
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Yakov Fain, Victor Rasputnis, Anatole Tartakovsky,

and Viktor Gamov

Enterprise Web Development

www.allitebooks.com

http://www.allitebooks.org

Enterprise Web Development

by Yakov Fain, Victor Rasputnis, Anatole Tartakovsky, and Viktor Gamov

Copyright © 2014 Yakov Fain, Victor Rasputnis, Anatole Tartakovsky, and Viktor Gamov. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mary Treseler and Brian Anderson

Production Editor: Melanie Yarbrough

Copyeditor: Sharon Wilkey

Proofreader: Kim Cofer

Indexer: Judith McConville

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Rebecca Demarest

June 2014: First Edition

Revision History for the First Edition:

2014-06-30: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449356811 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Enterprise Web Development, the cover image of a Roseate Spoonbill, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-35681-1

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449356811
http://www.allitebooks.org

Table of Contents

Preface. xi
Introduction. xxiii

Part I. Building Your Application

1. Mocking Up the Save The Child Application. 3
Considering Mobile First 4
Introducing Balsamiq Mockups 6
The Project Owner Talks to a Web Designer 7
Creating First Mockups 7
Turning Mockups into a Prototype 11

Single-Page Applications 11
Running Code Examples from WebStorm 12
Our First Prototype 13
Our Main Page JavaScript 18
The Footer Section 22
The Donate Section 24

Adding Video 30
Adding the HTML5 Video Element 30
Embedding YouTube Videos 32

Adding Geolocation Support 34
Geolocation Basics 36
Integration with Google Maps 39
Browser Feature Detection with Modernizr 42
Search and Multimarkers with Google Maps 47

Summary 51

2. Using Ajax and JSON. 53
Understanding Ajax 53

iii

www.allitebooks.com

http://www.allitebooks.org

Understanding JSON 54
Working with Ajax 55

Retrieving Data from the Server 56
Ajax: Good and Bad 59
Populating States and Countries from HTML Files 60

Using JSON 62
Populating States and Countries from JSON Files 64
Using Arrays in JSON 66
Loading Charity Events by Using Ajax and JSON 67
Using JSON in CMS 69

Handling JSON in Java 71
Compressing JSON 72
Adding Charts to Save The Child 73

Adding a Chart with the Canvas Element 73
Adding a Chart by Using SVG 77

Loading Data from Other Servers by Using JSONP 81
Beer and JSONP 83

Summary 85

3. Introducing the jQuery Library. 87
Getting Started with jQuery 88

Hello World 90
Using Selectors and Filters 91
Testing jQuery Code with JSFiddle 92
Filtering Elements 93
Handling Events 94

Attaching Event Handlers and Elements by Using the Method on() 95
Delegating Events 96

Using Ajax with jQuery 97
Handy Shorthand Methods 99

Programming Save The Child by Using jQuery 100
Login and Donate 100
Loading HTML States and Countries by Using jQuery Ajax 104
Loading JSON States and Countries by Using jQuery Ajax 105
Submitting the Donate Form 107

Using jQuery Plug-ins 113
Validating the Donate Form by Using a Plug-in 114
Adding an Image Slider 116

Summary 119

Part II. Enterprise Considerations

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

4. Developing Web Applications in the Ext JS Framework. 123
Exploring JavaScript Frameworks 123
Choosing to Use Ext JS 124
Downloading and Installing Ext JS 125
Becoming Familiar with Ext JS and Tooling 127

Creating the First Version of Hello World 127
Generating Applications with the Sencha CMD Tool 129
Choosing Which Ext JS Distribution to Use 133
Declaring, Loading, and Instantiating Classes 134
Best Practice: MVC 139
Exploring a Component’s Life Cycle 145
Working with Events 146
Specifying Layouts 147

Developing Save The Child with Ext JS 149
Setting Up the Eclipse IDE and Apache Tomcat 150
Running the Top Portion of the Save The Child UI 155
Completing Save The Child 169

Summary 184

5. Selected Productivity Tools for Enterprise Developers. 185
Using Node.js, V8, and npm 186
Automating Everything with Grunt 186
Exploring the Simplest Gruntfile 186
Using Grunt to Run JSHint Checks 187
Watching for the File Changes 189
Using Bower 191
Using Yeoman 193
Using Ext JS and CDB for Productive Enterprise Web Development 197

Ext JS MVC Application Scaffolding 198
Generating a CRUD Application 201
Data Pagination 209

Summary 214

6. Modularizing Large-Scale JavaScript Projects. 215
Understanding Modularization Basics 217
Exploring Roads to Modularization 219

The Module Pattern 219
CommonJS 222
Asynchronous Module Definition 225
Universal Module Definition 228
ECMAScript 6 Modules 229

Dicing the Save The Child Application into Modules 232

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Inside the RequireJS Configuration: config.js 235
Writing AMD Modules 236
Loading Modules On Demand 237
Using RequireJS Plug-ins 240
Using RequireJS Optimizer 240

Loosely Coupled InterModule Communications with Mediator 244
Summary 250

7. Test-Driven Development with JavaScript. 251
Why Test? 252
Testing Basics 252

Unit Testing 253
Integration Testing 253
Functional Testing 253
Load Testing 254

Test-Driven Development 256
Implementing TDD by Using QUnit 258
Behavior-Driven Development with Jasmine 262
Multibrowser Testing 273
Testing the DOM 278

Building Save The Child with TDD 280
Harnessing the ExtJS Application 280
Testing the Models 283
Testing the Controllers 284
Testing the Views 286
Setting Up the IDE for TDD 288

Summary 292

8. Upgrading HTTP to WebSocket. 293
Using HTTP for Near Real-Time Applications 294

Polling 294
Long Polling 295
HTTP Streaming 295

Implementing Server-Sent Events 296
Introducing the WebSocket API 298

The WebSocket Interface 298
The Client-Side API 300

Using WebSocket Frameworks 306
The Portal 306
Atmosphere 307

Choosing the Format for Application-Level Messages 308
CSV 309

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

XML 309
JSON 310
Google Protocol Buffers 310

Using WebSocket with Proxies 312
Adding an Auction to Save The Child 313

Monitoring WebSocket Traffic by Using Chrome Developer Tools 320
Sniffing WebSocket Frames by Using Wireshark 323
Creating the Save The Child Auction Protocol 328

Summary 331

9. Introduction to Web Application Security. 333
HTTP versus HTTPS 334
Authentication and Passwords 335

Basic and Digest Authentication 336
Single Sign-on 337
Handling Passwords 338

Authorization 339
OAuth-Based Authentication and Authorization 340
Federated Identity with OpenID Connect and JSON Web Tokens 341
OAuth 2.0 Main Actors 343
Save The Child and OAuth 343

Top Security Risks 345
Injection 345
Cross-Site Scripting 347

Regulatory Compliance and Enterprise Security 349
Summary 351

Part III. Responsive Web Design and Mobile Devices

10. Responsive Design: One Site Fits All. 357
One or Two Versions of Code? 358

How Many User Agents Are There 362
Back to Mockups 365
CSS Media Queries 369

How Many Breakpoints? 378
Fluid Grids 379

Moving Away from Absolute Sizing 379
Window as a Grid 380
Responsive CSS: The Good News 389

Making Save The Child Responsive 390
Fluid Media 400

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Summary 402

11. jQuery Mobile. 405
Obtaining jQuery Mobile 405
Organizing the Code 406
Seeing How It Looks on Mobile Devices 409

Styling in jQuery Mobile 411
Adding Page Navigation 412
Adding Persistent Toolbars 417

Using jQuery Mobile for Save The Child 422
Prototyping the Mobile Version 423
Project Structure and Navigation 437
Selected Code Fragments 443

Summary 459

12. Sencha Touch. 461
Introducing Sencha Touch 462

Performing Code Generation and Distribution 462
Constructing the UI 470

Using Sencha Touch for Save The Child 476
Building the Application 476
The Application Object 478
The Main View 481
Controller 487
Other Views in Save The Child 490
Stores and Models 508
Working with Landscape Mode 510

Comparing jQuery Mobile and Sencha Touch 511

13. Hybrid Mobile Applications. 513
Native Applications 513
Native versus Web Applications 514
Hybrid Applications 515

Cordova and PhoneGap 515
Titanium 517

The Bottom Line 518
Introduction to the PhoneGap Workflows 518

Creating One More Hello World 519
Testing Applications on iOS Devices 525
Installing More Local SDKs 525

Using the Adobe PhoneGap Build Service 526
Distributing Mobile Applications 531

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Save The Child with PhoneGap 533
Using PhoneGap to Package Any HTML5 Application 533
Adding Camera Access to Save The Child 534
Providing Sever-Side Support for Photo Images 538

Summary 541

14. Epilogue. 543
HTML5 Is Not a Rosy Place 543
Dart: A Promising Language 545
HTML5 Is in Demand Today 546

A. Selected HTML5 APIs. 547

B. Running Code Samples and IDE. 589

Index. 593

Table of Contents | ix

Preface

This book will help web application developers and software architects pick the right
strategy for developing cross-platform applications that run on a variety of desktop
computers as well as mobile devices. The primary audience is developers from a large
organization who need to learn how to develop web applications using the HTML5
stack.

What’s an Enterprise Application?
This book has the word enterprise in its title, and we’ll explain what we consider to be
enterprise applications by giving you some examples. Creating a web application that
processes orders is not the same as creating a website to publish blogs. Enterprise ap‐
plications require company-specific workflows, which usually need to be integrated with
various internal systems, data sources, and processes.

Google Docs is not an enterprise web application. But Google Search Appliance, which
integrates search operations with company documents, databases, processes, and tick‐
ets, and provides collaboration is: it integrates the consumer-workforce front office with
what the company does (back office).

Google Maps is not an enterprise application. But Google Maps integrated with a com‐
pany site used by insurance agents to plan their daily route, create scheduling, perform
address verification, and use geocoding is.

Just using a web application in a business doesn’t make it an enterprise web application.
If you take Gmail as is, it won’t be an enterprise application until you integrate it into
another process of your business.

Is an online game an enterprise application? It depends on the game. A multiplayer
online roulette game hooked up to a payment system and maintaining users’ accounts
is an enterprise web application. But playing Sudoku online doesn’t feel too enterprisey.

xi

How about a dating website? If the site just offers an ability to display singles, it’s just a
publishing site because there is not much of a business there. Can you turn a dating
website into an enterprise application? It’s possible.

Some people will argue that an enterprise application must support multiple users and
a high data load, include data grids and dashboards, be scalable, have business and
persistence layers, offer professional support, and more. This is correct, but we don’t
believe that a web application should do all this to qualify for the adjective enterprise.

Let’s create a simple definition of an enterprise web application:

An enterprise web application is one that helps an organization run its business online.

Why the Authors Wrote This Book
The authors of this book have 90 years of combined experience in developing enterprise
applications. During all these years, we’ve been facing the same challenges regardless of
which programming language we use:

• How to make the application code base maintainable

• How to make the application responsive by modularizing its code base

• How to minimize the number of production issues by applying proper testing at
earlier stages of the project life cycle

• How to design a UI that looks good and is convenient for users

• Which frameworks or libraries to pick

• Which design patterns to apply in coding

This list can be easily extended. Ten years ago, we were developing UIs mainly in Java;
five years ago, we used Adobe Flex; today, we use HTML5-related technologies. This
book shares with you our understanding of how to approach these challenges in
HTML5.

Who This Book Is For
Web application development with HTML5 includes HTML, JavaScript, CSS, and doz‐
ens of JavaScript frameworks. The main goal of this book is to give you a hands-on
overview of developing web applications that can be run on a variety of devices—desk‐
tops, tablets, and smartphones. We expect you to have some experience with any pro‐
gramming language. Knowledge of basic HTML is also required. Understanding the
principles of object-oriented programming would be helpful, too.

This book is intended for software developers, team leaders, and web application ar‐
chitects who want to learn the following:

xii | Preface

• How to write web applications by using some of the popular libraries and frame‐
works

• How to modularize the client’s side of web applications written in JavaScript

• How to test web applications

• Whether applying responsive design principles is the right strategy for your appli‐
cation

• Which security vulnerabilities to watch for

• Why developing for mobile devices differs from developing for desktops

• The pros and cons of developing mobile applications by using the HTML5 stack
versus native languages

If you’re new to programming in JavaScript, start reading this book
from the bonus online chapter, which is an introduction to JavaScript.

What This Book Is and Why It’s Important
This book has a lot of breadth, but for mastering some of the topics in depth, be prepared
to do additional studying. On the other hand, we provide a lot of working code samples
for those who prefer studying by reading code.

This book can be important for busy professionals who don’t have time to read a separate
book about each and every library and framework that exist in the HTML5 universe.
This book will help you to narrow the list of technologies and frameworks to be con‐
sidered for the next project.

Enterprise server-side developers will also benefit from reading this book. Pretty often
enterprise Java or .NET developers feel caught off guard when they need to create a new
web application with a cross-platform and cross-browser UI. These strong enterprise
developers with good business knowledge may not have enough exposure to how things
work in the HTML5 domain. This book can be a time-saver for all server-side developers
who need to start working on the frontend of web applications.

Finally, this book is important because of the way it’s written: you’ll be working on the
application that’s introduced next.

Preface | xiii

Introducing the Save The Child Application
To make this book more practical, we decided not to give you unrelated code snippets
illustrating various syntax or techniques, but to bring all of that together in a working
application (just the UI portion). While learning the various frameworks, libraries, and
approaches to building UIs for web applications, you’ll be writing multiple versions of
the same web application—Save The Child (see Figure P-1). It’s a sample charity appli‐
cation used to collect donations for children who need medical attention.

Figure P-1. Save The Child—a sample application

This web application will allow people to register, donate, find local kids who need help,
match donors and recipients, upload images and videos, and display statistics.

Is This Even an Enterprise App?
While looking at the preceding image, you might be thinking, “This doesn’t look like
an enterprise application.” Let’s see. Do you believe that an enterprise application has to
consist of boring gray windows with lots of grids and forms, and some charts? True, but
we have all of these elements in our application, too:

• Clicking the Donate Now button reveals a form that has to be filled out and sent to
a payment processing system.

xiv | Preface

• The interactive live pie chart is something that many modern enterprise dashboards
include.

• Clicking the Table tab (right next to the Chart tab) shows the same donation stats
in a grid (that one is grayish).

• Integration with the mapping API allows you to visually present the locations of
important events for this business or nonprofit organization.

• Under the hood, this pretty window will use the high-speed, full-duplex commu‐
nication protocol WebSocket.

As a matter of fact, the company that employs the authors of this book has a customer
that is a nonprofit organization that is in the business of helping people fighting a certain
disease. That application has two parts: consumer-facing and back-office. The former
looks more colorful, whereas the latter has more gray grids indeed. Both parts process
the same data, and this organization can’t operate if you remove either of these parts.

Would these features make Save The Child an enterprise web application? Yes, because
it can help our imaginary nonprofit organization run its business: collecting donations
for sick kids. Would you rather see a fully functioning Wall Street trading system? Maybe.
But this book and our sample application incorporate all software components that
you’d need to use for developing a financial application.

How We Are Going to Build This App
Instead of presenting unrelated code samples, we decided to develop multiple versions
of the same web application, built with different libraries, frameworks, and techniques.
This approach allows you to compare apples to apples and to make an educated decision
about which approach best fits your needs.

First, we’ll show how to build this application in pure HTML/JavaScript. Then, we’ll
rewrite it using the jQuery library, and then with the Ext JS framework. Users will be
able to see where different charity events are being run (via Google Maps integration).
The page will integrate a video player and display a chart with stats on donors by geo‐
graphical location. One of the versions shows how to modularize the application; this
is a must for any enterprise system. Another version shows how to use WebSocket
technology to illustrate the server-side data push while adding an auction to this web
application. The final chapters of the book show various ways of building different
versions of the same Save The Child application to run on mobile devices (responsive
design, jQuery Mobile, Sencha Touch, and PhoneGap). We believe that this application
will help you to compare all these approaches and select those that fit your objectives.

Preface | xv

The Goals of the Book
First, we want to say what’s not the goal of this book: we are not planning to convince
you that developing a cross-platform web application is the right strategy for you. Don’t
be surprised if, after reading this book, you decide that developing applications in
HTML5 is not the right approach for the tasks you have at hand. This book should help
decision makers pick the right strategy for developing cross-platform applications that
run on a variety of desktop computers as well as mobile devices.

Technologies Used in This Book
This is an HTML5 book, and the main programming language used here is JavaScript.
We use HTML and CSS, too. Most JavaScript development is done using various libraries
and frameworks. The difference between a library and a framework is that the former
does not dictate how to structure the code of your application; a library simply offers a
set of components that will spare you from writing lots of manual code. The goal of
some frameworks is to help developers test their applications. The goal of other frame‐
works is just to split the application into separate modules. There are tools just for
building, packaging, and running JavaScript applications. Although many of the frame‐
works and tools are mentioned in this book, the main technologies/libraries/tools/
techniques/protocols used in this book are listed here:

• Balsamiq Mockups

• Modernizr

• jQuery

• jQuery Mobile

• Ext JS

• Sencha Touch

• RequireJS

• Jasmine

• Clear Data Builder

• WebSocket

• PhoneGap

• Grunt

• Bower

• WebStorm IDE

• Eclipse IDE

xvi | Preface

Although you can write your programs in any text editor, using specialized integrated
development environments (IDEs) is more productive, and we’ll use the Aptana Studio
IDE by Appcelerator and the WebStorm IDE by JetBrains.

How the Book Is Organized
Even though you may decide not to read some of the chapters, we still recommend that
you to skim through them. If you’re not familiar with JavaScript, start from the online
bonus chapter.

Chapters 1 and 2 are must reads; if you can’t read JavaScript code or are not familiar
with CSS, Ajax, or JSON, the rest of the book will be difficult to understand. On the
other hand, if you’re not planning to use, say, the Ext JS framework, you can just skim
through Chapter 4. Following is a brief book outline.

The Preface includes a brief discussion of the difference between enterprise web appli‐
cations and websites. It also touches on the evolution of HTML.

Chapter 1 describes the process of mocking up the application Save The Child, which
will solicit donations to children, embed a video player, integrate with Google Maps,
and eventually feature an online auction. We show you how to gradually build all the
functionality of this web application while explaining each step of the way. By the end
of this chapter, we’ll have the web design and the first prototype of the Save The Child
application written using just HTML, JavaScript, and CSS.

Chapter 2 is about bringing external data to web browsers by making asynchronous
calls to a server. The code from the previous chapter uses only hardcoded data. Now it’s
time to learn how to make asynchronous server calls by using Ajax techniques and
consume the data in JSON format. The Save The Child application will start requesting
the data from the external sources and sending them the JSON-formatted data.

Chapter 3 shows how to use a popular jQuery library to lower the amount of manual
coding in the Save The Child application. First, we introduce the jQuery Core library,
and then rebuild our Save The Child application with it. In the real world, developers
often increase their productivity by using JavaScript libraries and frameworks.

Chapter 4 is a mini tutorial of a comprehensive JavaScript framework called Ext JS. This
is one of the most feature-complete frameworks available on the market. Sencha, the
company behind Ext JS, has managed to extend JavaScript to make its syntax closer to
classical object-oriented languages. Sencha also developed an extensive library of the
UI components. Expect to see another rewrite of the Save The Child application here.

Chapter 5 is a review of productivity tools (including npm, Grunt, Bower,Yeoman, and
CDB) used by enterprise developers. It’s about using build tools, working with code
generators, and managing dependencies (a typical enterprise application uses various
software that needs to work in harmony).

Preface | xvii

http://bit.ly/1iJO41S
http://bit.ly/1iJO41S

Chapter 6 explains how to modularize large applications. Reducing startup latency and
implementing lazy loading of certain parts of the application are the main reasons for
modularization. We give you an example of how to build modularized web applications
that won’t bring large, monolithic code to the client’s machine, but rather loads the code
on an as-needed basis. You’ll also see how to organize the data exchange between pro‐
gramming modules in a loosely coupled fashion. The Save The Child application is
rewritten with the RequireJS framework, which will load modules on demand rather
than the entire application.

Chapter 7 is dedicated to test-driven development with JavaScript. To shorten the de‐
velopment cycle of your web application, you need to start testing it in the early stages
of the project. It seems obvious, but many enterprise IT organizations haven’t adopted
agile testing methodologies, which costs them dearly. JavaScript is dynamically typed
interpreted language—there is no compiler to help identify errors as it’s done in com‐
piled languages like Java. This means that a lot more time should be allocated for testing
JavaScript web applications. We cover the basics of testing and introduce you to some
of the popular testing frameworks for JavaScript applications. Finally, you’ll see how to
test the Save The Child application with the Jasmine framework.

Chapter 8 shows how to substantially speed up interactions between the client and the
server by using the WebSocket protocol introduced in HTML5. HTTP adds a lot of
overhead for every request and response object that serve as wrappers for the data. You’ll
see how to introduce a WebSocket-based online auction to the new version of our Save
The Child application. This is what Ian Hickson, the HTML5 spec editor from Google,
said about why the WebSocket protocol is important:

Reducing kilobytes of data to 2 bytes is more than a little more byte efficient, and reducing
latency from 150 ms (TCP round-trip to set up the connection plus a packet for the message)
to 50 ms (just the packet for the message) is far more than marginal. In fact, these two
factors alone are enough to make WebSocket seriously interesting to Google.

Chapter 9 is a brief introduction to web application security. You’ll learn about vulner‐
abilities of web applications and will get references to recommendations on how to
protect your application from attackers. This chapter concludes with some of the
application-specific security considerations (like regulatory compliance) that your busi‐
ness customers can’t ignore.

Chapter 10 opens up a discussion of how to approach creating web applications that
should run not only on desktops, but also on mobile devices. In this chapter, you become
familiar with the principles of responsive design, which allow you to have a single code
base that will be flexible enough to render a UI that looks good on large and small
screens. You’ll see the power of CSS media queries that automatically reallocate UI
components based on screen width of the device on which the website is being viewed.
The new version of the Save The Child application will demonstrate how to go about
responsive design.

xviii | Preface

www.allitebooks.com

http://www.allitebooks.org

Chapter 11 introduces you to jQuery Mobile—a library that was specifically created for
developing mobile web applications. But main principles implemented in the larger
jQuery library remain in place, and studying the materials from Chapter 3 is a prereq‐
uisite for understanding this chapter. Then you’ll create the mobile version of the Save
The Child application with jQuery Mobile.

Chapter 12 is about a little brother of Ext JS—Sencha Touch. This framework was de‐
veloped for mobile devices, and you’ll need to read Chapter 6 in order to understand
the materials from this one. As usual, we develop another variation of the mobile version
of the Save The Child application with Sencha Touch.

Chapter 13 shows how you can create hybrid mobile applications, which are written
with HTML/JavaScript/CSS but can use the native API of the mobile devices. Hybrids
are packaged as native mobile applications and can be submitted to popular online app
stores or marketplaces the same way as if they were written in the programming lan‐
guage native for the mobile platform in question. This chapter illustrates how to access
the camera of a mobile device by using the PhoneGap framework.

The bonus online chapter is an introduction to programming with JavaScript. In about
60 pages, we cover the main aspects of this language. No matter what framework you
choose, a working knowledge of JavaScript is required.

Appendix A is a brief overview of selected APIs from the HTML5 specification. They
are supported by all modern web browsers. We find these APIs important and useful
for many web applications. The following APIs are reviewed:

• Web Messaging

• Web Workers

• Application Cache

• Local Storage

• Indexed Database

• History API

Appendix B is a brief discussion of the IDEs that are being used for HTML5 development
in general and in this book in particular.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Preface | xix

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

The Source Code for the Examples
The source code for all versions of the Save The Child application are available for
download from O’Reilly at the book’s catalog page. There is also a GitHub repository
where the authors keep the source code of the book examples.

The authors also maintain the website, where various versions of the sample Save The
Child application are deployed so you can see them in action.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting

xx | Preface

http://bit.ly/enterprise-web-development
http://bit.ly/1uFXI5u
http://savesickchild.org

example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Enterprise Web Development by Yakov Fain,
Victor Rasputnis, Anatole Tartakovsky, and Viktor Gamov (O’Reilly). Copyright 2014
Yakov Fain, Victor Rasputnis, Anatole Tartakovsky, and Viktor Gamov,
978-1-449-35681-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers such as O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/enterprise-web-development.

Preface | xxi

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://bit.ly/enterprise-web-development

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
You see four names on this book cover. But this book is a product of more than four
people. It’s a product of our company, Farata Systems.

In particular, we’d like to thank Alex Maltsev, who plays the a role of Jerry-the-Designer
from Chapter 1 onward. Alex created all the UI prototypes for the sample web appli‐
cation Save The Child that is designed, redesigned, developed, and redeveloped several
times in this book. He also developed code samples for the book and all CSS files.

Our big thanks to Anton Moiseev, who developed the Ext JS and Sencha Touch versions
of our sample application.

Our hats off to the creators of the Asciidoc text format. The drafts of this book were
prepared in this format, with the subsequent generation of PDF, EPUB, MOBI, and
HTML documents.

Our sample application uses two images from the iStockPhoto collection: the smiling
boy by the user jessicaphoto and the logo by the user khalus. Thank you, guys!

Finally, our thanks to the O’Reilly editors for being so patient while we were trying to
hit lots of moving and evolving targets that together represent the universe known as
HTML5.

xxii | Preface

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://asciidoc.org/
http://www.istockphoto.com/

Introduction

During the last decade, the authors of this book worked on many enterprise web ap‐
plications using a variety of programming languages and frameworks: HTML, Java‐
Script, Java, and Flex, to name a few. Apache Flex and Java produce compiled code that
runs in a well-known and predictable virtual machine (JVM and Flash Player, respec‐
tively).

This book is about developing software by using what’s known as the HTML5 stack.
But only the second chapter of this book offers you an overview of the selected HTML5
tags and APIs. The first chapter is an advanced introduction to JavaScript. The rest of
the chapters are about designing, redesigning, developing, and redeveloping a sample
website for Save The Child. You’ll be learning whatever is required for building this web
application on the go.

You’ll be using dynamic HTML (DHTML), which is HTML5, JavaScript, and Cascading

Style Sheets (CSS). We’ll add to the mix the XMLHttpRequest object that lives in a web
browser and communicates with the server without the need to refresh the entire web
page (a.k.a. Ajax). JSON will be our data format of choice for data exchange between
the web browser and the server.

Moving from DHTML to HTML5
DHTML stands for Dynamic HTML. Back in 1999, Microsoft introduced the XMLHttpRe

quest object to allow the web version of its mail client, Outlook, to update the browser’s
window without the need to refresh the entire web page. Several years later, it was sub‐
stituted with a more popular acronym, AJAX (which stood for Asynchronous JavaScript
and XML); today we refer to it simply as a name, “Ajax.” The market share of Internet
Explorer 5 was about 90 percent at the time, and in enterprises it was literally the only
approved browser.

Many years passed by, and today’s Internet ecosystems have changed quite a bit. Web
browsers are a lot smarter, and the performance of JavaScript has improved substantially.

xxiii

The browsers support multiple simultaneous connections per domain (as opposed to
2 five years ago), which gave a performance boost to all Ajax applications. At least one-
third of all web requests are being made from smartphones or tablets. Apple started its
war against all browser plug-ins; hence using embedded Java VM or Flash Player is not
an option there. The growing need to support a huge variety of mobile devices gave
another boost for the HTML5 stack, which is supported by all devices.

But choosing HTML5 as the least common denominator that works in various devices
and browsers means lowering requirements for your enterprise project. The UI might
not be pixel-perfect on any particular device, but it will be made somewhat simpler
(compared to developing for one specific VM, device, or OS) and will have the ability
to adapt to different screen sizes and densities. Instead of implementing features that
are specific to a particular device, the functional specification will include requirements
to test under several web browsers, in many screen sizes and resolutions. HTML5 de‐
velopers spend a lot more time in the debugger than people who develop for a known
VM. You’ll have to be ready to solve problems such as a drop-down not showing any
data in one browser while working fine in others. Can you imagine a situation when
the click event is not always generated while working in Java, Flex, or Silverlight? Get
ready for such surprises while testing your HTML5 application.

You’ll save some time because there is no need to compile JavaScript, but you’ll spend
more time testing the running application during development and Quality Assurance
(QA) phases. The final deliverable of an HTML5 project might have as low as half of
the functionality compared to the same project developed for a VM. But you’ll gain a
little better web adaptability, easier implementation of full-text search, and the ability
to create mashups. Integration with other technologies will also become easier with
HTML/JavaScript. If all these advantages are important to your applications, choose
HTML5.

JavaScript will enforce its language and tooling limitations on any serious and complex
enterprise project. You can develop a number of fairly independent windows, but cre‐
ating well-tested and reliable HTML5 applications takes time. It can be significantly
easier with the use of libraries or a framework.

In this book, we use some JavaScript frameworks; there are dozens on the market. Sev‐
eral of them promise to cover all the needs of your web application. Overall, there are
two main categories of frameworks:

• Those that allow you to take an existing HTML5 website and easily add new at‐
tributes to all or some page elements so they would start shining, blinking, or do
some other fun stuff. Such frameworks don’t promote component-based develop‐
ment. They may not include navigation components, grids, or trees, which are
pretty typical for any UI of the corporate tasks. JQuery is probably the best repre‐
sentative of this group; it’s light (30 Kb), extendable, and easy to learn.

xxiv | Introduction

http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)

• Another group of frameworks offers rich libraries of high-level components and
allow you to extend them. But overall, such components are supposed to be used
together, becoming a platform for your web UI. These components process some
events, offer support of the Model-View-Controller paradigm (or an offshoot of
that), have a proprietary way of laying out elements on the web page, organize
navigation, and more. Ext JS from Sencha belongs to this group.

Dividing all frameworks into only two categories is an oversimplification, of course.
Frameworks such as Backbone.js, AngularJS, and Ember.js have no “components” in
terms of the UI sense, and some don’t even quite dictate how you build your application
(as in, they are not full-stack like Sencha). Some of the frameworks are less intrusive,
whereas others are more so. But our goal is not to compare and contrast all HTML5
frameworks, but rather to show you some selected ones.

We’ll use both jQuery and Ext JS and show you how to develop web applications with
each of them. jQuery is good for improving an existing JavaScript site and can be used
to program about 80 percent of a website’s functionality. However, for the UI compo‐
nents, you’ll need to use another framework (for example, jQuery UI). You should use
jQuery for the look-and-feel support, which is what it’s meant for. But you can’t use it
for building your application component model. The component model of Ext JS be‐
comes a fabric of the website, which includes an application piece rather than just being
a set of web pages. Besides, Ext JS comes with a library of the UI components.

JavaScript frameworks are hiding from software developers all in‐
compatibilities and take care of the cases when a web browser doesn’t
support some HTML5, CSS3, or JavaScript features yet.

High-level UI components and workflow support are needed for a typical enterprise
application in which the user needs to perform several steps to complete the business
process. And 20 percent of an application’s code will require 80 percent of the project
time of complex development. So choosing a framework is not the most difficult task.
The main problem with DHTML projects is not how to pick the best JavaScript frame‐
work for development, but finding the right software developers. A lack of qualified
developers increases the importance of using specialized frameworks for code testing.
The entire code base must be thoroughly tested over and over again. We discuss this
subject in Chapter 5, which is dedicated to test-driven development.

A JavaScript developer has to remember all unfinished pieces of code. Many things that
we take for granted with compiled languages simply don’t exist in JavaScript. For ex‐
ample, in Java or C#, just by looking at the method signature, you know the data types
of the method’s parameters. In JavaScript, you can only guess if the parameter names
are self-descriptive. Take the Google framework, GWT, which allows developers to write

Introduction | xxv

code in Java by auto-generating the JavaScript code. Writing code in one language with
further conversion and deployment in another one is a controversial idea unless the
source and generated languages are very similar. We’re not big fans of GWT, because
after writing the code, you’ll need to be able to debug it. This is when a Java developer
meets a foreign language: JavaScript.The ideology and psychology of programming in
JavaScript and Java are different. A person who writes in Java/GWT has to know how
to read and interpret deployed JavaScript code. On the other hand, using TypeScript or
CoffeeScript to produce JavaScript code can be a time-saver.

The Ext JS framework creators decided to extend JavaScript by introducing their version
of classes and a more familiar syntax for object-oriented languages. Technically, they
are extending or replacing the constructs of JavaScript itself by extending the alphabet.

Ext JS recommends creating objects by using ext.create instead of the operator new.
But Ext JS is still a JavaScript framework.

The jQuery framework substantially simplifies working with a browser’s Document
Object Model (DOM) elements, and there are millions of small components that know
how to do one thing well; for example, sliding effects. But it’s still JavaScript and requires
developers to understand the power of JavaScript functions, callbacks, and closures.

Developing in HTML5
Should we develop in HTML5, given that this standard has not been finalized yet? The
short answer is yes. If you are planning to develop mainly for the mobile market, it’s
well equipped with the latest web browsers, so if you run into issues there, they won’t
be caused by a lack of HTML5 support. In the market of enterprise web applications,
the aging Internet Explorer 8 is still being widely used, and it doesn’t support some of
the HTML5-specific features. But it’s not a show-stopper either. If you are using one of
the JavaScript frameworks that offers cross-browser compatibility, most likely it takes
care of Internet Explorer 8 issues.

Remember that, even if you rely on a framework that claims to offer cross-browser
compatibility, you will still need to test your application in the browsers that you expect
to support to ensure that it functions as intended. The chances are that you may need
to fix the framework’s code here and there. Maintaining compatibility is a huge challenge
for any framework’s vendor, which in some cases can consist of just one developer. Spend
some time working with the framework, and then work on your application code. If
you can, submit your fixes back to the framework’s code base—most frameworks are
open source.

If you are planning to write pure JavaScript, add the tiny framework Modernizr (see
Chapter 1) to your code base, which will detect whether a certain feature is supported
by the user’s web browser, and if not, provide an alternative solution. We like the analogy
of TV sets. People with the latest 3D HDTV sets and those who have 50-year-old black-

xxvi | Introduction

http://api.jquery.com/category/effects/sliding/

and-white televisions can watch the same movie, even though the quality of the picture
will be drastically different.

Challenges of the Enterprise Developer
If you are an enterprise developer starting work on your first HTML5 enterprise project,
get ready to solve the same tasks that all UI software developers face, regardless of what
programming language they use:

• Reliability of network communications. What if the data never arrives from/to the
server? Is it possible to recover the lost data? Where did it get lost? Can we resend
the lost data? What to do with duplicates?

• Modularization of your application. If your application has certain rarely used me‐
nus, don’t even load the code that handles them.

• Perceived performance. How quickly is the main window of your application loaded
into the user’s computer? How heavy is the framework’s code base?

• Should you store the application state on the server or on the client?

• Does the framework offer a rich library of components?

• Does the framework support creation of loosely coupled application components?
Is the event model well designed?

• Does the framework of your choice cover most of the needs of your application, or
will you need to use several frameworks?

• Is well-written documentation available?

• Does the framework of your choice lock you in? Does it restrict your choices? Can
you easily replace this framework with another one if need be?

• Is there an active community to ask for help with technical questions?

• What is the right set of tools to increase your productivity (debugging, code gen‐
eration, build automation, dependency management)?

• What are the security risks that need to be addressed to prevent exposing sensitive
information to malicious attackers?

We could continue adding items to this list. But our main message is that developing

HTML5 applications is not just about adding <video> and <canvas> tags to a web page.
It’s about serious JavaScript programming. In this book, we discuss all of these chal‐
lenges.

Introduction | xxvii

Summary
HTML5 is ready for prime time. There is no need to wait for the official release of its
final standard. All modern web browsers have supported most HTML5 features and
APIs for a couple of years now. To be productive, you’ll need to use not just HTML,
JavaScript, and CSS, but third-party libraries, frameworks, and tools. In this book, we
introduce you to a number of them, which will help you make the final choice of the
right set of productivity tools that work best for your project.

xxviii | Introduction

www.allitebooks.com

http://www.allitebooks.org

PART I

Building Your Application

This book has three parts. In Part I, we start building web applications. We’ll be building
and rebuilding a sample application titled Save The Child.

We assume that you know how to write programs in JavaScript. If you
are not familiar with this language, study the materials in the bonus
online chapter first. You’ll find a fast-paced introduction to Java‐
Script there.

In Chapter 1 we’ll start working with a web designer. We’ll create a mockup, and will
start development in pure JavaScript. By the end of this chapter, the first version of this
application will be working, using hardcoded data.

Chapter 2 shows you how to use Ajax techniques to allow web pages to communicate
with external data sources, without the need to refresh the page. We also cover JavaScript
Object Notation (JSON)—a de facto standard data format when it comes to commu‐
nication between web browsers and servers.

Chapter 3 shows how to minimize the amount of manually written JavaScript by in‐
troducing the popular jQuery library. You’ll rebuild the Save The Child application with
jQuery.

After reading this part, you’ll be ready to immerse yourself into more heavy-duty tools
and frameworks that are being used by enterprise developers.

CHAPTER 1

Mocking Up the Save The Child Application

Let’s start working on our web application, Save The Child. This web application will
contain a form for donations to sick children and an embedded video player, will inte‐
grate with Google Maps, will have charts, and more. The goal is for you to gradually
build all the functionality of this web application while we explain each step so that you
can understand why we are building it the way we do. By the end of this chapter, you’ll
have the web design and the first prototype of Save The Child.

The proliferation of mobile devices and web applications requires new skills for devel‐
opment of what used to be boring-looking enterprise applications. In the past, design
of the user interface (UI) of most enterprise applications was done by developers to the
best of their artistic abilities: a couple of buttons here, and a grid there, on a gray back‐
ground. Business users were happy because they did not know any better. The applica‐
tion allowed users to process business data—what else was there to wish for? Enterprise
business users used to be happy with any UI, as long as the application helped them to
take care of their business.

But today’s business users are spoiled by nice-looking consumer-facing applications,
and more often than not, new development starts by inviting a web designer to create
a prototype of the future application. For example, we’ve seen some excellent (from the
UI perspective) functional specifications for boring financial applications made by pro‐
fessional designers. Business users are slowly but surely becoming more demanding in
the area of UI design solutions. The trend is clear: a developer’s art does not cut it
anymore.

In enterprise IT shops, web design is usually done by a professional web designer. Soft‐
ware developers are not overly familiar with the tools that web designers are using. But
to make this book useful even for smaller shops that can’t afford professional web design,
we illustrate the process of design and prototyping of the UI of a web application.

3

Our web designer—let’s call him Jerry—is ready to start working on the mockup (a.k.a.
wireframes); this is a set of images depicting various views of the future Save The Child
application. We expect him to deliver images with comments that briefly explain what
should change in a view if a user takes certain actions (for example, clicks a button).
You can also think of an application’s UI as a set of states, and the user’s action results
in your application transitioning from one state to another. As nerds and mathemati‐
cians say, the UI of your application is a finite state machine, which at any given point
in time is in one of a finite number of states (for example, in the view state Donate Form
or Auction).

Considering Mobile First
While starting work on the design of a new web application, keep in mind that some
users likely will access it from mobile devices. Will the proposed UI look good on mobile
devices with smaller screens? Some people suggest using a so-called Mobile First ap‐
proach, which means that from the very early stages of web application development,
you should do the following:

• Ensure that your web application (design and layout) looks good on smaller screens.

• Differentiate the content to be shown on large versus small screens (start with small
screens and enhance for the larger ones).

• Test your application on slow (3G-like) networks and minimize the “weight” of the
landing page.

• Decide on an approach: should you use responsive web design (see Chapter 10),
HTML5 mobile frameworks, native, or hybrid (see Chapter 13)?

• If you are planning to use geographical location services, decide on the API to be
used for mobile devices, but don’t forget about desktops, too.

Users of iOS and Android devices are used to being able to find the
closest restaurant or gas station based on their current location. Did
you know that this location feature can be available on desktops, too?
Google Maps is just one of the services that can find the location of a
user’s desktop based on its IP address, WiFi router’s ID, or proximi‐
ty to cell towers. Zeroing in on your device might not be as precise as
with a smartphone’s GPS, but it might be good enough. So, why not
plan on adding this feature to all versions of your web application?
Finding the closest charity event or a local child in need can be done
by knowing an approximate location of your desktop computer.

Let’s consider pointing devices. At the time of this writing, the vast majority of desktop
users work with pixel-perfect mouse pointers or track pads. Smartphone or tablet users

4 | Chapter 1: Mocking Up the Save The Child Application

http://bit.ly/1nYG1f4

work with their fingers. One finger touch can cover a square comprising roughly 100
pixels. CNN’s site, for example, shows lots of news links located very close to one another
on the screen. A finger might cover more than one link, and Android devices offer you
a larger pop-up, allowing you to select the link you really wanted to touch. Having a
Mobile First state of mind doesn’t mean that CNN needs to keep a larger distance be‐
tween links for all the users. However, it does mean that CNN should foresee the issues
or innovate using the features offered by modern mobile devices.

Chapter 10 covers the responsive web design techniques that allow us to create UIs for
web applications that automatically re-allocate screen content based on the size of the
display on the user’s device. Although this chapter is about the desktop version of the
Save The Child web application, its screen will consist of several rectangular areas that
can be allocated differently (or even hidden) on smartphones or tablets.

Before writing this book, we discussed how our application should
look and work on mobile devices. But strictly speaking, because the
work on multiple chapters was done in parallel, this was not a Mo‐
bile First approach.

Consider reading Chapter 12 now to better understand what you will
need to deal with when developing web applications that look good
on desktop monitors as well as on mobile screens. Understanding
responsive design principles will help you in communications with
your web designer.

One of the constraints that mobile users have is the relatively slow speed of the mobile
Internet. This means that even though your desktop users will use fast LAN connection
lines, your web application has to be modularized so that only a minimal number of
modules has to be loaded initially. Often, mobile providers charge users based on the
amount of consumed data, too.

The chances are slim that desktop users will lose an Internet connection for a long period
of time. On the other hand, mobile users might stay in an area with no connection or a
spotty one. In this case, the Mobile First thinking can lead to introducing an offline
mode with limited functionality.

Thinking up front of the minimal content to be displayed on small mobile screens might
force you to change the design of desktop web pages, too. In our sample Save The Child
application, we need to make sure that there is enough space for the Donate Now button
even on the smallest devices.

Considering Mobile First | 5

Introducing Balsamiq Mockups
Visualize a project owner talking to our web designer, Jerry, in a cafeteria, and Jerry is
drawing sketches of the future website on a napkin. Well, in the 21st century, he’s using
an electronic napkin, so to speak—an excellent prototyping tool called Balsamiq Mock‐
ups. This easy-to-use program gives you a working area where you create a mockup of
your future web application by dragging and dropping the required UI components
from the toolbar onto the image of the web page (see Figure 1-1).

Figure 1-1. The working area of Balsamiq Mockups

If you can’t find the required image in Balsamiq’s library, add your own by dragging and
dropping it onto the top toolbar. For example, the mockup in Chapter 10 uses our images
of the iPhone that we’ve added to Balsamiq assets.

If you prefer using free tools, consider using MockFlow.

6 | Chapter 1: Mocking Up the Save The Child Application

http://balsamiq.com
http://balsamiq.com
http://mockflow.com

When the prototype is done, it can be saved as an image and sent to the project owner.
Another option is to export the Balsamiq project into XML, and if both the project
owner and web designer have Balsamiq installed, they can work on the prototype in
collaboration. For example, the designer exports the current state of the project, the
owner imports it and makes corrections or comments, and then exports it again and
sends it back to the designer.

The Project Owner Talks to a Web Designer
During the first meeting, Jerry talks to the project owner about the required function‐
ality and then creates the UI to be implemented by web developers. The artifacts pro‐
duced by a designer vary depending on the qualifications of that designer. For instance,
a set of images might represent different states of the UI with little callouts explaining
the navigation of the application. If the web designer is familiar with HTML and CSS,
developers might get a working prototype in the form of HTML and CSS files, and this
is exactly what Jerry will create by the end of this chapter.

Our project owner says to Jerry: “The Save The Child web application should allow people
to make donations to the children. Users should be able to find these children by specifying
a geographical area on the map. The application should include a video player and display
statistics about donors and recipients. The application should include an online auction,
with proceeds going to the charity. We’ll start working on the desktop version first, but
your future mockup should include three versions of the UI, supporting desktops, tablets,
and smartphones.”

After the meeting, Jerry launches Balsamiq and begins to work. He decides that the main
window will consist of four areas laid out vertically:

• The header with the logo and several navigation buttons

• The main area with the Donate section plus the video player

• The area with statistics, and charts

• The footer with several housekeeping links plus the icons for Twitter and Facebook

Creating First Mockups
The first deliverable of our web designer (see Figures 1-2 and 1-3) depicts two states of
the UI: before and after clicking the Donate Now button. The web designer suggests
that on the button click, the video player turn into a small button revealing the donation
form.

The Project Owner Talks to a Web Designer | 7

Figure 1-2. The main view before clicking Donate Now

8 | Chapter 1: Mocking Up the Save The Child Application

Figure 1-3. The main view after clicking Donate Now

The project owner suggests that turning the video into a Donate Now button might not
be the best idea. We shouldn’t forget that the main goal of this application is collecting
donations, so they decide to keep the user’s attention on the Donate area and move the
video player to the lower portion of the window.

Next, they review the mockups of the authorization routine. The view states in this
process can be:

1. Not Logged On

2. The Login Form

3. Wrong ID/Password

4. Forgot Password

5. Successfully Logged On

The web designer’s mockups of some of these states are shown in Figures 1-4 and 1-5.

Creating First Mockups | 9

Figure 1-4. The user hasn’t clicked the Login button

The latter shows different UI states should the user decide to log in. The project owner
reviews the mockups and returns them to Jerry with some comments. The project owner
wants to make sure that the user doesn’t have to log on to the application to access the
website. The process of making donations has to be as easy as possible, and forcing the
donor to log on might scare some people away, so the project owner leaves the comment
shown in Figure 1-5.

10 | Chapter 1: Mocking Up the Save The Child Application

www.allitebooks.com

http://www.allitebooks.org

Figure 1-5. The user hasn’t clicked the Login button

This is enough of a design for us to build a working prototype of the app and start getting
feedback from business users. In the real world, when a prospective client (including
business users from your enterprise) approaches you, asking for a project estimate,
provide a document with a detailed work breakdown and screenshots made by Balsamiq
or a similar tool.

Turning Mockups into a Prototype
We are lucky, because Jerry knows HTML and CSS. He’s ready to turn the still mock-
ups into the first working prototype. It will use only hardcoded data, but the layout of
the site will be done in CSS and will use HTML5 markup. He’ll design this application
as a single-page application (SPA).

Single-Page Applications
An SPA is an architectural approach that doesn’t require the user to go through multiple
pages to navigate a site. The user enters the URL in the browser, which brings up the
web page that remains open on the screen until the user stops working with that appli‐
cation. A portion of the user’s screen might change as the user navigates the application,
new data might come in via Ajax techniques (see Chapter 2), or new DOM elements

Turning Mockups into a Prototype | 11

might need to be created during runtime, but the main page itself isn’t reloaded. This
allows building so-called fat client applications that can remember the state. Besides,
most likely your HTML5 application will use a JavaScript framework, which in SPA is
loaded only once, when the home page is created by the browser.

Have you ever seen a monitor of a trader working for a Wall Street firm? Traders usually
have three or four large monitors, but let’s look at just one of them. Imagine a busy
screen with lots and lots of fluctuating data grouped in dedicated areas of the window.
This screen shows the constantly changing prices from financial markets, orders placed
by the trader to buy or sell products, and notifications on completed trades. If this were
a web application, it would live on the same web page. There would be no menus to
open other windows.

The price of an Apple share was $590.45 just a second ago, and now it’s $590.60. How
can this be done technically? Here’s one possibility: Every second, an Ajax call is made
to the remote server providing current stock prices, and the JavaScript code finds in the
DOM the HTML element responsible for rendering the price and then modifies its value
with the latest price.

Have you seen a web page showing the content of a Google Gmail input box? It looks
like a table with rows representing the sender, subject, and date of each email’s arrival.
Suddenly, you see a new row in bold on top of the list—a new email came in. How was
this done technically? A new object(s) was created and inserted into a DOM tree. No
page changes, no need for the user to refresh the browser’s page. An undercover Ajax
call gets the data, and JavaScript changes the DOM. The content of DOM changed, and
the user sees an updated value.

Running Code Examples from WebStorm
The authors of this book use WebStorm IDE 7 from JetBrains for developing real-world
projects. Appendix B explains how to run code samples in WebStorm.

This chapter includes lots of code samples illustrating how the UI is gradually being
built. We’ve created a number of small web applications. Each of them can be run in‐
dependently. Just download and open in the WebStorm (or any other) IDE the directory
containing samples from Chapter 1. After that, you’ll be able to run each of these ex‐
amples by right-clicking index.html in WebStorm and choosing Open in Browser.

12 | Chapter 1: Mocking Up the Save The Child Application

We assume that the users of our Save The Child application work with
modern versions of web browsers (two years old or newer). Real-
world web developers need to find workarounds to the unsuppor‐
ted CSS or HTML5 features in old browsers, but modern IDEs gen‐
erate HTML5 boilerplate code that include large CSS files providing
different solutions to older browsers.

JavaScript frameworks implement workarounds (a.k.a., polyfills) for
features unsupported by old browsers, too, so we don’t want to clut‐
ter the text by providing several versions of the code just to make book
samples work in outdated browsers. This is especially important when
developing enterprise apps for situations in which the majority of
users are locked in a particular version of an older web browser.

Our First Prototype
In this section, you’ll see several projects that show how the static mockup will turn into
a working prototype with the help of HTML, CSS, and JavaScript. Because Jerry, the
designer, decided to have four separate areas on the page, he created the HTML file

index.html that has the tag <header> with the navigation tag <nav>, two <div> tags for

the middle sections of the page, and a <footer>, as shown in Example 1-1.

Example 1-1. The first version of the home page

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Save The Child | Home Page</title>
 <link rel="stylesheet" href="css/styles.css">
 </head>
 <body>
 <div id="main-container">
 <header>
 <h1>Save The Child</h1>
 <nav>

 Who we are

 What we do

 Way to give

 How we work

Turning Mockups into a Prototype | 13

 </nav>
 </header>
 <div id="main" role="main">
 <section>
 Donate section and Video Player go here
 </section>
 <section>
 Locate The Child, stats and tab folder go here
 </section>
 </div>
 <footer>
 <section id="temp-project-name-container">
 project 01: This is the page footer
 </section>
 </footer>
 </div>
 </body>
</html>

Note that this HTML file uses the <link> tag to include the CSS file shown in
Example 1-2. Because there is no content yet for the navigation links to open, we use

the syntax href="javascript:void(0) to create a live link that doesn’t load any page,
which is fine in prototyping stage.

Example 1-2. The file styles.css

/* Navigation menu */

nav {
 float: right
}
nav ul li {
 list-style: none;
 float: left;
}
nav ul li a {
 display: block;
 padding: 7px 12px;
}

/* Main content

 #main-container is a wrapper for all page content

 */

#main-container {
 width: 980px;
 margin: 0 auto;
}
div#main {
 clear: both;
}

/* Footer */

footer {

14 | Chapter 1: Mocking Up the Save The Child Application

 /* Set background color just to make the footer standout*/
 background: #eee;
 height: 20px;
}
footer #temp-project-name-container {
 float: left;
}

This CSS controls not only the styles of the page content, but also the page layout. The

<nav> section should be pushed to the right. If an unordered list is placed inside the

<nav> section, it should be left-aligned. The width of the HTML container with the ID

main-container should be 980 pixels, and it has to be automatically centered. The footer
will be 20 pixels high and should have a gray background. The first version of our web
page is shown in Figure 1-6. Run index.html from project-01-get-started.

In Chapter 10, you’ll see how to create web pages with more flexible
layouts that don’t require specifying absolute sizes in pixels.

Figure 1-6. Working prototype, take 1: Getting Started

The next version of our prototype is more interesting and contains a lot more code. The
CSS file will become fancier, and the layout of the four page sections will properly divide
the screen real estate. We’ll add a logo and a nicely styled Login button to the top of the
page. This version of the code will also introduce some JavaScript that supports user
authorization. Run project-02-login, and you’ll see a window similar to Figure 1-7.

Turning Mockups into a Prototype | 15

Figure 1-7. Working prototype, take 2: Login

This project has several directories to keep JavaScript, images, CSS, and fonts separate.
We’ll talk about special icon fonts later in this section, but first things first: let’s take a
close look at the HTML code in Example 1-3.

Example 1-3. The second version of the home page

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
 <title>Save The Child | Home Page</title>
 <link rel="stylesheet" href="assets/css/styles.css">

 </head>
 <body>
 <div id="main-container">
 <header>

 <h1 id="logo">Save The Child</h1>

16 | Chapter 1: Mocking Up the Save The Child Application

 <nav id="top-nav">

 <li id="login">
 <div id="authorized">

 admin

 profile |
 logout
 </div>

 <form id="login-form">

 <input id="username" name="username" type="text"
 placeholder="username" autocomplete="off" />

 <input id="password" name="password"
 type="password" placeholder="password"/>
 </form>
 login

 <div id="login-link" class="show-form">login
 </div>

 <div class="clearfix"></div>

 <li id="top-menu-items">

 Who We Are

 What We Do

 Where We Work

 Way To Give

 </nav>
 </header>

 <div id="main" role="main">
 <section id="main-top-section">

 Main content. Top section.

Turning Mockups into a Prototype | 17

 </section>
 <section id="main-bottom-section">
 Main content. Bottom section.
 </section>
 </div>
 <footer>
 <section id="temp-project-name-container">
 This is the footer
 </section>
 </footer>
 </div>
 <script src="assets/js/main.js"></script>
 </body>
</html>

Usually, the logos on multipage websites are clickable—they bring up the home page.
That’s why Jerry placed the anchor tag in the logo section. But we are planning to build
a single-page application, so having a clickable logo won’t be needed.

Run this project in WebStorm and click the Login button; you’ll see that it reacts. But

looking at the login-related <a> tags in the <header> section, you’ll find nothing but

href="javascript:void(0)". So why does the button react? Read the code in main.js

shown in Example 1-4, and you’ll find the line loginLink.addEventListen

er('click', showLoginForm, false); that invokes the callback showLoginForm().
That’s why the Login button reacts. This seems confusing because the anchor compo‐
nent was used here just for styling purposes. In this example, a better solution would

be to replace the anchor tag <a id="login-link" class="show-form" href="java

script:void(0)"> with another component that doesn’t make the code confusing—

for example, <div id="login-link" class="show-form">.

We do not want to build web applications the old way wherein a
server-side program prepares and sends UI fragments to the client.
The server and the client send each other only the data. If the server
is not available, we can use the local storage (the offline mode) or
mock up data on the client.

Our Main Page JavaScript
Now let’s examine the JavaScript code located in main.js. This code self-invokes the

anonymous function, which creates an object-encapsulated namespace stc (short for
Save The Child). This avoids polluting the global namespace. If we wanted to expose
anything from this closure to the global namespace, we could have done this via the

variable stc, as described in the section “Closures” in the bonus online chapter. See
Example 1-4.

18 | Chapter 1: Mocking Up the Save The Child Application

Example 1-4. The JavaScript code of the home page

// global namespace ssc

var stc = (function() {
 // Encapsulated variables

 // Find login section elements
 // You can use document.getQuerySelector() here
 // instead of getElementByID ()
 var loginLink = document.getElementById("login-link");
 var loginForm = document.getElementById("login-form");
 var loginSubmit = document.getElementById('login-submit');
 var logoutLink = document.getElementById('logout-link');
 var profileLink = document.getElementById('profile-link');
 var authorizedSection = document.getElementById("authorized");

 var userName = document.getElementById('username');
 var userPassword = document.getElementById('password');

 // Register event listeners

 loginLink.addEventListener('click', showLoginForm, false);
 loginSubmit.addEventListener('click', logIn, false);
 logoutLink.addEventListener('click', logOut, false);
 profileLink.addEventListener('click', getProfile, false);

 function showLoginForm() {
 loginLink.style.display = "none";
 loginForm.style.display = "block";
 loginSubmit.style.display = "block";
 }

 function showAuthorizedSection() {
 authorizedSection.style.display = "block";
 loginForm.style.display = "none";
 loginSubmit.style.display = "none";
 }

 function logIn() {
 //check credentials
 var userNameValue = userName.value;
 var userNameValueLength = userName.value.length;
 var userPasswordValue = userPassword.value;
 var userPasswordLength = userPassword.value.length;

 if (userNameValueLength == 0 || userPasswordLength == 0) {
 if (userNameValueLength == 0) {
 console.log("username can't be empty");
 }
 if (userPasswordLength == 0) {
 console.log("password can't be empty");
 }
 } else if (userNameValue != 'admin' ||

Turning Mockups into a Prototype | 19

 userPasswordValue != '1234') {
 console.log('username or password is invalid');

 } else if (userNameValue == 'admin' &&
 userPasswordValue == '1234') {

 showAuthorizedSection();
 }
 }

 function logOut() {
 userName.value = '';
 userPassword.value = '';
 authorizedSection.style.display = "none";
 loginLink.style.display = "block";
 }

 function getProfile() {
 console.log('Profile link clicked');
 }

})();

Query the DOM to get references to login-related HTML elements.

Register event listeners for the clickable login elements.

To make a DOM element invisible, set its style.display="none". Hide the
Login button and show the login form having two input fields for entering the
user ID and the password.

If the user is admin and the password is 1234, hide the loginForm and make the
top corner of the page look as in Figure 1-8.

We keep the user ID and password in this code just for illustration
purposes. Never do this in your applications. Authentication has to
be done in a secure way on the server side.

Figure 1-8. After successful login

20 | Chapter 1: Mocking Up the Save The Child Application

www.allitebooks.com

http://www.allitebooks.org

Where to put JavaScript

We recommend placing the <script> tag with your JavaScript at the end of your HTML

file as in our index.html shown previously. If you move the line <script src="js/

main.js"></script> to the top of the <body> section and rerun index.html, the screen
will look like Figure 1-7, but clicking Login won’t display the login form as it should.
Why? Registering of the event listeners in the script main.js failed because the DOM

components (login-link, login-form, and others) were not created by the time this
script was running. Open Firebug, Chrome Developer Tools, or any other debugging
tool, and you’ll see an error on the console that will look similar to the following:

__TypeError: loginLink is null
loginLink.addEventListener('click', showLoginForm, false);__

Of course, in many cases, your JavaScript code could have tested whether the DOM
elements exist before using them, but in this particular sample, it’s just easier to put the
script at the end of the HTML file. Another solution is to load the JavaScript code located

in main.js in a separate handler function that would run only when the window’s load

event, which is dispatched by the browser, indicates that the DOM is ready: window.ad

dEventListener('load', function() {...}. You’ll see how to do this in the next
version of main.js.

The CSS of our main page

Now that we have reviewed the HTML and JavaScript code, let’s spend a little more time
with the CSS that supports the page shown in Figure 1-7. The difference between the
screenshots shown in Figure 1-6 and Figure 1-7 is substantial. First, the upper-left image
is nowhere to be found in index.html. Open the styles.css file and you’ll see the line

background: url(../img/logo.png) no-repeat; in the header h1#logo section.

The page layout is also specified in the file styles.css. In this version, the size of each
section is specified in pixels (px), which won’t make your page fluid and easily resizable.

For example, the HTML element with id="main-top-section" is styled like this:

#main-top-section {
 width: 100%;
 height: 320px;
 margin-top: 18px;
}

Jerry styled the main section to take the entire width of the browser’s window and to be
320 pixels tall. If you keep in mind the Mobile First mantra, this might not be the best
approach because 320 pixels means a different size (in inches) on the displays with
different screen density. For example, 320 pixels on the iPhone 5 with Retina display
will look a lot smaller than 320 pixels on the iPhone 4. You might want to consider

switching from px to em units: 1 em is equal to the current font height, 2 em means twice

Turning Mockups into a Prototype | 21

the size, and so forth. You can read more about creating scalable style sheets with em
units at link:http://bit.ly/1lJnSUL.

What looks like a Login button in Figure 1-7 is not a button, but a styled div element.

Initially, it was a clickable anchor <a>, and we’ve explained this change right after
Example 1-2. The CSS fragment supporting the Login button looks like this:

li#login input {
 width: 122px;
 padding: 4px;
 border: 1px solid #ddd;
 border-radius: 2px;
 -moz-border-radius: 2px;
 -webkit-border-radius: 2px;
}

The border-radius element rounds the corners of the HTML element to which it’s

applied. But why do we repeat it three times with the additional prefixes -moz- and -

webkit-? These are CSS vendor prefixes, which allow web browser vendors to implement

experimental CSS properties that haven’t been standardized yet. For example, -

webkit- is the prefix for all WebKit-based browsers: Chrome, Safari, Android, and iOS.

Microsoft uses -ms- for Internet Explorer, and Opera uses -o-. These prefixes are tem‐
porary measures, which make the CSS files heavier than they need to be. The time will
come when the CSS3 standard properties will be implemented by all browser vendors,
and you won’t need to use these prefixes.

As a matter of fact, unless you want this code to work in the very old versions of Firefox,

you can remove the line -moz-border-radius: 2px; from our styles.css because Mozilla

has implemented the property border-radius in most of its browsers. You can find a
list of CSS properties with the corresponding vendor prefixes in this list maintained by
Peter Beverloo.

The Footer Section
The footer section comes next. Run the project called project-03-footer and you’ll see a
new version of the Save The Child page with the bottom portion that looks like
Figure 1-9. The footer section shows several icons linking to Facebook, Google Plus,
Twitter, RSS feed, and email.

Figure 1-9. The footer section

22 | Chapter 1: Mocking Up the Save The Child Application

http://bit.ly/1pSuBMl

The HTML section of our first prototype is shown in Example 1-5. At this point, it has

a number of <a> tags, which have the dummy references href="java

script:void(0)" that don’t redirect the user to any of these social sites.

Example 1-5. The footer section’s HTML

<footer>

 <section id="temp-project-name-container">
 project 03: Footer Section | Using Icon Fonts
 </section>
 <section id="social-icons">

 </section>
</footer>

Each of the preceding anchors is styled using vector graphics icon fonts that we’ve se‐
lected and downloaded from link:http://icomoon.io/app. Vector graphics images are
being redrawn using vectors (strokes)—as opposed to raster graphics, which are pre‐
drawn in certain resolution images. Raster graphics can give you boxy, pixelated images
if the size of the image needs to be increased. We use vector images for our footer section
that are treated as fonts. They will look as good as the originals on any screen size, and
you can change their properties (for example, color) as easily as you would with any
other font. The images that you see in Figure 1-9 are located in the fonts directory of
project-03-footer. The IcoMoon web application will generate the fonts for you based
on your selection and you’ll get a sample HTML file, fonts, and CSS to be used with
your application. Our icon fonts section in styles.css will look like Example 1-6.

Example 1-6. Icon fonts in CSS

/* Icon Fonts */

@font-face {
 font-family: 'icomoon';
 src:url('../fonts/icomoon.eot');
 src:url('../fonts/icomoon.eot?#iefix') format('embedded-opentype'),
 url('../fonts/icomoon.svg#icomoon') format('svg'),
 url('../fonts/icomoon.woff') format('woff'),
 url('../fonts/icomoon.ttf') format('truetype');
 font-weight: normal;
 font-style: normal;
}

Turning Mockups into a Prototype | 23

The Donate Section
The section with the Donate Now button and the donation form will be located in the
top portion of the page, directly below the navigation area. Initially, the page opens with
the background image of a sick but smiley boy on the right and a large Donate Now
button on the left. The image shown in Figure 1-10 is taken from a large collection of
photos at the iStockphoto website. We’re also using two more background images here:
one with the flowers, and the other with the sun and clouds. You can find the references
to these images in the styles.css file. Run project-04-donation and you’ll see the new
version of our Save The Child page that will look like Figure 1-10.

Figure 1-10. The initial view of the Donate section

Lorem Ipsum is a dummy text widely used in printing, typesetting, and web design. It’s
used as a placeholder to indicate the text areas that should be filled with real content
later. You can read about it at Lipsum. Example 1-7 shows what the HTML fragment
supporting Figure 1-10 looks like (no CSS is shown for brevity).

24 | Chapter 1: Mocking Up the Save The Child Application

http://www.istockphoto.com
http://www.lipsum.com

Example 1-7. The donate section before clicking Donate Now

<div id="donation-address">
 <p class="donation-address">
 Lorem ipsum dolor sit amet, consectetur e magna aliqua.
 Nostrud exercitation ullamco laboris nisi ut aliquip ex
 ea commodo consequat.
 Duis aute irure dolor in reprehenderit in voluptate velit
 esse cillum dolore eu fugiat nulla pariatur.
 Excepteur sint occaecat cupidatat non proident.
 </p>
 <button class="donate-button" id="donate-btn">
 Donate Now

 Children can't wait
 </button>

</div>

Clicking the Donate Now button should reveal the form where the user can enter a
name, address, and donation amount. Instead of opening a pop-up window, we’ll just
change the content on the left revealing the form, and move the Donate Now button to
the right. Figure 1-11 shows how the top portion of our page will look after the user
clicks the Donate Now button.

Figure 1-11. After clicking the Donate Now button

The HTML of this donation is shown in Example 1-8. When the user clicks the Donate
Now button, the content of the form should be sent to PayPal or any other payment
processing system.

Turning Mockups into a Prototype | 25

Example 1-8. The donate section after clicking the Donate Now button

<div id="donate-form-container">
 <h3>Make a donation today</h3>
 <form name="_xclick" action="https://www.paypal.com/cgi-bin/webscr" method="post">
 <div class="donation-form-section">
 <label class="donation-heading">Please select or enter

 donation amount</label>
 <input type="radio" name = "amount" id= "d10" value = "10"/>
 <label for = "d10">10</label>

 <input type="radio" name = "amount" id = "d20" value="20" />
 <label for = "d20">20</label>

 <input type="radio" name = "amount" id="d50" checked="checked" value="50" />
 <label for="d50">50</label>

 <input type="radio" name = "amount" id="d100" value="100" />
 <label for="d100">100</label>

 <input type="radio" name = "amount" id="d200" value="200" />
 <label for="d200">200</label>
 <label class="donation-heading">Other amount</label>
 <input id="customAmount" name="amount" value=""
 type="text" autocomplete="off" />
 </div>
 <div class="donation-form-section">
 <label class="donation-heading">Donor information</label>
 <input type="text" id="full_name" name="full_name"
 placeholder="full name *" required>
 <input type="email" id="email_addr" name="email_addr"
 placeholder="email *" required>
 <input type="text" id="street_address" name="street_address"
 placeholder="address">
 <input type="text" id="city" name="scty" placeholder="city">
 <input type="text" id="zip" name="zip" placeholder="zip/postal code">
 <select name="state">
 <option value="" selected="selected"> - State - </option>
 <option value="AL">Alabama</option>
 <option value="WY">Wyoming</option>
 </select>
 <select name="country">
 <option value="" selected="selected"> - Country - </option>
 <option value="United States">United States</option>
 <option value="Zimbabwe">Zimbabwe</option>
 </select>
 </div>

 <div class="donation-form-section make-payment">
 <h4>We accept Paypal payments</h4>
 <p>
 Your payment will processed securely by PayPal.
 PayPal employ industry-leading encryption and fraud prevention tools.

26 | Chapter 1: Mocking Up the Save The Child Application

 Your financial information is never divulged to us.
 </p>

 <button type="submit" class="donate-button donate-button-submit">
 Donate Now

 Children can't wait
 </button>
 I'll donate later

 </div>
 </form>
</div>

The JavaScript code supporting the UI transformations related to the Donate Now but‐
ton is shown next. It’s the code snippet from main.js from project-04-donation. Clicking

the Donate Now button invokes the event handler showDonationForm(), which simply

hides <div id="donation-address"> with Lorem Ipsum and displays the donation
form:

<form name="_xclick" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">">.

When the form field loses focus or after the user clicks the Submit button, the data from

the form _xclick must be validated and sent to PayPal. If the user clicks “I’ll donate

later,” the code hides the form and shows the Lorem Ipsum from the <div

id="donation-address"> again.

Not including proper form validation is a sign of a rookie develop‐
er. This can easily irritate users. Instead of showing error messages
like “Please include only numbers in the phone number field,” use
regular expressions to programmatically strip nondigits away (read
more about these in Regular Expressions.

Two select drop-downs in the preceding code contain hardcoded values of all states
and countries. For brevity, we’ve listed just a couple of entries in each. In Chapter 2,
we’ll populate these drop-downs by using external data in JavaScript Object Notation
(JSON) format.

Don’t show all the countries in the drop-down unless your applica‐
tion is global. If the majority of users live in France, display France at
the top of the list, and not Afghanistan (the first country in alpha‐
betical order).

Turning Mockups into a Prototype | 27

http://shop.oreilly.com/product/0636920012337.do

Assigning function handlers: take 1

Example 1-9 is an extract of the JavaScript file main.js provided by Jerry. This code
contains function handlers that process user clicks in the Donate section.

Example 1-9. The first version of event handlers

(function() {
 var donateBotton = document.getElementById('donate-button');
 var donationAddress = document.getElementById('donation-address');
 var customAmount = document.getElementById('customAmount');
 var donateForm = document.forms['_xclick'];
 var donateLaterLink = document.getElementById('donate-later-link');
 var checkedInd = 2;

 function showDonationForm() {
 donationAddress.style.display = "none";
 donateFormContainer.style.display = "block";
 }

 // Register the event listeners
 donateBotton.addEventListener('click', showDonationForm, false);
 customAmount.addEventListener('focus', onCustomAmountFocus, false);
 donateLaterLink.addEventListener('click', donateLater, false);
 customAmount.addEventListener('blur', onCustomAmountBlur, false);

 // Uncheck selected radio buttons if the custom amount was chosen
 function onCustomAmountFocus() {
 for (var i = 0; i < donateForm.length; i++) {
 if (donateForm[i].type == 'radio') {
 donateForm[i].onclick = function() {
 customAmount.value = '';
 }
 }
 if (donateForm[i].type == 'radio' && donateForm[i].checked) {
 checkedInd = i;
 donateForm[i].checked = false;
 }
 }
 }

 function onCustomAmountBlur() {

 if (isNan(customAmount.value)) {
 // The user haven't entered valid number for other amount
 donateForm[checkedInd].checked = true;
 }
 }

 function donateLater(){
 donationAddress.style.display = "block";
 donateFormContainer.style.display = "none";
 }

28 | Chapter 1: Mocking Up the Save The Child Application

})();

This code contains an example of an inefficient loop that assigns a click event handler
to each radio button should the user click any radio button after visiting the Other
Amount field. This reflects Jerry’s understanding of how to reset the value of the

customAmount variable. Jerry was not familiar with the capture phase of the events that
can intercept the click event on the level of the radio buttons and simply reset the value

of customAmount regardless of which specific radio button is clicked.

Assigning function handlers: take 2

Let’s improve the code from the previous section. The idea, as shown in Example 1-10,
is to intercept the click event during the capture phase (see the section “DOM Events”

in the bonus online chapter) and if the Event.target is any radio button, perform

customAmount.value = '';.

Example 1-10. The event handler for the Reset button

var donateFormContainer = document.getElementById('donate-form-container');

// Intercept any click on the donate form in a capturing phase

donateFormContainer.addEventListener("click", resetCustomAmount, true);
function resetCustomAmount(event){

 // reset the customAmount
 if (event.target.type=="radio"){
 customAmount.value = '';
 }
}

The code of onCustomAmountFocus() doesn’t need to assign function handlers to the
radio buttons any longer, as shown in Example 1-11.

Example 1-11. The Custom Amount field gets focus

function onCustomAmountFocus() {
 for (var i = 0; i < donateForm.length; i++) {
 if (donateForm[i].type == 'radio' && donateForm[i].checked) {
 checkedInd = i;
 donateForm[i].checked = false;
 }
 }
}

In the Donate section, we started working with event handlers. You’ll see many more
examples of event processing throughout the book.

Turning Mockups into a Prototype | 29

Adding Video
In this section, we’ll add a video player to our Save The Child application. The goal is
to play a short animation encouraging kids to fight the disease. We’ve hired a profes‐
sional animation artist, Yuri, who has started working on the animation. Meanwhile,
let’s take care of embedding the video player showing any sample video file.

Adding the HTML5 Video Element
Let’s run the project called project-05-html5-video to see the video playing, and after
that, we’ll review the code. The new version of the Save The Child app should look like
Figure 1-12. Users will see an embedded video player on the right that can play the video
located in the assets/media folder of the project project-05-html5-video.

Figure 1-12. The video player is embedded

Let’s see how index.html has changed since its previous version. The bottom part of the

main section includes the <video> tag. In the past, videos in web pages were played

30 | Chapter 1: Mocking Up the Save The Child Application

www.allitebooks.com

http://www.allitebooks.org

predominantly by the browser’s Flash Player plug-in (even older popular plug-ins in‐
cluded RealPlayer, Media Player, and QuickTime). For example, you could have used

the HTML tag <embed src="myvideo.swf" height="300" width="300">, and if the
user’s browser supports Flash Player, that’s all you need for basic video play. Although
there were plenty of open source video players, creation of the enterprise-grade video
player for Flash videos became an important skill for some software developers. For
example, HBO, an American cable network, offers an advanced multifeatured video
player embedded into link:http://www.hbogo.com for its subscribers.

In today’s world, most modern mobile web browsers don’t support Flash Player, and
video content providers prefer broadcasting videos in formats that are supported by all
browsers and can be embedded into web pages by using the standard HTML5 element

<video> (see its current working draft).

Example 1-12 illustrates how we’ve embedded the video into the bottom portion of our

web page (index.html). It includes two <source> elements, which allows us to provide
alternative media resources. If the web browser supports playing video specified in the

first <source> element, it’ll ignore the other versions of the media. For example, the
following code offers two versions of the video file: intro.mp4 (in H.264/MPEG-4 format
natively supported by Safari and Internet Explorer) and intro.webm (WebM format for
Firefox, Chrome, and Opera).

Example 1-12. The HTML container for the video element

<section id="main-bottom-section">
 <div id="video-container">
 <video controls poster="assets/media/intro.jpg"
 width="390px" height="240" preload="metadata">

 <source src="assets/media/intro.mp4" type="video/mp4">
 <source src="assets/media/intro.webm" type="video/webm">
 <p>Sorry, your browser doesn't support video</p>
 </video>

 <h3>Video header goes here</h3>
 <h5>More videos</h5>
 </div>
</section>

The Boolean property controls asks the web browser to display the video player with
controls (the Play/Pause buttons, the full-screen mode, and so forth). You can also con‐

trol the playback programmatically in JavaScript. The poster property of the <video>
tag specifies the image to display as a placeholder for the video—this is the image you

see in Figure 1-12. In our case, preload=metadata instructs the web browser to preload

just the first frame of the video and its metadata. Should we use preload="auto", the
video would start loading in the background as soon as the web page was loaded, unless

Adding Video | 31

http://bit.ly/1hTqKPd

the user’s browser doesn’t allow it (for example, Safari on iOS) in order to save band‐
width.

All major web browsers released in 2011 and later (including Internet Explorer 9) come

with their own embedded video players that support the <video> element. It’s great that
your code doesn’t depend on the support of Flash Player, but browsers’ video players
look different.

If neither .mp4 nor .webm files can be played, the content in the <p> tag displays the
fallback message “Sorry, your browser doesn’t support video.” If you need to support
older web browsers that don’t support HTML5 video, but support Flash Player, you can

replace this <p> tag with the <object> and <embed> tags that embed another media file
that Flash Player understands. Finally, if you believe that some users might have brows‐

ers that support neither the <video> tag nor Flash Player, just add links to the files listed

in the <source> tags right after the closing </video> tag.

Embedding YouTube Videos
Another way to include videos in your web application is by uploading them to YouTube
first and then embedding them into your web page. This provides several benefits:

• The videos are hosted on Google’s servers and use their bandwidth.

• The users either can watch the video as a part of your application’s web page or, by
clicking the YouTube logo on the status bar of the video player, can continue watch‐
ing the video from its original YouTube URL.

• YouTube streams videos in compressed form, and the user can watch as the bytes
come in. The video doesn’t have to be fully preloaded to the user’s device.

• YouTube stores videos in several formats and automatically selects the best one
based on the user’s web browser (user agent).

• The HTML code to embed a YouTube video is generated for you by clicking the
Share and then the Embed link under the video itself.

• You can enrich your web application by incorporating extensive video libraries via
the YouTube Data API. You can create fine-tuned searches to retrieve channels,
playlists, and videos; manage subscriptions; and authorize user requests.

• Your users can save the YouTube videos on their local drive by using free web
browser add-ons such as the DownloadHelper extension for Firefox or RealDown‐
loader.

Embedding a YouTube video into your HTML page is simple. Find the page with the
video on YouTube and click the links Share and Embed located right under the video.
Then select the size of your video player and HTTPS encryption if needed (see Chap‐

32 | Chapter 1: Mocking Up the Save The Child Application

http://bit.ly/1mdF1Hp

ter 9 on web security for reasoning). When this is done, copy the generated iFrame
section into your page.

Open the file index.html in project-06-YouTube-video and you’ll see the code that re‐

places the <video> tag of the previous project. It should look like Example 1-13.

Example 1-13. The HTML container for the YouTube video

<section id="main-bottom-section">
 <div id="video-container">
 <div id="video-container">
 <iframe
 src="http://www.youtube.com/embed/VGZcerOhCuo?wmode=transparent&hd=1&vq=hd720"
 frameborder="0" width="390" height="240"></iframe>

 <h3>Video header goes here</h3>
 <h5>More videos</h5>
 </div>
 </div>
</section>

Note that the initial size of our video player is 390×240 pixels. The <iframe> wraps the

URL of the video, which in this example ends with parameters hd=1 and vq=hd720. This
is how you can force YouTube to load video in HD quality. Run project-06-YouTube-
video and you will see a web page that looks like Figure 1-13.

Now let’s do yet another experiment. Enter the URL of our video directly in your web
browser and then turn on Firebug or Chrome Developer Tools as explained in the bonus
online chapter. We used Firebug under the Mac OS and selected the Net tab. Then, the
HTML Response looks like Figure 1-14. YouTube recognizes that this web browser is

capable of playing Flash content (FLASH_UPGRADE) and picks QuickTime as a fallback

(QUICKTIME_FALLBACK).

Figure 1-14. HTTP Response object from YouTube

Adding Video | 33

Figure 1-13. The YouTube player is embedded

YouTube offers an Opt-In Trial of HTML5 video, which allows
the users to request playing most of the videos using HTML 5
video (even those recorded for Flash Player). Try to experiment
on your own and see if YouTube streams HTML5 videos in your
browser.

Our brief introduction to embedding videos in HTML is over. Let’s keep adding new
features to the Save The Child web application. This time, we’ll become familiar with
the HTML5 Geolocation API.

Adding Geolocation Support
HTML5 includes a Geolocation API that allows you to programmatically determine the
latitude and longitude of a user’s device. Most people are accustomed to the non-Web
GPS applications in cars or mobile devices that display maps and calculate distances
based on the current coordinates of the user’s device or motor vehicle. But why do we
need a Geolocation API in a desktop web application?

34 | Chapter 1: Mocking Up the Save The Child Application

https://www.youtube.com/html5

The goal of this section is to demonstrate a very practical feature: finding registered
Save The Child events based on the user’s location. This way, users of this application
not only can donate, but can participate in such an event or even find children in need
of assistance in a particular geographical area. In this chapter, you’ll just learn the basics
of the HTML5 Geolocation API, but we’ll continue improving the location feature of
the Save The Child application in the next chapter.

The World Wide Web Consortium (W3C) has published a pro‐
posed recommendation of the Geolocation API Specification, which
can become a part of the HTML5 spec soon.

Does your old desktop computer have GPS hardware? Most likely it doesn’t. But its
location can be calculated with varying degrees of accuracy. If your desktop computer
is connected to a network, it has an IP address or your local WiFi router might have a
Service Set Identifier (SSID) given by the router vendor or your Internet provider.
Therefore, the location of your desktop computer is not a secret, unless you change the
SSID of your WiFi router. Highly populated areas have more WiFi routers and cell
towers, so the accuracy increases. In any case, properly designed applications must
always ask the user’s permission to use the current location of a computer or other
connected device.

GPS signals are not always available. However, various location serv‐
ices can help identify the position of a device. For example, Google,
Apple, Microsoft, Skyhook, and other companies use publicly broad‐
cast WiFi data from a wireless access point. Google Location Server
uses a Media Access Control (MAC) address to identify any device
connected to a network.

Every web browser has a global object window, which includes the navigator object

containing information about the user’s browser. If the browser’s navigator object in‐

cludes the property geolocation, geolocation services are available. Although the Ge‐
olocation API allows you to get just a coordinate of your device and report the accuracy
of this location, most applications use this information with some user-friendly UI; for
example, mapping software. In this section, our goal is to demonstrate the following:

1. How to use the Geolocation API

2. How to integrate the Geolocation API with Google Maps

3. How to detect whether the web browser supports geolocation services

Adding Geolocation Support | 35

http://bit.ly/Twpgyv

To respect people’s privacy, web browsers will always ask for permis‐
sion to use the Geolocation API unless the user changes the settings
on the browser to always allow it.

Geolocation Basics
The next version of our application is called project-07-basic-geolocation, where we
simply assume that the web browser supports geolocation. The Save The Child page will
get a new container in the middle of the bottom main section, where we are planning
to display the map of the current user’s location. But for now, we’ll show just the coor‐
dinates: latitude, longitude, and the accuracy. Initially, the map container is empty, but
we’ll populate it from the JavaScript code as soon as the position of the computer is
located:

<div id="map-container">

</div>

Example 1-14 from main.js makes a call to the navigator.geolocation object to get

the current position of the user’s computer. In many code samples, we’ll use con

sole.log() to print debug data in the web browser’s console.

Example 1-14. Finding coordinates with navigator.geolocation

var mapContainer = document.getElementById('map-container');

function successGeoData(position) {
 var successMessage = "We found your position!";
 successMessage += '\n Latitude = ' + position.coords.latitude;
 successMessage += '\n Longitude = ' + position.coords.longitude;
 successMessage += '\n Accuracy = ' + position.coords.accuracy +
 console.log(successMessage);

 var successMessageHTML = successMessage.replace(/\n/g, '
');
 var currentContent = mapContainer.innerHTML;
 mapContainer.innerHTML = currentContent + "
"
 + successMessageHTML;

}

function failGeoData(error) {
 console.log('error code = ' + error.code);

 switch(error.code) {
 case error.POSITION_UNAVALABLE:
 errorMessage = "Can't get the location";
 break;
 case error.PERMISSION_DENIED:

36 | Chapter 1: Mocking Up the Save The Child Application

http://mzl.la/VzUx5l
http://mzl.la/VzUx5l

 errorMessage = "The user doesn't want to share location";
 break;
 case error.TIMEOUT:
 errorMessage = "Timeout - Finding location takes too long";
 break;
 case error.UNKNOWN_ERROR:
 errorMessage = "Unknown error: " + error.code;
 break;
 }
 console.log(errorMessage);
 mapContainer.innerHTML = errorMessage;
}

if (navigator.geolocation) {
 var startMessage = 'Your browser supports geolocation API :)';
 console.log(startMessage);
 mapContainer.innerHTML = startMessage;
 console.log('Checking your position...');
 mapContainer.innerHTML = startMessage + '
Checking your position...';

 navigator.geolocation.getCurrentPosition(successGeoData,
 failGeoData,
 {maximumAge : 60000,
 enableHighAccuracy : true,
 timeout : 5000
 }
);

} else {
 mapContainer.innerHTML ='Your browser does not support geolocation';
}

Get a reference to the DOM element map-container to be used for showing the
results.

The function handler to be called in case of the successful discovery of the

computer’s coordinates. If this function is called, it will get a position object as
an argument.

Display the retrieved data on the web page (see Figure 1-15).

This is the error-handler callback.

Invoke the method getCurrentPosition(), passing it two callback functions as
arguments (for success and failure) and an object with optional parameters for
this invocation.

Optional parameters: accept the cached value if not older than 60 seconds,
retrieve the best possible results, and don’t wait for results for more than 5
seconds. You might not always want the best possible results, to lower the
response time and the power consumption.

Adding Geolocation Support | 37

If you run project-07-basic-geolocation, the browser will show a pop-up (it can be located
under the toolbar) asking a question similar to “Would you like to share your location
with 127.0.01?” Allow this sharing and you’ll see a web page, which will include the
information about your computer’s location, similar to Figure 1-15.

If you don’t see the question asking permission to share your loca‐
tion, check the privacy settings of your web browser; most likely
you’ve allowed using your location at some time in the past.

Figure 1-15. The latitude and longitude are displayed

If you want to monitor the position as it changes (the device is mov‐

ing), use geolocation.watchPosition(), which implements an in‐
ternal timer and checks the position. To stop monitoring the posi‐

tion, use geolocation.clearWatch().

38 | Chapter 1: Mocking Up the Save The Child Application

Integration with Google Maps
Knowing the device coordinates is important, but let’s make the location information
more presentable by feeding the device coordinates to the Google Maps API. In this
version of Save The Child, we’ll replace the gray rectangle from Figure 1-15 with the
Google Maps container. We want to show a familiar map fragment with a pin pointing
at the location of the user’s web browser. To follow our show-and-tell style, let’s see it
working first. Run project-08-geolocation-maps, and you’ll see a map with your current
location, as shown in Figure 1-16.

Figure 1-16. Showing your current location

Now comes the “tell” part. First, take a look at the bottom of the index.html file. It loads

Google’s JavaScript library with its Map API (sensor=false means that we are not using
a sensor-like GPS locator):

<script src="http://maps.googleapis.com/maps/api/js?sensor=false"></script>

In the past, Google required developers to obtain an API key and include it in the URL.
Although some of Google’s tutorials still mention the API key, it’s no longer a must.

An alternative way of adding the <script> section to an HTML page

is by creating a <script> element. This gives you the flexibility of
postponing the decision about which JavaScript to load. For example:

var myScript=document.createElement("script");
myScript.src="http://......somelibrary.js";
document.body.appendChild(myScript);

Our main.js will invoke the function for Google’s library as needed. The code that finds
the location of your device is almost the same as in “Geolocation Basics” on page 36.

We’ve replaced the call to geolocation.watchPosition() so that this program can

Adding Geolocation Support | 39

http://bit.ly/1k61pfX

modify the position if your computer, tablet, or a mobile phone is moving. We store the

returned value of watchPosition() in the variable watcherID in case you decide to stop

watching the position of the device by calling clearWatch(watcherID). Also, we lower

the value of the maximumAge option so the program will update the UI more frequently,
which is important if you are running this program while in motion (Example 1-15).

Example 1-15. Integrating geolocation with the mapping software

(function() {

 var locationUI = document.getElementById('location-ui');
 var locationMap = document.getElementById('location-map');
 var watcherID;

 function successGeoData(position) {
 var successMessage = "We found your position!";
 var latitude = position.coords.latitude;

 var longitude = position.coords.longitude;
 successMessage += '\n Latitude = ' + latitude;
 successMessage += '\n Longitude = ' + longitude;
 successMessage += '\n Accuracy = ' + position.coords.accuracy
 + ' meters';
 console.log(successMessage);

 // Turn the geolocation position into a LatLng object.
 var locationCoordinates =
 new google.maps.LatLng(latitude, longitude);

 var mapOptions = {
 center : locationCoordinates,
 zoom : 12,
 mapTypeId : google.maps.MapTypeId.ROADMAP,
 mapTypeControlOptions : {
 style : google.maps.MapTypeControlStyle.DROPDOWN_MENU,
 position : google.maps.ControlPosition.TOP_RIGHT
 }
 };

 // Create the map
 var map = new google.maps.Map(locationMap, mapOptions);

 // set the marker and info window
 var contentString = '<div id="info-window-content">' +
 'We have located you using HTML5 Geolocation.</div>';

 var infowindow = new google.maps.InfoWindow({
 content : contentString,
 maxWidth : 160
 });

 var marker = new google.maps.Marker({

40 | Chapter 1: Mocking Up the Save The Child Application

www.allitebooks.com

http://www.allitebooks.org

 position : locationCoordinates,
 map : map,
 title : "Your current location"

 });

 google.maps.event.addListener(marker, 'click',
 function() {
 infowindow.open(map, marker);
 }
);

 // When the map is loaded show the message and
 // remove event handler after the first "idle" event
 google.maps.event.addListenerOnce(map, 'idle', function(){
 locationUI.innerHTML = "Your current location";
 })

 }

 // error handler
 function failGeoData(error) {
 clearWatch(watcherID);
 //the error processing code is omitted for brevity
 }

 if (navigator.geolocation) {
 var startMessage =
 'Browser supports geolocation API. Checking your location...';
 console.log(startMessage);

 var currentContent = locationUI.innerHTML;
 locationUI.innerHTML = currentContent +' '+startMessage;

 watcherID = navigator.geolocation.watchPosition(successGeoData,
 failGeoData, {
 maximumAge : 1000,
 enableHighAccuracy : true,
 timeout : 5000
 });

 } else {
 console.log('browser does not support geolocation :(');
 }
})();

The Google API represents a point in geographical coordinates (latitude and

longitude) as a LatLng object, which we instantiate here.

Adding Geolocation Support | 41

The object google.maps.MapOptions is an object that allows you to specify
various parameters of the map to be created. In particular, the map type can be

one of the following: HYBRID, ROADMAP, SATELLITE, TERRAIN. We’ve chosen ROAD

MAP, which displays a normal street map.

The function constructor google.maps.Map takes two arguments: the HTML

container where the map has to be rendered and the MapOption as parameters
of the map.

Create an overlay box that will show the content describing the location (for
example, a restaurant name) on the map. You can do it programmatically by

calling InfoWindow.open().

Place a marker on the specified position on the map.

Show the overlay box when the user clicks the marker on the map.

Invoke the method watchPosition() to find the current position of the user’s
computer.

This is a pretty basic example of integrating geolocation with the mapping software.
The Google Maps API consists of dozens JavaScript objects and supports various events
that allow you to build interactive and engaging web pages that include maps. Refer to
the Google Maps JavaScript API Reference for the complete list of available parameters
(properties) of all objects used in project-08-geolocation-maps and more. Chapter 2
presents a more advanced example of using Google Maps; we’ll read the JSON data
stream containing coordinates of the children so the donors can find them based on the
specified postal code.

For a great illustration of using Google Maps, look at the PadMap‐
per web application. We use it for finding rental apartments in Man‐
hattan.

Browser Feature Detection with Modernizr
Now we’ll learn how to use the detection features offered by a JavaScript library called
Modernizr. This is a must-have feature-detection library that helps your application
figure out whether the user’s browser supports certain HTML5/CSS3 features. Review
the code of index.html from project-08-1-modernizr-geolocation-maps. Note that in‐

dex.html includes two <script> sections. The Modernizr’s JavaScript is loaded first,

whereas our own main.js is loaded at the end of the <body> section:

<!DOCTYPE html>

<html class="no-js" lang="en">

42 | Chapter 1: Mocking Up the Save The Child Application

http://bit.ly/TwpjtZ
https://www.padmapper.com
https://www.padmapper.com
http://modernizr.com

 <head>
 <meta charset="utf-8">

 <title>Save The Child | Home Page</title>
 <link rel="stylesheet" href="assets/css/styles.css">

 <script src="js/libs/modernizr-2.5.3.min.js"></script>

 </head>
 <body>
 !-- Most of the HTML markup is omitted for brevity --!

 <script src="js/main.js"></script>
 </body>
</html>

Modernizr is an open source JavaScript library that helps your script to determine
whether the required HTML or CSS features are supported by the user’s browser. Instead

of maintaining a complex cross-browser feature matrix to see if, say, border-radius is

supported in the user’s version of Firefox, the Modernizer queries the <html> elements
to see what’s supported and what’s not.

Note the fragment at the top of index.html: <html class="no-js" lang="en">. For

Modernizr to work, your HTML root element has to include the class named no-js.

On page load, Modernizr replaces the no-js class with its extended version that lists all

detected features; those that are not supported are labeled with the prefix no-. Run
index.html from project-08-1-modernizr-geolocation-maps in Chrome and you’ll see in

the Developer Tools panel that the values of the class property of the html element are
different now. You can see in Figure 1-17 that our version of Chrome doesn’t support

touch events (no-touch) or flexbox (no-flexbox).

Adding Geolocation Support | 43

Figure 1-17. Modernizr changed the HTML’s class property

For example, there is a new way to do page layouts, using the so-called CSS Flexible Box
Layout module. This feature is not widely supported yet, and as you can see in
Figure 1-17, our web browser doesn’t support it at the time of this writing. If the CSS

file of your application implements two class selectors, .flexbox and .no-flexbox, the
browsers that support flexible boxes will use the former, and the older browsers will use
the latter.

When Modernizr loads, it creates a new JavaScript object window.Modernizr with lots

of Boolean properties indicating whether a certain feature is supported. Add the Mod

ernizr object as a watch expression in the Chrome Developer Tools panel and see which

properties have the false value (see Figure 1-18).

44 | Chapter 1: Mocking Up the Save The Child Application

Figure 1-18. window.Modernizr object

Hence, your JavaScript code can test whether certain features are supported.

What if Modernizer detects that a certain feature is not supported by a user’s older
browser? You can include polyfills in your code that replicate the required functionality.
You can write such a polyfill on your own or pick one from the collection at Modernizr’s
GitHub repository.

Addy Osmani published The Developer’s Guide To Writing Cross-
Browser JavaScript Polyfills.

Adding Geolocation Support | 45

http://bit.ly/mod-list
http://bit.ly/mod-list
http://bit.ly/1sRn30Y
http://bit.ly/1sRn30Y

The Development version of Modernizr is only 42 KB in size and can detect lots of
features. But you can make it even smaller by configuring the detection of only selected
features. Just visit Modernizr and click the red Production button that enables you to
configure the build specifically for your application. For example, if you’re interested in
just detecting the HTML5 video support, the size of the generated Modernizr library
will be reduced to under 2 KB.

Let’s review the relevant code from project-08-1-modernizr-geolocation-maps that illus‐
trates the use of Modernizr (see Example 1-16). In particular, Modernizr allows you to
load one or the other JavaScript code block based on the result of some tests.

Actually, the Modernizr loader internally utilizes a tiny (under 2 KB)
resource loader library, yepnope.js, which can load both JavaScript
and CSS. This library is integrated in Modernizr, but we just wanted
to give proper recognition to yepnope.js, which you can use as an
independent resource loader, too.

Example 1-16. Using the Modernizr loader

(function() {

 Modernizr.load({

 test: Modernizr.geolocation,

 yep: ['js/get-native-geo-data.js','https://www.google.com/jsapi'],

 nope: ['js/get-geo-data-by-ip.js','https://www.google.com/jsapi'],

 complete : function () {
 google.load("maps", "3",
 {other_params: "sensor=false", 'callback':init});
 }
 });
})();

The preceding code invokes the function load(), which can take different arguments.

In our example, the argument is a specially prepared object with four properties: test,

yep, nope, and complete. The load() function will test the value of Modernizr.geolo

cation and if it’s true, it’ll load the scripts listed in the yep property. Otherwise, it will

load the code listed in the nope array. The code in get-native-geo-data.js gets the user’s
location the same way as was done earlier in “Integration with Google Maps” on page 39.

Now let’s consider the nope case. The code of get-geo-data-by-ip.js has to offer an alter‐
native way of getting the location of browsers that don’t support the HTML5 Geolocation
API. We found the GeoIP JavaScript API offered by MaxMind. Its service returns coun‐
try, region, city, latitude, and longitude, which can serve as a good illustration of how a

46 | Chapter 1: Mocking Up the Save The Child Application

http://modernizr.com/
http://yepnopejs.com
http://www.maxmind.com

workaround of a nonsupported feature can be implemented. The code in get-geo-data-
by-ip.js (see Example 1-17) is simple for now.

Example 1-17. Reporting nonimplemented features

function init(){

 var locationMap = document.getElementById('location-map');
 locationMap.innerHTML="Your browser does not support HTML5 geolocation API.";

 // The code to get the location by IP from http://j.maxmind.com/app/geoip.js
 // will go here. Then we'll pass the latitude and longitude values to
 // Google Maps API for drawing the map.

}

Most likely your browser supports the HTML5 Geolocation API, and you’ll see the map
created by the script get-native-geo-data.js. But if you want to test nonsupported geo‐

location (the nope branch), either try this code in the older browser or change the test

condition to look like this: Modernizr.fakegeolocation,.

Google has several JavaScript APIs—for example, Maps, Search, Feed, and Earth. Any

of these APIs can be loaded by the Google AJAX Loader google.load(). This is a more
generic way of loading any APIs compared to loading maps from maps.googleapis.com/
maps/api, as shown in the previous section on integrating geolocation and maps. The
process of loading the Google code with the Google Ajax loader consists of two steps:

1. Load Google’s common loader script.

2. Load the concrete module API, specifying its name, version, and optional param‐
eters. In our example, we are loading the Maps API of version 3, passing an object

with two properties: sensor=false and the name of the callback function to invoke

right after the mapping API completes loading, 'callback':init.

If you want to test your web page in a specific older version of a
particular web browser, you can find distributions at oldapps.com.
For example, you can find all the old versions of Firefox for Mac OS
and for Windows.

Search and Multimarkers with Google Maps
We’ve prepared a couple of more examples to showcase the features of Google Maps.
The working examples are included in the code accompanying this book, and we provide
brief explanations in this section.

Adding Geolocation Support | 47

http://bit.ly/1x51AAc
http://bit.ly/1lJoF80
http://bit.ly/1lJoF80
https://www.google.com/jsapi
https://www.oldapps.com
http://bit.ly/1mN5RVz
http://www.oldapps.com/firefox.php

The chapter’s code samples include the project-09-map-and-search Webstorm project,
which is an example of an address search using Google Maps. Figure 1-19 shows a
fragment of the Save The Child page after we’ve entered the address 26 Broadway ny

ny in the search field. You can do a search by city or zip code, too. This can be a useful
feature if you want to allow users to search for children living in a particular geographical
area so their donations could be directed to specific people.

Figure 1-19. Searching by address

Our implementation of the search is shown in Example 1-18, a code fragment from
main.js. It uses geocoding, which is the process of converting an address into geographic
coordinates (latitude and longitude). If the address is found, the code places a marker
on the map.

Example 1-18. Finding map location by address

var geocoder = new google.maps.Geocoder();

function getMapByAddress() {
 var newaddress = document.getElementById('newaddress').value;

 geocoder.geocode(
 {'address' : newaddress,
 'country' : 'USA'
 },

 function(results, status) {
 console.log('status = ' + status);

 if (status == google.maps.GeocoderStatus.OK) {

48 | Chapter 1: Mocking Up the Save The Child Application

 var latitude = results[0].geometry.location.lat();
 var longitude = results[0].geometry.location.lng();

 var formattedAddress = results[0].formatted_address;
 console.log('latitude = ' + latitude +
 ' longitude = ' + longitude);
 console.log('formatted_address = ' + formattedAddress);

 var message = 'Address: ' + formattedAddress;
 foundInfo.innerHTML = message;

 var locationCoordinates =
 new google.maps.LatLng(latitude, longitude);
 showMap(locationCoordinates, locationMap);

 } else if (status == google.maps.GeocoderStatus.ZERO_RESULTS) {
 console.log('geocode was successful but returned no results. ' +
 'This may occur if the geocode was passed a nonexistent ' +
 'address or a latlng in a remote location.');

 } else if (status == google.maps.GeocoderStatus.OVER_QUERY_LIMIT) {
 console.log('You are over our quota of requests.');

 } else if (status == google.maps.GeocoderStatus.REQUEST_DENIED) {
 console.log('Your request was denied, ' +
 'generally because of lack of a sensor parameter.');

 } else if (status == google.maps.GeocoderStatus.INVALID_REQUEST) {
 console.log('Invalid request. ' +
 'The query (address or latlng) is missing.');
 }
 });
}

Initiate request to the Gecoder object, providing the GeocodeRequest object with
the address and a function to process the results. Because the request to the
Google server is asynchronous, the function is a callback.

When the callback is invoked, it will get an array with results.

Get the latitude and longitude from the result.

Prepare the LatLng object and give it to the mapping API for rendering.

Process errors.

The Geocoding API is simple and free to use until your application reaches a certain
number of requests. Refer to the Google Geocoding API documentation for more de‐

tails. If your application is getting the status code OVER_QUERY_LIMIT, you need to con‐
tact the Google Maps API for Business sales team for information on licensing options.

Adding Geolocation Support | 49

http://bit.ly/1jCIGsw

Adding multiple markers on the map

Our designer, Jerry, has yet another idea: show multiple markers on the map to reflect
several donation campaigns and charity events that are going on at various locations. If
we display this information on the Save The Child page, more people might donate or
participate in other ways. We’ve just learned how to do an address search on the map,
and if the application has access to data about charity events, we can display them as
the markers on the map. Run project-10-maps-multi-markers and you’ll see a map with
multiple markers, as shown in Figure 1-20.

Figure 1-20. Multiple markers on the map

The JavaScript fragment in Example 1-19 displays the map with multiple markers. In

this example, the data is hardcoded in the array charityEvents. In Chapter 2, we modify

this example to get the data from a file in JSON form. The for loop creates a marker for

each of the events listed in the array charityEvents. Each element of this array is also
an array containing the name of the city and state, the latitude and longitude, and the
title of the charity event. You can have any other attributes stored in such an array and

display them when the user clicks a particular marker in an overlay by calling Info

Window.open().

Example 1-19. Displaying a map with multiple markers

(function() {

 var locationUI = document.getElementById('location-ui');
 var locationMap = document.getElementById('location-map');

 var charityEvents = [['Chicago, Il', 41.87, -87.62, 'Giving Hand'],
 ['New York, NY', 40.71, -74.00, 'Lawyers for Children'],
 ['Dallas, TX', 32.80, -96.76, 'Mothers of Asthmatics '],

50 | Chapter 1: Mocking Up the Save The Child Application

 ['Miami, FL', 25.78, -80.22, 'Friends of Blind Kids'],
 ['Miami, FL', 25.78, -80.22, 'A Place Called Home'],
 ['Fargo, ND', 46.87, -96.78, 'Marathon for Survivors']
];

 var mapOptions = {
 center : new google.maps.LatLng(46.87, -96.78),
 zoom : 3,
 mapTypeId : google.maps.MapTypeId.ROADMAP,
 mapTypeControlOptions : {
 style : google.maps.MapTypeControlStyle.DROPDOWN_MENU,
 position : google.maps.ControlPosition.TOP_RIGHT
 }
 };

 var map = new google.maps.Map(locationMap, mapOptions);

 var infowindow = new google.maps.InfoWindow();

 var marker, i;

 // JavaScript forEach() function is deprecated,
 // hence using a regular for loop
 for (i = 0; i < charityEvents.length; i++) {
 marker = new google.maps.Marker({
 position : new google.maps.LatLng(charityEvents[i][1],
 charityEvents[i][2]),
 map : map
 });

 google.maps.event.addListener(marker, 'click', (function(marker, i) {
 return function() {
 var content = charityEvents[i][0] + '
' + charityEvents[i][3];
 infowindow.setContent(content);
 infowindow.open(map, marker);
 }
 })(marker, i));

 google.maps.event.addListenerOnce(map, 'idle', function(){
 locationUI.innerHTML = "Donation campaigns and charity events.";
 })
 }

})();

Summary
This chapter described the process of mocking up our future website by our web de‐
signer, Jerry, who went a lot further than creating images with short descriptions. Jerry
created a working prototype of the Save The Child page. Keep in mind that Jerry and
his fellow web designers like creating good-looking web pages.

Summary | 51

But we web developers need to worry about other things, like making web pages re‐
sponsive and lightweight. The first thing you need to do after receiving the prototype
from Jerry is run it through Google Developer Tools or Firebug (see the section “De‐
bugging JavaScript in Web Browsers” in the online bonus chapter for details) and meas‐
ure the total size of the resources being downloaded from the server. If your application
loads 1 MB or more worth of images, ask Jerry to review the images and minimize their
size.

The chances are that you don’t need to download all the JavaScript code at once. We
discuss modularization of large applications in Chapter 6.

The next phase of improving this prototype is to remove the hardcoded data from the
code and place it into external files. The next chapter covers the JSON data format and
how to fill our single-page application with this data by using a set of techniques called
Ajax.

52 | Chapter 1: Mocking Up the Save The Child Application

http://bit.ly/1iJO41S

CHAPTER 2

Using Ajax and JSON

This chapter is about bringing external data to our HTML web pages. In Chapter 1, we
used only hardcoded data because our goal was to show how to lay out the web page
and how to change that layout in response to certain events (for example, the user
clicking a menu button). Now we’ll make sure that our single-page application, Save
The Child, can request data from external sources and send data, too. This comes down
to two questions:

• How does an HTML web page exchange data with web servers?

• What format do we use to present the application data?

Even though there could be different answers to these questions, we’ll be using Ajax
techniques as an answer to the first question and JavaScript Object Notation (JSON)
data format as an answer to the second one. We’ll start this chapter by explaining why
Ajax and JSON are appropriate choices for the Save The Child web application and
many others.

Understanding Ajax
In the early days of the Internet, every new page, whether it was hosted on the same or
separate website, required a new request and response to the web server. This, in turn,
would re-render the entire contents of the new page. If a user points her web browser
to one URL and then changes it to another, the new request will be sent to the new URL,
and the new page will arrive and will be rendered by the browser. The URL might have
been changed not because the user decided to go to visit a different website, but simply
because the user selected a menu item that resulted in bringing a new web page from
the same domain. This was pretty much the only way to design websites in the ’90s.

Back in 1999, Microsoft decided to create a web version of Outlook, its popular email
application. Microsoft’s goal was to be able to modify the Input folder as new emails

53

arrived, but without refreshing the entire content of the web page. It created an ActiveX

control called XMLHTTP that lived inside Internet Explorer 5 and could make requests to
the remote servers to receive data without needing to refresh the entire web page. Such
a Web Outlook client would make periodic requests to the mail server, and if the new
mail arrived, the application would insert a new row on top of the Inbox by directly
changing the DOM object from JavaScript.

In the early 2000s, other web browsers implemented their own versions of XMLHTTPRe

quest. Its Working Draft 6 is published by W3C. Google created its famous email client,
Gmail, and its Maps web application. In 2005, Jesse James Garrett wrote an article titled
“AJAX: A New Approach to Web Applications.” The web developer community liked
the term AJAX, which stands for Asynchronous JavaScript and XML (it was originally
presented as an acronym; today, it’s considered as a name, hence the now more common
spelling, “Ajax”), and this gave birth to a new breed of web applications that could update
the content of just a portion of a web page without re-retrieving the entire page. Inter‐
estingly enough, the last letter in the AJAX acronym stands for XML, although pre‐
senting the data in XML form is not required, and currently is seldom used as a data
format in client-server exchanges. JSON is used a lot more often to represent data, but
apparently AJAJ didn’t sound as good as AJAX.

