just as

you would a CGContext or a CGBitmapContext.

To use a layer, you must draw it onto another context, using the DrawLayer method.

Listing 16–4 draws a layer onto an existing context at the point (0,0).

Listing 16–4. Drawing a CGLayer onto a context

context.DrawLayer (starLayer, new PointF (0, 0));

CoreGraphics Coordinate System
In Chapter 6, we talked about the coordinate system of CocoaTouch. If you recall,

coordinates are specified in (x,y). When working in views, the origin (0,0) is at the top

left, the x-axis increases to the right, and the y-axis increases as you go down, as shown

in Figure 16–2.

Figure 16–2. View coordinate system

http://

CHAPTER 16: Drawing with CoreGraphics 339

Things get a little tricky when we’re drawing in CoreGraphics, however. By default, when

drawing directly onscreen in a view (via the CGContext), the coordinates follow the same,

top-left origin coordinate space; but if you draw text, your text appears upside-down, as

shown in Figure 16–3.

Figure 16–3. By default, when drawing onscreen, your y-axis is upside-down.

Pretty weird eh? That’s because, by default, CoreGraphics actually uses a different

coordinate space, where the origin is at the bottom-left, and the y-axis is inverted, as

shown in Figure 16–4.

6

http://

CHAPTER 16: Drawing with CoreGraphics 340

Figure 16–4. CoreGraphics coordinate space

So when it tries to draw text, it assumes that you’re using the CoreGraphics bottom-left

origin coordinate space. So, really, everything you draw is actually flipped upside-down.

Not just text. For instance, if you draw an image in there, it will also appear flipped

upside-down.

There are a couple ways to deal with this. The first and easiest is to draw off-screen,

using a CGBitmapContext, and then draw your off-screen image to your view. This way,

you never have to worry about flipping things upside-down.

Another important reason this is preferable is that most drawing systems in the

computer world use a bottom-left coordinate space. So for instance, if you’re converting

scalable vector graphics (SVG) drawings, encapsulated post-script (EPS) files, portable

document format (PDF) files, and so on, all the coordinates for their shapes are based

http://

CHAPTER 16: Drawing with CoreGraphics 341

on a bottom-left coordinate space. Even all the Apple CoreGraphics/Quartz samples

assume a bottom-left origin.

For example, Figure 16–5 shows a screen from the companion Example_Drawing code,

which includes a screen that has a MonoTouch port of the U.S. flag-drawing example

pulled from the Quartz 2D Programming Guide.

Figure 16–5. When drawing off-screen, text is correctly rendered.

For these reasons, it’s generally much easier to draw off-screen, and then draw that

onto your view. That way, you don’t need to worry about any kind of translation.

http://

CHAPTER 16: Drawing with CoreGraphics 342

With that said, however, drawing off-screen has the following disadvantages:

 Performance: Drawing off-screen causes a performance lag, because

you have to allocate additional memory to store the off-screen context,

and then spend processing cycles to push (blit) that image onto the

screen.

 Setup: Drawing off-screen requires more setup, because the onscreen

context already knows the parameters of the context, such as the

color space, size, and so on.

If you don’t want to draw off-screen, you have of the following options for dealing with

the inverted coordinate space:

 Transform the context coordinate space.

 Transform the coordinates of individual drawing operations.

Transforming the Context Coordinate Space

We’ll talk about transformations in more detail later, but for now, Listing 16–5 will

change the coordinate space of your onscreen context to be the off-screen coordinate

space.

Listing 16–5. Flipping and moving the onscreen coordinate space

using (CGContext context = UIGraphics.GetCurrentContext ())
{

CGAffineTransform affineTransform = CGAffineTransform.MakeIdentity ();
affineTransform.Scale (1, -1);
affineTransform.Translate (0, this.Frame.Height);
context.ConcatCTM (affineTransform);

// do your drawing

}

This code flips the y-axis by performing a scale transform on it, and then moves the

origin to the top left.

Transforming the Coordinates of Individual Drawing
Operations

You can also transform the coordinates of individual drawing operations by calling

SaveState on the context, doing the transform in Listing 16–5, and then calling

RestoreState on the context. SaveState and RestoreState allow you to apply temporary

changes to your context and then restore it back to how it was when you called

SaveState.

http://

CHAPTER 16: Drawing with CoreGraphics 343

MORE ON STATE: CoreGraphics uses a state stack to determine how to perform operations. This

means that instead of passing things like fill color or line width to a method every time you want

to draw something, you simply set the current fill color or line width on the state stack. When a

method is called, CoreGraphics looks at the current state settings and uses those to perform its

operations. Sometimes, however, you may want to set temporary settings and then unload them.

To allow this, the graphics context exposes SaveState and RestoreState methods. SaveState

allows you to set a save point that you can then revert back to via RestoreState.

Additionally, you can utilize the ConvertPointToView and ConvertRectToView calls to

convert individual points and rectangles to the onscreen coordinate system.

Drawing Tools
Now that your brain is awash with coordinate spaces, onscreen and off-screen contexts,

and color theory, let’s look at how we can actually draw in CoreGraphics. When

drawing, you have the following drawing tools at your disposal:

 Paths

 Primitives

 Text

 Images

 Patterns

 Shadows

Let’s look at each one of these in detail.

Paths

Paths form the basis of nearly all drawing in CoreGraphics. A path is kind of like an

invisible pen. You tell the pen to move to a certain spot on your drawing surface where

you want to start your path, and then you tell the pen to extend the path to another point

using a line or a curve. You keep moving it to subsequent locations, drawing lines or

curves between each one, until you’ve finished your path.

Once you have a completed path, you can choose to either stroke the path (give it an

outline) or fill it.

http://

CHAPTER 16: Drawing with CoreGraphics 344

Stroking and Filling Paths

Listing 16–6 draws a rectangle, and then strokes the path.

Listing 16–6. Drawing a rectangle using a path, and then stroking the path.

using (CGContext context = UIGraphics.GetCurrentContext ())
{
 //---- draw a rectangle using a path
 UIColor.Blue.SetStroke ();
 context.BeginPath ();
 context.MoveTo (220, 10);
 context.AddLineToPoint (420, 10);
 context.AddLineToPoint (420, 110);
 context.AddLineToPoint (220, 110);
 context.ClosePath();
 context.DrawPath (CGPathDrawingMode.Stroke);
}

In the first line we set the stroke color. UIColor has shortcut methods that can set the

color of the stroke or fill on the current context. However, there may not always be a

default context available, which is the case when you’re working with layers. In that

instance, you can also set the stroke and fill color on the context directly by calling

SetRGBFillColor and SetRGBStrokeColor.

Next, we start the path by calling the BeginPath method on the context. This tells our

context that our subsequent path operations should be performed on this new path. We

don't actually have to specify this if no paths exist yet; but if they do, then this makes

sure that this path is not connected to the last one. If we didn’t make this call in this

case, then it would stroke any path stuff that we did before when we tell it to stroke the

path.

Next, we move our path pen to a point and add lines. We then call ClosePath so that the

last path line is automatically generated for us. Finally, we call DrawPath and tell it we

want to stroke it. We could also tell it that we want to stroke and fill, just fill, or one of a

couple other options. For example, if we added Listing 16–7, it would fill the rectangle

with dark gray as well.

Listing 16–7. Drawing a rectangle using a path created from a rectangle

UIColor.DarkGray.SetFill ();
context.DrawPath (CGPathDrawingMode.FillStroke);

Primitives

As a shortcut, instead of creating individual lines to create a shape, you can actually add

simple shapes, known as primitives, directly to the path. For example, Listing 16–8

creates the same rectangle as before, but instead of manually creating the lines, it uses

the AddRect method to create a path from a RectangleF.

http://

CHAPTER 16: Drawing with CoreGraphics 345

Listing 16–8. Drawing a rectangle using a path created from a rectangle

using (CGContext context = UIGraphics.GetCurrentContext ())
{
 //---- draw a rectangle using a path
 UIColor.Blue.SetStroke ();
 CGPath rectPath = new CGPath ();
 rectPath.AddRect (new RectangleF (new PointF (220, 10), new SizeF (200, 100)));
 context.AddPath (rectPath);
 context.DrawPath (CGPathDrawingMode.Stroke);
}

You can even use primitives without explicitly creating a path, because they create and

manage them behind the scenes.

For example, Listing 16–9 draws a blue, 200x100 point rectangle at the point (10,10),

using the StrokeRect method.

Listing 16–9. Drawing a rectangle using the StrokeRect method

using (CGContext context = UIGraphics.GetCurrentContext ())
{
 //---- draw a rectangle using fill rect
 UIColor.Blue.SetStroke ();
 context.StrokeRect (new RectangleF (10, 10, 200, 100));
}

One of the drawbacks of using primitives directly without a path like this is that if you

need the path later (as we’ll see in a bit when I talk about hit-testing), you don't have

access to it without re-creating it.

Text

CocoaTouch includes a number of text related controls, including UILabel, UITextField,

and UITextView, that provide rich features for managing the drawing of text. When you

want to display text in your application, these controls should be your go-to resource.

With that said, sometimes you need to draw text yourself. This is especially true if you’re

creating images. In this case, CoreGraphics offers limited text drawing capabilities.

Drawing text is fairly easy. Listing 16–10 draws the string “Hello World!” at a text height

of 20 points, using Helvetica Bold, at the point (20,0).

Listing 16–10. Drawing text

using (CGContext context = UIGraphics.GetCurrentContext ())
{

string text = “Hello World!”;
int textHeight = 20;
context.SelectFont ("Helvetica-Bold", textHeight, CGTextEncoding.MacRoman);
context.SetTextDrawingMode (CGTextDrawingMode.Fill);
context.ShowTextAtPoint (20, 20, text, text.Length);

}

This is fine for left-aligned text, at a known size, but what if you want to change the

alignment of the text, or fit text to an area? Well, this is where things get a little more

complicated. If you need to do anything like that, you need to draw the text invisibly first,

http://

CHAPTER 16: Drawing with CoreGraphics 346

measure it, and then adjust accordingly. If you need to make it fit into a particular area,

you may have to render it multiple times, resizing the text each time until it fits.

Listing 16–11 draws center-aligned text at a point by first rendering the text invisibly,

measuring the size, and then drawing the text at a modified point.

Listing 16–11. Pre-rendering text in order to center it

public void DrawCenteredTextAtPoint (CGContext context, float centerX, float y
 , string text, int textHeight)
{
 context.SelectFont ("Helvetica-Bold", textHeight, CGTextEncoding.MacRoman);
 context.SetTextDrawingMode (CGTextDrawingMode.Invisible);
 context.ShowTextAtPoint (centerX, y, text, text.Length);
 context.SetTextDrawingMode (CGTextDrawingMode.Fill);
 context.ShowTextAtPoint (centerX - (context.TextPosition.X - centerX) / 2
 , y, text, text.Length);
}

The TextPosition property returns you to the last location at which text was drawn, so

we can draw the visible text based directly on the invisible text’s position.

After looking at that code, it’s easy to see how much work the existing UIKit controls

can save you, especially for complicated text operations.

Images

CoreGraphics also allows you to draw pre-existing images onto your drawing surface.

All CGContext derived objects expose a method, DrawImage, that takes a RectangleF that

describes the size and location of where to draw the image, and a CGImage of the image

to draw. UIImage wraps CGImage, and exposes it as the CGImage property, so it’s very

easy to load an image from a file and draw it, as shown in Listing 16–12.

Listing 16–12. Drawing a UIImage onto a context

UIImage apressImage = UIImage.FromFile ("Images/Apress-512x512.png");
RectangleF imageRect = new RectangleF (0, 0, apressImage.CGImage.Width

, apressImage.CGImage.Height);
context.DrawImage (imageRect, apressImage.CGImage);

In Listing 16–12, we created a UIImage by loading it from a file, created a rectangle at the

(0,0) at the same size as the image, and then drew it onto the context.

You don’t have to draw the image at the same size as the original; you’re free to resize

up or down, or even change the aspect ratio. Additionally, CoreGraphics provides

extensive options for blending, as well as masking when drawing images. For more

information, read the Quarts 2D Programming Guide that ships with the iPhone SDK.

http://

CHAPTER 16: Drawing with CoreGraphics 347

Patterns

A pattern is a repeating drawing operation. You can use a pattern in CoreGraphics just

like you would a color. This means that you can define a pattern and then use it when

you fill or stroke a path, or draw primitives. Figure 16–6 shows is a pattern that has been

used as a fill in a view.

Figure 16–6. A pattern used as a fill

In the previous example, the pattern is simply a circle that is filled in. When we fill the

view, we tell the iPhoneOS that we want to use our circle pattern, which it then

repeatedly draws.

Patterns are even faster than layers, but they’re not quite as versatile.

http://

CHAPTER 16: Drawing with CoreGraphics 348

There are two kinds of patterns in CoreGraphics:

 Color patterns

 Stencil patterns

Colored patterns have their color information built in to the pattern, so whenever you

paint with that pattern, it uses whatever colors are built into it.

Stencil patterns are patterns that don’t have any colors associated with them. They’re

like a stencil that you spray-paint – you can reuse a stencil over and over and assign a

different fill color to it each time.

Creating a Color Pattern

To create a color pattern you need to create a delegate that CoreGraphics will call to

draw the singular draw operation that will be repeated. Listing 16–13 is a simple

example of this that draws the circle used in Figure 16–6.

Listing 16–13. A simple pattern callback that draws a gray circle

protected void DrawPolkaDotPattern (CGContext context)
{

context.SetRGBFillColor (.3f, .3f, .3f, 1);
context.FillEllipseInRect (new RectangleF (4, 4, 8, 8));

}

Next, when we want to use a pattern, we must do the following things:

1. Specify the pattern color space.

2. Instantiate and configure the pattern.

3. Set the pattern to be a fill or stroke.

Once we’ve done these things, we can use the pattern just as we would a color. Listing

16–14 configures and fills a view using the pattern callback.

Listing 16–14. Using our pattern callback

RectangleF patternRect = new RectangleF (0, 0, 16, 16);
context.SetFillColorSpace (CGColorSpace.CreatePattern (null));
CGPattern pattern = new CGPattern (patternRect

, CGAffineTransform.MakeRotation (.3f), 16, 16, CGPatternTiling.NoDistortion
, true, DrawPolkaDotPattern);

context.SetFillPattern (pattern, new float[] { 1 });
context.FillRect (this._imageView.Frame);

Let’s look at the interesting parts of this code. The first important thing is to specify the

color space of the pattern. When using color patterns, we want the pattern to take care

of the color, so we create a pattern color space by calling CGColorSpace.CreatePattern
and passing a null value. We then set our fill color space to that color space that we

just created.

Next, we create a new CGPattern object and configure it. We tell it the size of the pattern

as well as any transformations we want to do with it. I’ll talk about transforms in just a

http://

CHAPTER 16: Drawing with CoreGraphics 349

bit, but in this case we’re passing a MakeRotation transform so we can rotate the

pattern. If we didn’t want to transform it, we could just pass an identity transformation

via CGAffineTransform.MakeIdentity. Next, we tell it the pattern size, then we specify

how we want it tiled. There are a number of options for how it does tiling. In this case,

we’re telling it not to distort our pattern size ratio.

Next, we pass in true for the isColored parameter, which tells CoreGraphics that it’s a

color pattern. The final constructor parameter is our actual pattern draw delegate, so we

pass our DrawPolkaDotPattern method that we created earlier.

Next, we set our pattern as a fill pattern, since we’re going to fill with it. We also pass in

an alpha component to tell CoreGraphics how transparent we want the pattern blending

to be. In this case, we pass in a 1 to make it completely opaque.

Finally, we fill the area defined in our view.

As you can see, it’s very easy to use a pattern, and they’re very powerful.

Creating a Stencil Pattern

Creating a stencil pattern follows the exact same procedure as a color pattern, but with

a couple of minor changes.

The first change is that in our pattern draw delegate, we don’t specify any colors. See

Listing 16–15.

Listing 16–15. When creating a color stencil delegate, you don’t specify any colors.

protected void DrawPolkaDotPattern (CGContext context)
{
 context.FillEllipseInRect (new RectangleF (4, 4, 8, 8));
}

All we do is our drawing operations, with no fill or stroke colors defined.

Next, when we set our pattern color space, instead of passing a null value, we create it

from an actual color space. RGB is the most common, but you could use CMYK, or

other color spaces as well. Listing 16–16 creates an RGB space using the device color

profile.

Listing 16–16. Creating an actual color space for use with a stencil pattern

context.SetFillColorSpace (CGColorSpace.CreatePattern (CGColorSpace.CreateDeviceRGB()));

Next, when we instantiate our CGPattern, we pass a false value for the isColor

parameter. See Listing 16–17.

Listing 16–17. Passing false to tell CoreGraphics that we’re using a stencil pattern

CGPattern pattern = new CGPattern (patternRect, CGAffineTransform.MakeRotation (.3f)
 , 16, 16, CGPatternTiling.NoDistortion, false, DrawPolkaDotPattern);

Finally, when we set our fill, or our stroke, this time we pass in a fill color specification.

See Listing 16–18.

http://

CHAPTER 16: Drawing with CoreGraphics 350

Listing 16–18. Telling CoreGraphics to use red to color our stencil pattern

context.SetFillPattern (pattern, new float[] { 1, 0, 0, 1 });

When we run our code now, we see a screen similar to Figure 16–7.

Figure 16–7. A stencil pattern using red as the fill color

That’s it! Those are the only differences between using color patterns and stencil

patterns.

Shadows

Shadows can add depth to your drawings in CoreGraphics, and they are incredibly

simple to create. You can add either grayscale or color shadows to any draw operation,

including shapes, lines, images, and text. See Figure 16–8.

http://

CHAPTER 16: Drawing with CoreGraphics 351

Figure 16–8. Shadows in CoreGraphics

Grayscale Shadows

To add a grayscale shadow, perform the following steps:

 Save the graphics state.

 Call SetShadow on your graphics context.

 Perform the drawing operations that you want shadowed.

 Restore the graphics state.

Listing 16–19 creates a grayscale shadow that is offset 10 points below and 10 points to

the right of a rectangle, with a blur value of 15.

http://

CHAPTER 16: Drawing with CoreGraphics 352

Listing 16–19. Creating a grayscale shadow

context.SaveState ();
context.SetShadow (new SizeF (10, -10), 15);
context.SetRGBFillColor (.3f, .3f, .9f, 1);
context.FillRect (new RectangleF (100, 600, 300, 250));
context.RestoreState ();

Color Shadows

Color shadows are exactly like grayscale shadows, except that instead of using

SetShadow, you call SetShadowWithColor. Listing 16–20 specifies a blue shadow

extending 15 points below and 15 points to the right, with a blur of 10

Listing 16–20. Specifying color shadow options

context.SetShadowWithColor(new SizeF (15, -15), 10, UIColor.Blue.CGColor);

Transformations
CoreGraphics includes a very powerful and easy to use system of tools for transforming

your drawing and drawing operations. For example, with a single call, you can move,

rotate, scale, or flip your drawing.

Under the hood, CoreGraphics uses matrix math to perform transformations, but for the

most part, you don’t need to know about any of that. That’s because CoreGraphics

provides you with shortcut methods to simply apply transformations directly to the

context.

We saw earlier how we could use transformations to change the entire graphics context,

so that all subsequent drawing is in a new coordinate space. However, transformations

are more often used to change the coordinate space temporarily, so that we can

transform a particular drawing operation, and then change it back, so we can draw other

stuff.

In order to do this, you do the following:

1. Call SaveState on your context: This allows you to revert back to the

original coordinate space.

2. Apply your transformations: Do any of your scaling, moving, rotating,

and so on to the context.

3. Perform your drawing: Any drawing will occur in the transformed

coordinate space.

4. Call RestoreState on your context: This resets the coordinate space

on your context back to the save point.

http://

CHAPTER 16: Drawing with CoreGraphics 353

Translation (Moving)

Translation makes it very easy utilize the origin (0,0) as your base point for drawing,

because you can draw something at (0,0) and then move it to wherever you want. For

example, Listing 16–21 draws a rectangle at the origin, but because of our translation, it

actually is drawn at (50,50) in the view coordinate space.

Listing 16–21. Using TranslateCTM to move your coordinate space

context.SaveState ();
context.SetRGBFillColor (1, 0, 0, 1);
context.TranslateCTM (50, 50);
context.FillRect (new RectangleF 0, 0, 20, 20));
context.RestoreState ();

In Listing 16–21, we made a call TranslateCTM to perform our translation. CTM stands

for current transformation matrix, and it references the matrix that stores the current

transformations on the context. Even though we drew the rectangle at (0,0), it actually

appears at (50,50) because of our temporary translation.

Scaling

Scaling is performed via the ScaleCTM call. Listing 16–22 makes our rectangle twice as

big (40x40) as we’ve drawn it (20x20).

Listing 16–22. Using ScaleCTM to scale your coordinate space

context.SaveState ();
context.SetRGBFillColor (1, 0, 0, 1);
context.ScaleCTM (2, 2);
context.FillRect (new RectangleF 0, 0, 20, 20));
context.RestoreState ();

One of the interesting things about scaling is that you can actually use it to flip your

coordinate space as well. For example, Listing 16–23 flips the y-axis so that your

drawing gets flipped upside-down.

Listing 16–23. Flipping the y-axis by passing a negative value for y in ScaleCTM

context.SaveState ();
context.SetRGBFillColor (1, 0, 0, 1);
context.ScaleCTM (1, -1);
context.FillRect (new RectangleF 0, 0, 20, 20));
context.RestoreState ();

To flip the y-axis, we simply passed a -1 for the y parameter of ScaleCTM.

Rotation

It becomes apparent why drawing at the origin is useful when we look at rotation.

Because rotation rotates the entire coordinate system around the origin, if you drew your

object at (50, 50), when you rotated the coordinate space your rectangle would actually

move in an arc, equidistant from the origin. However, by centering your drawing over the

origin, rotating, and then translating, you can rotate without moving your object.

http://

CHAPTER 16: Drawing with CoreGraphics 354

For instance, Listing 16–23 draws a rectangle at (50,50), and rotates it 45 degrees

clockwise.

Listing 16–23. Using RotateCTM to rotate your coordinate space

context.SaveState ();
context.SetRGBFillColor (1, 0, 0, 1);
context.RotateCTM ((float)(Math.PI * 2 / 8));
context.TranslateCTM (60, 60);
context.FillRect (new RectangleF -10, -10, 20, 20));
context.RestoreState ();

Rotation is specified in radians (2 * pi = 360 degrees), so 45 degrees is 2 * pi / 8. Our

rectangle is 20x20 points, so to draw it centered at the origin, we draw it a (-10,-10).

Notice that we perform our rotation before our translation. The order of operations is

important in rotation. Getting the order wrong can cause the same problem as when we

don’t draw our stuff at the origin.

Custom Transforms

If you’re familiar with matrix transformations, CoreGraphics includes a number of

classes so that you can use them in all kinds of ways. For more information, see the

Quartz 2D Programming Guide.

Hit Testing
So, all this custom drawing stuff is fun, but often you need to be able to tell if a user has

touched within a certain area in your drawing surface. This is especially true if you’re

making custom button functionality.

Ordinarily, this would require doing complicated geometry to determine whether the

location of a user’s touch was within a given shape. Fortunately, Apple has given us a

method that does the hard part for us.

CGPath exposes a method called ContainsPoint that will return true if a given location

falls within the path. Additionally, the UITouch object (which we get when we’re handling

touch events) tells us the location of the touch. To determine whether a user’s touch was

within a given path, we can simply override the TouchesBegan event and call the

ContainsPoint method, as shown in Listing 16–25.

Listing 16–25. Determining if a user’s touch was within a given path

public override void TouchesBegan (NSSet touches, UIEvent evt)
{
 base.TouchesBegan (touches, evt);

 UITouch touch = touches.AnyObject as UITouch;
 if (touch != null)
 {
 if (this._myPath.ContainsPoint (touch.LocationInView (this), true))
 {
 // code to handle the touch

http://

CHAPTER 16: Drawing with CoreGraphics 355

 }
 }
}

myCGPath.ContainsPoint (myUITouch.LocationInView(myView), true)

So as long as you store your path, it’s easy to determine if a touch fell within it. The

caveat to this, however, is that usually we want the equivalent of the TouchUpInside

event. That is, we want to know that when the user raises his finger off of the screen,

that he also started within the area we’re testing. This allows a user to cancel a button

press by sliding his finger off the button and then raising it off the screen. This is also a

recommendation in Apple’s Human Interface Guidelines for the iPhone OS.

In order to do this, we must do the following things:

1. Create a boolean flag: We need to store whether the touch began

within the area specified.

2. Override the TouchesBegan event: If the touch began within our

specified path, we set our flag to true.

3. Override the TouchesEnded event: If our flag is equal to true, we know

that the touch began in our path, so in the TouchesEnd event, we check

to see if it also ended there.

4. Override the TouchesCancelled event: In the event that the touch was

cancelled, we should clear our flag.

The following UIView class does exactly that. It draws a rectangle and stores the path as

a class-level variable, and then it overrides our touch events, tracking whether the touch

started and ended within our path. If it did, it shows an alert. See Listing 16–26.

Figure 16–26. A sample UIView class

public class View : UIView
{

 CGPath _myRectangleButtonPath;
 bool _touchStartedInPath;

 public View () : base()
 {
 }

 /// <summary>
 /// rect changes depending on if the whole view is being redrawn,

/// or just a section
 /// </summary>
 public override void Draw (RectangleF rect)
 {
 Console.WriteLine ("Draw() Called");
 base.Draw (rect);

 using (CGContext context = UIGraphics.GetCurrentContext ())
 {

http://

CHAPTER 16: Drawing with CoreGraphics 356

 //---- draw a rectangle using a path
 this._myRectangleButtonPath = new CGPath ();
 this._myRectangleButtonPath.AddRect (new RectangleF (new PointF

(100, 10), new SizeF (200, 400)));
 context.AddPath (this._myRectangleButtonPath);
 context.DrawPath (CGPathDrawingMode.Stroke);
 }
 }

 /// <summary>
 /// Raised when a user begins a touch on the screen. We check to see if
 /// the touch
 /// was within our path. If it was, we set the _touchStartedInPath = true
 /// so that
 /// we can track to see if when the user raised their finger, it was also in
 /// the path
 /// </summary>
 public override void TouchesBegan (NSSet touches, UIEvent evt)
 {
 base.TouchesBegan (touches, evt);
 //---- get a reference to the touch
 UITouch touch = touches.AnyObject as UITouch;
 //---- make sure there was one
 if (touch != null)
 {
 //---- check to see if the location of the touch was within our
 // path
 if (this._myRectangleButtonPath.ContainsPoint
 (touch.LocationInView (this)

, true))
 {
 this._touchStartedInPath = true;
 }
 }
 }

 /// <summary>
 /// Raised when a user raises their finger from the screen. Since we need
 /// to check to
 /// see if the user touch started and ended within the path, we have to track
 /// to see
 /// when the finger is raised, if it did.
 /// </summary>
 public override void TouchesEnded (NSSet touches, UIEvent evt)
 {
 base.TouchesEnded (touches, evt);

 //---- get a reference to any of the touches
 UITouch touch = touches.AnyObject as UITouch;

 //---- if there is a touch
 if (touch != null)
 {
 //---- the point of touch
 PointF pt = touch.LocationInView (this);

 //---- if the touch ended in the path AND it started in the path

http://

CHAPTER 16: Drawing with CoreGraphics 357

 if (this._myRectangleButtonPath.ContainsPoint (pt, true)
&& this._touchStartedInPath)

 {
 Console.WriteLine ("touched at location: " + pt
 .ToString ());
 UIAlertView alert = new UIAlertView ("Hit!"

, "You sunk my battleship!", null, "OK", null);
 alert.Show ();
 }
 }

 //---- reset
 this._touchStartedInPath = false;
 }

 /// <summary>
 /// if for some reason the touch was cancelled, we clear our _touchStartedInPath
 /// flag
 /// </summary>
 public override void TouchesCancelled (NSSet touches, UIEvent evt)
 {
 base.TouchesCancelled (touches, evt);
 this._touchStartedInPath = false;
 }

}

As you can see, we have to track our touch, but it’s really not too bad – the heavy lifting

is done in the CGPath.ContainsPoint method, which really saves us a lot of work.

Updating the Drawing Surface in Real-time
So far, everything we’ve done has been static drawing, e.g., drawing something and

displaying it to the page. What if you want to draw in real-time, like in response to user

touches?

The answer lies in two UIView methods: SetNeedsDisplay and SetNeedsDisplayInRect.

SetNeedsDisplay specifies that the entire view should be redrawn.

SetNeedsDisplayInRect specifies that only a certain section (specified by a RectangleF)

needs to be redrawn.

When you call either of these methods, the OS will then call your Draw method when it

deems it appropriate. If your view isn’t onscreen, it may not even get called.

The rendering pipeline is very tightly controlled in the iOS, so you can’t call the Draw

method yourself. By giving you those methods, the OS takes on the burden of calling

Draw when appropriate.

Full View Update

Doing an update of the entire screen is fairly simple. Listing 16–27 is an excerpt taken

from the Example_Drawing companion application. It overrides the TouchesBegan method,

http://

CHAPTER 16: Drawing with CoreGraphics 358

so that when a user touches the screen, it captures the location and creates a custom

Spot object (defined elsewhere) at that location and then adds it to a list. It then calls

SetNeedsDisplay so that the OS will call the Draw method.

Figure 16–27. Calling SetNeedsDisplay to force a Draw call to update the entire view

public override void TouchesBegan (NSSet touches, UIEvent evt)
{

base.TouchesBegan (touches, evt);

//---- get the touch
UITouch touch = touches.AnyObject as UITouch;
if (touch != null)
{

//---- create a random color spot at the point of touch, then add it
 // to the others

Spot spot = Spot.CreateNewRandomColor (touch.LocationInView (this));
 this._touchSpots.Add (spot);

//---- tell the OS to redraw
 this.SetNeedsDisplay ();

}
}

Partial View Updates

You can do partial view updates via the SetNeedsDisplayInRect call. It takes RectangleF
parameter that is passed to your Draw method and allows you to just draw a portion of

the screen. The difficulty with this call, however, is that it invalidates that rectangle, so if

you have anything already drawn in there, and you want to draw over it, it will erase it,

even if you mask off (clip) just the area you want to draw.

Other Features of CoreGraphics
Wow, CoreGraphics is a huge, powerful library, this is a large chapter, and we’ve only

scratched the surface. Every subject we’ve covered has more functionality than we’ve

touched on. It’s no wonder entire books have been devoted to the subject.

With that said, there are a number of other elements of CoreGraphics that I would like to

just briefly mention, so that you know they exist and if you need them, you can go

research them:

Frame rate synchronization: There is a class called CADisplayLink

that allows you to synchronize screen updates to coincide with the

refresh rate of the display that you’re using. For example, if you’re

building a video playback engine, you can determine which frame to

display next, based on the timestamp of the last screen refresh and

the refresh rate.

http://

CHAPTER 16: Drawing with CoreGraphics 359

 Dashed lines: Lines don’t need to be continuous. CoreGraphics has

rich support for dashed lines, and you can specify the dash pattern,

interval, and so on.

 Fill modes: I’ve shown only the simplest of fills, but CoreGraphics also

supports filling with all kinds of gradients. It also supports advanced

fill-modes that clip certain overlapping regions and multipath fills so

you can do things like create donuts.

 Blending: Out of the box, CoreGraphics supports a number of

sophisticated blending options for specifying how draw options are

overlayed on top of each other, just like you see in high-end photo-

editing suites such as Adobe Photoshop.

 Transparency layers: CoreGraphics has a feature called transparency

layers that allows you to group drawing operations together as a single

object, so that you can apply effects such as shadows to the entire set

without them appearing as separate objects on top of each other.

 Clipping masks: Clipping masks lets you apply masks on top of

drawing objects to control what gets drawn to the screen.

 Image masks: Image mask are like clipping masks, but you can also

pull out parts of an image and draw them elsewhere, plus a whole lot

of other neat functionality.

 PDF creation: CoreGraphics allows you to save your drawing surfaces

directly out as PDF files, handling all the necessary serialization, file

formatting, and so on, making PDF creation a cinch.

As I’ve mentioned before, Apple’s documentation on CoreGraphics is quite extensive,

and it’s required reading if you want to dive deeper. Start with the Quartz 2D

Programming Guide and you’ll be well on your way.

Summary
Wow, that was a lot of information. This chapter should get you well on your way to

understanding CoreGraphics. You should now understand all of the fundamentals of

CoreGraphics, and then some. But remember, there is a lot more to it, so you should

definitely check out the Apple docs on it.

http://

361

361

 Chapter

Core Animation

One of the iconic things about iOS is its cinematic user experience. GUI elements slide

on and off screen, fade in, fade out, flip, curl, and bounce, the result of which is an

interface that feels very smooth, dynamic, and organic.

Powering this cinematic experience is one of iOS’ foundation technologies, Core

Animation. The Core Animation API provides you with a number of UIView-based

animation features that allow you to easily animate changes in your interface so that

your applications can provide the same cinematic experience that users have come to

expect from iOS applications. View-based animation includes two types of animations:

transition animations and same view animations. Transition animations are animations

that occur when you’re changing between views. For instance, you might want to load

another view and use a flip transition so that when it appears, the whole screen appears

to flip with the new view on the side that rotates in. Same view animations are

animations that occur on a single view, such as moving subviews around.

In addition to the view-based animation features, the core animation API exposes lower-

level animation functions that operate on CALayer objects, rather than UIView objects,

and provide a powerful 2D animation framework that you can use to create more

complex animations, and even power games.

For most applications the view-based animation framework is the only part of Core

Animation you’ll ever use. They provide a powerful way to give your interface that

cinematic feel without much work. In fact, if you’ve been reading this book front-to-

back, you’ve already been exposed to it. In this chapter, we’ll explore it a little deeper

and take a look at how to work with it in more detail. Then, we’re going to dig into the

lower-level core animation API to see how advanced animation can be accomplished in

the iOS.

As with Chapter 16, this chapter covers most of everything you’ll ever need to use with

animation; however, the Core Animation API is massive. If you’re doing advanced

animation, you should check out the Core Animation Programming Guide in the Xcode

developer documentation after you’ve read this chapter.

You can find all the examples used in this chapter in the Example_CoreAnimation sample

code and application.

17

http://

CHAPTER 17: Core Animation 362

View-Based Animation Framework
There are two different approaches when working with the view-based animation

framework: the new way and the old way. The new way (available since the iOS v4.0

release) is the way recommended by Apple, but both ways have their advantages. Let’s

take a quick look at examples of both methods so that you have a clear understanding

of them.

View Animations via the Animation Blocks

First, the old way is to call BeginAnimations, optionally configure the animation options,

make your view changes, and then call CommitAnimations. See Listing 17–1.

