
www.allitebooks.com

http://www.allitebooks.org

Expert
Service-Oriented
Architecture

in C#

Using the
Web Services

Enhancements 2.0

JEFFREY HASAN

www.allitebooks.com

http://www.allitebooks.org

Expert Service-Oriented Architecture in C#: Using the Web Services
Enhancements 2.0
Copyright © 2004 by Jeffrey Hasan

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any

means, electronic or mechanical, including photocopying, recording, or by any information storage

or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-390-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every

occurrence of a trademarked name, we use the names only in an editorial fashion and to the

benefit of the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham

Technical Reviewers: Mauricio Duran, Fernando Gutierrez

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Chris Mills, Steve Rycroft, Dominic Shakeshaft, Jim Sumser, Karen Watterson,

Gavin Wray, John Zukowski

Project Manager: Tracy Brown Collins

Copy Edit Manager: Nicole LeClerc

Copy Editor: Ami Knox

Production Manager: Kari Brooks

Compositor: Linda Weidemann, Wolf Creek Press

Proofreader: Sachi Guzman

Indexer: Rebecca Plunkett

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth

Avenue, New York, NY 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,

Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, e-mail orders@springer-ny.com, or visit http://www

.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de, or

visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,

Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit

http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every

precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall

have any liability to any person or entity with respect to any loss or damage caused or alleged to

be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads

section.

www.allitebooks.com

http://www.allitebooks.org

Nothing is really work

unless you would rather be doing something else.

JAMES BARRIE

SCOT TISH DRAMATIST

(1860–1937)

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

Foreword . xi

About the Author . xiii

About the Technical Reviewers . xiv

Acknowledgments . xv

Introduction . xvii

Chapter 1 Introducing Service-Oriented Architecture1

Chapter 2 The Web Services Description Language 19

Chapter 3 Design Patterns for Building

Message-Oriented Web Services .37

Chapter 4 Design Patterns for Building

Service-Oriented Web Services .67

Chapter 5 Web Services Enhancements 2.0 .95

Chapter 6 Secure Web Services with WS-Security 123

Chapter 7 Use Policy Frameworks to Enforce

Web Service Requirements with WS-Policy159

Chapter 8 Establish Trusted Communication with

WS-Secure Conversation .187

Chapter 9 Design Patterns for SOAP Messaging with

WS-Addressing and Routing .215

Chapter 10 Beyond WSE 2.0: Looking Ahead to Indigo 257

Appendix References .279

Index .293

vwww.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents

Foreword . xi

About the Author . xiii

About the Technical Reviewers . xiv

Acknowledgments . xv

Introduction . xvii

Chapter 1 Introducing Service-Oriented
Architecture . 1

Overview of Service-Oriented Architecture .3

The Web Services Specifications and the
WS-I Basic Profile .13

Summary .17

Chapter 2 The Web Services Description Language 19

Elements of the WSDL Document .20

Working with WSDL Documents .33

Summary .35

Chapter 3 Design Patterns for Building
Message-Oriented Web Services 37

How to Build Message-Oriented Web Services .37

Design and Build a Message-Oriented Web Service 40

Summary .65

Chapter 4 Design Patterns for Building
Service-Oriented Web Services 67

How to Build Service-Oriented Web Services .69

Design and Build a Service-Oriented Web Service 74

Design and Build a Service Agent .86

Summary .94

viiwww.allitebooks.com

http://www.allitebooks.org

Chapter 5 Web Services Enhancements 2.0 95

Overview of the WS-Specifications .96

Introducing Web Services Enhancements 2.0 .102

Install and Configure WSE 2.0 .110

X.509 Certificate Support .114

Final Thoughts on WSE .121

Summary .121

Chapter 6 Secure Web Services with WS-Security 123

The WS-Security Specification .124

Implement WS-Security Using WSE 2.0 .127

Prevent Replay Attacks Using Timestamps,
Digital Signatures, and Message Correlation 152

Summary .156

Chapter 7 Use Policy Frameworks to Enforce Web
Service Requirements with WS-Policy 159

Overview of the Policy Framework Specifications 160

Overview of Role-Based Authorization .176

Summary .185

Chapter 8 Establish Trusted Communication with
WS-Secure Conversation. 187

Overview of Secure Conversation .188

How to Implement a Secure Conversation Solution 192

Build a Secure Conversation Solution .195

Summary .214

Chapter 9 Design Patterns for SOAP Messaging
with WS-Addressing and Routing. 215

Communication Models for Web Services .216

Overview of WS-Addressing .218

Overview of Messaging .225

Overview of Routing and Referral .238

Integrate Web Services and MSMQ .248

Summary .254

Contents

viii www.allitebooks.com

http://www.allitebooks.org

Chapter 10 Beyond WSE 2.0: Looking Ahead
to Indigo . 257

Overview of Indigo .258

Understanding Indigo Web Services .266

Understanding Indigo Applications and Infrastructure 268

How to Get Ready for Indigo .274

WSE 2.0 and Indigo .276

Summary .277

Appendix References . 279

Service-Oriented Architecture (General) .279

XML Schemas and SOAP .280

WS-Specifications (General) .282

Web Services Enhancements 1.0 and 2.0 (General) 283

WS-Security .283

WS-Policy .286

WS-SecureConversation .287

WS-Addressing .287

WS-Messaging .288

WS-Routing and WS-Referral .289

WS-Reliable Messaging .289

Indigo .290

Miscellaneous .291

Index . 293

ix

Contents

www.allitebooks.com

http://www.allitebooks.org

xi

Foreword

I HEAR MANY misconceptions about Web services. The phrase “Web services is for

calling methods using XML” appears most often. It is true that Web services give

developers a way to invoke code on a remote machine. And that code is encap-

sulated in a method. But that does not mean that the Web services architecture

exists for remote method invocation. The Web services architecture offers an

unprecedented level of freedom when building distributed applications.

Developer freedom takes many forms. To some it is the freedom to recom-

pile their C++ code on another compiler. Others think of freedom as the ability

to see and modify the source code of underlying libraries.

The portability of Java appeals to many. In distributed applications another

freedom appeals: loose-coupling. Distributed applications are made up of multiple

pieces running on multiple machines. Coordinating multiple versions of software,

operating systems, and platform libraries can be a terrible burden.

The Web services architecture, service-orientation, offers a solution in the

form of loosely-coupled services. The power of XML isn’t that you can read it with

Notepad. XML’s gift comes from a structure that allows for growth and change in

a backward-compatible fashion. The cool thing about XML is that it is everywhere.

The architecture takes advantage of these fundamental tenets of XML and grows

them up for use in distributed applications.

For instance, developers live in a versioning hell. If you want to upgrade one

side of your application, you are taking your life (or at least your job) into your

hands if you don’t upgrade the rest of the application as well. Well-defined inter-

faces tend to melt when the infrastructure behind them change. Fragile software

breaks. The Web services architecture helps with complimentary technologies like

XML Schema’s anyElement and anyAttribute features, SOAP’s MustUnderstand,

and the policy framework. Each of these address a particular versioning problem

from changing user data to changes to underlying service capabilities.

Interoperability gives another form of freedom. Without interoperability, mono-

lithic applications force themselves on developers. Businesses need to communicate

with other businesses that run entirely different platforms. The cost and logistics of

forcing one or both parties to install a platform they do not have any expertise using

is immense. Web services deliver freedom from monoliths. I’ve personally spent tons

of time working with developers of Java, Perl, C++, and other Web services platforms

on testing interoperability and making sure it works. This is a work-in-progress, but

each day it’s better.

We designed Web Services Enhancements 2.0 for Microsoft .NET to give devel-

opers this freedom. You can build a service-oriented application without WSE, but

with WSE you can build an advanced and secure service-oriented application. You

are holding a book that describes how to use WSE to its fullest potential. Jeffrey

Hasan’s writing exceeds my expectations. Read this book and you will be well on

your way to understanding the Web services architecture. You will be ready to use

WSE to build a service-oriented application that will free you.

Keith Ballinger

Program Manager for Web Services Enhancements, Microsoft Corporation

Foreword

xii

About the Author

Jeffrey Hasan is the President of Bluestone

Partners, Inc., a software development and consult-

ing company based in Orange County, California

(http://www.bluestonepartners.com). His company

provides architectural design and software devel-

opment services to businesses that implement

advanced Microsoft technologies. Jeff is an experi-

enced enterprise architect and .NET developer, and

is the coauthor of several books and articles on

.NET technology, including Performance Tuning

and Optimizing ASP.NET Applications (Apress, 2003).

Jeffrey has a master’s degree from Duke University

and is a Microsoft Certified Solution Developer

(MCSD). When he is not working, Jeffrey likes to

travel to far-flung corners of the world. His most recent travels have taken him

from Southern Spain to Yosemite Valley and a few stops in between. You can

contact Jeffrey at jeffh@bluestonepartners.com.

xiii

About the

Technical Reviewers

Mauricio Duran is a software architect specialized in Microsoft technologies

with more than six years of experience in custom software development. He is

a co-founder of Sieena Software, a company based in Monterrey, Mexico, that

provides technology services to US-based companies.

Fernando Gutierrez is a software architect and a co-founder of Sieena Software.

He has expertise working with a wide variety of technologies, including web-

development with J2EE and the .NET Framework.

xiv

Acknowledgments

THE BOOK YOU HOLD in your hands is the culmination of months of hard work

and a passionate desire to create a high-quality, informative text on service-

oriented architecture using Web Services Enhancements 2.0. Like all major projects,

it would not have been possible without the hard work and dedication of a great

many people. First and foremost I would like to thank the team at Apress: Gary

Cornell, Ewan Buckingham, Tracy Brown Collins, Ami Knox, Grace Wong, Glenn

Munlawin, Kari Brooks, and all of the editorial and production staff who worked

on this book. In addition I am very grateful to Keith Ballinger for his reviews and

comments, and for appreciating my book enough to write a foreword. A big thanks

goes out to all of the people who spent time discussing the material with me and

giving me new insights and ideas on how to approach it. Finally, I reserve my

BIGGEST thanks of all to the hard work and dedication of my friends, colleagues,

and technical reviewers: Mauricio Duran, Fernando Gutierrez, and Kenneth Tu.

They rock. We roll. Together we rock ’n’ roll!

xv

Introduction

WE SOFTWARE ARCHITECTS and developers live in a fascinating time. With the release

of the .NET Framework in 2000, Web services technology has swept into our pro-

gramming toolset and into our collective consciousness. Web services are the killer

application for XML. Web services are the “new way” to call distributed objects

remotely. Web services will take all of our integration headaches away, and allow

formerly incompatible systems to communicate again. What Microsoft developer

has not recently thought to themselves, “Should I be building my application

with Web services?”

What .NET developer has not recently thought to themselves, “I’m confused”?

Every tidal wave has a genesis, and a momentum, and a final destination

where it typically crashes head-on into a stable landmass and causes havoc and

confusion. Web services technology is a tidal wave.

The genesis is Microsoft’s strategic decision to simplify SOAP-based Web

services development using a seamless set of integrated classes in the .NET

Framework. The momentum is provided by a relentless marketing machine that

promotes Web services as the solution for many of our worst IT problems. One

destination is us, the architects and the developers who must understand this

technology and learn how to implement it. Another destination is the manager,

who must make strategic decisions on how to put this technology to its best use.

The Web services technology tidal wave has created confusion for .NET

developers because, quite simply, we do not know the best way to use it. We are

wrapped up in misconceptions about what the technology is for, and this affects

our judgment in using it properly. We will spend the first chapter clarifying these

misconceptions, but let me reveal one:

Misconception: Web services are for making remote procedure calls to

distributed objects.

Reality: Web services are not optimized for RPCs. This is not what they

are best at. Web services work best when they respond to messages, not

to instructions.

Until now, we could safely give developers time to absorb the new Web ser-

vices technology. We needed time to play around with the .NET Framework and

to get used to a new development approach. Web services development using

the .NET Framework is stunning in its simplicity. It is equally stunning in its over-

simplification of a deep and sophisticated technology. Play time is over, now it’s

time we grow up.

xvii

Web services play a key role in a greater whole known as service-oriented

architecture (SOA). Quite simply, SOA is an architecture based on loosely coupled

components that exchange messages. These components include the clients that

make message-based service requests, and the distributed components that respond

to them. In a service-oriented architecture, Web services are critically important

because they consume and deliver messages.

It is difficult to tackle a topic like service-oriented architecture and Web ser-

vices without invoking the ire of developers working on other platforms such as

J2EE and IBM WebSphere. I have full respect for these platforms and for the

efforts of the developers and architects who use them. These guys and girls “get

it,” and they have been doing it for longer than we Microsoft-oriented develop-

ers have. Let’s give credit where credit is due, but then move on. Because if you

are reading this book, then it is a safe assumption that you are interested in SOA

the Microsoft way. If this describes you, then please buy this book and read on!

So why don’t we Microsoft/.NET developers “get it”? It is not for lack of intel-

ligence, nor is it for lack of an ability to understand sophisticated architectures.

We don’t get it because we have been mislead as to why Web services are impor-

tant. Let me roughly restate my original assertion:

Web services work best with messages. They are not optimized to handle

specific instructions (in the form of direct, remote procedure calls).

Most of us have been “trained” to this point to use Web services for imple-

menting SOAP-based remote procedure calls. This is where we have been misled,

because SOAP is about the worst protocol you could use for this purpose. It is ver-

bose to the point where the response and request envelopes will likely exceed in

size the actual input parameters and output response parameters that you are

exchanging!

At this point, I hope I have left you with more questions than answers.

I have stated things here that you can only take my word on, but why should

you believe me?

This is exactly what I am trying to get at. I want to shake you out of your

Web services comfort zone, and to help you rethink the technology and think

of the bigger picture that is SOA. I devote the first part of this book to clearing

up the misconceptions. And I devote the second part of this book to showing

you how to implement Web services in a service-oriented architecture.

Free your mind.

Who This Book Is For

This book is a practical reference written for intermediate to advanced .NET

solution developers and architects who are interested in SOA and Web services

development. The book focuses on two key areas:

Introduction

xviii

• How to build message-oriented and service-oriented Web services

• Web Services Enhancements (WSE) 2.0

Solution developers and architects alike will find a lot in this book to hold

their interest. The material in the book provides detailed conceptual discussions

on service-oriented architecture combined with in-depth C# code samples. The

book avoids rehashing familiar concepts, and focuses instead on how to rethink

your approach to Web services development using today’s best tools and industry-

standard specifications. The book was written using prerelease copies of WSE

that were released after the Tech Preview, so you have the benefit of the latest

and greatest developments with WSE.

What This Book Covers

This book covers service-oriented architecture and cutting-edge Web services devel-

opment using the WS-Specifications and Web Services Enhancements 2.0. The first

half of the book shows you how to think in terms of messages rather than procedure

calls. It shows you how to design and build message- and service-oriented Web ser-

vices that provide the security and the functionality that companies and businesses

will require before they are ready to widely adopt Web services technology.

The second half of the book focuses on WSE 2.0, which provides infrastruc-

ture and developer support for implementing industry-standard Web service

specifications, including

WS-Security: A wide-ranging specification that integrates a set of popu-

lar security technologies, including digital signing and encryption based

on security tokens, including X.509 certificates.

WS-Policy: Allows Web services to document their requirements, prefer-

ences, and capabilities for a range of factors, though mostly focused on

security. For example, a Web service policy will include its security

requirements, such as encryption and digital signing based on an X.509

certificate.

WS-Addressing: Identifies service endpoints in a message and allows

for these endpoints to remain updated as the message is passed along

through two or more services. It largely replaces the earlier WS-Routing

specification.

WS-Messaging: Provides support for alternate transport channel protocols

besides HTTP, including TCP. It simplifies the development of messaging

applications, including asynchronous applications that communicate

using SOAP over HTTP.

Introduction

xixwww.allitebooks.com

http://www.allitebooks.org

WS-Secure Conversation: Establishes session-oriented trusted commu-

nication sessions using security tokens.

The WS-Specifications are constantly evolving as new specifications get sub-

mitted and existing specifications get refined. They address essential requirements

for service-oriented applications. This book aims to get you up to speed with

understanding the current WS-Specifications, how the WSE 2.0 toolkit works, and

where Web services technology is headed for the next few years.

If you are interested in taking your Web services development to the next

level, then you will find this book to be an invaluable reference.

Chapter Summary

This book is broken out into ten chapters, progressing from introductory con-

ceptual information through to advanced discussions of the WS-Specifications,

and their implementation using Web Services Enhancements (WSE) 2.0. You will

get the most out of this book if you read at least the first five chapters in sequence.

These chapters contain reference information and conceptual discussions that

are essential to understanding the material in the second half of the book. The

remaining chapters of the book cover all of the WS-Specifications that are imple-

mented by WSE 2.0. Finally, the book closes with a chapter on Indigo, which is

the code name for a future managed communications infrastructure for building

service-oriented applications. The purpose of the Indigo chapter is to show you

the direction that service-oriented application development is headed, and to

show you how your work with WSE 2.0 will help you make the transition to

Indigo very smoothly.

The summary of the chapters is as follows:

Chapter 1, “Introducing Service-Oriented Architecture”: This chapter

introduces the concepts behind service-oriented architecture, and the

characteristics of a Web service from the perspective of SOA. This chap-

ter reviews the following topics:

• SOA concepts and application architecture

• The WS-I Basic Profile

• The WS-Specifications

• Web Services Enhancements (WSE) 2.0 (an introduction)

Introduction

xx

Chapter 2, “The Web Services Description Language”: This chapter

reviews the WSDL 1.1 specification and the elements of a WSDL docu-

ment. This information is essential to understanding what makes up

a service. The concepts that are presented here will come up repeat-

edly throughout the book, so make sure you read this chapter! This

chapter includes the following:

• The seven elements of the WSDL document (types, message, operation,

portType, binding, port, and service), which together document abstract

definitions and concrete implementation details for the Web service

• How to work with WSDL documents using Visual Studio .NET

• How to use WSDL documents

Chapter 3, “Design Patterns for Building Message-Oriented Web

Services”: This chapter shows you how to build message-oriented Web

services, as opposed to RPC-style Web services, which most people end

up building with ASP.NET even if they do not realize it. The goal of this

chapter is to help you rethink your approach to Web services design so

that you can start developing the type of message-oriented Web services

that fit into a service-oriented architecture framework. This chapter cov-

ers the following:

• Definition of a message-oriented Web service

• The role of XML and XSD schemas in constructing messages

• How to build an XSD schema file using the Visual Studio .NET XML

Designer

• Detailed review of a six-step process for building and consuming a

message-oriented Web service. This discussion ties into the sample

solutions that accompany the chapter.

Chapter 4, “Design Patterns for Building Service-Oriented Web Services”:

This chapter extends the discussion from Chapter 3 and shows you how

to build Web services that operate within a service-oriented application.

This chapter includes the following:

• A discussion on building separate type definition assemblies that are

based on XSD schema files.

• How to build a business assembly for delegating service processing.

Introduction

xxi

• Detailed review of a six-step process for building and consuming a

service-oriented Web service. This discussion ties into the sample

solutions that accompany the chapter.

• How to build a service agent, which is unique to service-oriented

architecture.

Chapter 5, “Web Services Enhancements 2.0”: This chapter provides

a detailed overview of WSE 2.0. This chapter covers the following:

• Overview of the WS-Specifications.

• Introduction to WSE 2.0: what it contains, what it does, how it integrates

with ASP.NET, and how to install it.

• Overview of X.509 certificates: The WSE sample digital certificates are

used frequently throughout the sample applications. Certificate instal-

lation can be difficult, so this section shows you what you need to do.

Chapter 6, “Secure Web Services with WS-Security”: This is the first of four

chapters that provide detailed discussions on the WSE implementations

of the WS-Specifications. “Security” typically refers to two things:

authentication and authorization. The WS-Security specification pro-

vides authentication support, while WS-Policy (reviewed in Chapter 7)

provides both authentication and authorization support. This chapter

contains the following:

• Overview of the WS-Security specification

• How to implement WS-Security using WSE 2.0

• Overview of digital signatures and encryption, and how to implement

using different security tokens, including X.509 digital certificates

• How to prevent replay attacks using timestamps, digital signatures, and

message correlation

Chapter 7, “Use Policy Frameworks to Enforce Web Service Require-

ments with WS-Policy”: This chapter discusses how to implement Web

service policy frameworks using the WS-Policy family of specifications.

Policy frameworks document the usage requirements and preferences

for using a Web service. For example, you can specify authentication

requirements, such as requiring that request messages be digitally signed

using an X.509 certificate. The WSE 2.0 Toolkit automatically validates

incoming and outgoing messages against the established policy frame-

works, and automatically generates SOAP exceptions for invalid messages.

This chapter covers the following:

Introduction

xxii

• Overview of the policy framework specifications, including WS-Policy,

WS-Policy Assertions, and WS-Security Policy.

• How to implement a policy framework using WSE 2.0.

• How to implement role-based authorization using WSE and the WS-

Policy family of specifications. Authorization is the second part of what

we refer to as “security” (in addition to authentication).

Chapter 8, “Establish Trusted Communication with WS-Secure

Conversation”: The WS-Secure Conversation specification provides a

token-based, session-oriented, on-demand secure channel for communi-

cation between a Web service and client. WS-Secure Conversation is

analogous to the Secure Sockets Layer (SSL) protocol that secures

communications over HTTP. This chapter includes the following:

• Overview and definition of secure conversation using WS-Secure

Conversation.

• How to implement a secure conversation between a Web service and its

client, using a security token service provider. This section is code intensive,

and reviews the sample solution that accompanies the chapter.

Chapter 9, “Design Patterns for SOAP Messaging with WS-Addressing

and Routing”: This chapter covers several WS-Specifications that work

together to provide a new messaging framework for Web services.

Traditional Web services are built on the HTTP Request/Response

model. WSE 2.0 provides a messaging framework that expands the sup-

ported transport protocols to include TCP and an optimized in-process

transport protocol, in addition to HTTP. These protocols are not natively

tied to a request/response communications model, so you can imple-

ment alternative models, such as asynchronous messaging solutions.

This chapter also reviews the WS-Addressing specification, which enables

messages to store their own addressing and endpoint reference infor-

mation. This chapter includes the following:

• Overview of communication models for Web services

• Overview of the WS-Addressing specification, including a discussion of

message information headers versus endpoint references

• Overview of how WSE implements the WS-Addressing specification

• Overview of the WS-Messaging specification, and the WSE implementa-

tion, which provides support for alternate message transport protocols

and communication models

Introduction

xxiii

• How to implement a TCP-based Web service using SOAP sender and

receiver components

• Overview of the WS-Routing and WS-Referral specifications, which

allow messages to be redirected between multiple endpoints

• How to build a SOAP-based router using WSE, WS-Routing, and

WS-Referral

• How to integrate MSMQ with Web services in order to implement one

form of reliable messaging

Chapter 10, “Beyond WSE 2.0: Looking Ahead to Indigo”: Indigo pro-

vides infrastructure and programming support for service-oriented

applications. Indigo will be released as part of the future Longhorn

operating system. It is focused on messages, and provides support for

creating messages, for delivering messages, and for processing mes-

sages. With Indigo, there is less ambiguity in your services: The

infrastructure forces you to be message oriented, and to work with well-

qualified XML-based data types. WSE 2.0 and its future revisions will

provide you with excellent preparation for working with Indigo in the

future. This chapter contains the following:

• Overview of Indigo architecture, including the Indigo service layer, the

Indigo connector, hosting environments, messaging services, and sys-

tem services

• Understanding Indigo Web services

• Understanding Indigo applications and infrastructure

• How to get ready for Indigo

• WSE 2.0 and Indigo

Code Samples and Updates

This book is accompanied by a rich and varied set of example solutions. The sam-

ple solutions were built using the WSE v2.0 Pre-Release bits that were released on

1/23/2004. The code examples are chosen to illustrate complicated concepts

clearly. Although Web Services Enhancements are conceptually complicated, this

does not mean that they translate into complex code. In fact, the situation is quite

the opposite. I guarantee that you will be surprised at how clear and straightfor-

ward the code examples are.

Introduction

xxiv

NOTE The sample solutions are available for download at
http://www.apress.com.

Visit http://www.bluestonepartners.com/soa for updates to the book and sam-

ple solutions, and for errata corrections. Check back here often, because WSE is

expected to undergo several revisions between now and the release of Indigo. In

addition, the topic of service-oriented architecture continues to evolve rapidly,

and every month brings new, interesting developments.

And now, once more into the breach, dear friends, once more . . .

Introduction

xxv

279

APPENDIX

References

HERE IS A SELECTION of references that you will find useful for learning more about

service-oriented architecture, the WS-I Basic Profile, the WS-Specifications, and

Web Service Enhancements. The references are broken out by topic. Note that

Web services standards and specifications evolve quickly, so some of the speci-

fication references that are listed here will be superceded in future months by

others.

Service-Oriented Architecture (General)

Application Architecture for .NET: Designing Applications and Services

Patterns & Practices, Microsoft Corporation

Whitepaper (December 2002)

Located at MSDN Home ➤ MSDN Library ➤ Enterprise Development ➤

Application Architecture ➤ Microsoft patterns and practices for Application

Architecture and Design

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnbda/html/distapp.asp

Building Interoperable Web Services: WS-I Basic Profile 1.0

Patterns & Practices, Microsoft Corporation

Whitepaper (August 2003)

Located at MSDN Home ➤ Web Services Home ➤ Building ➤ .NET

Framework and Visual Studio .NET ➤ Designing .NET Web Services

http://msdn.microsoft.com/webservices/building/frameworkandstudio/

designing/default.aspx?pull=/library/en-us/dnsvcinter/html/wsi-bp_

msdn_landingpage.asp

Appendix

280

The Evolution of Web Services—Part 2

Adnan Masood

Whitepaper (September 2003)

http://www.15seconds.com/issue/030917.htm

Java modeling: A UML workbook, Part 4

Granville Miller

Whitepaper (April 2002)

Provides a discussion of the Service Façade design pattern

Located at IBM developerWorks ➤ Java Technology ➤ Web services

http://www-106.ibm.com/developerworks/java/library/j-jmod0604/

XML Schemas and SOAP

Understanding SOAP

Aaron Skonnard

Whitepaper (March 2003)

Located at MSDN Home ➤ Web Services Home

http://msdn.microsoft.com/webservices/default.aspx?pull=/library/

en-us//dnsoap/html/understandsoap.asp

XML Schemas and the XML Designer

MSDN Articles

Located at MSDN Home ➤ MSDN Library ➤ .NET Development ➤

Visual Studio .NET ➤ Visual Basic and Visual C# ➤ Accessing Data ➤

XML Schemas and Data

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

vbcon/html/vborielementattributecreation.asp

References

281

A Quick Guide to XML Schema

Aaron Skonnard

MSDN Magazine (April 2002)

Located at MSDN Home ➤ MSDN Magazine ➤ April 2002

http://msdn.microsoft.com/msdnmag/issues/02/04/xml/default.aspx

Place XML Message Design Ahead of Schema Planning to Improve

Web Service Interoperability

Yasser Shohoud

MSDN Magazine (December 2002)

Located at MSDN Home ➤ MSDN Magazine ➤ December 2002

http://msdn.microsoft.com/msdnmag/issues/02/12/WebServicesDesign/

RPC/Literal and Freedom of Choice

Yasser Shohoud

Web Services Developer Center whitepaper (April 2003)

Located at MSDN Home ➤ Web Services Home ➤ Understanding Web

Services ➤ Web Service Basics

http://msdn.microsoft.com/webservices/understanding/webservicebasics/

default.aspx?pull=/library/en-us/dnwebsrv/html/rpc_literal.asp

Web Services Encoding and More

Aaron Skonnard

MSDN Magazine (May 2003)

Located at MSDN Home ➤ MSDN Magazine ➤ May 2003

http://msdn.microsoft.com/msdnmag/issues/03/05/XMLFiles/

SOAP is Not a Remote Procedure Call

Ingo Rammer

Ingo Rammer’s Architecture Briefings (October 2003)

http://www.thinktecture.com/Resources/ArchitectureBriefings/

SoapIsNotARemoteProcedureCall.pdf

www.allitebooks.com

http://www.allitebooks.org

Appendix

282

WS-Specifications (General)

IBM developerWorks: Links to original standards and specifications documents

Located at IBM developerWorks ➤ Web services ➤ Technical Library

http://www-106.ibm.com/developerworks/views/webservices/standards.jsp

Secure, Reliable, Transacted Web Services: Architecture and Composition

Donald F. Ferguson (IBM), Tony Storey (IBM), Brad Lovering (Microsoft),

John Shewchuk (Microsoft)

Whitepaper (September 2003)

Located at MSDN Home ➤ Web Services Home ➤ Understanding Web

Services ➤ Advanced Web Services

http://msdn.microsoft.com/webservices/understanding/

advancedwebservices/default.aspx?pull=/library/en-us/dnwebsrv/

html/wsoverview.asp

Compare Web Service Security Metrics

Roger Jennings (OakLeaf Systems)

XML & Web Services Magazine (October 2002)

http://www.fawcette.com/xmlmag/2002_10/online/webservices_rjennings_

10_16_02/default.aspx

Installing Certificates for WSDK X.509 Digital Signing and Encryption

Roger Jennings (OakLeaf Systems)

XML & Web Services Magazine (October 2002)

http://www.fawcette.com/xmlmag/2002_10/online/webservices_rjennings_

10_16_02/sidebar1.aspx

References

283

Web Services Enhancements 1.0 and 2.0 (General)

Programming with Web Services Enhancements 1.0 for Microsoft .NET

Tim Ewald (Microsoft)

Whitepaper (December 2002)

Located at MSDN Home ➤ MSDN Library ➤ XML and Web Services

http://msdn.microsoft.com/webservices/building/wse/default

.aspx?pull=/library/en-us/dnwebsrv/html/progwse.asp

Programming with Web Services Enhancements 2.0

Matt Powell (Microsoft)

Whitepaper (July 2003)

Located at MSDN Home ➤ MSDN Library ➤ XML and Web Services

http://msdn.microsoft.com/webservices/building/wse/default

.aspx?pull=/library/en-us/dnwebsrv/html/programwse2.asp

WS-Security

Standards Documents: Web Services Security (WS-Security)

OASIS Web Services Security Standards

Specifications (March 2004)

Located at OASIS Web Services Security TC

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Specifications: SOAP Message Security 1.0

OASIS Web Services Security Standards

Specifications (March 2004)

Located at OASIS Web Services Security TC

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-

security-1.0.pdf

Appendix

284

Understanding WS-Security

Scott Seely (Microsoft)

Whitepaper (October 2002)

Located at MSDN Home ➤ Web Services Home ➤ Understanding Web

Services ➤ Advanced Web Services

http://msdn.microsoft.com/webservices/understanding/

advancedwebservices/default.aspx?pull=/library/en-us/dnwssecur/

html/understw.asp#understw_topic3

WS-Security Drilldown in Web Services Enhancements 2.0

Don Smith (Microsoft)

Whitepaper (August 2003)

Located at MSDN Home ➤ MSDN Library ➤ XML Web Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnwebsrv/html/wssecdrill.asp

(Note: This reference is cross-listed under WS-Secure Conversation.)

WS-Security Authentication and Digital Signatures with

Web Services Enhancements

Matt Powell (Microsoft)

Whitepaper (December 2002)

Located at MSDN Home ➤ Web Services Home ➤ Building ➤ Web

Services Enhancements (WSE)

http://msdn.microsoft.com/webservices/building/wse/default

.aspx?pull=/library/en-us/dnwssecur/html/wssecauthwse.asp

Building Secure Web Services (Patterns & Practices Chapter 12)

J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy,

Ray Escamilla, and Anandha Murukan

Patterns & Practices whitepaper (June 2003)

Located at MSDN Home ➤ MSDN Library ➤ .NET Development ➤ .NET

Security ➤ Improving Web Application Security

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnnetsec/html/THCMCh12.asp

References

285

Encrypting SOAP Messages Using Web Services Enhancements

Jeannine Hall Gailey

Whitepaper (December 2002)

Located at MSDN Home ➤ MSDN Library ➤ XML and Web Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnwse/html/wseencryption.asp

Web Services Security: Moving up the Stack

Maryann Hondo (IBM), David Melgar (IBM), and Anthony Nadalin (IBM)

Whitepaper (December 2002)

Located at developerWorks ➤ Web services

http://www-106.ibm.com/developerworks/library/ws-secroad/

Web Services Security UsernameToken Profile

Chris Kaler (Microsoft, editor) and Anthony Nadalin (IBM, editor)

Working draft (August 2003)

http://www.oasis-open.org/committees/wss/documents/WSS-Username-11.pdf

Web Services Security Kerberos Binding

Giovanni Della-Libera (Microsoft), Brendan Dixon (Microsoft), Praerit

Garg (Microsoft), Maryann Hondo (IBM), Chris Kaler (Microsoft), Hiroshi

Maruyama (IBM), Anthony Nadalin (IBM), and Nataraj Nagaratnam

(IBM)

Web Services Developer Center whitepaper (December 2003)

Located at MSDN Home ➤ Web Services Home ➤ Understanding Web

Services ➤ Specifications

http://msdn.microsoft.com/webservices/understanding/specs/default

.aspx?pull=/library/en-us/dnglobspec/html/ws-security-kerberos.asp

Appendix

286

WS-Policy

Specification: Web Services Policy Framework (WS-Policy)

Chris Kaler (Microsoft, editor) and Maryann Hondo (IBM, editor)

Specification (May 2003)

Located at IBM developerWorks ➤ Web services

http://www-106.ibm.com/developerworks/library/ws-polfram/

Understanding WS-Policy

Aaron Skonnard

Whitepaper (August 2003)

Located at MSDN Home ➤ MSDN Library ➤ XML and Web Services ➤

Specifications

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnwebsrv/html/understwspol.asp

Web Services Policy Assertions Language (WS-Policy Assertions)

Don Box (Microsoft), Maryann Hondo (IBM), Chris Kaler (Microsoft),

Hiroshi Maruyama (IBM), Anthony Nadalin (IBM, editor), Nataraj

Nagaratnam (IBM), Paul Patrick (BEA), Claus von Riegen (SAP), and

John Shewchuk (Microsoft)

Whitepaper (December 2003)

Located at MSDN Home ➤ MSDN Library ➤ XML and Web Services ➤

Specifications ➤ Metadata Specifications Index Page

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnglobspec/html/ws-policyassertions.asp

Using Role-Based Security with Web Services Enhancements 2.0

Ingo Rammer

Whitepaper (September 2003)

Located at MSDN Home ➤ MSDN Library ➤ XML Web Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnwssecur/html/wserolebasedsec.asp

References

287

WS-SecureConversation

Specification: Web Services Secure Conversation (WS-SecureConversation)

Don Box (Microsoft, editor) and Francisco Curbera (IBM, editor)

Specification (March 2003)

Located at IBM developerWorks ➤ Web services

http://www-106.ibm.com/developerworks/webservices/library/ws-secon/

Specification: Web Services Trust (WS-Trust)

Chris Kaler (Microsoft, editor) and Anthony Nadalin (IBM, editor)

Specification (December 2002)

Located at IBM developerWorks ➤ Web services

http://www-106.ibm.com/developerworks/library/ws-trust/

WS-Security Drilldown in Web Services Enhancements 2.0

Don Smith (Microsoft)

Whitepaper (August 2003)

Located at MSDN Home ➤ MSDN Library ➤ XML Web Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnwebsrv/html/wssecdrill.asp

(Note: This reference is cross-listed under WS-Security.)

WS-Addressing

Specification: Web Services Addressing (WS-Addressing)

Don Box (Microsoft, editor) and Francisco Curbera (IBM, editor)

Specification (March 2003)

Located at IBM developerWorks ➤ Web services

http://www-106.ibm.com/developerworks/webservices/library/ws-add/

Appendix

288

Expanding the Communications Capabilities of Web Services

with WS-Addressing; Making Web Services Intermediary-Friendly,

Asynchronous, and Transport-Neutral

John Shewchuk, Steve Millet, Hervey Wilson (Microsoft)

Whitepaper (October 2003)

Located at MSDN Home

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnwse/html/soapmail.asp

WS-Messaging

Asynchronous operations and Web services, Part 1: A primer on asynchronous

transactions

Holt Adams (IBM)

Whitepaper (April 2002)

Located at IBM developerWorks ➤ Web services

http://www-106.ibm.com/developerworks/library/ws-asynch1/index.html

Asynchronous operations and Web services, Part 2: Programming patterns to

build asynchronous Web services

Holt Adams (IBM)

Whitepaper (June 2002)

Located at IBM developerWorks ➤ Web services

http://www-106.ibm.com/developerworks/library/ws-asynch2/index.html

Introducing the Web Services Enhancements 2.0 Messaging API

Aaron Skonnard

MSDN Magazine (September 2003)

Located at MSDN Home ➤ Web Services Home ➤ Building ➤ Web

Services Enhancements (WSE)

http://msdn.microsoft.com/webservices/building/wse/default

.aspx?pull=/msdnmag/issues/03/09/xmlfiles/default.aspx

References

289

WS-Routing and WS-Referral

Routing SOAP Messages with Web Services Enhancements 1.0

Aaron Skonnard

Whitepaper (January 2003)

Located at MSDN Home

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnwse/html/routsoapwse.asp

WS-Reliable Messaging

Specification: Web Services Reliable Messaging Protocol (WS-ReliableMessaging)

David Langworthy (Microsoft, editor) and Christopher Ferris (IBM, editor)

Specification (March 2003)

Located at IBM developerWorks ➤ Web services

http://www-106.ibm.com/developerworks/webservices/library/ws-rm/

Reliable Message Delivery in a Web Services World:

A Proposed Architecture and Roadmap

IBM Corporation and Microsoft Corporation

Whitepaper (March 2003, Version 1)

Located at MSDN Home ➤ Web Services Home ➤ Understanding Web

Services ➤ Advanced Web Services

http://msdn.microsoft.com/webservices/understanding/

advancedwebservices/default.aspx?pull=/library/en-us/dnglobspec/

html/ws-rm-exec-summary.asp

Appendix

290

Indigo

A Guide to Developing and Running Connected Systems with Indigo

Don Box (Microsoft)

MSDN Magazine (January 2004)

Located at MSDN Home ➤ Longhorn Developer Center Home ➤

Understanding Longhorn ➤ The Pillars of Longhorn ➤ Indigo

http://msdn.microsoft.com/longhorn/understanding/pillars/indigo/

default.aspx?pull=/msdnmag/issues/04/01/Indigo/default.aspx

Microsoft “Indigo” Frequently Asked Questions

Whitepaper (October 2003)

Located at MSDN Home ➤ Longhorn Developer Center Home ➤

Support ➤ Longhorn Developer FAQ

http://msdn.microsoft.com/Longhorn/Support/lhdevfaq/default.aspx#Indigo

Creating Indigo Applications with the PDC Release of Visual Studio .NET Whidbey

Yasser Shohoud (Microsoft)

Whitepaper (January 2004)

Located at MSDN Home ➤ Longhorn Developer Center Home ➤

Understanding Longhorn ➤ The Pillars of Longhorn ➤ Indigo

http://msdn.microsoft.com/Longhorn/understanding/pillars/Indigo/

default.aspx?pull=/library/en-us/dnlingo/html/indigolingo01062004.asp

Distributed Applications Using “Indigo” Services

Microsoft online documentation (preliminary)

Located at Longhorn SDK ➤ Distributed Programming Distributed

Applications Using “Indigo” Services

http://longhorn.msdn.microsoft.com/?//longhorn.msdn.microsoft.com/

lhsdk/indigo/conDistributedApplicationsUsingMessageBusServices.aspx

References

291

Miscellaneous

PDC 2003 Sessions

Session slides and downloads from PDC 2003

Located at MSDN Home ➤ PDC 2003 - PDC Central ➤ Agenda and

Sessions ➤ Sessions

http://msdn.microsoft.com/events/pdc/agendaandsessions/sessions/

default.aspx

List of Books on Building Web Services Using .NET

Web Services Developer Center

This page lists books about Web services in general and about building

Web services using .NET in particular.

Located at MSDN Home ➤ Web Services Home ➤ Understanding Web

Services ➤ Books

http://msdn.microsoft.com/webservices/understanding/books/default.aspx

Newsgroups Related to Web Services, Web Services Enhancements, and Indigo

microsoft.public.dotnet.framework.webservices

microsoft.public.dotnet.framework.webservices.enhancements

microsoft.public.windows.developer.winfx.indigo

Find more newsgroups at MSDN Home ➤ MSDN Newsgroups.

http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public

.dotnet.framework.webservices.enhancements

Orchestrating XML Web Services and Using the Microsoft .NET Framework with

Microsoft BizTalk Server

Ulrich Roxburgh (Microsoft)

Whitepaper (February 2002)

Located at MSDN Home ➤ MSDN Library ➤ Enterprise Development ➤

Windows Server System ➤ Microsoft BizTalk Server

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnbiz2k2/html/bts_wp_net.asp

www.allitebooks.com

http://www.allitebooks.org

Appendix

292

Attributes

MSDN Online Articles

Provides an overview of Reflection attributes and custom attributes

Located at: MSDN Home ➤ MSDN Library ➤ .NET Development ➤

Visual Studio .NET ➤ Visual Basic and Visual C# ➤ Reference ➤ Visual

C# Language ➤ C# Language Specification

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

cpguide/html/cpconaccessingcustomattributes.asp

1

CHAPTER 1

Introducing

Service-Oriented

Architecture

SERVICE-ORIENTED ARCHITECTURE (SOA) represents a new and evolving model for

building distributed applications. Services are distributed components, which

provide well-defined interfaces that process and deliver XML messages. A service-

based approach makes sense for building solutions that cross organizational,

departmental, and corporate domain boundaries. A business with multiple systems

and applications on different platforms can use SOA to build a loosely coupled

integration solution that implements unified workflows.

The concept of services is familiar to anyone who shops online at an

eCommerce web site. Once you have placed your order, you have to supply your

credit card information, which is typically authorized and charged by an outside

service vendor. Once the order has been committed, the eCommerce company

then coordinates with a shipping service vendor directly to deliver your purchase.

ECommerce applications provide another perfect illustration of the need for a

service-oriented architecture: If the credit card billing component is offline or

unresponsive, then you do not want the sales order collection process to fail.

Instead, you want the order collected and the billing operation to proceed at

a later time. Figure 1-1 provides a conceptual workflow for an eCommerce busi-

ness that uses multiple services to process orders.

Chapter 1

2

SOA is like other distributed architectures in that it enables you to build

applications that use components across separate domain boundaries. SOA uses

Web services as application entry points, which are conceptually equivalent to

the proxy and stub components of traditional component-based distributed

systems, except that the interactions between the Web service provider and con-

sumer are more loosely coupled. SOA is also unique in that it incorporates those

factors that are critically important to business: service reliability, message integrity,

transactional integrity, and message security. In the real world, business cannot

rely on services that may process requests if they receive a request that they can

understand. Businesses require more certainty than this. It is a given that dis-

parate systems may be up or down at various times, or that different systems

may differ in their responsiveness due to varying loads. However, none of this is

an excuse for allowing service request messages to simply drop away into the

void, or to go unanswered. Furthermore, there can be no ambiguity as to how

a service must be called. If a system publishes its capabilities as a Web-enabled

service, then it needs to clearly document how the service must be called.

SOA will address many of the availability and scalability issues in today’s

applications. Most applications implement a rigid synchronous communication

model with a linear workflow model that is highly susceptible to failures at any

point in the workflow. SOA assumes that errors can and will occur, and so it

implements strategies for handling them. For example, if a service fails to accept

a message request the first time, the architecture is designed to retry the delivery.

And if the service is entirely unavailable (which should never occur in a robust

SOA), then the architecture is designed to avoid possible catastrophic failures

that may disrupt the entire service request. SOA improves reliability because

temporary failure in one part of the workflow will not bring down the entire

business process.

eCommerce Shopping Web Site

Credit Card

Authorization

and Billing

Service

Shipping

Service

 Displays catalog information

 Processes customer order
information

Authorize sale / Charge card

Confirm sale / charge

Request shipment

Confirm shipment

Figure 1-1. Service-based workflow for an eCommerce business

Introducing Service-Oriented Architecture

3

UDDI

Registry

Service

Consumer

Service

Provider #1

Service

Provider #2

Request Request

ResponseResponse

Discovery Discovery

Figure 1-2. A conceptual service-oriented architecture solution

In a broader sense, SOA represents a maturing process, that is, the “growing

up” of Web services and integration technologies. SOA recognizes that mission-

critical systems built on distributed technology must provide certain guarantees:

They must ensure that service requests will be routed correctly, that they will be

answered in a timely fashion, and that they will clearly publish their communi-

cation policies and interfaces.

Welcome to the grown-up world of SOA.

Overview of Service-Oriented Architecture

In an SOA solution, the distributed application uses service components that

reside in separate domains. Service components operate inside their own trust

boundary, encapsulate their own data, and are maintained and updated inde-

pendently of, though loosely coupled with, the applications that use them.