Visit the Google Finance or Yahoo! Finance web pages when the stock market is open,
and you’ll see how price quotes or other financial indicators change while most of the
content remains the same. This gives an illusion of the server pushing the data to your
web client. But most likely, it is not a data push but rather periodic polling of the server’s
data using Ajax. In modern web applications, we expect to see more of real server-side
data push using the HTML5 WebSocket API, which is described in detail in Chapter 8.

Understanding JSON
JSON stands for JavaScript Object Notation. Compared to XML, it’s a more compact
way to represent data. Besides, all modern web browsers understand and can parse JSON
data. Now that you’ve learned about JavaScript object literals in Chapter 1, you’ll see
that presenting data in JSON format is almost the same as writing JavaScript object
literals.

Figure 2-1 depicts a high-level view of a typical web application. All of the code samples
from Chapter 1 (and the online bonus chapter, Appendix A, and Appendix B) were

written in HTML, JavaScript, and CSS. In this chapter, we add to the mix the XMLHttpRe

quest object that will send and receive the JSON content wrapped into HTTPRequest

and HTTPResponse objects.

54 | Chapter 2: Using Ajax and JSON

http://bit.ly/1qJZqmF
http://www.google.com/finance
http://finance.yahoo.com/
http://bit.ly/1iN2TkH
http://bit.ly/1iJO41S

Figure 2-1. Anatomy of a web application

When a web page is loaded, the user doesn’t know (and doesn’t have to know) that the
page content was brought from several servers that could be located thousands of miles
apart. More often than not, when the user enters the URL requesting an HTML docu‐
ment, the server-side code can engage several servers to bring all the data requested by
the user. Some data is retrieved by making calls to one or more web services. The legacy
web services were built using SOAP + XML, but the majority of today’s web services are
built using lighter RESTful architecture (REST standing for Representational State
Transfer), and JSON has become a de facto standard data exchange format for REST
web services.

Working with Ajax
Imagine a single-page application that needs some data refreshed in real time. For ex‐
ample, our Save The Child application includes an online auction where people can bid
and purchase goods as a part of a charity event. If John from New York places a bid on
a certain auction item, and some time later Mary from Chicago places a higher bid on
the same item, we want to make sure that John knows about it immediately, in real time.
This means that the server-side software that received Mary’s bid has to push this data
to all users who expressed their interest in the same item.

But the server has to send, and the browser has to modify, only the new price while the
rest of the content of the web page should remain the same. You can implement this
behavior by using Ajax. First, however, the bad news: you can’t implement real-time
server-side push with Ajax. You can only emulate this behavior by using polling tech‐

niques, whereby the XMLHttpRequest object sits inside your JavaScript code and peri‐
odically sends HTTP requests to the server asking whether any changes in bids occurred
since the last request.

If, for instance, the last request was made at 10:20:00A.M., the new bid was placed at
10:20:02A.M., and the application makes a new request (and updates the browser’s

Working with Ajax | 55

http://bit.ly/1a1pDEq

window) at 10:20:25A.M., this means that the user will be notified about the price change
with a 3-second delay. Ajax is still a request-response–based way of getting the server’s
data, and strictly speaking, doesn’t offer true real-time updates. Some people use the
term near real-time notifications.

Other bad news is that Ajax uses HTTP for data communication, which means that

substantial overhead in the form of an HTTPResponse header will be added to the new
price, and it can be as large as several hundred bytes. This is still better than sending the
entire page to the web browser, but HTTP adds a hefty overhead.

We implement such an auction in Chapter 8 by using a much more
efficient protocol called WebSocket, which supports a real-time data
push and adds only several extra bytes to the data load.

Retrieving Data from the Server
Let’s try to implement Ajax techniques for data retrieval. The process of making an Ajax
request is well defined and consists of the following steps:

1. Create an instance of the XMLHttpRequest object.

2. Initialize the request to your data source by invoking the method open().

3. Assign a handler to the onreadystatechange attribute to process the server’s re‐
sponse.

4. Make a nonblocking request to the data source by calling send().

5. In your handler function, process the response when it arrives from the server. This
is where asynchronous comes from: the handler can be invoked at any time, when‐
ever the server prepares the response.

6. Modify the DOM elements based on the received data, if need be.

Most likely you are going to be using one of the popular JavaScript
frameworks, which will spare you from knowing all these details, but
knowing how Ajax works under the hood can be beneficial.

In most books on Ajax, you’ll see browser-specific ways of instantiating the XMLHttpRe

quest object (a.k.a. XHR). Most likely you’ll be developing your application by using a

JavaScript library or framework, and all browser specifics in instantiating XMLHttpRe

56 | Chapter 2: Using Ajax and JSON

quest will be hidden from you. Chapter 3 and Chapter 4 include such examples, but
let’s stick to the standard JavaScript way implemented by all modern browsers:

var xhr = new XMLHttpRequest();

The next step is to initialize a request by invoking the method open(). You need to

provide the HTTP method (for example, GET or POST) and the URL of the data source.
Optionally, you can provide three more arguments: a Boolean variable indicating
whether you want this request to be processed asynchronously (which is the default),
and the user ID and password if the authentication is required. Keep in mind that the
following method does not request the data yet:

xhr.open('GET', dataUrl);

Always use HTTPS if you need to send the user ID and password.
Using secure HTTP should be your preferred protocol in general
(read more in Chapter 9).

XHR has an attribute called readyState, and as soon as it changes, the callback function

assigned to onreadystatechange will be invoked. This callback should contain your
application-specific code to analyze the response and process it accordingly. Assigning
such a callback is pretty simple:

xhr.onreadystatechange = function(){...}

Inside such a callback function, you’ll be analyzing the value of the XHR’s attribute

readyState, which can have one of the values listed in Table 2-1.

Table 2-1. States of the request

Value State Description

0 UNSENT The XHR has been constructed.

1 OPENED open() was successfully invoked.

2 HEADERS_RECEIVED All HTTP headers have been received.

3 LOADING The response body is being received.

4 DONE The data transfer has been completed.

Finally, send the Ajax request for data. The method send() can be called with or without
parameters, depending on whether you need to send the data to the server. In its simplest

form, the method send() can be invoked as follows:

xhr.send();

The complete cycle of the readyState transitions is depicted in Figure 2-2.

Working with Ajax | 57

Figure 2-2. Transitions of the readyState attribute

Let’s spend a bit more time discussing the completion of this cycle when the server’s

response is received and the XHR’s readyState is equal to 4. This means that we’ve
received something, which can be either the data we’ve expected or an error message.

We need to handle both scenarios in the function assigned to the onreadystate

change attribute (see Example 2-1). This is a common way to do it in JavaScript without
using frameworks.

Example 2-1. Processing an Ajax response

xhr.onreadystatechange = function(){

 if (xhr.readyState == 4) {

 if((xhr.status >=200 && xhr.status <300) || xhr.status===304) {

 // We got the data. Get the value from one of the response attributes
 // e.g. xhr.responseText and process the data accordingly.

 } else {
 // We got an error. Process the error code and
 // display the content of the statusText attribute.
 }

 }
};

One note about the third line of this code. Here we’re checking the HTTP status code
received from the server. W3C splits the HTTP codes into groups. The codes numbered
1xx are informational, 2xx are successful codes, 3xx are about redirections, 4xx represent
bad requests (such as the infamous 404 for Not Found), and 5xx indicate server errors.
That’s why the preceding code fragment checks for all 2xx codes and for 304: the data
was not modified and taken from cache.

58 | Chapter 2: Using Ajax and JSON

http://bit.ly/1dkzBVq

If your application needs to post the data to the server, you need to open the

connection to the server with the POST parameter. You’ll also need to set the

HTTP header attribute Content-type to either multipart/form-data for

large-size binary data or to application/x-www-form-urlencoded (for forms
and small-size alphanumeric data). Then prepare the data object and invoke

the method send():

var data="This is some data";
xhr.open('POST', dataUrl, true);
xhr.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');

...
xhr.send(data);

XMLHttpRequest Level 2 adds new functionality including FormDa

ta objects, timeouts, ArrayBuffers, and more. It’s supported by most
web browsers.

Ajax: Good and Bad
Ajax techniques have their pros and cons. You saw how easy it is to create a web page
that doesn’t have to refresh itself but can provide users with a means of communicating
with the server. This certainly improves the user experience. The fact that Ajax allows
you to reduce the amount of data that goes over the wire is important, too. Another
important advantage of Ajax is that it works in a standard HTML/JavaScript environ‐
ment and is supported by all web browsers. The JavaScript frameworks hide all the

differences in instantiating XMLHttpRequest and simplify making HTTP requests and
processing responses. Because the entire page is not reloaded, you can create fat cli‐
ents that keep certain data preloaded so that it can be reused in your JavaScript in dif‐
ferent use cases. With Ajax, you can lazy-load content as needed rather than loading
everything at once. Finally, the autocompletion feature, which is often taken for granted,
would not be possible in an HTML/JavaScript application without Ajax.

On the bad side, with Ajax, the user loses the functionality of the browser’s Back button,
which reloads the previous web page in a way that enables the user to see the previous
state of that page.

Because Ajax brings most content dynamically, search engines might not rank your web
pages as high as if the content were statically embedded in the HTML. If discoverability
of your web application is important, extra steps should be taken to make it more Search
Engine Optimization (SEO)–friendly (for example, using an SEO Server).

Working with Ajax | 59

http://bit.ly/1m2szbI
http://caniuse.com/xhr2
http://bit.ly/1vnVl7Q

Increasing the number of Ajax interactions means that your application will have to
send more JavaScript code to the web browser, which increases the complexity of pro‐
gramming and decreases the scalability of your application.

Using the HTML5 History API (see Chapter 1) will help you teach
the old dog (the browser’s Back button) new tricks.

Ajax applications are subject to the same origin policy (the same protocol, hostname,

and port), which allows XMLHttpRequest to make HTTP requests only to the domains
where the web application was loaded from. It’s a security measure to limit the ability
of JavaScript code to interact with resources that arrive to the web browser from a
different web server.

W3C has published a working draft of Cross-Origin Resource Shar‐
ing (CORS), a mechanism to enable client-side cross-origin requests.

Populating States and Countries from HTML Files
To see the first example for which we use Ajax in our Save The Child application, run
project-01-donation-ajax-html. In this example, we’ve removed the hardcoded data
about countries and states from HTML and saved it in two separate files: data/us-
states.html and data/countries.html. In this project, the file index.html has two empty

combo boxes (<select> elements), as shown in Example 2-2.

Example 2-2. State and Country drop-downs

 <select name="state" id="state">
 <option value="" selected="selected"> - State - </option>
 <!-- AJAX will load the rest of content -->
 </select>
 <select name="country" id="counriesList">
 <option value="" selected="selected"> - Country - </option>
 <!-- AJAX will load the rest of content -->
 </select>

The resulting Save The Child page will look the same as the last sample from the previous
chapter, but the Country and State drop-downs are now populated by the data located
in these files (later in this chapter, in the section on JSON, we replace this HTML file
with its JSON version). Example 2-3 presents the first three lines (out of 241) from the
file countries.html.

60 | Chapter 2: Using Ajax and JSON

http://mzl.la/1r5U8Eq
http://mzl.la/1iN36En
http://mzl.la/1iN36En

Example 2-3. A fragment from the file countries.html

<option value="United States">United States</option>
<option value="United Kingdom">United Kingdom</option>
<option value="Afghanistan">Afghanistan</option>

The JavaScript code that reads countries and states from files (text and HTML markup)
and populates the drop-downs comes next. Example 2-4 demonstrates that the content

of these files is assigned to the innerHTML attribute of the given HTML <select> ele‐
ment.

Example 2-4. Loading HTML content into the Country and State drop-downs

function loadData(dataUrl, target) {
 var xhr = new XMLHttpRequest();
 xhr.open('GET', dataUrl, true);
 xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if((xhr.status >=200 && xhr.status <300) ||
 xhr.status===304){

 target.innerHTML += xhr.responseText;
 } else {

 console.log(xhr.statusText);
 }
 }
 }
 xhr.send();
}

// Load the countries and states using XHR

loadData('data/us-states.html', statesList);
loadData('data/countries.html', counriesList);

The preceding code has an issue, which might not be so obvious, but
can irritate users. The problem is that it doesn’t handle errors. Yes, we
print the error message on the developer’s console, but the end user
will never see it. If for some reason the data about countries or states
doesn’t arrive, the drop-downs will be empty, the donation form won’t
be valid, and the users will become angry that they can’t make a
donation and don’t know why. Proper error handling and reports are
important for any application, so never ignore it. You should dis‐
play a user-friendly error message on the web page. For example, the

else statement in the preceding example can display the received
message in the page footer, as demonstrated in Example 2-5.

Working with Ajax | 61

Example 2-5. Displaying the Ajax error in the page footer

else {
 console.log(xhr.statusText);

 // Show the error message on the Web page
 footerContainer.innerHTML += '<p class="error">Error getting ' +
 target.name + ": "+ xhr.statusText + ",code: "+
 xhr.status + "</p>";
}

This code uses the CSS selector error (see Example 2-6) that will show the error message
on the red background. You can find it in the file styles.css in project-02-donation-error-
ajax-html.

Example 2-6. Styling an error message with CSS

footer p.error {
 background:#d53630;
 text-align:left;
 padding: 0.9em;
 color: #fff;
}

Example 2-7 shows how to add the received data to a certain area on the web page. This

code creates an HTML paragraph <p> with the text returned by the server and then adds

this paragraph to the <div> with the ID main.

Example 2-7. Styling a paragraph

if (xhr.readyState == 4) {

 // All status codes between 200 and 300 mean success
 // and 304 means Not Modified
 if((xhr.status >=200 && xhr.status <300) || xhr.status===304){
 var p = document.createElement("p");

 p.appendChild(document.createTextNode(myRequest.responseText));

 document.getElementById("main").appendChild(p);
 }
}

Using JSON
In any client-server application, one of the important decisions to be made is about the
format of the data that goes over the network. We are talking about application-specific
data. Someone has to decide how to represent the data about an auction item, customer,
donation, and so forth. The easiest way to represent text data is by using the comma-
separated value (CSV) format, but it’s not easily readable by humans, is hard to validate,

62 | Chapter 2: Using Ajax and JSON

and re-creation of JavaScript objects from a CSV feed would require additional infor‐
mation about the headers of the data.

Sending the data in XML form addresses the readability and validation issues, but it’s
very verbose. Every data element has to be surrounded by an opening and closing tag
describing the data. Converting the XML data to/from JavaScript objects requires special
parsers, and you’d need to use one of the JavaScript libraries for cross-browser com‐
patibility.

Douglas Crockford popularized a new data format called JavaScript Object Notation,
or JSON, which has become the most popular data format on the Web today. It’s not as
verbose as XML, and JSON’s notation is almost the same as JavaScript object literals. It’s
easily readable by humans, and every ECMAScript 5–compliant browser includes a

native JSON object: window.JSON. Even though JSON-formatted data looks like Java‐
Script object literals, JSON is language independent. Example 2-8 illustrates some
JSON-formatted data.

Example 2-8. Sample JSON-formatted data

{
 "fname":"Alex",
 "lname":"Smith",
 "age":30,
 "address": {
 "street":"123 Main St.",
 "city": "New York"}
}

Anyone who knows JavaScript understands that this is an object that represents a person,
which has a nested object that represents an address. Note the difference with JavaScript
literals: the names of the properties are always strings, and every string must be repre‐
sented in quotation marks. Representing the same object in XML would need a lot more

characters (for example, <fname>Alex</fname>).

There are some other important differences between JSON and XML. The structure of
an XML document can be defined by using Document Type Definitions (DTDs) or
XML Schema, which simplifies data validation, but requires additional programming
and schema maintenance. On the other hand, JSON data has data types—for example,

the age attribute in the preceding example is not only a Number, but will be further
evaluated by the JavaScript engine and will be stored as an integer. JSON also supports
arrays, whereas XML doesn’t.

For parsing JSON in JavaScript, you use the method JSON.parse(), which takes a string
and returns a JavaScript object. For example:

var customer=JSON.parse('{"fname":"Alex","lname":"Smith"}');

console.log(“Your name is ” + customer.fname + “ “ + customer.lname);

Using JSON | 63

For a reverse operation—turning an object into a JSON string—use JSON.stringi

fy(customer). The older browsers didn’t have the JSON object, and an alternative way
of parsing JSON is with the help of the script json2.js, which creates the JSON property
on the global object. This script is freely available on GitHub. In Chapter 1, you learned
about feature detection with Modernizr, and you can automate the loading of this script
if needed:

Modernizr.load({
 test: window.JSON,
 nope: 'json2.js',
 complete: function () {
 var customer = JSON.parse('{"fname":"Alex","lname":"Smith"}');
 }
});

Usually, JSON-related articles and blogs are quick to remind you about the evil nature

of the JavaScript function eval(), which can take arbitrary JavaScript code and execute

it. The JSON.parse() method is pictured as a protection against the malicious JavaScript

that can be injected into your application’s code and then executed by eval() via the

web browser. The main argument is that JSON.parse() will not process the incoming
code unless it contains valid JSON data.

Protecting your application code from being infected by means of eval() can be done
outside your application code. Replacing HTTP with secure HTTPS helps a lot in this
regard. Some web applications eliminate the possibility of cross-origin scripting by
routing all requests to third-party data sources via proxying such requests through your
trusted servers. But proxying all requests through your server may present scalability
issues—imagine if thousands of concurrent users are routed through your server—so
do some serious load testing before making this architectural decision.

There are several JSON tools useful for developers. To make sure that
your JSON data is valid and properly formatted, use JSONLint. If you
paste ugly one-line JSON data, JSONLint will reformat it into a read‐
able form. The add-on JSONView is also available both for Firefox
and Chrome browsers. With JSONView, the JSON objects are dis‐
played in a pretty, formatted, collapsible format. If errors exist in the
JSON document, they will be reported. At the time of this writing,
Chrome’s version of JSONView does a better job of reporting errors.

Populating States and Countries from JSON Files
Earlier in this chapter, you saw an example of populating states and countries in the
donate form from HTML files. Now you’ll see how to retrieve JSON data by making an
Ajax call. In the web browser, open project-04-2-donation-ajax-json, which reads the

64 | Chapter 2: Using Ajax and JSON

http://bit.ly/aUMLnL
http://jsonlint.com
http://mzl.la/VzV33h
http://bit.ly/1vnVyIm

countries and states from the files countries.json and us_states.json, respectively. The
beginning of the file countries.json is shown here:

{
"countrieslist": [
 {
 "name": "Afghanistan",
 "code": "AF"
 }, {
 "name": "Åland Islands",
 "code": "AX"
 }, {
 "name": "Albania",
 "code": "AL"
 },

The JavaScript code that populates the countries and states combo boxes comes next.

Note the difference in creating the <option> tags from JSON versus HTML. In case of

HTML, the received data is added to the <select> element as is: target.innerHTML +=

xhr.responseText;. In JSON files, the data is not wrapped into the <option> tags, so
it’s done programmatically, as shown in Example 2-9.

Example 2-9. Loading JSON-formatted countries and states

function loadData(dataUrl, rootElement, target) {
 var xhr = new XMLHttpRequest();
 xhr.overrideMimeType("application/json");
 xhr.open('GET', dataUrl, true);

 xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if (xhr.status == 200) {

 //parse jsoon data
 var jsonData = JSON.parse(xhr.responseText);

 var optionsHTML = ''
 for(var i= 0; i < jsonData[rootElement].length; i++){
 optionsHTML+='<option value="'+jsonData[rootElement][i].code+'">'
 + jsonData[rootElement][i].name+'</option>'
 }

 var targetCurrentHtml = target.innerHTML;
 target.innerHTML = targetCurrentHtml + optionsHTML;

 } else {
 console.log(xhr.statusText);

 // Show the error on the Web page
 tempContainer.innerHTML += '<p class="error">Error getting ' +
 target.name + ": "+ xhr.statusText + ",code: "+ xhr.status + "</p>";
 }

Using JSON | 65

 }
 }
 xhr.send();
}

loadData('data/us-states.json', 'usstateslist', statesList);
loadData('data/countries.json', 'countrieslist', counriesList);

As shown in Example 2-9, we call the method XMLHttpRequest.overrideMimeType()
to ensure that the data will be treated by the browser as JSON even if the server won’t
report it as such.

Using Arrays in JSON
JSON supports arrays, and Example 2-10 shows you how the information about a cus‐
tomer can be presented in JSON format. A customer can have more than one phone,
which can be stored in an array.

Example 2-10. Accessing an array of phones in JSON data

<script >
 var customerJson = '{"fname":"Alex",
 "lname":"Smith",
 "phones":[
 "212-555-1212",
 "565-493-0909"
]
 }';

 var customer=JSON.parse(customerJson);

 console.log("Parsed customer data: fname=" + customer.fname +
 " lname=" + customer.lname +
 " home phone=" + customer.phones[0] +
 " cell phone=" + customer.phones[1]);
</script>

This code creates an instance of the JavaScript object referenced by the variable custom

er. In this example, the phones array holds just two strings. But you can store objects
in a JSON array the same way as you would in a JavaScript object literal—just don’t
forget to put every property name in quotes:

var customerJson = '{"fname":"Alex",
 "lname":"Smith",
 "phones":[
 {"type":"home", "number":"212-555-1212"},
 {"type":"work","number":"565-493-0909"}]
 }';

66 | Chapter 2: Using Ajax and JSON

Loading Charity Events by Using Ajax and JSON
The last example in Chapter 1 displays various charity events by using the Google Maps
API. But the data about these events is hardcoded in HTML files. After becoming fa‐
miliar with Ajax and JSON, it should not be too difficult to create a separate file with

the information about charities in JSON format and load them by using the XMLHTTPRe

quest object

The next version of Save The Child displays the charity events via Google Maps by using
the information about the events that’s stored in the file campaigndata.json, which is
shown in Example 2-11.

Example 2-11. The events information in campaignsdata.json

{
 "campaigns": {
 "header": "Nationwide Charity Events",
 "timestamp":"10/04/2014",
 "items": [
 {
 "title": "Lawyers for Children",
 "description":"Lawyers offering free services for the children",
 "location":"New York,NY"
 },
 {
 "title": "Mothers of Asthmatics",
 "description":"Mothers of Asthmatics - nationwide asthma network",
 "location": "Dallas,TX"
 },
 {
 "title": "Friends of Blind Kids",
 "description":"Semi-annual charity events for blind kids",
 "location":"Miami,FL"
 },
 {
 "title": "A Place Called Home",
 "description":"Adoption of the children",
 "location":"Miami,FL"
 },
 {
 "title": "Marathon for Survivors",
 "description":"Annual marathon for cancer survivors",
 "location":"Fargo, ND"
 }
]
 }
}

Run project-03-maps-json-data and you’ll see the map with the markers for each of the
events loaded from the file campaigndata.json (see Figure 2-3). Click a marker to see
an overlay with the event details.

Using JSON | 67

Figure 2-3. Markers built from JSON data

Note that this JSON file contains the object campaigns, which includes the array of

objects representing charity events. Example 2-12 shows that the XMLHttpRequest ob‐

ject loads the data and the JSON parses it, assigning the campaigns object to the variable

campaignsData that is used in showCampaignsInfo() with the Google Maps API (we’ve
omitted the mapping part for brevity).

Example 2-12. Displaying campaigns data

function showCampaignsInfo(campaigns) {

 campaignsCount = campaigns.items.length;

 var message = "<h3>" + campaigns.header + "</h3>" +
 "On " + campaigns.timestamp +
 " we'll run " + campaignsCount + " campaigns.";

 locationUI.innerHTML = message + locationUI.innerHTML;
 resizeMapLink.style.visibility = "visible";

 createCampaignsMap(campaigns);
}

function loadCampaignsData(dataUrl) {
 var xhr = new XMLHttpRequest();
 xhr.open('GET', dataUrl);

 xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if ((xhr.status >= 200 && xhr.status < 300) ||

68 | Chapter 2: Using Ajax and JSON

 xhr.status === 304) {
 var jsonData = xhr.responseText;

 var campaignsData = JSON.parse(jsonData).campaigns;
 showCampaignsInfo(campaignsData);
 } else {
 console.log(xhr.statusText);

 tempContainer.innerHTML += '<p class="error">Error getting ' +
 target.name + ": "+ xhr.statusText +
 ",code: "+ xhr.status + "</p>";
 }
 }
 }
 xhr.send();
}

var dataUrl = 'data/campaignsdata.json';
loadCampaignsData(dataUrl);

Some older web browsers may bring up a File Download pop-up

window when the content type of the server’s response is set to ap

plication/json. Try to use the MIME type text/html, instead, if you
run into this issue.

For simplicity, in this section we’ve been loading JSON-formatted data
from files, but in real-world applications, the JSON data is created on
the server dynamically. For example, a browser makes a RESTful call
to a Java-based server, which queries a database, generates a JSON-
formated result, and then sends it back to the web server.

Using JSON in CMS
Large-scale web applications could be integrated with content management systems
(CMSs), which could supply content such as charity events and sales promotions. CMS
servers can be introduced into the architecture of a web application to separate the work
of preparing the content from the application, delivering it as shown in Figure 2-4, which
depicts a web application integrated with the CMS server.

Using JSON | 69

Figure 2-4. CMS in the picture

The content contributors and editors prepare the information on the charities and
donation campaigns by using a separate application, not the Save The Child page. The
CMS server and the web application server www.savesickchild.org may be located in the
same or separate data centers. The server-side code of Save The Child makes a call to a
CMS server whenever the site visitor requests information about charity events. If you
get to pick a CMS for your future web application, make sure it offers a data feed in
JSON format.

Some time ago, one of the authors of this book was helping Mercedes Benz USA develop
its consumer-facing web application, with which users could search for, review, and
configure their next car. Figure 2-5 shows a snapshot taken from mbusa.com. Three
rectangular areas at the bottom were created by web designers to display the deals and
promotions of the day. The up-to-date content for these areas (in JSON format) is re‐
trieved from a CMS server when the user visits mbusa.com.

Figure 2-5. Current Mercedes deals from CMS

70 | Chapter 2: Using Ajax and JSON

There’s a side benefit of learning JSON: it’s used as the data format in
NoSQL databases such as MongoDB.

Handling JSON in Java
If a web browser receives a JSON stream from the server, the application needs to turn
it into JavaScript objects. If a web client needs to send JavaScript objects to the server,
they can be converted into JSON strings. Similar tasks have to be performed on the
server side. Our Save The Child application uses a Java application server. Various third-
party Java libraries can consume and generate JSON content.

Java Enterprise Edition 7 includes Java API for JSON Processing. Also, Several Java
libraries can convert Java objects into their JSON representation and back—for example,
Google’s Gson, Jackson, and json-simple.

Google’s Gson is probably the simplest one to use. It provides the methods toJson()

and fromJson() to convert Java objects to JSON and back. Gson allows pre-existing un-
modifiable objects to be converted to and from JSON and supports Java Generics. Gson
works well with complex objects with deep inheritance hierarchies.

Let’s say JavaScript sends to Java the following JSON string:

{"fname": "Alex", "lname":"Smith","skillLevel": 11}

The Java code can turn it into an instance of the Customer object by calling the method

Gson.fromJson(). Similarly, Java code can create a JSON string from an object instance.
Both of these operations are illustrated here:

public Customer createCustomerFromJson(String jsonString){

 Gson myGson = new Gson();
 Customer cust = myGson.fromJson(jsonString, Customer.class);
 return cust;
}

public String createJsonFromCustomer(Customer cust){

 Gson gson = new Gson();

 return gson.toJson(cust, Customer.class);
}

Of course, the declaration of the Java class Customer must exist in the classpath, and
don’t forget to include gson.jar in your Java project.

Handling JSON in Java | 71

http://www.mongodb.com/
http://bit.ly/1pPKnGB
http://code.google.com/p/google-gson
http://jackson.codehaus.org
http://bit.ly/1qr1qTc

The JSON data format is often used in non-JavaScript applications. For example, a Java
server can exchange JSON-formatted data with a .NET server.

The Java EE 7 specification includes JSR 353, which defines a stand‐
ardized way for parsing and generating JSON. JSR 353 defines the Java
API from JSON Processing (JSON-P) that shouldn’t be confused with
another acronym, JSONP or JSON-P, which is JSON with Padding
(we’ll discuss it at the end of this chapter).

Compressing JSON
JSON format is more compact than XML and is readable by human beings. But when
you are ready to deploy your application in production, you still want to compress the
data so fewer bytes will travel over the wire to the user’s browser. Server-side libraries
that generate JSON will make the data sent to the client compact by removing the tab
and the newline characters.

If you want to turn the pretty-print JSON into a more compact one-line format, just use
such websites as JavaScript Compressor or JSON Formatter. For example, after running
the 12 KB file countries.json through this compressor, its size was decreased to 9 KB.
JSONLint can also compress JSON if you provide this URL: http://jsonlint.com?refor
mat=compress.

Like most content that is sent to browsers by web servers, JSON data should be com‐
pressed. Gzip and Deflate are the two main compression methods used today. Both use
the same compression algorithm Deflate, but whereas with Deflate the compressed data
is being streamed to the client, Gzip first compresses the entire file, calculates the size,
and adds some additional headers to the compressed data. So Gzip might need some
extra time and memory, but you are more protected from getting incomplete JSON,
JavaScript, or other content. Both Gzip and Deflate are easily configurable by major web
servers, but it’s hard to say which one is better for your application. Set up some tests
with each of them and decide which one works faster or takes less system resources, but
don’t compromise on reliability of the compressed content.

We prefer using Gzip, which stands for GNU zip compression. On the server side, you’d
need to configure the Gzip filters on your web server. You need to refer to your web
server’s documentation for instructions on the configuration, which is done by the
MIME type. For example, you can request to Gzip everything except images (you might
want to do this if you’re not sure whether all browsers can properly uncompress certain
MIME types).

For example, applying the Gzip filter to the 9 KB countries.json file will reduce its size
to 3 KB, which means serious bandwidth savings, especially for web applications with
lots of concurrent users. This is even more important for mobile web clients, which

72 | Chapter 2: Using Ajax and JSON

http://json-p.org
http://bit.ly/1olD9Od
http://bit.ly/ST5rRP
http://jsonlint.com?reformat=compress
http://jsonlint.com?reformat=compress
http://bit.ly/1q9QeIY
http://bit.ly/1n8WH36

might be operating in areas with slower connections. Web clients usually set the HTTP

request attribute Accept-Encoding: gzip, inviting the server to return Gzipped con‐
tent, and the web server may compress the response if it does support it or unzipped
content otherwise. If the server supports Gzip, the HTTP response will have the attribute

Content-Encoding: gzip, and the browser will know to unzip the response data before
use.

Gzip is being used for compressing all types of content: HTML, CSS, JavaScript, and
more. If your server sends JSON content to the client by setting the content type to

application/json, don’t forget to include this MIME type in your server configuration
for Gzip.

Web browsers support Gzipping, too, and your application can set Content-Ecoding:

gzip in the HTTP request while sending the data from the web client to the server. But
web clients usually don’t send massive amounts of data to the server, so the benefits of
the compression on the client side might not be as big.

Adding Charts to Save The Child
Let’s consider yet another use case for JSON in Save The Child. We want to display charts
with statistics about donations. By now, our application doesn’t look exactly like the
original mockup from Figure 1-2, but it’s pretty close. There is an empty space to the
left of the maps, and the charts showing donation statistics can fit right in. Now we need
to decide how to draw the charts by using nothing but HTML5 elements. Note that we

are not talking about displaying static images by using the element. The goal is
to draw the images dynamically in the client’s code. You can accomplish this by using

the HTML5 elements <canvas> or <svg>.

The <canvas> element provides a bitmap canvas, where your scripts can draw graphs,
game graphics, or other visual images on the fly without using any plug-ins such as Flash

Player or Silverlight. To put it simply, <canvas> defines a rectangular area that consists
of pixels, where you can draw. Keep in mind that the DOM object can’t peek inside the
canvas and access specific pixels. So if you are planning to create an area with dynam‐

ically changing graphics, you might want to consider using <svg>.

The <svg> element supports Scalable Vector Graphics (SVG), the XML-based language
for describing two-dimensional graphics. Your code has to provide commands to draw
the lines, text, images, and so forth.

Adding a Chart with the Canvas Element
Let’s review some code fragments from project-04-canvas-pie-chart-json. The HTML

section defines <canvas> as 260 x 240 pixels. If the user’s browser doesn’t support

<canvas>, the user won’t see the chart, but will see the text “Your browser does not

Adding Charts to Save The Child | 73

http://bit.ly/VzV9Ig
http://www.w3.org/TR/SVG11

support HTML5 Canvas” instead. You need to give an ID to your <canvas> element so
your JavaScript code can access it:

<div id="charts-container">
 <canvas id="canvas" width="260" height="240">
 Your browser does not support HTML5 Canvas
 </canvas>
 <h3>Donation Stats</h3>
 <p> Lorem ipsum dolor sit amet, consectetur</p>
</div>

Run project-04-canvas-pie-chart-json, and you’ll see the chart with donation statistics

by city, as shown in Figure 2-6. We haven’t styled our <canvas> element, but we could
add a background color, border, or other bells and whistles if required.

Figure 2-6. Adding a chart

The data to be used for drawing a pie chart in our canvas is stored in the file data/
chartdata.json, but in the real world, the server-side code could generate it based on the
up-to-the-second donation data and send it to the client. For example, you could do it
as explained previously in “Handling JSON in Java” on page 71. Example 2-13 presents
the contents of our chartdata.json file.

Example 2-13. The contents of chartdata.json

{
 "ChartData": {
 "items": [

74 | Chapter 2: Using Ajax and JSON

 {
 "donors": 48,
 "location":"Chicago, IL"
 },
 {
 "donors": 60,
 "location": "New York, NY"
 },
 {
 "donors": 90,
 "location":"Dallas, TX"
 },
 {
 "donors": 22,
 "location":"Miami, FL"
 },
 {
 "donors": 14,
 "location":"Fargo, ND"
 },
 {
 "donors": 44,
 "location":"Long Beach, NY"
 },
 {
 "donors": 24,
 "location":"Lynbrook, NY"
 }
]
 }
}

Loading chartdata.json is done by using Ajax techniques as explained earlier. Although
in our example we’re loading the chart immediately when the Save The Child page loads,
the code in Example 2-14 could be invoked only when the user requests to see the chart
by clicking a menu item on the page.

Example 2-14. Loading chartdata.json

function getChartData(dataUrl, canvas) {
 var xhr = new XMLHttpRequest();
 xhr.open('GET', dataUrl, true);

 xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if ((xhr.status >= 200 && xhr.status < 300) ||
 xhr.status === 304) {
 var jsonData = xhr.responseText;

 var chartData = JSON.parse(jsonData).ChartData;

Adding Charts to Save The Child | 75

 drawPieChart(canvas, chartData, 50, 50, 49);

 } else {
 console.log(xhr.statusText);
 tempContainer.innerHTML += '<p class="error">Error getting '
 + target.name + ": "+ xhr.statusText +
 ",code: "+ xhr.status + "</p>";
 }
 }
 }
 xhr.send();
}

loadData('data/chartdata.json', document.getElementById("canvas"));

Parse JSON and create the ChartData JavaScript object.

Pass the data to the drawPieChart() function that will draw the pie in the

<canvas> element with the center coordinates x=50 and y=50 pixels. The upper-
left corner of the canvas has coordinates (0,0). The radius of the pie will be 49
pixels. The code of the function that draws the pie on the canvas goes next (see
Example 2-15).

Example 2-15. Drawing the pie chart in <canvas>

function drawPieChart (canvas, chartData, centerX, centerY, pieRadius) {
 var ctx; // The context of canvas
 var previousStop = 0; // The end position of the slice
 var totalDonors = 0;

 var totalCities = chartData.items.length;

 // Count total donors
 for (var i = 0; i < totalCities; i++) {
 totalDonors += chartData.items[i].donors;
 }

 ctx = canvas.getContext("2d");
 ctx.clearRect(0, 0, canvas.width, canvas.heigh);

 var colorScheme = ["#2F69BF", "#A2BF2F", "#BF5A2F",
 "#BFA22F", "#772FBF", "#2F94BF", "#c3d4db"];

 for (var i = 0; i < totalCities; i++) {

 //draw the sector
 ctx.fillStyle = colorScheme[i];
 ctx.beginPath();
 ctx.moveTo(centerX, centerY);
 ctx.arc(centerX, centerY, pieRadius, previousStop, previousStop +
 (Math.PI * 2 * (chartData.items[i].donors/totalDonors))

76 | Chapter 2: Using Ajax and JSON

 ,false);
 ctx.lineTo(centerX, centerY);
 ctx.fill();

 // label's bullet
 var labelY = 20 * i + 10;
 var labelX = pieRadius*2 + 20;

 ctx.rect(labelX, labelY, 10, 10);
 ctx.fillStyle = colorScheme[i];
 ctx.fill();

 // label's text
 ctx.font = "italic 12px sans-serif";
 ctx.fillStyle = "#222";
 var txt = chartData.items[i].location + " | " +
 chartData.items[i].donors;
 ctx.fillText (txt, labelX + 18, labelY + 8);

 previousStop += Math.PI * 2 *
 (chartData.items[i].donors/totalDonors);
 }
}

Count the total number of donors.

Get the 2D context of the <canvas> element. This is the most crucial element to
know for drawing on a canvas.

The color scheme is the set of colors used to paint each slice (sector) of the pie.

The for loop paints one sector on each iteration. This code draws lines, arcs,
and rectangles, and adds text to the canvas. Describing the details of each method
of the context object is out of the scope of this book, but you can find the details
of the context API in the W3C documentation available online.

To minimize the amount of manual coding, consider using one of the
JavaScript libraries that helps with visualization (for example, D3.js).

Adding a Chart by Using SVG
What if we want to make this chart dynamic and reflect the changes in donations every

five minutes? If you’re using <canvas>, you’ll need to redraw each and every pixel of
our canvas with the pie. With SVG, each element of the drawing would be the DOM
element so we would have to redraw only those elements that have changed. If with

<canvas> your script draws using pixels, the SVG drawings are done with vectors.

Adding Charts to Save The Child | 77

http://www.w3.org/TR/2dcontext
http://d3js.org

To implement the same donation statistics pie with the <svg> element, you’d need to

replace the <canvas> element with the following markup:

<div id="charts-container">
 <svg id="svg-container" xmlns="http://www.w3.org/2000/svg">

 </svg>
 <h3>Donation Stats</h3>
 <p>
 Lorem ipsum dolor sit amet, consectetur
 </p>
</div>

Running project-05-svg-pie-chart-json would show you pretty much the same pie, be‐
cause it uses the file chartdata.json with the same content, but the pie was produced

differently. The code for the new version of drawPieChart() is shown in
Example 2-16. We won’t discuss all the details of the drawing with SVG but will highlight
a couple of important lines of code that illustrate the difference between drawing on

<canvas> versus <svg>.

Example 2-16. Drawing the pie chart in <svg>

function drawPieChart(chartContainer, chartData, centerX, centerY,
 pieRadius, chartLegendX, chartLegendY) {
 // the XML namespace for svg elements
 var namespace = "http://www.w3.org/2000/svg";
 var colorScheme = ["#2F69BF", "#A2BF2F", "#BF5A2F", "#BFA22F",
 "#772FBF", "#2F94BF", "#c3d4db"];

 var totalCities = chartData.items.length;
 var totalDonors = 0;

 // Count total donors
 for (var i = 0; i < totalCities; i++) {
 totalDonors += chartData.items[i].donors;
 }

 // Draw pie sectors
 startAngle = 0;
 for (var i = 0; i < totalCities; i++) {
 // End of the sector = starting angle + sector size
 var endAngle = startAngle + chartData.items[i].donors
 / totalDonors * Math.PI * 2;
 var x1 = centerX + pieRadius * Math.sin(startAngle);
 var y1 = centerY - pieRadius * Math.cos(startAngle);
 var x2 = centerX + pieRadius * Math.sin(endAngle);
 var y2 = centerY - pieRadius * Math.cos(endAngle);

 // This is a flag for angles larger than than a half circle
 // It is required by the SVG arc drawing component
 var big = 0;
 if (endAngle - startAngle > Math.PI) {

78 | Chapter 2: Using Ajax and JSON

 big = 1;
 }

 //Create the <svg:path> element
 var path = document.createElementNS(namespace, "path");

 // Start at circle center
 var pathDetails = "M " + centerX + "," + centerY +
 // Draw line to (x1,y1)
 " L " + x1 + "," + y1 +
 // Draw an arc of radius
 " A " + pieRadius + "," + pieRadius +
 // Arc's details
 " 0 " + big + " 1 " +
 // Arc goes to (x2,y2)
 x2 + "," + y2 +
 " Z";
 // Close the path at (centerX, centerY)

 // Attributes for the <svg:path> element
 path.setAttribute("d", pathDetails);
 // Sector fill color
 path.setAttribute("fill", colorScheme[i]);

 chartContainer.appendChild(path);

 // The next sector begins where this one ends
 startAngle = endAngle;

 // label's bullet
 var labelBullet = document.createElementNS(namespace, "rect");
 // Bullet's position
 labelBullet.setAttribute("x", chartLegendX);
 labelBullet.setAttribute("y", chartLegendY + 20 * i);

 // Bullet's size
 labelBullet.setAttribute("width", 10);
 labelBullet.setAttribute("height", 10);
 labelBullet.setAttribute("fill", colorScheme[i]);

 chartContainer.appendChild(labelBullet);

 // Add the label text
 var labelText = document.createElementNS(namespace, "text");

 // label position = bullet's width(10px) + padding(8px)
 labelText.setAttribute("x", chartLegendX + 18);
 labelText.setAttribute("y", chartLegendY + 20 * i + 10);
 var txt = document.createTextNode(chartData.items[i].location +
 " | "+chartData.items[i].donors);

 labelText.appendChild(txt);

Adding Charts to Save The Child | 79

 chartContainer.appendChild(labelText);
 }

}

Create the <svg:path> HTML element, which is the most important SVG
element for drawing basic shapes. It includes a series of commands that produce
the required drawing. For example, M 10 10 means move to the coordinate 10,10
and L 20 30 means draw the line to the coordinate 20,30.

Fill the details of the <svg:path> element to draw the pie sector. Run project-05-
svg-pie-chart-json to see the Save The Child page, and then right-click the pie
chart and select Inspect Element (this is the name of the menu item in Firefox).

Figure 2-7 shows the resulting content of our <svg> element. As you can see, it’s
not pixel based but a set of XML-like commands that drew the content of the
chart. If you run the previous version of our application (project-04-canvas-pie-
chart-json) and right-click the chart, you will be able to save it as an image, but

won’t see the internals of the <canvas> element.

Add the internal elements of the chart container to the DOM: path, bullets, and
text. These elements can be modified if needed without redrawing the entire
content of the container.

In our code example, we have written the path commands manually
to process the data dynamically. But web designers often use tools
(Adobe Illustrator or Inkscape) to draw and then export images into

SVG format. In this case all paths will be encoded as <svg:path>
automatically.

Because the SVG is XML-based, it’s easy to generate the code shown in Figure 4-7 on
the server, and lots of web applications send ready-to-display SVG graphics to the users’
web browsers. But in our example, we are generating the SVG output in the JavaScript
from JSON received from the server, which provides a cleaner separation between the
client and the server-side code. The final decision on what to send to the web browser
(ready-to-render SVG or raw JSON) has to be made after considering various factors
such as available bandwidth, and the size of data, the number of users, and the existing
load on server resources.

SVG supports animations and transformation effects, whereas can

vas doesn’t.

80 | Chapter 2: Using Ajax and JSON

http://adobe.ly/1ls92x2
http://inkscape.org

Figure 2-7. The chart content in SVG

Loading Data from Other Servers by Using JSONP
Imagine that a web page was loaded from the domain abc.com, and it needs JSON-
formatted data from another domain (xyz.com). As mentioned earlier, Ajax has cross-
origin restrictions, which prevent this. JSONP is a technique used to relax the cross-
origin restrictions. With JSONP, instead of sending plain JSON data, the server wraps
it up into a JavaScript function and then sends it to the web browser for execution as a
callback. The web page that was originated from abc.com might send the request http://
xyz.com?callback=myDataHandler, technically requesting the server xyz.com to invoke

the JavaScript callback named myDataHandler. This URL is a regular HTTP GET request,
which may have other parameters so that you can send some data to the server, too.

Loading Data from Other Servers by Using JSONP | 81

The server then sends to the browser the JavaScript function that might look as follows:

function myDataHandler({"fname": "Alex", "lname":"Smith","skillLevel":

11});

The web browser invokes the callback myDataHandler(), which must exist in the web
page. The web browser passes the received JSON object as an argument to this callback:

function myDataHandler(data){
 // process the content of the argument data - the JSON object
 // received from xyz.com
}

If all you need is to retrieve data from a different domain on the page, just add the
following tag to your HTML page:

<script src="http://xyz.com?callback=myDataHandler">

But what if you need to dynamically make such requests periodically (for example, get

all tweets with a hashtag #savesickchild by sending an HTTP GET using the Twitter
API at http://search.twitter.com/search.json?q=savesickchild&rpp=5&include_enti‐
ties=true&with_twitter_user_id=true&result_type=mixed)? You add a change handler
to the option that is called and passes or grabs the value needed.

You can dynamically add a <script> tag to the DOM object from your JavaScript code.

Whenever the browser sees the new <script> element, it executes it. The script injection
can be done like this:

var myScriptTag = document.createElement("script");
myScriptTag.src = "http://xyz.com?callback=myDataHandler";
document.getElementsByTagName("body").appendChild(myScriptTag);

Your JavaScript can build the URL for the myScriptTag.src dynamically and pass pa‐
rameters to the server based on a user’s actions.

Of course, this technique presents a danger if there is a chance that the JavaScript code
sent by xyz.com is intercepted and replaced by a malicious code (similarly to the Java‐

Script eval() danger). But it’s not more dangerous than receiving any JavaScript from
a nontrusted server. Besides, your handler function could always make sure that the
received data is a valid object with expected properties, and only after that handle the
data.

If you decide to use JSONP, don’t forget about error handling. Most likely you’ll use one
of the JavaScript frameworks, which usually offer a standard mechanism for JSONP
error handling, dealing with poorly formatted JSON responses, and recovery in cases
of network failure. One such library is called jQuery-JSONP.

82 | Chapter 2: Using Ajax and JSON

https://github.com/jaubourg/jquery-jsonp

Beer and JSONP
In this section, you’ll see a small code example illustrating the data retrieval from the
publicly available Open Beer DataBase, which exists to help software developers test
code that makes RESTful web service calls and works with JSON and JSONP data. Our
Save The Child page won’t display beer bottles, but we want to show that in addition to
the retrieval of the donations and charts data from one domain, we can get the data
from a third-party domain openbeerdatabase.com.

First, enter the URL http://api.openbeerdatabase.com/v1/breweries.json in the
address bar of your web browser; it will return the following JSON data (only two out
of seven breweries are shown for brevity):

{
 "page": 1,
 "pages": 1,
 "total": 7,
 "breweries": [
 {
 "id": 1,
 "name": "(512) Brewing Company",
 "url": "http://512brewing.com",
 "created_at": "2010-12-07T02:53:38Z",
 "updated_at": "2010-12-07T02:53:38Z"
 },
 {
 "id": 2,
 "name": "21st Amendment Brewing",
 "url": "http://21st-amendment.com",
 "created_at": "2010-12-07T02:53:38Z",
 "updated_at": "2010-12-07T02:53:38Z"
 }
]
}

Now let’s request the same data, but in a JSONP format, by adding to the URL a pa‐

rameter with a callback name myDataHandler. Entering http://api.openbeerdata

base.com/v1/breweries.json?callback=processBeer in the browser returns the fol‐
lowing (it’s a short version):

processBeer({"page":1,"pages":1,"total":7,"breweries":[{"id":1,"name":"(512)
Brewing Company","url":"http://512brewing.com","created_at":
"2010-12-07T02:53:38Z", "updated_at":"2010-12-07T02:53:38Z"},
{"id":2,"name":"21st Amendment Brewing","url":"http://21st-amendment.com",
"created_at":"2010-12-07T02:53:38Z","updated_at":"2010-12-07T02:53:38Z"}]})

Because we haven’t declared the function processBeer() yet, it won’t be invoked. Let’s
fix that now. The function first checks whether the received data contains information
about the breweries. If it does, the name of the first brewery prints on the JavaScript
console. Otherwise, the console output will read, “Retrieved data has no breweries info.”

Loading Data from Other Servers by Using JSONP | 83

http://openbeerdatabase.com

var processBeer=function (data){

 // Uncomment the next line to emulate malicious data
 // data="function evilFunction(){alert(' Bad function');}";

 if (data.breweries == undefined){
 console.log("Retrieved data has no breweries info.");
 } else{
 console.log("In the processBeer callback. The first brewery is "
 + data.breweries[0].name);
 }
 }

var myScriptTag = document.createElement("script");
 myScriptTag.src =
 "http://api.openbeerdatabase.com/v1/breweries.json?callback=processBeer";

var bd = document.getElementsByTagName('body')[0];
bd.appendChild(myScriptTag);

Figure 2-8 is a screen snapshot taken in Firebug when it reached the breakpoint placed

inside the processBeer callback on the console.log(in the processBeer call

back"). You can see the content of the data argument: the beer has arrived.

As a training exercise, try to replace the data retrieval from the beer web service with
the data feed from Twitter based on certain hash tags. See if you can find a place in the
Save The Child web page to display (and periodically update) this Twitter stream.

json-generator.com is a handy website that can generate a file with
JSON or JSONP content based on your template. You can use this
service to test Ajax queries—the generated JSON can be saved on this
server to help test your web application.

84 | Chapter 2: Using Ajax and JSON

http://www.json-generator.com

Figure 2-8. The beer has arrived

Summary
In this chapter, you learned about using Ajax as a means of providing communication
between your web browser and servers. Ajax also deserves credit for making the Java‐
Script language popular again by showing a practical way of creating single-page web
applications. Over the years, JSON became the standard way of exchanging data on the
Web. The current version of the Save The Child application cleanly separates the code
from the data, and you know how to update the content of the web page without needing
to re-retrieve the entire page from the server. In the next chapter, you’ll learn a more
productive way of developing web applications by using a library called jQuery.

Summary | 85

CHAPTER 3

Introducing the jQuery Library

Until now, we’ve been using HTML, plain JavaScript, and CSS to create the Save The
Child web application. In the real world, developers try to be more productive by using
JavaScript libraries.

Libraries such as jQuery Core substantially minimize the amount of manual coding
while programming the core functionality of a web application. The jQuery UI library
offers widgets, animations, and advanced effects. The RequireJS library is a module
loader that allows you to modularize HTML5 applications. Hundreds of micro libraries
are also available that can do just one thing and can be used à la carte (visit MicroJS for
details).

Libraries are different from frameworks, which we discuss in Chapter 4. Whereas
frameworks force you to organize your code in a certain way, a library simply offers
components that allow you to write less code.

This chapter presents the JavaScript library jQuery, or to be more precise, JQuery Core.
About half of the top websites use jQuery (visit Built With for the current statistics).
jQuery is simple to use and doesn’t require you to dramatically change the way you
program for the Web. jQuery offers a helping hand with the tasks that most web devel‐
opers need to deal with—for example, finding and manipulating DOM elements, pro‐
cessing browser events, and dealing with browser incompatibility, which makes your
code more maintainable. Because jQuery is an extensible library, lots and lots of plug-
ins have been created by developers from around the world, and all of them are available
for free. If you can’t find the plug-in that fits your need, you can create one yourself.

87

http://jqueryui.com
http://requirejs.org
http://microjs.com
http://jquery.com
http://bit.ly/1uYqUF0

The jQuery UI library is a close relative of jQuery Core. It’s a set of
user interface interactions, effects, widgets, and themes built on top
of jQuery. You can find such widgets as Datepicker, Accordion, Slid‐
er, Tabs, and Autocomplete. jQuery UI will also help you add vari‐
ous interactions (for example, drag-and-drop) and effects (for exam‐
ple, adding CSS classes or animations) to your web pages. (jQuery
Core also has some effects.) jQuery UI is built on top of jQuery Core
and can’t be used independently. jQuery UI is covered in the jQuery
UI by Eric Sarrion (O’Reilly).

jQuery Mobile is yet another library built on top of jQuery Core. But
this one is geared toward creating mobile applications. Chapter 11
covers jQuery Mobile in detail.

This chapter is not a detailed jQuery Core primer; jQuery books and the online API
documentation provide a comprehensive explanation of jQuery. But we’ll give you just
enough information to understand how jQuery can be used. In “Programming Save
The Child by Using jQuery” on page 100, we’ll review the code of several versions of this
application highlighting the benefits of using the jQuery library.

Getting Started with jQuery
At the time of this writing, you can download either jQuery version 1.9 or jQuery 2.0
(the latter doesn’t support Internet Explorer 6, 7, or 8). You can download one of two
distributions of jQuery. The Gzipped minified version of jQuery is 33 KB in size (it’s 93
KB if unzipped), and this is all you need unless you are planning to develop jQuery
plug-ins, in which case get the larger development version (it’s about 270 KB). We’ve

downloaded jQuery from jquery.com and included it in the <script> tag in our HTML
code samples so you can run them even if an Internet connection is not available.

But instead of deploying the jQuery framework on your servers as a part of your ap‐
plication, you should use a common content delivery network (CDN) URL in your
HTML, as shown in the code that follows. Because jQuery is an extremely popular
library, many websites use it. If more than one web page were to get it from the same
CDN, the web browser would cache it locally and reuse it rather than downloading a
separate copy from different servers for every web application that uses jQuery. The
download page of jquery.com offers three CDNs: Google, Microsoft, and Media Tem‐
ple. For example, if you don’t need to use HTTPS with your application, Media Temple’s
CDN will suffice:

<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>

88 | Chapter 3: Introducing the jQuery Library

http://shop.oreilly.com/product/0636920023159.do
http://shop.oreilly.com/product/0636920023159.do
http://api.jquery.com/
http://api.jquery.com/
http://www.jquery.com
http://jquery.com/download

Using a CDN can have another advantage: the content (jQuery, in this
case) is distributed around the globe and might be served to the user
from servers located in the same city/country, thus reducing the la‐
tency.

You can provide a fallback URL by adding one extra line that will load jQuery from an
alternative location if your CDN fails:

<script> window.jQuery || document.write('<script
 src="http://code.jquery.com/jquery-1.9.1.min.js"></script>')
</script>

You may find code samples that use the URL http://code.jquery.com/
jquery-latest.min.js to download the latest version of jQuery. But
keep in mind that by doing this, you might run into a situation in
which some of the API of jQuery has been changed or deprecated.
For example, jQuery 2.0 stopped supporting Internet Explorer 6, 7,
and 8 and automatically switching to the latest version may result in
malfunctioning of your application. We recommend using the spe‐
cific version that has been tested with your application.

After covering the basics of jQuery Core, we are going to continue reviewing the code
of a series of projects representing the same Save The Child application, but this time
using jQuery. Other than adding validation to the Donate form and using an image
slider, this application remains the same as in Chapter 2; we just want to show that
developers can be more productive in achieving the same result.

Some say that anyone who knows HTML can easily learn jQuery, but this is not so.
Understanding JavaScript is required (see the bonus online chapter for reference). Pro‐
gramming with jQuery components starts with invoking the jQuery constructor

jQuery(). But people use the shorter version of this constructor that’s represented by a

$ sign: $(). This $ property is the only object that jQuery will create in the global name‐

space. Everything else will be encapsulated inside the $ object.

Getting Started with jQuery | 89

http://code.jquery.com/jquery-latest.min.js
http://code.jquery.com/jquery-latest.min.js
http://bit.ly/1x53fWz

Although it’s easier to write $() than jQuery(), keep in mind that if
you decide to use another library in your application in addition to
jQuery, the chances are higher that you will run into a conflict with

having another $ than another jQuery in the global namespace. To
make sure you won’t find yourself in the “Another day, another $”

position, put your code inside a closure, passing it jQuery. The fol‐

lowing code allows you to safely use the $ object:

(function($){
 // Your code goes here
})(jQuery);

As you remember, JavaScript functions do not require you to invoke them with exactly
the same number of parameters as they were declared with. Hence, when you invoke
the jQuery constructor, you can pass different things to it. You can pass a string as an
argument or another function, and the jQuery constructor will invoke different code
based on the argument type. For example, if you pass it a string, jQuery will assume that
it’s a CSS selector, and the caller wants to find element(s) in the DOM that match this
selector. Basically, you can think of it this way: whenever you want jQuery do something

for you, invoke $() passing it your request.

You’ll need to get used to yet another feature of jQuery: method chaining. Each function
returns an object, and you don’t have to declare a variable to hold this object. You can

just write something like funcA().funcB();. This means that the method funcB() will

be called on the object, returned by the funcA().

Although method chaining is often presented as a great feature that
allows you to do more with less typing, it can complicate the debug‐

ging of your code. Imagine that funcA() returns null for whatever

reason. The entire chain (funcB() in our example) attached to

funcA() won’t work properly, and you might need to unchain these
methods to find the problem.

Also, if you need to access a DOM object more than once, save the reference in a variable
and reuse it rather than invoking the same selector method in several chains. This can
improve the performance of your web page.

Hello World
The Hello World program is always a good start when learning any new software, and
we’ll go this route, too. Example 3-1 uses jQuery to display a web page that reads, “Hello

World!” Note the functions that start with the $ sign—they are all from the jQuery
library.

90 | Chapter 3: Introducing the jQuery Library

Example 3-1. Hello World with jQuery

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">

 <title>Hello jQuery</title>
 </head>
 <body>
 <script src="js/libs/jquery-1.9.1.min.js"></script>
 <script>
 $(function(){
 $("body").append("<h1>Hello World!</h1>");

 });
 </script>
 </body>
</html>

If the script passes a function as an argument to jQuery, this function is called

when the DOM object is ready: the jQuery’s ready() function is invoked. Keep

in mind that it’s not the same as invoking a function handler window.onload,
which is called after all window resources (not just the DOM object) are
completely loaded (read more in “Handling Events” on page 94).

If the script passes a string to jQuery, this string is treated as a CSS selector, and
jQuery tries to find the matching collection of HTML elements (it will return

the reference to just one <body> in the Hello World script). This line also

demonstrates method chaining: the append() method is called on the object

returned by $("body").

Using Selectors and Filters
Probably the most frequently used routine in JavaScript code that’s part of an HTML
page is finding DOM elements and manipulating them, and this is where jQuery’s power
is. Finding HTML elements based on CSS selectors is easy and concise. You can specify
one or more selectors in the same query. Example 3-2 presents a snippet of code that
contains random samples of selectors. Going through this code and reading the com‐
ments will help you understand how to use jQuery selectors. (Note that with jQuery,
you can write one selector for multiple IDs, which is not allowed in the pure JavaScript’s

getElementById().)

Example 3-2. Sample jQuery selectors

$(".donate-button"); // find the elements with the class donate-button

$("#login-link") // find the elements with id=login-link

Using Selectors and Filters | 91

http://mzl.la/V2udjX
http://bit.ly/1lJq3aP

// find elements with id=map-container or id=video-container

$("#map-container, #video-container");

// Find an HTML input element that has a value attribute of 200

$('input[value="200"]');

// Find all <p> elements that are nested somewhere inside <div>

$('div p');

// Find all <p> elements that are direct children (located directly inside) <div>

$('div>p');

// Find all <label> elements that are styled with the class donation-heading

$('label.donation-heading');

// Find an HTML input element that has a value attribute of 200

// and change the text of its next sibling to "two hundred"

$('input[value="200"]').next().text("two hundred");

If jQuery returns a set of elements that match the selector’s expres‐

sion, you can access its elements by using array notation: var theSe

condDiv = $('div')[1]. If you want to iterate through the entire set,

use the jQuery method $(selector).each(). For example, if you
want to perform a function on each paragraph of an HTML docu‐

ment, you can do so as follows: $("p").each(function(){...}).

Testing jQuery Code with JSFiddle
The handy online site JSFiddle can help you perform quick testing of code fragments
of HTML, CSS, JavaScript, and other popular frameworks. This web page has a sidebar
on the left and four large panels on the right. Three of these panels are for entering or
copying and pasting HTML, CSS, and JavaScript, respectively, and the fourth panel is
for showing the results of applying this code (see Figure 3-1).

Copy and paste fragments from the HTML and CSS written for the Donate section of
the Save The Child page into the top panels, and click the Run button on JSFiddle’s
toolbar. You’ll see our donate form, where each radio button has a label in the form of
digits (10, 20, 50, 100, 200). Now select jQuery 1.9.0 from the drop-down at the upper
left and copy and paste the jQuery code fragment you’d like to test into the JavaScript

panel located under the HTML one. As you see in Figure 3-1, we’ve pasted $('in

put[value="200"]').next().text("two hundred");. After clicking the Run button,
the jQuery script executes and the label of the last radio button changes from 200 to
two hundred (test this fiddle here). Also check out JSFiddle’s tutorial.

92 | Chapter 3: Introducing the jQuery Library

http://api.jquery.com/each
http://jsfiddle.net
http://bit.ly/1mzUwU5
http://bit.ly/1rPH2c3

Figure 3-1. Testing jQuery by using JSFiddle

If you chained a method (for example, an event handler) to the

HTML element returned by a selector, you can use $(this)
from inside this handler to get a reference to this HTML ele‐
ment.

Filtering Elements
If the jQuery selector returns a number of HTML elements, you can further narrow this

collection by applying filters. jQuery has such filters as eq(), has(), first(), and more.

For example, applying the selector $('label'); to the Donate section of the HTML

fragment shown in Figure 3-1 would return a set of HTML elements called <label>.
Say we want to change the background of the label 20 to be red. This is the third label

in the HTML from Figure 3-1, and the eq(n) filter selects the element at the zero-based

index n within the matched set.

You can apply this filter by using the following syntax: $('label:eq(2)');. But jQuery

documentation suggests using the syntax $('label').eq(2); for better performance.

Using method chaining, we’ll apply the filter eq(2) to the set of labels returned by the

selector $('label') and then change the styling of the remaining HTML element(s)

Filtering Elements | 93

http://api.jquery.com/eq-selector

by using the css() method that can perform all CSS manipulations. This is how the
entire expression will look:

$('label').eq(2).css('background-color', 'red');

Test this script in JSFiddle or in the code of one of the Save The Child projects from this
chapter. The background of the label 20 will become red. If you wanted to change the

CSS of the first label in this set, the filter expressions would look like $('label:first')
or, for the better performance, you should do it like this:

$('label').filter(":first").css('background-color', 'red');

If you display data in an HTML table, you might want to change the background color

of every even or odd row <tr>, and jQuery offers you the filters even() and odd(). For
example:

$('tr').filter(":even").css('background-color', 'grey');

Usually, you’d be doing this to interactively change the background colors. You can also

alternate background colors by using the straight CSS selectors p:nth-child(odd) and

p:nth-child(even).

Check out jQuery API documentation for the complete list of selectors and traversing
filters.

If you need to display data in a grid-like form, consider using a Java‐
Script grid called SlickGrid.

Handling Events
Adding events processing with jQuery is simple. Your code will follow the same pattern:
find the element in DOM by using a selector or filter, and then attach the appropriate
function that handles the event. We’ll show you a handful of examples, but you can find
a description of all methods that deal with events in the jQuery API documentation.

There are a couple of ways of passing the handler function to be executed as a callback
when a particular event is dispatched. For example, our Hello World code passes a

handler function to the ready event:

$(function());

This is the same as using the following syntax:

$(document).ready(function());

94 | Chapter 3: Introducing the jQuery Library

http://bit.ly/1lJq3aP
http://bit.ly/TJs1gf
http://bit.ly/TJs1gf
http://bit.ly/V2uYJH
http://bit.ly/1mzV6Br

For the Hello World example, this was all that mattered; we just needed the DOM object

to be able to append the <h1> element to it. But this would not be the right solution if
the code needed to be executed only after all page resources have been loaded. In this

case, the code could be written to utilize the DOM’s window.load event, which in jQuery
looks as follows:

$(window).load(function(){
 $("body").append("<h1>Hello World!</h1>");
});

If the user interacts with your web page by using a mouse, the event handlers can be
added by using a similar procedure. For example, if you want the header in our Hello
World example to process click events, find the reference to this header and attach the

click() handler to it. Adding the following to the <script> section of Hello World will
append the text each time the user clicks the header:

$("h1").click(function(event){
 $("body").append("Hey, you clicked on the header!");
})

If you’d like to process double-clicks, replace the click() invocation with

dblclick(). jQuery has handlers for about a dozen mouse events, which are wrapper
methods to the corresponding JavaScript events that are dispatched when a mouse enters
or leaves the area, the mouse pointer goes up/down, or the focus moves in or out of an

input field. The shorthand methods click() and dblclick() (and several others) in‐

ternally use the method on(), which you can and should use in your code, too (it works
during the bubbling phase of the event, as described in the section “DOM Events” in
the bonus online chapter).

Attaching Event Handlers and Elements by Using the Method on()
Event methods can be attached just by passing a handler function, as in the preceding

examples. You can also process the event by using the on() method, which allows you
to specify the native event name and the event handler as its arguments. In “Program‐
ming Save The Child by Using jQuery” on page 100, you’ll see lots of examples that use

the on() method. The following one-liner assigns the function handler named showLo

ginForm to the click event of the element with the id login-link. Example 3-3 includes
the commented-out pure-JavaScript version of the code (see project-02-login in Chap‐
ter 1) that has the same functionality.

Example 3-3. Handling the click on login link

 // var loginLink = document.getElementById("login-link");
 // loginLink.addEventListener('click', showLoginForm, false);

 $('#login-link').on('click', showLoginForm);

Handling Events | 95

The on() method allows you to assign the same handler function to more than one

event. For example, to invoke the showLoginForm function when the user clicks or moves

the mouse over the HTML element, you could write on('click mouseover', showLo

ginForm).

The method off() is used for removing the event handler so that the event won’t be
processed anymore. For example, if you want to turn off the login link’s ability to process

the click event, simply write this:

 $('#login-link').off('click', showLoginForm);

Delegating Events
The method on() can be called by passing an optional selector as an argument. Because
we haven’t used selectors in this example, the event was triggered only when it reached

the element with the ID login-link. Now imagine an HTML container that has child

elements—for example, a calculator implemented as <div id="calculator"> contain‐
ing buttons. The following code assigns a click handler to each button styled with the

class .digitButton:

$("div#calculator .digitButton").on("click", function(){...});

But instead of assigning an event handler to each button, you can assign an event handler
to the container and specify an additional selector that can find child elements. The

following code assigns the event handler function to only one object—the div#calcu

lator instructing this container to invoke the event handler when any of its children

matching .digitButton is clicked:

$("div#calculator").on("click", ".digitButton",function(){...});

When the button is clicked, the event bubbles up and reaches the container’s level, whose
click handler will do the processing (jQuery doesn’t support the capturing phase of
events). The work on processing clicks for digit buttons is delegated to the container.

Another good use case for delegating event processing to a container is a financial ap‐
plication that displays the data in an HTML table containing hundreds of rows. Instead
of assigning hundreds of event handlers (one per table row), assign one to the table.
There is one extra benefit to using delegation in this case: if the application can dy‐
namically add new rows to this table (say, the order execution data), there is no need to
explicitly assign event handlers to them; the container will do the processing for both
old and new rows.

96 | Chapter 3: Introducing the jQuery Library

Starting from jQuery 1.7, the method on() is a recommended re‐

placement of the methods bind(), unbind(), delegate(), and unde

legate() that are still being used in earlier versions of jQuery. If you
decide to develop your application with jQuery and its mobile ver‐
sion with jQuery Mobile, you need to be aware that the latter may not

implement the latest code of the core jQuery. Using on() is safe,
though, because at the time of this writing jQuery Mobile 1.2 sup‐
ports all the features of jQuery 1.8.2. Chapter 10 shows you how using
responsive design principles can help you reuse the same code on
both desktop and mobile devices.

The method on() allows passing the data to the function handler (see the jQuery doc‐
umentation for details).

You are also allowed to assign different handlers to different events in one invocation

of on(). The following code snippet from project-11-jQuery-canvas-pie-chart-json as‐

signs handlers to focus and blur events:

$('#customAmount').on({
 focus : onCustomAmountFocus,
 blur : onCustomAmountBlur
});

Using Ajax with jQuery
Making Ajax requests to the server is also easier with jQuery than with pure JavaScript.

All the complexity of dealing with various flavors of XMLHttpRequest is hidden from

the developers. The method $.ajax() spares JavaScript developers from writing the

code with multiple browser-specific ways of instantiating the XMLHttpRequest object.

By invoking ajax(), you can exchange data with the server and load the JavaScript code.
In its simplest form, this method takes just the URL of the remote resource to which
the request is sent. This invocation uses global defaults that must be set in advance by

invoking the method ajaxSetup().

But you can combine specifying parameters of the Ajax call and making the ajax() call.
Just provide as an argument a configuration object that defines the URL, the function
handlers for success and failures, and other parameters such as a function to call right

before the Ajax request (beforeSend) or caching instructions for the browser (cache).

Spend some time becoming familiar with all the configuration parameters that you can

use with the jQuery method ajax(). Here’s a sample template for calling jQuery ajax():

$.ajax({
 url: 'myData.json',
 type: 'GET',
 dataType: 'json'

Using Ajax with jQuery | 97

http://api.jquery.com/on/
http://api.jquery.com/on/
http://bit.ly/1m2tDfK
http://bit.ly/1ohVFUA

 }).done(function (data) {...})
 .fail(function (jqXHR, textStatus) {...});

This example takes a JavaScript object that defines three properties: the URL, the type
of the request, and the expected data type. Using chaining, you can attach the methods

done() and fail(), which have to specify the function handlers to be invoked in case
of success and failure, respectively. jqXHR is a jQuery wrapper for the browser’s

XMLHttpRequest object.

Don’t forget about the asynchronous nature of Ajax calls, which means that the ajax()

method will be finished before the done() or fail() callbacks will be invoked. You can

attach another promised callback method called always() that will be invoked regardless

of whether the ajax() call succeeds or fails.

An alternative to having a fail() handler for each Ajax request is

setting the global error-handling routine by using ajaxSetup(). Con‐
sider doing this for some serious HTTP failures such as 403 (access
forbidden) or errors with codes 5xx. For example:

$(function() {
 $.ajaxSetup({
 error: function(jqXHR, exception) {
 if (jqXHR.status == 404) {
 alert('Requested resource not found. [404]');
 } else if (jqXHR.status == 500) {
 alert('Internal Server Error [500].');
 } else if (exception === 'parsererror') {
 alert('JSON parsing failed.');
 } else {
 alert('Got This Error:\n' + jqXHR.responseText);
 }
 }
 });
});

If you need to chain asynchronous callbacks (done(), fail(), always()) that don’t need

to be called right away (they wait for the result), the method ajax() returns the De

ferred object. It places these callbacks in a queue to be called later. As a matter of fact,

the callback fail() might never be called if no errors occur.

If you specify JSON as a value of the dataType property, the result will be parsed auto‐

matically by jQuery; there is no need to call JSON.parse() as was done in Chapter 2.

Even though the jQuery object has a utility method called parseJSON(), you don’t have

to invoke it to process a return of the ajax() call.

In the preceding example, the type of Ajax request was GET. But you can use POST, too.
In this case, you need to prepare valid JSON data to be sent to the server, and the

98 | Chapter 3: Introducing the jQuery Library

http://bit.ly/jq-ajax
http://bit.ly/1nWLxxN
http://bit.ly/1nWLxxN

configuration object that you provide as an argument to the method ajax() has to

include the property data containing valid JSON.

Handy Shorthand Methods
jQuery has several shorthand methods that allow making Ajax calls with a simpler syn‐
tax, which we’ll consider next.

The method load() makes an Ajax call from an HTML element(s) to the specified URL
(the first argument) and populates the HTML element with the returned data. You can
pass optional second and third arguments: HTTP request parameters and the callback

function to process the results. If the second argument is an object, the load() method

will make a POST request; otherwise, GET. You’ll see the code that uses load() to populate
states and countries from remote HTML files later in this chapter, in the section “Load‐
ing HTML States and Countries by Using jQuery Ajax” on page 104. But the next line

shows an example of calling load() with two parameters, the URL and the callback:

 $('#counriesList').load('data/countries.html', function(response, status, xhr)
 {...});

The global method get() allows you to specifically issue an HTTP GET request. Similarly

to the ajax() invocation, you can chain the done(), fail(), and always() methods to

get(). For example:

$.get('ssc/getDonors?city=Miami', function(){alert("Got the donors");})
 .done(function(){alert("I'm called after the donors retrieved");}
 .fail(function(){alert("Request for donors failed");});
;

The global method post() makes an HTTP POST request to the server. You must specify
at least one argument—the URL on the server—and, optionally, the data to be passed,
the callback to be invoked on the request completion, and the type of data expected

from the server. Similarly to the ajax() invocation, you can chain the done(),

fail(), and always() methods to post(). The following example makes a POST request
to the server, passing an object with the new donor information:

$.post('ssc/addDonor', {id:123, name:"John Smith"});
;

The global method getJSON() retrieves and parses the JSON data from the specified
URL and passes the JavaScript object to the specified callback. If need be, you can send

the data to the server with the request. Calling getJSON() is like calling ajax() with the

parameter dataType: "json", as shown in Example 3-4.

Example 3-4. Getting JSON data using an Ajax call

$.getJSON('data/us-states-list.json', function (data) {
 // code to populate states combo goes here})
 .fail(function(){alert("Request for us states failed");});

Using Ajax with jQuery | 99

http://bit.ly/1x54CUZ
http://bit.ly/1nYK3nJ
http://bit.ly/1iSQ4oF

The method serialize() is used when you need to submit to the server a filled-out

HTML <form>. This method presents the form data as a text string in a standard URL-
encoded notation. Typically, the code finds a required form by using a jQuery selector

and then calls serialize() on this object. You can invoke serialize() not only on the
entire form, but also on selected form elements. The following is sample code that finds
the form and serializes it:

$('form').submit(function() {
 alert($(this).serialize());
 return false;
});

Returning false from a jQuery event handler is the same as calling

either preventDefault() or stopPropagation() on the

jQuery.Event object. In pure JavaScript, returning false doesn’t stop
propagation (try to run this fiddle).

Later in this chapter, in “Submitting the Donate Form” on page 107, you’ll see code that

uses the serialize() method.

Programming Save The Child by Using jQuery
In this section, we’ll review code samples from several small projects (see Appendix B
for running instructions) that are jQuery rewrites of the corresponding pure-JavaScript
projects from Chapter 1 and Chapter 2. We are not going to add any new functionality
—the goal is to demonstrate how jQuery allows you to achieve the same results while
writing less code. You’ll also see how it can save you time by handling browser incom‐
patibility for common uses (like Ajax).

Login and Donate
The file main.js from project-02-jQuery-Login is 33 percent smaller than project-02-
login written in pure JavaScript. jQuery allows your programs to be brief. For example,
the following code shows how six lines of JavaScript can be replaced with one: the jQuery

function toggle() toggles the visibility of login-link, login-form, and login-submit:

The total size of your jQuery application is not necessarily smaller
than the pure JavaScript one, because it includes the code of the
jQuery library.

function showLoginForm() {

100 | Chapter 3: Introducing the jQuery Library

http://bit.ly/1qK1n2B
http://jsfiddle.net/APQk6/

// The JavaScript way

// var loginLink = document.getElementById("login-link");

// var loginForm = document.getElementById("login-form");

// var loginSubmit = document.getElementById('login-submit');

// loginLink.style.display = "none";

// loginForm.style.display = "block";

// loginSubmit.style.display = "block";

// The jQuery way

$('#login-link, #login-form, #login-submit').toggle();
}

The code of the Donate section also becomes slimmer with jQuery. For example, the
following section from the JavaScript version of the application is removed:

var donateBotton = document.getElementById('donate-button');
var donationAddress = document.getElementById('donation-address');
var donateFormContainer = document.getElementById('donate-form-container');
var customAmount = document.getElementById('customAmount');
var donateForm = document.forms['_xclick'];
var donateLaterLink = document.getElementById('donate-later-link');

The jQuery method chaining allows you to combine (in one line) finding DOM objects
and acting upon them. Example 3-5 presents the entire code of main.js from project-01-
jQuery-make-donation, which includes the initial version of the code of the Login and
Donate sections of Save The Child.

Example 3-5. The entire jQuery script from main.js

/* --------- login section -------------- */

$(function() {

 function showLoginForm() {
 $('#login-link, #login-form, #login-submit').toggle();
 }

 $('#login-link').on('click', showLoginForm);

 function showAuthorizedSection() {
 $('#authorized, #login-form, #login-submit').toggle();
 }

 function logIn() {
 var userNameValue = $('#username').val();
 var userNameValueLength = userNameValue.length;
 var userPasswordValue = $('#password').val();
 var userPasswordLength = userPasswordValue.length;

 //check credentials
 if (userNameValueLength == 0 || userPasswordLength == 0) {
 if (userNameValueLength == 0) {

Programming Save The Child by Using jQuery | 101

 console.log('username is empty');
 }
 if (userPasswordLength == 0) {
 console.log('password is empty');
 }
 } else if (userNameValue != 'admin' || userPasswordValue != '1234') {
 console.log('username or password is invalid');
 } else if (userNameValue == 'admin' && userPasswordValue == '1234') {
 showAuthorizedSection();
 }
 }

 $('#login-submit').on('click', logIn);

 function logOut() {
 $('#username, #password').val('')
 $('#authorized, #login-link').toggle();
 }

 $('#logout-link').on('click', logOut);

 $('#profile-link').on('click', function() {
 console.log('Profile link was clicked');
 });
});

/* --------- make donation module start -------------- */

$(function() {
 var checkedInd = 2; // initially checked radiobutton

 // Show/hide the donation form if the user clicks
 // the button Donate Now or the link I'll Donate Later
 function showHideDonationForm() {
 $('#donation-address, #donate-form-container').toggle();
 }
 $('#donate-button').on('click', showHideDonationForm);
 $('#donate-later-link').on('click', showHideDonationForm);
 // End of show/hide section

 $('#donate-form-container').on('click', resetOtherAmount);

 function resetOtherAmount(event) {
 if (event.target.type == "radio") {
 $('#otherAmount').val('');
 }
 }

 //uncheck selected radio buttons if other amount was chosen
 function onOtherAmountFocus() {
 var radioButtons = $('form[name="_xclick"] input:radio');
 if ($('#otherAmount').val() == '') {

102 | Chapter 3: Introducing the jQuery Library

 checkedInd = radioButtons.index(radioButtons.filter(':checked'));
 }
 $('form[name="_xclick"] input:radio').prop('checked', false);
 }

 function onOtherAmountBlur() {
 if ($('#otherAmount').val() == '') {
 $('form[name="_xclick"] input:radio:eq(' + checkedInd + ')')
 .prop("checked", true);
 }
 }
 $('#otherAmount')
 .on({focus:onOtherAmountFocus, blur:onOtherAmountBlur});

});

This one-liner finds all elements of the form named _xclick, and immediately
applies the jQuery filter to remove from this collection any elements except radio

buttons. Then, it deselects all of them by setting the property checked to false.
This has to be done if the user places the focus inside the Other Amount field.

If the user leaves the Other Amount field, return the check to the previously

selected radio button again. The eq filter picks the radio button whose number

is equal to the value of the variable checkedInd.

A single invocation of the on() method registers two event handlers: one for the

focus and one for the blur event.

jQuery includes a number of effects that make the user experience more engaging. Let’s

use one of them, called fadeToggle(). In the preceding code, a section that toggles
visibility of the Donate form. If the user clicks the Donate Now button, the form becomes
visible (see Figure 1-11). If the user clicks the link “I’ll donate later,” the form becomes

hidden, as in Figure 1-10. The jQuery method toggle() does its job, but the change

happens abruptly. The fadeToggle() effect allows us to introduce slower fading, which
improves the user experience, at least to our taste.

If you wanted to hide/show just one component, the code change would be trivial—

replacing toggle() with fadeToggle('slow') would do the trick. But in our case, the

toggle changes visibility of two <div>s: donation-address and donation-form-

container, which should happen in a certain order. The following code is a replacement
of the show/hide section of main.js to introduce the fading effect:

function showHideDonationForm(first, next) {
 first.fadeToggle('slow', function() {
 next.fadeToggle('slow');
 });
}

Programming Save The Child by Using jQuery | 103

http://bit.ly/1pPMdHN

var donAddress = $('#donation-address');
var donForm = $('#donate-form-container');

$('#donate-button').on('click', function() {
 showHideDonationForm(donAddress, donForm)});

$('#donate-later-link').on('click', function() {
 showHideDonationForm(donForm, donAddress)});

If you want to see the difference, first run project-01-jQuery-make-donation and click
the Donate Now button (no effects), and then run project-04-jQuery-donation-ajax-
json, which has the fading effect.

Loading HTML States and Countries by Using jQuery Ajax
The project-03-jQuery-donation-ajax-html project illustrates retrieving HTML data

about the states and countries by using the jQuery method load(). Example 3-6 shows

the fragment from main.js that makes two load() calls. The second call purposely mis‐
spells the name of the file to generate an error.

Example 3-6. Loading data and processing errors

function loadData(dataUrl, target, selectionPrompt) {
 target.load(dataUrl,
 function(response, status, xhr) {
 if (status != "error") {
 target.prepend(selectionPrompt);
 } else {
 console.log('Status: ' + status + ' ' + xhr.statusText);

 // Show the error message on the Web page
 var tempContainerHTML = '<p class="error">Error getting ' + dataUrl +
 ": "+ xhr.statusText + ", code: "+ xhr.status + "</p>";

 $('#temp-project-name-container').append(tempContainerHTML);
 }
 });
}

var statePrompt =
 '<option value="" selected="selected"> - State - </option>';
loadData('data/us-states.html', $('#state'), statePrompt);

var countryPrompt =
 '<option value="" selected="selected"> - Country - </option>';

// Pass the wrong data URL on purpose

loadData('da----ta/countries.html', $('#counriesList'), countryPrompt);

The callback to be invoked right after the load() completes the request.

104 | Chapter 3: Introducing the jQuery Library

Using the jQuery method prepend(), insert the first element into the HTML

element <select> to prompt the user to select a state or a country.

Display an error message at the bottom of the web page in the <div> section

with the ID temp-project-name-container.

Pass the misspelled data URL to generate an error message.

Loading JSON States and Countries by Using jQuery Ajax
The project named project-04-jQuery-donation-ajax-json demonstrates how to make a

jQuery ajax() call to retrieve the JSON data about countries and states and populate

the respective combo boxes in the donation form. The function loadData() in
Example 3-7 takes three arguments: the data URL, the name of the root element in the
JSON file, and the target HTML element to be populated with the data retrieved from
the Ajax call.

Example 3-7. Loading countries and states with ajax()

function loadData(dataUrl, rootElement, target) {
 $.ajax({
 url: dataUrl,
 type: 'GET',
 cache: false,
 timeout: 5000,
 dataType: 'json'
 }).done(function (data) {
 var optionsHTML = '';
 $.each(data[rootElement], function(index) {
 optionsHTML+='<option value="'+data[rootElement][index].code+'">' +
 data[rootElement][index].name+'</option>'
 });

 var targetCurrentHTML = target.html();
 var targetNewHTML = targetCurrentHTML + optionsHTML;
 target.html(targetNewHTML);
 }).fail(function (jqXHR, textStatus, error) {

 console.log('AJAX request failed: ' + error +
 ". Code: " + jqXHR.status);

 // The code to display the error in the
 // browser's window goes here
 });
}

// Load the State and Country comboboxes

loadData('data/us-states-list.json',
 'usstateslist', $('#state'));
loadData('data/counries-list.json',
 'countrieslist', $('#counriesList'));

Programming Save The Child by Using jQuery | 105

Set the timeout. If the result of the ajax() call won’t return within 5 seconds,

the method fail() will be invoked.

The handler function to process the successfully retrieved data.

Get the content of the HTML <select> element to populate with states or

countries. The jQuery method html() uses the browser’s innerHTML property.

The handler function to process errors, if any.

Calling loadData() to retrieve states and populate the #state combo box. The

usstatelist is the name of the root element in the JSON file us-states-list.json.

Calling loadData() to retrieve countries and populate the #countriesList
combo box.

Compare this code with the pure JavaScript version from Chapter 2 that populates states
and countries. If the jQuery code doesn’t seem to be shorter, keep in mind that writing
a cross-browser version in pure JavaScript would require more than a dozen additional

lines of code that deal with the instantiation of XMLHttpRequest.

Run project-04-jQuery-donation-ajax-json. Open Google Developer Tools and click the
Network tab. In Figure 3-2, you can see that jQuery made two successful calls, retrieving
two JSON files with the data on states and countries.

Figure 3-2. Calling ajax() to retrieve states and countries

Click countries-list on the left (see Figure 3-3) and you’ll see the JSON data in the re‐
sponse object.

106 | Chapter 3: Introducing the jQuery Library

Figure 3-3. The JSON with countries is successfully retrieved

Now let’s create an error situation to test the $.ajax().fail() chain. Just change the

name of the first parameter to data/counries.json in the loadData() invocation.
There is no such file, and the Ajax call will return the error 404. The watch expressions
in Figure 3-4 depict the moment when the script execution stopped at the breakpoint

in the fail() method.

Figure 3-4. The file counries.json is not found: 404

Submitting the Donate Form
Our Save The Child application should be able to submit the donation form to PayPal.
The file index.html from project-04-jQuery-donation-ajax-json contains the form with

id="donate-form". The fragment of this form is shown in Example 3-8.

Programming Save The Child by Using jQuery | 107

Example 3-8. A fragment of the Donate form

<form id="donate-form" name="_xclick" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">
 <input type="hidden" name="cmd" value="_xclick">
 <input type="hidden" name="paypal_email"
 value="email-registered-in-paypal@site-url.com">
 <input type="hidden" name="item_name" value="Donation">
 <input type="hidden" name="currency_code" value="USD">
 <div class="donation-form-section">
 <label class="donation-heading">Please select or enter

 donation amount</label>
 <input type="radio" name = "amount" id="d10" value = "10"/>
 <label for = "d10">10</label>
 ...

 </div>
 <div class="donation-form-section">
 <label class="donation-heading">Donor information</label>
 <input type="text" id="full_name" name="full_name"
 placeholder="full name *" required>
 <input type="email" id="email_addr" name="email_addr"
 placeholder="email *" required>
 ...
 </div>
 <div class="donation-form-section make-payment">
 <h4>We accept Paypal payments</h4>
 <p>
 Your payment will processed securely by PayPal.
 </p>
 ...
 <button class="donate-button donate-button-submit"></button>
 ...
 </div>
</form>

Manual form serialization

If you simply want to submit this form to the URL listed in its action property when
the user clicks the Submit button, there is nothing else to be done. This already works,
and PayPal’s login page opens in the browser. But if you want to seamlessly integrate
your page with PayPal or any other third-party service, a preferred way is not to send
the user to the third-party website but do it without leaving your web application. We
won’t be implementing such integration with PayPal here, but technically it would be
possible to pass the user’s credentials and bank information to charge the donor of Save
The Child without even opening the PayPal web page in the browser. To do this, you’d
need to submit the form by using Ajax, and the PayPal API would process the results
of this transaction by using standard Ajax techniques.

108 | Chapter 3: Introducing the jQuery Library

To post the form to a specified URL by using jQuery Ajax, we’ll serialize the data from

the form on the submit event. The code fragment from main.js finds the form with the

ID donate-form and chains to it the submit() method, passing to it a callback that will

prepare the data and make an Ajax call. You can use the method submit() instead of
attaching an event handler to process clicks of the Donate Now button; the method

submit() will be invoked not only on the Submit button click event, but when the user
presses the Enter key while the cursor is in one of the form’s input fields:

$('#donate-form').submit(function() {
 var formData = $(this).serialize();
 console.log("The Donation form is serialized:" + formData);
 // Make an AJAX call here and pass the data to the server

 return false; // stop event propagation and default action
});

Run project-04-jQuery-donation-ajax-json and open Chrome Developer Tools or Fire‐
bug. Then, fill out the donation form as shown in Figure 3-5.

Figure 3-5. The Donation form

Now press the Enter key, and you’ll see the output in the console with serialized form
data that looks like this:

The Donation form is serialized: cmd=_xclick&business=email-registered-in-
paypal%40site-url.com&item_name=Donation¤cy_code=USD&amount=50&amount=
&full_name=Alex+Smith&email_addr=asmith%40gmail.com&street_address=
123+Broadway&scty=New+York&zip=10013&state=NY&country=US

Programming Save The Child by Using jQuery | 109

Manual form serialization has other advantages, too. For example, you don’t have to
pass the entire form to the server, but select only some of the input fields to be submitted.
Example 3-9 shows several ways of sending the partial form content.

Example 3-9. Samples of sending partial form content

var queryString;

queryString = $('form[name="_xclick"]')
 .find(':input[name=full_name],:input[name=email_addr]')
 .serialize();

queryString = $('form[name="_xclick"]')
 .find(':input[type=text]')
 .serialize();

queryString = $('form[name="_xclick"]')
 .find(':input[type=hidden]')
 .serialize();

Find the form named _xclick, apply the filter to select only the full name and the
email address, and serialize only these two fields.

Find the form named _xclick, apply the filter to select only the input fields of

type text, and serialize them.

Find the form named _xclick, apply the filter to select only the hidden input
fields, and serialize them.

We’ve prepared for you one more project illustrating manual serialization of the Don‐
ation form: project-15-jQuery-serialize-form. The main.js file in this project suppresses
the default processing of the form submit event and sends the form to a server-side PHP
script.

We decided to show you a PHP example, because Java is not the only
language for developing server-side code in enterprise applications.
Running JavaScript on the server with Node.JS or using one of the
JavaScript engines such as Google’s V8 or Oracle’s Nashorn can be
considered too.

For the purposes of our example, we will use a common technique of creating a server-
side echo script that simply returns the data received from the server. Typically, in en‐
terprise IT shops, server-side development is done by a separate team, and having a
dummy server will allow frontend developers lower dependency on the readiness of the
server with the real data feed. The file demo.php is shown in Example 3-10. It’s located
in the same directory as index.html.

110 | Chapter 3: Introducing the jQuery Library

Example 3-10. The server-side script demo.php

<?php
if (isset($_POST['paypal_email'])) {
 $paypal_email = $_POST['paypal_email'];
 $item_name = $_POST['item_name'];
 $currency_code = $_POST['currency_code'];
 $amount = $_POST['amount'];
 $full_name = $_POST['full_name'];
 $email_addr = $_POST['email_addr'];

 echo('Got from the client and will send to PayPal: ' .
 $paypal_email . ' Payment type: ' . $item_name .
 ' amount: ' . $amount .' '. $currency_code .
 ' Thank you ' . $full_name
 . ' The confirmation will be sent to ' . $email_addr);

} else {
 echo('Error getting data');
}
exit();
?>

The process of integration with the payment system using the PayPal API is out of this
book’s scope, but at least we can identify the place to do it; it’s typically done on the
server side. In this chapter’s example, it’s a server-side PHP script, but it can be a

Java, .NET, Python, or any other server. You need to replace the echo statement with the
code making requests to PayPal or any other payment system. Example 3-11 is the
fragment from main.js that shows how to make a request to demo.php.

Example 3-11. Submitting the Donate form to demo.php

$('.donate-button-submit').on('click', submitSerializedData);

function submitSerializedData(event) {

 // disable the button to prevent more than one click
 onOffButton($('.donate-button-submit'), true, 'submitDisabled');

 event.preventDefault();

 var queryString;

 queryString = $('form[name="_xclick"]')
 .find(':input[type=hidden][name!=cmd], :input[name=amount][value!=""],
 :input[name=full_name], :input[name=email_addr]')
 .serialize();

 console.log('-------- get the form inputs data -----------');
 console.log("Submitting to the server: " + queryString);

 $.ajax({

Programming Save The Child by Using jQuery | 111

http://bit.ly/1pEnI4x

 type : 'POST',
 url : 'demo.php',
 data : queryString
 }).done(function(response) {
 console.log('-------- response from demo.php -----------');
 console.log("Got the response from the ajax() call to demo.php: " +
 response);
 // enable the donate button again
 onOffButton($('.donate-button-submit'), false, 'submitDisabled');
 }).fail(function (jqXHR, textStatus, error) {

 console.log('AJAX request failed: ' + error + ". Code: "
 + jqXHR.status);

 // The code to display the error in the
 // browser's window goes here
 });
}

Prevent the default processing of the submit event. We don’t want to simply send

the form to the URL listed in the form’s action property.

Serialize the form fields, excluding the empty amounts and the hidden field with

the name cmd.

The serialized data from queryString will be submitted to the server-side script
demo.php.

Installing the XAMPP Server with PHP Support
The preceding example uses a server-side PHP script to echo data sent to it. If you’d like
to see this script in action so you can test that the client and server can communicate,
deploy this script in any web server that supports PHP. For example, you can install on
your computer the XAMPP package from the Apache Friends website, which includes
Apache Web Server that supports PHP, FTP, and comes with a preconfigured MySQL
database server (we are not going to use it). The installation process is simple: just go
through the short instructions on the website that are applicable to your OS. Start the
XAMPP Control application and click the Start button next to the label Apache. By
default, Apache Web Server starts on port 80, so entering http://localhost opens the
XAMPP welcome page.

If you use Mac OS X, you might need to kill the preinstalled

Apache server by using the sudo apachectl stop command.

112 | Chapter 3: Introducing the jQuery Library

http://bit.ly/1x55auj

The directory xampp/htdocs is the document root of the Apache Web Server, so you can
place the index.html of your project there or in one of its subdirectories. To test that a
PHP is supported, save the following code in helloworld.php in the htdocs directory:

<?php
 echo('Hello World!');
?>

After entering the URL http://localhost/helloworld.php in your web browser, you should
see a greeting from this simple PHP program. The home web page of the XAMPP server

contains the link phpinfo() on the left panel that shows the current configuration of
your PHP server.

The easiest way to test project-15-jQuery-serialize-form that uses demo.php is to copy
this folder into the htdocs directory of your XAMPP installation. Then, enter the URL
http://localhost/project-15-jquery-serialize-form/ in your web browser, and you’ll see the
Save The Child application. Fill out the form and click the Donate Now button. The
form will be serialized and submitted to demo.php as explained previously. If you open
Google Developers Tools in the Network tab, you’ll see that demo.php has received the
Ajax request and the console will show output similar to the following (for Alex Smith,
alex@gmail.com):

-------- get the form inputs data ----------- main.js:138
Submitting to the server: paypal_email=email-registered-in-paypal%40
site-url.com&item_name=Donation+to+the+Save+Sick+Child¤cy_code
=USD&amount=50&full_name=Alex+Smith&email_addr=alex%40gmail.com main.js:139

-------- response from demo.php ----------- main.js:146
Got the response from the ajax() call to demo.php: Got from the client
and will send to PayPal: email-registered-in-paypal@site-url.com
Payment type: Donation to the Save The Child amount: 50 USD
Thank you Alex Smith
The confirmation will be sent to alex@gmail.com main.js:147

Using jQuery Plug-ins
jQuery plug-ins are reusable components that know how to do a certain thing—for
example, validate a form or display images as a slide show. Thousands of third-party
jQuery plug-ins are available in the jQuery Plugin Registry. The following are some
useful plug-ins:

jTable
Ajax-based tables (grids) for CRUD applications

jQuery Form
An HTML form that supports Ajax

Using jQuery Plug-ins | 113

http://localhost/helloworld.php
http://localhost/project-15-jquery-serialize-form/
mailto:alex@gmail.com
http://plugins.jquery.com
http://www.jtable.org
http://bit.ly/1nxfjds

HorizontalNav
A navigational bar with tabs that uses the full width of its container

EGrappler
A stylish Akordeon (collapsible panel)

Credit Card Validator
Detects and validates credit card numbers

Responsive Carousel
A slider to display images in a carousel fashion

morris.js
A plug-in for charting

Map Marker
Puts multiple markers on maps using Google Maps API V3

The Lazy Load plug-in
Delays loading of images, which are outside viewports

The chances are that you will be able to find a plug-in that fits your needs. jQuery plug-
ins are usually freely available and their source code is plain JavaScript, so you can tweak
it a little if need be.

Validating the Donate Form by Using a Plug-in
The project-14-jQuery-validate project illustrates the use of the jQuery Validator plug-
in, which allows you to specify the rules to be checked when the user tries to submit the
form. If the value is not valid, your custom message is displayed. We’ve included this
plug-in in index.html of project-14-jQuery-validate:

<script src="js/plugins/jquery.validate.min.js"></script>

To validate a form with this plug-in, you need to invoke a jQuery selector that finds the

form and then call the method validate() on this object; this is the simplest way of
using this plug-in. But to have more control over the validation process, you need to
pass the object with validation options:

 $("#myform").validate({// validation options go here});

The file main.js includes the code to validate the Donation form. The validation routine
can include many options, which are described in the plug-in documentation. Our code
sample uses the following options:

• The highlight and unhighlight callbacks

• The HTML element to be used for displaying errors

• The name of the CSS class to style the error messages

114 | Chapter 3: Introducing the jQuery Library

http://bit.ly/1m6y1pA
http://bit.ly/1l4eHJA
http://bit.ly/1jJNhce
http://bit.ly/1pFbRRi
http://bit.ly/1yGbPN1
http://bit.ly/1pbqmi0
http://bit.ly/1qFc88x
http://bit.ly/1q1UprG

• The validation rules

Validating data only on the client side is not sufficient. It’s a good
idea to warn the user about data issues without sending the data to
the server. But to ensure that the data was not corrupted/modified
while traveling to the server, revalidate them on the server side too.
Besides, a malicious user can access your server without using your
web application. Performing server-side validation is a must.

Example 3-12 displays error messages in the HTML element <div id="validation

Summary"></div> that’s placed above the form in index.html. The Validator plug-in

provides the number of invalid form entries by invoking validator.numberOfInval

ids(), and our code displays this number unless it’s equal to zero.

Example 3-12. Displaying validation errors

var validator = $('form[name="_xclick"]').validate({

 highlight : function(target, errorClass) {
 $(target).addClass("invalidElement");
 $("#validationSummary").text(validator.numberOfInvalids() +
 " field(s) are invalid");
 $("#validationSummary").show();
 },

 unhighlight : function(target, errorClass) {
 $(target).removeClass("invalidElement");

 var errors = validator.numberOfInvalids();
 $("#validationSummary").text(errors + " field(s) are invalid");

 if(errors == 0) {
 $("#validationSummary").hide();
 }
 },

 rules : {
 full_name : {
 required : true,
 minlength : 2
 },
 email_addr : {
 required : true,
 email : true
 },
 zip : {
 digits:true
 }
 },

Using jQuery Plug-ins | 115

 messages : {
 full_name: {
 required: "Name is required",
 minlength: "Name should have at least 2 letters"
 },
 email_addr : {
 required : "Email is required",
 }
 }
});

When an invalid field is highlighted, this function is invoked. It changes the
styling of the input field and updates the error count to display in the validation

summary <div> on top of the form.

When the error is fixed, the highlighting on the corrected field is removed, and
this function is invoked. It revokes the error styling of the input field and updates

the error count. If the error count is zero, the validation summary <div> becomes
hidden.

Set the custom validation rules for selected form fields.

Set the custom error messages to be displayed if the user enters invalid data.

Figure 3-6 shows the preceding code in action. After entering a one-character name
and an improper email address, the user will see the corresponding error messages. Each
message is shown when the user leaves the corresponding field. But as soon as the user
fixes any of them (for example, enters one more letter in the name), the form is imme‐
diately revalidated and the error messages are removed.

Before including a jQuery plug-in in your application, spend some
time testing it. Check its size and compare its performance with com‐
peting plug-ins.

Adding an Image Slider
Often, you need to add a feature to cycle through the images on a web page. The Save
The Child page, for example, could display sequential images of the kids saved by the
donors. To give you yet another demonstration of using a jQuery plug-in, we’ve created
the project project-16-jQuery-slider and integrated the jQuery plug-in called Responsive
Carousel. The file index.html of this project includes the CSS styles and the JavaScript
code plug-in, as follows:

<link rel="stylesheet" href="assets/css/responsive-carousel.css" />
<link rel="stylesheet" href="assets/css/responsive-carousel.slide.css" />

116 | Chapter 3: Introducing the jQuery Library

http://bit.ly/1pFbRRi
http://bit.ly/1pFbRRi

Figure 3-6. The Validator plug-in’s error messages

<link rel="stylesheet" href="assets/css/responsive-carousel.fade.css" />
<link rel="stylesheet" href="assets/css/responsive-carousel.flip.css" />
...
<script src="js/plugins/responsive-carousel/responsive-carousel.min.js">
</script>

<script src="js/plugins/responsive-carousel/responsive-carousel.flip.js">
</script>

Run project-16-jQuery-slider, and you’ll see how three plain slides display in succession,
as shown in Figure 3-7. The HTML part of the container includes the three slides as
follows:

<div id="image-carousel" class="carousel carousel-flip"
 data-transition="flip">
 <div>

 </div>
 <div>

 </div>
 <div>

 </div>
</div>

Using jQuery Plug-ins | 117

Figure 3-7. Using the Responsive Carousel plug-in

With this plug-in, the JavaScript code that the application developer has to write to
implement several types of rotation is minimal. When the user clicks one of the radio
buttons (Fade, Slide, or Flip Transitions) the following code just changes the CSS class
name to be used with the carousel:

$(function() {
 $("input:radio[name=transitions]").click(function() {
 var transition = $(this).val();
 var newClassName = 'carousel carousel-' + transition;
 $('#image-carousel').attr('class', '');
 $('#image-carousel').addClass(newClassName);
 $('#image-carousel').attr('data-transition', transition);
 });
});

To see code samples of using the Responsive Carousel plugin (in‐
cluding popular autoplaying slide shows), check out the Responsive
Carousel variations.

118 | Chapter 3: Introducing the jQuery Library

http://bit.ly/1prR6tB
http://bit.ly/1prR6tB

The Validator and Responsive Carousel plugins clearly demonstrate that jQuery plugins
can save you some serious time writing code to implement commonly required features.
It’s great that the members of the jQuery community from around the world share their
creations with other developers. If you can’t find a plug-in that fits your needs or have
specific custom logic that needs to be used or reused in your application, you can write
your own plugin. Should you decide to write a plug-in of your own, refer to the Plugins/
Authoring document.

Summary
In this chapter, you became familiar with the jQuery Core library, which is the de facto
standard library in millions of web applications. Its simplicity and extensibility via the
mechanism of plug-ins make it a must-have in almost every web page. Even if your
organization decides on a more complex and feature-rich JavaScript framework, the
chances are that you might find a handy jQuery plug-in that will complement “the main”
framework and make it into the code of your application. There is nothing wrong with
this, and you shouldn’t be in the position of “either jQuery or XYZ”—most likely they
can coexist.

We can recommend one of the small frameworks that will complement your jQuery
code: Twitter’s Bootstrap. Bootstrap can quickly make the UI of your desktop or mobile
application look stylish. Bootstrap is the most popular framework on GitHub.

Chapter 7 shows you how to test jQuery applications. In this chapter, we rewrote a pure
JavaScript application for illustration purposes. But if this were a real-world project to
convert the Save The Child application from JavaScript to jQuery, having tests even for
the JavaScript version of the application would have helped to verify that everything
transitioned to jQuery successfully.

In Chapter 11 you’ll learn how to use the jQuery Mobile library—an API on top of
jQuery code that allows building UIs for mobile devices.

Now that we’ve covered JavaScript, HTML5 APIs, Ajax, JSON, and the jQuery library,
we’re going to the meat of the book: frameworks, productivity tools, and strategies for
making your application enterprise-ready.

Summary | 119

http://bit.ly/1hQJcYr
http://bit.ly/1hQJcYr
http://twitter.github.io/bootstrap
http://bit.ly/1ohWjBI

PART II

Enterprise Considerations

The content of this part justifies having the word enterprise on this book’s cover.

In Chapter 4, you’ll learn how to use a rich and feature-complete framework: Ext JS
from Sencha. Even though using this framework might be overkill for a small website,
it’s pretty popular in the enterprise world, where a rich-looking UI is required. Besides
learning how to work with this framework, you’ll build a new version of the Save The
Child application in Ext JS. In this version, we introduce an interactive chart (a popular
feature for enterprise dashboards) and a data grid (any enterprise application uses grids).

Chapter 5 is a review of productivity tools used by enterprise developers (such as npm,
Grunt, Bower, Yeoman, and CDB). It’s about build tools, code generators, and managing
dependencies. (A typical enterprise application uses various software that needs to work
in harmony.)

Chapter 6 is dedicated to dealing with issues that any mid-to-large enterprise web ap‐
plication is facing: how to modularize the application to reduce the load time and make
it more responsive. Our sample application, Save The Child, will be divided into modules
with the help of the RequireJS framework.

Chapter 7 is a review of test-driven development (TDD), which is a way of writing less-
buggy applications. TDD originated in large projects written in such languages as Java,
C++, or C#, and now it’s adopted by the HTML5 community. After reviewing how to
do TDD in JavaScript, we’ll show how to introduce testing into the Save The Child
application.

Chapter 8 is about WebSocket, a new HTML5 API that can be a game changer for
enterprise web applications that need to communicate with servers as fast as possible

http://bit.ly/1ohJZRR

(think financial trading applications or online auctions). We’ll show how to add an
auction to our sample charity application.

Chapter 9 is a brief overview of various web application security issues. Although small
websites often forget about dealing with security vulnerabilities, this subject can’t be
ignored in the enterprise world.

CHAPTER 4

Developing Web Applications in the Ext JS
Framework

In Chapter 3, you became familiar with the JavaScript library jQuery. Now we’ll intro‐
duce you to a more complex product: the JavaScript framework Ext JS from Sencha.
This is one of the most feature-complete frameworks available on the market, and you
should give it serious consideration while deciding on the tooling for your next enter‐
prise HTML5 application.

Exploring JavaScript Frameworks
The word framework implies that there is some precreated “software frame,” and ap‐
plication developers need to fit their business-specific code inside such a frame. Why
would you want to do this, as opposed to having full freedom in developing your ap‐
plication code the way you want? The reason is that most enterprise projects are devel‐
oped by teams of software engineers, and having an agreed-upon structure of the ap‐
plication, with clear separation of software layers, can make the entire process of de‐
velopment more productive.

Some JavaScript frameworks are mainly forcing developers to organize application code
in layers by implementing the Model-View-Controller (MVC) design pattern. More
than a dozen MVC JavaScript frameworks are being used by professional developers:
Backbone.js, ExtJS, AngularJS, Ember.js, and Knockout, just to name a few.

Ext JS also supports MVC, and you can read about it later in this
chapter in “Best Practice: MVC” on page 139.