Listing 17–1. Animating changes on a UIView using the BeginAnimations and CommitAnimations methods

UIView.BeginAnimations("ImageMove");
//code to make changes to the view (move controls, swap views, etc.)
UIView.CommitAnimations();

Using this method, iOS will automatically animate any changes that occur between the

BeginAnimations and CommitAnimations calls.

Technically, Apple refers to this method of animation as Animation Blocks, but as we’re

about to see, that’s really confusing, given that the new way is called Block-Based
Animation. I’ll just refer to it as “the old way” to avoid confusion.

View Animations via Block-Based Animation

The new way is to make a call to the Animate method, specify the duration of the

animation, optionally specify any of the animation options, and then pass a method (or

code as a lambda) that makes the changes that should be animated. See Listing 17–2.

Listing 17–2. Animating changes on a UIView using an animation block method

UIView.Animate(0.2, () => { /* code to animate */ });

In this case, to simplify things, I’ve used the C# lamdba syntax, but you could also pass

an anonymous delegate, as shown in Listing 17–3.

Listing 17–3. Using the delegate syntax instead of a Lambda expression

UIView.Animate(0.2, delegate() { /* code to animate */ });

This approach is known as block-based animation. It’s called such because in objective-

c, the analog to code that’s passed in to execute is called a block. If you take a look at

the prototype for the Animate methods (there are several overrides), they all take

NSAction objects for their blocks. MonoTouch automatically does the magic of

converting an anonymous delegate into an NSAction for you, so it’s a very clean and

seamless integration with the underlying Objective-C runtime.

http://

CHAPTER 17: Core Animation 363

Comparison of the Two Approaches

While Apple recommends the new block-based animation approach, it’s not exactly

forthcoming in terms of why it’s recommended. It’s likely because it more closely ties

into Apple’s new paradigm of parallel tasking (see the Grand Central Dispatch article on

Wikipedia.org for more information, at http://en.wikipedia.org/wiki/Grand_Central

_Dispatch).

Regardless of why Apple recommends the new approach, it’s arguably cleaner. Since

the code that performs the view modifications is actually passed to the animation

function, there’s no method wrapping magic that has to happen.

However, block-based animation is missing the following two key features that are

possible with the old way:

 Fixed repetition count: You cannot specify how many times the

animation should repeat; you can only set it to not repeat, or to repeat

indefinitely.

 Automatic duration: With the old way, the default duration (the time it

takes for you animation to happen) of your animation is calculated by

the iOS. With block-based animation, however, you must specify the

animation duration.

Having to specify the duration isn’t a huge deal, but not being able to specify a fixed

repetition count is very difficult to work around, if you need that particular feature.

Hopefully, at some point, Apple will realize the oversight and add these features back in.

Until then, if you need to specify a fixed repetition count, you should use the old

approach.

In this chapter, we’re going to examine both approaches to view-based animation.

What Is Animatable?

View-based animation is based on a view’s property changes. There are a number of

properties that, when changed within the context of a view-based animation (either a

block based animation or animation blocks), will get automatically animated. Those

properties are as follows:

 Frame

 Bounds

 Center

 Transform

 Alpha

 BackgroundColor

 ContentStretch

http://en.wikipedia.org/wiki/Grand_Central
http://

CHAPTER 17: Core Animation 364

The upside to this is that, if your animations are based on changes to any of these

properties, view-based animation is very easy. The downside is that if you want to

animate other properties, you need to use Explicit Layer Animations (as we’ll explore

later in this chapter). Fortunately, however, these properties cover most animation

needs.

Configuring Animation Behavior

There are a number of options that you can configure that affect the behavior of an

animation, namely the following:

 Duration: The amount of time the animation takes to complete. You

have to specify this when you use block-based animations, but it’s an

optional configuration when using the older style.

 Delay: The amount of time to wait before the animation should start.

 Curve: The acceleration and speed of the animation.

 Repetition: Whether the animation repeats.

 Auto reverse: Whether the animation automatically reverses.

Nested Animations

It’s possible to nest animations by calling methods to generate an animation from within

an already executing animation block. Nested animations run the same way non-nested

animations do, but, by default, these nested animations inherit their duration and curve

from the parent animation.

Specifying Behavior via Animate Method Overloads

If you’re using the block-based animation approach, these options are specified via

parameters in the various Animate method overloads. See Listing 17–4.

Listing 17–4. Various Animate method overloads

Animate(double duration, MonoTouch.Foundation.NSAction animation)
Animate(double duration, MonoTouch.Foundation.NSAction, MonoTouch.Foundation.NSAction
 animation)
Animate(double duration, double delay, UIViewAnimationOptions options,
 MonoTouch.Foundation.NSAction animation, MonoTouch.Foundation.NSAction
completion)

Let’s take a look at the various parameters in these overloads.

 Duration: Just as it seems, the duration parameter specifies the

amount of time, in seconds, that an animation should take to occur.

 Animation: The animation parameter takes an anonymous delegate of

the code that actually gets animated. Any view changes that occur

during this block of code will get animated.

http://

CHAPTER 17: Core Animation 365

 Delay: Again, self-explanatory the delay parameter specifies the time,
in seconds before an animation should start.

 Options: We’ll look at the options available in the very next section.
The options parameter takes a set of flags from the
UIViewAnimationOptions enumeration which contains a number of
animation options you can specify.

 Completion: The completion parameter takes an anonymous delegate
of code that gets called when the animation completes.

UIViewAnimationOptions Enumeration

Duration and delay get their own parameters, but all other options are specified via a
UIViewAnimationOptions enumeration. The UIViewAnimationOptions is a bitmask
enumeration, so you can set multiple options via the pipe (“|”) operator, as shown in
Listing 17–5.

Listing 17–5. Configuring animation behaviors using block-based animation

double duration = 1;
double delay = 2;
UIViewAnimationOptions animationOptions =
 UIViewAnimationOptions.CurveEaseIn | UIViewAnimationOptions.Repeat;
UIView.Animate(duration, delay, animationOptions, () => { /* animation code */ }, null);

The UIViewAnimationOptions have the following general animation enumeration values:

 AllowUserInteraction: By default, while an animation is running, user
interaction is not enabled, that is, buttons can’t be touched, and so on.
If you specify this value, then user interation will be enabled during
animation.

 AutoReverse: If this flag is set, the animation will automatically
reverse and go backward. However, once the animation is done, the
elements that have changed will “jump” back to their final location, so
this flag is meant to be used in conjunction with the Repeat flag to
create looping animations.

 BeginFromCurrentState: By default, if an animation is already in
progress (also known as “in-flight”), other (non-nested) animations will
be queued and run sequentially after the previous animation finishes.
By specifying the BeginFromCurrentState flag, an animation will
execute, even if other animations are running, allowing concurrent
animations.

 Curve*: There are several curve settings such as CurveEaseIn,
CurveEaseOut, and so on. They specify the acceleration speed of the
animation. We’ll explore them more in the upcoming “Animation
Curves” section.

http://

CHAPTER 17: Core Animation 366

 LayoutSubviews: If LayoutSubviews is specifed, LayoutSubviews will

be called on the view when the animation starts, and any changes will

also be animated. This is a very powerful feature because it allows you

to easily animate layout changes.

 OverrideInheritedDuration: Nested animations automatically inherit

their duration from the parent animation, rather than using the duration

specified when the nested animation was generated. Sometimes this

isn’t desirable, so you can use the OverrideInheritedDuration flag to

make sure the nested animation uses it’s specified duration, rather

than the inherited duration.

 OverrideInheritedCurve: OverrideInheritedCurve is similar to

OverrideInheritedDuration, except that it makes sure the nested

animation uses it’s specified curve rather than the inherited curve.

 Repeat: If specified, the animation will repeat indefinitely.

Animation Curves

Table 17–2 lists the animation curves available in CoreAnimation:

Table 17–1. Animation Curves in CoreAnimation

Type Description Graph

CurveEaseInEaseOut Accelerates at the beginning of the

animation and decelerates at the

end of the animation. Provides the

most natural feeling animation for

most animation types and is the

default animation curve.

CurveEaseIn Accelerates at the beginning of the

animation. Good for animations that

send things off-screen.

CurveEaseOut Decelerates at the end of the

animation. Good for animations that

bring things onscreen.

http://

CHAPTER 17: Core Animation 367

Type Description Graph

CurveLinear No acceleration curve at all,

therefore the animation speed is

constant from start to finish. Linear

curves are useful for animations that

don’t require a natural

acceleration/deceleration.

View Transitions

In addition to using view animations to move things around on a view, you can also

animate adding and removing views from a controller. This allows you to provide a

cinematic way to transition between screens. For example, you could apply a flip

transition that “spins” a new view onto the screen, or a “curl” animation that lifts the

current view off the screen and displays another.

The UIViewAnimationOptions enumeration contains a number of values that apply only

to transition animations:

 ShowHideTransitionViews: If you specify this value, then the view

that you’re tranisitioning to will be shown and the view your

transitioning away from will be hidden. This is different than the

default behavior, which actually adds the new view and removes the

old view. If you do specify this option, the view that you’re adding

must already be in the parent view’s list of subviews.

 Transition*: There are several transition types, including

FlipFromleft, FlipFromRight, CurlUp, and CurlDown. To specify

which one you’d like your transition to use, simply specify the

transition type flag, such as TransitionFlipFromLeft, to get a flip

transition that starts from the left side of the screen.

 AllowAnimatedContent: AllowAnimatedContent specifies whether

the iOS renders the animation and caches the frames. If set to true,

caching will occur; if set to false, no caching will occur. This is the

equivalent of the Cache parameter when using the older method

style animations. If set to true, performance may be better (setting it

to false may noticeably affect frame rate, especially on older

devices); however, you must not update the view manually during

the transition or the rendering could be incorrect.

http://

CHAPTER 17: Core Animation 368

Specifying Behavior via Methods

If you’re using the older animation methods, then behavior options are configured using

various methods. See Listing 17–6.

Listing 17–6. Configuring animation behaviors using method based animation

UIView.BeginAnimations("MyAnimation");
UIView.SetAnimationDelay(2);
UIView.SetAnimationCurve(UIViewAnimationCurve.EaseIn);
UIView.SetAnimationDuration(1);
//… animation code goes here
UIView.CommitAnimations();

All the UIView animation methods are static, and the following are available to configure

the animation properties if you’re using the older animation methods. Most of these

correspond 1:1 with either parameters in the Animate method or flags from the

UIViewAnimationOptions enumeration:

 SetAnimationDuration: The equivalent of specifying the duration

parameter of the UIView.Animate method.

 SetAnimationDelay: The equivalent of specifying the delay parameter

of the UIView.Animate method.

 SetAnimationStartDate: Specifies a DateTime at which the animation

will start. You can use this in conjunction with specifying a delay. The

delay will begin counting down at the DateTime you specify for start

date.

 SetAnimationCurve: Sets the animation curve. Values are available in

the UIViewAnimationCurve enumeration and equivalent to the

respectively named options in UIViewAnimationOptions.Curve* flags.

 SetAnimationRepeatCount: Allows you specify how many times the

animation will repeat. This option is not available in the block-based

animation technique.

 SetAnimationRepeatAutoReverses: The equivalent of the

AutoReverse flag in the UIViewAnimationOptions enumeration.

 SetAnimationBeginsFromCurrentState: The equivalent of the

BeginFromCurrentState flag in the UIViewAnimationOptions

enumeration.

 SetAnimationsEnabled: Enables/disables animations.

 SetAnimationDidStopSelector: Specifies a selector method that will

run when the animation finishes. Similar to of specifying a completion

parameter via the UIView.Animate method.

http://

CHAPTER 17: Core Animation 369

 SetAnimationWillStartSelector: Specifies a selector method that will

run with the animation starts.

If you’re using the method-based animation technique, and you want to execute code

after the animation finishes, you should call the SetAnimationDidStopSelector method,

which takes a Selector that points to your method. See Listing 17–7.

Listing 17–7. Configuring a method to be called when the animation completes

UIView.SetAnimationDidStopSelector(new Selector("AnimationStopped"));

Since the method takes a Selector, you must also mark your method with the

ExportAttribute so it’s visible to the underlying Objective-C runtime. See Listing 17–8.

Listing 17–8. Marking a method with Export so that it’s visible to the Objective-C runtime

[Export]
public void AnimationStopped()
{ Console.WriteLine("Animation completed"); }

Advanced Core Animation with Layers
View-based animation is great because it makes common animation tasks simple.

However, sometimes you need more control than what it offers. For example, let’s say

you wanted to animate the moving of an object, but you want to specify a particular path

that isn’t just a straight line (see Figure 17–1).

Figure 17–1. Moving an object along this path is not all that easy using view-based animation.

http://

CHAPTER 17: Core Animation 370

You could possibly accomplish this by making lots of calls to the Animate method and

moving the object a little bit each time, but that would mean a lot of math, a lot of code,

and a lot of headache.

There’s another place that view-based animation falls short: games. In addition to the

lack of control (such as not being able to specify a path when moving objects), view-

based animation lacks the speed necessary for game development. Thirty frames per

second (fps) or higher has become standard in the gaming world. It’s roughly the same

frame rate as video/television (film is generally 24fps), and is generally accepted as the

lowest framerate that provides a smooth gaming experience. Accomplishing that frame

rate with view-based animation can be very difficult, because it’s not guaranteed to be

hardware-accelerated.

There is an alternative, however, that provides both higher control and much more

performance through hardware acceleration: layer-based animation.

Layer-Based Animation

As the name suggests, layer-based animation involves the use of layers (represented by

the CALayer object). Don’t confuse CALayers with CGLayers. They are similar in concept,

but are fundamentally different under the hood and cannot be interchanged.

You can create CALayers one of two ways. The easiest way is to simply get the layer

from an existing UIView. All UIView objects in iOS are known as layer-backed views. This

means that each view has a layer-tree hierarchy that represents the items in a view, and

you can access it via the Layer property on any UIView object. The other way to get a

CALayer is to create one manually, which is a bit more involved. We’ll take a look at how

to do that in just a second.

Layers are interesting in that they’re not directly responsible for drawing themselves.

Instead, they are an object hierarchy that contains information that describes the state of

a UIView. However, under the hood, there is another set of layer information that is used

in the rendering loop. When you change a property on the layer, it will actually feed

incremental changes to the rendering loop so that the change that you’ve applied is

rendered incrementally over the animation duration.

This functionality is all encapsulated for you, so you don’t have to perform the math

associated with changes, the layer system does it for you.

Layer Animation Types

There are two types of layer-based animations:

 Explicit: You must create an Animation object and then apply that to

the layer you want animated.

 Implicit: Changes to properties are automatically animated. Implicit

animations are only possible if you use CALayer objects directly, rather

than ones that are created from a UIView.

http://

CHAPTER 17: Core Animation 371

Superficially, implicit animations seem easier to use. However, they required that you

manually create your layers, which can be complicated. Explicit animations require more

code to actually do the animation, but because you can use them with layers that are

created via a view, they are actually easier to implement.

We’re going to look at explicit animations first, and then we’re going to turn to implicit

animations and cover how to create CALayer objects manually.

Explicit Animations

Explicit layer-based animations are a little different from the other animations that we’ve

looked at so far. Instead of creating an animation block and executing it, you configure the

animation parameters and then tell the animation what property to listen for changes to.

When that property’s value changes, the animation specified runs. For instance, to achieve

the animation illustrated in Figure 17–1, we would do something like Listing 17–9.

Listing 17–9. Implementing a keyframe animation that moves an object along a path

this.btnAnimate.TouchUpInside += (s, e) => {
 //---- create a keyframe animation that listens for changes to the "position"
 // property
 CAKeyFrameAnimation keyFrameAnimation =
 (CAKeyFrameAnimation)CAKeyFrameAnimation.FromKeyPath("position");
 keyFrameAnimation.Path = this._animationPath;
 keyFrameAnimation.Duration = 3;
 //---- add the animation to the layer
 this.imgToAnimate.Layer.AddAnimation(keyFrameAnimation, "MoveImage");
 //---- kick the animation off by changing the position to the final position
 this.imgToAnimate.Layer.Position = new PointF(700, 900);
};

This would result in the animation shown in Figure 17–2.

Figure 17–2. An explicit layer animation that moves an object along a path

You can see this animation at work in the Example_CoreAnimation companion code and

application.

http://

CHAPTER 17: Core Animation 372

In Listing 17–9, we created instantiated a CAKeyFrameAnimation object and passed the

constructor the name of the property we want to listen for. In this case, we want to listen

for the Position property, but it expects the Objective-C visible property name

(generally the same name but starting with a lowercase letter), in this case it would be

“position.” We’ll talk about the different types of animations later, but for now, know that

a keyframe animation will animate movement along a path.

Next, we configure our animation, this case, because it’s a keyframe animation, we

supply it a path defined in a CGPath object (check out Chapter 16 for more information

about CGPaths).

After we’ve configured the animation, we add it to the layer and give it a name. We name

it so that later on, if we want to stop the animation (by removing it), we can do

something like Listing 17–10.

Listing 17–10. Removing an animation. If you remove an animation while it’s in flight, the animation is stopped.

this.imgToAnimate.Layer.RemoveAnimation("MoveImage");

Finally, to kick off our animation, we set the property that we’re listening for changes on

to its final value. Once we’ve done that, the animation will begin.

Animation Types

In Listing 17–9 we created a CAKeyFrameAnimation that animates along a set of positional

points, however, there are a number of animation classes available for use:

 CATransition: Used to provide transition animations, such as fading

in/out, or pushing onto/off the view stack. You can extend the stock

transition effects by creating your own custom Core Image filters.

 CAPropertyAnimation: CAPropertyAnimation is an abstract base

class for providing animations for custom layer properties that can be

reused.

 CABasicAnimation: Used for simple movement animations that go

from from a start point to an end point.

 CAKeyFrameAnimation: Animates an object along a path, as seen in

Figure 17–2.

Additionally, there is one additional class, CAAnimationGroup, which allows you to group

a set of the previous animation classes together into an array and run them concurrently.

For a more in-depth look at these classes, checkout the Core Animation Programming

Guide as well as the Animation Types and Timing Programming Guide in the Xcode

developer documentation.

http://

CHAPTER 17: Core Animation 373

Creating CALayers Manually

Now that you understand how to animate layers that are attached to a UIView, let’s take

a look at how to create layers manually. By creating layers manually, you have a choice

of whether to use either the explicit, or the implicit animation technique.

There are the following three ways to manually create a CALayer object:

 From an image: One of the easiest ways to create a CALayer is to set

its Contents property to a CGImage.

 Specify a content delegate: You can create a CALayerDelegate class

and assign it to your CALayer object. You should override DrawLayer in

your delegate class to draw your layer content.

 Subclass CALayer: You can create a custom class that derives from

CALayer and override the DrawInContext method. This is effectively the

same thing as creating a layer delegate.

If you choose to draw a layer manually, you can follow the techniques outlined in the last

chapter.

All three of these methods are illustrated in Listing 17–11.

Listing 17–11. The various ways to create a CALayer

//==== Method 1: create a layer from an image
protected CALayer CreateLayerFromImage()
{
 CALayer layer = new CALayer();
 layer.Contents = UIImage.FromBundle("Images/Icons/Apress-114x114.png").CGImage;
 return layer;
}

//==== Method 2: create a layer and assign a custom delegate that performs the drawing
protected CALayer CreateLayerWithDelegate()
{
 CALayer layer = new CALayer();
 layer.Delegate = new LayerDelegate();
 return layer;
}

public class LayerDelegate : CALayerDelegate
{
 public override void DrawLayer (
 CALayer layer, MonoTouch.CoreGraphics.CGContext context)
 {
 //---- implement your drawing
 }
}

//===== Method 3: Create a custom CALayer and override the appropriate methods
public class MyCustomLayer : CALayer
{
 public override void DrawInContext (MonoTouch.CoreGraphics.CGContext ctx)
 {
 base.DrawInContext (ctx);

http://

CHAPTER 17: Core Animation 374

 //---- implement your drawing
 }
}

If you’re interested in learning more about the details of layers, check out the Core

Animation Programming Guide in the Xcode developer documentation.

Drawing Layers on a View

Once you’ve created the layer objects that you want to animate, you probably want to

display them. The problem is, you can’t add them directly to a UIView, as you would

other view controls. Instead, you have to add them to a UIView’s layer hierarchy via the

AddSublayer method. For example, the UIViewController code in Listing 17–12 calls a

method from Listing 17–11 to create a layer and then adds it to the controller’s view

layer tree.

Listing 17–12. Adding a layer to a view’s layer tree

this._imgLayer = this.CreateLayerFromImage();
this._imgLayer.Frame = new RectangleF(200, 70, 114, 114);
this.View.Layer.AddSublayer(this._imgLayer);

Implicit Animations

Implicit animations are animations that are automatically invoked whenever you a

change a property. This may seem like an awesome way to do layer animation, but there

is one huge caveat: implicit animations are not available on layers that are created from

a UIView. Instead you have to either use explicit layer animations, or view-based

animations. This is because when you change the value of a property on a layer, it asks

its delegate whether or not it should animate. If a layer is attached to a UIView, the view

acts as the layer’s animation delegate and says “no.” This, presumably, is because most

view changes don’t require animation.

Listing 17–13 uses the layer we created and added to the layer hierarchy in Listing 17–12.

When a user clicks on a button, the code changes the Frame and Opacity properties of

the layer.

Listing 17–13. Implicitly animating a change to a layer

this.btnAnimate.TouchUpInside += (s, e) => {
 if(this._imgLayer.Frame.Y == 70)
 {
 this._imgLayer.Frame = new RectangleF(new PointF(200, 270)
 , this._imgLayer.Frame.Size);
 this._imgLayer.Opacity = 0.2f;
 }
 else
 {
 this._imgLayer.Frame = new RectangleF(new PointF(200, 70)
 , this._imgLayer.Frame.Size);
 this._imgLayer.Opacity = 1.0f;
 }
};

http://

CHAPTER 17: Core Animation 375

This results in a cinematic transition between the two states, as shown in Figure 17–3.

Figure 17–3. Implicit layer animation between two layer states

You can see this animation at work in the Example_CoreAnimation companion code and

application.

Summary
In this chapter we covered the four ways to perform animation in iOS, the two options

that are available via views, Animation Blocks and Method-Based Animation, as well as

the two that are available via layers, Explicit and Implicit animations. You learned that

layer-based animations offer far more control over the animation, and work much faster,

however, they’re more complicated to implement. I also covered how to work with

layers, including creating and rendering.

This chapter is by no means an exhaustive look at animation in iOS. It should cover 95

percent of what you need to accomplish, but the core animation framework is very large

and powerful and entire books are devoted to the subject. If you’re interested in learning

more, start with the Core Animation Programming Guide document in the Xcode

developer documentation.

If you’ve been reading this book from front to back, you should now have an expert

understanding of the presentation methods available in iOS. In the next chapter we’re

going to switch gears and talk about the various ways to work with data in iOS.

http://

377

377

 Chapter

Notifications

Notifications in iOS provide a way to notify the user when a particular application-

specific event is happening when the application is not in the foreground. For example, if

you’re building an instant messaging application, you might want to let your users know

that they’ve received a message, even though they might have another application

open, or even have the phone in standby mode. If your application is in the background

or not running at all, the user can be presented with an alert message, or you can badge

the application icon. You can even play a sound in addition to the alert message. For

example, when you get a new mail message, the Mail Application’s icon badge number

increases by 1 and a sound is played.

You can also use notifications to let the user know when certain events happen, even

while the application is running. For instance, if you’re building a calendar application,

you can enable pop-up alerts when a notification fires, letting your user know of an

event that is coming up.

There are two kinds of notifications: local and remote (also known as push notifications).

Local notifications are scheduled with iOS to occur at a certain time (or immediately) and

push notifications are registered and delivered via the Apple Push Notification service.

However, whether they’re local or remote, they’re handled the same way.

In this chapter we’re going to look at how notifications work, how to schedule

notifications, how to handle notifications, and finally, we’ll examine how to register and

work with remote (push) notifications.

How Notifications Work
Notifications can occur regardless of the state the device and/or application is in. For

example, Figure 18–1 shows a notification happening when the device is locked, when

the device is unlocked but the application is not running in the foreground, and finally,

when the device is running in the foreground.

18

http://

CHAPTER 18: Notifications 378

Figure 18–1. Notifications occurring in a variety of application states

In the examples in Figure 18–1, the notifications are presented via alert views; however,

this is not a requirement, and you can choose to simply modify the application icon

badge. You can even play a sound (or vibrate, if the sound is off) when you modify the

icon badge or display the alert. This is the default behavior for the Mail Application, for

instance.

How the notification actually appears to the user when the application is not in the

foreground is specified when you configure the notification. How the notification appears

when the app is running in the foreground is specified by the handlers in your

application that are called when the notification is received.

Let’s take a look at how to schedule local notifications, to see how the first case is

handled.

Scheduling Local Notifications
Local notifications are a welcome new feature in version 4.0 of the iOS. They’re nice

because they’re extremely easy to schedule (configure), and unlike push notifications,

they don’t require any complicated interaction with any outside services. They’re also

quite powerful – not only can you schedule a notification event to occur once, but you

can also schedule them to recur at specified intervals. The iOS handles all the plumbing

and calendaring for you; you simply schedule the event and when it’s time for it, it’ll

notify your application.

http://

CHAPTER 18: Notifications 379

To schedule a local notification you create a UILocalNotification object, configure the

FireDate, and then add it to iOS via the ScheduleLocalNotification method on the

static SharedApplication property of the UIApplication class. For example, Listing 18–1

schedules a local notification that will occur one minute in the future.

Listing 18–1. Scheduling a local notification

UILocalNotification notification = new UILocalNotification();
notification.FireDate = DateTime.Now.AddMinutes(1);
UIApplication.SharedApplication.ScheduleLocalNotification(notification);

If you want to display an alert when the notification fires, you can set the title of the

action bar (or slider, if the phone is locked) via the AlertAction property, and the

message of the alert via the AlertBody property. See Listing 18–2.

Listing 18–2. Configuring the alert behavior on a local notification

notification.AlertAction = "View Alert";
notification.AlertBody = "Your one minute alert has fired!";

If you want the badge the icon with a number, you can set it via the

ApplicationIconBadgeNumber property. See Listing 18–3.

Listing 18–3. Configuring the badge on a local notification

notification.ApplicationIconBadgeNumber = 1;

You can also play a sound when the alert appears. If you choose to play a sound, you

should also either show an alert or badge the application icon, otherwise the user won’t

know what the alert is for. To play a custom sound, set the SoundName property to the

path to your sound file. Your sound file should be less than 30 seconds long; otherwise

the default sound will play. Additionally, if you just want to use the default sound, you

can use the static DefaultSoundName property on the UILocalNotification class. See

Listing 18–4.

Listing 18–4. Configuring the sound for a local notification

notification.SoundName = UILocalNotification.DefaultSoundName;

Now let’s look at handling notifications when they occur.

Handling Notifications
Handling a notification is nearly the same whether it’s a local or a push notification. If the

application is running, the ReceivedLocalNotification or ReceivedRemoteNotification

(for local and remote notifications, respectively) method on your app delegate class will

be called by iOS, passing in the notification information.

How you handle the notification is up to you. For instance, if your notification were

simply an event reminder, you might want to show an alert, reminding your users. Or,

you might use a notification to modify something in your application’s user interface to

show a new message. For example, Listing 18–5 shows an alert with the alert title and

message body information that was created on the notification.

http://

CHAPTER 18: Notifications 380

Listing 18–5. Handling a notification in your app delegate

public override void ReceivedLocalNotification (UIApplication application
, UILocalNotification notification)

{
new UIAlertView(notification.AlertAction, notification.AlertBody

 , null, "OK", null).Show();
UIApplication.SharedApplication.ApplicationIconBadgeNumber = 0;

}

If your application isn’t running, iOS presents the notification via however you’ve defined

it (alert, sound, icon badge). If the user clicks the action badge in the alert (or slides the

action slider), your application is launched by iOS and the FinishedLaunching method on

your app delegate is called, passing in the notification information via the options
parameter.

If it’s a local notification, you can access it from the options NSDictionary via the

LaunchOptionsLocalNotificationKey key. If the resulting object isn’t null, you know that

the application was launched from a local notification. See Listing 18–6.

Listing 18–6. Accessing a local notification in FinishedLaunching

public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 …

UILocalNotification localNotification =
options[UIApplication.LaunchOptionsLocalNotificationKey];

if(localNotification != null)
 {
 new UIAlertView(localNotification.AlertAction

, localNotification.AlertBody, null, "OK", null).Show();
 //---- reset our badge

UIApplication.SharedApplication.ApplicationIconBadgeNumber = 0;
 }

 …
}

If it’s a remote notification, you still pull the object from the options NSDictionary;

however, you use the LaunchOptionsRemoteNotificationKey key, and the resulting

object is an NSDictionary object with the remote notification payload. You can extract

the notification payload via the “alert,” “badge,” and “sound” keys. See Listing 18–7.

Listing 18–7. Accessing a remote notification in FinishedLaunching

NSDictionary remoteNotification =
options[UIApplication.LaunchOptionsRemoteNotificationKey];
if(remoteNotification != null)
{

// code. To get the alert use remoteNotification[“alert”], etc.
}

For more information on the remote notification payload, see “The Notification Payload”

section of the Local and Push Notification Programming Guide in the iOS developer

documentation.

http://

CHAPTER 18: Notifications 381

Push Notifications
Push notifications are also known as remote notifications, and unlike local notifications,

which are very easy to implement, they are very complex and require considerable

development overhead. They require not only extra steps in development of the iOS

application, but they also require a separate application (in the technology of your

choosing) that is responsible for sending the notifications to Apple’s Push Notification

Gateway Server (APNS), which in turn, locates the intended device recipient and sends

the notifications to your iOS application. See Figure 18–2.

Figure 18–2. Push notification topology

However, despite their complexity, they’re the only reliable way to implement certain

functionality in your application. For instance, let’s say we’re building an e-mail client. In

order to make sure that our application always has the latest e-mails, we need to make it

poll a server every so often and check for new e-mail. This works somewhat okay when

the application is in the foreground, but it presents a real problem when the application

is in the background. Since our application isn’t one of the four types of applications

that we can register to be allowed to perform continuous background tasks (see Chapter

11 for more information), there is no way for the application to check for new e-mail

when it’s in the background. Additionally, even when the application is in the

foreground, it would have to poll the server fairly often to ensure that e-mail delivery is

timely. This means a lot of network calls and battery drain.

Push notifications are designed specifically for this type of scenario. Instead of having

our application continuously poll a server for data, we can push a small message to the

application that tells it that it needs to do something.

In this section of the chapter, we’re going to take a look at how to set up the required

iOS infrastructure to enable remote notifications, and we’re going to look briefly at an

open-source .NET library that will allow us to communicate with APNS.

However, before we delve into the specifics of how to get push notifications working,

let’s first take a look at some restrictions and limitations we should bear in mind when

designing an architecture that uses them.

http://

CHAPTER 18: Notifications 382

Restrictions and Limitations

While push notifications are a powerful solution to a difficult problem, they the following

very import limitations that necessitate certain design decisions:

 256kB message limit: The entire message size of the notification,

including its header and other attributes, cannot exceed 256kB.

 No confirmation of receipt: APNS does not give you a confirmation

that the notification made it to the intended recipient. In fact, if the

device is unreachable and multiple notifications are sent from one

source, only the last notification that was sent will be delivered to the

device when it becomes reachable again.

 Secure certificates are specific to each application: In order to

communicate with APNS, you need to authenticate over SSL and the

certificate required to do this is unique to each application. This means

that if you have two applications that receive push notifications, your

application that send the notifications must use a different certificate

depending on what application it’s notifying.

Because of the size limit of notifications, as well as the fact that your sending application

doesn’t give you receipt confirmation, the notification messages themselves should only

contain the necessary information to notify your iOS application that it needs to make a

call to your server application to pull down new data.

For instance, in our e-mail example, when a new e-mail came in, we would only notify

iOS application that a new e-mail has arrived, so that it can retrieve it from the server.

We wouldn’t send the e-mail in the notification itself.

The Sandbox and Production Environments

Apple maintains two environments for APNS: a Sandbox and a Production environment.

The Sandbox environment is meant for testing during the development phase and can

be found at gateway.sandbox.push.apple.com, outbound TCP port 2195. The

Production environment is meant to be used in applications that have been deployed

and can be found at gateway.push.apple.com, outbound TCP port 2195.

For each environment, a separate certificate is needed, which I’ll cover in just a bit.

APNS-Sharp

The protocols for interacting with APNS are very low-level binary calls over HTTPS,

rather than easily accessible XML or JSON web services. You can read more about

them in the Local and Push Notification Programming Guide, which can be found in the

iOS developer documentation. With that said however, the APNS services have been

http://

CHAPTER 18: Notifications 383

wrapped many times over, using many different technologies, so there’s no need to

implement the plumbing yourself.

In this chapter, we’re going to explore calling APNS using APNS-Sharp, an open-source

C# library written by Jon Dick that does all the hard work for us. You can find the APNS-

Sharp project at http://code.google.com/p/apns-sharp. Both the pre-compiled DLL

binaries and the source code can be found there. There is also an example MonoTouch

client application, as well as server examples, showing how to use the library.

Identifying Devices

When your server application sends a remote notification, it needs to specify the device

that should receive it. In order to accomplish this, each iOS device has a unique device

token that identifies it from other devices. When you send a notification via APNS, it

expects a device token, which it then uses to route the notification to the correct device.

It’s the responsibility of your server application to store the device token of each iOS

device that it sends notifications to. Typically, the pattern is as follows:

 Application registration: An iOS application registers itself with your

server application (typically via an http web service call), and passes

its device token, as well as any other relevant information.

 Notification sending: Your server application calls APNS with the

appropriate application certification and passes the device token of

the intended recipient device, as well as the notification message that

will be sent.

At that point, APNS will try and contact the device identified by the token via its last

known IP address.

Registering for Remote Notifications and Getting a Device Token

Getting a device token requires the following two steps:

1. Register with iOS for remote notifications.

2. Listen for successful or failed registration.

Let’s take a look at how to do each of these.

Registering to Receive Remote Notifications in iOS

In your FinishedLaunching method of your application delegate class, you need to call

RegisterForRemoteNotificationTypes on the current UIApplication object. This calls

the APNS in the background, which generates a device token and pushes it back to the

device.

When you register your application to receive remote notifications, you must tell iOS

what kind of notification accouterments you’d like to use (found in the

http://code.google.com/p/apns-sharp
http://

CHAPTER 18: Notifications 384

UIRemoteNotificationType enumeration). For example, the following code specifies that

a remote notification for your application should cause an alert, and badge your

application icon (the badge number that will be applied is sent in the notification itself).

See Listing 18–8.