Figure 1-2 shows a conceptual service-oriented architecture that summa-

rizes the three main entities in a typical SOA solution. They are

• Service providers

• Service consumers

• Service directories

The interesting point to note is that the consumer can use a Universal

Discovery, Description, and Integration (UDDI) registry to discover, or reference,

the description information for a service provider. Interestingly, Service #1

Chapter 1

4

references a service provider (Service #2). In this role, Service #1 is equivalent to

a service consumer as well, and can reference the UDDI registry for information

about Service #2.

The communication between the services and the consumer is in the form

of XML messages that are qualified according to defined XSD schemas. XML

messages are discrete entities that may be transported, rerouted, and referenced

at any point along the business workflow. Messages promote higher levels of reli-

ability and scalability because they can be stored, and the services that process

the messages can append additional information, which provides for a clear and

unambiguous chain of custody across the business workflow. In addition, mes-

sages can be queued in the event that a service is temporarily unavailable or

backlogged. XML messages are unlike traditional Remote Procedure Calls (RPCs),

which do not provide a discrete structure for encapsulating a method “request.”

Traditional RPCs cannot typically be cached or held in a queue to wait for a bet-

ter time to service the request. Instead, traditional RPCs typically timeout if the

receiving component does not respond within the expected length of time. In

addition, RPCs are not qualified to a reference schema (although they must con-

form to type libraries for custom data types). Here lies the first important lesson

for developing SOA solutions: The Web services in the solution must be designed

to be message-oriented, rather than RPC-oriented. This topic is the exclusive focus

of Chapter 3.

What Are Web Services, Really?

Many of us are so familiar with current Web services technology that we often do

not stop to think about what services really are. However, you will need to if you

are going to fully understand what makes SOA so significant. Let’s pull out four

definitions that collectively describe what a service is:

• Services are autonomous components that process well-defined XML

messages.

• Services provide a well-defined interface that is described by an XML-

based document called the Web Service Description Language (WSDL)

document, otherwise known as the WSDL contract. This documents the

operations (methods) that the service supports, including data type infor-

mation, and binding information for locating and communicating with

the Web service operations.

• Services provide endpoints that consumers and other services can bind to,

based on the service’s port address (typically a URL).

Introducing Service-Oriented Architecture

5

• Services are analogous to traditional object-oriented (OO), type-based

components in that they provide a defined interface and they execute one

or more operations. However, a key difference is that service consumers

can flexibly bind to a service, whereas OO component consumers must set

more rigid references. Service consumers can respond flexibly to changes

in a service provider interface because it is easy to regenerate the proxy

class using the updated WSDL document. However, if a traditional compo-

nent changes its interface, then the consumer itself must be recompiled in

order to avoid type mismatch errors. Components are tightly integrated to

their consumers, and can break them. Service consumers, however, do not

have to recompile if their service changes. Instead, they simply have to

rebind to the updated WSDL document. This is what is known as loose

coupling, or loosely coupled services.

Of course, if the service drastically changes its method signatures, then

problems may result in the consumer. For example, the consumer may not cur-

rently have the ability to supply new and modified input parameters for the

updated methods. But as with any kind of interface-based programming, it is

understood that you cannot make significant changes to an existing method

signature, especially in terms of dropping existing input parameters, or chang-

ing the type definitions for existing input or output parameters. And just as with

traditional components, services should remain backward compatible as their

interfaces evolve. Still, it is a significant advantage that service consumers are

autonomous from their services. This promotes better stability in the SOA solu-

tion as the member services evolve.

There are five important properties of services in contrast to traditional

type-based components:

Services are described by a WSDL contract, not by type libraries: The

WSDL contract fully describes every aspect of the service, including its

operations, its types, and its binding information. WSDL is fully described

in Chapter 2. In this sense it is much more complete than traditional

type libraries.

Service descriptions can be easily extended: The WSDL contract is

based on an extensible document structure that readily incorporates

additional information beyond the core service description. For exam-

ple, security and policy information may be stored within the WSDL

document as custom SOAP elements. In fact, all of the Web services

enhancements that implement SOA infrastructure support can be docu-

mented as custom SOAP elements. At its most basic level, SOAP is a

stateless, one-way messaging protocol. But it is also highly extensible,

which makes it an excellent medium for storing and transporting Web

service enhancement information.

Chapter 1

6

Services provide a service guarantee: Traditional type definitions pro-

vide no guarantees. They are what they are, and you simply use them.

But what happens if the type definition gets out of sync with the compo-

nent it is supposed to describe? This happens all the time in the COM+

world, which relies on the Windows registry to store associated refer-

ences between registered components and their type libraries. Every

developer has experienced so-called DLL Hell, in which successive

installations and removals of upgraded components cause incorrect type

information to be retained in the registry. There is no service guarantee

in the world of type libraries. You just have to hope that the component

is registered with the correct type library.

Services, on the other hand, can implement a service guarantee in the

form of a policy description that is contained within the WSDL contract.

So-called policy assertions are published with the contract to describe

what level of service the consumer can expect, and how the service

operations can be expected to respond. There are many advantages to

policy assertions, not the least of which is that you could implement

code in your consumer so that it will only work with a service that enforces

a minimum policy guarantee. Should this policy ever change, then your

consumer is designed not to use the service any longer. In a very sophis-

ticated application, you could design your consumer to auto-discover

an alternate service using the UDDI registry.

Services allow for things to go wrong: When you call a method on a tra-

ditional type-based component, you are making a leap of faith that the

call will execute successfully. The reality is that the vast majority of calls

do go through, so we have been lulled into a sense of complacency that

this is always the case. But in the service-oriented world, where the sup-

porting infrastructure is vastly more intricate and decoupled, you cannot

have such a high level of faith that calls will always go through. Recall

that XML messages are the gold currency of service requests. Messages

can experience trouble at many steps along the way. Trouble in the trans-

port channel can prevent them from being delivered. Trouble in the

service’s server or firewall can prevent the service from ever responding

to a received message. Furthermore, messages may be tampered with,

so that they are malformed or suspect when they do reach their

intended target.

SOA accommodates all of these many potential problems using a set

of technologies that maintain the integrity of a service request even if

things go wrong along the way. These include reliable messaging, trans-

action support, and authentication mechanisms to ensure that only

trusted parties are involved in the service request (including certificate-

based mechanisms).

Introducing Service-Oriented Architecture

7

Services provide flexible binding: Services fully describe themselves using

the WSDL contract. This information includes documentation of the

service operations as well as data type information, referenced by well-

defined XML schemas. This enables clear and unambiguous qualified

references. The best part is that a consumer does not have to have any

prior knowledge of a data type, as long as its XML namespace is docu-

mented by, or referenced by, the WSDL contract. For example, consider

a consumer that calls a stock quote service. This service provides a

RequestQuote method that returns a custom complex data type called

Quote (including current and previous share price information, as well

as 52-week high and low values). The consumer has no advanced knowl-

edge of how the Quote data type is structured, but it does not need to as

long as it can reference the qualified associated XSD schema.

Services can also be registered in a UDDI registry, which enables them

to be searched for by consumers and other services. The UDDI registry

is very thorough, and includes a reference to the WSDL contract infor-

mation, as well as a summary of supported messages, in a search-efficient

format. This is useful for many reasons. For example, a consumer may

only wish to call services that utilize a specific set of XSD schemas (such

as industry-specific standard schemas). The UDDI registry enables that

consumer to search for services that conform to this requirement.

Components of Web Service Architecture

Experienced developers are comfortable with n-tier application architecture, in

which the components of an application are broken out across separate layers,

or tiers. At a minimum, this includes the three classic layers: user interface (front

end), business layer (middle tier), and data layer (back end).

Now let’s consider how an SOA solution is broken out in terms of layers and

constituent components. Figure 1-3 illustrates a basic SOA solution architecture.

Chapter 1

8

The large bounding box around service interfaces, business components,

and business workflows represents the conceptual business layer (middle tier).

This layer encapsulates the service interfaces, which in .NET terms are the .asmx

Web service files and the code-behind that directly relates to verifying and relay-

ing incoming messages (but which excludes actual business logic). The .asmx

files should delegate the business processing to dedicated business components

and/or a business workflow process (essentially a sequenced chain of compo-

nents in a workflow). This is a different approach to Web services coding than

most of us are used to taking, because typically we place all processing code

directly in the code-behind file of the .asmx Web service. But in a service-oriented

architecture, it is important to design the Web service components themselves so

that they truly act as gateways to dedicated business components or workflows.

The service interface has the following properties:

• It supports the communication requirements that the service specifies in

its WSDL contract (specifically, in its binding information). This includes

the format and transport protocols that the service responds to (e.g., SOAP

over HTTP).

Service Interfaces

Business

Workflows

Business

Components

Web Service Clients and Other Services

Data Source

User

Interface

Figure 1-3. Basic service-oriented architecture

Introducing Service-Oriented Architecture

9

• It supports the security requirements that the service specifies. In .NET

terms, the .asmx code-behind can implement code that verifies incoming

XML messages to ensure that they contain the required security tokens

or headers.

• It supports the methods (operations) that the service specifies in its WSDL

contract. In .NET terms, the .asmx file provides methods that correspond

to the service operations, but the actual business processing should be

handed off to dedicated components and workflow.

Figure 1-3 also shows that there are two categories of service consumers that

have entry points into the business layer. The first is a traditional user interface,

on the left of the diagram, such as a Windows form or ASP.NET Web page. This

type of user interface is part of the same domain where the service components

reside. The second category of front-end consumers is the external Web service

clients and other services, shown at the top of the diagram. These two categories

are well-known to developers: If you develop a Web service for external use, you

can just as easily call it internally within its application domain. Of course, it is

more efficient to call the Web service’s delegated business components, because

when you are internal to the domain, you do not need to route requests through

the .asmx gateway using special transport and messaging protocols (HTTP and

SOAP, for example). This is yet another reason all Web services logic should be

abstracted out to dedicated business components.

The architecture in Figure 1-3 is a good start, but it quickly breaks down

under the demand of more sophisticated SOA applications. Figure 1-4 provides

one example of a more complex SOA solution architecture.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

10

Figure 1-4 illustrates an architecture in which two separate Web services

access the same back-end business components. Each Web service provides

a distinct service interface, each of which is suitable for a different type of client.

For example, Web service 1 may provide access to a public, unsecured subset of

functions, whereas Web service 2 provides access to a restricted, secured subset

of functions. In addition, Figure 1-4 introduces two new entities that play an

important role in complex SOA solutions:

Service agent: The service agent manages communications between

one service and another, or between a business object and an external

service. In doing so, it simplifies those interactions by shielding transla-

tion quirks between the consumer and the provider.

Business façade: The business façade acts as a trust boundary between

incoming service requests (from a client, another service, or a service agent)

and the middle-tier business components that service those requests.

Let’s consider each of these in turn.

Service Agent

Service Interface #1

Web Service 1

Other Service

Business

Workflows

Business

Components

Business Façade

Service Interface #2

Web Service 2

Web Service Client

Figure 1-4. Complex service-oriented architecture

Introducing Service-Oriented Architecture

11

Service Agent

Business components are the engines of applications because they contain the

logic to make the application work. In addition, business components know

where to find information, whether it comes from a back-end database or from

an external data source. In classic Windows-based n-tier architecture, we are

used to thinking of business components as self-sufficient. But sometimes busi-

ness components need to retrieve information from external sources in order to

do their work. In SOA terms, sometimes business components need to call exter-

nal services.

The service agent is responsible for managing communications between

a business object and an external service. Service agents are extremely important

because they simplify the amount of work that a business object has to do when it

needs to use an external service. A service agent is a locally installed assembly that

provides a well-known interface to the business object. Service agents do the man-

ual legwork of communicating with external services and implementing whatever

infrastructure is required to do so. This is useful for two important reasons:

• Business objects do not have to implement the infrastructure that is

required to communicate with an external service. Instead, they communi-

cate their requests to a local assembly (the service agent) using a mutually

understood interface.

• Business objects avoid the maintenance work that is required to keep service

interactions up to date. For example, if an external Web service interface

changes, the service agent takes care of updating its proxy class and

reworking the code implementation as needed. The business object can

continue to communicate with the service agent in the same manner,

even as the underlying communication details change.

I cannot resist using a travel analogy to describe the role that service agents

play. Let’s say you and a friend are traveling in Madrid. Your friend is fluent in

both English and Spanish, but is too lazy to read the guidebook and has no

idea what to see in the city. You only speak English, but you read the guidebook

cover to cover, and you know that the Prado Museum cannot be missed . . . if

only you knew how to get there from your hotel. So you need to ask directions,

but cannot communicate with the locals. Your friend can ask for directions, but

needs to know from you where you are trying to go. The analogy is hopefully

clear! You are the business component, your friend is the service agent, and the

friendly locals act as the external service.

Chapter 1

12

Service Interface #1
Web Service 1

Business

Workflows

Business

Components

Other Service

Data Source

Service Interface #2
Web Service 2

Service Interface #3
MSMQ Triggers

Web Service Client MSMQ Listener

Business Façade

Figure 1-5. Service-oriented architecture illustrating the business façade

Business Façade

The business façade is not as intuitive as the service agent because it has no

analogy in traditional component-based development. Essentially, the business

façade is a trust boundary that sits between middle-tier business components

and the service interfaces that call them. The business façade plays the roles of

both a service agent and a service interface, and it only applies in situations where

there are two or more service interfaces associated with the middle tier. It provides

a common interface for multiple service interfaces to interact with. In addition,

the business façade may provide additional security, authentication, or screen-

ing on incoming service requests.

Figure 1-5 provides another SOA solution architecture that illustrates the

usefulness of the business façade.

In this example, the service layer must handle requests from a wide variety

of different services, and it must support three separate service interfaces. A busi-

ness façade is necessary to manage requests from several incoming service

Introducing Service-Oriented Architecture

13

interfaces and to ensure that the requests get communicated to the business

components in a consistent fashion.

NOTE The concept of a business façade follows the well-known session
façade design pattern. For an overview of this design pattern, please consult
the article “Java Modeling: A UML Workbook” at http://www-106.ibm.com/
developerworks/java/library/j-jmod0604/.

The Web Services Specifications and the
WS-I Basic Profile

Recall the difference between Web services technology today versus service-

oriented architecture: The difference is in the level of infrastructure support.

Infrastructure in this context refers to the helper technologies and assemblies that

support the implementation of an SOA solution. Stand-alone Web services require

very little additional infrastructure support beyond what they already get from the

.NET Web services assemblies and the built-in HTTP handlers. However, as you

have seen in the conceptual overview, SOA requires a lot of infrastructure support,

including multiple transport options, security infrastructure, and support for reli-

able messaging, to name a few. Different companies, including Microsoft and IBM,

are working together to establish standard specifications that cover the full range

of supporting technologies for SOA infrastructure.

It is an unfortunate reality that Web service specifications are developed

and advanced in a politically charged environment where companies are often

rivals, rather than partners. Corporate animosity causes companies to disagree

on the right specifications. Sometimes, different groups of companies pursue

separate specifications that apply to the same purpose. Nonprofit organizations

such as OASIS provide a forum for companies to cooperate in the advancement

and development of Web service specifications. Read more about OASIS at

http://www.oasis-open.org.

Introducing the WS-I Basic Profile

The Web Services Interoperability (WS-I) organization has one primary goal:

to establish standard specifications so that Web services can be interoperable

across different platforms. In other words, the organization wants Web services

to be able to work together, no matter which platform they reside on, or which

development tool they were created with. The specifications cover a wide range

of areas, from transport protocols to security, and are collectively grouped together

as the WS-I Basic Profile.

NOTE The WS-I Basic Profile is the first in what are expected to be several
future and evolving profiles. The Basic Profile specifies exact version numbers
for its compliant specifications. For example, it includes SOAP 1.1, WSDL 1.1,
and XML 1.0. Future profiles will use updated versions, but it takes a long
time to establish new specifications, so do not expect new profiles very fre-
quently! View the WS-I Basic Profile Version 1.0 at http://www.ws-i.org/
Profiles/Basic/2003-08/BasicProfile-1.0a.html.

Figure 1-6 illustrates the high-level grouping of interoperable Web services

specifications that have been published jointly by Microsoft, IBM, and others.

The WS-I Basic Profile covers most of the specifications in the bottom three lay-

ers of the diagram, namely the specifications for Transport, Messaging, and

Description. The additional layers are covered by the various WS-Specifications,

including WS-Security, WS-Reliable Messaging, and WS-Transactions, to name

just a few. Some of the WS-Specifications fall within the lower three layers as

well, including WS-Addressing for the Messaging layer, and WS-Policy for the

Description layer. Note that this figure is adapted directly from a joint Microsoft-

IBM white paper titled “Secure, Reliable, Transacted Web Services: Architecture

and Composition” (September, 2003). Please see the “References” section in the

Appendix for more information.

Chapter 1

14

Figure 1-6. Interoperable Web Services specifications, including the WS-I Basic
Profile

The high-level groupings of Web specifications fall into these categories:

Transport: This group defines the communications protocols for mov-

ing raw data between Web services. It includes HTTP, HTTPS, and SMTP.

Introducing Service-Oriented Architecture

15

Messaging: This group defines how to format the XML messages that

Web services exchange. It includes the SOAP specification for encoding

messages, and the XML and XSD specifications for the message vocabu-

lary. The specifications are independent of a particular transport protocol.

The Messaging group also includes the WS-Addressing specification, which

decouples destination information for the request from the underlying

transport protocol. WS-Addressing can, for example, be used to define

multiple destinations for an XML message.

Description: This group defines specifications that allow a Web service

to describe itself. The core specifications are WSDL (for the service con-

tract) and XSD (for defining data type schemas). It also includes the

WS-Policy specification, which describes the policy that a Web service

enforces when it communicates with a client. For example, a Web ser-

vice may have specific requirements for how its interface operations

are called. The WS-Policy specification allows the Web service to tell

prospective clients what rules to follow in order to execute a successful

service request. Finally, this group includes the UDDI specification for

discovering and describing Web services.

Service Assurances: Web services cannot simply exchange XML mes-

sages. They must also provide the client with some assurance that the

messages will be transmitted in a secure way, and that the client can

expect some kind of response, even if something goes wrong at some

point in the workflow. This group of specifications includes WS-Security

(which provides authentication mechanisms), WS-Reliable Messaging

(to ensure the delivery of messages over unreliable networks), and sev-

eral transaction-related specifications.

Service Composition: The wide array of specifications in the WS-I Basic

Profile cannot all be implemented in every Web service. Developers

must pick and choose which specifications are important for a particu-

lar Web service. To enable this, Web services support service composition,

which allows developers to selectively pick specifications and to aggre-

gate them and record them in the WSDL document.

Introducing the WS-Specifications

I introduce you to the WS-Specifications again in Chapter 5, and then cover

them in detail in the remaining chapters of the book. Briefly, here is a summary

of the most important WS-Specifications and their purpose:

Chapter 1

16

WS-Security: A wide-ranging specification that integrates a set of popu-

lar security technologies, including digital signing and encryption based

on security tokens, including X.509 certificates.

WS-Policy: Allows Web services to document their requirements, prefer-

ences, and capabilities for a range of factors, though mostly focused on

security. For example, a Web service policy will include its security

requirements, such as encryption and digital signing based on an X.509

certificate.

WS-Addressing: Identifies service endpoints in a message and allows

for these endpoints to remain updated as the message is passed along

through two or more services. It largely replaces the earlier WS-Routing

specification.

WS-Messaging: Provides support for alternate transport channel pro-

tocols besides HTTP, including TCP. It simplifies the development of

messaging applications, including asynchronous applications that com-

municate using SOAP over HTTP.

WS-Secure Conversation: Establishes session-oriented trusted commu-

nication sessions using security tokens.

WS-Reliable Messaging: Provides mechanisms to help ensure the reli-

able delivery of messages, even when one or more services in the chain

are unavailable. This specification includes message delivery notifications

so that a sender knows whether a receiver has successfully obtained a sent

message.

The WS-Specifications are constantly evolving as new specifications get

submitted and existing specifications get refined. However, the core set of

specifications presented here will likely continue to form the cornerstone of

specifications for some time to come, since they address essential require-

ments for service-oriented applications.

Introducing Web Services Enhancements

Web Services Enhancements (WSE) provides developers with .NET managed

assemblies for implementing the WS-Specifications in conformance with the

WS-I Basic Profile. WSE is an evolving product and does not currently support

all of the Web service specifications, but it does support many important ones,

such as WS-Security and WS-Policy. Keep in mind, though, that even currently

supported specifications will continue to evolve in future releases of WSE. In

some cases, this is because the specification is currently only partially imple-

mented in WSE.

Introducing Service-Oriented Architecture

17

At a more conceptual level, WSE currently exists to provide additional infra-

structure support for SOA solutions, beyond what is already provided by the .NET

Framework. Microsoft chose to put WSE on a different release cycle than its

.NET Framework releases, so that it would have the flexibility to vary the release

schedule. Recall that SOA is governed by a number of technology standards and

specifications that are themselves going through changes. WSE has to be on a flexi-

ble release cycle in order to keep up with the newer versions of these technology

standards.

WSE is introduced again in Chapter 5, and is also the focus of the second

half of the book, where I will cover the various WS-Specifications in detail. WSE

is what allows you to code several of the WS-Specifications in message-oriented,

service-oriented .NET applications.

Summary

This chapter introduced the main concepts behind service-oriented architecture

(SOA), which refers to distributed applications based on Web services technology.

I defined what a Web service actually is, within the context of SOA, and reviewed

the main aspects of SOA architecture. I briefly introduced the WS-I Basic Profile,

the WS-Specifications, and Web Services Enhancements (WSE), all of which are

covered in detail in the second half of the book starting with Chapter 5.

19

CHAPTER 2

The Web Services

Description Language

WEB SERVICES are formally and fully described using an XML-based document

called the Web Service Description Language (WSDL) document. The WSDL doc-

ument communicates metadata information about the Web service to potential

clients and shows them what operations (methods) the Web service supports

and how to bind to them.

Visual Studio .NET automatically generates WSDL documents for your XML

Web services and uses them behind the scenes, although it conveniently allows

you to avoid opening the actual WSDL documents. WSDL documents are, for

example, used by Visual Studio .NET when you select the Add Web Reference

menu option, to allow your project to use the methods of an outside Web service.

In a service-oriented architecture (SOA), the WSDL document is a critically

important document, and one that you will need to understand in detail so that

you can exert tighter control over the Web services that you develop. This is

because development tools such as Visual Studio .NET create the most generic

WSDL documents with bindings for the SOAP protocol only. Web services can

exchange messages over several different protocols in addition to SOAP, includ-

ing HTTP POST, HTTP GET, and SMTP. However, keep in mind that SOAP is the

most suitable protocol for exchanging complex XML-based messages. If you

have built a true service-oriented Web service, then these messages cannot, for

example, be represented using simple URL arguments as are used by the HTTP

GET protocol. You can use the HTTP POST protocol to exchange XML messages,

but XML is not qualified with namespaces, nor does it provide the organized

SOAP structure that is so critical to technologies such as WSE 2.0. You can see

a comparison between the messages exchanged over SOAP versus HTTP POST

by browsing a Web service directly. Visual Studio .NET generates a generic input

page for each Web method that shows you how the exchanged input and output

messages will be generated.

WSDL documents fully describe a Web service, including the operations that it

supports, the messages that it exchanges, and the data types that these messages

use (both intrinsic and custom). The best way to approach a WSDL document is to

understand that different XML elements take responsibility for describing different

levels of detail. For example, the <messages> element is a detailed listing of the

types that factor into a given message. On the other hand, the <operation> ele-

ment simply lists the messages that factor into a given operation, without going

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

20

into any detail as to what these messages look like. This additional information

would be unnecessary because the <messages> element already does an excel-

lent job of documenting the types that factor into a given message. This division

of responsibility makes the WSDL document very efficient, but at the same time

hard to read because you have to look in several places to assemble the full details

of the documented Web service. But if you keep in mind that this is the approach

that the WSDL document is following, then you will find the document much

easier to understand.

In this chapter, I will describe the elements of a WSDL document so that you

can understand how this document fully describes a Web service. I will also show

you those aspects of the WSDL document that you may wish to edit manually.

Elements of the WSDL Document

The WSDL document is itself an XML document, so it obeys the rules that you

expect for any well-formed XML document. This begins with schema namespace

definitions, which are included as a root element in the WSDL document using

the <definitions> element. A typical WSDL document includes several schema

definitions, but the most important one is the following:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/">

The <definitions> root element encloses the contents of the WSDL document

entirely. All of the elements presented next are child elements of the <definitions>

root element.

The WSDL document contains seven primary XML elements (in addition to

the <definitions> root element), all of which belong to the schema just listed. The

seven XML elements fall into two main groups:

• Abstract description: XML elements that document the Web service inter-

face, including the methods that it supports, the input parameters, and the

return types.

• Concrete implementation: XML elements that show the client how to

physically bind to the Web service and to use its supported operations.

The XML elements for abstract description are as follows:

<types>: This element lists all of the data types that are exchanged by the

XML messages as input parameters or return types. The <types> element

is equivalent to an embedded XSD schema definition file.

The Web Services Description Language

21

<message>: This element describes a SOAP message, which may be

an input, output, or fault message for a Web service operation. A SOAP

message is subdivided into parts, which are represented by <part> child

elements and which document the types that are included in the SOAP

message.

<operation>: This element is analogous to a method definition; how-

ever, it only allows you to define input, output, and fault messages that

are associated with the operation. You can then consult the individual

message details to determine what input parameters and return types

are involved.

<portType>: This element lists all of the operations that a Web service

supports. The <port> element (described later) corresponds to a single

Web service, while the <portType> element describes the available oper-

ations. The previous three elements (<types>, <message>, and <operation>)

all describe granular, individual pieces of the Web service operations and

its types. The <portType> element avoids many of these lower-level details

and instead provides a high-level summary of the operations (and asso-

ciated input, output, and fault messages) that the Web service provides.

The <portType> element provides a single location for a client to browse

the offerings of a particular Web service.

The XML elements for concrete implementation are as listed here:

<binding>: This element links the abstract and concrete elements

together within a WSDL document. The <binding> element is associated

with a specific <portType> element, and it also lists the address of the

Web service that is associated with the <portType> element. Finally, the

<binding> element lists the protocol that is used to communicate with

the Web service.

<port>: This element defines the Uniform Resource Indicator (URI) where

the Web service is located, and it also implements a <binding> element.

<service>: This element encloses one or more <port> elements.

Figure 2-1 shows the high-level structure of a WSDL document and how the

various XML elements relate to each other within the document.

Chapter 2

22

<service>

<port> <binding>

<operation>

<portType>

<operation>

<message>

<types>

Figure 2-1. WSDL document structure

Let’s look at each of the seven elements in further detail.

The <types> Element

The <types> element lists all of the data types that are exchanged by the XML

messages as input parameters or return types. The <types> element is equivalent

to an embedded XSD schema definition file. For design purposes, it is useful to

separate out your XSD schema definitions into a separate file. This allows you

to reference type information independently of the WSDL document, which is

important because it provides a central reference point for validating XML docu-

ments against a single source. You can then import the XSD schema file into the

WSDL document using a separate <import> root element as follows:

<import namespace="http://www.bluestonepartners.com/schemas/StockTrader/"

location="http://www.bluestonepartners.com/schemas/StockTrader.xsd" />

With this approach the <types> element is no longer needed, so you can just

include it as an empty element as follows:

<types/>

The Web Services Description Language

23

Having shown you this approach, I need to immediately point out that it does

not conform to the WS-I Basic Profile, which states that the <import> element may

only be used to import another WSDL document, not an external XSD schema file.

You will still need to design and build XSD schema files separately from the WSDL

document; however, once this task is complete, you will need to embed the XSD

elements directly within the WSDL documents <types> section. The <import> ele-

ment must not appear within a WSDL document for XSD schema information.

You cannot omit the <types> element, even if it is unused, because this will

generate parsing errors in the WSDL document.

NOTE XSD schema definition files are described in detail in Chapter 3. They
are essential documents for describing the data types of XML messages in a
service-oriented architecture. The discussion in Chapter 3 shows you how to
build XSD schema files manually and then incorporate them into a WSDL
document. You will also use XSD schema files to auto-generate code-based
type definitions.

The <message> Element

The <message> element describes a SOAP message, which may be an input, out-

put, or fault message for a Web service operation. A SOAP message is subdivided

into parts, which are represented by <part> child elements and which document

the types that are included in the SOAP message.

For example, consider a Web method called RequestQuote. It accepts a stock

ticker symbol and returns a complex XML Quote message, which contains multi-

ple levels of detail, including the opening and closing prices of the stock, as well as

long-term statistics such as 52-week high and low values. A client that expects to

use the RequestQuote method does not care how this Web method is implemented.

However, the client does need to know the structure of the messages for commu-

nicating with the Web method (or operation, as it is referred to in WSDL).

The RequestQuote operation uses a request (input) message and a response

(output) message. The input message looks like this:

<message name="RequestQuoteSoapIn">

<part name="Symbol" element="s0:Symbol" />

</message>

The output message looks like this:

<message name="RequestQuoteSoapOut">

<part name="RequestQuoteResult" element="s0:Quote" />

</message>

Chapter 2

24

Both messages use types from a namespace called StockTrader, which is ref-

erenced in the <definitions> element of the WSDL document. The <message>

element does not need to document what these types look like; it simply needs

to reference them. Notice that the operation’s parameters are documented within

the <message> root element using <part> child elements. If the RequestQuote

operation required five input parameters, then the corresponding input <message>

element would include five corresponding <part> child elements.

The <operation> Element

The <operation> element is analogous to a method definition; however, it only

allows you to define input, output, and fault messages that are associated with

the operation. You can then consult the individual message details to determine

what input parameters and return types are involved.

In the previous section, I described the <message> element using an exam-

ple operation called RequestQuote. I presented the input and output messages,

but observant readers will notice that I did not formally associate these messages

to the same operation beyond verbally stating that they were associated. This is

what the <operation> element is for. It is responsible for formally associating

messages with a given operation. The <message> element is a root element, so

in theory you can define a message within the WSDL document and then use it

across multiple operations. This is perfectly legal within the WSDL document.

Here is what the <operation> element looks like for the RequestQuote

operation:

<operation name="RequestQuote">

<input message="tns:RequestQuoteSoapIn" />

<output message="tns:RequestQuoteSoapOut" />

<fault message="tns:ExceptionMessage" />

</operation>

Notice that no additional description is provided for the messages beyond

their names. For more details, you must reference the corresponding <message>

elements.

Operations can be defined in one of four modes:

• Request/Response: The client sends a request message to the Web service,

and the Web service returns a response message.

• One Way: The client sends a request message to the Web service, but

receives no response message in return.

The Web Services Description Language

25

• Solicit/Response: The reverse of Request/Response. The Web service sends

a message to the client, and then the client sends a response message to

the Web service.

• Notification: The reverse of One Way. The Web service sends a message to

the client, but receives no response message in return.

The WSDL document does not contain special attributes for describing how

an operation is called. Instead, you must infer this information by the arrange-

ment and inclusion (or exclusion) of input and output messages. Although I have

used the concept of request and response messages to describe the interaction

between Web service and client, this model does not really apply in a WSDL doc-

ument. Instead, I refer to input and output messages. The difference may be

semantic, but in a WSDL document, Web services never make requests, or send

input messages to a client. Any message that originates from a Web service is

referred to as an output message, even in Solicit/Response or Notification mode.

Accordingly, here is how you define each of the four modes in WSDL:

• Request/Response: The client sends a request message to the Web service,

and the Web service returns a response message.

<operation name="MyOperation">

<input message="MyInputMessage" />

<output message=" MyOutputMessage" />

</operation>

• One Way: The client sends a request message to the Web service, but

receives no response message in return.

<operation name="MyOperation">

<input message="MyInputMessage" />

</operation>

• Solicit/Response: The reverse of Request/Response. The Web service

sends a message to the client, and then the client sends a response mes-

sage to the Web service. The <operation> element lists the output and

input messages in reverse order.

<operation name="MyOperation">

<output message=" MyOutputMessage" />

<input message="MyInputMessage" />

</operation>

Chapter 2

26

• Notification: The reverse of One Way. The Web service sends a message to

the client, but receives no response message in return.

<operation name="MyOperation">

<output message=" MyOutputMessage" />

</operation>

The <portType> Element

The <portType> element lists all of the operations that a Web service supports. The

<port> element (described later in this chapter) corresponds to a single Web ser-

vice, while the <portType> element describes the available operations. The previous

three elements (<types>, <message>, and <operation>) all describe granular, indi-

vidual pieces of the Web service operations and its types. The <portType> element

avoids many of these lower-level details and instead provides a high-level summary

of the operations (and associated input, output, and fault messages) that the Web

service provides. The <portType> element provides a single location for a client to

browse the offerings of a particular Web service.

The four elements that I have discussed so far are presented in order of

decreasing granularity. Whereas an <operation> element lists a collection of

<message> elements (which in turn list a collection of <types> elements),

a <portType> element lists a collection of <operation> elements.

For example, here is the <portType> element (named

StockTraderServiceSoap) for a Web service that supports two operations,

RequestQuote and PlaceTrade:

<portType name="StockTraderServiceSoap">

<operation name="RequestQuote">

<input message="tns:RequestQuoteSoapIn" />

<output message="tns:RequestQuoteSoapOut" />

<fault message=" tns:ExceptionMessage" />

</operation>

<operation name="PlaceTrade">

<input message="tns:PlaceTradeSoapIn" />

<output message="tns:PlaceTradeSoapOut" />

</operation>

</portType>

You may be surprised to see the <portType> listing like this. I have pointed

out on several occasions how the WSDL document is designed for efficiency. If

this were entirely the case, then you would expect the <portType> element to

look more like this:

The Web Services Description Language

27

<portType name="StockTraderServiceSoap">>

<operation name="RequestQuote" />

<operation name="PlaceTrade" />

</portType>

There is no easy explanation as to why the WSDL document takes a less effi-

cient approach with the <portType> element other than to speculate that it is

designed to be a one-stop location for a client to retrieve a summary of the oper-

ations that the Web service supports.

The <binding> Element

The <binding> element links the abstract and concrete elements together within

a WSDL document. The <binding> element is associated with a specific <portType>

element, and it also lists the address of the Web service that is associated with the

<portType> element. Finally, the <binding> element lists the protocol that is used

to communicate with the Web service.

Keep in mind that the <portType> element is nothing more than an abstract

definition for a Web service, which is a concrete entity that implements a set of

operations. The <binding> element simply formalizes the association between

a <portType> and a Web service.

Here is what the <binding> element looks like for a Web service that sup-

ports a single operation called RequestQuote, and which communicates using

the SOAP protocol:

<binding name="StockTraderServiceSoap" type="tns:StockTraderServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="RequestQuote">

<soap:operation

soapAction="http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote"

style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

</binding>

Chapter 2

28

There is no new abstract information here that you do not already know

from the discussion so far. For example, you already know the name of the

<portType>, which is StockTraderServiceSoap. And you already know that it

includes an <operation> element named RequestQuote. But the concrete infor-

mation is new. The <binding> element informs you that the Web service uses the

SOAP transport protocol. The <soap:operation> element tells you the name of

the Web method that is associated with the RequestQuote operation, but it does

not reveal the physical location of the Web service. (The soapAction attribute

includes the namespace for the RequestQuote schema element, which appears

to resemble a physical URL path.) Finally, you learned that the Web method uses

literal encoding and a document style, which are both required settings for

exchanging SOAP messages.

The <port> Element

The <port> element defines the URL where the Web service is located, and it also

implements a <binding> element. As you know, I have already defined a <binding>

element for the Web service, but it does not indicate the physical location of the

Web service. This is what the <port> element is for.

Here is what the <port> element looks like for the StockTraderServiceSoap

<binding> element:

<port name="StockTraderServiceSoap" binding="tns:StockTraderServiceSoap">

<soap:address location="http://localhost/StockTrader/StockTrader.asmx" />

</port>

Finally you learned the physical location of the Web service, via the

<soap:address> element.

The <service> Element

The <service> element encloses one or more <port> elements. It is essentially

a collection of one or more Web service bindings. In most cases, your WSDL doc-

ument will describe one Web service only, and so the <service> element itself

will provide no additional value. However, the WSDL specification requires that

all <port> elements be contained within the <service> element. The listing in the

prior section actually appears within a <service> element called

StockTraderService as follows:

<service name="StockTraderService">

<port name="StockTraderServiceSoap" binding="tns:StockTraderServiceSoap">

<soap:address location="http://localhost/StockTrader/StockTrader.asmx" />

</port>

</service>

The Web Services Description Language

29

The WSDL 1.1 Specification

The WSDL 1.1 specification that describes the complete document structure can

be found at http://www.w3.org/TR/wsdl. It is worth looking at the original specifi-

cation because you will find useful elements that you can use even though they

are not widely known or even generated using GUI tools such as Visual Studio

.NET. For example, the <operation> element contains a child element called

<documentation> that allows you to insert an English-language description of

what the operation does. Here is an example:

<operation name="RequestQuote">

<documentation>

Returns a delayed 30-minute quote for a given stock ticker symbol.

This operation returns a Quote XML type as defined in the XSD schema at:

http://www.bluestonepartners.com/schemas/StockTrader.xsd

</documentation>

<input message="s0:RequestQuoteSoapIn" />

<output message="s0:RequestQuoteSoapOut" />

</operation>

The <documentation> element adds a welcome level of readability to the

WSDL document, which is challenging at best to read with human eyes.

If you were to distill a WSDL document down to its most basic set of associ-

ated elements, it would look like this:

<definitions>

<types />

<message />

<operation>

<message />

</operation>

<portType>

<operation />

</portType>

<binding>

<operation />

</binding>

<service>

<port>

<binding />

</port>

</service>

</definitions>

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

30

Listing 2-1 shows the actual WSDL document for the StockTrader Web ser-

vice that we will be working with in detail in the following chapters. You do not

need to read the document line-by-line, but try scanning it, and notice how much

information you can get about the Web service without having seen any other

documentation about it.

Listing 2-1. The WSDL Document for the StockTrader Web Service

<?xml version="1.0" encoding="utf-8" ?>

<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:s0="http://www.bluestonepartners.com/schemas/StockTrader/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://www.bluestonepartners.com/schemas/StockTrader"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

targetNamespace="http://www.bluestonepartners.com/schemas/StockTrader"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<import namespace="http://www.bluestonepartners.com/schemas/StockTrader/"

location="http://www.bluestonepartners.com/schemas/StockTrader.xsd" />

<types/>

<message name="RequestAllTradesSummarySoapIn">

<part name="Account" element="s0:Account" />

</message>

<message name="RequestAllTradesSummarySoapOut">

<part name="RequestAllTradesSummaryResult" element="s0:Trades" />

</message>

<message name="RequestTradeDetailsSoapIn">

<part name="Account" element="s0:Account" />

<part name="TradeID" element="s0:TradeID" />

</message>

<message name="RequestTradeDetailsSoapOut">

<part name="RequestTradeDetailsResult" element="s0:Trade" />

</message>

<message name="PlaceTradeSoapIn">

<part name="Account" element="s0:Account" />

<part name="Symbol" element="s0:Symbol" />

<part name="Shares" element="s0:Shares" />

<part name="Price" element="s0:Price" />

<part name="tradeType" element="s0:tradeType" />

</message>

<message name="PlaceTradeSoapOut">

<part name="PlaceTradeResult" element="s0:Trade" />

The Web Services Description Language

31

</message>

<message name="RequestQuoteSoapIn">

<part name="Symbol" element="s0:Symbol" />

</message>

<message name="RequestQuoteSoapOut">

<part name="RequestQuoteResult" element="s0:Quote" />

</message>

<portType name="StockTraderServiceSoap">

<operation name="RequestAllTradesSummary">

<input message="tns:RequestAllTradesSummarySoapIn" />

<output message="tns:RequestAllTradesSummarySoapOut" />

</operation>

<operation name="RequestTradeDetails">

<input message="tns:RequestTradeDetailsSoapIn" />

<output message="tns:RequestTradeDetailsSoapOut" />

</operation>

<operation name="PlaceTrade">

<input message="tns:PlaceTradeSoapIn" />

<output message="tns:PlaceTradeSoapOut" />

</operation>

<operation name="RequestQuote">

<input message="tns:RequestQuoteSoapIn" />

<output message="tns:RequestQuoteSoapOut" />

</operation>

</portType>

<binding name="StockTraderServiceSoap" type="tns:StockTraderServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="RequestAllTradesSummary">

<soap:operation

soapAction="http://www.bluestonepartners.com/schemas/StockTrader/➥

RequestAllTradesSummary" style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

<operation name="RequestTradeDetails">

<soap:operation

soapAction="http://www.bluestonepartners.com/schemas/StockTrader/➥

RequestTradeDetails" style="document" />

<input>

Chapter 2

32

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

<operation name="PlaceTrade">

<soap:operation soapAction="http://www.bluestonepartners.com/schemas/➥

/StockTrader/PlaceTrade" style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

<operation name="RequestQuote">

<soap:operation

soapAction="http://www.bluestonepartners.com/schemas/StockTrader/➥

RequestQuote" style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

</binding>

<service name="StockTraderService">

<port name="StockTraderServiceSoap" binding="tns:StockTraderServiceSoap">

<soap:address location="http:// www.bluestonepartners.com/StockTrader.asmx" />

</port>

</service>

</definitions>

This concludes the overview of the elements that make up a WSDL docu-

ment. You can reference the complete WSDL document for this Web service in

the sample code (available from the Downloads section of the Apress Web site at

http://www.apress.com), under Chapter 2\WSDL Documents\. You may find the

file easier to read if you open it in Visual Studio .NET or from within XML docu-

ment editing software.

The Web Services Description Language

33

Working with WSDL Documents

Now that you understand the structure of a WSDL document, the next questions

are how to actually generate one, and what to do with it once you have it gener-

ated. These are not trivial questions, because the WSDL document is complex,

and you will want to keep your manual alterations of the document to a minimum.

Parsing errors are very easy to generate in a WSDL document from even the

smallest of misapplied edits.

How to Generate a WSDL Document

The easiest way to generate a WSDL document is using a tool like Visual Studio

.NET. There is very much a chicken-and-the-egg relationship between a WSDL

document and the Web service implementation that it describes. That is, you can

write the code first, and generate the WSDL document later. Or, you can manually

write the WSDL document first, and then use it to auto-generate the code defini-

tion. Because it is very difficult to generate a WSDL document by hand, you are

better off writing the code implementation first, and then using Visual Studio

.NET to generate the WSDL document for you.

NOTE Web services must be message-oriented if they are to be of any use in
a service-oriented architecture. Chapters 3 and 4 provide a detailed discussion
of how to build message-oriented Web services. The WSDL document will not
improve or detract from the quality of the Web service implementation. It is
essential that you follow good design patterns and practices when building
Web services for a service-oriented architecture.

Assuming that you have built a message-oriented Web service according to

the best patterns and practices (as discussed in the following chapters), you can

generate a WSDL document by browsing the .asmx file of your Web service, and

then clicking the Service Description link in the default client page. This link

simply appends ?WSDL to the URL of the .asmx file. Figure 2-2 shows the default

client page for the StockTraderService Web service and the corresponding Service

Description link.

Chapter 2

34

Figure 2-2. The default client page for the StockTraderService Web service

The Service Description link will display the WSDL document in a tree

view–like format, wherein you can collapse and expand individual elements. This

format is very useful for working your way through the document and learning

how it is structured. Alternatively, you can copy the WSDL document from the

browser window and then view it in an XML document editing application.

What to Do with the WSDL Document

Once you have auto-generated the WSDL document, there are two main things

that you will want to do with the generated document. First, you will need to

abstract out the data type information from the embedded <types> element into

a separate XSD schema file. This is essential in a service-oriented architecture

so that other Web services and clients can have access to the same centralized

schema definition file of the custom data types.

Second, you can now use a command-line tool called wsdl.exe to auto-

generate proxy classes that clients can use to interact with the Web service. You

can replicate the same feature in Visual Studio .NET by adding a Web reference

from a client project to a Web service. As you become a more sophisticated Web

services developer, you will end up spending more time developing outside of

the comfortable environment of Visual Studio .NET. This is because you will

grow to need a higher level of control over your Web services development than

Visual Studio .NET can currently provide.

I conclude the chapter here, but I will extend this material in greater detail

in the following two chapters.

The Web Services Description Language

35

Summary

In this chapter, you studied the structure of a WSDL document and found that it

contains seven XML elements in addition to a root element called <definitions>.

The seven additional elements are divided into two groups: one set provides an

abstract description of the Web service, while the other set provides concrete

implementation details that associate the abstract descriptions with the physical

Web service.

The XML elements for abstract description are

<types>: This element lists all of the data types that are exchanged by

the XML messages as input parameters or return types.

<message>: This element describes a SOAP message, which may be an

input, output, or fault message for a Web service operation.

<operation>: This element is analogous to a method definition; how-

ever, it only allows you to define input, output, and fault messages that

are associated with the operation.

<portType>: This element lists all of the operations that a Web service

supports.

The XML elements for concrete implementation are

<binding>: This element links the abstract and concrete elements

together within a WSDL document.

<port>: This element defines the URL where the Web service is located,

and it also implements a <binding> element.

<service>: This element encloses one or more <port> elements.

The chapter concluded with a brief look at how to generate and work with

WSDL documents. In the following two chapters, I will give you a detailed look

at how to build message-oriented Web services and how to work with WSDL

documents and XSD schema definition files.