123

http://www.sencha.com/products/extjs
http://www.sencha.com
http://backbonejs.org
http://www.sencha.com/products/extjs
http://angularjs.org/
http://emberjs.com
http://knockoutjs.com

An excellent website called TodoMVC shows examples of implement‐
ing one application (a Todo list) by using various popular frame‐
works. Studying the source code of this application implemented in
several frameworks can help you select one for your project.

To keep the size of this book manageable, we were not able to re‐
view more JavaScript frameworks. But if you’d ask us to name one
more great JavaScript framework that didn’t make it into this book,
we would recommend that you learn AngularJS from Google. There
are lots of free online resources on AngularJS that Jeff Cunningham
has collected all in one place on GitHub.

Besides splitting the code into tiers, frameworks might offer prefabricated UI compo‐
nents and build tools. Ext JS is one of those frameworks.

If you decide to develop your application with Ext JS, you don’t need
to use the jQuery library.

Choosing to Use Ext JS
After learning how the jQuery library can simplify development of HTML5 applica‐
tions, you might be wondering what’s so good about Ext JS that makes it worthwhile for
studying. First, jQuery Core is just a library of utilities that simplify working with the
Document Object Model (DOM), and you still need to write the web application by
using HTML and JavaScript. In addition, there are lots and lots of jQuery plug-ins that
include handy widgets to add to your manually created website. We just mentioned the
frameworks that help with better organizing or modularizing your project, but enter‐
prise applications might need more. So here comes the Ext JS sales pitch:

• Ext JS is an HTML5 framework that doesn’t require you to write HTML. Your single

HTML file (index.html) will include just three files in the <head> section: one with

the Ext JS framework, one CSS file, and one app.js, but the <body> section will be
empty.

• Ext JS includes a comprehensive library of JavaScript-based classes that can help
you with pretty much everything you need to develop a web application (UI com‐
ponents, UI layouts, collections, networking, CSS compiler, packaging tool, and
more).

124 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://todomvc.com
http://bit.ly/1qr3ieB

• Ext JS offers a way to write object-oriented code (for those who like it), to define
classes and inheritance in a way that’s closer to classical inheritance and doesn’t

require the prototype property.

• Ext JS can jump-start your application development by generating the initial code
layered according to the MVC design pattern.

• Ext JS is a cross-browser framework that promises to automatically take care of all
differences in major web browsers.

If you just finished reading Chapter 3, you’ll need to switch to a different state of mind.
The jQuery Core library was light; it didn’t drastically change the way of developing
pure HTML/JavaScript applications. But working with Ext JS is a completely different
ball game. It’s not about improving an existing web page; it’s about rewriting it from
scratch without using HTML. Ext JS includes a rich library of UI components, a flexible
class system, custom layouts, and code generators. But web browsers understand only
HTML, DOM, CSS, and JavaScript. This means that the framework will have to do some
extra work in converting the code written using the homemade Ext JS class system into
the same old HTML objects. Such extra work requires additional processing time, and
we’ll discuss this in “Exploring a Component’s Life Cycle” on page 145.

The title clearly states that this chapter is about the Ext JS framework. Providing detailed
coverage of Ext JS in one chapter is almost mission impossible because of the vast variety
of features this framework offers. Consider this chapter a hands-on overview of Ext JS.
The material in this chapter is divided into two parts:

1. You’ll get a high-level overview of the Ext JS framework.

2. We’ll do a code review of a new version of the Save The Child application developed
with Ext JS. This is where we want you to spend most of the time in this chapter.
Learn while studying commented code. We’ve also provided multiple links to the
relevant product documentation.

Downloading and Installing Ext JS
First, you need to know that Ext JS can be used for free only for noncommercial projects.
To use Ext JS for enterprise web development, you or your firm has to purchase one of
the Ext JS licenses. But for studying, you can download the complete commercial version
of Ext JS for free for a 45-day evaluation period.

The materials presented in this chapter were tested only with the
current version of Ext JS, which at the time of this writing was 4.2.

Downloading and Installing Ext JS | 125

http://bit.ly/TwrttK

After downloading the Ext JS framework, unzip it to any directory of your choice. Later
the framework will be copied either into your project directory (see “Generating Ap‐
plications with the Sencha CMD Tool” on page 129) or in the document root of your web
server.

After unzipping the Ext JS distribution, you’ll find some files and folders there. There
are several JavaScript files containing various packages of the Ext JS framework. You’ll
need to pick just one of these files. The files that include the word all in their names
contain the entire framework, and if you choose one of them, all the classes will be
loaded to the user’s browser even though your application may never use most of them.

ext-all.js
Minimized version of the source code of Ext JS, which looks like one line of 1.4
million characters (it’s still JavaScript, of course). Most likely you won’t deploy this
file on your production server.

ext-all-debug.js
Human-readable source code of Ext JS with no comments. If you like to read com‐
ments, use ext-all-debug-w-comments.js.

ext-all-dev.js

Human-readable source code of Ext JS that includes console.log() statements
that generate and output debugging information in the browser’s console.

Similarly, there are files that don’t include all in their names: ext.js, ext-debug.js, and
ext-dev.js. These are much smaller files that do not include the entire framework, but
rather a minimum set of classes required to start the application. Later, the additional
classes may be lazy-loaded on an as-needed basis.

Typically, you shouldn’t use the all files. We recommend that you use
the file ext.js and the Sencha CMD tool to create a customized ver‐
sion of the Ext JS library to be included with your application. You
can find more details in “Generating Applications with the Sencha
CMD Tool” on page 129.

The docs folder contains extensive documentation; just open the file index.html in your
browser and start reading and studying.

The builds folder includes sandboxed versions of Ext JS in case you need to use, say, Ext
JS 4.2 along with older versions of this framework. Browsing the builds folder reveals
that the Ext JS framework consists of three parts:

Ext Core
A free-to-use JavaScript library for enhancing websites. It supports DOM manip‐
ulation with CSS selectors, events, and Ajax requests. It also offers syntax to define

126 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://bit.ly/1nWMdTy

and create classes that can extend from one another. The functionality of Ext Core
is comparable to Core jQuery.

Ext JS
A UI framework that includes a rich library of UI components.

The Foundation
A set of useful utilities.

Such code separation allowed the creators of Ext JS to reuse a large portion of the
framework’s code in the mobile library Sencha Touch, which we cover in Chapter 12.

The Ext JS framework is large, so be prepared for your application to
be at least 1 MB in size. This is not an issue for enterprise applica‐
tions that run on fast networks. But if you need to create a small
consumer-oriented website, you might be better off using the light‐
weight, easy-to-learn, and free jQuery library or one of a dozen oth‐
er JavaScript frameworks that either improve organizational struc‐
ture of your project or offer a set of a la cart components to prettify
your HTML5 application. On the other hand, if you have had a chance
to develop or use rich Internet applications developed with such
frameworks as Microsoft Silverlight or Apache Flex, you’ll quickly
realize that Ext JS is the closest in terms of functionality, with its rich
set of components and tools.

Becoming Familiar with Ext JS and Tooling
This section is not an Ext JS tutorial that gradually explains each and every feature and
API of Ext JS. For that, we’d need to write a fat Ext JS book. Sencha publishes detailed
documentation, multiple online examples, and videos. In this chapter, you’ll get an
overview of the framework.

Creating the First Version of Hello World
Before we explain how things work in Ext JS, we’ll develop a Hello World application.
Later, you’ll review the code of the Save The Child application as a hands-on way of
learning the framework. You’ll read the code fragments followed by brief explanations.
You’ll be able to run and debug this application on your own computer and see how
various components and program layers work in practice. But first things first—let’s
create a couple of versions of Hello World.

Create a new directory (for example, hello1). Inside hello1 create a subdirectory named
ext and copy there the entire content of your Ext JS installation directory. Create yet
another subdirectory named app inside hello1—this is where your application JavaScript
files will go.

Becoming Familiar with Ext JS and Tooling | 127

http://bit.ly/1o8xvtb
http://bit.ly/1z2dE7p

At a very minimum, every Ext JS application will contain one HTML and one JavaScript
file—usually index.html and app.js. The file index.html will include the references to the
CSS and JavaScript code of Ext JS and will include your app.js containing the code of
the Hello World application:

<!DOCTYPE HTML>
<html>

<head>

 <meta charset="UTF-8">
 <title>HelloWorld</title>
 <link rel="stylesheet" href="ext/resources/ext-all-gray.css">
 <script src="ext/ext.js"></script>
 <script src="app/app.js"></script>
</head>

<body></body>

</html>

Next comes the content of app.js that you should place in the app directory of your
project. This is what app.js might look like:

Ext.application({
 launch: function(){
 alert("Hello World");
 }
});

This Ext.application() method gets a configuration object as an argument—a Java‐

Script literal—with a configured launch method that’s called automatically when the
web page has completely loaded. In our case, this object literal mandates launching the
anonymous function that displays the “Hello World” message. In Ext JS, you’ll be using
such configuration objects a lot.

Open the file index.html in your web browser and you’ll see this greeting. But this was
a plain vanilla Hello World. In the next section, we’ll automate the process of creating
a fancier Hello World (or the initial version of any other application) by using the Sencha
CMD tool.

Configuration Options

In the versions of Ext JS prior to 4.0, you’d invoke the Ext.onReady() method instead

of passing the configuration object with the launch config option.

Providing a function argument as a configuration object overrides configurable prop‐
erties of the current instance of the class. This is different from class properties, which
are defined at the prototype level, and changing the value of a property would apply to
all instances of the class. When you read Ext JS online documentation for any class,
you’ll see three categories of class elements: configs, properties, and methods. For ex‐
ample, this is how you can create a panel passing configs:

128 | Chapter 4: Developing Web Applications in the Ext JS Framework

Ext.create('Ext.panel.Panel', {
 title: 'Hello',
 width: 200,
 html: '<p>World!</p>',
});

In this example, we are creating an instance of the panel by using a configuration object

with three config options: title, width, and html. The values of these properties will
be assigned to the corresponding properties of this instance only. For example, the doc‐

umentation for Ext.panel.Panel lists 116 available configs that you can set on the panel
instance.

Ext JS classes are organized into packages. For example, the class Panel in the preceding

example is located in the package Ext.panel. You’ll be using packaging in your appli‐
cations too. For example, in the next chapter you’ll see classes from Save The Child and

Clear frameworks named as SSC.view.DonateForm or Clear.override.ExtJSOverrid

er. Such packages should be properly namespaced, and SSC and Clear are top-level
namespaces here. The next fragment shows how to give a name to your application, and
such a given name will serve as a top-level namespace:

Ext.application({
 name: 'SSC',
 // more config options can go here
});

In the next section, we’ll automate the process of creating the Hello World application.

Generating Applications with the Sencha CMD Tool
Sencha CMD is a handy command-line tool that automates your work, from scaffolding
your application to minimizing, packaging, and deploying it.

Download Sencha CMD. Run the installer, and when it’s complete, open the terminal
or command window and enter the command sencha. You should see a prompt with
all possible commands and options that CMD understands.

For example, to generate the initial project structure for the Hello World application,
enter the following command, specifying the absolute path to your Ext JS SDK directory
(we keep it in the /Library directory) and to the output folder, where the generated
project should reside:

sencha -sdk /Library/ext-4.2 generate app HelloWorld /Users/yfain11/hello

After the code generation is complete, you’ll see the folder hello with the structure shown
in Figure 4-1.

Becoming Familiar with Ext JS and Tooling | 129

http://docs.sencha.com/extjs/4.2.0/#!/api/Ext.panel.Panel
http://bit.ly/senchacmd-install

Figure 4-1. A Sencha CMD–generated project

The generated project is created with the assumption that your application will be built
using the MVC paradigm discussed in “Best Practice: MVC” on page 139. The JavaScript
is located in the app folder, which includes the view subfolder with the visual portion
of your application, the controller folder with controller classes, and the model folder
for data. The ext folder contains multiple distributions of the Ext JS framework. The
sass folder contains your application’s CSS files (see “SASS and CSS” on page 162).

The entry point to your application is index.html, which contains the references to the
main application file app.js, the Ext JS framework extdev-js, the CSS file bootstrap.css
(imports the classic theme), and the supporting script bootstrap.js, which contains the
mapping of the long names of the framework and application classes to their shorter
names (xtypes). Here’s how the generated index.html file looks:

<!DOCTYPE HTML>
<html>

<head>

 <meta charset="UTF-8">
 <title>HelloWorld</title>
 <!-- <x-compile> -->
 <!-- <x-bootstrap> -->
 <link rel="stylesheet" href="bootstrap.css">
 <script src="ext/ext-dev.js"></script>

130 | Chapter 4: Developing Web Applications in the Ext JS Framework

 <script src="bootstrap.js"></script>
 <!-- </x-bootstrap> -->
 <script src="app/app.js"></script>
 <!-- </x-compile> -->
</head>

<body></body>

</html>

The content of the generated app.js is shown next. This script just calls the method

Ext.application(), passing as an argument a configuration object that specifies the
application name, and the names of the classes that play roles of views and controller.
We’ll go into details a bit later, but at this point let’s concentrate on the big picture:

Ext.application({
 name: 'HelloWorld',

 views: [
 'Main',
 'Viewport'
],

 controllers: [
 'Main'
],

 autoCreateViewport: true
});

Finally, if you open index.html in your web browser, you’ll see our Hello World initial

web page that looks like Figure 4-2. This view uses a so-called border layout and shows

a panel on the west and a tabpanel in the central region of the view.

The total size of this version of the Hello World application is pretty large: 4 MB. The
browser makes 173 requests to the server by the time the user sees the application shown
in Figure 4-2. But Sencha CMD knows how to build the production version of the Ext
JS application. It minimizes and merges the application’s and required framework’s
JavaScript code into one file. The application’s CSS file is also minimized, and the ref‐
erences to the image resources become relative, hence shorter. Besides, the images may
be automatically sliced—cut into smaller rectangular pieces that can be downloaded by
the browser simultaneously.

To create an optimized version of your application, go to the terminal or a command
window and change to the root directory of your application (in our case, it’s /Users/
yfain11/hello) and run the following command:

sencha app build

After the build is finished, you’ll see a newly generated version of the application in the
directory build/HelloWorld/production. Open the file index.html while running
Chrome Developer Tools, and you’ll see that the total size of the application is substan‐

Becoming Familiar with Ext JS and Tooling | 131

Figure 4-2. The UI of our Sencha CMD–generated application

tially lower (about 900 KB) and that the browser had to make only five requests to the
server (see Figure 4-3). Using Gzip will reduce the size of this application to 600 KB,
which is still a lot, but the Ext JS framework is not the right choice for writing Hello
World types of applications or light websites.

For more details about code generation, refer to the section Using Sencha Cmd with
Ext JS in the product documentation.

Sencha Desktop Packager allows you to take an existing Ext JS
web application (or any other HTML5 application) and package
it as a native desktop application for Windows and Mac OS X.
Your application can also integrate with native menus and file
dialog boxes and access the filesystem.

We’ll use the Sencha CMD tool again in “Building a production version of Save The
Child” on page 183 to create an optimized version of the Save The Child application.

132 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://bit.ly/1izOLL2
http://bit.ly/1izOLL2
http://bit.ly/1rriI01

Figure 4-3. Running a production version of HelloWorld

Sencha CMD comes with an embedded web server. To start the
server on the default port 1841, open the terminal or command

window in your application directory and run the command sen

cha web start. To serve your web application on another port

(for example, 8080) and from any directory, run it as follows: sen

cha fs web -port8080 start -map /path/to/app/docrootdir.

If your organization is developing web applications with Ext JS without using Sencha
CMD, it’s a mistake. Sencha CMD is a useful code generator and optimizer that also
enforces the MVC principles of application design.

Choosing Which Ext JS Distribution to Use
First, you need to select the packaging of the Ext JS framework that fits your needs. You
can select its minimized version to be used in production or a larger and commented
version with detailed comments and error messages. As we mentioned earlier in this
chapter, you can select a version of Ext JS that includes either all or only the core classes.
The third option is to create a custom build of Ext JS that includes only those framework
classes that are used by your application.

Becoming Familiar with Ext JS and Tooling | 133

http://bit.ly/1i414PQ

The files with the minimized production version of Ext JS are called ext-all.js (all classes)
and ext.js (just the core classes plus the loader of required classes). We usually pick ext-
all.js for development, but for production use the distribution fine-tuned for our ap‐
plication, as described in “Generating Applications with the Sencha CMD Tool” on page
129.

If this application will be used on high-speed networks and size is not an issue, simply
add it to your index.html from your local servers or see if Sencha offers the CDN for
the Ext JS version you need, which might look similar to the following:

<link rel="http://cdn.sencha.io/ext-4.2.0-gpl/resources/css/ext-all.css" />

<script type="text/javascript" charset="utf-8"
 src="http://cdn.sencha.io/ext-4.2.0-gpl/ext.js"></script>

Declaring, Loading, and Instantiating Classes
Pure JavaScript doesn’t have classes; constructor functions are the closest components
it has to classes-language elements. Ext JS extends the JavaScript language and intro‐

duces classes and a special way to define and instantiate them with the functions Ext.de

fine() and Ext.create(). Ext JS also allows us to extend one class from another by

using the property extend and to define class constructors by using the property con

structor. With Ext.define(), you declare a class declaration, and Ext.create() in‐

stantiates it. Basically, define() serves as a template for creating one or more instances.

Usually, the first argument you specify to define() is a fully qualified class name, and

the second argument is an object literal that contains the class definition. If you use null
as the first argument, Ext JS creates an anonymous class.

The next class Header has a 200-pixel height, uses the hbox layout, has a custom con

fig property logo, and extends Ext.panel.Panel:

Ext.define("SSC.view.Header", {
 extend: 'Ext.panel.Panel',

 title: 'Test',
 height: 200,
 renderTo: 'content',

 config: {
 logo: 'sony_main.png'
 },

 layout: {
 type: 'hbox',
 align: 'middle'
 }
});

134 | Chapter 4: Developing Web Applications in the Ext JS Framework

Render this panel to an HTML element with id=content.

Define a custom config property logo.

You can optionally include a third argument for define(), which is a function to be
called when the class definition is created. Now you can create one or more instances
of the class. For example:

var myHeader = Ext.create("SSC.view.Header");

The values of custom config properties from the config{} section of the class can be
reassigned during the class instantiation. For example, the next code snippet will print
sony.png for the first instance of the header, and sony_small.png for the second one.

Please note that Ext JS automatically generates getters and setters for all config prop‐

erties, which allows us to use the method getLogo():

Ext.onReady(function () {
 var myHeader1 = Ext.create("SSC.view.Header");
 //
 var myHeader2 = Ext.create("SSC.view.Header",
 { logo: 'sony_small.png' });

 console.log(myHeader1.getLogo());
 console.log(myHeader2.getLogo());
});

Don’t forget about the online tool JSFiddle, which allows you to test
and share JavaScript code snippets. JSFiddle knows about Ext JS 4.2
already. For example, you can run the preceding code snippet by
following this JSFiddle link. If it doesn’t render the styles properly,
check the URL of ext-all.css in the section External Resources.

If a class has dependencies on other classes that must be preloaded, use the requires

parameter. For example, the next code snippet shows that the class SSC.view.View

port requires the Panel and the Column classes. So the Ext JS loader will check whether

Panel and/or Column are loaded yet and will dynamically lazy-load them first (see
Example 4-1).

Example 4-1. Loading dependencies with the keyword requires

Ext.define('SSC.view.Viewport', {
 extend: 'Ext.container.Viewport',
 requires: [
 'Ext.tab.Panel',
 'Ext.layout.container.Column'
]
 // the rest of the class definition is omitted
});

Becoming Familiar with Ext JS and Tooling | 135

http://bit.ly/1ohWQDC

Ext.create() is a preferred way of instantiation because it does more than the new

operator that is also allowed in Ext JS. But Ext.create() can perform additional func‐

tionality—for example, if Ext.Loader is enabled, create() will attempt to synchro‐

nously load dependencies (if you haven’t used the option require). But with re

quires, you preload all dependencies asynchronously in parallel, which is a preferred
way of specifying dependencies. Besides, the async mode allows loading from different
domains, whereas sync loading doesn’t.

Ed Spencer published some useful recommendations on improving
performance of Ext JS applications in his blog titled SenchaCon 2013:
Ext JS Performance Tips.

Dynamic Class Loading
The singleton Ext.Loader offers a powerful mechanism for dynamic loading of any
classes on demand. You have to explicitly enable the loader immediately after including
the Ext JS framework in your HTML file, providing the paths where the loader should
look for files. For example:

<script type="text/javascript">
 Ext.Loader.setConfig({
 enabled: true,
 disablrCaching: false,
 paths: {
 'SSC': 'my_app_path'
 }
 });
</script>

Then, the manual loading of a class can be done by using Ext.require(SSC.Some

Class) or Ext.syncRequire(SSC.SomeClass). You need to explicitly enable the loader

(enabled:true) to support lazy-loading of the required classes.

For each class, Ext JS creates one instance of the special class Ext.Class, which will be
shared by all objects instantiated from this class.

The instance of any object has access to its class via the special vari‐

able self.

136 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://bit.ly/1nJEOtD
http://bit.ly/1nJEOtD
http://bit.ly/1ls3rMH
http://bit.ly/1x56cX4

Prior to creating a class, Ext JS will run some preprocessors and some postprocessors

based on the class definition. For example, the class SSC.view.Viewport from the pre‐

ceding code sample uses extend: 'Ext.container.Viewport', which will engage the
extend preprocessor that will do some background work to properly build a subclass of

extend: Viewport. If your class includes the config section, the config preprocessor will
be engaged.

xtype: An efficient way to create class instances

One of the interesting preprocessors is xtype, which is an alternative to the invocation

of the create() method for creating the instance of the class. Every Ext JS component

has an assigned and documented xtype. For example, Ext.panel.Panel has an xtype

of panel. Online documentation displays the name of the corresponding xtype in the
header of each component, as shown in Figure 4-4.

Figure 4-4. Each component has an xtype

Using xtype instead of create() leads to more-efficient memory management. If the

object is declared with the xtype attribute, it won’t be instantiated until a container uses

it. You are encouraged to assign xtype to your custom classes, and Ext JS will instantiate

if for you without the need to call create(). You can find many examples of using the

xtype property in “Developing Save The Child with Ext JS” on page 149 later in this chapter.

For example, the following class definition includes many components with the xtype
property:

Ext.define("SSC.view.LoginBox", {
 extend: 'Ext.Container',
 xtype: 'loginbox',

 layout: 'hbox',

 items: [{
 xtype: 'container',
 flex: 1
 }, {
 xtype: 'textfield',
 emptyText: 'username',
 name: 'username',
 hidden: true

Becoming Familiar with Ext JS and Tooling | 137

 }, {
 xtype: 'textfield',
 emptyText: 'password',
 inputType: 'password',
 name: 'password',
 hidden: true
 }, {
 xtype: 'button',
 text: 'Login',
 action: 'login'
 }]
});

Most of these components use the standard Ext JS xtype values, so the fact that you

have included them in the class SSC.view.LoginBox is a command for Ext JS to instan‐

tiate all these buttons and text fields. But the class SSC.view.LoginBox also includes

xtype: 'loginbox'—we decided to assign the value loginbox to serve as the xtype of

our class. Now, you can use the statement xtype: 'loginbox' in any other container,
and it will know how to instantiate it. For example, later in this chapter, you’ll see the

complete code of the main window SSC.view.ViewPort, which includes (and instan‐
tiates) our login box as shown in Example 4-2.

Example 4-2. Instantiating the custom component LoginBox with xtype

 items: [{
 xtype: 'loginbox',
 margin: '10 0 0 0'
 },
 // more items go here
]

Supporting multiple inheritance by uisng mixins

The object-oriented languages Java and C# can be considered simpler versions of C++.
One of the C++ features that didn’t make it into Java and C# was support of multiple
inheritance: in these languages, a class can extend only one other class. This was done
for a good reason: debugging of the C++ programs that were written with multiple
inheritance was difficult.

Ext JS supports multiple inheritance via JavaScript mixins. A class constructor can get
any object as an argument, and Ext JS will use its property values to initialize the cor‐
responding properties defined in the class, if they exist, and the rest of the properties

will be created on the fly. The following code snippet shows how to define a classB that

will have features defined in the classes classA, classC, and classD:

Ext.define("MyApp.classB",{
 extend: "MyApp.classA",
 mixins: {classC: "MyApp.classC"
 classD, "MyApp.classD"}

138 | Chapter 4: Developing Web Applications in the Ext JS Framework

 }
 // The rest of the classB code goes here

 });

If more than one mixin has a method with the same name, the first
method that was applied to the resulting class wins. To avoid colli‐
sions, Ext JS allows you to provide the fully qualified name of the

method—for example, this.mixins.classC.conflictingName();

this.mixins.classD.conflictingName();.

Best Practice: MVC
Even though Ext JS doesn’t force you to architect your application based on the MVC
paradigm, it’s a really good idea to do so. Earlier in “Generating Applications with the
Sencha CMD Tool” on page 129, you saw how this tool generates a project, which sep‐
arates model, views, controllers, and stores into separate directories (as shown earlier
in Figure 4-1, which depicted the structure of the Hello World project). But later in this
chapter, we’ll build our Save The Child application the same way. Figure 4-5 presents a
diagram illustrating the Ext JS application that contains all Model-View-Controller tiers.

Figure 4-5. Model-View-Controller in Ext JS

Becoming Familiar with Ext JS and Tooling | 139

The MVC tier comprises the following:

Controller
An object that serves as an intermediary between the data and the views. The data
has arrived at your application, and the controller has to notify the appropriate view.
The user changed the data on the view, and the controller should pass the changes
to the model (or stores, in the Ext JS world). The controller is the place to write
event listeners’ reaction to some important events of your application (for example,
a user clicked a button). In other words, the controller maps the events to actions
to be performed on the data or the view.

View
A certain portion of the UI that the user sees. The view is populated with the data
from the model (or stores).

Model
Represents some business entity (for example, Donor, Campaign, Customer, or
Order). In Ext JS, models are accessed via stores.

Store
Contains one or more model instances. Typically, a model is a separate class that is
instantiated by the store object, but in simple cases, a store can have the model data
embedded in its own class. A store can use more than one model if need be. Both
stores and model can communicate with the data feed that in a web application is
usually provided by a server-side data feed.

The application object defines its controllers, views, models, and stores. When Save The
Child is ready, the code of its app.js will look as follows:

Ext.application({
 name: 'SSC',

 views: [
 'CampaignsMap',
 'DonateForm',
 'DonorsPanel',
 'Header',
 'LoginBox',
 'VideoPanel',
 'Viewport'
],

 stores: [
 'Campaigns',
 'Donors'
],

 controllers: [
 'Donate'

140 | Chapter 4: Developing Web Applications in the Ext JS Framework

]
});

This code is clean and simple to read/write and helps Ext JS to generate additional code
required for wiring views, models, controllers, and stores together. There is no explicit

models section, because in our implementation, the models were defined inside the

stores. For better understanding of the rest of this chapter, you should read the MVC
Architecture section from the Ext JS documentation. We don’t want to repeat the content
of the Sencha product documentation, but rather will be giving you brief descriptions
while reviewing the Save The Child application.

Models and stores

When you create a class to be served as a model, it must be a subclass of Ext.data.Mod

el. A model has the fields property. For example, you can represent a Donor entity
by using just two fields—name and location:

Ext.define('HR.model.Donor',{
 extend: 'Ext.data.Model',
 requires: [
 'Ext.data.Types'
],

 fields: [
 { name: 'donors', type: Ext.data.Types.INT },
 { name: 'location', type: Ext.data.Types.STRING}
]
});

Think of an instance of a model as one record representing a business entity—for ex‐
ample, Donor. Ext JS generates getters and setters for models, so if an instance of the

model is represented by the variable sscDonor, you can set or get its value as follows:

sscDonor.set('name', 'Farata Systems');
var donorName= sscDonor.get('name');

A store in Ext JS holds a collection of instances of a model. For example, if your appli‐
cation has retrieved the information about 10 donors, it will be represented in Ext JS as

a collection of 10 instances of the class Donor. A custom store in your application has

to extend from the class Ext.data.Store.

If you need to quickly create a mock store for testing purposes, you can declare a store

with inline data that you can specify using the config option data. The next code sample
shows a declaration of the store for providing information about the donors as inline
data:

Ext.define('SSC.store.Donors', {
 extend: 'Ext.data.Store',

 fields: [

Becoming Familiar with Ext JS and Tooling | 141

http://bit.ly/1lst0gD
http://bit.ly/1lst0gD

 { name: 'donors', type: 'int' },
 { name: 'location', type: 'string' }
],

 data: [
 { donors: 48, location: 'Chicago, IL' },
 { donors: 60, location: 'New York, NY' },
 { donors: 90, location: 'Dallas, TX' }
]
});

It’s a good idea to have a mock store with the test data located right on your computer.
This way, you won’t depend on the readiness and availability of the server-side data. But
usually, a store makes an Ajax call to a server and retrieves the data via the object

Ext.data.reader.Reader or one of its descendants. For example:

Ext.define('SSC.store.Donors', {
 extend: 'Ext.data.Store',

 model: 'SSC.model.Donor',
 proxy: {
 type: 'ajax',
 url: 'donors.json',
 reader: {
 type: 'json'
 }
 }
});

The model SSC.model.Donor has to be described in your application as a
separate class and contain only the fields defined, no data.

Unless you need to load some raw data from a third-party server provider, wrap
your reader into a Proxy object. Server proxies are used for implementing create,
read, update, and destroy (CRUD) operations and include the corresponding

methods create(), read(), update(), and destroy().

For the mockup mode, we use a JavaScript Object Notation (JSON)–formated
file that contains an array of object literals (each object represents one donor).

The donors.json file should look like the content of the data attribute in the code

of SSC.store.Donors.

The Reader object will consume JSON. Read the Ext JS documentation to decide
how to properly configure your JSON reader. The reader knows how to convert
the data into the model.

Populating a store with external data is usually done via a Proxy object, and Ext JS offers

several server-side proxies: Ajax, JsonP, Rest, and Direct. To retrieve the data from the

server, you call the method load() on your Store object. To send the data to the server,

call the method sync().

142 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://bit.ly/1qK2n6K
http://bit.ly/1vskrnY

The most frequently used proxy is Ajax, which uses XMLHttpRequest to communicate
with the server. The following code fragment shows another way of defining the store

Donors. It specifies via the config api the server-side URIs responsible for the four

CRUD operations. We’ve omitted the reader section here because the default data type
is JSON anyway. Because we’ve specified the URIs for the CRUD operations, there is no

need to specify the url attribute, as in the preceding code sample:

Ext.define('SSC.store.Donors', {
 extend: 'Ext.data.Store',

 model: 'SSC.model.Donor',
 proxy: {
 type: 'ajax',
 api: {
 create: '/create_donors',
 read: '/read_donors',
 update: '/update_donors',
 destroy: '/destroy_donors'
 }
 }
});

When you create an instance of the data store, you can specify the autoload parameter.

If it’s true, the store will be populated automatically. Otherwise, explicitly call the meth‐

od load() whenever the data retrieval is needed. For example, you can call the method

myStore.load({callback:someCallback}), passing it some callback to be executed.

In Appendix A, we discuss the HTML5 local storage API. Ext JS has
a class Ext.data.proxy.LocalStorage that saves the model data locally
if the web browser supports it.

Controllers and views

Your application controller is a liaison between the data and the views. This class has to

extend Ext.app.Controller, and will include references to the views and, possibly,
stores. The controller will automatically load every class mentioned in its code, create

an instance of each store, and register each instance with the class Ext.StoreManager.

A controller class has the config properties stores, models, and views, where you can
list stores, models, and views that the controller should know about. Example 4-3 shows

that the controller SSC.controller.Donate includes the names of two stores:

SSC.store.Campaigns and SSC.store.Donors.

Becoming Familiar with Ext JS and Tooling | 143

http://bit.ly/1qK2wHv

Example 4-3. The Donate controller

Ext.define('SSC.controller.Donate', {
 extend: 'Ext.app.Controller',
 stores: ['SSC.store.Campaigns', 'SSC.store.Donors']

 refs: [{
 ref: 'donatePanel',
 selector: '[cls=donate-panel]'
 }
 // more views can go here
],

 init: function () {

 this.control({
 'button[action=showform]': {
 click: this.showDonateForm
 }
 // more event listeners go here
 });
 },

 showDonateForm: function () {
 this.getDonatePanel().getLayout().setActiveItem(1);
 }
});

List stores in your controller. Actually, in most cases, you’d list stores in the

Ext.application singleton as we did earlier. But if you need to dynamically
create controllers, you don’t have a choice but to declare stores in such
controllers.

List one or more views of your application in the refs property, which simplifies
the search of the component globally or within some container. The controller

generates getters and setters for each object listed in the refs.

Register event listeners in the function init(). In this case, we’re registering the

event handler function showDonateForm that will process clicks of the button,

which has an attribute action=showform.

The getter getDonatePanel() will be autogenerated by Ext JS because donate

Panel was included in the refs section.

Ext.StoreManager provides a convenience method to look up the store by store ID. If

stores were automatically injected into Ext.StoreManager by the controller, the default

store ID is its name; for example, SSC.store.Donors:

var donorsStore = Ext.data.StoreManager.lookup('SSC.store.Donors');

144 | Chapter 4: Developing Web Applications in the Ext JS Framework

// An alternative syntax to use StoreManager lookup

var donorsStore = Ext.getStore('SSC.store.Donors');

The preceding SSC.controller.Donate doesn’t use the config property views, but if it
did, Ext JS would generate getters and setters for every view (the same is true for stores

and models). It uses refs instead to reference components, and getters and setters will

be generated for each component listed in refs; for example, getDonatePanel(). Look‐

up of such components is done based on the value in selector using the syntax com‐

patible with ComponentQuery. The difference between refs and the config property

views is that the former generates references to instances of specific components from
views, whereas the latter generates getters and setters only to the “class” (not the in‐
stance) of the entire view for further instance creation.

You can view and test Ext JS components against bundled themes by
browsing the Theme Viewer at the Ext JS 4.2 Examples page.

Exploring a Component’s Life Cycle
In previous versions of our Save The Child application, CSS was responsible for all
layouts of the UI components. In Chapter 10, you’ll learn about responsive web design
techniques and CSS media queries, which allow you to create fluid layouts that auto‐
matically adjust to the size of the viewport. But this section is about the Ext JS proprietary
way of creating and adding UI components to web pages. Before the user will see a
component, Ext JS will go through the following phases for each component:

Load
Load the required (or all) Ext JS classes and their dependencies.

Initialization
Initialize components when the DOM is ready.

Layout
Measure and assign sizes.

Rendering
Convert components to HTML elements.

Destruction
Remove the reference from the DOM, remove event listeners, and unregister from
the component manager.

Rendering and layout are the most time-consuming phases. The rendering does a lot
of preparation to give the browser’s rendering engine HTML elements and not Ext JS

Becoming Familiar with Ext JS and Tooling | 145

http://bit.ly/1jCMwSw
http://bit.ly/1uxCg2O

classes. The layout phase is slow because the calculation of sizes and positions (unless
they are in absolute coordinates) and applying of cascading stylesheets takes time.

There’s also the issue of reflows, which happen when the code reads-measures-writes to
the DOM and makes dynamic style modifications. Fortunately, Ext JS 4.1 was redesigned
to minimize the number of reflows; now a large portion of recalculations is done in a
batch before modifying the DOM.

Components as containers

If a component can contain other components, it’s a container (for example, Ext.pan

el.Panel) and will have Ext.container.Container as one of its ancestors. In the Ext

JS class hierarchy, Container is a subclass of Component, so all methods and properties
defined for a component are available for a container, too. Each web page consists of
one or more containers, which include some children components (in Ext JS, they are

subclasses of Ext.Component), for example, Ext.button.Button.

You’ll be defining your container class as a subclass of a container by including extend:

Ext.container.Container. The child elements of a container are accessible via its

property items. In the Ext.define() statement of the container, you may specify the

code that will loop through this items array and, say, style the components, but actual

instances of the children will be provided during the Ext.create() call via the config‐
uration object.

The process of adding a component to a container will typically consist of invoking

Ext.create() and specifying in a configuration object where to render the component

to; for example, renderTo: Ext.getBody().

But under the hood, Ext JS will do a lot more work. The framework will autogenerate
a unique ID for the component, assign some event listeners, instantiate component plug-

ins if specified, invoke the initComponent(), and add the component to Ext.Compo

nentManager.

Even though you can manually assign an ID to the component via a
configuration object, it’s not recommended because it could result
in duplicate IDs.

Working with Events
Events in Ext JS are defined in the mixin Ext.util.Observable. Components interested
in receiving events can subscribe to them by using one of the following methods:

• By calling the method addListener()

146 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://bit.ly/13QH0TG
http://bit.ly/Zy3iZU

• By using the method on()

• Declaratively

The next code snippet shows two ways by which a combo box can subscribe to the event

change. The handler function is a callback that will be invoked if the event change is
dispatched on this combo box:

combobox.addListener('change', myEventHandlerFunction);

combobox.on('change', myEventHandlerFunction);

To unsubscribe from the event, call the method removeListener() or its shorter ver‐

sion, un():

combobox.removeListener('change', myEventHandlerFunction);
combobox.un('change', myEventHandlerFunction);

You can also declaratively subscribe to events by using the listeners config property
of the component:

Ext.create('Ext.button.Button', {
 listeners: {
 click: function() { // handle event here }
 }
}

JavaScript supports event bubbling (see the online bonus chapter). In Ext JS, an event-
bubbling mechanism enables events dispatched by components that include

Ext.util.Observable to bubble up through all enclosing containers. For components,
it means that you can handle a component’s event on the container level. It can be handy
to subscribe and handle multiple similar events in one place. To enable bubbling for

selected events, use the enableBubble() method. For example:

this.enableBubble(['textchange', 'validitychange']);

To define custom events, use the method addEvents(), where you can provide one or
more of the custom event names:

this.addEvents('messagesent', 'updatecompleted');

For components, you have to define custom events inside the initComponent() method.

For controllers—inside init(), and for any other class—inside its constructor.

Specifying Layouts
The container’s layout property controls how its children are laid out. It does so by

referring to the container’s items property, which lists all of the child components. If

you don’t explicitly set the layout property, its default value is Auto, which places com‐
ponents inside the container, top to bottom, regardless of the component size.

Becoming Familiar with Ext JS and Tooling | 147

http://bit.ly/1iJO41S

Usually, you explicitly specify the layout. For example, the hbox layout arranges all

components inside the container horizontally next to each other, but the vbox layout

arranges them vertically. The card layout places the components one under another,
but only the top component is visible (think of a tabbed folder, for which the content
of only one tab is visible at any given time).

The border layout is often used to arrange components in the main viewport (a.k.a.
home page) of your application. This layout allows you to split the container’s real estate

into five imaginary regions: north, east, west, south, and center. If you need to allocate

the top menu items, place them into the region north. The footer of the page is in the

south, as shown in the following code sample:

Ext.define('MyApp.view.Viewport', {
 extend: 'Ext.container.Viewport',

 layout: 'border',

 items: [{
 width: 980,
 height: 200,
 title: "Top Menu",
 region: "north",
 xtype: "panel"},
 {
 width: 980,
 height: 600,
 title: "Page Content",
 region: "center",
 xtype: "panel"},
 },
 {
 width: 980,
 height: 100,
 title: "The footer",
 region: "south",
 xtype: "panel"},
 }]
});

Setting proportional layouts by using the flex property

Ext JS has a flex property that allows you to make your layout more flexible. Instead
of specifying the width or height of a child component in absolute values, you can split
the available space proportionally. For example, if the space has to be divided between

two components having the flex values 2 and 1, this means that 2/3 of the container’s
space will be allocated to the first component, and 1/3 to the second one, as illustrated
in the following code snippet:

148 | Chapter 4: Developing Web Applications in the Ext JS Framework

 layout: 'vbox',

 items: [{
 xtype: 'component',
 html: 'Lorem ipsum dolor',
 flex: 2
 },
 {
 xtype: 'button',
 action: 'showform',
 text: 'DONATE NOW',
 flex: 1
 }]

The format of this book doesn’t allow us to include detailed descrip‐
tions of major Ext JS components. If you plan to use Ext JS to devel‐
op enterprise web applications, allocate some extra time to learn the

data grid Ext.grid.Panel that’s used to render tabular data. You

should also master working with forms with Ext.form.Panel.

In the next section, you’ll see Ext JS layouts in action while working on the Save The
Child application.

Developing Save The Child with Ext JS
In this section, we’ll do a code walk-through of the Ext JS version of our Save The Child
application. Ext JS is often used in enterprise applications that communicate with the
Java-based server side. The most popular IDE among Java enterprise developers is called
Eclipse. That’s why we decided to switch from WebStorm to Eclipse. Apache Tomcat is
one of the most popular servers among Java developers.

We’ve prepared two separate Eclipse projects:

• SSC_Top_ExJS contains the code required to render the top portion of the UI.

• SSC_Complete_ExtJS contains the complete version.

To test these applications in Eclipse, you need to install it and configure it with Apache
Tomcat, as described next.

If you are not planning to work with Java servers, you can continue
using WebStorm. Just open in WebStorm the WebContent directory
from the preceding project (as you did in the previous chapters) and
open the index.html file in the browser. WebStorm will run the web
application by using its internal web server.

Developing Save The Child with Ext JS | 149

To make WebStorm work faster, exclude the directories ext, pack‐
ages, build, and WEB-INF from the project (click the wrench icon on
the toolbar and then select Directories→Excluded). This way, Web‐
Storm won’t index these directories.

Setting Up the Eclipse IDE and Apache Tomcat
Eclipse is the most popular IDE among Java developers. You can use it for developing
JavaScript, too, although this would not be the best choice. But we’ll need it to demon‐
strate the HTML/Java application generation in the next chapter, so let’s set it up.

Sencha offers an Eclipse plug-in (not covered in this book) for those
who purchase a license for Sencha Complete.

We’ll use the Eclipse IDE for Java EE Developers version, which is available free of charge
at the Eclipse Downloads site. The installation comes down to unzipping the downloa‐
ded archive. Then, double-click the Eclipse executable to start this IDE.

Apache Tomcat

In Chapter 3, we used an XAMPP server that was running PHP scripts. Because this
chapter includes server-side code written in Java, we’ll use Apache Tomcat, which is one
of the popular servers used by Java developers for deploying web applications. Besides
being a web server, Tomcat also contains a Java Servlet container that will be used in
“Generating a CRUD Application” on page 201. But for most examples, we’ll use Tomcat
as a web server where Ext JS code will be deployed.

Get the latest version of Apache Tomcat from the Download section at Apache web‐
site. At the time of this writing, Tomcat 7 is the latest production-quality build, so
download the ZIP file with Tomcat’s Binary Distributions (Core). Unzip the file in the
directory of your choice.

Even though you can start Tomcat from a separate command window, the more pro‐
ductive way is to configure Tomcat right in the Eclipse IDE. This will allow you to deploy
your applications and start/stop Tomcat without the need to leave Eclipse. To add a
server to Eclipse, open the Eclipse Java EE perspective (by choosing Window→Open
Perspective), choose File→New→Other→Server→Server→Apache→Tomcat v7.0 Serv‐
er, select your Tomcat installation directory, and then click Finish. If you don’t see Tom‐
cat 7 in the list of Apache servers, click “Download additional server adapters.”

150 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://bit.ly/V2y9Rx
http://tomcat.apache.org
http://bit.ly/1pAsNda
http://tomcat.apache.org
http://tomcat.apache.org

You’ll see the Tomcat entry in the Eclipse Project Explorer. From the Eclipse menu,
choose Windows→Show View and open the Servers view. Start Tomcat by using the
right-click menu.

By default, the Eclipse IDE keeps all required server configuration
and deployment files in its own hidden directory. To see where ex‐
actly they are located in your computer, just double-click Tomcat in
the Server view. The server path field contains the path. Keep in mind
that whereas Tomcat documentation defines webapps as a default
deployment directory, Eclipse uses the wtpwebapps directory in‐
stead. If you prefer to deploy your Eclipse projects under your origi‐
nal Tomcat installation path, select the option Use Tomcat Installa‐
tion.

In the next section, you’ll learn how to create dynamic web projects in Eclipse for which
you’ll need to specify the target runtime for deployment of your web applications. This
newly installed and configured Tomcat server will serve as a deployment target for our
sample projects.

Dynamic web projects and Ext JS

Eclipse for Java EE developers comes with a Web Tools Platform that simplifies devel‐
opment of web applications by allowing you to create a so-called dynamic web project.
This is an Eclipse preconfigured project that already knows where its Java server is
located, and deployment to the server is greatly simplified. Sample projects from this
chapter will be specifically created for deployment under the Apache Tomcat server.

To create such a project, from the Eclipse menu, choose
File→New→Other→Web→Dynamic Web Project. It will pop up a window similar to
Figure 4-6. Note that the target runtime is Apache Tomcat v7.0 that we configured in
the previous section.

Upon creation, this project will include several directories, including one called Web‐
Content. This directory serves as a document root of the web server in Eclipse dymamic
web projects. This is the place to put your index.html and one possible place to keep the
Ext JS framework. Create a subdirectory named ext under WebContent and copy there
all files from the Ext JS distribution. The app directory should also go under WebCon‐
tent.

Unfortunately, the Eclipse IDE is infamous for slow indexing of JavaScript files, and
given the fact that Ext JS has hundreds of JavaScript files, your work may be interrupted
by Eclipse trying to unnecessarily revalidate these files. Developers of the Sencha Eclipse
plug-in decided to solve this problem by creating a special type of library file (ext.ser)
supporting code assistance in Eclipse. This solution will work until some of the Ext JS
API changes; after that, Sencha should update the type library file.

Developing Save The Child with Ext JS | 151

http://bit.ly/Twf4pH

Figure 4-6. Creating a dynamic web project in Eclipse

If you don’t have the Sencha Eclipse plug-in, there are a couple of solutions to this
problem (we’ll use the first one):

• Exclude from the Eclipse build the following Ext JS directories: ext, build, and
packages.

• Don’t copy the Ext JS framework into your Eclipse project. Keep it in the place
known for Tomcat, and configure as a loadable module.

152 | Chapter 4: Developing Web Applications in the Ext JS Framework

To implement the first solution, right-click the properties of your project and choose
JavaScript→Include Path. Then, switch to the Source tab, expand the project’s web con‐
tent, click the Edit button, and then click Add. One by one, add ext, build, and pack‐
ages directories as exclusion patterns (add the slash at the end), as shown in Figure 4-7.

Figure 4-7. Solution 1: Excluding folders in Eclipse

For the second solution, you’ll need to add your Ext JS folder as a static Tomcat module.
Double-click the Tomcat name in the Servers view and then click the bottom tab, Mod‐
ules. Then, click Add External Web Module. In the pop-up window, find the folder
containing Ext JS (in my computer, it’s inside the Library folder, as shown in
Figure 4-8) and give it a name (for example, /extjs-4.2). Now Tomcat will know that on
each start, it has to load another static web module known as /extjs-4.2. If you’re inter‐
ested in details of that deployment, open the file server.xml located in your Eclipse
workspace in the hidden directory .metadata/.plugins/org.eclipse.wst.server.core/tmp0/
conf.

To ensure that you did everything right, enter in your browser the URL http://localhost:
8080/extjs-4.2, and you should see the welcome screen of Ext JS.

Developing Save The Child with Ext JS | 153

http://localhost:8080/extjs-4.2
http://localhost:8080/extjs-4.2

Figure 4-8. Solution 2: Adding Ext JS to Tomcat as a static module

In both of these solutions, you’ll lose the Ext JS context-sensitive help, but at least you
will eliminate the long pauses caused by Eclipse’s internal indexing processes. Devel‐
oping with ExtJS in the WebStorm or IntelliJ IDEA IDEs would spare you from all these
issues because these IDEs are smart enough to produce context-sensitive help from an
external JavaScript library.

If you decide to stick with WebStorm, you can skip the Eclipse-
related instructions that follow and just open in your browser in‐
dex.html located in the WebContent directory of the SSC_Top_ExtJS
project. In any case, the browser will render the page that looks like
Figure 4-10.

In this section, we brought together three pieces of software: the Eclipse IDE, Apache
Tomcat server, and Ext JS framework. Let’s bring one more program to the mix: Sencha
CMD. We already went through the initial code generation of Ext JS applications. If you
already have a dynamic web project in the Eclipse workspace, run Sencha CMD, spec‐
ifying the WebContent directory of your project as the output folder, where the gener‐

154 | Chapter 4: Developing Web Applications in the Ext JS Framework

ated project will reside. For example, if the name of your dynamic web project is hello2,
the Sencha CMD command will look as follows:

sencha -sdk /Library/ext-4.2 generate app HelloWorld /Users/yfain11/

myEclipseWorkspace/hello2/WebContent

Running the Top Portion of the Save The Child UI
To run the top portion of the UI, from the Eclipse menu, choose File→Import→Gen‐
eral→Existing Projects into Workspace and click the Next button. Then select the option
“Select root directory” and click Browse to find SSC_Top_ExtJS on your disk. This will
import the entire dynamic web project, and most likely you’ll see one error in the Prob‐
lems view indicating that the target runtime with so-and-so name is not defined. This
may happen because the name of the Tomcat configuration in your Eclipse project is
different from the one in the directory SSC_Top_ExtJS.

To fix this issue, right-click the project name and choose Properties→Targeted runtimes.
Then, deselect the Tomcat name that was imported from our archive and select the name
of your Tomcat configuration. This action makes the SSC_Top_ExtJS project deployable
under your Tomcat server. Right-click the server name in the Servers view and choose
Add and Remove. You’ll see a pop-up window similar to Figure 4-9, which depicts a
state when the SSC_Top_ExtJS project is configured (deployed), but SSC_Com‐
plete_ExtJS isn’t yet.

Right-click the project name SSC_Top_ExtJS, and choose Run as→Run on server.
Eclipse may offer to restart the server; accept it, and you’ll see the top portion of the
Save The Child application running in the internal browser of Eclipse that will look as
shown in Figure 4-10. You can either configure Eclipse to use your system browser or
enter the URL http://localhost:8080/SSC_Top_ExtJS/ in the browser of your choice. The
web page will look the same.

Developing Save The Child with Ext JS | 155

http://localhost:8080/SSC_Top_ExtJS/

Figure 4-9. Deploying the dynamic web project

Figure 4-10. Running SSC_Top_ExtJS

156 | Chapter 4: Developing Web Applications in the Ext JS Framework

Apache Tomcat runs on port 8080 by default. If you want to change
the port number, double-click the Tomcat name in the Servers view
and change the port there.

It’s time for a code review. The initial application was generated by Sencha CMD, so the
directory structure complies with the MVC paradigm. This version has one controller
(Donate.js) and three views (DonateForm.js, Viewport.js, and Header.js), as shown in
Figure 4-11. The images are located under the folder resources.

Figure 4-11. Controller, views, and images of SSC_Top_ExtJS

The app.js file is pretty short—it just declares SSC as the application name, views, and

controllers. By adding the property autoCreateViewport: true, we requested the ap‐
plication to automatically load the main window, which must be called Viewport.js and
be located in the view directory:

Ext.application({
 name: 'SSC',

 views: [
 'DonateForm',
 'Header',
 'Viewport'
],

 controllers: [
 'Donate'

Developing Save The Child with Ext JS | 157

],

 autoCreateViewport: true
});

In this version of the application, the Donate.js controller is listening to the events from

the view DonateForm. It’s responsible just for showing and hiding the Donate form panel.
We’ve implemented the same behavior as in the previous version of the Save The Child
application—clicking the Donate Now button reveals the donation form. If the appli‐
cation needs to make Ajax calls to the server, such code would also be placed in the

controller. The code of the Donate controller is shown in Example 4-4.

Example 4-4. The Donate controller of Save The Child

Ext.define('SSC.controller.Donate', {
 extend: 'Ext.app.Controller',

 refs: [{
 ref: 'donatePanel',
 selector: '[cls=donate-panel]'
 }],

 init: function () {

 this.control({
 'button[action=showform]': {
 click: this.showDonateForm
 },

 'button[action=hideform]': {
 click: this.hideDonateForm
 },

 'button[action=donate]': {
 click: this.submitDonateForm
 }
 });
 },

 showDonateForm: function () {
 this.getDonatePanel().getLayout().setActiveItem(1);
 },

 hideDonateForm: function () {
 this.getDonatePanel().getLayout().setActiveItem(0);
 },

 submitDonateForm: function () {
 var form = this.getDonatePanel().down('form');
 form.isValid();
 }
});

158 | Chapter 4: Developing Web Applications in the Ext JS Framework

The init() method is invoked only once on instantiation of the controller.

The control() method of the controller takes selectors as arguments to find
components with the corresponding event listeners to be added. For example,

button[action=showform] means “find a button that has a property action

with the value showform“—it has the same meaning as in CSS selectors.

Event handler functions to process show, hide, and submit events.

In containers with a card layout, you can make one of the components visible

(the top one in the card deck) by passing its index to the method setActiveI

tem(). Viewport.js includes a container with the card layout (see cls: 'donate-

panel' in the next code sample).

Finding the children of the container can be done by using the down() method.

In this case, we are finding the child <form> element of a donate panel. If you

need to find the parents of the component, use up().

Because the MVC paradigm splits the code into separate layers, you
can unit-test them separately—for example, test your controllers sep‐
arately from the views. Chapter 7 is dedicated to JavaScript testing; it
contains the sections “Testing the Models” on page 283 and “Testing the
Controllers” on page 284 that illustrate how to arrange for separate
testing of the models and controllers in the Ext JS version of the Save
The Child application.

The top-level window is SSC.view.Viewport, which contains the Header and the Do

nate form views, as shown in Example 4-5.

Example 4-5. The viewport for Header and Donate

Ext.define('SSC.view.Viewport', {
 extend: 'Ext.container.Viewport',
 requires: [
 'Ext.tab.Panel',
 'Ext.layout.container.Column'
],

 cls: 'app-viewport',
 layout: 'column',
 defaults: {
 xtype: 'container'
 },

 items: [{
 columnWidth: 0.5,
 html: ' ' // Otherwise column collapses
 }, {
 width: 980,

Developing Save The Child with Ext JS | 159

 cls: 'main-content',
 layout: {
 type: 'vbox',
 align: 'stretch'
 },

 items: [
 {
 xtype: 'appheader'
 },
 {
 xtype: 'container',
 minHeight: 350,
 flex: 1,

 cls: 'donate-panel',
 layout: 'card',

 items: [{
 xtype: 'container',
 layout: 'vbox',

 items: [{
 xtype: 'component',
 html: 'Lorem ipsum dolor sit amet, consectetur elit. Praesent ...',

 maxWidth: 550,
 padding: '80 20 0'
 }, {
 xtype: 'button',
 action: 'showform',
 text: 'DONATE NOW',
 scale: 'large',
 margin: '30 230'
 }]
 }, {
 xtype: 'donateform',
 margin: '80 0 0 0'
 }]
 }, {
 xtype: 'container',
 flex: 1
 }]
 }, {
 columnWidth: 0.5,
 html: ' '
 }]

});

Our viewport has a column layout, which is explained after Figure 4-12.

160 | Chapter 4: Developing Web Applications in the Ext JS Framework

The vertical box layout displays components from the items array one under

another, the appheader and the container, which is explained next.

The container with the class selector donate-panel includes two components,

but because they are laid out as card, only one of them is shown at a time: either

the one with the “Lorem ipsum” text, or donateform. Which one to show is

mandated by the Donate controller, by invoking the method setActiveItem()
with the appropriate index.

Figure 4-12 shows a snapshot from WebStorm, with a collapsed code section just so that
you can see the big picture of the columns in the column layout—they are marked with
arrows.

Figure 4-12. Collapsed code of Viewport.js

Developing Save The Child with Ext JS | 161

Choose Preferences→JavaScript→Libraries and add the file ext-all-
debug-w-comments.js as a global library. Press F1 to display avail‐
able comments about a selected Ext JS element. Configuring Ext JS as
an external library allows you to remove Ext JS files from a Web‐
Storm project without losing context-sensitive help.

In Ext JS, the column layout is used when you are planning to present the information
in columns, as explained in the product documentation. Even though there are three
columns in this layout, the entire content on this page is located in the middle column
having the width of 980. The column on the left and the column on the right just hold
one nonbreakable space each to provide centering of the middle column in monitors
with high resolutions wider than 980 pixels (plus the browser’s chrome).

The width of 0.5, 980, 0.5 means to give the middle column 980 pixels and share the
remaining space equally between empty columns.

You also can lay out this screen by using the horizontal box (hbox)

with the pack configuration property, but we decided to keep the
column layout for illustration purposes.

Consider using Ext Designer for creating layouts in WYSIWYG mode.

SASS and CSS
Take a look at the project structure shown in Figure 4-12. It has a sass directory, which
contains several files with styles: CampaignsMap.scss, DonateForm.scss, Header.scss, and
Viewport.scss. Note that the filename extension is not css, but scss—it’s Syntactically
Awesome Stylesheets (SASS). The content of Viewport.scss is shown in the code that
follows. In particular, if you’ve been wondering where the images of the boy and the
background flowers are located, they’re right there:

.app-viewport {
 background: white;
}

.main-content {
 background: url("images/bg-1.png") no-repeat;
}

162 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://bit.ly/T0QxsG
http://bit.ly/T0QywW
http://bit.ly/1lHNHEd

.donate-panel {
 background: url("images/child-1.jpg") no-repeat right bottom,
 url("images/bg-2.png") no-repeat 90px bottom;
 border-bottom: 1px dotted #555;
}

SASS is an extension of CSS3, which allows using variables, mixins, inline imports,
inherit selectors, and more with CSS-compatible syntax. The simplest example of SASS

syntax is to define a variable that stores a color code—for example, $mypanel-color:

#cf6cc2;. Now if you need to change the color, you just change the value of the variable
in one place rather than trying to find all places in a regular CSS file where this color
was used. But because modern web browsers don’t understand SASS styles, they have
to be converted into regular CSS before deploying to your web applications.

Ext JS includes Compass, which is an open source CSS authoring framework built on
top of SASS. It includes modules and functions that will save you time when defining
things such as border radius, gradients, transitions, and more in a cross-browser fashion.

For example, you write one SASS line, .simple { @include border-radius(4px,

4px); }, but Compass will generate the following cross-browser CSS section:

 -webkit-border-radius: 4px 4px;
 -moz-border-radius: 4px / 4px;
 -khtml-border-radius: 4px / 4px;
 border-radius: 4px / 4px; }

See the Compass documentation for more examples like this. To manually compile your
SASS into CSS, you can use the command compass compile from the command or ter‐
minal window. This step is also performed automatically during the Sencha CMD ap‐
plication build. In the Save The Child application, the resulting CSS file is located in
build/SSC/production/resources/SSC-all.css.

We are not using any extended CSS syntax in our Save The Child application, but because
SASS is a superset of CSS, you can use your existing CSS as is—just save it in the .scss
file. If you’d like to learn more about SASS syntax, visit the site sass-lang.com, which
has tutorials and reference documentation.

In general, Ext JS substantially reduces the need for manual CSS writing by using pre‐
defined themes. Sencha offers a tutorial explaining how to use SASS and Compass for
theming.

Besides SASS, there is another dynamic CSS language called LESS. It adds to CSS vari‐
ables, mixins, operations, and functions. However, it’s not used in Ext JS.

Now let’s look at the child elements of SSC.view.Viewport. The SSC.view.Header is
the simplest view. Because Save The Child does not include a bunch of forms and grids,

we’ll use the lightest top-level container class Container where possible. The class

Container gives you the most freedom in what to put inside and how to lay out its child

Developing Save The Child with Ext JS | 163

http://bit.ly/1ls6qVu
http://compass-style.org
http://bit.ly/1ls6nsI
http://sass-lang.com
http://bit.ly/1pAupDC
http://bit.ly/1q3Q053
http://lesscss.org

elements. Our SSC.view.Header view extends Ext.Container and contains child ele‐

ments, some of which have the xtype: component, and others have container, as shown
in Example 4-6.

Example 4-6. The Header view of Save The Child

Ext.define("SSC.view.Header", {
 extend: 'Ext.Container',
 xtype: 'appheader',

 cls: 'app-header',

 height: 85,

 layout: {
 type: 'hbox',
 align: 'middle'
 },

 items: [{
 xtype: 'component',
 cls: 'app-header-logo',
 width: 75,
 height: 75
 }, {
 xtype: 'component',
 cls: 'app-header-title',
 html: 'Save The Child',
 flex: 1
 }, {
 xtype: 'container',
 defaults: {
 scale: 'medium',
 margin: '0 0 0 5'
 },
 items: [{
 xtype: 'button',
 text: 'Who We Are'
 }, {
 xtype: 'button',
 text: 'What We Do'
 }, {
 xtype: 'button',
 text: 'Where We Work'
 }, {
 xtype: 'button',
 text: 'Way To Give'
 }]
 }]
});

164 | Chapter 4: Developing Web Applications in the Ext JS Framework

We assign appheader as the xtype value of this view, which will be used as a

reference inside the SSC.view.Viewport.

cls is a class attribute of a DOM element. In this case, it is the same as writing

class=app-header in the HTML element.

The header uses the hbox layout with center alignment.

Child components of the top container are the logo image, the text “Save The
Child,” and another container with buttons.

A container with button components.

Let’s review the DonateForm view next, which is a subclass of Ext.form.Panel and con‐

tains the form with radio buttons, fields, and labels. This component named donate

form will be placed under SSC.view.Header inside SSC.view.Viewport. We’ve removed
some of the lines of code to make it more readable, but its full version is included in the
source code samples accompanying this book. Example 4-7 shows first part of the

SSC.view.DonateForm.

Example 4-7. The DonateForm view—Part 1

Ext.define('SSC.view.DonateForm', {
 extend: 'Ext.form.Panel',
 xtype: 'donateform',
 requires: [
 'Ext.form.RadioGroup',
 'Ext.form.field.*',
 'Ext.form.Label'
],

 layout: {
 type: 'hbox'
 },

 items:[{
 xtype: 'container',
 layout: 'vbox',

 items: [{
 xtype: 'container',

 items: [{
 xtype: 'radiogroup',
 fieldLabel: 'Please select or enter donation amount',
 labelCls: 'donate-form-label',

 vertical: true,
 columns: 1,

 defaults: {

Developing Save The Child with Ext JS | 165

 name: 'amount'
 },

 items: [
 { boxLabel: '10', inputValue: '10' },
 { boxLabel: '20', inputValue: '20' }
 // more choices 50, 100, 200 go here
]
 }]
 }, {
 xtype: 'textfield',
 fieldLabel: 'Other amount',
 labelCls: 'donate-form-label'
 }]
 },

DonateForm depends on several classes listed in the requires property. Ext JS
checks to see whether these classes are present in memory, and if not, the loader

loads all dependencies first, and only after the DonateForm class.

Our DonateForm uses the horizontal box (hbox) layout, which means that certain
components or containers will be laid out next to each other horizontally. But

which ones? The children of the container located in the items[] arrays will be
laid out horizontally in this case. But the preceding code contains several

items[] arrays with different levels of nesting. How to identify those that belong

to the topmost container DonateForm? This is a case that clearly demonstrates
how having a good IDE can be of great help.

Figure 4-13 shows a snapshot from the WebStorm IDE illustrating how can you

find matching elements in long listings. The top-level items[] arrays starts from

line 23, and we see that the first element to be laid out in hbox has the xtype:

container, which in turn has some children. If you move the blinking cursor
of the WebStorm editor right after the first open curly brace in line 23, you’ll see
a thin, blue vertical line that goes down to line 60. This is where the first object
literal ends.

Hence, the second object to be governed by the hbox layout starts on line 61.
You can repeat the same trick with the cursor to see where that object ends and

the fieldcontainer starts. This might seem like a not overly important tip, but
it really saves a developer’s time.

The first element of the hbox is a container that is internally laid out as a vbox

(see Figure 4-14). The radiogroup is on top, and the textfield for entering
Other amount is at the bottom.

The second part of the SSC.view.DonateForm comes next, as shown in Example 4-8.

166 | Chapter 4: Developing Web Applications in the Ext JS Framework

Example 4-8. The DonateForm view—Part 2

 {
 xtype: 'fieldcontainer',
 fieldLabel: 'Donor information',
 labelCls: 'donate-form-label',

 items: [{
 xtype: 'textfield',
 name: 'donor',
 emptyText: 'full name'
 }, {
 xtype: 'textfield',
 emptyText: 'email'
 }
 // address,city,zip code,state and country go here
]
 }, {
 xtype: 'container',
 layout: {
 type: 'vbox',
 align: 'center'
 },

 items: [{
 xtype: 'label',
 text: 'We accept PayPal payments',
 cls: 'donate-form-label'
 }, {
 xtype: 'component',
 html: 'Your payment will be processed securely by PayPal...'
 }, {
 xtype: 'button',
 action: 'donate',
 text: 'DONATE NOW'
 }, {
 xtype: 'button',
 action: 'hideform',
 text: 'I will donate later'
 }]
 }]
});

The fieldcontainer is a lightweight Ext JS container useful for grouping
components—the donor information, in this case. It’s the central element in the

hbox container shown in Figure 4-14.

The right side of the hbox is another container with the vbox internal layout to
show the “We accept PayPal” message, Donate Now, and “I will donate later”
buttons (see Figure 4-14). You can find event handlers for these buttons in the
Donate.js controller.

Developing Save The Child with Ext JS | 167

http://bit.ly/1uxE63D

Figure 4-13. Collapsed code of Viewport.js

Debugging frameworks that are extensions of JavaScript in web
browsers can be difficult, because although you might be operating

with, say, Ext JS classes, the browser will receive regular <div>, <p>,
and other HTML tags and JavaScript. Illuminations is a Firebug add-
on that allows you to inspect elements showing not just their HTML
representations, but the corresponding Ext JS classes that were used
to create them.

168 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://bit.ly/1i46vy4

Figure 4-14. DonateForm.js: an hbox with three vbox containers

The code review of the top portion of the Save The Child application is finished. Run
the SSC_Top_ExtJS project and turn on the Chrome Developer Tools. Scroll to the
bottom of the Network tab, and you’ll see that the browser made about 250 requests to
the server and downloaded 4.5 MB in total. Not too exciting, is it?

On the next runs, these numbers will drop to about 30 requests and 1.7 MB transferred,
as the browser’s caching kicks in. These numbers would be better if instead of ext-
all.js we’d link ext.js, and even better if we created a custom build (see “Generating
Applications with the Sencha CMD Tool” on page 129) for the Save The Child appli‐
cation, merging the application code into one file to contain only those framework
classes that are actually used.

Completing Save The Child
In this section, we’ll review the code supporting the lower half of the Save The Child
UI, which you should import into the Eclipse IDE from the directory SSC_Com‐
plete_ExtJS.

If you see the target runtime error, read the beginning of “Running the Top Portion of
the Save The Child UI” on page 155 for the cure. Stop the Tomcat server if it’s running,
and deploy SSC_Complete_ExtJS under the Tomcat server in the Servers view (from the
right-click menu, choose Add and Remove). Start Tomcat in Eclipse, right-click the
project, and then run it on the server. It will open a web browser pointing at http://
localhost:8080/SSC_Complete_ExtJS showing a window similar to the one depicted in
Figure 4-15.

Developing Save The Child with Ext JS | 169

http://localhost:8080/SSC_Complete_ExtJS
http://localhost:8080/SSC_Complete_ExtJS

Figure 4-15. Save The Child with live charts

This version has some additions compared to the previous ones. Notice the lower-left
panel with charts. First, the charts are placed inside the panel with the tabs Charts and
Table. The same data can be rendered either as a chart or as a grid. Second, the charts
became live thanks to Ext JS. We took a snapshot of the window shown in Figure 4-15
while hovering the mouse over the pie slice representing New York, and the slice has
extended from the pie showing a tool tip.

SSC_Complete_ExtJS has more Ext JS classes than SSC_Top_ExtJS. You can see more
views in Figure 4-16. Besides, we’ve added two classes, Donors.js and Campaigns.js, to
serve as data stores for the panels with charts and maps.

170 | Chapter 4: Developing Web Applications in the Ext JS Framework

Figure 4-16. JavaScript classes of SSC_Complete_ExtJS

Adding the login box

The Login Box view is pretty small and self-explanatory:

Ext.define("SSC.view.LoginBox", {
 extend: 'Ext.Container',
 xtype: 'loginbox',

 layout: 'hbox',

 items: [{
 xtype: 'container',
 flex: 1
 }, {
 xtype: 'textfield',
 emptyText: 'username',
 name: 'username',
 hidden: true
 }, {
 xtype: 'textfield',
 emptyText: 'password',
 inputType: 'password',
 name: 'password',
 hidden: true
 }, {
 xtype: 'button',
 text: 'Login',
 action: 'login'
 }]
});

The code to process the user’s logins is added to the Donate.js controller.

'button[action=login]': {
 click: this.showLoginFields

Developing Save The Child with Ext JS | 171

 }
...

showLoginFields: function () {
 this.getUsernameBox().show();
 this.getPasswordBox().show();
}

Adding the video

The bottom portion of the window includes several components. The video view simply

reuses the HTML <video> tag we used in Chapter 4 and Chapter 5. Ext JS 4.2 doesn’t

offer any other solutions for embedding videos. On one hand, subclassing Ext.Compo

nent is the lightest way of including any arbitrary HTML markup. On the other hand,
turning HTML into an Ext JS component allows us to use it the same way as any other
Ext JS component (for example, participate in layouts). Here’s the code for VideoPanel.js:

Ext.define("SSC.view.VideoPanel", {
 extend: 'Ext.Component',
 xtype: 'videopanel',

 html: [
 '<video controls="controls" poster="resources/media/intro.jpg"
 width="390px" height="240px" preload="metadata">',
 '<source src="resources/media/intro.mp4" type="video/mp4"/>',
 '<source src="resources/media/intro.webm" type="video/webm"/>',
 '<p>Sorry, your browser doesn\'t support the video element</p>',
 '</video>'
]

});

Ext JS has a wrapper for the HTML5 <video> tag. It’s called Ext.Vid

eo, and we use it in Chapter 12.

Adding the maps

Adding the map takes considerably more work on our part. The mapping part is located

in the view CampaignsMap.js. Initially, we tried to use Ext.ux.GMapPanel, but it didn’t

work as expected. As a workaround, we’ve added the HTML <div> element to serve as
a map container. The first part of the content of CampaignsMap.js is shown in
Example 4-9.

Example 4-9. The CampaignsMap component—Part 1

Ext.define("SSC.view.CampaignsMap", {
 extend: 'Ext.Component',

172 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://bit.ly/1pEoMFz

 xtype: 'campaignsmap',

 html: ['<div class="gmap"></div>'],

 renderSelectors: {
 mapContainer: 'div'
 },

 listeners: {
 afterrender: function (comp) {
 var map,
 mapDiv = comp.mapContainer.dom;

 if (navigator && navigator.onLine) {
 try {
 map = comp.initMap(mapDiv);
 comp.addCampaignsOnTheMap(map);
 } catch (e) {
 this.displayGoogleMapError();
 }
 } else {
 this.displayGoogleMapError();
 }
 }
 },

Because we’ve added the map container just by including the HTML <div>

component, Ext JS creates a generated ID for this <div>. It’s just not a good way
to reference an element on the page, because the ID should be unique, and we
can easily run into conflicting situations. We didn’t want to create an ID

manually, and so we used the property renderSelectors to map an arbitrary
name to a DOM selector. When we reference this element somewhere inside the

Ext JS code by using this renderSelector, for example, this.mapContainer

(mapContainer is an arbitrary name here), it returns an Ext.dom.Element object
—an abstraction over the plain HTML element—that eliminates cross-
browser API differences.

Sencha documentation states that declaring listeners during Ext.define() is

a bad practice, and doing it during Ext.create() should be preferred. This is
an arguable statement. Yes, there is a possibility that the handler function will

be created during define() but never used during create(), which will lead to
unnecessary creation of the handler’s instance in memory. But the chances are

slim. The other consideration is that if listeners are defined during create(),
each instance can handle the same event differently. We’ll leave it up to you to
determine the right place for defining listeners. The good part about keeping
listeners in the class definition is that the entire code of the class is located in
one place.

Developing Save The Child with Ext JS | 173

Query the DOM to find the mapContainer defined in the renderSelectors
property. Note that we are getting the reference to this DOM element after the

view is rendered in the event handler function afterrender. The object comp
will be provided to this handler, and it points at the instance of the current

component, which is SSC.view.CampaignsMap. Think of comp as this for the
component.

If Google Maps is not available, display an error message, as shown in
Figure 4-17. This code was added after one of the authors was testing this code
while sitting on a plane with no Internet connection. But checking the status of

navigator.onLine may not be a reliable indicator of the offline status, so we’ve

wrapped it into a try/catch block just to be sure.

Figure 4-17. If Google Maps server is not responding

Next comes the second part of CampaignsMap.js, as shown in Example 4-10.

Example 4-10. The CampaignsMap component—Part 2

 initMap: function (mapDiv) {
 // latitude = 39.8097343 longitude = -98.55561990000001
 // Lebanon, KS 66952, USA Geographic center of the contiguous United States
 // the center point of the map
 var latMapCenter = 39.8097343,
 lonMapCenter = -98.55561990000001;

 var mapOptions = {
 zoom : 3,
 center : new google.maps.LatLng(latMapCenter, lonMapCenter),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 mapTypeControlOptions: {
 style : google.maps.MapTypeControlStyle.DROPDOWN_MENU,
 position: google.maps.ControlPosition.TOP_RIGHT
 }

174 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://mzl.la/1mdJ1HT

 };

 return new google.maps.Map(mapDiv, mapOptions);
 },

 addCampaignsOnTheMap: function (map) {
 var marker,
 infowindow = new google.maps.InfoWindow(),
 geocoder = new google.maps.Geocoder(),
 campaigns = Ext.StoreMgr.get('Campaigns');

 campaigns.each(function (campaign) {
 var title = campaign.get('title'),
 location = campaign.get('location'),
 description = campaign.get('description');

 geocoder.geocode({
 address: location,
 country: 'USA'
 }, function(results, status) {
 if (status == google.maps.GeocoderStatus.OK) {

 // getting coordinates
 var lat = results[0].geometry.location.lat(),
 lon = results[0].geometry.location.lng();

 // create marker
 marker = new google.maps.Marker({
 position: new google.maps.LatLng(lat, lon),
 map : map,
 title : location
 });

 // adding click event to the marker
 // to show info-bubble with data from json
 google.maps.event.addListener(marker, 'click', (function(marker) {
 return function () {
 var content = Ext.String.format(
 '<p class="infowindow">
 {0}
{1}
<i>{2}</i></p>',
 title, description, location);

 infowindow.setContent(content);
 infowindow.open(map, marker);
 };
 })(marker));
 } else {
 console.error(
 'Error getting location data for address: '
 + location);
 }
 });

Developing Save The Child with Ext JS | 175

 });
 },

 displayGoogleMapError: function () {
 console.log('Error is successfully handled while rendering Google map');
 this.mapContainer.update('<p class="error">
 Sorry, Google Map service isn\'t available</p>');
 }
});

The rest of the code in this class has the same mapping functionality as described
in “Adding Geolocation Support” on page 34.

The data for the campaign information is coming from the store Campaigns.js
located in the folder store. The store manager can find the reference to the store

either by assigned storeId or by the name Campaigns listed in the stores array
in app.js.

We configure the mapping panel to get the information about the campaign title,
location, and description from the fields with corresponding names from the

store SSC.store.Campaigns, which is shown here in app.js:

Ext.application({
 name: 'SSC',

 views: [
 'CampaignsMap',
 'DonateForm',
 'DonorsPanel',
 'Header',
 'LoginBox',
 'VideoPanel',
 'Viewport'
],

 stores: [
 'Campaigns',
 'Donors'
],

 controllers: [
 'Donate'
],

 autoCreateViewport: true
});

In Chapter 2 the information about campaigns was taken from a file with JSON-

formatted data. In this version, the data will be taken from the class SSC.store.Cam

paigns that’s shown next. This class extends Ext.data.JsonStore, which is a helper

176 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://bit.ly/1i473nV
http://bit.ly/TwsxxL

class for creating stores based on the JSON data. The class JsonStore is a subclass of

the more generic Ext.data.Store, which implements client-side caching of model ob‐

jects, can load the data via the Proxy object, and supports sorting and filtering.

Later, in Chapter 12, you’ll see another version of our Save The Child application, in

which all stores are inherited from Ext.data.Store. But in the version presented in
Example 4-11, we are not reading the code from external JSON sources, and inheriting

from Ext.data.Store would suffice.

Example 4-11. The Campaigns store

Ext.define('SSC.store.Campaigns', {
 extend: 'Ext.data.JsonStore',

 fields: [
 { name: 'title', type: 'string' },
 { name: 'description', type: 'string' },
 { name: 'location', type: 'string' }
],

 data: [{
 title: 'Lorem ipsum',
 description: 'Lorem ipsum dolor sit amet, consectetur adipiscing elit.',
 location: 'Chicago, IL'
 }, {
 title: 'Donors meeting',
 description: 'Morbi mollis ante at ante posuere tempor.',
 location: 'New York, NY'
 }, {
 title: 'Sed tincidunt magna',
 description: 'Donec ac ligula sit amet libero vehicula laoreet',
 location: 'Dallas, TX'
 }, {
 title: 'Fusce tellus dui',
 description: 'Sed accumsan nibh sapien, interdum ullamcorper velit.',
 location: 'Miami, FL'
 }, {
 title: 'Aenean lorem quam',
 description: 'Pellentesque habitant morbi tristique senectus',
 location: 'Fargo, ND'
 }]
});

We have not created a separate model class for each campaign, because this

information is used in only one place. The fields array defines our inline model,

which consists of objects (data) containing the properties title, descrip

tion, and location.

Hardcoded data for the model.

Developing Save The Child with Ext JS | 177

Adding the chart and table panels

The lower-left area of the Save The Child window is occupied by a subclass of

Ext.tab.Panel. The name of our view is SSC.view.DonorsPanel, and it contains two
tabs: Chart and Table. Accordingly, the class definition starts by declaring dependencies
for the Ext JS classes that support charts and a data grid.

Charting is an important part of many enterprise applications, and Ext JS offers solid
chart-drawing capabilities without the need to install any plug-ins. We’d like to stress
that both Chart and Table panels use the same data—they just provide different views
of the data. Let’s review the code in Example 4-12.

Example 4-12. The DonorsPanel includes charts and grids

Ext.define("SSC.view.DonorsPanel", {
 extend: 'Ext.tab.Panel',
 xtype: 'donorspanel',
 requires: [
 'Ext.chart.Chart',
 'Ext.chart.series.Pie',
 'Ext.grid.Panel',
 'Ext.grid.column.Number',
 'Ext.grid.plugin.CellEditing'
],

 maxHeight: 240,
 plain: true,

 items: [{
 title: 'Chart',
 xtype: 'chart',
 store: 'Donors',
 animate: true,
 legend: {
 position: 'right'
 },
 theme: 'Base:gradients',
 series: [{
 type: 'pie',
 angleField: 'donors',
 showInLegend: true,
 tips: {
 trackMouse: true,
 renderer: function (storeItem) {

 var store = storeItem.store,
 total = 0;

 store.each(function(rec) {
 total += rec.get('donors');
 });

178 | Chapter 4: Developing Web Applications in the Ext JS Framework

 this.update(Ext.String.format('{0}: {1}%',
 storeItem.get('location'),
 Math.round(storeItem.get('donors') / total * 100)));
 }
 },
 highlight: {
 segment: {
 margin: 20
 }
 },
 label: {
 field: 'location',
 display: 'horizontal',
 contrast: true,
 renderer: function (label, item, storeItem) {
 return storeItem.get('donors');
 }
 }
 }]
 }, {
 title: 'Table',
 xtype: 'gridpanel',
 store: 'Donors',
 columns: [
 { text: 'State', dataIndex: 'location', flex: 1},
 { text: 'Donors', dataIndex: 'donors',
 xtype: 'numbercolumn', format: '0', editor: 'numberfield' }
],
 plugins: [{
 ptype: 'cellediting'
 }]
 }]

});

By default, the top portion of the tab panel shows a blue background, which we
didn’t like, so we turned this style off to give these tabs a little cleaner look.

The first panel is an instance of the xtype: 'chart', which gets the data from

the store object Donors.

Configuring and creating a pie chart. The width of each sector is controlled by

the angleField property, which is mapped to the field donors defined in the

store SSC.store.Donors (see the code listing that follows).

We’ve overriden the config renderer to provide custom styling for each element.

In particular, we’ve configured tips to be displayed on mouse hover.

Calculating total for proper display of the percentages on mouse hover.

The label for each pie sector is retrieved from the field location defined in the

store SSC.store.Donors shown in the code listing that follows.

Developing Save The Child with Ext JS | 179

http://bit.ly/1rPJP52
http://bit.ly/16fgnO5
http://bit.ly/1i0LV1x

Displaying the chart legend on the right side. If the user moves the mouse over
the legend, the pie sectors start to animate.

The second tab contains an instance of xtype gridpanel. Note that the store
object is the same as the Chart panel uses.

The grid has two columns. One is simple text, but the other is rendered as a

numbercolumn that displays the data according to a format string.

The store Donors contains the hardcoded data for our pie chart as well as for the table.
In the real world, the data would be retrieved from the server side. Because we were

getting ready to consume JSON data (not implemented), our Donors class extends

JsonStore:

Ext.define('SSC.store.Donors', {
 extend: 'Ext.data.JsonStore',

 fields: [
 { name: 'donors', type: 'int' },
 { name: 'location', type: 'string' }
],

 data: [
 { donors: 48, location: 'Chicago, IL' },
 { donors: 60, location: 'New York, NY' },
 { donors: 90, location: 'Dallas, TX' },
 { donors: 22, location: 'Miami, FL' },
 { donors: 14, location: 'Fargo, ND' },
 { donors: 44, location: 'Long Beach, NY' },
 { donors: 24, location: 'Lynbrook, NY' }
]
});

Defining inline model.

Hardcoded data for the model.

The data located in the store SSC.store.Donors can be rendered not only as a chart,
but in a tabular form as well. To switch to the table view shown in Figure 4-18, the user
has to click the Table tab.

180 | Chapter 4: Developing Web Applications in the Ext JS Framework

http://bit.ly/1lHKKDO

Figure 4-18. The Table tab

The following code fragment from DonorsPanel is all it takes to render the donors’ data

as a grid. The xtype of this component is gridpanel. For illustration purposes, we made
the Donors column editable—double-click a cell with a number and it will turn this
field into a numeric field, as shown in Figure 4-18 for the location Fargo, ND:

{
 title: 'Table',
 xtype: 'gridpanel',
 store: 'Donors',
 columns: [
 { text: 'City/State', dataIndex: 'location', flex: 1},
 { text: 'Donors', dataIndex: 'donors', xtype: 'numbercolumn', format: '0',
 editor: 'numberfield' }
],
 plugins: [{
 ptype: 'cellediting'
 }

Reusing the same store as in the Chart panel.

We are using one of the existing Ext JS plug-ins here, namely, Ext.grid.plu

gin.CellEditing, to allow editing the cells of the Donors column. In this

example, we are using an existing Ext JS editor numberfield in the Donors
column. Because we don’t work with decimal numbers here, the editor uses

format:0. To make the entire row of the grid editable, use the plug-in

Ext.grid.plugin.RowEditing. If you want to create a custom plug-in for a cell,
you need to define it by the rules for writing Ext JS plug-ins.

Developing Save The Child with Ext JS | 181

Modify any value in the Donor’s cell and switch to the Chart panel.
You’ll see that the size of the corresponding pie sector changes ac‐
cordingly.

The total number of code lines in DonorsPanel and in the store Donors is under 100.
Being able to create a tab panel with a chart and grid with almost no manual coding is
quite impressive, isn’t it?

Adding a footer

To complete the Save The Child code review, we need to mention the icons located at
the bottom of ViewPort.js, shown in Figure 4-19. Usually, links at the bottom of the page
statically refer to the corresponding social network’s account. Integration with social
networks is out of this book’s scope. But you can study, say, the Twitter API and imple‐
ment functionality to let donors tweet about their donations. The Facebook icon can
either have a similar functionality or you might consider implementing automated login
to the Save The Child application by using OAuth2, which is briefly discussed in Chap‐
ter 9.

Figure 4-19. The Viewport footer

This footer is implemented in the following code snippet. We’ve implemented these
little icons as regular images:

 items: [{
 xtype: 'component',
 flex: 1,
 html: 'Project SSC_Complete_ExtJS:'
 }, {
 src: 'resources/images/facebook.png'
 }, {
 src: 'resources/images/google_plus.png'
 }, {
 src: 'resources/images/twitter.png'
 }, {
 src: 'resources/images/rss.png'
 }, {
 src: 'resources/images/email.png'
 }]

182 | Chapter 4: Developing Web Applications in the Ext JS Framework

A more efficient way to do this is by using a numeric character code
that renders as an image (see the glyph config property). The Pictos
library offers more than 300 tiny images in both vector and PNG
form. You’ll see the example of using Pictos fonts in Chapter 12.

The Ext JS library contains lots of JavaScript code, but it allows developers to produce
nice-looking applications with a fraction of the code compared to other frameworks.
Also, even though this version of Save The Child offers more functionality than those
from the previous chapters, we’ve had to write only a bare minimum of CSS code, thanks
to Ext JS theming.

Building a production version of Save The Child

Run the completed version of our application in a Chrome browser with Developer
Tools turned on. Go to the Network tab and scroll to the bottom. You’ll see a message
reporting that the browser made 365 requests to the server and downloaded 6.4 MB of
content, as shown in Figure 4-20.

Figure 4-20. The size of the development version of Save The Child

Now let’s create a production version with all JavaScript merged into one file. Open the
terminal or command window and change the directory to the Eclipse workspace di‐
rectory where your project was created (for example, …/SSC_Complete_ExtJS/
WebContent) and enter the command described in “Generating Applications with the
Sencha CMD Tool” on page 129:

sencha app build

The production version of the Save The Child application generates in the directory …/
SSC_Complete_ExtJS/WebContent/build/SSC/production. All your application Java‐
Script code merges with the required classes of the Ext JS framework into one file, all-
classes.js, which in our case amounts to 1.2 MB. The generated CSS file SSC-all.css will
be located in the directory resources. All images are there, too. This is what the produc‐
tion version of index.html looks like:

<!DOCTYPE HTML>
<html>
<head>
 <meta charset="UTF-8">
 <title>SSC</title>
 <script src="http://maps.googleapis.com/maps/api/js?sensor=false"></script>

Developing Save The Child with Ext JS | 183

http://bit.ly/1lHLzfS
http://pictos.cc
http://pictos.cc
http://bit.ly/1pAupDC

<link rel="stylesheet" href="resources/SSC-all.css"/>
<script type="text/javascript" src="all-classes.js"></script>
</head>
<body></body>
</html>

Deploy the content of production under any web server and load this version of the
application in Chrome with Developer Tools turned on. This time, the number of
downloaded bytes is three times lower (2.3 MB). Ask your web server administrator to
enable Gzip or Deflate, and the size of the JavaScript will go down from 1.2 MB to 365
KB. The size of other resources will decrease even more. Don’t forget that we are loading
a 500 KB video file intro.mp4. The number of server requests went down to 55, but more
than 30 of them were Google Maps API calls.

Figure 4-21. The size of the production version of Save The Child

Summary
Creating enterprise web applications involves many steps that need to be done by de‐
velopers. But with the right set of tools, repetitive steps can be automated. Besides, the
Ext JS class-rich component library and themes allow you to reduce the amount of
manual programming.

Remember the DRY principle: don’t repeat yourself. Try to do more with less effort.
This rather long chapter will help you get started with Ext JS. It’s an extensive framework,
which doesn’t allow an easy way out should you decide to switch to another one. But
for the enterprise applications that require a rich UI, dashboards with fancy charts, and
advanced data grids, Ext JS can be a good choice.

184 | Chapter 4: Developing Web Applications in the Ext JS Framework

CHAPTER 5

Selected Productivity Tools for Enterprise
Developers

The toolbox of an enterprise HTML5 developer contains tools that can improve pro‐
ductivity. In this chapter, we share with you some of the tools that we use.

We’ll start this chapter with a brief introduction of Node.js (or simply Node)—the
server-side JavaScript framework and Node Package Manager (npm). Node and npm
serve as a foundation for the tools covered in this chapter.

Next, we’ll highlight a handful of productivity tools that we use in our consulting
projects, namely:

Grunt
A task-runner framework for JavaScript projects that allows you to automate re‐
petitive operations such as running tests.

Bower
A package manager for web projects that helps in maintaining application depen‐
dencies.

Yeoman
A collection of code-generation tools and best practices.

In addition to these tools that can be used with various JavaScript frameworks, we’ll
introduce you to Clear Toolkit for Ext JS, which includes the code generator Clear Data
Builder—this tool was created and open-sourced by our company, Farata Systems. With
Clear Toolkit, you’ll be able to quickly start a project that utilizes the Ext JS framework
for frontend development and Java on the server side.

185

Using Node.js, V8, and npm
Node.js is a server-side JavaScript framework. Node uses V8, the JavaScript engine by
Google (Chrome/Chromium also use it). Node provides the JavaScript API for accessing
the filesystem, sockets, and running processes, which makes it great for general-purpose
scripting runtime. You can find more information about Node at its website.

Many tools are built on top of Node JavaScript APIs. The Grunt tool is one of them. We
will use Grunt later in this book to automate execution of repetitive development tasks.

npm is a utility that comes bundled with Node. npm provides a unified API and met‐
adata model for managing dependencies in JavaScript projects. A package.json file is the
project’s dependencies descriptor. npm installs project dependencies using information
from package.json. npm uses a community repository for open source JavaScript
projects to resolve dependencies. npm can also use private repositories.

Node and npm are cross-platform software and binaries available for Windows, Linux,
and OS X operating systems.

To use this book’s code samples, you need to download and install Node from its website.

Automating Everything with Grunt
You should automate every aspect of the development workflow to reduce the cost of
building, deploying, and maintaining your application. In this section, we introduce
Grunt—a task runner framework for JavaScript projects that can help you automate
repetitive operations such as running tests when the code changes. You can follow the
instructions from Grunt’s website to install it on your machine.

Grunt can watch your code changes and automate the process of running tests when
the code changes. Tests should help in assessing the quality of our code.

With the Grunt tool, you can have a script to run all your tests. If you come from the
Java world, you know about Apache Ant, a general-purpose command-line tool to drive
processes that describe build files as targets in the build.xml file. Grunt also runs the
tasks described in scripts. A wide range of tasks are available today—starting with run‐
ning automated unit tests and ending with JavaScript code minification. Grunt provides
a separate layer of abstraction on which you can define tasks in a special domain-specific
language (DSL) in a Gruntfile for execution.

Exploring the Simplest Gruntfile
Let’s start with the simplest Grunt project setup, shown in Example 5-1. The following
two files must be present in the project directory:

186 | Chapter 5: Selected Productivity Tools for Enterprise Developers

http://nodejs.org/about/
http://gruntjs.com/
https://npmjs.org/
http://nodejs.org/download
http://gruntjs.com/
http://bit.ly/1qr4ChO
http://bit.ly/1qr4ChO

package.json
This file is used by npm to store metadata and project dependencies.

List Grunt and its plug-ins that your project needs as devDependencies in this file.

Gruntfile
This file is named Gruntfile.js or Gruntfile.coffee; it is used to configure or define
the tasks and load Grunt plug-ins.

Example 5-1. The simplest possible Gruntfile

module.exports = function (grunt) {
 'use strict';

 grunt.registerTask('hello', 'say hello', function(){
 grunt.log.writeln('Hello from grunt');
 });

 grunt.registerTask('default', 'hello');
};

Register a new task named hello.

Print the greeting text by using grunt’s log API.

With grunt.registerTask, we define a default task to run when Grunt is called
without any parameters.

Each task can be called separately from the command line by passing the task’s name as

a command-line parameter. For example, grunt hello would execute only the task

named hello from the preceding script.

Let’s run this hello task with the following command:

grunt --gruntfile Grunt_simple.js hello

Running "hello" task
Hello from grunt

Done, without errors.

Using Grunt to Run JSHint Checks
Now that we’ve covered the basics of Grunt tool, we can use it for something more
interesting than just printing hello world on the screen. Because JavaScript is an inter‐
preted language, there is no compiler to help catch syntax errors. But you can use
JSHint, an open source tool, which helps identify errors in JavaScript code in lieu of a
compiler. Consider the JavaScript code in Example 5-2.

Using Grunt to Run JSHint Checks | 187

http://bit.ly/TwsFgJ
http://www.jshint.com

Example 5-2. A JavaScript array with a couple typos

var bonds = [
 'Sean Connery',
 'George Lazenby',
 'Roger Moore',
 'Timothy Dalton',
 'Pierce Brosnan',
 'Daniel Craig',
 //'Unknown yet actor'
]

We want to define an array that contains names of actors who played James Bond
in the canonical series.

Here is an example of a typo that may cause errors in some browsers. A developer
commented-out the line containing an array element but kept the comma in the
previous line.

A missing semicolon is a typical typo. Although it is not an error (and many
JavaScript developers do consider omitting semicolons a best practice), an
automatic semicolon insertion (ASI) will get you covered in this case.

What Is an Automatic Semicolon Insertion?
In JavaScript, semicolons are optional, which means that you can omit a semicolon
between two statements written on separate lines. Automatic semicolon insertion is a
source code parsing procedure that infers omitted semicolons in certain contexts into
your program. You can read more about optional semicolons in JavaScript: The Defin‐
itive Guide by David Flanagan (O’Reilly).

The preceding code snippet is a fairly simple example that can cause trouble and frus‐
tration if you don’t have proper tools to check the code semantics and syntax. Let’s see
how JSHint can help in this situation.

JSHint can be installed via npm with the command npm install jshint -g. Now you
can run JSHint against our code snippet:

> jshint jshint_example.js
jshint_example.js: line 7, col 27, Extra comma. (it breaks older versions of IE)
jshint_example.js: line 9, col 10, Missing semicolon. #

2 errors #

JSHint reports the location of the error and a short description of the problem.

The total count of errors.

188 | Chapter 5: Selected Productivity Tools for Enterprise Developers

http://shop.oreilly.com/product/9780596805531.do
http://shop.oreilly.com/product/9780596805531.do

The WebStorm IDE has built-in support for the JSHint tool. There is
a third-party plugiin for Eclipse: jshint-eclipse.

Grunt also has a task to run JSHint against your JavaScript code base. Example 5-3 shows
what a JSHint configuration in Grunt looks like.

Example 5-3. A Gruntfile with JSHint support

module.exports = function(grunt) {
 grunt.initConfig({
 jshint: {
 gruntfile: {
 src: ['Gruntfile_jshint.js']
 },
 app: {
 src: ['app/js/app.js']
 }
 }
 });

 grunt.loadNpmTasks('grunt-contrib-jshint');
 grunt.registerTask('default', ['jshint']);
};

Because Gruntfile is a JavaScript file, JSHint can check it as well and identify the
errors.

grunt-contrib-jshint has to be installed. When grunt is run without any

parameters, the default task jshint is triggered:

> grunt

Running "jshint:gruntfile" (jshint) task
>> 1 file lint free.

Running "jshint:app" (jshint) task
>> 1 file lint free.

Done, without errors.

Watching for the File Changes
Another handy task to use in a developer’s environment is the watch task. The purpose
of this task is to monitor files in preconfigured locations. When the watcher detects any
changes in those files, it will run the configured task. Example 5-4 shows what a watch
task config looks like.

Watching for the File Changes | 189

http://bit.ly/1rpYtzz
http://bit.ly/1j65aSg
http://bit.ly/1lrDyGV

Example 5-4. A watch task config

module.exports = function(grunt) {
 grunt.initConfig({
 jshint: {
 // ... configuration code is omitted
 },
 watch: {
 reload: {
 files: ['app/*.html', 'app/data/**/*.json', 'app/assets/css/*.css',
 'app/js/**/*.js', 'test/test/tests.js', 'test/spec/*.js'],
 tasks: ['jshint']
 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-jshint');
 grunt.loadNpmTasks('grunt-contrib-watch');
 grunt.registerTask('default', ['jshint']);
};

The watch task configuration starts here.

The list of the files that need to be monitored for changes.

An array of tasks to be triggered after a file change event occurs.

The grunt-contrib-watch plug-in has to be installed.

You can run grunt watch from the command line (keep in mind that it never ends on
its own):

> grunt watch

Running "watch" task
Waiting...OK
>> File "app/js/Player.js" changed.
Running "jshint:gruntfile" (jshint) task
>> 1 file lint free.

Running "jshint:app" (jshint) task
>> 1 file lint free.

Done, without errors.

Completed in 0.50s at Tue May 07 2013 00:41:42 GMT-0400 (EDT) - Waiting...

The article Grunt and Gulp Tasks for Performance Optimization lists
various useful Grunt tasks for optimizing loading of images and CSS.

190 | Chapter 5: Selected Productivity Tools for Enterprise Developers

http://bit.ly/1vszKwX
http://bit.ly/1i0Pzse

Using Bower
Bower is a package manager for web projects. Twitter has donated it to the open source
community. Bower is a utility and a community-driven repository of libraries that help
download third-party software required for application code that will run in a web
browser. Bower’s purpose is similar to npm, but the latter is more suitable for server-
side projects.

Bower can take care of transitive (dependency of a dependency) dependencies and
download all required library components. Each Bower package has a bower.json file,
which contains the package metadata for managing the package’s transitive dependen‐
cies. Also, bower.json can contain information about the package repository, readme
file, license, and so forth. You can find bower.json in the root directory of the package.
For example, components/requirejs/bower.json is a path for the RequireJS metadata file.
Bower can be installed via npm. The following line shows how to install Bower globally
in your system:

npm install -g bower

Java developers use package managers like Gradle or Maven that have
functionality similar to Bower’s.

Let’s begin using Bower now. For example, here is a Bower command to install the library
RequireJS:

bower install requirejs --save

Bower installs RequireJS into the components/requirejs directory and saves information
about dependencies in the bower.json configuration file.

Bower simplifies the delivery of dependencies into a target platform, which means that
you don’t need to store dependencies of your application in the source control system.
Just keep your application code there and let Bower bring all other dependencies de‐
scribed in its configuration file.

There are pros and cons for storing dependencies in the source con‐
trol repositories. Read the article by Addi Osmani that covers this
subject in more detail.

Your application will have its own bower.json file with the list of the dependencies (see
Figure 5-1). At this point, Bower can install all required application dependencies with

Using Bower | 191

http://bit.ly/V2z3xA
http://bit.ly/1uxJW4U

one command, bower install, which will deliver all your dependency files into the

components directory. Here is the content of bower.json for our Save The Child appli‐
cation:

{
 "name": "ch7_dynamic_modules",
 "description": "Chapter 7: Save The Child, Dynamic Modules app",
 "dependencies": {
 "requirejs": "~2.1.5",
 "jquery": ">= 1.8.0",
 "qunit": "~1.11.0",
 "modernizr": "~2.6.2",
 "requirejs-google-maps": "latest"
 }
}

Figure 5-1. Directory structure of the application’s components

192 | Chapter 5: Selected Productivity Tools for Enterprise Developers

Application dependencies are specified in the corresponding dependencies section.

The >= sign indicates that the corresponding software cannot be older than the specified
version.

Also, there is a Bower search tool to find the desired component in its repository.

Using Yeoman
Yeoman is a collection of tools and best practices that help bootstrap a new web project.
Yeoman consists of three main parts: Grunt, Bower, and Yo. Grunt and Bower were
explained earlier in this chapter.

Yo is a code-generation tool. It makes the start of the project faster by scaffolding a new
JavaScript application. Yo can be installed via npm similar to the other tools. The fol‐
lowing command shows how to install Yo globally in your system; if you didn’t have
Grunt and Bower installed before, this command will install them automatically:

npm install -g yo

For code generation, Yo relies on plug-ins called generators. A generator is a set of
instructions to Yo and file templates. You can use the Yeoman Generators search tool
(see Figure 5-2) to discover community-developed generators. At the time of this writ‐
ing, you can use one of about 430 community-developed generators to scaffold your
project.

For example, let’s scaffold the Getting Started project for RequreJS. RequireJS is a
framework that helps dice code of your JavaScript application into modules. We cover
this framework in detail in Chapter 6.

Using Yeoman | 193

http://bit.ly/1q1QH1g
http://yeoman.io/
http://bit.ly/1iSRyiy

Figure 5-2. Yeoman Generators search tool

The search tool found a bunch of generators that have the keyword requirejs in their
name or description. We’re looking for a generator that’s called “requirejs” (see
Figure 5-2, highlighted with a red square). When we click the name link, the GitHub
page of the RequireJS generator displays. Usually, the generator developers provide a
reference of the generator’s available tasks.

Next we need to install the generator on our local machine by using the following com‐
mand:

npm install -g generator-requirejs

After installation, we can start the yo command and as a parameter, we need to specify
the generator’s name. To start scaffolding a RequireJS application, we can use the fol‐
lowing command:

yo requirejs

We need to provide answers to the wizard’s questions. A sample dialog with Yeoman is
shown in Example 5-5.

194 | Chapter 5: Selected Productivity Tools for Enterprise Developers

http://bit.ly/1q3Xkhf
http://bit.ly/1q3Xkhf

Example 5-5. Yeoman prompt

 | |
 |--(o)--| .--------------------------.
 `---------´ | Welcome to Yeoman, |
 (_´U`_) | ladies and gentlemen! |
 /___A___\ '__________________________'
 | ~ |
 __'.___.'__
 ´ ` |° ´ Y `

This comes with requirejs, jquery, and grunt all ready to go
[?] What is the name of your app? requirejs yo
[?] Description: description of app for package.json
 create Gruntfile.js
 create package.json
 create bower.json
 create .gitignore
 create .jshintrc
 create .editorconfig
 create CONTRIBUTING.md
 create README.md
 create app/.jshintrc
 create app/config.js
 create app/main.js
 create test/.jshintrc
 create test/index.html
 create test/tests.js
 create index.htm

I'm all done. Running bower install & npm install for you to install the required
dependencies. If this fails, try running the command yourself.

.... npm install output is omitted

You will get all directories and files set up, and you can start writing your code imme‐
diately. The structure of your project will reflect common best practices from the Java‐
Script community (see Figure 5-3).

Using Yeoman | 195

Figure 5-3. Scaffolded RequireJS application directory structure

After executing the yo command, you will get Grunt set up with following configured
tasks:

clean

Cleans files and folders.

concat

Concatenates files.

uglify

Minifies files with UglifyJS.

qunit

Runs QUnit unit tests in a headless PhantomJS instance.

196 | Chapter 5: Selected Productivity Tools for Enterprise Developers

jshint

Validates files with JSHint.

watch

Runs predefined tasks whenever watched files change.

requirejs

Builds a RequireJS project.

connect

Starts a connect web server.

default

An alias for jshint, qunit, clean, requirejs, concat, uglify tasks.

preview

An alias for connect:development tasks.

preview-live

An alias for default, connect:production tasks.

Yeoman also has a generator for generator scaffolding. It might be very useful if you
want to introduce your own workflow for a web project.

The next code generator that we’ll cover is a more specific one. It can generate the entire
ExtJS-Java application.

Using Ext JS and CDB for Productive Enterprise Web
Development
The authors of this book work for a company called Farata Systems, which has developed
the open source, freely available software called Clear Toolkit for Ext JS, and the code
generator and Eclipse IDE plug-in Clear Data Builder (CDB) comes with it. CDB is a
productivity tool that was created specifically for enterprise applications that use Java
on the server side and need to retrieve, manipulate, and save data in persistent storage.

Such enterprise applications are known as CRUD applications because they perform
create, retrieve, update, and delete operations with data. If the server side of your web
application is developed in Java, with CDB you can easily generate a CRUD application,
wherein the Ext JS frontend communicates with the Java backend. In this section, you’ll
learn how to jump-start development of such CRUD web applications.

Familiarity with core Java concepts such as classes, constructors, get‐
ters and setters, and annotations is required for understanding the
materials of this section.

Using Ext JS and CDB for Productive Enterprise Web Development | 197

http://bit.ly/1rPKcwk

The phrase to be more productive means to write less code while producing results faster.
This is what CDB is for, and you’ll see it helps you integrate the client side with the
backend by using the remote procedure call (RPC) style and how to implement data
pagination for your application. To be more productive, you need to have the proper
tools installed. We’ll cover this next.

Ext JS MVC Application Scaffolding
This section covers the following topics:

• Using Clear Toolkit for Ext JS

• Creating an Ext JS MVC frontend for a Java-based project

• Deploying and running your first Ext JS and Java application on an Apache Tomcat
server

Clear Toolkit for Ext JS includes the following:

Clear Data Builder
An Eclipse plug-in that supports code generation of Ext JS MVC artifacts based on
the code written in Java. CDB comes with wizards to start new project with plain
Java or with popular frameworks including Hibernate, Spring, and MyBatis.

Clear JS
A set of JavaScript components that extends the Ext JS standard components. In

particular, it includes a ChangeObject that traces the modifications of any item in
a store.

Clear Runtime

Java components that implement the server-side part of ChangeObject, DirectOp

tions, and others.

CDB is distributed as a plug-in for Eclipse, a popular Java IDE. The current update site
of CDB is located here. As of this writing, the current version is 4.1.4. You can install
this plug-in via the Install New Software menu in Eclipse. Figure 5-4 shows Clear Data
Builder for Ext JS Feature in the list of Installed Software in your Eclipse IDE, which
means that CDB is installed.

You have to work with the Eclipse IDE for Java EE Developers, which
includes plug-ins for automating web application development.

198 | Chapter 5: Selected Productivity Tools for Enterprise Developers

http://bit.ly/UFxUfz

Figure 5-4. Verifying CDB installation

Clear Data Builder comes with a set of prepared examples that demonstrate its integra‐
tion with the popular Java frameworks, MyBatis, Hibernate, and Spring. There is also a
plain Java project example that doesn’t use any persistence frameworks. Let’s start with
the creation of a new project: from the Eclipse menu, choose File → New → Other →
Clear. You’ll see a window similar to Figure 5-5.

Name the new project episode_1_intro. CDB supports different ways of linking the
Ext JS framework to the application. CDB automatically copies the Ext JS framework
under the web server (Apache Tomcat, in our case). We’re going to use this local Ext JS
URL, but you can specify any folder in your machine, and CDB will copy the Ext JS file
from there into your project. You can also use Ext JS from the Sencha content delivery
network (CDN), if you don’t want to store these libraries inside your project. Besides,
using a common CDN will allow web browsers to reuse the cached version of Ext JS.

For this project, we are not going to use any server-side persistence frameworks like
MyBatis or Hibernate. Just click the Finish button, and you’ll see some some initial CDB
messages on the Eclipse console. When CDB runs for the first time, it creates in your
project’s WebContent folder the directory structure recommended by Sencha for Model-
View-Controller (MVC) applications. It also generates index.html for this application,
which contains the link to the entry point of our Ext JS application.