Listing 18–8. Registering with iOS to receive remote notifications

UIRemoteNotificationType notificationTypes =
UIRemoteNotificationType.Alert | UIRemoteNotificationType.Badge;

UIApplication.SharedApplication.RegisterForRemoteNotificationTypes(notificationTypes);

Receiving the Token

Once the device receives a reply from APNS with a device token, it calls the

RegisteredForRemoteNotifications method in your application delegate class and

passes the registered device token. You should override this method and in it, call your

server application to register the device token. The device token can change every time

the device is registered with APNS, however, in practice it doesn’t change very often, so

you can optimize this method to cache the last token and only re-register it with your

server application if the token has change.

The token is passed as an NSData object that you can call ToString on, in order to use it.

See Listing 18–9.

Listing 18–9. Retrieving the device token

public override void RegisteredForRemoteNotifications (UIApplication application
 , NSData deviceToken)
{

this._deviceToken = deviceToken.ToString();
 // code to register with your server application goes here
}

Listening for Registration Failure

If the device isn’t connected to the Internet, registration will fail, in which case

FailedToRegisterForRemoteNotifications will be called. If you have any logic that relies

on remote notifications, you may want to set a timer and retry calling

RegisterForRemoteNotificationTypes. Additionally, you can choose to show the error to

the user, for example, Listing 18–10 shows an alert view if registration fails.

Listing 18–10. Showing an error when remote notification registration fails

public override void FailedToRegisterForRemoteNotifications (UIApplication application
, NSError error)

{
 new UIAlertView("Error registering push notifications"
 , error.LocalizedDescription, null, "OK", null).Show();
}

http://

CHAPTER 18: Notifications 385

Retrieving Expired Tokens with the Feedback Service

Device tokens change and expire. As such, you don’t necessarily want to keep a bunch

of expired tokens stored in your server application. When your application sends a push

notification to a device that has an expired token, APNS tracks that and saves it. It then

provides a mechanism to query that data and find out what tokens have expired.

This is known as the Feedback Service, and is exposed as an HTTPS endpoint that

authenticates via the same certificate used to send push notifications. Once you

connect to the endpoint, it responses back a binary stream of data that contains a list of

the tokens that have expired. For more information on the details of this service, see the

Local and Push Notification Programming Guide in the iOS developer documentation.

To retrieve expired tokens using APNS-Sharp, you instantiate a new FeedbackService

object, wire up the OnFeedback event and call Run on the object. See Listing 18–11.

Listing 18–11. Retrieving expired tokens using APNS-Sharp

FeedbackService service = new FeedbackService(sandbox, p12Filename, p12FilePassword);
service.Feedback += new FeedbackService.OnFeedback(service_Feedback);
service.Run();

The FeedbackService class needs a Personal Information Exchange (PKCS12) certificate

that you’ve registered with Apple for your application, which I’ll cover in the very next

section.

The OnFeedback event handler is called for each expired device token and is passed a

Feedback object. The token itself is available via the DeviceToken property of the

Feedback object.

For more information, and to see this code in action, check out the

JdSoft.Apple.Apns.Feedback.Test project, which is part of the APNS-Sharp source

download.

Creating a Push Notification Certificate

In order to use APNS, you need to first create a push notification certificate for your

application. Ultimately, you will need to create a certificate for both the Sandbox and the

Production environment, but during development, you only need the Sandbox

certification.

Push notification certificates are created at developer.apple.com, by doing the following:

1. Log in at developer.apple.com and navigate to the iOS Provisioning

Portal, shown in Figure 18–3.

http://

CHAPTER 18: Notifications 386

Figure 18–3. iOS Provisioning portal

2. Next, navigate to the App IDs section and create a new App ID. The

resulting app ID will look something like Figure 18–4.

Figure 18–4. Creating a new App ID

http://

CHAPTER 18: Notifications 387

CAUTION: Make sure that when you create the Bundle Identifier you don’t create a wildcard (an

identifier that ends with * and is good for multiple applications), because push notification

certificates are application specific.

3. Next, you need to create the certificate for that app ID. Check the Enable

for Apple Push Notification Service for the environment you want,

(development or production). See Figure 18–5.

Figure 18–5. Configuring the newly created App ID

This will launch a wizard that will take you through the process of creating a Certificate

Signing Request using the Keychain Access Application and then uploading it to the

Apple Developer Portal so that a certificate can be created.

You should make sure to use Safari or Firefox, because this process fails miserably in

Google Chrome.

Creating and Installing a Provisioning Profile

After you’ve created the certificate, you need to create an install a provisioning profile

that uses it. Once you have created and installed the provisioning profile, you build your

application with that provisioning profile, which will sign your application with the

certificate that is registered with apple for push notifications.

http://

CHAPTER 18: Notifications 388

Provisioning profiles are created in the iOS Provisioning Portal, similarly to creating

app IDs.

To create a provisioning profile, perform the following steps:

1. Sign in at developer.apple.com and navigate to the iOS Provisioning

Portal.

2. Select the Provisioning tab and create a new provisioning profile with

the correct application selected, and any devices you want to enable it

for. See Figure 18–6.

Figure 18–6. Creating a new provisioning profile

3. Once you’ve created the provisioning profile, open your Xcode

Organizer and refresh it. It should now show up as in Figure 18–7.

http://

CHAPTER 18: Notifications 389

Figure 18–7. Creating a new provisioning profile

Sometimes the new profile doesn’t show up right away. If that happens, you can download it

from the iOS Provisioning Portal and manually import it into the Xcode Organizer.

Once you have your provisioning profile installed in the Xcode Organizer, you need to

configure your project in MonoDevelop to use it. Right-click on your project and choose

Options, then choose iPhone Bundle Signing and select the new provisioning profile that was

created for notifications. See Figure 18–8.

Figure 18–8. Configuring the provisioning profile to be used in MonoDevelop

http://

CHAPTER 18: Notifications 390

Now your application is configured to utilize your push notification provisioning profile.

We already covered how to handle remote notifications in the Handling Notifications

section, so let’s take a look at how to send some.

Sending Push Notifications

The body of the notification itself is just a JSON formatted string, however,

communicating with APNS can be quite tedious if you’re implementing your own library.

If you are, the protocol and format is well documented in the Local and Push Notification

Programming Guide in the iOS developer documentation.

This section assumes you’re writing a .NET server application using APNS-Sharp, which

saves you from writing all the plumbing necessary to communicate with APNS.

Converting the Certificate

The push notification certificate created via the iOS Provisioning Portal is in DER format,

however, APNS-Sharp needs it in Personal Information Exchange (PKCS12) format. The

easiest way to convert is to do the following:

Download the certificate file: Login to the iOS Provisioning Portal,

choose the Certificates tab, select the certificate associated with the

correct provisioning profile and choose Download.

Open Keychain Access: You can find key it under

Applications/Utilities.

Import the certificate: If the certificate isn’t already installed, click the

“+” button, navigate to the certificate, and select it.

Export the certificate: Expand the certificate so the associated

private key is visible, select both and right-click on the selection, and

choose Export. It’ll prompt you to name it and then ask for a password.

Sending a Notification

After you’ve exported the .p12 certificate, you can now use APNS-Sharp to send a

notification. For the full example of how to send notifications, check out the

JdSoft.Apple.Apns.Notifications.Test sample console application project (which is

part of the APNS-Sharp source code download).

To use the application, open up the Main.cs file and modify the values in following lines to

match your settings, and copy the certificate into the output directory. See Listing 18–12.

Listing 18–12. Configuring the APNS-Sharp notification test code

string testDeviceToken =
"fe58fc8f527c363d1b775dca133e04bff24dc5032d08836992395cc56bfa62ef";
string p12File = "apn_developer_identity.p12";
string p12FilePassword = "yourpassword";

http://

CHAPTER 18: Notifications 391

Then, run the application, and a notification will be sent to your iOS application via

APNS.

Summary
In this chapter we covered both local and push (remote) notifications. We saw that

handling both types of notifications is nearly identical, however local notifications are

much easier to code. Local notifications provide a mechanism in which applications

running in the background can prompt users to bring the application to the foreground

and push notifications provide a way for your application to be updated via server

applications.

In the next chapter, we’re going to finish up the section on core iOS features and

examine how to work with local SQLite database in iOS.

x

http://

393

393

 Chapter

Working with Data

When building applications of any complexity, it’s quite common to need to persist and

retrieve data locally. There are a few different options at your disposal within

MonoTouch. First, you can use the XML features in .NET to read and write to XML files

and access data that way. Second, you can use the built-in SQLite database and access

it via various technologies. Finally, you can use Apple’s CoreData framework as a data

persistence and access technology.

We won’t cover either XML or CoreData, for a couple reasons. First, reading and writing

XML in MonoTouch is just like reading and writing XML in .NET, so if you’re interested in

that, I would recommend the .NET documentation. Second, as compared to even the

most basic ADO.NET and XML serialization technology in .NET, CoreData is fairly

antiquated, and since we’ve got the .NET base class library (BCL) at our disposal,

there’s no need to use with CoreData.

Instead, we’re going to focus on SQLite (which is built into iOS), and cover the following

data access technologies that we can use to communicate with it:

 ADO.NET

 SQLite-Net

 Vici Cool Storage

 NHibernate

By the end of this chapter, you’ll have a solid understanding of SQLite and how to work

with it. You’ll also have a good understanding of several data access technologies that

work with it, and be able to make an informed decision on which technology to use,

depending on your needs.

Let’s get started by first examining SQLite.

19

http://

CHAPTER 19: Working with Data 394

SQLite
SQLite (http://sqlite.org) is an open-source, cross-platform, embedded database

technology created by D. Richard Hipp and initially released in 2000.

SQLite is what’s known as an embedded database, because, unlike server or desktop

databases, SQLite does not run in its own process and listen for connections. Instead,

it’s a referenced library that runs within the same process of the application that uses it.

Furthermore, iOS has the SQLite library included by default, and you don’t have to

explicitly reference it in your application in order to use it (MonoTouch actually handles

this for you under the hood).

SQLite is also incredibly fast and lightweight, though it lacks a number of features that

you would find in full-blown databases, such as Microsoft SQL Server or Oracle. We’ll

take a look at some of these limitations in just a bit.

All in all, SQLite is a very solid database technology that is optimized for mobile and

embedded applications. However, let’s take a look at some of its limitations first, before

we dig into working with it.

Limitations of SQLite

Because SQLite is a lightweight, embedded database, it doesn’t have some of the

features that you’d expect to find in an enterprise relational database management

system (RDBMS), such as:

 No stored procedure support: SQLite doesn’t have a concept of

store procedures, or stored queries that are saved to the database and

then later executed by name.

 Read-only views: Views in SQLite are read-only; they cannot be

edited.

 Partial trigger support: Trigger support in SQLite is very basic.

 Limited alter table support: The Alter Table SQL statement doesn’t

allow column deletion or modification.

 Limited database and object sizes: There are a number of limits on

the size of the database, the length of columns, data sizes, and so on.

For a full list see www.sqlite.org/limits.html.

http://sqlite.org
http://www.sqlite.org/limits.html
http://

CHAPTER 19: Working with Data 395

 No concurrency support: To keep SQLite technologically

uncomplicated, it implements Reader/Writer locks, so that whenever a

process is reading or writing to any part of the database, all other

processes are blocked until the action is finished. In most mobile

application situations, this doesn’t really matter, because the locks

only persist for a few milliseconds, and it’s nearly impossible to spin

up enough threads and eek out enough processing power on an iOS

device to make this have any real impact.

There are also a number of other limitations not mentioned here. For more information,

check out the SQLite documentation at www.sqlite.org/docs.html.

Because of the nature of mobile applications, however, most of the limitations of SQLite

are inconsequential.

Version Matrix

Although not terribly important, as features have changed little between versions that are

deployed with iOS devices, Table 19–1 is a version matrix of what version of SQLite is

installed in what iOS version.

Table 19–1. Version Matrix

iOS Version SQLite Version

3.1.3 3.6.12

4.0.2 3.6.22

4.1.0 3.6.23.2

4.2.0 3.6.23.2

If you run into any strange issues across different iOS versions, you may want to

reference this matrix to determine if there was a bug in the particular version of SQLite

that was deployed with that particular version of iOS.

Creating a Database

There are two ways to create a SQLite database: either with a tool, or programmatically

at runtime. Because of the simple nature of most mobile application database needs, it’s

typically far more common to create the database at runtime, and I cover how to do this

later on when we examine the various SQLite data access technologies available in

MonoTouch.

However, if you prefer to create your database beforehand, there are a number of tools

available. Some of the more popular ones are as follows:

http://www.sqlite.org/docs.html
http://

CHAPTER 19: Working with Data 396

 SQLite Manager: SQLite Manager (https://addons.mozilla.org/en-

US/firefox/addon/5817/) is a free plugin for Mozilla Firefox that

provides a comprehensive GUI for designing, creating, and querying

SQLite database files.

 SQLite Studio: SQLite Studio (http://sqlitestudio.one.pl) is a free,

standalone, cross-platform GUI that does essentially the same thing as

SQLite Manager.

 Navicat for SQLite: Navicat for SQLite

(www.navicat.com/en/products/navicat_sqlite/sqlite_overview.html) is

a commercial product based on the Navicat application, which is

available for a number of different database technologies. The GUI is a

little more polished than the previous two applications I mentioned,

but it doesn’t really have much more to offer in terms of features,

primarily because SQLite is such a simple database product.

 Visual Studio: Visual Studio has a built-in database designer that can

be used with SQLite by installing the ADO.NET SQLite provider. For a

tutorial of how to use it with SQLite, see Peter Bromberg’s excellent

post at www.eggheadcafe.com/tutorials/aspnet/20f7912e-6fa7-40eb-

b31b-b6f46d4f2c6a/get-started-with-sqlite-a.aspx.

With the aforementioned products in mind, I recommend reading through the SQLite

data access technologies section before creating a SQLite database with one of these

tools. You may find, especially in the case of the SQLite-Net ORM tool, it can be far

easier to simply create the database programmatically, as part of your application logic.

Backups and Data Update Strategy
One of the more challenging things when building iOS applications is how to handle

application upgrades, and peripherally, backup and restores.

Backups

Handling application backup and restores in the iOS is fairly easy. If you want your

application to retain its data in the event that the application is being restored from a

backup in iTunes, you should make sure to store the database file in one of the folders

that gets backed up such as the Documents or Library folder. If you’re application allows

file-sharing in iTunes, any files that are in the Documents folder are editable, so if you

want to hide your database from users, you should put it in the Library folder.

Both of these folders are also preserved during application updates.

For more information on application folders, see Chapter 13.

https://addons.mozilla.org/en-US/firefox/addon/5817/
https://addons.mozilla.org/en-US/firefox/addon/5817/
http://sqlitestudio.one.pl
http://www.navicat.com/en/products/navicat_sqlite/sqlite_overview.html
http://www.eggheadcafe.com/tutorials/aspnet/20f7912e-6fa7-40eb-b31b-b6f46d4f2c6a/get-started-with-sqlite-a.aspx
http://www.eggheadcafe.com/tutorials/aspnet/20f7912e-6fa7-40eb-b31b-b6f46d4f2c6a/get-started-with-sqlite-a.aspx
http://www.eggheadcafe.com/tutorials/aspnet/20f7912e-6fa7-40eb-b31b-b6f46d4f2c6a/get-started-with-sqlite-a.aspx
http://

CHAPTER 19: Working with Data 397

Application Updates

If you want your database to persist when the application is updated (e.g., you upload a

new version to the App Store), you should store your database in either the Documents

or the Library folder. When iTunes installs a new version of the application, the items in

the Documents and Library folder are copied over to the new application directory, and

the old application directory is deleted.

This is fine if your application update doesn’t require any schema changes. However, if it

does, this is where things get tricky. If you create a new version of your application that

has a change to the database schema, but you want it to retain the data from the old

application install, you need to write logic to migrate the data. Generally, the process I

recommend is as follows:

 Version your database: By giving either your database file a

versioned name, such as MyAppData_v1.db or MyAppData_v1_2.db,

when your application gets upgraded, you can check to see what

existing database version is present, and it knows what upgrade path

to take.

 Check for old databases when first run: If you version your

application and data schema, the application should check to see if an

existing database exists with an older schema. If it does, then you

should go to the next step.

 Migrate old data: If an older database is present, your application

should run code to create a new database, and import data from the

old database. While this is occurring, you should let the user know that

the application is being configured for first use by showing an alert or

a screen with a message and a busy activity indicator.

 Delete the old database: Once the old data has been migrated, your

code should delete the old database so any future application

launches won’t see it and try to import stale data.

Additionally, because an end user can skip application updates, you’ll want to write

migration paths for different versions of your database schemas. For example, say you

have application and database schema versions 1, 2, and 3. In version 3 of your

application, you should have migration code for not only version 2 to version 3, but also

version 1 to version 3. However, in order to save on code and testing, you may also

simply want to call successive upgrade paths. For instance, version 3 of your application

could include both a version 1 to version 2 upgrade path, as well as a version 2 to

version 3 upgrade path. Then, if the user upgraded to version 3 from version 1, your

application would first migrate the data to the version 2 schema, and then, the version 3

schema.

http://

CHAPTER 19: Working with Data 398

Data Access Technologies
Like any other popular database technology, SQLite has considerable driver support,

and as such there are a number of data access technologies that you can use to

communicate with it.

I’m going to cover a few of these that are popular and/or readily available for use in

MonoTouch.

To keep the sample code simple and easy to understand, I’m going to do the following

tasks with each technology:

1. Create a database: The database will be a blank SQLite database with

no schema or data in it.

2. Create a simple schema: I’ll create a single table, called People, that

has FirstName and LastName columns, as well as an auto-incrementing

primary key column called ID.

3. Add data: Next, I’m going to add several records to it.

4. Retrieve data: Finally, I’m going to retrieve the rows that I added and

display it in a table.

You can see each of these examples in the Example_Data companion application and

code.

Additionally, in the source code, I’ve included some rough performance checking code

that measures the time taken by each of these technologies to perform these tasks.

Okay, onto the data access technologies. Let’s take a look at tried and true ADO.NET.

ADO.NET

ADO.NET (System.Data) was introduced in 2001, and aside from LINQ to SQL and Entity

Framework (both of which are built on top of it, and neither of which are available in

Mono on the iPhone), it hasn’t changed much since then.

As such, it’s pretty outdated from an architectural perspective; however, it’s still a

reliable and well-known way to access data. It’s architecturally outdated, because it

requires you to do everything manually – there is no built-in mapping to entities or any

other data access sugar. Instead it’s all queries, record sets, and the like.

The heavy lifting in MonoTouch’s SQLite ADO.NET implementation is actually in the

Mono.Data.Sqlite assembly (which can be referenced in your project by right-clicking on

the References folder and selecting Edit References), which largely mirrors the

System.Data implementation for SQL Server databases and the like. This is where you’ll

find the SqliteConnection class, which is responsible for most of the work.

http://

CHAPTER 19: Working with Data 399

Creating a Database

To create a new, blank SQLite database, you simply call the static CreateFile method

on the SqliteConnection class and pass a path to where the file should be created. So

for instance, if we wanted to create a database file named db_adonet.db3 in your

application’s documents folder, you would do the following (see Listing 19–1).

Listing 19–1. Creating a new, blank SQLite database on disk

string dbName = "db_adonet.db3";
var documents = Environment.GetFolderPath (Environment.SpecialFolder.Personal);
string db = Path.Combine (documents, dbName);
SqliteConnection.CreateFile (db);

Creating a Schema and Adding Data

When working with SQLite via ADO.NET, you simply send it queries described in SQL

statements. For a full list of what statements that SQLite understands, see

http://sqlite.org/lang.html.

For example, to create a table in SQLite, you can build a CREATE TABLE SQL statement

and then call ExecuteNonQuery on the SqliteCommand object that you create from a

SqliteConnection object. Likewise, for inserting data, you build an INSERT statement and

execute it the same way (see Listing 19–2).

Listing 19–2. Executing queries that create a table and then insert data into it

//---- create a an array of commands
var commands = new[]
{
 "CREATE TABLE People (PersonID INTEGER PRIMARY KEY AUTOINCREMENT

, FirstName ntext, LastName ntext)",
 "INSERT INTO People (FirstName, LastName) VALUES ('Peter', 'Gabriel')",
 "INSERT INTO People (FirstName, LastName) VALUES ('Thom', 'Yorke')",
 "INSERT INTO People (FirstName, LastName) VALUES ('J', 'Spaceman')",
 "INSERT INTO People (FirstName, LastName) VALUES ('Benjamin', 'Gibbard')"
};

//---- execute each command, using standard ADO.NET calls
foreach (var cmd in commands)
{

using (var c = connection.CreateCommand())
{

 c.CommandText = cmd;
 c.CommandType = CommandType.Text;
 connection.Open ();
 c.ExecuteNonQuery ();
 connection.Close ();

}
}

http://sqlite.org/lang.html
http://

CHAPTER 19: Working with Data 400

Selecting Data

As with creating database objects and inserting data, to select data you construct

queries and then execute them as commands. If you want to get a record set back, you

can call ExecuteReader on the command. If your query returns a single value, you can

call ExecuteScalar.

For example, Listing 19–3 selects all rows from the People table, loops through each

row, and adds the data to a List of string objects so we can display it on the page.

Listing 19–3. Executing a query that brings back a record set

//---- create a command
using (var cmd = connection.CreateCommand ())
{
 //---- open the connection
 connection.Open ();
 //---- create a select statement
 cmd.CommandText = "SELECT * FROM People";
 using (var reader = cmd.ExecuteReader ())
 {
 //---- loop through each record and add the name to our collection
 while (reader.Read ())
 { this._people.Add(reader[1] + " " + reader[2]); }
 }
 //---- close the connection
 connection.Close ();
}

As you can see, using ADO.NET with SQLite is fairly straightforward, although it requires

manual creation of all your queries.

SQLite-Net

One of the most popular technologies for data access in MonoTouch is SQLite-Net.

SQLite-Net is an open-source (http://code.google.com/p/sqlite-net), lightweight object-

relational mapping (ORM) framework created by Frank Krueger (an active member of the

MonoTouch community and the author of iCircuit, one of my top-10 favorite iOS

applications).

SQLite-Net is incredibly fast, up to five times faster than ADO.NET in my crude testing,

and also greatly simplifies data access.

Like all ORMs, SQLite-Net provides a mapping between your business objects and your

database, which allows you to persist and retrieve data from your database without having

to write queries or convert records into objects. Instead, ORMs do that work for you.

Because of its simplicity and lightweight design, however, SQLite-Net is not a full-

featured ORM that handles complex mappings, such as NHibernate. However, for 99%

of the data requirements of a mobile application, it’s more than sufficient, and its speed

is unbeatable.

http://code.google.com/p/sqlite-net
http://

CHAPTER 19: Working with Data 401

SQLite-Net is available as a single C# file (sqlite.cs) that is intended to be integrated

directly into your project. There is no binary to reference, you simply copy the file into

your project and reference the classes within it.

Database Creation

To create a new, blank SQLite database, you simply instantiate a new

SQLite.SQLiteConnection and pass it the path to the database. If the database doesn’t

exist, it will create it and return a connection to the database. For example, Listing 19–4

creates a database (if one doesn’t already exist).

Listing 19–4. Creating a database with SQLite-Net

string dbName = "db_sqlite-net.db3";
var documents = Environment.GetFolderPath (Environment.SpecialFolder.Personal);
string dbPath = Path.Combine (documents, dbName);
SQLiteConnection db = new SQLiteConnection(dbPath);

If the database already exists, it will simply create a connection object specific to that

database that we can then use to persist and retrieve data.

Object Mapping

To understand how SQLite-Net works, we need to first understand object mappings. In

the ADO.NET examples, we added data via queries, and retrieved data via a DataReader
that was created from a query. With ORMs, you don’t typically use queries in that

manner. Instead, you define an object model that maps to your database. For example,

consider the following class in Listing 19–5, which maps 1:1 with our People table.

Listing 19–5. A Person object, which maps to the People table

[Table(“People”)]
public class Person
{

public Person () { }
[PrimaryKey, AutoIncrement]
public int ID { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }

}

We can use this class to automatically create our table schema, and persist data to the

database with it.

Table Creation and Data Import

To create a table in SQLite-Net, you call the CreateTable<T> method on the instantiated

SQLiteConnection object and pass in the object that defines the table for T.

CreateTable<T> is a safe call (like instantiating a new SQLiteConnection object), in that it

will only create the table if the table doesn’t already exist.

http://

CHAPTER 19: Working with Data 402

You can then add data to the database directly via instantiated objects that map to that

table. For example, given the Person class illustrated in Listing 19–5, Listing 19–6

creates a connection to a database (who’s path is defined in dbPath), creates the People

table (via CreateTable<Person>), and then adds a collection of Person objects to that

table via the InsertAll method.

Listing 19–6. Creating a table and inserting data using object mappings rather than SQL queries in SQLite-Net

using(SQLiteConnection db = new SQLiteConnection(dbPath))
{
 //---- create the tables
 db.CreateTable<Person>();

 //---- declare vars
 List<Person> people = new List<Person>();
 Person person;

 //---- create a list of people that we're going to insert
 person = new Person() { FirstName = "Peter", LastName = "Gabriel" };
 people.Add(person);
 person = new Person() { FirstName = "Thom", LastName = "Yorke" };
 people.Add(person);
 person = new Person() { FirstName = "J", LastName = "Spaceman" };
 people.Add(person);
 person = new Person() { FirstName = "Benjamin", LastName = "Gibbard" };
 people.Add(person);

 //---- insert our people
 db.InsertAll(people);

//---- close the connection
 db.Close();
}

Additionally, we could have inserted a single object via the Insert method.

Interestingly enough, even though SQLite-Net uses reflection to determine the nature of

the data and perform the mapping to the database, if you run this example side-by-side

with the ADO.NET example, which does the same thing, you’ll find that this runs

anywhere from four to ten times as fast.

It also provides an architecture that is much easier to work with, because you can work

with objects directly, rather than complicated SQL queries and lots of manual code to

turn data that comes back from them into objects.

Selecting Data

As with table creation and data insertion, selecting data is also very easy, and you get

populated business objects back, rather than record sets. For example, to get a

collection of all the Person objects in the People table, you would simply do the following

(see Listing 19–7).

Listing 19–7. Selecting data from the People table

var people = from p in db.Table<Person>() select p;

http://

CHAPTER 19: Working with Data 403

Because the Person object maps to that table, all the hard work is done for us.

There are many more ways to query data. For example, Listing 19–8 returns a Person by

its ID.

Listing 19–8. Selecting a single record from a table

public Person GetPerson (int id)
{

return (from i in Table<Person> () where i.ID == id select i).FirstOrDefault();
}

You can also do advanced filtering and sorting as well. For more information, check out

the wiki documents up on the project home page at http://code.google.com/p/sqlite-

net/w/list.

Vici CoolStorage

Another ORM that is available for MonoTouch is Vici CoolStorage

(http://viciproject.com/wiki/Projects/CoolStorage/MonoTouch).

Vici CoolStorage is somewhere between SQLite-Net and NHibernate in terms of

features. It’s not as simple as SQLite-Net to use, but has some more features when it

comes to mapping. However, it’s not as powerful as NHibernate, but is slightly faster.

I personally do not care for Vici CoolStorage. It requires quite a bit of mangling and

modification to your business classes, and it’s architecturally awkward. It requires the

use of its specialized list classes and subclasses your business objects, and those

subclasses are then what you use for in your application. This in turn tightly couples

your application to your data access layer, a huge architectural no-no, because it

prevents you from easily switching out data access technologies.

It’s also, in my crude performance testing, twice as slow as SQLite-Net. However, it

does have more advanced mapping features than SQLite-Net (including relationship

maps, which don’t exist in SQLite-Net).

Let’s first take a look at the object mapping in Vici CoolStorage.

Object Mapping

Setting up your object maps in Vici CoolStorage is a little strange. Like many ORMs, you

can attribute your classes to describe the mapping. However, Vici CoolStorage takes it

even further. Your class has to inherit from the CSObject class, which can throw a

wrench in your design, since C# only has single inheritance. Additionally, because of a

quirk in how it was designed (and a limitation in MonoTouch that Reflection.Emit is

unavailable), your properties have to be wrappers on underlying getters and setters

provided by the CSObject class.

For example, the Person class in Listing 19–9 provides the same mapping as we saw in

Listing 19–4, but is mapped per Vici CoolStorage’s requirements.

http://code.google.com/p/sqlite-net/w/list
http://code.google.com/p/sqlite-net/w/list
http://code.google.com/p/sqlite-net/w/list
http://viciproject.com/wiki/Projects/CoolStorage/MonoTouch
http://

CHAPTER 19: Working with Data 404

Listing 19–9. Object mapping in Vici CoolStorage

[MapTo("People")]
public class Person : CSObject<Person, int>
{
 public Person () { }
 public int ID { get { return (int)GetField("PersonID"); } }
 public string FirstName { get { return (string)GetField("FirstName"); }

set { SetField("FirstName",value); } }
 public string LastName { get { return (string)GetField("LastName"); }

set { SetField("LastName",value); } }
}

Creating a Database

Creating a database is similar to creating a connection in SQLite-Net. You call the static

SetDB method on the CSConfig object, pass it the path to the database, provide an

option to create the database if it doesn’t exist, and finally, a delegate to execute after

the database is created and the connection is made.

One of the major flaws in this architecture, however, is that unlike SQLite-Net, or even

ADO.NET, once you’ve set your database context via SetDB, you can only connect to

that one database. Whereas in SQLite-Net or ADO.NET, the database is connection

object specific, so you can work with multiple databases at once. See Listing 19–10.

Listing 19–10. Creating and connecting to a SQLite database with Vici CoolStorage

CSConfig.SetDB(dbPath, SqliteOption.CreateIfNotExists, null);

Table Creation and Data Import

Creating tables and other objects in Vici CoolStorage is also kind of a drag, since it

requires you to write SQL statements, and you don’t get any of the ORM sugar you get

with SQLite-Net. Inserting data, however, works mostly the same. You can add object

data directly to the database (as long as the objects are mapped). There is one

important difference, though: data persistence and retrieval is built into the objects

themselves, and so instead of calling insertion or query methods on the database

connection, you call them directly on the objects.

For example, Listing 19–11 expands on the previous example, and instead of just

creating a database, it also creates our People table, and then inserts data into the table.

Listing 19–11. Creating a table and inserting data

//---- determine whether or not the database exists
bool dbExists = File.Exists(GetDBPath(dbName));

//---- configure the current database, create if it doesn't exist, and then run the
// anonymous delegate method after it's created
CSConfig.SetDB(GetDBPath(dbName), SqliteOption.CreateIfNotExists, () => {
 CSDatabase.ExecuteNonQuery("CREATE TABLE People

(PersonID INTEGER PRIMARY KEY AUTOINCREMENT, FirstName text
, LastName text)");

http://

CHAPTER 19: Working with Data 405

 //---- if the database had to be created, let's populate with initial data
 if(!dbExists)
 {
 //---- declare vars
 CSList<Person> people = new CSList<Person>();
 Person person;

 //---- create a list of people that we're going to insert
 person = new Person() { FirstName = "Peter", LastName = "Gabriel" };
 people.Add(person);
 person = new Person() { FirstName = "Thom", LastName = "Yorke" };
 people.Add(person);
 person = new Person() { FirstName = "J", LastName = "Spaceman" };
 people.Add(person);
 person = new Person() { FirstName = "Benjamin", LastName = "Gibbard" };
 people.Add(person);

 //---- save the people collection to the database
 people.Save();
 }
});

Notice that instead of List<Person>, we had to use CSList<Person>. Additionally, to

persist the data to the database, we call the Save method on the Person object itself.

This architecture prevents a coupling problem, in that now your application code is

reliant on specialized classes that are used throughout the different layers of your

application, which tightly bind it to the Vici CoolStorage library.

Query Data

As with persisting data, retrieving data is also performed on the object itself. See

Listing 19–12.

Listing 19–12. Retrieving all rows in a table

CSList<Person> people = Person.List();

As with SQLite-Net, there are of course a number of ways to select single items, filter,

sort, and the like. For more information, see the documentation at

http://viciproject.com/wiki/Projects/CoolStorage/Doc/Walkthrough.

NHibernate

NHibernate (http://nhforge.org) is one of the, if not the, most popular ORM technologies

available for the .NET platform. It started life as a port of Hibernate, which is essentially

the same thing, for the Java platform. However, NHibernate has grown into a product in

its own right, with a number of plugins and frameworks that are only available in .NET.

NHibernate (and Hibernate for that matter) are open-source frameworks with lots of

active community developers behind it, as well as a number of commercial tools for

working with it.

http://viciproject.com/wiki/Projects/CoolStorage/Doc/Walkthrough
http://nhforge.org
http://

CHAPTER 19: Working with Data 406

NHibernate is more complicated to setup than SQLite-Net or Vici CoolStorage, but it is

one of the most extensible and powerful ORMs in the market, while still being very fast.

For 99.99% of all mobile apps, NHibernate is overkill, so I’m only not going to spend

much time on it. However, for the .01% of apps out there that have extremely complex

schemas and complex mapping, NHibernate is a great product.

One of the biggest problems of using NHibernate with MonoTouch is that you cannot

use the binaries directly, as they’re compiled against the full desktop profile of .NET

(rather than the client profile that MonoTouch uses). The code also references a couple

features that are only in the full .NET profile, such as System.Configuration. However, it

is possible to use NHibernate is MonoTouch (and MonoDroid for that matter), with a few

tweaks.

If you’re looking to build NHibernate for MonoTouch, I suggest first picking out which

pieces and frameworks you want to use, as there are many to choose from, then

building them into a console app to get it working. Once you’ve got the requisite pieces

together, you can then move the source into MonoTouch projects and make the tweaks

necessary to get it compiling and working under MonoTouch.

I have successfully gotten NHibernate + Fluent to compile and work under MonoTouch,

but it did take some tweaking, and, as I mentioned, it’s really only appropriate for certain

situations. I recommend, instead, using SQLite-Net.

Summary
After reading this chapter, you should have a thorough understanding of how to work

with SQLite, the built-in database technology in iOS. We covered what SQLite is, what

its limitations are, some of the tools available for managing it. We also covered how to

handle application upgrades and backups, and a number of data access technologies

that are available on MonoTouch for accessing SQLite at runtime.

In terms of data access strategies, I recommend SQLite-Net for 99% of all

MonoTouch/iOS applications. It’s fast, lightweight, simple, and well architected. For the

0.9% of the time in which you need ADO.NET, it’s also available, and for the 0.1% of all

mobile applications that have extremely complex data needs, there is NHibernate.