37

CHAPTER 3

Design Patterns

for Building

Message-Oriented

Web Services

IN A SERVICE-ORIENTED ARCHITECTURE (SOA), the purpose of Web services is to

exchange and process XML messages, not simply to act as hosts for Remote

Procedure Call (RPC) style methods. The difference is that messages are bound

to rich and complex operations, whereas RPC-style methods simply return a dis-

crete result that is directly correlated to a specific set of input parameters. For

example, a message-oriented Web method will accept a stock ticker symbol and

will return a detailed stock quote in response. In contrast, an RPC-style Web

method will return a simple output value.

Unfortunately, development tools such as Visual Studio .NET place a method-

centric focus on Web services that causes you to lose sight of the bigger design

picture and to take the underlying infrastructure for granted. It is very easy to

build a Web service by creating an .asmx file and then throwing together several

loosely related RPC-style Web method implementations. However, this is the wrong

design approach because such a Web service fails to provide an integrated set of

message endpoints. In simpler terms, the Web service fails to provide a service.

The right design approach is always to think in terms of operations and XML

messages, and to consider how the Web service methods work together to pro-

vide a service.

This chapter begins with a challenge for you to set aside what you have learned

about Web services development until now, and to open your mind to a different

design approach—one that is based on integrated XML messages, not on RPC-style

methods.

How to Build Message-Oriented Web Services

There are six steps involved in building a message-oriented Web service, as

described in the following sections.

Chapter 3

38

Step 1: Design the Messages and the Data Types

Conceptually design what the messages and data types will look like. UML class

diagrams are the best way to capture this information.

Step 2: Build the XSD Schema File for the Data Types

Use an XML designer tool to build the XSD schema file for all of the data types that

are exchanged by the Web service methods. Visual Studio .NET’s XML Designer

is a good tool, but you can use any XML Designer tool that you are comfortable

working with.

Step 3: Create a Class File of Interface Definitions
for the Messages and Data Types

The interface definition class file provides the abstract definitions of the

Web service methods and its data types. This class file derives from the

System.Web.Services.WebService class, so it can be readily implemented in

a Web services code-behind file. The .NET Framework provides a command-

line tool called xsd.exe for generating an interface definition class file based

on an XSD schema file. This will manually generate class definitions for the

data types. You can add this class file to your Web service project and then

manually insert abstract definitions for the Web methods.

Optional Step 3A: Generate the WSDL Document Manually

If you are brave enough, you can generate the WSDL document manually once

you have built the XSD schema file. However, the only real benefit you gain

from this step is you are then able to fully generate the interface definition file

using the wsdl.exe command-line tool. It is easier to follow Step 3 (explained

previously) using xsd.exe combined with manual coding of the abstract method

definitions. The syntax of WSDL documents is very difficult to build correctly by

hand. (However, Chapter 2, which reviews the structure of WSDL documents, is

essential reading so that you can understand how the WSDL document is struc-

tured and how it relays Web service metadata to Web service clients.)

Design Patterns for Building Message-Oriented Web Services

39

Step 4: Implement the Interface in the Web Service
Code-Behind File

Your hard work in Steps 1 through 3 pays off, and you are now ready to implement

code for the Web methods. The Web service .asmx code-behind class derives from

the System.Web.Services.WebService class by default, as does the interface defini-

tion class file from Step 3. So you can derive the .asmx code-behind class directly

from the interface definition class instead, and then implement code for each of

the methods.

Step 5: Generate a Proxy Class File for Clients
Based on the WSDL Document

Web services have no reason to exist unless they are being used by clients. In this

step, you generate a proxy class file based on the Web service WSDL document so

that clients know how to call your Web service, and what messages and data types

will be exchanged. The wsdl.exe command-line tool will automatically generate

this proxy class for you based on the WSDL document. And Visual Studio .NET

will automatically generate the WSDL document for you, so no manual work is

required.

You can actually skip this step if you are developing with Visual Studio .NET,

because it will dynamically generate the proxy class file for you when you add

a Web reference (for your Web service) to a client project. However, I prefer to

manually generate the proxy class file so that I can either alter it or have it ready

for clients who are using a development tool without code generating wizards.

Step 6: Implement a Web Service Client Using a Proxy
Class File

This final step hooks a client to your Web service. If you are using Visual Studio

.NET, then you simply add a (dynamic) Web reference to the Web service in your

client project, and this will automatically generate the proxy class file for you. This

wizard will also make the necessary adjustments to your application configuration

file to record the location of the Web service. Alternatively, you can manually add

the proxy class file from Step 5 to your project, update the configuration file, and

begin coding. The client essentially does nothing more than delegate method calls

out to the Web service. Valid clients include Web applications, Windows Forms

applications, console applications, or even other Web services.

Chapter 3

40

Next Steps

This process is obviously more involved than simply creating a new .asmx file

and immediately implementing code. But it is the right way to do things because

it abstracts out the Web service definitions and the code implementations. Visual

Studio .NET and the .NET Framework provide all of the tools that you need to

auto-generate the XML-based files and the code, so the amount of manual work

is kept to a minimum.

The rest of this chapter dissects the various moving parts that make up a

message-oriented Web service. You will gain a precise understanding of how multi-

ple files and tools work together to define and implement a message-oriented Web

service. I will also provide selective implementation examples that collectively show

you how to build this type of Web service from scratch.

What Are Design Patterns?

Design patterns are loosely described as time-tested, established solutions to

recurring design problems. Formal design patterns are highly structured and

follow strict templates. The design patterns that are presented in this book do

not follow this rigorous format, but they are in keeping with the spirit of design

patterns because they factor in industry-accepted practices for approaching

recurring design problems.

Design and Build a Message-Oriented Web Service

This section provides the information that you need in order to build a message-

oriented Web service. It is organized along the same six steps presented earlier

and provides both conceptual information and implementation information.

The Role of XML Messages and XSD Schemas

The starting point in designing a Web service is to determine what XML messages

it will exchange—specifically, what messages it will respond to, and what mes-

sages it will return. Figure 3-1 shows the standard architecture for a client that

interacts with a Web service via a proxy class. This architecture is based on the

Design Patterns for Building Message-Oriented Web Services

41

ServiceClient Proxy Port

Client calls methods
on the proxy class

Proxy generates
messages and relays
them to the port

Web service receives
and processes the
input messages

SEND :

Client receives Web
method results

Proxy receives output
messages from the port

Web service processes the
requests and generates
output messages

RECEIVE :

Figure 3-1. Web services architecture showing communication between the client
and service

principle that the client and the Web service both have a common understand-

ing of the messages and data types that are exchanged between them. This

understanding can only be achieved if the Web service publishes a clear docu-

ment of the operations that it supports, the messages it exchanges, and the types

that it uses. This document is the Web Services Description Language (WSDL)

document (described in Chapter 2). The WSDL document is the main reference

for describing a Web service, and it includes embedded type definitions and

message definitions among other things.

Consider an example Web service called StockTrader that provides methods

for retrieving stock quotes and placing trades. Listing 3-1 presents one of the Web

methods called RequestQuote that accepts a stock ticker symbol and returns

a detailed stock quote.

Listing 3-1. Pseudo-Code for the RequestQuote Web Method

[WebMethod]

public Quote RequestQuote(string Symbol)

{

// implementation code

}

Chapter 3

42

public class Quote

{

public string Symbol;

public string Company;

public string DateTime;

public System.Double High;

public System.Double Low;

public System.Double Open;

public System.Double Last;

public System.Double Change;

public System.Double PercentChange;

public System.Double Previous_Close;

public string High_52_Week;

public string Low_52_Week;

}

This code listing represents a Quote type object and a method called

RequestQuote that returns a Quote object. The RequestQuote method actually

represents two messages: an input, or request, message that includes a stock

ticker symbol, and an output, or response, message that provides a detailed stock

quote. A client can only use the RequestQuote method if it can also understand

the response. In other words, the client has to fully understand the definition of

the Quote type in order to make use of the RequestQuote method. This is exactly

the kind of information that WSDL documents and XSD schema files document.

Listing 3-2 shows what the RequestQuote input and output messages look

like in WSDL.

Listing 3-2. WSDL for the RequestQuote Input and Output Messages

<message name="RequestQuoteSoapIn">

<part name="Symbol" element="s0:Symbol" />

</message>

<message name="RequestQuoteSoapOut">

<part name="RequestQuoteResult" element="s0:Quote" />

</message>

<portType name="StockTraderServiceSoap">

<operation name="RequestQuote">

<input message="tns:RequestQuoteSoapIn" />

<output message="tns:RequestQuoteSoapOut" />

</operation>

</portType>

Design Patterns for Building Message-Oriented Web Services

43

And Listing 3-3 shows what the Quote type and Symbol type look like in an

XSD schema file.

Listing 3-3. XSD Schema for the Quote and Symbol Types

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema id="StockTrader"

targetNamespace="http://www.bluestonepartners.com/Schemas/StockTrader/"

elementFormDefault="qualified"

xmlns="http://www.bluestonepartners.com/Schemas/StockTrader/"

xmlns:mstns="http://www.bluestonepartners.com/Schemas/StockTrader/"

xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">

<xs:complexType name="Quote">

<xs:sequence>

<xs:element name="Symbol" type="xs:string" />

<xs:element name="Company" type="xs:string" />

<xs:element name="DateTime" type="xs:string" />

<xs:element name="High" type="xs:double" />

<xs:element name="Low" type="xs:double" />

<xs:element name="Open" type="xs:double" />

<xs:element name="Last" type="xs:double" />

<xs:element name="Change" type="xs:double" />

<xs:element name="PercentChange" type="xs:double" />

<xs:element name="High_52_Week" type="xs:double" />

<xs:element name="Low_52_Week" type="xs:double" />

</xs:sequence>

</xs:complexType>

<xs:element name="Symbol" type="xs:string"></xs:element>

</xs:schema>

This schema representation of the Quote type is significant because it

qualifies the type definition based on a specific target namespace, in this case

http://www.bluestonepartners.com/schemas/StockTrader/. Although there may be

many variations of the Quote type in the world, this specific qualified definition is

unique. The Symbol type is nothing more than a standard string type element,

but it is qualified to a specific namespace and therefore becomes more than

just a standard element. Schema files are essential to ensuring that a Web ser-

vice and its clients are absolutely clear on the messages and type definitions

that are being exchanged between them. Schema files are how you define

messages.

Chapter 3

44

NOTE XSD schema files should always define types using nested elements
rather than attributes. This makes the file easier to read and reduces the pos-
sibility of errors during processing.

The Quote and Symbol types looks very similar if they are embedded directly

in the WSDL document within the <types> section, and you should always assign

qualified namespace information to embedded types. In addition, you should

always abstract type definitions out to a separate XSD schema file for reference

purposes, even though it is redundant to the embedded type information con-

tained within the WSDL document. Separate XSD schema files are useful for lots

of reasons. Most importantly, they allow different Web services to use the same

qualified types, and to reference them based on a single XSD schema file in a sin-

gle physical location. Life would get very confusing if you had multiple embedded

definitions of the same qualified data type floating around in cyberspace. In addi-

tion, dedicated XSD schema files help you validate XML messages. In .NET, you

can load an XSD file into an XmlValidatingReader object, and use it to validate

XML messages. You can also use schema files with the xsd.exe command-line

utility to generate class file definitions for types.

NOTE The target namespace is typically expressed as a Uniform Resource
Identifier (URI), but it is not required to resolve to an actual location. The
schema definitions that are presented in this book happen to be stored as XSD
files at http://www.bluestonepartners.com/schemas/. For your convenience,
they are also included in the sample code downloads (available from the
Downloads section on the Apress Web site at http://www.apress.com).

Design the XML Messages and XSD Schemas (Step 1)

XML messages represent the operations that your Web service supports, and

they correlate to implemented Web methods. XML messages do not contain

implementation logic. Instead, they simply document the name of an operation

and its input and output types. XML messages must be designed in conjunction

with XSD schema files. The best starting point is to construct a UML diagram for

the operation. Figure 3-2 shows a UML class diagram for the RequestQuote

operation and its associated input and output data types.

Design Patterns for Building Message-Oriented Web Services

45

Quote

Symbol : String
Company : String
DateTime : String
High : Double
Low : Double
Open : Double
Last : Double
Change : Double
PercentChange : Double
Previous_Close : Double
High_52_Week : Double
Low_52_Week : Double

StockTrader Proxy Class

RequestQuote(Symbol : String) : Quote

Figure 3-2. UML class diagram for the RequestQuote operation

The UML class diagrams will map conceptually to XSD schemas, so you do

not have to sketch out any XML during the design phase unless it helps you to

better visualize the XML messages and types. For example, here is what the Quote

type will look like within a SOAP response (with the embedded namespaces omit-

ted for clarity):

<Quote>

<Symbol>MSFT</Symbol>

<Company>Microsoft Corporation</Company>

<DateTime>11/17/2003 16:00:00</DateTime>

<High>26.12</High>

<Low>24.68</Low>

<Open>25.49</Open>

<Last>25.15</Last>

<Change>-0.36</Change>

<PercentChange>-0.0137</PercentChange>

<Previous_Close>25.49</Previous_Close>

<High_52_Week>35</High_52_Week>

<Low_52_Week>22</Low_52_Week>

</Quote>

Chapter 3

46

For design purposes, you can simplify the XML down to this:

<Quote>

<Symbol />

<Company />

<DateTime />

<High />

<Low />

<Open />

<Last />

<Change />

<PercentChange />

<Previous_Close />

<High_52_Week />

<Low_52_Week />

</Quote>

Clearly, it is a lot of work to sketch out even this simplified XML by hand,

and it does not provide any additional value beyond what the UML diagram

provides. In fact, it provides less because this sketched out XML provides no

type information. So the message here is that for efficiency you should design

your XML messages using UML or any appropriate shorthand notation. This is

the extent of the design work that is minimally required, and you should never

shortcut this step.

Build the XSD Schema File (Step 2)

Once you have established what your XML messages and data types will look

like, it is time to start building them. XSD schema files are the building blocks

for XML messages, so you need to design the schema files first. XSD schema

files may be coded by hand, but it is easier to use a visual designer tool, such

as Visual Studio .NET’s XML Designer. To access the designer, you simply add

a new XSD schema file to a project. Visual Studio provides both a visual design

view and an XML design view. Figure 3-3 illustrates the visual design view for

StockTrader.xsd, which defines all of the data types for this chapter’s

StockTrader sample application.

Design Patterns for Building Message-Oriented Web Services

47

The XML Designer includes toolbox elements that you can drag onto the

surface of the designer and then fill in, as shown in Figure 3-4. For example, it

provides a toolbox element for XML complex types. Simply drag this element

onto the designer and provide a name for the complex type. Then start specify-

ing the included types by their name and type. Once you are finished defining

all of the types, switch to the XML view to view the resulting XML. You can then

copy and paste the XML into a notepad file, and save it with an .xsd extension.

Figure 3-3. The Visual Studio .NET XML Designer, showing the StockTrader XSD
schema

Chapter 3

48

You do not need to build the XML message documents by hand because

they are created as part of the WSDL document, which Visual Studio .NET will

automatically generate. But you will need to code the abstract method defini-

tions in an interface definition file so that the WSDL generator knows what XML

messages to create. The interface definition file contains type definitions and

abstract method definitions.

The Role of the Interface Definition Class File

The interface definition class file contains two important sets of information:

• Class definitions for all custom types that are exchanged by the Web service

• Abstract class definitions for each operation that the Web service supports

Listing 3-4 provides the code for an interface definition class file for the

RequestQuote operation and its associated types.

Figure 3-4. The Visual Studio .NET XML Designer Toolbox

Design Patterns for Building Message-Oriented Web Services

49

Listing 3-4. The Interface Definition Class File for the RequestQuote Operation
and Its Associated Types

using System;

using System.Web.Services;

using System.Web.Services.Description;

using System.Web.Services.Protocols;

using System.Xml.Serialization;

namespace StockTrader

{

public abstract class StockTraderStub : System.Web.Services.WebService

{

public abstract Quote RequestQuote(string Symbol);

}

[XmlTypeAttribute(Namespace=

"http://www.bluestonepartners.com/schemas/StockTrader/")]

public class Quote

{

public string Symbol;

public string Company;

public string DateTime;

public System.Double High;

public System.Double Low;

public System.Double Open;

public System.Double Last;

public System.Double Change;

public System.Double PercentChange;

public System.Double Previous_Close;

public System.Double High_52_Week;

public System.Double Low_52_Week;

}

}

Notice the following important points:

The definition file includes one stub class that encapsulates all opera-

tions, and then any number of additional classes for the data types.

Chapter 3

50

The interface definitions for the operations are enclosed within an

abstract class called StockTraderStub. The stub class derives from the

System.Web.Services.WebService class, so it can be implemented in

a Web service. In this listing it contains a single abstract function defi-

nition for the RequestQuote operation.

The definition file contains a separate class definition for the Quote type.

This is how you are able to reference the Quote type from code-behind.

The definition file only contains class definitions for custom types (such

as Quote), not for simple elements such as Symbol, which is a standard

string (as qualified in the http://www.w3.org/2001/XMLSchema namespace).

I make special mention of this because it may appear inconsistent with

our earlier XSD schema file that includes an element definition for

Symbol. But it is not inconsistent because the xsd.exe compiler resolves

the Symbol element to a standard string, which therefore requires no

special entry in the interface definition file.

NOTE You may be confused by the difference between abstract classes versus
interfaces. An interface is a completely abstract set of members with no
implementation logic. However, an abstract class supports implementations
in its methods (although it is not required). Abstract classes are useful because
they provide the benefits of interfaces combined with the convenience of
reusable code.

XML Serialization Attributes

The interface definition classes are decorated with XML serialization attributes

that bind the classes to specific namespaces, attributes, and elements in the XSD

schema file. Consider, for example, the following:

[return: XmlElement("Quote",

Namespace = "http://www.bluestonepartners.com/schemas/StockTrader/")]

public abstract Quote RequestQuote(string Symbol);

This unambiguously states that the RequestQuote operation returns an object of

type Quote, as qualified in the http://www.bluestonepartners.com/schemas/StockTrader/

namespace. In fact, this namespace is documented liberally throughout the inter-

face definition file. It can never appear too often because XML messages must be

as unambiguous as possible.

XML and SOAP serialization attributes give you direct control over the way

in which the XML messages get serialized within the request and response SOAP

Design Patterns for Building Message-Oriented Web Services

51

messages. You should always set the SoapDocumentMethod reflection attribute

to use bare encoding for parameters. This ensures that complex types (such as

Quote) remain serialized as elements within the SOAP message:

[WebMethod()]

[SoapDocumentMethod(Use=SoapBindingUse.Literal,

ParameterStyle=SoapParameterStyle.Bare)]

public abstract Quote RequestQuote(string Symbol);

If you do not use bare encoding, then complex types may end up serialized

as attributes, which may interfere with schema validation. This is known as

wrapped encoding. Bare encoding looks like this:

<Quote>

<Symbol>MSFT</Symbol>

</Quote>

While wrapped encoding looks like this:

<Quote Symbol="MSFT" />

Wrapped encoding will generate fewer XML characters and a smaller SOAP

payload, but it may create big problems if custom types cannot be validated

against their XSD schema files.

Table 3-1 summarizes important properties of the serialization attribute,

including how certain property values influence the processing behavior of

a Web service.

NOTE Reflection attributes allow you to add additional metadata to a wide
variety of code elements including classes and methods. Attributes modify
the way that the element is processed. For example, the [WebMethod]
attribute designates a standard method or function as capable of accepting
serialized XML messages. Of course, reflection attributes must have meaning
to the processing code in order to be applied. Reflection attributes may include
properties that provide additional metadata information. For more on reflec-
tion attributes, consult the MSDN online article on attributes, located at
MSDN Home ➤ MSDN Library ➤ .NET Development ➤ Visual Studio
.NET ➤ Visual Basic and Visual C# ➤ Reference ➤ Visual C# Language ➤
C# Language Specification.

Chapter 3

52

Table 3-1. The SoapDocumentMethod Serialization Attribute and

Selected Properties

Attribute Property Description

Use Specifies the encoding style of the messages. The options

are Literal and Encoded. (The options are specified in code

using the System.Web.Services.Description.SoapBindingUse

enumeration.)

ParameterStyle Specifies whether the parameters are wrapped in a single

element within the body of the SOAP message, or whether

they are unwrapped. (The options are specified in code

using the System.Web.Services.Protocols.SoapParameterStyle

enumeration.)

OneWay Specifies whether the Web service client will receive

a response to their request, or whether the request will be

one-way only (without a response).

Binding Associates a Web method with a specific operation within

the binding that is specified for the Web service. The Web

service binding is set at the Web service level using the

WebServiceBinding serialization attribute. For example:

[System.Web.Services.WebServiceBindingAttribute(Name=

"StockTraderServiceSoap", Namespace="http://

www.bluestonepartners.com/schemas/StockTrader")]

public class StockTraderProxy : System.Web.Services

.Protocols.SoapHttpClientProtocol {}

RequestNamespace The namespace URI that defines the request elements.

RequestElementName The name of the request element as it is defined in the

applicable XSD schema file.

ResponseNamespace The namespace URI that defines the response elements.

ResponseElementName The name of the response element as it is defined in the

applicable XSD schema file.

Design Patterns for Building Message-Oriented Web Services

53

Generate an Interface Definition File (Step 3)

Interface definition files (IDFs) can be generated in two ways:

wsdl.exe: This command-line tool generates a full interface definition file

(including abstract classes and types) based on a WSDL document. Table

3-2 summarizes selected command-line switches for the wsdl.xe utility.

xsd.exe: This command-line tool generates the type section only for the

interface definition file based on an XSD schema file. You can use this auto-

generated file as a starting point and then manually insert the abstract class

definitions for each of the Web service operations. Table 3-3 summarizes

selected command-line switches for the xsd.exe utility.

Table 3-2. wsdl.exe Selected Command-Line Switches

Switch Description

wsdl.exe <url or path> <options> General usage of the wsdl.exe utility, which is a utility to

generate code for XML Web service clients and XML Web

services using ASP.NET from WSDL contract files, XSD

schemas, and .discomap discovery documents. (Switch

descriptions follow.)

<url or path> A URL or path to a WSDL contract, an XSD schema, or

.discomap document.

/server Generate an abstract class for an XML Web service

implementation using ASP.NET based on the contracts.

The default is to generate client proxy classes.

/out:<filename> The file name for the generated proxy code. The default

name is derived from the service name. Short form is /o:.

Table 3-3. xsd.exe Selected Command-Line Switches

Switch Description

xsd.exe <schema>.xsd /classes: General usage of the xsd.exe utility, which is a utility to

dataset [/o:] generate schema or class files from given source. (Switch

descriptions follow.)

<schema>.xsd The name of a schema containing the elements to import.

/classes Generate classes for this schema. Short form is /c.

/dataset Generate subclassed DataSet for this schema. Short form is /d.

/out:<directoryName> The output directory to create files in. The default is the

current directory. Short form is /o.

Chapter 3

54

Here is how you generate an IDF using wsdl.exe:

C:\> wsdl /server /o:StockTraderStub.cs StockTrader.wsdl StockTrader.xsd

Here is how you generate an IDF using xsd.exe:

C:\> xsd StockTrader.xsd /c

NOTE In order to use the wsdl.exe and xsd.exe command-line tools from
any directory location on your computer, you will probably need to set an
environment variable that points to the directory location of the utilities.
On my computer I created a user environment variable called PATH with
a value of c:\Program Files\Microsoft Visual Studio .NET 2003\SDK\v1.1\
BIN. Alternatively, if you are using Visual Studio .NET, then from the Programs
menu group you can select Visual Studio .NET Tools ➤ Visual Studio .NET
Command Prompt.

If you are following the steps in this chapter, then your only option for gener-

ating an interface definition file at this point is to partially generate it using xsd.exe

and the XSD schema file. You have not yet defined the operations anywhere other

than by design in the initial UML diagram in Step 1. So your next step is to use the

UML diagram to manually add abstract class definitions to the auto-generated

IDF. This is the approach I always take because it is far easier than the alternative,

which is to generate WSDL by hand. Generating WSDL manually is prone to errors

and takes far longer than it will take you to update a few lines in code, as is the

case with the partially generated interface definition file.

Implement the Interface Definition in the Web Service (Step 4)

Once the interface definitions are in place, the last remaining step is to imple-

ment them in the Web service code-behind. The first step is to derive the Web

service class file from the interface definition, and the second step is to override

the abstract methods, as shown in Listing 3-5.

Listing 3-5. Derive the Web Service .asmx Code-Behind Class from the Generated
Interface Definition Class (StockTraderStub)

// Step 1 (Before View): Implement the StockTraderStub class

[WebService(Namespace = "http://www.bluestonepartners.com/schemas/StockTrader")]

public class StockTraderService : StockTraderStub

{

// Contains abstract methods (not shown)

}

Design Patterns for Building Message-Oriented Web Services

55

// Step 2 (After View): Override and implement each of the abstract class methods

[WebService(Namespace = "http://www.bluestonepartners.com/schemas/StockTrader")]

public class StockTraderService : StockTraderStub

{

public override Quote RequestQuote(string Symbol)

{

// Implementation code goes here

}

}

You need to set namespace names for both the Web service class and the

interface definition classes. I usually include all classes within the same name-

space, but there is no rule about this. If you do use different namespaces, then in

the Web service class file you will need to import the namespace for the interface

definition classes.

At this point everything is in place to complete the implementation of the

Web service methods. All operations and types are fully described and ready to

be referenced from the Web service class file. Listing 3-6 shows an example imple-

mentation of the PlaceTrade Web method, which places a trade order and returns

the trade details in a custom object type called Trade.

Listing 3-6. The PlaceTrade Web Method

[WebMethod()]

[SoapDocumentMethod(RequestNamespace=

"http://www.bluestonepartners.com/schemas/StockTrader/",

ResponseNamespace="http://www.bluestonepartners.com/schemas/StockTrader/",

Use=SoapBindingUse.Literal, ParameterStyle=SoapParameterStyle.Bare)]

[return: XmlElement("Trade", Namespace=

"http://www.bluestonepartners.com/schemas/StockTrader/")]

public override Trade PlaceTrade(string Account, string Symbol, int Shares, ➥

System.Double Price, TradeType tradeType)

{

Trade t = new Trade();

t.TradeID = System.Guid.NewGuid().ToString();

t.OrderDateTime = DateTime.Now.ToLongDateString();

t.Symbol = Symbol;

t.Shares = Shares;

t.Price = Price;

t.tradeType = tradeType;

// Initialize the Trade to Ordered, using the TradeStatus enumeration

t.tradeStatus = TradeStatus.Ordered;

// Code Not Shown: Persist trade details to the database by account number

// and trade ID, or to a message queue for later processing

// Code goes here

return t; // Return the Trade object

}

Chapter 3

56

Figure 3-5. The Visual Studio .NET Solution Explorer showing the
StockTrader Web service

Notice that I have reapplied all of the XML and SOAP serialization attributes

that were included in the interface definition file. You need to do this to ensure

that they take effect. Also notice the use of several custom types, including Trade

(a complex type that stores the trade details), TradeType (an enumeration for the

type of trade being executed), and TradeStatus (an enumeration for the current

status of the trade).

Assuming that you have followed the steps so far, your Visual Studio .NET

Solution Explorer will look like Figure 3-5.

Messages vs. Types

The discussion so far has drawn a distinction between messages and types.

For example, Figure 3-2 outlines a message called RequestQuote that returns

a type called Quote. This begs the question as to why they are different. Why

can’t the interface definition file treat the RequestQuote message as just another

custom data type? This means you would need to include a custom class to rep-

resent RequestQuote, just as you create one to represent Quote.

This is not a trick question. The answer is that you can. There is no reason

you cannot add a RequestQuote data type as its own custom class in the proxy

stub file. To illustrate the distinction, Listing 3-7 shows you what this would look

like. The listing is based on the shell of an autogenerated proxy stub file, with dif-

ferent class signatures for RequestQuote and Quote. In addition, I have added new

custom data type for RequestQuote, shown in bold.

Design Patterns for Building Message-Oriented Web Services

57

Listing 3-7. A Proxy Stub File That Includes the RequestQuote Message As
a Custom Data Type

public abstract class StockTraderService : System.Web.Services.WebService

{

public abstract Quote RequestQuote(string Symbol);

}

public class Quote

{

// Quote properties not shown (e.g., Symbol, Open, Last, etc.)

}

public class RequestQuote

{

public string Symbol;

}

Notice that the class signature for the RequestQuote operation contains no

mention of the Quote object, which as you know is the output data type of the

operation. It is not mentioned because the class signature reflects the input param-

eters only. Figure 3-6 shows a partial view of the StockTraderWithOperations.xsd

schema file, which adds four additional complex types for each of the four sup-

ported Web service operations.

Figure 3-6. The Visual Studio .NET XML Designer, showing the
StockTraderWithOperations XSD schema

Chapter 3

58

Not only is it legal to include separate class signatures for the Web service

operations, but you will need to do so if you have to manually retrieve the SOAP

message body for a requested operation. Chapter 9 reviews services that use the

TCP protocol and a specialized class called the SoapReceiver, which manually

deserializes an incoming SOAP request message. The deserialized message body

is mapped to an instance of the RequestQuote class, so you need to have a defined

class signature. (Otherwise, you will need to write custom XPath queries to

extract the operation name and input parameter values.)

Chapter 9 is many pages and concepts away, so until we reach there, it will not

be necessary to create separate class signatures for the Web service operations. And

unfortunately, the .NET Framework’s WSDL generator will not be able to differenti-

ate a message from a data type, unless you have implemented RequestQuote as

a Web method in a .asmx file (to use just one example of a Web service operation).

So for no other reason than convenience, you should continue creating .asmx code

for each of the supported Web service operations. You can also start adding the

operations to the associated XML schema file, so that they are there when you need

them in the future. (The sample project for this chapter includes two versions of the

StockTrader XML schema file: StockTrader.xsd and StockTraderWithOperations.xsd.)

Consume the Web Service

The hard part of the development is done, as is much of the value-added material

in this chapter. By now you should have a good understanding of how to approach

the development process for message-oriented Web services. Hopefully this chap-

ter opened your eyes to the variety of moving parts that work together to power

a Web service. Visual Studio .NET allows you to take shortcuts in the develop-

ment process, but you need to avoid temptation and do the manual work that is

required to create well-documented Web services.

I will close out this chapter with the final step of hooking the Web service to

a client consumer.

Generate the Client Proxy Class File (Step 5)

You have done a lot of manual work to get to this point: You have manually

created schema files and interface definitions, and you have implemented

the operations as Web service methods. To generate a client proxy file, you

can rely on the wsdl.exe utility to do the work for you in generating the proxy

stub. The proxy file is similar to the interface definition file in that it includes

class definitions for types and operations. But it is derived from the

System.Web.Services.Protocols.SoapHttpClientProtocol namespace, and its

purpose is to provide a programmatic interface between the client and the

Design Patterns for Building Message-Oriented Web Services

59

Web service. The proxy class works with the underlying Web services infra-

structure to make requests and receive responses using SOAP.

NOTE You can ignore the material in this section if you use Visual Studio
.NET and work with the Add Web Reference Wizard. This wizard will auto-
matically generate the proxy file for you, and you will not need to work
directly with the Web service WSDL document. Read this section only if you
want to know what happens under the hood when you create a client proxy
class file.

Assuming that you have completed the previous development steps correctly,

your WSDL document will be in good shape, and you can trust that it accurately

represents the messages and types that your Web service exchanges. You can use

Visual Studio .NET to generate the WSDL file.

To generate the WSDL document, right-click the StockTrader.asmx file and

select the View in Browser menu option. Append ?WSDL to the end of the URI, as in

http://localhost/StockTrader.asmx?WSDL

The WSDL document will open in a new browser window. You can copy and

paste the XML into Notepad, and save it with a .wsdl file extension. You will need

to edit this file in three ways:

• Remove dash characters from the WSDL browser view.

• Verify that the embedded type information (within the <types> tags) matches

the type definitions within the XSD schema file you generated earlier.

• Remove the <service> element, which will bind the proxy to a static Web

service location. (Instead, you will add a dynamic location to the client’s

configuration file.)

Listing 3-8 shows what the processed WSDL document will look like, assum-

ing that RequestQuote is the only operation that the Web service supports.

Listing 3-8. The WSDL Document for the StockTrader Web Service Filtered to Show
All Elements Related to the RequestQuote Web Method

<?xml version="1.0" encoding="utf-8" ?>

<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:s0="http://www.bluestonepartners.com/schemas/StockTrader/"

Chapter 3

60

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://www.bluestonepartners.com/schemas/StockTrader"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

targetNamespace="http://www.bluestonepartners.com/schemas/StockTrader"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<import namespace="http://www.bluestonepartners.com/schemas/StockTrader/"

location="http://www.bluestonepartners.com/schemas/StockTrader.xsd" />

<types />

<message name="RequestQuoteSoapIn">

<part name="Symbol" element="s0:Symbol" />

</message>

<message name="RequestQuoteSoapOut">

<part name="RequestQuoteResult" element="s0:Quote" />

</message>

<portType name="StockTraderServiceSoap">

<operation name="RequestQuote">

<input message="tns:RequestQuoteSoapIn" />

<output message="tns:RequestQuoteSoapOut" />

</operation>

</portType>

<binding name="StockTraderServiceSoap" type="tns:StockTraderServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="RequestQuote">

<soap:operation

soapAction="http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote"

style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

</binding>

</definitions>

Notice that I am using the <import> tag to pull in the type definitions from

the reference XSD schema file, which is qualified at http://www.bluestonepartners

.com/schemas/, and which is physically located at http://www.bluestonepartners

.com/schemas/StockTrader.xsd. I am using this tag in order to avoid reprinting the

Design Patterns for Building Message-Oriented Web Services

61

lengthy embedded type information. This approach does not technically invali-

date the WSDL file, although it does put the file out of compliance with the WS-I

Basic Profile, Rule R2001, which disallows the import of external XSD schema

files as a substitute for embedded type information.

Next, run the wsdl.exe command-line utility to generate a client proxy file:

C:\> wsdl /o:StockTraderProxy.cs StockTrader.wsdl StockTrader.xsd

You can then add the proxy class file to the Web service consumer’s project,

as I will discuss in the next section.

Build the Web Service Consumer

The proxy class file provides synchronous and asynchronous invocation

mechanisms for each of the Web service operations, and derives from

System.Web.Services.Protocols.SoapHttpClientProtocol. It also provides class

definitions for the Web service types, just like the interface definition file. The

proxy file does not include abstract methods, it only includes implemented

methods. So you do not have to implement every method that the proxy class

file provides. In addition, the consumer class does not need to derive from the

service proxy class. You simply create instances of the proxy class as needed.

Implement the Web Service Consumer (Step 6)

Listing 3-9 shows a sample of the auto-generated service proxy class.

Listing 3-9. The Auto-Generated Service Proxy Class

[System.Web.Services.WebServiceBindingAttribute(Name="StockTraderServiceSoap",

Namespace="http://www.bluestonepartners.com/schemas/StockTrader")]

public class StockTraderProxy : ➥

System.Web.Services.Protocols.SoapHttpClientProtocol {

public StockTraderProxy() {}

[System.Web.Services.Protocols.SoapDocumentMethodAttribute(

"http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote",

Use=System.Web.Services.Description.SoapBindingUse.Literal,

ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Bare)]

[return: System.Xml.Serialization.XmlElementAttribute("Quote",

Chapter 3

62

Namespace="http://www.bluestonepartners.com/schemas/StockTrader/")]

public Quote RequestQuote([System.Xml.Serialization.XmlElementAttribute(

Namespace="http://www.bluestonepartners.com/schemas/StockTrader/")]

string Symbol)

{

object[] results = this.Invoke("RequestQuote", new object[] {Symbol});

return ((Quote)(results[0]));

}

public System.IAsyncResult BeginRequestQuote(string Symbol, ➥

System.AsyncCallback callback, object asyncState)

{

return this.BeginInvoke("RequestQuote", new object[] { ➥

Symbol}, callback, asyncState);

}

public Quote EndRequestQuote(System.IAsyncResult asyncResult)

{

object[] results = this.EndInvoke(asyncResult);

return ((Quote)(results[0]));

}

}

[System.Xml.Serialization.XmlTypeAttribute(

Namespace="http://www.bluestonepartners.com/schemas/StockTrader/")]

public class Quote

{

string Symbol;

// Additional type definitions go here (not shown)

}

This class was entirely auto-generated by the wsdl.exe utility. The only modi-

fication I made was to change the auto-generated name of the proxy class from

StockTraderService to my preferred name of StockTraderProxy.

Figure 3-7 shows the Visual Studio .NET Solution Explorer as it appears when

you add a consumer project to the same solution file as the StockTrader Web ser-

vice. Note that this is done for convenience, to make debugging the projects simpler.

In reality, the Web service and the consumer projects would be located on sepa-

rate servers and likely in different domains.

Design Patterns for Building Message-Oriented Web Services

63

Figure 3-7. The Visual Studio .NET Solution Explorer showing the StockTrader
Web service and the Web service consumer project

NOTE This chapter does not provide specific instructions for how to create the
consumer project, so please refer directly to the code samples that accompany
this chapter.

Figure 3-8 shows a form-based implementation of the consumer that allows

you to receive stock quotes and place trades.

Chapter 3

64

Figure 3-8. A consumer application for the StockTrader Web service

Listing 3-10 shows a sample of the implementation code behind the Request

Quote button.

Listing 3-10. Web Service Consumer Code

private void btnQuote_Click(object sender, System.EventArgs e)

{

// Create an instance of the Web service proxy

StockTraderProxy serviceProxy = new StockTraderProxy();

// Retrieve the Web Service URI from app.config

serviceProxy.Url = ConfigurationSettings.AppSettings["remoteHost"];

// Call the Web service to request a quote

Quote q = serviceProxy.RequestQuote(this.txtSymbol.Text);

// Display the Quote results in the form

this.lblCompany.Text = q.Company;

this.lblSymbol.Text = q.Symbol;

this.lblTradeDateTime.Text = q.DateTime;

this.lblLastTrade.Text = q.Last.ToString();

this.lblPreviousClose.Text = q.Previous_Close.ToString();

this.lblChange.Text = q.Change.ToString();

}

Notice that the client code references a configuration element called

<remoteHost> that provides the URI for the StockTrader Web service. It should

be entered into the project’s .config file as shown in Listing 3-11.

Design Patterns for Building Message-Oriented Web Services

65

Listing 3-11. The Web.config File for the Web Service Consumer

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<add key="remoteHost"

value="http://localhost/StockTrader/StockTrader.asmx"/>

</appSettings>

</configuration>

This concludes the discussion of how to build a basic message-oriented

Web service.

Summary

The purpose of Web services is to exchange and process XML messages, not to

act as simple endpoints for remote procedure calls. In this chapter, you learned

a six-step process for designing and building a message-oriented Web service

from scratch:

Step 1: Design the messages and the data types.

Step 2: Build the XSD schema file for the data types.

Step 3: Create a class file of interface definitions for the messages and

data types.

Step 4: Implement the interface in the Web service code-behind file.

Step 5: Generate a proxy class file (for clients) based on the WSDL.

Step 6: Implement a Web service client using a proxy class file.

The goal of this chapter is to help you rethink your approach to Web services

design so that you can start developing the type of message-oriented Web ser-

vices that fit into a service-oriented architecture framework.

67

CHAPTER 4

Design Patterns
for Building

Service-Oriented
Web Services

MESSAGE-ORIENTED WEB SERVICES are the building blocks for service-oriented

applications. In the previous chapter, you learned how message-oriented Web

services are constructed, and what sets them apart from traditional Remote

Procedure Call (RPC) style Web services. The main difference is that messages

typically include complex types that are defined using custom XML schema files.

Message-oriented Web services are effective at executing operations, whereby

the input parameters feed into a process rather than dictating the process. In

contrast, procedure-style method calls are straightforward operations with a

strong dependency on the input arguments. For example, the message-oriented

StockTrader Web service provides a PlaceTrade operation that accepts the trade

specifications, executes a complex trade operation, and then returns the details

of the trade encapsulated in a complex data type (the Trade object). The simple

input parameters trigger a complex operation and cause a complex type to be

returned. There is no direct correlation between the input parameters and the

complexity of the operation. In contrast, one example of a procedure-style Web

method is a simple arithmetic Add operation that accepts two numeric input

parameters. This Web method has nothing complicated happening internally,

nor does it require that a complex data type be returned. What you get out of the

method is directly correlated to what you send into it.

In this chapter, we need to make another conceptual leap, this time from

message-oriented Web services to service-oriented Web services. Messages do

not go away in this new architecture; they are just as important as ever. What

is different is that Web services are not the central player in the architecture.

Service-oriented Web services act more as smart gateways for incoming service

requests than as destinations in and of themselves. Let’s revisit the complex

service-oriented architecture diagram from Chapter 1, reprinted here as Figure 4-1.

Chapter 4

68

Service Agent

Service Interface #1

Web Service 1

Other Service

Business
Workflows

Business
Components

Business Facade

Service Interface #2

Web Service 2

Web Service Client

Figure 4-1. Complex service-oriented architecture

Notice that Web services are not the ultimate endpoint destinations in this

architecture. Instead, their purpose is to authenticate and authorize incoming

service requests, and then to relay the request details to back-end business com-

ponents and workflows for processing. This fact by no means diminishes the

importance of their role; it just switches perspectives. Web services have certain

unique properties that make them essential to this architecture, namely

• Web services process SOAP messages.

• Web services provide publicly accessible (and discoverable) endpoints for

service requests.

• Web services authenticate and authorize incoming service requests. In this

role they selectively filter incoming service requests and keep out unau-

thorized requests.

In contrast, other components in the architecture, such as the business

components, do not have any of these properties. They do not expose publicly

accessible endpoints. They do not process SOAP requests directly. And they do

Design Patterns for Building Service-Oriented Web Services

69

not have the same ability to filter out incoming service requests based on secu-

rity tokens.

So we have established that Web services play a unique role in service-oriented

architecture, one where they are an important support player rather than the

ultimate destination endpoint. But what does this translate to in practical terms,

and how is it different from before? The implication is that you need to build

Web services differently to maximize the effectiveness of their role in service-

oriented architecture (SOA) applications. This includes

A renewed emphasis on breaking out Web service code-behind into sepa-

rate class files and assemblies: This includes abstract interface definition

files (based on the applicable WSDL document). It also includes generating

a dedicated assembly for encapsulating custom data type definitions (so

that common data types may be used across multiple services and compo-

nents using a common reference assembly).

Delegation of all business process logic to back-end business compo-

nents: The Web service code-behind should be focused exclusively on

preprocessing incoming request messages and then relaying the request

details to the appropriate back-end business component. The Web ser-

vice code-behind should not handle any business processing directly.

A focus on new kinds of service-oriented components: SOA architec-

ture creates a need for different kinds of service components that may

have no equivalent in other architectures. For example, SOA applica-

tions rely heavily on service agent components, which act as the

middleman between separate Web services and which relay all com-

munications between them. (You will learn how to build a service agent

component later in this chapter.)

Be forewarned: Some of the material in this chapter may strike you as unusual

or unorthodox and certainly more complex than you are used to seeing with Web

services development. This is not surprising given that SOA applications are still

relatively new. Recall that it took several years for the n-tier architecture model to

become fully formed and to gain wide acceptance as a standard. SOA will also go

through an evolution. Some ideas will gain acceptance, while others will fall by the

wayside. This chapter quite likely contains some of both, so read the chapter,

absorb the material, and take with you as much or as little as you like.

How to Build Service-Oriented Web Services

The primary requirement that SOA imposes on a system is that its business

functionality must be accessible through more than one type of interface and

through more than one kind of transport protocol. Enterprise developers have

Chapter 4

70

long understood the need to separate out business functionality into a dedicated

set of components. In the previous chapter, the StockTrader Web service imple-

mented its business logic directly, based on an interface definition file (defined

in a separate, though embedded, class file). This approach is incorrect from an

SOA perspective for two reasons:

Web services should not implement business logic directly in their

methods: They should delegate this processing to dedicated business

assemblies. This is because you cannot assume that the business logic will

always be accessed through a Web service. What happens, for example,

when a new requirement comes through asking you to implement an

alternate interface that cannot or will not interact with a Web service?

You need to have a separate, ready-to-use assembly for the business logic.

Web services and their associated WSDL documents should not be the

original reference points for interface definitions: Certainly, a WSDL doc-

ument must conform to an established interface definition, but it should

not be establishing what that definition is. This information belongs in

a dedicated reference assembly, and should be stored as an interface defi-

nition that can be implemented in different kinds of components.

The previous StockTrader Web service is not compatible with SOA architec-

ture because it prevents common functionality from being accessible via multiple

interfaces. To put it in blunt terms, the StockTrader Web service is simply incom-

patible with SOA architecture because it is not abstract enough. What it needs to

do instead is to act as a trusted interface to a back-end StockTrader business

component. It cannot directly contain implementation for the StockTrader func-

tions (such as getting quotes and placing trades). Instead, it must delegate this

functionality to a back-end business component and focus on its primary role of

authentication, authorizing and relaying incoming service requests (and sending

out responses).