CDB generates an empty project with one sample controller and one view, View‐
port.js. To run this application, you need to add the newly generated dynamic web

Using Ext JS and CDB for Productive Enterprise Web Development | 199

Figure 5-5. New CDB Project Wizard

project to Tomcat and start the server (right-click Tomcat in the Servers view of Eclipse).
See Figure 5-6.

200 | Chapter 5: Selected Productivity Tools for Enterprise Developers

Figure 5-6. Adding the web project to Tomcat

Open this application in your web browser at http://localhost:8080/episode_1_intro .
Voilà! In less than a couple of minutes, we’ve created a new dynamic web project with
the Ext JS framework and one fancy button, as shown in Figure 5-7.

The next step is to make something useful out of this basic application.

Generating a CRUD Application
Part 2 of the CDB section covers the process of creating a simple CRUD application that
uses Ext JS and Java. We’ll go through the following steps:

• Create a plain old Java object (POJO) and the corresponding Ext.data.Model.

• Create a Java service and populate Ext.data.Store with data from that service.

• Use the autogenerated Ext JS application.

• Extend the autogenerated CRUD methods.

• Use ChangeObject to track the data changes.

Now let’s use CDB to create a CRUD application. You’ll learn how turn a POJO into an
Ext JS model, namely:

• How to populate the Ext JS store from a remote service

• How to use an automatically generated UI for that application

• How to extend the UI

Using Ext JS and CDB for Productive Enterprise Web Development | 201

Figure 5-7. Running the scaffolded application

• What the ChangeObject class is for

First, we’ll extend the application from Part 1—the CRUD application needs a Java

POJO. To start, create a Java class Person in the package dto. Then add to this class the

properties (as well as getters and setters) firstName, lastName, address, ssn, phone,

and id. Add the class constructor that initializes these properties, as shown in
Example 5-6.

Example 5-6. Person data transfer object

package dto;

import com.farata.dto2extjs.annotations.JSClass;
import com.farata.dto2extjs.annotations.JSGeneratedId;

@JSClass
public class Person {

 @JSGeneratedId
 private Integer id;
 private String firstName;
 private String lastName;
 private String phone;
 private String ssn;

202 | Chapter 5: Selected Productivity Tools for Enterprise Developers

 public Person(Integer id, String firstName, String lastName,
 String phone, String ssn) {
 super();
 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
 this.phone = phone;
 this.ssn = ssn;
 }

 // Getters and Setters are omitted for brevity
}

You may also add a toString() method to the class. Now you’ll need the same corre‐

sponding Ext JS model for the Java class Person. Just annotate this Java class with the

annotation @JSClass, and CDB generates the Ext JS model.

CDB integrates into standard Eclipse a build lifecycle. You don’t need
to trigger a code generation procedure manually. If you have the Build
Automatically option selected in the Project menu, code generation
starts immediately after you’ve saved the file.

The next step is to annotate the id field with the CDB annotation @JSGeneratedId. This
annotation instructs CDB to treat this field as an autogenerated ID. Let’s examine the
directory of the Ext JS MVC application to see what’s inside the model folder. In the

JavaScript section is the folder dto, which corresponds to the Java dto package where

the PersonModel resides, as illustrated in Figure 5-8.

Using Ext JS and CDB for Productive Enterprise Web Development | 203

Figure 5-8. Generated from Java class Ext JS model

Clear Data Builder generates two files as recommended by the Generation Gap pat‐
tern, which is about keeping the generated and handwritten parts separate by putting
them in different classes linked by inheritance. Let’s open the person model. In our case,
PersonModel.js is extended from the generated PersonModel.js. Should we need to cus‐
tomize this class, we’ll do it inside Person.js, but this underscore-prefixed file will be
regenerated each and every time when we change something in our model. CDB follows
this pattern for all generated artifacts—Java services, Ext JS models, and stores. This

model contains all the fields from our Person data transfer object (DTO).

Now we need to create a Java service to populate the Ext JS store with the data. Let’s

create the Java interface PersonService in the package service. This service will return

the list of Person objects. This interface contains one method: List<Person> getPer

sons().

To have CDB expose this service as a remote object, we’ll use the annotation called

@JSService. Another annotation, @JSGenetareStore, will instruct CDB to generate the
store. In this case, CDB will create the destination-aware store. This means that the store
will know from where to populate its content. All configurations of the store’s proxies

will be handled by the code generator. With the @JSFillMethod annotation, we will
identify our main read method (the R in CRUD).

Also it would be nice to have some sort of sample UI to test the service; the annotation

@JSGenerateSample will help here. CDB will examine the interface PersonService, and

204 | Chapter 5: Selected Productivity Tools for Enterprise Developers

http://bit.ly/VzXBhQ
http://bit.ly/VzXBhQ

based on these annotations, will generate all Ext JS MVC artifacts (models, views, con‐
troller) and the sample application. See Example 5-7.

Example 5-7. PersonService interface annotated with CDB annotations

@JSService
public interface PersonService {
 @JSGenerateStore
 @JSFillMethod
 @JSGenerateSample
 List<Person> getPersons();
}

When the code generation is complete, you’ll get the implementation for the service:

PersonServiceImpl. The store folder inside the application folder (WebContent/app)

has the Ext JS store, which is bound to the previously generated PersonModel (see
Figure 5-9). In this case, CDB generated the store that binds to the remote service.

Figure 5-9. Structure of store and model folders

All this intermediate translation from JavaScript to Java, and from Java to JavaScript, is
done by DirectJNgine, which is a server-side implementation of the Ext Direct protocol.
You can read about this protocol in the Ext JS documentation.

CDB has generated a sample UI for us, too. Check out the samples directory shown in
Figure 5-10.

Using Ext JS and CDB for Productive Enterprise Web Development | 205

http://bit.ly/1p9cPmG

Figure 5-10. Folder with generated UI files

CDB has generated SampleController.js, SampleGridPanel.js, and the Ext JS application
entry point sampleApp.js. To test this application, just copy the file SampleControl‐
ler.js into the controller folder, SampleGridPanel.js panel into the view folder, and the
sample application in the root of the WebContent folder. Change the application entry
point to be sampleApp.js in index.html of the Eclipse project, as shown here:

<script type="text/javascript" src="sampleApp.js"></script>

The generated UI of the sample application looks like Figure 5-11.

Figure 5-11. A scaffolded CRUD application template

On the server side, CDB also follows the Generation Gap Pattern and generates stubs
for the service methods. Override these methods when you’re ready to implement the
CRUD functionality, similar to Example 5-8.

206 | Chapter 5: Selected Productivity Tools for Enterprise Developers

Example 5-8. Implementation of PersonService interface

package service;
import java.util.ArrayList;
import java.util.List;

import clear.data.ChangeObject;
import dto.Person;
import service.generated.*;

public class PersonServiceImpl extends _PersonServiceImpl {

 @Override
 public List<Person> getPersons() {
 List<Person> result = new ArrayList<>();
 Integer id= 0;
 result.add(new Person(++id, "Joe", "Doe",
 "555-55-55", "1111-11-1111"));
 result.add(new Person(++id, "Joe", "Doe",
 "555-55-55", "1111-11-1111"));
 result.add(new Person(++id, "Joe", "Doe",
 "555-55-55", "1111-11-1111"));
 result.add(new Person(++id, "Joe", "Doe",
 "555-55-55", "1111-11-1111"));
 return result;
 }

 @Override
 public void getPersons_doCreate(ChangeObject changeObject) {
 Person dto = (Person) deserializeObject(
 (Map<String, String>) changeObject.getNewVersion(),
 Person.class);

 System.out.println(dto.toString());
 }

 @Override
 public void getPersons_doUpdate(ChangeObject changeObject) {
 // TODO Auto-generated method stub
 super.getPersons_doUpdate(changeObject);
 }

 @Override
 public void getPersons_doDelete(ChangeObject changeObject) {
 // TODO Auto-generated method stub
 super.getPersons_doDelete(changeObject);
 }
}

Extend the generated class and provide the actual implementation.

The getPerson() is our retrieve (fill) method (the R in CRUD).

Using Ext JS and CDB for Productive Enterprise Web Development | 207

For this sample application, we can use the java.util.ArrayList class as in-

memory server-side storage of the Person objects. In real-world applications,
you’d use a database or other persistent storage.

fillMethodName +_doCreate() is our create method (the C in CRUD).

fillMethodName +_doUpdate() is our update method (the U in CRUD).

fillMethodName +_doDelete() is our delete method (the D in CRUD).

Click the Load menu on the UI, and the application will retrieve four persons from our
server.

To test the rest of the CRUD methods, we’ll ask the user to insert one new row, modify
three existing ones, and remove two rows by using the generated web client. The

Clear.data.DirectStore object will automatically create a collection of six ChangeOb

jects—one to represent a new row, three to represent the modified ones, and two for
the removed rows.

When the user clicks the Sync UI menu, the changes will be sent to the corresponding

do... remote method. When you sync() a standard Ext.data.DirectStore, Ext JS is

POST-ing new, modified, and deleted items to the server. When the request is complete,
the server’s response data is applied to the store, expecting that some items can be

modified by the server. In case of Clear.data.DirectStore, instead of passing around

items, we pass the deltas, wrapped in ChangeObject.

Each instance of the ChangeObject contains the following:

newVersion

This is an instance of the newly inserted or modified item. On the Java side, it’s

available via getNewVersion().

prevVersion

An instance of the deleted old version of the modified item. On the Java side it’s

available via getPrevVersion().

array of changepropertyNames

An array of changepropertyNames will exist with instances of ChangeObject if it’s
an update operation.

The rest of the ChangeObject details are described in the Clear Toolkit Wiki.

The corresponding Java implementation of ChangeObject is available on the server side,

and Clear Toolkit passes ChangeObject instances to the appropriate do* method of the

service class. Take a look at the getPersons_doCreate() method in Example 5-8. When
the server needs to read the new or updated data arrived from the client, your Java class

has to invoke the method changeObject.getNewVersion(). This method will return

208 | Chapter 5: Selected Productivity Tools for Enterprise Developers

http://bit.ly/1vo1iS9

the JSON object that you need to deserialize into the object Person. This is done in
Example 5-8 and looks like this:

 Person dto = (Person) deserializeObject(
 (Map<String, String>) changeObject.getNewVersion(),Person.class);

When the new version of the Person object is extracted from ChangeObject, you can
do with it whatever has to be done to persist it in the appropriate storage. In our example,
we just print the new person information on the server-side Java console. This is why
we said earlier that it might be a good idea to provide a pretty printing feature on the

class Person by overriding the method toString(). Similarly, when you need to do a

delete, changeObject.getPrevVersion() would give you a person to be deleted.

Data Pagination
The pagination feature is needed in almost every enterprise web application. Often you
don’t want to bring all the data to the client at once; a page-by-page feed brings the data
to the user a lot faster. The user can navigate back and forth between the pages by using
pagination UI components. To do that, we need to split our data on the server side into
chunks, to send them page by page by the client request. Implementing pagination is
the agenda for this section.

We’ll add data pagination to our sample CRUD application by doing the following:

• Add the Ext.toolbar.Paging component.

• Bind both grid and pagingtoolbar to the same store.

• Use the DirectOptions class to read the pagination parameters.

We are going to improve our CRUD application by adding the paging toolbar compo‐

nent bound to the same store as the grid. The class DirectOptions will handle the
pagination parameters on the server side.

So far, CDB has generated the UI from the Java backend service as well as the Ext JS
store and model. We’ll refactor the service code from the previous example to generate
more data (a thousand objects) so we have something to paginate; see Example 5-9.

Example 5-9. Refactored implementation of PersonService interface

public class PersonServiceImpl extends _PersonServiceImpl {
 @Override
 public List<Person> getPersons() {
 List<Person> result = new ArrayList<>();
 for (int i=0; i<1000; i++){
 result.add(new Person(i, "Joe", "Doe", "555-55-55",
 "1111-11-1111"));
 }
 return result;

Using Ext JS and CDB for Productive Enterprise Web Development | 209

 }
}

If you rerun the application now, the Google Chrome console will show that Person

Store is populated with 1,000 records. Now we’ll add the Ext JS paging toolbarpag

ing UI component to the file sampleApp.js, as shown Example 5-10.

Example 5-10. Sample application entry

Ext.Loader.setConfig({
 disableCaching : false,
 enabled : true,
 paths : {
 episode_3_pagination : 'app',
 Clear : 'clear'
 }
});

Ext.syncRequire('episode_3_pagination.init.InitDirect');
// Define GridPanel

var myStore = Ext.create('episode_3_pagination.store.dto.PersonStore',{}); //
Ext.define('episode_3_pagination.view.SampleGridPanel', {
 extend : 'Ext.grid.Panel',
 store : myStore,
 alias : 'widget.samplegridpanel',
 autoscroll : true,
 plugins : [{
 ptype : 'cellediting'
 }],
 dockedItems: [
 {
 xtype: 'pagingtoolbar', //
 displayInfo: true,
 dock: 'top',
 store: myStore //
 }
],
 columns : [
 {header : 'firstName', dataIndex : 'firstName',
 editor : {xtype : 'textfield'}, flex : 1 },
 {header : 'id', dataIndex : 'id', flex : 1 },
 {header : 'lastName', dataIndex : 'lastName',
 editor : {xtype : 'textfield'}, flex : 1 },
 {header : 'phone', dataIndex : 'phone',
 editor : {xtype : 'textfield'}, flex : 1 },
 {header : 'ssn', dataIndex : 'ssn',
 editor : {xtype : 'textfield'}, flex : 1 }],
 tbar : [
 {text : 'Load', action : 'load'},
 {text : 'Add', action : 'add'},
 {text : 'Remove', action : 'remove'},
 {text : 'Sync', action : 'sync'}

210 | Chapter 5: Selected Productivity Tools for Enterprise Developers

]
 });
// Launch the application

Ext.application({
 name : 'episode_3_pagination',
 requires : ['Clear.override.ExtJSOverrider'],
 controllers : ['SampleController'],
 launch : function() {
 Ext.create('Ext.container.Viewport', {
 items : [{
 xtype : 'samplegridpanel'
 }]
 });
 }
});

Manual store instantiation: create a separate variable myStore for this store with

an empty config object.

Add the xtype pagingtoolbar to this component’s docked items property to
display the information and dock this element at the top.

Now the paging toolbar is also connected to the same store.

The next step is to fix the automatically generated controller to take care of loading data
upon clicking the Load button, as shown in Example 5-11.

Example 5-11. Controller for sample application

Ext.define('episode_3_pagination.controller.SampleController', {
 extend: 'Ext.app.Controller',
 stores: ['episode_3_pagination.store.dto.PersonStore'],
 refs: [{ //
 ref: 'ThePanel',
 selector: 'samplegridpanel'
 }],

 init: function() {
 this.control({
 'samplegridpanel button[action=load]': {
 click: this.onLoad
 }
 });
 },

 onLoad: function() {
 // returns instance of PersonStore
 var store = this.getThePanel().getStore(); //
 store.load();
 }
});

Using Ext JS and CDB for Productive Enterprise Web Development | 211

Bind the store instance to our grid panel. In the controller’s refs property, we’re

referencing our simplegrid panel with ThePanel alias.

In this case, there is no need to explicitly retrieve the store instance by name.

Instead, we can use the getters getPanel() and getStore(), which were
automatically generated by the Ext JS framework.

When the user clicks the Next or Previous button, the method loadPage of the under‐

lying store is called. Let’s examine the directprovider URL—the server-side router of
the remoting calls—to see what this direct request looks like. Open Google Chrome
Developer Tools by choosing View → Developer, refresh the web page, and then go to
the Network tab. You’ll see that each time the user clicks the next or previous button on

the pagination toolbar, the component sends directOptions as a part of the request.

The default Ext Direct request doesn’t carry any information about the page size. Clear
JS has the client-side extension of the Ext JS framework that adds some extra function‐

ality to the Ext.data.DirectStore component to pass the page start and limit values

to the server side. At this point, the directOptions request property (see Figure 5-12)
can be extracted on the server side to get the information about the page boundaries.
Let’s add some code to PersonServiceImpl.java. At this point, the pagination doesn’t
work. The server sends the entire thousand records, because it doesn’t know that the
data has to be paginated. We’ll fix it in Example 5-12.

Figure 5-12. Request payload details

212 | Chapter 5: Selected Productivity Tools for Enterprise Developers

Example 5-12. Implementation of PersonService with pagination

package service;
import java.util.ArrayList;
import java.util.List;

import clear.djn.DirectOptions; //

import dto.Person;
import service.generated.*;

public class PersonServiceImpl extends _PersonServiceImpl {
 @Override
 public List<Person> getPersons() {
 List<Person> result = new ArrayList<>();
 for (int i=0; i<1000; i++){
 result.add(new Person(i, "Joe", "Doe", "555-55-55","1111-11-1111"));
 }
 //
 int start = ((Double)DirectOptions.getOption("start")).intValue();
 int limit = ((Double)DirectOptions.getOption("limit")).intValue();

 limit = Math.min(start+limit, result.size()); //
 DirectOptions.setOption("total", result.size()); //
 result = result.subList(start, limit); //

 return result;
 }
}

On the server side, there is a special object called DirectOptions, which comes
with Clear Toolkit.

We want to monitor the start and limit values (see Figure 5-12).

Calculate the actual limit. Assign the size of the data collection to the limit

variable if it’s less than the page size (start+limit).

Notify the component about the total number of elements on the server side by

using the DirectOptions.setOption() method with the total option.

Before returning the result, create a subset, an actual page of data using the

method java.util.List.sublist(), which produces the view of the portion

of this list between indexes specified by the start and the limit parameters.

As you can see on the Network tab in Figure 5-12, we’ve limited the data load to 25
elements per page. Clicking the Next or Previous button will get you only a page worth
of data. The Google Chrome Developer Tools Network tab shows that we are sending

the start and limit values with every request, and the response contains the object
with 25 elements.

Using Ext JS and CDB for Productive Enterprise Web Development | 213

If you’d like to repeat all of the preceding steps on you own, watch the screencasts
demonstrating all the actions described in the section on CDB. For current information
about CDB, visit cleardb.io.

Summary
Writing enterprise web applications can be a tedious and time-consuming process. A
developer needs to set up frameworks, boilerplates, abstractions, dependency manage‐
ment, and build processes, and the list of requirements for a frontend workflow appears
to grow each year. In this chapter, we introduced several tools that can help you automate
a lot of mundane tasks and make you more productive.

214 | Chapter 5: Selected Productivity Tools for Enterprise Developers

http://bit.ly/1kGjzEh
http://cleardb.io

CHAPTER 6

Modularizing Large-Scale
JavaScript Projects

Reducing an application’s startup latency and implementing lazy loading of certain parts
of an application are the main reasons for modularization.

A good illustration of why you might want to consider modularization is the well-
designed web application of Mercedes Benz USA. This web application serves people
who live in the United States and either own or are considering purchasing cars from
this European car manufacturer.

One of the purchasing options is called European Delivery. An American resident who
chooses this particular package can combine a vacation with her car purchase. She flies
to the Mercedes Benz factory in Europe, picks up her car, and has a two-week vacation,
driving her new vehicle throughout Europe. After the vacation is over, the car is shipped
to her hometown in the US.

Needless to say, this program adds several thousand dollars to the price of the car. Of
course, Mercedes Benz wants to ensure that visitors to its site view accurate vehicle
prices. So, from an application design point of view, we don’t want or need to include
the code that supports the European Delivery to each and every user who decides to
visit mbusa.com. If the user visits the menu Owners and clicks the European Delivery
link, then and only then the required code and resources are pushed to the user’s com‐
puter or mobile device.

The snapshot in Figure 6-1 was taken after clicking this link with the Chrome Developer
Tools panel open.

215

http://www.mbusa.com
http://www.mbusa.com

Figure 6-1. MB USA: European Delivery

In addition, as you can see, 1.9 MB worth of code and other resources have been down‐
loaded as a result of this click. Were the application architects of MB USA to decide to
bring this code to the user’s device on the initial load of http://mbusa.com, the wait time
would increase by another second or more. This additional latency is unnecessary be‐
cause only a tiny number of American drivers would be interested in exploring the
European Delivery option. This example illustrates a use case for which modularization
and lazy loading is needed.

Our Save The Child application is not as big as the one by Mercedes Benz. But we’ll use
it to give you an example of how to build modularized web applications that won’t bring
large blocks of monolithic code to the client’s machine, but will load the code on an as-
needed basis. We’ll also give an example of how to organize the data exchange between
different programming modules in a loosely coupled fashion.

Users consider a web application fast for one of two reasons: either it’s actually fast or
it gives an impression of being fast. Ideally, you should do your best to create a web
application that’s very responsive.

216 | Chapter 6: Modularizing Large-Scale JavaScript Projects

http://mbusa.com

No matter how slow your web application is, it should never feel like
it’s being frozen.

This chapter covers modularization techniques that will enable quick rendering of the
first page of your web application by the user’s browser while loading the rest of the
application in the background or on demand. We will continue refactoring the Save The
Child application to illustrate using modules.

In this chapter, we’re going to discuss the following frameworks for modularization of
JavaScript projects:

• Browserify

• RequireJS and RequireJS Optimizer (r.js)

• ECMASctipt 6 (ES6) Module Transpiler

Understanding Modularization Basics
Modules are code fragments that implement certain functionality and are written by
using specific techniques. There is no out-of-the box modularization scheme in the
JavaScript language. The upcoming ECMAScript 6 specification tends to resolve this
by introducing the module concept in the JavaScript language itself. This is the future.

You might ask, “Aren’t .js files modules already?” Of course, you can include and load

each JavaScript file by using the <script> tag. But this approach is error prone and slow.
Developers have to manually manage dependencies and file-loading order. Each

<script> tag results in an additional HTTP call to the server. Moreover, the browser
blocks rendering until it loads and executes JavaScript files.

As the application becomes larger, the number of script files grows accordingly, which
is illustrated in Example 6-1.

Example 6-1. Multiple <script> tags complicate controlling application dependencies

<!DOCTYPE html>

<html lang="en">
<head>

 <meta charset="utf-8">

 <title>Save The Child | Home Page</title>
 <link rel="stylesheet" href="assets/css/styles.css">
</head>

Understanding Modularization Basics | 217

http://browserify.org
http://requirejs.org
http://bit.ly/UGOVpm

<body>

<!-- page body -->

<!-- body content is omitted -->

 <script src="components/jquery.js></script>
 <script type="text/javascript" src="app/modules/utils/load-html-content.js">
 </script>
 <script type="text/javascript" src="app/modules/utils/show-hide-div.js"></script>
 <script type="text/javascript" src="app/modules/svg-pie-chart.js"></script>
 <script type="text/javascript" src="app/modules/donation.js"></script>
 <script type="text/javascript" src="app/modules/login.js"></script>
 <script type="text/javascript" src="app/modules/utils/new-content-loader.js">
 </script>
 <script type="text/javascript" src="app/modules/generic-module.js"></script>
 <script type="text/javascript" src="app/modules/module1.js"></script>
 <script type="text/javascript" src="app/modules/module2.js"></script>
 <script type="text/javascript" src="app/config.js"></script>
 <script type="text/javascript" src="app/main.js"></script>
</body>
</html>

Load the jQuery script first because all other modules depend on it.

Other application components may also have internal dependencies on other
scripts. Those scripts need to be loaded before the respective components.
Having the proper order of these script tags is very important.

The script for the main web page should be loaded after all dependencies have
finished loading.

We’re putting script elements at the end of the document, as it blocks as little
content as possible.

As you can see, we need a better way to modularize applications than simply adding

<script> tags. As our first step, we can use the Module design pattern and use the so-
called immediately invoked function expressions.

Next, we’ll introduce and compare two popular JavaScript solutions and modularization
patterns, CommonJS and Asynchronous Module Definition (AMD), which are alter‐
native approaches to modularization. Both CommonJS and AMD are specifications
defining sets of APIs.

You’ll learn the pros and cons of both formats later in the chapter, but the AMD format
plays nicely with the asynchronous nature of the Web. You’ll see the use of the AMD
format and RequireJS framework to implement the modularized version of the Save
The Child application.

Also, you’ll see how to use the RequireJS APIs to implement on-demand (lazy) loading
of the application components (for example, What We Do, Ways To Give, and so forth).

218 | Chapter 6: Modularizing Large-Scale JavaScript Projects

http://requirejs.org/

The upcoming ECMAScript 6 specification suggests how to handle modules, and how
to start using ES6 module syntax today with the help of third-party tools such as tran‐
spiler. The ES6 module syntax can be compiled down to existing module solutions like
CommonJS or AMD. You can find more details about CommonJS, AMD, and the ES6
module format in the corresponding sections of this chapter.

After application modules are asynchronously loaded, they need to communicate with
one another. You can explicitly specify the component dependencies, which is fine as
long as you have a handful of components. A more generic approach is to handle inter-
module communications in a loosely coupled fashion by using the Mediator pattern,
CommonJS, or AMD formats. By loosely coupled, we mean that components are not
aware of one another’s existence.

The next section reviews various approaches and patterns of modular JavaScript appli‐
cations.

Exploring Roads to Modularization
Although JavaScript has no built-in language support of modules, the developers’ com‐
munity has managed to find a way for modularization by using existing syntax con‐
structs, libraries, and conventions to emulate module-like behavior. In this section, we’ll
explore the following options for modularizing your application:

• The Module pattern

• CommonJS

• Asynchronous Module Definition (AMD)

Of these three, the Module pattern doesn’t require any additional frameworks and works
in any JavaScript environment. The CommonJS module format is widely adopted for
server-side JavaScript, whereas the AMD format is popular in applications running in
web browsers.

The Module Pattern
In software engineering, the Module pattern was originally defined as a way to imple‐
ment encapsulation of reusable code. In JavaScript, the Module pattern is used to em‐
ulate the concept of classes. We’re able to include both public and private methods as
well as variables inside a single object, thus hiding the encapsulated code from other
global scope objects. Such encapsulation lowers the likelihood of conflicting function
names defined in different scripts that could be used in the same application’s scope.

Ultimately, it’s just some code in an immediately invoked function expression (IIFE)
that creates a module object in the internal scope of a function and exposes this module
to the global scope by using the JavaScript language syntax. Consider the following three

Exploring Roads to Modularization | 219

http://bit.ly/1y8HR4a
http://bit.ly/1y8HR4a

code samples illustrating how the Module pattern could be implemented using IIFEs
(see Examples 6-2, 6-3, and 6-4).

Example 6-2. Creating a closure that hides implementation of the login module

var loginModule = (function() {
 "use strict";

 var module = {};
 var privateVariable = 42;

 var privateLogin = function(userNameValue, userPasswordValue) {
 if (userNameValue === "admin" && userPasswordValue === "secret") {
 return privateVariable;
 }
 };

 module.myConstant = 1984;
 module.login = function(userNameValue, userPasswordValue) {
 privateLogin(userNameValue, userPasswordValue);
 console.log("login implementation omitted");
 };

 module.logout = function() {
 console.log("logout implementation omitted");
 };

 return module;
})();

Assign the module object that was created in the closure to the variable logi

nModule.

Because of the JavaScript’s function scoping, other parts of the code can’t access
the code inside the closure. With this approach, you can implement
encapsulation and private members.

Example 6-3. Injecting the module into the global object

(function(global) {
 "use strict";
 var module = {};

 var privateVariable = 42;
 var privateLogin = function(userNameValue, userPasswordValue) {
 if (userNameValue === "admin" && userPasswordValue === "secret") {
 return privateVariable;
 }
 };

 module.myConstant = 1984;
 module.login = function(userNameValue, userPasswordValue) {

220 | Chapter 6: Modularizing Large-Scale JavaScript Projects

 privateLogin(userNameValue, userPasswordValue);
 console.log("rest of login implementation is omitted");
 };

 module.logout = function() {
 console.log("logout implementation omitted");
 };

 global.loginModule = module;
})(this);

Instead of exporting the module to a variable as in the previous example, we’re
passing the global object as a parameter inside the closure.

Attach the newly created object to the global object. After that, the loginMod

ule object can be accessed from the external application code as window.logi

nModule or just loginModule.

Example 6-4. Introducing namespaces in the global object

(function(global) {
 "use strict";

 var ssc = global.ssc;
 if (!ssc) {
 ssc = {};
 global.ssc = ssc;
 }

 var module = ssc.loginModule = {};

 module.myConstant = 1984;
 module.login = function(userNameValue, userPasswordValue) {
 console.log("login implementation for " + userNameValue + "and" +
 userPasswordValue + "omitted");
 };

 module.logout = function() {
 console.log("logout implementation omitted");
 };
})(this);

Here we have modification of the approach described in the previous snippet.

To avoid name conflicts, create a namespace for our application called ssc. Note
that we check for this object existence in the next line.

Now we can logically structure application code using namespaces. The global

ssc object will contain only the code related to the Save The Child application.

Exploring Roads to Modularization | 221

The Module pattern works well for implementing encapsulation in rather small appli‐
cations. It’s easy to implement and is framework-agnostic. However, this approach
doesn’t scale well because, when working with an application with the large number of
modules, you might find yourself adding lots of boilerplate code, checking objects’ ex‐
istence in the global scope for each new module. Also, you need to be careful with
managing namespaces: because you are the one who put an object into the global scope,
you need to think about how to avoid accidental names conflicts.

The Module pattern has a serious drawback: you still need to deal with manual de‐

pendency management and manually arrange <script> tags in the HTML document.

CommonJS
CommonJS is an effort to standardize JavaScript APIs. People who work on CommonJS
APIs have attempted to develop standards for various JavaScript APIs (similar to stan‐
dard libraries in Java, Python, and so forth), including standards for modules and pack‐
ages. The CommonJS module proposal specifies a simple API for declaring modules,
but mainly on the server side. The CommonJS module format has been optimized for
nonbrowser environments since the early days of server-side JavaScript.

On the web-browser side, you always need to consider potentially slow HTTP com‐
munications, which is not the case on the server. One solution suitable for browsers is
to concatenate all scripts into a handful of bundles to decrease the number of HTTP
calls, which is not a concern for server-side JavaScript engines because file access is
nearly instantaneous. On the server side, separation of the code allows us to dedicate
each file to exactly one module for ease of development, testing, and maintainability.

In brief, the CommonJS specification requires the environment to have three free vari‐

ables: require, exports, and module (see Example 6-5). The syntax to define the module
is called authoring format. To make the module loadable by a web browser, it has to be
transformed into transport format.

Example 6-5. A CommonJS sample module

"use strict";
var loginModule = {};
var privateVariable = 42;

var ldapLogin = require("login/ldap");
var otherImportantDep = require("modules/util/strings");

var privateLogin = function(userNameValue, userPasswordValue) {
 if (userNameValue === "admin" && userPasswordValue === "secret") {
 ldapLogin.login(userNameValue, userPasswordValue);
 return privateVariable;
 }
};

222 | Chapter 6: Modularizing Large-Scale JavaScript Projects

http://www.commonjs.org
http://bit.ly/1qr5q6m
http://bit.ly/1qr5q6m

loginModule.myConstant = 1984;
loginModule.login = function(userNameValue, userPasswordValue) {
 privateLogin(userNameValue, userPasswordValue);
 console.log("login implementation omitted");
};

loginModule.logout = function() {
 console.log("logout implementation omitted");
};

exports.login = loginModule;
// or

module.exports = loginModule;

loginModule.printMetadata = function(){
 console.log(module.id);
 console.log(module.uri);
};

 If a module requires other modules, declare references to those modules inside

the current module’s scope by using the require function. You need to call

require(id) for each module it depends on. The module ID has slashes defining
the file path or a URL to indicate namespaces for external modules. Modules are
grouped into packages.

The exports object exposes the public API of a module. All objects, functions,
and constructors that your module exposes must be declared as properties of

the exports object. The rest of the module’s code won’t be exposed.

 The module variable provides the metadata about the module. It holds such

properties as id and a unique uri for each module. The module.export exposes

the exports object as its property. Because objects in JavaScript are passed as

references, the exports and module.export point at the same object.

Exploring Roads to Modularization | 223

The preceding snippet might give you the impression that the mod‐
ule’s code is executed in the global scope, but it’s not. Each module
is executed in its own scope, which helps to isolate them. This works
automatically when you write modules for a NodeJS environment
running on the server. But to use the CommonJS module format in
the web browser, you need to use an extra tool to generate trans‐
port format from authoring format. Browserify takes all your scripts
and concatenates them into one large file. Besides the module’s code,
the generated transport bundle will contain the boilerplate code that
provides CommonJS modules runtime support in the browser en‐
vironment. This build step complicates the development workflow.
Usually, developers perform the code/save/refresh browser routine,
but it doesn’t work in this case and requires extra steps as you need
to install the additional build tool and write build scripts.

The following are pros of using CommonJS:

• It’s a simple API for writing and using modules.

• Such a pattern of organizing modules is widespread in server-side JavaScript, for
example, NodeJS.

Cons to using CommonJS:

• Web browsers don’t automatically create the scoped variables require, exports,

and module, so the additional build step is required.

• The require method is synchronous, but there is no exact indication if a dependent
module’s values are fully loaded because of the asynchronous nature of web brows‐
ers. There is no event to notify the application that 100 percent of the required
resources are loaded.

• The CommonJS API is suitable for loading .js files, but it can’t load other assets such
as CSS and HTML.

If you want to write modules in a format that can be used in both
browser and server environments, read our suggestions in “Univer‐
sal Module Definition” on page 228.

224 | Chapter 6: Modularizing Large-Scale JavaScript Projects

http://browserify.org

You can find additional materials on CommonJS by following these
links:

• CommonJS Modules 1.1 specification

• Node.js Modules Reference

• Browserify

Asynchronous Module Definition
The AMD format itself is a proposal for defining modules, whereby both the module
and dependencies can be asynchronously loaded. The AMD API is based on this spec‐
ification.

AMD began as a draft specification for module format in CommonJS, but because full
agreement about its content was not reached, further work on the module’s format
moved to the amdjs GitHub page.

The AMD API has the following main functions:

• define for defining the module

• require for loading the module and its dependencies

The define function takes three arguments, as shown in Example 6-6:

• The optional module ID

• An optional array of IDs of the dependencies

• A callback function (a.k.a., factory function), which will be invoked when depen‐
dencies are loaded

Example 6-6. The signature of the define function

define(
 module_id,
 [dependencies],
 function {}
);

This string literal defines module_id, which will be used by the AMD loader to
load this module.

An optional array of the dependencies’ IDs.

The preceding factory function{} will be executed only once.

Exploring Roads to Modularization | 225

http://bit.ly/1ohYoxk
http://bit.ly/1x59eut
http://browserify.org
http://bit.ly/Yp9ozD
http://bit.ly/Yp9ozD
https://github.com/amdjs

For example, the Save The Child application has a Way To Give menu, which in turn

depends on another module called otherContent. If the user clicks this menu, we can
load the module that can be defined in the wayToGive.js file, as shown in Example 6-7.

Example 6-7. The definition of the wayToGive module

define(["otherContent"], function(otherContent) {
 var wayToGive;

 console.log("otherContent module is loaded");
 wayToGive = function() {
 return {
 render: function() {
 var dataUrl, newContainerID, whatWeDoButton;

 whatWeDoButton = "way-to-give";
 newContainerID = "way-to-give-container";
 dataUrl = "assets/html-includes/way-to-give.html";
 otherContent.getNewContent(whatWeDoButton, newContainerID,
 dataUrl);
 return console.log("way-to-give module is rendered");
 },
 init: function() {
 return console.log("way-to-give init");
 }
 };
 };
 return wayToGive;
});

This code doesn’t have the optional module_id. The loader will use the filename

without the .js extension as module_id. Our module has one dependency, called

otherContent. The dependent module instance will be passed in the factory

method as the variable otherContent.

We can start using the dependency object immediately. The AMD loader has
taken care of loading and instantiation of this dependency.

The module returns a constructor function to be used for creation of new objects.

The require function takes two arguments:

• An array of module IDs to load. The module ID is a string literal.

• A callback to be executed after those modules are available. The modules loaded by

IDs are passed into the callback in order. Example 6-8 shows the require function
usage.

226 | Chapter 6: Modularizing Large-Scale JavaScript Projects

Example 6-8. An example of require function usage

require(["main"], function() {
 console.log("module main is loaded");
});

The following are pros of using AMD:

• It’s a simple API that has only two functions: require and define.

• A wide variety of loaders is available. You’ll find more coverage on loaders in “Dicing
the Save The Child Application into Modules” on page 232.

• The CommonJS module authoring format is supported by the majority of loaders.
You’ll see an example of modules later in Example 6-23.

• Plug-ins offer an immense amount of flexibility.

• AMD is easy to debug.

Consider the following error messages that the JavaScript interpreter may throw:

There was an error in /modules/loginModule.js on line 42

versus

There was an error in /built-app.js on line 1984

In modularized applications, you can more easily localize errors.

• Performance: Modules are loaded only when required; hence, the initial portion of
the application’s code become smaller.

The following are cons of using AMD:

• The dependency array can get rather large for complex modules:

define(
 ["alpha", "beta", "gamma", "delta", "epsilon", "omega"],
 function(alpha, beta, gamma, delta, epsilon, omega){
 "use strict";
 // module's code omitted
});

In real-world enterprise applications, the array of dependency modules might be
pretty large.

• Human errors can result in a mismatch between the dependency array and callback
arguments:

define(
 ["alpha", "beta", "gamma", "delta", "epsilon", "omega"],
 function(alpha, beta, gamma, delta, omega, epsilon){
 "use strict";
 // module's code omitted
});

Exploring Roads to Modularization | 227

The mismatch of module IDs and factory function arguments will cause module
usage problems.

Universal Module Definition
Universal Module Definition (UMD) is a series of patterns and code snippets that provide
compatibility boilerplate to make modules environment-independent. These patterns
can be used to support multiple module formats. UMD is not a specification or a stan‐
dard. You need to pay attention to UMD patterns if your modules will run in more than
one type of environment (for example, in a web browser and on the server-side engine
running NodeJS). In most cases, it makes a lot of sense to use a single module format.

Example 6-9 shows a module definition in UMD notation. In this example, the module
can be used with the AMD loader and as one of the variations of the Module pattern.

Example 6-9. The module in UMD notation

(function(root, factory) {
 "use strict";
 if (typeof define === "function" && define.amd) {
 define(["login"], factory);
 } else {
 root.ssc = factory(root.login);
 }
}(this, function(login) {
 "use strict";
 return {
 myConstant: 1984,
 login: function(userNameValue, userPasswordValue) {
 console.log("login for " + userNameValue + " and " + userPasswordValue);
 },
 logout: function() {
 console.log("logout implementation omitted");
 }
 };
}));

If the AMD loader is available, proceed with defining the module according to
the AMD specification.

If the AMD loader isn’t present, use the factory method to instantiate the object

and attach it to the window object.

Passing in the top-level context and providing an implementation of a factory
function.

You can find more information about UMD and commented code snippets for different
situations in the UMD project repository.

228 | Chapter 6: Modularizing Large-Scale JavaScript Projects

https://github.com/umdjs/umd

ECMAScript 6 Modules
The ECMAScript 6 (ES6) specification is an evolving draft outlining changes and fea‐
tures for the next version of the JavaScript language. This specification is not finalized
yet, so browser support for anything defined in ES6 will be experimental at best. You
cannot rely on ES6 for web applications that must be deployed in production mode in
multiple browsers.

One of the most important features of the ES6 specification is module syntax.
Example 6-10 provides a login module definition.

Example 6-10. Login module definition

export function login(userNameValue, userPasswordValue) {
 return userNameValue + "_" + userNameValue;
}

The keyword export specifies the function or object (a separate file) to be exposed as a
module, which can be used from any other JavaScript code, as shown in Example 6-11.

Example 6-11. Main application module

import {login} from './login'
var result = login("admin", "password");

With the import keyword, we assign an instance of the login() function imported from

the login module.

ES6 Module Transpiler

Although the ES6 standard is not implemented yet by most browsers, you can use third-
party tools to get a taste of upcoming enhancements in the JavaScript language. The
ES6 Module Transpiler library developed by Square engineers helps use the module
authoring syntax from ES6 and compile it down to the transport formats that you
learned earlier in this chapter.

Consider the module circle.js, shown in Example 6-12.

Example 6-12. A circle.js module

function area(radius) {
 return Math.PI * radius * radius;
}

function circumference(radius) {
 return 2 * Math.PI * radius;
}

export {area, circumference};

Exploring Roads to Modularization | 229

http://bit.ly/1y8HR4a
http://squareup.com/

This module exports two functions: area() and circumference(), as shown in
Example 6-13.

Example 6-13. The main application’s script main.js can use these functions

import { area, circumference } from './circle';

console.log("Area of the circle: " + area(2) + " meter squared");
console.log("Circumference of the circle: " + circumference(5) + " meters");

The import keyword specifies the objects we want to use from the module.

A sample use of the imported functions

The ES6 Module Transpiler’s command compile-module can compile the module to be
compliant with CommonJS, AMD, or the code that implements the Module pattern.

With the type command-line option, you can specify that the output format will be
amd, cjs, or globals:

compile-modules circle.js --type cjs --to ../js/
compile-modules main.js --type cjs --to ../js/

Example 6-14 shows the resulting circle.js module in CommonJS format.

Example 6-14. circle.js

"use strict";
function area(radius) {
 return Math.PI * radius * radius;
}

function circumference(radius) {
 return 2 * Math.PI * radius;
}

exports.area = area;
exports.circumference = circumference;

Example 6-15 shows the resulting main.js module in CommonJS format.

Example 6-15. main.js

"use strict";
var area = require("./circle").area;
var circumference = require("./circle").circumference;

console.log("Area of the circle: " + area(2) + " meter squared");
console.log("Circumference of the circle: " + circumference(5) + " meters");

If we compile the modules into AMD format by using the option amd, we would receive
a different output in AMD format.

230 | Chapter 6: Modularizing Large-Scale JavaScript Projects

Example 6-16 shows the resulting circle.js module in AMD format. Example 6-17 shows
the resulting main.js module in AMD format.

Example 6-16. circle.js

define("circle",
 ["exports"],
 function(__exports__) {
 "use strict";
 function area(radius) {
 return Math.PI * radius * radius;
 }

 function circumference(radius) {
 return 2 * Math.PI * radius;
 }

 __exports__.area = area;
 __exports__.circumference = circumference;
 });

Example 6-17. main.js

define("main",
 ["./circle"],
 function(__dependency1__) {
 "use strict";
 var area = __dependency1__.area;
 var circumference = __dependency1__.circumference;

 console.log("Area of the circle: " + area(2) + " meter squared");
 console.log("Circumference of the circle: " + circumference(5) + " meters");
 });

Using the globals option in the compile-modules command line produces the code
that can be used as described in “The Module Pattern” on page 219.

In Example 6-18, the resulting circle.js module uses browser globals (the Module pat‐
tern) as its module format.

Example 6-18. circle.js

(function(exports) {
 "use strict";

 function area(radius) {
 return Math.PI * radius * radius;
 }

 function circumference(radius) {
 return 2 * Math.PI * radius;
 }
 exports.circle.area = area;

Exploring Roads to Modularization | 231

 exports.circle.circumference = circumference;
})(window);

In Example 6-19, the resulting main.js module uses browser globals (the Module pat‐
tern) as its module format.

Example 6-19. main.js

(function(circle) {
 "use strict";
 var area = circle.area;
 var circumference = circle.circumference;

 console.log("Area of the circle: " + area(2) + " meter squared");
 console.log("Circumference of the circle: " + circumference(5) + " meters");

})(window.circle);

For up-to-date information on ES6 browser support, visit the ECMAScript 6 compat‐
ibility table.

TypeScript is an open source language from Microsoft that com‐
piles to JavaScript and brings object-oriented concepts such as classes
and modules to JavaScript. It has a module syntax, which is similar to
what the ES6 standard proposes. The TypeScript compiler can pro‐
duce CommonJS and AMD formats. You can learn more about Type‐
Script from its language specification.

Dicing the Save The Child Application into Modules
Now that you know the basics of AMD and different modularization patterns, let’s see
how you can dice our Save The Child application into smaller pieces. In this section,
we’ll apply the AMD-compliant module loader from the framework RequireJS.

curl.js offers another AMD-compliant asynchronous resource load‐
er. Both curl.js and RequireJS have similar functionality, and to learn
how they differ, follow this thread on the RequireJS group.

Let’s start with a brief explanation of the directory structure of the modularized Save
The Child application. Figure 6-2 shows this directory structure.

232 | Chapter 6: Modularizing Large-Scale JavaScript Projects

http://bit.ly/1iSSdAL
http://bit.ly/1iSSdAL
http://www.typescriptlang.org
http://bit.ly/1mA0K6o
http://requirejs.org
http://github.com/cujojs/curl
http://bit.ly/U2rtCu

Figure 6-2. A directory structure of Save The Child

The content of the project folders is listed here:

1. All application JavaScript files reside in the app/modules directory. Inside the mod‐
ules directory, you can have as many nested folders as you want (for example, utils
folder).

2. The application assets remain the same as in previous chapters.

Dicing the Save The Child Application into Modules | 233

3. We keep all Bower-managed dependencies in the bower_components directory
(such as RequireJS and jQuery).

4. The dist directory serves as the location for the optimized version of our application.
We cover optimization with r.js in the section “Using RequireJS Optimizer” on page
240.

5. The QUnit/Jasmine tests reside in the test directory. Testing is covered in Chapter 7.

We are not going to dice the Save The Child application into multiple modules, but will
show you how to start the process. Figure 6-3 illustrates the modules’ dependencies. For

example, the main module depends on login, svg-pie-chart, campaigns-map, dona

tion, and generic. There is also a group of modules that will be loaded on demand:

whereWeWork, whatWeDo, wayToGive, whoWeAre.

Figure 6-3. The modules graph of Save The Child

To dice the application into modules, you need the modularization framework Requir‐
eJS, which can either be downloaded from its GitHub repository or you can install it by
using the package manager Bower that was explained in Chapter 5.

234 | Chapter 6: Modularizing Large-Scale JavaScript Projects

After RequireJS is downloaded and placed into the project directory, add it to the
index.html file, as demonstrated in Example 6-20.

Example 6-20. Adding RequireJS to the web page

<!DOCTYPE html>
<head>

 <!-- content omitted -->
</head>

<body>

<!-- page body -->

<script src="bower_components/requirejs/require.js"
 data-main="app/config"></script>

</body>

</html>

When the RequireJS library is loaded, it will look for the data-main attribute
and attempt to load the app/config.js script asynchronously. The app/config.js
script will become the entry point of our application.

Inside the RequireJS Configuration: config.js
RequireJS uses a configuration object that includes modules and dependencies that have
to be managed by the framework, as shown in Example 6-21.

Example 6-21. The config.js file from the Save The Child app

require.config({
 paths: {
 'login': 'modules/login',
 'donation': 'modules/donation',
 'svg-pie-chart': 'modules/svg-pie-chart',
 'campaigns-map': 'modules/campaigns-map',
 'showHideDiv': 'modules/utils/show-hide-div',
 'loadHtmlContent': 'modules/utils/load-html-content',
 'newContentLoader': 'modules/utils/new-content-loader',
 'bower_components': "../bower_components",
 'jquery': '../bower_components/jquery/jquery',
 'main': 'main',
 'GoogleMap': '../bower_components/requirejs-google-maps/dist/GoogleMap',
 'async': '../bower_components/requirejs-plugins/src/async'
 }
});

require(['main'], function () {
});

Dicing the Save The Child Application into Modules | 235

The RequireJS documentation has a comprehensive overview of all
configuration options. We’ve included some of them here.

The paths configuration option defines the mapping for module names and

their paths. The paths option is used for module names and shouldn’t contain
file extensions.

After configuring the modules’ paths, we’re loading the main module. The
navigation of our application flow starts there.

Writing AMD Modules
Example 6-22 provides a closer look at the module’s internals that make it consumable
by the RequireJS module loader.

Example 6-22. Generic module loader: generic-module.js

define(["newContentLoader"], function(contentLoader) {
 "use strict";
 var genericModule;

 genericModule = function(moduleId) {
 return {
 render: function(button, containerId, dataUrl) {
 contentLoader.getNewContent(button, containerId, dataUrl);
 console.log("Module " + moduleId + " is rendered...");
 }
 };
 };
 return genericModule;
});

As we discussed in the section “Asynchronous Module Definition” on page 225,

the code that you want to expose as a module should be wrapped in the de

fine() function call. The first parameter is an array of dependencies. The
location of dependency files is defined inside the config file. The dependency
object doesn’t have the same name as the dependency string ID. The order of
arguments in the factory function should be the same as the order in the
dependencies array.

In this module, we export only the constructor function, which in turn returns
the render function to draw the visual component on the screen.

The contentLoader object loaded from app/modules/util/new-content-

loader.js (see the paths property in the RequireJS config object), is instantiated
by RequireJS and is ready to use.

RequireJS also supports the CommonJS module format with a slightly different signa‐

ture for the define() function. This helps bridge the gap between AMD and Com‐

236 | Chapter 6: Modularizing Large-Scale JavaScript Projects

http://bit.ly/TwttSM

monJS. If your factory function accepts parameters but no dependency array, the AMD
environment assumes that you wish to emulate the CommonJS module environment.

The standard require, exports, and module variables will be injected as parameters
into the factory.

Example 6-23 shows the CommonJS module format with RequireJS.

Example 6-23. Using CommonJS module format in RequireJS

define(function(require, exports, module) {
 "use strict";
 module.exports = (function() {

 var dependency = require("dependencyId");

 function AuctionDTO(_arg) {
 this.auctionState = _arg.auctionState;
 this.item = _arg.item;
 this.bestBid = _arg.bestBid;
 this.auctionId = _arg.auctionId;
 dependency.doStuff();
 }

 AuctionDTO.prototype.toJson = function() {
 return JSON.stringify(this);
 };

 return AuctionDTO;
 })();
});

The factory receives up to three arguments that emulate the CommonJS re

quire, exports, and module variables.

Export your module rather than return it. You can export an object in two ways:

assign the module directly to module.exports, as shown in this snippet, or set

the properties on the exports object.

In CommonJS, dependencies are assigned to local variables by using the

require(id) function.

Loading Modules On Demand
As per the Save The Child modules graph, some components shouldn’t load when the
application starts. Similar to the Mercedes Benz website example, some functionality of
Save The Child can be loaded later, when the user needs it. The user might never want
to visit the Where We Work section. Hence, this functionality is a good candidate for
the load on-demand module. You might want to load such a module on demand when

Dicing the Save The Child Application into Modules | 237

the user clicks a button or selects a menu item. Example 6-24 shows the code for loading
a module on demand (on a button click).

At any given time, a module can be in one of three states:

• Not loaded (module === null)

• Loading is in progress (module === 'loading')

• Fully loaded (module !== null)

Example 6-24. Loading the module on demand

var module;
var buttonClickHandler = function(event) {
 "use strict";
 if (module === "loading") {
 return;
 }
 if (module !== null) {
 module.render();
 } else {
 module = "loading";
 require(["modules/wereWeWork"], function(ModuleObject) {
 module = new ModuleObject();
 module.render();
 });
 }
};

Checking whether module loading is in progress.

Don’t reload the same module. If the module was already loaded, just call the
method to render the widget on the web page.

Setting the module into the intermediate state until it’s fully loaded.

After the whereWeWork module is loaded, the callback will receive the reference

to this module—instantiate whereWeWork and render it on the page.

Let’s apply the technique demonstrated in Example 6-24 for the Save The Child appli‐
cation to lazy-load the Who We Are, What We Do, Where We Work, and What To Give
modules only if the user clicks the corresponding top bar link. See Example 6-25.

Example 6-25. The main module

define(['login',
 'donation',
 'campaigns-map',
 'svg-pie-chart',
 'modules/generic-module'
], function() {
 var initComponent, onDemandLoadingClickHandlerFactory;

238 | Chapter 6: Modularizing Large-Scale JavaScript Projects

 onDemandLoadingClickHandlerFactory = function(config) {
 return function(event) {
 if (config.amdInstance === 'loading') {
 return;
 }
 if (config.amdInstance != null) {
 config.amdInstance.render(event.target.id, config.containerId,
 config.viewUrl);
 } else {
 config.amdInstance = 'loading';
 require(['modules/generic-module'], function(GenericModule) {
 var moduleInstance;
 moduleInstance = new GenericModule(config.moduleId);
 moduleInstance.render(event.target.id, config.containerId,
 config.viewUrl);
 config.amdInstance = moduleInstance;
 });
 }
 };
 };
 initComponent = function(config) {
 config.button.addEventListener('click',
 onDemandLoadingClickHandlerFactory(config),
 false);
 };
 return (function() {
 var componentConfig,
 componentConfigArray,
 way_to_give, what_we_do,
 where_we_work,
 who_we_are, _i, _len;
 way_to_give = document.getElementById('way-to-give');
 what_we_do = document.getElementById('what-we-do');
 who_we_are = document.getElementById('who-we-are');
 where_we_work = document.getElementById('where-we-work');
 componentConfigArray = [{
 moduleId: 'whoWeAre',
 button: who_we_are,
 containerId: 'who-we-are-container',
 viewUrl: 'assets/html-includes/who-we-are.html'
 }, {
 moduleId: 'whatWeDo',
 button: what_we_do,
 containerId: 'what-we-do-container',
 viewUrl: 'assets/html-includes/what-we-do.html'
 }, {
 moduleId: 'whereWeWork',
 button: where_we_work,
 containerId: 'where-we-work-container',
 viewUrl: 'assets/html-includes/where-we-work.html'
 }, {
 moduleId: 'wayToGive',

Dicing the Save The Child Application into Modules | 239

 button: way_to_give,
 containerId: 'way-to-give-container',
 viewUrl: 'assets/html-includes/way-to-give.html'
 }];
 for (_i = 0, _len = componentConfigArray.length; _i < _len; _i++) {
 componentConfig = componentConfigArray[_i];
 initComponent(componentConfig);
 }
 console.log('app is loaded');
 })();
});

The first argument of the define function is an array of dependencies.

Here, we’re using the approach described in Example 6-24. This factory function
produces the handler for the button click event. It uses the RequireJS API to load
the module after the user clicks the button.

Instantiate the click handler function by using onDemandLoadingClickHandler

Factory and assign it to the button defined in the module config.

An array of modules that can be loaded on demand.

In the last step, we need to initialize each module button with the lazy-loading
handler.

Using RequireJS Plug-ins
RequireJS plug-ins are special modules that implement a specific API. For example, the
text plug-in allows you to specify a text file as a dependency, and cs! translates Coffee‐
Script files into JavaScript. The plug-in’s module name comes before the ! separator.
Plug-ins can extend the default loader’s functionality.

In the Save The Child application, we use the order.js plug-in that allows us to specify
the exact order in which the dependencies should be loaded. You can find the full list
of available RequireJS plug-ins at the wiki page.

Using RequireJS Optimizer
RequireJS comes with the optimization tool called r.js, which is a utility that performs
module optimization. Earlier in this chapter, we specified the dependencies as an array

of string literals that are passed to the top-level require and define calls. The optimizer
will combine modules and their dependencies into a single file based on these depen‐
dencies.

Furthermore, r.js integrates with other optimization tools such as UglifyJS and Closure
Compiler to minify the content of script files. We are going to use the JavaScript task
runner Grunt that you learned about in Chapter 5.

240 | Chapter 6: Modularizing Large-Scale JavaScript Projects

http://bit.ly/1pAGHvZ
http://bit.ly/1qHiV1v
http://bit.ly/1vo281q
http://bit.ly/1lJvK8M
http://bit.ly/1lJvK8M
http://gruntjs.com

Let’s configure our Grunt project to enable the optimization task. Example 6-26 shows

the command to install RequireJS, and Grunt’s task packages clean, concat, and ugli

fy, and save them as development dependencies in the file package.json.

Example 6-26. Adding dependencies to package.json

> npm install grunt-contrib-requirejs\
grunt-contrib-concat grunt-contrib-clean\
grunt-contrib-uglify --saveDev

Example 6-27 describes the script to set up the RequireJS optimizer and the related
optimization tasks for Grunt. You’ll need to run this script to generate an optimized
version of the Save The Child application.

Example 6-27. Script to set up RequireJS optimizer

"use strict";

module.exports = function (grunt) {

 // Project configuration.
 grunt.initConfig({
 // Task configuration.
 clean: {
 files: ["dist"]
 },
 requirejs: {
 compile: {
 options: {
 name: "config",
 mainConfigFile: "app/config.js",
 out: "<%= concat.dist.dest %>",
 optimize: "none"
 }
 }
 },
 concat: {
 dist: {
 src: ["components/requirejs/require.js",
 "<%= concat.dist.dest %>"],
 dest: "dist/require.js"
 }
 },
 uglify: {
 dist: {
 src: "<%= concat.dist.dest %>",
 dest: "dist/require.min.js"
 }
 }
 });

 grunt.loadNpmTasks("grunt-contrib-clean");

Dicing the Save The Child Application into Modules | 241

 grunt.loadNpmTasks("grunt-contrib-requirejs");
 grunt.loadNpmTasks("grunt-contrib-concat");
 grunt.loadNpmTasks("grunt-contrib-uglify");

 grunt.registerTask("default", ["clean", "requirejs", "concat", "uglify"]);
};

The clean task cleans the output directory. In the files section of the task

config, we specify folder that should be cleaned.

The requirejs task. The configuration properties of the requrejs task are self-

explanatory. mainConfigFile points at the same file as the data-main attribute

of the RequireJS script tag. The out parameter specifies the output directory
where the optimized script will be created.

The concat task combines/concatenates optimized module code and RequireJS
loader code.

The uglify task minifies files using UglifyJS—a compressor/minifier tool. Input

and output of this task is configured with src and dest properties of uglify
object.

Loading plug-ins that provide necessary tasks.

The default task to execute all tasks in order.

Run the Save The Child application built with RequireJS and monitor the network traffic
in Chrome Developer Tools. You’ll see many HTTP requests that load modules asyn‐
chronously. As you can see in Figure 6-4, 12 out of 24 of the browser’s requests are for
loading all required modules. The modules that may be loaded on demand are not here.

Figure 6-5 shows the loading of the Save The Child application, optimized with the
RequireJS optimizer. We’ve managed to pack all our modules, their dependencies, and
the loader’s code into a single file, which considerably decreases the number of server-
side calls.

242 | Chapter 6: Modularizing Large-Scale JavaScript Projects

http://bit.ly/1sRs7SY
http://localhost:8080/ssc-requirejs

Figure 6-4. Unoptimized version of the Save The Child application

Figure 6-5. Loading the optimized version of Save The Child

Dicing the Save The Child Application into Modules | 243

You can read more on optimization topics at the RequireJS docu‐
mentation site under Optimization.

RequireJS took care of the optimal module loading, but you should properly arrange
the intermodule communication. The Save The Child application doesn’t have modules
that heed to exchange data, so we’ll describe how to properly arrange intermodule
communications in a separate application.

Google has created PageSpeed Insights, a web tool that offers sugges‐
tions for improving the performance of your web application on all
devices. Just enter the URL of your application and a second later
you’ll see some optimization suggestions.

Loosely Coupled InterModule Communications with
Mediator
Almost any complex enterprise web application consists of various components and
modules. A simple approach of arranging communication among components is to
allow all components to directly access the public properties of one another. This would
produce an application with tightly coupled components that know about one another,
but removal of one component could lead to multiple code changes in the application.

A better approach is to create loosely coupled components that are self-contained, do
not know about one another, and can communicate with the “outside world” by sending
and receiving events.

Creating a UI from reusable components and applying messaging techniques requires
creation of loosely coupled components. Say you’ve created a window for a financial
trader. This window gets a data push from the server, showing the latest stock prices.
When the trader likes the price, he may click the Buy or Sell button to initiate a trade.
The trading engine can be implemented in a separate component, and establishing inter-
component communications the right way is really important.

As you learned from Chapter 2, Mediator is a behavioral design pattern that allows you
to unify communication of the application components. The Mediator pattern promotes
the use of a single shared object that handles (mediates) communication between other
objects. None of the components is aware of the others, but each of them knows about
a single object—the mediator.

244 | Chapter 6: Modularizing Large-Scale JavaScript Projects

http://bit.ly/1qHiV1v
http://bit.ly/1q9Xgxw

In Chapter 2 we introduced an example of a small fragment of a trader’s desktop. Let’s

reuse the same example—this time not with postMessage, but with the Mediator object.

In Figure 6-6, the Price panel on the left gets the data feed about the current prices of
IBM stock. When the user clicks the Bid or Ask button, the Price panel just sends the
event with the relevant trade information (for example, a JSON-formatted string con‐
taining the stock symbol, price, buy or sell flag, or date).

Figure 6-6. Before the trader clicks the Price panel

Figure 6-7 shows the wire after the user clicks the Price panel.

Loosely Coupled InterModule Communications with Mediator | 245

Figure 6-7. After the trader clicks the Price panel

Example 6-28 shows an HTML code snippet that implements this scenario.

Example 6-28. Implementation of Mediator Design Pattern

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>An example of Mediator Design Pattern</title>
 <script data-main="app/config" src="bower_components/requirejs/require.js">
 </script>
</head>

<body>

 <h1>mediator and RequireJS example</h1>

 <div id="pricePanel">
 <p>IBM</p>
 <label for="priceInput">Bid:</label>
 <input type="text" id="priceInput" placeholder="bid price"/>

 <label for="priceInput">Ask:</label>
 <input type="text" id="priceInput" placeholder="bid price"/>
 </div>
 <div id="orderPanel">
 <p id="priceText"></p>
 <label for="quantityInput">Quantity:</label>
 <input type="text" id="quantityInput" placeholder=""/>
 <button id="goButton">Go!</button>

246 | Chapter 6: Modularizing Large-Scale JavaScript Projects

 <button id="cancelButton">cancel</button>
 </div>

</body>

</html>

This div element contains Price Panel with Bid and Ask controls.

This div element contains Order Panel with Quantity, Go, and Cancel controls.

As we stated earlier, we need a mediator to handle communication among application
components. The components need to register themselves with the mediator so that it
knows about them and can route communications. Example 6-29 is a sample mediator

implementation (we use define and require from RequireJS here).

Example 6-29. The implementation of the Mediator pattern

define(function() {
 "use strict";
 return (function() {
 var components = {};

 function Mediator() {}

 Mediator.registerComponent = function(name, component) {
 var cmp;
 for (cmp in components) {
 if (components[cmp] === component) {
 break;
 }
 }
 component.setMediator(Mediator);
 components[name] = component;
 };

 Mediator.broadcast = function(event, args, source) {
 var cmp;
 if (!event) {
 return;
 }
 args = args || [];
 for (cmp in components) {
 if (typeof components[cmp]["on" + event] === "function") {
 source = source || components[cmp];
 components[cmp]["on" + event].apply(source, args);
 }
 }
 };
 return Mediator;
 })();
});

Loosely Coupled InterModule Communications with Mediator | 247

Return the private object that stores registered components.

With the Mediator.register() function, we can store components in the
associative array. The mediator is a singleton object here.

Assign the mediator instance to the component being registered.

Register the component in the array by using the provided name as key.

The component can invoke Mediator.broadcast() when it has some
information to share with other application components.

If a component has a function property with the name matching the pattern

"on" + event`—for example, ++onClickEvent++—the mediator will in

voke this function in the context of the `source object.

Example 6-30 shows the main entry point of the application that uses the mediator.

Example 6-30. The application entry point

define(["mediator", "pricePanel", "orderPanel"], function(Mediator, PricePanel,
 OrderPanel) {
 "use strict";
 return (function() {
 Mediator.registerComponent("pricePanel", new PricePanel());
 Mediator.registerComponent("orderPanel", new OrderPanel());

 document.getElementById("priceInput").addEventListener("click",
 function() {
 if (!! this.value) {
 return Mediator.broadcast("BidClick", [this.value]);
 }
 });

 })();
});

Required modules will be loaded by RequireJS.

Register our components with the mediator.

Add the click event listener for the Bid Price component.

When the user clicks the bid price, the mediator will broadcast the BidClick
event to all registered components. Only the component that has this specific

event handler with the name matching the pattern "on" + event will receive
this event.

Examples 6-31 and 6-32 show the code of the PricePanel and OrderPanel components,
respectively.

248 | Chapter 6: Modularizing Large-Scale JavaScript Projects

Example 6-31. The PricePanel module

define(function() {
 "use strict";
 return (function() {
 var mediator;

 function PricePanel() {
 }

 PricePanel.prototype.setMediator = function(m) {
 mediator = m;
 };

 PricePanel.prototype.getMediator = function() {
 return mediator;
 };

 PricePanel.prototype.onBidClick = function(currentPrice) {
 console.log("Bid clicked on price " + currentPrice);
 this.getMediator().broadcast("PlaceBid", [currentPrice]);
 };

 PricePanel.prototype.onAskClick = function() {
 console.log("Ask clicked");
 };

 return PricePanel;
 })();
});

The setter of the Mediator object. The mediator injects its instance during
component registration (refer to Example 6-29).

The getter of the Mediator object.

The onBidClick event handler. The mediator will call this function when the

BidClick event is broadcast. Using the getter getMediator, we can broadcast

the PlaceBid event to all registered components.

The onAskClick event handler. The mediator will call this function when the

AskClick event is broadcast.

Example 6-32. The OrderPanel module

define(function () {
 "use strict";
 return (function () {
 var mediator;

 function OrderPanel() {
 }

Loosely Coupled InterModule Communications with Mediator | 249

 OrderPanel.prototype.getMediator = function () {
 return mediator;
 };

 OrderPanel.prototype.setMediator = function (m) {
 mediator = m;
 };

 OrderPanel.prototype.onPlaceBid = function (price) {
 console.log("price updated to " + price);
 var priceTextElement = document.getElementById("priceText");
 priceTextElement.value = price;
 };

 return OrderPanel;

 })();
});

The mediator’s getter and setter have a purpose similar to that described in
previous snippet.

Defining the PlaceBid event handler, onPlaceBid().

As you noticed, both OrderPanel and PricePanel don’t know about the existence of
each other, but nevertheless they can send and receive data with the help of an inter‐
mediary—the Mediator object.

The introduction of the mediator increases reusability of components by decoupling
them from each other. The Mediator pattern simplifies the maintenance of any appli‐
cation by centralizing the navigational logic.

Summary
The size of any application tends to increase with time, and sooner or later you’ll need
to decide how to cut it into several loadable blocks of functionality. The sooner you start
modularizing your application, the better.

In this chapter, we reviewed several options for writing modular JavaScript by using
modern module formats. These formats have advantages over using just the classical
Module pattern. These advantages include avoiding creating global variables for each
module and better support for static and dynamic dependency management.

Understanding various technologies and frameworks available in JavaScript, combined
with the knowledge of different ways of linking modules and libraries, is crucial for
developers who want their JavaScript applications to be more responsive.

250 | Chapter 6: Modularizing Large-Scale JavaScript Projects

CHAPTER 7

Test-Driven Development with JavaScript

To shorten the development cycle of your web application, you need to start testing it
in the early stages of the project. It seems obvious, but many enterprise IT organizations
haven’t adopted agile testing methodologies, which costs them dearly. JavaScript is a
dynamically typed interpreted language—there is no compiler to help identify errors as
is done in compiled languages such as Java. This means that a lot more time should be
allocated for testing JavaScript web applications. Moreover, a programmer who doesn’t
introduce testing techniques into his daily routine can’t be 100 percent sure that his code
works properly.

The static code analysis and code quality tools such as Esprima and JSHint will help
reduce the number of syntax errors and improve the quality of your code.

We demonstrate how to set up JSHint for your JavaScript project and
automate the process of checking your code for syntax errors in
Chapter 5.

To switch to a test-driven development mode, make testing part of your development
process in its early stages rather than scheduling testing after the development cycle is
complete. Introducing test-driven development can substantially improve your code
quality. It is important to receive feedback about your code on a regular basis. That’s
why tests must be automated and should run as soon as you’ve changed the code.

There are many testing frameworks in the JavaScript world, but we’ll give you a brief
overview of two of them: QUnit and Jasmine. The main goal of each framework is to
test small pieces of code, a.k.a. units.

251

http://esprima.org
http://www.jshint.com
http://qunitjs.com/
http://bit.ly/1pPx7lo

We will go through basic testing techniques known as test-driven development and Test
First. You’ll learn how to automate the testing process in multiple browsers with Testem
Runner or by running tests in so-called headless mode with PhantomJS.

The second part of this chapter is dedicated to setting up a new Save The Child project
in the IDE with selected test frameworks.

Why Test?
All software has bugs. But in interpreted languages such as JavaScript, you don’t have
the help of compilers that could point out potential issues in the early stages of devel‐
opment. You need to continue testing code over and over again to catch regression
errors, to be able to add new features without breaking the existing ones. Code that is
covered with tests is easy to refactor. Tests help prove the correctness of your code. Well-
tested code leads to better overall design of your programs.

Testing Basics
This chapter covers the following types of testing:

• Unit testing

• Integration testing

• Functional testing

• Load (a.k.a. stress) testing

Quality Assurance versus User Acceptance Testing
Although quality assurance (QA) and user acceptance testing (UAT) are far beyond the
scope of this chapter, you need to understand their differences.

Software QA (a.k.a., quality control, or QC) is a process that helps identify the correct‐
ness, completeness, security compliance, and quality of the software. QA testing is per‐
formed by specialists (testers, analysts). The goal of QA testing is to ensure that the
application complies with a set of the predefined behavior requirements.

UAT is performed by business users or subject-area experts. UAT should result in an
endorsement that the tested application/functionality/module meets the agreed-upon
requirements. The results of UAT give the confidence to the end user that the system
will perform in production according to specifications.

During the QA process, the specialist intends to perform all tests, trying to break the
application. This approach helps find errors undiscovered by developers. On the con‐

252 | Chapter 7: Test-Driven Development with JavaScript

http://bit.ly/1vnEqCj
http://bit.ly/1vnEqCj
http://phantomjs.org

trary, during UAT the user runs business-as-usual scenarios and makes sure that busi‐
ness functions are implemented in the application.

Let’s go over the strategies, approaches, and tools that will help you in test automation.

Unit Testing
A unit test is a piece of code that invokes a method being tested. It asserts some as‐
sumptions about the application logic and behavior of the method. Typically, you’ll write
such tests by using a unit-testing framework of your choice. Tests should run fast and
be automated with clear output. For example, you can test that if a function is called
with particular arguments, it should return an expected result. We take a closer look at
unit-testing terminology and vocabulary in “Test-Driven Development” on page 256.

Integration Testing
Integration testing is a phase in which already tested units are combined into a module
to test the interfaces between them. You might want to test the integration of your code
with the code written by other developers; for example, a third-party framework. Inte‐
gration tests ensure that any abstraction layers we build over the third-party code work
as expected. Both unit and integration tests are written by application developers.

Functional Testing
Functional testing is aimed at finding out whether the application properly implements
business logic. For example, if the user clicks a row in a grid with customers, the program
should display a form view with specific details about the selected customer. In func‐
tional testing, business users should define what has to be tested, unlike unit or inte‐
gration testing, for which tests are created by software developers.

Functional tests can be performed manually by a real person clicking through each and
every view of the web application, confirming that it operates properly or reporting
discrepancies with the functional specifications. But there are tools to automate the
process of functional testing of web applications. Such tools allow you to record users’
actions and replay them in automatic mode. The following are brief descriptions of two
such tools—Selenium and CasperJS:

Selenium
Selenium is an advanced browser automation tool suite that has capabilities to run
and record user scenarios without requiring developers to learn any scripting lan‐
guages. Also, Selenium has an API for integration with many programming lan‐
guages such as Java, C#, and JavaScript. Selenium uses the WebDriver API to talk
to browsers and receive running context information. WebDriver is becoming the

Testing Basics | 253

http://docs.seleniumhq.org
http://bit.ly/1kXX7vq

standard API for browser automation. Selenium supports a wide range of browsers
and platforms.

Casper.js
CasperJS is a scripting framework written in JavaScript. CasperJS allows you to
create interaction scenarios such as defining and ordering navigation steps, filling
and submitting forms, or even scrapping web content and making web page screen‐
shots. CasperJS works on top of PhantomJS and SlimerJS browsers, which limits
the testing runtime environment to WebKit-based and Gecko-based browsers. Still,
it’s a useful tool when you want to run tests in a continuous integration (CI) envi‐
ronment.

What Is PhantomJS and SlimerJS?
PhantomJS is a headless WebKit-based rendering engine and interpreter with a Java‐
Script API. Think of PhantomJS as a browser that doesn’t have any graphical user in‐
terface. PhantomJS can execute HTML, CSS, and JavaScript code. Because PhantomJS
is not required to render a browser’s GUI, it can be used in display-less environments
(for example, a CI server) to run tests. SlimerJS follows the same idea of a headless
browser, similar to PhantomJS, but it uses the Gecko engine, instead.

PhantomJS is built on top of WebKit and JavaScriptCore (like Safari), and SlimerJS is
built on top of Gecko and SpiderMonkey (like Firefox). You can find a comprehensive
list of differences between PhantonJS and SlimerJS APIs in SlimerJS’s documentation
site.

In our case, Grunt automatically spawns the PhantomJS instance, executes the code of
our tests, reads the execution results using the PhantomJS API, and prints them out in
the console. If you’re not familiar with Grunt tasks, refer to the online bonus chapter
for additional information about using Grunt in our Save The Child project.

Load Testing
Load testing is a process that can help answer the following questions:

• How many concurrent users can work with your application without bringing your
server to its knees?

• Even if your server is capable of serving a thousand users, is your application per‐
formance in compliance with the service-level agreement (SLA), if any?

It all comes down to two factors: availability and response time of your application.
Ideally, these requirements should be well defined in the SLA document, which should
clearly state what metrics are acceptable from the user’s perspective. For example, the
SLA can include a clause stating that the initial download of your application shouldn’t

254 | Chapter 7: Test-Driven Development with JavaScript

http://bit.ly/1kXX7vq
http://bit.ly/1vnEsKr
http://bit.ly/1vnEsKr
http://bit.ly/1pEdhhr
http://bit.ly/1iSSuDw
http://mzl.la/1kXXRkc
http://bit.ly/1nfFoxq
http://bit.ly/1nfFoxq
http://bit.ly/1iJO41S

take longer than 10 seconds for users with a slow connection (under 1 Mbps). An SLA
can also state that the query to display a list of customers shouldn’t run for more than
5 seconds, and the application should be operational 99.9 percent of the time.

To avoid surprises after going live with your new mission-critical web application, don’t
forget to include in your project plan an item to create and run a set of heavy stress tests.
Do this well in advance, before your project goes live. With load testing, you don’t need
to hire a thousand interns to play the roles of concurrent users to find out whether your
application will meet the SLA.

Automated load-testing software allows you to emulate the required number of users,
set up throttling to emulate a slower connection, and configure the ramp-up speed. For
example, you can simulate a situation in which the number of users logged on to your
system grows at the speed of 50 users every 10 seconds. Stress-testing software also
allows you to prerecord user interactions, and then you can run these scripts emulating
a heavy load.

Professional stress-testing software allows simulating the load close to real-world usage
patterns. You should be able to create and run mixed scripts simulating a situation in
which some users are logging on to your application, while others are retrieving the data
and performing data modifications. The following are some tools worth considering
for load testing.

Apache Benchmark

Apache Benchmark is a simple-to-use command-line tool. For example, with the com‐

mand ab -n 10 -c 10 -t 60 http://savesickchild.org:8080/ssc_extjs/, Apache
Benchmark will open 10 concurrent connections with the server and will send 10 re‐
quests via each connection to simulate 10 visitors working with your web application
for 60 seconds. The number of concurrent connections is the actual number of con‐
current users. You can find an Apache Benchmark sample report in Example 7-1.

Example 7-1. A sample Apache Benchmark report

This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/
Server Software: GlassFish
Server Hostname: savesickchild.org
Server Port: 8080
Document Path: /ssc_extjs/
Document Length: 306 bytes
Concurrency Level: 10
Time taken for tests: 60.003 seconds
Complete requests: 17526
Failed requests: 0
Total transferred: 11988468 bytes
HTML transferred: 5363262 bytes

Testing Basics | 255

http://bit.ly/apacheparam

Requests per second: 292086.73
Transfer rate: 199798.72 kb/s received
Connnection Times (ms)
 min avg max
Connect: 10 13 1305
Processing: 11 14 12
Total: 21 27 1317

jMeter

Apache JMeter is a tool with a graphical user interface (see Figure 7-1). You can use it
to simulate heavy load on a server, a network, or an object to test its strength or to analyze
overall performance under different load types. You can find more about testing web
applications by using JMeter in the official documentation.

Figure 7-1. JMeter test results output example

PhantomJS

Refer to “What Is PhantomJS and SlimerJS?” on page 254 to familiarize yourself with
PhantomJS. The slide deck titled “Browser Performance metering with PhantomJS” is
yet another good resource for seeing how you can use PhantomJS for performance
testing.

Test-Driven Development
The methodology known as test-driven development (TDD) substantially changes the
way traditional software development is done. This methodology wants you to write

256 | Chapter 7: Test-Driven Development with JavaScript

http://jmeter.apache.org
http://bit.ly/1pAIMbc
http://phantomjs.org
http://bit.ly/1vsVeK5

tests even before writing the application code. Instead of just using testing to verify your
work after it’s done, TDD moves testing into the earlier application design phase. You
should use these tests to clarify your ideas about what you are about to program. Here
is the fundamental mantra of TDD:

1. Write a test and make it fail.

2. Make the test pass.

3. Refactor.

4. Repeat.

This technique is also referred to as red-green-refactor because IDEs and test runners
use red to indicate failed tests and green to indicate those that pass.

When you are about to start programming a class with business logic, ask yourself,
“How can I ensure that this function works as expected?” After you know the answer,
write a test JavaScript class that calls this function to assert that the business logic gives
the expected result.

An assertion is a true-false statement that represents what a programmer assumes about

program state. For example, customerID >0 is an assertion. According to Martin Fowl‐
er, assertion is a section of code that assumes something about the state of the program.
Failure of an assertion results in test failure.

Run your test, and it will immediately fail because no application code is written yet!
Only after the test is written, start programming the business logic of your application.

You should write the simplest possible piece of code to make the test pass. Don’t try to
find a generic solution at this step. For example, if you want to test a calculator that

needs to return 4 as result of 2 + 2, write code that simply returns 4. Don’t worry about
the performance or optimization at this point. Just make the test pass. After you write
it, you can refactor your application code to make it more efficient. Now you might want
to introduce a real algorithm for implementing the application logic without worrying
about breaking the contract with other components of your application.

A failed unit test indicates that your code change introduces regression, which is a new
bug in previously working software. Automated testing and well-written test cases can
reduce the likelihood of regression in your code.

TDD allows you to receive feedback from your code almost immediately. It’s better to
find that something is broken during development rather than in an application de‐
ployed in production.

Test-Driven Development | 257

http://bit.ly/UA6xDb
http://bit.ly/UA6xDb

Learn by heart the Golden Rule of TDD:

Never write new functionality without a failing test.

In addition to business logic, web applications should be tested for proper rendering of
UI components, changing view states, dispatching, and handling events.

With any testing framework, your tests will follow the same basic pattern. First, you
need to set up the test environment. Second, you run the production code and check
that it works as it is supposed to. Finally, you need to clean up after the test runs—remove
everything that your program has created during setup of the environment.

This pattern for authoring unit tests is called arrange-act-assert-reset (AAAR).

• In the Arrange phase, you set up the unit of work to test. For example, create Java‐
Script objects and prepare dependencies.

• In the Act phase, you exercise the unit under test and capture the resulting state.
You execute your production code in a unit-test context.

• In the Assert phase, you verify the behavior through assertions.

• In the Reset phase, you reset the environment to the initial state. For example, erase
the DOM elements created in the Arrange phase. Most of the frameworks provide
a “teardown” function that would be invoked after the test is done.

Later in this chapter, you’ll see how different frameworks implement the AAAR pattern.

In next sections, we will dive into testing frameworks for JavaScript.

Implementing TDD by Using QUnit
We’ll start our journey to JavaScript testing frameworks with QUnit, which was origi‐
nally developed by John Resig as part of jQuery. QUnit now runs completely as a stand‐
alone and doesn’t have any jQuery dependencies. Although it’s still being used by the
jQuery project itself for testing jQuery, jQuery UI, and jQuery Mobile code, QUnit can
be used to test any generic JavaScript code.

Setting up Grunt with QUnit

In this section, you’re going learn how to automatically run QUnit tests using Grunt.
Let’s set up our project by adding the QUnit framework and test file. Begin by down‐
loading the latest version by using Bower, as shown in Example 7-2.

Example 7-2. Installing QUnit with Bower

bower install qunit

258 | Chapter 7: Test-Driven Development with JavaScript

http://bit.ly/TJiWUI
http://qunitjs.com
http://ejohn.org/about

You need to get only two files: qunit.js and qunit.css, as shown in Figure 7-2.

Figure 7-2. QUnit framework in our project

The code fragment shown in Example 7-3 demonstrates a simple test function.

Example 7-3. Our first QUnit test

'use strict';
test('my first qunit test', function() {
 ok(2 + 2 === 4, 'Passed!');
});

Test-Driven Development | 259

You’ll also need a test runner for the test setup. A test runner is an HTML file that
contains links to a QUnit framework JavaScript file, as shown in Example 7-4.

Example 7-4. A test runner

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>Test Suite</title>
 <link rel="stylesheet" href="../bower_components/qunit/qunit/qunit.css"
 media="screen">
 <script src="../bower_components/qunit/qunit/qunit.js"></script>
 <script src="../bower_components/jquery/dist/jquery.min.js"
 type="text/javascript"></script>
 <script src="test/tests.js" type="text/javascript" charset="utf-8"></script>
</head>

<body>

<div id="qunit"></div>
<div id="qunit-fixture">

</div>

</body>

</html>

In this section, we continue working on the jQuery-based version of the Save
The Child application. Hence, our “production environment” depends on the
availability of jQuery, so we need to include jQuery in the test runner.

Test files are included, too.

QUnit fills this block with results.

Any HTML you want to be present in each test is placed here. It will be reset for
each test.

To run all our tests, we need to open qunit-runner.html in a browser. (See Figure 7-3.)
Example 7-5 shows a sample Grunt task for executing the QUnit tests by using the
provided HTML runner.

Example 7-5. Grunt config for QUnit test runner

module.exports = function(grunt) {
 'use strict';
 grunt.initConfig({
 qunit: {
 all: ['test/qunit-runner.html']
 }
 });
 grunt.registerTask('test', 'qunit');
 grunt.loadNpmTasks('grunt-contrib-qunit');
};

260 | Chapter 7: Test-Driven Development with JavaScript

Grunt loads the task from the local npm repository. To install this task in the

node_modules directory, use the command npm install grunt-contrib-

qunit.

Figure 7-3. Test results in a browser

Now let’s briefly review QUnit API components. Example 7-6 shows a typical QUnit
script.

Example 7-6. A sample QUnit test

(function($) {
 module('SaveSickChild: login component test', {
 setup: function() {
 // test setup code goes here
 },
 teardown: function() {
 // test cleanup code goes here
 }
 });
 test('jquery is here', function() {
 ok($, "yes, it's here");
 });
 test("2 add 2 equals 4", function() {
 ok(2 + 2 === 4, "Passed!");
 });
 test('2 add 2 not equals 5', function() {

Test-Driven Development | 261

 notEqual(2 + 2, 5, "failed");
 });
}(jQuery)); //

A module function allows you to combine related tests as a group.

Here, we can run the Arrange phase. A setup function is called before each test.

A teardown function is called after each test, respectively. This is our Reset phase.

You need to place the code of your test in a corresponding test function.

Typically, you need to use assertions to make sure the code being tested gives

expected results. The function ok examines the first argument to be true.

A pair of functions, equal and notEqual, check for the equivalence of the first
and second arguments, which could be expressions, as well.

A code of the test is wrapped in IIFE and passes the jQuery object as a $ variable.

You can find more details about QUnit in its product documentation and QUnit Cook‐
book.

Behavior-Driven Development with Jasmine
The idea behind behavior-driven development (BDD) is to use the natural language
constructs to describe what you think your code should be doing, or more specifically,
what your functions should be returning.

Similarly to unit tests, with BDD you write short specifications that test one feature at
a time. Specifications should be sentences. For example, “Calculator adds two positive
numbers.” Such sentences will help you easily identify the failed test by simply reading
this sentence in the resulting report.

Now we’ll demonstrate this concept using Jasmine—the BDD framework for JavaScript.
Jasmine provides a nice way to group, execute, and report JavaScript unit tests.

Setting up Grunt with Jasmine

Now let’s learn how to execute a Jasmine specification with Grunt. We cover Jasmine
basics in the next section, but for the moment think of Jasmine as a piece of code that
should be executed by Grunt.

Let’s begin by downloading the latest version of Jasmine by using Bower:

bower install jasmine

Unzip jasmine-standalone-2.0.0.zip in the dist directory. Jasmine comes with an example
spec (spec folder) and an HTML test runner, SpecRunner.html. Let’s open this file in a
browser, as shown in Figure 7-4.

262 | Chapter 7: Test-Driven Development with JavaScript

http://bit.ly/1r5x3Sn
http://api.qunitjs.com
http://bit.ly/1vnELF6
http://bit.ly/1vnELF6

Figure 7-4. Running Jasmine specs in a browser

SpecRunner.html, shown in Example 7-7, is structured similarly to the QUnit HTML
runner. You can run specifications by opening the runner file in a browser.

Example 7-7. The test runner SpecRunner.html

<!DOCTYPE HTML>
<html>

<head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Jasmine Spec Runner v2.0.0</title>

 <link rel="shortcut icon" type="image/png"
 href="lib/jasmine-2.0.0/jasmine_favicon.png">
 <link rel="stylesheet" type="text/css" href="lib/jasmine-2.0.0/jasmine.css">

 <script type="text/javascript" src="lib/jasmine-2.0.0/jasmine.js"></script>
 <script type="text/javascript" src="lib/jasmine-2.0.0/jasmine-html.js">
 </script>

 <script type="text/javascript" src="lib/jasmine-2.0.0/boot.js"></script>

 <script type="text/javascript" src="src/Player.js"></script>

Test-Driven Development | 263

 <script type="text/javascript" src="src/Song.js"></script>

 <script type="text/javascript" src="spec/SpecHelper.js"></script>
 <script type="text/javascript" src="spec/PlayerSpec.js"></script>

</head>

<body>

</body>

</html>

Required Jasmine framework library.

Initialize Jasmine and run all specifications when the page is loaded.

Include the source files.

Include the specification code. It’s not required, but files that contain
specification code can have the suffix *Spec.js.

Now let’s update the Gruntfile to run the same sample specifications with the PhantomJS
headless browser. Copy the content of the src folder of your Jasmine distribution into
the app/js folder of our project, and then copy the content of the spec folder into the
test/spec folder of your project. Also create a folder test/lib/jasmine and copy the content
of the Jasmine distribution lib folder there. (See Figure 7-5.)

Now you need to edit Gruntfile_jasmine.js to activate Jasmine support, as shown in
Example 7-8.

Example 7-8. Gruntfile_jasmine.js with Jasmine running support

module.exports = function(grunt) {
 'use strict';

 grunt.initConfig({
 jasmine: {
 src: ['app/Player.js', 'app/Song.js'],
 options: {
 specs: 'test/spec/PlayerSpec.js',
 helpers: 'test/spec/SpecHelper.js'
 }
 }
 });

 // Alias the `test` task
 grunt.registerTask('test', 'jasmine');
 // loading jasmine grunt module
 grunt.loadNpmTasks('grunt-contrib-jasmine');
};

Configuring the Jasmine task.

264 | Chapter 7: Test-Driven Development with JavaScript

Figure 7-5. Jasmine specifications in our project

Specifying the location of the source files.

Specifying the location of Jasmine specs.

Specifying the location of Jasmine helpers (Jasmine helpers are covered later in
this chapter).

Grunt loads the task from the local npm repository. To install this task in the

node_modules directory, use the command npm install grunt-contrib-

jasmine.

To execute tests, run the command grunt --gruntfile Gruntfile_jasmine.js jas

mine, and you should see something like this:

Running "jasmine:src" (jasmine) task
Testing jasmine specs via phantom
.....
5 specs in 0.003s.

Test-Driven Development | 265

>> 0 failures

Done, without errors.

In this example, Grunt successfully executes the tests with PhantomJS of all five speci‐
fications defined in PlayerSpec.js.

What Is Continuous Integration?
Continuous integration (CI) is a software development practice whereby members of a
team integrate their work frequently, which results in multiple integrations per day.
Introduced by Martin Fowler and Matthew Foemmel, the theory of CI recommends
creating scripts and running automated builds (including tests) of your application at
least once a day. This allows you to identify issues in the code early.

The authors of this book successfully use the open source framework called Jenkins,
shown in Figure 7-6, for establishing a continuous build process. (There are other similar
CI servers.) With Jenkins, you can have scripts that run either at a specified time interval
or on each source code repository check-in of the new code. You may also force an
additional build process whenever you like. The Grunt command-line tool should be
installed and be available on a CI machine to allow the Jenkins server to invoke Grunt
scripts and publish test results.

We use it to ensure continuous builds of internal and open source projects.

Figure 7-6. Jenkins CI server running at the savesickchild.org website and used to
build the sample applications for this book

In the next section, you will learn how write your own specifications.

266 | Chapter 7: Test-Driven Development with JavaScript

http://bit.ly/1e7nG9j
http://jenkins-ci.org

Exploring Jasmine basics

After we’ve set up the tools for running tests, let’s begin developing tests and learn the
Jasmine framework constructs. Every specification file has a set of suites defined in the

describe function. Example 7-9 shows a specification file that describes two test suites.

Example 7-9. ExampleSpec.js

describe("My function under test should", function() {
 it("return on", function() {
 // place specification code here
 //
 });
 describe("another suite", function() {
 it("spec1", function() {

 });
 });
 it("my another spec", function() {
 var truth = true;
 expect(truth).toBeTruthy();
 });
 it("2+2 = 4", function() {
 expect(2 + 2).toEqual(4);
 });
});

The function describe() accepts two parameters: the name of the test suite and
the callback function. The function is a block of code that implements the suite.
If for some reason you would like to skip the suite’s execution, you can use the

method xdescribe() and a whole suite will be excluded until you rename it

back to describe().

The function it() also accepts similar parameters—the name of the test
specification, and the function that implements this specification. As with suites,

Jasmine has a corresponding xit method to exclude the specification from
execution.

Each suite can have any number of nested suites.

Each suite can have any number of specifications.

The code checks whether 2 + 2 equals 4. We used the function toEqual(), which

is a matcher. Define expectations with the function expect(), which takes a
value, called the actual. It’s chained with a matcher function, which takes the
expected value (in our case, it’s 4) and checks whether it satisfies the criterion
defined in the matcher.

Various flavors of matchers are shipped with the Jasmine framework, and we’re going
to review a couple of the frequently used matcher’s functions:

Test-Driven Development | 267

Equality

Function toEqual() check whether two things are equal.

True or False?

Functions toBeTruthy() and toBeFalsy() checks whether something is true or
false, respectively.

Identity

Function toBe() checks whether two things are the same object.

Nullness

Function toBeNull() checks whether something is null.

Is Element Present

Function toContain() checks whether an actual value is an element of an array:

expect(["James Bond", "Austin Powers", "Jack Reacher", "Duck"])
 .toContain("Duck");

Negate Other Matchers

This function is used to reverse matchers to ensure that they aren’t true. To do that,

simply prefix matchers with .not:

expect(["James Bond", "Austin Powers", "Jack Reacher"])
 .not.toContain("Duck");

Here, we’ve listed only some of the existing matchers. You can find the complete doc‐
umentation with code examples at the official Jasmine website and wiki.

A large set of jQuery-specific matchers are available at link:https://
github.com/velesin/jasmine-jquery.

Specification setup

The Jasmine framework has an API to arrange your specification (based on the “Test-

Driven Development” concept). It includes two methods, beforeEach() and after

Each(), which allow you to execute code before and after each spec, respectively. It’s
useful for instantiation of the shared objects or cleaning up after the tests complete. If
you need to fulfill your test with some common dependencies or set up the environment,

just place code inside the beforeEach() method. Such dependencies and environments

are known as fixtures. Example 7-10 includes a beforeEach function that prepares a
fixture.

268 | Chapter 7: Test-Driven Development with JavaScript

http://bit.ly/1mzA3if
http://bit.ly/100yWTt

What Is a Fixture?
A test fixture refers to the fixed state used as a baseline for running tests. The main
purpose of a test fixture is to ensure that there is a well-known and fixed environment
in which tests are run so that results are repeatable. Sometimes a fixture is referred to
as a test context.

Example 7-10. Specification setup with beforeEach

(function($) {
 describe("DOM manipulation spec", function() {
 var usernameInput;
 var passwordInput;
 beforeEach(function() {
 usernameInput = document.createElement("input");
 usernameInput.setAttribute("type", "text");
 usernameInput.setAttribute("id", "username");
 usernameInput.setAttribute("name", "username");
 usernameInput.setAttribute("placeholder", "username");
 usernameInput.setAttribute("autocomplete", "off");

 passwordInput = document.createElement("input");
 passwordInput.setAttribute("type", "text");
 passwordInput.setAttribute("id", "password");
 passwordInput.setAttribute("name", "password");
 passwordInput.setAttribute("placeholder", "password");
 passwordInput.setAttribute("autocomplete", "off");
 });

 afterEach(function() {

 });

 it("jquey should be present", function() {
 expect($).not.toBeNull();
 });
 it("inputs should exist", function() {
 expect(usernameInput.id).toBe("username");
 expect(passwordInput.id).toBe("password");
 });
 it("should not allow login with empty username and password and return code
 equals 0", function() {
 var result = ssc.login(usernameInput, passwordInput);
 expect(result).toBe(0);
 });
 it("should allow login with user admin and password 1234 and return code
 equals 1", function() {
 usernameInput.value = "admin";
 passwordInput.value = "1234";

Test-Driven Development | 269

 var result = ssc.login(usernameInput, passwordInput);
 expect(result).toBe(1);
 });
 });
})(jQuery);

This method will be called before each specification.

In the beforeEach() method, we create two input fields. These two inputs will
be available in all specifications of this suite.

You can place additional cleanup code inside the afterEach() function.

A beforeEach() function helps implement the Don’t Repeat Yourself principle
in our tests. You don’t need to create the dependency elements inside each
specification manually.

You can change defaults inside each specification without worrying about
affecting other specifications. Your test environment will be reset for each
specification.

Custom matchers

The Jasmine framework is easily extensible, and it allows you to define your own
matchers if for some reason you’re unable to find the appropriate matchers in the Jas‐
mine distribution. In such cases, you’d need to write a custom matcher. Example 7-11
shows a sample custom matcher that checks whether a string contains the name of a
“secret agent” from the defined list of agents.

Example 7-11. Custom toBeSecretAgent matcher

beforeEach(function() {
 'use strict';
 var customMatcher = {
 toBeSecretAgent: function() {
 return {
 compare: function(actual, expected) {
 if (expected === undefined) {
 expected = '';
 }
 var result = {};
 var agentList = [
 'James Bond',
 'Ethan Hunt',
 'Jason Bourne',
 'Aaron Cross',
 'Jack Reacher'
];
 result.pass = agentList.indexOf(actual) !== -1;
 if (result.pass) {
 result.message = actual + ' is a super agent';
 } else {

270 | Chapter 7: Test-Driven Development with JavaScript

 result.message = actual + ' is not a secret agent';
 }
 return result;
 }
 };
 }
 };

 jasmine.addMatchers(customMatcher);
});

We need to implement the function compare that accepts two parameters from

the expect call: actual and expected values.

The function compare should return the result object.

This function checks whether agentsList contains the actual value.

The pass property of the result object indicates success or failure of matcher
execution.

We can customize an error message (a message property the of result object)
if the test fails.

The invocation of this helper can look like this:

it("part of super agents", function () {
 expect("James Bond").toBeSecretAgent();
 expect("Jason Bourne").toBeSecretAgent();
 expect("Austin Powers").not.toBeSecretAgent();
 expect("Austin Powers").toBeSecretAgent();
});

Calling the custom matcher.

Custom matchers could be used together with the .not modifier.

This expectation will fail because Austin Powers is not in the list of secret agents.

The following custom failure message displays on the console.

grunt --gruntfile Gruntfile_jasmine.js test
Running "jasmine:src" (jasmine) task
Testing jasmine specs via PhantomJS
 My function under test should
 return on
 another suite
 spec1
 my another spec
 2+2 = 4
 X part of super agents
 Austin Powers is not a secret agent (1)

Test-Driven Development | 271

5 specs in 0.01s.
>> 1 failures
Warning: Task "jasmine:src" failed. Use --force to continue.

Aborted due to warnings.

“Austin Powers is not a secret agent (1)” is a custom failure message.

Spies

Test spies are objects that replace the actual functions with the code to record informa‐
tion about the function’s usage through the systems being tested. Spies are useful when
determining a function’s success is not easily accomplished by inspecting its return value
or changes to the state of objects with which it interacts.

Consider the login functionality shown in Example 7-12. A showAuthorizedSec

tion() function will be invoked within the login function after the user enters the

correct username and password. We need to test that the invocation of showAuthori

zedSection() is happening in this sequence.

Example 7-12. Production code of the login function

var ssc = {};
(function() {
 'use strict';
 ssc.showAuthorizedSection = function() {
 console.log("showAuthorizedSection");
 };
 ssc.login = function(usernameInput, passwordInput) {
 // username and password check logic is omitted
 this.showAuthorizedSection();
 };
})();

And here is how we can test it using Jasmine’s spies:

describe("login module", function() {
 it("showAuthorizedSection has been called", function() {
 spyOn(ssc, "showAuthorizedSection");
 ssc.login("admin", "1234");
 expect(ssc.showAuthorizedSection).toHaveBeenCalled();
 });
});

The spyOn function will replace the showAuthorizedSection() function with
the corresponding spy.

The showAuthorizedSection() function will be invoked within the login()
function in case of successful login.

The assertion toHaveBeenCalled() would be not possible without a spy.

272 | Chapter 7: Test-Driven Development with JavaScript

Multibrowser Testing
The previous section was about executing your test and specification in headless mode
by using Grunt and PhantomJS, which is useful for running tests in CI environments.
Although PhantomJS uses the WebKit rendering engine, some browsers don’t use Web‐
Kit. It’s obvious that running tests manually in each browser is tedious and not pro‐
ductive. To automate testing in all web browsers, you can use the Testem runner. Testem
executes your tests, analyzes their output, and then prints the results on the console. In
this section, you’ll learn how to install and configure Testem to run Jasmine tests.

Installation

Testem uses Node.js APIs and can be installed with npm:

npm: install testem -g

Testem configuration file

Testem will just pick any JavaScript file in your project directory. If Testem can identify
any test among the .js files, it will run it. But Testem tasks can be customized by using
a configuration file

You can configure Testem to specify which files should be included in testing. Testem
starts by trying to find the configuration file testem.json in the project directory. A
sample testem.json file is shown in Example 7-13.

Example 7-13. A Testem configuration file

{
 "framework": "jasmine2",
 "src_files": [
 "ext/ext-all.js",
 "test.js"
]
}

The framework directive is used to specify the test framework. Testem supports
QUnit, Jasmine, and many more frameworks. You can find a full list of supported
frameworks on the Testem GitHub page.

The list of test and production code source files.

Running tests

Testem supports two running modes: test-driven development mode (tdd-mode) and
continuous integration (ci-mode). (For more about continuous integration, see the note
on CI). In tdd-mode, shown in Figure 7-7, Testem starts the development server.

Test-Driven Development | 273

http://bit.ly/1mNbCTe

Figure 7-7. Testem tdd-mode

In tdd-mode, Testem doesn’t spawn any browser automatically. On the contrary, you’d
need to open a URL in the browser you want run a test against, to connect it to the
Testem server. From this point, Testem executes tests in all connected browsers. In
Figure 7-8, you can see we added different browsers, including a mobile version of Safari
(running on an iOS simulator).

274 | Chapter 7: Test-Driven Development with JavaScript

Figure 7-8. Testem is running the tests on multiple browsers

Because the Testem server itself is an HTTP server, you can connect remote browsers
to it as well. For example, Figure 7-9 shows Internet Explorer 10 running on a Windows
7 virtual machine connected to the Testem server.

Test-Driven Development | 275

Figure 7-9. Using Testem to test code on remote Internet Explorer 10

You can combine running the tests with the Testem runner with the previously intro‐
duced Grunt tool. Figure 7-10 shows two tests in parallel: Testem runs tests on the real
browsers, and Grunt runs tests on the headless PhantomJS.

276 | Chapter 7: Test-Driven Development with JavaScript

Figure 7-10. Using Testem and grunt watch side by side

Testem supports live reloading mode. This means that Testem will watch the filesystem
for changes and will execute tests in all connected browsers automatically. You can force
a test to run by switching to the console and pressing the Enter key.

In CI mode, Testem examines the system for all available browsers and executes tests
on them. You can get a list of the browsers that Testem can use to run tests by using the

testem launchers command. The following shows the sample output after running
this command:

testem launchers
Have 5 launchers available; auto-launch info displayed on the right.

Launcher Type CI Dev
------------ ------------ -- ---
Chrome browser
Firefox browser
Safari browser
Opera browser
PhantomJS browser

Now you can run our test simultaneously in all browsers installed in your computer—
Google Chrome, Safari, Firefox, Opera, and PhantomJS—with one command:

testem ci

Sample output of the testem ci command is shown in Example 7-14.

Test-Driven Development | 277

Example 7-14. Output of the testem ci command

Launching Chrome #

#

Launching Firefox #

....

TAP version 13
ok 1 - Firefox Basic Assumptions: Ext namespace should be available loaded.
ok 2 - Firefox Basic Assumptions: ExtJS 4.2 should be loaded.
ok 3 - Firefox Basic Assumptions: SSC code should be loaded.
ok 4 - Firefox Basic Assumptions: something truthy.

Launching Safari #

#

Launching Opera #

....

ok 5 - Opera Basic Assumptions: Ext namespace should be available loaded.
ok 6 - Opera Basic Assumptions: ExtJS 4.2 should be loaded.
ok 7 - Opera Basic Assumptions: SSC code should be loaded.
ok 8 - Opera Basic Assumptions: something truthy.

Launching PhantomJS #

#

1..8
tests 8

pass 8

ok

....

The tests are run on Chrome…

… Firefox

… Safari

… Opera

… and on headless WebKit—PhantomJS

Testem uses TAP format to report test results.

Testing the DOM
As is discussed in Chapter 1, the Document Object Model (DOM) is a standard browser
API that allows a developer to access and manipulate page elements. Often, your Java‐
Script code needs to access and manipulate the HTML page elements in some way.
Testing the DOM is a crucial part of testing your client-side JavaScript. By design, the
DOM standard defines a browser-agnostic API. But in the real world, if you want to

278 | Chapter 7: Test-Driven Development with JavaScript

http://bit.ly/V28HvG

make sure that your code works in a particular browser, you need to run the test inside
this browser.

Earlier in this chapter, we introduced the Jasmine method beforeEach(), which is the
right place for setting all required DOM elements and making them available in the
specifications. Example 7-15 illustrates the programmatic creation of the required DOM

element <input>.

Example 7-15. Using jQuery APIs to create DOM elements before running the spec

describe("spec", function() {
 var usernameInput;
 beforeEach(function() {
 usernameInput = $(document.createElement("input")).attr({
 type: 'text',
 id: 'username',
 name: 'username'
 })[0];
 });
});

Inside the beforeEach() method, we use the API to manipulate the DOM
programmatically. Also, if you’re using an HTML test runner, you can add the
fixture by using HTML tags. But we don’t recommend this approach, because
soon you will find that the test runner will become unmaintainable and clogged
with tons of fixture HTML code.

Create an <input> element by using jQuery APIs, which will turn into the
following HTML:

<input type="text" id="password" name="password" placeholder="password"
 autocomplete="off">

The jQuery selectors API is more convenient for working with the DOM than a standard
JavaScript DOM API. But in future examples, we will use the jasmine-fixture library for
easier setup of the DOM fixture. Jasmine-fixture uses syntax that is similar to that of
jQuery selectors for injecting HTML fixtures. With this library, you will significantly
decrease the amount of repetitive code while creating the fixtures.

Example 7-16 shows how the example from the previous code snippet looks with the
jasmine-fixture library.

Example 7-16. Using jasmine-fixture to set up the DOM before spec run

describe("spec", function() {
 var usernameInput;
 beforeEach(function() {
 usernameInput =
 affix('input[id="username"][type="text"][name="username]')[0];
 });

Test-Driven Development | 279

http://bit.ly/1sRcgDK

 it("should not allow login with empty username and password and return code
 equals 0", function() {
 var result = ssc.login(usernameInput, passwordInput);
 expect(result).toBe(0);
 });
});

By using the affix() function provided by the jasmine-fixture library and
expressiveness of CSS selectors, we can easily set up required DOM elements.
You can find more examples of possible selectors at the documentation page of
jasmine-fixture.

When all requirements for our production code (login() function) are satisfied,
we can run it in the context of a test and assert the results.

As you can see, testing the DOM manipulation code is much like any other type of unit
testing. You need to prepare a fixture (a.k.a., the testing context), run the production
code, and assert the results.

Building Save The Child with TDD
We assume that you’ve read Chapter 6, and in this section you’ll apply your newly
acquired Ext JS skills. As a reminder, the Ext JS framework encourages using MVC
architecture. The separation of responsibilities between models, views, and controllers
makes an Ext JS application a perfect candidate for unit testing. In this section you’ll
learn how to test the Ext JS version of the Save The Child application from Chapter 6.

Harnessing the ExtJS Application
Let’s create a skeleton application that can provide a familiar environment for our classes
that should be tested (see Example 7-17).

Example 7-17. An HTML runner for Jasmine and Ext JS application

<!doctype html>
<html lang="en">
<head>

 <meta charset="UTF-8">
 <title id="page-title">ExtJS Jasmine Tester</title>
 <link rel="stylesheet" type="text/css"
 href="test/bower_components/jasmine/lib/jasmine-core/jasmine.css"/>
 <script type="text/javascript" src=ext/ext-all.js></script>

 <script type="text/javascript"
 src="test/bower_components/jasmine/lib/jasmine-core/jasmine.js"></script>
 <script type="text/javascript"
 src="test/bower_components/jasmine/lib/jasmine-core/jasmine-html.js"></script>

280 | Chapter 7: Test-Driven Development with JavaScript

http://bit.ly/TJjeLl

 <script type="text/javascript"
 src="test/bower_components/jasmine/lib/jasmine-core/boot.js"></script>

 <script type="text/javascript"
 src="test/bower_components/jasmine-fixture/dist/jasmine-fixture.min.js">
 </script>

 <script type="text/javascript" src="test.js"></script>

</head>

<body>

</body>

</html>

Adding Ext JS framework dependencies.

Adding the Jasmine framework dependencies.