This concludes the third part of this book. If you’ve been following along from front to

back, and you’ve made it this far, pat yourself on the back. You’re now a MonoTouch

expert. In the next section we’ll cover a few advanced/peripheral topics such as third-

party libraries, integrating with Objective-C code, and submission to the App Store.

http://

407

407

 Chapter

Publishing to the App
Store

So you’ve plowed through this book, and you’ve built an awesome application, and

you’re ready now to get it into Apple’s App Store – the crowning achievement of iOS

app developers. Well, let’s cover a few things out of the way first, so that your

submission to the App Store is as smooth as can be.

Submitting to the App Store can be a frustrating process, or it can be a quick, painless

step along the way to making a profitable app. The goal of this chapter is to provide

some guidance for your application so that your experience is closer to the latter of the

two.

In this chapter we’re going to cover the following path through App Store submission:

 Review Guideline Conformity

 Build the Application for Distribution

 Submit to App Store

This chapter assumes that you’re already a member of Apple’s developer program. If

you’re not, you’ll need to sign up at developer.apple.com in order to be able to

distribute applications in the App Store.

Review Guideline Conformity
The first thing you need to do when you’re ready to publish to the App Store is to review

Apple’s guidelines and make sure that your application conforms to them. You can find

the guidelines on the Apple Developer Site at:

https://developer.apple.com/appstore/resources/approval/guidelines.html.

20

https://developer.apple.com/appstore/resources/approval/guidelines.html
http://

CHAPTER 20: Publishing to the App Store 408

NOTE: It’s important to understand that these guidelines are just that, guidelines. They are not

strict rules. While adherence to these will definitely improve your chance of getting your

application approved for distribution via the App Store, Apple can be unpredictable. There have

been many publicized instances of good applications not being approved. This, is, unfortunately

Apple’s playground, and it rules it absolutely.

The guidelines are subject to non-disclosure agreement, and Apple reserves the right to

change the document. Therefore, I cannot reproduce them here, but the following are

big no-nos when creating applications for the App Store:

 No explicit content: Steve Jobs has been extremely vocal about his

aversion to allowing pornography in the iOS application ecosystem.

As such, if your app has any explicit content that’s not in an

educational context, it will get rejected. This is a particularly sensitive

sticking point with Apple, so I would urge you to err on the side of

caution.

 No private API calls: There are many methods that you can call in the

underlying iOS that are undocumented, and, therefore, are not public

APIs. If you stick to the MonoTouch APIs, this isn’t a problem, as

they’ve only wrapped the public APIs. However, if you’re manually

calling undocumented Objective-C selectors, and your application

reviewer(s) find out, your app stands a high chance of being rejected,

as Apple has automated scanners that look for these calls in your

binary.

 No major bugs: According to Apple, bugs (more specifically, crashing

bugs) are the most common cause for rejection into the App Store.

Before submitting, you should thoroughly test and stabilize your

application. Some reviewers seem to be more thorough than others,

but generally you should make sure that your application doesn’t have

any major bugs or crashes during normal usage.

 Missing/incorrect functionality: Aside from crashing bugs, the other

thing that Apple notes as a common reason for getting rejected is

missing functionality or functionality that doesn’t match the

description. You should make sure that your application works as

advertised; if you say that your app has some particular functionality,

make sure it has it.

Those are some of the biggest sticking points in the App Store submission review

process, but there are many other things that are covered in the guidelines. Be sure to

review them and make sure that your application conforms to them.

http://

CHAPTER 20: Publishing to the App Store 409

Apple Blog

In addition to the published guidelines, Apple maintains a public blog that is constantly

being updated with tips on getting accepted to the app store, as well as a heads-up on

changes and some common missteps. Be sure to check it out at

http://developer.apple.com/news/ios/appstoretips.

Building for Distribution
After you’ve reviewed the guidelines and you’ve made sure that your application is

stable and doesn’t break the App Store rules, it’s time to build it for submission.

Building for submission isn’t much different than building for development, except that

you have to sign it with a distribution identity that Apple recognizes. The general process

is as follows:

1. Create a Distribution Provisioning Profile with Apple.

2. Install the Distribution Provisioning Profile.

3. Create a Distribution Build Configuration in MonoDevelop.

4. Configure Bundle Signing.

5. Build and zip the project in MonoDevelop.

Let’s examine each of these steps.

Creating and Installing a Distribution Provisioning Profile

The first thing you need to do in order to build your application for distribution in the App

Store is to create a provisioning profile for distribution and install it. Provisioning profiles

are created and managed in the iOS Provisioning Portal, which can be found at

developer.apple.com. Log in, navigate to the portal, and do the following:

1. Create an App ID: If you haven’t already created an App ID for your

application(s), create one. In the portal, click on App IDs on the left-hand

navigation and follow the instructions to create a new App ID. If you

want to share keychain information across multiple applications, you

can use a single App ID for the entire application suite.

2. Create a Distribution Provisioning Profile: In the portal, click on

Provisioning and then choose the Distribution tab. Click on the New Profile

button and follow the instructions for creating a new profile. Make sure

to choose the App ID that you just created.

http://developer.apple.com/news/ios/appstoretips
http://

CHAPTER 20: Publishing to the App Store 410

3. Install the Distribution Provisioning Profile: Launch Xcode and open

the Organizer from the Window menu. Click on Provisioning Profiles on the

left-hand nav and then click Refresh in the main info pane. It will prompt

you for your Apple developer login and download and install your newly

created Distribution Provisioning Profile.

Once you have your new Distribution Provisioning Profile created and installed, you

need to create a build configuration in MonoDevelop to use it.

Adding a Distribution Build Configuration

MonoDevelop automatically finds and uses your developer distribution profile/identity

when building. However, if you want to distribute for the App Store, you must use your

distribution identity, which will sign the application with the key recognized by Apple for

distribution.

To create a distribution build configuration, right-click on your solution in MonoDevelop

and choose Options. Then, under Build Configuration, add a new configuration named

Distribution or some such, and select iPhone for the platform. See Figure 20–1.

Figure 20–1. Creating a distribution configuration in MonoDevelop

http://

CHAPTER 20: Publishing to the App Store 411

NOTE: We’ve chosen iPhone as the platform, but all that really means is that we’re not using the

simulator, we’re using the device. Really, the choices should be either iOS Simulator or iOS

Device, and hopefully the MonoTouch team will update MonoDevelop in the future to reflect this

and avoid confusion.

After we’ve created our distribution build configuration, we need to configure it to use

the distribution provisioning profile that we created earlier.

Configure Distribution Bundle Signing

To configure the new distribution build configuration to use the distribution provisioning

profile, right-click on the application project in MonoDevelop, choose Options, then

choose iPhone Bundle Signing on the left. Next, change the configuration to be the

distribution configuration (the one we created in the previous step), and then select your

distribution identity for Identity and your newly installed distribution provisioning profile

(see Figure 20–2).

Figure 20–2. Configuring distribution bundle signing

Now you’re ready to build your application.

http://

CHAPTER 20: Publishing to the App Store 412

Building

Our application is now ready to be built, but since we added a new build configuration,
we need to make sure that all of our configuration options are set up for the new
configuration. This is also a good opportunity to make sure that we’re building with the
latest iOS SDK. Apple will only accept applications built with the latest RTM (non-beta)
SDK.

To configure your build, open the project options for you application and select iPhone

Build. Change the configuration to Distribution and verify your build configuration (see
Figure 20–3).

Figure 20–3. Configuring distribution build

Make sure that if you need any extra arguments for your build that they’re in this
configuration. When you’re finished, click OK.

After your distribution build settings are configured, you can now build and zip the
application bundle. You have two choices here: you can either do it manually or have
MonoDevelop do it for you. I’ll cover both methods, so that you know the easy way
(having MonoDevelop do it for you), and also have an understanding of what’s actually
happening, by doing it yourself.

In either scenario, you first need to choose Distribution|iPhone from the active
configuration drop down in the MonoDevelop toolbar (see Figure 20–4).

http://

CHAPTER 20: Publishing to the App Store 413

Figure 20–4. Selecting the distribution build target

This ensures that when your application is built, it uses the distribution profile you

configured earlier.

Having MonoDevelop Build and Zip for You

To have MonoDevelop create the zipped bundle choose Project Zip App Bundle from the

menu, and then choose the location to save the zip file (see Figure 20–5).

http://

CHAPTER 20: Publishing to the App Store 414

Figure 20–5. Selecting the location to save your zipped application bundle

This will build your application and then zip it up.

Manually Building and Zipping

If you don’t want to use the tool in MonoDevelop, you can simply build as you normally

do. Then, after your application is built, you need to go get the resulting .APK file that

you’ll upload to Apple. Right-click on your project and select Open Containing Folder. Then

navigate to the iPhone/Distribution folder and find the application file for your application

(see Figure 20–6).

http://

CHAPTER 20: Publishing to the App Store 415

Figure 20–6. Application file for submission

Right-click on the application and choose Compress… from the context menu. That will

create a zip file that you can upload.

NOTE: This would be a good time to copy your .dSYM file to a place of safe-keeping so that you

can symbolicate crash reports from Apple.

Now that you have a zip file of your application bundle (using either method), it’s time to

submit your application!

Submitting Your App via iTunes Connect
Application submission is done through iTunes Connect, which you can find at

http://itunesconnect.Apple.com. iTunes Connect is the management portal for all things

App Store related. It’s also where you’ll find sales reports, manage users, and the like.

In order to submit your application, you need to first do the following:

 Configure users (Optional): When you first signed up to be a

developer in the iOS program, you provided information about

yourself. That information is used to create the admin user that has full

control to manage things in iTunes Connect. If you’d like to add other

people to your iTunes Connect membership, you can. You can even

configure specific permissions to different people so that only certain

people have certain abilities. For example, you could set up a person

that can manage financial things such as viewing reports, setting app

prices, and so on, and another person that is allowed to submit apps.

To configure users, choose Manage Users from the iTunes Connect

home screen.

http://itunesconnect.Apple.com
http://

CHAPTER 20: Publishing to the App Store 416

 Accept contract (for pay apps only): If you’re planning to sell your

applications in the App Store (as opposed to giving them away for

free), you need to request a contract and accept it. From the iTunes

Connect home screen, select Contracts, Tax, and Banking and then follow

the steps provided to request and accept a contract for the services

you plan to utilize.

 Set up bank, tax, and contact info (for pay apps only): After you’ve

accepted the contract, you need to setup your contact, bank, and tax

information so that Apple knows where to deposit your application

earnings, verify your legal standing (and report taxes), and finally,

contact you if they need to. You can configure these things in the

same place that you requested a contract (they will be options

available after the contract is accepted).

 Ready your application in iTunes Connect: To submit your

application, choose Manage Your Applications from the iTunes Connect

home page, then Add New App, and follow the instructions.

After that stuff is complete, you’re ready to submit. To submit your application, you need

to run the Application Loader application. To launch this, open Spotlight and type

“Application Loader” and launch the application (see Figure 20–7).

Figure 20–7. Application Loader

If you’ve set up the application in iTunes Connect, when you click Next, you should see

a screen similar to Figure 20–8.

http://

CHAPTER 20: Publishing to the App Store 417

Figure 20–8. Selecting the application to submit in the Application Loader

Click Next after you’ve selected the application you want to submit and follow the

instructions. It’ll have you upload the zip file you created earlier and let you know when it

has successfully been submitted.

That’s it! Now you just have to wait for the application to be approved (and if you’ve

followed the advice in here, it should be).

Application Rejection Dispute Resolution
So you’ve worked really hard on an awesome application, you submitted it, and it got

rejected. Well, don’t fret. Most rejections are because of easy-to-fix reasons.

If your application is rejected, you will be notified of why it was rejected. The most

common rejections are caused by major bugs or missing or incomplete functionality. If

this is the case, simply fix the issue and resubmit a new version of the application.

However, if you feel that your rejection was unwarranted, Apple now has an App Review

Board that allows you to submit an appeal, explaining why you feel that the rejection

was unwarranted. You can find a link to the appeal form on the Apple developer at

http://developer.apple.com/appstore/guidelines.html.

Finally, if you’ve used the appeal process, and Apple still won’t approve your

application, you may consider going public with your rejection. Be warned though: Apple

hates having a stink made about itself in the press (even if it’s warranted), and its

rejection letters are subject to the NDA that you signed when you signed up for the

developer program. With that said, however, there have been many cases in which the

public criticism of an app rejection has caused Apple to reverse their decision (or more

often, quietly approve the submission).

http://developer.apple.com/appstore/guidelines.html
http://

CHAPTER 20: Publishing to the App Store 418

Summary
In this chapter we covered the process of readying your app for submission, including

creating a distribution provisioning profile, signing the bundle, and building for

distribution. You then learned about iTunes Connect, Apple’s managed portal for all

things App Store related. Finally, we covered the process of submitting the app, and

what to do if it gets rejected.

In the next chapter, we’re going to take a look at calling web services from your iOS

application.

http://

419

419

 Chapter

Third-Party Libraries

One of the most powerful features of MonoTouch is its ability to utilize third-party

libraries from C# source code, Objective-C libraries, and even C/C++ libraries.

As such, there has been a lot of work in the community to build third-party MonoTouch

libraries, and also wrap existing Objective-C libraries.

In this chapter, we’re going to take a quick look at some of the largest and most popular

libraries, which will give you an idea of some of the libraries available for use.

There are a couple good resources for finding MonoTouch libraries, including the

following:

 MonoTouch Wiki: There is a community-maintained wiki that has a

number of libraries at http://wiki.monotouch.net/. While being a good

starting point, however, it is not always up to date, and there are a

number of libraries not mentioned there.

 MonoTouch Bindings on Github: Available at

https://github.com/mono/monotouch-bindings, several prominent

community members (and a couple MonoTouch team members)

maintain bindings to popular Objective-C libraries.

There are a lot of libraries available for the iOS and MonoTouch. This chapter is meant to

give you an idea of what is out there, but is by no means exhaustive. We’re going to take

a look at the following third-party libraries:

 MonoTouch.Dialog: A powerful toolkit built by Mono’s founder,

Miguel de Icaza, that helps simplify building screens in MonoTouch.

 MonoTouch-Facebook: A MonoTouch library that wraps the

Facebook iOS SDK written in Objective-C.

 Three20: Comprehensive UI Toolkit based on the Facebook

application’s control set. Written in Objective-C and bound for use

with MonoTouch.

21

http://wiki.monotouch.net/
https://github.com/mono/monotouch-bindings
http://

CHAPTER 21: Third-Party Libraries 420

 Tapku: A lightweight UI Toolkit that includes a number of useful

controls including a graph control.

 MonoTouch-Controls: A small set of useful controls that includes

some C# ports of controls from the Tapku library built by Eduardo

Scoz.

Additionally, in Chapter 22, we’re going to take a look at how to bind Objective-C

libraries yourself.

MonoTouch.Dialog
By far one of the most powerful and popular third-party toolkits available for

MonoTouch, MonoTouch.Dialog was created by Miguel de Icaza and has an active

community of developers extending it. For brevity, MonoTouch.Dialog is often referred

to as MT.D, and I will follow that precedent for that very reason here. I highly

recommend using MT.D in your projects where applicable; it will significantly reduce the

amount of code you have to write and reduce the potential for application bugs.

MT.D is based on the idea that most of what you do with tables in MonoTouch is

repetitive, and can be abstracted in such a way that you can describe your layout with

objects, and then have a framework that automatically builds the UI and binds the input

to your objects.

For instance, see Figure 21–1 was created using MT.D.

Figure 21–1. A screen built entirely using MonoTouch.Dialog

http://

CHAPTER 21: Third-Party Libraries 421

The only code needed to create that is shown in Listing 21–1.

Listing 21–1. Creating a screen from an object that is bound to a DialogViewController

public class AccountInfo
{

[Section]
public bool AirplaneMode;

[Section ("Data Entry", "Your credentials")]

[Entry ("Enter your login name")]
public string Login;

[Caption ("Password"), Password ("Enter your password")]
public string passwd;

}
…
this._accountInfo = new AccountInfo();
BindingContext bc = new BindingContext(this, this._accountInfo, "Account Information");
this.NavigationController.PushViewController(new DialogViewController(bc.Root), true);

As you can see, MT.D is extremely powerful, yet Miguel has done an excellent job in

making it super simple. In fact, once you start developing with MT.D, it’s hard to develop

without it.

NOTE: This section will give you a good understanding of MT.D, but it is by no means

comprehensive. For more information and clarity on anything presented in here, check out the

documentation at https://github.com/migueldeicaza/MonoTouch.Dialog. If you scroll down past

the file listing, there is documentation, further explaining MT.D.

Let’s take a look at the constituent parts of MT.D, so we can get an understanding of

how to use it.

DialogViewController

The main class in MT.D that handles UI is DialogViewController. DialogViewController

subclasses UITableViewController, and is responsible for actually creating the

interface. You use a DialogViewController just as you would any custom

UITableViewController, but the difference is, instead of having to go through the hassle

of implementing a data source and a delegate, you simply instantiate it with a

RootElement object that contains your UI information (which we’ll examine in a moment).

You can then push it onto a navigation controller, assign it to a tab in a tab bar

controller, or as the master view in a split view controller, and so on.

For example, assuming that you’ve created a RootElement called myRoot, you can push

DialogViewController onto the navigation stack as shown in Listing 21–2.

Listing 21–2. Pushing a DialogViewController onto a navigation controller

this.NavigationController.PushViewController(new DialogViewController(myRoot), true);

https://github.com/migueldeicaza/MonoTouch.Dialog
http://

CHAPTER 21: Third-Party Libraries 422

MT.D allows provides a mechanism for nested screens as well. For instance, you can

have items on the DialogViewController that, when clicked on, open new screens and

push them onto the stack as well.

In addition to using the stock DialogViewController, you can subclass it to customize its

appearance and behavior. For more information, see the MT.D documentation.

RootElement, Sections, and Child Elements

The DialogViewController is populated via a hierarchal set of items, beginning with

Section objects, which contain Element objects that represent the items on the interface.

At the root of this tree is a class called RootElement. When you create a new

DialogViewController, you pass the constructor an instantiated RootElement object.

Sections

Sections represent a section in a table view. They can have header and footer text, or

can even be created from a view and they themselves can contain Element (including

RootElement, for nested screens) objects. Creating a new section is very easy, and there

are a number of constructor overloads that allow you to specify the header and footer

text, or even custom views for the header and footer. For example, Listing 21–3 creates

a new section with some header and footer text.

Listing 21–3. Creating a new Section item and specifying the footer and header text

Section mySection = new Section ("My Header Text", "My Footer Text");

As I mentioned, you can create header and footers from views. For example, Listing 21–4

specifies an image to be used for the section header.

Listing 21–4. Creating a new Section from with an image view as the header

UIImageView myHeaderImage = new UIImageView (Image.FromBundle ("Images/sample.png"));
Section mySection = new Section (myHeaderImage);

Elements

Element objects are created as children of a Section, and MT.D ships with a number of

standard elements, and if those don’t quite do what you need, you can also create

custom elements. Elements that are used for form information/user data expose a Value

property that gets updated when the user enters information.

The standard elements are as follows:

 BooleanElement: Creates an item that has a UISwitchView in it.

 CheckboxElement: Creates an item that has a checkbox in it.

 FloatElement: Creates an item with a UISliderView and UIImageView

views to the left and right of the slider.

http://

CHAPTER 21: Third-Party Libraries 423

 HtmlElement: Creates an item that, when clicked on, loads a new

screen that contains a UIWebView that loads the specified URL.

 ImageElement: Creates an item that, when clicked on, loads an image

picker.

 StringElement: Creates an item that displays a string value. You can

pass a delegate to this for more advanced functionality.

 StyledStringElement: Similar to StringElement, but allows you to

specify the styling of Font, TextColor, and BackgroundColor to be set.

 MultilineElement: A subclass of StringElement, MultiLineElement

allows multiple lines of text.

 RadioElement: Creates an element that serves as a radio-button item.

Multiple RadioElement objects can be grouped together.

 EntryElement: Creates an item that has a UITextView and allows

users to enter text. You can also specify that the entry is a password,

and then it masks the input.

 DateTimeElement: Creates an item that, when clicked on, opens a

new screen with a date-time spinner control that allows the user to

enter a date and time.

 DateElement: Similar to DateTimeElement, but only allows date entry.

 TimeElement: Similar to DateTimeElement, but only allows time entry.

 BadgeElement: Creates an item that shows an image and text.

 UIViewElement: Creates an item from the specified view.

 ActivityElement: Creates an item that shows a UIActivityView.

 LoadMoreElement: Creates an item that allows users to click on it to

load more items. You pass an NSAction that gets called when the user

clicks the item that contains your custom code to load more items.

 OwnerDrawnElement: An abstract base class that can be overridden

to create an item in which you override the Draw (and other methods)

to render the item.

Each one of these elements has a high level of customization available out of the box.

For more information, make sure to check out the documentation over at the project

page in Github.

http://

CHAPTER 21: Third-Party Libraries 424

Using MT.D

There are two distinctly different ways to create the element tree/hierarchy to define

screen content in MT.D:

 Creating the hierarchy manually: When creating the hierarchy

manually, you create a RootElement, and then add Sections and

Elements to it as needed.

 Using automatic binding: When using the binding method, you define

specially attributed classes , and then MT.D will build out the hierarchy

(and bind the data from the screens to the objects) for you.

The binding method is a high-level usage pattern that relies on a BindingContext object

to do all the work for you. You simply create your object (or object hierarchy), pass it to

a new BindingContext, and then use the Root property of the BindingContext object,

which returns the RootElement (and subsequent tree) based on your object.

The binding pattern can save you a lot of work; however, it relies on reflection to build

the hierarchy, and is therefore slightly slower than creating the hierarchy yourself.

Additionally, creating the hierarchy yourself gives you more flexibility, because you have

direct control.

We’re going to take a look at creating the hierarchy manually first, so that we have a

good idea of how MT.D works, and then we’re going to look at how to simplify things

using the binding pattern.

Creating the Element (Content) Tree Manually
Creating the element tree/hierarchy manually sounds tedious, but in fact, with the use of

C# 3.0 initializers, it can be quite easy. For example, Listing 21–5 creates a rather

complex tree, but users very little code.

Listing 21–5. Creating an element tree using the C# 3.0 initializer syntax

RootElement myElementTree = new RootElement ("Demos")
{
 new Section ("Element API", "optional footer text")

{
 new BooleanElement ("Airplane Mode", false),
 new StringElement("Foo", "A test!")
 },
 new Section ("Another Section!")

{
 new ImageElement(UIImage.FromBundle("Images/Icons/Apress-50x50.png")),
 new EntryElement("Login", "please enter e-mail", ""),
 new EntryElement("Pass", "", "", true),
 new FloatElement(UIImage.FromBundle("Images/Icons/Apress-50x50.png"),

UIImage.FromBundle("Images/Icons/Apress-50x50.png"), 40),
 new BadgeElement(UIImage.FromBundle("Images/Icons/Apress-50x50.png")

, "badge element!")
 }
};

http://

CHAPTER 21: Third-Party Libraries 425

In addition to the standard elements, you can also create custom elements by

subclassing any existing element, or the Element class itself.

Using the Object Binding Pattern

The object binding pattern provides a powerful mechanism in which to build a UI from

view model objects. Using the binding pattern, MT.D items are built out by looking at the

public fields in your class, and they are added in the order that items are declared.

Additionally, you can decorate your class with attributes to specify how the element tree

gets created.

For example, back in Listing 21–1, I created an AccountInfo object that had a number of

fields that were automatically displayed, and the attributes affected where the sections

were and how the items were displayed.

Object binding is extremely powerful and very configurable. I strongly recommend

digging into the MT.D documentation at the project home page on Github for more

information on it.

LINQ Support

The classes that make up the element trees in MT.D also support LINQ. For example,

through the clever usage of LINQ and C#’s initialization syntax, you can use LINQ to

create your trees, as shown in Listing 21–6.

Listing 21–6. Creating an element tree from LINQ

this._linqBuiltElementTree = new RootElement ("LINQ root") {
 from x in new string [] { "one", "two", "three" }
 select new Section (x) {
 from y in "Hello:World".Split (':')
 select (Element) new StringElement (y)
 }
};

You could combine this with data from a database or an XML file, and you can see how

easy it is to create MT.D element trees. For instance, you could write a simply LINQ

query and define a good portion of your application’s screens with XML!

MonoTouch-Facebook
MonoTouch-Facebook was created (and maintained) by Kevin McMahan. It’s a

MonoTouch wrapper on the official Facebook iOS SDK (published by Facebook) and

was created using btouch (covered in Chapter 22).

You can find the latest build of it at the online open-source repository, Github.com, at

https://github.com/kevinmcmahon/monotouch-facebook.

In order to use it, you must first get an application ID from Facebook, which can be

obtained at www.facebook.com/developers/createapp.php.

https://github.com/kevinmcmahon/monotouch-facebook
http://www.facebook.com/developers/createapp.php
http://

CHAPTER 21: Third-Party Libraries 426

MonoTouch-Facebook includes a sample application called FacebookSDKExamples,

which is a direct port of the official Facebook SDK Examples application. You can grab

FacebookSDKExamples from the Github site. In order to run the example application,

you need to add your application ID to places:

 info.plist

 main.cs

The info.plist file already has a place for the application id under URL Types : Item 0 :
URL Schemas : Item 0. The application id should be prefixed with an “fb,” so a correctly

configured info.plist will look something like the Figure 21–2.

Figure 21–2. Adding your Facebook Application ID to the info.plist file

After you’ve edited the info.plist file, you should also edit the main.cs file and add set

your application id to the kAppId variable (line 29 as of writing):

const string kAppId = "112345678960447";

If you’ve configured your application ID correctly, when you run the example application,

you should get a screen like that shown in Figure 21–3.

http://

CHAPTER 21: Third-Party Libraries 427

Figure 21–3. Opening screen of the Facebook SDK Example application

When you click on Login button, it will open up Safari and present you with the

Facebook site, which will require you to log in and ask you to authorize the application

to access your data. After you’ve logged into Facebook and authorized your application,

it requests a specifically formatted URL, which the MonoTouch-Facebook library has

subscribed to. The iOS will then switch back to your application, and you’ll see a screen

similar to Figure 21–4.

http://

CHAPTER 21: Third-Party Libraries 428

Figure 21–4. Facebook SDK Example application after you’ve logged into Facebook

This means the application has successfully authenticated with Facebook and gives

your application the ability to access your profile data, post updates, photos, and the

like.

For more information on using the SDK, see the official Facebook iOS SDK homepage

(also on Github) at https://github.com/facebook/facebook-ios-sdk.

Three20
Three20 is a heavy-duty open source Objective-C library that consists of a collection of

sub-projects that are all derived from the Facebook iOS application. You can find the

project and source code at https://github.com/facebook/three20. It includes a number

of things that are actually already available in .NET, such as a JSON parser, and so on;

however, it does have a very powerful UI library that contain many of the controls found

in the Facebook application (see Figure 21–5).

https://github.com/facebook/facebook-ios-sdk
https://github.com/facebook/three20
http://

CHAPTER 21: Third-Party Libraries 429

Figure 21–5. Three20 UI library

Because it’s written in Objective-C, it needs to be bound for use in MonoTouch.

However, there has been some community effort involved in binding it. You can find the

btouch project at http://code.google.com/p/btouch-library/, as well as the latest wrapper

DLL. As of writing this book, the binding is still fairly rough, but some controls are

useable.

I cover using btouch in Chapter 22 if you’re interested in using Three20.

Tapku
Tapku is a lightweight and fast, open-source, Objective-C UI library created by Devin

Ross. You can find the Tapku library on Github at

https://github.com/devinross/tapkulibrary. It contains a number of extremely useful (and

non-trivial to replicate) controls, including a very nice graph, a cover flow control, a

calendar, and a number of nice alert controls (called HUD, or heads-up-display, controls

in this library), some of which are shown in Figure 21–6.

http://code.google.com/p/btouch-library/
https://github.com/devinross/tapkulibrary
http://

CHAPTER 21: Third-Party Libraries 430

Figure 21–6. Tapku controls library

Like Three20, Tapku has seem some community effort to bind for MonoTouch, and

again, the source of such efforts can be found at https://github.com/mono/monotouch-

bindings. Additionally, in the next chapter when I cover btouch, I’m going to walk

through binding the Tapku coverflow (TKCoverflowView) control using btouch.

MonoTouch-Controls
The MonoTouch-Controls library is an open-source C# library of UI controls created by

Eduardo Scoz. It can be found on Github at https://github.com/escoz/monotouch-

controls. It is partially based on the Tapku library, and as such has C# ports of the

monthly calendar view and some of the HUD controls. Additionally, it has a web image

view control that displays images directly from a URL, and has a nifty text field that

formats numbers with commas and decimals as the number is entered. There are also a

few other controls. Some of the controls are shown in Figure 21–7.

https://github.com/mono/monotouch-bindings.Additionally
https://github.com/mono/monotouch-bindings.Additionally
https://github.com/mono/monotouch-bindings.Additionally
https://github.com/escoz/monotouch-controls.It
https://github.com/escoz/monotouch-controls.It
https://github.com/escoz/monotouch-controls.It
http://

CHAPTER 21: Third-Party Libraries 431

Figure 21–7. ESCOZ’s MonoTouch-Controls library

At the time of writing, the library hasn’t been updated in a while, and some of the

controls need a little bit of work. Generally, though, it’s a solid library, and if nothing

else, it can serve as a basis if you’re looking to create controls that expand on its

functionality.

XNATouch
XNATouch is an open-source project that allows you to port games written for Windows

and Windows Mobile 7 to iOS with minimal effort. You can find XNATouch at

http://monogame.codeplex.com.

As of writing, it doesn’t yet support XNA 4.0, only 3.1, but 4.0 support is said to be on its

way soon by the developer.

To use XNATouch, add all of your source code files to your project, add a reference to

the XNATouch dll, and then launch your game loop in your application delegate’s

FinishedLaunching method (see Listing 21–7).

Figure 21–7. Launching an XNA game in MonoTouch

using MonoTouch.Foundation;
using MonoTouch.UIKit;
using XnaTouch;
using XnaTouch.Samples;
using XnaTouch.Samples.Storage;

namespace XnaTouch.Samples.Storage
{

[Register ("AppDelegate")]
class Program : UIApplicationDelegate
{

private Game1 game;

public override void FinishedLaunching (UIApplication app)
 {
 // Fun begins..

http://monogame.codeplex.com
http://

CHAPTER 21: Third-Party Libraries 432

 game = new Game1();
 game.Run();
 }

 static void Main (string [] args)
 {
 UIApplication.Main (args,null,"AppDelegate");
 }
 }
}

Summary
In this chapter you learned about a few major third-party libraries available for

MonoTouch, including MonoTouch.Dialog, which may be the single most useful library

available and can greatly increase your productivity. We also learned where to locate

third-party libraries for MonoTouch.

In the next chapter, we’re going to take a look at binding Objective-C libraries for use in

MonoTouch.

http://

433

433

 Chapter

Using Objective-C
Libraries and Code

In addition to third-party libraries that are written in C# and C/C++, MonoTouch can

utilize libraries and code written in Objective-C. This makes MonoTouch extremely

powerful, because you can draw functionality from a plethora of sources.

In this chapter, we’re going to take a look at how to bind Objective-C libraries for use in

MonoTouch using btouch, a tool that simplifies the binding process. In the process,

your’re going to get some real-world experience by walking through the process of

binding the open source Tapku library.

The general process of binding Objective-C code for use in MonoTouch applications

involves creating MonoTouch DLLs that “bind” the native code. This means creating C#

classes to represent the Objective-C classes that invoke the underlying Objective-C

selectors, wrap properties, and so on via the MonoTouch.Foundation classes and

attribute syntax.

There are two ways to accomplish this. The first is the hard way, which involves writing

all the binding classes and code by hand. You can find documentation on how to do this

here http://monotouch.net/Documentation/Binding_New_Objective-

C_Types/Binding_Details.

I’m not going to cover that in this book, though, because there’s a much easier way to

bind Objective-C libraries: using btouch.

btouch
The easiest way to use Objective-C libraries is to use a utility tool created by the

MonoTouch team called btouch. It works by automatically generating a MonoTouch DLL

that wraps the library for you based on an API Definition File that you create to describe

the binding. You can also provide to it C# source files of any additional helper classes,

enums, and the like that you write to expand the binding and make it easier to use.

22

http://monotouch.net/Documentation/Binding_New_Objective-C_Types/Binding_Details
http://monotouch.net/Documentation/Binding_New_Objective-C_Types/Binding_Details
http://

CHAPTER 22: Using Objective-C Libraries and Code 434

Once you have generated your wrapped DLL, you can then reference it in your project,

along with the original .a file that contains the Objective-C library, and use it as you

would any other .NET library. See Figure 22–1.

Figure 22–1. Using btouch to bind an Objective-C library to create a MonoTouch DLL

You can find really good documentation on creating API Definition Files and using

btouch at http://monotouch.net/Documentation/Binding_New_Objective-C_Types.

Instead of duplicating the coverage that the team gives there on btouch, this chapter

instead serves as a practical companion to understanding the process of using the rules

described in the documentation.

btouch Process

The workflow of this process generally involves the following steps:

1. Compile library in Xcode: If the library isn’t already built, you need to

open it in Xcode and build it. The resulting assembly is a static library

(.a) file.

2. Create API definition: Create the API definition file as well as any

helper classes, enums, and so on that will make up the MonoTouch

usable DLL.

3. Run btouch: btouch will create a DLL from the source files and API

definition that you give it.

4. Add the Objective-C library to your project: Copy the .a file(s) into the

project.

5. Reference the DLL: Add the btouch-generated DLL as a reference in

your project.

6. Configure build: Add special compiler flags to the build that load the

Objective-C library as a source.

Let’s examine this process step by step by actually binding a library. In this case, we’re

going to use btouch to create a MonoTouch usable library of Tapku.

http://monotouch.net/Documentation/Binding_New_Objective-C_Types
http://

CHAPTER 22: Using Objective-C Libraries and Code 435

A Quick Objective-C Primer
Before we get too far along in this process, it’s important to get a basic Objective-C

overview. It’s a very different language than C# (or even C/C++ for that matter), and

binding it is a lot easier if you know a little bit about it.

The intent of this primer is to give you enough of a background in Objective-C to be able

to bind it, but it is by no means exhaustive. For a complete Objective-C primer, check

out Learning Objective-C: A Primer in the development documentation, or at

http://developer.apple.com/library/mac/#referencelibrary/GettingStarted/Learning_Objec

tive-C_A_Primer/_index.html.

Additionally, Wikipedia has a great article on Objective-C that compares its syntax to C

and C++. You can find it at http://en.wikipedia.org/wiki/Objective-c.

Files

There are three types of files in Objective-C (and by extension, Xcode iOS projects).

They are defined in Table 22–1.

Table 22–1. Objective-C File Types

Extension Type

.h Header files that contain the definitions (prototypes) for the corresponding

source code files and include things like class, function, and constant

declarations.