Consider another aspect to this architecture (as presented in Figure 4-1):

type definitions. If you separate out common functionality across multiple com-

ponents, how do they maintain a common understanding of type definitions?

For example, how does every component maintain the same understanding of

the Quote and Trade data types? XML Web services and their clients can share

XSD schema information for custom data types via the service’s published WSDL

document. But this is not an efficient way to share type information between a

middle-tier business component and a Web service, especially when the Web

service is delegating requests to the business component. The more efficient

approach is to generate a dedicated assembly that encapsulates the data type

definitions as custom classes, and to include a reference to this assembly from

wherever the custom data types are needed.

I have covered several challenging conceptual points, so now let’s move

on to code, and actually build a service-oriented Web service. Figure 4-2 is an

Design Patterns for Building Service-Oriented Web Services

71

StockTrader

Web Service

StockTraderTypes Definition Assembly

Business

 Component
Client Application

Quote()

Trade()

Trades()

TradeType()

TradeStatus()

IStockTrader

RequestQuote()

PlaceTrade()

RequestTradeDetails()

RequestAllTradesSummary()

Figure 4-2. Revised architecture for the StockTrader Web service showing how
several components reference the common StockTraderTypes definition assembly

architecture (and pseudo-UML diagram) that provides an alternate architecture

for the original StockTrader Web service, one that will enable it to participate

better in a larger service-oriented architecture. Notice that the type definitions

and interface definitions have been broken out into a separate assembly called

StockTraderTypes, which is referenced by several components in the architecture.

Based on this UML diagram, there are six steps involved in building a

message-oriented Web service that is compatible with SOA, as discussed next.

Step 1: Create a Dedicated Type Definition Assembly

Create a dedicated definition assembly for interfaces and type definitions. This

assembly will be referenced by any component, service, or application that needs

to use the interfaces or types.

Step 2: Create a Dedicated Business Assembly

Create a dedicated business assembly that implements logic for established

interfaces and type definitions. This business assembly must reference the

Chapter 4

72

definition assembly from Step 1. This ensures that the business assembly imple-

ments every available method definition.

Once this step is complete, you now have the flexibility to build any kind of

n-tier solution using the definition and business assemblies. This chapter focuses

on building a service-oriented application that includes a Web service. But you

could just as easily go a different route and build any kind of n-tier solution using

the definition and business assemblies developed so far.

This point underscores the fact that in a service-oriented architecture, Web

services are simply a gateway to a set of methods and types that are controlled by

other assemblies. The Web service itself merely provides a set of SOAP-enabled

endpoints that are accessible over one or more transport protocols.

Step 3: Create the Web Service Based on the
Type Definition Assembly

In the previous version of the StockTrader Web service, the definition informa-

tion for the Web method implementations came from a dedicated interface

definition file, which provided abstract class definitions and class-based type

definitions. But now this file is no longer needed because you have a dedicated

definition assembly. The new Web service simply needs to import the definition

assembly to have access to the required types and to the required interface.

Step 4: Implement the Business Interface in the
Web Service

The Web service needs to import the business assembly so that it can delegate

incoming service requests. Remember, the current architecture calls for a different

level of abstraction, whereby the Web service itself does not control its interface, its

data types, or the processing of business logic. Instead, it relies on other assemblies

for this reference information and for this processing capability.

By implementing the interface, you are ensured not to miss any methods

because the project will not compile unless every interface method is imple-

mented in the Web service. So, the definition assembly provides the interface

definition, while the business assembly provides the processing capability for

each method. All incoming Web service requests should be delegated to the

business component, rather than implementing the business logic directly in

the Web service.

The methods in this class file must be decorated with any required reflection

attributes, such as WebMethod and SoapDocumentMethod. You always had to

do this, so this is not new. But there is added importance now because many of

these attributes will be not be decorated elsewhere. Or, if they are, they will not

propagate to your class file. For example, the SoapDocumentMethod attributes

Design Patterns for Building Service-Oriented Web Services

73

are not included in the interface definition assembly (although the XML serial-

ization attributes are). These attributes are not automatically carried over to the

class file when it implements the definition assembly. As a matter of practice,

I make sure that the interface definition assembly is decorated with the required

serialization attributes, but I leave out attributes that relate to WebService and

WebMethod attributes. This approach is implementation agnostic, meaning that

it makes no assumptions about what kind of class file will implement the inter-

face definition assembly.

NOTE Reflection attributes provide additional metadata for your code.
The .NET runtime uses this metadata for executing the code. Class members
are said to be decorated with attributes. Reflection attributes are a powerful
tool because they enable the same code listing to be processed in different
ways, depending on how it is decorated. Chapter 3 has a more complete dis-
cussion of reflection attributes, and Table 3-1 (in Chapter 3) provides detailed
property descriptions for the SoapDocumentMethod attribute.

Step 5: Generate a Web Service Proxy Class File for
Clients Based on the WSDL Document

Proxy class files can still be generated directly from the Web service WSDL docu-

ment, so this step does not have to change with a revised architecture in order to

still work. However, the auto-generated proxy class file will not automatically uti-

lize the dedicated definition assembly. This creates a significant issue because the

proxy class file maintains its own type and interface definitions. Your goal is to

have a central repository for this information. So in the interest of type fidelity,

you need to modify the auto-generated proxy file to utilize the definition assem-

bly rather than a separate copy of the same information.

Separate copies can be modified, and there is nothing to stop you from

altering a proxy file so that it can no longer call the Web service it is intended for.

This is why it is good to derive all types and interfaces from a common source.

Step 6: Create a Web Service Client

The Web service client uses the generated proxy class file from Step 5 to set a ref-

erence to the new Web service. The client must also reference the type definition

assembly from Step 1, so that they have a common understanding of the data

types that are used by the Web services and its associated business assembly.

Some readers may see a red flag here because this approach creates a very

tight coupling between the client and the Web service due to their mutual depen-

dence on the same reference assembly. In contrast, it would be much easier to

Chapter 4

74

create a loosely coupled client that auto-generates a proxy file itself, using the

Web service WSDL document. This auto-generated proxy file would include both

methods and data types, so it would deviate from the more abstract approach

that I am presenting here—namely, the approach of separating type definitions

and method definitions into a dedicated assembly.

I am not advocating that you should always enforce this level of tight coupling

between a Web service and its client. In some cases, this will not even be feasible

because the client may not have access to a dedicated assembly. But this approach

may be warranted in other cases, particularly when you have a sensitive business

workflow, and you want to prevent any kind of miscommunication between a ser-

vice and a client.

So, as with all the material in this book, absorb the information; consider the

different approaches; but then decide which approach is most appropriate for

your business requirements.

Design and Build a Service-Oriented Web Service

This section provides the information that you need to understand in order to

build a message-oriented Web service for use in a service-oriented architecture.

It is organized along the same six steps presented earlier and provides both con-

ceptual information and implementation information.

Create the Definition Assembly (Step 1)

The definition assembly provides two important sets of information:

• Class definitions for all custom types that are exchanged in the system

• Interface definitions for each operation that the system supports

In this sense it is not unlike the auto-generated interface definition file from

the last chapter. Recall that the type information in this file (StockTraderStub.cs)

is auto-generated from an XSD schema file using the xsd.exe tool. The operations

are manually inserted as abstract class methods that must be overridden by what-

ever class implements this file.

There are two differences between the definition assembly and the previous

interface definition file:

The operations are documented as interfaces rather than abstract class

methods. This is because a given class can only derive from one other class

at a time. Web service classes, for example, must derive either directly or

indirectly from the System.Web.Services.WebService class. The Web service

class cannot implement an additional interface unless it is provided as an

invariant interface.

Design Patterns for Building Service-Oriented Web Services

75

The definition assembly does not include Web service and SOAP-related

attribute decorations. This is because it will be referenced from a variety

of different assemblies, some of which have nothing to do with Web ser-

vices. However, the definition assembly can still include XML

serialization attributes.

Figure 4-3 shows a UML class diagram for the definition assembly. Notice

the following two important points:

1. The type definitions are encapsulated in dedicated classes (for exam-

ple, Quote).

2. The method definitions are contained within an interface class called

IStockTrader.

Quote

Symbol : String

Company : String

Last : Double
… (add'l properties)

IStockTrader Interface

RequestQuote (Symbol : String) : Quote

PlaceTrade (Account : String, Symbol :

String, Shares : Integer, Price: Double,

tradeType : TradeType) : Trade

RequestTradeDetails (Account : String,
TradeID : String) : Trade

RequestAllTradesSummary (Account :

String) : Trades

Trade

TradeID : String

Company : String

Price : Double
… (add'l properties)

Trades

Bids[] : Trade

Asks[] : Trade

TradeStatus

Open : Integer

Filled : Integer

Cancelled : Integer
… (add'l enumerations)

TradeType

Bid : Integer

Ask : Integer

Figure 4-3. UML class diagram for the StockTraderTypes definition assembly

Chapter 4

76

It is possible for a client project to reference the StockTraderTypes assembly

solely for the purpose of accessing the custom data type definitions. The client

does need to implement the interface class, just because it is included in the

assembly. But of course if they do, then they will be required to implement every

member of the interface.

To create the definition assembly, start by creating a new Class Library proj-

ect in Visual Studio .NET called StockTraderTypes, and add to it a single class file

also called StockTraderTypes.

Listing 4-1 shows high-level pseudo-code for the StockTraderTypes defini-

tion assembly.

Listing 4-1. Pseudo-Code Listing for the StockTraderTypes Definition Assembly

namespace StockTraderTypes

{

public interface IStockTrader {}

public class Quote {}

public class Trade {}

public class Trades {}

public enum TradeStatus {}

public enum TradeTypes {}

}

Listing 4-2 presents a more detailed code listing, excluding XML serialization

attributes. These attributes are important because they directly relate the code

elements to XML elements in the associated XSD schema (which is assigned to

a qualified namespace at http://www.bluestonepartners.com/schemas/

StockTrader/).

Listing 4-2. Detail Code Listing for the StockTraderTypes Definition Assembly

using System;

using System.Xml.Serialization;

namespace StockTraderTypes

{

public interface IStockTrader

{

Quote RequestQuote(string Symbol);

Trade PlaceTrade(string Account, string Symbol, int Shares, ➥

System.Double Price, TradeType tradeType);

Trade RequestTradeDetails(string Account, string TradeID);

Trades RequestAllTradesSummary(string Account);

}

Design Patterns for Building Service-Oriented Web Services

77

public class Quote

{

public string Symbol;

public string Company; // Additional type members not shown

}

public class Trade

{

public string TradeID;

public string Symbol; // Additional type members not shown

}

public class Trades

{

public string Account;

public Trade[] Bids;

public Trade[] Asks;

}

public enum TradeStatus

{

Ordered,

Filled, // Additional type members not shown

}

public enum TradeType

{

Bid,

Ask

}

}

This is all the work that is required to create a definition assembly that can

be reused across other components, services, and applications.

Create the Business Assembly (Step 2)

The business assembly implements the IStockTrader interface that is defined in

the StockTraderTypes definition assembly. This logic was previously implemented

directly in the Web service class file. But this design is very limiting because it iso-

lates the business logic inside a specialized class file. The business assembly

provides a standard middle-tier component that can be referenced and invoked

by a wide variety of consumers, not just Web services.

Chapter 4

78

Creating the business assembly requires three steps:

1. Create a new Class Library project in Visual Studio .NET called

StockTraderBusiness, and add to it a single class file also called

StockTraderBusiness.

2. Set a reference to the StockTraderTypes assembly. For now you can cre-

ate all projects in the same solution, and then set a reference to the

StockTraderTypes project (from the Projects tab in the Add Reference

dialog box).

3. Import the StockTraderTypes namespace into the StockTraderBusiness

class file and implement the IStockTrader class. Implement code for each

of the interface operations. You will get compiler errors if you attempt to

build the solution without implementing all of the operations.

Listing 4-3 displays the pseudo-code listing for the StockTraderBusiness

business assembly.

Listing 4-3. Pseudo-Code Listing for the StockTraderBusiness Business Assembly

using System;

using StockTraderTypes;

namespace StockTraderBusiness

{

public class StockTraderBusiness : StockTraderTypes.IStockTrader

{

public Quote RequestQuote(string Symbol)

{

// Implementation code not shown

}

public Trade PlaceTrade(string Account, string Symbol, int Shares, ➥

System.Double Price, TradeType tradeType)

{

// Implementation code not shown

}

public Trade RequestTradeDetails(string Account, string TradeID)

{

// Implementation code not shown

}

public Trades RequestAllTradesSummary(string Account)

{

// Implementation code not shown

}

}

}

Design Patterns for Building Service-Oriented Web Services

79

The business assembly is the sole location for implemented business logic

and the final destination for incoming service requests. The previous listing looks

very spare because it does not show the implementation code for any of the meth-

ods. You can refer to the sample project to view the full code listing. Very little

implementation code is shown in this chapter because it is of secondary impor-

tance. It is more important that you feel comfortable with the interfaces and the

architecture of the components.

Create the Web Service (Steps 3–5)

The previous version of the StockTrader Web service implemented an interface

definition file for operations and types. This file is no longer needed because the

same information is now provided by the definition assembly.

Create a new Web service project named StockTraderContracts in the Visual

Studio .NET solution, and rename the .asmx file to StockTraderContracts. Use

the Add Reference dialog box to set references to the StockTraderBusiness and

StockTraderTypes assemblies.

Listing 4-4 displays the pseudo-code listing for the StockTraderContracts

Web service.

Listing 4-4. Pseudo-Code Listing for the StockTraderContracts Web Service

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Web.Services.Description;

using StockTraderTypes;

using StockTraderBusiness;

namespace StockTrader

{

public class StockTrader : System.Web.Services.WebService, ➥

StockTraderTypes.IStockTrader

{

[WebMethod()]

[SoapDocumentMethod(RequestNamespace=➥

"http://www.bluestonepartners.com/schemas/StockTrader/",

ResponseNamespace="http://www.bluestonepartners.com/schemas/StockTrader/",

Use=SoapBindingUse.Literal, ParameterStyle=SoapParameterStyle.Bare)]

[return: System.Xml.Serialization.XmlElement("Quote", Namespace=

"http://www.bluestonepartners.com/schemas/StockTrader/")]

Chapter 4

80

public Quote RequestQuote(string Symbol)

{

// Implementation code not shown

}

[WebMethod()]

//XML and SOAP serialization attributes not shown

public Trade PlaceTrade(string Account, string Symbol, int Shares, ➥

System.Double Price, TradeType tradeType)

{

// Implementation code not shown

}

[WebMethod()]

//XML and SOAP serialization attributes not shown

public Trade RequestTradeDetails(string Account, string TradeID)

{

// Implementation code not shown

}

[WebMethod()]

//XML and SOAP serialization attributes not shown

public Trades RequestAllTradesSummary(string Account)

{

// Implementation code not shown

}

}

}

The Web service methods no longer implement their own business logic.

Instead, every method must delegate incoming requests to the business assembly.

For example, Listing 4-5 shows how the RequestQuote Web method delegates an

incoming service request to the RequestQuote method in the business assembly.

Listing 4-5. Delegation in the RequestQuote Web Method

[WebMethod()]

// XML and SOAP attributes not shown

public Quote RequestQuote(string Symbol)

{

StockTraderBusiness b = new StockTraderBusiness();

Quote q = b.RequestQuote(Symbol);

return q;

}

Design Patterns for Building Service-Oriented Web Services

81

The code is extremely simple because the Web service and the business

assembly share the same type definitions and implement the same interface.

The communication between the parties is seamless because they share a com-

mon vocabulary.

Figure 4-4 shows the Solution Explorer window for the project so far, with

the References nodes expanded so that you can see how the assembly references

are configured in each of the three projects: StockTraderTypes, StockTraderBusiness,

and StockTraderContracts.

Figure 4-4. The Solution Explorer view for the StockTraderAdvanced solution

Chapter 4

82

Create the Web Service Client (Step 6)

In this example, you are going to see how to build a tightly coupled Web service

client that references the same definition assembly as the Web service itself. But as

I clarified earlier, it is often advisable to implement a loosely coupled Web service

client, whereby the client generates its own proxy file based on the Web service

WSDL document and its associated XSD schemas. In fact, service-oriented archi-

tecture promotes loose coupling between Web services and consumers.

As I stated earlier, my purpose in building a tightly coupled Web service client

is to show you an alternate approach to building clients. In some cases, you will

want to build a tightly coupled Web service client in order to prevent any mis-

communication or misunderstanding between the Web service and its client as

to what methods and types are supported. Certainly, type definitions can change,

and so tight coupling can add an additional burden to the developer of the client.

However, WSDL definitions can also change just as easily, and there is no clear

way for a Web service to communicate interface changes to its clients.

Ultimately, I advocate the design approach of loose coupling between a Web

service and its clients. However, I believe that the Web service itself should refer-

ence a type definition assembly, and should delegate all of its business logic to

a dedicated business assembly. So, the material in this chapter provides every-

thing you need to understand and implement my design approach. You can,

however, feel free to choose between a traditional loosely coupled client versus

a more specialized tightly coupled client. We will look at both approaches next.

Build a Loosely Coupled Web Service Client

Add a new console application named StockTraderConsole to the Visual Studio

.NET solution, and then do one of the following:

• Generate the proxy class manually with the wsdl.exe command-line utility

applied to the Web service WSDL document, or

• Use the Add Reference wizard in Visual Studio .NET to automatically gen-

erate the proxy class in the client project.

Once you have generated the proxy class, you simply reference it directly

from the client code, as shown in Listing 4-6.

Listing 4-6. Web Service Consumer Code

// Create an instance of the Web service proxy

StockTraderProxy serviceProxy = new StockTraderProxy();

// Retrieve the Web Service URI from app.config

serviceProxy.Url = ConfigurationSettings.AppSettings["remoteHost"];

Design Patterns for Building Service-Oriented Web Services

83

// Call the Web service to request a quote

Quote q = serviceProxy.RequestQuote("MSFT");

// Display the Quote results in the form

Console.WriteLn("\t:Company:\t " + q.Company);

Console.WriteLn("\t:Symbol:\t " + q.Symbol);

Console.WriteLn("\t:Last:\t " + q.Last.ToString());

Console.WriteLn("\t:Prev Close:\t " + q.Previous_Close.ToString());

For more information on building loosely coupled clients, please refer to

Chapter 3.

Build a Tightly Coupled Web Service Client

Auto-generated proxy class files are completely self-contained and essentially

provide the client with a separate local copy of the interface and type definitions

that the Web service supports. If the Web service interface changes, then the client

will not automatically pick up on these changes unless they clear the existing

Web reference and regenerate the proxy class. You can manage this risk by modi-

fying the auto-generated proxy class to conform to the standard interface and

type definitions that are contained in the StockTraderTypes assembly.

Add a new console application project named StockTraderConsole to the

Visual Studio .NET solution file and copy over the proxy class file from the previ-

ous chapter’s StockTrader Web service. Alternatively, you can auto-generate the

proxy class from within the StockTraderConsole project as follows:

Step 1: Use the Add Web Reference Wizard to auto-generate the proxy

class for the StockTraderContracts Web service at http://localhost/

StockTraderContracts/StockTrader.asmx.

Step 2: The auto-generated proxy class file is called Reference.cs and is

stored in the solution under the Web References\[Reference Name]\

Reference.map subproject folder. (If you do not see this file, you can use

the Project ➤ Show All Files menu option to expand all files.)

Step 3: Open the Reference.cs file and copy the entire code listing over

to a new C# class file called StockConsoleProxy.cs.

Rename the proxy class file to StockConsoleProxy, and then do the following:

Step 1: Add a reference from the StockTraderConsole project to the

StockTraderTypes assembly.

Chapter 4

84

Step 2: In the StockConsoleProxy class, import the StockTraderTypes

namespace, and add the IStockTrader interface to the StockConsoleProxy

interface list immediately following SoapHttpClientProtocol.

Step 3: Comment out all of the type definitions in the StockConsoleProxy

class. These include Quote, Trade, Trades, TradeType, and TradeStatus.

They are now redundant because the definition assembly contains the

same type definitions.

The pseudo-code for the proxy class now reads as shown in Listing 4-7 (mod-

ifications from the previous, or auto-generated, proxy classes are shown in bold).

Listing 4-7. The Proxy Class for the StockTraderContracts Web Service,
Modified to Reference the Type Definition Assembly StockTraderTypes

using System.Web.Services;

using System.Web.Services.Protocols;

using StockTraderTypes;

[System.Web.Services.WebServiceBindingAttribute(Name="StockTraderServiceSoap",

Namespace="http://www.bluestonepartners.com/schemas/StockTrader")]

public class StockConsoleProxy : SoapHttpClientProtocol, ➥

StockTraderTypes.IStockTrader

{

// Pseudo-code only: implementations and attributes are not shown

public Quote RequestQuote() {}

public System.IAsyncResult BeginRequestQuote() {}

public System.IAsyncResult EndRequestQuote() {}

// Additional operations are not shown

// These include PlaceTrade(), RequestTradeDetails(),

// and RequestAllTradesSummary()

// Type definitions are commented out of the proxy class

// because they are redundant to the type definition assembly

// These include Quote, Trade, Trades, TradeType and TradeStatus

}

These are trivial modifications because the proxy class already implements

all of the IStockTrader interface members. The benefit of explicitly adding the

Design Patterns for Building Service-Oriented Web Services

85

IStockTrader interface is to ensure that the proxy class remains constrained in the

way it implements the StockTrader operations. You could modify the proxy class

in many other ways, but as long as the StockTrader operations remain untouched

(interface-wise at least), the client application will compile successfully.

Once the proxy class has been modified, the client code can now be imple-

mented in the console application. The StockTraderTypes namespace must be

imported into the client class file so that the client can make sense of the type

definitions. No additional steps are required to use the definitions assembly.

Listing 4-8 shows the client code listing for calling the RequestQuote operation.

Listing 4-8. Client Code Listing for Calling the RequestQuote Operation

using StockTraderTypes;

namespace StockTraderConsole2

{

class StockTraderConsole2

{

[STAThread]

static void Main(string[] args)

{

StockTraderConsole2 client = new StockTraderConsole2();

client.Run();

}

public void Run()

{

// Create an instance of the Web service proxy

StockConsoleProxy serviceProxy = new StockConsoleProxy();

// Configure the proxy

serviceProxy.Url = ConfigurationSettings.AppSettings["remoteHost"];

// Submit the request to the service

Console.WriteLine("Calling {0}", serviceProxy.Url);

string Symbol = "MSFT";

Quote q = serviceProxy.RequestQuote(Symbol);

// Display the response

Console.WriteLine("Web Service Response:");

Console.WriteLine("");

Console.WriteLine("\tSymbol:\t\t" + q.Symbol);

Console.WriteLine("\tCompany:\t" + q.Company);

Chapter 4

86

Figure 4-5. Client console application for the StockTraderContracts Web service

Console.WriteLine("\tLast Price:\t" + q.Last);

Console.WriteLine("\tPrevious Close:\t" + q.Previous_Close);

}

}

}

Figure 4-5 displays a client console application that interfaces to the

StockTraderContracts Web service using the modified proxy class. Please refer

to the sample application (available from the Downloads section of the Apress

Web site at http://www.apress.com) for full code listings.

This concludes the overview of how to build a tightly coupled Web service

client. Again, I would like to emphasize that this approach is not consistent with

a pure SOA environment where the clients remain completely decoupled from

the Web services they consume. However, it is always useful to consider alterna-

tive approaches and to realize new possibilities even if they never make it into

a production environment.

Next, I will discuss a type of component that is unique to the service-

oriented environment: the service agent.

Design and Build a Service Agent

Service agent components are essentially translator components that act as the

intermediary between a business component and an external Web service. By

external, I mean external to the domain where the business object is located.

Service agents were discussed in some detail in Chapter 1, and are included in

Figure 4-1 in this chapter. Briefly, the purpose of a service agent is to eliminate

complexity in a business component by managing all interactions with an exter-

nal service. If service agents did not exist, then the business component would

Design Patterns for Building Service-Oriented Web Services

87

need to implement proxy classes and all of the associated error handling logic

for working with external services. Clearly, this adds an undesirable layer of code

and complexity to the business component that is superfluous because the busi-

ness client will never call this code directly.

For example, consider Company A, which has built a business component

that processes stock trades and provides stock quotes. In order to provide this

functionality, the business component uses an external Web service that is pro-

vided by a premier brokerage company, Company B. Company A uses its own

custom data types, which are encapsulated in the StockTraderTypes assembly.

Company B, however, defines its own data types that are equivalent but not the

same as Company A’s. For example, Company A uses a Quote data type that

defines a property called Open, for the day’s opening share price. Company B

uses a Quote data type that defines an equivalent property called Open_Ext.

Company A uses strings for all of its custom data type properties, whereas

Company B uses a mix of strings, floats, and dates.

Given these differences, Company A’s service agent will perform two impor-

tant functions:

1. It will implement the infrastructure that is required to communicate

with Company B’s external service. It will be responsible for the mainte-

nance work that will be required if the external service updates its

interface.

2. It will translate the responses from the external service and will relay

them back to Company A’s business component using a mutually

understood interface.

The benefits of a service agent are clear: The service agent eliminates com-

plexity for Service A’s business component because it encapsulates all of the

implementation details for interacting with the Web service, and relays the

requests back in the format that the business component wants. Figure 4-6

provides a schematic representation of this architecture.

Chapter 4

88

StockTraderConsole2

Client

StockTraderBusiness

Middle-Tier Business Object

StockTraderTypes

Definition Assembly

StockTraderServiceAgent

Middle-Tier Business Object

StockTraderServiceQuote

External Web Service

Company A

Company B

Figure 4-6. Service-oriented architecture with a service agent

Now let’s look at how you implement this architecture in code.

Implement the StockTrader SOA Application
Using a Service Agent

The StockTrader Web service has evolved in this chapter to where it delegates all

requests to a business assembly (StockTraderBusiness). If a client contacts the

Web service to request a stock quote, the Web service delegates the request to

the business object’s RequestQuote method. The Web service does not know or

care how this method returns a stock quote, but it does expect to receive one

every time it makes a request.

For the next evolution of the StockTrader Web service, your company signs

a partnership agreement with another company that is a premier provider of

stock quotes. You decide that going forward, the StockTraderBusiness assembly

will delegate all stock quote requests to this external service. The StockTrader

Design Patterns for Building Service-Oriented Web Services

89

Web service will continue to delegate requests to the business assembly, but the

business assembly, in turn, will delegate the requests again, this time to an

external Web service. You decide to build a service agent to minimize any change

to the business assembly. Figure 4-7 shows the Solution Explorer for the solution

that you are going to build, with selective References nodes expanded, so that

you can see the relationships between the different components.

Figure 4-7. Solution Explorer for the StockTrader SOA application, including
a service agent

Chapter 4

90

The five components in this application are as follows:

1. StockTraderConsole2: The client application, providing a user interface

2. StockTraderBusiness: The middle-tier business component that handles

processing for the client

3. StockTraderServiceAgent: The service agent used by the business com-

ponent for communicating with external services

4. StockTraderTypes: The common type definition assembly, which is ref-

erenced by the three preceding components

5. StockTraderServiceQuote: The external Web service

If this gets confusing, you can consult either Figures 4-6 or 4-7, each

including all five of these components. Let’s look at how to build each

component in turn, going from bottom to top, starting with the external

StockTraderServiceQuote Web service.

The External Web Service (StockTraderServiceQuote)

StockTraderServiceQuote is a simple Web service that provides a single Web

method for requesting stock quotes (RequestQuoteExt), and it returns its own

equivalent to the StockTraderTypes.Quote type, which is named QuoteExt. The

Quote and QuoteExt types are equivalent, but they differ from each other in

three ways:

1. The QuoteExt type conforms to a different qualified namespace from

the Quote type. Each type conforms to its own XSD schema file.

2. The QuoteExt type does not contain equivalents to the Quote type’s

Change and Percent_Change properties.

3. The QuoteExt type provides a timestamp property named DateTime_Ext,

which is of type System.DateTime. The Quote type provides an equiva-

lent timestamp property named DateTime that is of type String.

These are admittedly minor differences, but they illustrate the point: When

you call an external service, it is unlikely that their type definitions will be equiv-

alent to yours. You have to be prepared for some manual work to translate the

differences.

In real life, of course, you would not have to create the external service your-

self, but for the purposes of this demonstration you do.

Design Patterns for Building Service-Oriented Web Services

91

The Service Agent (StockTraderServiceAgent)

The service agent is a companion assembly to the business assembly, and is

installed in local (rather than remote) proximity. The service agent implements

the same interface and type definitions as the business assembly by referencing

the StockTraderTypes assembly (as shown in Figure 4-6). The service agent also

includes a proxy class for the StockTraderServiceQuote external Web service.

Listing 4-9 shows the code listing for the service agent, including the com-

plete listing for its RequestQuote method.

Listing 4-9. The StockTraderServiceAgent Code Listing

using System;

using StockTraderTypes;

namespace StockTraderServiceAgent

{

public class StockTraderServiceAgent : StockTraderTypes.IStockTrader

{

public StockTraderServiceAgent(){}

public Quote RequestQuote(string Symbol)

{

Quote q = null;

// Request a Quote from the external service

QuoteExt qe;

StockQuoteService serviceProxy = new StockQuoteService();

qe = serviceProxy.RequestQuoteExt("MSFT");

// Create a local Quote object (from the StockTraderTypes namespace)

q = new Quote();

// Map the external QuoteExt object to the local Quote object

// This requires some manual work because the types

// do not map exactly to each other

q.Symbol = Symbol;

q.Company = qe.Company_Ext;

q.DateTime = qe.DateTime_Ext.ToString("mm/dd/yyyy hh:mm:ss");

q.High = qe.High_Ext;

q.Low = qe.Low_Ext;

q.Open = qe.Open_Ext;

q.Last = qe.Last_Ext;

q.Previous_Close = qe.Previous_Close_Ext;

Chapter 4

92

q.Change = (qe.Last_Ext - qe.Open_Ext);

q.PercentChange = q.Change/q.Last;

q.High_52_Week = qe.High_52_Week_Ext;

q.Low_52_Week = qe.Low_52_Week_Ext;

return q;

}

public Trade PlaceTrade(string Account, string Symbol, int Shares, ➥

Double Price, TradeType tradeType)

{

// Implementation not shown

}

public Trades RequestAllTradesSummary(string Account)

{

// Implementation not shown

}

public Trade RequestTradeDetails(string Account, string TradeID)

{

// Implementation not shown

}

}

}

The code listing is very straightforward, and shows how the service agent

delegates its RequestQuote method to the external service’s RequestQuoteExt

method. The service agent performs some manual translations to map between

its native Quote type and the external QuoteExt type. Finally, the agent returns

a native Quote object to the consuming application, which in this case is the

business assembly.

The Business Assembly (StockTraderBusiness)

The business component sets references to both the service agent assembly and

the definition assembly of custom types. Listing 4-10 shows how the business

component calls the service agent.

Design Patterns for Building Service-Oriented Web Services

93

Listing 4-10. The StockTrader Business Component Calling the Service Agent

using System;

using StockTraderTypes;

using StockTraderServiceAgent;

namespace StockTraderBusiness

{

public class StockTraderBusiness : StockTraderTypes.IStockTrader

{

public StockTraderBusiness() {}

public Quote RequestQuote(string Symbol)

{

// Create a new Quote object

Quote q = new Quote();

// Call the service agent

StockTraderServiceAgent sa = new StockTraderServiceAgent();

q = sa.RequestQuote(Symbol);

return q;

}

}

}

As you would expect, the listing is very simple because the business assem-

bly no longer has to provide its own implementation of the Quote request logic.

In summary, service agents are an elegant solution when you need to interface

with one or more external services and wish to isolate the code that handles the

communication. Service agents provide stability to a business assembly by bearing

the responsibility of ensuring successful calls to external services, and returning

results in a form that the business assembly natively understands. Service agents

can also act as intermediaries between two or more Web services.

This concludes the discussion of how to build basic service-oriented Web

services.

Chapter 4

94

Summary

In this chapter, I expanded on the previous discussion of message-oriented Web

services and showed you a six-step process for designing and building a service-

oriented Web service from scratch. These steps are

Step 1: Create a dedicated type definition assembly.

Step 2: Create a dedicated business assembly.

Step 3: Create the Web service using the type definition assembly.

Step 4: Implement the business interface in the Web service.

Step 5: Delegate processing logic to the business assembly.

Step 6: Create a Web service client.

You saw how to build both tightly coupled clients and loosely coupled clients.

In most SOA applications, you will want to build loosely coupled clients, but under

some circumstances you may want a higher level of control over the type defini-

tions. Tightly coupled clients reference the same type definition as the assembly,

rather than generating their own using a proxy class.

Finally, I discussed the service agent component, which is a special feature

of service-oriented applications. The service agent manages communication

between a business assembly and an external Web service. It can also act as the

intermediary between two or more Web services.

The goal of this chapter is to help you rethink your approach to Web services

design so that you can start thinking in terms of service-oriented architecture.

95

CHAPTER 5

Web Services
Enhancements 2.0

WEB SERVICES TECHNOLOGY has evolved rapidly since its debut a few years ago.

Businesses were initially reluctant to fully adopt the technology because of a lack

of industry-standard specifications to govern such important issues as message

security and reliable delivery. Businesses will not send sensitive information

across the wire if it is vulnerable to detection. And they will not implement large-

scale distributed systems with this technology if the reliability of the messages

cannot be guaranteed.

Web services technology was initially tailored toward point-to-point com-

munication, based on the familiar HTTP Request/Response model in which

a client request generates a timely server response. This model works well for

Internet browsing, but it proves to be very limiting for distributed service appli-

cations. Web services that are involved in business processing cannot always

generate a timely response. The business process may be long-running, or a

required back-end system may be offline. There are times when a Web service

cannot send a timely and complete response to a client request.

In addition, the point-to-point communication model proves to be overly

limiting for executing complex distributed business processes. It is unlikely that

one Web service has the ability to execute a business process 100 percent of the

time. More likely it needs to interact with other systems and perhaps even with

other Web services. Clearly, it is a problem if a Web service receives a request

message, but then is unable to forward it on to other services for additional

processing.

Industry leaders have been working together for several years to address the

current limitations with Web services technology. Standards committees have

formed to bring a sense of order to the wide variety of available technologies and

versions. In Chapter 1, I discussed the WS-I Basic Profile, which outlines a set of

Web-related technologies by version number and groups them together into

a standard profile. You are considered to be in compliance with this standard if

you are implementing the exact technology versions in this profile. In addition,

nonprofit organizations such as OASIS are important forums where companies

are actively cooperating in the development and advancement of new standards

and specifications.

Companies, including Microsoft, IBM, BEA Systems, and VeriSign, are work-

ing on a set of specifications called the Web Service Specifications (WS-*) that are

Chapter 5

96

based on XML, SOAP, and WSDL extensibility models. Together, these specifica-

tions define a set of composable features to make Web services “secure, reliable,

and transacted,” as the standard tag line often reads. Composability refers to the

fact that you can pick and choose the selected specifications that apply to your

particular business scenario. None of the specifications are ever required, even

the security specifications. Though as they become more widely accepted, it is

likely that a subset of the specifications will be required in any robust, business-

quality Web service.

The WS-Specifications are incredibly important to the future of Web services

technology and to service-oriented architecture. Microsoft provides a set of tools

for .NET called the Web Services Enhancements (WSE). WSE includes managed

APIs for implementing selected WS-specifications in a composable manner. I say

selected because the WS-Specifications continue to evolve, and it will take time

for all of the current standards to be submitted, accepted, and then incorporated

into Web Services Enhancements. New WS-Specifications continue to be released,

so the future promises to hold many interesting and important developments in

this evolving technology.

This chapter lays the groundwork for the second half of the book, where I

will focus intensively on how to implement the WS-Specifications using Microsoft’s

Web Services Enhancements 2.0 for .NET. This chapter includes the following:

• Overview of the WS-Specifications

• Introduction to Web Services Enhancements 2.0

• Installing and configuring WSE 2.0, including the test certificates

• Using the WSE 2.0 utilities

This chapter is a must read in order to get the most out of the second half of

the book. It will help you to understand the WS-Specifications, and how WSE fits

into the context of service-oriented architecture. It will also get you started with

installing and configuring Web Services Enhancements 2.0, including the test

certificates, which are required for many of the code samples.

Overview of the WS-Specifications

The purpose of the WS-Specifications is to establish a set of standards for

enterprise-level, service-oriented Web services. The focus of the specifications is

on Web services in general, and on messages in particular, because messages are

the essential aspects of a service-oriented architecture. Without messages, Web

Web Services Enhancements 2.0

97

services cannot communicate. And without secure, reliable messages, businesses

will never trust that they can send sensitive information between Web services.

The integrity of the message is the key to gaining acceptance for Web services as

a robust business solution.

Each of the WS-Specifications addresses a different business-critical issue.

For example, WS-Security addresses how to implement digital signing and

encryption technology in Web services. WS-Reliable Messaging addresses how to

ensure that messages are always delivered, even if one part of the system is tem-

porarily unavailable. Each specification is recorded directly in the header of the

applicable SOAP message, using a dedicated XML schema. Some specifications,

such as WS-Security, also modify the body of the SOAP message for encryption.

Listing 5-1 shows one example of a SOAP message that implements multiple

specifications, including WS-Addressing, WS-Security, and WS-Reliable Messaging.

Notice that the message header is divided into distinct parts, and that the indi-

vidual specification schemas do not overlap. This is known as composability

because the individual specifications may be added or removed from the mes-

sage header as needed.

Listing 5-1. SOAP Message Illustrating Web Service Composability

<s:Envelope xmlns:S="http://www.w3.org/2002/12/soap-envelope"

xmlns:wsa=http://schemas.xmlsoap.org/ws/2003/03/addressing

xmlns:wsse=http://schemas.xmlsoap.org/ws/2003/03/security

xmlns:wrm="http://schemas.xmlsoap.org/ws/2003/03/reliablemessaging">

<s:Header>

<!—WS-Addressing -->

<wsa:From>

<wsa:Address>http://www.bluestonepartners.com/Buyer</wsa:Address>

</wsa:From>

<wsa:ReplyTo>

<wsa:Address>http://www.bluestonepartners.com/Broker</wsa:Address>

</wsa:ReplyTo>

<wsa:To>http://www.bluestonerealty.com/Seller</wsa:To>

<wsa:Action>http://www.bluestonerealty.com/MakeOffer</wsa:Action>

<!—WS-Security -->

<wsse:Security>

<wsse:BinarySecurityToken ValueType="wsse:X509v3"

EncodingType="wsse:Base64Binary">

JKH8dH7SJa8.......SKJa87DJsAK3

</wsse:BinarySecurityToken>

</wsse:Security>

Chapter 5

98

<!—WS-ReliableMessaging -->

<wrm:Sequence>

<wsu:Identifier>http://www.bluestonerealty.com/mls123</wsu:Identifier>

<wrm:MessageNumber>32<wrm:MessageNumber>

</wrm:Sequence>

</s:Header>

<s:body xmlns:po=

"http://www.bluestonerealty.com/PurchaseHouse">

<po:PurchaseHouse>

...

</po:PurchaseHouse>

</s:body>

</s:Envelope>

As you can see, each of the specifications is encapsulated within the SOAP

header, and each supports distinctive element tags so that no specification infor-

mation can conflict. Web service composability is essential for allowing developers

to choose which specifications are important for their Web services. In addition,

this feature keeps message payloads smaller in size by not including element tags

for unused specifications.

Introducing the WS-Specifications

Instead of simply listing out the various WS-Specifications, it is more useful to

present them in the context of the framework’s goals. There are different per-

spectives on what the full set of goals are because the specifications are always

evolving and are being drawn together by diverse coalitions of companies and

organizations. But in my mind, there are six primary goals for the WS-Specifications,

as discussed next.

Interoperability

Web services must be able to communicate even if they are built and operated

on different platforms. Web service messages must use standard protocols and

specifications that are broadly accepted, such as the WS-I Basic Profile, which

includes XML, SOAP, and WSDL. Interoperability is the key to widespread accep-

tance of Web services for handling critical business processes.

Web Services Enhancements 2.0

99

Composability

This is a design principle that is fundamental to the WS-Specifications. The term

composability alludes to the fact that many of the WS-Specifications are indepen-

dent of each other and that a given Web service may not need to implement them

all. For example, one Web service may require security but not reliable messaging.

Another Web service may require transactions, but not policy. Composability

allows a developer to implement only those specifications that are required. The

WS-Specifications support this because they are implemented as discrete sections

within the SOAP message header (see Listing 5-1 for an example).

Security

Protocol-level security mechanisms such as HTTPS are currently in wide use, but

they are designed for point-to-point security, rather than message-oriented security,

which is much more dynamic. The WS-Security specification is a message-oriented

security solution that supports the dynamic nature of messages. With WS-Security,

the security information is stored directly in the message header, so it stays with the

message, even if the message gets routed to more than one endpoint. Messages

must carry their security information with them so they can remain dynamic. The

WS-Trust and WS-Secure Conversation specifications enable you to create a secure

token service that procures security tokens for the duration of a specific conver-

sation between a client and a Web service.

Description and Discovery

Web services may be accessed from different clients across different domains. Web

services must therefore be capable of publishing their metadata so that potential

clients know how to call them. The WSDL document publishes supported types,

operations, and port information. The WS-Policy specification documents and

enforces usage requirements and preferences for a Web service. For example,

WS-Policy will enforce that incoming SOAP requests must be signed and encrypted

with digital certificates only, rather than any type of security token. The UDDI

specification aims to provide a mechanism for clients to look up Web service

metadata in a centralized directory.

Messaging and Delivery

The biggest vulnerability for a message besides security is the risk that it may

never reach its intended destination. Or worse, that not only does the message

fail to reach the destination, but the sender is also unaware that it never arrived.

Chapter 5

100

You cannot correct a problem if you do not know it occurred. The WS-Reliable

Messaging specification establishes a framework that is designed to keep all par-

ties informed of where messages are and whether they arrived. This is critical in

an architecture where a message may get routed between multiple endpoints.

Failure at one endpoint should not bring down the entire workflow that the mes-

sage is a part of.

Transactions

Transaction processing is a way of orchestrating multiple related business opera-

tions so that they succeed or fail together, and thereby preserve the integrity of

the overall workflow. Transaction management is an extremely difficult challenge

in a service-oriented architecture. Web services are inherently disconnected,

stateless components that do not by nature participate in broadly distributed

transactions. The WS-Coordination, WS-Atomic Transaction, and WS-Business

Activity specifications are designed to address the challenge of implementing

transactions across distributed Web services.

The WS-Specifications Covered in This Book

The WS-Specifications will allow developers to build Web services that are inter-

operable, reliable, secure, and transacted. Ultimately, the overarching goal is for

Web services technology to make it into the business mainstream, and to be

considered as good a business solution as more established technologies.

This book does not cover all of the available WS-Specifications for two rea-

sons: First, it is impractical because some of the specifications are too new or too

poorly established to be useful to most people. Second, it is problematic because

WSE implements only a few of the available WS-Specifications, albeit many of

the most important ones.

With these points in mind, here is a list of the WS-Specifications I will be

covering in this book:

• WS-Security

• WS-Policy

• WS-Policy Assertions

• WS-Policy Attachments

• WS-Security Policy

Web Services Enhancements 2.0

101

• WS-Trust

• WS-Secure Conversation

• WS-Addressing

• WS-Reliable Messaging

Perhaps the most glaring omission from the current WSE 2.0 is the absence

of the transaction-related family of specifications, including WS-Coordination

and WS-Atomic Transaction. But many other important specifications are pre-

sent, most notably WS-Security, WS-Policy, and the WS-Addressing specifications.

Omissions in WSE do not equate to insufficiency because it continues to evolve

along with the WS-Specifications themselves. WSE 2.0 will always lag behind to

some degree because it takes time to package the specifications into developer-

friendly APIs. Microsoft is working on a related initiative called Indigo, which will

provide integrated support for message-oriented technology directly in the oper-

ating system, including greatly expanded infrastructure support. Many of the

tasks that we must write complex code for today will become simpler in Indigo.

You can read more about Indigo in Chapter 10.

The Appendix lists a number of useful references for learning more about

the WS-Specifications. Surprisingly, the original WS-Specification documents are

highly readable and very informative. They do not, of course, cover any vendor-

specific developer toolkit, such as WSE. But they provide clear definitions and

explanations of a specification, along with examples and references on how the

specification is encoded within a SOAP message.

TIP You can find links to the original WS-Specification documents at
http://www-106.ibm.com/developerworks/views/webservices/standards.jsp.

One last thing to keep in mind is that just because a specification is absent

from WSE does not mean that you cannot implement it yourself using custom

code. The .NET Framework gives you support classes for working with XML,

SOAP, and Web services, namely most of the core Web services technologies. In

a sense, WSE provides you convenience, which is something you would rather

have, but something that you can also live without if you have to. Developers

already have a natural instinct to be self-motivated and to build custom solu-

tions when nothing else is readily available. I am not advocating that you find

your own way to implement something that should be standard. In the absence

of a canned solution, you still have the tools to build a credible alternative solu-

tion yourself. However, be prepared for considerable complexity!