This is our skeleton Ext JS application that will set up a “friendly” environment
for components under the test. You can see the content of test.js in Example 7-18.

Example 7-18. An Ext JS testing endpoint

Ext.Loader.setConfig({
 disableCaching: false,
 enabled: true,
 paths: {
 Test: 'test',
 SSC: 'app'
 }
});

var application = null;

Ext.onReady(function() {
 application = Ext.create('Ext.app.Application', {
 name: 'SSC',
 requires: [
 'Test.spec.AllSpecs'
],
 controllers: [
 'Donate'
],
 launch: function() {
 Ext.create('Test.spec.AllSpecs');
 }
 });
});

Ext JS loader needs to know the location of the testing classes…

Building Save The Child with TDD | 281

… and about the location of production code.

Create a skeleton application in the namespace of the production code to provide
the execution environment.

The AllSpec class will be requesting loading of the rest of the specs. We show

the code for the AllSpec class in Example 7-19.

The skeleton application will test the controllers from the production application
code.

By placing our spec names in a requires config property, we delegate the loading of
specified specs to the Ext JS loader during a fixture application startup.

Example 7-19. The AllSpec class

Ext.define('Test.spec.AllSpecs', {
 requires: [
 'Test.spec.BasicAssumptions'
]
});

The requires property includes an array of Jasmine suites. All further tests will
be added to this array. Ext JS will be responsible for loading and instantiating all
test classes.

Example 7-20 shows how our typical test suite will look.

Example 7-20. A BasicAssumptions class

Ext.define('Test.spec.BasicAssumptions', {}, function() {
 describe("Basic Assumptions: ", function() {
 it("Ext namespace should be available loaded", function() {
 expect(Ext).toBeDefined();
 });
 it("SSC code should be loaded", function() {
 expect(SSC).toBeDefined();
 });
 });
});

Wrap the Jasmine suite into an Ext JS class.

The rest of the code is similar to the Jasmine code sample shown earlier in this
chapter.

After setting up the testing harness for the Save The Child application, we will suggest
a testing strategy for Ext JS applications. Let’s begin by testing the models and controllers,
followed by testing the views.

282 | Chapter 7: Test-Driven Development with JavaScript

Testing the Models
The SaveSickChild.org home page displays information about fundraising campaigns

by using chart and table views backed by a collection of Campaign models. A Cam

paign model should have three properties: title, description, and location. The

title property of the model should have a default value: Default Campaign Title.

The location property of the model is a required field.

In the spirit of TDD, let’s write a specification that will meet the requirements described,
as shown in Example 7-21.

Example 7-21. CampaignModelAssumptions specification

Ext.define('Test.spec.CampaignModelAssumptions', {}, function() {
 'use strict';
 beforeEach(function() {

 });

 afterEach(function() {
 Ext.data.Model.cache = {};
 });

 describe('SSC.model.Campaign model', function() {
 it('exists', function() {
 var model = Ext.create('SSC.model.Campaign', {});
 expect(model.$className).toEqual('SSC.model.Campaign');
 });
 it('has properties', function() {
 var model = Ext.create('SSC.model.Campaign', {
 title: 'Donors meeting',
 description: 'Donors meeting agenda',
 location: 'New York City'
 });
 expect(model.get('title')).toEqual('Donors meeting');
 expect(model.get('description')).toEqual('Donors meeting agenda');
 expect(model.get('location')).toEqual('New York City');
 });
 it('property title has default values', function() {
 var model = Ext.create('SSC.model.Campaign');
 expect(model.get('title')).toEqual('Default Campaign Title');
 });
 it('requires campaign location', function() {
 var model = Ext.create('SSC.model.Campaign');
 var validationResult = model.validate();
 expect(validationResult.isValid()).toBeFalsy();
 });
 });

});

Building Save The Child with TDD | 283

By default, Ext.data.Model caches every model created by the application in a
global in-memory array. We need to clean up the Ext JS model cache after each
test run.

Instantiate the Campaign model class to check that it exists.

We need to check whether the model has all required properties.

The property title has a default value.

Validation will fail on the empty location property:

Ext.define('SSC.model.Campaign', {
 extend: 'Ext.data.Model',
 fields: [
 {
 name: 'title',
 type: 'string',
 defaultValue: 'Default Campaign Title'
 },
 {
 name: 'description',
 type: 'string'
 },
 {
 name: 'location',
 type: 'string'
 }
],
 validations: [
 {
 field: 'location',
 type: 'presence'
 }
]
});

Testing the Controllers
Controllers in Ext JS are classes like any others and should be tested the same way. In
Example 7-22, we test the Donate Now functionality. When the user clicks the Donate
Now button on the Donate panel, the controller’s code should validate the user input
and submit the data to the server. Because we are just testing the controller’s behavior,
we’re not going to submit the actual data. We’ll use Jasmine spies, instead.

Example 7-22. Donate controller specification

Ext.define("Test.spec.DonateControllerSpec", {}, function () {
 describe("Donate controller", function () {
 beforeEach(function () {
 // controller's setup code is omitted
 });

284 | Chapter 7: Test-Driven Development with JavaScript

 it('should exists', function () {
 var controller = Ext.create('SSC.controller.Donate');
 expect(controller.$className).toEqual('SSC.controller.Donate');
 });
 describe('donateNow button', function () {
 it('calls donate on DonorInfo if form is valid', function () {
 var donorInfo = Ext.create('SSC.model.DonorInfo', {});
 var donateForm = Ext.create('SSC.view.DonateForm', {});
 var controller = Ext.create('SSC.controller.Donate');
 spyOn(donorInfo, 'donate');
 spyOn(controller, 'getDonatePanel').and.callFake(function () {
 donateForm.down = function () {
 return {
 isValid: function () {
 return true;
 },
 getValues: function () {
 return {};
 }
 };
 };
 return donateForm;
 });
 spyOn(controller, 'newDonorInfo').and.callFake(function () {
 return donorInfo;
 });
 controller.submitDonateForm();
 expect(donorInfo.donate).toHaveBeenCalled();
 });
 });
 });
});

First, you need to test whether the controller’s class is available and can be
instantiated.

With the help of Jasmine’s spyOn() function, substitute the DonorInfo model’s

donate() function.

We’re not interested in the view’s interaction—only the contract should be tested.
At this point, some methods can be substituted with the fake implementation to
let the test pass. In this case, the specification tests the situation when the form
is valid.

You need to inject emulated controller dependencies. The function donate()
was replaced by the spy.

Finally, you can assert whether the function was called by the controller.

Example 7-23 shows what the function looks like under the test.

Building Save The Child with TDD | 285

Example 7-23. The testable Donate controller

Ext.define('SSC.controller.Donate', {
 extend: 'Ext.app.Controller',
 refs: [{
 ref: 'donatePanel',
 selector: '[cls=donate-panel]'
 }
],
 init: function() {
 'use strict';
 this.control({
 'button[action=donate]': {
 click: this.submitDonateForm
 }
 });
 },
 newDonorInfo: function() {
 return Ext.create('SSC.model.DonorInfo', {});
 },
 submitDonateForm: function() {
 var form = this.getDonatePanel().down('form');
 if (form.isValid()) {
 var donorInfo = this.newDonorInfo();
 Ext.iterate(form.getValues(), function(key, value) {
 donorInfo.set(key, value);
 }, this);
 donorInfo.donate();
 }
 }
});

The factory method for creating a new instance of the SSC.model.DonorInfo
class.

If the form is valid, read data from the form fields…

…and populate properties of corresponding objects.

DonorInfo can be submitted by calling the donate() method.

Testing the Views
UI tests can be divided into two constituent parts: interaction tests and component tests.
Interactions tests simulate real-world scenarios of application usage as if a user is using
the application. It’s better to delegate the interaction tests to functional testing tools such
as Selenium or CasperJS.

286 | Chapter 7: Test-Driven Development with JavaScript

Another UI testing tool is worth mentioning, especially in the con‐
text of testing Ext JS applications: Siesta. Siesta allows you to per‐
form testing of the DOM and simulate user interactions. Written in
JavaScript, Siesta uses unit and UI testing. There are two editions of
Siesta: lite and professional.

Component tests isolate independent and reusable pieces of your application to verify
their display, behavior, and contract with other components (see the section “Testing
the Controllers” on page 284). Let’s see how we can do that. Consider Example 7-24.

Example 7-24. Testing the view

Ext.define('Test.spec.ViewsAssumptions', {}, function () {
 function prepareDOM(obj) {
 Ext.DomHelper.append(Ext.getBody(), obj);
 }
 describe('DonateForm ', function () {
 var donateForm = null;
 beforeEach(function () {
 prepareDOM({tag: 'div', id: 'test-donate'});
 donateForm = Ext.create('SSC.view.DonateForm', {
 renderTo: 'test-donate'
 });
 });
 afterEach(function () {
 donateForm.destroy();
 donateForm = null;
 });
 it('should have donateform xtype', function () {
 expect(donateForm.isXType('donateform')).toEqual(true);
 });
 });
});

A helper function for creating a fixture for DOM elements.

A reusable scoped variable.

Create a fixture for the div test element.

Create a fresh form for every test to avoid test pollution.

Destroy the form after every test so we don’t pollute the environment.

In this test, you need to make sure that the DonateForm component has the

donateform xtype.

Building Save The Child with TDD | 287

http://bit.ly/1pEdDo5

Setting Up the IDE for TDD
In this section, we will set up WebStorm to use the previously described tools inside this
IDE. We will show how to integrate Grunt with WebStorm to run Grunt tasks from
there.

Let’s begin with the Grunt setup. Currently, the WebStorm IDE has no native support
for the Grunt tool. Because Grunt is a command-line tool, you can use a general launch‐
ing feature of the WebStorm IDE and configure it as an external tool. Open the Web‐
Storm preferences and navigate to the External Tools section to access the external tools
configuration, as shown in Figure 7-11.

Figure 7-11. The External Tools configuration window in WebStorm

Click the + button to create a new external tool configuration, and you’ll see the window
shown in Figure 7-12.

288 | Chapter 7: Test-Driven Development with JavaScript

Figure 7-12. External tool configuration

To configure an external tool in WebStorm (Grunt, in this case), you need to do the
following:

1. Specify the full path to the application executable.

2. Some tools require command-line parameters. In this example, we explicitly specify

the task runner configuration file (with the --gruntifle command-line option)
and the task to be executed.

3. Specify the Working Directory to run the Grunt tool. In our case, the Grunt con‐
figuration file is located in the root of our project. WebStorm allows you to use
macros to avoid hardcoded paths. Most likely, you don’t want to set up external
tools for each new project, but to just create a universal setup. In our example, we

use the $ProjectFileDir$ macros that will be resolved as the current WebStorm
project folder root.

4. WebStorm allows you to organize related tasks into logical groups.

Building Save The Child with TDD | 289

5. You can configure how to access the external tool launcher.

When all of these steps are complete, you can find the Grunt launcher under the Tools
menu, as shown in Figure 7-13.

Figure 7-13. Grunt launcher available under the Tools→grunt menu

Unit tests are really important as a means of getting quick feedback from your code.
You can work more efficiently if you manage to minimize context switching during your
coding flow. Also, you don’t want to waste time digging through the menu items of your
IDE, so assigning a keyboard shortcut for launching external tools is a good idea.

Let’s assign a keyboard shortcut for our newly configured external tool launcher. In
WebStorm Preferences, go to the Keymap section. Use the filter to find our created

launcher jasmine: grunt test. Specify either the Keyboard or the Mouse shortcut by
double-clicking the appropriate list item, as shown in Figure 7-14.

290 | Chapter 7: Test-Driven Development with JavaScript

Figure 7-14. Setting up a keyboard shortcut for Grunt launcher

By pressing a combination of keys specified in the previous screen, you will be able to
launch Grunt for Jasmine tests with one click of a button(s). WebStorm will redirect all
the output from the Grunt tool into its Run window, as shown in Figure 7-15.

Figure 7-15. Grunt output in WebStorm

Building Save The Child with TDD | 291

Summary
Testing is one of the most important processes of software development. Well-organized
testing helps keep the code in a good working state. It’s especially important in inter‐
preted languages such as JavaScript, which has no compiler to provide a helping hand
to find lots of errors in very early stages.

In this situation, static code analysis tools, such as JSHint (discussed in Chapter 5) could
help identify typos and enforce best practices accepted by the JavaScript community.

In enterprise projects developed with compiled languages, people often debate whether
TDD is really beneficial. With JavaScript, it’s nondebatable unless you have unlimited
time and budget and are ready to live with unmaintainable JavaScript.

The enterprises that have adopted test-driven development (as well as behavior-driven
development) routines make the application development process safer by including
test scripts in the continuous integration build process.

Automating unit tests reduces the number of bugs and decreases the amount of time
developers need to spend manually testing their code. If automatically launched test
scripts (unit, integration, functional, and load testing) don’t reveal any issues, you can
rest assured that the latest code changes did not break the application logic, and that
the application performs according to SLA.

292 | Chapter 7: Test-Driven Development with JavaScript

CHAPTER 8

Upgrading HTTP to WebSocket

This chapter is about upgrading from HTTP to the more responsive HTML5 Web‐
Socket. It begins with a brief overview of the existing legacy web networking, and then
you’ll learn why and how to use WebSocket.

We’re going to show that the WebSocket protocol has literally no overhead compared
to HTTP. You might consider using WebSocket to develop the following types of ap‐
plications:

• Live trading/auctions/sports notifications

• Live collaborative writing

• Controlling medical equipment over the Web

• Chat applications

• Multiplayer online games

• Real-time updates in social streams

For the next version of the Save The Child application, we’re going to use WebSocket
to implement an online auction communication layer. The goal is to let individuals and
businesses purchase handmade arts and crafts made by children. All proceeds will go
to Save The Child.

The goal is to let you see the advantages of changing the protocol for client-server
communications on the Web. You’ll clearly see the advantages of WebSocket over regular
HTTP by monitoring network traffic with such tools as Wireshark and Google Chrome
Developer Tools.

All the server-side functionality supporting this chapter is written in Java, using the Java
API for WebSocket reference implementation, which is a part of the Java EE 7 specifi‐
cation. We are using the latest release of the GlassFish application server. If you don’t
know Java, just treat this server-side setup as a service that supports the WebSocket

293

http://java.net/projects/tyrus
http://bit.ly/T7x8GD

protocol. For Java developers interested in diving into the server side, we provide the
source code and brief comments as a part of the code samples that come with this book.

We show and compare the server-side data push done with server-sent events and
WebSocket. Also, you’ll see a brief overview of chosen frameworks such as Portal and
Atmosphere that can streamline your WebSocket application development.

Using HTTP for Near Real-Time Applications
The HTTP protocol is the lingua franca of today’s web applications, whereby client-
server communications are based on the request-response paradigm. On a low level,
web browsers establish a TCP/IP connection for each HTTP session. Currently there
are three basic options that developers use for browser-server communication: polling,
long polling, and streaming. These options are hacks on top of a half-duplex (a one-
way street) HTTP protocol to simulate real-time behavior. (By real-time we mean the
ability to react to some event as it happens.) Let’s discuss each of them.

Polling
With polling, your client code sends requests to the server based on some preconfigured

interval (for example, by using the JavaScript setInterval() function). Some of the
server’s responses will be empty if the requested data is not ready yet, as illustrated in
Figure 8-1. For example, if you’re running an online auction and send a request to see
the updated bids, you won’t receive any data back unless someone placed a new bid.

Visualize a child sitting in the back seat of your car and asking every minute, “Have we
arrived yet?” And you politely reply, “Not just yet.” This is similar to an empty server
response. There is no valuable payload for this kid, but she’s still receiving some “met‐
adata.” HTTP polling can result in receiving verbose HTTP response headers bearing
no data load, let alone distracting the driver (think, the server) from performing other
responsibilities.

Figure 8-1. Polling

294 | Chapter 8: Upgrading HTTP to WebSocket

Long Polling
Long polling (see Figure 8-2) begins similarly to polling: the client sends the HTTP
request to the server. But in this case, instead of sending an empty response back, the
server waits until the data for the client becomes available. If the requested information
is not available within the specified time interval, the server sends an empty response
to the client, closes, and reestablishes the connection.

We’ll give you one more analogy to compare polling and long polling. Imagine a party
at the top floor of a building equipped with a smart elevator that goes up every minute
and opens the door just in case one of the guests wants to go down to smoke a cigarette.
If no one enters the elevator, it goes to the ground level and in 60 seconds goes up again.
This is the polling scenario. But if this elevator went up and waited until someone ac‐
tually decided to go down (or got tired of waiting), we could call it a long polling mode.

From the HTTP specification perspective, it’s legitimate: the long polling mode might
seem as if we deal with a slow-responding server. That is why this technique also is
referred to as Hanging GET. If you see an online auction that automatically modifies
prices as people bid on items, it looks as if the server pushes the data to you. But the
chances are, this functionality was implemented by using long polling, which is not a
real server-side data push, but its emulation.

Figure 8-2. Long polling

HTTP Streaming
In HTTP streaming (see Figure 8-3), a client sends a request for data. As soon as the
server gets the data ready, it starts streaming (adding more and more data to the response
object) without closing the connections. The server pushes the data to the client, pre‐
tending that the response never ends. For example, requesting a video from YouTube
results in streaming data (frame after frame) without closing the HTTP connection.

Using HTTP for Near Real-Time Applications | 295

Figure 8-3. HTTP streaming

Polling and streaming can be used as a fallback for legacy browsers that don’t support
the HTML5 API’s server-sent events and WebSocket.

Implementing Server-Sent Events
Before diving into the WebSocket protocol, let’s become familiar with the standardized
way of implementing server-sent events (SSE). The World Wide Web Consortium
(W3C) has published an API for web browsers to allow them to subscribe to events sent

by a server. All modern browsers support the EventSource object, which can handle
events arriving in the form of DOM events. This is not a request-response paradigm,
but rather a unidirectional data push, from server to browser. Example 8-1 shows how
a web browser can subscribe and listen to server-sent events.

Example 8-1. Subscribing to server-sent events

var myEventSource = (function() {
 'use strict';
 var eventSource;
 if (!! window.EventSource) {
 eventSource =
 new EventSource
 ('http://localhost:8080/donate_web/api/donations/events');
 } else {
 // notify use that her browser doesn't support SSE
 }

 eventSource.addEventListener('open', function() {
 // Connection was opened.
 }, false);

 eventSource.addEventListener('create', function() {
 // do something with data
 }, false);

296 | Chapter 8: Upgrading HTTP to WebSocket

http://bit.ly/1iSGbr4

 eventSource.addEventListener('update', function() {
 // do something with data
 }, false);

 eventSource.addEventListener('error', function(e) {
 if (e.readyState === EventSource.CLOSED) {
 // Connection was closed.
 }
 }, false);

 return eventSource;
})();

Create a new EventSource object. At this point, the browser will send the GET
request to the specified server-side endpoint to register itself on the server.

Add handlers for the open and error events.

Handle messages in create events by processing the e.data content.

Handle messages in update events by processing the e.data content.

The preceding samples create listeners to subscribe specifically to create and update
events, but if you’d like to subscribe to any events, you could use the following syntax:

eventSource.onmessage(function(e){
 // process the content of e.data here
});

SSE is a good technique for the use cases in which the client doesn’t need to send the
data to the server. A good illustration of such a server might be Facebook’s News Feed
page. A server can automatically update the client with new data without the client’s
request.

In the preceding example, the server sends two types of custom events, create and

update, to notify subscribed clients about updated donation data so that the active
clients can monitor the fundraising process. You can create as many custom events as
needed by the application.

The server sends events as text messages that start with data: and end with a pair of
newline characters. For example:

'data: {"price": "123.45"}/n/n`

SSE is still HTTP based, and it requires the server’s support of the combination of HTTP

1.1 keep-alive connections and the text/event-stream content type in the HTTP re‐
sponse. The overhead is minimal: instead of hundreds of bytes in request and response
headers, the server sends responses only when the data has changed.

Implementing Server-Sent Events | 297

Introducing the WebSocket API
Reducing kilobytes of data to 2 bytes is more than “a little more byte efficient,” and re‐
ducing latency from 150 ms (TCP round trip to set up the connection plus a packet for
the message) to 50 ms (just the packet for the message) is far more than marginal. In fact,
these two factors alone are enough to make WebSocket seriously interesting to Google.

— Ian Hickson
 HTML spec editor at Google (http://bit.ly/1oGOzfN)

WebSocket is a bidirectional, full-duplex, frame-based protocol. According to RFC 6455
—the Internet Engineering Task Force (IETF) standard document—the goal of Web‐
Socket technology is to provide a mechanism for web applications that need two-way
communication with servers. This technology doesn’t rely on HTTP hacks or on open‐

ing multiple connections by using XMLHttpRequest or <iframe> and long polling. The
idea behind WebSocket is not overly complicated:

• Establish a socket connection between the client and the server using HTTP for the
initial handshake.

• Switch the communication protocol from HTTP to a socket-based protocol.

• Send messages in both directions simultaneously (a.k.a., full-duplex mode).

• Send messages independently. This is not a request-response model because both
the server and the client can initiate the data transmission that enables the real
server-side push.

• Both the server and the client can initiate disconnects, too.

You will get a better understanding of each of the preceding statements after reading
this section.

The WebSocket protocol defines two new URI schemes, ws and wss, for unencrypted

and encrypted connections, respectively. The ws (WebSocket) URI scheme is similar to
the HTTP URI scheme and identifies that a WebSocket connection will be established

by using TCP/IP without encryption. The wss (WebSocket Secure) URI scheme iden‐
tifies that the traffic over that connection will be protected via Transport Layer Security
(TLS). The TLS connection provides such benefits over TCP connection, as data con‐
fidentiality, integrity, and endpoint authentication. Apart from the scheme name, Web‐
Socket URI schemes use generic URI syntax.

The WebSocket Interface
The W3C expert group uses Interface Description Language to describe what the Web‐
Socket interface should look like. Example 8-2 shows how it is defined.

298 | Chapter 8: Upgrading HTTP to WebSocket

http://bit.ly/1uDjE1n
http://bit.ly/1vnFXZf
http://bit.ly/1yKFKDT

Example 8-2. The WebSocket interface

[Constructor(DOMString url, optional (DOMString or DOMString[]) protocols)]
interface WebSocket : EventTarget {
 readonly attribute DOMString url;

 const unsigned short CONNECTING = 0;
 const unsigned short OPEN = 1;
 const unsigned short CLOSING = 2;
 const unsigned short CLOSED = 3;
 readonly attribute unsigned short readyState;
 readonly attribute unsigned long bufferedAmount;

 // networking
 [TreatNonCallableAsNull] attribute Function? onopen;
 [TreatNonCallableAsNull] attribute Function? onerror;
 [TreatNonCallableAsNull] attribute Function? onclose;
 readonly attribute DOMString extensions;
 readonly attribute DOMString protocol;
 void close([Clamp] optional unsigned short code, optional DOMString reason);

 // messaging
 [TreatNonCallableAsNull] attribute Function? onmessage;
 attribute DOMString binaryType;
 void send(DOMString data);
 void send(ArrayBufferView data);
 void send(Blob data);
};

The constructor requires an endpoint URI and optional subprotocol names. A
subprotocol is an application-level protocol layered over the WebSocket
protocol. The client-side application can explicitly indicate which subprotocols
are acceptable for the conversation between the client and server. That string

will be sent to the server with the initial handshake in the Sec-WebSocket-

Protocol GET request header field. If the server supports one of the requested
protocols, it selects at most one and echoes that value in the same header

parameter Sec-WebSocket-Protocol in the handshake’s response. The server
thereby indicates that it has selected that protocol. It could be a custom protocol
or one of the standard application-level protocols (see “Creating the Save The
Child Auction Protocol” on page 328). For example, it’s possible to transfer the
SOAP or XMPP messages over the WebSocket connection. We discuss the
handshake in “WebSocket handshake” on page 301.

At any given time, the WebSocket can be in one of four states.

These are the callback functions of the WebSocket object that will be invoked by
the browser after the appropriate network event is dispatched.

Introducing the WebSocket API | 299

This property contains the name of the subprotocol used for the conversation.
After a successful handshake, this property is populated by the browser with the

value from the server’s response parameter Sec-WebSocket-Protocol, as
described in .

The WebSocket object can send text or binary data to the server by using one

of the overloaded send() methods.

The Client-Side API
Now that we have introduced the WebSocket interface, take a look at the code in
Example 8-3, illustrating how the client’s JavaScript can use it.

Example 8-3. Using WebSocket in a JavaScript client

var ws;
(function(ws) {
 "use strict";
 if (window.WebSocket) {
 console.log("WebSocket object is supported in your browser");
 ws = new WebSocket("ws://www.websocket.org/echo");
 ws.onopen = function() {
 console.log("onopen");
 };
 ws.onmessage = function(e) {
 console.log("echo from server : " + e.data);
 };

 ws.onclose = function() {
 console.log("onclose");
 };
 ws.onerror = function() {
 console.log("onerror");
 };

 } else {
 console.log("WebSocket object is not supported in your browser");
 }
})(ws);

Not all web browsers support WebSocket natively as of yet. Check whether the

WebSocket object is supported by the user’s browser.

Instantiate the new WebSocket object by passing an endpoint URI as a
constructor parameter.

Set the event handlers for open, message, and close events.

300 | Chapter 8: Upgrading HTTP to WebSocket

MessageEvent is dispatched when the data is received from the server. This
message will be delivered to the function assigned to the WebSocket object’s

onmessage property. The e.data property of the message event will contain the
received message.

Handle the closing connection (more details in “Closing the connection” on page
305).

Handle errors.

WebSocket handshake

Any network communications that use the WebSocket protocol start with an opening
handshake. This handshake upgrades the connection from HTTP to the WebSocket
protocol. It’s an upgrade of HTTP to message-based communications. We discuss mes‐
sages (a.k.a. frames) later in this chapter.

Why upgrade from HTTP instead of starting with TCP as a protocol in the first place?
The reason is that WebSocket operates on the same ports (80 and 443) as do HTTP and
HTTPS. It’s an important advantage that the browser’s requests are routed through the
same ports, because arbitrary socket connections may not be allowed by the enterprise
firewalls for security reasons. Also, many corporate networks allow only certain out‐
going ports. And HTTP/HTTPS ports are usually included in so called white lists.

High Performance Browser Networking by Ilya Grigorik (O’Reilly)
provides more information about TCP and HTTP.

The protocol upgrade is initiated by a client request, which also transmits a special key
with the request. The server processes this request and sends back a confirmation for
the upgrade. This ensures that a WebSocket connection can be established only with an
endpoint that supports WebSocket. Here is what the handshake can look like in the
client’s request:

 GET HTTP/1.1
 Upgrade: websocket
 Connection: Upgrade
 Host: echo.websocket.org
 Origin: http://www.websocket.org
 Sec-WebSocket-Key: i9ri`AfOgSsKwUlmLjIkGA==
 Sec-WebSocket-Version: 13
 Sec-WebSocket-Protocol: chat

This client sends the GET request for the protocol upgrade. Sec-WebSocket-Key is just
a set of random bytes. The server takes these bytes and appends to this key a special

Introducing the WebSocket API | 301

http://shop.oreilly.com/product/0636920028048.do

globally unique identifier (GUID) string 258EAFA5-E914-47DA-95CA-C5AB0DC85B11.

Then, it creates the Secure Hash Algorithm SHA1 hash from it and performs Base64
encoding. The resulting string of bytes needs to be used by both the server and the client,
and this string won’t be used by network endpoints that do not understand the Web‐

Socket protocol. Then, this value is copied in the Sec-WebSocket-Accept header field.
The server computes the value and sends the response back, confirming the protocol
upgrade:

 HTTP/1.1 101 Web Socket Protocol Handshake
 Upgrade: WebSocket
 Connection: Upgrade
 Sec-WebSocket-Accept: Qz9Mp4/YtIjPccdpbvFEm17G8bs=
 Sec-WebSocket-Protocol: chat
 Access-Control-Allow-Origin: http://www.websocket.org

The WebSocket protocol uses the 400 Bad Request HTTP error code to signal an
unsuccessful upgrade. The handshake can also include a subprotocol request and the
WebSocket version information, but you can’t include other arbitrary headers. We can’t
transmit the authorization information. There are two ways around this. You can either
transmit the authorization information as the first request (for example, the unique

clientId can be passed as part of the HTTP request header or HTML wrapper) or put
it into the URL as a query parameter during the initial handshake. Consider the fol‐
lowing example:

var clientId = "Mary1989";
ws = new WebSocket("ws://www.websocket.org/echo/"+clientID);

The clientId value, which can be obtained from a Lightweight Directory Access
Protocol (LDAP) server.

The client connects to the WebSocket endpoint with an extra URI parameter
that will be stored on the server for future interactions.

Because the WebSocket protocol creates a bidirectional (socket-to-socket) connection,
the server has access to the conversation session associated with such a connection. This

session can be associated with clientId and be stored on the server.

A client can have as many WebSocket connections with the server as
needed. But servers can refuse to accept connections from hosts/IP
addresses with an excessive number of existing connections or can
disconnect from resource-hogging connections in case of high data
load.

WebSocket frame anatomy

The WebSocket handshake is the first step in switching to the message framing protocol,
which will be layered over TCP. In this section, we’re going to explore how WebSocket

302 | Chapter 8: Upgrading HTTP to WebSocket

data transfer works. WebSocket is not a stream-based protocol like TCP—it’s message
based. With TCP, a program sends a stream of bytes, which has to have a specific indi‐
cation that the data transfer ends. The WebSocket specification simplifies this by putting
a frame around every chunk of data, and the size of the frame is known. JavaScript can
easily handle these frames on the client because each frame arrives packaged in the event
object. But the server side has to work a little harder because it needs to wrap each piece
of data into a frame before sending it to the client. A frame can look like this:

+-+-+-+-+-------+-+-------------+-------------------------------+
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-------+-+-------------+-------------------------------+
F	R	R	R	opcode	M	Payload len	Extended payload length
I	S	S	S	(4)	A	(7)	(16/64)
N	V	V	V		S		(if payload len==126/127)
	1	2	3		K		
+-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +							
Extended payload length continued, if payload len == 127							
+ - - - - - - - - - - - - - - - +-------------------------------+
| |Masking-key, if MASK set to 1 |
+-------------------------------+-------------------------------+
| Masking-key (continued) | Payload Data |
+-------------------------------- - - - - - - - - - - - - - - - +
: Payload Data continued ... :
+ - +
| Payload Data continued ... |
+---+

The parts of the frame are as follows:

FIN (1 bit)
This bit indicates whether this frame is the final one in the message payload. If a
message has under 127 bytes, it fits into a single frame and this bit will always be
set.

RSV1, RSV2, RSV3 (1 bit each)
These bits are reserved for future protocol changes and improvements. They must
contain zeros because they are not being used at this time.

opcode (4 bits)
The frame type is defined by using opcode. Here are the most-used opcodes:

0x00

This frame continues the payload.

0x01

This frame includes UTF-8 text data.

0x02

This frame includes the binary data.

Introducing the WebSocket API | 303

0x08

This frame terminates the connection.

0x09

This frame is a ping.

0xA

This frame is a pong.

mask (1 bit)
This indicates whether the frame is masked.

The client must mask all the frames being sent to the server. The server
must close the connection upon receiving a frame that is not masked.
The server must not mask any frames that it sends to the client. The
client must close a connection if it detects a masked frame. In case of

an error, the client or server can send the Close frame containing the
status code 1002 (the protocol error). All these actions are done au‐
tomatically by web browsers and web servers that implements Web‐
Socket specification.

payload_len (7 bits, 7 + 16 bits, or 7 + 64 bits)
The length of the payload. WebSocket frames come in the following length brackets:

• 0–125 indicate the length of the payload.

• 126 means that the following 2 bytes indicate the length.

• 127 means the next 8 bytes indicate the length.

masking-key (32 bits)
This key is used to XOR the payload.

payload data

This indicates the actual data. The length of the block is defined in the pay

load_len field.

The heartbeats

A properly designed distributed application has to have a way to ensure that each tier
of the system is operational even if there is no active data exchange between the client
and the server. This can be done by implementing so-called heartbeats—small messages
that simply ask the other party, “Are you there?” For example, proxy servers and content-
filtering hardware can terminate idle connections, or the server could simply go down.
If a client doesn’t send any requests, say, for 20 seconds, but the server went down, the

client will know about it only when it does the next send(). Heartbeats will keep the
connection alive to ensure that it won’t appear to be idling. In WebSocket jargon, heart‐

304 | Chapter 8: Upgrading HTTP to WebSocket

http://bit.ly/1uDjE1n
http://bit.ly/1uDjE1n

beats are implemented with ping and pong frames. The browser sends the ping opcode

0x9 at any time to ask the other side to pong back (the opcode 0xA).

A web browser can ping the server when required, but a pong can be sent at the server’s
discretion. If the endpoint receives a ping frame before responding to the previous one,
the endpoint can elect to send just one pong frame for the most recently processed ping.
The ping frame may contain the application data (up to 125 bytes), and the pong must
have identical data in its message body.

There is no JavaScript API to send pings or receive pong frames. Pings and pongs may
or may not be supported by the user’s browser. There is also no API to enable, configure,
or detect whether the browser supports pings and pongs.

Data frames

Because the WebSocket protocol allows data to be fragmented into multiple frames, the
first frame that transmits data will be prepended with one of the following opcodes
indicating the type of data being transmitted:

• The opcode 0x01 indicates UTF-8–encoded text data.

• The opcode 0x02 indicates binary data.

When your application transmits JSON over the wire, the opcode is set to 0x01. When

your code emits binary data, it will be represented in a browser-specific Blob object or

an ArrayBuffer object and sent wrapped into a frame with the opcode 0x02. The fol‐
lowing example shows how the WebSocket message listener checks the data type of the
incoming message:

You must choose the type for the incoming binary data on the cli‐

ent by using webSocket.binaryType = "blob" or webSocket.bina

ryType = "arraybuffer" before reading the data. It’s a good idea to
check the type of the incoming data because the opcodes are not
exposed to the client.

webSocket.onmessage = function(messageEvent) {
 if (typeof messageEvent.data === "string"){
 console.log("received text data from the server: " + messageEvent.data);
 } else if (messageEvent.data instanceof Blob){
 console.log("Blob data received")
 }
};

Closing the connection

The connection is terminated by sending a frame with the close opcode 0x08.

Introducing the WebSocket API | 305

http://bit.ly/1uDjLtE
http://bit.ly/1soFv0D

There is the pattern to exchange close opcodes first and then let the server shut down.
The client is supposed to give the server time to close the connection before attempting
to do that on its own. The close event can also signal why it has terminated the con‐
nection.

A CloseEvent is sent to clients using WebSocket when the connection is closed. This is

delivered to the listener indicated by the WebSocket object’s onclose handler. CloseE

vent has three properties—code, reason, and wasClean:

code

This property represents the close code provided by the server.

reason

A string indicating the reason why the server closed the connection.

wasClean

This property indicates whether the connection was cleanly closed.

The following example illustrates how to handle the connection closing:

webSocket.onclose = function(closeEvent) {
 console.log("reason " + closeEvent.reason + "code " + closeEvent.code);
};

Using WebSocket Frameworks
Working with the vanilla WebSocket API requires you to do some additional “house‐
keeping” coding on your own. For example, if the client’s browser doesn’t support Web‐
Socket natively, you need to make sure that your code falls back to the legacy HTTP.
The good news is that there are frameworks that can help you with this task. Such
frameworks lower the development time, allowing you to do more with less code. In
this section, we include brief reviews of two frameworks that can streamline your web
application development with WebSocket.

These frameworks try to utilize the best supported transport by the current web browser
and server while sparing the developer from knowing the internals of the used mech‐
anism. The developer can concentrate on programming the application logic, making
calls to the framework API when the data transfer is needed. The rest will be done by
the framework.

The Portal
The Portal is a server-agnostic JavaScript library. It aims to utilize a WebSocket protocol
and provides a unified API for various transports (long polling, HTTP streaming, Web‐
Socket). Currently, after you’ve decided to use WebSocket for your next project, you
need to remember those users who still use earlier browsers such as Internet Explorer
9 or older, which don’t natively support WebSocket. In this case, your application should

306 | Chapter 8: Upgrading HTTP to WebSocket

http://bit.ly/1q9xdX0

gracefully fall back to the best available networking alternative. Manually writing code
to support all possible browsers and versions requires lots of time, especially for testing

and maintaining the code for different platforms. The Portal library could help, as
illustrated in Example 8-4.

Example 8-4. Simple asynchronous web application client with Portal

portal.defaults.transports = ["ws", "sse", "stream", "longpoll"];

portal.open("child-auction/auction").on({
 connecting: function() {
 console.log("The connection has been tried by '"
 + this.data("transport") + "'");
 },
 open: function() {
 console.log("The connection has been opened");
 },
 close: function(reason) {
 console.log("The connection has been closed due to '" + reason + "'");
 },
 message: function(data) {
 handleIncommingData(data);
 },
 waiting: function(delay, attempts) {
 console.log("The socket will try to reconnect after " + delay + " ms");
 console.log("The total number of reconnection attempts is " + attempts);
 }
});

The Portal framework supports different transports and can fall back from a
WebSocket connection to streaming or long polling. The server also has to
support a fall-back strategy, but no additional code is required on the client side.

Connecting to the WebSocket endpoint.

The Portal API is event-based, similar to the W3C WebSocket API.

The Portal framework generalizes client-side programming. When defining an array of
transports, you don’t have to worry about how to handle messages sent by a server with
a different transport. The Portal doesn’t depend on any JavaScript library.

Atmosphere
A web application that has to be deployed on several different servers (for example,
WebSphere, JBoss, and WebLogic) might need to support different WebSocket APIs. At
the time of this writing, a plethora of implementations of server-side libraries support
WebSocket, and each uses its own proprietary API. The Java EE 7 specification intends
to change the situation. But Atmosphere is a framework that allows you to write portable
web applications today.

Using WebSocket Frameworks | 307

Atmosphere is a portable WebSocket framework supporting Java, Groovy, and Scala.
The Atmosphere framework contains both client and server components for building
asynchronous web applications. Atmosphere transparently supports WebSocket,
server-side events, long polling, HTTP streaming, and JSONP.

The client-side component Atmosphere.js uses the Portal framework internally and
simplifies the development of web applications that require a fallback from the Web‐
Socket protocol to long polling or HTTP streaming. Atmosphere hides the complexity
of the asynchronous APIs, which differ from server to server, and makes your applica‐
tion portable among them. Treat Atmosphere as a compatibility layer that allows you
to select the best available transport for all major Java application servers.

The Atmosphere framework supports a wide range of Java-based server-side technol‐
ogies via a set of extensions and plug-ins. Atmosphere supports the Java API for Web‐
Socket, so you can have the best of two worlds—the standard API and application
portability.

WebSocket can be used not only for the Web, but in any applica‐
tions that use networking. If you’re developing native iOS or OS X
applications, check the SocketRocket library developed by the Square
engineering team.

Square uses SocketRocket in its mobile payments application. If you’re
developing native Android applications and want to use WebSocket
protocol goodies in Android-powered devices, check the Asyn‐
cHttpClient framework.

Choosing the Format for Application-Level Messages
Although WebSocket is a great solution for real-time data transmission over the Web,
it has a downside, too: the WebSocket specification defines only a protocol for trans‐
porting frames, but it doesn’t include an application-level protocol. Developers need to
invent the application-specific text or binary protocols. For example, the auction bid
has to be presented in a form agreed upon by all application modules. Let’s discuss our
options from a protocol-modeling perspective.

Selecting a message format for your application’s data communications is important.
The most common text formats are CSV, XML, and JSON. They are easy to generate
and parse, and are widely supported by many frameworks in most development plat‐
forms. Although XML and JSON allow you to represent data in a hierarchical form that
is easily readable by humans, they create a lot of overhead by wrapping each data element
into additional text identifiers. Sending this additional textual information requires
extra bandwidth and might need additional string-to-type conversion on both the client
and server’s application code. Let’s discuss the pros and cons of these message formats.

308 | Chapter 8: Upgrading HTTP to WebSocket

http://bit.ly/1sRd2AQ
http://bit.ly/1m2j4Jw
http://bit.ly/1ilP7EX
http://bit.ly/1piiqsT
http://bit.ly/1q9xmcZ
http://corner.squareup.com/
http://corner.squareup.com/
http://bit.ly/UbSPq1
http://bit.ly/UbSPq1

CSV
CSV stands for comma-separated values, although the delimiter can be any character;
you’re not restricted to only a comma. This depends on the parser design and imple‐

mentation. Another popular type of delimiter is | (a pipe).

The pros of this format are as follows:

• This format is very compact. The overhead of the separator symbol is minimal.

• It’s simple to create and parse. The CSV message can be turned into an array of

values by using the standard JavaScript String.split().

These are the cons of using CSV:

• It’s not suitable for storing complex data structures and hierarchies. In the case of
our auction application, we need to transfer the client auction items’ attributes for

each auction. We can’t simply use String.split() and have to design and imple‐
ment a more complex parser.

XML
XML nicely represents any hierarchal data structures.

These are its pros:

• It’s a human-readable format.

• Most browsers have built-in XML readers and parsers.

• XML data can be validated against XSD or DTD schema.

An XML schema is a useful language feature because it defines the structure, con‐
tent, and semantics of an XML document. Because of its human-readability, the
XML schema can be used used by people who are not software developers and can
be used to integrate systems written in different programming languages.

Its cons are as follows:

• XML is very verbose. To send the name of a customer, you’d need something like

this: <cust_name>Mary</cust_name>.

• The XML validation on the client is a complex task. As of now, there are no platform-
independent solutions or an API to perform validation programmatically based on
XSD or DTD.

Choosing the Format for Application-Level Messages | 309

XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means
(O’Reilly) is a well-written book describing the full spectrum of XML
features and tools.

JSON
As explained in Chapter 2, JSON stands for JavaScript Object Notation, and it’s a way
of representing structured data, which can be encoded and decoded by all web browsers.
JSON is widely accepted by the web community as a popular way to serialize data. As
stated earlier, it provides a more compact way than XML to represent data, and all
modern web browsers understand and can parse JSON data.

Google Protocol Buffers
A Google protocol buffer (or protobuf) is a language and platform-neutral extensible
mechanism for structured data serialization. After you define how you want your data
to be structured, you can use special generated source code to easily write and read your
structured data to and from a variety of data streams. Developers can use the same
schemas across diverse environments.

A developer needs to specify how the serializable information has to be structured by
defining the protocol buffer message types in .proto files. Each protocol buffer message
is a small, logical record of information containing a series of name/value pairs. This

protocol buffer message file is language agnostic. The protoc utility compiles proto files
and produces language-specific artifacts (for example .java and .js files).

For example, you can create a protocol buffer proto file for Save The Child to represent
the information about donors, as shown in Example 8-5.

Example 8-5. Protocol buffer for donation message (donation.proto)

package savesickchild;

option java_package = "org.savesickchild.web.donation";

message Donor{
 required string fullname = 1;
 required string email = 2;
 required string address = 3;
 required string city = 4;
 required string state = 5;
 required int32 zip = 6;
 required string country = 7;

 message Donation{
 required Donor donor = 1;

310 | Chapter 8: Upgrading HTTP to WebSocket

http://shop.oreilly.com/product/9780596007645.do
http://bit.ly/1r5z9lc

 required double amount = 2;
 optional bool receipt_needed = 3;
 }
}

The protobuf supports packages to prevent naming conflicts among messages
from different projects.

Here we’re using a Java-specific protobuf option to define the package in which
the generated code will reside.

Start defining our custom message with the message keyword.

Each message field can be required, optional, or repeated. The required and

optional modifiers are self-explanatory. During the serialization-deserization
process, the protobuf framework checks the message for the existence of fields,

and if a required property is missing, will throw a runtime exception. The re

peated modifier is used to create dynamically sized arrays.

The protobuf supports nested messages.

Many standard field types are available in protobuf: string, int32, float, dou

ble, and bool. You can also define a custom type and use it as a field type.

After creating the donation.proto file, you can use the protoc compiler to generate Java
classes according to this file’s definitions:

protoc -I=. --java_out=src donation.proto #

.
├── donation.proto
└── src
 └── org
 └── savesickchild
 └── web
 └── donation
 └── Donation.java #

The Java code will be generated in the src directory.

All required code for serialization-deserilization of the Donation message will
be included in Donation.java. We’re not going to publish the generated code
here, but you can generate this code by yourself from the previous message
declaration.

Check the availability of the protobuf compiler for your preferred language at the pro‐
tobuf wiki page. To become familiar with protobuf technology, check the documenta‐
tion and tutorials.

Here are some protobuf pros:

Choosing the Format for Application-Level Messages | 311

http://bit.ly/1r8m3Rx
http://bit.ly/1r8m3Rx
http://bit.ly/1kOjQVS
http://bit.ly/1kOjQVS
http://bit.ly/1yjEVlk

• The message is encoded into a compact and optimized binary format. You can find
details of the encoding format at the Protocol Buffers documentation website.

• Google supports protocol buffers for a wide range of programming languages (Java,
C++, Python). The developer’s community supports it, too.

• The use of protocol buffers is well documented.

The following are some of the cons:

• The binary format is not human readable.

• Although protobuf is compact, especially when a lot of numeric values are trans‐
ferred by an encoding algorithm, the JSON is natively supported by the JavaScript
and doesn’t require any additional parser implementation.

• Protobuf requires web browsers to support binary format, but not all of them do
just yet. You can find which browsers support raw binary data at Can I Use….

Using WebSocket with Proxies
The WebSocket protocol itself is unaware of intermediaries such as proxy servers, fire‐
walls, and content filters. Proxy servers are commonly used for content caching, security,
and enterprise content filtering.

HTTP has always supported protocol upgrades, but many proxy servers seem to have

ignored that part of the specification. Until WebSocket came around, the Upgrade at‐
tribute was not used. The problem with web applications that use a long-lived connec‐
tion like WebSocket is that the proxy servers might choose to close streaming or idle
WebSocket connections because they appear to be trying to connect to an unresponsive
HTTP server. Additionally, proxy servers might buffer unencrypted HTTP responses,
assuming that the browser needs to receive the HTTP response in its entirety.

If you want more details on how a WebSocket-enabled application has to deal with
proxies, check out the comprehensive research paper by Google’s Peter Lubbers, Web‐
Socket and Proxy Servers.

The authors of this book use NGINX, a hugely popular load balanc‐
er and proxy and HTTP server to serve static resources (for exam‐
ple, images and text files), balance the load between Java servers, and
perform SSL offloading (turning the web browser’s HTTPS requests
into HTTP). NGINX uses a small number threads to support thou‐
sands of concurrent users, as opposed to traditional web servers that
use one worker thread per connection. Recently, NGINX started sup‐
porting the WebSocket protocol.

312 | Chapter 8: Upgrading HTTP to WebSocket

http://bit.ly/UbTSpV
http://bit.ly/1r8m3Rx
http://bit.ly/UbTSpV
http://caniuse.com/#search=binary
http://bit.ly/TJkga3
http://bit.ly/TJkga3
http://nginx.com

Adding an Auction to Save The Child
We gave you just enough theory to whet your appetite for implementing WebSocket in
our Save The Child application. The goal is to create an auction so that people can bid
and purchase various goods and have the proceeds go to Save The Child. Auctions
require real-time communications: everyone interested in the particular auction item
must be immediately notified of being overbid or of winning. So we’ll use WebSocket
as a means for bidding and providing notifications of the changes in the auction.

To start the auction, the user has to select the Auction option under the menu Way To
Give (see Figure 8-4). We realize that only a small number of users will decide to par‐
ticipate in the auction, which from an architectural point of view means that the code
supporting the auction should be loaded on demand only if the user chooses to visit the
auction. This is why we need to write this code as a loadable module, and you will get
a practical example of how a web application can be modularized.

In this chapter, we continue to use RequireJS (see Chapter 6) as a framework for mod‐
ularization. Using RequireJS, we’re going to lazy-load some modules if and only if they
are requested by the user.

This book is about development of the user interface and client side of web applications,
so we’re not going to cover all the details of server-side implementation but will make
our server-side code available for download. We’ll keep our server up and running so
that you can test the UI by visiting http://savesickchild.org:8080/websocket-auction/, but
our main goal in this section is to show you how you can exchange auction data with
the server and process it on the client side by using WebSocket. We’ll use the Java ap‐
plication server GlassFish 4, which is a reference implementation of the Java EE 7 spec‐
ification.

The authors of this book are Java developers and we have recorded a
screencast (see readme.asciidoc) highlighting the WebSocket server
API. If you are not a Java developer, you might want to learn on your
own which WebSocket servers exist for your favorite programming
language or platform.

Chapter 6 demonstrates how a web application can be sliced into several modules by
using the RequireJS framework. We’ll use that project as a base and create a new one,
project-16-websocket-auction, adding to it the new modules supporting the auction.

Example 8-6 shows the code of the WayToGive module.

Example 8-6. WayToGive module (js/modules/way-to-give.js)

define([], function() {
 var WayToGive;
 console.log("way-to-give module is loaded");

Adding an Auction to Save The Child | 313

http://savesickchild.org:8080/websocket-auction/
http://bit.ly/1lDlWwh

 WayToGive = function() {
 return {
 render: function() {
 // rendering code is omitted
 console.log("way-to-give module is rendered");
 rendered = true;
 return
 },
 startAuction: function(){

 },
 rendered: false
 };
 };
 return WayToGive;
});

This function lazy-loads the auction application content and renders it to the
top main section of the web page.

The function startAuction() starts the auction.

The module stores the rendering state in the property rendered.

After the application starts, RequireJS loads only the essential modules, login and

donation, as shown in Figure 8-4.

In the Google Chrome Developer Tools console, you can see that the login and dona

tion modules are reporting about successful loading. Figure 8-5 confirms that these
modules perform fine; clicking the Donate Now button reveals the form, and clicking
the Login button makes the ID and Password fields visible.

314 | Chapter 8: Upgrading HTTP to WebSocket

Figure 8-4. Initially only two modules are loaded

Figure 8-5. Two modules are loaded during the Save The Child application startup

Adding an Auction to Save The Child | 315

Now click the Way To Give menu and keep an eye on the Developer Tools console (see

Figure 8-6). You will see the WayToGive module reporting about its loading and ren‐
dering.

Figure 8-6. The auction controls are loaded and rendered

When the user clicks Way To Give, the RequireJS framework has to load the code of the
WebSocket-based auction module. Example 8-7 presents the code snippet from the
JavaScript file app.js, the entry point of our Save The Child application. This is how it
loads the module on demand (see Chapter 6 for a RequireJS refresher).

Example 8-7. Loading the Way to Give module

require([], function() {
 'use strict';
 return (function() {
 var lazyLoadingEventHandlerFactory, wayToGiveHandleClick, wayToGiveModule,
 way_to_give;
 way_to_give = document.getElementById('way-to-give');

 wayToGiveModule = null;

 lazyLoadingEventHandlerFactory = function(module, modulePath) {
 var clickEventHandler;
 clickEventHandler = function(event) {
 console.log(event.target);
 if (module === 'loading') {

316 | Chapter 8: Upgrading HTTP to WebSocket

 return;
 }
 if (module !== null) {
 return module.startAuction();
 } else {
 module = 'loading';
 return require([modulePath], function(ModuleObject) {
 module = new ModuleObject();
 return module.render();
 });
 }
 };
 return clickEventHandler;
 };
 wayToGiveHandleClick = lazyLoadingEventHandlerFactory(wayToGiveModule,
 'modules/way-to-give');

 way_to_give.addEventListener('click', wayToGiveHandleClick, false);
 })();
});

This anonymous function will be lazy-loaded only if the user clicks the Way To
Give menu.

The variable wayToGiveModule has a value of null until loaded.

If the user keeps clicking the menu while the way-to-give module is still being
loaded, simply ignore these clicks.

If the module has been loaded and the UI has been rendered, start the auction
application.

Set an intermediary value to the way-to-give module so that subsequent
requests don’t try to launch the module more than once.

Load the module asynchronously and instantiate it.

Render the UI component to the screen for the first time.

Register the click event listener for the Way To Give menu.

After the UI elements have rendered, the client can connect to the WebSocket server
and request the list of all available auction items, as shown in Example 8-8.

Example 8-8. Connecting to the WebSocket server

 if (window.WebSocket) {
 webSocket = new WebSocket("ws://localhost:8080/child-auction/auction");
 webSocket.onopen = function() {
 console.log("connection open...");
 getAuctionsList();
 };
 webSocket.onclose = function(closeEvent) {
 // notify user that connection was closed

Adding an Auction to Save The Child | 317

 console.log("close code " + closeEvent.code);
 };
 webSocket.onmessage = function(messageEvent) {
 console.log("data from server: " + messageEvent.data);
 if (typeof messageEvent.data === "string") {
 handleMessage(messageEvent.data);
 }
 };
 webSocket.onerror = function() {
 // notify user about connection error
 console.log("websocket error");
 };
 }

After establishing the connection, the code requests the list of available auctions.

We’ll see details of getAuctionsList() method in the next snippet:

var getAuctionsList = function() {
 'use strict';
 var auctionListMessage = {
 type: 'AUCTIONS_LIST',
 data: 'gime',
 auctionId: '-1'
 };
 if (webSocket.readyState === 1) {
 webSocket.send(JSON.stringify(auctionListMessage));
 } else {
 console.log('offline');
 }
};

Form the request message. You can find the details of the message format in
“Creating the Save The Child Auction Protocol” on page 328.

Check the WebSocket object state. If WebSocket is open (readyState===1), the
application can send a message. If not, this code just simply logs the “offline”
mesage on the console. In the real world, you should always display this message
on the user’s UI. Also, if your users work on unstable networks such as cellular
or 3G, you definitely don’t want to lose any bits of data. It’s a good idea to use
the local storage API (see Chapter 1) to persist the data locally until the
application gets back online and resubmits the data.

The user can select the auction lot from the combo box and see its images. Figure 8-7
shows what’s displayed on the console, while Figures 8-8 and 8-9 show the content of
the Network tab for both images.

318 | Chapter 8: Upgrading HTTP to WebSocket

Figure 8-7. The console logs incoming messages containing a list of auction items

Figure 8-8. By using the Network feature of DevTools, we can monitor WebSocket
frames

Adding an Auction to Save The Child | 319

Figure 8-9. The buyer can choose another item on which to bid

Monitoring WebSocket Traffic by Using Chrome Developer Tools
Let’s review the practical use of the theory described in “WebSocket handshake” on page
301. With the help of Chrome Developer Tools, you can monitor information about the
initial handshake, as shown in Figure 8-10. Monitoring WebSocket traffic in Chrome
Developer Tools is, in some ways, not that different from monitoring HTTP requests.

The traffic can be viewed in the Network tab after selecting the path of the WebSocket
endpoint in the left panel.

You can also click WebSockets at the lower right to show only the WebSocket endpoints.
Click the Frames tab in the right panel to view the actual frames being exchanged be‐
tween the client and server, as shown in Figure 8-11. The white-colored rows represent
incoming data; those in green (or gray on paper) indicate outgoing data.

320 | Chapter 8: Upgrading HTTP to WebSocket

Figure 8-10. Initial WebSocket handshake in Chrome DevTools

Figure 8-11. Monitoring WebSocket frames in Chrome Developer Tools

Adding an Auction to Save The Child | 321

For more details, you can navigate Google Chrome to the secret URL chrome://net-
internals, which provides a lot of useful information (see Figures 8-12 and 8-13). You
can find documentation about net-internals in Chromium Design Documents.

Figure 8-12. Details of the initial handshake in Chrome net-internals

Google Developer Tools show just the length of the data. But chrome://net-internals
shows the size of the WebSocket frame, too. Figure 8-14 compares the views of net-
internals and Developer Tools. As you learned earlier in this chapter, the total size of
the frame is slightly different from the size of the payload. There are a few more bytes
for the frame header. Moreover, all outgoing messages will be masked by the browser
(see “WebSocket frame anatomy” on page 302). This frame’s mask is going to be trans‐
ferred to the server as a part of the frame itself, which creates an additional 32 bits (4
bytes) of overhead.

322 | Chapter 8: Upgrading HTTP to WebSocket

http://bit.ly/1ilSHyM

Figure 8-13. Details of the socket connection

Figure 8-14. Developer Tools and net-internals, side by side

Sniffing WebSocket Frames by Using Wireshark
Wireshark is a powerful and comprehensive monitoring tool for analyzing network
traffic. You can download it from Wireshark’s website. To begin capturing WebSocket

Adding an Auction to Save The Child | 323

http://www.wireshark.org

traffic on localhost, select the loopback network interface from the left panel and click
Start (see Figure 8-15).

Figure 8-15. The Wireshark application main view

Wireshark captures all network activity. You can set up a filter to see only the data in

which you are interested. We want to capture HTTP and TCP traffic on port 8080
because our WebSocket server (Oracle’s GlassFish) runs on this port (see Figure 8-16).

Enter http && (tcp.dstport==8080) in the filter text box and click Apply.

Figure 8-16. Filter setup

Now Wireshark is ready to sniff out the traffic of our application. You can start the
auction session and place bids. After you’re done with the auction, you can return to

the Wireshark window and analyze the results. You can see the initial handshake (GET

request in Figure 8-17 and the Upgrade response in Figure 8-18).

324 | Chapter 8: Upgrading HTTP to WebSocket

Figure 8-17. The GET request for protocol upgrade

Figure 8-18. The GET response with protocol upgrade

Adding an Auction to Save The Child | 325

After the successful connection upgrade, Wireshark captures the http-alt stream (this
is how it reports WebSocket’s traffic) on the 8080 port. Right-click this row and select
Follow TCP Stream, as shown in Figure 8-19.

Figure 8-19. The Follow TCP Stream menu

On the next screen, you can see the details of the WebSocket frame (see Figure 8-20).
We took this screenshot right after the auction application started. You can see the data
with the list of available auctions. The outgoing data appears in red, and the incoming
data is shown in blue.

326 | Chapter 8: Upgrading HTTP to WebSocket

Figure 8-20. A WebSocket frame

The screenshot shown in Figure 8-21 was taken after the auction closed. You can see all
the data sent over the WebSocket connection.

Adding an Auction to Save The Child | 327

Figure 8-21. The entire auction conversation

Creating the Save The Child Auction Protocol
Because WebSocket is just a transport protocol, we need to come up with an application-
level protocol indicating how auction messages should be formatted in the client-server
interaction. This is how we decided to do it:

1. The client’s code connects to the WebSocket endpoint on the server.

2. The client’s code sends the AUCTION_LIST message to retrieve the list of currently
running auctions:

{
 "type": "AUCTIONS_LIST",
 "data": "empty",
 "auctionId": "-1"
}

The type of the message is AUCTION_LIST.

This message doesn’t send any data.

This message doesn’t request any specific auction ID, so we just send -1.

Let’s review the JSON object that will arrive from the server as the auction’s response:

{
 "type": "AUCTIONS_LIST",
 "data": [

328 | Chapter 8: Upgrading HTTP to WebSocket

 {
 "auctionState": "AUCTION_NOT_RUNNING",
 "item": {
 "name": "Painting",
 "description": "Fancy",
 "startingPrice": 1000.0,
 "auctionStartTime": 6000,
 "bidTimeoutS": 30
 },
 "bestBid": 1000.0,
 "participantList": [],
 "auctionId": "first"
 },
 {
 "auctionState": "AUCTION_RUNNING",
 "item": {
 "name": "Handmade hat",
 "description": "Awesome",
 "startingPrice": 2000.0,
 "auctionStartTime": 6000,
 "bidTimeoutS": 30
 },
 "bestBid": 2000.0,
 "participantList": [],
 "auctionId": "second"
 }
],
 "auctionId": "0"
}

The message type is AUCTION_LIST.

The data property of the response object contains the list of all running
auctions. An auction can be in one of three states: not running, running, or
finished.

The item property of the response object is a nested object that represents
the auction item.

The auctionId property contains a unique identifier of the selected auction.

3. The user picks the auction from the list, enters a desired nickname, and joins the

auction. The client-side application sends the following login message:

{
 "type": "LOGIN",
 "data": "gamussa",
 "auctionId": "second"
}

The message type is LOGIN.

The data property of the request contains the user’s nickname.

Adding an Auction to Save The Child | 329

The auctionId property helps the server-side code to route the message to
the correct auction.

As soon as the handshake completes successfully, the server-
side code that implements the WebSocket protocol exposes the

WebSocket Session object. This object encapsulates the conver‐
sation between the WebSocket endpoint (server side) and re‐
mote endpoint (browser). Check the documentation for your
server-side framework for details about how it handles and ex‐
poses the remote endpoints in the API.

4. Each time a user enters a bid price, the client’s code sends the following BID message:

{
 "type": "BID",
 "data": "1100.0",
 "auctionId": "second"
}

This is the outgoing message. When user clicks the Bid! button, the value from the

Bid text box is wrapped into the BID message. On the server, when the new higher

BID message arrives, the message PRICE_UPDATE has to be broadcast to all active
clients.

5. The PRICE_UPDATE message looks like this:

{
 "type": "PRICE_UPDATE",
 "data": "1300.0",
 "auctionId": "second"
}

If an auction participant outbids others, the rest of the participants will
receive an update.

Such an update will contain the current highest bid.

6. The RESULT message looks like this:

{
 "type": "RESULT",
 "data": "Congrats! You\u0027ve won Painting for $1300.0",
 "auctionId": "first"
}

After the auction ends, the server broadcasts the message with the final auction
results. If the wining user is online and connected to the auction server, that user
will receive a message with congratulations. Other participants will get the “Sorry,
you didn’t win” notification.

330 | Chapter 8: Upgrading HTTP to WebSocket

This is pretty much it. The amount of code needed to implement the client’s side of the
auction is minimal. After the connection and upgrade are done, most of the processing

is done in the message handler of the WebSocket object’s onmessage.

Summary
After reading this chapter, you should see the benefits of using the WebSocket protocol
in web applications. In many cases, WebSocket is an ultimate means for improving
application performance, by reducing network latency and removing the overhead of
the HTTP headers. You learned how to integrate WebSocket-based functionality into
the existing HTTP-based application Save The Child. There is no need to make com‐
munication of the web application over WebSocket. Use this powerful protocol when it
improves the performance and responsiveness of your application.

As a side benefit, you’ve learned how to use the network monitoring capabilities of
Google Chrome Developer Tools and Wireshark by sniffing the WebSocket traffic. You
can’t underestimate the importance of monitoring tools, which are the best friends of
web developers.

Summary | 331

CHAPTER 9

Introduction to Web Application Security

Every newly deployed web application creates a new security hole and potential access
of your organization’s data. Hackers gain access to data by sneaking through ports that
are supposedly hidden behind firewalls. There is no way to guarantee that your web
application is 100 percent secure. If it has never been attacked by hackers, most likely
it’s too small and is of no interest to them.

This chapter provides a brief overview of major security vulnerabilities of which web
application developers need to be aware. We also cover delegated authorization with
OAuth, and possible authentication and authorization scenarios for our Save The Child
application.

There are plenty of books and online articles that cover security, and enterprises usually
have dedicated teams handling security for the entire organization. Dealing with secu‐
rity threats is their bread and butter, and this chapter won’t have revelations for security
professionals. But a typical enterprise application developer just knows that each person
in the organization has an account in some kind of a naming server that stores IDs,
passwords, and roles, which takes care of authentication and authorization flows. Ap‐
plication developers should find useful information in this chapter.

If an enterprise developer needs access to an internal application, opening the issue with
the technical support team grants the required access privileges. But software developers
should have at least a broad understanding of what makes a web application more or
less secure, and which threats web applications face—this is what this chapter is about.
To implement any of the security mechanisms mentioned in this chapter, you’ll need to
do additional research.

333

A good starting point for establishing security processes for your
enterprise project is Microsoft’s Security Development Lifecycle web‐
site. It contains documents describing the software development pro‐
cess that helps developers build more secure software and address
security compliance requirements while reducing development costs.

HTTP versus HTTPS
Imagine a popular nightclub with a tall fence and two entry doors. People are waiting
in lines to get in. Door number 80 is not guarded in any way: a college student checks
tickets but lets people in whether or not they have a ticket. The other door has the
number 443 on it, and it’s protected by an armed bully letting only qualified people in.
The chances of unwanted people getting into the club through door 443 are pretty slim
(unless the bully is corrupt), which is not the case with door 80—once in a while, people
who have no right to be there get inside.

On a similar note, your organization has created network security with a firewall (the
fence) with only two ports (the doors) open: 80 for HTTP requests and 443 for HTTPS.
One door is not secure; the other one is.

Don’t assume that your web application is secure if it’s deployed
behind a firewall. As long as there are open ports that allow exter‐
nal users to access your web application, you need to invest in the
application security, too.

The letter s in HTTPS stands for secure. Technically, HTTPS creates a secure channel
over an insecure Internet connection. In the past, only web pages that dealt with logins,
payments, or other sensitive data would use URLs starting with https. Today, more and
more web pages use HTTPS, and rightly so, because it forces web browsers to use Secure
Sockets Layer (SSL) or its successor, Transport Layer Security (TLS) protocol, for en‐
crypting all the data (including request and response headers) that travel between con‐
nected Internet resources. High Performance Browser Networking contains a chapter
with detailed coverage of the TLS protocol.

Organizations that run web servers create a public-key certificate that has to be signed
by a trusted certificate authority (otherwise, browsers will display invalid certificate
warnings). The authority certifies that the holder of the certificate is a valid operator of
this web server. SSL/TLS layers authenticate the servers by using these certificates to
ensure that the browser’s request is being processed by the proper server and not by
some hacker’s site.

334 | Chapter 9: Introduction to Web Application Security

http://bit.ly/1nYsK6v
http://bit.ly/1z23t2z

When a client connects to a server via HTTPS, that client offers to the server a list of
supported ciphers (authentication-encryption-decryption algorithms). The server re‐
plies with a cipher they both support.

The annual Black Hat computer security conference is dedicated to
information security. This conference is attended by both hackers and
security professionals.

If HTTPS is clearly more secure than HTTP, why doesn’t every website use only HTTPS
communication? Because HTTPS encrypts all messages that travel between the client’s
browser and the server, its communications are slower and need more CPU power
compared to HTTP-based data exchanges. But this slowness isn’t noticeable in most
web applications (unless thousands of concurrent users hit the web server), whereas the
benefits of using HTTPS are huge.

When entering any sensitive or private information in someone’s web application, al‐
ways pay attention to the URL to make sure that it uses HTTPS.

As a web developer, you should always use HTTPS to prevent an attacker from stealing
the user’s session ID. The fact that the National Security Agency has broken the SSL
encryption algorithm is not a reason for your application to not use HTTPS.

Authentication and Passwords
Authentication is the ability to confirm that a user is who he claims to be. The fact that
the user has provided a valid ID and password combination proves only that he is known
to the web application. That’s all.

Specifying the correct user ID/password combination might not be enough for some
web applications. Banks often ask for additional information (for example, “What’s your
pet’s name?” or “What’s your favorite movie?”).

Large corporations often use RSA SecurID (a.k.a. RSA hard token), which is a physical
device with a randomly generated combination of digits. This combination changes
every minute or so and has to be entered as a part of the authentication process. In
addition to physical devices, programs (soft tokens) can perform user authentication in
a similar way. Many financial institutions, social networks, and large web portals support
two-factor verification: in addition to asking for a user ID and password, they send you
an email, voice mail, or text message with a code that you’ll need to use after entering
the right ID/password combination.

To make the authentication process more secure, some systems check the biometrics of
the user. For example, in the United States, the Global Entry system is implemented in

Authentication and Passwords | 335

http://www.blackhat.com

many international airports. People who successfully pass a special background check
are entered into the system deployed at passport-control checkpoints. These applica‐
tions, deployed in a special kiosks, scan users’ passports and check the face topography
and fingerprints. The process takes only a few seconds, and the authenticated person
can pass the border without waiting in long lines.

Biometric devices have become more common these days, and fingerprint scanners that
can be connected to a user’s computer are very inexpensive. Apple’s iPhone 5S unlocks
based on the fingerprint of its owner—no need to enter a passcode. In some places, you
can enter a gym only after your fingerprints have been scanned and matched. The Na‐
tional Institute of Standards and Technology hosts a discussion about using biometric
web services, and you can participate by sending an email to bws-request@nist.gov with
subscribe as the subject.

Basic and Digest Authentication
HTTP defines two types of authentication: Basic and Digest. All modern web browsers
support them, but basic authentication uses Base64 encoding and no encryption, which
means it should be used only with HTTPS.

A web server administrator can configure certain resources to require basic user au‐
thentication. If a web browser requests a protected resource but the user didn’t log in
to the site, the web server (not your application) sends the HTTP response containing
HTTP status code 401 (Unauthorized and WWW-Authenticate: Basic). The browser
pops up the login dialog box. The user enters the ID/password, which is turned into an
encoded userID:password string and sent to the server as a part of HTTP header. Basic
authentication provides no confidentiality because it doesn’t encrypt the transmitted
credentials. Cookies are not used here.

With digest authentication, the server also responds with 401 (WWW-Authenticate:
Digest). However, it sends along additional data that allows the web browser to apply a
hash function to the password. Then, the browser sends an encrypted password to the
server. Digest authentication is more secure than the basic one, but it’s still less secure
than authentication that uses public keys or the Kerberos authentication protocol.

The HTTP status code 403 (Forbidden) differs from 401. Whereas 401
means that the user needs to log in to access the resource, 403 means
that the user is authenticated, but his security level is not high enough
to see the data. For example, not every user role is authorized to see
a web page that displays salary reports.

In application security, the term man-in-the-middle attack refers to an attacker inter‐
cepting and modifying data transmitted between two parties (usually the client and the

336 | Chapter 9: Introduction to Web Application Security

mailto:bws-request@nist.gov
http://bit.ly/1k5Nmam
http://bit.ly/1ohMIuu

server). Digest authentication protects the web application from losing the clear-text
password to an attacker, but doesn’t prevent man-in-the-middle attacks.

Whereas digest authentication encrypts only the user ID and password, using HTTPS
encrypts everything that goes between the web browser and the server.

Single Sign-on
Often, an enterprise user has to work with more than one corporate web application,
and maintaining, remembering, and supporting multiple passwords should be avoided.
Many enterprises implement internally a single sign-on (SSO) mechanism to eliminate
the need for a user to enter login credentials more than once, even if that user works
with multiple applications. Accordingly, signing out from one of these applications ter‐
minates the user’s access to all of them. SSO solutions make authentication totally
transparent to your application.

With SSO, when the user logs on to your application, the logon request is intercepted
and handled by preconfigured SSO software (for example, Oracle Enterprise Single
Sign-On, CA SiteMinder, IBM Security Access Manager for Enterprise SSO, or Evidian
Enterprise SSO). The SSO infrastructure verifies a user’s credentials by making a call to
a corporate Lightweight Directory Access Protocol (LDAP) server and creates a user’s
session. Usually a web server is configured with some web agent that will add the user’s
credentials to the HTTP header, which your application can fetch.

Future access to the protected web application is handled automatically by the SSO
server, without even displaying a logon window, as long as the user’s session is active.
SSO servers also log all login attempts in a central place, which can be important in
meeting enterprise regulatory requirements (for example, Sarbanes-Oxley in the finan‐
cial industry or medical confidentiality in the insurance business).

In the consumer-oriented Internet space, single (or reduced) sign-on solutions have
become more and more popular. For example, some web applications allow you to reuse
your Twitter or Facebook credentials (provided that you’ve logged in to one of these
applications) without the need to go through additional authentication procedures.
Basically, your application can delegate authentication procedures to Facebook, Twitter,
Google, and other authorization services, which we’ll discuss later in “OAuth-Based
Authentication and Authorization” on page 340.

Back in 2010, Facebook introduced its SSO solution that still helps millions of people
log in to other applications. This is especially important in the mobile world, where
users’ typing should be minimized. Instead of asking a user to enter credentials, your
application can provide a Login with Facebook button.

Facebook has published a JavaScript API with which you can implement Facebook
Login in your web applications (it also offers native APIs for iOS and Android apps).
For more details, read the online documentation on the FaceBook Login API.

Authentication and Passwords | 337

http://on.fb.me/1lrYTAw
http://bit.ly/1lE6QlY

Besides Facebook, other popular social networks offer authentication across applica‐
tions:

• If you want your application to have a Login with Twitter button, refer to the Sign
in with Twitter API documentation.

• LinkedIn is a popular social network for professionals. It also offers an API for
creating a Sign In with LinkedIn button. For details, visit the LinkedIn online doc‐
umentation for developers.

• Google also offers the OAuth-based authentication API. Details about its client
library for JavaScript are published online. To implement SAML-based SSO with
Google, visit this web page.

• Mozilla offers a new way to sign in with any of your existing email addresses by
using Persona.

• Several large organizations (for example, Google, Yahoo!, Microsoft, and Facebook)
either issue or accept OpenID, which makes it possible for users to sign in to more
than 50,000 websites.

Typically, large enterprises don’t want users to use logins from social networks. But some
organizations have started integrating their applications with social networks. Especially
now, with the spread of mobile devices, users might need to be authenticated and au‐
thorized while being outside the enterprise perimeter. We discuss this in more detail in
“OAuth-Based Authentication and Authorization” on page 340.

Save The Child and SSO

Does our Save The Child application have a use for SSO? Certainly. In this book, we’re
concerned mostly about developing a UI for the consumer-facing part of this applica‐
tion. But there is also a back-office team that is involved with content management and
that produces information for the consumer.

For example, the employees of our charity organization create fundraising campaigns
in different cities. If an employee of this firm logged in to his desktop, our Save The
Child web application shouldn’t ask him to log in. SSO can be a solution here.

Handling Passwords
It might sound obvious, but we’ll still remind you that the web client should never send
passwords in clear text. You should always use a Secure Hash Algorithm (SHA). Longer
passwords are more secure, because if an attacker tries to guess the password by using
dictionaries to generate every possible combination of characters (a brute-force attack),
it will take a lot more time with long passwords. Periodically changing passwords makes
the hacker’s work more difficult, too. Typically, after successful authentication, the server
creates and sends to the web client the session ID, which is stored as a cookie on the

338 | Chapter 9: Introduction to Web Application Security

http://bit.ly/1eon8lS
http://linkd.in/1oGVXaT
http://linkd.in/1oGVXaT
http://bit.ly/1lE72S0
http://bit.ly/1lDmN00
http://mzl.la/1uDllM7
http://openid.net
http://bit.ly/1mdvAaS
http://bit.ly/1l3kzHE

client’s computer. Then, on each subsequent request to the server, the web browser places
the session ID in the HTTP request object and sends it along with each request. Tech‐
nically, the user’s identity is always known at the server side, so the server-side code can
re-authenticate the user more than once (without the user even knowing it), whenever
the web client requests the protected resource.

Salted hashes increase security by adding salt—randomly generated
data that’s concatenated with the password and then processed by a
hash function.

Have you ever wondered why automated teller machines (ATMs) often ask you to enter
your PIN more than once? Say you’ve deposited a check and then want to see the balance
on your account. After the check deposit is completed, your ATM session is invalidated
to protect careless users who might rush out from the bank in a hurry as soon as the
transaction is finished. This prevents the next person at the ATM from requesting a
cash withdrawal from your bank account.

On the same note, if a web application’s session is idling for more than the allowed time
interval, the session should be automatically invalidated. For example, if a trader in a
brokerage house stops interacting with a web trading application for some time, inva‐
lidate the session programmatically to prevent someone else from buying financial
products on his behalf when he steps out for a coffee.

Authorization
Authorization is a way to determine which operations the user can perform and what
data he can access. For example, the owner of a company can perform money with‐
drawals and transfers from an online business bank account, whereas the company
accountant is provided with read-only access.

Similar to authentication, the user’s authorization can be checked
more than once during that user’s session. As a matter of fact, au‐
thorization can even change during a session (for example, a finan‐
cial application can allow trades only during business hours of the
stock exchange).

Users of an application are grouped by roles, and each role comes with a set of privileges.
A user can be given a privilege to read and modify certain data, whereas other data can
be hidden. In the relational DBMS realm, the term row-level security means that the
same query can produce different results for different users. Such security policies are
implemented at the data-source level.

Authorization | 339

A simple use case for which row-level security is really useful is a salary report. Whereas
the employee can see only his salary report, the head of department can see the data of
all subordinates.

Authorization is usually linked to a user’s session. HTTP is a stateless protocol, so if a
user retrieves a web page from a web server, and then goes to another web page, this
second page does not know what has been shown or selected on the first one. In an
online store, for example, a user adds an item to a shopping cart and moves to another
page to continue shopping. To preserve the data reused in more than one web page (for
example, the content of the shopping cart), the server-side code must implement session-
tracking. The session information can be passed all the way down to the database level
when need be.

Session tracking is usually controlled on the server side. To become
familiar with session tracking options in greater detail, consult the
product documentation for the server or technology being used with
your web application. For example, if you use Java, you can read
Oracle’s documentation for its WebLogic server that describes op‐
tions for session management.

OAuth-Based Authentication and Authorization
To put it simply, OAuth is a mechanism for delegated authorization. OpenID Connect
is an OAuth-based mechanism for authentication.

Most likely, you have come across web applications that enable you to share your actions
via social networks. For example, if you just made a donation, you might want to share
this information via social networks.

If our charity application needs to access a user’s Facebook account for authentication,
the charity app could ask for the user’s Facebook ID and password. This wouldn’t be the
correct approach, however, because the charity application would get the user’s Face‐
book ID/password in clear text, along with full access to the user’s Facebook account.
The charity app needs only to authenticate the Facebook user. Hence, there is a need for
a mechanism that gives limited access to Facebook.

OAuth has become one of the mechanisms for providing limited access to an authorizing
facility. OAuth is “An open protocol to allow secure authorization in a simple and stan‐
dard method from web, mobile and desktop applications.” Its current draft specifica‐
tion provides the following definition:

The OAuth 2.0 authorization framework enables a third-party application to obtain limi‐
ted access to an HTTP service, either on behalf of a resource owner by orchestrating an
approval interaction between the resource owner and the HTTP service, or by allowing
the third-party application to obtain access on its own behalf.

340 | Chapter 9: Introduction to Web Application Security

http://bit.ly/T7Ba1U
http://oauth.net/
http://bit.ly/rfc-6749
http://bit.ly/rfc-6749

“OAuth Study Notes” includes the following:

Many luxury cars come with a valet key. It is a special key you give the parking attendant
and unlike your regular key, will only allow the car to be driven a short distance while
blocking access to the trunk.

This is a good example of limited access to a resource in a real life. The OAuth 2.0
authorization server gives the requesting application an access token (think, valet key)
so it can access, say, the charity application.

OAuth allows users to give limited access to third-party applications without giving
away their passwords. The access permission is given to the user in the form of an access
token with limited privileges and for a limited time. Coming back to our example of
communication between the charity app and Facebook (unless we have our own en‐
terprise authentication server), the former would gain limited access to the user’s Face‐
book account (just the valet key, not the master key).

OAuth has become a standard protocol for developing applications that require au‐
thorization. With OAuth, application developers won’t need to use proprietary proto‐
cols if they need to add an ability to identify a user via multiple authorization servers.

Federated Identity with OpenID Connect and JSON Web Tokens
Wikipedia defines federated identity as a means of linking a person’s electronic identity
and attributes, stored across multiple distinct identity management systems. This is
similar to enterprise SSO, but the effect of federated identity is broader because the
authentication token with information about a user’s identity can be passed across mul‐
tiple departments or organizations and software systems.

Microsoft’s “A Guide to Claims-Based Identity and Access Control” includes a section
on federated identity for web applications with greater details on this subject.

In the past, the markup language SAML was the most popular open-standard data
format for exchanging authentication and authorization data. OpenID Connect is a
newer open standard. It’s a layer on top of OAuth 2.0 that simply verifies the identity of
a user. OpenID providers that can confirm a user’s identity include such companies as
Google, Yahoo!, IBM, Verisign, and more. Typically, OpenID Connect uses JSON Web
Token (JWT), which should eventually replace popular XML-based SAML tokens. JWT
is a Base64 encoded and signed JSON data structure. Although the OAuth 2.0 spec
doesn’t mandate using JWT, it became a de facto standard token format.

To have a better understanding of how JWTs are encoded, visit the Federation Lab,
which is a website with a set of tools for testing and verifying various identity protocols.
In particular, you can enter a JWT in clear text, select a secret signature, and encode the
token by using the HS256 algorithm, as shown in Figure 9-1.

Authorization | 341

http://bit.ly/1nuEEJC
http://bit.ly/1m2k806
http://bit.ly/1r8sgNa
http://bit.ly/1r8sfsw
http://bit.ly/1pJ5FJv
http://openid.net/connect
http://openid.net/get-an-openid/
http://bit.ly/T7BMED
http://bit.ly/T7BMED
http://openidtest.uninett.no/jwt

Figure 9-1. Encoding a JSON Web Token

Using the Facebook API
Facebook is one of the authorization servers that offer an OAuth-based authentication
and authorization API. The online document “Quickstart: Facebook SDK for Java‐
Script” is a good starting point.

Before using the SDK, you need to register your application with Facebook by creating
a client ID and obtaining the client secret (the password). Then, use the JavaScript SDK
code (provided by Facebook) in your web application. Include the newly created app
ID there. During this registration stage, you’ll need to specify the URI where the user
should be redirected in case of successful login. Then, add a JavaScript code to support
the required Facebook API (for example, for Login) to your application. You can find
sample JavaScript code that uses the Facebook Login API in this guide.

The Facebook Login API communicates with your application by sending events as soon
as the login status changes. Facebook will send the authorization token to your appli‐
cation’s code. As we mentioned earlier, the authorization token is a secure encoded string
that identifies the user and the app, contains information about permissions, and has
an expiration time. Your application’s JavaScript code makes calls to the Facebook SDK
API, and each of these calls will include the token as a parameter or inside the HTTP
request header.

342 | Chapter 9: Introduction to Web Application Security

http://bit.ly/1jzg4jx
http://bit.ly/1jzg4jx
http://bit.ly/1qecvV1

OAuth 2.0 Main Actors
Any communication with OAuth 2.0 servers are made through HTTPS connections.
The following are the main actors of the OAuth flows:

• The user who owns the account with some of the resource servers (for example, an
account at Facebook or Google) is called the resource owner.

• The application that tries to authenticate the resource owner is called the client
application. This is an application that offers buttons such as Login with Facebook,
Login with Twitter, and the like.

• The resource server is a place where the resource owner stores his data (for example,
Facebook or Google).

• The authorization server checks the credentials of the resource owner and returns
an authorization token with limited information about the user. This server can be
the same as the resource server but is not necessarily the same one. Facebook,
Google, Windows Live, Twitter, and GitHub are examples of authorization servers.
For the current list of OAuth 2.0 implementations, visit oauth.net/2.

To implement OAuth in your client application, you need to pick a resource/authori‐
zation server and study its API documentation. Keep in mind that OAuth defines two
types of clients: public and confidential. Public clients use embedded passwords while
communicating with the authorization server. If you’re going to keep the password
inside your JavaScript code, it won’t be safe. To be considered a confidential client, a
web application should store its password on the server side.

OAuth has provisions for creating authorization tokens for browser-only applications,
for mobile applications, and for server-to-server communications.

Save The Child and OAuth
We can distinguish two major scenarios of a third-party application working with an
OAuth server. In one scenario, OAuth authorization servers are publicly available. In
the other scenario, the servers are privately owned by the enterprise. Let’s consider these
scenarios in the context of our charity nonprofit organization.

Public authorization servers

A Facebook account owner works with the client (the Save The Child application). The
client uses an external authorization server (Facebook) to request authorization of the
user’s work with the charity application. The client has to be registered (has an assigned
client ID, secret, and redirect URL) with the authorization server to be able to participate
in this OAuth flow. The authorization server returns a token offering limited access (for
example, to Facebook’s account) to the Save The Child application. Figure 9-2 shows
Save The Child using Facebook for authentication and authorization.

Authorization | 343

http://oauth.net/2

Figure 9-2. Save The Child and OAuth

While the client application tries to get authorization from the authorization server, it
can open a so-called consent window that warns the user that the Save The Child ap‐
plication is trying to access certain information from the user’s Facebook or Google
account. In this scenario, the user still has a chance to deny such access. It’s a good idea
to display a message that the user’s password (to Facebook or Google) will not be given
to the client application.

Your application should request only minimum access to the user’s resource server. For
example, if the Save The Child application just needs to offer an easy authentication
method for all Facebook users, don’t request write access to the user’s Facebook account.
On the other hand, if a child was cured as a result of the involvement of our charity
application, and he wants to share the good news with his Facebook friends, the Save
The Child application needs write permission to the user’s Facebook account.

The UI code of the Save The Child application doesn’t have to know how to parse the
token returned by the authorization server. It can simply pass it to Save The Child’s
server software (for example, via the HTTP request header). The server has to know
how to read and decipher the information from the token. The client application sends
to the authorization server only the client ID, and not the client secret needed for deci‐
phering the user’s information from the token.

Private authorization servers

The OAuth authorization server is configured inside the enterprise. However, the server
can attend to not only internal employees, but also external partners. Suppose that one
of the upcoming charity events is a marathon to fight cancer. To prepare this marathon,
our charity organization needs the help of a partner company named Global Marathon
Suppliers, which will take care of the logistics (providing banners, water, food, rain
ponchos, blankets, branded tents, and so forth).

It would be nice if our supplier could have up-to-date information about the number
of participants in this event. If our charity firm sets them up with access to our internal

344 | Chapter 9: Introduction to Web Application Security

authorization server, the employees of Global Marathon Suppliers can have limited
access to the marathon participants. On the other hand, if the suppliers open limited
access to their data, this could increase the productivity of the charity company em‐
ployees. This is a practical and cost-saving setup.

The authors of this book have helped the Leukemia and Lymphoma
Society (LLS) develop both front- and backend software. LLS ran a
number of successful marathons as well as many other campaigns for
charity causes. We also use an OAuth solution from Intuit Quick‐
Books in billing workflows for our insurance industry software prod‐
uct at SuranceBay. Our partner companies get limited access to our
billing systems, and our software can access theirs.

Top Security Risks
The Open Web Application Security Project (OWASP) is an open source project focused
on improving security of web applications by providing a collection of guides and tools.
OWASP publishes and maintains a list of the top 10 security risks. Figure 9-3 shows
how this list looked in 2013.

On this website, you can drill down into each list item to see the selected security vul‐
nerabilities and recommendations on how to prevent them. You can also download this
list as a PDF document. Let’s review a couple of the top-10 security threats: injection
and cross-site scripting.

Injection
If a bad guy can inject a piece of code that will run inside your web application, that
code could steal or damage data from the application. In the world of compiled libraries
and executables, injecting malicious code is a rather difficult task. But if an application
uses interpreted languages (for example, JavaScript or clear-text SQL), the task of in‐
jecting malicious code becomes a lot easier than you might think. Let’s look at a typical
example of SQL injection.

Suppose that your application can search for data based on keywords a user enters into
a text input field. For example, to find all donors in the city of New York, a user enters
the following:

"New York"; delete from donors;

If the server-side code of your application simply attaches the entered text to the SQL
statement, this could result in execution of the following command:

Select * from donors where city="New York"; delete from donors;

Top Security Risks | 345

http://www.lls.org
http://www.lls.org
http://bit.ly/1lVNwVX
http://bit.ly/1lVNwVX
http://www.surancebay.com
https://www.owasp.org
http://bit.ly/1lE9VSQ
http://bit.ly/1r5Bi0m

Figure 9-3. Top 10 security risks, circa 2013

This command doesn’t require any additional comments, does it? Is there a way to
prevent users of your web application from entering something like this? The first thing
that comes to mind is to not allow the user to enter the city, but force her to select it
from a list. But such a list of possible values might be huge. Besides, the hacker can
modify the HTTP request after the browser sends it to the server.

Always use precompiled SQL statements that use parameters
to pass the user’s input into the database query (for example,

PreparedStatement in Java).

The importance of server-side validation shouldn’t be underestimated. In some sce‐
narios, you can come up with a regular expression that checks for matching patterns in

346 | Chapter 9: Introduction to Web Application Security

data received from clients. In other cases, you can write a regular expression that inva‐
lidates data if it contains SQL (or other) keywords that lead to modifications of data on
the server.

Always minimize the interval between validating and using the data.

In an ideal world, client-side code should not even send nonvalidated data to the server.
But in the real-world, you’ll end up duplicating some of the validation code in both the
client and the server.

Cross-Site Scripting
Cross-site scripting (XSS) occurs when an attacker injects malicious code into a browser-
side script of your web application. The user is accessing a trusted website, but gets an
injection from a malicious server that reaches the user via the trusted server (hence,
cross-site). Single-page Ajax-based applications make lots of under-the-hood requests
to servers, which increases the attack surface compared to traditional legacy websites
that download web pages a lot less frequently. XSS can happen in three ways:

Reflected (a.k.a. phishing)
The web page contains a link that seems valid, but when the user clicks it, the user’s
browser receives and executes the script created by the attacker.

Stored
The external attacker manages to store a malicious script on a server that hosts
someone’s web application, so every user gets the script as a part of that web page,
and their web browser executes it. For example, if a user’s forum allows posting
texts that include JavaScript code, malicious code typed by a “bad guy” can be saved
in the server’s database and executed by users’ browsers visiting this forum after‐
ward.

Local
No server is involved. Web page A opens web page B with malicious code, which
in turn modifies the code of page A. If your application uses a hash tag (#) in URLs
(for example, http://savesickchild.org#something), make sure that before process‐

ing, this something doesn’t contain anything like javascript:somecode, which
might have been attached to the URL by an attacker.

The World Wide Web Consortium (W3C) has published a draft of the Content Security
Policy document, “a mechanism web applications can use to mitigate a broad class of
content injection vulnerabilities, such as cross-site scripting.”

Top Security Risks | 347

http://savesickchild.org#something
http://bit.ly/1iMQXiD
http://bit.ly/1iMQXiD

STRIDE—Classification of Security Threats
Microsoft has published a classification that divides security threats into six categories
(hence six letters in the acronym STRIDE):

Spoofing
An attacker pretends to be a legitimate user of an application (for example, a bank‐
ing system). This can be implemented by using XSS.

Tampering
Modifying data that was not supposed to be modified (for example, via SQL injec‐
tion).

Repudiation
The user denies sending data (for example, making an online transaction such as
a purchase or sale) by modifying the application’s logfiles.

Information disclosure
An attacker gains access to classified information.

Denial of service (a.k.a. DoS)
A server is made unavailable to legitimate users, which often is implemented by
generating a large number of simultaneous requests to saturate the server.

Elevation of privilege
Gaining an elevated level of access to data (for example, by obtaining administrative
rights).

While we were working on a section of this book describing
Apple’s developer certificates (Chapter 14), its website was
hacked, and was not available for about two weeks.

One of the OWASP guides is titled Web Application Penetration Testing. In about
350 pages, it explains the methodology of testing a web application for each
vulnerability. OWASP defines penetration test as a method of evaluating the security
of a computer system by simulating an attack. Hundreds of security experts from
around the world have contributed to this guide. Running penetration tests should
become part of your development process, and the sooner you start running them,
the better.

For example, the Payment Card Industry published a Data Security Standard, which
includes a Requirement 11.3 of penetration testing.

348 | Chapter 9: Introduction to Web Application Security

http://bit.ly/1mzDuFP
http://bit.ly/1iMRhxQ
http://bit.ly/TJkRsh

Regulatory Compliance and Enterprise Security
So far in this chapter, we’ve been discussing security vulnerabilities from a technical
perspective. But another aspect can’t be ignored: the regulatory compliance of the busi‐
ness you automate.

During the last four years, the authors of this book have developed, deployed, supported,
and marketed software that automates certain workflows for insurance agents. We serve
several hundred insurance agencies and more than 100,000 agents. In this section, we’ll
share our real-world experience of dealing with security while running our company,
which sells software as a service. In addition to developing the application, we had to
set up data centers and take care of security issues, too.

Our customers are insurance agencies and carriers. We charge for our services, and our
customers pay by using credit cards via our application. This opens up a totally different
category of security concerns:

• Where are the credit card numbers stored?

• What if they are stolen?

• How secure is the payment portion of the application?

• How is the card holder’s data protected?

• Is there a firewall protecting each customer’s data?

• How is the data encrypted?

One of the first questions our prospective customers ask is whether our application is
PCI compliant. They won’t work with us until they review the application-level securi‐
ty implemented in our system. As per the PCI Compliance Guide, “The Payment Card
Industry Data Security Standard is used by all card brands to assure the security of the
data gathered while an employee is making a transaction at a bank or participating
vendor.”

If your application stores PCI data, authenticating via Facebook, Google, or a similar
OAuth service isn’t an option. Users are required to authenticate themselves by entering
long passwords containing combinations of letters, numbers, and special characters.

Even if you are not dealing with credit card information, there are other areas where
application data must be protected. Take a human resources application—Social Secu‐
rity numbers (unique IDs of United States citizens) of employees must be encrypted.

Some of our prospective customers send us a questionnaire to establish whether our
security measures are compliant with their requirements. In some cases, this document
can include as many as 300 questions.

Regulatory Compliance and Enterprise Security | 349

http://bit.ly/1r5C4dB

You might want to implement different levels of security depending on which type of
device is being used to access your application—a public computer, an internal corporate
computer, an iPad, or an Android tablet. If a desktop user forgets his password, you
could implement a recovery mechanism that sends an email to that user and expects to
receive a certain response from him. If the user has a smartphone, the application could
send a text message to that device.

If the user’s record contains both his email and cell phone number, the application
should ask where to send the password recovery instructions. If a mobile device runs a
hybrid or native version of the application, the user could be automatically switched to
a messaging app of the device so that he can read the text message while the main
application remains at the view where authentication is required.

In enterprise web applications, more than one layer of security must be implemented:
at the communication protocol level, at the session level, and at the application level.
The HTTP server NGINX, besides being a high-performance proxy server and load
balancer, can serve as a security layer, too. Your web application can offload authenti‐
cation tasks and validation of SSL certificates to NGINX.

Most enterprise web applications are deployed on a cluster of servers, which adds an‐
other task to your project plan: how to manage sessions in a cluster. The user’s session
has to be shared among all servers in a cluster. High-end application servers might
implement this feature out of the box. For example, an IBM WebSphere server has an
option to tightly integrate HTTP sessions with its application security module. Another
example is Terracotta clusters, which utilize Terracotta Web Sessions to allow sessions
to survive node hops and failures. But small or mid-sized applications might require
custom solutions for distributed sessions.

Minimize the amount of data stored in a user’s session, to simplify
session replication. Store the data in an application cache that can be
replicated quickly and efficiently by using open source or commer‐
cial products (for example, JGroups or Terracotta).

Here’s another topic to consider: multiple data centers, with each one running a cluster
of servers. To speed up the disaster recovery process, your web application has to be
deployed in more than one data center, located in different geographical regions. User
authentication must work even if one of the data centers becomes nonoperational.

An external computer (for example, a NGINX server) can perform token-based au‐
thentication, but inside the system, the token is used only when access to protected
resources is required. For example, when the application needs to process a payment,
it doesn’t need to know any credit card details; it just uses the token to authorize the
transaction of the previously authenticated user.

350 | Chapter 9: Introduction to Web Application Security

http://nginx.com

This grab bag of security considerations mentioned in this section is not a complete list
of security-related issues to which your IT organization needs to attend. If you work for
a large enterprise on intranet applications, these security issues might not sound overly
important. But as soon as your web application starts serving external Internet users,
someone has to worry about potential security holes that were not in the picture for
internal applications. Our message to you is simple: Take security very seriously if you
are planning to develop, deploy, and run a production-grade enterprise web application.

Summary
Every enterprise web application has to run in a secure environment. The mere fact that
the application runs inside a firewall doesn’t make it secure. First, if you’re opening at
least one port to the outside world, malicious code can sneak in. Second, an “angry
employee” or just a “curious programmer” inside the organization could inject unwan‐
ted code.

Proper validation of received data is very important. Ideally, use white list validation to
compare user input against a list of allowed values. Otherwise, use black list validation
to compare against keywords that are not allowed in data entered by users.

There is no way to guarantee that your application is 100 percent protected from security
breaches. But you should ensure that your application runs in an environment with the
latest available patches for known security vulnerabilities. For example, if your appli‐
cation includes components written in the Java programming language, install critical
security patches as soon as they become available.

With the proliferation of clouds, social networks, and sites that offer free or cheap stor‐
age, people lose control over security, hoping that Amazon, Google, or Dropbox will
take care of it. Besides software solutions, software-as-a-service providers deploy spe‐
cialized hardware—security appliances that serve as firewalls, perform content filtering,
and virus and intrusion detection. Interestingly enough, hardware security appliances
are also vulnerable.

In any case, end users upload their personal files without thinking twice. Enterprises
are more cautious and prefer private clouds installed on their own servers, where they
administer and protect data themselves. Users who access the Internet from their mobile
devices have little or no control over how secure their devices are. So the person in
charge of the web application has to make sure that it’s as secure as possible.

Summary | 351

http://bit.ly/Uc1Gbg
http://bit.ly/Uc1Gbg

PART III

Responsive Web Design and
Mobile Devices

BYOD stands for bring your own device. It has become a new trend as a result of the
increasing number of enterprises that started allowing their employees to access cor‐
porate applications from personal tablets or smartphones.

CYOD stands for choose your own device. In this paradigm, corporations let their em‐
ployees choose from a set of devices that belong to the enterprise. CYOD is about se‐
lecting a strategy that organizations should employ while approving new devices.

Developers of new web applications should always think of the users who will try to run
the application on a mobile device. This part of the book is about various strategies for
developing web applications that look and perform well on both desktop computers
and smaller screens.

Today, most enterprise applications are still being developed for desktop computers.
The situation is changing, but it’s a slow process. If five years ago it was close to impos‐
sible to get permission to bring your own computer to work and use it for work-related
activities, the situation is entirely different now with BYOD and CYOD.

Sales people want to use tablets while dealing with prospective clients. Business analysts
want to be able to run familiar web applications on their smartphones. Enterprises want
to offer external access access to valuable data from a variety of devices.

In Chapter 10 we explain responsive web design (RWD) and how you can build an
HTML5 application that has a single code base for desktops, tablets, and smartphones.
We’ll apply responsive design principles and redesign our Save The Child application
to have a fluid layout so that it will remain usable on smaller screens, too.

http://bit.ly/1jLsDZe

Another approach is to have separate versions of the application for desktops and mobile
devices. Chapter 11 and Chapter 12 demonstrate how to create dedicated mobile ver‐
sions of web applications with the jQuery Mobile library and Sencha Touch framework,
respectively. And the Save The Child application is rewritten in each of these chapters.

But if using RWD allows you to have a single code base for all devices, you might be
wondering, why not just build every web application this way? RWD works fine for sites
that mainly publish information. But if users are expected not just to read, but also to
input data on small-screen devices, the UI and the navigation might need to be custom
designed to include only partial functionality while each page view provides the best
user experience. Besides, with responsive design, the code and CSS for all devices is
loaded to a user’s smartphone, making the application unnecessarily large and slow
when the connection speed is not great.

With small screens, you have to rethink carefully about which widgets are must-haves
and what functionality is crucial to the business for which you’re creating a web appli‐
cation. If it’s a restaurant, you need to provide an easy way to find the menu, phone,
address, and directions to your location. If it’s a site to collect donations, like Save The
Child, the design should provide an easy way to donate, while the rest of the information
should be hidden by simple navigational menus.

On rare occasions, an enterprise application is created solely for mobile platforms. More
often, the task is to migrate an existing application to a mobile platform or develop
separate versions of the same application for desktops and mobile devices. If a decision
is made to develop native mobile applications, the choice of programming languages is
dictated by the mobile hardware.

If it’s a web application, using the same library or framework for desktop and mobile
platforms can shorten the development cycle. That’s why we decided to cover such pairs
in this book, namely:

• jQuery and jQuery Mobile

• Ext JS and Sencha Touch

But even though each of these pairs shares the same code for core components, do not
expect to be able to kill two birds with one stone. You are still going to use different
versions of the code—for example, jQuery 2.0 and jQuery Mobile 1.3.1. This means that
you might have to deal with separate bugs that sneaked into the desktop and mobile
version of the frameworks.

What’s better: jQuery Mobile or Sencha Touch? There is no general answer to this
question. It all depends on the application you’re building. If you need a simple mobile
application for displaying various information (a publishing type of application), jQuery
Mobile will do the job with the least effort. If you are building an application that requires
some serious data processing, Sencha Touch is a better choice. Of course, lots of other

frameworks and libraries are available that can help you develop a mobile web appli‐
cation. Do your homework and pick the one that best fits your needs.

There’s a website that compares mobile frameworks. It even has a little wizard applica‐
tion with which you can pick a framework that meets your needs and is supported on
required devices. Figure III.1 is a fragment snapshot from this site. As you can see,
jQuery Mobile supports the largest number of platforms.

Figure III.1. Platforms supported by jQuery Mobile

A framework called Zepto is a minimalist JavaScript library with an
API compatible to jQuery. Zepto supports both desktop and mobile
browsers.

Finally, in Chapter 13 we talk about yet another approach for developing HTML5 ap‐
plications for mobile devices: hybrid applications. These applications are written in
JavaScript but are packaged as native apps. You’ll learn how Adobe’s PhoneGap can
package an HTML5 application to be accepted in online stores where native applications
are being offered. To illustrate accessing hardware features of a mobile device, we show
you how to access the device’s camera; this can be a useful feature for the Save The Child
application.

http://bit.ly/1pKhBt1
http://zeptojs.com

CHAPTER 10

Responsive Design: One Site Fits All

Up until now, we’ve been writing and rewriting the desktop version of the Save The
Child application. Will it look good on the small screen of a mobile device? Beginning
with this chapter, we’ll deal with mobile devices, too.

Let’s discuss different approaches to developing a web application that can work on both
desktop and mobile devices. There are three choices:

Seperate versions of native applications
In addition to your web application that works on desktops, develop a separate
version of the native application for multiple mobile devices. Development of native
mobile applications is not covered in this book.

Single HTML applications with multiple UIs
Develop a single HTML5 web application, but create various UI layouts that will
be applied automatically, based on the screen size of the user’s device.

Hybrid applications
In addition to your web application that works on desktops, develop a hybrid ap‐
plication. This web application on steroids works inside the mobile browser but is
packaged as a native app and can invoke the native API of the mobile device, too.
Chapter 13 is dedicated to hybrid applications.

This chapter focuses the second approach, called responsive web design (RWD). This
term was coined by Ethan Marcotte in his article, “Responsive Web Design.” The concept
that underlies RWD is that the design of the web page changes, responding (reacting)
to the display size of the user’s device. We’ll modify the design of the Save The Child site
to introduce different layouts for the desktop, tablet, and smartphones. By the end of
this chapter, the Save The Child site will automatically change its layout (without losing
functionality) based on the screen size of the user’s device.

357

http://bit.ly/1soL4vY

One or Two Versions of Code?
Run any version of our Save The Child application from the first chapters on your
desktop and start dragging the right border of the browser’s window to make it narrower.
At some point, you’ll see only part of the content; those layouts were not meant to be
responsive. The application defines fixed sizes for page sections, which don’t change
even if the display area shrinks.

Enter http://savesickchild.org in your mobile phone’s browser. Select the version titled
HTML/AJAX. You’ll see either partial content on the page or the entire page with il‐
legible small fonts as in Figure 10-1. This design of the Save The Child application doesn’t
look good on all devices.

Figure 10-1. Nonresponsive version of the app on iPhone 5

358 | Chapter 10: Responsive Design: One Site Fits All

Now try the version titled Responsive Design; this looks more usable on a small screen.
Of course, this begs the question: how many versions of the UI do we need to create?
People responsible for developing web applications that can run on both desktop and
mobile platforms usually begin by making an important decision: HTML5 or native?
But even if a decision is made in favor of the web platform, the next question is whether
desktop and mobile clients will use the same code.

If a decision is made to go with separate versions of the web application, the web server
can be configured to perform redirection to the appropriate code depending on the type

of device the user has. Web servers can do it based on the value of the User-Agent
attribute of the HTTP request header. For example, mobile web browsers trying to access

the BBC (or any other web page) report their User-Agent to the server differently from
desktop computers; hence, they receive different content delivered from a different
URL. Figures 10-2 and 10-3 show snapshots of the BBC main page that were taken at
the same time. Figure 10-2 shows how the page looks on a desktop computer, whereas
Figure 10-3 was taken on an iPhone.

The Safari browser has a Develop menu, where you can select vari‐
ous User Agents to see how the current web page will look on differ‐
ent web browsers. You can also copy and paste a User Agent string
from the site the User Agent string website to see how a web page will
look in hundreds of devices if the website is user-agent driven.

The page layout shown in Figure 10-2 delivers more content because that content can
be allocated nicely on a large desktop monitor or a tablet. But the mobile version shown
in Figure 10-3 substantially limits what’s delivered to the client—not only because the
screen is small, but because the user might be accessing the page over a slower network.

Have you ever tried to share the link of a website specifically designed for smartphones?
It’s so easy! Just press the button and enter the email of the person with whom you want
to share the site. Many mobile websites shared this way won’t look pretty on the large
screen. It might just show a wider version of what you see on your mobile screen.

Maintaining two versions of the application code requires more effort than maintaining
one: you need to have two sets of HTML, CSS, JavaScript, and images. Besides, most
likely your web application will use a third-party JavaScript framework. At some point,
you might run into a bug and will need to upgrade the mobile version to use the latest
version of, say, the jQuery framework. But the desktop version works just fine. If you
have two separate versions of the application, you’ll have to either upgrade jQuery and
thoroughly test both mobile and desktop versions of Save The Child, or live with two
versions of the framework.

Responsive design makes it possible for you to create one version of the web application,
which includes multiple sections of CSS controlling page layouts for different screen

One or Two Versions of Code? | 359

http://www.bbc.com/
http://bit.ly/1pbrL8i

Figure 10-2. The desktop version of bbc.com

sizes. In this chapter, we’ll create yet another version of the Save The Child application
that will render its UI differently on desktop and mobile devices. All these versions, will
share the same HTML and JavaScript code, but will include several screen layouts using
CSS media queries.

Many websites have been built using responsive design. The list that follows presents
several examples. Take a few moments to look at them, first from a desktop computer
and then from a smartphone (or just lower the width of the desktop browser window),
to experience fluid responsive design:

• Boston Globe

• Mashable

• Cafe Evoke

• Fork CMS

360 | Chapter 10: Responsive Design: One Site Fits All

http://bostonglobe.com
http://mashable.com
http://cafeevoke.com
http://www.fork-cms.com

Figure 10-3. The mobile version of bbc.com

• A lot more examples

Note that each of these web pages displays content on the desktop in three layouts (often
in three, four, six, or twelve imaginary columns). As you make the window narrower,
the layout automatically switches to a tablet or a large smartphone mode (usually a two-
column layout), and then to the phone mode layout (the one-column layout).