.m Source code files that contain the actual implementation of what’s been

defined in the header files. You may see both Objective-C and C code in .m

files.

.mm Source code files that contain Objective-C++ and C++ source.

I mention C and C++ because sometimes in iOS projects you’ll those languages in

addition to Objective-C.

Typically, you’ll see a 1:1 relation between .h and .m files, because the .h files define

what’s in the .m files. This separation between definition and implementation is a legacy

feature of the C language.

Classes

Objective-C has a class construct, just like C#, though it looks pretty different. As I

mentioned earlier, classes are defined in header files.

Class definitions in Objective-C are preceded with an @interface declaration and are

concluded with an @end declaration. There is typically then a code block delineated with

http://developer.apple.com/library/mac/#referencelibrary/GettingStarted/Learning_Objec
http://en.wikipedia.org/wiki/Objective-c
http://

CHAPTER 22: Using Objective-C Libraries and Code 436

brackets (“{“ and “}”), which contain member variables. After the member variables,

methods are declared, outside of the bracketed code block. Consider the class

definition in Figure 22–2.

Figure 22–2. A typical Objective-C class definition

Objective-C looks a little strange if you’re used to C, C++, or C#, but underneath it all it’s

not all that different.

Objective-C has both strong-typing (definitive/known types) of variables, and weak-

typing. In Figure 22–2, the data variable is weakly-typed, which is signified by the id

type. Just like in C#, there are both value types and reference types. Reference types

are passed via pointer, which is what the asterisk (“*”) after the NSString means.

Weakly-typed variables are also passed via pointer reference, with the id type implying

a pointer reference.

You very rarely need to look at the actual implementation when binding Objective-C

methods, because really what you’re interested in is the definition of classes, and the

like.

Let’s take a look at the method declarations next.

Methods/Messages

Methods are where the syntax of Objective-C really starts to diverge from traditional C-

based languages. This is due to its legacy from NeXTSTEP OS (which Apple bought),

which, in turn, owes a lot of its syntax from Smalltalk.

Instead of always calling methods on objects, most of the time in Objective-C, you pass

messages to objects. This, while strange to those coming from C-based backgrounds,

actually adds a tremendous amount of power to Objective-C, because it allows it to be

more dynamic.

Consider the Objective-C method declaration in Figure 22–3.

http://

CHAPTER 22: Using Objective-C Libraries and Code 437

Figure 22–3. An Objective-C method declaration

As you can see, rather than grouping things together, Objective-C splits everything

apart. To build the selector name for this method, we need to concatenate all of the

method name keywords together, including the colons. So, for the previous method, the

selector name would be what you see in Listing 22–1.

Listing 22–1. Conversion from method declaration to selector name

insertObject:atIndex:

Figuring out the selector name is very important, because, as we’ll see in moment, when

exposing methods to C#, we must know the selector name of the Objective-C method.

When exposing this method as a C# method, it would literally translate to Listing 22–2.

Listing 22–2. A literal translation of 22–4 into C#

public void InsertObjectAtIndex(NSObject anObject, uint index);

However, we would likely clean it up (following the .NET framework guidelines) and

expose it as Listing 22–3.

Listing 22–3. A sensible translation of 22–4 into C# following the .NET framework guidelines

public void Insert(NSObject item, int index);

I’m going to delve into this deeper in just a bit, but the important thing to grasp here is

that when wrapping Objective-C, you need to know how to derive the selector name

from the method declaration, and then you’ll want to expose that via a sensible name in

C# that fits to the .NET guidelines.

Instance vs. Static

Instance methods are preceded with a dash (“-“) and static methods are preceded with

a plus (“+”).

http://

CHAPTER 22: Using Objective-C Libraries and Code 438

Invoking Methods

Remember, in Objective-C, you message objects rather than invoke their methods.

Messages are wrapped in brackets (“[“ and “]”) and the object to be messaged is on

the left side, and the message package is on the right.

For example, to call the previous method on an object called myArray, you would do the

following (see Listing 22–4).

Listing 22–4. Invoking an Objective-C method via a message

[myArray insertObject:someObject atIndex:0];

Objective-C also allows you to chain messages together to pass the result of messages

in as parameters of other messages, as in Listing 22–5.

Listing 22–5. Using the result of a message as a parameter in another message

[[myAppObject theArray] insertObject:[myAppObject objectToInsert] atIndex:0];

Properties

Unlike C#, Objective-C doesn’t have true properties. Instead, it has getter and setter

methods that can be auto generated by the compiler. For example, if you wanted a

count property, you (or the compiler) would implement a count method for retrieval

(getter), and a setCount method for persistence (setter). These pseudo-properties are

declared, like any other method, in the header file, and are in the form "@property
(optional attributes) Type name," as in Listing 22–6.

Listing 22–6. Property declarations in Objective-C

@property BOOL flag;
@property (copy) NSString *nameObject; // Copy the object during assignment.
@property (readonly) UIView *rootView; // Declare only a getter method.

Properties can be given attributes that describe their behavior. Attributes fall into the

following three categories:

 Access level

 Memory management

 Thread-safety

There are two access-level properties, readwrite and readonly, which specify whether

the property is readable and writeable (has both a getter and setter), or if it’s only

readable.

There are also three memory management attributes – assign, retain, and copy – that

specify the semantics of how the memory is handled when the property is set.

Finally, the last attribute is NonAtomic, which specifies that the property does not do any

thread-safe locking.

http://

CHAPTER 22: Using Objective-C Libraries and Code 439

Later on, when we bind the Tapku library, we’ll look at how these attributes are

important; for now, we just need to be aware of them.

Property retrieval is performed with dot-notation, as in Listing 22–7.

Listing 22–7. Retrieving a property value in Objective-C

count = myObject.count;

However, setting a property can be performed either via a setter method (in the form of a

message) that takes the form of setPropertyName, or dot-notation, as in Listing 22–8.

Listing 22–8. Setting a property in Objective-C using a message and a dot-notation, respectively

[myObject setCount:5];
myObject.count = 5;

The compiler can generate the property getter and setter methods for you. To do this, you

use the @synthesize keyword in your class implementation, as shown in Listing 22–9.

Listing 22–9. Using the @synthesize keyword to make the compiler implement property methods

@synthesize flag;
@synthesize nameObject;
@synthesize rootView;

Protocols

We covered protocols in the first section of this book, but as a quick review, protocols

are similar to Interfaces in C#, with the following differences:

 Protocols do not define instance variables.

 Method declarations in protocols can be optional.

Protocols that a class conforms to (implements) are specified after the class name

declaration in angle brackets < and >. For example, the class in Listing 22–10

implements the UIApplicationDelegate and AnotherProtocol protocols.

Listing 22–10. Specifying that a class implements certain protocols

@interface MyClass : NSObject <UIApplicationDelegate, AnotherProtocol> {
}
@end

Declaring Protocols

Protocols are declared via the @protocol keyword. For example, Listing 22–11 defines a

protocol for XML serialization.

Listing 22–11. Declaring a protocol

@protocol MyXMLSupport
- initFromXMLRepresentation:(NSXMLElement *)XMLElement;
- (NSXMLElement *)XMLRepresentation;
@end

http://

CHAPTER 22: Using Objective-C Libraries and Code 440

By default, any methods declared in a protocol are required, but you can also specify

that a method be optional with the @optional keyword, as in Listing 22–12.

Listing 22–12. Required and optional methods in a protocol

@protocol MyProtocol
- (void)requiredMethod;
@optional
- (void)anOptionalMethod;
- (void)anotherOptionalMethod;
@required
- (void)anotherRequiredMethod;
@end

Protocols are one of the most extensive features in Objective-C, and you may find while

binding an Objective-C library that a protocol is more complicated than the rules

presented here. In that case, I recommend reviewing the section on protocols in Apple’s

Objective-C programming language documentation at

http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/

Chapters/ocProtocols.html.

Now that we’re seasoned Objective-C experts (sarcasm), let’s look at actually compiling

an Objective-C library so that we can use it in MonoTouch.

Compiling the Objective-C Library
The first step in the process of binding an Objective-C library to use in MonoTouch is to

actually build the library. Objective-C libraries that you use in the iOS have their roots in

Unix, and compile down to Static Object Code Library files. These files have an “a” file

extension.

When doing iOS development, you actually need three .a files. One file should be built

for the i386 architecture (instruction set). This file will be used by the iOS Simulator. The

other files should be built for the ARMv6 and ARMv7 architecture, which will be used by

the actual devices (older devices only run v6, whereas the new devices run v6 and v7).

ARCHITECTURE? WHAT? Different CPUs have different sets of instructions that they

understand. Each common set of instructions is called an architecture. Most computers these

days use the i386 instruction set, which has remained unchanged since the Intel 386 CPU.

However, mobile devices typically use a smaller, optimized set of instructions that allow the

chips to be smaller and draw less power. iDevices are no different in this respect; for example,

the iPhone 3G and earlier only understand the ARMv6 instruction set, whereas the iPhone 4 and

iPad and iPad 2 can run both ARMv6 and ARMv7 code. However, Apple throws a bit of a monkey

wrench into the situation even more by requiring ARMv7 code be run on newer devices, even

though they support ARMv6.

If you just have some Objective-C code, and don’t have an Xcode library project, then

you’ll need to create one. You can find instructions on how to create Xcode library

http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/
http://

CHAPTER 22: Using Objective-C Libraries and Code 441

projects in the Xcode developer documentation at

http://developer.apple.com/library/ios/#documentation/ToolsLanguages/Conceptual/

Xcode4UserGuide/Introduction/Introduction.html.

Building the Tapku Library

We are going to use the Tapku library, which can be download from Github at

https://github.com/devinross/tapkulibrary. Click the Downloads button to have Github

assemble and zip the source code into an archive.

When you download and unzip the file, you should see two folders: src and universaldemo.

The src folder contains the library project that we’ll compile, and the universaldemo

folder contains a sample iOS application that demos the library.

Open the TapkuLibrary.xcodeproj file in the src folder. Xcode should open up and you

should see something like Figure 22–4.

Figure 22–4. Xcode project window showing the Tapku library project

http://developer.apple.com/library/ios/#documentation/ToolsLanguages/Conceptual/
https://github.com/devinross/tapkulibrary
http://

CHAPTER 22: Using Objective-C Libraries and Code 442

In the upper left, you can set your current build target. If you click on it and don’t have

the options you see in Figure 22–5, you probably need to change the SDK target to be

the iOS SDK.

Figure 22–5. Build configuration in Xcode

Specifying the iOS SDK

To change the base SDK target, click on the Project menu and then choose Edit Project

Settings. Then, in the Base SDK setting, choose Latest iOS…, as shown in Figure 22–6.

http://

CHAPTER 22: Using Objective-C Libraries and Code 443

Figure 22–6. Setting the Base SDK to be the latest iOS SDK in the Xcode project settings

This will set the library to build against the iOS SDK (as opposed to the Mac OSX SDK,

which is usually the default). Due to a bug in Xcode, you may have to close the project

and re-open it, for the SDK changes to go into effect.

Compiling

Once the SDK is set, we need to build the library. First we need to set our build options

(via the dropdown shown in Figure 22–7).

http://

CHAPTER 22: Using Objective-C Libraries and Code 444

We’ll want to change the Active Configuration to Release, since it’s smaller and faster (and,

at this point, the Objective-C code should already be tested and stabilized).

In the case of the Tapku library, we also need to change the Active Target to the

TapkuLibrary. There is a second target called TapkuLibraryExtra, which will build

another library with extra features in addition to the base library. For the purposes of this

example, we only need the main library.

Finally, make sure that armv6 is selected, and then choose Device. Your build options

should now look like Figure 22–7.

Figure 22–7. Proper build settings to compile a release build for the device

We’re now ready to build. You can either select the Build menu, then Build, or you can

just press Command() + B. Xcode will give you the build status in the bottom left of the

window. Yours should say, “build succeeded.” If it doesn’t, make sure your Base SDK is

set, then close and reopen the project.

When the build is complete, there should be a new folder called “build” in the src folder.

In it will be the build outputs arranged into folders named per the configuration. You

should see a folder called “Release-iphoneos,” and in it, a file called libTapkuLibrary.a.

We want to also build for armv7, but unfortunately it’ll put the .a file into the same output

directory as the armv6 build, so rename this directory Release-iphoneos armv6 and copy

it to a folder somewhere, then change your build version to armv7, and repeat the build

steps. Then, rename the output directory Release-iphoneos armv7 and copy that folder

to the same place you put the armv6 folder. Now you have both device architectures

built.

Now that we have the library built for the device architectures, we also want to build one

for the simulator, so change the build option to Simulator and rebuild. You should now

see a Release-iphonesimulator folder in the build folder, along with the new library.

http://

CHAPTER 22: Using Objective-C Libraries and Code 445

NOTE: MonoTouch 3 does not include Thumb support, so if you compile your library with Thumb

architecture support, it will crash when you try to run it. MonoTouch 4 does not have this

limitation, however.

Combining Build Architectures with LIPO

Now that we have our library built for all of our architectures, we need to stitch them all

together into one single .a file. Mac OSX ships with a command utility called LIPO that

allows you to combine multiple architectures of a library into a single “fat” assembly.

LIPO can be executed via a terminal window. To use LIPO to combine builds, use the –
create argument and pass an –arch [archtype] [sourcefilename] argument for each

architecture you want to include, and specify an –output [filename] argument to

specify the output file. For example, the following command will combine an i386,

ARMv6, and ARMv7 build into one library, as in Listing 22–13.

Listing 22–13. Using LIPO to combine different architecture builds of a library into one

lipo -create -arch i386 "../Release-iphonesimulator/libTapkuLibrary.a"
-arch armv6 "../Release-iphoneos armv6/libTapkuLibrary.a"
-arch armv7 "../Release-iphoneos armv7/libTapkuLibrary.a"

 -output ./libTapkuLibrary.a

For more information on LIPO, check out the documentation at

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/

man1/lipo.1.html.

Creating API Definition File and Helper Code

An API definition file is just a C# file that contains a set of interfaces that define the

contracts that the btouch tool will use to create your wrapper DLL that calls the

underlying Objective-C library.

API Definition File

For example, the API definition file in Listing 22–14 is pulled from the btouch how-to on

the MonoTouch.net site and provides a contract for the Cocos2D.Camera object.

Listing 22–14. A sample API definition file to build a wrapper for the Cocos2D Camera class

using MonoTouch.Foundation;
namespace Cocos2D
{
 //---- Camera class contract

[BaseType (typeof (NSObject))]
interface Camera
{
 //---- Property Definitions

[Static, Export ("getZEye")] float ZEye { get; }

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/
http://

CHAPTER 22: Using Objective-C Libraries and Code 446

//----- Method Contracts
[Export ("restore")] void Restore ();
[Export ("locate")] void Locate ();
[Export ("setEyeX:eyeY:eyeZ:")] void SetEyeXYZ (float x, float y

 , float z);
[Export ("setMode:")] void SetMode (CameraMode mode);

}
}

When you run btouch, it will look at this API definition file and create a Camera class in

the Cocos2D namespace and implement a read-only property called ZEye, and a number

of methods. The property and methods will automatically call or invoke the appropriate

items in the Objective-C library based on the attribution defined in the Interface.

As I mentioned before, the MonoTouch team has written a very good reference on how

to write API Definition Files, which you can find at

http://monotouch.net/Documentation/Binding_New_Objective-C_Types. Instead of

rehashing their excellent work, I’m going to stick to a high-level look at the process and

cover the practicalities of how to do this in practice. I recommend having that page open

and, as we go through the exercise of binding the Tapku library, read the appropriate

section for the type of item we are binding. That will serve as a reference for the

discussion that will follow.

Additional Code

There’s one thing missing in the previous example. Notice that the SetMode method

takes a CameraMode type. I mentioned earlier that, in addition to the API definition file, you

might want to write some extra code to help create a more useful binding to use. In this

case, we would want to create a CameraMode enumeration that describes the camera

mode that we pass to SetMode. So for instance, we might create an enums.cs file and

place the Listing 22–15 in it.

Listing 22–15. Creating an enumeration to use in addition to the API definition file

public enum CameraMode
{

FlyOver,
Back,
Follow

}

We could create a CameraMode.cs file rather than an enums.cs file, but we’d have to

pass all our extra files btouch via command-line arguments when we execute it, so it’s

easier to just create one file for all enumerations.

In addition to enumerations, you might also need to define any other types, structs, and

so on.

Additionally, you often need to add functionality to the classes that are generated via the

API definition file. However, since the API definition file can only contain interfaces, not

implementation, you can add functionality by creating a partial class definition. For

http://monotouch.net/Documentation/Binding_New_Objective-C_Types
http://

CHAPTER 22: Using Objective-C Libraries and Code 447

instance, if we wanted to add a ToString method to the Cocos2D.Camera class, we could

create write the following, and put it in a classes.cs file, as in Listing 22–16.

Listing 22–16. Creating a partial class definition to expand on the classes automatically generated

namespace Cocos2D
{

public partial class Camera
{

 //---- Provide a ToString method
public override string ToString ()
{

return String.Format ("ZEye: {0}", ZEye);
}

}
}

As with the enums.cs file, we would pass our classes.cs file as an argument when we

run btouch, and it would get compiled into our assembly.

TIP: Partial classes are also a good place to put triple-slash documentation, since btouch will

ignore any documentation you put in the API definition file.

Now that we have a good understanding of how the pieces fit together, let’s look at the

practical exercise of actually creating the API definition file and associated code.

Wrapping Tapku

Wrapping an Objective-C library can be a big undertaking, especially if the library is

large. For this reason, it’s best to undertake it in stages. I recommend starting with just

the pieces that you need. Let’s start with Tapku’s Coverflow control (TKCoverflowView).

In order to create an API definition file, you have to figure out what you’re wrapping. In

fact, this is the trickiest part of binding to Objective-C libraries. Even with good

documentation, you almost always have to look at the source. We’ll see an example of

this in just a bit. Let’s start with the documentation. You can find the Tapku

documentation at https://github.com/devinross/tapkulibrary/wiki/. If you click on

“Coverflow” under the “Classes Overview” section, it gives you a rundown of what

constitutes the TKCoverflowView class.

Compared to most, this is actually pretty good documentation.

The first thing we want to do is create an interface for the TKCoverFlowView class;

however, in looking at the documentation, it doesn’t say what it derives from. Off to the

code we go. If you open up the TKCoverflowView.h file in Xcode, you’ll see that it has

the declaration shown in Listing 22–17.

Listing 22–17. The TKCoverflowView declaration in the TKCoverflowView header file

@interface TKCoverflowView : UIScrollView <UIScrollViewDelegate>

https://github.com/devinross/tapkulibrary/wiki/
http://

CHAPTER 22: Using Objective-C Libraries and Code 448

From this, we see that TKCoverflowView derives form UIScrollView, and implements
the UIScrollViewDelegate protocol. So we can start our Tapku.cs API definition file as

shown in Listing 22–18.

Listing 22–18. The beginnings of a Tapku API definition file

using System;
using MonoTouch.Foundation;
using MonoTouch.CoreFoundation;
namespace Tapku
{
 [BaseType(typeof(UIScrollView))]
 interface TKCoverFlow
 {

 }
}

By the way, if you haven’t taken a look at the documents on creating an API definition

file at http://monotouch.net/Documentation/Binding_New_Objective-C_Types, now is a

good time to do so.

As you bind a class, you’ll find that you often have to bind other things first. Tapku’s

cover flow control is no different. If we go back to the TKCoverflowView documentation,

it looks like there are the following several other classes that we’ll need to create before

we finish the TKCoverflowView binding:

 TKCoverflowViewDelegate

 TKCoverflowViewDataSource

 TKCoverView

TKCoverView is pretty straightforward; it just has a couple of properties. However, the

delegate and data source are a bit different. We want to be sophisticated, so we want to

expose the delegate’s methods as events on the TKCoverflowView class. Additionally,

the data source is a protocol, so that’s a little different as well.

TKCoverflowCoverView

Let’s start with TKCoverView. We need to figure out what it derives from, which isn’t in

the docs. If we pop back over to Xcode and try to find a TKCoverView.h file, there isn’t

one. It turns out the docs are wrong, and there is in fact a TKCoverflowCoverView class,

rather than TKCoverView, and it derives from UIView (which makes sense). As you can

see, while docs are good at giving you an idea of how to bind (or even use) a library, you

really have to look at the source for an authoritative, accurate, answer.

Furthermore, if we look at the TKCoverflowCoverView.h file, we see the property

declarations shown in Listing 22–19.

Listing 22–19. TKCoverflowCoverView property declarations

@property (retain,nonatomic) UIImage *image;
@property (assign,nonatomic) float baseline;

http://monotouch.net/Documentation/Binding_New_Objective-C_Types
http://

CHAPTER 22: Using Objective-C Libraries and Code 449

I mentioned earlier in the Objective-C primer that properties can be decorated with

attributes that describe their behavior, and that there were three categories of property

attributes; access level, memory management, and thread-safety. When binding, we

only care about the first two.

Access level attributes describe whether the property is read- only. By default, unless a

property is attributed with the read-only attribute, it’s both readable and writeable, so we

should declare both a get; and a set; for it. If it’s read-only, we should only declare a

get;.

The memory-management attributes specify how the memory is managed when the

property is set. When wrapping Objective-C properties, we should use the

ArgumentSemanticAttribute to describe how to wrap the properties. The

ArgumentSemanticAttribute has three values that map to the Objective-C attributes:

Assign, Retain, and Copy.

In the case of Listing 22–19 the properties have the retain and assign keywords,

respectively. Those aren’t in the docs, but as I just mentioned, they’re important for

binding. This is another example of why we need to look at the source to do a proper

binding.

According to the API definition file documentation, this class should translate to what

you see in Listing 22–20.

Listing 22–20. (Mostly) complete TKCoverflowCoverView API definition

// @interface TKCoverflowCoverView : UIView
[BaseType(typeof(UIView))]
interface TKCoverflowCoverView
{
 // @property (retain,nonatomic) UIImage *image;
 [Export("image", ArgumentSemantic.Retain)]
 UIImage Image { get; set; }

 // @property (assign,nonatomic) float baseline;
 [Export("baseline", ArgumentSemantic.Assign)]
 float Baseline { get; set; }
}

I’ve put in the original Objective-C definitions to show what has been bound where.

This class looks finished, but there is one thing that’s missing here. When you run

btouch on an interface it creates a class, and in that class it creates the following

standard constructors for you:

 Foo ()

 Foo (NSCoder coder)

 Foo (IntPtr handle)

 Foo (NSEmptyFlag t)

http://

CHAPTER 22: Using Objective-C Libraries and Code 450

This is great, but classes that derive from UIView should also generally implement a

constructor that takes a RectangleF frame parameter so you can set the frame when you

initialize the view.

For this reason, we need to also add Listing 22–21 to our TKCoverflowCoverView

interface.

Listing 22–21. UIViews generally should get an initWithFrame constructor

[Export("initWithFrame:")]
IntPtr Constructor(RectangleF frame);

Our completed TKCoverflowCoverView API Definition should now look something like

Listing 22–22.

Listing 22–22. Complete TKCoverflowCoverView API definition

// @interface TKCoverflowCoverView : UIView
[BaseType(typeof(UIView))]
interface TKCoverflowCoverView
{
 [Export("initWithFrame:")]
 IntPtr Constructor(RectangleF frame);

 // @property (retain,nonatomic) UIImage *image;
 [Export("image", ArgumentSemantic.Retain)]
 UIImage Image { get; set; }

 // @property (assign,nonatomic) float baseline;
 [Export("baseline", ArgumentSemantic.Assign)]
 float Baseline { get; set; }
}

Now that we’ve got the TKCoverflowCoverView bound, let’s bind the

TKCoverflowDataSource.

TKCoverflowDataSource

TKCoverflowDataSource is a fairly straightforward class to bind. It has only one method,

coverAtIndex, which passes a reference to the coverflow control that is calling it, and an

index parameter (as in integer) and expects a coverflowView in return. Once again, I’ve

included the original Objective-C definitions as comments in the API definition for clarity

(see Listing 22–23).

Listing 22–23. Complete TKCoverflowDataSource API definition

// @protocol TKCoverflowViewDataSource <NSObject>
[BaseType (typeof (NSObject))]
[Model]
interface TKCoverflowViewDataSource
{
 // @required
 // - (TKCoverflowCoverView*) coverflowView:(TKCoverflowView*)coverflowView
 coverAtIndex:(int)index;
 [Export("coverflowView:coverAtIndex:"), Abstract]
 TKCoverflowCoverView GetCover(TKCoverflowView coverflowView, int index);

}

http://

CHAPTER 22: Using Objective-C Libraries and Code 451

Remember from our Objective-C primer, earlier in the this chapter, that the selector

name is actually the combination of the method keywords. For instance, we need to

derive the selector from Listing 22–24.

Listing 22–24. Sample Objective-C method signature

- (TKCoverflowCoverView*) coverflowView:(TKCoverflowView*)coverflowView
coverAtIndex:(int)index

Therefore, the full name of the selector would be what you see in Listing 22–25.

Listing 22–25. Objective-C method signature translated to a selector name

coverflowView:coverAtIndex:

As you can see, even though the selector that we’re wrapping is

coverflowView:coverAtIndex:, we’ve exposed it as GetCover in order to be consistent

with the .NET framework design guidelines. As a by-product, we’re also more consistent

with the MonoTouch framework; for example, UITableViewDataSource is a similar class

and has a get GetCell method.

There’s also one other thing that’s interesting in there. I’ve provided an Abstract
attribute. Because the method in the prototype is marked as @Required, we need btouch

to actually create an implementation for the method. The Abstract attribute tells btouch

to mark the method as abstract, which will force the user of the wrapper DLL to actually

implement a method body.

Let’s take a look at the delegate next.

TKCoverflowViewDelegate

TKCoverflowViewDelegate is a little more complicated. It has two methods:

coverAtIndexWasBroughtToFront: and coverAtIndexWasDoubleTapped: We want to

rename these methods to get rid of the redundancy of AtIndex, and we also want to

expose them as events on the TKCoverflowView class.

Renaming is easy enough – we can name them whatever we want as long as the

ExportAttribute is correct. However, exposing them as events is a two-part process.

When we finish binding TKCoverflowView, we’re going to add some special attribution to

tell it to look to the delegate interface to see what to expose as events. This means that,

on our delegate interface, we need to specify what kind of event args the methods will

use when they’re turned into events.

By specifying the EventArgsAttribute, we do just that. For example, by adding

EventArgs("Foo"), btouch will create a FooEventArgs class. For a more in-depth

discussion, see the btouch documentation at

http://monotouch.net/Documentation/Binding_New_Objective-C_Types.

Following our binding rules, our TKCoverflowViewDelegate API definition should then

look something like Listing 22–26.

http://monotouch.net/Documentation/Binding_New_Objective-C_Types
http://

CHAPTER 22: Using Objective-C Libraries and Code 452

Listing 22–26. Complete TKCoverflowViewDelegate API definition

// @protocol TKCoverflowViewDelegate <NSObject>
[BaseType (typeof (NSObject))]
[Model]
interface TKCoverflowViewDelegate
{
 // @required
 // - (void) coverflowView:(TKCoverflowView*)coverflowView
 coverAtIndexWasBroughtToFront:(int)index;
 [Export("coverflowView:coverAtIndexWasBroughtToFront:"), EventArgs ("Coverflow")

, Abstract]
 void CoverWasBroughtToFront(TKCoverflowView coverflowView, int index);

 // @optional
 // - (void) coverflowView:(TKCoverflowView*)coverflowView
 coverAtIndexWasDoubleTapped:(int)index;
 [Export("coverflowView:coverAtIndexWasDoubleTapped:"), EventArgs ("Coverflow")]
 void CoverWasDoubleTapped(TKCoverflowView coverflowView, int index);

}

Notice that only the required method gets the Abstract attribute.

Also, by specifying the “Coverflow” as the value to the EventArgs attribute, btouch will

automatically declare those events as you see in Listing 22–27.

Listing 22–27. Event declarations generated by btouch

public event EventHandler<CoverflowEventArgs> CoverWasBroughtToFront;
public event EventHandler<CoverflowEventArgs> CoverWasDoubleTapped;

The CoverflowEventArgs are automatically generated based on the parameters in the

method declaration. So in this case, they’ll get generated as you see in Listing 22–28.

Listing 22–28. Custom EventArgs generated by btouch

public class CoverflowEventArgs : EventArgs
{
 public CoverflowEventArgs (int index);
 public int Index { get; set; }
}

As you can see, btouch is extremely powerful and saves you lots of work from hand-

binding APIs.

Okay, now that we have the peripheral classes bound, we can finish our

TKCoverflowView binding.

Finishing the TKCoverflowView Binding

I mentioned before that exposing delegate methods as events is a two-part process.

We’ve already seen the first part, which actually defines the events and custom

EventArgs; now we’re going to look at the second part: telling btouch to which class

those events should actually be attached to.

http://

CHAPTER 22: Using Objective-C Libraries and Code 453

To do this, we attribute a class with an Events attribute that expects an array of Type

objects of what classes to look for the event methods in. It then adds the events that it

finds to whatever class that Events attribute is on. For instance, we want to expose the

methods in TKCoverflowViewDelegate on our TKCoverflowView class, we would add the

attribute in Listing 22–29 to the TKCoverflowView interface.

Listing 22–29. Specifying what classes to look into to create events from their methods

Events = new Type [] { typeof (TKCoverflowViewDelegate) }

With that in mind, and what we’ve learned with the other classes, we can now bind our

TKCoverflowView class. See Listing 22–30.

Listing 22–30. Complete TKCoverflowView API definition

// @interface TKCoverflowView : UIScrollView <UIScrollViewDelegate>
[BaseType(typeof(UIScrollView), Delegates=new string [] { "Delegate" }
 , Events=new Type [] { typeof (TKCoverflowViewDelegate)})]
interface TKCoverflowView
{
 //==== constructors
 [Export("initWithFrame:")]
 IntPtr Constructor(RectangleF frame);

 //==== Properties

 // @property (nonatomic, assign) CGSize coverSize; // default 224 x 224
 [Export("coverSize", ArgumentSemantic.Assign)]
 SizeF CoverSize { get; set; }

 // @property (nonatomic, assign) int numberOfCovers;
 [Export("numberOfCovers", ArgumentSemantic.Assign)]
 int NumberOfCovers { get; set; }

 // @property (nonatomic, assign) float coverSpacing;
 [Export("coverSpacing", ArgumentSemantic.Assign)]
 float CoverSpacing { get; set; }

 // @property (nonatomic, assign) float coverAngle;
 [Export("coverAngle", ArgumentSemantic.Assign)]
 float CoverAngle { get; set; }

 //==== Methods

 // - (TKCoverflowCoverView*) dequeueReusableCoverView;
 [Export("dequeueReusableCoverView")]
 TKCoverflowCoverView DequeueReusableCoverView();

 // - (TKCoverflowCoverView*) coverAtIndex:(int)index;
 [Export("coverAtIndex:")]
 TKCoverflowCoverView GetCover(int index);

 // - (int) indexOfFrontCoverView;
 // bind this as a read-only property
 [Export("indexOfFrontCoverView")]

http://

CHAPTER 22: Using Objective-C Libraries and Code 454

 int FrontCoverIndex { get; }

 // - (void) bringCoverAtIndexToFront:(int)index animated:(BOOL)animated;
 [Export("bringCoverAtIndexToFront:animated:")]
 void BringCoverToFront(int index, bool animated);

 //==== Prototype properties

 // @property (nonatomic, assign) id <TKCoverflowViewDelegate> delegate;
 // hides the underlying delegate property, so we need to add the new attribute
 [Export("delegate", ArgumentSemantic.Assign), New]
 TKCoverflowViewDelegate Delegate { get; set; }

 // @property (nonatomic, assign) id <TKCoverflowViewDataSource> dataSource;
 [Export("dataSource", ArgumentSemantic.Assign)]
 TKCoverflowViewDataSource DataSource { get; set; }

}

Most of this is pretty straightforward; there are really only two new things here. The first

is shown in Listing 22–31.

Listing 22–31. Exposing a method as a read-only property

[Export("indexOfFrontCoverView")]
int FrontCoverIndex { get; }

indexOfFrontCoverView is a method, but we expose it as a read-only property, since it

has no parameters and really seems like a property more than a method. I liken this to

SelectedItem in a dropdown or something like that.

The second thing we did differently here is to use a New attribute on the Delegate

property, as in Listing 22–32.

Listing 22–32. Using a New attribute to mark an implementation with the new keyword

[Export("delegate", ArgumentSemantic.Assign), New]
TKCoverflowViewDelegate Delegate { get; set; }

UIView already has a Delegate property, so the New attribute tells btouch to mark the

property with the new keyword when it generates it.

Weak Delegate Pattern

This is as far as you need to take the binding to get it to work. However, if you want

maximum flexibility in how to wire up the delegate methods in MonoTouch, you should

follow the weak-delegate pattern. I cover the pattern extensively in Chapter 6, but

briefly, it allows the consumers of the library to either assign a strongly-typed-delegate

on the object, or use any class that has the appropriate methods.

Following the weak-delegate pattern is very easy; we just have to do the following

tweaks:

 Create a WeakDelegate property of type NSObject, and add a

NullAllowed attribute.

http://

CHAPTER 22: Using Objective-C Libraries and Code 455

 Change the Delegate property to have a Wrap attribute that specifies

the WeakDelegate property.

For example, our delegate property declarations following the weak-delegate pattern

would look like Listing 22–33.

Listing 22–33. Implementing the weak-delegate pattern

[Export ("delegate", ArgumentSemantic.Assign) , New][NullAllowed]
NSObject WeakDelegate { get; set; }

[Wrap ("WeakDelegate"), New]
TKCoverflowViewDelegate Delegate { get; set; }

Very simple!

Complete Tapku Coverflow Binding

That seemed like a lot, because I narrated the process fairly thoroughly, but the entire

binding necessary for a complete Tapku Coverflow usage is now done. I’ve included it

here to show the entire thing altogether. I’ve stripped out the comments for brevity (see

Listing 22–34).