Chapter 5

102

In general, this book will remain focused on implementing solutions using

the WSE support classes. But at times, I will show you ways to make up for defi-

ciencies in WSE so that you can remain true to the spirit of the specification

while using additional support technologies. As a .NET developer, you will find

that the current version of WSE, along with a measure of creative thinking, will

bring a heightened maturity to your Web services development efforts. WSE

enables you to implement many of the features that a robust, business-oriented

solution should include.

Welcome to the dynamic, evolving world of service-oriented architecture

with Web Services Enhancements!

Introducing Web Services Enhancements 2.0

Web Services Enhancements (WSE) generally refers to both a software develop-

ment toolkit and an add-on processing infrastructure for implementing the

WS-Specifications in .NET projects. From an infrastructure perspective, WSE is

basically a processing engine for applying the WS-Specifications to SOAP mes-

sages. As you have seen, WS-Specifications are stamped across different parts

of a SOAP message. All of the WS-Specifications append to the SOAP message

header, while some of them also modify the SOAP message body directly (such

as the WS-Security specifications). WSE automatically modifies SOAP messages

to implement the WS-Specifications. It also provides the infrastructure for pro-

cessing these SOAP messages. In this sense, it is similar to the ASP.NET Web

services infrastructure, which provides SOAP and communications infrastruc-

ture support for the Web services you create using a friendlier API. Overall, the

goal of WSE is to save developers from having to write custom code to imple-

ment basic required Web service infrastructure (such as security and policy).

WSE 2.0 is an SDK package for Microsoft .NET developers that includes the

following:

The Microsoft.Web.Services2 assembly: Provides an API and includes

several support classes, such as SOAP extensions and custom handlers.

Documentation and help files: These show you how to use and config-

ure the WSE API and utilities.

QuickStart samples: These show you how to code with WSE.

Configuration Editor: A utility that provides a GUI interface for config-

uring WSE in your .NET projects.

X509 Certificate Tool: A utility that helps you work with X.509 digital

certificates.

Policy Wizard: A utility that provides a GUI for generating XML policy

expression files (located inside the Configuration Editor).

Web Services Enhancements 2.0

103

How the WSE Processing Infrastructure Works

WSE installs a set of filters that intercept and process inbound and outbound

SOAP request messages, as shown in Figure 5-1. The WSE filters work together

inside a processing pipeline that also integrates with the ASP.NET processing

pipeline. When a client application generates a SOAP request that includes WS

enhancements, it specifies these in code using the API provided by WSE. When

the message is sent out, it goes through a set of WSE filters that translate the

code into SOAP extensions that are then applied directly to the SOAP message.

The WSE filters are dedicated to specific WS-Specifications, or to groups of

related specifications, including

• Security (including WS-Security)

• Policy (including WS-Policy and WS-Policy Attachments)

• Messaging (including WS-Addressing)

WSE is an extension to the existing ASP.NET framework, and is dedicated to

modifying and processing SOAP messages. WSE must be configured to work with

a project. Even if it is installed on your machine, it will not automatically apply to

your projects unless they are configured to use it. When you use WSE in a project,

you register one of its assembly types as a SOAP extension class.

When you want to use WSE in a project, you must add a reference to the

Microsoft.Web.Services2 project. You must also register the Web services config-

uration class in the project’s web.config file, as shown in Listing 5-2.

WS
E

Fi
lt

er
s

WS
E

Fi
lt

er
s

We
b

Se
rv

ic
e

SOAP Message

(Request)

Cl
ie

nt

SOAP Message

(Modified)

SOAP Message

(Filtered and

Received)

SOAP Message
(Response)

SOAP Message
(Modified)

SOAP Message

(Filtered and

Received)

Domain Boundary

Figure 5-1. WSE processing of SOAP messages

Chapter 5

104

Listing 5-2. The WSE Configuration Class

<configuration>

<configSections>

<section name="microsoft.web.services2"

type="Microsoft.Web.Services2.Configuration.WebServicesConfiguration,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" />

</configSections>

</configuration>

If the project is an ASP.NET Web service or application, then you must also

register the WSE SOAP extension class in the web.config file, as shown in

Listing 5-3.

Listing 5-3. The WSE SOAP Extension Type

<system.web>

<webServices>

<soapExtensionTypes>

<add type="Microsoft.Web.Services2.WebServicesExtension,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" priority="1" group="0" />

</soapExtensionTypes>

</webServices>

</system.web>

This step instructs WSE to process the project’s SOAP messages through its

filters. By default, WSE automatically applies all of its filters to SOAP messages.

However, you can optimize the process by turning off selected filters. For example,

if you do not implement routing and referral, then you can turn off the related fil-

ters. This simply means that WSE will stop looking for these related elements when

it processes incoming and outbound SOAP messages.

NOTE WSE 2.0 ships with a utility called the Configuration Editor, which
will automatically generate Listings 5-2 and 5-3 for you. These listings are
the same in every project, so you should not have to manually enter them.
The Configuration Editor is reviewed later in this chapter.

Web Services Enhancements 2.0

105

How WSE Works with ASP.NET

WSE provides an API for applying WS-Specifications to SOAP messages. The key

player in the WSE class framework is the SoapContext class, which directly

records the Web specification options and then later makes them available to the

WSE filters for processing. The SoapContext class applies to both request and

response messages, and provides you with a programmatic window to examine

the contents of a SOAP message, including its envelope, header, and body con-

tents. Listing 5-4 shows you one example of using the SoapContext class to examine

the security elements in a SOAP message.

Listing 5-4. Examining Message Security Elements Using the SoapContext Class

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

SoapContext requestContext = RequestSoapContext.Current;

foreach (ISecurityElement objElem in requestContext.Security.Elements)

{

if (objElem is MessageSignature)

{

MessageSignature clientSignature = (MessageSignature)objElem;

if (clientSignature.SignatureToken is X509SecurityToken)

{

// Add code to process the X509SecurityToken

}

else if (clientSignature.SignatureToken is UsernameToken)

{

// Add code to process the UsernameToken

}

}

}

Table 5-1 provides a summary of important SoapContext class properties.

Many of these properties provide access to specialized classes with their own

nested API. For example, the Security property provides access to the SoapHeader

class called Security, which provides support members for examining existing

security information and for appending new security information to the SOAP

message header.

Chapter 5

106

Table 5-1. The SoapContext Class Properties

Property Description

Addressing Provides access to the collection of WS-Addressing elements

assigned to the SOAP message via the AddressingHeaders class.

Attachments Provides the collection of DIME attachments assigned to the

SOAP message via the DimeAttachmentCollection class.

Envelope Provides direct access to the SOAP envelope via the

SoapEnvelope class. This class provides several additional

classes and properties that are useful for retrieving the contents

of the SOAP envelope and body, via classes and properties, or

directly as XML.

ExtendedSecurity Indicates a collection of additional Security objects providing

security information for other recipients besides the ultimate

recipient of the SOAP message. These are used when routing the

message across multiple recipients.

IsInbound Indicates whether the SOAP message is incoming (true) or

outbound (false).

Referrals Provides the collection of referral elements assigned to the SOAP

message via the ReferralsCollection class.

Security Provides the security headers for the ultimate recipient of the

SOAP message via the Security class.

As you look through the table, remember that the SoapContext class is always

referenced in context, meaning that when you reference it in code, it will always

be holding the contents of an active request or response message. By definition,

there is no such thing as stand-alone or disconnected SoapContext. So it is use-

ful to explore this class by setting a breakpoint in your code and examining the

various member properties and their settings in the Immediate debug window.

Also, the WSE 2.0 documentation contains a detailed class reference for the

member classes. You can learn a lot about how WSE works by examining the var-

ious classes and properties and learning how they interact with each other.

The Microsoft.Web.Services2 assembly provides a large number of name-

spaces that cover several different WS-Specifications. These are summarized in

Table 5-2, along with a brief description of which WS-Specifications they apply to.

As you begin coding with the various WS-Specifications, you will need to import

one or more of these namespaces into your Web services project.

Web Services Enhancements 2.0

107

Table 5-2. Namespaces in WSE 2.0 Microsoft.Web.Services2 Assembly

Namespace Description

(Root) Provides support classes for working with SOAP request and

response messages, including the important SoapContext class.

.Addressing Provides support for the WS-Addressing specification, which

enables the SOAP message to contain its own addressing,

destination, and routing information.

.Attachments Provides support for the WS-Attachments specification, and

provides general support classes for DIME attachments (which also

have a dedicated namespace).

.Configuration Provides support for processing the WSE configuration settings.

.Configuration.Install Provides support functions to manage the installation of WSE.

.Diagnostics Provides tracing support to log diagnostic information on a SOAP

message before and after processing by the WSE filters.

.Dime Provides classes for attaching and referencing attachments based

on the DIME specification.

.Messaging Provides support for WS-Messaging, which enables you to process

SOAP messages for transport with the HTTP or TCP protocols.

The classes support SOAP formatting and serialization.

.Messaging.Configuration Provides support for working with configuration elements that

relate to the WS-Messaging specification.

.Policy Provides classes for processing policy expression files.

.Referral Provides support for WS-Referral, which enables the routing of

SOAP messages across multiple endpoints.

.Security Provides support for WS-Security, including attaching security

elements to SOAP messages and processing them.

.Security.Configuration Provides support for working with configuration elements that

relate to the WS-Security and WS-Secure Conversation

specifications.

.Security.Cryptography Provides support functions for processing cryptographic

operations.

.Security.Policy Provides support for the WS-Security Policy specification, which

supports security-specific policy assertions.

.Security.Tokens Indicates specialized classes for working with security tokens.

.Security.Tokens.Kerberos Indicates specialized classes for working with security tokens that

are associated with Kerberos tickets.

Continued

Chapter 5

108

Table 5-2. Namespaces in WSE 2.0 Microsoft.Web.Services2 Assembly (continued)

Namespace Description

.Security.X509 Indicates specialized classes for working with X.509 digital

certificates.

.Security.Utility Specifies generic classes for working with security-oriented

properties, such as the creation and expiration timestamp

information for a SOAP message.

.Security.Xml Indicates specialized classes for working with XML signatures,

which are an important support technology for digital signatures.

.Xml Specifies general support classes for working with XML, particularly

as it relates to the XML that is generated by the WS-Specifications.

These classes are used in conjunction with other XML classes in the

.NET Framework.

WSE provides programmatic hooks in the specifications that automatically

generate the required SOAP elements for you, so you do not have to construct

them manually. The WSE API is accessed differently by Web services versus Web

service clients. Let’s briefly look at the differences.

Web Service Access to the WSE API

Web services can access the SoapContext for either request or response SOAP

messages using specialized classes called RequestSoapContext and

ResponseSoapContext. These classes provide direct access to SOAP messages,

and they support messages that are transported over different protocols, includ-

ing the HTTP and TCP protocols. Each of the classes provides a static property

called Current, which furnishes a reference to the SoapContext class.

For request messages, the SoapContext class is accessed using

SoapContext requestContext = RequestSoapContext.Current;

RequestSoapContext is a class provided by the WebServicesClientProtocol,

and Current is a static property that returns the SoapContext class.

For response messages, the SoapContext class is accessed using

SoapContext responseContext = ResponseSoapContext.Current;

Once the client references the SoapContext for the request message, it can

reference or assign WS-Specifications with the WSE API. For example, if the

incoming request message requires digital signing with a certificate, then the

Web Services Enhancements 2.0

109

Web service can inspect the attached digital signatures using SoapContext

(as shown in Listing 5-4 earlier). The Web service can also use SoapContext to

modify outgoing response messages.

Unlike the service proxy class (described in the next section), the Web ser-

vice itself does not need to derive from a specialized class in order to access the

WSE functionality. However, you need to make sure the WSE support assemblies

are correctly registered in the service’s web.config file.

Web Service Client Access to the WSE API

A Web service client interacts with a Web service via a proxy class. WSE provides

a new base class for this proxy class to inherit from

Microsoft.Web.Services.WebServicesClientProtocol

Without WSE installed, proxy class files inherit from

System.Web.Services.Protocols.SoapHttpClientProtocol

The WebServicesClientProtocol class provides access to the SoapContext class

for both request and response messages, via the proxy class. Listing 5-5 shows an

example of a Web client that is digitally signing a SOAP request message before

sending it out to a service. The listing shows how you reference the SoapContext

and then use it to assign the digital signature to the SOAP request message.

Listing 5-5. Digitally Signing a SOAP Request Message via the SoapContext

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

// Retrieve the SoapContext for the outgoing SOAP request message

StockTraderServiceWse serviceProxy = new StockTraderServiceWse();

// Retrieve the X509 certificate from the CurrentUserStore certificate store

X509SecurityToken token = GetSigningToken();

// Add signature element to a security section on the request to sign the request

serviceProxy.RequestSoapContext.Security.Tokens.Add(token);

serviceProxy.RequestSoapContext.Security.Elements.Add(➥

new MessageSignature(token));

Chapter 5

110

Figure 5-2. WSE 2.0 Setup Option screen

This concludes the introduction to the WSE 2.0 API. The remaining chapters

in the book are dedicated to showing you how to use the WSE API to implement

the WS-Specifications in your own service-oriented applications.

Install and Configure WSE 2.0

WSE 2.0 is easy to install and to configure. During setup, the only thing to watch

out for is to choose the correct setup type for what you need to do. Developers

who are using Visual Studio .NET 2003 should select the Visual Studio Developer

setup option, as shown in Figure 5-2. If you are running an earlier version of

Visual Studio, then I strongly recommend that you upgrade your version before

installing WSE 2.0. Otherwise, you will not be able to take advantage of a number

of useful productivity tools and utilities, some of which integrate directly with

Visual Studio .NET.

WSE 2.0 is a package of QuickStart sample applications and documentation

that show you how to use the various classes in the WSE assembly. But the

engine of WSE 2.0 is a single assembly called Microsoft.Web.Services2.dll, which

is installed by default under C:\Program Files\Microsoft WSE\v2.0. In addition,

this assembly gets automatically registered in the Global Assembly Cache (GAC).

Web Services Enhancements 2.0

111

In order to use the new assembly in your Web services projects, you will need

to register it as a SOAP extension within either the machine.config or web.config

configuration files. If you update the machine.config file, then the assembly will

automatically be registered for all future Web services projects. Otherwise, you

will need to update the web.config files for each new project individually.

Listing 5-6 shows the two additional elements that you must update in the

web.config file in order for your project to use WSE. You may actually require

additional entries, but these are specific to individual WS-Specifications such as

WS-Security, and are only required as needed. Note that you must include each

individual element on a single line. In Listing 5-6, elements such as <section>

are broken out on multiple lines for clarity only. They must, however, be entered

as single lines in the actual web.config file.

Listing 5-6. The web.config Updates for a WSE-Enabled Web Service Project

<?xml version="1.0" encoding="utf-8"?>

<configuration>

<configSections>

<section name="microsoft.web.services2"

type="Microsoft.Web.Services2.Configuration.WebServicesConfiguration,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" />

</configSections>

<system.web>

<!-- Other configuration settings -->

<webServices>

<soapExtensionTypes>

<add type="Microsoft.Web.Services2.WebServicesExtension,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" priority="1" group="0" />

</soapExtensionTypes>

</webServices>

</system.web>

</configuration>

Web service client projects do not need to register the SOAP extension, but

they do need to register the WebServicesConfiguration class. In addition, the client’s

Web service proxy class must inherit from

Microsoft.Web.Services.WebServicesClientProtocol

Chapter 5

112

Figure 5-3. Menu access for the WSE 2.0 Configuration Editor

Without WSE, the proxy class file inherits from

System.Web.Services.Protocols.SoapHttpClientProtocol

This change is required so that Web service requests get routed through the

WSE filters, rather than through the standard HTTP-based SOAP filters.

NOTE If you want to update the machine.config file, simply copy the
<section> element from Listing 5-1 into the machine.config file, under the
<configSections> node.

If you prefer not to type these entries manually (and I certainly do not!), then

you can use the convenient Configuration Editor that ships with WSE 2.0. This

tool provides a tabbed GUI interface in which you specify configuration settings

for a project and then automatically apply the settings without having to write the

code manually. The tool can be accessed directly from within your Visual Studio

.NET project, as shown in Figure 5-3.

Web Services Enhancements 2.0

113

Figure 5-4. The WSE 2.0 Configuration Editor

Figure 5-4 shows how you can use the editor to implement the basic settings

I have covered so far. You can use the editor for all .NET project types. If you are

using it for an ASP.NET Web application or service project, then the editor gives

you an additional option to register the SOAP extension class. Otherwise, the

second checkbox in the GUI interface is disabled. The editor settings shown in

Figure 5-4 will generate the web.config settings that are shown in Listing 5-6. This

is not bad for two simple checkbox clicks!

When you create a new client application for your WSE-enabled Web service,

you can generate the proxy class in two ways: Either you can generate it manually

Chapter 5

114

from the WSDL document, or you can generate it using Visual Studio .NET’s Add

Web Reference Wizard. If you use the wizard, then keep in mind that the gener-

ated proxy file will contain two separate proxy classes. One inherits from the

WebServicesClientProtocol class, which is provided by the Microsoft.Web.Services2

assembly. The other class inherits from the traditional SoapHttpClientProtocol

class, which is provided by the System.Web.Services assembly.

NOTE The Configuration Editor provides helpful configuration support for
several of the WS-Specifications, as you can tell from the additional tabs in
Figure 5-4. I will discuss the additional support that the Configuration Editor
provides in the relevant chapters.

X.509 Certificate Support

Several of the upcoming sample solutions in this book use X.509 digital certifi-

cates, which can be used to digitally sign and encrypt SOAP messages (with the

help of WSE). In addition, WSE 2.0 uses X.509 digital certificates in its QuickStart

sample applications. Certificate installation and configuration can be quite com-

plex, so I felt it was important to provide a section on how to install and configure

the X.509 sample certificates.

X.509 Certificates Explained

X.509 digital certificates are widely used as a basis for securing communications

between separate endpoints. For example, they are used to support the HTTP

Secure Sockets Layer (SSL) protocol, otherwise known as HTTPS.

You will be working directly with the X.509 test certificates that ship with

WSE 2.0. You actually have several options for obtaining test certificates:

• Use the WSE 2.0 test certificates (the most convenient option).

• Use the makecert.exe command-line utility to generate test certificates.

• Obtain a test certificate from VeriSign.

Digital certificates are used for asymmetric encryption, also known as public-

key encryption. The certificate is used to generate a public-private key pair, whereby

the private key is known only to one party, while the public key may be distrib-

uted to anyone.

Web Services Enhancements 2.0

115

In a service-oriented application that includes a client and a Web service, it

is the client that typically procures the certificate and the public-private key

pair. This is the model that the sample applications use, so it is important to

understand how it works. In an SOA application, certificates and keys are used

as follows:

• The client uses the certificate to digitally sign an outgoing SOAP request

message (to the Web service).

• The Web service uses the public key to encrypt the outgoing SOAP

response message (to the client).

• The client uses the private key to decrypt the incoming SOAP response

message (from the Web service).

Chapter 6 provides detailed explanations of how encryption and digital

signing work under the hood, but for now this is all you need to know, because

it helps you to understand where the certificates and keys need to be registered.

Installing the X.509 Test Certificates

Web servers such as Internet Information Server (IIS) provide good support tools

for installing digital certificates that will be used to support HTTPS. In addition,

Windows operating systems provide a Microsoft Management Console (MMC)

snap-in called the Certificate Manager for working with certificates.

The sample applications in this book use the X.509 test certificate to support

public-key encryption and to support digital signing; therefore, not only do you

need the certificate itself, but you also need a public-private key pair that has

been generated from the certificate. Luckily, WSE 2.0 ships with these keys

already generated, so you are saved one more manual step.

NOTE WSE 2.0 test certificates should not be used in production applications.

The digital certificate and the keys need to be stored in a location called the

certificate store, which you can access using the Certificate Manager snap-in.

For testing purposes, most of us use the same machine to run the Web service

and the client applications. This requires you to update two certificate stores:

Chapter 5

116

• The Local Computer certificate store: Used by the Web service, this loca-

tion should store the public key.

• The Current User certificate store: Used by the client, this location should

store the certificate and the private key.

Here are the installation steps for installing the certificates:

Step 1: Open a new MMC console by typing mmc in the Run dialog

window.

Step 2: Select File ➤ Add/Remove Snap-In. Click the Add button and

then select Certificates from the available list. You will be prompted to

select the type of account that will manage the certificates. Select My

User Account and click Finish.

Step 3: Repeat Step 2, but this time when you are prompted for an

account, select Computer Account and click Finish. Click OK to close

out the dialog box for adding certificate stores. You should now be look-

ing at an MMC console view that displays the Current User and Local

Computer certificate stores, as shown in Figure 5-5. (Note, Figure 5-5

displays an imported client private key, which you will not yet have, but

which you will add in Step 4.)

Step 4: Expand the Personal folder of the Current User certificate store

and then right-click it to select the All Tasks ➤ Import menu option.

Import the sample personal information exchange file titled Client

Private.pfx. The sample certificates and private keys are installed with

WSE 2.0, and their default location is C:\Program Files\Microsoft WSE\

v2.0\Samples\Sample Test Certificates\. Client Private.pfx is the private

key that the Web service client will use to encrypt requests to the Web

service. Note that you will be prompted to enter a password for the pri-

vate key during the import. For the WSE 2.0 test certificates, you can

locate this password in a file called readme.htm, which is located in the

same folder as the test certificates.

Step 5: Right-click again the Personal folder of the Current User certifi-

cate store and select the All Tasks ➤ Import menu option. Import the

sample test certificate titled Server Public.cer. This is the public key that

the client uses to digitally sign requests for the Web service.

Step 6: Expand the Personal folder of the Local Computer certificate

store and import the sample test certificate titled Server Public.cer. This

is the public key that the Web service uses to decrypt the client’s request.

Web Services Enhancements 2.0

117

This completes the installation of the certificates. But in order to use them

from within ASP.NET, you will need to adjust permission levels for the ASP.NET

worker process.

Set ASP.NET Permissions to Use the
X.509 Certificates

WSE 2.0 ships with a useful utility called the X509 Certificate Tool. You can use

this tool for several purposes:

• Browse installed certificates in the Current User and Local Computer

certificate stores.

• Set permissions on the keys in the MachineKeys folder, which provides

access to Local Computer certificates.

• Retrieve the base64 key identifier for installed certificate keys.

Figure 5-6 shows you the X509 Certificate Tool with a selected certificate,

which in this case is the private key certificate for the Local Computer user.

Figure 5-5. MMC Console displaying the Current User and Local Computer
certificate stores

Chapter 5

118

Figure 5-6. The WSE X509 Certificate Tool

The ASP.NET worker process needs Full Control access to the folder that

stores the Local Computer certificates. Click the lower button labeled Open

Private Key File Properties to open property pages for the folder. Switch to the

Security tab to display the list of users who have access to the folder. Add the

account that is assigned to the ASP.NET worker process, and give it Full Control

permissions. By default, the worker process runs under a machine account

called ASP.NET. Figure 5-7 shows you what the Security tab looks like once you

have added the ASP.NET worker process account.

Web Services Enhancements 2.0

119

The X509 Certificate Tool provides the base64-encoded key identifier for the

certificate. You will need this identifier in the code listings in order to retrieve the

correct certificate. Listing 5-7 shows you how to retrieve a certificate from the

certificate store using its key identifier.

Figure 5-7. Security settings for the folder that stores the Local Computer
certificates and keys

Chapter 5

120

Listing 5-7. Retrieving a Certificate from the Local Computer Certificate Store
Using Its Key Identifier

using Microsoft.Web.Services2.Security.X509;

private X509SecurityToken GetSigningToken()

{

// NOTE: If you use the WSE 2.0 sample certificates then

// you should not need to change these IDs

string ClientBase64KeyId = "gBfo0147lM6cKnTbbMSuMVvmFY4=";

X509SecurityToken token = null;

// Open the CurrentUser Certificate Store

X509CertificateStore store;

store = X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);

if (store.OpenRead())

{

X509CertificateCollection certs = store.FindCertificateByKeyIdentifier(➥

Convert.FromBase64String(ClientBase64KeyId));

if (certs.Count > 0)

{

// Get the first certificate in the collection

token = new X509SecurityToken(((X509Certificate) certs[0]));

}

}

return token;

}

Certificates require some effort to install and to configure, but it is well worth

it. Certificates are easy to use once they are installed, and you get a high level of

security from asymmetric encryption compared to other methods. Asymmetric

encryption does have the drawback of being more processor-intensive than other

methods, so it can suffer in performance compared to other methods. But there

are workarounds to this. For example, you can implement WS-Secure Conversation,

which optimizes the performance of encrypted communications between a Web

service and client. WS-Secure Conversation is covered in detail in Chapter 8.

Finally, you will learn a lot more about using certificates in your solutions by

reading Chapter 6, which focuses on the WS-Security specification.

Web Services Enhancements 2.0

121

Final Thoughts on WSE

WSE is an evolving product that implements only a subset of the available ratified

WS-Specifications. Microsoft has done a good job of implementing the more pop-

ular WS-Specifications, including security and policy. But the WSE product cannot

keep pace with the rapid pace of change of the WS-Specifications. Existing specifi-

cations continue to change, and new ones continue to be released. Even within

a given specification, WSE will probably only cover a subset of what is available.

This is in fact why Microsoft develops WSE on a separate release schedule from the

.NET Framework.

NOTE WSE is a rapidly evolving product and is one of the fastest SOA SDKs to
hit the market.

For example, WSE implements the WS-Policy family of specifications (includ-

ing WS-Policy Attachments and WS-Security Policy). Policy is expressed through

so-called policy assertions, and WSE dutifully implements a set of standard asser-

tions. But the list is limited, and so it provides support for you to create custom

assertions when a canned one is not available. This is typical of how WSE will

always try to be useful for you. If it cannot provide something out of the box, then

it at least tries to give you tools so you can build it yourself.

Summary

This chapter introduced you to the Web services specifications, or WS-Specifications,

which provide a framework for building secure, reliable, service-oriented Web

services. The WS-Specifications provide the following benefits when they are

implemented in Web services:

• Interoperability

• Composability

• Security

• Description and discovery

• Messaging and delivery

• Transactions

Chapter 5

122

Microsoft Web Services Enhancements 2.0 is a software developer kit for

implementing the WS-Specifications in .NET applications. It includes the

Microsoft.Web.Services2 assembly, configuration tools, QuickStart application

samples, and documentation. WSE is an excellent productivity tool that imple-

ments many of the important WS-Specifications. The current version of WSE

does have gaps, most notably in its support for transactions. Developers will

need to build some aspects of the WS-Specifications manually for now.

This chapter lays the groundwork for the rest of the book, which explores

several of the WS-Specifications in detail.

123

CHAPTER 6

Secure Web Services

with WS-Security

COMPANIES HAVE NOT widely adopted Web services technology to this point

because the technology has lacked a security specification that can ensure the

integrity of transmitted messages and data. The WS-Security specification is

a joint effort by Microsoft, IBM, and VeriSign to address this most important

issue.

What do we actually mean when we talk about “security”? In broad terms,

we are talking about authentication and authorization:

Authentication is the process of validating a user’s identity based on

credentials, or tokens. The token may be a username-password combi-

nation, or it may be based on an X.509 certificate. This certificate is a

signed public key that has been issued by a certificate authority to vouch

for the identity and integrity of a user.

Authorization is the process of allowing access to selected resources

based on a user’s authenticated identity. For example, you can restrict

access to a Web service’s methods by specific users.

Together, authentication and authorization provide for a security model by

allowing you to identify users and then to give them selective access to resources.

Currently, it is possible to secure SOAP communications over HTTP using

the certificate-based Secure Sockets Layer (SSL) protocol. SSL provides encryp-

tion and digital signing of both SOAP messages and standard HTTP requests and

responses. But SSL has two major limitations that make it unsuitable for secur-

ing Web services communications within a service-oriented application. First,

SSL is designed for point-to-point communication. However, service-oriented

Web services may exchange SOAP messages between two or more endpoints,

and so they require a security solution that supports hops across multiple end-

points and multiple domain boundaries. Second, the SSL protocol is built on the

HTTP protocol. Web services technology is transport neutral and supports mes-

sage exchange across different protocols, including TCP and SMTP, in addition to

HTTP. The SSL protocol is simply too limiting for Web services technology.

Chapter 6

124

The WS-Security specification is designed to overcome these limitations,

and to provide an extensible security implementation that will evolve as Web

services technology becomes more sophisticated.

The WS-Security Specification

The prime currency in service-oriented architecture (SOA) applications are SOAP

messages because they are the means by which requests are made and responses

are received from Web service methods. The WS-Security specification provides

a way for you to protect the integrity and confidentiality of messages and to

implement authentication and authorization models in your Web services. The

WS-Security specification enables you to implement the following protections

in your Web service calls:

Authentication: Security credentials, or tokens, may be exchanged

between a client and a Web service to validate the identity of the caller.

The tokens are added directly to the header of the SOAP message.

Digital signing: This is the process of signing a SOAP message with

a signature that is based on a security token (such as a username-

password combination or an X.509 certificate). Digital signing creates

a cryptographic signature attached to the message that uniquely identi-

fies the sender. The receiver can check this signature to verify the

identity of the sender and the integrity of the message. A SOAP excep-

tion is raised on the receiving end if the contents of a SOAP message have

been tampered with. Digital signing is especially important in an SOA

architecture that includes routing, in which a single SOAP message may

be routed through multiple SOAP endpoints and across multiple servers.

Message integrity is essential in any Web service-based architecture, but

especially so in an SOA architecture.

Encryption: This is the process of hashing a SOAP message to ensure its

confidentiality. A number of available encryption algorithms are avail-

able. In addition, you can encrypt a SOAP message based on an X.509

certificate.

The WS-Security specification is platform independent and transport neu-

tral, as are all of the other WS specifications. Security information is generated

by the client and stored within the envelope of the SOAP request message. The

Web service in turn will deserialize this information, verify its validity, and then

process the requested operation. In the event that the message security does not

pass verification, the Web service will return a SOAP fault back to the client.

Listings 6-1 and 6-2 compare two SOAP request messages for the same Web

service method. The Web service is StockTrader.asmx, and the requested method

Secure Web Services with WS-Security

125

is RequestQuote, which accepts a single stock ticker symbol as an input param-

eter. Listing 6-1 is an unsecured Web method call, while Listing 6-2 is secured

and implements digital signing (based on an X.509 certificate). The listings are

greatly simplified for clarity and for length, and were originally generated using

the SOAP Toolkit Trace Utility.

Listing 6-1. An Unsecured SOAP Request Message (Simplified for Clarity)

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd">

<soap:Header>

<wsa:Action wsu:Id=GUID>

http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote

</wsa:Action>

<wsa:From wsu:Id=GUID>

<wsa:Address>

http://schemas.xmlsoap.org/ws/2003/03/addressing/role/anonymous

</wsa:Address>

</wsa:From>

<wsa:MessageID> Message ID and UUID </wsa:MessageID>

<wsa:To wsu:Id=GUID>

http://localhost:8080/StockTraderSecure/StockTrader.asmx

</wsa:To>

<wsu:Timestamp>

Contains Message Creation/Expiration TimeStamps

</wsu:Timestamp>

</soap:Header>

<soap:Body>

<Symbol xmlns="http://www.bluestonepartners.com/schemas/StockTrader/">

MSFT

</Symbol>

</soap:Body>

</soap:Envelope>

Listing 6-2. A Digitally Signed SOAP Request Message with Highlighted Differences
from an Unsigned SOAP Message (and Simplified for Clarity)

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd"

Chapter 6

126

xmlns: wsse="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd">

<soap:Header>

<wsa:Action wsu:Id=GUID>

http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote

</wsa:Action>

<wsa:From wsu:Id=GUID>

<wsa:Address>

http://schemas.xmlsoap.org/ws/2003/03/addressing/role/anonymous

</wsa:Address>

</wsa:From>

<wsa:MessageID> Message ID and UUID </wsa:MessageID>

<wsa:To wsu:Id=GUID>

http://localhost:8080/StockTraderSecure/StockTrader.asmx

</wsa:To>

<wsu:Timestamp>

Contains Message Creation/Expiration TimeStamps

</wsu:Timestamp>

<wsse:Security soap:mustUnderstand="1">

<wsse:BinarySecurityToken>

Parameters for the X.509 certificate-based token including the hash value

</wsse:BinarySecurityToken>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo> Encoding parameters for the Digital Signature </SignedInfo>

<SignatureValue> The Signature hash value </SignatureValue>

</Signature>

</wsse:Security>

</soap:Header>

<soap:Body wsu:Id=GUID>

<Symbol xmlns="http://www.bluestonepartners.com/schemas/StockTrader/">

MSFT

</Symbol>

</soap:Body>

</soap:Envelope>

The main difference between Listings 6-1 and 6-2 is the addition of

WS-Security tags in the secured request message. Also, in Listing 6-2 the

<soap:Body> tag is assigned a GUID-based ID, so that it can be referred to from

within the <wsse: Security> section. Listing 6-2 is a clear example of Web service

composability, whereby additional specifications may be added or subtracted to

a SOAP message as needed.

Web Services Enhancements (WSE) provides the API for implementing

WS-Security in .NET-based Web services and client applications. The API allows

you to write code to format secured SOAP request messages in the client and to

process secured messages within a Web service.

Secure Web Services with WS-Security

127

NOTE This chapter will focus on security authentication and digital signing
only. It will not discuss authorization, which is the subject of Chapter 7.

Implement WS-Security Using WSE 2.0

The focus of this chapter is to show you how to write the code to implement

WS-Security in Web services and their client applications. I will show you four

examples:

1. Digitally sign a SOAP request message with a username and password

token.

2. Digitally sign a SOAP request message with an X.509 certificate.

3. Encrypt a SOAP request message with an X.509 certificate.

4. Encrypt a SOAP response message with an X.509 certificate, based on

a digitally signed SOAP request message.

The code examples in this chapter use a modified project based on the

StockTrader Web service that was presented in Chapters 3 and 4. You will get the

most out of the following discussion if you have first reviewed these chapters.

NOTE Web Services Enhancements must be properly installed and configured
in order for the sample projects to work. Please refer to Chapter 5 for a full
discussion on how to install and configure WSE.

Digitally Sign SOAP Messages

A digital signature is essentially a cryptographic hash that is added to a SOAP

message, and is based on a security token. Digital signatures may currently be

generated based on the following tokens:

A username-password combination, referred to by the WSE as

a UsernameToken

A digital certificate, such as an X.509 certificate

A Kerberos token, which is a Microsoft proprietary format that can only

be issued and verified by Windows XP with Service Pack 1, or by

Windows Server 2003

A custom binary token, based on an algorithm of your choosing

Chapter 6

128

The mechanism for programmatically adding a digital signature to a SOAP

request message is the same regardless of what kind of token you base the signa-

ture on (although the code for generating or retrieving the actual security token

will vary). This approach makes it easy for you to change the token type in the

future with minimum impact on the current code base. The code for verifying

a signed SOAP message on the receiver will vary depending on the security token

that the signature is based on.

A note on terminology: The sender and the receiver are equivalent to the client

and the Web service. The terms sender and receiver are misleading because the

client and the Web service take on both roles in a classic request-response commu-

nication. The client acts as a sender when it issues a request message to the service,

but it acts as a receiver when it receives a response message back from the service.

So for purposes of clarity, I will need to refer to client and service, where the client is

understood to initiate the first message.

How Digital Signing Works with UsernameToken Security Tokens

For signatures based on UsernameToken security tokens, the service must have

access to the same username and password information as the client in order to

verify it. This approach is potentially less secure than using certificates because

it relies on a shared secret that is known to both client and service. In addition,

cryptographic hashes based on simple UsernameToken security tokens may not

be as robust as those based on more complex X.509 certificates.

The digital signing process with UsernameToken security tokens works as

follows:

1. The client and service establish shared secret information, such as user-

name and password credentials. Both the client and service must take

responsibility to store these credentials in a secure location.

2. The client generates a UsernameToken security token based on the

username and password information.

3. The client creates a digital signature based on the UsernameToken and

adds it to the outgoing SOAP request message.

4. The service receives the message and checks the security token type.

5. Once the service determines that a UsernameToken was used, it uses

a token manager to extract the username and password information

that was used to sign the message.

6. The service then compares the extracted credentials against its stored cre-

dentials. If the credentials do not match, then a SOAP exception is raised.

Secure Web Services with WS-Security

129

Digital signatures with UsernameToken security tokens are easy to create

and can be processed very quickly on the receiving end. However, they are

potentially vulnerable to compromise if the shared secret that they are based

on gets discovered.

How Digital Signing Works with X.509 Certificates

Digitally signing messages with X.509 certificates is a more complicated process

than with UsernameToken security tokens; however, you benefit from a more

secure solution. The X.509 certificate is used to generate a pair of related keys,

called the private and public keys. The private key is known only to the client,

and is used for the following purposes:

• Digitally sign an outgoing SOAP request message.

• Decrypt an incoming SOAP response message.

The public key is made available to authorized services, which use it for the

following purposes:

• Verify an incoming signed SOAP request message.

• Encrypt an outgoing SOAP response message.

The digital signing process with X.509 certificates works as follows:

1. The client obtains an X.509 certificate and generates a private-public

key pair. The service receives a copy of the public key. (This process

assumes that the service trusts the client’s public key.) In addition, the

client and service must agree on a standard hash algorithm.

2. The client applies a hash algorithm to the message, which creates a so-

called message digest. (The client may use any hash algorithm that it

wants; however, the digital signing process will only work if the service

knows what hash algorithm the client is using.)

3. The client then encrypts the message digest with its private key, which

creates the digital signature.

4. The client attaches the digital signature to the SOAP request message.

(Programmatically, the WSE performs steps 3 and 4 together.)

5. The client sends the SOAP request message out to the service.

Chapter 6

130

6. The service receives the SOAP message and checks the security token type.

7. Once the service determines that an X.509 certificate was used, it decrypts

the message signature using the public key. This process allows the ser-

vices to retrieve the original message hash. If the decryption process fails,

then the service assumes that the client is not the original sender of the

message, or the message has been tampered with, and a SOAP exception

is raised.

8. The service then generates its own message digest using the same algo-

rithm that the client used.

9. The service compares its generated message digest against the one that

has been obtained from the client. If the two message digests match,

then the signature has passed verification. If it does not, then the service

assumes that the message has been tampered with, and a SOAP excep-

tion is raised.

Digital signatures can have real consequences on message delivery if they

are not applied correctly, or if the verification process fails, because either of

these issues will prevent the service from processing the incoming SOAP request

message. In addition, certificates will expire, so verification will fail if the certifi-

cate is not current. The X509SecurityToken and X509SecurityCertificate classes

both provide a Boolean IsCurrent property that verifies whether a given certifi-

cate is still valid.

If you use an X.509 certificate for your digital signature, then you must be

prepared for the relatively high administrative burden of ensuring that the

client and the service have proper access to the necessary certificate and key

information.

NOTE You cannot assume that a certificate-based security token automati-
cally supports digital signing and encryption. The .NET BinarySecurityToken
class provides Boolean properties that tell you whether the currently loaded
token supports digital signing and encryption. (See Listing 6-10 in the section
“Modify the Web Service Client” later in this chapter.)

Getting Started with the Sample Solution

The sample solution that is presented here looks at two ways of signing SOAP

messages: using UsernameToken security tokens and using X.509 certificates.

Figure 6-1 shows the Solution Explorer window for the Visual Studio .NET

solution that I will use in this chapter. It is based on the StockTrader application

that was presented in Chapters 3 and 4, and includes the following:

Secure Web Services with WS-Security

131

Figure 6-1. The WSStockTraderSecure .NET solution, containing three projects

A Web service called StockTraderSecure, which provides methods for

requesting stock quotes and executing trades.

A client console application called WSStockTraderClient, which invokes

the StockTrader Web service via a proxy class.

A reference assembly called StockTraderTypes, which provides code defin-

itions for the custom types that are used by the StockTrader Web service.

(The source project is included in this chapter’s solution for clarity.

However, future chapter projects will simply reference the compiled

StockTraderTypes assembly instead.) The type definitions are contained

in a separate assembly in order to be accessible to any application that

wants to interact with the StockTrader Web service. (Recall that these

custom types are based on the StockTrader XSD schema, which is pre-

sented in Chapter 3.)

The StockTraderSecure Web service is a copy of the StockTrader Web service pre-

sented in Chapter 4, with additional code for processing SOAP request messages

Chapter 6

132

that have been digitally signed and encrypted. To get started with building the

solution, you need to perform the following steps:

Step 1: Install and configure WSE (refer to Chapter 5 for detailed

instructions).

Step 2: Install and configure the X.509 test certificates (refer to Chapter 5

for detailed instructions).

Step 3: Create a new Visual Studio .NET Solution called

WSStockTraderSecure.sln.

Step 4: Add a new Web services project to the solution called

StockTraderSecure.csproj.

Step 5: Copy the existing files StockTrader.asmx and

StockTrader.asmx.cs from the StockTraderContracts project in Chapter 4

over to the new StockTraderSecure project. Add these files to the new

project using the menu option File ➤ Add Existing Item.

Step 6: Add the StockTraderTypes reference assembly or project to the

solution. Again, you can obtain this reference project from the Chapter 4

sample files. Alternatively, you can just copy the StockTraderTypes.dll

compiled assembly over to the \bin directory of the StockTraderSecure

Web service project. Use the Project ➤ Add Reference menu option to

set a reference to the StockTraderTypes assembly or project from the

StockTraderSecure Web service project.

Step 7: Enable the Web service project for WSE 2.0, either manually or

using the WSE Configuration Editor.

WSE 2.0 is enabled by adding the appropriate entries in the web.config files

of the Web service and client projects. In addition, you the client must use a Web

service proxy class that inherits from WebServicesClientProtocol instead of

SoapHttpClientProtocol.

There are two ways to enable WSE 2.0 in a project: You can either update

the project files manually, or you can use the WSE 2.0 Configuration Editor that

is installed with WSE, which you can access directly from within Visual Studio

.NET.

Initially, I would recommend that you update the files manually, so that you

understand exactly how WSE is enabled. Later, once you are comfortable with

the configuration settings, I recommend that you rely on the convenience of the

WSE 2.0 Configuration Editor.

The required web.config settings for the StockTraderSecure Web service project

are shown in Listing 6-3. The <security> element contains a <securityTokenManager>

subelement that registers a custom manager class for processing security tokens.

Secure Web Services with WS-Security

133

It also contains a subelement called <x509> with attributes that allow this project

to use unverified test root certificates. Without this setting, your Web service

calls will generate a SOAP exception alerting you that your certificate is not valid.

The <x509> element also contains an important attribute called storeLocation,

which specifies the location of the certificate that is used to validate or decrypt

incoming requests.

NOTE Please refer to Chapter 5 for detailed discussions on how to configure
WSE and how to work with certificate stores.

Listing 6-3. The web.config Settings for the StockTraderSecure Web Service Project

<configuration>

<configSections>

<section name="microsoft.web.services2"

type="Microsoft.Web.Services2.Configuration.WebServicesConfiguration,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" />

</configSections>

<system.web>

<webServices>

<soapExtensionTypes>

<add type="Microsoft.Web.Services2.WebServicesExtension,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" priority="1" group="0" />

</soapExtensionTypes>

</webServices>

</system.web>

<microsoft.web.services2>

<security>

<securityTokenManager type="StockTrader.CustomUsernameTokenManager,

StockTraderSecure" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd" qname="wsse:UsernameToken" />

<x509 storeLocation="LocalMachine" allowTestRoot="true"

allowRevocationUrlRetrieval="false" verifyTrust="false" />

</security>

</microsoft.web.services2>

</configuration>

Chapter 6

134

Create the Web Service Client

So far the WSStockTraderSecure solution only contains a Web service, and I have

not yet shown you how to modify the Web service code to handle digitally signed

SOAP messages. First you will write a Web service client that generates signed

SOAP request messages. The steps are as follows:

Step 1: Add a new Console Application project to the solution called

WSStockTraderClient.csproj.

Step 2: Rename the default C# class file to StockTraderSecureClient.cs.

Step 3: Add a reference from the project to the assembly

Microsoft.Web.Services2.dll.

Step 4: Add a Web service proxy file to the console project. There are two

ways to do this, outlined in Steps 4A and 4B.

Step 4A: Add a Web reference to the StockTraderSecure Web service from

the Console application project using the Project ➤ Add Web Reference

menu option. This will auto-generate a proxy class file called Reference.cs,

under the Web References\[Reference Name]\Reference.map subproject

folder. (If you do not see this file, you can use the Project ➤ Show All Files

menu option to expand all files.) Next, open the Reference.cs file and copy

the entire code listing over to a new C# class file called

StockTraderSecureProxy.cs.

Step 4B: Alternatively, you can copy the StockTrader Web service proxy

class file over from the Chapter 3 sample project. You will need to set the

namespace for the proxy class to WSStockTraderClient, in order to

match the namespace for the rest of the project files. If you do not, then

the console project will be unable to use the proxy class, and will there-

fore be unable to communicate with the StockTraderSecure Web service.