This sounds like a great solution, but if you put all your media queries in the same CSS
files, your users will be downloading unnecessary bytes—the entire CSS file that includes
all versions of screen layouts. This is not the case in the BBC example, which has different
versions of the code that load only what’s necessary for a particular device category.

You can have several CSS files for different devices. Include these files by using the media
attributes. But web browsers were not designed to selectively download only those CSS
files that are needed. For example, the following HTML loads both CSS files (without
blocking rendering) on any user’s device:

One or Two Versions of Code? | 361

http://mediaqueri.es
http://bit.ly/1pKhJbZ
http://bit.ly/1pKhJbZ

<link media="only screen and (max-width: 480px)"
 href="css/smartphone.css"rel="stylesheet">

<link media="only screen and (max-width: 768px)"
 href="css/tablet.css"rel="stylesheet">

Using the Window.matchMedia attribute can make it possible for you
to conditionally load CSS in JavaScript. The JavaScript utility eCS‐
Sential can help web browsers download CSS faster.

Consider combining responsive design on the client with some
device-specific component (a.k.a. RESS) optimization on the server.

Although responsive design allows you to rearrange content based on
the screen size, it might not be a good idea to show the same amount
of content on desktops and smartphones. Making a web application
look good on mobile devices must involve not only web designers and
developers, but also people who are responsible for content manage‐
ment.

Now comes the million-dollar questions: Do we need to create 2 versions of the web
application or 22? Why not 222? How many different mobile devices are there today,
and how many will there be tomorrow?

How Many User Agents Are There
The HTTP header’s User-Agent attribute contains information about the user agent
originating the request. Should you decide to create several versions of the UI based on

the value in the User-Agent field, you can refer to the website. It lists not two, but

hundreds of strings representing possible content of the User-Agent attribute for a

variety of desktop and mobile devices. For example, Figure 10-4 shows how the User-

Agent string from iPhone 5 is reported and explained by User Agent String. But this
information might become unreliable after iOS upgrades.

362 | Chapter 10: Responsive Design: One Site Fits All

http://bit.ly/1lzY8uQ
http://bit.ly/1pyAL33
http://bit.ly/1pyAL33
http://bit.ly/1nR1yH2
http://useragentstring.com
http://useragentstring.com

Figure 10-4. The User-Agent string from iPhone 5

There is an easier way to detect on the server that the request came from a mobile device.
Wireless Universal Resource File (WURF) is a database of thousands of supported de‐
vices and their properties. Such Internet giants as Facebook and Google rely on this
service, and your application could, too, if need be. WURF offers APIs from several
programming languages to detect specific capabilities of user devices. For example, the
following code snippet is how you could access the WURF data from a Java servlet:

 protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 WURFLHolder wurfl = (WURFLHolder)getServletContext()
 .getAttribute(WURFLHolder.class.getName());

 WURFLManager manager = wurfl.getWURFLManager();

 Device device = manager.getDeviceForRequest(request);

One or Two Versions of Code? | 363

http://wurfl.sourceforge.net

 log.debug("Device: " + device.getId());
 log.debug("Capability: " + device.getCapability("preferred_markup"));

It’s impossible to create different layouts of a web application for thousands of user
agents. Market fragmentation in the mobile world is a challenge. People are using 2,500
different devices to connect to Facebook. The Android market in particular is extremely
fragmented. Figure 10-5 is taken from the report, “Android Fragmentation Visualized”
(July 2013) by Open Signal.

Figure 10-5. Android device fragmentation

Of course, device fragmentation doesn’t equal Android OS version fragmentation, but
this situation is similar to the challenge that Microsoft has always faced—making sure
that Windows works fine on thousands of types of hardware. It’s not an easy job to do.
In this regard, Apple is in a much better position because it is the only hardware and
software vendor of all devices running iOS.

It’s great for consumers that Android can be used on thousands of devices, but what
about us, the developers? Grouping devices by screen sizes might be a more practical

364 | Chapter 10: Responsive Design: One Site Fits All

http://bit.ly/1qegG3h
http://bit.ly/1qegG3h

approach for lowering the number of UI layouts supported by your application. Re‐
sponsive design is a collection of techniques based upon these main pillars:

• CSS media queries

• Fluid grids or fluid layouts

• Fluid media

Typography can be also considered one of the pillars of responsive
design. This subject belongs to publications written for web design‐
ers and will not be covered in this book. Oliver Reichenstein’s arti‐
cle “Responsive Typography: The Basics” is a good introduction to
this topic.

A media query is a CSS element. It consists of a media type (for example, @media (min-

width: 700px) and (orientation: landscape)) followed by the styles applicable to

this media. Using media queries, you can rearrange sections (<div>, <section>, <arti

cle>, and so forth) of the page based on the screen size. Fluid grids make it possible for
you to properly align and scale the content of these sections. Fluid media is about re‐
sizing images or videos.

Data grid components are often included in enterprise applications. Fluid grids are
designed by using relative positioning and can scale based on screen sizes. Fluid media
is about creating videos and images that react to screen sizes. We’ll talk about the afore‐
mentioned pillars in greater detail later in this chapter. But before going into technical
details, let’s get back to creating mockups, as we did in Chapter 1, to see how the UI
should look on different devices.

Back to Mockups
Recall Jerry, our web designer who we introduced in Chapter 1. Well, he has come up
with another set of Balsamiq mockups for the Save The Child application. This time he
has four versions: desktop, tablet, large smartphone, and small smartphone. As a matter
of fact, Jerry has provided more mockups to accommodate the user holding both
smartphones and tablets either in portrait or landscape mode. Figure 10-6 shows the
desktop mockup.

Back to Mockups | 365

http://bit.ly/1iaG8GQ
http://bit.ly/css-mq

Figure 10-6. The desktop layout

Jerry gives us several versions of the images—with and without the grid background.
The use of the grid is explained later, in “Fluid Grids” on page 379. Figure 10-7 depicts the
rendering on tablet devices with a screen that is less than 768 pixels wide in portrait
mode.

366 | Chapter 10: Responsive Design: One Site Fits All

Figure 10-7. The tablet layout (portrait)

Next comes the mockup for large smartphones having a width of up to 640 pixels.
Figure 10-8 shows two images of the screen next to each other (a user would need to
scroll to see the second image).

Back to Mockups | 367

Figure 10-8. The large phone layout (portrait)

The mockup for smaller phones with a width of less than 480 pixels is shown in
Figure 10-9. The mockup looks wide, but it actually shows three views of the phone
screen next to one another. The user would need to scroll vertically to see the middle
or the right view. iPhone 3 falls into this category.

368 | Chapter 10: Responsive Design: One Site Fits All

Figure 10-9. The small phone layout (portrait)

If need be, you can ask Jerry to create mockups for real devices with a width less than
320 pixels, but we won’t even try it here. Now we need to translate these mockups into
working code. The first subject to learn is CSS media queries.

CSS Media Queries
First, let’s see the CSS media queries in action, and then we’ll explain how this magic is
done. Run the project titled Responsive_basic_media_queries, and it will look like
Figure 10-10. This is a version for desktops (or some tablets in landscape mode). The
section chart, map, and video divide the window into three imaginary columns.

CSS Media Queries | 369

Figure 10-10. The desktop layout implemented

Drag the right border of your desktop web browser’s window to the left to make it
narrower. After reaching a certain breakpoint width (in our project it’s 768 pixels), you’ll

see how the <div>s reallocate themselves into the two-column window shown in
Figure 10-11.

370 | Chapter 10: Responsive Design: One Site Fits All

Figure 10-11. The tablet layout (portrait) implemented

CSS Media Queries | 371

Keep making the browser’s window narrower; when the width passes another break‐
point (becomes less than 640 pixels), the window will rearrange itself into one long
column, as in Figure 10-12. Users will have to scroll to see the lower portion of this
window, but they don’t lose any content.

Figure 10-12. The smaller phone layout (portrait) implemented

372 | Chapter 10: Responsive Design: One Site Fits All

The W3C recommendation “Media Queries” was introduced in CSS2 and HTML 4. The
idea was to provide different stylesheets for different media. For example, you can spec‐

ify different stylesheets in HTML by using the media attribute for screens that are less
than 640 pixels in width:

<link rel="stylesheet" href="assets/css/style.css" media="screen">

<link rel="stylesheet" href="assets/css/style_small.css"
 media="only screen and (max-width: 640px)">

You might have several of these <link> tags for different screen widths. But all of them
will be loaded, regardless of the actual size of the user’s display area. Modern browsers
might preclude loading CSS files that don’t match the current display size.

The other choice is to specify a section in a CSS file by using one or more @media rules.

For example, the following style will be applied to the HTML element with the id=main-

top-section if the width of the display area (screen) is less than 640 pixels. screen is
not the only media type that you can use with media queries. For example, you can use

print for printed documents or tv for TV devices. For an up-to-date list of media types,
see the document W3C Recommendation “Media Queries”.

@media only screen and (max-width: 640px) {

 #main-top-section {
 width: 100%;
 float: none;
 }
}

Two fragments of the CSS file styles.css from the project Responsive_basic_media_quer‐
ies are shown next. The first one begins by defining styles for windows having a width
of 1280 pixels (we use 1140 pixels to leave some space for padding and the browser’s
chrome). Example 10-1 presents the first fragment.

Example 10-1. CSS for the devices with a width less than 1280 pixels

/* The main container width should be 90% of viewport width */
/* but not wider than 1140px */
#main-container {
 width: 90%;
 max-width: 1140px;
 margin: 0 auto;
}

/* Background color of all elements was set just as an example */
header {
 background: #ccc;
 width: 100%;
 height: 80px;
}

CSS Media Queries | 373

http://bit.ly/Uc4RQa
http://bit.ly/Uc4RQa

#main-top-section {
 background: #bbb;
 width: 100%;
 height: 300px;
 position: relative;
}

#main-bottom-section {
 width: 100%;
}

#video-container, #map-container, #charts-container {
 width: 33.333%;
 padding-bottom: 33.333%;
 float: left;
 position: relative;
}

#video, #map, #charts {
 background: #aaa;
 width: 100%;
 height: 100%;
 position: absolute;
 padding: 0.5em;
}

#map {
 background: #999;
}

#charts {
 background: #7d7d7d;
}

footer {
 background: #555;
 width: 100%;
 height: 80px;
 color: #fff;
}

Set the maximum width of the window on a desktop to 1140 pixels. It’s safe to
assume that any modern monitor supports the resolution of 1280 pixels in width
(minus about 10 percent for padding and chrome).

Allocate one-third of the width for video, charts, and maps each.

float: left; instructs the browser to render <div> starting from the left and
adding the next one to the right.

374 | Chapter 10: Responsive Design: One Site Fits All

This CSS mandates changing page layouts if the screen size is at or is smaller than 768
or 640 pixels. Based on your web designer’s recommendations, you can specify as many
breakout sizes as needed. Suppose that in the future everyone’s monitor is at least 1900
pixels wide; you could provide a layout that would use five imaginary columns. This
would be a good idea for online newspapers or magazines, but Save The Child is not a
publication, so we’ll keep its maximum width within 1140 pixels. Or you might decide
to make a version of Save The Child available for LCDs that are only 320 pixels wide;
create a new media query section in your CSS and apply fluid grids to make the content
readable. Example 10-2 shows the second fragment of the CSS file that defines media
queries.

Example 10-2. Two media queries for a viewport with a width of 768 pixels and 640
pixels

/* media queries */

@media only screen and (max-width: 768px) {
 #main-container {
 width: 98%
 }

 #main {
 background: #bbb;
 }

 #main-top-section, #main-bottom-section {
 width: 50%;
 float: left;
 }

 #main-top-section {
 height: 100%;
 }

 #video-container, #map-container, #charts-container {
 float: none;
 width: 100%;
 padding-bottom: 70%;
 }

}

@media only screen and (max-width: 640px) {

 #main-top-section, #main-bottom-section {
 width: 100%;
 float: none;
 }

 #main-top-section {

CSS Media Queries | 375

 height: 400px;
 }

 #video, #map, #charts {
 height: 60%;
 }
}

This media query controls layouts for devices with viewports having a maximum
width of 768 pixels.

Split the width fifty-fifty between the HTML elements with the IDs main-top-

section and main-bottom-section.

Allocate main-top-section and main-bottom-section next to each other

(float: left;), as in Figure 10-11. To better understand how the CSS float
property works, visualize a book page that has a small image on the left with the

text floating on the right (a text wrap). This is what float: left; can do on a
web page.

Turn the floating off so the charts, maps, and video containers will start one
under another, as in Figure 10-11.

The media query controlling layouts for devices with viewports with a maximum
width of 640 pixels starts here.

Let the containers main-top-section and main-bottom-section take the entire

width and be displayed one under another (float: none;), as in Figure 10-12.

Internet Explorer 8 and older don’t natively support media queries.
Consider using Modernizr to detect support of this feature, and load
the Media Queries Polyfill, if needed.

The Viewport Concept
Mobile browsers use the concept of a viewport, which is a virtual window that renders
the web page content. This virtual window can be wider than the actual width of the
display of the user’s mobile device. For example, by default iOS Safari and Opera Mobile
render the page to the width of 980 pixels, and then shrink it down to the actual width
(320 pixels on old iPhones and 640 pixels on iPhone 4 and 5). That’s why your iPhone
renders the entire web page of, say, The New York Times (yes, the fonts are tiny), and
not just its upper-left section.

By using the meta tag viewport, your web page overrides this default and renders itself

according to the actual device size. All code samples in this chapter include the view

376 | Chapter 10: Responsive Design: One Site Fits All

http://bit.ly/1sCa9ns

port meta tag in index.html. All mobile browsers support it even though it’s not a part

of the HTML standard yet. Desktop browsers ignore the tag viewport.

<meta name="viewport" content="width=device-width, initial-scale=1.0">

This meta tag tells the browser that the width of the virtual viewport should be the same
as the width of the display. This setting will produce good results if your responsive web
design includes a version of the page layout optimized for the width of the current user’s
device. But if you are rendering a page with a fixed width, which is narrower than the

default width of the display (for example, 500 pixels), setting the attribute con

tent="width=500" would instruct the mobile web browser to scale the page to occupy
the entire display real estate. In other words, setting a fixed width is like saying, “Dear
mobile browser, I don’t have a special layout for this device width—do the best you can
and scale the content.”

Setting the initial scaling to 1.0 ensures that the page will render as close to the physical
device size as possible. If you don’t want to allow the user to scale the web page, add the

attribute user-scalable=no to the meta tag viewport.

If you set the initial scale to 1.0 but apply it to a web page that
was not built using responsive design principles, users will need
to zoom or pan to see the entire page.

For details about configuring the viewport, refer to Apple’s or Opera’s documentation.

An important concept to take away from this example is to switch from pixels to per‐
centages when specifying width. In the next examples, you’ll see how to switch from

using the rigid px to more flexible em units. In addition, with the CSS float property,
you can control relative (not absolute) positioning of your page components. There are

also such CSS units of measure as vw and vh, which represent percentages of the viewport

width and height, respectively. But the best practice here is to use rem units. The app

can set the font size on BODY and then specify everything in relative-ems that scale only

from that number. ems cascade their scale down from their parent, meaning lots of extra
math for the developer and the browser to do.

Install an add-on for Google Chrome called Window Resizer. It adds
an icon to the toolbar for easy switching between the browser screen
sizes. This way, you can quickly test how your web page looks in
different viewports. Another handy add-on for Chrome called Re‐
sponsive Inspector allows you to see the various media queries for a
page and automatically resize to them.

CSS Media Queries | 377

http://bit.ly/1o0j5xQ
http://bit.ly/1nCwqZZ
http://bit.ly/1pKgV6T
http://bit.ly/TeO5Pj
http://bit.ly/1l7yPdA
http://bit.ly/1l7yPdA

Google Chrome Developer Tools offers you a way to test a web page
on various emulators of mobile devices. You just need to select the
“Show Emulation view in console drawer” in Settings, and then you’ll
see the Emulation tab under the Elements menu (press the Esc key if
it’s not shown).

How Many Breakpoints?
How many media queries is too many? It all depends on the web page you’re designing.
In the sample CSS shown previously, we used the breakpoint of 768 pixels to represent
the width of a tablet in portrait mode, and this is fine for the iPad. But several tablets
(for example, the 10.1-inch Samsung Galaxy) have 800-pixel-wide viewports, whereas
Microsoft Surface Pro is 1080 pixels wide.

There is no general rule as to how many breakpoints are needed for a typical web page.
Let the content of your page (and where it breaks) dictate where you add breakpoints.
Just create a simple Lorem Ipsum prototype of your website and start changing its size.
At a certain point (viewport size), your design begins to break. This is where you need
to put your breakpoint and define a media query for it. It is recommended to start by
designing for the smallest viewports (the Mobile First principle). As the viewport width
increases, you might decide to render more content, and hence define a new breakpoint.
Technically, this means that the content of your CSS should default to the smaller view‐
ports and only if the screen is larger, apply media queries. This approach will reduce the
CSS handling by the browser of the mobile device (no need to switch from large to
smaller layouts).

Use Google Chrome Developer Tools to find out the current width of

the viewport. Just type in the console window.innerWidth and you’ll
see the width in pixels.

Don’t try to create a pixel-perfect layout by using responsive design. Use common sense,
and remember, the more media queries you provide, the larger your CSS file will be‐
come. But in a mobile world, you should try to create web applications that are as small
as possible.

Be prepared to see inconsistencies among desktop browsers in meas‐
uring the width of the viewport. Our tests showed that WebKit-
based browsers add about 15 pixels to the width, supposedly account‐
ing for the width of the scrollbar. So if your media query has to change
the layout at 768 pixels, it will change it at about 783 pixels. Do more
testing on different viewports and adjust your CSS as needed.

378 | Chapter 10: Responsive Design: One Site Fits All

Fluid Grids
Fluid grids are a very important technique in responsive design. Grids have been used
by web designers for ages: a web page is divided by a number of imaginary rows and
columns. But the fluid grid, as its name indicates, is flexible and can scale based on
screen sizes.

Moving Away from Absolute Sizing
When a browser displays text, it uses a default font size unless that size is overruled by

the font-size property. Typically, the default font size is 16 pixels. But instead of using
an absolute font size, you can use a relative one by using em units. The default browser’s
font size can be represented as 1 em. Because the font size happens to be 16 pixels, 1 em
equals 16 pixels.

Absolute sizes are enemies of responsive-design websites, and specifying sizes in em
units gives you the freedom to create web pages with relatively flexible and fluid content.
The size can be calculated based on a formula offered by Ethan Marcotte in his article

on fluid grids: target/context=result, which in the case of fonts becomes size-in-

pixels/16 = size-in-em.

For example, instead of specifying the size as 24 pixels, you can set it to 1.5 em: 24/16.

In your CSS file, you can write something like padding-bottom: 1.5em. This might not
seem a big deal, but it is, because if everything is done in relative sizing, your page will
look good and proportional regardless of the screen size and regardless of how big or
small 24 pixels might look on a particular screen.

If we are talking about using em units to represent font sizes, the font becomes the
context. But what if you want to represent the width of an arbitrary HTML component
in a browser’s window or any other container? Then the width of your component

becomes the target, and the total width of the container becomes the context. We can
still use the previous formula, but we will multiply the result by 100 percent. This way,
the width of an HTML component will be represented not in em units, but in a per‐
centage relative to the total width of the container.

Let’s say the total width of the browser’s window is 768 pixels, and we want to create a
panel on the left that’s 120 pixels wide. Instead of specifying this width in pixels, we’ll
use the formula and turn it into a percentage. We want to calculate the target’s width as
a percent of the available context (100 percent):

120 / 768 * 100% = 15.625%

This approach makes the page design fluid. If someone decides to open this page on a
480-pixel-wide screen, the panel will still take 15.625 percent of the screen rather than
demanding 120 pixels, which would look substantially wider on a smaller viewport.

Fluid Grids | 379

http://bit.ly/1jLswNi
http://bit.ly/1jLswNi

Window as a Grid
While designing your page, you can overlay any HTML container or the entire web page
real estate with an imaginary grid containing any number of columns. Make it flexible,
though; the width of each column has to be specified in percentages.

Adobe Dreamweaver CS6 automates the creation of media queries and introduces the
Fluid Grid layout (see Figure 10-13). It also allows you to quickly see how your design
will look on a tablet or phone (you can pick screen size, too) with a click of the corre‐
sponding status bar button.

Figure 10-13. Creating a Fluid Grid layout in Dreamweaver

Adobe’s Creative Cloud includes a tool called Edge Reflow, which
helps designers create responsive web pages.

Web designers use different approaches when styling with fluid grids. When you design
a new page using Dreamweaver’s Fluid Grid layout, it suggests that you allocate a dif‐
ferent number of columns for desktop, tablet, and mobile layouts. For example, its de‐
fault layout is to allocate 12 columns for desktops, 8 for tablets, and 5 for phones, which
is a perfectly solid approach. But our web designer, Jerry, prefers using 12 columns for

380 | Chapter 10: Responsive Design: One Site Fits All

http://adobe.ly/1jLsxAG
http://adobe.ly/UGyysM

all screen sizes and then playing with the width percentages for different layouts. You’ll
see how he does it in the project Responsive Donation later in this chapter.

Now imagine that you’ll overlay the entire window with an invisible grid containing 12
equally sized columns. Each column will occupy 8.333 percent of the total width. Now,
if you need to allocate to an HTML component about 40 percent of the total width, you
could do this by allocating 5 grid columns (8.333% x 5 = 41.665%). Accordingly, your
CSS file can contain 12 classes that you can use in your page, as shown in Example 10-3.

Example 10-3. Twelve sample classes to support fluid grids

.one-column {
 width: 8.333%;
}

.two-column {
 width: 16.666%;
}

.three-column {
 width: 24.999%;
}

.four-column {
 width: 33.332%;
}

.five-column {
 width: 41.665%;
}

.six-column {
 width: 49.998%;
}

.seven-column {
 width: 58.331%;
}

.eight-column {
 width: 66.664%;
}

.nine-column {
 width: 74.997%;
}

.ten-column {
 width: 83.33%;
}

.eleven-column {

Fluid Grids | 381

 width: 91.663%;
}

.twelve-column {
 width: 100%;
 float: left;
}

Now let’s see the fluid grid in action. Run the project Responsive Fluid Grid, and you’ll
see a web page that looks similar to Figure 10-14. This example changes the grid layout
if the viewport width is less than one of the following width breakpoints: 768 pixels, 640
pixels, and 480 pixels. In this context, the term breakpoints has nothing to do with
debugging; we just want the content of the web page to be rearranged when the width
of the viewport passes one of these values.

Figure 10-14. Fluid grid on the wide screen

If you narrow the width of the browser’s window, you’ll see how the grid cells begin to
squeeze, but the layout remains the same until the window size becomes smaller than

382 | Chapter 10: Responsive Design: One Site Fits All

one of the predefined breakpoints. Then, another media query kicks in and the layout
changes. For example, Figure 10-15 shows a fragment of the web page when the width
of the browser’s window narrows to less than 640 pixels. The 12-, 6-, and 4-cell grids
display all the cells vertically, one below another. Only the 480-pixel grids still have
enough room to display their cells horizontally. But if you keep squeezing the window,
all the grids will display their content in one column, as long as the viewport width
remains less than 480 pixels.

Figure 10-15. Fluid grid on the viewport narrower than 640 pixels

Fluid Grids | 383

The fragment of index.html from the Responsive Fluid Grid project goes next. For
brevity, we’ve replaced some repetitive markup with the comment “A fragment removed
for brevity.” This code fragment (see Example 10-4) includes the 12-, 6-, and 4-column
grids shown at the top of Figure 10-14.

Example 10-4. A sample HTML page that uses fluid grid styling

<head>

 <meta charset="utf-8">
 <title>Responsive fluid grid</title>
 <meta name="description" content="Responsive fluid grid example">
 <meta name="viewport" content="width=device-width,initial-scale=1">

 <link rel="stylesheet" href="css/style.css">
</head>

<body>

 <div id="wrapper-container">

 <h1 class="temp-heading">Responsive fluid grid example</h1>
 <h4 class="temp-heading">Breakpoint-768: change float of HTML elements
 if viewport is 768px or smaller</h4>
 <div class="row breakpoint-768">
 <div class="one-column cell">
 1
 </div>
 <div class="one-column cell">
 2
 </div>
 <div class="one-column cell">
 3
 </div>

 <!-- A fragment removed for brevity -->

 <div class="one-column cell last-cell" >
 12
 </div>
 </div>

 <h4 class="temp-heading">Breakpoint-768: change float of the 12-cell grid
 if viewport is 768px or smaller</h4>

 <div class="row breakpoint-768">
 <div class="two-column cell">
 1
 </div>
 <div class="two-column cell">
 2
 </div>

 <!-- A fragment removed for brevity -->

384 | Chapter 10: Responsive Design: One Site Fits All

 <div class="two-column cell">
 6
 </div>
 </div>

 <h4 class="temp-heading">Breakpoint-768: change float of the 6-cell grid
 if viewport is 768px or smaller</h4>

 <div class="row breakpoint-640">
 <div class="three-column cell">
 1
 </div>
 <div class="three-column cell">
 2
 </div>
 <div class="three-column cell">
 3
 </div>
 <div class="three-column cell">
 4
 </div>
 </div>

Note that some of the HTML elements are styled with more than one class selector (for

example, class="one-column cell"). The entire content of the file styles.css from the
Responsive Fluid Grids project is shown in Example 10-5, and you can find the decla‐

rations of the class selectors one-column and cell there.

Example 10-5. The styles.css file from the Responsive Fluid Grids project

* {
 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 font: inherit;
 vertical-align: baseline;
 -webkit-box-sizing:border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

article, aside, details, figcaption, figure, footer, header, hgroup, menu, nav,
 section {
 display: block;
}

ul li {
 list-style: none;
}

Fluid Grids | 385

.row:before, .row:after, .clearfix:before, .clearfix:after {
 content: "";
 display: table;
}

.row:after, .clearfix:after {
 clear: both;
}

/* Start of fluid grid styles */

.row {
 padding: 0 0 0 0.5em;
 background: #eee;
}

.breakpoint-480 .cell, .breakpoint-640 .cell, .breakpoint-768 .cell,
 .breakpoint-960 .cell, .no-breakpoint .cell {
 float: left;
 padding: 0 0.5em 0 0;
}

.one-column {
 width: 8.333%;
}

.two-column {
 width: 16.666%;
}

.three-column {
 width: 24.999%;
}

.four-column {
 width: 33.332%;
}

.five-column {
 width: 41.665%;
}

.six-column {
 width: 49.998%;
}

.seven-column {
 width: 58.331%;
}

.eight-column {
 width: 66.664%;

386 | Chapter 10: Responsive Design: One Site Fits All

}

.nine-column {
 width: 74.997%;
}

.ten-column {
 width: 83.33%;
}

.eleven-column {
 width: 91.663%;
}

.twelve-column {
 width: 100%;
 float: left;
}

.right {
 float: right;
}

.row.nested {
 padding: 0;
 margin-right: -0.5em
}

Styling grid rows, which are containers for cells.

Defining common class selectors (floating and padding) for the cells located in

the viewports of any width. Please note the property float: left; (it will
change in the media queries section).

Dividing 100 percent of the container’s width by 12 columns results in allocating
8.333 percent of width per column. Each cell in the 12-column table in our

HTML has the one-column class selector.

Check the HTML for the 6-column grid. Each cell is styled as two-column and
will occupy 16.666 percent of the container’s width.

The HTML for the 4-column grid uses the three-column style for each cell that
will use 24.999 percent of the container’s width.

Example 10-6 shows the section with media queries in this file (the following is just
another fragment of the same CSS file).

Example 10-6. Media queries section from the CSS file

/* --------------- Media queries -------------- */

@media only screen and (max-width: 768px) {

Fluid Grids | 387

 .breakpoint-768 .cell {
 float: none;
 width: 100%;
 padding-bottom: 0.5em
 }
}

@media only screen and (max-width: 640px) {
 .breakpoint-640 .cell {
 float: none;
 width: 100%;
 padding-bottom: 0.5em
 }
}

@media only screen and (max-width: 480px) {
 .breakpoint-480 .cell {
 float: none;
 width: 100%;
 padding-bottom: 0.5em
 }
}

/*End of fluid grid styles*/

#wrapper-container {
 width: 95%;
 max-width: 1140px;
 margin: 0 auto;
}

/* --- .cell visualisation --- */
.cell {
 min-height: 50px;
 text-align:center;
 border-left: 1px solid #aaa;
 vertical-align: middle;
 line-height: 50px;
}
.cell .cell:first-child{
 border-left:none;
}
/* --- .cell visualisation end --- */

h1.temp-heading, h2.temp-heading, h4.temp-heading {
 font-size: 1.4em;
 margin: 1em 0;
 text-align: center
}
h4.temp-heading {
 font-size: 1.1em;
}

388 | Chapter 10: Responsive Design: One Site Fits All

p.temp-project-description {
 margin: 2em 0;
}

This media query turns off floating (float:none) if the viewport is 768 pixels

or less. This reallocates the cells vertically. The width:100% forces the cell to
occupy the entire width of the container as opposed to, say, 8.333 percent in the
12-column grid.

The media query for 640 pixels won’t kick in until the viewport width narrows
to that size. If you resize the browser window such that it is less than 768 pixels
but wider than 640 pixels, note that the 4-column grid (styled as

breakpoint-640) has not changed its layout just yet.

At times, you might need to use a mix of fluid and fixed layouts. For
example, you might need to include an image of a fixed size on your
fluid web page. In these cases, you can use a fixed width on some
elements, and if needed, consider using CSS tables (not to be con‐
fused with HTML tables). CSS tables are supported by all current
browsers.

Spend some time analyzing the content of index.html and styles.css from the Responsive
Fluid Grid project. Try to modify the values in CSS and see how your changes affect the
behavior of the fluid grid. In the next section, we’ll apply these techniques to our Save
The Child application.

Responsive CSS: The Good News
We have explained how the fluid grid works under the hood, but calculating percentages
is not the most exciting job for software developers. The good news is that several
responsive frameworks offer CSS, typography, and some JavaScript to jump-start UI
development of a web application. They’ll spare you from most of the mundane work
with cascading style sheets. Here are some of them:

• Consider using Twitter’s framework called Bootstrap, which has lots of greatly
styled components and also supports a fluid grid system.

• The Foundation 4 framework promotes Mobile First design and includes a flexible
grid.

• The Skeleton is a collection of CSS files, which includes a scalable grid.

• Semantic-UI is a collection of styled UI components, which includes a responsive
grid, too.

Fluid Grids | 389

http://caniuse.com/css-table
http://twbs.github.io/bootstrap
http://bit.ly/1piyvie
http://foundation.zurb.com
http://www.getskeleton.com
http://semantic-ui.com
http://bit.ly/1pJa675
http://bit.ly/1pJa675

People who work with CSS a lot use an authoring framework called
Compass with the CSS extension SASS or the CSS preprocessor LESS.
These systems compile to CSS, allowing code to include variables for
tracking and calculating numbers such as column width and more.
You can now modularize your CSS as well as your code. In Chapter 12
we use a SASS theme that comes with the Sencha Touch framework.

Making Save The Child Responsive
First, run any previous version of the Save The Child application to make sure it is not
responsive. Just make the browser window narrower, and note how some of the page
content on the right is cut off. We’ll gradually make the page responsive: the first version
will make the header responsive, then the donation section, and, finally, the entire page
will become fluid. In a web browser, open index.html from the project Responsive
Header. You’ll see a page similar to Figure 10-16.

Figure 10-16. Responsive Header (width 580 pixels+)

Example 10-7 is the fragment from index.html that displays the logo image and the
header’s menus.

Example 10-7. An HTML fragment for the logo and the menus

<div id="wrapper-container">
 <header class="row breakpoint-640">
 <h1 id="logo" class="four-column cell">
 </h1>
 <nav class="eight-column cell">

390 | Chapter 10: Responsive Design: One Site Fits All

http://compass-style.org
http://sass-lang.com
http://lesscss.org/

 Who We Are

 What We Do

 Where We Work

 Way To Give

 </nav>

Initially, this code uses the four-column style (width: 33.332%; of the container) for

the logo and eight-column (66.664%) for the <nav> element. When the size of the

viewport changes, the appropriate media query takes effect. Note the breakpoint-640

class selector in the <header> tag. Jerry, our web designer, decides that 640 pixels is not

enough to display the logo and the four links from the <nav> section in one row. Besides,
he wants to fine-tune the width of other elements, too. Example 10-8 shows the media
query for the 640-pixel viewport.

Example 10-8. Media query for the 640-pixel viewport

@media only screen and (max-width: 640px) {
 .breakpoint-640 .cell {
 float: none;
 width: 100%;
 padding-bottom: 0.5em
 }

 header {
 margin-top: 1em;
 }
 #login {
 top: 1em;
 }
 #logo.four-column {
 width: 40%;
 }
 nav {
 width: 100%;
 margin-top: 0.8em
 }
 nav ul li {
 width: 24.5%;
 margin-left: 0.5%
 }
 nav li a {
 text-align: center;
 font-size: 0.6em;

Making Save The Child Responsive | 391

 }
 #login-link-text {
 display: none;
 }
 a#login-submit {
 padding: 0.2em 0.5em
 }
 #login input {
 width: 9em;
 }
}

As you can see, if the cell has to be styled inside breakdown-640, the float is turned off

(float: none;) and each of the navigation items has to occupy 100 percent of the

container’s width. The logo, login, and nav elements will change, too. There is no exact
science here; Jerry figured out all these values empirically.

Slowly change the width of the viewport, and you’ll see how the layout responds. The
styles.css of this project has media queries for different viewport sizes. For example,
when the page width is less than 580 pixels but more than 480 pixels, it looks like
Figure 10-17.

Figure 10-17. Responsive Header 2 (width between 480 and 580 pixels)

When the width of the viewport narrows to less than 480 pixels, the header’s content is
rearranged and looks like Figure 10-18. Again, we are not tying the design to a specific

392 | Chapter 10: Responsive Design: One Site Fits All

device; rather, we’re focusing on a viewport width. The iPhone 4 will render this page
using the layout shown in Figure 10-18, but iPhone 5 will use the layout in
Figure 10-17. You can’t go by a device type.

Figure 10-18. Responsive Header (viewport’s width below 480 pixels)

The next project to try is called Responsive Donation. This version makes the donation
section fluid. The donation section contains the Lorem Ipsum text and the form, which
is revealed when the user clicks the Donate Now button. First, let’s look at the HTML.
The index.html file contains the fragment shown in Example 10-9 (some of the content
that’s irrelevant for layout was removed for better readability).

Example 10-9. The Donate section’s HTML

<div id="main-content" role="main">
 <section id="main-top-section" class="row breakpoint-480">

Making Save The Child Responsive | 393

 <div id="donation-address" class="seven-column cell">
 <p class="donation-address">
 Lorem ipsum dolor sit amet </p>
 <button class="donate-button" id="donate-button">
 Donate Now
 </button>

 </div>
 <div id="donate-form-container">
 <h3>Make a donation today</h3>
 <form name="_xclick" action="https://www.paypal.com/cgi-bin/webscr"
 method="post">

 <div class="row nested breakpoint-960">
 <div class="six-column cell">
 <div class="row nested">
 <div id="donation-amount" class="five-column left">
 <label class="donation-heading">Donation amount</label>
 <input type="radio" name="amount" id="d10" value="10"/>
 <label for="d10">10</label>
 </div>
 <div id="donor-info" class="five-column left">

The donation section is located in the main-top-section of the page. Jerry wants to
keep the image of the boy visible for as long as possible in the narrower viewports. The
top section of Save The Child has two backgrounds: the flowers (bg-2.png) and the boy
(child-1.png). This is how they are specified in style.css:

#main-top-section {
 background: url(../img/child-1.png) no-repeat right bottom,
 url(../img/bg-2.png) no-repeat 20% bottom;
}

If the viewport is wide enough, both backgrounds will appear. What’s wide enough?

Jerry figures it out after experimenting. The seven-column style allocates more than

half (58.331%) of the viewport width for the donation-address section and the six-

column style allocates 49.998% for for the donation form. For example, Figure 10-19
shows how the donation section will look when the viewport width is 570 pixels.

394 | Chapter 10: Responsive Design: One Site Fits All

Figure 10-19. Responsive Donate section: 570 pixels

Making Save The Child Responsive | 395

But when the width narrows to less than 480 pixels, there is no room for two background
images, and only the flowers will remain on the page background. Example 10-10
presents the media query for a 480-pixel viewport. Note that the background in the
main top section has only one image now: bg2.png. Floating is off to show the navigation
menu vertically, as is depicted in Figure 10-20.

Example 10-10. Media query for the 480-pixel viewport

@media only screen and (max-width: 480px) {
 .breakpoint-480 .cell {
 float: none;
 width: 100%;
 padding-bottom: 0.5em
 }
 #logo {
 padding-bottom: 11em
 }
 nav ul li {
 float: none;
 width: 100%;
 margin-left: 0;
 margin-bottom: 0.5%;
 }
 #main-top-section {
 background: url(../img/bg-2.png) no-repeat 20% bottom;
 }
 .donate-button {
 width: 14em;
 margin-left: auto;
 margin-right: auto;
 }
 .donate-button-header {
 font-size: 1.1em;
 }
 .donate-2nd-line {
 font-size: 0.9em;
 }
 #donate-later-link {
 display: block;
 width: 11em;
 margin-left: auto;
 margin-right: auto;
 }
 #make-payment p {
 width: 100%;
 }
 #donation-amount.five-column {
 width: 50%
 }
 #donor-info.six-column {
 width: 50%
 }

396 | Chapter 10: Responsive Design: One Site Fits All

 #donate-form-container select, input[type=text], input[type=email] {
 width: 90%;
 }
}

Figure 10-20. The responsive Donate section on a 480-pixel viewport

The project Responsive Final includes the charts, maps, and video. Each of these sections

uses the four-column style, which is defined in styles.css as 33.332% of the container’s
width (see Example 10-11).

Making Save The Child Responsive | 397

Example 10-11. Charts, maps, and video section styled as a four-column grid

<section id="main-bottom-section" class="row breakpoint-768">

 <div id="charts-container" class="four-column cell">
 <svg id="svg-container" xmlns="http://www.w3.org/2000/svg">

 </svg>
 <h3>Donation Stats</h3>
 <h5>Lorem ipsum dolor sit amet, consect.</h5>
 </div>
 <div id="map-container" class="four-column cell">
 <div id="location-map"></div>
 <div id="location-ui"></div>
 </div>
 <div id="video-container" class="four-column cell last">
 <div id="video-wrapper">
 <video id="movie" controls="controls"
 poster="assets/media/intro.jpg" preload="metadata">
 <source src="assets/media/intro.mp4" type="video/mp4">
 <source src="assets/media/intro.webm" type="video/webm">
 <p>Sorry, your browser doesn't support the video element</p>
 </video>
 </div>
 <h3>Video header goes here</h3>
 <h5>More video link</h5>
 </div>
</section>

The ID of this section is still main-bottom-section, and it’s shown at the bottom of the
page on wide viewports. Now take another look at Figure 10-11. Jerry wants to display
these three sections on the righthand side for tablets in portrait mode, as shown in
Figure 10-21.

398 | Chapter 10: Responsive Design: One Site Fits All

Figure 10-21. Portrait mode on tablets

Example 10-12 shows the relevant code from style.css. The top and bottom sections get
about half of the width each, and floating is turned off so that the browser distributes
charts, maps, and video vertically.

Making Save The Child Responsive | 399

Example 10-12. Media query for tablets in portrait mode

@media only screen and (max-width: 768px) {
 .breakpoint-768 .cell {
 float: none;
 width: 100%;
 padding-bottom: 0.5em;
 }

 #main-bottom-section, #main-top-section {
 width: 49%;
 }

We’ve explained the use of media queries for applying different styles
to the UI based on screen resolutions. But there is a twist. What device
comes to mind if you hear about a screen with a resolution of 1920 x
1080 pixels? Most likely you got it wrong unless your answer was the
smartphone Galaxy S4 or Sony Xperia Z. The resolution is high, but
the screen size is 5 inches. What media query are you going to ap‐
ply for such a device? Even with this high resolution, you should not
apply the desktop’s CSS to a mobile device. The CSS media query
device-pixel-ratio can help you distinguish high-resolution small de‐
vices from desktops.

Fluid Media
If your responsive web page contains images or videos, you want to make them fluid,
too; they should react to the current size of the containers they are in. Our page has a
chart image and a video. Both of them are made flexible, but we use different techniques.

If you keep narrowing the viewport, the Responsive Final project will show a layout
similar to Figure 10-12. While reading the code of this project, visit the main.js file.
There is some work done in the JavaScript, too, which listens to the resize event for the
charts container:

window.addEventListener("resize", windowResizeHandler);
function windowResizeHandler() {
 drawPieChart(document.getElementById('svg-container'),
 donorsDataCache, labelsDataCache);
}

Whenever the size changes, it invokes the function drawPieChart() that recalculates

the width of the SVG container (it uses the clientWidth property of the HTMLElement)
and redraws the chart accordingly.

400 | Chapter 10: Responsive Design: One Site Fits All

http://bit.ly/1quszCd

Consider storing images in the WebP format, which is a lossless for‐
mat. WebP images are about 25 percent smaller than PNG or JPEG
images. Your application needs to check first whether the user’s web
browser supports WebP format; otherwise, images in more tradition‐
al formats should be rendered. The other choice is to use Thumbor
imaging service, which can automatically serve WebP images to
browsers that support this format.

The video is flexible, too, and it’s done a lot simpler. We do not specify the fixed size of

the video. Instead, we use the CSS property width, instructing the browser to allocate
100 percent of the available container’s width. The height of the video must be auto‐
matically calculated to keep the proportional size:

video {
 width: 100% !important;
 height: auto !important;
}

The !important part disables regular cascading rules and ensures that these values will
be applied, overriding more specific width or height declarations, if any. If you prefer

to not always use the entire width of the container for the video, you can use max-width:

100%;, which will display the video that fits in the container at its original size. If a video
is larger than the container, the browser will resize it to fit inside the container.

Even though the landing page of your web application simply includes links to the
required images, the rest of the images should be loaded from the server by making Ajax
requests, passing parameters to it regarding the viewport size. This way, the server’s
software can either resize images dynamically and include them as Base64-encoded
strings or use precreated, properly sized images depending on the viewport dimensions.

Although using Base64 encoding increases the total size of the im‐
age in bytes, it makes it possible for you to group multiple images to
minimize the number of network calls the browser needs to make to
retrieve these images separately. The other way to combine multiple
images into one is via CSS sprites.

Regardless of the width and height of the image, use tools to reduce image sizes in bytes.
These tools include TinyPNG and Smush.it. If you use lossy tools, some of the image
data will be lost during compression, but in many cases the difference between the
original and compressed image is invisible.

Making Save The Child Responsive | 401

http://bit.ly/1q5n5jz
http://thumborize.me
http://thumborize.me
http://tinypng.org
http://www.smushit.com/ysmush.it

Sencha.io SRC is a proxy server that allows you to dynamically re‐
size images for various mobile screen sizes.

Besides making images responsive, keep in mind that some people have mobile devices
with high-resolution Retina displays. The problem is that to make an image look good
on such displays, it has to be large, which increases its loading time. There is no common
recipe for properly optimizing the image size; plan to spend extra time just preparing
the images for your application.

There is a living W3C document, titled “An HTML extension for adaptive images,” that
provides developers with a means to declare multiple sources for an image. The pro‐

posed HTML element <picture> allows you to specify different images for different
media (see demos). For example:

<picture width="500" height="500">
 <source media="(min-width: 45em)" src="large.jpg">
 <source media="(min-width: 18em)" src="med.jpg">
 <source src="small.jpg">

</picture>

Another technique is to use a content delivery network (CDN) that caches and serves
images of different sizes for different user agents. The very first time that a request is
made from a device with an unknown user engine, this first “unlucky” user will get an
image with a low resolution, and then the application makes an Ajax call, passing the
exact screen parameters for this device. The CDN server resizes the original high-
resolution image for this particular user agent, and caches it, so any other users having
the same device will get a perfectly sized image from the get-go.

Imager.js is an alternative solution to handling responsive image
loading, created by developers at BBC News. Imager loads the most
suitably sized image and does it once.

Summary
RWD is not a silver bullet that allows using a single code base for all desktop and mobile
versions of your HTML5 web application. RWD can be the right approach for devel‐
oping websites that mainly publish information. It’s not likely that you can create a
complex single-code-base web application that works well on Android, iPhone, and
desktop browsers.

402 | Chapter 10: Responsive Design: One Site Fits All

http://bit.ly/1kOsNyq
http://picture.responsiveimages.org
http://responsiveimages.org/demos
http://bit.ly/1lPiwTE

Responsive design can result in unnecessary CSS code being loaded to the user’s device.
This consideration is especially important for mobile devices operating on 3G or slower
networks (unless you find a way to lazy-load them).

Responsive design can still can be a practical business solution when the form factor is
relatively low (which enterprises can mandate)—for example, if your target group of
users operates specific models of iOS and Android devices.

If you take any JavaScript framework that works on both desktop and mobile devices,
you’ll get two sets of controls and will have to maintain two different source code re‐
positories. Not using mobile JavaScript frameworks limits the number of user-friendly
UI controls. Besides, frameworks spare you from dealing with browsers’ incompatibil‐
ities.

In this chapter, you saw how the Save The Child application was built with responsive

design principles. Our application has several areas (<div>s), and one of them included

a donation form. (We could have added a responsive <div> for the online auction, too.)

On the wide screen, we displayed three of these <div>s horizontally and two underneath.
On the narrow screen, each of these sections could be scaled down and displayed one
under another.

But using responsive design for styling the application to run on tablets or mobile de‐
vices will require Jerry-the-designer to work in tandem with a user experience specialist
so that the UI will have larger controls and fonts while minimizing the need for manual
data entry. And don’t forget that half of a mobile screen could be covered by a virtual
keyboard. If you ignore this, the user will look at your application’s UI via a keyhole,

and even our fluid <div> sections might not fit.

In Chapters 11 and 12, we work on yet two more versions of the Save The Child appli‐
cation. First, we’ll use the jQuery Mobile framework and then Sencha Touch.

Summary | 403

CHAPTER 11

jQuery Mobile

According to jquerymobile.com, jQuery Mobile is an HTML5-based user interface sys‐
tem designed to make responsive websites and apps that are accessible on all smartphone,
tablet, and desktop devices. But jQuery Mobile was mainly created for developing web
applications for smaller screens.

To start learning jQuery Mobile, you need to know HTML, JavaScript, CSS, and jQuery.
In some publications, you might see statements extolling how you can start using jQuery
Mobile knowing only HTML. This is true until you run into the first unexpected be‐
havior of your code, which you’ll inevitably encounter in one of the web browsers. (Take
the statements about being a cross-browser framework with a grain of salt, too.) After
that, you need to add some event listeners and scripts, and start debugging.

Obtaining jQuery Mobile
The jQuery Mobile website has all you need to start using this library. You can find lots
of learning materials in the Demos section: tutorials, an API reference, and samples.
The Download section contains links for the library itself.

There are two ways of including jQuery Mobile in the source code of your application:
either download and uncompress the ZIP file in your local directory and specify this
location in the source code of your application, or include the URLs of the content
delivery network (CDN)–hosted files. Visit the jQuery Mobile Download page for the
up-to-date URLs.

In our code samples, we’ll be adding the following code snippets, which in Gzipped
format will make our application only 90 KB larger:

<link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css" />
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>

405

http://jquerymobile.com
http://jquerymobile.com
http://jquerymobile.com/download

<script src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js">
 </script>

Organizing the Code
The UI of a jQuery Mobile application consists of a set of HTML documents, and certain
attributes are added to the regular HTML components. Your web application will consist
of pages, and the user’s mobile device will show one page at a time. After the mockup
of your application is ready (see “Prototyping the Mobile Version” on page 423), you know
how many pages your application will have and how to navigate among them. Let’s see
how to define the content of each page in jQuery Mobile.

The HTML5 specification includes an important feature: you can add to any HTML tag

any number of custom nonvisible attributes, as long as they start with data- and have
at least one character after the hyphen. In jQuery Mobile, this feature is being used in

a very smart way. For example, you can add an attribute data-role to the HTML tag

<div> to specify that it’s a page with the ID Stats:

<div data-role="page" id="Stats">

The UI of your application will consist of multiple pages, but what’s important is that
jQuery Mobile will show one page at a time. Let’s say your application consists of two
pages (Stats and Donate); the HTML may be structured as follows:

 <body>
 <!-- Page 1 -->
 <div data-role="page" id="Donate">
 ...
 </div>

 <!-- Page 2 -->
 <div data-role="page" id="Stats">
 ...
 </div>
 </body>

When this application starts, the user will see only the content of the page Donate be‐
cause it is included in the code first. We’ll talk about defining navigation a bit later.

The preceding code fragment is an example of a multipage template,
a single HTML document containing multiple pages. An alternative
way of organizing the code is to have the content of each page in a
separate file, or a single-page template, and you’ll see an example later
in this chapter.

Let’s say you want a page to be divided into the header, content, and the footer. You can
then specify the corresponding roles to each of these sections:

406 | Chapter 11: jQuery Mobile

http://bit.ly/9Udecy

 <body>
 <!-- Page 1 -->
 <div data-role="page" id="Donate">

 <div data-role="header" >...</div>
 <div data-role="content" >...</div>
 <div data-role="footer" >...</div>

 </div>

 <!-- Page 2 -->
 <div data-role="page" id="Stats">
 ...
 </div>
 </body>

It’s not a must to split the page with the data roles header, content, and footer. But if
you do, the code will be better structured, and additional styling can be applied in the
CSS based on these attributes.

It would be a good idea to replace the three <div> tags on the Do‐

nate page with the HTML5 tags <header>, <article>, and <foot

er>. However, during this learning stage, this could have confused

you, because it’s easy to mix up the HTML5 <header> and jQuery

Mobile data role header. (The footer line might have looked confus‐
ing, too.)

Let’s say you want to add navigation controls to the header of the page. You can add to

the header a container with data-role="navbar". In Example 11-1, we’ll use the menus
from the Save The Child application.

Example 11-1. Adding a navigation bar

<!DOCTYPE html>
<html>

 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css"/>
 </head>
 <body>

 <div data-role="page">
 <div data-role="header">
 <h1>Donate</h1>
 <div data-role="navbar">

 Who We Are

Organizing the Code | 407

 What We Do

 Where We Work

 Way To Give

 </div>
 </div> <!-- header -->

 <div data-role="content" >
 The content goes here
 </div>

 <div data-role="footer" >
 The footer goes here
 </div>

 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js">
 </script>
 </body>
</html>

We’ll explain the meaning of the HTML anchor tags in the section “Adding Page Nav‐

igation” on page 412. For now, note the <viewport> tag in the preceding example. It in‐
structs the browser of the mobile device to render the content to a virtual window that
has to have the same width as that of the device’s screen. Otherwise, the mobile browser
might assume that it’s a website for desktop browsers and will minimize the content,
requiring the user to zoom out. Read more about it in the sidebar “The Viewport Con‐
cept” on page 376 in Chapter 10.

You can find a list of all available jQuery Mobile data- attributes in
the Data attribute reference from the online documentation.

The preceding code sample is a complete HTML document that you can test in your
browser. If you use desktop web browser, the web page will look like Figure 11-1.

408 | Chapter 11: jQuery Mobile

http://bit.ly/1lJd2Oq

Figure 11-1. Viewing the document in Firefox

Seeing How It Looks on Mobile Devices
Any mobile web developer wants to see how his web application will look on mobile
devices. There two major ways of doing this: either test it on a real device or use a software
emulator or simulator. Let’s talk about the emulators; there are plenty available.

For example, you can use one of the handy tools such as the Apache Ripple emulator.
This Chrome browser extension adds a green icon on the right side of the browser’s
toolbar; click it to enable Ripple to run in its Web Mobile default mode. Next, select the
mobile device from the drop-down on the left, and then copy and paste the URL of your
HTML document into the Chrome browser’s address bar. Figure 11-2 shows how our
web page would be rendered on the mobile phone Nokia 97/5800.

Some emulators target a specific platform. For example, you can con‐
sider Android Emulator or use the iOS simulator that comes with
Apple’s Xcode IDE. Chrome Developer Tools has an emulator pan‐
el, too. For Nokia emulators, browse its developer’s forum. BlackBer‐
ry simulators are here. Microsoft also offers an emulator for its
phones. You can find a more detailed list of various emulators and
simulators in Programming the Mobile Web by Maximiliano Firt‐
man (O’Reilly).

Seeing How It Looks on Mobile Devices | 409

http://bit.ly/1iHi09s
http://bit.ly/1nkbgBb
http://bit.ly/1nkbgBb
http://nokia.ly/1qelhm8
http://bit.ly/1soOrTB
http://bit.ly/1nhbjwn

Figure 11-2. Viewing the document in the Ripple emulator

Using emulators really helps in development. Ripple emulates not only the screen res‐
olutions, but some of the hardware features, as well (simulators usually simulate only
the software). For example, you can test an accelerometer by using the corresponding
menu item under Devices (at the upper left in Figure 11-2) or Geo Location under
Settings (at the upper right in Figure 11-2). But keep in mind that emulators run in your
desktop browser, which might render the UI in not exactly the same way as a mobile
browser running on the user’s mobile phone. For example, the fonts might look a little
different. Hence, testing your application on a real device is highly recommended even
though it’s impossible to test your web application on the thousands of different devices
people use.

If you can afford it, hire real mobile users carrying different devices. You can do this
through the Mob4Hire testing as a service (TaaS) website. The good news is that creators
of jQuery Mobile use about 70 physical devices for testing of their UI components, but
still, you might want to see how your application looks and feels on a variety of devices.

If you want to see how your application looks on a real device that you own, the easiest
way is to deploy your application on a web server with a static IP address or a dedicated

410 | Chapter 11: jQuery Mobile

http://www.mob4hire.com
http://bit.ly/1nhbsj6

domain name. After the code is modified, you need to transfer the code to that remote
server and enter its URL in the address bar of your mobile device browser.

If you’re developing for iOS on a Mac OS X computer, the procedure is even easier if
both devices are on the same WiFi network. Connect your iOS device to your Mac
computer via the USB input. In System Preferences, click Networks and select your WiFi
connection on the left. You’ll see the IP address of your computer on the right (for
example, 192.168.0.1). If your application is deployed under the local web server, you
can reach it from your iOS device by entering in its browser address bar the URL of
your application using the IP address of your computer (for example, http://192.168.0.1/
myApp/index.html). For details, read my blog post, “Hack: iPhone, USB, Macbook, Web
Server.”

If your mobile application behaves differently than on a real device,
see if there is an option for remote debugging on the device for your
platform. For example, in this document, Google explains how to do
remote debugging in a Chrome browser running on Android devi‐
ces. The web browser Safari 7 supports remote debugging on iOS
devices (details here).

Styling in jQuery Mobile
You might not like the design of the navigation bar shown in Figure 11-1, but it has
some style applied to it. Where are the white letters on the black background coming

from? They’re styled this way because we’ve included data-role="navbar" in the code.

This is the power of the custom data- attributes in action. The creators of jQuery Mobile

included in their CSS predefined styling for data- attributes, including the inner buttons

of the navbar.

What if you don’t like this default styling? Create your own CSS, but first see whether
you like some of the off-the-shelf themes offered by jQuery Mobile. You can have up to
26 prestyled sets of toolbars, content, and button colors called swatches. In the code,

you’ll refer to them as themes lettered from A to Z. Adding data-theme="a" to <div

data-role="page"> will change the look of the entire page. But you can use the data-

theme attribute with any HTML element, not necessarily the entire page or other con‐
tainer.

By default, the header and the footer use swatch A, and the content area uses swatch C.
To change the entire color scheme of Figure 11-2 to swatch A (the background of the
content area will become dark gray), use the following line:

 <div data-role="page" data-theme="a">

Seeing How It Looks on Mobile Devices | 411

http://192.168.0.1/myApp/index.html
http://192.168.0.1/myApp/index.html
http://bit.ly/Uc8RA3
http://bit.ly/Uc8RA3
http://bit.ly/1lDu2VI
http://bit.ly/1soOK0G

jQuery Mobile has a tool, ThemeRoller, that you can use to create a unique combination
of colors, fonts, backgrounds, and shadows and assign it to one of the letters of the
alphabet (see Figure 11-3).

Figure 11-3. ThemeRoller

You can learn about creating custom themes with ThemeRoller by visiting this URL.

Adding Page Navigation
In jQuery Mobile, page navigation is defined by using the HTML anchor tag , where the href attribute can point at either a page defined as a section in the
same HTML document or a page defined in a separate HTML document. Accordingly,
you can say that we’re using either a multipage template or a single-page template.

Multipage template

With a multipage template (see Example 11-2) each page is a <div> (or other HTML

container) with an ID. The href attribute responsible for navigation includes a hash
character (#) followed by the corresponding ID.

412 | Chapter 11: jQuery Mobile

http://jquerymobile.com/themeroller
http://learn.jquery.com/jquery-mobile/theme-roller/

Example 11-2. Organizing code with a multipage template

 <body>
 <!-- Page 1 -->
 <div data-role="page" id="Donate" data-theme="e">
 <h1>Donate</h1>

 Show Stats
 </div>

 <!-- Page 2 -->
 <div data-role="page" id="Stats">
 <h1>Statistics<h1>
 </div>
 </body>

If you use a multipage document, the ID of the page with a hash character will be added
to the URL. For example, if the name of the preceding document is navigation1.html,
when the Statistics page is open, the browser’s URL will look like this:

http://127.0.0.1/navigation1.html#Stats

Let’s say that the only way to navigate from the Statistics page is to go back to the Donate
page. Now we’ll turn the preceding code fragment into a working two-page document
with Back-button support. Both pages in the HTML document in Example 11-3 have

a designated area with data-role="header", and the Stats page has yet another custom

property, data-add-back-btn="true". This is all it takes to ensure that the Back button
displays at the left side of the page header, and that when the user taps on it, the appli‐
cation navigates to the Donate page.

Example 11-3. The Donate and Stats page

<!DOCTYPE html>
<html>

 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css"/>
 </head>
<body>

 <!-- Page 1 -->
 <div data-role="page" id="Donate">
 <div data-role="header" >
 <h1>Donate</h1>
 </div>
 Show Stats
 </div>

 <!-- Page 2 -->
 <div data-role="page" id="Stats" data-add-back-btn="true">

Seeing How It Looks on Mobile Devices | 413

 <div data-role="header" >
 <h1>Statistics</h1>
 </div>
 Statistics will go here

 </div>

 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js">
 </script>

 </body>
</html>

Figure 11-4 shows a snapshot of the Ripple emulator after the user clicks the link on the
Donate page. The Statistics page now includes the fully functional Back button.

Figure 11-4. The Statistics page with the Back button

The attribute data-add-back-btn works the same way in both the
multipage and single-page cases. The Back button appears only if the
current page is not the first one and there is a previous page to nav‐
igate to.

Single-page template

Now let’s rearrange the code in Example 11-3 by using a single-page template. We’ll
create a folder of pages, which can contain multiple HTML files—one per page. In our
case, we’ll create one file, stats.html, to represent the Statistics page. Accordingly, we’ll
remove the section marked as Page 2 from the main.html file. The stats.html file is shown
in Example 11-4.

414 | Chapter 11: jQuery Mobile

Example 11-4. The HTML code of the Statistics web page

<!DOCTYPE html>
<html>

 <head>
 <meta charset="utf-8">
 </head>
 <body>
 <div data-role="page" data-add-back-btn="true">
 <div data-role="header">
 <h1>Statistics</h1>
 </div>

 <div data-role="content">
 Statistics data will go here
 </div>
 </body>
</html>

The main HTML file contains only one home page, which is the Donate page in this
example. The anchor tag simply refers to the URL of stats.html; there is no need to use
hash characters or section IDs any longer. In this case, jQuery Mobile loads stats.html
by using an internal Ajax request. Example 11-5 shows the main page.

Example 11-5. The HTML of the main page

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css" />
</head>

<body>

 <!-- Main page -->
 <div data-role="page" id="Donate">
 <div data-role="header">
 <h1>Donate</h1>
 </div>

 <!-- A Link to the second page -->
 Show Stats
 </div>

 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js">
 </script>

 </body>
</html>

Seeing How It Looks on Mobile Devices | 415

Running this version of our simple two-page application produces the same results. The
second page looks exactly like Figure 11-4.

If you use single-page documents, the name of the file with the page will be added to
the URL. For example, when the Statistics page is open, the browser’s URL will look like
this:

http://127.0.0.1/pages/stats.html

Multipage or single-page template

So which template style should you use? Both have their pros and cons. If the code base
of your application is large, use a single-page template. The code will be split into mul‐
tiple pages, will be easier to read, and will give you a feeling of being modular without
implementing any additional libraries for cutting the application into pieces. The home
page of the application loads quicker because you don’t need to load the entire code
base.

This all sounds good, but be aware that with single-page templates, whenever you nav‐
igate from one page to another, your mobile device makes a new request to the server.
The user will see the wait cursor until the page arrives at the device. Even if the size of
each page is small, additional requests to the server are costlier with mobile devices
because they need another second just to re-establish a radio link to the cell tower. After
communication with the server is done, the phone lowers its power consumption.
However, a new request to the server for loading the page starts increasing power con‐
sumption again. Hence, using the multipage template might provide smoother naviga‐
tion.

On the other hand, there is a way to prefetch pages into the DOM even in single-page
mode such that the number of server requests is minimized. You can do this either with

the HTML attribute data-prefetch="true" or programmatically by using $.mo

bile.loadPage(). You can also ask the browser to cache previously visited pages with

$.mobile.page.prototype.options.domCache = true;.

So what’s the verdict? Test your application in both single-page and multipage modes
and see what works best.

Progressive Enhancement
Web developers use a technique called progressive enhancement, especially in the mobile
field. The idea is simple: first make sure that the basic functionality works in any browser,
and then apply the bells and whistles to make the application as fancy as possible by
using CSS or framework-specific enhancements.

But what if you decide to go the opposite route and take a nice-looking UI and remove

its awesomeness? For instance, delete the <script> and <link> tags from Example 11-5

416 | Chapter 11: jQuery Mobile

http://bit.ly/1nYvi4y

and open it in a web browser. We are testing a situation in which, for whatever reason,
we need to remove jQuery Mobile from our code base. The code still works! You’ll see
the first page, and clicking the link opens the second page. You’ll lose the styling and
that nice-looking Back button, but you can still use the browser’s Back button. The web

browser ignores the custom data- attributes without breaking anything.

This wouldn’t be the case if we were using the multipage template, where each page is a

<div> or an <article> in the same HTML file. With a multipage template, the web
browser would open all pages at once—one below another.

Here’s another example. With jQuery Mobile, you can create a button in many ways.
There are multiple examples in the Buttons section of the product documentation. The
following code produces five buttons, which will look the same but have different labels:

Anchor
<form action="http://cnn.com">
 <button>Click me</button>
 <input type="button" value="Input">
 <input type="submit" value="Submit">
 <input type="reset" value="Reset">
</form>

If you choose to use the anchor link with data-role="button" and then remove the

<script> tag that includes the code of the jQuery Mobile library, the anchor tag will
still work as a standard HTML link. It won’t look like a button, but it will function as
expected.

When you’re making a decision about using any particular framework or library, ask
yourself this question: “How easy is it to remove the framework from the application
code if it doesn’t deliver as expected?” On several occasions, the authors of this book
have been invited to help with projects in which the first task was to remove an erro‐
neously selected framework from the application code. Such “surgery” usually lasts at
least two weeks. jQuery Mobile is not overly intrusive and is easily removed.

Adding Persistent Toolbars
One of the ways to arrange navigation is to add persistent toolbars that never go away
while your application is running. You can add such a toolbar in the footer or header
area or in both. We’ll create a simple example illustrating this technique by adding a

navbar to the footer area of the application. Suppose that your application has a starting
page and four other pages that can be selected by the user. Figure 11-5 shows the initial
view of the application.

Seeing How It Looks on Mobile Devices | 417

http://bit.ly/1kOuWKr

Figure 11-5. Four pages in the footer

If the user taps one of the four pages in the footer, the program replaces the starting
page with the selected one, and the title of the selected page in the footer becomes
highlighted. If you’re reading the electronic version of this book, you’ll see in Figure 11-6
that the rectangular area for Page #2 in the footer has a blue background. In the printed
version, the different background colors might not be so obvious, but you have to trust
us on this or run the code sample on your own. Besides, we’ll be highlighting the selected
page in a similar way while working on the prototype of the Save The Child application,
as per the mockups shown in “Prototyping the Mobile Version” on page 423.

418 | Chapter 11: jQuery Mobile

Figure 11-6. Page 2 is selected

In jQuery Mobile, implementing persistent toolbars is simple. The content of each page
has to be located in a separate file, and each page has to have a footer and header with

the same data_id. Example 11-6 presents the code of the file page2.html, but page1,
page3, and page4 look similar; check them out in the source code that comes with this
book.

Example 11-6. The file page2.html

<!DOCTYPE html>
<html>

 <head>
 <meta charset="utf-8">
 </head>
 <body>
 <div data-role="page" data-add-back-btn="true">
 <div data-role="header" data-position="fixed"
 data-tap-toggle="false" data-id="persistent-header">
 <h1>Page #2</h1>

Seeing How It Looks on Mobile Devices | 419

 </div><!-- /header -->
 <div data-role="content" >
 <p>
 Page #2 content
 </p>
 </div><!-- /content -->
 <div data-role="footer" data-position="fixed"
 data-tap-toggle="false" data-id="persistent-footer">
 <div data-role="navbar">

 Page #1

 Page #2

 Page #3

 Page #4

 </div><!-- /navbar -->
 </div><!-- /footer -->
 </div><!-- /page -->
 </body>
</html>

To prevent the toolbar from being scrolled away from the screen, we use data-

position="fixed". The attribute data-tap-toggle="false" disables the ability
to remove the toolbar from view by tapping on the screen.

The footers of page1, page2, page3, and page4 have the same data-

id="persistent-footer".

While replacing the current page with another one, apply the data-

transition="slideup" transition effect so that the page appears by sliding from
the bottom up. Note that the anchor tags are automatically styled as buttons just

because they are placed in the navbar container.

Because page 2 is already shown on the screen, tapping the Page #2 button in

the navigation bar should not change the page; hence, href="#". The

class="ui-state-persist" makes the framework to restore the active state
each time, when the page existing in the DOM is shown. The file page3.html has
a similar anchor for the Page #3 button, and so on.

Example 11-7 presents the code of the main page index.html. This code also defines the
header, content, and footer areas.

420 | Chapter 11: jQuery Mobile

Example 11-7. The main page with header, content, and footer sections

<!DOCTYPE html>
<html>

 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,initial-scale=1,
 user-scalable=no,maximum-scale=1">
 <title>Single-page template - start page</title>
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css" />
 </head>
 <body>

 <div data-role="page">
 <div data-role="header" data-position="fixed"
 data-tap-toggle="false" data-id="persistent-header">
 <h1>Start page</h1>
 </div>

 <div data-role="content" >
 <p>
 Single Page template. Start page content.
 </p>
 </div>

 <div data-role="footer" data-position="fixed"
 data-tap-toggle="false" data-id="persistent-footer">
 <div data-role="navbar">

 Page #1

 Page #2

 Page #3

 Page #4

 </div><!-- /navbar -->
 </div><!-- /footer -->
 </div><!-- /page -->

 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js">
 </script>
 </body>
</html>

Seeing How It Looks on Mobile Devices | 421

To avoid repeating the same footer in each HTML page, you can write
a JavaScript function that appends the footer to each page on the

pagecreate event. You can also consider using HTML templating to
declare HTML fragments that are parsed on page load, but can be
instantiated later, during runtime. In particular, we can recommend
Handlebars, which lets you build semantic templates easily.

Programmatic navigation

The preceding code samples illustrated page navigation as a response to the user’s action.
Sometimes, you need to change pages programmatically as a result of certain events,

and the method $.mobile.changePage() can do this.

This method requires at least one parameter—the string defining the change-to-page.
For example:

$.mobile.changePage("pages/stats.html");

But you can also invoke this method with a second parameter, which is an object. You

can specify such parameters as data (the data to send with the Ajax page request),

changeHash (a boolean to control if the hash in the URL should be updated), and others.

Example 11-8 changes the page by using a post request (type: "post"), and the page

should replace the current page in the browser’s history (changeHash: false).

Example 11-8. Changing page with Ajax post request

$.mobile.changePage("pages/stats.html", {
 type: "post",
 changeHash: false
});

Using jQuery Mobile for Save The Child
After the brief introduction to the jQuery Mobile library, we (and you) are eager to start
hands-on coding. The mobile version of Save The Child won’t show all the features of
this application. It will be sliced into a set of screens (pages), and the user will see one
page at a time.

You can test the working jQuery Mobile version of our sample appli‐
cation at link:http://savesickchild.org:8080/ssc-jquery-mobile.

422 | Chapter 11: jQuery Mobile

http://bit.ly/1uDqB2s
http://handlebarsjs.com
http://bit.ly/1nkcXP1

Prototyping the Mobile Version
It’s time to go back to Jerry, our web designer, and his favorite prototyping tool, Balsamiq
Mockups (to which you were introduced in Chapter 1). Designs and layouts for each
screen of the mobile version are shown in this section as images taken from the Balsamiq
tool. This is not a complete set of images because it doesn’t include layouts for tablets.
In this book, we test only mobile devices with screen sizes of 640 x 960 and 320 x 480
pixels.

Figure 11-7 shows two versions of the starting page mockup in portrait mode.
Figure 11-8 shows two versions of the About page mockups in portrait mode.

Figure 11-7. The Starting page (portrait)

Using jQuery Mobile for Save The Child | 423

Figure 11-8. The About page (portrait)

Figures 11-9 and 11-10 also show mockups in portrait mode; Figure 11-9 displays two
versions of the Who We Are page, and Figure 11-10 depicts two versions of the Donate
page.

424 | Chapter 11: jQuery Mobile

Figure 11-9. The Who We Are section of the About page (portrait)

Figure 11-10 illustrates a term Above the Fold used by web designers. This term origi‐
nated in the newspaper business. It refers to the upper half of the first page of a broad‐
sheet newspaper that has been folded for display and sale at a newstand. This is the
section that is visible to passersby and therefore contains the most important headlines
—something that a potential buyer would notice immediately. In web design, Above the
Fold refers to the content on a web page that a user can see without needing to scroll.
However, whereas newspaper readers know that there is more to see below the fold,
when it comes to web pages, you need to keep in mind that visitors to your web page
might not be aware that the scrolling could reveal more information. As it relates to our
Save The Child web application, a user with a 320 × 480 screen might not immediately
understand that to see the Donate button, she needs to scroll.

Using jQuery Mobile for Save The Child | 425

Figure 11-10. The Donate page (portrait)

In general, it’s a good idea to minimize the number of form fields that the user must
manually fill out. Invest in analyzing the forms used in your application. See if you can
design the form smarter; for example, autopopulate some of the fields and show/hide
fields based on user input.

If you have a long form that has to be shown on a small screen, split

it into several <div data-role="page"> sections, all located inside

the <form> tag. Arrange the navigation between these sections as it
was done for multipage documents in the previous section, “Adding
Page Navigation” on page 412.

426 | Chapter 11: jQuery Mobile

The following images show more of Jerry’s mockups. Figure 11-11 shows two versions
of the Statistics page in portrait mode. Note the highlighted Stats button indicating the
active page.

Figure 11-11. The Statistics page (portrait)

Figure 11-12 shows two versions of the Events page mockups in portrait mode. Note
the highlighted Events button indicating the active page.

Using jQuery Mobile for Save The Child | 427

Figure 11-12. The Events page (portrait)

Figure 11-13 shows two versions of the Media page mockups in portrait mode. The user
has to click the video title to play it.

428 | Chapter 11: jQuery Mobile

Figure 11-13. The Media page (portrait)

Figure 11-14 shows two versions of the Share page mockups in portrait mode. Jerry
decided to divide the viewport into four areas. Each rectangle is a link to the corre‐
sponding page.

Using jQuery Mobile for Save The Child | 429

Figure 11-14. The Share page (portrait)

Figure 11-15 shows two versions of the Share Photo page mockups in portrait mode.
Note the additional navigation bar at the bottom.

430 | Chapter 11: jQuery Mobile

Figure 11-15. The Share/Photo page (portrait)

Figure 11-16 shows two versions of the Login page mockups in portrait mode. The
Login panel is implemented as a pop-up window.

Using jQuery Mobile for Save The Child | 431

Figure 11-16. The Login pop-up (portrait)

Figure 11-17 shows two versions of the Login page mockups in portrait mode after the
Login pop-up is closed.

432 | Chapter 11: jQuery Mobile

Figure 11-17. After the user logs in

This prototype will be used for developing both jQuery Mobile and Sencha Touch ver‐
sions of our Save The Child application. We’ve also included the design for the page that
will integrate with the device’s camera (see Figure 11-15); this functionality is imple‐
mented in Chapter 13.

All of these images show UI layouts when the mobile device is in portrait mode, but
you should ask your web designer to prepare mockups for landscape mode, too. Figures
11-18, 11-19, 11-20, and 11-21 show snapshots in landscape mode that Jerry also pre‐
pared prepared for us.

Using jQuery Mobile for Save The Child | 433

Figure 11-18. The Donate page (landscape, 640 x 960)

434 | Chapter 11: jQuery Mobile

Figure 11-19. The Donate page (landscape, 320 x 480)

Using jQuery Mobile for Save The Child | 435

Figure 11-20. The Statistics page (landscape, 640 x 960)

Figure 11-21. The Statistics page (landscape, 320 x 480)

436 | Chapter 11: jQuery Mobile

If you want to add a link that will offer to dial a phone number, use

the tel: scheme (for example, Call

us). If you want the phone to look like a button, add the at‐

tribute data-role="button" to the anchor tag.

Project Structure and Navigation
This time the Save The Child project structure will look like Figure 11-22. We are using
the singe-page template here. The index.html file is the home page of our application.
All other pages are located in the pages folder. The JavaScript code is in the folder js,
and fonts, images, and CSS files are in the folder assets. We’ll use the same JSON files
as in the previous versions of this application, which are located in the folder data.

Let’s start implementing navigation based on the techniques described earlier, in the
section “Adding Persistent Toolbars” on page 417. The source code of index.html is

shown in Example 11-9. Note that we moved the <script> tags with jQuery Mobile

code from the <body> section to the <head> section to avoid a pop-up of a nonstyled
page on the initial load of the application.

Example 11-9. The file index.html

<!DOCTYPE html>
<html>

 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,initial-scale=1,
 user-scalable=no,maximum-scale=1">

 <meta name="apple-mobile-web-app-capable" content="yes">
 <meta name="apple-mobile-web-app-status-bar-style" content="black">

 <title>Save The Child</title>

 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css" />
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js">
 </script>

 <link rel="stylesheet" href="assets/css/jqm-icon-pack-3.0.0-fa.css" />

 <link rel="stylesheet" href="assets/css/app-styles.css" />
 </head>
 <body>

 <div data-role="page">

Using jQuery Mobile for Save The Child | 437

 <div data-role="header" data-position="fixed" data-tap-toggle="false"
 data-id="persistent-header">
 <a href="pages/login.html" data-icon="chevron-down" data-iconpos="right"
 class="ui-btn-right login-btn" data-rel="dialog">Login
 <h1><img class="header-logo" src="assets/img/logo-20x20.png"
 alt="Save The Child Logo"/> </h1>
 </div>

 <div data-role="content" >
 <h2>Save The Child</h2>
 <p>
 Start page content.
 </p>
 </div>

 <div data-role="footer" data-position="fixed" data-tap-toggle="false"
 data-id="persistent-footer">
 <div data-role="navbar" class="ssc-navbar">

 <a href="pages/about.html" data-iconshadow="false"
 data-icon="info-sign"
 data-transition="slideup">About

 <a href="pages/donate.html" data-iconshadow="false"
 data-icon="heart" data-transition="slideup">Donate

 <a href="pages/stats.html" data-iconshadow="false"
 data-icon="bar-chart" data-transition="slideup">Stats

 <a href="pages/events.html" data-iconshadow="false"
 data-icon="map-marker" data-transition="slideup">Events

 <a href="pages/media.html" data-iconshadow="false"
 data-icon="film" data-transition="slideup">Media

 <a href="pages/share.html" data-iconshadow="false"
 data-icon="share" data-transition="slideup">Share

 </div><!-- /navbar -->
 </div><!-- /footer -->
 </div><!-- /page -->
 <script src="js/app-main.js"></script>
 </body>
</html>

438 | Chapter 11: jQuery Mobile

The meta tags to request the full-screen mode and a black status bar on iOS
devices. The main goal is to remove the browser’s address bar. Some developers

suggest JavaScript tricks such as window.scrollTo(0,1); (Google it for details).
But we are not aware of a reliable solution for a guaranteed full-screen mode in
web applications on all devices.

This project uses jQuery Mobile Icon Pack—an extension of standard jQuery
Mobile icons.

Our CSS will override some of the jQuery Mobile classes and add new styles
specific to our application.

The header shows a Login button and the application logo.

The content of the main page should go here.

All the navigation buttons are located in the footer.

jQuery Mobile includes icons that you can use by specifying their names in the

data-icon attribute (more details are provided in the upcoming sidebar “Icon

Fonts” on page 439). The icon position is controlled by the attribute data-

iconpos. If you don’t want to show text, use data-iconpos="notext".

Icon Fonts
In this application, we use icon fonts for display on the navigation bar. The main ad‐
vantage over using images for icons is that icon fonts are maintenance free. You don’t
need to resize and redraw icons. A disadvantage of using icon fonts is that they are single-
colored, but for the navigation bar buttons, having multicolored images is not important.

In Example 11-9, we use the jQuery Mobile Icon Pack that’s available on GitHub. It’s an
adaptation of the Twitter Bootstrap’s Font Awesome for jQuery Mobile. If you need
fancier images for your mobile application, consider using Glyphish icons.

Using jQuery Mobile for Save The Child | 439

http://bit.ly/1izPrzY
http://bit.ly/T7Jajk
http://www.glyphish.com

Figure 11-22. The project structure

Figure 11-23 shows how the landing page of the Save The Child application looks in the
Ripple emulator. Run it and click each button in the navigation bar.

440 | Chapter 11: jQuery Mobile

Figure 11-23. The first take on the Save The Child home page

The content of our custom CSS file app-styles.css comes next, which you can see in
Example 11-10.

Example 11-10. The file app-styles.css

/* First, we want to stop jQuery Mobile from using its standard images */

/* for icons. */

.ui-icon-arrow-l, .ui-icon-alert, .ui-icon-checkbox-off,

.ui-icon-dollar, .ui-icon-wrench,

.ui-icon-plus, .ui-icon-minus, .ui-icon-delete, .ui-icon-arrow-r,

.ui-icon-arrow-u, .ui-icon-arrow-d, .ui-icon-check, .ui-icon-gear,

.ui-icon-refresh, .ui-icon-forward, .ui-icon-back, .ui-icon-grid, .ui-icon-star,

.ui-icon-info, .ui-icon-home, .ui-icon-search, .ui-icon-searchfield:after,

.ui-icon-checkbox-on, .ui-icon-radio-off, .ui-icon-radio-on,

.ui-icon-email, .ui-icon-page, .ui-icon-question, .ui-icon-foursquare,

.ui-icon-euro, .ui-icon-pound, .ui-icon-apple, .ui-icon-chat,

.ui-icon-trash, .ui-icon-mappin, .ui-icon-direction, .ui-icon-heart,

Using jQuery Mobile for Save The Child | 441

.ui-icon-play, .ui-icon-pause, .ui-icon-stop, .ui-icon-person,

.ui-icon-music, .ui-icon-wifi, .ui-icon-phone, .ui-icon-power,

.ui-icon-lightning, .ui-icon-drink, .ui-icon-android {
 background-image: none !important;
}

/* Override the jQuery Mobile CSS class selectors with the icon fonts. */

/* Whenever you create custom icon, jQuery Mobile expects to find a */

/* class with the name starting with `.ui-icon-` and ending with the */

/* name of the icon, like `.ui-icon-donatebtn` . But in HTML attributes */

/* you'll be using it without this prefix, e.g. `data-icon="donatebtn"`. */

.ui-icon-arrow-l:before {
 content: "\f053";
 margin-top: 2px
}
.ui-icon-delete:before {
 content: "\f00d";
 margin-left: 3px;
 margin-top: -2px
}
.ui-icon-arrow-r:before {
 content: "\f054";
 padding-left: 2px;
}
.ui-icon-arrow-d:before {
 content: "\f078";
}
.ui-icon-home:before {
 content: "\f015";
}

.header-logo {
 vertical-align: middle;
 padding-right: 0.3em;
 margin-top: -2px;
}

/* Create some custom styles for the Save The Child application. */

.ssc-navbar .ui-btn-text {
 font-size: 0.9em
}

/* overwide, customize icons css */

.ssc-navbar .ui-icon {
 background: none !important;
 margin-top:2px !important;
}
/* jQM allows not more than 5 items per line in navbar.

 We need 6. Hence we should override the default CSS rule.

 Each block will occupy 1/6 of the width: 16.66%

442 | Chapter 11: jQuery Mobile

 */

.ssc-navbar .ui-block-a {
 width:16.66% !important;
}
.ssc-navbar .ui-block-b {
 width:16.66% !important;
}

.ssc-grid-nav {
 display: block;
 text-align: center;
 border-top: 1px solid #c0c0c0;
 text-decoration:none;
 color: #555 !important;
 overflow: hidden;
 box-sizing: border-box
}
.ssc-grid-nav:nth-child(odd) {
 border-right: 1px solid #c0c0c0;
}
.ssc-grid-item-icon {
 display:block;
 font-size: 2em;
 padding-bottom: 0.5em
}

Selected Code Fragments
All the code that implements Save The Child with jQuery Mobile is available to down‐
load from GitHub, and we’re not going to include all program listings here. But we will
show and comment selected code fragments that illustrate various features of jQuery
Mobile.

Grid layouts

While testing this initial version of the Save The Child application, note that the content
of the About and Share pages is implemented as in the mock ups shown in Figures 11-8
and 11-14, which look like grids. jQuery Mobile has several predefined layouts with
which you can show the content as rows and columns. Keep in mind that on small
devices, you should avoid displaying grids with multiple rows and columns because the
data there will be hardly visible. But in our case, the grid will contain just four large cells.
Next, Example 11-11 presents the source code of share.html, followed by brief comments
(the code for about.html looks similar).

Example 11-11. The share.html page

<!DOCTYPE html>
<html>

 <head>
 <meta charset="utf-8">

Using jQuery Mobile for Save The Child | 443

http://bit.ly/T2Vgda

 </head>
 <body>

 <div data-role="page" data-add-back-btn="true" id="Share">
 <div class="ssc-grid-header" data-role="header" data-position="fixed"
 data-tap-toggle="false" data-id="persistent-header">
 <a href="login.html" data-icon="chevron-down" data-iconpos="right"
 class="ui-btn-right login-btn" data-rel="dialog">Login
 <h1><img class="header-logo" src="../assets/img/logo-20x20.png"
 alt="Save The Child Logo"/></h1>
 </div>

 <div data-role="content" style="padding:0">
 <div class="ui-grid-a">

 <div class="ui-block-a">

 Share via Twitter
 </div>
 <div class="ui-block-b">

 Share via Facebook
 </div>
 <div class="ui-block-a">

 Share via Google+
 </div>
 <div class="ui-block-b">

 Photo App
 </div>
 </div>
 </div>

 <div class="ssc-grid-footer" data-role="footer" data-position="fixed"
 data-tap-toggle="false" data-id="persistent-footer">
 <div data-role="navbar" class="ssc-navbar">

 <a href="about.html" data-iconshadow="false" data-icon="info-sign"
 data-transition="slideup">About

 <a href="donate.html" data-iconshadow="false" data-icon="heart"

444 | Chapter 11: jQuery Mobile

 data-transition="slideup">Donate

 <a href="stats.html" data-iconshadow="false" data-icon="bar-chart"
 data-transition="slideup">Stats

 <a href="events.html" data-iconshadow="false" data-icon="map-marker"
 data-transition="slideup">Events

 <a href="media.html" data-iconshadow="false" data-icon="film"
 data-transition="slideup">Media

 <a href="#" data-iconshadow="false" data-icon="share"
 class="ui-state-persist">Share

 </div><!-- /navbar -->
 </div><!-- /footer -->
 </div><!-- /page -->
 </body>
</html>

The grid in Figure 11-8 is implemented using a jQuery Mobile multicolumn

layout with ui-grid classes (explained in).

Each of the cells in the grid is styled as the ui-block-a for the first grid row and

ui-block-b for the second one. Hence, Share via Twitter is in the left cell, and
Share via Facebook is on the right.

There are four preset configurations for grids containing two, three, four, and five col‐

umns called ui-grid-a, ui-grid-b, ui-grid-c, and ui-grid-d, respectively. The Sta‐
tistics and About pages are split into four sections, which can be laid out in two columns

with ui-grid-a. With this two-column layout, each column is allocated 50 percent of
the width; with a three-column layout, each column gets about 33 percent, and so forth.

Each of the cells is laid out with a class that’s named ui-block- followed by the corre‐

sponding letter (for example, ui-block-c for the cells located in the third column).
Figure 11-24 is a fragment from the jQuery Mobile documentation, and it serves as a
good illustration of the grid presets.

Using jQuery Mobile for Save The Child | 445

http://bit.ly/1nhhbWi

Figure 11-24. Preset grid layouts

The class .ui-responsive allows you to set breakpoints to grids that are less than 35
em (560 pixels) wide.

Control groups

Thee Donation page contains a section in which the user can select one of the donation
amounts. This is a good example of a set of UI controls that belong to the same group.
In the desktop version of the application, we’ve been using radio buttons grouped by

the same name attribute (<input type="radio" name = "amount"). Revisit Chapter 3
to find the complete code in Example 3-5.

jQuery Mobile utilizes the concept of control groups, which are handy for grouping and

styling components. The code looks very similar, but now it’s wrapped in the <field

set> container with data-role="controlgroup", as shown in Example 11-12.

Example 11-12. Grouping components by using <fieldset>

<div class="donation-form-section">
 <label class="donation-heading">Please select donation amount</label>

 <fieldset data-role="controlgroup" data-type="horizontal" id="radio-container">

 <input type="radio" name="amount" id="d10" value="10"/>
 <label for="d10">$10</label>
 <input type="radio" name="amount" id="d20" value="20" />
 <label for="d20">$20</label>
 <input type="radio" name="amount" id="d50" checked="checked" value="50" />
 <label for="d50">$50</label>
 <input type="radio" name="amount" id="d100" value="100" />
 <label for="d100">$100</label>

446 | Chapter 11: jQuery Mobile

http://bit.ly/Twj2i6

 </fieldset>
 <label class="donation-heading">...or enter other amount</label>

 <input id="customAmount" name="amount" value="" type="text"
 autocomplete="off" placeholder="$"/>

jQuery Mobile renders this code as shown in Figure 11-25. The buttons are laid out

horizontally because of the attribute data-type="horizontal". If you don’t like the

default styling of the radio button input fields, feel free to specify the appropriate data-

theme either for the entire group or for each input field.

Figure 11-25. A control group for donation amount

Drop-downs and collapsibles

Having the ability to use a minimum amount of screen real estate is especially important
in mobile applications. Controls can drop down or pop up a list of information when
the user taps a smaller component. Controls that we know as combo boxes or drop-
downs in desktop applications look different on mobile devices. The good news is that
you don’t need to do any special coding to display a fancy-looking drop-down on the

Using jQuery Mobile for Save The Child | 447

iPhone shown in Figure 11-26. Just use the HTML tag <select>, and the mobile browser
will render it with a native look on the user’s device.

Figure 11-26. The States drop-down in the Donate form

The bad news is that sometimes you don’t want the default behavior offered by the

<select> element. For example, you might want to create a menu that shows a list of
items. First, we’ll show you how to do that by using a pop-up that contains a list view.
Example 11-13 is taken from the jQuery Mobile documentation, which suggests im‐
plementing a listview inside a pop-up.

Example 11-13. Using inside the pop-up

<a href="#popupMenu" data-rel="popup" data-role="button"
 data-transition="pop">Select Donation Amount

 <div data-role="popup" id="popupMenu" >
 <ul data-role="listview" data-inset="true" style="min-width:210px;">
 <li data-role="divider">Choose the amount
 $10

448 | Chapter 11: jQuery Mobile

http://bit.ly/1iaKxK1

 $20
 $50
 $100

 </div>

Initially, the screen will look like Figure 11-27, which shows an anchor styled as a button.

Figure 11-27. The Select Donation Amount button before being tapped

After the user taps Select Donation Amount, the menu pops up, as shown in
Figure 11-28.

Figure 11-28. After tapping Select Donation Amount

Example 11-14 demonstrates another way of creating drop-downs by using collapsi‐
bles. If the data role of a container is set to be collapsible, the content of the container

Using jQuery Mobile for Save The Child | 449

http://bit.ly/1oHhrEL
http://bit.ly/1oHhrEL

won’t be initially shown. It will be collapsed, showing only its header with a default icon
(the plus sign) until the user taps it.

Example 11-14. Using a collapsible container

<div data-role="collapsible" data-theme="b"
 data-content-theme="c">
 <h2>Select Donation Amount</h2>

 <ul data-role="listview">
 $10
 $20
 $50
 $100

</div>

If you test this code in the Ripple emulator, the initial screen will look like

Figure 11-29; it’s a <div> with the data-role=collapsible. This code sample also il‐

lustrates using different themes for the collapsed and expanded versions of this <div>.
If you are reading the electronic version of this book on a color display, the collapsed

version will have the blue background: data-theme="b".

Figure 11-29. Collapsed view of the Select Donation Amount container

After the user taps Select Donation Amount, a menu pops up, as shown in
Figure 11-30. The icon on the header changes from a plus sign to a minus sign.

450 | Chapter 11: jQuery Mobile

Figure 11-30. Expanded view of the Select Donation Amount container

List views

In the previous section, you saw how easy it is to create a nice-looking list (Figure 11-30)

by using data-role="listview". jQuery Mobile offers many ways of arranging items
in lists, and we encourage you to pay a visit to the Listviews section of the online doc‐
umentation.

Each list item can contain any HTML element. The media page of the Save The Child

application uses listview to arrange videos in the list. Example 11-15 is a code fragment
from media.html.

Example 11-15. The listview element with videos

<div data-role="header"> ... </div>

iv data-role="content" >
<ul data-role="listview" data-theme="a" data-inset="true" id="video-list">
 <li data-icon="chevron-right">

 <img src="../assets/img/thumb-01.jpg" class="ui-liicon"
 alt=""/> <h3>The title of a video-clip</h3>
 <p>
 Video description goes here. Lorem ipsum dolor sit amet,
 consectetuer adipiscing elit.
 </p>

 <li data-icon="chevron-right">
 <img src="../assets/img/thumb-02.jpg"
 class="ui-liicon"
 alt=""/> <h3>The title of a video-clip</h3>
 <p>

Using jQuery Mobile for Save The Child | 451

http://bit.ly/1z24Pu3

 Video description goes here. Lorem ipsum dolor sit amet, consectetuer
 adipiscing elit.
 </p>

</div>

<div data-role="footer"> ... </div>

<!-- html5 video in a popup -->

 <div data-role="popup" id="popupHtmlVideo" data-transition="slidedown"
 data-theme="a" data-position-to="window" data-corners="false">
 <a href="#" data-rel="back" data-role="button" data-theme="a"
 data-icon="delete" data-iconpos="notext"
 class="ui-btn-right">Close
 <video controls="controls" poster="../assets/media/intro.jpg"
 preload="metadata">
 <source src="../assets/media/intro.mp4" type="video/mp4">
 <source src="../assets/media/intro.webm" type="video/webm">
 <p>Sorry, your browser doesn't support the video element</p>
 </video>
 </div>

<!-- YouTube video in a popup -->

 <div data-role="popup" id="ytVideo" data-transition="slidedown"
 data-theme="a" data-position-to="window" data-corners="false">
 <a href="#" data-rel="back" data-role="button" data-theme="a"
 data-icon="delete" data-iconpos="notext" class="ui-btn-right">Close
 <iframe id="ytplayer"
 src="http://www.youtube.com/embed/VGZcerOhCuo?wmode=transparent&hd=
 1&vq=hd720" frameborder="0" width="480" height="270" allowfullscreen>
 </iframe>
 </div>
 </div>

This code uses an unordered HTML list, . Each list item contains three HTML

elements: <a>, <p>, and . The anchor contains a link to the corresponding video

to show in a pop-up. The content of each pop-up is located in <div data-

role="popup">. The data-rel="popup" in the anchor means that the resource from

href has to be opened as a pop-up when the user taps this link.

The <div id="popupHtmlVideo"> illustrates how to include a video by using the

HTML5 <video> tag, and <div id="ytVideo"> shows how to embed a YouTube video.

Both of these <div> elements are placed below the footer, and jQuery Mobile won’t show
them until the user taps the links.

452 | Chapter 11: jQuery Mobile

Note that the jQuery Mobile listview (shown in Figure 11-31) is styled in a way that
each list item looks like a large rectangle, and the user can tap a list item with a finger
without being afraid of touching neighboring controls. There is no such problem with
desktop applications because the mouse pointer is much more precise than a finger or
even a stylus.

Figure 11-31. Using listview in media.html

The <video> tag has the attribute autoplay. But because some mo‐
bile users are charged by their phone companies based on their data
usage, the application should not automatically start playing video
until the user explicitly taps the Play button. There is no such restric‐
tion in desktop browsers.

Using jQuery Mobile for Save The Child | 453

jQuery Mobile Events
jQuery Mobile events can be grouped by their use. Some events deal with the page life
cycle. For a detailed description of events, read the Events section in the online docu‐
mentation. We’ll just briefly mention some of the events available in jQuery Mobile.

You should be using $(document).on("pageinit") and not $(document).ready().
The former is triggered even for pages loaded as result of Ajax calls, whereas the latter

is not. Prior to pageinit, two more events are dispatched: pagebeforecreate and

pagecreate. After these two, widget enhancement takes place.

The pagebeforeshow and pageshow events occur right before or after the to-page is

displayed. Accordingly, pagebeforehide and pagehide are dispatched on the from-

page. The pagechange event is dispatched when the page is being changed as the result

of programmatic invocation of the changePage() method.

If you are loading an external page (for example, a user clicks the link <a href="exter

nalpage.html">Load External), expect two events: pagebeforeload and page

load (or pageloadfailed).

Touch events are another group of events that are dispatched when the user touches the
screen. Depending on how the user touches the screen, your application may receive

tap, taphold, swipe, swipeleft, and swiperight events. The tap event handlers may
or may not work reliably on iOS devices.

The touchend event may be more reliable. Create a combined event handler for click

and touchend events and your code will work on both desktop and mobile devices. For
example:

$('#radio-container .ui-radio').on('touchend click', function() {
 // the event handler code goes here
}

Orientation events are important if your code needs to intercept the moments when a

mobile device changes orientation. This is when jQuery Mobile fires the orientation

change event. The event object will have the property orientation, which will have a

value of either portrait or landscape.

There is one event that you can use to set configuration options for jQuery Mobile itself.

The name of this event is mobileinit, and you should call the script to apply overrides
after the jQuery Core but before jQuery Mobile scripts are loaded. You can find more
details in the online documentation.

Adding JavaScript

So far we have been able to get by with HTML and CSS only; the jQuery Mobile library
is doing its magic, which is helpful for the most part. But we still need a place for

454 | Chapter 11: jQuery Mobile

http://bit.ly/1pEgiOO
http://bit.ly/1nWDErS

JavaScript. The Save The Child application has several hundred lines of JavaScript code,
and we need to find it a new home. You’ll find pretty much the same code that we used
in previous chapters to deal with logins, donations, maps, and stats. It’s located in the
jquerymobile sample project in the file js/app-main.js.

You might also need to write some scripts specific to jQuery Mobile workflows, because
in some cases, you might want to override certain behaviors of the library. In these cases,
you need to write JavaScript functions to serve as event handlers. For example, jQuery

Mobile restricts you from putting more than five buttons on the navbar. But we need

six. As you can see in Example 11-16, the footer contains the attribute data-

role="navbar", which has the unordered list ul with six items (not shown in the
code for brevity).

Example 11-16. The footer with navbar

 <div data-role="footer" data-position="fixed" data-tap-toggle="false"
 data-id="persistent-footer">
 <div data-role="navbar" class="ssc-navbar">

 ...

 </div>
 </div><

Run the application with six buttons in navbar, and get ready for a surprise. You’ll see
a footer with a two-column and three-row grid, as shown in Figure 11-32, which is a
screenshot of a Ripple emulator with an open Chrome Developer Tools panel while

inspecting the navbar element in the footer.

Using jQuery Mobile for Save The Child | 455

Figure 11-32. Using listview in media.html

Take a look at the styling of the navbar. Our original HTML element didn’t include

the class ui-grid-a. jQuery Mobile couldn’t find the predefined layout for a six-button

navigational bar and “decided” to deploy ui-grid-a, which is a two-column grid (see
“Grid layouts” on page 443).

The CSS file app-styles.css (see “Project Structure and Navigation” on page 437) has a
provision for giving 16.6 percent of the width for each of six buttons, but we need to

456 | Chapter 11: jQuery Mobile

programmatically remove ui-grid-a, which jQuery Mobile injected into our code.

We’ll do it in JavaScript in the handler for the pagebeforeshow event. The next code

snippet from app-main.js finds the ul element that includes ssc-navbar as one of the

styles and removes the class ui-grid-a from this unordered list:

$(document).on('pagebeforeshow', function() {
 $(".ssc-navbar > ul").removeClass("ui-grid-a");

Now the 16.6 percent of the width will take effect and properly position all six buttons
in a row. This is an example of overriding unwanted behavior by using JavaScript. The
rest of the code contains familiar functionality from previous sections. We won’t repeat
it here, but we will show you some of the code sections that are worth commenting (see
Example 11-17).

Example 11-17. Handling navigation in app-main.js

$(document).on('pagebeforeshow', function() {

 $(".ssc-navbar > ul").removeClass("ui-grid-a");

 if (typeof (Storage) != "undefined") {
 var loginVal = localStorage.sscLogin;

 if (loginVal == "logged") {
 $('.login-btn').css('display', 'none');
 $('.logout-btn').css('display', 'block');
 } else {
 $('.login-btn').css('display', 'block');
 }
 } else {
 console.log('No web storage support...');
 }
});

 function logIn(event) {
 event.preventDefault();

 var userNameValue = $('#username').val();
 var userNameValueLength = userNameValue.length;
 var userPasswordValue = $('#password').val();
 var userPasswordLength = userPasswordValue.length;

 //check credential
 if (userNameValueLength == 0 || userPasswordLength == 0) {
 if (userNameValueLength == 0) {
 $('#error-message').text('Username is empty');
 }
 if (userPasswordLength == 0) {
 $('#error-message').text('Password is empty');
 }
 if (userNameValueLength == 0 && userPasswordLength == 0) {

Using jQuery Mobile for Save The Child | 457

 $('#error-message').text('Username and Password are empty');
 }
 $('#login-submit').parent().removeClass('ui-btn-active');
 $('[type="submit"]').button('refresh');
 } else if (userNameValue != 'admin' || userPasswordValue != '1234') {
 $('#error-message').text('Username or password is invalid');
 } else if (userNameValue == 'admin' && userPasswordValue == '1234') {
 $('.login-btn').css('display', 'none');
 $('.logout-btn').css('display', 'block');

 localStorage.sscLogin = "logged";
 history.back();
 }

 }

 $('#login-submit').on('click', logIn);

 ...

 $(document).on('pageshow', "#Donate", function() {
 ...
 }

 $(document).on("pageshow", "#Stats", function() {
 ...
 }

$(document).on("pageshow", "#Events", function() {

}

The Login button is located on the header of each page, and it turns into the
Logout button when the user logs in. When the user moves from page to page,
the old pages are removed from the DOM. To make sure that the login status is

properly set, we check that the variable sscLogin in the local storage has the

value logged (see).

When the user logs in, the program saves the word logged in local storage and

closes the Login pop-up by calling history.back().

The Donate form code is located in this function. No Ajax calls are made in this
version of the Save The Child application.

The SVG charts are created in this function.

The geolocation code that uses the Google Maps API goes here.

While experimenting with the Save The Child application, we created one more version
that uses the multipage template, just to get a feeling of how smooth transitioning be‐

458 | Chapter 11: jQuery Mobile

tween pages will be if the entire code base is loaded upfront. Of course, the wait cursor
that would otherwise appear between the pages is gone, but the code itself becomes less
manageable.

The Ripple emulator described earlier in this chapter makes it possi‐
ble for you to test the look and feel of the jQuery Mobile version of
the Save The Child application on various iOS and Android devices.
But again, nothing beats testing on real devices.

Summary
In this chapter, you became familiar with a simple-to-use mobile framework. We’ve been
using its version 1.3.1, which is pretty stable, but it’s not a mature library just yet. You
can still run into situations when a feature advertised in the product documentation
doesn’t work (for example, page prefetching breaks images). So be prepared to study
the code of this library and to fix the critical features on your own. But there is a group
of people who are actively working on bug fixing and improving jQuery Mobile, and
using it in production is pretty safe.

By now you should have a pretty good understanding of how to begin creating a user
interface with jQuery Mobile and where to find more information. Find some time to
read the entire online documentation for jQuery Mobile. The learning curve is not steep,
but there is a lot to read if you want to become productive with jQuery Mobile.

Summary | 459

http://bit.ly/1soS4ZX
http://api.jquerymobile.com

CHAPTER 12

Sencha Touch

The Sencha Touch framework is a little brother of Ext JS. They both have the same
creator, Sencha, and they both are built on the same set of core classes. But Sencha Touch
is created for developing mobile web applications, whereas Ext JS is for desktop web
applications.

Enterprise IT managers need to be aware of another important difference: Ext JS offers
free licenses only for open source projects, but Sencha Touch licenses are free unless
you decide to purchase this framework bundled with developer tools.

This chapter is structured similarly to Chapter 11, which describes jQuery Mobile—
minimum theory followed by the code. A fundamental difference, though, is that
whereas Chapter 11 has almost no JavaScript, this chapter has almost no HTML.

We’ll try to minimize repeating the information you can find in Sencha Touch Learning
Center and extensive product documentation, which has multiple well-written Guides
on various topics. This chapter begins with a brief overview of the features of Sencha
Touch followed by a code review of yet another version of the Save The Child application.
In this chapter, we are going to use Sencha Touch 2.3.1, which is the latest version at the
time of this writing. It supports iOS, Android, BlackBerry, and Windows Phone.

If you haven’t read Chapter 4 on Ext JS, please do it now. Both of these
frameworks are built on the same foundation, and we assume that

you are familiar with such concepts as MVC architecture and xtype,
SASS, and other terms that are explained in that chapter. For the most
part, Ext JS and Sencha Touch non-UI classes are compatible, but
there are some differences that might prevent you from attaining 100
percent code reuse between these frameworks (for example, see the
section “Stores and Models” on page 508). Future releases of Sencha
should come up with some standard solutions to remove the differ‐
ences in class systems of both frameworks.

461

http://www.sencha.com
http://bit.ly/1uDs3lm
http://bit.ly/SUH5qs
http://bit.ly/SUH5qs
http://bit.ly/1oHj7Ov

Introducing Sencha Touch
Let’s begin by downloading Sencha Touch. If you want to get a free commercial license,
just specify your email address; you’ll receive the download link in the email. The Sencha
Touch framework comes as a ZIP file, which you can unzip in any directory. Later, you’ll
copy the framework’s code either into your project directory or in the document root
of your web server.

A commercial license of Sencha Touch doesn’t include charts (you
need to get either Sencha Complete or Sencha Touch Bundle for
chart support). Therefore, we’ll use the General Public License (GPL)
of Sencha Touch for the open source Save The Child project, and our
users will see the little watermark, “Powered by Sencha Touch
GPLv3,” as shown in Figure 12-1.

Figure 12-1. The GPL watermark

After downloading Sencha Touch, unzip it into the directory /Library/touch-2.3.1. The
code-generation process copies this framework into our application directory.

Performing Code Generation and Distribution
If you haven’t downloaded and installed the Sencha CMD tool, do it now as described
in “Generating Applications with the Sencha CMD Tool” on page 129. This time we’ll
use Sencha CMD to generate a mobile version of Hello World. After opening a terminal
or command window, enter the following command, specifying the absolute path to

462 | Chapter 12: Sencha Touch

http://bit.ly/1mMXHwG

your Ext JS SDK directory and to the output folder, where the generated project should
reside:

sencha -sdk /Library/touch-2.3.1 generate app HelloWorld /Users/yfain11/hellotouch

After the code generation is complete, you’ll see the folder hello with the structure shown
in Figure 12-2. It follows the Model-View-Controller (MVC) pattern discussed in
Chapter 4.

Figure 12-2. A CMD-generated project

To test your newly generated application, make sure that the directory hellotouch is
deployed on a web server (simply opening index.html in a web browser won’t work).
You can either install any web server or just follow the instructions in “Developing Save
The Child with Ext JS” on page 149 in Chapter 4. In the same chapter, you can find the
command to start the Jetty web server embedded in the Sencha CMD tool.

Here, we are going to use the internal web server that comes with the WebStorm IDE.
It runs on port 63342, and if your project’s name is helloworld, the URL to test it is http://
localhost:63342/helloworld.

Introducing Sencha Touch | 463

http://localhost:63342/helloworld
http://localhost:63342/helloworld

To debug your code inside WebStorm, choose Run→Edit Configura‐
tions, click the plus sign in the upper-left corner, and then in the
JavaScript Debug→Remote panel, enter the URL http://localhost:
63342, followed by the name of your project (for example, ssctouch)
and name your new debug configuration. After that, you’ll be able to
debug your code in your Chrome web browser (it will ask you to
install the JetBrains IDE Support extension on the first run).

Mac OS X users can install the small application Anvil, which can
easily serve static content of any directory as a web server with a URL
that ends with .dev.

Figure 12-3 shows how the generated Hello World application will look in a Chrome
browser. It’ll consist of two pages controlled by the buttons in the footer toolbar.

Figure 12-3. Running CMD-generated Hello World

464 | Chapter 12: Sencha Touch

http://localhost:63342
http://localhost:63342
http://anvilformac.com

Microloader and configurations

The main application entry is the JavaScript file app.js. But if in Ext JS, this file was
directly referenced in index.html, Sencha Touch applications generated by the CMD
tool use a separate microloader script, which starts with loading the file app.json that
contains the names of the resources needed for your application, including app.js. The
only script included in the generated index.html is this one:

<script id="microloader" type="text/javascript"
 src="touch/microloader/development.js"></script>

This script uses one of the scripts located in the microloader folder, which gets the object
names to be loaded from the configuration file app.json. This file contains a JSON object

with various attributes such as js, css, resources, and others. So if your application

needs to load the scripts sencha-touch.js and app.js, they should be located in the js

array. Example 12-1 illustrates what the js attribute of app.json contains after the initial
code generation by Sencha CMD.