Listing 22–34. The complete binding necessary to use the Tapku Coverflow control

using System;
using System.Drawing;
using MonoTouch.UIKit;
using MonoTouch.ObjCRuntime;
using MonoTouch.Foundation;
using MonoTouch.CoreFoundation;

namespace Tapku
{
 [BaseType(typeof(UIScrollView), Delegates=new string [] { "Delegate" }

, Events=new Type [] { typeof (TKCoverflowViewDelegate)})]
 interface TKCoverflowView
 {
 [Export("initWithFrame:")]
 IntPtr Constructor(RectangleF frame);

 [Export("coverSize", ArgumentSemantic.Assign)]
 SizeF CoverSize { get; set; }

 [Export("numberOfCovers", ArgumentSemantic.Assign)]
 int NumberOfCovers { get; set; }

 [Export("coverSpacing", ArgumentSemantic.Assign)]
 float CoverSpacing { get; set; }

 [Export("coverAngle", ArgumentSemantic.Assign)]
 float CoverAngle { get; set; }

 [Export("dequeueReusableCoverView")]
 TKCoverflowCoverView DequeueReusableCoverView();

http://

CHAPTER 22: Using Objective-C Libraries and Code 456

 [Export("coverAtIndex:")]
 TKCoverflowCoverView GetCover(int index);

 [Export("indexOfFrontCoverView")]
 int FrontCoverIndex { get; }

 [Export("bringCoverAtIndexToFront:animated:")]
 void BringCoverToFront(int index, bool animated);

 [Export ("delegate", ArgumentSemantic.Assign), New][NullAllowed]
 NSObject WeakDelegate { get; set; }

 [Wrap ("WeakDelegate"), New]
 TKCoverflowViewDelegate Delegate { get; set; }
 [Export("dataSource", ArgumentSemantic.Assign)]
 TKCoverflowViewDataSource DataSource { get; set; }

 }

 [BaseType(typeof(UIView))]
 interface TKCoverflowCoverView
 {
 [Export("initWithFrame:")]
 IntPtr Constructor(RectangleF frame);

 [Export("image", ArgumentSemantic.Retain)]
 UIImage Image { get; set; }

 [Export("baseline", ArgumentSemantic.Assign)]
 float Baseline { get; set; }
 }

 [BaseType (typeof (NSObject))]
 [Model]
 interface TKCoverflowViewDataSource
 {
 [Export("coverflowView:coverAtIndex:"), Abstract]
 TKCoverflowCoverView GetCover(TKCoverflowView coverflowView, int index);

 }

 [BaseType (typeof (NSObject))]
 [Model]
 interface TKCoverflowViewDelegate
 {
 [Export("coverflowView:coverAtIndexWasBroughtToFront:")

, EventArgs ("Coverflow"), Abstract]
 void CoverWasBroughtToFront(TKCoverflowView coverflowView, int index);

 [Export("coverflowView:coverAtIndexWasDoubleTapped:")

, EventArgs ("Coverflow")]
 void CoverWasDoubleTapped(TKCoverflowView coverflowView, int index);

 }
}

Now that we have a completed binding, lets run btouch to generate our DLL.

http://

CHAPTER 22: Using Objective-C Libraries and Code 457

Running btouch

Actually running btouch is very easy. It’s a command-line executable that can be found

in the /Developer/MonoTouch/usr/bin/ directory. To run it, open a terminal window

(open Spotlight and type Terminal, or find it in the Applications directory), change

directories to where your API Definition File is, and execute the following:

/Developer/MonoTouch/usr/bin/btouch [API Definition File Name]
 -s:[any other source file names]

For instance, if you’ve named the API Definition File for Tapku, tapku.cs, your command

line instruction would look like Listing 22–35.

Listing 22–35. Calling btouch from the command line

/Developer/MonoTouch/usr/bin/btouch Tapku.cs

If btouch doesn’t have any errors, it will exit silently, as shown in Figure 22–8.:

Figure 22–8. Running btouch in the terminal

The dll will be output to the current directory, and will have the same name as the API

definition file, except with a “.dll” extension. For btouch command help, you can run

btouch –h.

Once you’ve built the library and the wrapper DLL, you need to add them to your

project. Let’s look at adding the library first.

Adding the Compiled Objective-C Library

Earlier, we built three versions of the Tapku Library: two for the device and one for the

simulator, and then used LIPO to stick them all into a single .a file. In order to use it, we

need to add it to our project. See Figure 22–9.

http://

CHAPTER 22: Using Objective-C Libraries and Code 458

Figure 22–9. Adding the Tapku .a library and wrapper dll to the project

As you can see, I’ve created a TapkuLib folder and in it I have added both the library and

the wrapper dll. I’ve added the wrapper dll to the project just to keep track of it.

Next, we need to reference the DLL we generated with btouch.

Referencing the Wrapper DLL

You can reference the btouch-generated wrapper DLL as you would any other

MonoTouch library. Just follow these steps:

1. Right-click on the References folder and choose Edit References.

2. In the dialog, choose the .NET Assembly tab and browse to the Tapku.dll

file that we copied to the TapkuLib folder.

3. Double-click on the DLL, and it should show up in the Selected

references pane shown in Figure 22–10.

http://

CHAPTER 22: Using Objective-C Libraries and Code 459

Figure 22–10. Referencing the wrapped DLL is like referencing any other MonoTouch library.

Once you’ve referenced the DLL, you’re almost ready to use it. There is one final step.

Configuring the Build

Even though you’ve added the Objective-C library to the project, it won’t actually get

compiled unless you tell the MonoTouch compiler to look for it and load it.

To do this, you need to edit the iPhone Build options in the Project Options dialog (right-click

on the project and choose options).

We’re going to add some information to the Extra Arguments field to let the MonoTouch

compiler know that we’d like it to load our Objective-C library, and where to find it.

We need to specify the extra arguments for each build configuration and platform. See

Figure 22–11.

http://

CHAPTER 22: Using Objective-C Libraries and Code 460

Figure 22–11. Adding extra arguments to load our library in the Project Options dialog.

We’re going to use the arguments in Listing 22–36.

Listing 22–36. Arguments to load the simulator version of the Tapku library

-v -v -v -gcc_flags "-framework QuartzCore -L${ProjectDir}/TapkuLib -lTapkuLibrary
-force_load ${ProjectDir}/TapkuLib/libTapkuLibrary.a"

Note that ${ProjectDir} is a macro that that evaluates to the project directory on disk.

Let’s break down the arguments:

 -v -v –v: This isn’t strictly needed; it turns on extra verbose mode in

the build process, which will give you helpful errors in the build output

if something were to go wrong.

 -gcc_flags: This tells the compiler that what follows are special flags

that determine how the compiler should behave.

 -framework QuartzCore: Tapku needs the QuartzCore iOS feature in

order to work properly; however, MonoTouch doesn’t have any

knowledge of the library that we’re including (and therefore its need for

QuartzCore), so we have to add this ourselves.

 -L${ProjectDir}/TapkuLib –lTapkuLibrary: This tells MonoTouch to

link against the library called TapkuLibrary (“lib” turns into “l”), and

specifies where to find it.

http://

CHAPTER 22: Using Objective-C Libraries and Code 461

-force_load ${ProjectDir}/TapkuLib/libTapkuLibrary.a: This tells the

compiler to load that particular library without removing any code that

isn’t used.

Now that we have all that out of the way, we can finally use our library.

Using the Library

Once we have our library wrapped, it’s time to use it. Using our library is like using any

other MonoTouch library. The TKCoverflowView is a lot like a UITableView; we need to

create a data source class (see Listing 22–37).

Listing 22–37. An example of a TKCoverflowViewDataSource implementation

/// <summary>
/// Our data source for the cover flow. It works pretty much just like a UITableView's
data source
/// </summary>
public class CoverFlowDataSource : TKCoverflowViewDataSource
{

/// <summary>
/// A List of images we'll show
/// </summary>
protected List<UIImage> _coverImages = null;

public CoverFlowDataSource(List<UIImage> images) : base()
{
 this._coverImages = images;
}

/// <summary>
/// GetCover is just like GetCell on a UITableView DataSource.
/// </summary>
public override TKCoverflowCoverView GetCover (TKCoverflowView coverflowView

 , int index)
{

//---- try to dequeue a reusable cover
TKCoverflowCoverView view = coverflowView.DequeueReusableCoverView();
//---- if we didn't get one, create a new one

 if(view == null)
 {

view = new TKCoverflowCoverView(new RectangleF(0, 0, 244, 244));
 view.Baseline = 224;
}

//---- set the image
view.Image = this._coverImages[index];

//---- return the cover view
return view;

}

}

Creating and then assigning the data source is also as one would expect (see Listing 22–38).

http://

CHAPTER 22: Using Objective-C Libraries and Code 462

Listing 22–38. Populating and assigning a data source

List<UIImage> images = new List<UIImage>();
images.Add(UIImage.FromBundle(
 "Images/Covers/Cover_DeathCabForCutie_PhotoAlbum_Resized.jpg"));
…
images.Add(UIImage.FromBundle(
 "Images/Covers/Cover_Stars_SetYourselfOnFire_Resized.jpg"));
this._coverflowDataSource = new CoverFlowDataSource(images);

//---- assign the datasource to the cover flow
this._coverflow.DataSource = this._coverflowDataSource;

We can also consume our events that we’ve exposed (see Listing 22–39).

Listing 22–39. Handling events

//---- wire up a handler for when a cover is brought to the front
this._coverflow.CoverWasBroughtToFront += (object s, CoverflowEventArgs e) => {
 Console.WriteLine("Cover [" + e.Index.ToString() + "], brought to front");

};
//---- wire up a double tap handler
this._coverflow.CoverWasDoubleTapped += (object s, CoverflowEventArgs e) => {
 new UIAlertView("Coverflow", "Cover [" + e.Index.ToString() + "] tapped."
 , null, "OK", null).Show();
};

To see the entire code (and the coverflow in action), check out the Example_Tapku

companion code and application.

Summary
In this chapter we discussed how to incorporate Objective-C code and libraries into our

project for use in MonoTouch. We covered how we need to create an intermediary C#

layer that wraps the Objective library and exposes the underlying Objective-C library to

our MonoTouch project. We also looked a bit at Objective-C and how to build

Objective-C libraries. Then we discussed btouch, the MonoTouch tool that can generate

these bindings for us, and we walked through using it with the Tapku library.

The knowledge of how to use btouch opens up a huge world of possibilities by enabling

you to use any number of the Objective-C libraries for the iOS available out there.

http://

463

463

Index

■ Special Characters &
Numbers

+ button, 26

3rd-party libraries, 9

256kB message limit, 382

■ A
ABAddressBook object, 285–286

ABMultiValue object, 287–288

ABMultiValue properties, 287

ABMultiValueEntry objects, 287

ABMutableMultiValue object, 288

ABNewPersonCompleteEventArgs

parameter, 282

ABNewPersonViewController, 277, 282

ABPeoplePickerNavigationController,

277–278

ABPeoplePickerSelectPersonEventArgs

object, 279

ABPerson object, 280, 282

ABPersonViewController, 277, 280

Abstract attribute, 451–452

ABUnknownPersonCreatedEventArgs

parameter, 284

ABUnknownPersonViewController, 277,

284

Academic license, 6

accelerometer, 300–302

Accept contract (for pay apps only), 416

access, constrained, 3

access technologies, data, 398–406

ADO.NET technology, 398–400

SQLite-Net technology, 400–403

accessing application settings, 316

accessories for cells, 205–206

Accessory property, 205

accessory view, 205

AccessoryButtonTapped method, 206

AccessoryView property, 205

Accleration property, 301

AccountInfo object, 425

accuracy, setting with location manager

object, 323–324

AccuracyBest property, 324

AccuracyHundredMeters property, 324

AccuracyKilometer property, 324

AccuracyNearestTenMeters property,

324

AccuracyThreeKilometers property, 324

Action 1 button, 33

action sheets

creating simple, 136–137

displaying, 138

actions, 32–35

adding, 32–34

in code, 34–35

Actions tab, Interface Builder

application, 33

Active Simulator Target menu item,

application menu, 36

activity indicators, network, 298–300

ActivityElement, 423

ActivityIndicatorAlertView class, 106

actnButtonClick action, 33, 35

Add New App, 416

AddAnnotation method, 183, 188

AddButton method, 129, 137

AddObserver method, 230

AddOverlay method, 190

AddOverlays method, 190

http://

Index 464

AddRect method, 344

address book controllers, 276

Address book/contacts, 276–288

controllers, 277–284

new person view, 281–282

people picker view, 277–279

person view, 279–281

unknown person view, 283–284

working directly with, 285–288

ABAddressBook object, 285–286

records, 286–287

AddSublayer method, 374

AddTarget method, 258

AdjustFontSizeToWidth property, 109

ADO.NET technology, 398–400

creating database, 399

creating schema and adding data,

399

selecting data, 400

ahead-of-time (AOT), 6

albums, enumerating, 296–298

AlertAction property, 379

AlertBody property, 379

alerts

delegate, 131–132

and garbage collection, 129

AllCharacters option, 224, 312

AllowableMovement property,

UILongPressGestureRecognizer

class, 257

AllowAnimatedContent value, 367

AllowsActions, 284

AllowsAddingToAddressBook, 284

AllowsEditing, 280

AllowUserInteraction general animation

enumeration value, 365

alpha RGB, in CoreGraphics, 333–334

Alphabet option, 312

Altitude property, 325

Animate methods, 362, 364–365, 368,

370

AnimatesDrop property, 186

animation blocks

vs. block-based animation, 363

view-based animation framework

via, 362

animation curves, 366–367

animation parameter, 364

Animation Types and Timing

Programming Guide, 372

AnimationDuration property, 115

AnimationImages property, 115

AnimationRepeatCount property, 115

animations. See also Core Animation

API

automatic, of properties, 363–364

configuring behavior, 364–366

image views, 115

transition, 80

annotating maps, 182–188

GetViewForAnnotation method,

183–184

handling callout clicks, 187

MKPinAnnotationView view, 186

performance considerations, 188

views, 185–186

Annotation property, 185

anonymous delegates, 258

AnotherProtocol protocol, 439

AnyObject method, 249–250

AOT (ahead-of-time), 6

APIs (Application Programming

Interfaces), definition file and

helper code, 445–456

weak delegate pattern, 454–455

wrapping Tapku library, 447–456

APNS (Apple Push Notification and

Feedback Services)-Sharp

library, 382–383

App ID, 409

App Store, 407–418

building app for, 409–415

configuring distribution bundle

signing, 411

distribution build configuration

for, 410–411

manually, 414–415

with MonoDevelop, 413–414

provisioning profile for, 409–410

guidelines for, 407–409

rejection dispute resolution, 417–418

http://

Index 465

submitting app via iTunes Connect,

415–417

AppDelegate class

creating custom, 69–71

overview, 55–57

AppDelegate constructor, 316, 318

Apple blog, and App Store guidelines,

409

Apple iOS

documentation in Xcode tool, 9

SDK, 7

Apple iPad

iPad-only applications, 60–64

universal Apple iPhone/iPad

applications, 64–72

Apple iPhone

resolution, 60

universal Apple iPhone/iPad

applications, 64–72

Apple Mac computers, 7

Apple Mac OSX, Mono platform for, 7–8

Apple Push Notification and Feedback

Services (APNS)-Sharp library,

382–383

Application class, 16

Application Loader, 417

application menu, iOS Simulator

application, 36

Application Output window, 241

Application Programming Interfaces,

definition file and helper code.

See APIs, definition file and

helper code

Application registration, 383

application settings, 303–319

accessing, 316

initializing defaults, 316–319

overview, 303–306

registering with Settings Application,

307–315

property specifier schema,

311–312

PSChildPaneSpecifier, 315

PSGroupSpecifier, 312

PSMultiValueSpecifier, 315

PSSliderSpecifier, 313–314

PSTextFieldSpecifier, 312

PSTitleValueSpecifier, 313

PSToggleSwitchSpecifier, 314

settings bundle for, 308

saving, 316

ApplicationIconBadgeNumber property,

379

[ApplicationName].app file location, 272

applications

actions, 32–35

adding, 32–34

in code, 34–35

Apple iPad-only, 60–64

changing common settings in

MonoDevelop IDE, 61–62

screens in Interface Builder

application, 62–64

Apple iPhone resolution, 60

audio, 243

choosing which device to simulate,

35–37

delegate methods, 236–237

distribution of, 5

example, 11–16

creating new solution, 13–14

examining code, 15–16

file system

Application Sandbox rules, 272

directories for, 272–273

updates to, 274

icons, 39–42

Interface Builder tool, 16–23

location, 243–244

name, 38–39

outlets, 23–32

exposed to code, 27–30

running application, 30–32

registering, to be allowed to perform

particular background tasks,

241–243

states of, 234–235

universal Apple iPhone/iPad, 64–72

programmatic device detection,

67–72

project template, 65–67

updates, 397

http://

Index 466

VoIP, 244–245

arch [archtype] [sourcefilename]

argument, 445

ArgumentSemanticAttribute, 449

Array type, 309

ASCIICapable option, 225

Ask the iOS for time to Complete a Task

option, 235

assign attribute, 438

assign keywords, 449

Attribute Inspector view, Interface

Builder application, 22, 52

Attribute Inspector window, 201

Audio applications, 235, 243

audio value, 244

Auto reverse option, 364

Autocapitalization-Type key name, 312

AutocapitalizationType property, 224

AutocorrectionType key name, 312

AutocorrectionType property, 224

Automatic duration, 363

AutoresizingMask property, 153

AutoReverse general animation

enumeration value, 365

autosizing

properties, 95

supporting interface rotation with,

84–87

Autosizing settings control, 86

AV Foundation Framework, 295–298

AvailableMediaTypes method, 291

■ B
background state, 234

background tasks, 235–239

application delegate methods,

236–237

checking for multitasking capability,

236

multitasking guidelines and

requirements, 237–239

registering applications to be

allowed to perform particular,

241–243

BackgroundTimeRemaining property,

239

BackgroundView, 206

backup/restore, file system, 273–274

backups, data, 396

BadgeElement, 423

badges, tab, 167–168

BadgeValue property, 167

Bar Button Item control, 149

Bar style, 124

BarStyle property, 161

Base Class Library (BCL), 1, 4, 393

base.GetView() method, 105

base.LoadView() method, 75

batteries

device, 274–276

level, 274–275

notifications to change, 276

state, 275

drain, location services, 328–329

BatteryMonitoringEnabled property, 274

BCL (Base Class Library), 1, 4, 393

Began state, 261

BeginAnimations method, 362

BeginBackgroundTask method, 239

BeginBackgroundTask/EndBackground

Task methods, 240

BeginFromCurrentState flag, 365, 368

BeginFromCurrentState general

animation enumeration value,

365

BeginInvoke/EndInvoke pattern, 106

BeginInvokeOnMainThread, 106

BeginPath method, 344

BeginUpdates method, 218

Bezel border style, 110

binding. See wrapping, Tapku library

BindingContext object, 424

Block-Based Animation

animation blocks vs., 363

view-based animation framework

via, 362

BoldSystemFontOfSize, 97

boolean flag, 253, 355

BooleanElement, 422

BoolForKey, 316

http://

Index 467

borders, 110

Bromberg, Peter, 396

BtnClickMeTouchUpInside method,

29–30

btnHelloUniverse outlet, 51

btnHelloWorld outlet, 51

btouch tool, 433–434, 457

btouch-generated DLL, 434

Build Action, 100

Build arguments, configuring, 459–461

building app, 409–415

distribution build configuration for,

411

manually, 414–415

with MonoDevelop, 413–414

provisioning profile for, 409–410

builds

combining architectures with LIPO

utility, 445

configuring Build arguments, 459–

461

BundlePath property, 176

ButtonFontSize, 97

ButtonIndex, 130

buttons

adding to alert view, 129–131

custom, adding, 137

handling presses, 120

text, 113

types of, 112–137

■ C
C# language, 6

CAAnimationGroup class, 372

CABasicAnimation class, 372

Cache parameter, 367

caching

images, 219

row height, 219

CAKeyFrameAnimation class, 372

CALayer objects, 361, 370–371

CALayerDelegate class, 373

CALayers, creating manually, 373–374

callout clicks, annotation, 187

Camera class, 446

Camera option, 292

CameraMode enumeration, 446

CameraMode type, 446

CameraOverlayView property, 293

cameras

configuring controls, 292

determining support for, 290

photos and, 289–298

AV Foundation Framework,

295–298

UIImagePickerController

controller, 289–295

providing custom overlay, 293

CameraViewTransform property, 293

CanBecomeFirstResponder, 301

CanBePreventedByGestureRecognizer

property, 265

Cancel button, 137, 279

CancelButtonIndex, 137

Cancelled events, 279–294

Cancelled method, 294

Cancelled state, 261

CancelsTouchesInView property, 265

CanEditRow method, 213

CanGoBack property, 173

CanGoForward property, 173

CanMoveRow method, 213

CanPreventGestureRecognizer

property, 265

CanShowCallout property, 185

capitalization, for keyboards, 224

CAPropertyAnimation class, 372

case-sensitivity, of file system, 271

CATransition class, 372

CellIdentifier, 198

cells, 206–211

in code, 210–211, 220

in Interface Builder application,

207–210

manually drawing, 220

reusing, 219

styles, 204–206

certificate file, 390

certificates, push notifications

converting, 390

overview, 385–387

http://

Index 468

CGAffineTransformation, 293

CGAffineTransform.MakeIdentity, 349

CGBitmapContext class, 335–336, 338,

340

CGColor, in CoreGraphics, 334

CGContext implements, 335–336, 339,

346

CGImage class, 373

CGImageAlphaInfo, 336

CGLayer

drawing off-screen, 337–338

overview, 334–335

CGPath object, 372

CGPath.ContainsPoint method, 357

CGPattern object, 348–349

change notifications, ABAddressBook

object, 286

Changed state, 261

CharacterWrap option, 109

Charging value, 275

CheckboxElement, 422

checkmark gesture recognizer,

example, 266–267

Checkmark option, 205

Child Pane (PSChildPaneSpecifier)

setting, 311

class delegates, alerts, 131–132

Class Outlets window, 26

Class specifier, 103

classes, Objective-C language libraries,

435–436

CLHeading class, 326

CLHeadingUpdatedEventArgs

parameter, 325

Clicked events, 130, 137, 154

clicks, handling, 111–154

Clip option, 109

Clipping masks, 359

CLLocation class, 325

CLLocationManager class, instantiating,

322–323

CLLocationManager.DistanceFilter

property, 323

CLLocationManager.HeadingFilter

property, 323

CLLocationUpdatedEventArgs

parameter, 324

ClosePath, 344

CocoaTouch, data sources in, 103–105

delegates, 104–105

protocols, 104

Cocos2D namespace, 446

Cocos2D.Camera class, 445, 447

color patterns, in CoreGraphics,

348–349

color shadows, in CoreGraphics, 352

colors, in CoreGraphics, 332–334

alpha RGB, 333–334

CGColor, 334

models explained, 332–333

UIColor, 334

CommitAnimations method, 362

CommitEditingStyle method, 214, 218

Compile library in XCode, 434

Completed property, 282, 284

completion parameter, 365

completion patterns, for tasks, 240–241

Compress option, 415

Configure the picker, 289

Configure users (Optional), 415

configuring

camera controls, 292

media types, 292

source, 291–292

Connections Inspector view, Interface

Builder application, 22, 26–27,

33–34

constructors

overview, 77

for subclassing controls, 102

contact picker. See people picker view

controller

contacts. See Address book/contacts

ContainsPoint method, 354

content controls. See controllers

Content directory, 176

Content view, 157

Contents property, 373

ContentSize property, 116

Context property, 338

Control class, 93

http://

Index 469

control states, 98–99

Controller class, 45

controllers

Address book/contacts, 277–284

new person view controller,

281–282

people picker view controller,

277–279

person view controller, 279–281

unknown person view controller,

283–284

autosizing properties, 95

content, 155–192

map view control, 178–191

navigation controller, 155–163

search bar control, 191–192

split view controller, 168–172

tab bar controller, 163–168

web view control, 172–178

control states, 98–99

coordinate system, 93–95

data sources in CocoaTouch,

103–105

fonts, 96–97

images, 99–102

moving, 87–89

Navigation, adding to main screen,

48–51

subclassing, 102–103

tags, 98

UIActionSheet, 134–138

action sheets, 136–138

buttons, 137

subclassing, 138

UIActivityIndicatorView, 122–124

UIAlertView, 128–134

alerts, 129–131

buttons, 129–131

customizing, 132–134

UIButton, 111–113

buttons, 112–113

handling clicks, 111

UIDatePicker, 138–143

configuration, 140

showing dynamically, 140–143

UIImage, 113–115

UILabel, 108–111

UIPagerControl, 125–128

page changes via, 126–127

updating when pages scrolled to

via scroll view, 127–128

UIPickerView, 144–147

populating picker, 144–145

UIPickerViewModel class,

145–147

UIProgressView

overview, 124–125

setting progress value, 125

UIScrollView, 115–117

scroll paging, 117

zooming, 116

UISegmentedControl, 118–120

configuring, 119

handling button presses, 120

specifying segment sizes,

119–120

UISlider, 121–122

UISwitch, 120

UITextField, 109–111

borders, 110

default placeholder text, 111

keyboards, 111

text value, 111

UIToolbar, 147–154

handling clicks, 154

item types, 148–149

programmatic creation, 153

sizing, 153

toolbars in Interface Builder,

149–152

updating from UI thread, 105–106

view, 45–46

ControlStyle property, 119

ConvertPointToView, 343

ConvertRectToView, 343

Coordinate property, 183, 325

coordinate system, 93–95

for CoreGraphics, 338–343

Frame property, 95

copy attribute, 438

Core Animation API, 361–375

layer animation types, 370–375

http://

Index 470

creating CALayers manually,

373–374

drawing layers on a view, 374

explicit, 371–372

implicit, 374–375

layer-based animation, 370

view-based framework, 362–369

animation blocks vs. block-based

animation, 363

animation curves, 366–367

automatically animated

properties, 363–364

configuring animation behavior,

364–366

specifying behavior via methods,

368–369

via animation blocks, 362

via block-based animation, 362

view transitions, 367

Core Animation Programming Guide,

361

CoreAnimation, 220

CoreGraphics, 331–359

colors in, 332–334

alpha RGB, 333–334

CGColor, 334

models explained, 332–333

UIColor, 334

coordinate system for, 338–343

drawing off-screen, 335–338

CGBitmapContext, 335–336

CGLayer, 337–338

drawing onscreen, 335

images in, 346

painter's model of, 332

paths in, 343–344

patterns in, 347–350

color patterns, 348–349

stencil patterns, 349–350

performance considerations for, 332

primitives in, 344–345

real-time updates with, 357–358

shadows in, 350–352

color, 352

grayscale, 351

testing for touch location, 354–357

text in, 345–346

transformations in, 352–354

custom, 354

rotation, 353–354

scaling, 353

CoreLocation API, 321–329

battery drain, 328–329

configuring location manager object,

323–324

instantiating CLLocationManager

class, 322–323

location technologies used by,

321–322

updates

listening for, 324–326

location services, 326–328

stopping, 328

usage pattern, 322

correction, for keyboards, 224

CountDownDuration property, 140

CountDownTimer operating mode, 139

Course property, 325

coverAtIndex, 450

coverAtIndexWasBroughtToFront

method, 451

coverAtIndexWasDoubleTapped, 451

CoverflowEventArgs, 452

coverflowView, 450–451

create argument, 445

CREATE TABLE SQL statement, 399

CreateFile method, 399

CreateTable<T> method, 401

CropRect, 295

CSObject class, 403

CurlDown transition type, 367

CurlUp transition type, 367

CurrentDevice property, 71

CurrentPage property, 128

Curve option, 364

Curve* general animation enumeration

value, 365

CurveEaseIn setting, 365

CurveEaseIn type, 366

CurveEaseInEaseOut type, 366

CurveEaseOut setting, 365

CurveEaseOut type, 366

http://

Index 471

CurveLinear type, 367
curves, animation, 366–367
custom camera view (optional), 289
CustomizableViewControllers property,

166
CustomView property, 153

■ D
Dashed lines, 359
data

access technologies, 398–406
ADO.NET technology, 398–400
NHibernate technology, 405
SQLite-Net technology, 400–403
Vici CoolStorage technology,

403–405
application updates, 397
backups, 396
sources in CocoaTouch, 103–105

delegates, 104–105
protocols, 104

SQLite database, 394–396
creating, 395–396
limitations of, 394–395
version matrix, 395

databases, creating
ADO.NET technology, 399
SQLite-Net technology, 401
Vici CoolStorage technology, 404

DataSource property, 103
Date operating mode, 139
Date property, 140
DateAndTime operating mode, 139
DateElement, 423
DateTimeElement, 368, 423
Debug|iPhoneSimulator option, 30
Default option, 36, 224–225, 312
Default value, 204
DefaultCenter, 230
defaults

initializing for application settings,
316–319

placeholder text, 111
DefaultSoundName property, 379

DefaultValue (required) key name,
313–315

DefaultValue keys, 312–313
definition files, API, 445–456

weak delegate pattern, 454–455
wrapping Tapku library, 447–456

Delay option, 364
delay parameter, 368
delegate methods, application, 236–237
Delegate property, 454–455
delegates, 104–105, 131–132
Delete button, 215
DeleteRows method, 214
deleting items, from tables, 215–216
DequeueReusableAnnotation method,

184
DequeueReusableCell, 198
Design window, Interface Builder

application, 18, 103
Designer window, Interface Builder

application, 48, 52, 62
designer.cs file, 23
DesiredAccuracy property, 324
Destructive button, 137
DestructiveButtonIndex property, 137
detail view, communicating with master

view, 172
DetailDisclosureButton, 205
Determine support, 289
DetermineCurrentDevice method, 69,

71
Developer Documentation menu item,

Help menu, 9
developer.apple.com, 407
Developer/MonoTouch/usr/bin/

directory, 457
developing

constrained access, 3
device-specific technology, 3
multitasking, 2
response time, 3
screen size, 3
system resources, 2–3

DeviceHelper class, 69, 71
devices

battery, 274–276

http://

Index 472

level, 274–275
notifications to change, 276
state, 275

choosing which to simulate, 35–37
developing for, 4
device-specific technology, 3
identifying, 383–385

listening for registration failure,
384

receiving device tokens, 384
registering for remote

notifications in iOS, 384
retrieving expired tokens with

FeedbackService object, 385
location of, 181
programmatic detection, 67–72

AppDelegate class, 69–71
determining type, 68–69
Main method, 71–72

DeviceToken property, 385
DeviceType enum, 68
DialogViewController class,

MonoTouch.Dialog, 421–422
Dictionary type, 309
Dictionary<string, int>, 203
DidEnterBackground method, 236–238,

240, 245
DidRotate method, 84
Direction property,

UISwipeGestureRecognizer
class, 257

Directory class, 271
DisclosureIndicator option, 205
DismissModalViewControllerAnimated

method, 279
Display name field, iOS Simulator

application, 38
DisplayedPerson property, 280, 282,

284
Dispose method, 76, 286
DistanceFilter property, 323
DistanceFromLocation method, 325
distribution build configuration, 410–411
Distribution configuration, 412
Distribution Provisioning Profile,

409–410

Distribution tab, 409
Distribution|iPhone option, 412
DLLs (dynamic link libraries),

referencing wrapped, 458–459
Document window, Interface Builder

application, 18, 23–24, 27, 33,
49

documentation, 8–9
documents, loading non-web, 178
Documents file location, 272
Documents folder, 396
DoSomeRunning method, 104
Double-Tap Me image, 253
Drag Me image, 253–254
Draw method, 77–78, 132, 186, 220,

335, 337, 357–358
DrawInContext method, 373
drawing. See also CoreGraphics

manually, cells, 220
off-screen, 335–338

CGBitmapContext, 335–336
CGLayer, 337–338

onscreen, 335
to PDFs, 334

DrawLayer method, 338, 373
DrawPath, 344
DrawPolkaDotPattern method, 350
.dSYM file, 415
Duration option, 364
duration parameter, 364–365, 368
dynamic link libraries (DLLs),

referencing wrapped, 458–459

■ E
Edit References context menu item, 398
editable tables, 212–218

deleting items, 215–216
editing methods, 213–215

advanced, 216–218
CommitEditingStyle, 214
MoveRow, 214–215

EditedImage, 295
EditingStyleForRow method, 213
Element class, 422, 425

http://

Index 473

element tree, for MonoTouch.Dialog,

424–425

elements, in MonoTouch.Dialog,

422–423

EmailAddress option, 225, 312

Empty MonoTouch Project template, 67

Enable for Apple Push Notification

Service, 387

Enabled property, 98

EndBackgroundTask method, 239

Ended state, 261, 268

EndInvorkeOnMainThread, 106

EndUpdates method, 218

Enterprise license, 6

EntryElement, 423

enumerating fonts, 97

Environment.GetFolderPath

(Environment.SpecialFolder.My

Documents), 272

EventArgs attribute, 451–452

events, 174–175

listening for, 177

LoadError, 174–175

LoadingFinished, 174

LoadStarted, 174

Events attribute, 453

Example_AppSettings companion

application, 306

Example_AppSettings companion code,

303, 318

Example_ContentControls application,

155, 173, 190, 192

Example_CoreAnimation, 361, 371, 375

Example_Drawing code, 331, 341, 357

Example_Fonts companion, 97

Example_HandlingRotation application,

84, 91

Example_HelloWorld_iPhone

application, 13, 32

Example_HelloWorld_iPhone_MultipleS

creens solution, 47

Example_Keyboards companion code,

228

Example_SharedResources application,

274–276, 278, 280, 284, 288,

302

Example_SharedResources code, 279,

284

Example_SplitView application,

169–170

Example_StandardControls application,

102, 106, 108, 115, 126, 134,

143, 158

Example_SwitchingViews application,

80

Example_TableAndCellStyles

companion code, 200, 203

Example_TableParts, 198–199

Example_Tapku companion code, 462

Example_ViewAndViewControllerInCod

e application, 74

execution expiration time, for tasks,

239–240

expiration parameter, 239

expiration time, for task execution, 239–

240

explicit animation, 371–372

explicit content, 408

Explicit type, 370

Export attributes, 104–105

Export declaration, 105

Export option, 390

ExportAttribute, 369, 451

ExternalChange event, 286

■ F
FailedToRegisterForRemoteNotification

s, 384

FalseValue key name, 314

FamilyNames property, 97

Feedback object, 385

FeedbackService object, retrieving

expired device tokens with, 385

File class, 271

file system, 271–274

applications

Application Sandbox rules, 272

directories for, 272–273

updates to, 274

backup/restore, 273–274

case-sensitivity, 271

http://

Index 474

files, Objective-C language libraries,
435

Fill modes, 359
filling paths, in CoreGraphics, 344
FinishedLaunching method, 28, 55, 71,

244, 383
FinishedPickingMedia event/method,

295
FirstName property, 287
Fixed repetition count, 363
Fixed Space Bar Button Item control,

149
flash, determining support for, 290
Flexible Space Bar Button Item control,

149
FlipFromleft transition type, 367
FlipFromRight transition type, 367
float values, 97
FloatElement, 422
FontNamesForFamilyName property, 97
fonts, 96–97
FooEventArgs class, 451
-force_load

$ProjectDir/TapkuLib/libTapkuLi
brary.a argument, 461

Frame property, 95, 374
Frame rate synchronization, 358
-framework QuartzCore argument, 460
FromBundle method, 101–102
FromFile method, 101–102
FromName method, 97
FromType static method, 112
Full value, 275
full view updates, with CoreGraphics,