Step 5: Set a reference to the StockTraderTypes assembly or project. This

step is not required if you generated the proxy class file using Step 4A

because the Add Web Reference Wizard automatically adds the StockTrader

custom types to the proxy class file. However, if you followed Step 4B, then

you must manually add this reference because this proxy class file does not

contain definitions for the StockTrader custom types.

TIP The Add Web Reference Wizard is a convenient tool, but you should
always copy the auto-generated proxy class code to a separate class file. This
is because existing Web references are easily overwritten by updating the Web
reference. You will then lose any customizations that you have made to the
proxy class file.

Secure Web Services with WS-Security

135

As a quick aside, be careful when using the Add Web Reference Wizard.

Although it is a convenient tool, it creates auto-generated code that may require

editing. Chapters 3 and 4 highlighted the importance of breaking out custom

type definitions into a separate single reference assembly. This ensures that mul-

tiple dependent projects use the same custom type definitions. The Add Web

Reference Wizard will automatically generate type definitions in the proxy class

code, which potentially creates a second, unwanted copy of the custom type def-

initions. Clearly, this issue also depends on the approach that you are taking in

interacting with a Web service. If you are a casual, recreational, or temporary

user of a particular Web service, then you can happily rely on an auto-generated

proxy class. It would be unnecessary overhead in this case to customize your

own proxy class. However, a corporate user of a Web service that is part of a busi-

ness process workflow will want more control over the proxy class. This type of

user works in a shared environment and must communicate using standard

types. This user will likely need to use a reference assembly for the custom types.

Listing 6-4 shows the basic, unsigned code listing for the Web service client.

Listing 6-4. Unsigned Code Listing for the Web Service Client

// Set a reference to the proxy class

StockTraderServiceWse serviceProxy = new StockTraderServiceWse();

// Call the Web service RequestQuote() method

Console.WriteLine("Calling {0}", serviceProxy.Url);

Quote strQuote = serviceProxy.RequestQuote("MSFT");

// Results

Console.WriteLine("Web Service call successful. Result:");

Console.WriteLine("Symbol: " + strQuote.Symbol);

Console.WriteLine("Price: " + strQuote.Last);

Console.WriteLine("Change: " + strQuote.PercentChange + "%");

Recall that there are several ways to create a security token for signing SOAP

request messages. Listing 6-5 shows you how to create a token based on a user-

name and password combination. Listing 6-6 shows you how to create a token

based on an X.509 certificate.

Listing 6-5. Creating a Security Token Based on a Username-Password
Combination

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

UsernameToken token;

Chapter 6

136

string username = "myUsername"; // Hardcoded username

byte[] passwordBytes = System.Text.Encoding.UTF8.GetBytes(username);

Array.Reverse(passwordBytes);

string passwordEquivalent = Convert.ToBase64String(passwordBytes);

token = new UsernameToken(username, passwordEquivalent, ➥

PasswordOption.SendHashed);

// Add the token and digital signature to the SOAP request message

serviceProxy.RequestSoapContext.Security.Tokens.Add(token);

serviceProxy.RequestSoapContext.Security.Elements.Add(➥

new MessageSignature(token));

// Execute the Web service request

// (Refer to Listing 6-4. Code not shown here.)

Listing 6-6. Creating a Security Token Based on an X.509 Certificate

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

using Microsoft.Web.Services2.Security.X509;

X509CertificateStore store;

X509SecurityToken token;

// Open the CurrentUser Certificate Store

store = X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);

// Retrieve the X.509 certificate from the CurrentUserStore certificate store

string ClientBase64KeyId = "gBfo0147lM6cKnTbbMSuMVvmFY4=";

X509CertificateCollection certs = store.FindCertificateByKeyIdentifier(➥

Convert.FromBase64String(ClientBase64KeyId));

if (certs.Count > 0)

{

// Get the first certificate in the collection

token = new X509SecurityToken(((X509Certificate) certs[0]));

}

// Add the token and digital signature to the SOAP request message

serviceProxy.RequestSoapContext.Security.Tokens.Add(token);

serviceProxy.RequestSoapContext.Security.Elements.Add(➥

new MessageSignature(token));

// Execute the Web service request

// (Refer to Listing 6-4. Code not shown here.)

Secure Web Services with WS-Security

137

The code listings for creating token-based signatures are self-explanatory. The

code for generating the tokens differs between listings, but the code for assigning the

token and signature is the same since the UsernameToken and X509CertificateToken

classes both derive from the same SecurityToken base class. Listings 6-5 and 6-6

actually accomplish two goals: Not only do they add a token-based digital signa-

ture to the SOAP request message, but they also add the token itself to the message,

which serves to identify the sender of the message.

Modify the Web Service to Process Signed SOAP Messages

The Web service must be modified to iterate through the collection of signatures

and tokens that are assigned to a SOAP request message. It is in fact possible to

add multiple tokens and signatures to a single message, although the code list-

ings shown here do not do this. The Web service should process the signed SOAP

message as follows:

1. Loop through the collection of signatures attached to the SOAP message.

2. For each signature in the collection, determine what type of token it is

based on.

3. For username tokens, implement a custom token manager to validate

the token.

Listing 6-7 shows you how to loop through the collection of signatures and

tokens attached to a SOAP request message. Note that this code listing is imple-

mented directly inside the RequestQuote Web method so that a SOAP fault may

be raised directly from the method should the user fail to be authenticated or

authorized to access the method.

Listing 6-7. Loop Through the Collection of Signatures and Tokens Attached to
a SOAP Request Message

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Web.Services.Description;

using System.Xml.Serialization;

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

using System.Security.Permissions;

using StockTraderTypes;

Chapter 6

138

[WebService()]

public class StockTraderService : System.Web.Services.WebService, IStockTrader

{

[WebMethod()]

public override Quote RequestQuote(string Symbol)

{

// Initialize the custom token manager, in case it is needed

CustomUsernameTokenManager objMgr = new CustomUsernameTokenManager();

// Verify the signature on the Web service request to this method

bool SignatureIsValid = false;

SoapContext requestContext = RequestSoapContext.Current;

foreach (ISecurityElement objElem in requestContext.Security.Elements)

{

if (objElem is MessageSignature)

{

MessageSignature clientSignature = (MessageSignature)objElem;

if (clientSignature.SigningToken is X509SecurityToken)

{

SignatureIsValid = true;

}

else if (clientSignature.SigningToken is UsernameToken)

{

SignatureIsValid = true;

objMgr.VerifyToken(clientSignature.SigningToken);

}

}

}

// Proceed with request if signature is valid

Quote q = new Quote();

if (SignatureIsValid) {}

// Implementation code for RequestQuote()

}

return q;

}

Listing 6-8 shows you how to implement a custom token manager, which

only applies when you are using a UsernameToken (as opposed to a certificate

token, or custom binary token). The purpose of the manager is to return a pass-

word, which the WSE engine will use to compare against the password that

Secure Web Services with WS-Security

139

generated the token. If the passwords do not match, then a SOAP fault will be

raised. The manager gives you a place to write custom code for validating the

authenticated user’s password. You could, for example, extract the username

from the token and then perform a database lookup to retrieve the user’s pass-

word. You can then return this password, and WSE will automatically compare

it against the token password.

Listing 6-8. A Custom Token Manager

[SecurityPermissionAttribute(SecurityAction.Demand,

Flags=SecurityPermissionFlag.UnmanagedCode)]

public class CustomUsernameTokenManager : UsernameTokenManager

{

protected override string AuthenticateToken(UsernameToken token)

{

// Step 1: Retrieve the username from the token

byte[] username = System.Text.Encoding.UTF8.GetBytes(token.Username);

// Step 2: Retrieve the user's password from a separate source,

// e.g., database table

// Code goes here

// Step 3: Return the retrieved password

// WSE will automatically compare it against the password

// that created the token

return Convert.ToBase64String(password);

}

}

The custom token manager must be registered in the Web service web.config

file as follows:

<microsoft.web.services2>

<security>

<securityTokenManager type="StockTrader.CustomUsernameTokenManager,

StockTraderSecure" xmlns: wsse="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd" qname="wsse:UsernameToken" />

<x509 allowTestRoot="true" allowRevocationUrlRetrieval="false"

verifyTrust="false"

storeLocation="CurrentUser"/>

</security>

</microsoft.web.services2>

The manager’s token authentication feature is accessed using the VerifyToken

method, which you can see being called in Listing 6-7. If the token password and

Chapter 6

140

the password that the manager returns do not match, then the VerifyToken

method raises a SOAP fault with the following exception message:

The security token could not be authenticated or authorized.

However, if the Web service call is successful, then the console will display

the requested stock quote:

Calling http://localhost/ StockTrader Secure/StockTrader.asmx

Web service call successful. Result:

Symbol: MSFT

Price: 25.15

Change: -0.0137%

Press [Enter] key to continue...

Encrypt SOAP Messages with an X.509 Certificate

Security tokens and digital signing allow you to identify a service requestor and to

determine whether a request message has been tampered with, but they do noth-

ing to protect the contents of a SOAP message from network sniffers. Encryption

technology enables you to generate a cryptographic hash of the SOAP message for

transport and to decrypt the message contents at the receiving end.

There are two kinds of encryption:

Symmetric encryption: Also known as private-key encryption or shared-

secret encryption, this method generates a cryptographic hash using

a key that is known to both the sender and the receiver. Symmetric

encryption is the least secure encryption method because both sender

and receiver must share the same key, and so the encryption is only

effective if the key remains secret.

Asymmetric encryption: Also known as public-key encryption, this

method generates a cryptographic hash based on a private key that is

known only to the sender. The receiver is given a public key that will

decrypt a message that was hashed with the corresponding private key.

Asymmetric encryption is the most secure method, and there are

a number of related encryption methodologies to choose from, includ-

ing SHA1 and Triple-DES.

Interestingly enough, when a SOAP message is encrypted, only the body of

the message gets hashed. If your SOAP message includes custom SOAP header

Secure Web Services with WS-Security

141

values, then you must encrypt them separately. In this section, you will see how

to encrypt the body of a SOAP message using asymmetric encryption.

Getting Started

For asymmetric encryption, you must set things up as follows:

Step 1: Generate a private-public key pair based on a digital certificate.

Step 2: Install the private key in the client’s local certificate store.

Step 3: Install the public key in the server’s local certificate store.

Step 4: Implement code in the Web service client to generate an

encrypted SOAP request message.

You have a number of options for obtaining test certificates:

• Use the WSE 2.0 test certificates.

• Use the makecert.exe command-line utility to generate test certificates.

• Obtain a test certificate from VeriSign.

The WSE 2.0 sample projects ship with test certificates and keys, which you

will use here because they are convenient. Alternatively, you can obtain a test

certificate from VeriSign at http://www.verisign.com, although you will have to

provide information about yourself or your company, as well as the specific

server name that you are generating the test certificate for. Finally, you have the

option of using the makecert.exe command-line utility, which will generate self-

signed certificates that you can use in your test projects. This utility is located

under the Microsoft Visual Studio .NET 2003 program files directory, typically

under \SDK\v1.1\bin\. You will want to add this path to your computer’s envi-

ronment variables in order to call the utility from within any subdirectory.

Whichever certificate option you choose, you will need to obtain a private

key and a public key, and register them in certificate stores that are accessible to

both the client and the server. Even if you are developing on the same machine,

the private and public keys will typically reside in separate certificate stores.

Chapter 5 provides a detailed description on how to install test certificates, so

please refer there for a more detailed discussion. But briefly, and assuming you

are using the sample certificates that ship with WSE 2.0, here are the installation

steps that you need to take:

Chapter 6

142

Step 1: Open the MMC console and add the Certificates snap-in for both

Current User and Local Computer.

Step 2: Open the Personal folder of the Current User certificate store

and import the sample personal information exchange file titled Client

Private.pfx. This is the private key that the Web service client will use to

encrypt requests to the Web service.

Step 3: Open the Personal folder of the Current User certificate store and

import the sample test certificate titled Server Public.cer. This is the

public key that the client uses to digitally sign requests for the Web service.

Step 4: Open the Personal folder of the Local Computer certificate store

and import the sample test certificate titled Server Public.cer. This is the

public key that the Web service uses to decrypt the client’s request.

Once the certificates are installed you are ready to modify the Web service

client to generate encrypted SOAP request messages.

WARNING Certificates can be tricky to work with. It is not uncommon to
receive cryptographic errors or permission errors when you attempt to gener-
ate encrypted requests. Always verify that you have installed the certificates
correctly. Chapter 5 provides detailed information on how to install the sam-
ple certificates that ship with WSE 2.0. Unfortunately, certificate issues may
also be caused by the way your local computer has its operating system and
folder permissions configured. Your best source for troubleshooting informa-
tion is the WSE 2.0 documentation, newsgroups, developer Web sites, your
peers, and, of course, this book!

Modify the Web Service Client

The client code for generating encrypted SOAP request messages is very similar to

the code for digitally signing messages. The client retrieves the applicable X.509

certificate-based private key from its personal certificate store and then uses this key

to generate a hash of the SOAP message. Listing 6-9 shows you the required code.

Listing 6-9. Encrypt a SOAP Request Message Using an X.509 Certificate

public void EncryptRequestUsingX509Certificate()

{

// Retrieve the X.509 certificate from the CurrentUserStore certificate store

X509SecurityToken token;

string ClientBase64KeyId = "gBfo0147lM6cKnTbbMSuMVvmFY4=";

Secure Web Services with WS-Security

143

// Open the CurrentUser Certificate Store

X509CertificateStore store;

store = X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);

// Find the certificate based on the server's base64 key identifier

X509CertificateCollection certs = store.FindCertificateByKeyIdentifier(➥

Convert.FromBase64String(ClientBase64KeyId));

if (certs.Count > 0)

{

// Get the first certificate in the collection

token = new X509SecurityToken(((X509Certificate) certs[0]));

}

if (token == null) throw new ➥

ApplicationException("Unable to obtain security key.");

StockTraderServiceWse serviceProxy = new StockTraderServiceWse();

// Add the certificate key to encrypt the request

serviceProxy.RequestSoapContext.Security.Elements.Add(➥

new EncryptedData(token));

// Call the Web service RequestQuote() method

Console.WriteLine("Calling {0}", serviceProxy.Url);

WSStockTraderClient.StockTraderEncrypted.Quote strQuote = ➥

serviceProxy.RequestQuote("MSFT");

// Results

Console.WriteLine("Web Service call successful. Result:");

Console.WriteLine(" ");

Console.WriteLine("Symbol: " + strQuote.Symbol);

Console.WriteLine("Price: " + strQuote.Last);

Console.WriteLine("Change: " + strQuote.PercentChange + "%");

}

Certificate-based keys must be retrieved from the certificate store using their

base64 key identifier. WSE ships with a useful utility called the WSE X509 Certificate

Tool, which allows you to browse certificates for the Current User and Local

Computer certificate stores, and to retrieve base64 key identifier information.

Figure 6-2 shows the tool displaying the client private key certificate that is used

in the preceding example. Please refer to Chapter 5 for more information on cer-

tificate installation and the WSE X509 Certificate Tool.

Chapter 6

144

Figure 6-2. The WSE X509 Certificate Tool

Listing 6-10 shows you what the X509SecurityToken class looks like in the

Visual Studio .NET Debug window once it has been retrieved from the certificate

store. This listing can be seen by running Listing 6-9 in debug mode, and then

setting a breakpoint on the retrieved security token. Notice the properties that

indicate the certificate supports both digital signatures and data encryption. You

cannot assume that every certificate will support these features (although most

likely they will). It is a good idea to check these property values in code prior to

attaching the certificate to the SOAP message.

Listing 6-10. The X509SecurityToken Class As Shown in the Visual Studio .NET
Debug Window

?token

{Microsoft.Web.Services2.Security.X509SecurityToken}

Microsoft.Web.Services2.Security.BinarySecurityToken:

{Microsoft.Web.Services2.Security.X509SecurityToken}

_certificate: {Microsoft.Web.Services2.Security.X509.X509Certificate}

AuthenticationKey: {Microsoft.Web.Services2.Security.AuthenticationKey}

Secure Web Services with WS-Security

145

Certificate: {Microsoft.Web.Services2.Security.X509.X509Certificate}

DecryptionKey: {Microsoft.Web.Services2.Security.AsymmetricDecryptionKey}

EncryptionKey: {Microsoft.Web.Services2.Security.AsymmetricEncryptionKey}

IsCurrent: true

RawData: {Length=456}

SignatureKey: {Microsoft.Web.Services2.Security.SignatureKey}

SupportsDataEncryption: true

SupportsDigitalSignature: true

ValueType: {System.Xml.XmlQualifiedName}

WsseX509v3: {Microsoft.Web.Services2.Xml.QualifiedName}

Modify the Web Service to Process Encrypted SOAP Messages

For asymmetric encryption, the Web service does not require additional code

for processing encrypted SOAP request messages. You must just ensure that the

public key for decryption is installed in the Local Computer certificate store on

the same server where the Web service is installed. If the public key is not installed

correctly, then the client application will receive a SOAP fault indicating a prob-

lem on the receiving end.

However, from a policy standpoint, you may still want to put code in place in

the Web method to verify that the request message is in fact encrypted. Listing 6-11

shows the policy-oriented code listing for verifying that an incoming request

message is encrypted.

Listing 6-11. Code to Verify That an Incoming Request Message Is Encrypted

bool EncryptionIsValid = false;

SoapContext requestContext = RequestSoapContext.Current;

foreach (ISecurityElement objElem in requestContext.Security.Elements)

{

if (objElem is EncryptedData)

{

// Encrypted Data exists in the Element collections.

// Now check if it is the body that was encrypted.

EncryptedData encData = objElem as EncryptedData;

if (encData.TargetElement.LocalName == "Body")

{

EncryptionIsValid = true;

}

}

}

Listing 6-11 can be inserted within Listing 6-7, directly after the code block

that analyzes the digital signature. As you will see in Chapter 7, you can omit all

Chapter 6

146

of the verification code entirely once you create a policy framework file for the

Web service.

Encrypt a SOAP Response Message with an X.509
Certificate, Based on a Digitally Signed SOAP
Request Message

All of the examples so far have focused on the SOAP request message that is sent

from a client to a Web service. But this is only half the story because we have not

focused on the SOAP response message. It is unrealistic to expect that you would

send an encrypted SOAP request message and then expect an unsecured SOAP

response message in return. If anything, you are probably more interested in

having an encrypted SOAP response message because the Web service response

is almost certain to contain sensitive information.

In this section, I will present a new version of the WSStockTraderSecure

solution that implements the following:

1. The client sends a digitally signed request message to the Web service,

using an X.509 certificate.

2. In return, the Web service provides an encrypted response, using the

same X.509 certificate that was used to sign the request message.

For clarity, I have created a new Visual Studio .NET solution called

WSStockTraderSecure2, which is identical in structure to the original

WSStockTraderSecure solution. However, the code has been modified in both

the client and the Web service to implement the new security requirements.

Listing 6-12 shows the code for digitally signing the SOAP request message

that is generated by the client.

Listing 6-12. Digitally Sign a SOAP Request Message Using an X.509 Certificate

public void SignRequestUsingX509Certificate()

{

// Retrieve the X.509 certificate from the CurrentUserStore certificate store

X509SecurityToken token = null;

string ClientBase64KeyId = "gBfo0147lM6cKnTbbMSuMVvmFY4=";

// Open the CurrentUser Certificate Store

X509CertificateStore store;

store = X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);

X509CertificateCollection certs = store.FindCertificateByKeyIdentifier(➥

Convert.FromBase64String(ClientBase64KeyId));

Secure Web Services with WS-Security

147

if (certs.Count > 0)

{

// Get the first certificate in the collection

token = new X509SecurityToken(((X509Certificate) certs[0]));

}

if (token == null) throw new ➥

ApplicationException("Unable to obtain security token.");

StockTraderServiceWse serviceProxy = new StockTraderServiceWse();

// Add the signature element to a security section on the request

// to sign the request

serviceProxy.RequestSoapContext.Security.Tokens.Add(token);

serviceProxy.RequestSoapContext.Security.Elements.Add(➥

new MessageSignature(token));

// Call the Web service RequestQuote() method

Console.WriteLine("Calling {0}", serviceProxy.Url);

Quote strQuote = serviceProxy.RequestQuote("MSFT");

// Results

Console.WriteLine("Web Service call successful. Result:");

Console.WriteLine(" ");

Console.WriteLine("Symbol: " + strQuote.Symbol);

Console.WriteLine("Price: " + strQuote.Last);

Console.WriteLine("Change: " + strQuote.PercentChange + "%");

}

Notice that the X.509 certificate-based private key is retrieved from the Current

User certificate store. Once the SOAP request message is received by the Web

service, the following steps need to happen:

1. The Web service must retrieve the public key for the certificate from its

LocalMachine certificate store.

2. The Web service method must verify the digitally signed message (using

the public key).

3. The Web service must then decrypt the SOAP message body and process

the requested operation.

4. Finally, the Web service must encrypt the response and send it back to

the client.

Chapter 6

148

Clearly, this is a lot of additional overhead for the Web service to handle, com-

pared to delivering an unsecured response. But keep in mind that encryption-based

security generally creates less overhead compared to other types of binary

tokens, such as UsernameToken security tokens, because less code is required

on the client and Web service combined. And if your Web service implements

a WS-Policy framework, then you will need to write even less code. (WS-Policy

is the subject of Chapter 7.)

Listing 6-13 shows the code that is required to accomplish Steps 1 through 4

listed previously.

Listing 6-13. Encrypt a SOAP Response Message Based on the Certificate
Used to Digitally Sign the Incoming SOAP Request Message

using System.Web.Services.Protocols;

using System.Web.Services.Description;

using System.Xml.Serialization;

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

using Microsoft.Web.Services2.Security.X509;

using System.Security.Permissions;

using StockTraderTypes;

[WebMethod()]

public Quote RequestQuote(string Symbol)

{

SoapContext requestContext = RequestSoapContext.Current;

SoapContext responseContext = ResponseSoapContext.Current;

// Get the signing certificate

X509SecurityToken token = GetEncryptionToken(requestContext);

if(token != null)

{

// Encrypt the response with the key in the request.

responseContext.Security.Elements.Add(new EncryptedData(token));

}

else

{

throw new ApplicationException("Unable to retrieve the ➥

encrypting certificate.");

}

Secure Web Services with WS-Security

149

// Step 2: Create a new Quote object, but only populate if signature is valid

Quote q = new Quote();

// Generate the quote (code not shown)

}

return q; // Return a Quote object

}

private X509SecurityToken GetEncryptionToken(SoapContext requestContext)

{

X509SecurityToken x509token = null;

// Look for a digital signature, which contains the token that the Web Service

// will use for encrypting the response

if (requestContext.Security.Tokens.Count > 0)

{

//

// Check for a Signature that signed the soap Body and uses an x509 token.

//

foreach (ISecurityElement element in requestContext.Security.Elements)

{

MessageSignature signature = element as MessageSignature;

// The signature we seek signed the soap Body

if (signature != null && (signature.SignatureOptions & ➥

SignatureOptions.IncludeSoapBody) != 0)

{

x509token = signature.SigningToken as X509SecurityToken;

if (x509token != null)

{

// Return the certificate for encrypting the response

// if it is capable of encryption

X509Certificate cert = x509token.Certificate;

if (!cert.SupportsDataEncryption)

{

// return x509token;

// Reset x509token to null, so it does not get used

x509token = null;

}

}

}

}

}

return x509token;

}

Chapter 6

150

This code listing not surprisingly shares many similarities to several of the

previous listings. The biggest difference is within the GetEncryptionToken Web

method, which loops through the available digital signatures and then extracts

the certificate-based security token that was used to sign the request. This is just

another means of retrieving the public key that is needed for encrypting the SOAP

response message. Alternatively, you could have written code that retrieves the

public key directly from the Web service’s Local Computer certificate store.

The Web service code for encrypting the SOAP response message is no

different from the code you have already seen in the client for encrypting

SOAP request messages. Programmatically, the Web service method appends

the certificate-based security token to the security elements collection, and

then continues processing the requested operation. The WSE infrastructure

then processes the encryption of the resulting SOAP response message. Once

the client receives the response, it will have no trouble decrypting it as long as

it still has access to the original certificate. And it is likely that the client will

since it originally used this same certificate to encrypt the request message.

Final Thoughts on Security Authentication
and Encryption

Encryption technology is a complicated field that presents a wide variety of

options for end users. You can choose between symmetric and asymmetric

encryption, and between a wide variety of acceptable encryption algorithms.

Microsoft Windows Server 2003 provides built-in capabilities for certificate gen-

eration, and allows you to set up your own personal Certificate Authority. This

can be a useful and more affordable option than paying for an expensive certifi-

cate from an established Certificate Authority such as VeriSign, Inc. Of course,

a certificate is only as trustworthy as the company that issues it, or as trustwor-

thy as the company that it is generated for. As long as your clients trust you as

a company, there is no reason you cannot act as a Certificate Authority.

This capability to act as a Certificate Authority (CA) can be especially useful

if you implement WS-Secure Conversation, which allows for a dynamic approach

in setting up a trusted relationship between services and clients. Two or more

services and clients basically agree to establish a trusted relationship with each

other using a security token that is provided by an acceptable party. This party

acts as the CA. By generating security tokens for the communication, this party

is effectively vouching that all of the involved services and clients are trustwor-

thy with respect to each other.

Microsoft has published an excellent whitepaper on WS-Security that pro-

vides a detailed discussion of both WS-Security and WS-Secure Conversation,

along with a number of excellent architecture diagrams. Please refer to the

“WS-Security 2.0 Drilldown” article in the references list in the Appendix.

Secure Web Services with WS-Security

151

One important thing to take away from this chapter’s discussion is that you

must specifically secure SOAP messages in both directions: request and response.

Even if you secure the request message that is sent from the client to the Web ser-

vice, the Web service response will be unsecured, unsigned, and unencrypted

unless you specifically implement these measures in the SOAP response mes-

sages. It can be quite startling to realize that the most highly secured request

message may result in a completely unsecured response message if the Web

service provider has not taken equivalent steps.

This chapter has shown you how to implement several types of security

measures in SOAP messages. However, I did not address two key related points:

• How does a client know the level of security that a Web service requires?

• How does a Web service provide selective access to its methods and

resources, based on the authorization level for the authenticated user?

In the absence of the Web service telling you what its security policy is, you

will be forced to play a guessing game of trying out different kinds of security

and hoping they work. Clearly, the Web service needs to inform its clients as to

what level of security it requires in SOAP request messages. This responsibility

is governed by the WS-Policy and WS-Policy Assertions specifications, which are

the subject of the next chapter. Regarding authorization, it is clear that a Web ser-

vice needs to be able to provide selective access to its resources based on a client’s

privilege level. The service cannot simply allow any authenticated user full access

to its resources. Just because certain users are authenticated does not mean that

they are fully authorized to use all of the available resources. Security policy and

authorization are related topics because both have to do with restricting access

to a Web service to only those clients that meet strict usage requirements.

Chapter 7 provides detailed discussions on both of these important topics.

For more information on security and encryption in general, and on

WS-Security in particular, consult the list of excellent references in Appendix A.

TIP You can find the WS-Security specification at http://www-106.ibm.com/
developerworks/webservices/library/ws-secure/.

Chapter 6

152

Prevent Replay Attacks Using Timestamps,
Digital Signatures, and Message Correlation

I will close out this chapter with a look at a different kind of security issue called

replay attacks. These are a type of denial-of-service (DoS) attack that is specific

to Web services. A replay attack occurs when a client makes multiple Web service

calls to the same service without waiting for a response from one or more previ-

ous requests. If enough of these calls are made, then it is possible to overwhelm

the Web service’s hosting server, and to then cause the service to become unre-

sponsive or to go offline. Replay attacks are at best a nuisance, and at worst can

cause critical system breakdowns.

The WS-Security specification mentions replay attacks and briefly describes

a strategy for dealing with them. The key to preventing a replay attack is for a Web

service to monitor the status of incoming messages and to verify their unique-

ness. The Web service needs to verify that an incoming SOAP request message is

unique, and has not already been sent, before the service starts processing the

message.

NOTE You can eliminate replay attacks by unauthorized clients by using an
encrypted communication channel such as Secure Sockets Layer. However, SSL
provides no protection if the authorized client decides to conduct a replay
attack. Other protective measures are required. The strategies that are outlined
in this section assume that you want to prevent replay attacks by verifying
request messages for uniqueness, and by verifying that the request messages
have not been tampered with.

Standard Web service calls are stateless, and SOAP messages are inherently

stateless, one-way communications. SOAP messages must therefore include extra

information that tracks their uniqueness, and thereby helps the service to verify

whether a request message has already been received. There are three main ways

to track this information and to enable message verification and protection

against replay attacks:

• Message timestamps (including Created and Expires)

• UsernameToken nonce values

• Message correlation (including sequence numbers)

Let’s consider each of these in turn, and see how they can be used to secure

SOAP messages, and Web services, against replay attacks.

Secure Web Services with WS-Security

153

Use Timestamps for Message Verification

Message timestamps are added to an outgoing SOAP request message by the

sender, either automatically or manually, depending on how the client is config-

ured. The WSE output filters contain a specific filter called TimestampOutputFilter,

which automatically applies timestamp information to outgoing SOAP messages.

This filter is enabled in the pipeline by default, and you should never remove it

because timestamps help in detecting unauthorized SOAP message requests, as

described later. Listing 6-14 shows how the service can then retrieve the time-

stamp information programmatically from the message’s SoapContext class.

Listing 6-14. Retrieving Timestamp Information from a SOAP Request Message

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

// Retrieve the request message SOAP context

SoapContext requestContext = RequestSoapContext.Current;

// Retrieve Timestamp information

System.DateTime dtCreateDate = requestContext.Security.Timestamp.Created;

System.DateTime dtExpirationDate = requestContext.Security.Timestamp.Expires;

long dtTimeToLive = requestContext.Security.Timestamp.TtlInSeconds;// in seconds

string TimestampID = requestContext.Security.Timestamp.Id;

The client may choose to set an expiration date and time on the request

message, which means that the message is only valid for a specific number of

seconds after it is issued. This ensures that if the SOAP message is intercepted

and re-sent by an unauthorized sender, then it will only be useful to them for

a limited amount of time. And of course, if the message expiration is set short

enough, then there will not be time for an unauthorized party to intercept and

reroute the message. Message timestamps and expiration are a useful first

defense for preventing the unauthorized use of legitimate SOAP messages. As

added protection, the client may digitally sign both the message body and the

timestamp directly. This allows the receiving service to detect a scenario wherein

the timestamp itself was tampered with and altered by an unauthorized user.

In this chapter, I did not discuss how to digitally sign SOAP message head-

ers. I only explained how to sign the SOAP message body. Or so you may have

thought, because it turns out that WSE actually incorporates selected SOAP mes-

sage headers into the digital signature (in addition to the SOAP message body),

and the Created and Expires timestamp information is included. In fact, if you

study the WS-Security encoding in a SOAP request message, you will see a list-

ing of all signed message elements. This information is stored within the

<wsse:Security><Signature><SignedInfo> node. So the good news is that you do

Chapter 6

154

not have to do any manual work to either timestamp a message or digitally sign this

information. WSE takes care of it for you, as long as the TimestampOutputFilter is

enabled, and as long as you add a digital signature to the SOAP request message.

NOTE SOAP message interception and tampering is a serious security issue
that will become more widely understood (and worried about!) once Web ser-
vices become more commonly deployed and used by companies. If a thief
steals your credit card, then they have access to a legitimate source of credit
even though they themselves are an unauthorized user. SOAP message inter-
ception potentially creates the same security compromise scenario.

Once the service receives the request message, it can cache the SoapContext

while it processes the message. Subsequent incoming request messages can then

be compared against the cached SoapContext objects and rejected if the service

detects that the request has already been received. Recall that the SoapContext is

a WSE-specific class representation of a SOAP message, and is a member of the

Microsoft.Web.Services2 namespace. You can use the SoapContext class to pro-

grammatically access the properties of a SOAP message, including its headers

and body. By now you should be getting very familiar with the SoapContext class.

In this chapter, for example, I also showed you how to use the SoapContext class

to set and retrieve security tokens assigned to a message.

There are no specific rules as to what kind of information you should use to

correlate SoapContext information between messages. Basically, any unique iden-

tifying information makes for a good candidate, as long as it cannot be spoofed by

an unauthorized third party. So you will want to choose a piece of information that

can be digitally signed in the request message. Good candidates include address-

ing headers and security token IDs. In Chapter 9, I will discuss the WS-Addressing

specification, which allows you to add addressing headers to a SOAP message,

including sender origin and reply to address information. In addition to address-

ing headers, you can correlate messages using specific contents of the SOAP message

body, or any other header information that is uniquely set by the client. If the mes-

sage uses a security token, then the token itself can be used to uniquely identify

a message.

Use UsernameToken Nonce Values for
Message Verification

If you find yourself struggling to extract a unique piece of information from a mes-

sage (using the SoapContext class), and the message includes a UsernameToken

security token, then you can use a nonce-based token ID as a unique identifier.

A nonce is simply a random cryptographic string that can be assigned as the ID

Secure Web Services with WS-Security

155

value for the UsernameToken security token. When the service receives a request

message, it can extract the nonce value from the security token and cache the

value for the duration of the request message. These ID values are part of the mes-

sage signature and cannot be spoofed. And because they are nonce values, it is

highly unlikely that two request messages will coincidentally share the same ID

values. However, this could happen if you choose to rely on the auto-generated

ID value for the security token.

Again, the burden remains on the service to cache information on incoming

request messages. But if you need to take this approach, then a nonce value is

the simplest way to do so.

Listing 6-15 shows how the client can assign a nonce value to a

UsernameToken security token.

Listing 6-15. Assigning a Nonce Value to a UsernameToken Security Token

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

SecurityToken token = new UsernameToken(username, passwordEquivalent, ➥

PasswordOption.SendHashed);

// Assign a random nonce value to the security token

Nonce objNonce = new Nonce(34);

token.Id = objNonce.Value;

You may be wondering why nonce values apply specifically to the

UsernameToken security token. This is because other security tokens are more

sophisticated and do not require the additional guarantee of uniqueness that

a nonce value provides. A UsernameToken security token is, after all, simply

a hashed username-password combination, and there is nothing inherently

unique about this combination. Usernames and passwords can be duplicated

between users much more easily than cryptographic values can, especially if

a malicious client is intentionally using another client’s credentials.

If you use an alternate security token such as an X.509 certificate, then you

are automatically afforded some protection because the client and the service are

using credentials that are not easily discovered. However, as I pointed out with

SSL, this does not provide protection against replay attacks. You cannot assume

that authorized clients will by their nature avoid carrying out a replay attack. For

example, consider a client that auto-generates Web service calls in batch mode. If

this client were to experience a system error or breakdown in business logic, then

it is conceivable that the client might generate duplicate request messages to the

service. This is why you must tackle replay attacks at the message and service

level. You cannot protect against replay attacks under the umbrella of a trusted

relationship between client and service.

Chapter 6

156

Use Message Correlation and Sequence Numbers
for Message Verification

The key to preventing replay attacks is for the Web service to verify the uniqueness

of incoming request messages. The WS-Addressing specification describes a

GUID-based message ID that is one of several addressing headers that can be

assigned to a SOAP message. WSE provides support for the WS-Addressing specifi-

cation in general, and for addressing headers specifically. Once again, the burden

is on the Web service to store message correlation information and to determine

whether an incoming message has already been received. As with other kinds of

identifiers, the message ID does not in and of itself prevent replay attacks, but it

provides another simple, unique identifier for an incoming SOAP message.

NOTE Refer to Chapter 9 for more information on the WS-Addressing
specification.

Another type of message identifier is the sequence number, which stamps

a message with the sequential role that it plays in a business process. Sequence

numbers are part of the WS-Reliable Messaging specification, and are designed

to enable business orchestration, which refers to a business process or workflow

that spans multiple components. In service-oriented architectures, sequenced

messages are exchanged between multiple Web services, and the collective out-

come represents the completion of the business workflow.

Sequence numbers provide an additional advantage for preventing replay

attacks because a message that contains a duplicate sequence number is auto-

matically suspect. Sequence numbers alone do not ensure uniqueness, but they

will in conjunction with a message ID.

Summary

This chapter has shown you how to use WS-Security to implement several types

of security measures in SOAP messages, including the following:

1. Message authentication using security tokens based on username-

password combinations and X.509 certificates.

2. Digital signatures on SOAP messages to detect message tampering.

3. Encryption of SOAP messages (using asymmetric encryption) to protect

the contents of a SOAP message from network sniffers.

Secure Web Services with WS-Security

157

This chapter focused on the digital signing and encryption of SOAP mes-

sages in two directions: request and response. One-way signing and encryption

(from the client to the service) is easier to implement, but this may create a sig-

nificant security exposure. I also provided a discussion on the role of Certificate

Authorities in certificate-based trusted relationships between clients and ser-

vices, and I highlighted again the distinction between authenticated users versus

authorized users. Security measures such as digital signatures and encryption

enable services to authenticate clients. However, authenticated clients are not

necessarily authorized to access the full capabilities of a given Web service.

The topic of authorization is discussed in the next chapter.

Finally, I closed with a discussion of replay attacks, which are a form of

denial-of-service (DoS) attack. The risk of replay attacks can be minimized if the

Web service correlates incoming request messages and verifies their uniqueness

prior to processing them.

159

CHAPTER 7

Use Policy Frameworks
to Enforce Web

Service Requirements
with WS-Policy

SERVICE-ORIENTED WEB SERVICES enforce specific usage requirements that clients

must meet in order to use the service. Web services cannot simply respond to

any request that comes in. Instead, they must be selective and can only process

incoming requests that conform to their stated requirements. For example, a Web

service may require that all incoming service requests be digitally signed and

encrypted. Furthermore, a Web service may specifically require that the digital

signature be based on an X.509 certificate, rather than another type of security

token. Clients that send nonconforming service requests to the Web service,

such as unsigned, unencrypted requests, will receive a SOAP fault as their

response message.

Sometimes policies need to be enforced, but do not need to be this restric-

tive. For example, a Web service may require digital signatures, but will accept

signatures based on any type of security token. Web services need to inform

their potential clients as to what requirements they enforce in order to provide

a service. Without this information, potential clients can only guess at what

requirements are enforced. Clearly, this would be an inefficient approach that

just will not work in a service-oriented production environment.

The WS-Policy specification provides the means to implement and enforce

a standard policy framework for Web services. The WS-Policy specification itself

is more of a generic model that outlines general syntax for documenting a policy

framework. There are many kinds of potential policies that a Web service may

need to communicate and enforce, including security requirements and quality

of service of requirements. Each of these specific policy needs is governed by

a more specific WS specification that works with the more general WS-Policy

specification. For example, security policy is governed by the specialized

WS-Security Policy specification.

Chapter 7

160

Web Services Enhancements (WSE) 2.0 provides support for configuring

and implementing policy frameworks. WSE provides the infrastructure to auto-

matically enforce a policy framework without requiring any additional lines of

code. As long as the policy framework is documented correctly, the infrastruc-

ture will automatically support it. This is a tremendous productivity benefit for

developers.

Policy frameworks are a welcome addition to Web services technology

because they formalize operating requirements within a service-oriented

architecture. This level of formality brings with it the maturity that Web services

technology needs in order to gain wider acceptance and use within the business

community and across industries that are very sensitive to the exchange of

information.

Overview of the Policy Framework Specifications

Policy frameworks are governed by a cooperative set of related specifications

starting with WS-Policy, which provides a generic model for documenting Web

service policy. WS-Policy provides an extensible XML-based grammar and

a schema for defining the structure of policy framework documents. The actual

requirements themselves are referred to as policy assertions, and are governed

by another specification called WS-Policy Assertions. The container document

holds a policy expression that is composed of one or more individual policy

assertions. So, the WS-Policy specification governs the policy expression, while

the WS-Policy Assertions specification governs the policy assertions.

Policy assertions may be of a specialized nature and may therefore require

dedicated specifications. For example, security policy is documented with the

specialized WS-Security Policy specification. Every WS-Specification provides its

own associated XML schema, and WS-Security Policy is no exception. It provides

specialized tags that distinguish a security-oriented policy assertion from a more

general policy assertion.

Policy expressions do not exist in a vacuum; they must always apply to

so-called policy subjects, which are the targets that policy expressions apply to.

A policy subject can include different aspects of a Web service, including spe-

cific endpoints or more general messages. The most straightforward example

of a policy expression is one that applies to the body of all incoming SOAP

messages for all Web service operations, for example, a policy stating that all

incoming messages must be digitally signed and encrypted. The default policy

subject is the entire Web service, namely, all of its operations and their associ-

ated SOAP messages. Table 7-1 provides a glossary of the most important terms

that apply to the WS-Policy family of specifications.

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

161

Table 7-1. Glossary of Terms That Apply to the WS-Policy Specifications

Term Definition

Policy framework A set of requirements, preferences, and capabilities that apply

to a Web service, mainly focused on security, including digital

signing and encryption.

Policy expression An XML document that contains one or more policy assertions,

as well as support elements that make up the well-formed,

qualified document.

Policy assertion An individual requirement, preference, or capability. One or

more assertions make up a policy expression.

Policy subject The target of a policy expression. This includes either an entire

Web service or a specific endpoint within the Web service.

Policy attachment The means by which a policy expression is associated with one

or more policy subjects.

The WS-Policy Attachments specification allows you to associate policy

expressions with different kinds of policy subjects, including XML messages and

specific Web service endpoints. The WS-Policy Attachments specification inte-

grates with WSDL documents, meaning that you can apply this specification’s

XML attributes to selected elements within the WSDL document. These include

the <portType> and <binding> elements, which give you a fine level of control

over the policy expression for specific Web service operations (or endpoints, to

be more accurate). Refer to Chapter 2 if you need a refresher on what these ele-

ments are. The material in Chapter 2 is essential to understanding Web services

architecture in general, and is especially helpful in understanding how to apply

the WS-Policy family of specifications.

Figure 7-1 provides an overview of how the various policy specifications

work together to implement a policy framework.

Chapter 7

162

The policy expressions are contained within XML documents that are

installed with the Web service. Optionally, you can use the WS-Policy Attachments

specification to associate policies with specific aspects of the Web service. You do

not have to take this additional step; policies apply to all Web service operations

and messages by default.

Now let’s look at how to implement policy frameworks for Web services.

Overview of Policy Frameworks

The WS-Policy family of specifications defines a set of XML schemas that allow

you to store policy information directly in a SOAP message. In fact, each of the

WS-Specifications provides its own XML schemas, each with a unique set of qual-

ified XML elements for storing custom information in the SOAP message header.

In many cases the WSE class framework shields you from the underlying XML ele-

ments because the classes automatically generate the tags for you. Unfortunately,

with WS-Policy, you do not have this luxury.

The purpose of WS-Policy, quite simply, is to provide a declarative model for

Web service requirements, rather than a programmatic model. The sample solu-

tions in Chapter 6 are a perfect example. Recall that these samples show you how

to add digital signatures and encryption to SOAP request and response messages.

This creates a programmatic burden in the receiving Web services because you

have to write code to verify that the security info has been properly administered.

Policy Expression #1

(XML Document)

Policy Assertion #1-1

Policy Assertion #1-2

Web Service

(WSDL Document)

Apply policy to messages

<wsdl:definitions />

Apply policy to operations
<wsdl:portType />

Policy Expression #2

(XML Document)

Policy Assertion #2-1

Policy Assertion #2-2

Apply policy to binding

<wsdl:binding />

Apply policy to service

<wsdl:service />

Policy Attachment

Policy Attachment

Figure 7-1. An implemented policy framework

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

163

With WS-Policy, all of this verification code goes away, and instead the Web

service references an XML-based policy framework file that contains the applica-

ble security requirements. For example, a Web service may establish a policy that

incoming service requests must be encrypted with public key encryption based

on an X.509 certificate only. This policy information may be verified program-

matically in code (as I did in the Chapter 6 sample solutions), or you can create

a declarative policy framework file that stores this same information using XML

markup. The WSE infrastructure in turn uses the policy framework file to verify

an incoming SOAP request at runtime. If the SOAP message fails verification,

then a SOAP exception is raised, just as with programmatic verification.

Policy framework files are actually very versatile, and they can be written to

trigger verification on specific elements within a SOAP message. Policy frame-

works may also be applied on both incoming and outgoing messages. A request

policy applies to incoming messages, whereas a response policy applies to out-

going messages. There is no difference in the construction of a request versus

a response policy. You need only specify which direction the policy applies to.

I will show you how to build policy framework files in detail later in the chapter.

By default, policy frameworks apply to the entire Web service. However, you

may choose to narrow the policy subject to a specific endpoint, including a spe-

cific Web method (or operation, which is the more accurate term in this context).

Policy frameworks save you a lot of time because you no longer have to write

any verification code. In addition, a policy framework serves as a clear document

of the requirements, preferences, and capabilities of a Web service.

There are four main steps for creating a policy framework file:

Step 1: Create the policy framework shell. This is an XML configuration

file that is accessible to the applicable Web service project.

Step 2: Implement a set of applicable policy assertions. You have a lim-

ited choice of built-in policy assertions to choose from. If none of these

apply to a specific policy requirement that you have, then you can cre-

ate a custom policy assertion to describe the custom requirement.