Example 12-1. The js attribute of app.json

"js": [
 {
 "path": "touch/sencha-touch.js",
 "x-bootstrap": true
 },
 {
 "path": "app.js",
 "bundle": true,
 "update": "delta"
 }
]

Eventually, if you need to load additional JavaScript code, CSS files, or other resources,
add them to the appropriate attribute in the file app.json.

Introducing a separate configuration file and additional microloader script might seem
like an unnecessary complication, but it’s not. On the contrary, it gives you the flexibility
of maintaining a clean separation between development, testing, and production envi‐
ronments. You can find three loader scripts in the folder touch/microloader: develop‐
ment.js, production.js, and testing.js. Each of them can load a different configuration
file.

Our sample application includes sample video files. Don’t forget to

include the resources/media folder in the resources section of
app.json.

Introducing Sencha Touch | 465

If you open the source code of the production loader, you’ll see that it uses an application
cache to save files locally on the device (see “Application Cache API” on page 563 for a
refresher), so the user can start the application even without having an Internet con‐
nection.

The production microloader of Sencha Touch offers a smarter solution for minimizing
unnecessary loading of cached JavaScript and CSS files than the HTML5 application
cache. The standard HTML5 mechanism doesn’t know which resources have changed
and reloads all cacheable files. CMD-generated production builds for Sencha Touch
keep track of changes and create deltas, so the mobile device will download only those
resources that have been actually changed. To create a production build, open a terminal
or a command window, change to your application directory, and run the following
command:

sencha app build production

See “Deploying Your Application” for more details on Sencha CMD builds. When we
start building our Save The Child application, you’ll see how to prompt the user that
the application code has been updated. Refer to the online documentation on using
Sencha CMD with Sencha Touch for details.

Code Distribution and Modularization
The ability of Sencha Touch to monitor modified pieces of code helps with deployment;
just change SomeFile.js on the server and it will be automatically downloaded and saved
on the user’s mobile device. This can have an effect on the application modularization
decisions you make.

Reducing the startup latency and implementing lazy loading of certain parts of the
application are the main reasons for modularizing web applications. The other reason
for modularization is an ability to redeploy certain portions of the code versus the entire
application if the code modifications are limited in scope.

So, should we load the entire code base from local storage (it’s a lot faster than getting
the code from remote servers) or still use loaders to bring up the portion of the code
(a.k.a. modules) on an as-needed basis? There is no standard answer to this question—
every application is different.

If your application is not too large and the mobile device has enough memory, loading
the entire code of the application from local storage can lower the need for modulari‐
zation. For larger applications, consider the Workspaces feature of Sencha CMD, with
which you can create some common code to be shared by several scripts.

466 | Chapter 12: Sencha Touch

http://bit.ly/1ocA8Pn
http://bit.ly/1gp2l2H
http://bit.ly/1k181ef

The code of Hello World

Similar to Ext JS, the starting point of the Hello World application is the app.js script,
which is shown in Example 12-2.

Example 12-2. The app.js file of the Sencha Touch version of Save The Child

Ext.Loader.setPath({
 'Ext': 'touch/src',
 'HelloWorld': 'app'
});

Ext.application({
 name: 'HelloWorld',

 requires: [
 'Ext.MessageBox'
],

 views: [
 'Main'
],

 icon: {
 '57': 'resources/icons/Icon.png',
 '72': 'resources/icons/Icon~ipad.png',
 '114': 'resources/icons/Icon@2x.png',
 '144': 'resources/icons/Icon~ipad@2x.png'
 },

 isIconPrecomposed: true,

 startupImage: {
 '320x460': 'resources/startup/320x460.jpg',
 '640x920': 'resources/startup/640x920.png',
 '768x1004': 'resources/startup/768x1004.png',
 '748x1024': 'resources/startup/748x1024.png',
 '1536x2008': 'resources/startup/1536x2008.png',
 '1496x2048': 'resources/startup/1496x2048.png'
 },

 launch: function() {
 // Destroy the #appLoadingIndicator element
 Ext.fly('appLoadingIndicator').destroy();

 // Initialize the main view
 Ext.Viewport.add(Ext.create('HelloWorld.view.Main'));
 },

 onUpdated: function() {
 Ext.Msg.confirm(
 "Application Update",
 "This application has just successfully

Introducing Sencha Touch | 467

 been updated to the latest version. Reload now?",
 function(buttonId) {
 if (buttonId === 'yes') {
 window.location.reload();
 }
 }
);
 }
});

This code instructs the loader that any class that starts with Ext can be found in
the directory touch/src or its subdirectories. The classes with names that begin
with HelloWorld are under the app directory.

This is an interception of the event that’s triggered if the code on the server is
updated. The user is warned that the new version of the application has been
downloaded. You can see more on this in the comments to app.js in the section
“Using Sencha Touch for Save The Child” on page 476.

The code of the generated main view of this application (Main.js) is shown next. It

extends the class Ext.tab.Panel so that each page of the application is one tab in this
panel. Figure 12-4 is a snapshot of a collapsed version of Main.js taken from the Web‐
Storm IDE from JetBrains, which is our IDE of choice in this chapter.

Figure 12-4. Collapsed version of Main.js from Hello World

As you can see from this figure, the items[] array includes two objects, Welcome and
Get Started, and each of them represents a tab (screen) on the panel. Example 12-3
shows the code of the Welcome and Get Started screens.

468 | Chapter 12: Sencha Touch

http://bit.ly/1lJdQmx
http://bit.ly/1lJdQmx

Example 12-3. Code of the Welcome and Get Started screens

Ext.define('HelloWorld.view.Main', {
 extend: 'Ext.tab.Panel',
 xtype: 'main',
 requires: [
 'Ext.TitleBar',
 'Ext.Video'
],
 config: {
 tabBarPosition: 'bottom',

 items: [
 {
 title: 'Welcome',
 iconCls: 'home',

 styleHtmlContent: true,
 scrollable: true,

 items: {
 docked: 'top',
 xtype: 'titlebar',
 title: 'Welcome to Sencha Touch 2'
 },

 html: [
 "You've just generated a new Sencha Touch 2 project."
 "What you're looking at right now is the ",
 "contents of "
 "app/view/Main.js - edit that file ",
 "and refresh to change what's rendered here."
].join("")
 },
 {
 title: 'Get Started',
 iconCls: 'action',

 items: [
 {
 docked: 'top',
 xtype: 'titlebar',
 title: 'Getting Started'
 },
 {
 xtype: 'video',
 url: 'http://av.vimeo.com/64284/137/87347327.mp4?token=
 1330978144_f9b698fea38cd408d52a2
 393240c896c',
 posterUrl:
 'http://b.vimeocdn.com/ts/261/062/261062119_640.jpg'
 }

Introducing Sencha Touch | 469

]
 }
]
 }
});

The tab bar has to be located at the bottom of the screen.

The first tab is a Welcome screen.

The second tab is the Getting Started screen. It has xtype: video, which means

it’s ready for playing video located at the specified url.

This application has no controllers, models, or stores. But it does include the default
theme from the SASS stylesheet resources/sass/app.scss, which was compiled by the
Sencha CMD generation process into the file resources/css/app.css.

Constructing the UI
Sencha Touch has UI components specifically designed for mobile devices. These com‐
ponents include lists, forms, toolbars, buttons, charts, audio, video, carousels, and more.
The quickest way to become familiar with them is by browsing the Kitchen Sink website,
where you can find examples of how UI components look and see the source code.

Containers

In general, the process of implementing a mobile application with Sencha Touch consists
of selecting appropriate containers and arranging navigation among them. Each screen
that a user sees is a container. Often, it will include a toolbar docked at the top or bottom
of the container.

Containers can be nested; they are needed for better grouping of UI components on the

screen. The lightest container is Ext.Container. It inherits all the functionality from its

ancestor Ext.Component, plus it can contain other components. When you review the

code of the Save The Child application, note that the main view SSC.view.Main from

Main.js extends Ext.Container. The hierarchy of Sencha Touch containers is shown
in Figure 12-5.

470 | Chapter 12: Sencha Touch

http://bit.ly/1pPBw87

Figure 12-5. Sencha Touch containers hierarchy

The FieldSet is also a pretty light container; it simply adds a title to a group of fields

that belong together. You’ll see several code samples in this chapter with xtype: 'field

set' (for example, Login or Donate screens).

If your containers display forms with such inputs as text field, text area, password, and
numbers, the virtual keyboard will automatically show up, occupying half of the user’s

Introducing Sencha Touch | 471

screen. On some platforms, virtual keyboards adapt to the type of input field—for ex‐

ample, if the field has xtype: 'emailfield', the keyboard will be modified for easier
input of emails. Figure 12-6 is a snapshot taken from the Donate screen of the Save The
Child application as the user taps inside the Email field. Note the key with the “at” sign
(@) on the main keyboard, which wouldn’t be shown for nonemail inputs.

Figure 12-6. The iPhone virtual keyboard for entering emails

If the field is for entering a URL (xtype: 'urlfield'), expect to see a virtual keyboard

with a button labeled .com. If the input field has xtype: 'numberfield', the user might
see a numeric keyboard when the focus is in this field.

If you need to detect the environment on the user’s mobile device, use

Ext.os. to detect the operating system, Ext.browser to detect the

browser, and Ext.feature to detect supported features.

472 | Chapter 12: Sencha Touch

Layouts

Besides grouping components, containers allow you to assign a Layout to control its
children arrangements. In desktop applications, physical screens are larger, and often
you can place multiple containers on the same screen at the same time. In the mobile
world, you don’t have that luxury, and typically you’ll be showing just one container at
a time. Not all layouts are practical to use on smaller screens, which is why not all Ext
JS layouts are supported in Sencha Touch.

Figure 12-10, shown later in this chapter, illustrates the main container that shows either

the tabpanel or loginform. The tabpanel is a container with a special layout that shows
only one of its child containers at a time (for example, About or Donate). You can see
all these components in action at savesickchild.org—just run the Sencha Touch version
of our Save The Child application and view the sources.

By default, a container’s layout is auto, which instructs the rendering engine to use the
entire width of the container, but use just enough height to display the children. This

behavior is similar to the vbox layout (vertical box), in which all components are added

to the container vertically, one below another. Accordingly, the hbox arranges all com‐
ponents horizontally, one next to the other.

If you want to control how much vertical or horizontal screen space

is given to each component, use the flex property as described in
“Setting proportional layouts by using the flex property” on page 148.

The fit layout fills the entire container’s space with its child element. If you have more
than one child element in the container, the first one will fill the entire space and the
other one will be ignored.

The card layout can accommodate multiple children while displaying only one at a time.

The container’s method setActiveItem() allows you to programmatically select the

“card” to be on top of the deck. With a card layout, all containers are preloaded to the
device, but if you want to create new containers at runtime, you can use the method

setActiveItem(), passing a config object that describes the new container.

You can find examples of card and fit layouts in the code of Main.js of the Save The

Child application. Figure 12-11 shows the card layout, but if you expand the tabpa

nel container, each tab has the fit layout.

The classes TabPanel and Carousel represent two implementations of containers that

use the card layout.

Introducing Sencha Touch | 473

http://bit.ly/UcgLt8
http://docs.sencha.com/touch/2.3.0/#!/guide/layouts-section-fit-layout
http://bit.ly/1mdxyIg

Events

Events can be initiated either by the browser or by the user. “Working with Events” on
page 146 covers general rules of dealing with events in the Ext JS framework. Many
system events are dispatched during UI component rendering. The online documen‐
tation lists every event that can be dispatched on Sencha classes. Look for the Events
section on the top toolbar in the online documentation. Figure 12-7 is a snapshot from

online documentation for the class Ext.Container, which has 32 events.

Figure 12-7. Events in the Sencha online documentation

Sencha Touch knows how to handle various mobile-specific events. Check out the doc‐

umentation for the class Ext.dom.Element: you’ll find such events as touchstart, tou

chend, tap, doubletap, swipe, pinch, longpress, rotate, and others.

You can add event listeners by using techniques. One of them is defining the listen

ers config property during object instantiation. This property is declared in the

474 | Chapter 12: Sencha Touch

http://bit.ly/1vTI2yd
http://bit.ly/1vTI2yd
http://bit.ly/UciVsM
http://bit.ly/1ohO6gS
http://bit.ly/1ohO6gS

Ext.Container object and makes it possible for you to define more than one listener at

a time. You should use it while calling the Ext.create() method:

Ext.create('Ext.button.Button', {
 listeners: {
 tap: function() { // handle event here }
 }
}

If you need to handle an event only once, you can use the option single: true, which
will automatically remove the listener after the first handling of the event. For example:

listeners: {
 tap: function() { // handle event here },
 single: true
}

Read the comments to the code of SSC.view.CampaignsMap in Chap‐
ter 4 about the right place for declaring listeners.

You can also define event handlers by using yet another config property, control from

Ext.Container. Example 12-4 is a code fragment from the Login controller of the Save

The Child application. It shows how to assign the tap event handler functions showLo

ginView() and cancelLogin() for the Login and Cancel buttons.

Example 12-4. Registering tap event handlers

Ext.define('SSC.controller.Login', {
 extend: 'Ext.app.Controller',

 config: {

 control: {
 loginButton: {
 tap: 'showLoginView'
 },
 cancelButton: {
 tap: 'cancelLogin'
 }
 }
 },
 showLoginView: function () {
 // code of this function is removed for brevity
 },

 cancelLogin: function () {
 // code of this function is removed for brevity

Introducing Sencha Touch | 475

 }
});

With the proliferation of touch screens, Sencha has introduced the

tap gesture, which is semantically equivalent to the click event.

Read more about the role of controllers in event handling in the section “Controller”
on page 487. Online documentation includes the Event Guide, which describes the process
of handling events in detail.

If you want to fire custom events, use the method fireEvent(), pro‐
viding the name of your event. The procedure for defining the lis‐
teners for custom events remains the same.

Bring Your Own Device (BYOD) is becoming more and more popu‐
lar in enterprises. Sencha offers a product called Sencha Space, which
is a secure and managed environment for deploying enterprise
HTML5 applications that can be run on a variety of devices that
employees bring to the workplace. Sencha Space promises a clear
separation between work-related applications and personal data. It
uses a secure database and secure file API and facilitates app-to-app
communication. For more details, visit the Sencha Space web page.

Using Sencha Touch for Save The Child
The Sencha Touch version of the Save The Child application is based on the mockup
presented in “Prototyping the Mobile Version” on page 423 with some minor changes.
This time, the home page of the application will be a slightly different version of the
About page shown in Figure 12-8.

Building the Application
The materials presented in this chapter were tested with the Sencha Touch 2.3.1 frame‐
work, which was current at the time of this writing, and you can use the source code of
the Save The Child application that comes with the book. It’s packaged with Sencha
2.3.1. We’ve also deployed this application at link:http://savesickchild.org:8080/ssc-
touch-prod.

476 | Chapter 12: Sencha Touch

http://bit.ly/1nYwaWT
http://bit.ly/1qJRAJX

If you need to use a newer version of Sencha Touch, just download and unzip it to the
directory of your choice (in our case, we use /Library/touch-2.3.1). Download the book
code and remove the content of the touch directory from Lesson12/ssc-mobile. After

that, cd to this directory and copy a newer version of Sencha Touch there. For example,
on Mac OS we did it as follows:

cd ssc-mobile
cp -r /Library/touch-2.3.1/ touch

Then, run the Sencha CMD (version 4 or above) command to make a production build
of the application and start the embedded web server:

sencha app build
sencha web start

Finally, open this application at http://localhost:1841 in one of the emulators or just on
your desktop browser. You’ll see the starting page that looks like Figure 12-8.

Figure 12-8. The Starting/About page

We’ll review the code of this application next.

Using Sencha Touch for Save The Child | 477

http://localhost:1841

The Application Object
The code of the app.js in the Save The Child project is shown in Example 12-5 (we
removed the default startup images and icons for brevity). For the most part, it has the
same structure as the Ext JS applications.

Example 12-5. The app.js file of Save The Child

Ext.application({
 name: 'SSC',

 requires: [
 'Ext.MessageBox'
],

 views: [
 'About',
 'CampaignsMap',
 'DonateForm',
 'DonorsChart',
 'LoginForm',
 'LoginToolbar',
 'Main',
 'Media',
 'Share',
 'ShareTile'
],

 stores: [
 'Campaigns',
 'Countries',
 'Donors',
 'States',
 'Videos'
],

 controllers: [
 'Login'
],

 launch: function() {
 // Destroy the #appLoadingIndicator element
 Ext.fly('appLoadingIndicator').destroy();

 // Initialize the main view
 Ext.Viewport.add(Ext.create('SSC.view.Main'));
 },

 onUpdated: function() {
 Ext.Msg.confirm(
 "Application Update",
 "This application has just successfully been updated to the latest "

478 | Chapter 12: Sencha Touch

 "version. Reload now?",
 function(buttonId) {
 if (buttonId === 'yes') {
 window.location.reload();
 }
 }
);
 }
});

Compare this application object with that of Ext JS, shown in “Best
Practice: MVC” on page 139. They are similar.

The application loads all the dependencies listed in app.js and instantiates models and
stores. The views that require data from the store will either mention the store name

(for example, store: 'Videos') or will use the get method from the class StoreMgr

(for example, Ext.StoreMgr.get('Campaigns');). After this is done, the launch func‐
tion is called—and this is where the main view is created.

In this version of the Save The Child application, we have only one controller, Login,
that doesn’t use any stores, but the mechanism of pointing controllers to the appropriate
store instances is the same as for views. The application instantiates all controllers au‐
tomatically. Accordingly, all controllers live in the context of the Application object.

We don’t use explicitly defined models here. All the data is hardcoded in the stores in

the data attributes.

You’ll see the code of the views a bit later, but we want to draw your attention to the

onUpdated() event handler. In the earlier section “Microloader and configurations” on
page 465, we mentioned that production builds of Sencha Touch applications watch the

locally cached JavaScript and CSS files listed in the JS and CSS sections of the configu‐
ration file app.json and compare them with their peers on the server. They also watch

all the files listed in the appCache section of app.json. If any of these files change, the

onUpdated event handler is invoked. For illustration purposes, we decided to intercept
this event. Figure 12-9 shows how the update prompt looks on iPhone 5.

Using Sencha Touch for Save The Child | 479

http://bit.ly/1nhoj4W

Figure 12-9. The code on the server has changed

At this point, the user can either choose to work with the previous version of the ap‐
plication or reload the new one.

Our index.html file includes one more script (besides the microloader script) that sup‐
port the Google Maps API:

<script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=true"></script>

If you want your program documentation to look as good as Sen‐
cha’s, use the JSDuck tool.

480 | Chapter 12: Sencha Touch

https://github.com/senchalabs/jsduck

The Main View
The code of the UI landing page of this application is located in the views folder in the
file Main.js. First, take a look at the screenshot from WebStorm in Figure 12-10; note
that it shows only two objects on the top level: the container and a login form.

Figure 12-10. Main.js in a collapsed form

The card layout means that the user will see either the content of that container or the
login form—one at a time. Let’s open the container. It has an array of children, which
are our application pages. Figure 12-11 shows the titles of the children.

Using Sencha Touch for Save The Child | 481

Figure 12-11. TabPanel’s children in a collapsed form

The entire code of Main.js is shown in Example 12-6.

Example 12-6. The complete version of Main.js

Ext.define('SSC.view.Main', {
 extend: 'Ext.Container',
 xtype: 'mainview',
 requires: [
 'Ext.tab.Panel',
 'Ext.Map',
 'Ext.Img'
],

 config: {
 layout: 'card',

 items: [
 {
 xtype: 'tabpanel',
 tabBarPosition: 'bottom',

 items: [
 {
 title: 'About',
 iconCls: 'info',
 layout: 'fit',
 items: [

482 | Chapter 12: Sencha Touch

 {xtype: 'aboutview'
 }
]
 },
 {
 title: 'Donate',
 iconCls: 'love',
 layout: 'fit',
 items: [
 {xtype: 'logintoolbar',
 title: 'Donate'
 },
 {xtype: 'donateform'
 }
]
 },
 {
 title: 'Stats',
 iconCls: 'pie',
 layout: 'fit',
 items: [
 {xtype: 'logintoolbar',
 title: 'Stats'
 },
 {xtype: 'donorschart'
 }
]
 },
 {
 title: 'Events',
 iconCls: 'pin',
 layout: 'fit',
 items: [
 {xtype: 'logintoolbar',
 title: 'Events'
 },
 {xtype: 'campaignsmap'
 }
]
 },
 {
 title: 'Media',
 iconCls: 'media',
 layout: 'fit',
 items: [
 {xtype: 'mediaview'
 }
]
 },
 {
 title: 'Share',
 iconCls: 'share',

Using Sencha Touch for Save The Child | 483

 layout: 'fit',
 items: [
 {xtype: 'logintoolbar',
 title: 'Share'
 },
 {xtype: 'shareview'
 }
]
 }
]
 },

 {xtype: 'loginform',
 showAnimation: {
 type: 'slide',
 direction: 'up',
 duration: 200
 }
 }
]
 }
});

We’ve assigned the xtype: 'mainview' to the main view so that the Login
controller can refer to it.

Note that the tabpanel doesn’t explicitly specify any layout; it uses card by
default.

Each tab has a corresponding button on the toolbar. It shows the text from the

title attribute and the icon specified in the class iconCls.

Each view has the fit layout, which forces the content to expand to fill the
layout’s container.

Each view has a Login button on the toolbar. It’s implemented in LoginToolbar.js,
shown later in this chapter.

Sencha Touch can render icons by using icon fonts from the Pictos library located in
the folder resources/sass/stylesheets/fonts. We’ve used icon fonts in the jQuery Mobile
version of our application, and in this version we’ll also use fonts, which consume much
less memory than images. Example 12-7 presents the content of our app.scss file, which
includes several font icons used in the Save The Child application.

Example 12-7. The application styles are located in app.scss

@import 'sencha-touch/default';
@import 'sencha-touch/default/all';

@include icon-font('IcoMoon', inline-font-files('icomoon/icomoon.woff', woff,
'icomoon/icomoon.ttf', truetype,'icomoon/icomoon.svg', svg));

484 | Chapter 12: Sencha Touch

http://bit.ly/1h8ANPP
http://pictos.cc/

@include icon('info', '!', 'IcoMoon');
@include icon('love', '"', 'IcoMoon');
@include icon('pie', '#', 'IcoMoon');
@include icon('pin', '$', 'IcoMoon');
@include icon('media', '%', 'IcoMoon');
@include icon('share', '&', 'IcoMoon');

.child-img {
 border: 1px solid #999;
}

// Reduce size of the icons to fit 6 buttons in the tabbar; add Share tab
.x-tabbar.x-docked-bottom .x-tab {
 min-width: 2.8em;

 .x-button-icon:before {
 font-size: 1.4em;
 }
}

// Share icons
.icon-twitter, .icon-facebook, .icon-google-plus, .icon-camera {
 font-family: 'icomoon';
 speak: none;
 font-style: normal;
 font-weight: normal;
 font-variant: normal;
 text-transform: none;
 line-height: 1;
 -webkit-font-smoothing: antialiased;
}
.icon-twitter:before {
 content: "\27";
}
.icon-facebook:before {
 content: "\28";
}
.icon-google-plus:before {
 content: "\29";
}
.icon-camera:before {
 content: "\2a";
}

// Share tiles
.share-tile {
 top: 25%;
 width: 100%;
 position: absolute;
 text-align: center;
 border-width: 0 1px 1px 0;

Using Sencha Touch for Save The Child | 485

 p:nth-child(1) {
 font-size:4em;
 }

 p:nth-child(2) {
 margin-top: 1.5em;
 font-size: 0.9em;
 }
}

$sharetile-border: #666 solid;

.sharetile-twitter {
 border: $sharetile-border;
 border-width: 0 1px 1px 0;
}

.sharetile-facebook {
 border: $sharetile-border;
 border-width: 0 0 1px;
}

.sharetile-gplus {
 border: $sharetile-border;
 border-width: 0 1px 0 0;
}

// Media
.x-videos {
 .x-list-item > .x-innerhtml {
 font-weight: bold;
 line-height: 18px;
 min-height: 88px;

 > span {
 display: block;
 font-size: 14px;
 font-weight: normal;
 }
 }

 .preview {
 float: left;
 height: 64px;
 width: 64px;
 margin-right: 10px;
 background-size: cover;
 background-position: center center;
 background: #eee;
 @include border-radius(3px);
 -webkit-box-shadow: inset 0 0 2px rgba(0,0,0,.6);
 }

486 | Chapter 12: Sencha Touch

 .x-item-pressed,
 .x-item-selected {
 border-top-color: #D1D1D1 !important;
 }
}

The first two lines of app.scss import the icons from the default theme. We’ve added
several more. Note that we had to reduce the size of the icons to fit six buttons in the

application’s toolbar. All the @include statements use the SASS mixin icon().

If you need more icons, use the IcoMoon application. Pick an icon there and click the
Font button to generate a custom font (see Figure 12-12). Download and copy the gen‐
erated fonts into your resources/sass/stylesheets/fonts directory and add them to app.scss

by using the @include icon-font directive. The downloaded ZIP file will contain the
fonts as well as the index.html file that will show you the class name and the code of the
generated font icon(s).

Figure 12-12. Generating Twitter icon font with IcoMoon

When you compile the SASS with compass (or build the application by using Sencha
CMD), the SASS styles are converted into a standard CSS file, resources/css/app.css.

Controller
Now let’s review the code of the Login page controller, which reacts to the user’s actions
performed in the view LoginForm. The name of the controller’s file is Login.js. It’s located
in the folder controller, and Example 12-8 presents the code.

Example 12-8. The Login controller

Ext.define('SSC.controller.Login', {
 extend: 'Ext.app.Controller',

Using Sencha Touch for Save The Child | 487

http://icomoon.io/app
http://bit.ly/1pEgCNi

 config: {
 refs: {
 mainView: 'mainview',
 loginForm: 'loginform',
 loginButton: 'button[action=login]',
 cancelButton: 'loginform button[action=cancel]'
 },

 control: {
 loginButton: {
 tap: 'showLoginView'
 },
 cancelButton: {
 tap: 'cancelLogin'
 }
 }
 },

 showLoginView: function () {
 this.getMainView().setActiveItem(1);
 },

 cancelLogin: function () {
 this.getMainView().setActiveItem(0);
 }

});

Including mainView: 'mainview' in the refs attribute forces Sencha Touch to

generate the getter function getMainView(), providing access to the main view
if need be.

This controller uses components from the LoginForm view (its code comes a bit
later).

The loginButton is the one that has action=login. The cancelButton is the

one that’s located inside the loginform and has action=cancel.

Defining the event handlers for tap events for the buttons Login and Cancel from
the LoginForm view.

The main view has two children (see Figure 12-10). When the user taps the Login

button, show the second child: setActiveItem(1).

When the user clicks the Cancel button, show the main container: the first child

of the main view, setActiveItem(0).

488 | Chapter 12: Sencha Touch

Controllers are automatically instantiated by the Application ob‐
ject. If you want a controller’s code to be executed even before the

application launch function is called, put it in the init function. If
you want code to be executed right after the application is launched,

put it in the controller’s launch function.

For illustration purposes, we’ll show you a shorter (but not necessarily better) version
of Login.js. The preceding code defines a reference to the login form and button selectors

in the refs section. Sencha Touch will find the references and generate the getter for
these buttons. But in this particular example, we are using these buttons only to assign

them the event handlers. Hence, we can make the refs section slimmer and use the

selectors right inside the control section, as shown in Example 12-9.

Example 12-9. Making the ref section slimmer in Login controller

Ext.define('SSC.controller.Login', {
 extend: 'Ext.app.Controller',

 config: {
 refs: {
 mainView: 'mainview',
 },

 control: {
 'button[action=login]': {
 tap: 'showLoginView'
 },
 'loginform button[action=cancel]': {
 tap: 'cancelLogin'
 }
 }
 },

 showLoginView: function () {
 this.getMainView().setActiveItem(1);
 },

 cancelLogin: function () {
 this.getMainView().setActiveItem(0);
 }
});

This version of Login.js is shorter, but the first one is more generic. In both versions,

the button selectors are the shortcuts for the ComponentQuery class, which is a singleton
that is used to search for components.

With the Model-View-Controller (MVC) pattern, the event-processing logic is often

located in controller classes. By using refs and ComponentQuery selectors, you can reach

Using Sencha Touch for Save The Child | 489

http://bit.ly/VzPvpq

event-generating objects located in different classes. For example, if the user taps a

button in a view, the controller’s code includes the tap event handler, where it triggers
an event on a store class to initiate the data retrieval.

But if the control config is defined not in the controller, but in a component, the scope

where ComponentQuery operates is limited to the component itself. You’ll see an example

of using the control config inside DonateForm.js, later in this chapter.

Other Views in Save The Child
Let’s do a brief code review of the other Save The Child views.

LoginForm

Figure 12-13 is a snapshot of the Login view taken from an iPhone 5, which was the
only mobile device on which we’ve tested this application.

Figure 12-13. The Login form view

Example 12-10 shows the code of the LoginForm view; it’s self-explanatory. The ui:

'decline' is the Ext.Button style that causes the Cancel button to have a red back‐
ground.

490 | Chapter 12: Sencha Touch

http://bit.ly/1jCAcS7

Example 12-10. The LoginForm view

Ext.define('SSC.view.LoginForm', {
 extend: 'Ext.form.Panel',
 xtype: 'loginform',
 requires: [
 'Ext.field.Password'
],

 config: {
 items: [
 { xtype: 'toolbar',
 title: 'Login',

 items: [
 { xtype: 'button',
 text: 'Cancel',
 ui: 'decline',
 action: 'cancel'
 }
]
 },
 { xtype: 'fieldset',
 title: 'Please enter your credentials',

 defaults: {
 labelWidth: '35%'
 },

 items: [
 { xtype: 'textfield',
 label: 'Username'
 },
 { xtype: 'passwordfield',
 label: 'Password'
 }
]
 },
 { xtype: 'button',
 text: 'Login',
 ui: 'confirm',
 margin: '0 10'
 }
]
 }
});

Using Sencha Touch for Save The Child | 491

One of the reviewers of this book reported that the text fields from
this Login form do not display on his Android Nexus 4 smart‐
phone. This can happen, and it illustrates why real-world applica‐
tions should be tested on a variety of mobile devices. If you run into
a similar situation while developing your application with Sencha
Touch, use platform-specific themes, which are automatically load‐

ed based on the detected user’s platform (see the platformConfig
object). Sencha Touch offers a number of out-of-the-box schemes and
theme switching capabilities.

The Login form displays when the user clicks the Login button that is displayed on each
other page in the toolbar. For example, Figure 12-14 shows the top portion of the Donate
view.

Figure 12-14. The Login toolbar

The Login button is added as xtype: 'logintoolbar' to the top of each view in
Main.js. It’s implemented in LoginToolbar.js, shown in Example 12-11.

Example 12-11. The LoginToolbar.js

Ext.define('SSC.view.LoginToolbar', {
 extend: 'Ext.Toolbar',
 xtype: 'logintoolbar',

 config: {
 title: 'Save The Child',
 docked: 'top',

 items: [
 {
 xtype: 'spacer'
 },
 {
 xtype: 'button',
 action: 'login',

492 | Chapter 12: Sencha Touch

http://bit.ly/1lWfTTW
http://bit.ly/1uDtGzq
http://bit.ly/1uDtGzq
http://bit.ly/1vTNkJV
https://vimeo.com/66191847

 text: 'Login'
 }
]
 }
});

The Login toolbar has to be located at the top of the screen.

Adding the Ext.Spacer component to occupy all the space before the Login
button. By default, the spacer has a flex value of 1, which means it takes all the
space in this situation. You can read more about it in “Setting proportional
layouts by using the flex property” on page 148.

If you add the Save The Child application as an icon to the home
screen on iOS devices, the browser’s address bar will not be displayed.

DonateForm

We want to make the Donate view look like the mockup that our web designer, Jerry,
supplied for us (see Figure 11-10). With jQuery Mobile, it’s simple: the HTML container

<fieldset data-role="controlgroup" data-type="horizontal" id="radio-

container"> with a bunch of <input type="radio"> rendered the horizontal button
bar shown in Figure 11-25. Example 12-12 shows the fragment from the initial Sencha
Touch version of DonateForm.js.

Example 12-12. The fragment of the initial version of DonateForm.js

 config: {
 title: 'DonateForm',

 items: [
 { xtype: 'fieldset',
 title: 'Please select donation amount',

 defaults: {
 name: 'amount',
 xtype: 'radiofield'
 },

 items: [
 { label: '$10',
 value: 10
 },
 { label: '$20',
 value: 20
 },

Using Sencha Touch for Save The Child | 493

 { label: '$50',
 value: 50
 },
 { label: '$100',
 value: 100
 }
]
 },
 { xtype: 'fieldset',
 title: '... or enter other amount',

 items: [
 { xtype: 'numberfield',
 label: 'Amount',
 name: 'amount'
 }
]
 }

It’s also a fieldset with several radio buttons, xtype: 'radiofield'. But the result is
not what we expected. These four radio buttons occupy half of the screen, which looks
like Figure 12-15.

Figure 12-15. Rendering of xtype radio field

494 | Chapter 12: Sencha Touch

After doing some research, we discovered that Sencha Touch has a UI component called

Ext.SegmentedButton with which you can create a horizontal bar with toggle buttons,
which is exactly what is needed from the rendering perspective. The resulting Donate
screen is shown in Figure 12-16.

Figure 12-16. Donation form with SegmentedButton

This looks nice, but as opposed to a regular HTML form with inputs, the Segmented

Button is not an HTML <input> field and its value won’t be automatically submitted
to the server. This requires a little bit of a manual coding, which will be explained as a

part of the DonateForm code review that follows (we’ve split it into two fragments for
better readability). Example 12-13 shows the first part.

Example 12-13. The final version of DonateForm.js, part 1

Ext.define('SSC.view.DonateForm', {
 extend: 'Ext.form.Panel',
 xtype: 'donateform',
 requires: [
 'Ext.form.FieldSet',

Using Sencha Touch for Save The Child | 495

http://bit.ly/1qHmHYE

 'Ext.field.Select',
 'Ext.field.Number',
 'Ext.field.Radio',
 'Ext.field.Email',
 'Ext.field.Hidden',
 'Ext.SegmentedButton',
 'Ext.Label'
],

 config: {
 title: 'DonateForm',

 control: {
 'segmentedbutton': {
 toggle: 'onAmountButtonChange'
 },
 'numberfield[name=amount]': {
 change: 'onAmountFieldChange'
 }
 },

 items: [
 { xtype: 'label',
 cls: 'x-form-fieldset-title',
 html: 'Please select donation amount:'
 },
 { xtype: 'segmentedbutton',
 margin: '0 10',

 defaults: {
 flex: 1
 },

 items: [
 { text: '$10',
 data: {
 value: 10
 }
 },
 { text: '$20',
 data: {
 value: 20
 }
 },
 { text: '$50',
 data: {
 value: 50
 }
 },
 { text: '$100',
 data: {
 value: 100

496 | Chapter 12: Sencha Touch

 }
 }
]
 },
 { xtype: 'hiddenfield',
 name: 'amount'
 },

Define event listeners for the segmentedbutton and the field for entering another
amount. When the control section is used not in a controller, but in a component,

it’s scoped to the object in which it was defined. Hence the ComponentQuery will

be looking for segmentedbutton and numberfield[name=amount] only within

the DonateForm instance. If these event handlers were defined in the controller,
the scope would be global.

Borrow the class that Sencha Touch uses for all fieldset containers, so our title
looks the same.

The segmentedbutton is defined here. By default, its config property is allow

Toggle=true, which allows only one button to be pressed at a time.

The segmentedbutton has no property to store the value of each button. But any

sublcass of Ext.Component has the property data. We are extending the data

property to store the button’s value. It will be available in the event handler in

button.getData().value.

Because the buttons in the segmentedbutton are not input fields, we define a
hidden field to remember the currently selected amount.

Example 12-14 presents the second half of SSC.view.DonateForm.

Example 12-14. The final version of DonateForm.js, part 2

 { xtype: 'fieldset',
 title: '... or enter other amount',

 items: [
 { xtype: 'numberfield',
 label: 'Amount',
 name: 'amount'
 }
]
 },
 {
 xtype: 'fieldset',
 title: 'Donor information',

 items: [
 { name: 'fullName',
 xtype: 'textfield',

Using Sencha Touch for Save The Child | 497

 label: 'Full name'
 },
 { name: 'email',
 xtype: 'emailfield',
 label: 'Email'
 }
]
 },
 {
 xtype: 'fieldset',
 title: 'Location',

 items: [
 { name: 'address',
 xtype: 'textfield',
 label: 'Address'
 },
 { name: 'city',
 xtype: 'textfield',
 label: 'City'
 },
 { name: 'zip',
 xtype: 'textfield',
 label: 'Zip'
 },
 { name: 'state',
 xtype: 'selectfield',
 autoSelect: false,
 label: 'State',
 store: 'States',
 valueField: 'id',
 displayField: 'name'
 },
 { name: 'country',
 xtype: 'selectfield',
 autoSelect: false,
 label: 'Country',
 store: 'Countries',
 valueField: 'id',
 displayField: 'name'
 }
]
 },
 {
 xtype: 'button',
 text: 'Donate',
 ui: 'confirm',
 margin: '0 10 20'
 }
]
 },

498 | Chapter 12: Sencha Touch

 onAmountButtonChange: function (segButton,
 button, isPressed) {

 if (isPressed) {
 this.clearAmountField();
 this.updateHiddenAmountField(button.getData().value);
 button.setUi('confirm');
 }
 else {
 button.setUi('normal');
 }
 },

 onAmountFieldChange: function () {

 this.depressAmountButtons();
 this.clearHiddenAmountField();
 },

 clearAmountField: function () {
 var amountField = this.down('numberfield[name=amount]');

 amountField.suspendEvents();
 amountField.setValue(null);
 amountField.resumeEvents(true);
 },

 updateHiddenAmountField: function (value) {
 this.down('hiddenfield[name=amount]').setValue(value);
 },

 depressAmountButtons: function () {
 this.down('segmentedbutton').setPressedButtons([]);
 },

 clearHiddenAmountField: function () {
 this.updateHiddenAmountField(null);
 }
});

This numberfield stores the other amount, if entered. Note that it has the same

name amount as the hidden field. The methods clearAmountField() and clear

HiddenAmountField() ensure that only one of the amounts has a value.

When the toggle event is fired, it comes with an object that contains a reference
to the button that was toggled, and whether the button becomes pressed as the
result of this event.

Using Sencha Touch for Save The Child | 499

The toggle event is dispatched twice: once for the button that is pressed, and

again for the button that was pressed before. If the button is clicked (is

Pressed=true), clean the previously selected amount and store a new one in the
hidden field.

Change the style of the button to make it visibly highlighted. We use the

predefined confirm style (see the Kitchen Sink application for other button
styles).

When the other amount field loses focus, this event handler is invoked. The code
cleans up the hidden field and removes the pressed state from all buttons.

Temporarily suspend dispatching events while setting the value of the amount

numberfield to null. Otherwise, setting to null would cause unnecessary

dispatching of the change event.

Resume event dispatching. The true argument is for discarding all the queued
events.

Previous versions of the Save The Child application illustrated how to submit the Donate
form to the server for further processing. The Sencha Touch version of this application
doesn’t include this code. If you’d like to experiment with this, just create a new controller

class that extends Ext.app.Controller and define an event handler for the Donate Now
button (see the Login controller as an example).

On the tap event, invoke donateform.submit(), specifying the URL of the server that
knows how to process this form. You can find details on submitting and populating

forms in the online documentation for Ext.form.Panel—the ancestor of the “Dona‐
teForm”.

If you want to use Ajax-based form submission, use submit(). Other‐

wise, use the method standardSubmit(), which performs a stan‐
dard HTML form submission.

Charts

The charting support is just great in Sencha Touch (and similar to Ext JS). It’s JavaScript
based, and the charts are live and can get the data from the stores and model.
Figure 12-17 shows how the chart looks on an iPhone when the user selects the Stats
page.

500 | Chapter 12: Sencha Touch

http://bit.ly/1ohOj3B
http://bit.ly/1piOm01

Figure 12-17. Donor’s statistics chart

The code that supports the UI part of the chart is located in the view DonorsChart that’s
shown in Example 12-15. It uses the classes located in the Sencha Touch framework in
the folder src/chart.

Example 12-15. The view DonorsChart.js

Ext.define('SSC.view.DonorsChart', {
 extend: 'Ext.chart.PolarChart',
 xtype: 'donorschart',

 requires: [
 'Ext.chart.series.Pie',
 'Ext.chart.interactions.Rotate'
],

 config: {
 store: 'Donors',
 animate: true,
 interactions: ['rotate'],

Using Sencha Touch for Save The Child | 501

 legend: {
 inline: false,
 docked: 'left',
 position: 'bottom'
 },

 series: [
 {
 type: 'pie',
 donut: 20,
 xField: 'donors',
 labelField: 'location',
 showInLegend: true,
 colors: ["#115fa6", "#94ae0a", "#a61120", "#ff8809",
 "#ffd13e", "#a61187", "#24ad9a", "#7c7474", "#a66111"]
 }
]
 }
});

Create a chart that uses polar coordinates.

The Rotate class allows the user to rotate (with a finger) a polar chart around
its central point.

The data shown on the chart comes from the store named Donors, which is
shown in the section “Stores and Models” on page 508.

The legend is a bar at the bottom of the screen. The user can horizontally scroll
it with a finger.

Media

The Media page of our application displays the list of available videos. When the user
taps one of them, a new page opens on which the user must tap the Play button. We use

the Ext.dataview.List component to display video titles from the Videos store.

The Media view extends Ext.NavigationView, which is a container with the card layout
that also allows pushing a new view into this container. We use it to create a view for

the selected video from the list. The code of the Media view is shown in Example 12-16.

Example 12-16. The view Media.js

Ext.define('SSC.view.Media', {
 extend: 'Ext.NavigationView',
 xtype: 'mediaview',
 requires: [
 'Ext.Video'
],

 config: {
 control: {

502 | Chapter 12: Sencha Touch

http://docs.sencha.com/touch/2.3.1/#!/api/Ext.dataview.List

 'list': {
 itemtap: 'showVideo'
 }
 },

 useTitleForBackButtonText: true,
 navigationBar: {
 items: [
 { xtype: 'button',
 action: 'login',
 text: 'Login',
 align: 'right'
 }
]
 },

 items: [
 { title: 'Media',
 xtype: 'list',
 store: 'Videos',
 cls: 'x-videos',
 variableHeights: true,
 itemTpl: [
 '<div class="preview"
 style="background-image:url(resources/media/{thumbnail});">
 </div>',
 '{title}',
 '{description}'
]
 }
]
 },

 showVideo: function (view, index, target, model) {

 this.push(Ext.create('Ext.Video', {
 title: model.get('title'),
 url: 'resources/media/' + model.get('url'),
 posterUrl: 'resources/media/' + model.get('thumbnail')
 }));
 }
});

Sencha Touch offers Ext.Video a wrapper for the HTML5 <video> tag. In

Chapter 4, we used the HTML5 tag <video> directly.

Define the event listener for the itemtap event, which fires whenever the list
item is tapped.

Using Sencha Touch for Save The Child | 503

When the video player’s view is pushed to the Media page, we want its Back
button to display the previous view’s title, which is Media. It’s a config property

in NavigationView.

The list with descriptions of videos is populated from the store Videos by using

the list’s config property itemTpl. This is an HTML template for rendering each

item. We decided to use the <div> showing the content of the store’s properties

title, description with a background image from the property thumbnail,

and the video located at the specified url. The source code of the store Videos
is included in the section “Stores and Models” on page 508.

Create a video player and push it into NavigationView. When the itemtap event

is fired, it passes several values to the function handler. We just use the model
that corresponds to the tapped list item. For all available config properties, refer

to the Ext.Video documentation.

A template [Ext.Template] represents an HTML fragment. The val‐
ues in square braces are passed to the template from the outside. In

the preceding example, the values are coming from the store Vid

eos. The class Ext.XTemlate offers advanced templating—for exam‐
ple, auto-filling HTML with the data from an array, which is used
here.

Maps

Integration with Google Maps is a pretty straightforward task in Sencha Touch, which

comes with Ext.Map, a wrapper class for the Google Maps API. Our view Campain

sMap is a subclass of Ext.Map. Note that we’ve imported the Google Maps API in the file
index.html as follows:

<script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=true"></script>

Figure 12-18 shows the iPhone’s screen when the Events button is tapped.

504 | Chapter 12: Sencha Touch

http://bit.ly/1rPwM3w
http://bit.ly/ext-docs
http://docs.sencha.com/touch/2.3.1/#!/api/Ext.Map

Figure 12-18. The Events page

Of course, some additional styling is needed before offering this view in a production
environment, but the CampaignsMap.js that supports this screen (see Example 12-17)
is only 90 lines of code!

Example 12-17. The view CampaignsMap.js

Ext.define('SSC.view.CampaignsMap', {
 extend: 'Ext.Map',
 xtype: 'campaignsmap',

 config: {
 listeners: {
 maprender: function () {

 if (navigator && navigator.onLine) {
 try {
 this.initMap();
 this.addCampaignsOnTheMap(this.getMap());
 } catch (e) {
 this.displayGoogleMapError();

Using Sencha Touch for Save The Child | 505

 }
 } else {
 this.displayGoogleMapError();
 }
 }
 }
 },

 initMap: function () {

 // latitude = 39.8097343 longitude = -98.55561990000001
 // Lebanon, KS 66952, USA Geographic center
 // of the contiguous United States
 // the center point of the map

 var latMapCenter = 39.8097343,
 lonMapCenter = -98.55561990000001;

 var mapOptions = {
 zoom : 3,
 center : new google.maps.LatLng(latMapCenter, lonMapCenter),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 mapTypeControlOptions: {
 style : google.maps.MapTypeControlStyle.DROPDOWN_MENU,
 position: google.maps.ControlPosition.TOP_RIGHT
 }
 };

 this.setMapOptions(mapOptions);
 },

 addCampaignsOnTheMap: function (map) {
 var marker,
 infowindow = new google.maps.InfoWindow(),
 geocoder = new google.maps.Geocoder(),
 campaigns = Ext.StoreMgr.get('Campaigns');

 campaigns.each(function (campaign) {
 var title = campaign.get('title'),
 location = campaign.get('location'),
 description = campaign.get('description');

 geocoder.geocode({
 address: location,
 country: 'USA'
 }, function(results, status) {
 if (status == google.maps.GeocoderStatus.OK) {

 // getting coordinates
 var lat = results[0].geometry.location.lat(),
 lon = results[0].geometry.location.lng();

506 | Chapter 12: Sencha Touch

 // create marker
 marker = new google.maps.Marker({
 position: new google.maps.LatLng(lat, lon),
 map : map,
 title : location
 });

 // adding click event to the marker to show info-bubble
 // with data from json
 google.maps.event.addListener(marker, 'click', (function(marker)
 {
 return function () {
 var content = Ext.String.format(
 '<p class="infowindow">{0}
{1}

<i>{2}</i></p>',
 title, description, location);

 infowindow.setContent(content);
 infowindow.open(map, marker);
 };
 })(marker));
 } else {
 console.error('Error getting location data for address: ' +
 location);
 }
 });
 });
 },

 displayGoogleMapError: function () {
 console.log("Sorry, Google Map service isn't available");
 }
});

We use just the listeners config here, but Ext.Map has 60 of them. For example,
if we wanted the mobile device to identify its current location and put it in the

center of the map, we’d add useCurrentLocation: true.

This event is fired when the map is initially rendered. We are reusing the same
code as in previous chapters for initializing the map (showing the central point
of the United States) and adding the campaign information. The code of the

store Campaigns is shown in the section “Stores and Models” on page 508.

Sencha Touch is a framework for mobile devices, which can be on the move.

Ext.util.Geolocation is a handy class for applications that require knowing the cur‐

rent position of the mobile device. When your program instantiates Geolocation, it

starts tracking the location of the device by firing the locationupdate event periodically
(you can turn auto updates off). Example 12-18 shows how to get the current latitude
of the mobile device.

Using Sencha Touch for Save The Child | 507

http://bit.ly/1z25rQk

Example 12-18. Getting the current latitude of the device

var geo = Ext.create('Ext.util.Geolocation', {
 listeners: {
 locationupdate: function(geo) {
 console.log('New latitude: ' + geo.getLatitude());
 }
 }
});

geo.updateLocation(); // start the location updates

Stores and Models
In the Sencha Touch version of the Save The Child application, all the data is hard-
coded. All store classes are located in the store directory (see Figure 12-11), and each of

them has the data property. Example 12-19 presents the code of Videos.js.

Example 12-19. The store Video.js

Ext.define('SSC.store.Videos', {
 extend: 'Ext.data.Store',

 config: {
 fields: [
 { name: 'title', type: 'string' },
 { name: 'description', type: 'string' },
 { name: 'url', type: 'string' },
 { name: 'thumbnail', type: 'string' }
],

 data: [
 { title: 'The title of a video-clip 1', description: 'Short video
 description 1', url: 'intro.mp4', thumbnail: 'intro.jpg' },

 { title: 'The title of a video-clip 2', description: 'Short video
 description 2', url: 'intro.mp4', thumbnail: 'intro.jpg' },

 { title: 'The title of a video-clip 3', description: 'Short video
 description 3', url: 'intro.mp4', thumbnail: 'intro.jpg' }
]
 }
});

There is a compatibility issue between Ext JS and Sencha Touch 2

stores and models. For example, in the preceding code, fields and

data are wrapped inside the config object, whereas in the Ext JS
store they are not. Until Sencha offers a generic solution to resolve
these compatibility issues, you have to come up with your own if you
want to reuse the same stores.

508 | Chapter 12: Sencha Touch

The code of the Donors store supports the charts on the Stats page. It’s self-explanatory,
as you can see in Example 12-20.

Example 12-20. The store Donors.js

Ext.define('SSC.store.Donors', {
 extend: 'Ext.data.Store',

 config: {
 fields: [
 { name: 'donors', type: 'int' },
 { name: 'location', type: 'string' }
],

 data: [
 { donors: 48, location: 'Chicago, IL' },
 { donors: 60, location: 'New York, NY' },
 { donors: 90, location: 'Dallas, TX' },
 { donors: 22, location: 'Miami, FL' },
 { donors: 14, location: 'Fargo, ND' },
 { donors: 44, location: 'Long Beach, NY' },
 { donors: 24, location: 'Lynbrook, NY' }
]
 }
});

The Campaigns store is used to display the markers on the map, where charity campaigns
are active. Tapping the marker will show the description of the selected campaign, as
shown in Figure 12-18 (we tapped the Chicago marker). Example 12-21 presents the
code of the store Campaigns.js.

Example 12-21. The store Campaigns.js

Ext.define('SSC.store.Campaigns', {
 extend: 'Ext.data.Store',

 config: {
 fields: [
 { name: 'title', type: 'string' },
 { name: 'description', type: 'string' },
 { name: 'location', type: 'string' }
],

 data: [
 {
 title: 'Mothers of Asthmatics',
 description: 'Mothers of Asthmatics - nationwide Asthma network',
 location: 'Chicago, IL'
 },
 {
 title: 'Lawyers for Children',
 description: 'Lawyers offering free services for the children',

Using Sencha Touch for Save The Child | 509

 location: 'New York, NY'
 },
 {
 title: 'Sed tincidunt magna',
 description: 'Donec ac ligula sit amet libero vehicula laoreet',
 location: 'Dallas, TX'
 },
 {
 title: 'Friends of Blind Kids',
 description: 'Semi-annual charity events for blind kids',
 location: 'Miami, FL'
 },
 {
 title: 'Place Called Home',
 description: 'Adoption of the children',
 location: 'Fargo, ND'
 }
]
 }

});

Working with Landscape Mode
Handling landscape mode with Sencha Touch is done differently depending on how
you deploy your application. If you decide to package this app as a native one, landscape
mode will be supported. Sencha CMD will generate the file packager.json, which will
include a section dealing with orientation:

 "orientations": [
 "portrait",
 "landscapeLeft",
 "landscapeRight",
 "portraitUpsideDown"
]

If you’re not planning to package your app as a native one, you’ll need to do some manual

coding by processing the orientationchange event. For example:

Ext.Viewport.on('orientationchange', function() {
 // write the code to handle the landscape code here
});

This concludes the review of the Sencha Touch version of our sample application, which
consists of six nice-looking screens. The amount of manual coding to achieve this is
minimal. In the real world, you’d need to add business logic to this application, which
comes down to inserting the JavaScript code into well-structured layers. The code to
communicate with the server goes to the stores, the data is placed in the models, the UI
remains in the views, and the main glue of your application is controllers. Sencha Touch
does a good job for us, wouldn’t you agree?

510 | Chapter 12: Sencha Touch

http://bit.ly/1iMTCJd

Comparing jQuery Mobile and Sencha Touch
In Chapter 11 and this chapter, you’ve learned about two different ways of developing
a mobile application. So, what’s better, jQuery Mobile or Sencha Touch? There is no
correct answer to this question, and you will have to make a decision on your own. But
here’s a quick summary of pros and cons for each library or framework.

Use jQuery Mobile if the following are true:

• You are afraid of being locked into any one vendor. The effort to replace jQuery
Mobile in your application with another framework (if you decide to do so) is a
magnitude lower than switching from Sencha Touch to something else.

• You need your application to work on most mobile platforms.

• You prefer declarative UI and hate debugging JavaScript.

Use Sencha Touch if the following are true:

• You like to have a rich library of precreated UIs.

• Your application needs smooth animation. Sencha Touch performs automatic
throttling based on the actual frames-per-second supported on the device.

• Splitting the application code into cleanly defined architectural layers (model-view-
controller-service) is important.

• You believe that using code generators adds value to your project.

• You want to be able to customize and extend components to fit your application’s
needs perfectly. Yes, you’ll be writing JavaScript, but it still may be simpler than
trying to figure out the enhancements done to an HTML component by jQuery
Mobile under the hood.

• You want to minimize the effort required to package your application as a native
one.

• You want your application to look as close to the native ones as possible.

• You prefer to use software that is covered by the commercial support offered by a
vendor.

While considering support options, do not just assume that paid support translates into
better quality. This is not to say that Sencha won’t offer you quality support, but in many
cases, having a large community of developers will lead to a faster solution to a problem
than dealing with one assigned support engineer. Having said this, we’d like you to know
that the Sencha forum has about half a million registered users who are actively dis‐
cussing problems and offering solutions to one another.

Comparing jQuery Mobile and Sencha Touch | 511

http://www.sencha.com/forum

Even if you are a developer’s manager, you don’t have to make the framework choice on
your own. Bring your team into a conference room, order pizza, and listen to what your
team members have to say about these two frameworks, or any other, being considered.
We have offered you information about two of many frameworks, but the final call is
yours.

512 | Chapter 12: Sencha Touch

CHAPTER 13

Hybrid Mobile Applications

The word hybrid means something of mixed origin or composition. In the realm of
mobile web applications, such a mix consists of the code written in HTML5, which
accesses the APIs written in native languages. If an organization doesn’t want or can’t
hire separate teams of software developers (for example, Objective-C developers for
iPhone, Java for Android, C# for Windows Phone), there is a way to have one team of
developers with HTML/JavaScript skills who can develop applications by having the
same code deployed on various mobile devices packaged as native applications. Let’s do
a quick comparison of native, web, and hybrid mobile applications.

Native Applications
We call a mobile application native if it was written not in HTML/JavaScript, but in a
programming language recommended for devices of this mobile platform. The manu‐
facturer of mobile devices releases an SDK and describes a process for creating native
applications. This SDK provides an API for accessing all components (both hardware
and software) of the mobile device, such as phone, contact list, camera, microphone,
and others. Such SDKs include UI components that have a native look and feel, so
applications developed by third parties look the same as those developed by the respec‐
tive device manufacturer.

Native applications can seamlessly communicate with one another. They can use all
available hardware and software components of the device to create convenient work‐
flows to which people quickly become accustomed. For example, a person can take a
picture with her mobile phone, which can figure out the current geographical location
and allow her to share the photo with other people from her Contacts list. To support
such functionality, a native application has to access the camera of the mobile device,
use GPS to discover the device coordinates, and access the Contacts application.

513

http://bit.ly/1iukzBj

If you are in the business of writing mobile flight simulators or games that heavily rely
on graphics (not a Sudoku type of game), select a programming language that can use
the device hardware (for example, graphic accelerators) to its fullest and works as fast
as possible on this device. Faster applications use less battery power, too.

For native applications, a device manufacturer usually offers an application store, which
serves as an online marketplace where people can shop for applications. Apple has the
App Store for iOS and Mac OS X applications. Google has Google Play market for An‐
droid applications. BlackBerry World is a store where you can find applications for
mobile devices manufactured by RIM. Microsoft has its store, too.

Other application stores are available, and having a one-stop shop is a great way to
distribute consumer-oriented applications. For enterprise applications, having a public
distribution channel might be less important, but enterprises still need a way to publish
mobile applications for private use. Apple has the iOS Developer Enterprise Program.
For Android applications, there is a Google Play Private Channel for internal distribu‐
tion channels. Microsoft has its process for business applications, as well.

The HTML5 stack is not the only way to develop hybrid applica‐
tions using the same language for different mobile platforms. With
Xamarin, you can develop applications in C# for iOS, Android, and
Windows Phone.

Native versus Web Applications
Both web and native applications have their pros and cons. The latter are usually faster
than web applications. Let’s go through some of the examples of native mobile business
applications that exist today.

Bank of America, Chase, and other major banks have native mobile applications that
you can use to deposit a check by taking a photo of its front and back sides and entering
the amount. At the time of this writing, these applications support iPhones, Android,
Windows phones, and iPads.

Native applications implementing Near-Field Communication (NFC) technology
makes it possible for two NFC-enabled devices to communicate with each other at close
distances by using radio frequencies. NFC can be used for payments (no need to enter
passwords) and data sharing (contacts, photos, and so forth). Proliferation of NFC in
banking will seriously hurt the credit card industry. A number of smartphones already
support NFC technology. Add one of the existing fingerprint biometric solutions, and
your mobile phone becomes your wallet.

Although native applications have full access to all APIs of the mobile device (for ex‐
ample, contacts, camera, and microphone), they have drawbacks, too. For instance, if

514 | Chapter 13: Hybrid Mobile Applications

http://bit.ly/1ohOyvm
http://bit.ly/1rPx8ai
http://bit.ly/1mzH9mW
http://xamarin.com
http://bit.ly/1pJkDiG

you want to publish your application at Apple’s App Store, you have to submit your
application in advance and wait for its approval. And later, if users run into a crucial
bug in your application, even if you fixed it the same day, you can’t put a new version
in production until it goes through the approval process again. Besides this inconven‐
ience, there can be other roadblocks. For instance, back in 2011, the Financial Times
(FT) decided to stop using its native iOS application because Apple wouldn’t agree to
share the data about FT subscribers with FT—the owner of this application.

Mobile web applications don’t require any third-party involvement for distribution. An
enterprise can make them available at any time by simple adding a Download button
on the corporate website. It’s good to have the ability to quickly publish the latest versions
of web applications on your own servers without having to ask for permission. On the
other hand, maintaining a presence on one of the popular app stores is a good channel
for getting new customers.

The publisher of New York magazine is heavily investing in its native application for
iPad, but the newer version of its web application is as engaging as its native peer. If you
want your application to be discoverable and visible by search engines, develop it as a
web application, not a native one.

Hybrid Applications
Hybrid applications promise you the best of both worlds. You can develop a web appli‐
cation in HTML/JavaScript, but access the native API of the mobile device via third-
party solutions such as PhoneGap from Adobe or Titanium from Appcelerator. Let’s see
what tools are available for creating hybrids.

Cordova and PhoneGap
Cordova is a library (and a build tool) that serves as a bridge between JavaScript and a
native API. Cordova started from code donated by Adobe to the Apache Software
Foundation. Cordova is an open source platform created for building mobile applica‐
tions with HTML5, but packaged as native ones. PhoneGap is a brand owned by Adobe.
Besides the Cordova library, it offers developers a remote server, on which they can
package their applications for various mobile platforms. If the role of the Cordova li‐
brary in the PhoneGap product is not clear to you, think of a similar situation in which
the same software library is used in different products. For example, the rendering
engine WebKit is used in Chrome and Safari browsers.

Cordova can be used without PhoneGap. For example, Facebook and
Salesforce use Cordova in their mobile SDK.

Hybrid Applications | 515

http://phonegap.com
http://bit.ly/1ls1qKV
http://cordova.apache.org

Figure 13-1 illustrates the interaction of PhoneGap, Cordova, and a web application.

Figure 13-1. PhoneGap, Cordova, and a web application

PhoneGap includes APIs, a code generator, and a workflow for creating native appli‐
cation containers for web applications written in HTML5 (with or without JavaScript
frameworks). PhoneGap also facilitates making JavaScript calls to access native APIs
offered by the mobile OS.

PhoneGap Build is a cloud service to which you can upload your HTML/
JavaScript/CSS code to be packaged for multiple mobile platforms. PhoneGap Build
creates several native applications—one per mobile platform. Each application is a
wrapper with an embedded chrome-less web browser (a.k.a. web view) that looks native
to the mobile OS, and has access to various native APIs. Refer to the PhoneGap docu‐
mentation to see what APIs are supported on each mobile platform. The native wrapper
serves as a messaging bus between the external native API and HTML-based applica‐
tions running inside the web view.

For iOS applications, the PhoneGap Build server creates an .ipa file; for deployment on
Android devices, it generates an .apk file, and so on. After that, if you want to submit
your application to a public or private application store, follow the procedure that exists
for native applications for the selected store. The PhoneGap Build service can package
your application for iOS, Android, Windows Phone, BlackBerry, and other platforms.

PhoneGap applications can run slower compared to HTML-based applications running
in a mobile web browser. This is because there is yet another middleman: a web view.

In Android SDK, the WebView control is used to embed an HTML5 application into a

516 | Chapter 13: Hybrid Mobile Applications

https://build.phonegap.com
http://bit.ly/1mzHjuz
http://bit.ly/1mzHjuz

native shell, and the iOS SDK has the UIWebView control for the same purpose. Both of
these controls perform slower than their respective mobile web browsers.

To compare performance of an application that runs in a mobile

browser versus a WebView or UIWebView control, use Google’s V8
Benchmark Suite or SunSpider benchmark utility.

The UI components of the HTML5 framework of your choice might not look native
enough. But the main selling point is that with PhoneGap (and Cordova), you can take
advantage of existing HTML/JavaScript developers’ skills for all major mobile platforms,
and their bridge to native APIs is easy to learn.

Titanium
Titanium offers its own set of tools and a more extensive API. It has no relation to
Cordova or PhoneGap. You’d be writing code in JavaScript (no HTML or CSS) and
would need to learn lots of APIs. The compiled and deployed application is JavaScript
code embedded inside Java or Objective-C code, plus the JavaScript interpreter, plus the
platform-specific Titanium API. An important difference between PhoneGap and Ti‐
tanium is that the latter doesn’t use a web view container for rendering. The business
logic written in JavaScript is executed by an embedded interpreter, and the final UI
components are delivered by native application to iOS or Android components from
Titanium.

Titanium UI components can be extended to use native OS interface abilities to their
fullest. Some components are cross-platform; Titanium has a compatibility layer, where‐
as others are platform-specific. But if you want to learn platform-specific components,
you might rather invest time in learning to develop the entire application in the native
language and APIs. Besides, as new platforms are introduced, you’ll depend on the
willingness of Titanium developers to create a new set of components in a timely fashion.

Don’t expect top performance from the old Rhino JavaScript engine, which is used by
Titanium for Android and BlackBerry applications. Oracle has a new JavaScript engine
called Nashorn, but it’s available only for Java 8, which doesn’t run on Android and won’t
for the foreseeable future. Nashorn is as fast as Google’s V8, but Rhino is slower. Does
this mean that Titanium applications on Android and BlackBerry will always run slow‐
er? This seems to be the case, unless Oracle and Google find a way to stop their quarrels
about Java.

The learning curve of the Titanium API is steeper (it has over 5,000 APIs) than with
PhoneGap. At the time of this writing, Titanium supports iOS, Android, and older
versions of BlackBerry devices. It plans to support Windows Phone by the end of 2014.

Hybrid Applications | 517

http://bit.ly/V2hgGA
http://bit.ly/V2hgGA
http://bit.ly/1lJfu7J
http://bit.ly/V2hlKC

PhoneGap and Titanium are not the only solutions that allow build‐
ing hybrid applications using HTML5. The framework Kendo UI
Mobile can build hybrid applications for iOS, Android, BlackBerry,
and Windows Phone 8. The Mobile Conduit API allows you to build
cross-platform mobile applications with HTML5. Convertigo Mobi‐
lizer is a cross-platform enterprise mashup environment that incor‐
porates PhoneGap and Sencha Touch for building mobile applica‐
tions. IBM Worklight offers a client/server/cloud to enterprises so
they can develop, test, run, and manage HTML5, hybrid, and native
mobile applications.

The Bottom Line
If a particular enterprise application is intended only for internal use by people carrying
a limited variety of mobile devices, and if making business users productive is your main
goal, consider developing native applications, which can be fine-tuned to look and feel
as best as a selected platform allows. You can start by developing and deploying your
first application for the pilot mobile OS (typically for the latest iOS or Android OS) and
then gradually add support for more platforms, budget permitting. If you are planning
to develop a web application with a relatively simple UI and have to support a wide
variety of unknown consumer devices (for example, you want to enable people to donate
from any device), develop an HTML5 web application.

Consider developing a hybrid application for anything in between. In this chapter, we’ll
show you how to access the camera of a mobile device by using the PhoneGap frame‐
work. Such functionality can be quite useful for our Save The Child application because
kids who receive donations might want to share their success stories and publish their
photos after being cured.

Still, remain open-minded about native versus hybrid discussions. Be prepared that
going hybrid might not become your final choice. Picking a platform is a complex,
business-specific decision that might change over the life of your application.

Introduction to the PhoneGap Workflows
In this section, you’ll go through the entire process of building a PhoneGap application.
PhoneGap 3.1 offers two major workflows. Each allows you to build a mobile applica‐
tion, but the main difference is where you build it—either locally or remotely. Here are
the options:

• Install all required mobile SDKs and tools for the mobile platforms for which you
want to develop (for example, iOS and Android), generate the initial project by
using the command-line interface (CLI), write your HTML5 application code, build

518 | Chapter 13: Hybrid Mobile Applications

http://www.kendoui.com/mobile.aspx
http://www.kendoui.com/mobile.aspx
http://bit.ly/1uDu7tF
http://www.convertigo.com
http://www.convertigo.com
http://ibm.co/1piOUmG
http://phonegap.com

it locally, and then test the application by using the IDE, simulators, and physical
devices.

• Don’t install any mobile SDK and tools. Just generate the initial project by using
CLI, add the application code, zip up the www folder, and upload it to Adobe Pho‐
neGap Build server, which will build the application for all supported mobile plat‐
forms. Then, download and test the application on physical devices.

The second workflow requires running a trivial installation of PhoneGap and then just
letting Adobe’s Build PhoneGap server do the build for various mobile platforms. The
first workflow is more involved, and we’ll illustrate it by showing how to use the local
SDKs for iOS deployment.

For some platforms, PhoneGap supports only local builds (for exam‐
ple, BlackBerry 10, Windows Phone 8), whereas builds for WebOS
and Symbian can be done only remotely.

In any case, you need to install the PhoneGap software according to the instructions
from the command-line interface documentation. Begin by installing Node.js, which
will also install its package manager npm used for installing Cordova (and the PhoneGap
library). We’re developing on Mac OS X, and here’s the command that installs Phone‐
Gap:

sudo npm install -g phonegap

This command installs the JavaScript file phonegap in /usr/local/bin and the Cordova
library with supporting files in /usr/local/lib/node_modules/phonegap. Figure 13-2
shows a snapshot of some of the files and directories that come with PhoneGap. We’ve
highlighted the create.js script, which will be used to generate the Hello World and Save
The Child projects.

In this chapter, we’ll be developing a sample application for the iOS platform to illustrate
the most involved deployment-deployment cycle. It requires the Xcode IDE, which is
available at Apple’s App Store at no charge. After installing Xcode, open the Preferences
menu and install the Command-Line Tools (CLT) from the Downloads panel. By de‐
fault, Xcode comes with the latest iOS simulator (as of this writing, this is version 6.1).

Creating One More Hello World
The time has come for a PhoneGap version of Hello World. We are going to generate
the initial project by using CLI as described in the same document we used for installing
PhoneGap in the preceding section. We’ll be running the phonegap script:

phonegap create HelloWorld com.example.hello "Hello World"

Introduction to the PhoneGap Workflows | 519

https://build.phonegap.com
https://build.phonegap.com
http://bit.ly/1lIUZDb
http://bit.ly/TsGHAi
http://docs.phonegap.com/en/3.0.0/guide_cli_index.md.html#The%20Command-line%20Interface

Figure 13-2. PhoneGap 3.1 installed

After generating the Hello World code with the phonegap create command (you might

need to run it as a superuser with sudo), you’ll see the files and directories as depicted
in Figure 13-3.

While using the command phonegap create HelloWorld com.ex

ample.hello "Hello World", keep in mind that for iOS, you’ll
need to create a certificate, which has to be valid for application
packages located under com.example. For more details, see the
section “Testing Applications on iOS Devices” on page 525.

520 | Chapter 13: Hybrid Mobile Applications

Figure 13-3. The CLI-generated project Hello World

The content of the generated index.html is shown in Example 13-1. It includes several
meta tags instructing the browser to use the entire screen of the mobile device without
allowing scaling with user’s gestures. Then it includes a couple of JavaScript files in the

<script> tags.

Example 13-1. The generated file index.html

<!DOCTYPE html>
<html>

 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <meta name = "format-detection" content = "telephone=no"/>
 <meta name="viewport" content="user-scalable=no, initial-scale=1,
 maximum-scale=1, minimum-scale=1, width=device-width;" />
 <link rel="stylesheet" type="text/css" href="css/index.css" />
 <title>Hello World</title>
 </head>
 <body>
 <div class="app">
 <h1>Apache Cordova</h1>
 <div id="deviceready">
 <p class="status pending blink">Connecting to Device</p>
 <p class="status complete blink hide">Device is Ready</p>
 </div>

Introduction to the PhoneGap Workflows | 521

 </div>
 <script type="text/javascript" src="phonegap.js"></script>
 <script type="text/javascript" src="js/index.js"></script>
 <script type="text/javascript">
 app.initialize();
 </script>
 </body>
</html>

Figure 13-5 is a screenshot the Hello World application running.

This HTML file includes the code to load the phonegap.js library and the initialization

code from index.js.Then it calls app.initialize(). But if you look at Figure 13-3, the
file phonegap.js is missing. The CLI tool will add it to the project during the next phase

of code generation, when you run the command phonegap platform add to add specific
mobile platforms to your project. Let’s look at the code of index.js (see Example 13-2).

Example 13-2. The file index.js

var app = {
 initialize: function() {
 this.bind();
 },

 bind: function() {
 document.addEventListener('deviceready',
 this.deviceready, false);
 },

 deviceready: function() {

 app.report('deviceready');
 },

 report: function(id) {

 console.log("report:" + id);

 document.querySelector('#' + id + ' .pending').className += ' hide';
 var completeElem = document.querySelector('#' + id + ' .complete');
 completeElem.className = completeElem.className.split('hide').join('');
 }
};

This function is called when all scripts are loaded in index.html.

The mobile OS sends the deviceready event to the PhoneGap application when
it’s ready to invoke native APIs.

522 | Chapter 13: Hybrid Mobile Applications

The function report() is called from the deviceready event handler. It hides

the text .pending <p> and shows the text .complete <p> in index.html.

Technically, split('hide') followed by join('') performs the removal of the
word hide.

It wouldn’t be too difficult to prepare such simple HTML and JavaScript files manually,
but we prefer using code generators. They are faster and less error prone.

Neither Cordova nor PhoneGap restrict you from using any HTML5
frameworks of your choice.

Prerequisites for Local Builds
If you are planning to build your application locally, install the supporting files for the
required platforms. For example, you can run the following commands from the com‐
mand window (switch to the HelloWorld directory) to request the builds for iOS, An‐
droid, and BlackBerry:

phonegap install ios

phonegap install android

The first command will run fine, because we have Xcode in‐
stalled. The second command will fail until you install the latest
Android SDK as described in the section “Installing More Local
SDKs” on page 525.

After running these commands, the initially empty directory platforms is filled with
additional subdirectories specific to each platform. Technically, these commands gen‐
erate separate Hello World projects—one per platform. Each of them will have its own
www directory with index.html and phonegap.js that was missing during the initial
project generation. Don’t make any modifications in these www folders, because they
will be regenerated each time the install or run command is run. Make the required
modification in the root www folder.

Figure 13-4 shows the content of the ios folder that was generated as a result of executing

the command phonegap install ios.

Introduction to the PhoneGap Workflows | 523

Figure 13-4. CLI-generated project for the iOS platform

Double-click the file Hello_World.xcodeproj, and Xcode will open it as a project. In the
upper-left corner of the toolbar, click the Run button to compile the project and start it
in the iOS simulator (see Figure 13-5). Note the “Device is ready” text from in‐
dex.html (as per index.css, this text is blinking and is shown in uppercase).

Figure 13-5. Running Hello World in Xcode

The description of the workflow with the Build PhoneGap server follows.

524 | Chapter 13: Hybrid Mobile Applications

Testing Applications on iOS Devices
If you want to test your application not in a simulator, but on a physical iOS device, it
has to be connected to your Mac computer, enabled for deployment, and recognized by
Apple. Details on provisioning your devices for development are described in the online
iOS Developer Library. If you prefer shorter instructions, here’s what worked for us:

1. Open a Keychain Access application on your Mac computer and create a certificate
request by choosing Keychain Access→Certificate Assistant→Request a Certificate
from Certificate Authority. This creates a file with the name extension .certSigning‐
Request.

2. Log in to Member Center at developer.apple.com and create a certificate for iOS
Development specifying a wildcard (an asterisk) in the Bulk name unless you want
to restrict this certificate to be used only with applications that begin with a certain
prefix. In this step, you’ll need to upload the .certSigningRequest file created in the
previous step.

3. After this certificate is created, download this file (its name ends with .cer), and
double-click it to open it in your local keychain. Find it in the list of certificates and
expand it; it should include the private key.

4. Remain in the Member Center, and create a unique application ID.

5. Finally, in the same Member Center, create a Provisioning Profile.

6. In Xcode, open the menu Window→Organizer, go to the Provisioning profiles
window, and refresh it. You should see the newly created provisioning profile
marked with a green bullet. A physical file with the name extension .mobileprovi‐
sion corresponds to this profile.

7. Select your iOS device in the active scheme window and run your Hello World or
other project on the connected device.

Read Apple’s App Distribution Guide to learn how to distribute your
iOS applications.

Installing More Local SDKs
As we stated earlier, you don’t have to install SDKs locally, but if you decide to do so,
consult the instructions provided by the respective mobile platform vendor. For exam‐
ple, BlackBerry developers can download the WebWorks SDK at developer.blackber‐
ry.com/html5/download as well as a BlackBerry 10 Simulator. If you haven’t downloaded
the Ripple emulator (for instructions, see Chapter 12), you can get it there, too.

Introduction to the PhoneGap Workflows | 525

http://bit.ly/1qqTQYV
https://developer.apple.com
http://bit.ly/1k5RLdh
http://bit.ly/1r5GK38
http://bit.ly/1r5GK38

Instructions for installing the Windows Phone SDK are available at the Windows Phone
Dev Center.

First, get the Android SDK. We are going to perform a simple installation by pressing
the Download the SDK ADT Bundle for Mac button, which will download and install
the Eclipse IDE with the ADT plug-in, Android SDK tools, Android Platform tools, and
the Android platform. But if you already have the Eclipse IDE and prefer to install and
configure the required tooling manually, follow the instructions published on this web‐
site in the section Setting Up an Existing IDE.

After downloading the bundle, unzip this file; it will create a folder with two subfolders:
sdk and eclipse. Start Eclipse from the eclipse folder, accepting the location of the default
workspace. On the top toolbar, click the plus sign (+) and open the perspective DDMS.
There you can use an Android emulator while developing Android applications.

Using the Adobe PhoneGap Build Service
Instead of installing multiple SDKs for different platforms, you can use the cloud service
Adobe PhoneGap Build, which already has installed and configured all supported SDKs
and will do a build of your application for different platforms. For our example, we’re
going to use iOS build.

Visit build.phonegap.com and sign in with your Adobe or GitHub ID. If your project
resides on GitHub, copy its URL to the text field shown in Figure 13-6. The other way
to do a build is to compress your project’s www directory and upload this ZIP file there.

Starting from PhoneGap 3.0, all code modifications are done in the
main www folder of your project. During local rebuilds, all the
changes are automatically replicated to each installed platform’s www
folder.

526 | Chapter 13: Hybrid Mobile Applications

http://bit.ly/1mdyGf4
http://bit.ly/1mdyGf4
http://developer.android.com/sdk
https://build.phonegap.com/
https://build.phonegap.com

Figure 13-6. Submitting the application to PhoneGap Build server

Before zipping up Hello World’s www directory, open and modify the file config.xml.
The generated XML contains entries for every platform. Because we are doing a build
for iOS, we remove all the lines that contain the words android or blackberry, as shown
in Example 13-3.

Example 13-3. The file config.xml without Android or BlackBerry options

<?xml version='1.0' encoding='utf-8'?>
<widget id="com.example.hello" version="2.0.0"
 xmlns="http://www.w3.org/ns/widgets"
 xmlns:cdv="http://cordova.apache.org/ns/1.0">

 <name>Hello World</name>

 <description>
 A sample Apache Cordova application that responds to the deviceready event.
 </description>

 <author email="callback-dev@incubator.apache.org" href="http://cordova.io">
 Apache Cordova Team
 </author>

 <icon height="512" src="res/icon/cordova_512.png" width="512" />
 <icon cdv:platform="ios" height="144" src="res/icon/cordova_ios_144.png"
 width="144" />
 <cdv:splash cdv:platform="ios" height="748" src="res/screen/ipad_landscape.png"
 width="1024" />
 <cdv:splash cdv:platform="ios" height="1004" src="res/screen/ipad_portrait.png"
 width="768" />
 <cdv:splash cdv:platform="ios" height="1496" src="res/screen/ipad_retina_landscape.png"
 width="2048" />
 <cdv:splash cdv:platform="ios" height="2008" src="res/screen/ipad_retina_portrait.png"
 width="1536" />
 <cdv:splash cdv:platform="ios"

Using the Adobe PhoneGap Build Service | 527

 height="320" src="res/screen/iphone_landscape.png" width="480" />
 <cdv:splash cdv:platform="ios"
 height="480" src="res/screen/iphone_portrait.png" width="320" />
 <cdv:splash cdv:platform="ios" height="640" src="res/screen/iphone_retina_landscape.png"
 width="960" />
 <cdv:splash cdv:platform="ios" height="960" src="res/screen/iphone_retina_portrait.png"
 width="640" />

 <feature name="http://api.phonegap.com/1.0/device" />

 <preference name="phonegap-version" value="3.1.0" />
 <access origin="*" />
</widget>

Specify the latest supported PhoneGap version in the phonegap-version attribute. The
online document Using config.xml contains current information about supported ver‐

sions and other essential properties. Let’s change the phonegap-version value to 3.1.0,
which is the latest version supported by PhoneGap Build at the time of this writing.
You’ll see other entries in config.xml of the Save The Child application.

Now select all the content inside the www folder and compress it into a ZIP file named
helloworld-build.zip. Open the web browser, go to link:https://build.phonegap.com,
click the Upload a ZIP File button, and select your local file helloworld-build.zip. When
uploading is done, you’ll see the next screen, shown in Figure 13-7.

Figure 13-7. After helloworld-build.zip was uploaded

Click the Ready to build button to start the build for all available platforms. If you did
everything right, after watching the wait cursor above each icon, all the builds will
successfully complete, and you’ll see a blue line under each button. Figure 13-8 illustrates
a case when the build failed for iOS and BlackBerry platforms (the first and fourth
buttons are underlined in red).

528 | Chapter 13: Hybrid Mobile Applications

http://bit.ly/1icoiDw

You can create remote builds with the Adobe PhoneGap Build ser‐
vice by using the command line, too (phonegap remote build). To learn
how, read the section “Build Applications Remotely” in the Phone‐
Gap CLI Guide.

Fixing the BlackBerry version of the application is not on our agenda. Refer to the
Platform Guides documentation that contains specific information on what has to be
done to develop and deploy PhoneGap applications for each platform. We’ll just take
care of the iOS issue.

Figure 13-8. Two builds failed

After clicking the iOS button, the message “No key selected” is revealed in a drop-down
box. Another error message reads, “You must provide the signing key first.” The drop-
down also offers an option to add the missing key. Selecting this option reveals the panel
shown in Figure 13-9.

Using the Adobe PhoneGap Build Service | 529

http://bit.ly/1lIUZDb
http://bit.ly/1lIUZDb
http://bit.ly/1ynrUHn

Figure 13-9. Uploading the certificate and profile

The missing key message actually means the PhoneGap server needs the provisioning
profile and the certificate discussed in the section “Testing Applications on iOS Devi‐
ces” on page 525. The certificate has to be in the P12 format, and you can export it into
the .p12 file from the Keychain Access program under Mac OS X. During the export,
you’ll assign a password to the certificate that will be required by the PhoneGap Build
process. After uploading the .p12 and .mobileprovision files to PhoneGap Build and
unlocking the little yellow lock, rebuild the Hello World application for iOS, and it
should run without any errors.

If you forgot where the .mobileprovision file is located, open Xcode
and go to the menu Window→Organize, open the panel Provision‐
ing Profiles under Library, right-click the profile record, and then
select Reveal in Finder.

To complete the process, deploy the application on your mobile device, which can be
done by one of the following methods:

• Use the QR Code that was generated specifically for our application; it’s shown on
the right side of Figure 13-8. Just install a QR Reader program on your device, scan
this code, and the Hello World application will be installed on your device.

• Download the application file from link:https://build.phonegap.com to your com‐
puter and then copy it onto the mobile device. For example, to get the Android
version of Hello World, just click the button displaying the Android logo, and the
file HelloWorld-debug.apk will download to your computer. Copy this file to your

530 | Chapter 13: Hybrid Mobile Applications

http://en.wikipedia.org/wiki/QR_code

Android device and enjoy the application. For the iOS version, click the button
displaying the iOS logo, which will download the file HelloWorld.ipa on your Mac
computer. Double-click this file in Finder, and it will be placed into the Application
section of iTunes. Synchronize the content of iTunes with your iOS device, and
Hello World will be installed there.

Using the PhoneGap Build service is free as long as you’re building
public applications that have their source code hosted on a publicly
accessible repository on GitHub or other hosting service. Our Hello
World application is considered private because we submitted it to
PhoneGap Build in a ZIP file (note the private tab in Figure 13-6).
Only one private application at a time can be built for free by using
PhoneGap Build. To build multiple private applications, you need to
purchase an inexpensive subscription from Adobe. To replace one
application with another, click its name, click the Settings button, and
then click Delete this app.

Phew! This was the longest description of developing and deploying the Hello World
application that we’ve ever written! We picked deployment on Apple’s devices, which is
the most complicated process among all mobile platforms. And we didn’t even cover
the process of submitting the application to the App Store (you’ll read more about that
in the next section)! But developing and deploying an application that has to run natively
on multiple platforms is expected to be more complicated than deploying an HTML5
application in a web browser.

The Hello World application does not use any API to access the hard‐
ware of the mobile device, and it doesn’t have to. You can use Pho‐
neGap Build simply to package any HTML5 application as a native
one to be submitted to an app store.

Instead of using the JavaScript function alert(), you can display

messages by using navigator.notification.alert(), and Phone‐
Gap will display them in the native message box of the device. The

Notification object also supports confirm(), beep(), and vi

brate() methods.

Distributing Mobile Applications
Mobile device manufacturers set their own rules for application distribution. Apple has
the strictest rules for iOS developers.

Using the Adobe PhoneGap Build Service | 531

Apple runs the iOS Developer Program, and if you’re an individual who wants to dis‐
tribute iOS applications via the App Store, it will cost you $99 per year. Higher education
institutions that teach iOS development can enroll in this program free of charge. The
iOS Developer Enterprise program costs $299 per year. To learn the differences between
these programs, and visit Apple’s Developer web page.

Besides being able to deploy applications in the App Store, developers can give their
beta-customers an opportunity test applications even before they are accepted in the
App Store. Individual developers can share their applications with up to 100 iOS devices
identified by UUID (click the serial number of your device in iTunes to see it). This is
called ad hoc distribution.

For example, after the PhoneGap Build service has built the .ipa file for iOS, you can
make it available for installation directly on the beta-tester’s device by using such services
as diawi or TestFlight. To do so, upload the .ipa file and its provisioning profile to one
of these services and you’ll get the link (a URL) to be given to your testers; the UUID
of their devices must be registered with your developer’s profile. To do this, log in to
your account at link:https://developer.apple.com, select the section Certificates, Iden‐
tifiers & Profiles, and then go to Devices and add the UUID of the iOS device to the
existing list of registered devices.

Owners of the enterprise license can distribute their applications directly from their
own websites.

Android developers are not restricted in distributing their application; upload the ap‐
plication’s APK package to your corporate website and send the URL to anyone who’s
interested. For example, the authors of this book are creating software for the insurance
industry and are offering downloads of both iOS and Android versions of the applica‐
tion directly from their corporate website, as shown in Figure 13-10.

Figure 13-10. Distributing mobile applications at surancebay.com

Even though simulators and emulators can be very handy, nothing is better than testing
on real devices. There are several models of iPhones that vary in terms of the CPU power
and screen resolution. Ensuring that an application performs well on Android devices

532 | Chapter 13: Hybrid Mobile Applications

http://bit.ly/1nmiip1
http://bit.ly/1kRh2Y5
http://www.diawi.com
https://testflightapp.com

is a lot more challenging; this market is really fragmented in both hardware and OS use.
Android emulators are not as good as those for iOS. On the other hand, an iOS emulator
won’t allow you to test integration with a camera. Features of real devices such as an
accelerometer or gyroscope simply can’t be tested with emulators. The PhoneGap em‐
ulator is based on a Ripple add-on (see Chapter 11), with it, you can subscribe to the

deviceready event and emulate responses for your custom plug-ins.

You can use TestFlight as a way to test, distribute apps, and manage
provisioning profiles for iOS. HockeyApp is a platform for collect‐
ing live crash reports, getting feedback from your users, distributing
your betas, recruiting new testers, and analyzing your test coverage.

If you’ve architected your hybrid application in a modularized fashion as described in
Chapter 6, you’ll get an additional benefit. If the code of one of the loadable modules
changes, but the main application shell remains the same, there is no need to resubmit
the new version of the application to the App Store or another marketplace. This can
be a serious time-saver, especially on Apple devices, because you eliminate the approval
process of each new version of the application.

Save The Child with PhoneGap
To demonstrate how to turn a web application into a hybrid one, we’ll take the code of
the jQuery Mobile version of the Save The Child application from Chapter 12. Initially,
we’ll just turn it into a hybrid PhoneGap application as is, without adding any native
API calls. After that, we’ll add to it the ability to work with a camera by using the
PhoneGap API and create two builds for iOS and Android platforms. In this exercise,
we’ll use PhoneGap 3.3.

Usually, PhoneGap is mentioned in the context of building hybrid
applications that need to access a native API. But you can use Pho‐
neGap for packaging any HTML5 application as a native one, even if
it doesn’t use a native API.

Using PhoneGap to Package Any HTML5 Application
Let’s go through the process of building and deploying the jQuery Mobile version of
Save The Child in its existing form, without changing even one line of code. Here’s the
step-by-step procedure:

1. Generate a new PhoneGap project by using PhoneGap CLI, as we did with Hello
World. This time, we won’t add any specific mobile SDKs to the project, though.

Save The Child with PhoneGap | 533

http://emulate.phonegap.com
http://emulate.phonegap.com
http://testflightapp.com
http://hockeyapp.net

2. Copy the existing HTML, CSS, JavaScript, and other resources from the jQuery
Mobile Save The Child application into the directory www of the newly generated
PhoneGap project.

3. Create platforms where we’re planning to deploy our application:

$ sudo phonegap build ios
$ sudo phonegap build android

4. Install the following PhoneGap plug-ins that are necessary for supporting such
functionality as Splashscreen, Camera, Inappbrowser, File, and File-transfer:

$ sudo phonegap local plugin add https://git-wip-us.apache.org/repos/asf/cord
ova-plugin-splashscreen.git_
$ sudo phonegap local plugin add https://git-wip-us.apache.org/repos/asf/cord
ova-plugin-camera.git_
$ sudo phonegap local plugin add https://git-wip-us.apache.org/repos/asf/cord
ova-plugin-inappbrowser.git_
$ sudo phonegap local plugin add https://git-wip-us.apache.org/repos/asf/cord
ova-plugin-file.git_
$ sudo phonegap local plugin add https://git-wip-us.apache.org/repos/asf/cord
ova-plugin-file-transfer.git_

5. Test the Save The Child application on the Android, iOS, or other mobile devices.

If you don’t have the SDKs for some of the platforms installed local‐
ly (as we did in step 2), you can compress the entire content of the
www directory into a ZIP file, upload it to a PhoneGap Build server,
and generate the packages for several platforms there.

Adding Camera Access to Save The Child
Charity websites help millions of people get better. When this happens, those people
want to share their success stories, and maybe publish photos of themselves or their
families and friends. These days, everyone uses smartphones and tablets to take pictures,
and adding the ability to access the camera of a mobile device and upload photos seems
like a useful feature for our Save The Child application.

We’ll add camera access to the jQuery Mobile version of our application. Example 13-4
is an extract from the file app-main.js.

Our next goal is to use PhoneGap to access the native API of the camera of the mobile
device to take photos. After that, the user should be able to upload images to the server.

For starting the device’s default camera application and taking photos, PhoneGap offers

the function navigator.camera.getPicture(), which takes three arguments: the name
of the function handler if the photo has been successfully taken, the handler for the

534 | Chapter 13: Hybrid Mobile Applications

error, and the object with optional parameters describing the image. Details about the
camera API are available in the PhoneGap documentation.

Example 13-4. Using the PhoneGap camera API

var pictureSource;
var destinationType;
var uploadedImagesPage =
 "http://savesickchid.org/ssc-phonegap/uploaded-images.php";
var photo;

function capturePhoto() {

 navigator.camera.getPicture(
 onPhotoDataSuccess, onCapturePhotoFail,
 {
 quality : 49,
 destinationType: destinationType.FILE_URI
 });
}

function onCapturePhotoFail(message) {
 alert('Capture photo failed: ' + message);
}

function onPhotoDataSuccess(imageURL) {
 var smallImage = $('#smallImage');
 photo = imageURL;
 $('#photoUploader').css('display', 'block');
 $('#ssc-photo-app-description').css('display', 'none');
 smallImage.css('display', 'block');
 smallImage.attr("src", imageURL);
 $('#largeImage').attr("src", imageURL);

 $('#uploadPhotoBtn').removeClass('ui-disabled');
 $('#done-msg-holder').css('display', 'none');

}

Depending on the options in the third argument of getPicture(), the image will be
returned as either a Base64-encoded string, or as in our case, the URI of the file where
the image is saved. If the photo was taken successfully, the application will make the

#photoUploader button visible.

This code sample uses quality:49 for picture quality; you can request the picture qual‐
ity as a number on a scale of 1 to 100 (the larger number means better quality). Based
on our experience, 49 gives a reasonable quality/file size ratio. For a current list of op‐
tions, refer to the PhoneGap Camera API documentation.

Save The Child with PhoneGap | 535

http://bit.ly/1nYyaOK
http://bit.ly/1k5SxXz

For illustration purposes, the preceding code uses the JavaScript

alert() function to report a failure. For a more robust solution,
consider creating a custom way of reporting errors—for example, red
borders, modal dialog boxes with images, or status bars.

The capturePhoto() function in Example 13-4 should be called when the user taps the
button on the application’s screen. Hence, we need to register an event listener for this

button. Example 13-5 is a fragment of the onDeviceReady function that registers all
required event listeners.

Example 13-5. Handling events of the button that captures photos

function onDeviceReady() {

 pictureSource = navigator.camera.PictureSourceType;
 destinationType = navigator.camera.DestinationType;

 $(document).on("pageshow", "#Photo-app",
 function() {

 $('#capturePhotoBtn').on('touchstart', function(e) {
 $(e.currentTarget).addClass('button-active');
 });

 $('#capturePhotoBtn').on('touchend', function(e) {
 $(e.currentTarget).removeClass('button-active');
 capturePhoto();
 });

 $('#uploadPhotoBtn').on('touchstart', function(e) {
 $(e.currentTarget).addClass('button-active');
 });

 $('#uploadPhotoBtn').on('touchend', function(e) {
 $(e.currentTarget).removeClass('button-active');
 uploadPhoto(photo);
 });

 $('#viewGallerylBtn').on('touchend', function() {
 window.open(uploadedImagesPage, '_blank', 'location=no');
 });
 }
);

If the user clicks the Upload Photo button, we use the FileTransfer object to send the
image to the server-side script upload.php for further processing. The code to support
file uploading on the client side is shown in Example 13-6.

536 | Chapter 13: Hybrid Mobile Applications

Example 13-6. Uploading photos in JavaScript

function uploadPhoto(imageURI) {

 var uploadOptions = new FileUploadOptions();
 uploadOptions.fileKey = "file";
 uploadOptions.fileName = imageURI.substr(imageURI.lastIndexOf('/') + 1);
 uploadOptions.mimeType = "image/jpeg";

 uploadOptions.chunkedMode = false;

 var fileTransfer = new FileTransfer();
 fileTransfer.upload(imageURI,
 "http://savesickchild.org/ssc-test/upload.php",
 onUploadSuccess, onUploadFail, uploadOptions);

 var uploadedPercentage = 0;
 var uploadedPercentageMsg = "Uploading...";

 fileTransfer.onprogress = function(progressEvent) {
 if (progressEvent.lengthComputable) {
 uploadedPercentage = Math.floor(progressEvent.loaded /
 progressEvent.total * 100);
 uploadedPercentageMsg = uploadedPercentage +
 "% uploaded...";
 } else {
 uploadedPercentageMsg = "Uploading...";
 }
 $.mobile.showPageLoadingMsg("b", uploadedPercentageMsg);
 };
}

function onUploadSuccess(r) {
 $.mobile.hidePageLoadingMsg();

 $('#done-msg-holder').css('display', 'block');
 $('#uploadPhotoBtn').addClass('ui-disabled');
 }

function onUploadFail(error) {
 alert("An error has occurred: Code = " + error.code);
}

This sample code uses the PHP script located at link:http://savesickchild.org/ssc-test/

upload.php. You’ll see this script in the next section. The "b" in the showPageLoa

dingMsg() function defines the jQuery Mobile theme. Figure 13-11 is a screenshot taken
on an iPhone while the Save The Child application was uploading a photo.

Save The Child with PhoneGap | 537

http://bit.ly/1nywMkp

Figure 13-11. Uploading a photo

Providing Sever-Side Support for Photo Images
To support this application on the server side, we’ve created several PHP scripts. Of
course, you can use the programming language of your choice instead of PHP.

The PHP script upload.php shown in Example 13-7 uploads the image into a folder on
the server and then creates two versions of this image: a thumbnail and an optimized
image. The thumbnail can be used for showing the image’s preview in a grid. The op‐
timized image file will have reduced dimensions for showing the image in a mobile
browser. This script also moves and saves the thumbnail, optimal, and original files in
the corresponding folders on disk.

Example 13-7. The server-side script upload.php

<?php

function resizeAndSave ($new_width, $new_height, $input, $output, $quality) {

538 | Chapter 13: Hybrid Mobile Applications

 // Get new dimensions
 // assign variables as if they were an array
 list($width_orig, $height_orig) = getimagesize($input);
 $ratio_orig = $width_orig/$height_orig;

 if ($new_width/$new_height > $ratio_orig) {
 $new_width = $new_height*$ratio_orig;
 } else {
 $new_height = $new_width/$ratio_orig;
 }

 //using the GD library
 $original_image = imagecreatefromjpeg($input);

 // Resampling
 $image = imagecreatetruecolor($new_width, $new_height);
 imagecopyresampled($image, $original_image, 0, 0, 0, 0, $new_width,
 $new_height, $width_orig, $height_orig);

 // Output
 imagejpeg($image, $output, $quality);
 imagedestroy($image);
}

$timestamp = time();
$image_name = $timestamp.'.jpg';
$path_to_original = 'upload/original/'.$image_name;

if(move_uploaded_file($_FILES["file"]["tmp_name"], $path_to_original)) {

 $thumb_width = 200;
 $thumb_height = 200;
 $thumb_output = 'upload/thumbs/'.$image_name;

 $optimum_width = 800;
 $optimum_height = 800;
 $optimum_output = 'upload/optimum/'.$image_name;

 $quality = 90;

 resizeAndSave ($thumb_width, $thumb_height, $path_to_original,
 $thumb_output, $quality);
 resizeAndSave ($optimum_width, $optimum_height, $path_to_original,
 $optimum_output, $quality);
}

?>

The script uploaded-images.php (see Example 13-8) serves the web page with a list
showing thumbnails of uploaded images.

Save The Child with PhoneGap | 539

Example 13-8. The server-side script uploaded-images.php

<!DOCTYPE html>
<html lang="en">
<head>

 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,initial-scale=1">
 <title>SSC. Uploaded Images</title>
 <link rel="stylesheet" href="styles.css?<?php echo(time()); ?>">
</head>

<body>

 <?php
 $thumbs_dir = "upload/thumbs/";
 //get all image files with a .jpg and .png extension.
 $thumbs = glob($thumbs_dir."{*.jpg,*.png}", GLOB_BRACE);

 foreach($thumbs as $thumb){
 $filename = basename($thumb);
 echo('
 ');
 }
 ?>

</body>

</html>

During development, you might often be changing the CSS content.

The php echo(time()); in the preceding code is just a trick to pre‐
vent the web browser from performing CSS caching during local tests.
The newly generated time makes the CSS URL different on each load.

The script show-img.php in Example 13-9 shows an optimized single image in the user’s
browser window.

Example 13-9. The server-side script show-img.php

<!DOCTYPE html>
<html lang="en">
<head>

 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,initial-scale=1">
 <title>The Uploaded Image</title>
 <link rel="stylesheet" href="styles.css?<?php echo(time()); ?>">
</head>

<body>

 <div id="wrapper"><?php $img=$_GET["p"];
 echo(''); ?></div>
</body>

</html>

540 | Chapter 13: Hybrid Mobile Applications

The complete source code of the PhoneGap version of the Save The Child application
with camera support is available for download among the book’s code samples.

Summary
Hybrid applications make it possible for you to take an HTML5-based web application,
connect it with the native API of the mobile device, and package it as a native application.
The selling point of using hybrids is that you can reuse existing HTML5/JavaScript
expertise. In the enterprise setup, maintaining bugs in a one-language bug database is
a lot easier than if you had multiple versions of the application written in different
languages. Maintaining a single set of images, videos, and CSS files is yet another ad‐
vantage that lowers both time to market and cost of ownership of the application.

Thorough testing of hybrid applications is a must. With the BYOD policies, even en‐
terprise applications must be tested on a variety of mobile devices. The development
manager and application owners have to agree on the list of mobile devices on which
your application will be deployed first. This has to be done in writing, in the early stages
of the project, and be as detailed as possible. Statements such as “The initial version of
the application will run on iOS devices” is not good enough, because the difference
between an iPhone 3GS and iPhone 5 is huge. The former has 256 MB of RAM, a 600-
MHz CPU, and a 480 × 320–pixel screen, whereas the latter boasts 1 GB of RAM, a
three-core A6 CPU running at 1.3 GHz, and a 1135 × 640–pixel display.

Hybrid applications not only give developers and users access to the native capabilities
of mobile devices, they also give you the ability to distribute your HTML5 application
through multiple app stores or marketplaces offered by device manufacturers.

Enterprise managers are always concerned with the availability of paid technical sup‐
port. A substantial part of this chapter was about using PhoneGap, and Adobe offers
various support packages for purchase.

Make no mistake, though: if you want to create the fastest possible application that looks
exactly like other applications on a selected mobile platform, develop it in the native
language prescribed by the device manufacturer. Faster applications take less CPU
power, which translates to a longer battery life. If you can’t hire experts in each mobile
OS, going hybrid can be a practical compromise.

Summary | 541

http://bit.ly/1uFQQW2

CHAPTER 14

Epilogue

Even though this book is about HTML5, the authors would rather work with compiled
languages that produce applications running on virtual machines. Such software plat‐
forms are more productive for development and more predictable for deployment.

HTML5 Is Not a Rosy Place
While writing this book, we often argued about the pros and cons of switching to
HTML5, and so far we are concerned that the HTML/JavaScript/CSS platform is not
overly productive for developing enterprise applications just yet. We live in an era when
amateurs feel comfortable creating websites, and HTML with a little JavaScript inserted
provides the flexibility and customization that Microsoft Access and Excel provided in
the good old PC times.

Until this day, Microsoft Excel remains the most popular application among business
users in enterprises. They start Excel locally, and it has local storage that enables work
in occasionally connected scenarios. Both the data and the code are physically located
close to the user’s heart. Microsoft Excel makes it possible for users to have their own
little pieces of data and amateurish-but-working code (a.k.a. formulas) very close and
personal, right on the desktop. Fine print: until their computer crashes due to viruses
or other problems. No need to ask those IT prima donnas for programming favors.
Business users prefer not being dependent on connectivity or some mysterious servers
being slow or down. The most advanced business users even learn how to operate MS
Access databases to further lessen their dependency on the IT labor force.

But there is only so much you can do with primitive tools. Visual Basic was “JavaScript”
of the ’90s—it had similar problems, but nevertheless had huge followings. Now the
same people are doing JavaScript. If we don’t break this cycle by adopting a VM common
to all browsers, we are doomed to go through generation after generation of under‐
powered crap.

543

Recently, one of our clients from Wall Street sent us a list of issues to be fixed in a web
application that we were developing by using the Adobe Flex framework (these appli‐
cations run inside a Flash Player virtual machine). One of the requested fixes was “re‐
move a random blink while a widget moves in the window and snaps to another one.”
We fixed it. What if that fix had to be implemented in HTML5 and tested in a dozen
web browsers? Dealing with a single VM is easier.

You can argue that a browser’s plug-in Flash Player (as well as Silverlight or a browser’s
Java runtime) is going away; it was crashing browsers and had security holes. But the
bar for the UI of Flash-based enterprise applications is set pretty high. Business users
will ask for features or fixes they are accustomed to in desktop or VM-based applications.
We hope that future enterprise web applications developed with support for future
HTML 6 or 7 specifications will be able to accommodate user expectations in the UI
area. The time will come when HTML widgets won’t blink in any of the major browsers.

We wrote this book to help people understand what HTML5 applications are about. But
make no mistake: the world of HTML5 is not a peachy place in the future, preached
about by educated and compassionate scientists, but rather a nasty past that is catching
up and trying to transform into a usable instrument in the web application developer’s
toolbox.

It’s the past and the future. The chances are slim that any particular vendor will win all
or even 80 percent of the mobile device market. In competitive business, being able to
make an application available to only 80% of the market is not good enough, so the
chances that any particular native platform will dominate in web development are slim.
HTML5 and related technologies will serve as a common denominator for mobile de‐
velopers.

Check out one of the trading applications named tradeMonster. It has been developed
by using HTML5 and uses the same code base for all mobile devices. The desktop version
was built by using the Adobe Flex framework and runs in Flash Player’s VM. Yes, they
have created native wrappers to offer tradeMonster in Apple’s or Google’s application
stores, but it’s still an HTML5 application, nevertheless. Create a paper trading account
(no money needed) and test their application. If you like it, consider developing in
HTML5.

Enterprise IT managers need a cross-platform development and deployment platform,
which HTML5 is promising to become. But take with a grain of salt all the promises of
being 100 percent cross-platform made by any HTML5 framework vendor: “With our
HTML5 framework, you won’t need to worry about differences in web browsers.” Yeah,
right! HTML5 is not a magic bullet, and don’t expect it to be. But HTML5 is for real and
might become the most practical development platform for your organization today.

544 | Chapter 14: Epilogue

https://www.trademonster.com/trading/mobile-trading.jsp

Dart: A Promising Language
Unfortunately, developing an application in JavaScript is not overly productive. Some
people use CoffeScript or TypeScript to be converted into JavaScript for deployment.
We are closely watching the progress of Google’s new programming language called
Dart, which is a compiled language with an elegant and terse syntax. Dart is easy to
understand for anyone who knows Java or C#. Although the compiled version of Dart
code requires Dartium VM, which is currently available only in the Chromium browser,
Google created the dart2js compiler, which turns your application code into JavaScript
in seconds, so it can run in all web browsers today. Google also offers the Dart IDE with
debugger and autocomplete features. You can debug Dart code in the Dart Editor while
running generated JavaScript in the browser.

Dart’s VM can communicate with JavaScript’s VM, so if you have a portion of your
application written in JavaScript, it can peacefully coexist with the Dart code. You can
literally have two buttons on the web page: one written in JavaScript and the other in
Dart.

The World Wide Web Consortium (W3C) published a document called “Introduction
to Web Components,” which among other things defines recommendations on how to
create custom HTML components. The existing implementation of the web UI package
includes a number of UI components and facilitates defining new custom HTML ele‐
ments in a declarative way. Here’s an example we borrowed from the Dart website:

 <element name="x-click-counter" constructor="CounterComponent" extends="div">
 <template>
 <button on-click="increment()">Click me</button>
 (click count: {{count}})
 </template>
 <script type="application/dart">
 import 'package:web_ui/web_ui.dart';

 class CounterComponent extends WebComponent {
 int count = 0;
 void increment(e) { count++; }
 }
 </script>
 </element>

This code extends the web UI element div and includes a template, which uses binding.

The value of the variable count is bound to , and as soon as a counter increases,
the web page immediately reflects its new value without the need to write any other
code. The web UI package will be replaced soon with the Polymer Stack built on top of
web components.

Google has ported its popular JavaScript framework AngularJS into AngularDart. Farata
Systems is working on Pint, which is an open source library of AngularDart components

Dart: A Promising Language | 545

http://www.dartlang.org
http://bit.ly/1ynGrmq
http://bit.ly/1ynGrmq
http://www.dartlang.org/articles/web-ui/
http://www.polymer-project.org/
http://bit.ly/1qhydYh
http://bit.ly/1jAOJ0n

built on top of Semantic UI, a library of rich UI components for developing responsive
web applications.