357–358

■ G
garbage collection, alerts and, 129
-gcc_flags argument, 460
gesture recognizers, 255–269

adding gestures to view objects, 259
allowing simultaneous gestures and

touch events, 265
configuring gestures, 256–257
configuring targets, 258–259

creating custom gestures, 265–269
checkmark gesture recognizer

example, 266–267
Reset method, 268
using custom gesture

recognizers, 268–269
enabling, 259
example using pan gesture to drag

objects, 262–265
example using tap gesture, 262
retrieving gesture information,

259–262
gestures

adding to view objects, 259
allowing simultaneous recognition of

multiple, 264
configuring, 256–257
creating custom, 265–269

checkmark gesture recognizer
example, 266–267

Reset method, 268
using custom gesture

recognizers, 268–269
disabling another, 264–265
requiring another to fail before one

succeeds, 265
retrieving information, 259–262
shake, 301–302
and touch events, allowing

simultaneous, 265
GetCell method, 184, 195, 198, 204,

206, 209, 451
GetComponentCount, 145
GetComponentWidth method, 145
GetHeightForFooter method, 195
GetHeightForHeader method, 195
GetHeightForRow method, 195
GetPhones method, 287
GetRowHeight method, 145
GetRowsInComponent method, 145
getter method, 438
GetTitle method, 145
GetView method, 105, 145
GetViewForAnnotation method,

183–184
GetViewForFooter method, 195

http://

Index 475

GetViewForHeader method, 196

GetViewForOverlay delegate, 189

GetViewForOverlay event, 190

GetViewForOverlay method, 190–191

Global Positioning System (GPS), 322

GoBack method, 173, 177

GoForward method, 173, 177

GPS (Global Positioning System), 322

graphical computations, avoiding

complex, 220

grayscale shadows, in CoreGraphics,

351

Group (PSGroupSpecifier) setting, 311

Group setting, 313

guidelines, for App Store, 407–409

■ H
.h file, 435

HandleDrag method, 263

HandleTap method, 259

handling notifications, 379–380

Hardware menu, iOS Simulator

application, 37

HeadingAccuracy property, 326

HeadingAvailable property, 326–327

HeadingFilter property, 323

HeadTruncation option, 109

Hello World Screen button, 56

HelloUniverse screen, 51–53

HelloWorld screen, 51–53

HelloWorldScreen.xib file, 51

Help menu, 8–9

helper code, API, 445–456

weak delegate pattern, 454–455

wrapping Tapku library, 447–456

Hide method, 106

HidesWhenStopped property, 122

hiding keyboards, 227–228

Highlighted property, 98

Highlighted state, 98

Hipp, D. Richard, 394

Home icon, iOS Simulator application,

37

HorizontalAccuracy property, 325

HtmlElement, 423

Hybrid mode, 180

■ I
IB (Interface Builder), 4

icons, application, 39–42

Icons tab, iOS Simulator application, 40

id type, 436

IDE (Integrated Development

Environment), 1, 8

Identity Inspector tab, Interface Builder

application, 24

Identity Inspector view, Interface Builder

application, 22

Identity Inspector window, 103

IDisposable, 286, 335

IEnumerable, 194, 286

Image masks, 359

image pickers. See

UIImagePickerController

controller

Image property, 114, 185

ImageElement, 423

images, 99–102

animating views, 115

caching, 219

in CoreGraphics, 346

FromBundle call, 101–102

FromFile call, 101–102

setting for UISlider control, 122

Images/Lightning_Small.png path, 99

implicit animation, 374–375

Implicit type, 370

Import option, 390

IMyScreen interface, 90

Inactive state, 234

indexes, tables, 202–203

indicators, network activity, 298–300

info parameter, 295

info.plist file, 61, 72, 241–244

Info.plist file, 309

Init method, 319

initializing defaults settings, for

application, 316–319

initWithFrame constructor, 450

http://

Index 476

input fields, making visible when

covered by keyboard, 228

INSERT statement, 399

InsertAll method, 402

InsertRows method, 214

InsertSegment, 119

Inspector window, Interface Builder

application, 18, 21–22, 24, 26,

103

instance method, vs. static method, 437

Integrated Development Environment

(IDE), 1, 8

Interface Builder application

cells in, 207–210

screens in, 62–64

toolbars in, 149–152

using controls in, 103

Interface Builder (IB), 4

Interface Builder tool, 16–23

interfaces, creating, 22–23

IntPtr, 336

InvokeOnMainThread, 106

iOS (Apple Operating System)

asking for time to complete tasks,

239–241

completion patterns, 240–241

execution expiration time,

239–240

registering for remote notifications

in, 384

SDK, specifying, 442–443

iPad Icon, iOS Simulator application, 39

iPad Simulator 4.3 option, application

menu, 36

iPad Spotlight icon, iOS Simulator

application, 40

iPad Window-based project template,

61

Iperson interface, 104

iPhone 4 Icon, iOS Simulator

application, 39

iPhone 4 Settings/Spotlight Icon, iOS

Simulator application, 39

iPhone Application section, iOS

Simulator application, 40

iPhone Application tab, 68, 81

iPhone Build, 412

iPhone Bundle Signing, 389, 411

iPhone Icon, iOS Simulator application,

39

iPhone option, 410

iPhone Simulator 4.3 option, application

menu, 36

iPhone Simulator Target menu item, 67

IsAnimating property, 122

IsCameraDeviceAvailable method, 290

isColor parameter, 349

isColored parameter, 349

IsFlashAvailableForCameraDevice

method, 290

IsMultitaskingSupported property, 236

IsSecure key name, 312

IsSourceTypeAvailable method, 290

ItalicSystemFontOfSize, 97

iTunes Connect, submitting app via,

415–417

■ J
JavaScript language, running, 177

JdSoft.Apple.Apns.Feedback.Test

project, 385

JdSoft.Apple.Apns.Notifications.Test,

390

JIT (Just-In-Time) compilation,

limitations, 6

■ K
kAppId variable, 426

Keep-alive method, 244–245

Key (required) key name, 312–315

keyboard events, 228

KeyboardOpenedOrClosed method,

230

keyboards, 111, 223–231

hiding, 227–228

making input fields visible for, 228

properties for, 223–227

capitalization, 224

correction, 224

languages, 227

http://

Index 477

return key, 226–227
type of keyboard, 225

KeyboardType key name, 312
KeyboardType property, 225
Keychain Access, 390
-L$ProjectDir/TapkuLib -lTapkuLibrary

argument, 460

■ L
Label property, 287
LabelFontSize, 97
Lambda functions, 258
Lamda delegate, 190
languages, for keyboards, 227
LastName property, 287
LaunchOptionsLocalNotificationKey

key, 380
LaunchOptionsRemoteNotificationKey

key, 380
layer-based animation, types of,

370–375
creating CALayers manually,

373–374
drawing layers on a view, 374
explicit, 371–372
implicit, 374–375

layers, drawing on a view, 374
LayoutSubview method, 132
LayoutSubviews general animation

enumeration value, 366
LayoutSubviews method, 77–78
lblResult property, 28
LeftCalloutAccessoryView property, 185
levels, device batteries, 274–275
libraries, third-party, 9
Library file location, 272
Library folder, 396
Library window, Interface Builder

application, 18, 20, 22, 24, 33
Library window, Interface builder

application, 48
Library window, Interface Builder

application, 49, 103
Library/Caches/ file location, 273
Library/Preferences/ file location, 273

libTapkuLibrary.a file, 444
licensing model, 5–6
Lightning_Small.png image, 99
limitations of framework

C# is only language, 6
link to list, 7
no JIT compilation, 6

Line border style, 110
LineBreakMode property, 109
LINQ support, in MonoTouch.Dialog,

425
LIPO utility, combining build

architectures with, 445
LoadControllers method, 127
LoadError event, 174–175
LoadingFinished event, 174
LoadMoreElement, 423
LoadNib method, 54, 90
LoadStarted event, 174
LoadView method, 74–75
Local and Push Notification

Programming Guide, 382
local content, loading, 176
local notifications, scheduling, 378–379
location applications, 235, 243–244
location manager object, configuring,

323–324
location services, 326–328
location technologies, used by

CoreLocation API, 321–322
location value, 243
LocationInView method,

UISwipeGestureRecognizer
class, 260

LocationOfTouch method,
UISwipeGestureRecognizer
class, 260

LocationServicesEnabled property, 326

■ M
.m file, 435
Mac computers, Apple. See Apple
MagneticHeading property, 326
Mail Application, 378
Main interface file setting, 62, 71

http://

Index 478

Main method, creating custom, 71–72

main screen, adding Navigation

controller to, 48–51

Main.cs file, 15, 28, 35, 55

MainScreen class, 55

MainScreen.xib file, 48, 51, 55

MainScreen.xib.cs screen, 53–55

MainWindow.designer.cs file, 23, 27, 34

MainWindowIPad.xib file, 67

MainWindowIPhone.xib file, 67

MainWindow.xib file, 15–17, 32, 62

MainWindow.xib.designer.cs file, 15

major bugs, 408

MakeRotation, 349

Manage Users, 415

Manage Your Applications option, 416

manually building app, 414–415

map view control, 178–191

annotating map, 182–188

GetViewForAnnotation method,

183–184

handling callout clicks, 187

MKPinAnnotationView view, 186

performance considerations, 188

views, 185–186

device location, 181

different map modes, 180–181

user overlays, 188–191

adding, 190

creating, 189–190

implementing GetViewForOverlay

method, 190–191

mapping objects

SQLite-Net technology, 401

Vici CoolStorage technology, 403

MapType property, 180

master view

communicating with detail view, 172

showing and hiding button to show,

171

MaximumDate property, 140

MaximumNumberOfTouches property,

UIPanGestureRecognizer class,

257

MaximumValue (required) key name,

314

MaximumValueImage key name, 314

MaximumZoomScale, 116

media types

configuring, 292

determining support for, 291

MediaMetadata, 295

MediaTypes property, 289

MediaUrl value, 295

methods

editing, 213–215

advanced, 216–218

CommitEditingStyle, 214

MoveRow, 214–215

Objective-C language libraries,

436–438

instance method vs. static

method, 437

invoking methods, 438

specifying animation behavior via,

368–369

MiddleTruncation option, 109

MinimumDate property, 140

MinimumFontSize setting, 109

MinimumNumberOfTouches property,

UIPanGestureRecognizer class,

257

MinimumPressDuration property,

UILongPressGestureRecognizer

class, 257

MinimumValue (required) key name, 314

MinimumValueImage key name, 314

MinimumZoomScale, 116

Missing/incorrect functionality, 408

MKAnnotation class, 182

MKCircle class, 189

MKCircleView class, 190

MKMapType enumeration, 180

MKOverlayPathView class, 190

MKPinAnnotationColor enumeration,

186

MKPinAnnotationView view, 186

MKPolygon class, 190

MKPolygonView class, 190

MKPolyline class, 190

MKPolylineView class, 190

Mode property, 139

http://

Index 479

Model class, 44

Model property, 145

Model-View-Controller pattern. See

MVC pattern

Momentary property, 118

Mono platform, for Apple Mac OSX, 7–8

Mono.Data.Sqlite assembly, 398

MonoDevelop

building app with, 413–414

changing common settings in, 61–62

MonoTouch Bindings on Github, 419

MonoTouch Wiki, 419

MonoTouch.AddressBookUI

namespace, 277

MonoTouch-Controls, 420, 430–431

MonoTouch.CoreLocation namespace,

322

MonoTouch.Dialog, 420–425

creating element tree manually,

424–425

DialogViewController class, 421–422

elements in, 422–423

LINQ support in, 425

object binding pattern for, 425

sections in, 422

MonoTouch.dll base library, 4

MonoTouch-Facebook, 419, 425–428

MonoTouch.Foundation classes, 433

MonoTouch.Foundation.Export

attribute, 34, 104

MonoTouch.Foundation.Register

attribute, 102

More tab, 164

MotionEnded event, 302

MoveRow method, 213–215

MultilineElement, 423

multiple copies, 334

MultipleTouchEnabled property, 250

multi-screen applications, using MVC

pattern, 43–57

benefits of, 45

Controller class, 45

Model class, 44

sample application, 47–57

View class, 44–45

views and view controllers, 45–46

multi-taps, 250

multitasking, 2, 233–245

applications

audio, 243

location, 243–244

states of, 234–235

VoIP, 244–245

asking iOS for time to complete task,

239–241

completion patterns, 240–241

execution expiration time,

239–240

background tasks, 235–239

application delegate methods,

236–237

checking for multitasking

capability, 236

multitasking guidelines and

requirements, 237–239

registering applications to be

allowed to perform particular,

241–243

multi-touch, 250

Multi-Value (PSMultiValueSpecifier)

setting, 311

Multivalue Properties, 285

MVC (Model-View-Controller) pattern,

43–57

benefits of, 45

Controller class, 45

Model class, 44

sample application, 47–57

adding Navigation controller to

main screen, 48–51

HelloWorld and HelloUniverse

screens, 51–53

showing different screens, 53–57

View class, 44–45

views and view controllers, 45–46

myArray object, 438

MyImage@2x.png, 101

MyImage.png, 101

myRoot, 421

mySubtitleCellTemplate, 204

mailto:MyImage@2x.png
http://

Index 480

■ N
NamePhonePad option, 225

names, application, 38–39

Navicat for SQLite tool, 396

navigation

bar, 159–162

opacity, 162

right button, 162

style, 160–161

title, 160

controller, 155–163

adding to main screen, 48–51

modifying navigation bar,

159–162

parts of, 156–157

toolbar, 162–163

web view control, 173

Navigation toolbar, 157

Navigation view, 157

NavigationController property, 55, 158

navMain outlet, 51

nesting animations, 364

network activity indicator, 298–300

New attribute, 454

new person view controller, 281–282

New Profile button, 409

new provisioning profile, 389

New Solution dialogue box, 65

new solution dialogue window,

MonoDevelop IDE, 14

NewLocation property, 324

NewPersonComplete event, 282, 284

NHibernate technology, 405

No option, 224

NonAtomic attribute, 438

None border style, 110

None option, 224, 312

Normal state, 98–99, 113

Notification sending, 383

notifications, 377–391

change, from ABAddressBook

object, 286

change device battery, 276

description of, 377–378

handling, 379–380

push, 381–391

APNS-Sharp library, 382–383

certificates, 385–387

identifying devices, 383–385

provisioning profiles, 387–390

restrictions and limitations, 382

Sandbox and Production

environments, 382

sending, 390–391

scheduling local, 378–379

NSAction objects, 362, 423

NSBundle.MainBundle.BundlePath

property, 272

NSData object, 384

NSDictionary object, 295, 380

NSIndexPath, 199, 214

NSNotification parameter, 230

NSNotificationCenter class, 230, 276

NSObject objects, 316, 454

NSString, 295, 436

NSUrl, 173

NSUrlRequest parameter, 177

NSUserDefaults object, 303, 306, 316

NSUserDefaults.StandardUserDefaults.I

nit () method, 319

NullAllowed attribute, 454

_numberOfClicks variable, 29

NumberOfLines property, 109

NumberOfSections method, 195

NumberOfTapsRequired property, 257

NumberOfTouchesRequired property,

257

NumberPad option, 225, 312

NumbersAndPunctuation option, 225,

312

■ O
object binding pattern, for

MonoTouch.Dialog, 425

object mapping

SQLite-Net technology, 401

Vici CoolStorage technology, 403

Objective-C language libraries, 433–462

btouch tool, 433–434

compiling, 440–462

adding library, 457–458

http://

Index 481

API definition file and helper

code, 445–456

configuring Build arguments,

459–461

referencing wrapper DLL,

458–459

running btouch, 457

Tapku library, 441–445

primer on, 435–440

classes, 435–436

files, 435

methods/messages, 436–438

properties, 438–439

protocols, 439–440

object-relational mapping (ORM), 400

OldLocation property, 324

OnActivated method, 237

OnFeedback event, 385

OnResignActivation method, 236

opacity, of navigation bar, 162

Opacity property, 374

Open Containing Folder, 414

OpenGL ES, 236–237

Options context menu item, 38

options NSDictionary, 380

options parameter, 365, 380

OriginalImage, 295

ORM (object-relational mapping), 400

OSX, Apple Mac, Mono platform for,

7–8

Other button, 137

outlets, 23–32

Outlets section, Interface Builder

application, 26

Outlets tab, Interface Builder

application, 33

output [filename] argument, 445

overlays

camera, providing custom, 293

user, 188–191

adding, 190

creating, 189–190

implementing GetViewForOverlay

method, 190–191

Override default build action check box,

40

OverrideInheritedCurve general

animation enumeration value,

366

OverrideInheritedDuration flag, 366

OverrideInheritedDuration general

animation enumeration value,

366

OwnerDrawnElement, 423

■ P
page content, interacting with, 176–177

pages

changes via UIPagerControl control,

126–127

updating UIPagerControl control

when scrolled to via scroll view,

127–128

paging, scrolling, 117

painter's model, of CoreGraphics, 332

pan gesture, example using to drag

objects, 262–265

partial view updates, with

CoreGraphics, 358

paths, in CoreGraphics, 343–344

patterns

in CoreGraphics, 347–350

color patterns, 348–349

stencil patterns, 349–350

weak delegate, 454–455

PDF (Portable Document Format), 172,

359

people picker view controller, 277–279

People table, 398, 400–402, 404

performance considerations

annotating maps, 188

for CoreGraphics, 332

for tables, 218–221

avoiding complex graphical

computations, 220

avoiding transparency, 220

caching, 219

cells, 219–220

example application, 220–221

permissions, constrained, 3

Person class, 402–403

http://

Index 482

Person property, 279, 282

person view controller, 279–281

PersonCreated event, 284

PhonePad option, 225

PhotoLibrary option, 292

photos, and camera, 289–298

AV Foundation Framework, 295–298

UIImagePickerController controller,

289–295

picker celegate, 289

pickers, populating, 144–145

placeholder text, default, 111

plist files, 61, 309, 311, 315

PopViewController method, 156

Portable Document Format (PDF), 172,

359

Position property, 372

Possible state, 261

PreferenceSpecifiers node, 309

PremultipliedFirst, 336

PremultipliedLast, 336

PresentModalController method, 289

PresentModalViewController, 278, 293

PreviousLocationInView method, 253

primitives, in CoreGraphics, 344–345

private API calls, 408

Production environment, 382

Professional license, 5

programmatic device detection, 67–72

AppDelegate class, creating custom,

69–71

determining type, 68–69

Main method, creating custom,

71–72

Programmer option, 333

progress value, setting, 125

Project Options dialog box

iOS Simulator application, 40

MonoDevelop IDE, 61

properties

for keyboards, 223–227

capitalization, 224

correction, 224

languages, 227

return key, 226–227

type of, 225

Objective-C language libraries,

438–439

on records, 287–288

property list, 61

Property List Editor application, 308

property specifier schema, for Settings

Application, 311–312

protocols

Objective-C language libraries,

439–440

overview, 104

Provisioning option, 409

provisioning profiles, 387–390, 409–410

PSChildPaneSpecifier, 315

PSGroupSpecifier, 312

PSMultiValueSpecifier, 315

PSSliderSpecifier, 313–314

PSTextFieldSpecifier, 312

PSTitleValueSpecifier, 313

PSToggleSwitchSpecifier, 314

public.image, 292, 295

public.video, 292, 295

publishing apps. See App Store

push notifications, 381–391

APNS-Sharp library, 382–383

certificates, 385–387

identifying devices, 383–385

provisioning profiles, 387–390

restrictions and limitations, 382

Sandbox and Production

environments, 382

sending, 390–391

PushViewController method, 54, 155,

280, 282, 284

■ Q
query data, Vici CoolStorage

technology, 405

■ R
RadioElement, 423

RDBMS (relational database

management system), 394

readonly property, 438

http://

Index 483

readwrite property, 438

real-time updates, with CoreGraphics,

357–358

ReceivedLocalNotification, 379

ReceivedRemoteNotification, 379

Recognized state, 261, 268

records, properties on, 286–288

RectangleF _contentViewSize =

RectangleF.Empty, 230

RectangleF parameter, 95, 344, 346,

358, 450

RectangleF.Empty object, 95

References folder, 15, 398

ReferenceUrl value, 295

Refresh option, 410

Region property, 179

RegionChanged method, 188

Register attribute, 70

RegisteredForRemoteNotifications

method, 384

RegisterForRemoteNotificationTypes,

383–384

registering

applications, to be allowed to

perform particular background

tasks, 241–243

controls, 102

for remote notifications in iOS,

383–384

Regular mode, 180

rejection of app, dispute resolution for,

417–418

relational database management

system (RDBMS), 394

ReloadData method, 200

remote notifications, registering for in

iOS, 384

RemoveAnnotation method, 188

Repeat flag, 365

Repeat general animation enumeration

value, 366

Repetition option, 364

RequireGestureRecognizerToFail

method, 265

requirements for building applications

Apple iOS SDK, 7

Apple Mac computers, running

Snow Leopard, 7

documentation, 8–9

Mono for OSX, 7–8

MonoTouch SDK, 8

text editor or IDE, 8

third-party libraries, 9

Reset method, 268

ResignFirstResponder method, 227,

302

resources, shared. See shared

resources

response time, 3

RestoreState, 342, 352

restoring file system, 273–274

retain attribute, 438

retain keywords, 449

return key, for keyboards, 226–227

ReturnKeyType property, 226

Revert method, 285–286

Rich Text Format (RTF), 172

RightCalloutAccessoryView property,

185

Root key, 309

Root property, 424

RootElement object, 421–422, 424

Root.plist file, 307–308, 310, 318

Rosetta stone, documentation, 9

Rotate Left menu item, iOS Simulator

application, 85

Rotate Right menu item, iOS Simulator

application, 85

rotation

in CoreGraphics, 353–354

handling, 80–91

general approaches, 84–91

review, 91

Rotation property,

UIRotationGestureRecognizer

class, 260

RoundedRect border style, 110

RoundRectangleGroupView, 103

row component, 144

Row property, 199

RowDeselected method, 198–199

rows, caching height, 219

http://

Index 484

RowSelected method, 198, 206

RowsInSection method, 195

RTF (Rich Text Format), 172

Run btouch, 434

Run method, 104

Run object, 385

Running/Active state, 234

■ S
Safari application, 80

Sandbox environment, 382

sandboxes, Application, 272

Satellite mode, 180

Save method, 285

SavedPhotosAlbum, 292

SaveState, 342, 352

Scale property,

UIPinchGestureRecognizer

class, 259

ScaleCTM, 353–354

scaling, in CoreGraphics, 353

Schedule Local Notifications option,

235

ScheduleLocalNotification method, 379

scheduling, local notifications, 378–379

schemas, creating and adding data, 399

screen size, 3

screens, showing different, 53–57

AppDelegate class, 55–57

MainScreen.xib.cs, 53–55

scroll view, updating UIPagerControl

control when pages scrolled to

via, 127–128

Scrolled event, 126

ScrollEnabled property, 179

scrolling, paging, 117

SDKs (software development kits)

Apple iOS, 7

iOS, specifying, 442–443

MonoTouch, 8

search bar control, 191–192

SearchButtonClicked event, 192

Section property, 199

SectionFor method, 203

SectionIndexTitles method, 203

sections, in MonoTouch.Dialog, 422

segments, specifying sizes, 119–120

Selected property, 98

Selected state, 98

SelectedBackgroundView, 206

SelectedImage, 206

SelectedSegment property, 119–120

SelectedTextColor, 206

selector patterns, 258–259

selectors, defined, 105

SelectPerson event, 279

Sentences option, 224, 312

Set up contact info, 416

Set[Type] methods, 316

SetAnimationBeginsFromCurrentState,

368

SetAnimationCurve, 368

SetAnimationDelay, 368

SetAnimationDidStopSelector method,

368–369

SetAnimationDuration, 368

SetAnimationRepeatAutoReverses, 368

SetAnimationRepeatCount, 368

SetAnimationsEnabled, 368

SetAnimationStartDate, 368

SetAnimationWillStartSelector, 369

SetBackAndForwardEnable method,

174

setCount method, 438

SetDB method, 404

SetEditing method, 213

SetKeepAliveTimeout, 245

SetMode method, 446

SetNeedsDisplay method, 77, 357–358

SetNeedsDisplayInRect method, 77,

357–358

SetNeedsLayout method, 78

setPropertyName, 439

SetRGBFillColor, 344

SetRGBStrokeColor, 344

SetShadow, 351–352

SetShadowWithColor, 352

setter method, 438

SetThumbImage, 122

Settings Application, 307–315

property specifier schema, 311–312

http://

Index 485

PSChildPaneSpecifier, 315

PSGroupSpecifier, 312

PSMultiValueSpecifier, 315

PSSliderSpecifier, 313–314

PSTextFieldSpecifier, 312

PSTitleValueSpecifier, 313

PSToggleSwitchSpecifier, 314

settings bundle for, 308

Settings.bundle folder, 307–308

Settings/Spotlight Icon, iOS Simulator

application, 39

SetTitle method, 113

Setup disadvantage, 342

SetWidth method, 120

SetZoomScale, 117

shadows, in CoreGraphics, 350–352

color, 352

grayscale, 351

shake gestures, 301–302

ShakeScreen.cs UIViewController class,

302

shared resources, 271–302

accelerometer, 300–302

Address book/contacts, 276–288

controllers, 277–284

working directly with, 285–288

device battery, 274–276

change notifications, 276

level, 274–275

state, 275

file system, 271–274

applications, 272–274

backup/restore, 273–274

case-sensitivity, 271

network activity indicator, 298–300

photos and camera, 289–298

AV Foundation Framework,

295–298

UIImagePickerController

controller, 289–295

SharedAccelerometer property, 301

SharedApplication property, 379

ShouldAutorotateToInterfaceOrientation

method, 82–83

ShouldBegin method, 264

ShouldReceiveTouch method, 264–265

ShouldRecognizeSimultaneously

property, 264

ShouldReturn method, 227

ShouldStartLoad event, 177

Show Package Contents, 308

ShowFrom method, 138

ShowFromTabBar method, 138

ShowFromToolbar method, 138

ShowHideTransitionViews value, 367

ShowInView method, 138

ShowsUserLocation property, 181

signing, of distribution build

configuration, 411

Silverlight technology, 4–5

Simulated User Interface Elements

section, 52, 162

Simulated User Interface Elements

settings, 158

Single-Value Properties, 285

Size & Position settings control, 86

Size Inspector view, Interface Builder

application, 22

Size Inspector window, 85, 95

sizing toolbar, 153

slide-on modal windows, 134

Slider (PSSliderSpecifier) setting, 311

Slider setting, 314

SmallSystemFontSize, 97

Snow Leopard, Apple. See Apple

socket handling, 244

software development kits. See SDKs

solution window, MonoDevelop IDE, 14

solutions, creating new, 13–14

SoundName property, 379

Source property, 147

sources

configuring, 291–292

determining support for, 290

SourceType property, 292–293

Speed property, 325

split view controller, 168–172

creating views for, 170–171

master view

communicating with detail view,

172

http://

Index 486

showing and hiding button to

show, 171

Split View setting, 170

Spot object, 358

SQLite databases, 394–396

creating, 395–396

limitations of, 394–395

version matrix, 395

SQLite Manager tool, 396

SQLite Studio tool, 396

SqliteConnection class, 398–399

sqlite.cs file, 401

SQLite-Net ORM tool, 396

SQLite-Net technology, 400–403

database creation, 401

object mapping, 401

selecting data, 402–403

table creation and data import,

401–402

StandardUserDefaults class, 316, 319

StandardUserDefaults property, 316

StartAnimating, 115

StartMonitoringSignificantLocationChan

ges method, 243

StartUpdatingHeading method, 326,

328

StartUpdatingLocation method, 326,

328

State property, 260, 268

states

of applications, 234–235

of controls, 98–99

device batteries, 275

static method, instance method vs., 437

stencil patterns, in CoreGraphics, 349–

350

StopLoading method, 173

StopUpdatingHeading method, 328

StopUpdatingLocation method, 328

StringElement, 423

String.Empty, 316

StringForKey, 316

StrokeRect method, 345

stroking paths, in CoreGraphics, 344

style, of navigation bar, 160–161

style parameter, 204

StyledStringElement, 423

Subclass CALayer, 373

subclassing controls

necessary constructors, 102

registering, 102

using in Interface Builder application,

103

submitting apps, via iTunes Connect,

415–417

SubTitle property, 183

Subtitle value, 204

support, determining

for cameras and flash, 290

for media types, 291

for sources, 290

suspend state, 234

swipe-to-delete gesture, 215

system resources, 2–3

System.Drawing, 331–332

System.Drawing.RectangleF, 295

SystemFontSize, 97

■ T
tab badges, of tab bar controller,

167–168

TabBarItem property, 165–166

tables, 193–221

creation and data import

SQLite-Net technology, 401–402

Vici CoolStorage technology,

404–405

customizing appearance of, 200–211

cells, 204–211

table indexes, 202–203

table styles, 200–202

editable, 212–218

deleting items, 215–216

editing methods, 213–218

parts of UITableView class, 193–194

performance considerations,

218–221

avoiding complex graphical

computations, 220

avoiding transparency, 220

caching, 219

http://

Index 487

cells, 219–220

example application, 220–221

populating, 194–198

refreshing when data changes, 200

responding to user interaction,

198–199

UITableViewController class, 199

TableViewSuite, 220

tabs, bar controller, 163–168

custom, 166

items, 166

tab badges, 167–168

user customizable tabs, 166–167

tags, 98

TailTruncation option, 109

TakePicture, 293

tap gesture, example using, 262

TapCount property, 250

Tapku library, 429–445

combining build architectures with

LIPO utility, 445

compiling, 443–445

specifying iOS SDK, 442–443

wrapping, 447–454

complete binding, 455–456

finishing TKCoverflowView class

binding, 452–454

TKCoverflowCoverView class,

448–450

TKCoverflowDataSource class,

450–451

TKCoverflowViewDelegate class,

451–452

tap-to-zoom feature, 117

TapZoomScrollView control, 102

Target Device Setting, 61–62, 66

targets, configuring, 258–259

Task.Get(int itemID) method, 44

TaskManager class, 44

TaskManager.Get(int itemID) method,

44

TaskManager.Save(Task item) method,

44

tasks

asking iOS for time to complete,

239–241

task completion patterns,

240–241

task execution expiration time,

239–240

background, 235–239

application delegate methods,

236–237

checking for multitasking

capability, 236

multitasking guidelines and

requirements, 237–239

registering applications to be

allowed to perform particular

tasks, 241–243

Task.Save() method, 44

technology, device-specific, 3

Terminal type, 457

Terminated/Not Running state, 234

text

buttons, 113

in CoreGraphics, 345–346

default placeholder, 111

editors, 8

value, 111

wrapping options, UILabel control,

109

Text Field (PSTextFieldSpecifier)

setting, 311

Text Input Traits, 223

Text property, 111

TextChanged event, 192

TextColor, 206

third-party libraries, 9, 419–432

MonoTouch-Controls, 430–431

MonoTouch.Dialog, 420–425

creating element tree manually,

424–425

DialogViewController class,

421–422

elements in, 422–423

LINQ support in, 425

object binding pattern for, 425

sections in, 422

MonoTouch-Facebook, 425–428

Tapku, 429–430

Three20, 428–429

http://

Index 488

XNATouch, 431–432

Three20 UI library, 428–429

threshold, updating with location

manager object, 323

Time operating mode, 139

TimeElement, 423

TintColor property, 162

Title (PSTitleValueSpecifier) setting, 311

Title (required) key name, 314–315

Title key name, 312–313

Title property, 160, 183

Title setting, 313–314

TitleForDeleteConfirmation method,

213, 216

TitleForFooter method, 195

TitleForHeader method, 195

titleForHeaderInSection selector, 105

titles, of navigation bar, 160

Titles key name, 315

TKCoverflowCoverView class, 448–450

TKCoverflowDataSource class,

450–451

TKCoverflowView binding, 452

TKCoverflowView class, finishing

binding, 452–454

TKCoverflowVIew interface, 453

TKCoverflowViewDelegate class,

451–452

TKCoverView class, 448

tmp file location, 273

Toggle Switch

(PSToggleSwitchSpecifier)

setting, 311

ToImage method, 336

tokens, device, 384–385

ToMutableMultiValue method, 288

ToolbarHidden property, 163

toolbars, in Interface Builder

application, 149–152

Top Bar property, 162

ToString method, 447

touch, 247–269

enabling, 248

gesture recognizers, 255–269

adding gestures to view objects,

259

allowing simultaneous gestures

and touch events, 265

configuring gestures, 256–257

configuring targets, 258–259

creating, 256

creating custom gestures,

265–269

enabling, 259

example using pan gesture to

drag objects, 262–265

example using tap gesture, 262

retrieving gesture information,

259–262

location, testing for, 354–357

selecting method to use, 247–248

touch events, 249–254

determining touch location, 251

Double-Tap Me image, 253

Drag Me image, 253–254

example application, 251–252

gestures and, 265

multi-taps, 250

multi-touch, 250

Touch Me image, 252–253

UITouch class, 249

Touch Me image, 252–253

Touch Up Inside option, 34

TouchDown event, 30

TouchDownInside event, 45

TouchesBegan event, 354–355

TouchesBegan method, 117, 249, 357

TouchesCancelled method, 249, 254,

355

TouchesEnd event, 355

TouchesEnded method, 249, 355

TouchesMoved method, 249

_touchStartedInside flag, 254

TouchUpInside event, 29–30, 33, 45,

111, 154, 355

transformations, in CoreGraphics,

352–354

custom, 354

rotation, 353–354

scaling, 353

transition, animating, 80

Transition* value, 367

http://

Index 489

transitions, view, 367

TranslateCTM, 353

TranslationInView method,

UIPanGestureRecognizer class,

260

Translucent property, 162

transparency, avoiding, 220

Transparency layers, 359

TrueHeading property, 326

TrueValue key name, 314

txtDefault text field, 228

Type (required) key name, 312–315

Type objects, 453

Type property, 287

Type setting, 112

■ U
UIAcceleration object, 301

UIAccelerometer class, 301

UIAccelerometerEventArgs, 301

UIActionSheet control, 134–138

action sheets

creating simple, 136–137

displaying, 138

buttons

adding custom, 137

types of, 137

subclassing, 138

UIActivityIndicatorView control,

122–124

UIAlertView control, 128–134

alerts

delegate, 131–132

and garbage collection, 129

buttons, 129–131

customizing, 132–134

UIApplication class, 239–240, 299, 379,

383

UIApplicationDelegate class, 16

UIApplicationDelegate protocol, 439

UIApplication.Main method, 16

UIBackgroudnModes key, 241

UIBackgroundModes key, 241, 243–244

UIBarButtonItem objects, 148, 153

UIBarButtonItemStyle type, 153

UIBarButtonSystemItem enumeration,

162

UIBarButtonSystemItem type, 153

UIBarStyle enumeration, 160–161

UIButton control, 111–113

UIButtonEventArgs object, 137

UIButtonEventArgs parameter, 130

UIColor, in CoreGraphics, 334

UIControl class, 93, 98

UIController class, 103

UIControlState, 98

UIDatePicker control, 138–143

configuration, 140

showing dynamically, 140–143

UIDevice class, 236, 274–275

UIEventSubtype enumeration

parameter, 302

UIFileSharingEnabled boolean key, 272

UIFont class, 97

UIGestureRecognizerDelegate class,

264

UIGestureRecognizerState

enumeration, 261

UIGraphics.GetCurrentContext, 335

UIImage control, 113–115

UIImage objects, 115

UIImagePickerController controller,

289–295

Canceled event/method, 294

configuring, 291–292

creating, 291

determining support, 290–291

displaying, 293

FinishedPickingMedia event/method,

295

handling events, 293

implementing

UIImagePickerControllerDelegat

e delegate, 294

providing custom camera overlay,

293

UIImagePickerControllerDelegate

delegate, 294

UIImagePickerControllerSourceType

enumeration, 290–292

UIImageView, 115, 145

http://

Index 490

UIKeyboardType enumeration, 225

UILabel control, text wrapping options,

108–111

UILocalNotification class, 379

UILongPressGestureRecognizer class,

255, 257

UIPagerControl control, 125–128

page changes via, 126–127

updating when pages scrolled to via

scroll view, 127–128

UIPanGestureRecognizer class, 255,

257, 260

UIPickerView control, 144–147

populating picker, 144–145

UIPickerViewModel class, 145–147

UIPickerViewModel class, 145–147

UIPinchGestureRecognizer class, 255,

259

UIProgressView control, 124–125

UIRemoteNotificationType enumeration,

384

UIReturnKeyType enumeration, 226

UIRotationGestureRecognizer class,

255, 260

UIs (user interfaces)