Step 3: Map the policy expression file to the applicable SOAP endpoints

(by default, the entire Web service).

Step 4: Configure the policy framework in the applicable Web service

project. This step ensures that the Web service is aware of the policy

framework and that the WSE infrastructure applies the policy automati-

cally at runtime.

WSE 2.0 provides great support for the WS-Security Policy specification,

which governs a set of policy assertions that are specifically geared toward

security. Table 7-2 summarizes the most important built-in WS-Security Policy

assertions that are currently available in WSE 2.0.

Chapter 7

164

Table 7-2. Built-in WS-Security Policy Assertions in WSE 2.0

Policy Assertion Description

Integrity Specifies a signature format, including the security token type

and the applicable hash algorithm. The Integrity assertion con-

tains one or more SecurityToken assertions.

Confidentiality Specifies an encryption format, including the hash algorithm,

the security token type, and the SOAP elements that must be

encrypted.

SecurityToken Specifies a security token type; included within the Integrity and

Confidentiality policy assertions.

MessageAge Specifies the time period within which messages are considered

current and may be processed. Outside of this time period, mes-

sages are considered to be expired, and will not be processed.

In addition, WSE 2.0 provides built-in support for the MessagePredicate pol-

icy assertion, which allows you to define custom business validation rules using

XPath expressions. The SOAP message must conform to these rules in order to

pass the policy check. The term MessagePredicate sounds confusing until you

consider its meaning. Namely, it has to do with predicates for a message, other-

wise known as the (policy) prerequisites for a message. The MessagePredicate

policy assertion operates on the SOAP envelope, and it provides a flexible way to

validate one or more parts of the SOAP message.

There are certain common predicates for messages. For example, a Web ser-

vice could implement a policy stating that all incoming SOAP request messages

must include specific addressing headers, such as To, From, Message ID, and

Action. This is a fairly common prerequisite, and so it would be an unnecessary

burden to have to write custom XPath expressions for this straightforward mes-

sage predicate. To keep things simpler, WSE 2.0 supports alternate dialects,

including one based on message parts, which simply requires you to list those

message parts in the policy file that must be present within the SOAP envelope.

Without these elements, a SOAP message cannot be considered in compliance

with the Web service policy.

If you find that the built-in policy assertions do not fit what you need, then

WSE 2.0 provides support for building custom policy assertions. WSE allows you

to build a custom handler class for policy assertion logic that integrates into the

WSE pipeline. This topic is beyond the scope of this chapter, but please refer to

the Appendix for reference articles that provide detailed information on how to

build custom policy assertions.

Listing 7-1 provides one example of a policy framework, in which the Web

service requires that the body of an incoming SOAP request message must be

digitally signed with a UsernameToken security token. The listing includes

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

165

a MessagePredicate policy assertion that is restricted to the message body in this

listing. However, it could also be used to require the message to include specific

addressing headers, for example, using wsp:Header(wsa:To), wsp:Header(wsa:Action),

wsp:Header(wsa:MessageID), and wsp:Header(wsa:From).

Listing 7-1. A Sample Policy Framework

<?xml version="1.0" encoding="utf-8"?>

<policyDocument xmlns="http://schemas.microsoft.com/wse/2003/06/Policy">

<mappings xmlns:wse="http://schemas.microsoft.com/wse/2003/06/Policy">

<endpoint uri="http://localhost/StockTraderSecurePolicy/StockTrader.asmx">

<defaultOperation>

<request policy="#Encrypt-X.509" />

<response policy="" />

<fault policy="" />

</defaultOperation>

</endpoint>

</mappings>

<policies xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

xmlns:wssp="http://schemas.xmlsoap.org/ws/2002/12/secext"

xmlns:wse="http://schemas.microsoft.com/wse/2003/06/Policy"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing">

<!-- This policy ensures that the message is encrypted

with an x.509 Certificate -->

<wsp:Policy wsu:Id="Encrypt-X.509">

<!-- The MessagePredicate indicates where to apply the policy -->

<wsp:MessagePredicate wsp:Usage="wsp:Required"

Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">

wsp:Body()

</wsp:MessagePredicate>

<!--The Confidentiality assertion is used to ensure that

the SOAP Body is encrypted.-->

<wssp:Confidentiality wsp:Usage="wsp:Required">

<wssp:KeyInfo>

<!--The SecurityToken element within the KeyInfo element describes which

token type must be used for Encryption.-->

<wssp:SecurityToken>

<wssp:TokenType>http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-x509-token-profile-1.0#X509v3</wssp:TokenType>

</wssp:SecurityToken>

</wssp:KeyInfo>

Chapter 7

166

<wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">

wsp:Body()</wssp:MessageParts>

</wssp:Confidentiality>

</wsp:Policy>

</policies>

</policyDocument>

Listing 7-1 defines a policy framework called #Encrypt-X.509 that is a default

policy, meaning that it applies to the entire Web service. The <wssp:TokenType>

element specifies the required security token, while the <wssp:MessageParts>

element specifies that the digital signature must apply to the body of the SOAP

message. (Alternatively, you could extend the applicable message parts to

include header elements.)

WSE 2.0 supports other built-in policy assertions outside of WS-Security

Policy; however, the assertions presented in Table 7-2 are the most important ones

from the standpoint of usefulness. Other policy assertions govern requirements for

text encoding and language; however, most of the time you can simply rely on the

default settings for these requirements. The exception is the MessagePredicate pol-

icy assertion, which enforces the required set of elements that a SOAP message must

contain. Listing 7-1 includes this policy assertion, and it requires that the incom-

ing SOAP message contain a body tag along with several WS-Addressing–related

elements. Clearly, this is a SOAP message that may get routed across multiple

services before returning to the client.

Listing 7-1 illustrates examples of namespaces associated with the WS-Policy,

WS-Policy Assertions, and WS-Security Policy specifications. By default, the pol-

icy expression applies to the entire Web service, meaning that every SOAP message

is validated in the same way, regardless of what Web service operation it is

intended for. If you need to map the policy expression to a specific set of Web

service endpoints, then you will also need to include the namespace for the

WS-Policy Attachments specification. Listing 7-2 shows an example of how

WS-Policy Attachments and WS-Addressing work together to associate a policy

expression with a specific Web service endpoint.

Listing 7-2. XML Markup for the WS-Policy Attachment Specification

<wsp:PolicyAttachment>

<wsp:AppliesTo>

<wsa:EndpointReference

xmlns:st="http://www.bluestonepartners.com/schemas/StockTrader">

<wsa:Address>http://www.bluestonepartners.com/stocktrader</wsa:Address>

<wsa:PortType>st:BasicUserPortType</wsa:PortType>

<wsa:ServiceName>st:StockTrader</wsa:ServiceName>

</wsa:EndpointReference>

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

167

</wsp:AppliesTo>

<wsp:PolicyReference URI="http://www. bluestonepartners.com/policy.xml" />

<wsse:Security>

<ds:Signature> ...

</ds:Signature>

</wsse:Security>

</wsp:PolicyAttachment>

Listing 7-2 states that the policy expression applies to the collection of oper-

ations under the BasicUserPortType. Recall that the <portType> element in

a WSDL document groups a collection of related operations and may be a subset

of the total number of available operations that the Web service supports. In this

example, the referenced <portType> refers to the subset of operations that are

accessible by basic users only.

You can be forgiven if your head is spinning by now because policy frame-

works encompass a wide range of specifications and corresponding XML

namespaces, and it is hard to get your mind around everything at once. The

good news is that the typical policy expression is a relatively simple XML file

you can reuse across multiple Web services. The bad news is that WSE 2.0

makes you code the file by hand (although it does provide a limited GUI tool

that helps you create basic policy expression files).

Remember, policy files ultimately save you work because you avoid having

to write the policy verification code manually. Let’s jump straight into some sam-

ple code and XML to show you how to implement your own policy framework

files with WSE 2.0.

Implement a Policy Framework

In this section, you will see the structure of a basic policy expression file, includ-

ing the minimum required elements that it must support. I will then show you

an actual policy expression file and how it affects the code listing in the asso-

ciated Web service. I will compare this code listing against a similar sample

solution that does not include a policy file, and which must implement verifica-

tion manually.

Required Elements in a Policy Expression File

A basic policy expression file defines a set of policy assertions and the endpoints

that they map to. Policies may be created for both the sender and receiver, but

typically the policy information will be stored at the receiver, that is, at the Web

Chapter 7

168

service. The receiver can maintain two policy files: one for the incoming request

message and one for the outgoing response message at the service.

Listing 7-3 shows the minimum required XML elements for a policy expres-

sion file. This is the basic file structure that you will fill in to create the actual

policy framework file.

Listing 7-3. Minimum Required XML Elements for a Policy Expression File

<policyDocument>

<mappings>

<endpoint

<defaultOperation>

<request policy="[ID]" />

<response policy="[ID]" />

<fault policy="[ID]" />

</defaultOperation>

</endpoint>

</mappings>

<policies>

<policy/>

</policies>

</policyDocument>

Listing 7-3 does not actually do anything because no policy assertions have

been defined. There are four steps for creating a basic policy framework file. Let’s

consider an example of a policy that requires all incoming SOAP request messages

to be encrypted with an incoming X.509 certificate.

Step 1: Create the Basic XML File

Policy expression files are bounded with the <policyDocument> element. Within

this element are two main elements: <policies> and <mappings>. The <policies>

element contains the collection of policy assertions that will apply. Each policy

assertion is stored in a <policy> element. A <policies> element may contain one

or more <policy> elements.

Step 2: Add a Policy Assertion

As you saw earlier in Table 7-2 and Listing 7-1, WSE 2.0 provides built-in support

for five standard policy assertions: Integrity, Confidentiality, SecurityToken,

MessageAge, and MessagePredicate. These policy assertions are composable,

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

169

and each must be stored within separate <policy> elements. In turn, the <policy>

elements are added within the <policies> element. This design enables you to

specify more than one applicable policy assertion to the Web service.

The XML for these standard policy assertions is tightly defined in the WS-Policy

and WS-Security Policy specifications, so you can use established, qualified XML to

define your assertions. There is more flexibility with the MessagePredicate policy

assertion because it supports multiple dialects, including custom XPath statements

and a fixed message parts dialect.

Policy assertions should be assigned with an identifier so that they can be

referenced from other areas within the policy framework file. Listing 7-4 provides

an example of a standard policy assertion for requiring that a message provide an

expiration timestamp.

Listing 7-4. A Standard Policy Assertion

<?xml version="1.0" encoding="utf-8" ?>

<policyDocument xmlns="http://microsoft.com/wse/2003/06/PolicyDocument">

<mappings>

<endpoint>

<defaultOperation />

</endpoint>

</mappings>

<policies xmlns="http://schemas.microsoft.com/wse/2/PolicyDocument"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy">

<wsp:Policy wsu:Id="#policy-123">

<wsse:MessageAge wsp:Usage="wsp:Required" Age="4" />

</wsp:Policy>

</policies>

</PolicyDocumentpolicyDocument>

The WSE 2.0 online documentation provides clear examples of how to write

the XML for standard policy assertions such as the one shown in Listing 7-4.

WSE 2.0 does not provide much support for auto-generating WS-Policy–related

XML markup. WSE’s Configuration Editor provides minimal auto-generation

support for policy framework files. WSE also ships with a simple security settings

wizard, but you can use any XML editor that you are comfortable with. Your main

asset in generating your own policy framework files will be to copy the XML from

existing files, and customizing it to suit your needs.

Chapter 7

170

What WSE 2.0 lacks in WS-Policy XML support, it more than makes up for in

what it does with the files. When properly configured, the policy framework files

save you from writing custom code for common tasks, such as authenticating

security credentials.

Step 3: Map the Policy to the Web Service

The <mappings> element contains one or more <endpoint> elements that bind

the policy to specific Web service endpoints. The simplest mapping is one in

which the policy applies to the entire Web service. In this case, you simply spec-

ify the URI for the Web service, as shown in Listing 7-5.

Listing 7-5. A Default Policy Mapping

<mappings>

<endpoint="http://www.bluestonepartners.com/stocktrader.asmx">

<defaultOperation>

<request policy="#policy-123" />

<response policy=" " />

<fault policy=" " />

</defaultOperation> policy="#policy-7u8hs-j87sh"/>

</endpoint>

</mappings>

<policies>

<policy Id="#policy-123" />

</policies>

Notice that the policy ID shown in Listing 7-5 corresponds to the policy

assertion that is shown in Listing 7-4. This policy framework file specifies

a request policy only. However, you could easily extend this file to specify addi-

tional policy requirements. For example, let’s say that policy ID #policy-123

specifies encryption. The policy itself does not care if it applies to request or

response messages. You set this association using the <request> and <response>

nodes within <defaultOperation>. If you want to specify encryption on both

request and response messages, then you simply assign the same policy ID

#policy-123 to both the <request> and <response> nodes.

If you use a default policy mapping, then the client must also implement the

WS-Addressing specification. Specifically, the URI in the policy framework file’s

<endpoint> element and attribute must match the URI in the <wsa:To> address-

ing header element. If it does not, then the SOAP message will not be considered

in compliance with the policy.

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

171

Step 4: Configure the Policy

The policy framework file should be stored as an XML file within the Web service

project. For example, you could save Listing 7-4 as policyCache.xml, and store it

in the root of the StockTrader Web service project.

Next, you need to configure the policy framework file in the Web service

web.config file so that it knows to use it. Assuming that you have configured

the project to use WSE 2.0, you will already have a new <section> entry for the

Microsoft.Web.Services2 assembly within the

<configuration><configSections> element.

Scroll down within the file and locate the <microsoft.web.services2> element.

Add a <policy> element and a <cache> element to specify the name of the policy

framework file, as shown in Listing 7-6.

Listing 7-6. Configuring a Policy Framework File

<microsoft.web.services2>

<security>

<x509 allowTestRoot="true" allowRevocationUrlRetrieval="false"

verifyTrust="false" storeLocation="LocalMachine" />

</security>

<policy>

<cache name="policyCache.xml" />

</policy>

<diagnostics />

</microsoft.web.services2>

The <policy> element itself is very straightforward. Listing 7-6 also includes

a <security> element that shows you how to configure the test root certificate

that ships with WSE 2.0.

Policy Discovery

WSE 2.0 does not support the automatic discovery or retrieval of policy files.

Currently, the publisher of the policy must take responsibility to deliver the pol-

icy file manually to all prospective clients. There are three ways to do this. One

way is for the publisher to post the policy framework file on a Web site or FTP

site for prospective clients to download. The second way is for the publisher to

simply e-mail the policy framework file to prospective clients. Either way, once

the client receives the policy framework file, it can be registered with the client

application. This ensures that the WSE pipeline will catch policy violations at the

client before the request message even goes out to the Web service.

Chapter 7

172

The third way is for the publisher to simply inform prospective clients of its

policy requirements without sending a policy framework file. The disadvantage

of this approach is that it puts the burden on the client developer to manually

verify that it is in compliance with the Web service policy. For example, if the Web

service requires encrypted request messages, and the client does not send one,

then the client will receive an error back from the Web service directly. If on the

other hand the client implements its own copy of the policy framework file, then

the issue will be caught at the client rather than rejected by the Web service. This

gives the client more control in heading off potential policy violations early.

If this all seems confusing, just keep in mind that the client is dependent on

the service to set policy. At some level it really does not matter how the client

gets informed of the service policy, or how it verifies policy compliance, just as

long as the policy requirements get implemented. For example, if the service

requires incoming requests to be digitally signed, then the client simply needs

to know this and then implement this. Otherwise, the client’s requests will get

rejected by the service.

Ultimately, you should use policy files to the degree that they will save you

from having to manually write verification code for SOAP messages.

In closing the discussion on the discovery of policy framework files, I should

note another major shortcoming related to the lack of automatic discovery. Policy

framework files do not currently have an easy way to integrate with WSDL docu-

ments. Up until now, we have come to expect that WSDL documents contain all

of the information that is required for a client to bind to a Web service. While this

is still largely true, there are exceptions, especially with the newer and evolving

specifications such as WS-Policy. It is highly likely that policy information will be

incorporated into the next version of the WSDL specification, although as of now

it is unclear exactly where it will fit. I am bringing this point up because you will

either come across it in your own research or, as I did, you will start to realize this

shortcoming once you start working with policy framework files. The WS-Policy

specification has firm traction and fills an important niche, so it is only a matter

of time before it is integrated with the WSDL specification.

Generate a Policy Expression File

The XML markup for policy files is difficult to code by hand, so you will want to

consider using the Configuration Editor tool that ships with WSE 2.0. In this sec-

tion, you will learn to create and implement policy expression files, and will see

how policy violations are raised back to the client.

Figure 7-2 shows a simple solution called WSTestPolicy.sln that demonstrates

how to implement policy files. The standard StockTrader application that we have

been using throughout the book contains a lot of extraneous code that will blur

the picture as you work through the policy code. So I have created a stripped down

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

173

Figure 7-2. The Visual Studio .NET WSTestPolicy solution

sample solution that is structured along the same lines as the other StockTrader

applications.

The StockTrader.asmx Web service file contains two shell Web methods that

return status strings. The code listing is shown in Listing 7-7.

Listing 7-7. The WSTestPolicy StockTrader Web Service

[WebMethod]

public string RequestQuote()

{

return "RequestQuote() service call was successful";

}

[WebMethod]

public string PlaceTrade()

{

return "PlaceTrade() service call was successful";

}

The Web service implements a policy framework file for request operations

called policyCache.xml. You can generate this file automatically using the WSE

Security Setting Tool, which is accessed from the Configuration Editor’s Policy

tab, as shown in Figure 7-3.

Chapter 7

174

Figure 7-3. The WSE Security Setting Tool, used for generating a policy expression

This policy expression states that the Web service will only accept request

messages that have been encrypted with an X.509 certificate. Listing 7-8 shows

what the resulting configuration file looks like, and Listing 7-9 shows you how

you attach the policy file to the Web service using a configuration setting in the

web.config file. This policy expression is a default policy, meaning that it applies

to every operation and portType that the Web service supports.

Listing 7-8. The policyCache.xml Policy Expression File

<?xml version="1.0" encoding="utf-8"?>

<policyDocument xmlns="http://schemas.microsoft.com/wse/2003/06/Policy">

<mappings xmlns:wse="http://schemas.microsoft.com/wse/2003/06/Policy">

<endpoint uri="http://localhost/StockTraderSecurePolicy/StockTrader.asmx">

<defaultOperation>

<request policy="#Encrypt-X.509" />

<response policy="" />

<fault policy="" />

</defaultOperation>

</endpoint>

</mappings>

<policies xmlns:wsu=" http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd">

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

175

<wsp:Policy wsu:Id="#Encrypt-X.509"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy">

<wssp:Confidentiality wsp:Usage="wsp:Required">

<wssp:KeyInfo>

<wssp: SecurityToken>

<wssp:TokenType>http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-x509-token-profile-1.0#X509v3</wssp:TokenType>

</wssp:SecurityToken>

</wssp:KeyInfo>

<wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">

wsp:Body()</wssp:MessageParts>

</wssp:Confidentiality>

</wsp:Policy>

</policies>

</policyDocument>

Listing 7-9. The web.config Settings to Attach the Policy Expression File to the
Web Service

<configuration>

<microsoft.web.services2>

<diagnostics />

<policy>

<cache name="c:\projects\WSTestPolicy\policyCache.xml" />

</policy>

<security>

<x509 allowTestRoot="true" allowRevocationUrlRetrieval="false"

verifyTrust="false" />

</security>

</microsoft.web.services2>

</configuration>

The wonderful thing about policy files is that you do not need to write any

code in the Web service to verify that an incoming request is valid. You can still

write code that processes the request messages manually, if you have a special

processing function that you need to apply. However, be aware that the policy

verification intercepts the request first. If the incoming message does not pass

verification, then it will not be allowed through and it will not run through any

custom functions. Instead, the client that issued the request will receive a SOAP

exception along the lines of Listing 7-10.

Chapter 7

176

Listing 7-10. A SOAP Exception Raised When a Request Message Does Not Pass
Policy Verification

SOAP-Fault code: http://schemas.xmlsoap.org/soap/envelope/:

Client System.Web.Services.Protocols.SoapHeaderException:

Microsoft.Web.Services2.Policy.PolicyVerificationException:

The message does not conform to the policy it was mapped to.

at Microsoft.Web.Services2.Policy.SimplePolicyVerifier.Verify(

SoapEnvelope message) at

Microsoft.Web.Services2.Policy.PolicyVerificationInputFilter.

ProcessMessage(SoapEnvelope envelope)

at Microsoft.Web.Services2.Pipeline.ProcessInputMessage(

SoapEnvelope envelope) at

Microsoft.Web.Services2.WebServicesExtension.

BeforeDeserializeServer(SoapServerMessage message) at

System.Web.Services2.Protocols.SoapHttpClientProtocol.

ReadResponse(SoapClientMessage message, WebResponse response,

Stream responseStream, Boolean asyncCall) at

System.Web.Services.Protocols.SoapHttpClientProtocol.

Invoke(String methodName, Object[] parameters)

at WSTestClient.StockTraderWse.RequestQuote()

For redundancy, you can add an identical policy expression file to the Web

client to ensure that the WSE pipeline catches policy violations at the client before

their request even goes out to the Web service.

The Configuration Editor provides limited support for implementing the

WS-Policy family of specifications, but it does cover the most common policy

requirements. You can always edit the policy file to modify it to your specifica-

tions. For example, you can modify one of the policy assertions to be Optional

rather than Required, as shown here:

<wssp:Confidentiality wsp:Usage="wsp:Required"

xmlns:wssp="http://schemas.xmlsoap.org/ws/2002/12/secext" />

<wssp:Confidentiality wsp:Usage="wsp:Optional"

xmlns:wssp="http://schemas.xmlsoap.org/ws/2002/12/secext" />

Overview of Role-Based Authorization

The discussions on security and policy so far have been greatly skewed toward

authentication, but I have said very little about authorization. When I talk about

securing a Web service, I really mean two things:

• Authenticating the sender of an incoming request, and

• Authorizing that sender to receive a processed response.

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

177

In a business environment it is very likely that users will need to be classed

into different groups, divided between administrative-level users, who can access

all Web service operations; and less privileged users, who can only access a sub-

set of the available Web service operations. Web services need the ability to

selectively grant access to an operation based on a user’s authorization level.

Authorization, like authentication, is a technology based on security tokens.

Once a user has been authenticated, the Web service has two options. One

option is that it can automatically grant the user access to the requested opera-

tion. This is the most common implemented option because it is the easiest, and

requires no additional verification. Alternatively, the Web service can perform an

additional authorization check before granting access to the requested operation.

So authorization can only take place once authentication has been successfully

completed.

The design pattern for authorization is very straightforward. The steps are

as follows:

1. The client digitally signs a SOAP request with a security token based on

either a UsernameToken or a Kerberos ticket. This is necessary in order

for the client’s username information to be assigned to the message.

(Alternatively, you can add the username separately to the message

header, but this creates additional development work.)

2. The client sends the SOAP request to the Web service.

3. The service receives the SOAP request and then extracts the available

security tokens.

4. The service verifies the security token. For example, it can run the secu-

rity token information through a custom token manager that extracts

the username and password information, and then compares it against

a separate information store. If verification fails, then the service raises

a SOAP exception back to the client.

5. If verification passes, then the service performs an authorization check on

the user to determine their privilege level. This can be done in two ways:

The service checks the user’s Windows group information directly, using

the security token’s Principal object (described in the next section); or the

service implements a custom authorization process. For example, it can

maintain its own list of group information for all authenticated users. It

can then determine the user’s privilege level based on its own informa-

tion store.

6. Once the authorization check is complete, the service may deny access

if the user’s privilege level is insufficient for the requested operation.

Otherwise, the service proceeds to process the requested operation.

Chapter 7

178

There are several variations you can implement for the individual steps in

this design pattern. We will look at two approaches that should cover most basic

authorization requirements.

NOTE Authorization checks must be done directly in the requested Web
method. You can abstract the code out to a centralized security authorization
class, but you will still need to make some kind of authorization call from
within the Web method.

Authorization Roles and the Principal Object
(Based on Shared Windows Groups)

WSE 2.0 authorization is focused around an object called the Principal object that is

accessible from the security token object as long as it is based on a UsernameToken,

or on a Kerberos ticket. WSE 2.0 automatically populates the Principal object

with the Windows security information for the user who created the security

token as long as the Web application uses Windows authentication. This infor-

mation is carried across the wire with the security token and can be accessed

from the receiving Web service.

The Principal object provides a useful Boolean property called IsInRole,

which allows you to check the group membership for the current user. (Note

that the Principal object is not limited to working with Windows groups only. It

can also work with custom membership lists, as discussed in the next section.)

Let’s say that the Web service caters to two groups of users: premium users and

basic users. Premium users can access all Web service operations, whereas basic

users can access only a few of the available operations. If the client creates two

corresponding Windows groups on their machine, then the Web service could

in theory extract the group membership information and then authorize access

accordingly. Alternatively, the client and service can exchange a Kerberos ticket,

which provides an equivalent level of information.

NOTE Kerberos security is available only on newer Windows operating sys-
tems, including Windows XP with Service Pack 1 and Windows Server 2003.
Kerberos is not available on Windows 2000. I will not discuss Kerberos in this
book, but please consult the Appendix for references on this technology.

Listing 7-11 shows how you can access the Principal object from the security

token object. The code listing is for a Web method called PlaceTrade that restricts

access to members of the Premium group only. This listing shows how the Web

method authorizes the incoming digitally signed SOAP request message.

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

179

Listing 7-11. Authorize a SOAP Message Using the Principal Object

[WebMethod()]

public Trade PlaceTrade(string Account, string Symbol, int Shares, ➥

System.Double Price, TradeType tradeType)

{

// Execute the trade only if the user is in the "Premium" role

// Initialize the custom token manager, in case it is needed

CustomUsernameTokenManager objMgr = new CustomUsernameTokenManager();

// Verify the signature on the Web service request to this method

bool SignatureIsValid = true;

bool blnIsAuthorized = false;

// Code to verify that the request has been digitally signed

SoapContext requestContext = RequestSoapContext.Current;

foreach (ISecurityElement objElem in requestContext.Security.Elements)

{

if (objElem is MessageSignature)

{

MessageSignature clientSignature = (MessageSignature)objElem;

if (clientSignature.SecurityToken is UsernameToken)

{

SignatureIsValid = true;

objMgr.VerifyToken(clientSignature.SecurityToken);

// Additional Code for Role-Based analysis

// Step 1: Retrieve the username from the authenticated token

UsernameToken token = (UsernameToken)clientSignature.SecurityToken;

string username = token.Username;

// Step 2: WORKAROUND CODE ONLY

// NOTE: You must be running Windows authentication in order

// for the Principal object to be automatically populated

// The following 4-line code-listing is a workaround, for testing

// purposes only, which manually creates the Principal object

string role = "Premium";

ArrayList roles = new ArrayList();

roles.Add(string.Format("{0}\\Premium", Dns.GetHostName()));

token.Principal = new GenericPrincipal(➥

new GenericIdentity(role), ➥

roles.ToArray(typeof(string)) as string[]);

Chapter 7

180

// Step 3: Give the user authorization rights to this method

// if they are in the correct role

// You can run either of these steps:

// Step 3A: Check the Principal object to determine if the user

// is a member of the Premium role

if (token.Principal.IsInRole(string.Format("{0}\\Premium",

System.Net.Dns.GetHostName()))) blnIsAuthorized = true;

// Step 3B: Perform a database lookup to determine the user's role

// Simulate result return as 'premium' user

string role = "premium"; // hardcode database result

if (role == "premium") blnIsAuthorized = true;

}

}

}

Trade t = new Trade();

if (blnIsAuthorized)

{

t.TradeID = System.Guid.NewGuid().ToString();

t.OrderDateTime = "11/17/2003 18:30:00";

t.Symbol = Symbol;

t.Shares = Shares;

t.Price = Price;

t.tradeType = tradeType;

t.tradeStatus = TradeStatus.Ordered; // Initialize Trade status to Ordered

// Implement code here to persist trade details to the database by

// account number and trade ID

// <-- Code goes here -->

}

return t; // Return the Trade object

}

This lengthy code listing pulls together many elements that should be familiar

to you by now. Please note that Step 2 is a workaround only, designed to simulate

the automatic addition of the Principal object to the security token’s Principal

property. If you are running Windows authentication, then the Principal property

will automatically be assigned.

Very few actual lines of code are devoted to authorization directly (only Step

3, not counting the workaround in Step 2). Most of the work comes from extract-

ing the security token from the SOAP request message. Of course, this entire

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

181

authorization process hinges on the assumption that the Web service and the

client have a common understanding of roles, and that the Web method knows

the set of roles that it can provide access for. (This is accomplished if the client

and server are on the same domain, or if they exchange a Kerberos ticket.) The

biggest challenge with implementing authorization is the administrative legwork

that is required to make the authorization process work. Clearly, this type of

authorization is not possible for situations in which the client and service are

anonymous to one another.

Other security token types do not support the Principal object, but this is not

a problem because you can always add multiple security tokens to a single SOAP

message. For example, you can encrypt a message using an X.509 certificate, while

also digitally signing it using a UsernameToken. This is easily accomplished by

adding the two security tokens to the message, so that they are both available.

Policy-Based Authorization Using Shared Windows Groups

Policy files can simplify authorization implementations even further. WSE 2.0 sup-

ports elements called <claims> and <role>, which are assigned to a <SecurityToken>

element in order to specify the Windows groups that are authorized to access the

Web service. Listing 7-12 illustrates a policy file for a Web service that provides

two available operations: RequestQuote and PlaceTrade. Basic users are only

authorized to call RequestQuote, whereas Premium users are authorized to call

both RequestQuote and PlaceTrade.

Listing 7-12. Policy File for Role-Based Authorization to Web Service Operations

<?xml version="1.0" encoding="utf-8"?>

<policyDocument xmlns="http://schemas.microsoft.com/wse/2003/06/Policy">

<mappings xmlns:wse="http://schemas.microsoft.com/wse/2003/06/Policy">

<endpoint uri="http://www.bluestonepartners.com/StockTrader.asmx">

<operation

requestAction="http://www.bluestonepartners.com/

StockTrader.asmx/PlaceTrade">

<request policy="#policy-premium" />

<response policy="" />

<fault policy="" />

</operation>

<defaultOperation>

<request policy="#policy-basic" />

<response policy="" />

<fault policy="" />

</defaultOperation>

</endpoint>

Chapter 7

182

</mappings>

<policies xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd">

<wsp:Policy wsu:Id="policy-basic"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing" >

<wssp:Integrity wsp:Usage="wsp:Required"

xmlns:wssp="http://schemas.xmlsoap.org/ws/2002/12/secext">

<wssp:TokenInfo>

<SecurityToken xmlns="http://schemas.xmlsoap.org/ws/2002/12/secext">

<wssp:TokenType>http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-username-token-profile-1.0#UsernameToken

</wssp:TokenType>

<wssp:Claims>

<wse:Role

xmlns:wse="http://schemas.microsoft.com/wse/2003/06/Policy"

value="Basic" />

</wssp:Claims>

</SecurityToken>

</wssp:TokenInfo>

</wssp:Integrity>

</wsp:Policy>

<wsp:Policy wsu:Id="policy-premium"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing" >

<wssp:Integrity wsp:Usage="wsp:Required"

xmlns:wssp="http://schemas.xmlsoap.org/ws/2002/12/secext">

<wssp:TokenInfo>

<SecurityToken xmlns="http://schemas.xmlsoap.org/ws/2002/12/secext">

<wssp:TokenType>http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-username-token-profile-1.0#UsernameToken

</wssp:TokenType>

<wssp:Claims>

<wse:Role

xmlns:wse="http://schemas.microsoft.com/wse/2003/06/Policy"

value="Premium" />

</wssp:Claims>

</SecurityToken>

</wssp:TokenInfo>

</wssp:Integrity>

</wsp:Policy>

</policies>

</policyDocument>

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

183

Note that I have omitted the <MessagePredicate> elements from this policy

file in order to keep the code listing shorter. The <MessagePredicate> element

should be included because it specifies which SOAP message elements are

required to be included and signed within the request message. Without this,

no checks are done on specific elements, only on the message as a whole.

Once this policy framework is implemented in the Web service, the client

simply calls an operation and signs the request with a UsernameToken, where

the username can be associated to a shared Windows group on the server (as

specified in the <wse:Role> element). Once this has all been verified, the service

allows the client access to the requested operation, and then proceeds to gener-

ate a response.

Authorization Roles Not Based on Shared Windows Groups

In reality, of course, it may be impractical for a Web service to keep its role mem-

bership information in synchronization with the Windows group membership

information of its clients. It will be possible if the Web service is hosted on the

same domain as its clients. However, if the clients are scattered across multiple

domains, then this will quickly become an administrative headache for multiple

different groups of clients. In addition, WSE 2.0 authorization based on the

Principal object is closely tied to Microsoft Windows domain-level security, and

so it may be unsuitable for Web services that interact with clients that are run-

ning non-Windows operating systems.

There is an alternative for implementing role-based authorization without

relying on Windows groups. This approach relies on the Web service being able

to maintain its own list of registered users and their associated predefined cus-

tom roles. You will need to implement a custom token manager that processes

security tokens and then generates role assignments on the fly. The custom user-

name token manager is centralized and is automatically processed as soon as

the Web service receives a SOAP message, so it is a convenient location for doing

custom processing prior to handling the actual request. Listing 7-13 provides

one example of how you can implement a custom username token manager that

handles authorization.

Chapter 7

184

Listing 7-13. A Custom Username Token Manager with Authorization

using System.Net;

using System.Security;

using System.Security.Principal;

using System.Security.Permissions;

[SecurityPermissionAttribute(SecurityAction.Demand, ➥

Flags=SecurityPermissionFlag.UnmanagedCode)]

public class CustomUsernameTokenManager : UsernameTokenManager

{

protected override string AuthenticateToken(UsernameToken token)

{

// Custom authorization scheme

ArrayList roles = new ArrayList();

// Run a lookup on the token username, and extract role information

// This step assumes that the token manager has access to

// a database of registered users

string role = RetrieveUserGroupInformation();

switch(role)

{

case "premium":

roles.Add(string.Format("{0}\\Premium", Dns.GetHostName()));

token.Principal = new GenericPrincipal(new GenericIdentity(role), ➥

roles.ToArray(typeof(string)) as string[]);

break;

default:

roles.Add(string.Format("{0}\\Basic", Dns.GetHostName()));

token.Principal = new GenericPrincipal(new GenericIdentity(role), ➥

roles.ToArray(typeof(string)) as string[]);

break;

}

return token.Password;

}

}

In Listing 7-13, the token manager is able to perform a lookup on the authen-

ticated users and extract their group assignments. Next, the token manager assigns

the authenticated user’s role information to the security token’s Principal property

Use Policy Frameworks to Enforce Web Service Requirements with WS-Policy

185

using a customizable version of the Principal object, called GenericPrincipal.

Notice that the token manager has done nothing one way or the other to provide

or deny access to the user based on their role. Instead, the token manager is sim-

ply retrieving the role information in an accessible format so that the Web service

can make a downstream assessment of the user’s privilege level for their requested

operation.

Finally, the execution thread begins processing the target Web method, in

this case PlaceTrade, as shown in Listing 7-10. This Web method will execute

conditionally based on the user’s authorized role.

Summary

This chapter discussed two important topics: policy frameworks and security

authorization. These topics are grouped together in this chapter because they

are both advanced security implementations that you can appreciate only after

you have understood the basic WS-Security specification. In addition, policy

frameworks and security authorization both serve to restrict access to a Web

service by enforcing specific usage requirements.

Policy frameworks are a declarative approach for documenting and process-

ing the requirements, preferences, and capabilities of a Web service. The WSE

infrastructure automatically processes Web service policies without requiring

additional code. In fact, I demonstrated how policy files allow you to eliminate

verification code that was required in the sample solutions for previous chapters.

Security authorization is the process of verifying a client’s privilege level and

determining whether to grant them access to a Web service operation that they

have requested (by submitting a request SOAP message to the Web service).

Authorization, like authentication, is based on security tokens. Users can only

be authorized once they have been authenticated. WSE 2.0 provides good sup-

port for security roles that are based on Windows user and domain groups, or

Kerberos tickets. You will need to implement a custom solution if you want to

use a different type of role. I explained one approach for building a custom

authorization manager based on custom roles.

In the next chapter, I will discuss the WS-Secure Conversation specification,

which is an important relative of the WS-Security family of specifications.

187

CHAPTER 8

Establish Trusted
Communication with

WS-Secure Conversation

THE WS-SECURE CONVERSATION specification allows Web services and clients to

establish a token-based, secure conversation for the duration of a session. It is

analogous to the Secure Sockets Layer (SSL) protocol that provides on-demand,

secure communications over the HTTP transport channel. Secure conversations

are well suited to participants that do not inherently trust each other, either

because they have no ongoing relationship, or, for example, because they have

not established certificate-based public-private keys to secure their conversa-

tions. In Chapters 6 and 7, you saw how the WS-Security and WS-Policy family

of specifications combine to provide a comprehensive approach to securing Web

services. Together these specifications provide an assortment of security options,

including digital signatures, encryption algorithms, and custom authorization

schemes.

In previous chapters, I discussed these technologies in the context of protec-

tive security, meaning that they protect messages in transit and keep unwanted

eyes from discovering sensitive information. This is certainly an important appli-

cation of these technologies, and it needs no further explanation. But for the

purpose of this chapter, I need to expand the context within which to view these

technologies. They are no longer needed just for protective security; in a broader

context, they are needed for establishing trusted communications.

In the discussions so far, we have made the big assumption that the client

and Web service automatically trust each other. By this, I mean the assumption

that they both have an equivalent confidence in the integrity of the security tokens

they are using to sign, encrypt, and otherwise secure their communications. For

example, if a client and a Web service agree to encrypt their messages using a

digital X.509 certificate, then they must both trust the source of the certificate,

and must be comfortable using the private and public keys that are generated

from the certificate. In a sense, both the client and the Web service have come to

a mutual agreement that they will offload the burden of proving trust to a third-

party (trusted!) source, which issues a digital certificate to act as the tangible record

of that trust.

Chapter 8

188

Of course, the issue is more complex than this. When it comes to certificates,

for many of us they are a necessary requirement for trusted communication. As

a client, I may have all the trust in the world for a service provider, but I still need

to use a digital certificate for the mechanics of signing and encrypting shared mes-

sages. I happen to be comfortable with digital certificates for most communication

requirements because it represents certified trust. However, other client-service

communications may be just as well off using a simpler UsernameToken security

token, which is based on a simple username-password combination that gets

hashed during transit. Luckily, the WSE implementation of the WS-Security

specification is flexible, and you have a choice of security token types to use for

conducting trusted communication.

The point is that your preferred security tokens and your preferred hashing

and encryption algorithms are simply a means to a bigger goal of establishing

trusted communication, otherwise known in the Web services world as secure

conversation. There is no single correct choice of technologies that you should

always use. Instead, you need to be using those technologies that are appropriate

for establishing a trusted, secure conversation between a given client and Web

service. The rules can change depending on who is doing the communicating.

This chapter focuses on how you establish session-oriented, trusted communi-

cations using the WS-Secure Conversation specification. The great thing about the

WS-Specifications is that many of the concepts complement each other and build

on each other. The understanding that you now have about WS-Security and WS-

Policy will translate directly into the concepts behind WS-Secure Conversation.

By the end of this chapter, you will have a good understanding of what consti-

tutes secure conversation, and a broader appreciation for the usefulness of the

WS-Security family of specifications.

Overview of Secure Conversation

The WS-Secure Conversation (and WS-Trust) specifications provide the means

for a client and a service to establish an optimized secure communication chan-

nel for a limited duration of time. Secure conversation is based on security tokens

that are procured by a service token provider. This process involves an initial

amount of overhead, but once the channel is established, the client and service

exchange a lightweight, signed security context token, which optimizes message

delivery times compared with using regular security tokens. The security context

token enables the same signing and encryption features that you are used to with

regular security tokens.

Secure conversation is analogous to communications over the HTTPS proto-

col. HTTPS establishes a secure channel for the duration of a session, and ceases

to be in effect once that session is over. The classic example is an eCommerce

Establish Trusted Communication with WS-Secure Conversation

189

transaction, in which you browse a catalog over an unsecured channel, but then

you establish a secure channel for the purpose of completing a sales transaction

with the vendor. The communication needs to be secure because sensitive pay-

ment and order information is being exchanged, and so the client and the

vendor need to establish a secured channel for as long as it takes to complete the

transaction. For performance reasons, the client does not need or even want to

establish a continuous secure session for every interaction with the vendor.

HTTPS is useful for providing on-demand secure communication for exactly as

long as it is needed.

NOTE HTTPS and WS-Secure Conversation differ in one important way:
HTTPS is not typically used for client authentication, whereas secure con-
versation is.

A secure conversation has the following characteristics:

• It is based on established security tokens, including UsernameTokens and

X.509 certificates.

• It uses a dedicated service token provider to generate a signed service

context token, which is a lightweight security proxy.

• It provides a secure communication channel for the duration of the session.

• It provides optimized performance for session-oriented communications

with multiple round-trips (by using the security context token).

The difference between secure conversation and standard secure message

exchange (with WS-Security and WS-Policy) is that a standard security policy

framework establishes a fixed security policy that all service clients must adhere

to. However, secure conversation has a more dynamic aspect. The client and ser-

vice can initiate a secure channel as needed, rather than based on an established

policy framework. Secure conversation uses security tokens that are issued for the

purpose of a specific communication. The service itself can act as the provider of

these security tokens. Alternatively, this responsibility can be offloaded to a third-

party service token provider, which is a dedicated resource that acts as a trusted

intermediary between clients and services, and the issuer of security tokens for

their secure conversations. Figure 8-1 provides an architecture diagram for typical

secure conversation solutions.

Chapter 8

190

(1) The Client issues a signed
request to the STS for a

Security Context Token

SERVICE TOKEN PROVIDER (STS)

CLIENT

SERVICE

(2) The STS responds by
issuing a Security Context

Token

(3) The Client issues a secured
Web service request using the

Security Context Token

(4) The Web service issues

a secured response using

the Security Context Token

Note: The Web Service and the

Service Token Provider may be

accessed through the same

virtual directory; or may be
deployed on separate servers.

Note: The Client retrieves a

Security Context Token from

the STS prior to initiating the

first request to the Web service.

DOMAIN BOUNDARY

DOMAIN BOUNDARY

(only applies if the
STS and the Web

service are deployed

on separate servers)

Figure 8-1. Architecture diagram for a secure conversation solution

A secure conversation is initiated by a client that requires an on-demand

secure communication session with a Web service. The session may be required

for the duration of one request, or for several back-and-forth requests and

responses between the client and Web service.

The workflow for establishing and conducting a secure conversation is pre-

sented in Figure 8-1, and typically follows four steps:

Step 1: The client issues a signed request to the security token service

provider for a security context token.

The client initiates the secure conversation by issuing a signed request

to the security token service (STS) provider for a security context token.

The client may sign the request with any standard security token,

including UsernameToken and X.509 certificates. The sample solution

will demonstrate using a UsernameToken security token.

Establish Trusted Communication with WS-Secure Conversation

191

Step 2: The security token service provider verifies the request and

issues a security context token back to the client.

The STS provider verifies the integrity of the signed request. It then gen-

erates a security context token and delivers it to the client. In the sample

solution the Web service itself also acts as the security token service. You

can, however, deploy the STS as a separate service. The security context

token is actually returned from the STS as a so-called request security

token (RST). The client can then extract the security context token from

the RST. WSE 2.0 provides all of the support classes that you need to

handle these tasks in code.

Steps 3 and 4: The client and the Web service use the security context

token for further communication.

The client and Web service use the security context token to secure

back-and-forth request and response communications with each other.

The security context token can be used like any standard security token.

It inherits from the same base classes and its usage is no different from

the security tokens you learned how to work with in Chapter 6. Security

context tokens may be cached in a global cache for future retrieval, for

example, when the client will be issuing multiple requests over a period

of time. We will look at how to do this later in the chapter.

Programming-wise, Web Services Enhancements (WSE) 2.0 makes it very

easy to implement a service token provider because the WSE infrastructure will

automatically issue security context tokens. This feature is enabled by simply

adding a configuration element to the service token provider’s configuration file.

The STS provider can be incorporated into the client’s target Web service, or the

STS provider can be implemented as a dedicated Web service. There is little dif-

ference in the code between a “hosted” service token provider (that resides in the

client’s target Web service) and a dedicated service token provider (that resides

on a separate domain). There are some significant configuration and deploy-

ment differences between the two models, but code-wise they are very similar.

NOTE The feature you know as Secure Conversation uses several
WS-Specifications, including WS-Trust, WS-Secure Conversation, and
WS-Security. In addition, you can reduce code listings (and potential
errors!) by implementing policy frameworks for the participating services
and clients. This chapter does not focus on when particular WS-Specifications
come into play. Instead, the focus is on understanding the concepts, and
discussing practical code samples.