In 2014, the popularity of Dart should increase. In this case, we’ll send a new proposal
to O’Reilly Media for a book titled Enterprise Web Development with Dart.

HTML5 Is in Demand Today
Having said that, we’d like you to know that at the time of this writing, the popular job
search engine Indeed.com reports that HTML5 is the #1 job trend—the fastest growing
keyword found in online job postings—ahead of iOS in third place, and Android in
fourth place. We’ll be happy if our book helps you to master HTML5 and find an in‐
teresting and financially rewarding job!

546 | Chapter 14: Epilogue

http://semantic-ui.com/
http://www.indeed.com/jobtrends

APPENDIX A

Selected HTML5 APIs

This appendix is a brief review of selected HTML5 APIs. HTML5 is just a commonly
used term for a combination of HTML, JavaScript, CSS, and several new APIs that
appeared during the last several years. Five years ago, people were using the term Web
2.0 to define modern-looking applications. These days, HTML5 is almost a household
name, and we’ll go along with it. But HTML5 is about the same old development in
JavaScript plus the latest advances in HTML and CSS.

This appendix is more of an overview of selected APIs that are included in the HTML5
specification—namely, Web Messaging, Web Storage, Application Cache, IndexedDB,
localStorage, Web Workers, and History APIs.

To understand the code samples included in this appendix, you must
be familiar with JavaScript and some monitoring tools such as
Chrome Developer Tools. We assume that you are familiar with the
materials covered in the bonus online chapter.

Does Your Browser Support HTML5?
The majority of modern web browsers already support the current version of the
HTML5 specification, which will become a World Wide Web Consortium (W3C) stan‐
dard in 2014. The question is whether the users of your web application have a modern
browser installed on their device. There are two groups of users who will stick to out‐
dated browsers for some time:

• Less technically savvy people might be afraid of installing any new software on their
PCs, especially people of the older generation. “John, after the last visit of our
grandson, our computer works even slower than before. Please don’t let him install

547

http://bit.ly/1oEqN0z

these new fancy browsers here. I just need my old Internet Explorer, access to Hotmail
and Facebook.”

• Business users working for large corporations, where all software installations on
their PCs are done by a dedicated technical support team. They say, “We have 50,000
PCs in our firm. An upgrade from Internet Explorer version 8 to version 9 is a major
undertaking. Internal users work with hundreds of web applications on a regular
basis. They can install whatever browser they want, but if some of these applications
won’t work as expected, the users will flood us with support requests we’re not quali‐
fied to resolve. Hence, the strategy of using the lowest common denominator
browser often wins.

Often web developers need to make both of these groups of users happy. Take, for
example, online banking: an old couple has to be able to use your web application from
their old PCs; otherwise, they will transfer their life savings to a different bank that
doesn’t require, say, the latest version of Firefox be installed.

Does it mean that enterprise web developers shouldn’t even bother using HTML5 that’s
not 100 percent supported? Not at all. This means that a substantial portion of their

application’s code will be bloated with if statements trying to determine what this spe‐
cific web browser supports and providing several solutions that keep your application
properly running in any web browser. This is what makes the job of DHTML developers
a lot more difficult than that of, say, Java or .NET developers who know exactly the VM
where their code will work. If you don’t install the Java Runtime of version 1.6, our
application won’t work. It’s as simple as that. How about asking Java developers to write
applications that will work in any runtime released during the past 10 years? No, we’re
not that nasty.

Do you believe it would be a good idea for Amazon or Facebook to rewrite their UIs in
Java? Of course not, unless those companies want to lose most of their customers, who
will be scared to death after seeing a message from a 20-step Java installer asking to
access the internals of their computer. Each author of this book is a Java developer, and
we love using Java—on the server side. But when it comes to the consumer-facing web
applications, there are better choices.

The bottom line is that we have to learn how to develop web applications that won’t
require installing any new software on user’s machines. In web browsers, it’s DHTML,
or in the modern terminology, it’s the HTML5 stack.

In the unfortunate event that you need to support both new and old HTML and CSS
implementations, you can use HTML5 Boilerplate that is not a framework, but a tem‐
plate for creating a new HTML project that will support HTML5 and CSS3 elements
and yet will work even in the hostile environments of the older browsers. It’s like broad‐
casting a TV show in HD, but letting the cavemen with the 50-year-old black-and-white
tubes watch it, too.

548 | Appendix A: Selected HTML5 APIs

http://html5boilerplate.com

HTML Boilerplate comes with a simple way to start your project, prepackaged with
solutions and workarounds offered by well-known gurus in the industry. Make no mis‐
take, your code base might be larger than you wanted (for example, the initial CSS starts
with 500 lines accommodating the old and new browsers), but it might be your safety
net.

Watch this screencast by Paul Irish, a co-creator of HTML5 Boiler‐
plate. You can also read the current version of the Getting started with
HTML5 Boilerplate on GitHub.

Handling Differences in Browsers
This appendix is about selected HTML APIs that we find important to understand in
web applications. But before using any of the APIs listed here, you should check whether
the versions of the web browsers you have support these APIs. The website http://
caniuse.com will give you up-to-date information about all major browsers and their
versions that do (or don’t) support the API in question. For example, to see which
browsers support the Web Workers API, visit caniuse.com.

It’s a good practice to include in your code a line that tests whether a specific API is

supported. For example, if the following if statement returns false, the Web Workers
API is not supported and the code should fall back to a single-threaded processing mode:

if (window.Worker) {
 // create a Worker instance to execute your
 // script in a separate thread
) else{
 // tough luck, fallback to a single–threaded mode
}

Chapter 1 demonstrates the feature-detection tool Modernizr with which you can pro‐
grammatically check whether a particular HTML5 API is supported by the browser
being used:

if (Modernizr.Worker) {
 // create a Worker instance to execute your
 // script in a separate thread
)

HTML5 Web Messaging API
With HTML5 Web Messaging, you can arrange for communication between different
web pages of the same web application. More officially, it’s about “communicating be‐
tween browsing contexts in HTML documents.” Web messaging also allows you to work

Handling Differences in Browsers | 549

http://bit.ly/1nutL8e
http://bit.ly/TPQeSF
http://bit.ly/TPQeSF
http://caniuse.com
http://caniuse.com
http://caniuse.com/#search=Worker
http://bit.ly/1z26wIa

around the “same domain” policy that would result in a security error if a browser’s page
A has one origin (the combination of URL scheme, hostname, and port, for example,
http://myserver.com:8080) and tries to access the property of page B that was downloa‐
ded from another origin. But with the Messaging API, windows downloaded from dif‐
ferent origins can send messages to each other.

Sending and Receiving Messages
The API is fairly straightforward: if a script in the page WindowA has a reference to

WindowB where you want to send a message, invoke the following method:

 myWindowB.postMesage(someData, targetOrigin);

The object referenced by myWindowB will receive an event object with the content of

payload someData in the event’s property data. The targetOrigin specifies the origin

from which myWindowB was downloaded.

Specifying a concrete URI of the destination window in targetOrigin is the right way
to do messaging. This way, if a malicious site tries to intercept the message, it won’t be

delivered because the URI specified in targetOrigin is different from the malicious
site’s URI. But if you’re absolutely sure that your application is operating in an absolutely

safe environment, you can specify "*" as targetOrigin.

Accordingly, myWindowB has to define an event handler for processing this external event

message. For example:

window.addEventListener('message', myEventHandler, false);

function myEventHandler(event){
 console.log(`Received something: ` + event.data);
}

Communicating with an iFrame
Let’s consider an example in which an HTML window creates an iFrame and needs to
communicate with it. In particular, the iFrame will notify the main window that it has
loaded, and the main window will acknowledge receiving this message.

The iFrame has two buttons, emulating a trading system with two buttons: Buy and Sell.
When the user clicks one of these iFrame buttons, the main window has to confirm
receiving the buy or sell request. Figure A-1 is a screenshot from a Chrome browser;
the Developer Tools panel shows the output on the console after the iFrame is loaded
and the user clicks the Buy and Sell buttons.

550 | Appendix A: Selected HTML5 APIs

http://myserver.com:8080

Figure A-1. Message exchange between the window and iFrame

The source code of this example is shown next. It’s just two HTML files: mainWind‐
ow.html and myFrame.html. Here’s the code of mainWindow.html:

<!DOCTYPE html>
<html lang="en">

<head>

 <title>The main Window</title>
</head>

<body bgcolor="cyan">

 <h1>This is Main Window </h1>

 <iframe id="myFrame">
 <p>Some page content goes here</p>
 </iframe>

 <script type="text/javascript">
 var theiFrame;

 function handleMessage(event) {
 console.log('Main Window got the message ' +
 event.data);

 // Reply to the frame here
 switch (event.data) {

 case 'loaded':
 theiFrame.contentWindow.postMessage(
 "Hello my frame! Glad you loaded! ",

HTML5 Web Messaging API | 551

 event.origin);
 break;
 case 'buy':
 theiFrame.contentWindow.postMessage(
 "Main Window confirms the buy request ",
 event.origin);
 break;
 case 'sell':
 theiFrame.contentWindow.postMessage(
 "Main Window confirms the sell request. ",
 event.origin);
 break;
 }
 }

 window.onload == function() {
 window.addEventListener('message', handleMessage, false);
 theiFrame == document.getElementById('myFrame');
 theiFrame.src == "myFrame.html";
 }

 </script>

 </body>
</html>

This function is an event handler for messages received from the iFrame window.
The main window is the parent of iFrame, and whenever the latter invokes

parent.postMessage(), this event handler will be engaged.

Depending on the content of the message payload (event.data), respond to the

sender with an acknowledgment. If the payload is loaded, this means that the

iFrame has finished loading. If it’s buy or sell, this means that the corresponding
button in the iFrame has been clicked. As an additional precaution, you can

ensure that event.origin has the expected URI before even starting processing
received events.

Although this code shows how a window sends a message to an iFrame, you can
send messages to any other window as long as you have a reference to it. For
example:

 var myPopupWindow == window.open(...);
 myPopupWindow.postMessage("Hello Popup", "*");

On loading, the main window starts listening to messages from other windows
and loads the content of the iFrame.

552 | Appendix A: Selected HTML5 APIs

To implement error processing, add a handler for the window.oner

ror property.

The code of myFrame.html comes next. This frame contains two buttons, Buy and Sell,
but there is no business logic to buy or sell anything. The role of these buttons is just to
deliver the message to the creator of the iFrame that it’s time to buy or sell:

<!DOCTYPE html>
<html lang="en">

 <body bgcolor="white">

 <h2> This is My Frame Window </h2>

 <button type="buy" onclick="sendToParent('buy')">Buy</button>
 <button type="sell" onclick="sendToParent('sell')">Sell</button>

 <script type="text/javascript">

 var senderOrigin == null;

 function handleMessageInFrame(event) {
 console.log(' My Frame got the message from ' +
 event.origin +": " + event.data);
 if (senderOrigin === null) senderOrigin == event.origin;
 }

 window.onload == function(){
 window.addEventListener('message', handleMessageInFrame, false);
 parent.postMessage('loaded', "*");
 };

 function sendToParent(action){
 parent.postMessage(action, senderOrigin);
 }

 </script>
 </body>
</html>

When the iFrame receives the first message from the parent, store the reference
to the sender’s origin.

Notify the parent that the iFrame is loaded. The target origin is specified as "*"
here as an illustration of how to send messages without worrying about
malicious site-interceptors; always specify the target URI as it’s done in the

function sendToParent().

HTML5 Web Messaging API | 553

Send the message to the parent window when the user clicks the Buy or Sell
button.

If you need to build a UI of the application from reusable components, applying mes‐
saging techniques makes it possible for you to create loosely coupled components. Sup‐
pose that you’ve created a window for a financial trader. This window receives the data
push from the server, showing the latest stock prices. When a trader likes the price, he
can click the Buy or Sell button to initiate a trade. The order to trade can be implemented
in a separate window, and establishing interwindow communications in a loosely cou‐
pled manner is really important.

Applying the Mediator Design Pattern
Three years ago, O’Reilly published another book written by us titled Enterprise Devel‐
opment with Flex. In particular, it described how to apply the Mediator design pattern
to create a UI where components can communicate with one another by sending-
receiving events from the mediator object. The Mediator pattern remains very important
in developing UIs by using any technologies or programming languages, and the im‐
portance of HTML5 messaging can’t be underestimated.

Figure A-2 is an illustration from that Enterprise Flex book. The Price panel on the left
gets the data feed about current prices of IBM stock. When the user clicks the Bid or
Ask button, the Price panel just sends the event with the relevant information (for
example, a JSON-formatted string containing the stock symbol, price, buy or sell flag,
or date). In this particular case, the window that contains these two panels serves as a

mediator. In the HTML5 realm, we can say that the Price panel invokes parent.post

Message() and shoots the message to the mediator (a.k.a. main window).

554 | Appendix A: Selected HTML5 APIs

Figure A-2. Before and after the trader clicks the Price panel

The Mediator receives the message and reposts it to its other child—the Order panel—
that knows how to place orders to purchase stocks. The main takeaway from this design
is that the Price and Order panels do not know about each other and are communicating
by sending-receiving messages to/from a mediator. Such a loosely coupled design fa‐
cilitates of the reuse the same code in different applications. For example, the Price panel
can be reused in a portal that’s used by company executives in a dashboard showing

HTML5 Web Messaging API | 555

prices without the need to place orders. Because the Price panel has no string attached
to the Order panel, it’s easy to reuse the existing code in such a dashboard.

You can find a more advanced example of intercomponent communication techniques
using the Mediator design pattern in “Loosely Coupled InterModule Communications
with Mediator” on page 244.

HTML5 Forms
Even though this appendix is about selected HTML APIs, we should briefly bring your

attention to improvements in the HTML5 <form> tag, too.

It’s hard to imagine an enterprise web application that is not using forms. At a very
minimum, the Contact Us form has to be there. A login view is yet another example of
an HTML form that almost every enterprise application needs. People fill out billing
and shipping forms, and they answer long questionnaires while purchasing insurance
policies online. HTML5 includes some very useful additions that simplify working with
forms.

We’ll start with the prompts. Showing the hints or prompts right inside the input field

will save you some screen space. HTML5 has a special attribute, placeholder. The text
placed in this attribute is shown inside the field until the field gets the focus, then the

text disappears. You can see the placeholder attribute in action in Chapter 1, in the
logging part of our sample application:

<input id="username" name="username" type="text"
 placeholder="username" autofocus/>

<input id="password" name="password"
 type="password" placeholder="password"/>

Another useful attribute is autofocus, which automatically places the focus in the field
with this attribute. In the preceding HTML snippet, the focus is automatically placed in

the field username.

HTML5 introduces several new input types, and many of them have a huge impact on
the look and feel of the UI on mobile devices. The following are brief explanations.

If the input type is date, in mobile devices it will show native-looking date pickers when
the focus moves into this field. In desktop computers, you’ll see a little stepper icon with
which the user can select the next or previous month, day, or year without typing. Besides

date, you can also specify such types as datetime, week, month, time, and datetime-

local.

If the input type is email, the main view of the virtual keyboard on your smartphone
will include the @ key.

If the input type is url, the main virtual keyboard will include the buttons .com, ., and /.

556 | Appendix A: Selected HTML5 APIs

The tel type will automatically validate telephone numbers for the right format.

The color type opens a color picker control to select the color. After selection, the

hexadecimal representation of the color becomes the value of this input field.

The input type range shows a slider, and you can specify its min and max values.

The number type shows a numeric stepper icon on the right side of the input field.

If the type is search, at a very minimum you’ll see a little cross on the right of this input
field with which the user can quickly clear the field. On mobile devices, bringing the
focus to the search field brings up a virtual keyboard with the Search button. Consider

adding the attributes placeholder and autofocus to the search field.

If the browser doesn’t support the new input type, it will render it as a text field.

To validate the input values, use the required attribute. It doesn’t include any logic, but

won’t allow submitting the form until the input field marked as required has something
in it.

Using the pattern attribute, you can write a regular expression that ensures that the

field contains certain symbols or words. For example, adding pattern="http:.+" won’t

consider the input data valid, unless it starts with http:// followed by one or more

characters, one of which has to be a period. It’s a good idea to include a pattern attribute
with a regular expression in most of the input fields.

If you’re not familiar with regular expressions, watch the presen‐
tation Demistifying Regular Expressions by Lea Verou at the
O’Reilly Fluent conference; it’s a good primer on this topic.

Web Workers API
When you start a web browser or any other application on your computer or other
device, you start a task or a process. A thread is a lighter process within another process.
Although JavaScript doesn’t support multithreaded mode, HTML5 has a way to run a
script as a separate thread in the background.

A typical web application has a UI part (HTML) and a processing part (JavaScript). If
a user clicks a button, which starts a JavaScript function that runs, say, for a hundred
milliseconds, there won’t be any noticeable delays in user interaction. But if the Java‐
Script runs a couple of seconds, the user experience will suffer. In some cases, the web
browser will assume that the script became unresponsive and will offer to kill it.

Web Workers API | 557

http://bit.ly/1ynI6IN

Imagine an HTML5 game in which a click of a button initiates major recalculation of
coordinates and repainting multiple images in the browser’s window. Ideally, we’d like
to parallelize the execution of UI interactions and background JavaScript functions as
much as possible, so the user won’t notice any delays. Another example is a CPU-
intensive spellchecker function that finds errors while the user keeps typing. Parsing
the JSON object is yet another candidate to be done in the background. Web workers
are also good at polling server data.

In other words, use web workers when you want to be able to run multiple parallel
threads of execution within the same task. On a multiprocessor computer, parallel
threads can run on different CPUs. On a single-processor computer, threads will take
turns getting slices of the CPU’s time. Because switching CPU cycles between threads
happens fast, the user won’t notice tiny delays in each thread’s execution, getting a feeling
of smooth interaction.

Creating and Communicating with Workers
HTML5 offers a solution for multithreaded execution of a script with the help of the

Worker object. To start a separate thread of execution, you’ll need to create an instance

of a Worker object, passing it the name of the file with the script to run in a separate
thread. For example:

var mySpellChecker == new Worker("spellChecker.js");

The Worker thread runs asynchronously and can’t directly communicate with the UI

components (that is, DOM elements) of the browser. When the Worker’s script finishes

execution, it can send back a message by using the postMessage() method. Accordingly,
the script that created the worker thread can listen for the event from the worker and
process its responses in the event handler. This event object will contain the data received

from the worker in its data property; for example:

var mySpellChecker == new Worker("spellChecker.js");
 mySpellChecker.onmessage == function(event){

 // processing the worker's response
 document.getElementById('myEditorArea').textContent == event.data;
 };

You can use an alternative and preferred JavaScript function addEventListener() to
assign the message handler:

var mySpellChecker == new Worker("spellChecker.js");
 mySpellChecker.addEventListener("message", function(event){

 // processing the worker's response
 document.getElementById('myEditorArea').textContent == event.data;
 });

558 | Appendix A: Selected HTML5 APIs

http://bit.ly/1oEqN0z

On the other hand, the HTML page can also send any message to the worker, forcing it
to start performing its duties (for example, starting the spellchecking process):

 mySpellChecker.postMessage(wordToCheckSpelling);

The argument of postMessage() can contain any object, and it’s being passed by value,
not by reference.

Inside the worker, you also need to define an event handler to process the data sent from
outside. To continue the previous example, spellChecker.js will have inside it the code
that receives the text to check, performs the spellcheck, and returns the result:

self.onmesage == function(event){

 // The code that performs spellcheck goes here

 var resultOfSpellCheck == checkSpelling(event.data);

 // Send the results back to the window that listens
 // for the messages from this spellchecker

 self.postMessage(resultOfSpellCheck);
};

If you want to run certain code in the background repeatedly, you can create a wrapper

function (for example, doSpellCheck()) that internally invokes postMesage() and then

gives this wrapper to setTimeout() or setInterval() to run every second or so: var

timer == setTimout(doSpellCheck, 1000);.

If an error occurs in a worker thread, your web application will get a notification in the

form of an event, and you need to provide a function handler for onerror:

mySpellChecker.onerror == function(event){
 // The error handling code goes here
};

Dedicated and Shared Workers
If a window’s script creates a worker thread for its own use, we call it a dedicated work‐
er. A window creates an event listener, which gets the messages from the worker. On
the other hand, the worker can have a listener, too, to react to the events received from
its creator.

A shared worker thread can be used by several scripts, as long as they have the same
origin. For example, if you want to reuse a spellchecker feature in several views of your
web application, you can create a shared worker as follows:

var mySpellChecker == new SharedWorker("spellChecker.js");

Another use case is funneling all requests from multiple windows to the server through
a shared worker. You can also place into a shared worker a number of reusable utility

Web Workers API | 559

functions that might be needed in several windows—this architecture can reduce or
eliminate repeatable code.

One or more scripts can communicate with a shared worker, and it’s done slightly dif‐

ferently than with a dedicated one. Communication is done through the port property,

and the start() method has to be invoked to be able to use postMessage() the first
time:

var mySpellChecker == new SharedWorker("spellChecker.js");
 mySpellChecker.port.addEventListener("message", function(event){
 document.getElementById('myEditorArea').textContent == event.data;
 });
 mySpellChecker.port.start()

The event handler becomes connected to the port property, and now you can post the

message to this shared worker by using the same postMessage() method:

 mySpellChecker.postMessage(wordToCheckSpelling);

Each new script that will connect to the shared worker by attaching an event handler
to the port results in incrementing the number of active connections that the shared

worker maintains. If the script of the shared worker invokes port.postMessage("Hello

scripts!"), all listeners that are connected to this port will get it.

If a shared thread is interested in processing the moments when a new

script connects to it, add an event listener to the connect event in the
code of the shared worker.

If a worker needs to stop communicating with the external world, it can call

self.close(). The external script can kill the worker thread by calling the method

terminate(); for example:

mySpellChecker.terminate();

Because the script running inside the Worker thread doesn’t have
access to the browser’s UI components, you can’t debug these scripts

by printing messages onto the browser’s console with con

sole.log(). In the bonus online chapter, we used the Firefox brows‐
er for development, but now we’ll illustrate how to use Chrome
Browser Developer Tools, which includes the Workers panel that can
be used for debugging code that’s launched in worker threads. You’ll
see multiple examples of using Chrome Developer Tools going for‐
ward.

560 | Appendix A: Selected HTML5 APIs

http://bit.ly/1r5J4qR

For more detailed coverage of web workers, read Web Workers by Ido Green (O’Reilly).

When the user switches to another page in a browser and the cur‐
rent web page loses focus, you might want to stop running process‐
es that would unnecessarily use CPU cycles. To catch this moment,
use the Page Visibility API.

The WebSocket API
For many years, web applications were associated with HTTP as the main protocol for
communication between web browsers and servers. HTTP is a request-response–based
protocol that adds hundreds of bytes to the application data being sent between browsers
and servers. WebSocket is not a request-response, but a bidirectional, full-duplex,
socket-based protocol, which adds only a couple of bytes (literally) to the application
data. WebSocket might become a future replacement for HTTP, but web applications
that require near-real-time communications (for example, financial trading applica‐
tions, online games, or auctions) can benefit from this protocol today. The authors of
this book believe that WebSocket is so important that we dedicated Chapter 8 to this
API. In this section, we just introduce this API very briefly.

This is how the WebSocket workflow proceeds:

• A web application tries to establish a socket connection between the client and the
server, using HTTP only for the initial handshake.

• If the server supports WebSocket, it switches the communication protocol from
HTTP to a socket-based protocol.

• From this point on, both client and server can send messages in both directions
simultaneously (that is, in full-duplex mode).

• This is not a request-response model, because both the server and the client can
initiate the data transmission that enables the real server-side push.

• Both the server and the client can initiate disconnects, too.

This is a very short description of what the WebSocket API is about. We encourage you
to read Chapter 8 and find a use for this great API in one of your projects.

Offline Web Applications
A common misconception about web applications is that they are useless without an
Internet connection. Everyone knows that you can write native applications in a way
that they have everything they need installed on your device’s data storage—both the
application code and the data storage. With HTML5, you can design web applications

The WebSocket API | 561

http://mzl.la/1q9FiLm

to be functional even when the user’s device is disconnected. The offline version of a
web application might not offer full functionality, but certain functions can still be
available.

Prerequisites for Developing Offline Web Applications
To be useful in disconnected mode, an HTML-based application needs to have access
to local storage on the device so data entered by the user in the HTML windows can be
saved locally, further synchronized with the server when a connection becomes avail‐
able. Think of a salesperson of a pharmaceutical company visiting medical offices and
trying to sell new pills. What if a connection is not available at a certain point? She can
still use her tablet to demonstrate the marketing materials, and more important, collect
data about this visit and save it locally. When the Internet connection becomes available
again, the web application should support automatic or manual data synchronization
so the information about the sales activity is stored in a central database.

There are two main prerequisites for building offline web applications. You need local
storage, and you need to ensure that the server sends only raw data to the client, with
no HTML markup (see Figure A-3). So all these server-side frameworks that prepare
data heavily sprinkled with HTML markup should not be used. For example, the fron‐
tend should be developed in HTML/JavaScript/CSS, the backend in your favorite lan‐
guage (Java, .NET, PHP), and the JSON-formatted data should be sent from the server
to the client and back.

Figure A-3. Design with offline use in mind

The business logic that supports the client’s offline functionality should be developed
in JavaScript and run in the web browser. Although most of the business logic of web

562 | Appendix A: Selected HTML5 APIs

applications remains on the server side, the web client is not as thin as it used to be in
legacy HTML-based applications. The client becomes fatter and it can have state.

It’s a good idea to create a data layer in your JavaScript code that will be responsible for
all data communications. If the Internet connection is available, the data layer will make
requests to the server; otherwise, it will get the data from the local storage.

Application Cache API
First, an application’s cache is not related to the web browser’s cache. Its main reason
for existence is to facilitate creating applications that can run even without an Internet
connection available. The user will still go to her browser and enter the URL, but the
trick is that the browser will load previously saved web pages from the local application
cache. So even if the user is not online, the application will start anyway.

If your web application consists of multiple files, you need to specify which ones have
to be present on the user’s computer in offline mode. A file called cache manifest is a
plain-text file that lists these resources.

Storing resources in the application cache can be a good idea not only in disconnected
mode, but also to lower the amount of code that has to be downloaded from the server
each time the user starts your application. Here’s an example of the file mycache.man‐
ifest, which includes one CSS file, two JavaScript files, and one image to be stored locally
on the user’s computer:

CACHE MANIFEST
/resources/css/main.css
/js/app.js
/js/customer_form.js
/resources/images/header_image.png

The manifest file has to start with the line CACHE MANIFEST and can be optionally divided
into sections. The landing page of your web application has to specify an explicit ref‐
erence to the location of the manifest. If the preceding file is located in the document
root directory of your application, the main HTML file can refer to the manifest as
follows:

<!DOCTYPE html>
<html lang="en" manifest="/mycache.manifest">
 ...
</html>

The web server must serve the manifest file with a MIME type text/cache-manifest,
and you need to refer to the documentation of your web server to see how to make a

configuration change so that all files with the extension .manifest are served as text/

cache-manifest.

Offline Web Applications | 563

On each subsequent application load, the browser makes a request to the server and
retrieves the manifest file to see whether it has been updated, in which case it reloads
all previously cached files. It’s the responsibility of web developers to modify the man‐
ifest on the server if any of the cacheable resources have changed.

Is Your Application Offline?
Web browsers have a boolean property, window.navigator.onLine, which should be
used to check for a connection to the Internet. The HTML5 specification states that
“The navigator.onLine attribute must return false if the user agent will not contact the
network when the user follows links or when a script requests a remote page (or knows
that such an attempt would fail), and must return true otherwise.” Unfortunately, major
web browsers deal with this property differently, so you need to do a thorough testing
to see if it works as expected with the browser you care about.

To intercept changes in the connectivity status, you can also assign event listeners to the

online and offline events. For example:

window.addEventListener("offline", function(e) {
 // The code to be used in the offline mode goes here
});

window.addEventListener("online", function(e) {
 // The code to synchronize the data saved in the offline mode
 // (if any) goes here
});

You can also add the onoffline and ononline event handlers to the <body> tag of your

HTML page or to the document object. Again, test the support of these events in your
browsers.

What if the browser’s support of the offline/online events is still not stable? You’ll have
to write your own script that will periodically make an Ajax call (see Chapter 2) trying
to connect to a remote server that’s always up and running—for example, google.com.
If this request fails, it’s a good indication that your application is disconnected from the
Internet.

Options for Storing Data Locally
In the past, web browsers could store their own cache and application’s cookies only on
the user’s computer.

564 | Appendix A: Selected HTML5 APIs

Cookies are small files (up to 4 KB) that a web browser automatical‐

ly saves locally if the server’s HTTPResponse includes them. On the
next visit to the same URL, the web browser sends all nonexpired

cookies back to the browser as a part of the HTTPRequest object.
Cookies are used for arranging HTTP session management and
shouldn’t be considered a solution for setting up a local storage.

HTML5 offers a lot more advanced solutions for storing data locally, namely:

Web Storage
Offers local storage for long-term data storage and session storage for storing a
single data session.

IndexedDB
A NoSQL database that stores key-value pairs.

There is another option worth mentioning: Web SQL Database. The
specification was based on the open source SQLite database. But the
work on this specification has stopped and future versions of brows‐
ers might not support it. That’s why we don’t discuss Web SQL Data‐
base in this book.

By the end of 2013, local and session storage were supported by all
modern web browsers. Web SQL Database is not supported by Fire‐
fox and Internet Explorer and most likely never will be. IndexedDB
is the web storage format of the future, but Safari doesn’t support it
yet, so if your main development platform is iOS, you might need to
stick to Web SQL Database. Consider using a polyfill for indexedDB
by using a Web SQL API called IndexedDBShim.

To get the current status of support for HTML5 features, visit can‐
iuse.com and search for the API you’re interested in.

Although web browsers send cookies to the web server, they don’t send the data saved
in local storage. The saved data is used only on the user’s device. Also, the data saved in
the local storage never expires. A web application has to programmatically clean up the
storage, if need be, which will be illustrated next.

Offline Web Applications | 565

http://www.w3.org/TR/webstorage
http://www.w3.org/TR/IndexedDB
http://bit.ly/1mzIOcc
http://bit.ly/1lZrNfP
http://www.caniuse.com
http://www.caniuse.com

Web Storage Specification APIs
With window.localStorage or window.sessionStorage (a.k.a. web storage), you can

store any objects on the local disk as key-value pairs. Both objects implement the Stor

age interface. The main difference between the two is that the lifespan of the former is
longer. If the user reloads the page, or the web browser, or restarts the computer, the

data saved with window.localStorage will survive, whereas the data saved via win

dow.sessionStorage won’t.

Another distinction is that the data from window.localStorage is available for any page

loaded from the same origin as the page that saved the data. With window.session

Storage, the data is available only to the window or a browser’s tab that saved it.

localStorage API

Saving the application state is the main use of local storage. Coming back to the use-
case of the pharmaceutical salesperson, in offline mode, you can save the name of the
person she talked to in a particular medical office and the notes about the conversation
that took place. For example:

localStorage.setItem('officeID', 123);
localStorage.setItem('contactPerson', 'Mary Lou');
localStorage.setItem('notes', 'Drop the samples of XYZin on 12/15/2013');

Accordingly, to retrieve the saved information, you’d need to use the method getItem():

var officeID == localStorage.getItem('officeID');
var contact == localStorage.getItem('contactPerson');
var notes == localStorage.getItem('notes');

These code samples are fairly simple because they store single values. In real-life sce‐
narios, we often need to store multiple objects. What if our salesperson visits several
medical offices and needs to save information about all these visits in the web store? For
each visit, we can create a key-value combination, where a key includes the unique ID
(for example, office ID), and the value is a JavaScript object (for example, Visit) turned

into a JSON-formatted string (see Chapter 2 for details) by using JSON.stringify().

The code sample that follows illustrates how to store and retrieve the custom Visit

objects. Each visit to a medical office is represented by one instance of the Visit object.
To keep the code simple, we haven’t included any HTML components. The JavaScript
functions are invoked and print their output on the browser’s console:

<!doctype html>
<html>
<head>
 <meta charset="utf-8" />
 <title>My Today's Visits</title>
</head>
<body>

566 | Appendix A: Selected HTML5 APIs

 <script>

 // Saving in local storage
 var saveVisitInfo == function (officeVisit) {
 var visitStr=JSON.stringify(officeVisit);
 window.localStorage.setItem("Visit:"+ visitNo, visitStr);
 window.localStorage.setItem("Visits:total", ++visitNo);

 console.log("saveVisitInfo: Saved in local storage " + visitStr);
 };

// Reading from local storage

 var readVisitInfo == function () {

 var totalVisits == window.localStorage.getItem("Visits:total");
 console.log("readVisitInfo: total visits " + totalVisits);

 for (var i == 0; i < totalVisits; i++) {

 var visit == JSON.parse(window.localStorage.getItem("Visit:" + i));
 console.log("readVisitInfo: Office " + visit.officeId +
 " Spoke to " + visit.contactPerson + ": " + visit.notes);
 }
 };

// Removing the visit info from local storage

var removeAllVisitInfo == function (){
 var totalVisits == window.localStorage.getItem("Visits:total");

 for (i == 0; i < totalVisits; i++) {
 window.localStorage.removeItem("Visit:" + i);
 }

 window.localStorage.removeItem("Visits:total");

 console.log("removeVisits: removed all visit info");
}

 var visitNo == 0;

 // Saving the first visit's info
 var visit == {
 officeId: 123,
 contactPerson: "Mary Lou",
 notes: "Drop the samples of XYZin on 12/15/2013"
 };
 saveVisitInfo(visit);

 // Saving the second visit's info
 visit == {
 officeId: 987,
 contactPerson: "John Smith",

Offline Web Applications | 567

 notes: "They don't like XYZin - people die from it"
 };
 saveVisitInfo(visit);

 // Retrieving visit info from local storage
 readVisitInfo();

 // Removing all visit info from local storage
 removeAllVisitInfo();

 // Retrieving visit info from local storage - should be no records
 readVisitInfo();

 </script>
</body>
</html>

The function saveVisitInfo() uses a JSON object to turn the visit object into

a string with JSON.stringify(). It then saves this string in local storage. This
function also increments the total number of visits and saves it in local storage

under the key Visits:total.

The function readVisitInfo() gets the total number of visits from local storage
and then reads each visit record, re-creating the JavaScript object from the JSON

string by using JSON.parse().

The function removeAllVisitInfo() reads the number of visit records, removes

each of them, and then removes the Visits:total, too.

Creates and saves the first visit record.

Creates and saves the second visit record.

Reads saved visit info.

Removes saved visit info. To remove the entire content that was saved for a

specific origin, call the method localStorage.clear().

Rereads visit info after removal.

Figure A-4 shows the output on the console of Chrome Developer Tools. Two visit
records were saved in local storage, and then they were retrieved and removed from

storage. Finally, the program attempts to read the value of the previously saved Vis

its:total, but it’s null now—we’ve removed from localStorage all the records related
to visits.

568 | Appendix A: Selected HTML5 APIs

Figure A-4. Chrome’s console after running the Visits sample

If you are interested in intercepting the moments when the content

of local storage gets modified, listen to the DOM storage event,
which carries the old and new values and the URL of the page whose
data is being changed.

Another good example of a use case when locaStorage becomes
handy is when a user is booking airline tickets by using more than
one browser’s tab.

sessionStorage API

The sessionStorage life is short; it’s available for a web page only while the browser

stays open. If the user decides to refresh the page, sessionStorage will survive, but

opening a page in a new browser’s tab or window will create a new sessionStorage
object. Working with session storage is fairly straightforward; for example:

sessionStorage.setItem("userID","jsmith");

var userID == sessionStorage.getItem("userID");

Chrome Developer Tools includes the tab Resources that allows browsing the local or
session storage if a web page uses it. For example, Figure A-5 shows the storage used by
cnn.com.

Offline Web Applications | 569

Figure A-5. Browsing local storage in Chrome Developer Tools

localStorage and sessionStorage commonalities

Both localStorage and sessionStorage are subject to the same-origin policy, meaning
that saved data is available only for web pages that come from the same host, from the
same port, and via the same protocol.

Both localStorage and sessionStorage are browser-specific. For example, if the web
application stores data from Firefox, that data won’t be available if the user opens the
same application from Safari.

The APIs from the Web Storage specification are simple to use, but their major draw‐
backs are that they don’t give you a way to structure the stored data, you always have to
store strings, and the API is synchronous, which can cause delays in the user interaction
when your application accesses the disk.

There is no actual limit on the size of local storage, but browsers usually default to 5

MB. If the application tries to store more data than the browser permits, the QUOTA_EX

CEEDED_ERR exception will be thrown—always use the try-catch blocks when saving
data.

Even if the user’s browser allows increasing this setting (for example, via the about:con‐
fig URL in Firefox), access to such data might be slow. Consider using the File API or
IndexedDB, which are introduced in the next section.

570 | Appendix A: Selected HTML5 APIs

http://www.w3.org/TR/FileAPI/

Introduction to IndexedDB
Indexed Database API (a.k.a., IndexedDB) is a solution based on the NoSQL database.

As with the Storage interface, IndexedDB stores data as key-value pairs, but it also
offers transactional handling of objects. IndexedDB creates indexes of the stored objects
for fast retrieval. With Web Storage, you can store only strings, and we had to do these

tricks with JSON stingify() and parse() to give some structure to these strings. With
IndexedDB, you can directly store and index regular JavaScript objects.

Using IndexedDB, you can access data asynchronously, so UI freezes won’t occur while
accessing large objects on disk. You make a request to the database and define the event
handlers that should process the errors or the result when ready. IndexedDB uses DOM
events for all notifications. Success events don’t bubble, whereas error events do.

Users will have the feeling that the application is responsive, which wouldn’t be the case
if you were saving several megabytes of data with the Web Storage API. Similar to Web
Storage, access to the IndexedDB databases is regulated by the same-origin policy.

In the future, web browsers might implement synchronous Index‐
edDB API to be used inside web workers.

Because not every browser supports IndexedDB yet, you can use Modernizr (see Chap‐
ter 1) to detect whether your browser supports it. If it does, you still might need to
account for the fact that browser vendors name the IndexedDB-related object differ‐
ently. To be on the safe side, at the top of your script include statements to account for

the prefixed vendor-specific implementations of indexedDB and related objects:

var medicalDB == {}; // just an object to store references

medicalDB.indexedDB == window.indexedDB || window.mozIndexedDB
 || window.msIndexedDB || window.webkitIndexedDB ;
if (!window.indexedDB){
 // this browser doesn't support IndexedDB
} else {
 medicalDB.IDBTransaction == window.IDBTransaction ||
 window.webkitIDBTransaction;
 medicalDB.IDBCursor == window.IDBCursor || window.webkitIDBCursor;
 medicalDB.IDBKeyRange == window.IDBKeyRange || window.webkitIDBKeyRange;
}

In this code snippet, the IDBKeyRange is an object that allows you to restrict the range

for the continuous keys while iterating through the objects. IDBTransaction is an im‐

plementation of transaction support. IDBCursor is an object that represents a cursor for
traversing over multiple objects in the database.

Offline Web Applications | 571

http://www.w3.org/TR/IndexedDB
http://mzl.la/1iSK0fT
http://mzl.la/1iSK0fT
http://mzl.la/TwkJMs
http://mzl.la/1iSK4Mq
http://mzl.la/1vnNbMO

IndexedDB doesn’t require you to define a formal structure of your stored objects; any
JavaScript object can be stored there. Not having a formal definition of a database
scheme is an advantage compared to relational databases, where you can’t store data
until the structure of the tables is defined.

Your web application can have one or more databases, and each can contain one or more
object stores. Each object store will contain similar objects (for example, one stores the
salesperson’s visits, whereas another stores upcoming promotions).

Every object that you are planning to store in the database has to have one property that
plays a role similar to a primary key in a relational database. You have to decide whether

you want to maintain the value in this property manually, or use the autoIncrement
option, where the values of this property will be assigned automatically. Coming back

to our Visits example, you can either maintain the unique values of the officeId on
your own or create a surrogate key that will be assigned by IndexedDB. The current
generated number to be used as a surrogate keys never decreases, and starts with the
value of 1 in each object store.

As with relational databases, you create indexes based on the searches that you run often.

For example, if you need to search on the contact name in the Visits store, create an

index on the property contactPerson of the Visit objects. Whereas in relational da‐
tabases creation of indexes is done for performance reasons, with IndexedDB you can’t
run a query unless the index on the relevant property exists. The following code sample

shows how to connect to an existing object or create a new object store Visits in a

database called Medical_DB:

var request == medicalDB.indexedDB.open('Medical_DB');

request.onsuccess == function(event) {
 var myDB == request.result;

};

request.onerror == function (event) {
 console.log("Can't access Medical_DB: " + event.target.errorCode);
};

request.onupgradeneeded == function(event){
 event.currentTarget.result.createObjectStore ("Visits",
 {keypath: 'id', autoIncrement: true});
};

The browser invokes the method open(), asynchronously requesting to establish
the connection with the database. It doesn’t wait for the completion of this
request, and the user can continue working with the web page without any delays

or interruptions. The method open() returns an instance of the IDBRequest
object.

572 | Appendix A: Selected HTML5 APIs

http://mzl.la/1rPytxR

When the connection is successfully obtained, the onsuccess function handler

will be invoked. The result is available through the IDBRequest.result property.

Error handling is done here. The event object given to the onerror handler will
contain the information about the error.

The onupgradeneeded handler is the place to create or upgrade the storage to a
new version. This is explained next.

There are several scenarios to consider while deciding whether you

need to use the autoIncrement property with the store key. Kristof
Degrave described in the article “Indexed DB: To provide a key or not
to provide a key.”

Object stores and versioning

In the world of traditional DBMS servers, when the database structure has to be modi‐
fied, the DBA will do this upgrade, the server will be restarted, and the users will work
with the new version of the database. With IndexedDB, it works differently. Each data‐

base has a version, and when the new version of the database (for example, Medi

cal_DB) is created, onupgradeneeded is dispatched, which is where object store(s) are
created. But if you already had object stores in the older version of the database, and
they don’t need to be changed, there is no need to re-create them.

After successful connection to the database, the version number is available in the

IDBRequest.result.version property. The starting version of any database is 1.

The method open() takes a second parameter: the database version to be used. If you
don’t specify the version, the latest one will be used. The following line shows how the

application’s code can request a connection to version 3 of the database Medical_DB:

var request == indexedDB.open('Medical_DB',3);

If the user’s computer already has the Medical_DB database of one of the earlier versions

(1 or 2), the onupgradeneeded handler will be invoked. The initial creation of the da‐
tabase is triggered the same way—the absence of the database also falls under the “up‐

grade is needed” case, and the onupgradeneeded handler has to invoke the createOb

jectStore() method. If an upgrade is needed, onupgradeneeded will be invoked before

the onsuccess event.

The following code snippet creates a new or initial version of the object store Visits,

requesting autogeneration of the surrogate keys named id. It also creates indexes to
allow searching by office ID, contact name, and notes. Indexes are updated automati‐
cally, as soon as the web application makes any changes to the stored data. If you couldn’t
create indexes, you’d be able to look up objects only by the value of the key.

Offline Web Applications | 573

http://bit.ly/1lJjjEN
http://bit.ly/1lJjjEN

request.onupgradeneeded == function(event){
 var visitsStore ==
 event.currentTarget.result.createObjectStore ("Visits",
 {keypath='id',
 autoIncrement: true
 });

 visitsStore.createIndex("officeIDindex", "officeID",
 {unique: true});
 visitsStore.createIndex("contactsIndex", "contactPerson",
 {unique: false});
 visitsStore.createIndex("notesIndex", "notes",
 {unique: false});
};

Note that while creating the object store for visits, we could have used a unique property

officeID as a keypath value by using the following syntax:

 var visitsStore ==
 event.currentTarget.result.createObjectStore ("Visits",
 {keypath='officeID'});

The event.currentTarget.result (as well as IDBRequest.result) points at the in‐

stance of the IDBDatabase object, which has a number of useful properties such as

name, which contains the name of the current database, and the array objectStore

Names, which has the names of all object stores that exist in this database. Its property

version has the database version number. If you’d like to create a new database, just call

the method open(), specifying a version number that’s higher than the current one.

To remove the existing database, call the method indexedDB.deleteDatabase(). To

delete the existing object store, invoke indexedDB.deleteObjectStore().

IndexedDB doesn’t offer a secure way of storing data. Anyone who
has access to the user’s computer can get a hold of the data stored in
IndexedDB. Do not store any sensitive data locally. Always use the
secure HTTPS protocol with your web application.

Transactions

A transaction is a logical unit of work. Executing several database operations in one
transaction guarantees that the changes will be committed to the database only if all
operations finished successfully. If at least one of the operations fails, the entire trans‐

action will be rolled back (undone). IndexDB supports three transaction modes: re

adonly, readwrite, and versionchange.

To start any manipulations of the database, you have to open a transaction in one of

these modes. The readonly transaction (the default one) allows multiple scripts to read
from the database concurrently. This statement might raise a question: why would the

574 | Appendix A: Selected HTML5 APIs

user need concurrent access to his local database if he’s the only user of the application
on his device? The reason is that the same application can be opened in more than one
tab, or by spawning more than one worker thread that needs to access the local database.

The readonly mode is the least restrictive mode, and more than one script can open a

readonly transaction.

If the application needs to modify or add objects to the database, open the transaction

in readwrite mode; only one script can have the transaction open on any particular

object store. But you can have more than one readwrite transaction open at the same
time on different stores. And if the database/store/index creation or upgrade has to be

done, use versionchange mode.

When a transaction is created, you should assign listeners to its complete, error, and

abort events. If the complete event is fired, the transaction is automatically committed;

manual commits are not supported. If the error event is dispatched, the entire trans‐

action is rolled back. Calling the method abort() will fire the abort event and will roll
back the transaction, too.

Typically, you should open the database and in the onsuccess handler create a trans‐

action. Then, open a transaction by calling the method objectStore() and perform
data manipulations. In the next section, you’ll see how to add objects to an object store
by using transactions.

Modyfying the object store data

The following code snippet creates a transaction that allows updates of the store Vis

its (you could create a transaction for more than one store) and adds two visit objects

by invoking the method add():

request.onsuccess == function(event) {
 var myDB == request.result;

 var visitsData == [{
 officeId: 123,
 contactPerson: "Mary Lou",
 notes: "Drop the samples of XYZin on 12/15/2013"
 },
 {
 officeId: 987,
 contactPerson: "John Smith",
 notes: "They don't like XYZin - people die from it"
 }];

 var transaction == myDB.transaction(["Visits"],
 "readwrite");
 transaction.oncomplete == function(event){
 console.log("All visit data have been added);
 }

Offline Web Applications | 575

 transaction.onerror == function(event){
 // transaction rolls back here
 console.log("Error while adding visits");
 }

 var visitsStore == transaction.objectStore("Visits");

 for (var i in visitsData) {
 visitsStore.add(visitsData[i]);
 }

The database opened successfully.

Create a sample array of visitsData to illustrate adding more than one object
to an object store.

Open a transaction for updates and assign listeners for success and failure. The
first argument is an array of object stores that the transaction will span (only

Visits in this case). When all visits are added, the complete event is fired and

the transaction commits. If adding any visit fails, the error event is dispatched
and the transaction rolls back.

 Get a reference to the object store visits.

In a loop, add the data from the array visitsData to the object store Visits.

In the preceding code sample, each object that represents a visit has

a property notes, which is a string. If later you decide to allow stor‐

ing more than one note per visit, just turn the property notes into an
array in your JavaScript; no changes in the object stores is required.

The method put() allows you to update an existing object in a record store. It takes two
parameters: the new object and the key of the existing object to be replaced; for example:

var putRequest == visitsStore.put({officeID: 123, contactName: "Mary Lee"}, 1);

To remove all objects from the store, use the method clear(). To delete an object, specify
its ID:

var deleteRequest == visitsStore.delete(1);

You can browse the data from your IndexedDB database in Chrome
Developer Tools under the tab Resources (see Figure A-5).

576 | Appendix A: Selected HTML5 APIs

Retrieving the data

IndexedDB doesn’t support SQL. You’ll be using cursors to iterate through the object

store. First, you open the transaction. Then, you invoke openCursor() on the object
store. While opening the cursor, you can specify optional parameters like the range of

object keys you’d like to iterate and the direction of the cursor movement: IDBCur

sor.PREV or IDBCursor.NEXT. If none of the parameters is specified, the cursor will
iterate all objects in the store in ascending order. The following code snippet iterates

through all Visit objects, printing just contact names:

var transaction == myDB.transaction(["visits"], "readonly");
var visitsStore == transaction.objectStore("Visits");

visitsStore.openCursor().onsuccess == function(event){
 var visitsCursor == event.target.result;
 if (visitsCursor){
 console.log("Contact name: " + visitCursor.value.contactPerson);
 visitsCursor.continue();
 }
}

If you want to iterate through a limited key range of objects, you can specify the from-
to values. The next line creates a cursor for iterating the first five objects from the store:

var visitsCursor == visitsStore.openCursor(IDBKeyRange.bound(1, 5));

You can also create a cursor on indexes. This makes it possible to work with sorted sets

of objects. In one of the earlier examples we created an index on officeID. Now we can
get a reference to this index and create a cursor on the specified range of sorted office
IDs, as in the following code snippet:

var visitsStore == transaction.objectStore("visits");
var officeIdIndex == visitsStore.index("officeID");

officeIdIndex.openCursor().onsuccess == function(event){
 var officeCursor == event.target.result;
 // iterate through objects here
}

To limit the range of offices to iterate through, you could open the cursor on the offi

ceIdIndex differently. Suppose that you need to create a filter to iterate the offices with
numbers between 123 and 250. This is how you can open such a cursor:

officeIdIndex.openCursor(IDBKeyRange.bound(123, 250, false, true);

The false in the third argument of bound() means that 123 should be included in the

range, and the true in the fourth parameter excludes the object with officeID=250

from the range. The methods lowerbound() and upperbound() are other variations of

the method bound()—consult the online documentation for details.

Offline Web Applications | 577

http://bit.ly/1nR65dF

If you need to fetch just one specific record, restrict the selected range to only one value

by using the method only():

contactNameIndex.openCursor(IDBKeyRange.only("Mary Lou");

Runninng the sample code

Let’s bring together all of the previous code snippets into one runnable HTML file. While
doing this, we’ll be watching the script execution in the Chrome Developer Tools panel.
We’ll do it in two steps. The first version of this file will create a database of a newer
version than the one that currently exists on the user’s device. Here’s the code that creates

the database Medical_DB with an empty object store Visits:

<!doctype html>
<html>
<head>
 <meta charset="utf-8" />
 <title>My Today's Visits With IndexedDB</title>
</head>
<body>
 <script>
 var medicalDB == {}; // just an object to store references
 var myDB;

 medicalDB.indexedDB == window.indexedDB || window.mozIndexedDB
 || window.msIndexedDB || window.webkitIndexedDB ;
 if (!window.indexedDB){
 // this browser doesn't support IndexedDB
 } else {
 medicalDB.IDBTransaction == window.IDBTransaction ||
 window.webkitIDBTransaction;
 medicalDB.IDBCursor == window.IDBCursor || window.webkitIDBCursor;
 medicalDB.IDBKeyRange == window.IDBKeyRange || window.webkitIDBKeyRange;
 }

 var request == medicalDB.indexedDB.open('Medical_DB', 2);

 request.onsuccess == function(event) {
 myDB == request.result;
 };

 request.onerror == function (event) {
 console.log("Can't access Medical_DB: " + event.target.errorCode);
 };

 request.onupgradeneeded == function(event){
 event.currentTarget.result.createObjectStore ("Visits",
 {keypath:'id', autoIncrement: true});
};

 </script>

578 | Appendix A: Selected HTML5 APIs

 </body>
</html>

This version of the code is run when the user’s computer already had a database

Medical_DB: initially we invoke open() without the second argument. Running

the code and specifying 2 as the version causes invocation of the callback onup

gradeneeded even before onsuccess is called.

Create an empty object store Visits.

Figure A-6 shows a screenshot from the Chrome Developer Tools at the end of pro‐

cessing the success event. Note the Watch Expression section on the right. The name

of the database is Medical_DB, its version number is 2, and the IDBDatabase property

objectStoreNames shows that there is one object store named Visits.

Figure A-6. Chrome’s console after running the Visits sample

The next version of our sample HTML file populates the object store Visits with some

data and then iterates through all the Visit objects and displays the values of their
properties on the console:

Offline Web Applications | 579

<!doctype html>
<html>
<head>
 <meta charset="utf-8" />
 <title>My Today's Visits With IndexedDB</title>
</head>
<body>
 <script>
 var medicalDB == {}; // just an object to store references
 var myDB;

 medicalDB.indexedDB == window.indexedDB || window.mozIndexedDB
 || window.msIndexedDB || window.webkitIndexedDB ;
 if (!window.indexedDB){
 // this browser doesn't support IndexedDB
 } else {
 medicalDB.IDBTransaction == window.IDBTransaction ||
 window.webkitIDBTransaction;
 medicalDB.IDBCursor == window.IDBCursor || window.webkitIDBCursor;
 medicalDB.IDBKeyRange == window.IDBKeyRange || window.webkitIDBKeyRange;
 }

 var request == medicalDB.indexedDB.open('Medical_DB', 2);

 request.onsuccess == function(event) {
 myDB == request.result;

 var visitsData == [{
 officeId: 123,
 contactPerson: "Mary Lou",
 notes: "Drop the samples of XYZin on 12/15/2013"
 },
 {
 officeId: 987,
 contactPerson: "John Smith",
 notes: "They don't like XYZin - people die from it"
 }];

 var transaction == myDB.transaction(["Visits"],
 "readwrite");
 transaction.oncomplete == function(event){
 console.log("All visit data have been added.");

 readAllVisitsData();
 }

 transaction.onerror == function(event){
 // transaction rolls back here
 console.log("Error while adding visits");
 }

 var visitsStore == transaction.objectStore("Visits");

580 | Appendix A: Selected HTML5 APIs

 visitsStore.clear();

 for (var i in visitsData) {
 visitsStore.add(visitsData[i]);
 }

 };

 request.onerror == function (event) {
 console.log("Can't access Medical_DB: " + event.target.errorCode);
 };

 request.onupgradeneeded == function(event){
 event.currentTarget.result.createObjectStore ("Visits",
 {keypath:'id', autoIncrement: true});
};

function readAllVisitsData(){
 var readTransaction == myDB.transaction(["Visits"], "readonly");

 readTransaction.onerror == function(event){
 console.log("Error while reading visits");
 }

 var visitsStore == readTransaction.objectStore("Visits");

 visitsStore.openCursor().onsuccess == function(event){
 var visitsCursor == event.target.result;

 if (visitsCursor){
 console.log("Contact name: " +
 visitsCursor.value.contactPerson +
 ", notes: " +
 visitsCursor.value.notes);
 visitsCursor.continue();
 }
 }
 }
 </script>
 </body>
</html>

After the data store is populated and the transaction is commited, invoke the

method to read all the objects from the Visits store.

Remove all the objects from the store Visits before populating it with the data

from the array VisitsData.

Open the cursor to iterate through all visits.

Offline Web Applications | 581

Move the cursor’s pointer to the next object after printing the contact name and
notes in the console.

Figure A-7 shows the screenshot from Chrome Developer Tools when the debugger

stops in readAllVisitsData(), directly after reading both objects from the Visits

store. The console output is shown at the bottom. Note the content of visitsCursor

on the right. The cursor is moving forward (the next direction), and the value property

points at the object at the cursor. The key value of the object is 30. It’s autogenerated,
and on each run of this program, you’ll see a new value, because we clean the store and
reinsert the objects, which generates the new keys.

Figure A-7. Chrome’s console after reading the first Visit object

This concludes our brief introduction to IndexedDB. Those of you who have experience
working with relational databases might find the querying capabilities of IndexedDB
rather limited compared to powerful relational databases such as Oracle or MySQL. On
the other hand, IndexedDB is quite flexible. With it, you can store and look up any
JavaScript objects without worrying about creating a database schema first. At the time
of this writing, there are no books dedicated to IndexedDB. For up-to-date information,
refer to the IndexedDB online documentation at Mozilla Developer Network.

The History API
To put this simply, the History API is about ensuring that the Back/Forward buttons
on the browser toolbar can be controlled programmatically. Each web browser has the

window.history object. The History API is not new to HTML5. The history object

582 | Appendix A: Selected HTML5 APIs

http://mzl.la/1x4Sh3l
http://bit.ly/1q9FWIS

has been around for many years, with methods like back(), forward(), and go(). But

HTML5 adds new methods, pushState() and replaceState(), with which you can
modify the browser’s address bar without reloading the web page.

Imagine a single-page application (SPA) that has a navigational menu to open various
views, based on the user’s interaction. Because these views represent URLs loaded by
making Ajax calls from your code, the web browser still shows the original URL of the
home page of your web application.

A perfect user always navigates your application by using the menus and controls you
provided, but what if she clicks the Back button of the web browser? If the navigation
controls aren’t changing the URL in the browser’s address bar, the browser obediently
will show the web page that the user has visited before, even launching your application,
which is most likely not what she intended to do. Using the History API, you can create
more fine-grained bookmarks that define a specific state within the web page.

Not writing any code that would process clicks on the Back and For‐
ward buttons is the easiest way to frustrate your users.

Modifying the Browser’s History by Using pushState()
Imagine that you have a customer-management application with the URL http://
myapp.com. The user clicks the menu item Get Customers, which makes an Ajax call
loading the customers. You can programmatically change the URL on the browser’s
address line to http://myapp.com/customers without asking the web browser to make a

request to this URL. You do this by invoking the pushState() method.

The browser will just remember that the current URL is http://myapp.com/customers,
while the previous was http://myapp.com. So pressing the Back button changes the ad‐
dress back to http://myapp.com, and not some unrelated web application. The Forward
button will also behave properly, as per the history chain set by your application.

The pushState() takes three arguments (the values from the first two might be ignored
by some web browsers):

• The application-specific state to be associated with the current view of the web page

• The title of the current view of the web page.

• The suffix to be associated with the current view of the page. It will be added to the
address bar of the browser:

<head>

 <meta charset="utf-8">

The History API | 583

http://myapp.com
http://myapp.com
http://myapp.com/customers
http://myapp.com/customers
http://myapp.com
http://myapp.com

 <title>History API</title>
 </head>
 <body>
 <div id="main-container">

 <h1>Click on Link and watch the address bar...</h1>

 <button type="button" onclick="whoWeAre()">Who we are</button>

 <button type="button" onclick="whatWeDo()">What we do</button>

 </div>

 <script>

 function whoWeAre(){
 var locationID== {locID: 123,
 uri: '/whoweare'};

 history.pushState(locationID,'', 'who_we_are');
 }

 function whatWeDo(){
 var actionID== {actID: 123,
 uri: '/whatwedo'};

 history.pushState(actionID,'', 'what_we_do');
 }
 </script>
 </body>
</html>

On a click of the button, call the event handler function. Call pushState() to
modify the browser’s history. Other processing, such as making an Ajax request

to the server, can be done in whoWeAre(), too.

Prepare the custom state object to be used in server-side requests. The
information about who we are depends on the location ID.

Call pushState() to remember the customer ID, and add the suffix /
who_we_are to serve as a path to the server-side RESTful request. The page title
is empty; the History API currently ignores it.

Prepare the custom state object to be used in server-side requests. The
information about what we do depends on customer ID.

Call pushState() to remember the customer ID, and add the suffix /
what_we_do to serve as a path to the server-side RESTful request. The page title
is empty; the History API currently ignores it.

584 | Appendix A: Selected HTML5 APIs

This preceding sample is a simplified example and would require more code to properly
form the server request, but our goal here is just to clearly illustrate the use of the History
API.

Figure A-8 depicts the view after the user clicks the Who We Are button. The URL now
shows http://127.0.0.1:8020/HistoryAPI/who_we_are, but keep in mind that if you try
to reload the page while this URL is shown, the browser will give you a Not Found error,
and rightly so. There is no resource that represents the URL that ends with who_we_are
—it’s just the name of the view in the browser’s history.

Figure A-8. Testing pushState()

Using replaceState(), you can technically change history. We are talking about the
browser’s history, of course.

Processing the popstate Event
But changing the URL when the user clicks the Back or Forward button is just half of
the job to be done. The content of the page has to be refreshed, accordingly. The browser

dispatches the event window.popstate whenever the browser’s navigation history
changes either on initial page load, as a result of clicking the Back/Forward buttons, or

by invoking history.back() or history.forward().

Your code has to include an event handler function that will perform the actions that
must be done whenever the application gets into the state represented by the current
suffix (for example, make a server request to retrieve the data associated with the state

who_we_are). The popstate event will contain a copy of the history’s entry state object.

Let’s add the following event listener to the <script> part of the code sample from the
previous section:

addEventListener('popstate',function (evt){
 console.log(evt);
});

The History API | 585

http://127.0.0.1:8020/HistoryAPI/who_we_are

Figure A-9 depicts the view of the Chrome Developer Tools when the debugger stops

in the listener of the popstate event after the user clicks the Who We Are and then the
What We Do buttons, and then the browser’s Back button. On the righthand side, you

can see that the event object contains the evt.state object with the right values of locID

and uri. In real-world scenarios these values could have been used in, say, an Ajax call
to the server to re-create the view for the location ID 123.

Figure A-9. Monitoring popState with Chrome Developers Tool

If you run into a browser that doesn’t support the HTML5 History
API, consider using the History.js library.

586 | Appendix A: Selected HTML5 APIs

https://github.com/browserstate/History.js

Custom Data Attributes
We’ve included this sidebar in this appendix, even though it’s not an API. But we’re
talking about HTML here and don’t want to miss this important feature of the HTML5
specification: you can add to any HTML tag any number of custom nonvisible at‐

tributes as long as they start with data- and have at least one character after the hy‐
phen. For example, this is absolutely legal in HTML5:

 <li data-phone="212-324-6656">Mary
 <li data-phone="732-303-1234">Anna
 ...

Behind the scenes, a custom framework can find all elements that have the data-

phone attribute and generate additional code for processing the provided phone number.
If this example doesn’t impress you, go to Chapter 10, where you’ll learn how to use

jQuery Mobile. The creators of this library use these data- attributes in a very smart
way.

Summary
In this appendix, you were introduced to a number of useful HTML5 APIs. You know
how to check whether a particular API is supported by your web browser. But what if
you are one of many enterprise developers who must use an Internet Explorer version
earlier than 10.0? Google used to offer a nice solution: Google Chrome Frame, which
was a plug-in for Internet Explorer.

Users had to install Chrome Frame on their machines, and web developers just needed
to add the following line to their web pages:

<meta http-equiv="X-UA-Compatible" content="chrome=1" />

After that, the web page rendering would be done by Chrome Frame, whereas your web
application would run in Internet Explorer. Unfortunately, Google decided to discon‐
tinue supporting the Chrome Frame project as of January 2014. It is recommending to
prompt the user of your application to upgrade the web browser, which might not be
something users are willing to do. But let’s hope for the best.

Summary | 587

http://bit.ly/9Udecy
http://bit.ly/9Udecy
http://www.google.com/chromeframe

APPENDIX B

Running Code Samples and IDE

The code samples used in this book are available on GitHub—they are grouped by
chapters. If a chapter has code samples, look for the directory with the respective name.

Technically, you don’t have to use any integrated development environment (IDE) to
run code examples (except the CDB example from Chapter 5). Just open the main file
in a web browser, and off you go. But using an IDE will make you more productive.

Choosing an IDE
Selecting an IDE that supports JavaScript is a matter of personal preference. Because
there is no compilation stage and most of your debugging will be done by using the web
browser tools, picking a text editor that supports syntax highlighting is all that most
developers need. For example, there is an excellent text editor called Sublime Text 2.
Among many programming languages, this editor understands the keywords of HTML,
CSS, and JavaScript, and it offers not only syntax highlighting, but also context-sensitive
help, and autocomplete.

If you are coming from a Java background, the chances are that you are familiar and
comfortable with the Eclipse IDE. In this case, install the Eclipse plug-in VJET for
JavaScript support.

Oracle’s IDE NetBeans 7.3 and above support HTML5 and JavaScript development.
NetBeans includes a JavaScript debugger that allows your code to connect to the web
browser while debugging inside the IDE.

If you prefer Microsoft technologies, they offer excellent JavaScript support in Visual
Studio 2012.

Appcelerator offers a free Eclipse-based Aptana Studio 3 IDE. Aptana Studio comes
with an embedded web server so that you can test your JavaScript code without the need
to start any additional software.

589

http://bit.ly/1uFXI5u
http://www.sublimetext.com
http://eclipse.org/vjet
http://wiki.netbeans.org/HTML5
http://aptana.com

The authors of this book like and recommend using the WebStorm IDE from JetBrains.
In addition to smart context-sensitive help, autocomplete, and syntax highlighting,
WebStorm offers HTML5 templates, and a code coverage feature that identifies code
fragments that haven’t been tested.

Running Code Samples in WebStorm
The WebStorm IDE is pretty intuitive to use. If you’ve never used it before, refer to its
Quick Start Guide. When you first start WebStorm, on the Welcome screen, select the
option Open Directory. Then, select the directory where you downloaded the samples
of a specific book chapter. For example, after opening code samples from Chapter 1, the
WebStorm IDE might look as shown in Figure B-1.

Figure B-1. Code samples from Chapter 1 displayed in WebStorm

If you want to create a new HTML or JavaScript file in WebStorm, just select the ap‐
propriate menu option under File→New. For example, selecting the menu
File→New→HTML File creates the following file with the basic markup:

<!DOCTYPE html>
<html>

 <head>
 <title></title>
 </head>

 <body>

590 | Appendix B: Running Code Samples and IDE

http://www.jetbrains.com/webstorm
http://www.jetbrains.com/webstorm/quickstart

 </body>
</html>

WebStorm comes with a simple internal web server. Right-click the HTML file that you
want to open (for example, index.html) and choose Open in Browser. WebStorm’s in‐
ternal server will serve the file to the browser.

For example, if WebStorm opens the directory chapter1, as in Figure B-1, you’ll see the
following URL in your web browser: http://localhost:63342/chapter1/project-01-get-
started.

You can configure in WebStorm the port number of the internal web
server via Preferences→Debugger→JavaScript→Built-in server port.

Using Two IDEs: WebStorm and Eclipse
Although we prefer using WebStorm for JavaScript development, we have to use Eclipse
for some Java-related projects. In such cases, we create a project in WebStorm pointing
at the WebContent directory of our Eclipse project. This way, we still enjoy very smart
context-sensitive help offered by WebStorm, and all code modifications become im‐
mediately visible in the Eclipse project.

To open the content of the Eclipse WebContent directory in WebStorm, choose
File→Open Directory and point it at the WebContent directory of your Eclipse project.

Mac users can also do it another way:

1. Create a script to launch WebStorm from the command line. To do this, start Web‐
Storm and choose Tools→Create Launcher Script. Agree with defaults offered by
the pop-up window shown in Figure B-2 or select another directory located in the

PATH system variable of your computer. This creates a script named wstorm, and
you’ll be able to start WebStorm from a command line.

Using Two IDEs: WebStorm and Eclipse | 591

http://blog.jetbrains.com/webide/2013/03/built-in-server-in-webstorm-6/

Figure B-2. Creating the launch script for WebStorm

2. Open a terminal window and switch to the directory WebStorm of your Eclipse

project. Type the command wstorm . to open WebStorm with the entire content
of your WebContent project. So you’ll be doing all JavaScript development in Web‐
Storm, and the Java-related coding in Eclipse while using the same WebContent
directory.

Such a complex setup looks like overkill, but we are talking about enterprise develop‐
ment, for which you might have to jump through some hoops to create a convenient
working environment for yourself. Besides, you do it only once.

592 | Appendix B: Running Code Samples and IDE

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
$() constructor, 90
<canvas> tag, 73
<form> tag, 556
<link> tags, 373
<script> tag, 217
<svg> tag, 73
@media rules, 373

A
AAAR (arrange-act-assert-reset), 258
Above the Fold design, 425
absolute sizing, 379
access tokens, 341
ActiveX controls, 54
ad hoc distribution, 532
Adobe Flex framework, 544
Adobe PhoneGap Build Service, 526
Ajax (Asynchronous JavaScript and XML)

asynchronous nature of, 98
benefits/drawbacks of, 59
development of, 53
displaying errors, 61
jQuery shorthand methods, 99
loading data with XMLHTTPRequest, 67
steps for data retrieval, 56
using jQuery with, 97

ajaxSetup(), 98

AngularJS, 124
Apache Benchmark, 255
Apache Ripple emulator, 409
Apache Tomcat, 150
App Store, 513
application cache, 563
application store, 513
application-level security, 334, 349

(see also security)
arrays

using, 66
assertions, 257
Asynchronous Module Definition (AMD)

benefits of, 227
drawbacks of, 227
main functions, 225
writing AMD modules, 236

Atmosphere framework, 307
auction application

loading modules on demand, 313
messaging protocol, 328
traffic monitoring with Chrome, 320
traffic monitoring with Wireshark, 324

authentication/passwords
biometric checks, 336
brute-force attack, 338
encryption, 338
re-authentication, 338
RSA SecurID, 335

593

single sign-on, 337
authorization

access tokens, 341
federated identity, 341
limited access, 340
OAuth 2.0 main actors, 343
OAuth-based, 340
OpenID Connect, 341
private authorization servers, 344
public authorization servers, 343
role-level security, 339
SAML (Security Assertion Markup Lan‐

guage), 341
session tracking, 340

B
Balsamiq Mock-ups, 6
Base64 encoding, 336, 401
basic authentication, 336
behavior-driven development (BDD), 262
Benchmark, 255
bind(), 97
biometric authentication, 336
Black Hat computer security conference, 335
black lists, 351
BlackBerry World, 513
Bootstrap, 119
breakpoints

determining number of, 378
example of, 370
fluid grids and, 382
specifying, 375

browsers
feature detection with Modernizr, 42
geolocation support in, 35
handling differences in, 549
inconsistencies in width measurement, 378
modifying history, 583
Selenium browser automation tool, 254
support for HTML5, 13, 547

brute-force attack, 338
bubbling, 147
build automation (see productivity tools)
BYOD (bring your own device), 353, 476

C
cache manifest, 563

callbacks
chaining asynchronous, 98
promised callbacks, 98

callouts, design considerations for, 7
camera access, 534
Casper.js scripting framework, 254
charts

adding with canvas element, 74
adding with scalable vector graphics, 77
creating with Ext JS, 178
dynamic display of, 73
support in Sencha Touch, 462, 500

Chrome Frame, 587
classes

creating with xtype, 137
declaration/loading with Ext JS, 134
dynamic loading with Ext JS, 136
emulating with Module pattern, 219

Clear Data Builder (CDB)
creation of, 197
data pagination, 209
increasing productivity with, 198
installing, 198
new project creation, 199

Clear Toolkit for Ext JS, 197
click event, 476
CMS (content management systems), 69
code-generation tools, 193
collapsible menus, 448
comma-separated value (CSV) format, 63, 308
CommonJS module, 222, 237
Compass CSS authoring framework, 163, 390
components

as containers, 146
life cycle of, 145
loosely vs. tightly coupled, 244

conditional CSS loading, 362
consent windows, 344
consumer-oriented applications, 514
containers

components as, 146
hierarchy in Sencha Touch, 470
native application containers, 516

content delivery network (CDN), 88, 402
content injection, 345
Content Security Policy, 347
continuous integration (CI), 254, 266
control groups, 446
Convertigo Mobilizer, 518

594 | Index

cookies, basics of, 565
Cordova library, 515
coupling, loose vs. tight, 244
create(), 136
credentials, reusing with SSO software, 337
credit card processing, 349
Crockford, Douglas, 63
cross-browser functionality, polyfills for, 13, 45
Cross-Origin Resource Sharing (CORS), 60, 81
cross-platform development, 544

(see also responsive web design)
cross-site scripting (XXS), 347
CRUD applications

adding data pagination to, 209
generating, 201
jumpstarting development of, 197

CSS (Cascading Style Sheets)
conditional loading of, 362
SASS syntax and, 162

CSS Flexible Box Layout, 44
CSS float property, 377
CSS media queries

<link> tags vs. @media rules, 373
determining number of breakpoints, 378
effect on file size, 378
example of, 369
goals of, 373
pixels, percentages, and rem units, 377
polyfills for unsupported browsers, 376
resolution vs. screen size, 400

CSS tables, 389
CSS vendor prefixes, 22
curl.js, 232
custom nonvisible attributes, 406, 587
CYOD (choose your own device), 353

D
Dart, 545
data

avoiding illegal modification of, 345
choosing format for, 63, 308
custom data attributes, 587
loading external with JSONP, 81
pagination of, 209

debugging
in WebStorm, 464
JavaScript extensions, 168
method chaining and, 90
remote for mobile applications, 411

syntax errors, 187, 251
dedicated workers, 559
define(), 134
Deflate, 72
delegate(), 97
denial of service (DoS) attacks, 348
dependency management

Bower package manager, 191
npm utility, 186

design patterns
Generation Gap, 204
Mediator, 244, 554
Model-View-Controller (MVC), 123, 139
Module, 219

digest authentication, 336
Document Type Definitions (DTDs), 63
DOM (Document Object Model)

testing, 279
donate section, 24, 100, 107, 158, 393, 493
done(), 98
drop-down menus, 448
dynamic web projects

creating, 151
deploying, 155–169
Sencha Eclipse plug-in for, 151
Web Tools Platform for, 151

E
Eclipse

dynamic web projects, 151
project examples, 149
running code samples in, 591
set up, 150

ECMAScript 6 (ES6)
module syntax specification, 229
module transpiler, 229

elements
attaching event handlers to, 95
filtering, 93

elevation of privilege attacks, 348
em units, 22
emulators, 409
encapsulation, 219
encryption, 338

(see also security)
ES6 Module Transpiler library, 229
event handlers/listeners, 95
events

delegating, 96

Index | 595

in Ext JS, 146
in jQuery Mobile, 454
in Sencha Touch, 474
processing popstate event, 585
touch events, 454

Excel, 543
Ext JS

application programming
charts/tables, 178–182
dynamic web project, 155–169
Eclipse IDE/Apache Tomcat, 150
footer, 182
longin box, 171
maps, 172–177
production version, 183
video, 172

benefits of, 124
choosing distribution, 133
class declaration/loading, 134
Clear Toolkit for, 197
Compass CSS authoring framework, 163
component life cycle, 145
configuration options, 128
creating classes with xtype, 137
downloading/installing, 125
dynamic class loading, 136
dynamic web projects in, 151
Hello World example, 127
Model-View-Controller (MVC) design pat‐

tern, 139
multiple inheritance with mixins, 138
predefined themes in, 163
reusing stores in Sencha Touch, 508
Sencha CMD tool, 129
specifying layouts, 147
vs. other tools, 127
working with events in, 146

Ext.create(), 134
Ext.define(), 134

F
Facebook API, 342
fadeToggle(), 103
fail(), 98
Farata Systems, 197
fat client applications, 12, 59
federated identity, 341
filters, 91
fingerprint scanners, 336

finite state machine, 4
Firebug

debugging JavaScript in, 168
determining resource size, 52

firewalls, 334
(see also security)

fixtures, 269
Flash Player plug-in, 30, 544
flex property, 148
Flexible Box Layout, 44
float property, 377
fluid grids

examples of, 382
frameworks supporting, 390
mixed with fixed, 389
relative sizing, 379
vs. absolute sizing, 379
window as a grid, 380, 380

font-size property, 379
fonts

icon fonts, 23, 439
vector graphics, 23, 73

footer section, 22, 182
forms

HTML5, 556
manual serialization of, 108
validation using regular expressions, 27
validation with jQuery Validator plug-in,

114
frameworks

benefits of, 123
comparing mobile, 355
vs. libraries, 87

function handlers, assigning, 28
functional testing, 253

G
Generation Gap pattern, 204
generators, 193
Geocoding API, 49
geolocation support

browser feature detection, 42
code for, 36
desktop application, 4, 34
integration with Google Maps, 39
maps in Sencha Touch, 504
multiple map markers, 50
search, 47

get(), 99

596 | Index

getJSON(), 99
global namespace, 89
global object window, 35
Gmail, 54
Google Chrome Frame, 587
Google Geocoding API, 49
Google Maps

desktop application, 4, 34
integration with, 39
multiple map markers, 50
search, 47

Google Play, 513
Google protocol buffer language, 310
Google’s Dart, 545
Google’s Gson, 71
graphics, raster vs. vector, 23, 73
grids

fluid grids, 380
in jQuery Mobile, 443

Grunt
file setup, 186
Jasmine and, 262
JSHint checks, 187
QUnit and, 258
watch task, 189
WebStorm and, 288
workflow automation with, 186

Gson, 71
Gzip (GNU zip compression), 72

H
Hanging GET, 295
heartbeats, 305
History API

modifying browser history, 583
overview of, 583
processing popstate event, 585

HTML5
cross-platform capabilities of, 544
demand for programmers using, 546
drawbacks of, 543
specifications for, 547
video element, 30

HTML5 APIs
<form> tag, 556
browser support for, 547
custom data attributes, 587
handling browser differences, 549

History
modifying browser history, 583
overview of, 583
processing popstate event, 585

offline web applications
application cache, 563
designing for, 562
determining offline status, 564
local storage options, 564
overview of, 562
web storage specification APIs, 566

Web Messaging
communicating with iFrames, 550
overview of, 550
sending/receiving messages, 550

Web Workers
communicating with, 558
dedicated and shared, 559
overview of, 557

WebSocket, overview of, 561
(see also WebSocket protocol)

HTML5 Boilerplate, 549
HTML5 forms, 556
HTTP protocol

401/403 status codes, 336
long polling, 295
polling, 294
real-time behavior simulation, 294
streaming, 295
upgrade to WebSocket, 301
vs. HTTPs, 334

hybrid mobile applications
alternative solutions, 518
benefits of, 513, 515, 541
choosing development tools for, 518
Cordova library for, 515
PhoneGap

Adobe Build Service, 526
application programming, 533
camera access, 534
cloud service, 516
components included, 516
distributing mobile applications, 531
Hello World example, 519
installing, 519
installing local SDKs, 525
iOS testing, 525
packaging HTML5 applications, 533
plug-ins for, 534

Index | 597

remote server offered by, 515
technical support for, 541
workflows offered in, 518

Titanium tools, 517
vs. native, 513
vs. web, 514

I
IBM Worklight, 518
IcoMoon web application, 23
icon fonts, 23, 439
IDEs (integrated development environments)

benefits of, 589
choosing, 589
Eclipse, 150, 591
WebStorm, 590

iFrames, communicating with, 550
Illuminations, 168
images

lossless format for, 401
lossy formats, 401
providing server-side support for, 538
responsive display of, 400
uploading in JavaScript, 536
vector graphics, 23, 73
web page image slider, 116

immediately invoked function expression
(IIFE), 219

IndexedDB
documentation, 565
modifying object store data, 575
object stores and versioning, 573
overview of, 571
retrieving data, 577
running sample code, 578
transactions, 574

IndexedDBShim, 565
information disclosure attacks, 348
inheritance

multiple inheritance, 138
injection, 345
integration testing, 253
Interface Description Language, 298
iOS Developer Program, 531
iStockphoto, 24

J
Jackson, 71

Jasmine
basics of, 267
custom matchers, 270
setting up Grunt with, 262
specification setup, 268
spies, 272

JavaScript
adding to jQuery Mobile, 455
handling JSON in, 71
library (see jQuery)
mixins, 138
optional semicolons, 188
uploading photos in, 536
V8 engine for, 186

Jenkins framework, 266
jMeter, 256
jQuery Core (see jQuery)
jQuery library

$() vs. jQuery() constructors, 90
application programming

form validation, 114
image slider, 116
login and donate, 100
states/countries data loading, 104
submitting donation form, 107

benefits of, 87
deployment, 88
downloading, 88
filtering elements, 93
handling events, 94
Hello World example, 90
method chaining, 90, 101
minimizing manual coding with, 87
plug-ins for, 113
selectors/filters, 91
shorthand methods for Ajax calls, 99
testing with JSFiddle, 92
using Ajax with, 97
vs. HTML, 89

jQuery Mobile, 88
adding JavaScript, 455
application programming

mobile prototype, 423
structure and navigation, 437

available data attributes, 408
bug fixing in, 459
code organization, 406
control groups, 446
CSS styling, 411

598 | Index

dropdown/collapsible menus, 448
events, 454
grid layouts, 443
icon fonts, 439
list views, 451
nonvisible attributes in, 406
obtaining, 405
page navigation, 412
persistent toolbars, 417
prerequisites to learning, 405
programmatic navigation, 422
progressive enhancement, 416
remote debugging, 411
software emulators, 409
testing as a service, 410
version used, 459
vs. Sencha Touch, 355, 511

jQuery plug-ins, 113
jQuery UI library, 88
jQuery Validator plug-in, 114
jqXHR, 98
JSFiddle, 92, 135
JSHint, 187, 251
JSON (JavaScript Object Notation)

arrays, 66
charts

adding with canvas element, 74
adding with scalable vector graphics, 77
dynamic display of, 73

compressing, 72
eval() function, 64
handling in Java, 71
loading data with XMLHTTPRequest, 67
parsing, 63
similarity to JavaScript object literals, 54
states/countries dropdown menus, 64, 104
using in content management systems, 69
vs. alternative data formats, 63
vs. XML, 63, 308

JSON Web Token (JWT), 341
json-simple, 71
JSONP

data retrieval example, 83
loading external data with, 81

K
Kendo UI Mobile, 518
keys, in localStorage API, 566

L
landscape mode, 365, 433, 510
layouts (see page layout)
LESS dynamic CSS language, 163
libraries, vs. frameworks, 87
Lightweight Directory Access Protocol (LDAP),

337
limited access authorization, 340
list views, 451
load testing, 254
load(), 99
localStorage API

overview of, 566
vs. sessionStorage, 570

login section, 100, 171, 490
long polling, 295
Lorem Ipsum dummy text, 24

M
man-in-the-middle attacks, 337
managed environments, 476
Marcotte, Ethan, 357
Media Access Control (MAC) address, 35
Media Player, 30
media queries (see CSS media queries)
Mediator design pattern, 244, 554
methods

chaining, 90, 101
on(), 95

Microsoft Excel, 543
Microsoft’s Security Development Lifecycle, 334
Microsoft’s TypeScript, 232
mixins

supporting multiple inheritance with, 138
Mob4Hire, 410
mobile devices

data input on, 354
hybrid applications, 513–541
jQuery Mobile library for, 405–459
market fragmentation in, 364
responsive web design, 353–403

Mobile First approach
basic design steps, 4
pixels vs. em units, 22

mock-ups/wireframes (see web design)
MockFlow, 6
Model-View-Controller (MVC) design pattern

controllers/views in, 143

Index | 599

event-processing logic in, 490
frameworks currently used, 123
in Sencha Touch framework, 463
models/stores in, 141
overview of, 139

Modernizr
demonstration of, 42, 549
polyfills available, 45, 376

modularization
application programming

directory structure, 233
loading modules on demand, 238
RequireJS configuration, 235
RequireJS optimizer utility, 240
RequireJS plug-ins, 240
writing AMD modules, 236

Asynchronous Module Definition (AMD),
225

basics of, 217
CommonJS, 222, 237
ECMAScript 6 (ES6) modules, 229
emulating in JavaScript, 219
goals of, 466
in Sencha Touch, 466
intermodule communications, 244
Module pattern, 219
reducing latency with, 215, 466
Universal Module Definition (UMD), 228

Module pattern, 219
multipage templates, 406, 412, 416

N
native applications, 513
navbars (navigation bars), 417, 439
Near-Field Communication (NFC), 514
network security, 334

(see also security)
Node.js, 186
nonvisible attributes, 406, 587
npm utility, 186
NSA (National Security Agency), 335

O
OAuth, 340
OAuth 2.0, 343
object stores

basics of, 572
modifying data in, 575

versioning and, 573
object window, 35
offline web applications

application cache, 563
designing for, 562
determining offline status, 564
local storage options, 564
overview of, 562
web storage specification APIs, 566

on(), 95
Open Beer DataBase, 83
OpenID Connect, 341
optimization tools, 240
order.js plug-in, 240
orientationchange event, 510
OWASP (Open Web Application Security

Project), 345

P
page layout

Above the Fold design, 425
CSS Flexible Box Layout, 44
flexible, 148
grids in jQuery Mobile, 443
in Sencha Touch, 473
pixels vs. percentages, 377
prototypes for, 16
prototypes for mobile devices, 365, 423
specifying in Ext JS, 147

PageSpeed Insights, 244
pagination, 209
passwords, 335, 338

(see also security)
PCI (Payment Card Industry) compliance, 349
penetration tests, 348
percentages, vs. pixels, 377
persistent toolbars, 417
PhantomJS, 254, 256
phishing attacks, 347
PhoneGap

Adobe Build Service, 526
application programming, 533
camera access, 534
cloud service, 516
components included, 516
distributing mobile applications, 531
Hello World example, 519
installing, 519
installing local SDKs, 525

600 | Index

iOS testing, 525
packaging HTML5 applications, 533
plug-ins for, 534
remote server offered by, 515
technical support for, 541
workflows offered in, 518

photographs (see images)
PHP

scripts for image uploading, 538
XAMPP server, 112

pie charts (see charts)
ping and pong frames, 305
pixelation, avoiding, 23
pixels

vs. em units, 22
vs. percentages, 377

pointing devices, design considerations for, 4
polling techniques, 54–56, 294
polyfills, 13, 45, 376
Portal library, 306
portrait mode, 365, 399, 433
productivity tools

Bower package manager, 191
Clear Data Builder (CDB)

creation of, 197
data pagination, 209
generating CRUD applications, 201
increasing productivity with, 198
installing, 198
new project creation, 199

Grunt
file setup, 186
JSHint checks, 187
watch task, 189
workflow automation with, 186

Node.js, 186
Yeoman tool collection, 193

programmatic navigation, 422
progressive enhancement, 416
promised callbacks, 98
protocol buffer (protobuf), 310
proxy servers, 312
public/private authorization servers, 343
pushState(), 583

Q
quality assurance (QA), 252
QuickTime, 30
QUnit, 258

R
raster graphics, 23
re-authentication, 338
readyState attribute, 57
RealPlayer, 30
red-green-refractor, 257
reflected scripting attacks (phishing), 347
regression, 257
regular expressions, form validation with, 27
regulatory compliance, 349
relative sizing, 379
rem units, 377
repudiation attacks, 348
RequireJS

CommonJS module support, 237
configuration, 235
generic module loader, 236
optimization tool, 240
plug-ins for, 240

Responsive Carousel plug-in, 116
Responsive Inspector, 377
responsive web design (RWD)

application programming
donation section, 393
media query for, 391
portrait mode, 399
responsive header, 390
viewport width, 393

approaches to, 357
best applications for, 354, 402
challenges faced, 354
concept underlying, 357
CSS media queries

<link> tags vs. @media rules, 373
determining number of breakpoints, 378
example of, 369
goals of, 373
pixels, percentages, and rem units, 377
polyfills for unsupported browsers, 376

detecting user device, 363
determining resource size, 52
drawbacks of, 403
example websites, 360
fluid grids

examples of, 382
frameworks supporting, 389
mixed with fixed, 389
relative sizing, 379
vs. absolute sizing, 379

Index | 601

window as a grid, 380
fluid media, 400
goals of, 353
multiple code versions, 359
page layout mockups, 365
pillars of, 364
User-Agent attribute, 359
viewport concept, 376

RESTful (Representational State Transfer) archi‐
tecture, 55

reusable code, 219
Ripple emulator, 409
role-level security, 339
RSA SecurID (RSA hard token), 335

S
salted hashes, 339
same origin policy, 59
SAML (Security Assertion Markup Language),

341
SASS syntax, 162
Scalable Vector Graphics (SVG), 73, 77
Search Engine Optimization (SEO), 59
Secure Hash Algorithm (SHA), 338
Secure Sockets Layer (SSL), 334
security

authentication/passwords
basic and digest, 336
biometric checks, 336
brute-force attack, 338
encryption, 338
re-authentication, 338
RSA SecurID, 335
single sign-on, 337

authorization
access tokens, 341
federated identity, 341
JSON Web Token (JWT), 341
limited access, 340
OAuth 2.0 main actors, 343
OAuth-based, 340
OpenID Connect, 341
private authorization servers, 344
public authorization servers, 343
row-level security, 339
SAML (Security Assertion Markup Lan‐

guage), 341
session tracking, 340

credit card processing, 349

cross-site scripting (XXS), 347
HTTP vs. HTTPs, 334
injection, 345
layers of, 350
managed environments, 476
OWASP top 10 risks, 345
penetration testing, 348
phishing, 347
regulatory compliance, 349
starting point for, 333
STRIDE security classification, 348
white list/black list validation, 351

Security Development Lifecycle, 334
SegmentedButton, 495
selectors, 91
Selenium browser automation tool, 254
semicolons, 188
Sencha CMD tool, 129
Sencha Desktop Packager, 132
Sencha Space, 476
Sencha Touch framework

application programming
application object, 478
charts, 500
donate form, 493
landscape mode, 510
login controller, 487
login form, 490
main view, 481
maps, 504
media, 502
stores/models in, 508

chart support in, 462
code generation/distribution, 462
documentation for, 461
downloading, 462
Hello World example, 467
microloader and configurations, 465
modularization, 466
platform-specific themes, 492
reusing stores from Ext JS, 508
tap gesture, 476
testing new application, 463
UI construction

components available, 470
containers, 470
events, 474
layouts, 473

vs. Ext JS, 461

602 | Index

vs. jQuery Mobile, 355, 511
serialize(), 100
server-sent events (SSEs), 296
server-side validation, 347
servers

Apache Tomcat, 150
deployment on different, 307
embedded with Sencha CMD, 133
load testing for, 254
remote offered by PhoneGap, 515

Service Set Identifier (SSID), 35
session IDs, 335
session tracking, 340
sessionStorage API

overview of, 569
vs. localStorage, 570

Siesta UI testing tool, 286
single sign-on (SSO), 337
single-page applications (SPA)

avoiding cross-site scripting attacks, 347
prototype for, 12

single-page templates, 406, 414
SlimerJS, 254
social networks, single-sign on, 337
SocketRocket library, 308
software emulators, 409
spoofing attacks, 348
states/countries dropdown menus, 60, 64, 104,

448
streaming, 295
STRIDE security classifications, 348
Sublime TExt 2, 589
swatches, 411
syntax errors, 187, 251

T
tables, creating with Ext JS, 178

(see also grids)
tampering attacks, 348
tap gesture, 476
test contexts/fixtures, 269
test-driven development (TDD)

AAAR pattern, 258
Apache Benchmark, 255
application programming

harnessing ExtJS application, 280
testing controllers, 284
testing models, 283
testing views, 286

benefits of, 252
functional testing, 253
fundamental mantra of, 257
IDE setup, 288
integration testing, 253
Jasmine

basics of, 267
behavior-driven development with, 262
custom matchers, 270
setting up Grunt with, 262
specification setup, 268
spies, 272

jMeter, 256
JSFiddle, 92
load testing, 254
multibrowser testing, 273
PhantomJS, 254, 256
quality assurance vs. user acceptance testing,

252
QUnit, 258
SlimerJS, 254
test fixtures, 269
testing DOM, 279
time required for, 251
unit testing, 253

Testem
configuration file, 273
installation, 273
running tests, 273

TestFlight, 533
testing as a service (TaaS), 410
themes, 163, 412, 492
threads, running multiple, 557
Titanium API, 517
ToDoMVC, 124
toggle(), 103
tokens

access tokens, 341
JSON Web Token (JWT), 341

Tomcat, 150
toolbars

docked, 470
persistent, 417

touch events, 454
transactions, basics of, 574
Transport Layer Security (TLS), 334
Tumbor imaging service, 401
Twitter’s Bootstrap, 119
TypeScript, 232

Index | 603

typography, 365

U
unbind(), 97
unit testing, 253
Universal Module Definition (UMD), 228
user acceptance testing (UAT), 252
user interface (UI)

component life cycle, 145
containers in Sencha Touch, 470
data input on mobile devices, 354
designing (see web design)
events in Sencha Touch, 474
multi- and single-page templates, 406

User-Agent attribute, 359

V
V8 JavaScript engine, 186
validation

of forms using regular expressions, 27
of forms with jQuery Validator plug-in, 114
server-side validation, 347
white list/black list, 351

Validator plug-in, 114
values, in localStorage API, 566
vector graphics images, 23, 73
vendor prefixes, 22
video

adding HTML5 video element, 30
adding in Ext JS, 172
adding YouTube videos, 32
in Sencha Touch, 502
responsive display of, 400

VideoPanel.js, 172
viewport concept, 376
VJET plug-in, 589

W
watch task, 189
Web 2.0 (see HTML5)
Web Application Penetration Testing, 348
web applications

anatomy of, 54
vs. native, 514

web design
Balsamiq Mock-ups, 6
creating first mockups, 7

for enterprise applications, 3, 543
for mobile devices (see mobile devices)
geolocation support

browser feature detection, 42
code for, 36
for desktop applications, 34
integration with Google Maps, 39
multiple map markers, 50
search, 47

Mobile First approach, 4
prototypes

clickable logos/anchor tags, 18
CSS styling of, 13, 21
determining resource size, 52
donate section, 24
footer section, 22
JavaScript code on home page, 18
JavaScript code placement, 21
layout, 16
running code examples in WebStorm, 12
single-page applications, 12
user ID/password, 20

video
adding HTML5 video element, 30
adding YouTube videos, 32

working with a designer, 4, 7
Web Messaging

applying Mediator design pattern, 554
communicating with iFrames, 550
overview of, 550
sending/receiving messages, 550

web pages
bringing external data to (see Ajax; JSON)
single-page applications (SPA), 12

Web SQL Database, 565
Web Storage, 565
Web Workers

communicating with, 558
dedicated and shared, 559
overview of, 557

WebP format, 401
WebSocket protocol

advantages of, 293
application-level message format, 308
applications based on, 293
auction application using, 313–331
client-side API

connection termination, 305
data frames, 305

604 | Index

heartbeats, 305
illustration of, 300
WebSocket fram anatomy, 303
WebSocket handsake, 301

frameworks for
Atmosphere, 307
Portal, 306

goal of, 298
overview of, 561
proxies, 312
server-sent events, 296
URI schemes introduced in, 298
vs. HTTP protocol, 294
vs. TCP, 303
WebSocket interface, 298

WebStorm
debugging code in, 464
improving performance of, 150
internal server, 149
running code samples in, 12, 590
using with Eclipse, 591

white lists, 301, 351
Window Resizer add-on, 377

Window.matchMedia attribute, 362
wireframes/mock-ups (see web design)
Wireless Universal Resource File (WURF), 363
Wireshark, 324
workflow automation (see productivity tools)
ws (WebScoket) URI scheme, 298
wss (WebScoket Secure) URI scheme, 298

X
XAMPP server, 112
XML data format, 63, 308
XMLHTTPRequest (XHR), 54, 67
xtype attribute, 137

Y
yepnope.js, 46
Yoeman tool collection, 193
YouTube videos, 32

Z
Zepto framework, 355

Index | 605

About the Authors
Yakov Fain is a cofounder of the Farata Systems and SuranceBay companies. The first
company provides consulting services in the field of enterprise web development and
ecommerce, and the second one is a software product company, which develops soft‐
ware for the insurance industry. A leader of the Princeton Java Users Group, he has
authored several technical books and dozens of articles on software development. Yakov
received the title of Java Champion, which has been presented to only 150 people
worldwide. Yakov’s video course “Intro to Java” is available for free on YouTube. Yakov
also holds an MS in applied math. You can reach him at yfain@faratasystems.com and
follow him on Twitter.

Dr. Victor Rasputnis is a cofounder of the Farata Systems and SuranceBay companies.
He spends most of his time providing architectural design, implementation manage‐
ment, and mentoring to companies migrating to ecommerce technologies with Hybris.
Victor has authored several books and dozens of technical articles. He holds a PhD in
computer science. You can reach Victor at vrasputnis@faratasystems.com.

Anatole Tartakovsky is a cofounder of the Farata Systems and SuranceBay companies.
He spent more than 25 years developing system and business software. In the last 15
years, his focus has been on creating frameworks and business applications for dozens
of enterprises ranging from Walmart to Wall Street firms. Anatole has authored a num‐
ber of books and articles on Ajax, Flex, XML, the Internet, and client-server technolo‐
gies. He holds an MS in mathematics. You can reach Anatole at atartakovsky@farata‐
systems.com.

Viktor Gamov is a senior software engineer at Farata Systems. He consults financial
institutions and startups in design and implementation of web applications with
HTML5 and Java. A co-organizer of the Princeton Java Users Group, Viktor is passionate
about writing code and about the open source community. He holds an MS in computer
science. You can reach Viktor at viktor.gamov@faratasystems.com and follow him on
Twitter.

Colophon
The animal on the cover of Enterprise Web Development is a roseate spoonbill (Platalea
ajaja), and is a resident breeder in South America, often found east of the Andes, around
the coast of Central America, the Caribbean, Mexico, and the Gulf Coast. The roseate
spoonbill was found to be a close relative of yellow-billed spoonbills, both descended
of the other four spoonbill species.

With a wingspan averaging around 47–52 inches, these spoonbills are often about 28–
34 inches long. Immature birds have white, feathery heads with pale pink plumage and
a yellow or pinkish bill. Adults have a bare greenish head that turns golden when breed‐
ing with a white neck, back, and breast. The rest of their bodies are a deep pink, aside

http://bit.ly/UFrVHb
http://twitter.com/yfain
http://twitter.com/gamussa

from a grey bill. Similar to the American flamingo, the pink color of the roseate spoonbill
is diet-derived, coming mostly from the carotenoid pigment canthaxanthin.

This species feeds by wading through shallow fresh or coastal waters, swinging its bill
from side to side. They are gregarious and often feed in groups. Its spoon-shaped bill
helps to sift through the mud for crustaceans, aquatic insects, frogs, newts, and very
small fish.

They nest in shrubs or trees, and lay from two to five whitish eggs with brown markings.
There is not much information available about the roseate spoonbill’s predators, how‐
ever, nestlings are sometimes killed by turkey vultures, bald eagles, raccoons, and fire
ants.

The cover image source is unknown. The cover fonts are URW Typewriter and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	What’s an Enterprise Application?
	Why the Authors Wrote This Book
	Who This Book Is For
	What This Book Is and Why It’s Important
	Introducing the Save The Child Application
	Is This Even an Enterprise App?
	How We Are Going to Build This App

	The Goals of the Book
	Technologies Used in This Book
	How the Book Is Organized
	Conventions Used in This Book
	The Source Code for the Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Introduction
	Moving from DHTML to HTML5
	Developing in HTML5
	Challenges of the Enterprise Developer
	Summary

	Part I. Building Your Application
	Chapter 1. Mocking Up the Save The Child Application
	Considering Mobile First
	Introducing Balsamiq Mockups
	The Project Owner Talks to a Web Designer
	Creating First Mockups
	Turning Mockups into a Prototype
	Single-Page Applications
	Running Code Examples from WebStorm
	Our First Prototype
	Our Main Page JavaScript
	The Footer Section
	The Donate Section

	Adding Video
	Adding the HTML5 Video Element
	Embedding YouTube Videos

	Adding Geolocation Support
	Geolocation Basics
	Integration with Google Maps
	Browser Feature Detection with Modernizr
	Search and Multimarkers with Google Maps

	Summary

	Chapter 2. Using Ajax and JSON
	Understanding Ajax
	Understanding JSON
	Working with Ajax
	Retrieving Data from the Server
	Ajax: Good and Bad
	Populating States and Countries from HTML Files

	Using JSON
	Populating States and Countries from JSON Files
	Using Arrays in JSON
	Loading Charity Events by Using Ajax and JSON
	Using JSON in CMS

	Handling JSON in Java
	Compressing JSON
	Adding Charts to Save The Child
	Adding a Chart with the Canvas Element
	Adding a Chart by Using SVG

	Loading Data from Other Servers by Using JSONP
	Beer and JSONP

	Summary

	Chapter 3. Introducing the jQuery Library
	Getting Started with jQuery
	Hello World

	Using Selectors and Filters
	Testing jQuery Code with JSFiddle
	Filtering Elements
	Handling Events
	Attaching Event Handlers and Elements by Using the Method on()
	Delegating Events

	Using Ajax with jQuery
	Handy Shorthand Methods

	Programming Save The Child by Using jQuery
	Login and Donate
	Loading HTML States and Countries by Using jQuery Ajax
	Loading JSON States and Countries by Using jQuery Ajax
	Submitting the Donate Form

	Using jQuery Plug-ins
	Validating the Donate Form by Using a Plug-in
	Adding an Image Slider

	Summary

	Part II. Enterprise Considerations
	Chapter 4. Developing Web Applications in the Ext JS Framework
	Exploring JavaScript Frameworks
	Choosing to Use Ext JS
	Downloading and Installing Ext JS
	Becoming Familiar with Ext JS and Tooling
	Creating the First Version of Hello World
	Generating Applications with the Sencha CMD Tool
	Choosing Which Ext JS Distribution to Use
	Declaring, Loading, and Instantiating Classes
	Best Practice: MVC
	Exploring a Component’s Life Cycle
	Working with Events
	Specifying Layouts

	Developing Save The Child with Ext JS
	Setting Up the Eclipse IDE and Apache Tomcat
	Running the Top Portion of the Save The Child UI
	Completing Save The Child

	Summary

	Chapter 5. Selected Productivity Tools for Enterprise Developers
	Using Node.js, V8, and npm
	Automating Everything with Grunt
	Exploring the Simplest Gruntfile
	Using Grunt to Run JSHint Checks
	Watching for the File Changes
	Using Bower
	Using Yeoman
	Using Ext JS and CDB for Productive Enterprise Web Development
	Ext JS MVC Application Scaffolding
	Generating a CRUD Application
	Data Pagination

	Summary

	Chapter 6. Modularizing Large-Scale JavaScript Projects
	Understanding Modularization Basics
	Exploring Roads to Modularization
	The Module Pattern
	CommonJS
	Asynchronous Module Definition
	Universal Module Definition
	ECMAScript 6 Modules

	Dicing the Save The Child Application into Modules
	Inside the RequireJS Configuration: config.js
	Writing AMD Modules
	Loading Modules On Demand
	Using RequireJS Plug-ins
	Using RequireJS Optimizer

	Loosely Coupled InterModule Communications with Mediator
	Summary

	Chapter 7. Test-Driven Development with JavaScript
	Why Test?
	Testing Basics
	Unit Testing
	Integration Testing
	Functional Testing
	Load Testing

	Test-Driven Development
	Implementing TDD by Using QUnit
	Behavior-Driven Development with Jasmine
	Multibrowser Testing
	Testing the DOM

	Building Save The Child with TDD
	Harnessing the ExtJS Application
	Testing the Models
	Testing the Controllers
	Testing the Views
	Setting Up the IDE for TDD

	Summary

	Chapter 8. Upgrading HTTP to WebSocket
	Using HTTP for Near Real-Time Applications
	Polling
	Long Polling
	HTTP Streaming

	Implementing Server-Sent Events
	Introducing the WebSocket API
	The WebSocket Interface
	The Client-Side API

	Using WebSocket Frameworks
	The Portal
	Atmosphere

	Choosing the Format for Application-Level Messages
	CSV
	XML
	JSON
	Google Protocol Buffers

	Using WebSocket with Proxies
	Adding an Auction to Save The Child
	Monitoring WebSocket Traffic by Using Chrome Developer Tools
	Sniffing WebSocket Frames by Using Wireshark
	Creating the Save The Child Auction Protocol

	Summary

	Chapter 9. Introduction to Web Application Security
	HTTP versus HTTPS
	Authentication and Passwords
	Basic and Digest Authentication
	Single Sign-on
	Handling Passwords

	Authorization
	OAuth-Based Authentication and Authorization
	Federated Identity with OpenID Connect and JSON Web Tokens
	OAuth 2.0 Main Actors
	Save The Child and OAuth

	Top Security Risks
	Injection
	Cross-Site Scripting

	Regulatory Compliance and Enterprise Security
	Summary

	Part III. Responsive Web Design and Mobile Devices
	Chapter 10. Responsive Design: One Site Fits All
	One or Two Versions of Code?
	How Many User Agents Are There

	Back to Mockups
	CSS Media Queries
	How Many Breakpoints?

	Fluid Grids
	Moving Away from Absolute Sizing
	Window as a Grid
	Responsive CSS: The Good News

	Making Save The Child Responsive
	Fluid Media

	Summary

	Chapter 11. jQuery Mobile
	Obtaining jQuery Mobile
	Organizing the Code
	Seeing How It Looks on Mobile Devices
	Styling in jQuery Mobile
	Adding Page Navigation
	Adding Persistent Toolbars

	Using jQuery Mobile for Save The Child
	Prototyping the Mobile Version
	Project Structure and Navigation
	Selected Code Fragments

	Summary

	Chapter 12. Sencha Touch
	Introducing Sencha Touch
	Performing Code Generation and Distribution
	Constructing the UI

	Using Sencha Touch for Save The Child
	Building the Application
	The Application Object
	The Main View
	Controller
	Other Views in Save The Child
	Stores and Models
	Working with Landscape Mode

	Comparing jQuery Mobile and Sencha Touch

	Chapter 13. Hybrid Mobile Applications
	Native Applications
	Native versus Web Applications
	Hybrid Applications
	Cordova and PhoneGap
	Titanium

	The Bottom Line
	Introduction to the PhoneGap Workflows
	Creating One More Hello World
	Testing Applications on iOS Devices
	Installing More Local SDKs

	Using the Adobe PhoneGap Build Service
	Distributing Mobile Applications

	Save The Child with PhoneGap
	Using PhoneGap to Package Any HTML5 Application
	Adding Camera Access to Save The Child
	Providing Sever-Side Support for Photo Images

	Summary

	Chapter 14. Epilogue
	HTML5 Is Not a Rosy Place
	Dart: A Promising Language
	HTML5 Is in Demand Today

	Appendix A. Selected HTML5 APIs
	Does Your Browser Support HTML5?
	Handling Differences in Browsers
	HTML5 Web Messaging API
	Sending and Receiving Messages
	Communicating with an iFrame
	Applying the Mediator Design Pattern

	Web Workers API
	Creating and Communicating with Workers
	Dedicated and Shared Workers

	The WebSocket API
	Offline Web Applications
	Prerequisites for Developing Offline Web Applications
	Application Cache API
	Is Your Application Offline?
	Options for Storing Data Locally
	Web Storage Specification APIs
	Introduction to IndexedDB

	The History API
	Modifying the Browser’s History by Using pushState()
	Processing the popstate Event

	Summary

	Appendix B. Running Code Samples and IDE
	Choosing an IDE
	Running Code Samples in WebStorm
	Using Two IDEs: WebStorm and Eclipse

	Index
	About the Authors