building, 4–5

thread, updating controls from,

105–106

UIScrollView control, 115–117

UISegmentedControl control, 118–120

configuring, 119

handling button presses, 120

specifying segment sizes, 119–120

UISlider control, 121–122

UISplitViewController class, 170

UISwipeGestureRecognizer class, 255,

257, 260

UISwitch control, 120

UISwitchView, 422

UITabBarController class, 165

UITabBarSystemItem enumeration, 166

UITableCellView class, 204

UITableView class, 105, 193–194, 461

UITableViewCell class, 206, 208, 210,

220

UITableViewCellAccessory, 205

UITableViewCellEditingStyle.Insert or

UITableViewCellEditingStyle.Del

ete, 213

UITableViewCellStyle, 204

UITableViewController class, 199, 202,

421

UITableViewDataSource class, 195,

198–199, 204, 451

UITableViewDelegate class, 195,

198–199, 218

UITableViewSource class, 195–199,

206, 213

UITableViewStyle parameter, 202

UITapGestureRecognizer class, 257

UITapGesturesRecognizer class, 255

UITextAutocapitalizationType

enumeration, 224

UITextAutocorrectionType enumeration,

224

UITextField control, 109–111

UIToolbar control, 147–154

handling clicks, 154

item types, 148–149

programmatic creation, 153

sizing, 153

toolbars in Interface Builder,

149–152

UITouch class, 249

UIView animation methods, 368

UIView class

default constructor defined in .xib

file, 74

defined in .xib file, manually loading,

75

event lifecycle, 77–78

UIView control, 103

UIView methods, 357

UIView.Animate method, 368

UIViewAnimationCurve enumeration,

368

UIViewAnimationOptions enumeration,

365–368

UIViewAnimationOptions.Curve* flags,

368

UIView-based animation features, 361

UIView.BeginAnimations method, 80

http://

Index 491

UIView.CommitAnimation method, 80

UIViewController class

event lifecycle, 75–77

LoadView method, 75

ViewDidLoad method, 75

ViewDidUnload method, 76

ViewWillAppear method, 76

ViewWillDisappear method, 76

lifecycle events in

DidRotate method, 84

ShouldAutorotateToInterfaceOrie

ntation method, 83

WillAnimateFirstHalfOfRotation

and

WillAnimateSecondHalfOfRotati

on methods, 84

WillAnimateRotation method, 83

WillRotate method, 84

UIViewController code, 374

UIViewElement, 423

UIWebView, 423

UIWebViewNavigationType

enumeration, 177

universal project template, 64

Universal Window-based Project

template, 65

unknown person view controller,

283–284

Unknown value, 275

Unplugged value, 275

UpdatedHeading event, 324

UpdatedHeading method, 325–326

UpdatedLocation event, 324–325

updates

application, 397

to file system applications, 274

listening for, 324–326

UpdatedHeading method,

325–326

UpdatedLocation event, 324–325

location services, 326–328

stopping, 328

URL option, 225, 312

user customizable tabs, of tab bar

controller, 166–167

User Interaction Enabled checkbox, 248

user interfaces. See UIs

user overlays, 188–191

adding, 190

creating, 189–190

implementing GetViewForOverlay

method, 190–191

UserInteractionEnabled property,

UIView class, 248

users, enumerating albums, 296–298

Using automatic binding, 424

using statement, 286, 335

■ V
-v -v -v argument, 460

Value property, 122, 287, 422

Value1 value, 204

Value2 value, 204

ValueChanged event, 120, 122, 127,

147

values

progress, setting, 125

setting for UISlider control, 122

Values key name, 313, 315

Values list, 313

Velocity property

UIPinchGestureRecognizer class,

259

UIRotationGestureRecognizer class,

260

VelocityInView method,

UIPanGestureRecognizer class,

260

VerticalAccuracy property, 325

Vici CoolStorage technology, 403–405

creating database, 404

object mapping, 403

query data, 405

table creation and data import,

404–405

View class, 44–45

view controllers

custom implementations, 73–78

default UIView class constructor

defined in .xib file, 74

http://

Index 492

manually loading UIView class

defined in .xib file, 75

UIView class event lifecycle,

77–78

UIViewController class event

lifecycle, 75–77

handling rotation, 80–91

general approaches, 84–91

lifecycle events in

UIViewController class, 83–84

review, 91

managing multiple views, 78–80

animating transition, 80

switching views, 78–80

map, 178–191

annotating, 182–188

device location, 181

different map modes, 180–181

user overlays, 188–191

new person, 281–282

people picker, 277–279

person, 279–281

split, master view, 171–172

unknown person, 283–284

web, 172–178

events, 174–175

interacting with page content,

176–177

loading local content, 176

loading non-web documents, 178

navigation, 173

NSUrl, 173

View Interface Definition with Controller

option, 47

View Interface Definition with Controller

template, MonoDevelop IDE, 74

View Mode toolbar, Interface Builder

application, 18

view objects, adding gestures to, 259

View property, 75, 78, 157

view transitions, 367

view-based animation framework,

362–369

animation blocks vs. block-based

animation, 363

animation curves, 366–367

automatically animated properties,

363–364

configuring behavior, 364–366

nesting, 364

specifying via Animate method

overloads, 364–365

UIViewAnimationOptions

enumeration, 365–366

specifying behavior via methods,

368–369

via animation blocks, 362

via block-based animation, 362

view transitions, 367

ViewControllers property, 165–166, 170

ViewDidAppear method, 302

ViewDidLoad method, 54, 75, 88, 127,

165

ViewDidUnload method, 76

ViewForZoomingInScrollView method,

116–117

views, 45

drawing layers on, 374

image, animating, 115

swapping, 89–91

view-space coordinate system, 94

ViewWillAppear method, 76

ViewWillDisappear method, 76, 302

visibility of input fields, when covered

by keyboard, 228

Visual Studio tool, 396

VoIP (Voice over Internet Protocol)

applications, 244–245

■ W
WCF (Windows Communication

Framework), 4

weak delegates, 105, 454–455

WeakDelegate property, 105, 454–455

web view control, 172–178

events

LoadError, 174–175

LoadingFinished, 174

LoadStarted, 174

interacting with page content,

176–177

http://

Index 493

loading local content, 176

loading non-web documents, 178

navigation, 173

NSUrl, 173

WF (Workflow Foundation), 4

Wi-Fi Positioning Service (WPS), 321

WillAnimateFirstHalfOfRotation method,

84

WillAnimateRotation method, 83–84, 88,

90

WillAnimateSecondHalfOfRotation

method, 84

WillDeselectRow method, 199

WillEnterForeground method, 236

WillRotate method, 84

WillSelectRow method, 198–199

WillTerminate method, 16, 237

window.AddSubview method, 28, 55

window.MakeKeyAndVisible method, 28

Windows Communication Framework

(WCF), 4

Words option, 224, 312

WordWrap option, 109

Workflow Foundation (WF), 4

WPS (Wi-Fi Positioning Service), 321

Wrap attribute, 455

wrapper DLL (dynamic link library),

referencing, 458–459

wrapping Tapku library, 447–454

complete binding, 455–456

finishing TKCoverflowView class

binding, 452–454

TKCoverflowCoverView class, 450

TKCoverflowDataSource class,

450–451

TKCoverflowViewDelegate class,

451–452

■ X
Xcode tool, iOS documentation in, 9

.xib constructor, 209–210

.xib file

default UIView class constructor

defined in, 74

manually loading UIView class

defined in, 75

XML Property List, 310

XNATouch, 431–432

■ Y
Yes option, 224

■ Z
Zip App Bundle, 413

ZoomEnabled property, 179

zooming, 116–117

http://

 i

Developing C# Apps for
iPhone and iPad Using

MonoTouch
iOS Apps Development for .NET

Developers

■ ■ ■

Bryan Costanich

http://

Developing C# Apps for iPhone and iPad Using MonoTouch: iOS Apps Development for
.NET Developers

Copyright © 2011 by Bryan Costanich

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3174-5

ISBN-13 (electronic): 978-1-4302-3175-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Geoff Norton
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Tracy Brown
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://

Life is a beautiful mess. Laugh or cry; choose one.

http://

v

Contents

Contents at a Glance .. iv

About the Author ... xiv

About the Technical Reviewer ... xv

Acknowledgments .. xvi

Preface .. xvii

■Chapter 1: Getting Started with MonoTouch ... 1
Developing for the iPhone and iPad .. 2

Limited Multitasking .. 2

Limited System Resources .. 2

Small Screen Size .. 3

Device-specific Technology ... 3

Constrained Response Time .. 3

Constrained Access ... 3

MonoTouch Background ... 4

iPhone vs. iPod Touch vs iPad? ... 4

How Does It Work? ... 4

How Do I Build a User-Interface (UI); Can I Use Silverlight? .. 4

How Do I Distribute My Apps? ... 5

What Is the Licensing Model? .. 5

Are There Any Limitations of MonoTouch? .. 6

Getting Started .. 7

Mac Computer Running Snow Leopard ... 7

Apple’s iOS SDK ... 7

Mono for OSX ... 7

MonoTouch SDK ... 8

Text Editor or Integrated Development Environment ... 8

Documentation ... 8

Resources .. 9

3rd Party Libraries ... 9

Summary .. 9

http://

■ CONTENTS

vi

■Chapter 2: Our First Application .. 11
Starting the Example .. 11

Create a New Solution ... 13

Examining the Code ... 15

Interface Builder ... 16

Exploring Interface Builder .. 17

Building the Interface ... 22

Outlets ... 23

Outlets Exposed to Code .. 27

Running the Application ... 30

Actions .. 32

Adding an Action .. 32

Actions in Code .. 34

Choosing Which Device to Simulate ... 35

Application Name and Icons ... 37

Application Name ... 38

Application Icons .. 39

Summary .. 42

■Chapter 3: Creating Multi-Screen Applications Using the MVC Pattern 43
Model-View-Controller (MVC) Pattern ... 43

Model ... 44

View ... 44

Controller ... 45

Benefits of the MVC Pattern .. 45

Views and View Controllers in MonoTouch ... 45

Sample Application ... 47

Adding the Navigation Controller to the Main Screen .. 48

HelloWorld and HelloUniverse Screens .. 51

Showing Different Screens .. 53

Summary .. 57

■Chapter 4: iPad and Universal (iPhone/iPad) Applications 59
A Note About Resolution on the iPhone .. 60

Creating an iPad-Only Application .. 60

Changing Common Settings in MonoDevelop .. 61

iPad Screens in Interface Builder .. 62

Creating a Universal iPhone/iPad Application ... 64

Method 1: Universal Project Template ... 65

Method 2: Programmatic Device Detection ... 67

Summary .. 72

■Chapter 5: More on Views and Controllers .. 73
Custom UIViewController and UIView Implementations .. 73

Default UIView Constructor for a View Defined in a xib file ... 74

Manually Loading a UIView Defined in a .xib File .. 75

UIViewController Event Lifecycle ... 75

UIView Event Lifecycle ... 77

Managing More than One View in a Controller ... 78

Switching Views .. 78

http://

■ CONTENTS

vii

Animating the Transition .. 80

Handling Rotation ... 80

Rotation Lifecycle Events in UIViewController ... 83

General Approaches to Rotation .. 84

Rotation Review ... 91

Summary .. 91

■Chapter 6: Introduction to Controls ... 93
Coordinate System .. 93

Frame ... 95

Autosizing ... 95

Working with Fonts ... 96

Font Sizes .. 97

Enumerating Fonts ... 97

Tags .. 98

Control States ... 98

Working with Images .. 99

FromFile vs. FromBundle ... 100

Which One? .. 102

Subclassing (Creating Custom Controls) ... 102

Necessary Constructors ... 102

Registering Your Controls .. 102

Using Your Controls in Interface Builder .. 103

Prototypes vs. Delegates vs. Events, What? ... 103

Protocols .. 104

Delegates ... 104

Weak-Delegates ... 105

Updating Your Controls from the UI Thread .. 105

Summary .. 106

■Chapter 7: Standard Controls .. 107
UILabel .. 108

Text Wrapping Options ... 109

UITextField ... 109

Borders .. 110

Text Value .. 111

Default Placeholder Text .. 111

Keyboards .. 111

UIButton .. 111

Handling ‘Clicks’ .. 111

Different Types of Buttons ... 112

Button Text ... 113

UIImage ... 113

Animating an Image View .. 115

UIScrollView .. 115

Zooming ... 116

Implementing Tap-to-Zoom ... 117

Scroll Paging .. 117

UISegmentedControl ... 118

http://

■ CONTENTS

viii

Configuring the Segmented Control ... 119

Specifying Segment Sizes ... 119

Handling Button Presses .. 120

UISwitch .. 120

UISlider ... 121

Images ... 122

Accessing the Value ... 122

UIActivityIndicatorView ... 122

UIProgressView ... 124

Setting the Progress Value .. 125

UIPagerControl .. 125

Page Changes via the Pager Control .. 126

Updating the Pager Control When the Page is Scrolled to Via a Scroll View ... 127

UIAlertView ... 128

Alerts and Garbage Collection .. 129

Working with Buttons .. 129

Alert Delegate .. 131

Customizing the Alert View Even Further ... 132

UIActionSheet ... 134

Creating a Simple Action Sheet ... 136

Button Types .. 137

Adding Custom Buttons ... 137

Displaying an Action Sheet .. 138

Subclassing ... 138

UIDatePicker ... 138

Configuration ... 140

Showing Dynamically ... 140

UIPickerView ... 144

Populating the Picker ... 144

UIPickerViewModel .. 145

UIToolbar ... 147

Item Types ... 148

Toolbars in Interface Builder .. 149

Programmatic Creation .. 153

Sizing ... 153

Handling Clicks .. 154

Summary .. 154

■Chapter 8: Content Controls .. 155
Navigation Controller .. 155

Parts of the Navigation Controller .. 156

Using the Navigation Controller ... 158

Modifying the Navigation Bar ... 159

Navigation Toolbar ... 162

Tab Bar Controller ... 163

Creating a Tab Bar Controller ... 165

Split View Controller ... 168

Using the Split View ... 170

Web View .. 172

http://

■ CONTENTS

ix

Using the Web View 173

Loading Local Content 176

Interacting with Page Content 176

Loading Non-Web Documents 178

Map View .. 178

Using the Map View 179

Using Device Location . .. 181

Annotating the Map . .. 182

User Overlays ... 188

Search Bar .. 191

Summary .. 192

■Chapter 9: Working with Tables .. 193
Parts of the UITableView 193

Populating a Table .. 194

UITableViewSource . .. 195

Responding to User Interaction 198

UITableViewController ... 199

Refreshing the Table When Data Changes . .. 200

Customizing the Appearance of a Table View 200

Table Styles ... 200

Providing a Table Index . .. 202

Cell Styles .. 204

Custom Cells .. 206

Editable Tables ... 212

Editing Methods ... 213

Deleting Items .. 215

Advanced Table Editing 216

Table Performance Considerations 218

Cell Reuse .. 219

Cache the Row Height . .. 219

Cache Images .. 219

Avoid Transparency 220

Manually Draw the Cell . .. 220

Avoid Complex Graphical Computations . .. 220

Create Your Cell in Code . .. 220

Further Optimizations . .. 220

Summary .. 221

■Chapter 10: Working with Keyboards . .. 223
Keyboard/Input Properties . .. 223

Capitalization ... 224

Correction .. 224

Keyboard .. 225

Return Key ... 226

Languages ... 227

Hiding the Keyboard .. 227

Making Input Fields Visible When the Keyboard Covers Them .. 228

Summary .. 231

http://

■ CONTENTS

x

■Chapter 11: Multitasking ... 233
Application States ... 234

Understanding Background Tasks .. 235

Checking for Multitasking Capability ... 236

Application Delegate Methods ... 236

Multitasking Guidelines and Requirements ... 237

Asking the iOS for Time to Complete a Task ... 239

Task Execution Expiration Time ... 239

Task Completion Patterns .. 240

Registering Your Application to be Allowed to Perform a Particular Background Task Category 241

Audio Applications .. 243

Location Applications .. 243

VoIP Applications .. 244

VoIP Socket Handling ... 244

VoIP Keep-alive .. 244

Summary .. 245

■Chapter 12: Working with Touch ... 247
When to Use Which? ... 247

Enabling Touch ... 248

Touch Events .. 249

The UITouch Class .. 249

Using Touch Events .. 249

Gesture Recognizers ... 255

Using Gesture Recognizers .. 255

Retrieving Gesture Information .. 259

Example Using the Tap Gesture ... 262

Example Using the Pan Gesture to Drag an Object .. 262

Allowing Gestures and Touch Events Simultaneously ... 265

Creating a Custom Gesture .. 265

Summary .. 269

■Chapter 13: Working with Shared Resources .. 271
File System ... 271

Case-Sensitivity ... 271

Application Sandbox .. 272

Application Directories ... 272

Backup/Restore ... 273

Application Updates ... 274

Device Battery ... 274

Battery Level .. 274

Battery State .. 275

Getting Battery Change Notifications ... 276

Address Book/Contacts ... 276

Address Book Controllers .. 277

Working Directly with the Address Book ... 285

Photos and Camera ... 289

UIImagePickerController .. 289

AV Foundation Framework ... 295

http://

■ CONTENTS

xi

Network Activity Indicator ... 298

Accelerometer ... 300

Summary .. 302

■Chapter 14: User and Application Settings .. 303
Working with Settings in the iOS .. 303

Registering Settings with the Settings Application ... 307

Creating a Settings Bundle .. 308

Creating the Property List File ... 308

Accessing Settings ... 316

Saving Settings ... 316

Initializing Settings ... 316

Summary .. 319

■Chapter 15: Working with CoreLocation .. 321
Under the Hood ... 321

Usage Pattern ... 322

Instantiating CLLocationManager ... 322

Configuring the Location Manager .. 323

Update Threshold ... 323

Accuracy .. 323

Listening for Updates .. 324

UpdatedLocation .. 324

UpdatedHeading .. 325

Starting the Location Service Updates .. 326

Capabilities .. 326

Stopping Updates .. 328

Battery Drain ... 328

Summary .. 329

■Chapter 16: Drawing with CoreGraphics ... 331
Painter’s Model ... 332

Performance ... 332

Colors .. 332

A Bit o’ Color Theory .. 332

Alpha RGB .. 333

UIColor and CGColor ... 334

Drawing Context ... 334

Drawing Onscreen ... 335

Drawing Off-Screen ... 335

CoreGraphics Coordinate System ... 338

Transforming the Context Coordinate Space ... 342

Transforming the Coordinates of Individual Drawing Operations .. 342

Drawing Tools ... 343

Paths .. 343

Primitives ... 344

Text .. 345

Images ... 346

Patterns ... 347

Shadows .. 350

http://

■ CONTENTS

xii

Transformations .. 352

Hit Testing ... 354

Updating the Drawing Surface in Real-time ... 357

Full View Update .. 357

Partial View Updates .. 358

Other Features of CoreGraphics .. 358

Summary .. 359

■Chapter 17: Core Animation .. 361
View-Based Animation Framework .. 362

View Animations via the Animation Blocks .. 362

View Animations via Block-Based Animation .. 362

Comparison of the Two Approaches .. 363

What Is Animatable? .. 363

Configuring Animation Behavior .. 364

Animation Curves ... 366

View Transitions .. 367

Specifying Behavior via Methods ... 368

Advanced Core Animation with Layers ... 369

Layer-Based Animation .. 370

Layer Animation Types ... 370

Summary .. 375

■Chapter 18: Notifications ... 377
How Notifications Work .. 377

Scheduling Local Notifications ... 378

Handling Notifications ... 379

Push Notifications ... 381

Restrictions and Limitations .. 382

The Sandbox and Production Environments .. 382

APNS-Sharp ... 382

Identifying Devices ... 383

Creating a Push Notification Certificate ... 385

Creating and Installing a Provisioning Profile .. 387

Sending Push Notifications .. 390

Summary .. 391

■Chapter 19: Working with Data ... 393
SQLite ... 394

Limitations of SQLite .. 394

Version Matrix .. 395

Creating a Database ... 395

Backups and Data Update Strategy .. 396

Backups ... 396

Application Updates ... 397

Data Access Technologies .. 398

ADO.NET ... 398

SQLite-Net .. 400

Vici CoolStorage ... 403

NHibernate ... 405

http://

■ CONTENTS

xiii

Summary .. 406

■Chapter 20: Publishing to the App Store ... 407
Review Guideline Conformity .. 407

Apple Blog .. 409

Building for Distribution .. 409

Creating and Installing a Distribution Provisioning Profile ... 409

Adding a Distribution Build Configuration .. 410

Configure Distribution Bundle Signing ... 411

Building .. 412

Submitting Your App via iTunes Connect .. 415

Application Rejection Dispute Resolution ... 417

Summary .. 418

■Chapter 21: Third-Party Libraries .. 419
MonoTouch.Dialog .. 420

DialogViewController .. 421

RootElement, Sections, and Child Elements .. 422

Using MT.D ... 424

LINQ Support .. 425

MonoTouch-Facebook .. 425

Three20 ... 428

Tapku .. 429

MonoTouch-Controls ... 430

XNATouch ... 431

Summary .. 432

■Chapter 22: Using Objective-C Libraries and Code 433
btouch ... 433

btouch Process .. 434

A Quick Objective-C Primer ... 435

Files ... 435

Classes ... 435

Methods/Messages .. 436

Properties .. 438

Protocols .. 439

Compiling the Objective-C Library .. 440

Building the Tapku Library ... 441

Creating API Definition File and Helper Code ... 445

Running btouch .. 457

Adding the Compiled Objective-C Library .. 457

Referencing the Wrapper DLL .. 458

Configuring the Build ... 459

Using the Library .. 461

Summary .. 462

Index ... 463

http://

xiv

About the Author

Bryan Costanich

http://

xv

About the Technical

Reviewer

Geoff Norton is a developer for Novell, working on the Mono Project. He is the lead on the
MonoTouch project and the MonoMac runtime, and is a member of the MonoDroid team. Geoff
has been a Mono Project contributor since 2004, and he is also responsible for the OSX port of the
Mono runtime.

http://

xvi

Acknowledgments

This book would not have been possible if it weren't for the help of Geoff Norton, the product
head of MonoTouch at Novell. He served as the technical reviewer, making sure that everything
in here is as accurate as can be. My sincerest thanks to him for all his hard work.

I'd also like to thank my friends for sticking it out while I worked tirelessly on this book for
nearly a year, barely seeing them. I'm free now, so let's hang.

http://

xvii

Preface

Thanks for purchasing Developing C# Apps for iPhone and iPad Using MonoTouch. It's been a
long time in coming, but I hope you feel it's worth the wait. The goal of this book is to not only
introduce MonoTouch, but to really give you a solid, thorough understanding of iOS
programming with it. If you go through this book, front to back, and learn the concepts and gain
an understanding of the content, you should consider yourself a well-versed iOS developer.

http://

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface

	Getting Started with MonoTouch
	Developing for the iPhone and iPad
	Limited Multitasking
	Limited System Resources
	Small Screen Size
	Device-specific Technology
	Constrained Response Time
	Constrained Access

	MonoTouch Background
	iPhone vs. iPod Touch vs iPad?
	How Does It Work?
	How Do I Build a User-Interface (UI); Can I Use Silverlight?
	How Do I Distribute My Apps?
	What Is the Licensing Model?
	Are There Any Limitations of MonoTouch?

	Getting Started
	Mac Computer Running Snow Leopard
	Apple’s iOS SDK
	Mono for OSX
	MonoTouch SDK
	Text Editor or Integrated Development Environment
	Documentation
	Resources
	3
	Party Libraries

	Summary

	Our First Application
	Starting the Example
	Create a New Solution
	Examining the Code

	Interface Builder
	Exploring Interface Builder
	Building the Interface

	Outlets
	Outlets Exposed to Code
	Running the Application

	Actions
	Adding an Action
	Actions in Code

	Choosing Which Device to Simulate
	Application Name and Icons
	Application Name
	Application Icons

	Summary

	Creating Multi-Screen Applications Using the MVC Pattern
	Model-View-Controller (MVC) Pattern
	Model
	View
	Controller

	Benefits of the MVC Pattern
	Views and View Controllers in MonoTouch
	Sample Application
	Adding the Navigation Controller to the Main Screen
	HelloWorld and HelloUniverse Screens
	Showing Different Screens

	Summary

	iPad and Universal (iPhone/iPad) Applications
	A Note About Resolution on the iPhone
	Creating an iPad-Only Application
	Changing Common Settings in MonoDevelop
	iPad Screens in Interface Builder

	Creating a Universal iPhone/iPad Application
	Method 1: Universal Project Template
	Method 2: Programmatic Device Detection

	Summary

	More on Views and Controllers
	Custom UIViewController and UIView Implementations
	Default UIView Constructor for a View Defined in a xib file
	Manually Loading a UIView Defined in a .xib File
	UIViewController Event Lifecycle
	UIView Event Lifecycle

	Managing More than One View in a Controller
	Switching Views
	Animating the Transition

	Handling Rotation
	Rotation Lifecycle Events in UIViewController
	General Approaches to Rotation
	Rotation Review

	Summary

	Introduction to Controls
	Coordinate System
	Frame

	Autosizing
	Working with Fonts
	Font Sizes
	Enumerating Fonts

	Tags
	Control States
	Working with Images
	FromFile vs. FromBundle
	Which One?

	Subclassing (Creating Custom Controls)
	Necessary Constructors
	Registering Your Controls
	Using Your Controls in Interface Builder

	Prototypes vs. Delegates vs. Events, What?
	Protocols
	Delegates
	Weak-Delegates

	Updating Your Controls from the UI Thread
	Summary

	Standard Controls
	UILabel
	Text Wrapping Options
	UITextField
	Borders
	Text Value
	Default Placeholder Text
	Keyboards

	UIButton
	Handling ‘Clicks’
	Different Types of Buttons
	Button Text

	UIImage
	Animating an Image View

	UIScrollView
	Zooming
	Implementing Tap-to-Zoom
	Scroll Paging

	UISegmentedControl
	Configuring the Segmented Control
	Specifying Segment Sizes
	Handling Button Presses

	UISwitch
	UISlider
	Images
	Accessing the Value

	UIActivityIndicatorView
	UIProgressView
	Setting the Progress Value

	UIPagerControl
	Page Changes via the Pager Control
	Updating the Pager Control When the Page is Scrolled to Via a Scroll View

	UIAlertView
	Alerts and Garbage Collection
	Working with Buttons
	Alert Delegate
	Customizing the Alert View Even Further

	UIActionSheet
	Creating a Simple Action Sheet
	Button Types
	Adding Custom Buttons
	Displaying an Action Sheet
	Subclassing

	UIDatePicker
	Configuration
	Showing Dynamically

	UIPickerView
	Populating the Picker
	UIPickerViewModel

	UIToolbar
	Item Types
	Toolbars in Interface Builder
	Programmatic Creation
	Sizing
	Handling Clicks

	Summary

	Content Controls
	Navigation Controller
	Parts of the Navigation Controller
	Using the Navigation Controller
	Modifying the Navigation Bar
	Navigation Toolbar

	Tab Bar Controller
	Creating a Tab Bar Controller

	Split View Controller
	Using the Split View

	Web View
	Using the Web View
	Loading Local Content
	Interacting with Page Content
	Loading Non-Web Documents

	Map View
	Using the Map View
	Using Device Location
	Annotating the Map
	User Overlays

	Search Bar
	Summary

	Working with Tables
	Parts of the UITableView
	Populating a Table
	UITableViewSource

	Responding to User Interaction
	UITableViewController
	Refreshing the Table When Data Changes
	Customizing the Appearance of a Table View
	Table Styles
	Providing a Table Index
	Cell Styles
	Custom Cells

	Editable Tables
	Editing Methods
	Deleting Items
	Advanced Table Editing

	Table Performance Considerations
	Cell Reuse
	Cache the Row Height
	Cache Images
	Avoid Transparency
	Manually Draw the Cell
	Avoid Complex Graphical Computations
	Create Your Cell in Code
	Further Optimizations

	Summary

	Working with Keyboards
	Keyboard/Input Properties
	Capitalization
	Correction
	Keyboard
	Return Key
	Languages

	Hiding the Keyboard
	Making Input Fields Visible When the Keyboard Covers Them
	Summary

	Multitasking
	Application States
	Understanding Background Tasks
	Checking for Multitasking Capability
	Application Delegate Methods
	Multitasking Guidelines and Requirements

	Asking the iOS for Time to Complete a Task
	Task Execution Expiration Time
	Task Completion Patterns

	Registering Your Application to be Allowed to Perform a Particular Background Task Category
	Audio Applications
	Location Applications
	VoIP Applications
	VoIP Socket Handling
	VoIP Keep-alive

	Summary

	Working with Touch
	When to Use Which?
	Enabling Touch
	Touch Events
	The UITouch Class
	Using Touch Events

	Gesture Recognizers
	Using Gesture Recognizers
	Retrieving Gesture Information
	Example Using the Tap Gesture
	Example Using the Pan Gesture to Drag an Object
	Allowing Gestures and Touch Events Simultaneously
	Creating a Custom Gesture

	Summary

	Working with Shared Resources
	File System
	Case-Sensitivity
	Application Sandbox
	Application Directories
	Backup/Restore
	Application Updates

	Device Battery
	Battery Level
	Battery State
	Getting Battery Change Notifications

	Address Book/Contacts
	Address Book Controllers
	Working Directly with the Address Book

	Photos and Camera
	UIImagePickerController
	AV Foundation Framework

	Network Activity Indicator
	Accelerometer
	Summary

	User and Application Settings
	Working with Settings in the iOS
	Registering Settings with the Settings Application
	Creating a Settings Bundle
	Creating the Property List File

	Accessing Settings
	Saving Settings
	Initializing Settings
	Summary

	Working with CoreLocation
	Under the Hood
	Usage Pattern
	Instantiating CLLocationManager
	Configuring the Location Manager
	Update Threshold
	Accuracy

	Listening for Updates
	UpdatedLocation
	UpdatedHeading

	Starting the Location Service Updates
	Capabilities

	Stopping Updates
	Battery Drain
	Summary

	Drawing with CoreGraphics
	Painter’s Model
	Performance
	Colors
	A Bit o’ Color Theory
	Alpha RGB
	UIColor and CGColor

	Drawing Context
	Drawing Onscreen
	Drawing Off-Screen

	CoreGraphics Coordinate System
	Transforming the Context Coordinate Space
	Transforming the Coordinates of Individual Drawing Operations

	Drawing Tools
	Paths
	Primitives
	Text
	Images
	Patterns
	Shadows

	Transformations
	Hit Testing
	Updating the Drawing Surface in Real-time
	Full View Update
	Partial View Updates

	Other Features of CoreGraphics
	Summary

	Core Animation
	View-Based Animation Framework
	View Animations via the Animation Blocks
	View Animations via Block-Based Animation
	Comparison of the Two Approaches
	What Is Animatable?
	Configuring Animation Behavior
	Animation Curves
	View Transitions
	Specifying Behavior via Methods

	Advanced Core Animation with Layers
	Layer-Based Animation
	Layer Animation Types

	Summary

	Notifications
	How Notifications Work
	Scheduling Local Notifications
	Handling Notifications
	Push Notifications
	Restrictions and Limitations
	The Sandbox and Production Environments
	APNS-Sharp
	Identifying Devices
	Creating a Push Notification Certificate
	Creating and Installing a Provisioning Profile
	Sending Push Notifications

	Summary

	Working with Data
	SQLite
	Limitations of SQLite
	Version Matrix
	Creating a Database

	Backups and Data Update Strategy
	Backups
	Application Updates

	Data Access Technologies
	ADO.NET
	SQLite-Net
	Vici CoolStorage
	NHibernate

	Summary

	Publishing to the App Store
	Review Guideline Conformity
	Apple Blog

	Building for Distribution
	Creating and Installing a Distribution Provisioning Profile
	Adding a Distribution Build Configuration
	Configure Distribution Bundle Signing
	Building

	Submitting Your App via iTunes Connect
	Application Rejection Dispute Resolution
	Summary

	Third-Party Libraries
	MonoTouch.Dialog
	DialogViewController
	RootElement, Sections, and Child Elements
	Using MT.D
	LINQ Support

	MonoTouch-Facebook
	Three20
	Tapku
	MonoTouch-Controls
	XNATouch
	Summary

	Using Objective-C Libraries and Code
	btouch
	btouch Process

	A Quick Objective-C Primer
	Files
	Classes
	Methods/Messages
	Properties
	Protocols

	Compiling the Objective-C Library
	Building the Tapku Library
	Creating API Definition File and Helper Code
	Running btouch
	Adding the Compiled Objective-C Library
	Referencing the Wrapper DLL
	Configuring the Build
	Using the Library

	Summary

	Index
	Special Characters & Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