Chapter 8

192

Figure 8-2. The Visual Studio .NET Solution Explorer for the WSSecureConversation
solution

How to Implement a Secure Conversation Solution

It is time to dust off the familiar StockTrader service-oriented application and

retrofit it to participate in a secure conversation. I will discuss how to construct

both the client and the Web service. In the solution, the Web service is both a ser-

vice provider and a secure token service provider. This means that the Web service

is responsible for supplying its clients with the security token for establishing a

session-oriented secure conversation.

Figure 8-2 shows the Solution Explorer for a new sample solution called

WSSecureConversation.sln, which you will see how to build in this section.

It includes three projects, which represent the following four components:

1. The Web service provider: WSSecureConvService.csproj

2. The Security Token Service provider: WSSecureConvService.csproj

3. The Web service client: WSSecureConvClient.csproj

4. Interface definition assembly: StockTraderTypes.csproj

Establish Trusted Communication with WS-Secure Conversation

193

As noted earlier, the Web service hosts the security token service provider, so

it is playing double duty in this project. All that the Web service actually does is

to provide an endpoint for clients to access the STS HTTP handler.

The References nodes are expanded so you can see dependencies. However,

the complexity is not in the project structure; rather, it lies in the nature of the

communication pathways between the client and service. The sample solution

follows the architecture that is presented in Figure 8-1. Before I present the solu-

tion, let’s review the required implementation steps for both the Web service and

the client who are participating in the secure conversation.

Before we look at how to build the sample solution, let’s review the concep-

tual steps that are required to implement the Web service, the Security Token

Service provider, and the client projects.

How to Implement the Web Service and the Security
Token Service Provider

The implementation for the Web service requires the following four steps:

Step 1: Configure the Web service to use WSE 2.0.

Verify that the web.config file includes the standard WSE elements

for the WebServicesConfiguration and WebServicesExtension classes.

Remember to use the WSE 2.0 Configuration Settings Editor to avoid

having to manually type these entries.

Step 2: Configure the security token service provider in the

web.config file.

The WSE class framework provides a ready-to-use handler for imple-

menting the STS provider. All you have to do is register it correctly in

the web.config file, as outlined in more detail later in this chapter. The

handler will automatically generate a security token for use in the secure

conversation.

Step 3: Create a custom token manager.

This step is required in order to process the signature of the client request

that initiates the secure conversation. If the client’s signature cannot be

verified, then the rest of the workflow cannot proceed. Recall that this sig-

nature will later be used to sign the security context token.

Step 4: Implement policy verification.

In the Web service itself, implement code to verify policy requirements

programmatically, including digital signature and encryption require-

ments. Alternatively, you can create a policy framework file.

Chapter 8

194

How to Implement the Client

The client application requires a fair amount of custom code, although it shares

many similarities with what you have seen in previous chapters. The biggest dif-

ference from before is that the client now implements the workflow for initiating

the request to the security token service provider. This code is in addition to any

code that the client already implements for interfacing with the target Web service.

The implementation for the client requires the following six steps:

Step 1: Generate a security token for signing the upcoming service

token request.

This security token has nothing to do with the security context token

that you will ultimately use to secure the conversation between service

and client. Instead, this security token is only used by the client to gen-

erate a signed request to receive a security context token from the STS

provider. In turn, the STS provider will sign its response when it delivers

a security context token back to the client. In this example, I will show

you how to use a simple UsernameToken security token to sign the ini-

tial request and response for the security context token. Note that the

request to the STS provider must be signed, otherwise the request will

be rejected.

Step 2: Set a proxy reference to the security token service provider.

Clients communicate with standard Web services using a proxy class.

In the same way, they also communicate with a Security Token Service

provider using a proxy class, called SecurityContextTokenServiceClient,

which is a member of the Microsoft.Web.Services2.Security namespace.

Step 3: Issue a signed request to the provider for a security context

token.

The request for a security context token is issued by the client via a

specialized proxy class called the SecurityContextTokenServiceClient

class, which is initialized with a URI reference to the security token

service provider. The specialized proxy class provides a method called

IssueSecurityContextTokenAuthenticated for issuing the request and

for receiving the response back from the STS provider. Note that this

method may be called synchronously or asynchronously. However, you

will usually call the method synchronously because no further com-

munication is typically possible between the service and client if this

method fails to return a valid security context token. So you may pre-

fer to wait for a synchronous call to return, and to thereby hold off on

executing additional code until you know that you can proceed.

Establish Trusted Communication with WS-Secure Conversation

195

Step 4: Retrieve the security context token from the provider.

The IssueSecurityContextTokenAuthenticated method will return a valid

SecurityContextToken object if the call is successful. You are now ready

to make secured Web service requests using this security context token.

Step 5: Add security elements to sign and encrypt upcoming Web

service requests using the new security context token.

The security context token is no different from other security tokens

that you worked with in Chapter 6, including the UsernameToken and

X509SecurityToken classes. You add the security context token to the

SOAP request message header, just as you would any other security

token. If you need to make multiple service requests over an extended

period of time, then you may wish to add the security context token to

a global cache for future retrieval. You will also then need to store the

token ID for future reference because it is possible that the global cache

will contain other security tokens, and you will need a way to retrieve

the correct token from the cache.

Step 6: Proceed to call the Web service methods as usual.

After all this work, nothing much changes. The Web service methods are

called as usual, and the only difference is that the requests and

responses are being secured with the security context token for the

duration of the session.

Build a Secure Conversation Solution

I will now review the detailed steps for building the Web service and the client in

a secure conversation solution. This section follows the outlines of the previous

sections on how to implement the Web service and the client.

Build the Web Service and the Security Token
Service Provider

The Web service and STS provider are contained within the project

WSSecureConvService.csproj, and are built as described in the following

sections.

Chapter 8

196

Step 1: Configure the Web Service to Use WSE 2.0

This step will add registration information to the web.config file for the standard

WebServicesConfiguration and WebServicesExtension classes. Use the WSE 2.0

Configuration Settings Editor, or else manually add the required configuration

settings.

Step 2: Configure the Security Token Provider

The WSE 2.0 infrastructure will automatically issue security context tokens with

the simple configuration entry shown in Listing 8-1.

Listing 8-1. Configure the Security Token Service Provider

<microsoft.web.services2>

<tokenIssuer>

<autoIssueSecurityContextToken enabled="true" />

<serverToken>

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#"

xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd">

<wsse:SecurityTokenReference>

<!-- The certificate is from the Local Machine store's

Personal folder -->

<wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeyIdentifier">

bBwPfItvKp3b6TNDq+14qs58VJQ=</wsse:KeyIdentifier>

</wsse:SecurityTokenReference>

</KeyInfo>

</serverToken>

</tokenIssuer>

</microsoft.web.services2>

The key element in Listing 8-1 is the <autoIssueSecurityContextToken>

element, which instructs the WSE 2.0 infrastructure to automatically generate a

security context token as long as the client has sent a properly formatted request.

Listing 8-1 also includes a <serverToken> element that documents the security

token that the STS provider will use to sign and encrypt its response to the client.

WSE 2.0 does not appear to allow any security token other than an X.509 certifi-

cate. Note that the certificate must be stored in the Local Computer’s Personal

certificate store in order for the Web service to have access to it. If you have

Establish Trusted Communication with WS-Secure Conversation

197

installed the Chapter 6 sample solutions, then you will already have the certifi-

cates and keys properly configured. If you have not done so, then please refer to

Chapter 5 for information on how to configure the test certificates that are pro-

vided with WSE 2.0.

Of course, you can only use the <tokenIssuer> and <serverToken> elements

if the Web service and the security token service are installed in the same virtual

directory. If this is not the case, then your secure conversation architecture must

be using a stand-alone security token service.

Step 3: Create a Custom Token Manager

The custom token manager verifies the digital signature on the original request

from a client to the security token service provider. Recall that this request must

be signed by the client, or it will be rejected by the STS provider. The custom token

manager verifies UsernameToken signing tokens. It should be implemented as

a separate class in the Web service, although you should provide it with the same

namespace as the Web service .asmx file. Listing 8-2 shows the code listing for

the custom token manager.

Listing 8-2. The Custom Token Manager

using System;

using System.Security.Permissions;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

namespace WSSecureConvService

{

[SecurityPermissionAttribute(SecurityAction.Demand, ➥

Flags=SecurityPermissionFlag.UnmanagedCode)]

public class CustomUsernameTokenManager : UsernameTokenManager

{

protected override string AuthenticateToken(UsernameToken token)

{

// Retrieve the password from the token

password = (token.Password);

// Optional: Validate the password with custom code

// Add code here (e.g., perform database lookup)

Chapter 8

198

// Return the validated password

return Convert.ToBase64String(password);

}

}

}

In addition, you must register the custom token manager in the web.config

file, as shown in Listing 8-3. Look at the <securityTokenManager> element, and

notice that the custom token manager class is registered using the namespace

of the STS provider (WSSecureConvService).

Listing 8-3. Register the Custom Token Manager in the web.config File

<configuration>

<security>

<x509 allowTestRoot="true" allowRevocationUrlRetrieval="false"

verifyTrust="false" />

<securityTokenManager type="WSSecureConvService.CustomUsernameTokenManager,

WSSecureConvService" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd" qname="wsse:UsernameToken" />

</security>

</configuration>

As an alternative to a custom token manager, you can implement a policy

file which states that incoming requests to the service token provider must be

digitally signed. The WSE 2.0 infrastructure will automatically enforce the policy

without requiring you to write custom code.

By this point you may have lost track of all the edits to the web.config file that

are required in order to implement support for secure conversation. Listing 8-4

shows the full listing for the web.config file.

Listing 8-4. The web.config Configuration Settings for the Security Token Service
Provider (Implemented in the WSSecureConvService Sample Solution)

<?xml version="1.0" encoding="utf-8"?>

<configuration>

<configSections>

<section name="microsoft.web.services2"

type="Microsoft.Web.Services2.Configuration.WebServicesConfiguration,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" />

</configSections>

Establish Trusted Communication with WS-Secure Conversation

199

<system.web>

<webServices>

<soapExtensionTypes>

<add type="Microsoft.Web.Services2.WebServicesExtension,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" priority="1" group="0" />

</soapExtensionTypes>

</webServices>

</system.web>

<microsoft.web.services2>

<security>

<x509 allowTestRoot="true" allowRevocationUrlRetrieval="false"

verifyTrust="true" />

<securityTokenManager

type="WSSecureConvService.CustomUsernameTokenManager,

WSSecureConvService" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd" qname="wsse:UsernameToken" />

</security>

<tokenIssuer>

<autoIssueSecurityContextToken enabled="true" />

<serverToken>

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd">

<wsse:SecurityTokenReference>

<!-- The certificate is from the Local Machine store's

Personal folder -->

<wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeyIdentifier">

bBwPfItvKp3b6TNDq+14qs58VJQ=</wsse:KeyIdentifier>

</wsse:SecurityTokenReference>

</KeyInfo>

</serverToken>

</tokenIssuer>

</microsoft.web.services2>

</configuration>

Chapter 8

200

NOTE If your custom token manager does not work correctly, verify that it is
properly registered in web.config, with correct type and assembly information.
This is the most common reason issues may occur with the manager.

Step 4: Implement Policy Requirements in the Business Web
Service

In the sample solution, the security token service provider is implemented in the

same Web service project as the business Web service itself, which contains the

service methods that are of interest to the client.

All of the work to obtain a security context token will be wasted if you do not

implement and enforce a policy requirement in the business Web service to ensure

that all incoming requests are signed and encrypted. You also have to ensure that

outgoing responses back to the client are properly signed and encrypted. In the

case of a secure conversation, the signing and encryption is accomplished with a

security context token. However, the implementation code is generically written

for all security scenarios, so you will be covered for standard security tokens, as

well as secure context tokens. (Recall that all security tokens derive from the same

base class.)

Listing 8-5 demonstrates how to implement checks for digital signatures

and encryption on incoming service requests to a business Web method called

RequestQuote. It also shows how to implement digital signing and encryption

on outgoing responses back to the client.

Listing 8-5. The RequestQuote Method with Request and Response Encryption

public Quote RequestQuote(string Symbol)

{

// Reject any requests which are not valid SOAP requests

SoapContext requestContext = RequestSoapContext.Current;

if (requestContext == null)

{

throw new ApplicationException("Only SOAP requests are permitted.");

}

// Check if the Soap Message is Signed.

SecurityContextToken sct = GetSigningToken(requestContext) as ➥

SecurityContextToken;

if (sct == null)

{

throw new ApplicationException("The request is not signed with an SCT.");

}

Establish Trusted Communication with WS-Secure Conversation

201

// Check if the Soap Message is Encrypted.

if (!IsMessageEncrypted(requestContext))

{

throw new ApplicationException("The request is not encrypted.");

}

// Use the SCT to sign and encrypt the response

SoapContext responseContext = ResponseSoapContext.Current;

responseContext.Security.Tokens.Add(sct);

responseContext.Security.Elements.Add(new MessageSignature(sct));

responseContext.Security.Elements.Add(new EncryptedData(sct));

// Step 2: Return a Quote object, with example data

Quote q = new Quote();

if (Symbol.ToUpper() == "MSFT")

{

q.Symbol = Symbol; // Sample Quote

q.Company = "Microsoft Corporation";

q.DateTime = "11/17/2003 16:00:00";

q.Last = 25.15;

q.Previous_Close = 25.49;

q.Change = -0.36;

q.PercentChange = -0.0137;

}

return q; // Return a Quote object

}

Notice that the RequestQuote method uses two helper methods to verify

digital signatures and encryption on an incoming service request:

• GetSigningToken: Retrieves the security token from a signed incoming

service request

• IsMessageEncrypted: Verifies whether an incoming service request is

encrypted

Listing 8-6 displays the code listing for the GetSigningToken method.

Listing 8-7 displays the code listing for the IsMessageEncrypted method.

Chapter 8

202

Listing 8-6. Code Listing for the GetSigningToken Method

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

private SecurityToken GetSigningToken(SoapContext context)

{

foreach (ISecurityElement element in context.Security.Elements)

{

if (element is MessageSignature)

{

// The given context contains a Signature element.

MessageSignature sig = element as MessageSignature;

if ((sig.SignatureOptions & SignatureOptions.IncludeSoapBody) != 0)

{

// The SOAP Body is verified as signed.

return sig.SigningToken;

}

}

}

return null;

}

Listing 8-7. Code Listing for the IsMessageEncrypted Method

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

private bool IsMessageEncrypted(SoapContext context)

{

foreach (ISecurityElement element in context.Security.Elements)

{

if (element is EncryptedData)

{

EncryptedData encryptedData = element as EncryptedData;

System.Xml.XmlElement targetElement = encryptedData.TargetElement;

if ((targetElement.LocalName == Soap.ElementNames.Body) && ➥

(targetElement.NamespaceURI == Soap.NamespaceURI) && ➥

(SoapEnvelope.IsSoapEnvelope(targetElement.ParentNode)))

{

Establish Trusted Communication with WS-Secure Conversation

203

// The SOAP Body element is verified as Encrypted.

return true;

}

}

}

return false;

}

Step 5: Implement Policy Verifications

The STS provider must verify that incoming requests for security context tokens

are signed, in order to verify that the request has not been tampered with by an

unauthorized party. At a minimum, you should implement a custom token man-

ager, as outlined in Step 3 previously. Alternatively, you can implement a policy

file for the receive operation, and have the WSE infrastructure automatically vali-

date the policy requirement for you.

You have also seen that the business Web service involved in a secure conver-

sation with a client has its own set of policy requirements. One is that incoming

service requests must be signed and encrypted. The other is that the Web service

must sign and encrypt outgoing responses back to the client. You can implement

a policy file for the Web service to enforce these send and receive operations.

Build the Client

The client is implemented as a console application, and it includes three methods

that work together to request a stock quote over a secure conversation channel:

• RequestSecurityContextToken: Encapsulates the code for requesting

a security context token via the STS provider’s proxy class

• AssignSecurityContextToken: Encapsulates the code for assigning a secu-

rity context token to the SOAP request envelope

• RequestSecureStockQuote: Encapsulates the code for requesting a stock

quote via the Web service’s proxy class

Listing 8-8 displays the code listing for the console application’s Main

method, showing how the methods are called. Notice that the Web service

proxy file is instantiated directly in the Main method and then passed into

the two methods.

Chapter 8

204

Listing 8-8. The Client Console Application

class StockTraderClient

{

private string SCTID = "";

[STAThread]

static void Main(string[] args)

{

StockTraderClient client = null;

try

{

client = new StockTraderClient();

// Create an instance of the Web service proxy (for the token provider

// and Web service)

StockTraderServiceWse serviceProxy = new StockTraderServiceWse();

// Request the security context token

SecurityContextToken sct = ➥

client.RequestSecurityContextToken(serviceProxy, client);

// Assign the security context token to the SOAP request envelope

client.AssignSecurityContextToken(serviceProxy, sct);

// Request a stock quote

client.RequestStockQuote(serviceProxy);

}

}

}

Now let’s look at the code listing in more detail, broken out according to the

logical steps outlined previously for building a secure conversation client.

Step 1: Generate a Security Token for Signing the
Upcoming Service Token Request

The request to the service token provider must be signed with a valid security

token. You can choose any supported token type, including UsernameToken

and X509 security tokens. Listing 8-9 shows a basic code listing to generate

a UsernameToken security token.

Establish Trusted Communication with WS-Secure Conversation

205

Listing 8-9. Generating a UsernameToken Security Token

private SecurityToken GetSTSRequestSigningToken()

{

// Generate a security token to sign the request for the security context token

SecurityToken token = new UsernameToken(username, password, ➥

PasswordOption.SendHashed);

return token;

}

The UsernameToken security token is also factored into generating the secu-

rity context token, which the token service provider will generate. So it serves

a dual purpose of both signing the request to the service token provider, and

being used to generate the security context token.

Step 2: Set a Reference to the Security Token Service Provider

In order for the client to access the STS provider, it must use a specialized proxy

class, which is initialized using an endpoint Uniform Resource Indicator (URI),

which documents where the provider is located. Because this information may

be dynamic, the client typically sets a configuration entry with the URI informa-

tion for locating the provider’s endpoint.

Listing 8-10 shows how you can set a reference to the STS provider’s client

proxy class.

Listing 8-10. Creating a Client Proxy Class for the Security Token Service Provider

// Create a SecurityContextTokenServiceClient (STSClient) that will

// get the SecurityContextToken

string secureConvEndpoint = ConfigurationSettings.AppSettings["tokenIssuer"];

SecurityContextTokenServiceClient STSClient = ➥

new SecurityContextTokenServiceClient(new Uri(secureConvEndpoint));

Listing 8-11 shows one example of a URI configuration setting for the STS

provider, which will be stored in the client’s app.config file (in the case of the

sample client, which is implemented as a console application).

Listing 8-11. The app.config Setting for the STS Provider’s URI

<appSettings>

<add key="tokenIssuer"

value="http://www.bluestonepartners.com/WSSecureConvService/

StockTrader.asmx" />

</appSettings>

Chapter 8

206

Step 3: Issue a Signed Request to the Provider for
a Security Context Token

The client issues a request to the STS provider for a security context token using

a proxy class method called IssueSecurityContextTokenAuthenticated. Listing 8-12

shows a modified code listing for the RequestSecurityContextToken method, which

encapsulates all of the details for generating a security context token. This code

listing is included in the sample solution, within the WSSecureConvClient project.

For clarity, I have omitted try-catch exception blocks, exception handling, and

caching code, which I will discuss later in the chapter.

Listing 8-12. Generating a Security Context Token Using the STS Provider’s
Client Proxy Class

private SecurityContextToken RequestSecurityContextToken(➥

StockTraderServiceWse serviceProxy, StockTraderClient client)

{

// Step 1: Create a signing (security) token to use as

// the base for the security context token

// The security context token (SCT) will be issued later

// by the security token service (STS)

SecurityToken token = client.GetSTSRequestSigningToken();

// Step 2: Create a SecurityContextTokenServiceClient (STSClient)

// that will get the SecurityContextToken

string secureConvEndpoint = ConfigurationSettings.AppSettings["tokenIssuer"];

SecurityContextTokenServiceClient STSClient = ➥

new SecurityContextTokenServiceClient(new Uri(secureConvEndpoint));

// Step 3: Retrieve the server certificate, to include in the signed request

// to the security token service (STS)

SecurityToken issuerToken = client.GetServerToken();

// Step 4: Request the security context token, use the client's

// signing token as the base

SecurityContextToken sct = ➥

STSClient.IssueSecurityContextTokenAuthenticated(token, issuerToken);

return sct;

}

The STS provider’s proxy method IssueSecurityContextTokenAuthenticated

requires two security tokens: a token to sign the request (token), and a token to

encrypt the request (issuerToken). The STS provider generates a security context

Establish Trusted Communication with WS-Secure Conversation

207

token, which factors in the client’s security token (token) that signs the STS

provider request.

The IssueSecurityContextTokenAuthenticated method may be called synchro-

nously (as shown in Listing 8-12) or asynchronously. The synchronous method is

preferable because the Web service calls will not be able to proceed anyway in the

event that a security context token is not returned. So it is best to wait for the syn-

chronous call to complete, and then to branch directly to an error handler in the

event there is a problem.

Step 4: Add Security Elements to Sign and Encrypt Upcoming
Web Service Requests Using the New Security Context Token

The security context token works like any other security token, which means that

you can use it to sign and encrypt request messages to the Web service. Listing 8-13

illustrates how to apply the security context token to a Web service request.

Listing 8-13. Applying a Security Context Token to a Web Service Request

private void AssignSecurityContextToken(➥

StockTraderServiceWse serviceProxy, SecurityContextToken sct)

{

// Use the security context token to sign and encrypt

// a request to the Web service

SoapContext requestContext = serviceProxy.RequestSoapContext;

requestContext.Security.Tokens.Add(sct);

requestContext.Security.Elements.Add(new MessageSignature(sct));

requestContext.Security.Elements.Add(new EncryptedData(sct));

}

Security context tokens generate a smaller message payload than standard

security tokens when they are used to sign and encrypt SOAP messages. This is

an added advantage when you need to make multiple requests within a secure

conversation session.

Step 5: Proceed to Call the Web Service As Usual

At the very end of the client code listing, you will find that very little has changed.

Once the security code has been implemented, the Web service call can proceed

as usual, as shown in Listing 8-14.

Chapter 8

208

Listing 8-14. The Client’s RequestStockQuote Method

public void RequestStockQuote(StockTraderServiceWse serviceProxy)

{

// Call the Web service RequestQuote() method

Console.WriteLine("Calling {0}", serviceProxy.Url);

Quote strQuote = serviceProxy.RequestQuote("MSFT");

// Results

Console.WriteLine("Web Service call successful. Result:");

Console.WriteLine("Symbol: " + strQuote.Symbol);

Console.WriteLine("Price: " + strQuote.Last);

Console.WriteLine("Change: " + strQuote.PercentChange + "%");

}

Listing 8-15 summarizes the complete code listing for the Web service client

as it would appear within a single method called SecureConversationRequest.

Note that you will not find this method in the sample solution. Instead, this large

listing is broken out into several smaller code listings, just as you have seen in the

chapter so far. Listing 8-15 is presented so that you can get a clear start-to-finish

view of how to implement a secure conversation solution within a client.

Listing 8-15. Implement a Secure Conversation Solution Within a Client

using System;

using System.Configuration;

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Policy;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Policy;

using Microsoft.Web.Services2.Security.Tokens;

using Microsoft.Web.Services2.Security.X509;

public void SecureConversationRequest()

{

// Step 0: Create an instance of the Web service proxy

StockTraderServiceWse serviceProxy = new StockTraderServiceWse();

// Step 1: Get our security token to sign the request

string username = Environment.UserName;

byte[] passwordBytes = System.Text.Encoding.UTF8.GetBytes(username);

Array.Reverse(passwordBytes);

string passwordEquivalent = Convert.ToBase64String(passwordBytes);

SecurityToken token = new UsernameToken(➥

username, passwordEquivalent, PasswordOption.SendHashed);

Establish Trusted Communication with WS-Secure Conversation

209

if (token == null)

throw new ApplicationException("Unable to obtain security token.");

// Step 2: Create a SecurityTokenServiceClient that will

// get the SecurityContextToken

string secureConvEndpoint = ConfigurationSettings.AppSettings["tokenIssuer"];

SecurityContextTokenServiceClient STSClient = ➥

new SecurityContextTokenServiceClient(new Uri(secureConvEndpoint));

// Step 3: Retrieve the issuerToken (the server certificate

// from the client's CurrentUserStore)

X509SecurityToken issuerToken = null;

string ServerBase64KeyId = "bBwPfItvKp3b6TNDq+14qs58VJQ=";

// Open the CurrentUser Certificate Store

X509CertificateStore store;

store = X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);

// Place the key ID of the certificate in a byte array

// This KeyID represents the Wse2Quickstart certificate included with

// the WSE 2.0 Quickstart samples

X509CertificateCollection certs = store.FindCertificateByKeyIdentifier(➥

Convert.FromBase64String(ServerBase64KeyId));

if (certs.Count > 0)

{

// Get the first certificate in the collection

issuerToken = new X509SecurityToken(((X509Certificate) certs[0]));

}

// Step 5: Request the security context token, use the client's

// signing token as the base

SecurityContextToken sct = ➥

STSClient.IssueSecurityContextTokenAuthenticated(token, issuerToken);

// Step 6: Use the security context token to sign and encrypt a request

// to the Web service

SoapContext requestContext = serviceProxy.RequestSoapContext;

requestContext.Security.Tokens.Add(sct);

requestContext.Security.Elements.Add(new MessageSignature(sct));

requestContext.Security.Elements.Add(new EncryptedData(sct));

// Step 7: Call the Web service RequestQuote() method

Console.WriteLine("Calling {0}", serviceProxy.Url);

Quote strQuote = serviceProxy.RequestQuote("MSFT");

Chapter 8

210

// Step 8: Display the results

Console.WriteLine("Web Service call successful. Result:");

Console.WriteLine(" ");

Console.WriteLine("Symbol: " + strQuote.Symbol);

Console.WriteLine("Price: " + strQuote.Last);

Console.WriteLine("Change: " + strQuote.PercentChange + "%");

// Step 9: Execute a second stock quote request

Quote strQuote = serviceProxy.RequestQuote("INTC");

}

Listing 8-15 should provide you with a unified view of all of the code pre-

sented in Listings 8-1 through 8-14. The code listings should remain conceptually

clear when you reference them in conjunction with the architecture diagrams in

Figure 8-1. Listing 8-15 closes out the major discussion on implementing a secure

conversation solution. However, I will close out this chapter with a discussion on

the advanced topic of caching security context tokens for use in long-running

client-service communications.

Cache Security Context Tokens for Long-Running
Communications

The sample solution for this chapter uses a simple console application client that

executes two back-to-back stock quote requests. Once the second request is com-

plete, the console application closes down, and the secure conversation terminates.

However, if the client were a Web application, then it is likely it would execute

several discontinuous requests separated by inactive time between requests. If you

were to implement this chapter’s code listings in the Web application client, then

you would find that the client would request a new security context token with

every new request. This of course would defeat the purpose of a secure conversa-

tion, which aims to reuse the same security token for the entire duration of the

communication between a client and a service.

The way to reuse the same security token is to store it in a global cache when

it is first generated. Then on subsequent client requests you can pull the token out

as needed. Security tokens are identified by a unique, GUID-based ID. Here is an

example of a security context token ID:

SecurityToken-22d4c3d1-7e13-4543-a02c-4c4e6f3a5c3b

You need to track the token ID that applies to your current secure conversa-

tion because it is possible that other security tokens will be stored in the global

cache. If you pull the wrong one out of the cache, then the next request in your

secure conversation will fail.

Establish Trusted Communication with WS-Secure Conversation

211

With caching it also becomes possible for a client to initiate more than one

secure conversation with multiple services. The wires will not cross as long as

the client tracks which security token applies to which secure conversation.

Listing 8-16 is a rewrite of Listing 8-12, which factors in the global cache. I have

added bold formatting to the code that directly relates to the cache implementation.

The RequestSecurityContextToken method is responsible for retrieving a security

context token for use in a secure conversation. Previously, it would automatically

generate the token from scratch. Now it first attempts to retrieve a valid token from

the global cache based on a specific token ID that is stored in a client global variable.

Listing 8-16. The RequestSecurityContextToken Method Including Caching

using System;

using System.Configuration;

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Policy;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Policy;

using Microsoft.Web.Services2.Security.Tokens;

using Microsoft.Web.Services2.Security.X509;

string SCTID; // Client global variable to track the current token ID

private SecurityContextToken RequestSecurityContextToken(➥

StockTraderServiceWse serviceProxy, StockTraderClient client)

{

// Purpose: Return a security context token

// Note: This function looks for a valid token in the global cache

// before automatically requesting a new one

SecurityContextToken sct = null;

try

{

// Look for a specific security token in the global cache,

// before requesting a new one

if (client.SCTID.Length > 0 && ➥

PolicyEnforcementSecurityTokenCache.GlobalCache.Count > 0)

{

sct = RetrieveSecurityContextTokenFromGlobalCache(client.SCTID);

}

// Request a new security context token if one was not available

// from the global cache

if (sct == null)

{

Chapter 8

212

// Create a security token to use as the base for the

// security context token (SCT), which will be issued

// later by the security token service (STS)

SecurityToken token = client.GetSTSRequestSigningToken();

// Create a SecurityContextTokenServiceClient (STSClient)

// that will get the SecurityContextToken

string secureConvEndpoint = ➥

ConfigurationSettings.AppSettings["tokenIssuer"];

SecurityContextTokenServiceClient STSClient = ➥

new SecurityContextTokenServiceClient(new Uri(secureConvEndpoint));

// Retrieve the server certificate, to include in the signed request to

// the security token service (STS)

SecurityToken issuerToken = client.GetServerToken();

// Request the security context token, use the client's

// signing token as the base

sct = STSClient.IssueSecurityContextTokenAuthenticated(➥

token, issuerToken);

// Cache the security context token in the global cache for

// future requests. You must cache this token if you will be making

// multiple distinct requests. Otherwise, you will continue to generate

// new security context tokens.

PolicyEnforcementSecurityTokenCache.GlobalCache.Add(sct);

// Cache the security context token ID for future retrieval

client.SCTID = sct.Id;

}

}

catch

{}

return sct;

}

At the beginning of Listing 8-16, the method attempts to retrieve an

existing security context token from the global cache using a method called

RetrieveSecurityContextTokenFromGlobalCache. Listing 8-17 provides the

code listing for this method.

Establish Trusted Communication with WS-Secure Conversation

213

Listing 8-17. The RetrieveSecurityContextTokenFromGlobalCache Method

private SecurityContextToken ➥

RetrieveSecurityContextTokenFromGlobalCache(string SCTID)

{

// Purpose: Retrieve a security context token from the global cache

SecurityContextToken sct = null;

try

{

// Loop through the collection of security context tokens

System.Collections.IEnumerator enmTokens = ➥

PolicyEnforcementSecurityTokenCache.GlobalCache.GetEnumerator();

SecurityContextToken token;

while (enmTokens.MoveNext())

{

token = (SecurityContextToken)enmTokens.Current;

if (token.Id == SCTID)

{

sct = token;

break;

}

}

}

catch

{}

return sct;

}

The RetrieveSecurityContextTokenFromGlobalCache method enumerates

through all available security tokens in the global cache, and looks for a match

against a specific token ID. If no match is found, or if tokens are no longer avail-

able in the cache, then the method simply returns null, which triggers the

RequestSecurityContextToken method to generate the security context token

from scratch. Notice that Listing 8-16 automatically adds new security context

tokens to the global cache. The method is implemented in such a way as to avoid

the possibility of adding duplicate security context tokens to the global cache.

As an exercise, you can implement the client as a Windows Forms applica-

tion, rather than as a console application, and provide buttons on the form that

call different methods in the StockTrader Web service. For example, one button

would call the RequestQuote method, while another would call the PlaceTrade

method. You can request the security context token in the form’s initialization

code, and then store the token in the global cache. You can then retrieve this

Chapter 8

214

token every time the user clicks a button on the form to make a new request to

the Web service.

As a final note, this chapter describes a number of code-intensive steps for

implementing secure conversation. In reality, several of these steps can be han-

dled automatically for you by using policy frameworks, such as the checks for

digital signatures and encryption on incoming and outgoing messages. Chapter 7

describes policy frameworks in detail.

Summary

The WS-Secure Conversation specification provides a token-based, session-

oriented, on-demand, secure channel for communication between a Web service

and client. WS-Secure Conversation is analogous to the Secure Sockets Layer

protocol that secures communications over HTTP.

WSE 2.0 provides support for implementing secure conversation in the fol-

lowing ways:

• It provides a prebuilt assembly for the security token service provider.

• It provides a UsernameTokenManager class for processing a signed

request from the client to initiate the secure conversation.

• It provides a specialized proxy class for the client to request a security

context token from a provider.

• It provides a dedicated global cache for storing security context tokens.

In the next chapter, I will shift the focus to SOAP messaging, and the collec-

tion of support specifications that includes WS-Addressing and WS-Referral. The

discussion on WSE 2.0 support for SOAP messaging will bring you back full circle

to where the book began, with the discussion on the importance of messages in

service-oriented applications.

215

CHAPTER 9

Design Patterns
for SOAP Messaging
with WS-Addressing

and Routing

TRADITIONAL WEB SERVICES are built on the HTTP Request/Response model. This

is fine for some applications, but is limiting for others. WSE 2.0 provides a mes-

saging framework that expands the supported transport protocols to include

TCP and an optimized in-process transport protocol, in addition to HTTP. These

protocols are not natively tied to a Request/Response communications model,

so you can implement alternative models, such as asynchronous messaging

solutions.

This chapter will focus on working with the WSE 2.0 implementation of the

WS-Addressing specification and with messaging and routing. Together, these

specifications and features provide support for

• Several transport protocols, in addition to HTTP, including TCP and an

optimized protocol called In-Process for clients and services that reside

on the same domain

• True asynchronous communication using TCP

• SOAP messages that contain their own addressing headers and endpoint

reference information

• Automatic routing and referral for SOAP messages

• Custom SOAP routers

The WSE 2.0 messaging framework is designed to give you more control over

the transport and processing of SOAP messages. Of course, WSE 2.0 does not

force you to leverage any of its messaging capabilities. You can continue to write

traditional HTTP-based Web services if you prefer. But this design pattern is only

Chapter 9

216

suitable if you need to implement a Request/Response communication design,

and if you want to host your service within a virtual directory.

There are three transport channel protocols that are supported by the WSE 2.0

messaging framework out of the box: HTTP, TCP, and an optimized mode called

In-Process, for Web services and clients that reside within the same process. In

addition, WSE 2.0 provides framework support for implementing your own custom

transport protocols. For example, a number of developers are experimenting with

integrating SOAP with Microsoft Message Queuing (MSMQ). Microsoft themselves

are actively working towards creating an MSMQ transport channel, with the larger

goal in mind of implementing the WS-Reliable Messaging specification.

Communication Models for Web Services

Before starting a discussion on WS-Addressing and messaging, we need to step

back and take the big picture view, starting with a review of how Web services com-

municate with clients. Traditional Web services communicate over the HTTP

protocol and use a traditional Request/Response communication pattern, in which

a client request results in a synchronous, direct service response. Unfortunately,

this model is very limiting because it does not accommodate long-running service

calls that may take minutes, hours, or days to complete. A typical synchronous Web

service call will time out long before the response is ever delivered.

There are five generally accepted communication design patterns, or mod-

els, that govern the exchange of SOAP messages between a service and its client

(or between two services):

1. Request/Response (classic): The service endpoint receives a message

and sends back a correlated response message immediately, or within

a very timely fashion.

2. Request/Response with Polling: The client sends a request message to

a service endpoint and immediately returns a correlation message ID to

uniquely identify the request. The service takes a “significant” amount of

time to process the request, meaning more than you would expect if you

were receiving a timely response message. Knowing this, the client must

periodically poll the service using the correlation ID to ask if a response

is ready. The service treats this query as a standard request/response, and

replies in the negative, or in the affirmative (with the actual response mes-

sage). So this model involves two pairs of correlated request/response

messages.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

217

3. Request/Response with Notification: The client sends a request mes-

sage to a service, and the service takes a “significant” amount of time to

process the request, meaning more than you would expect if you were

receiving a timely response message. The service does not reply back to

the client until the processing of the request is complete. The client is

responsible for waiting for the response. This model describes classic

asynchronous communication. It also describes what I call the pseudo-

asynchronous communication that is supported by standard ASP.NET

Web services. (I will provide more discussion on this issue later in this

chapter.)

4. One-way, or Notification: The service endpoint receives a request mes-

sage, but does not generate a response message. This model is not widely

used.

5. Solicit/Response: The reverse of Request/Response, whereby the service

endpoint sends the client a solicitation request and receives a response.

This model is not widely used.

Standard ASP.NET Web services, which you build by default in VS .NET, give

you the illusion that they support an asynchronous communication pattern. The

Web service’s WSDL document contains asynchronous versions for each operation,

and the auto-generated proxy class also dutifully provides asynchronous method

calls. Listing 9-1 shows a comparison between synchronous and asynchronous ver-

sions of the same Web method, as they appear in an auto-generated proxy class.

Listing 9-1. The Proxy Class for a Traditional XML Web Service

public class StockTraderServiceWse : ➥

Microsoft.Web.Services2.WebServicesClientProtocol

{

public Quote RequestQuote([System.Xml.Serialization.XmlElementAttribute(

Namespace="http://www.asptechnology.net/schemas/StockTrader/")]

string Symbol)

{

object[] results = this.Invoke("RequestQuote", new object[] {Symbol});

return ((Quote)(results[0]));

}

public System.IAsyncResult BeginRequestQuote(string Symbol, ➥

System.AsyncCallback callback, object asyncState)

{

return this.BeginInvoke("RequestQuote", new object[] {Symbol}, ➥

callback, asyncState);

}

Chapter 9

218

public Quote EndRequestQuote(System.IAsyncResult asyncResult)

{

object[] results = this.EndInvoke(asyncResult);

return ((Quote)(results[0]));

}

}

The two callback functions BeginRequestQuote and EndRequestQuote give

you the illusion of asynchronous communication, but you cannot truly discon-

nect the calling thread once the request message has been sent out. And the

burden falls on the client to manage the wait time for a response.

A true asynchronous method call completely releases the thread that is used

for the request, and then later creates a new thread to receive the response. The

limitation here is not with .NET per se, it is with the HTTP-based response/request

model. Simply spacing out the request and the response does not equate to an

asynchronous call. The solution is to drop HTTP and to use a different protocol

such as TCP. Unfortunately, the architecture of your solution will also need to

change. How you do so is a central focus of this chapter.

Overview of WS-Addressing

The WS-Addressing specification enables messages to store their own address-

ing information, so that the source, destination, and reply URI locations are

self-contained within the message. This allows a message to hop across multi-

ple endpoints without losing information about the source of the original

request. And it allows intermediate services to route and refer the message

across multiple endpoints until eventually a response is sent back to the speci-

fied reply location.

If you are writing a very basic Web service that uses the HTTP transport pro-

tocol, you are implementing a classic Request/Response model in which the

client issues a request and the service is expected to issue a direct response. In

this scenario, it is unnecessary for the message to contain its own addressing

information. But the need changes in other scenarios, such as a message that

hops across multiple endpoints over the TCP transport protocol.

WS-Addressing is not interesting in and of itself because it is a support

specification that plays an essential support role for other important specifica-

tions such as WS-Reliable Messaging. Still, it is important to understand the

WS-Addressing constructs and how they are written to a SOAP message. Without

WS-Addressing, it would not be possible for messages to travel anywhere other

than within the well-established HTTP-based Request/Response model. Nor

would it be impossible to write truly asynchronous Web service calls.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

219

Overview of the WS-Addressing Constructs

The WS-Addressing specification supports two types of constructs:

1. Message information headers

2. Endpoint references

These constructs are closely tied to elements that you find in a WSDL docu-

ment, such as operations, ports, and bindings. The WS-Addressing constructs are

a complement to the WSDL document, not a replacement, although it is likely

that future versions of the WSDL specification will evolve in conjunction with

the WS-Addressing specification. Let’s consider each of the constructs in turn.

Message Information Headers

These are the most intuitive addressing headers because they work in a similar

fashion to e-mail message addresses, which provide a set of headers including

From, To, and ReplyTo. Of course, SOAP message information headers include

additional entries that are SOAP-specific and have no relation to e-mail. For

example, the Action header stores the XML qualified name of the operation that

the SOAP message is intended for.

Table 9-1 provides a summary of the available message headers, including

their XML representations.

Table 9-1. XML Elements for Message Information Headers

Header Type Description

To URI The destination URI for the message (required).

Action URI The SOAP action for the message (required). The

action identifies the specific endpoint operation that

the message is intended for.

From Endpoint Ref The source of the message (optional). At

a minimum, the From header must provide a URI, if

it is specified. But you can also add more complex

endpoint reference information (optional).

ReplyTo Endpoint Ref The reply to destination for the message response.

This may be different from the source address

(optional).

Recipient Endpoint Ref The complete endpoint reference for the message

recipient (optional).
Continued

Chapter 9

220

Table 9-1. XML Elements for Message Information Headers (continued)

Header Type Description

FaultTo Endpoint Ref The endpoint that will receive SOAP fault messages

(optional). If the FaultTo endpoint is absent, then

the SOAP fault will default to the ReplyTo endpoint.

MessageID Endpoint Ref The message ID property (optional). The ID may be

a GUID identifier, or it may be a qualified reference,

for example, a UDDI reference.

The only required message headers are To and Action, although if you expect

a response, then you will also need to set the From or ReplyTo headers. Table 9-1

shows you the type that the header supports. Notice that the majority of the head-

ers require endpoint references.

Listing 9-2 shows you how message information headers appear within

a SOAP message.

Listing 9-2. A SOAP Message with Message Information Headers

<S:Envelope xmlns:S="http://www.w3.org/2002/12/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"

xmlns:st="http://www.bluestonepartners.com/schemas/StockTrader">

<S:Header>

<wsa:MessageID>uuid:7ae86g-95d...</wsa:MessageID>

<wsa:ReplyTo>

<wsa:Address>http://investor123.com/client</wsa:Address>

</wsa:ReplyTo>

<wsa:FaultTo>

<wsa:Address>http://investor123.com/faults</wsa:Address>

</wsa:FaultTo>

<wsa:To S:mustUnderstand="1">http://stocktrader.com/StockTrader</wsa:To>

<wsa:Action>http://stocktrader.com/StockTrader#RequestQuote</wsa:Action>

</S:Header>

<S:Body>

<st:RequestQuote>

<Symbol>MSFT</Symbol>

</st:RequestQuote>

</S:Body>

</S:Envelope>

Listing 9-2 is a SOAP message that is being sent from a client at

investor123.com, to a stock trading service at stocktrader.com. The client is

requesting a stock quote, using the RequestQuote operation. This operation

Design Patterns for SOAP Messaging with WS-Addressing and Routing

221

is described in the StockTrader schema, as referenced in the envelope header.

Note that the StockTrader schema is qualified using the XSD namespace refer-

ence http://www.bluestonepartners.com/schemas/StockTrader.

This simple code listing displays the best aspect of SOAP messages: that they

are fully qualified and self-describing. Every element in this SOAP message is

qualified by a specific XML namespace. And the addressing information for the

message is self-contained. Nothing that is included in a SOAP message is allowed

to exist in a vacuum.

Endpoint References

Endpoint references are a little less intuitive than addressing headers, and they

are more akin to the WSDL <service> tag. Think of endpoint references as com-

plex XML data types that provide a collection of child elements to describe the

various facets of the type. Endpoint references provide both addressing and SOAP

binding information.

Recall from Chapter 2 that the <service> element provides port information

and binding information combined. The <service> element describes the opera-

tions that are available at a service endpoint, and also provides you with a message

protocol–specific binding address. The only message protocol we are really

focused on here is SOAP. So, to be more specific, an endpoint reference tells

you what operations are supported at a given port, and also how you should

address SOAP messages to that port.

Listing 9-3 shows an example of an endpoint reference as it is included

within a SOAP message. Compare this with Listing 9-2, which uses message

information headers. Notice that the endpoint reference stores the addressing

destination information in a different tag, and that it also contains dynamic ref-

erence information (such as AccountID) that is specific to the endpoint reference.

Listing 9-3. Endpoint Reference XML

<wsa:EndpointReference>

<wsa:Address>soap.tcp://stocktrader.com/StockTrader</wsa:Address>

<wsa:ReferenceProperties>

<st:AccountID>123A</st:AccountID>

</wsa:ReferenceProperties>

<wsa:PortType>st:StockTraderSoap</wsa:PortType>

<wsp:Policy />

</wsa:EndpointReference>

Endpoint references do not replace message information headers because

they are focused on describing binding information for the endpoint, not spe-

cific operation information. You do not get to choose between using message

Chapter 9

222

information headers versus endpoint references. Message information address-

ing headers may include endpoint references for the destination elements in the

message. But from a conceptual perspective, you can draw a distinction between

the two constructs. Message information headers are a general construct for

storing addressing information, for both the sender and the receiver. Endpoint

references are more complex and dynamic, and include SOAP binding informa-

tion to the specific endpoint that the SOAP message is intended for. Luckily, WSE

2.0 sets up the classes so that the constructs can be kept distinct from a pro-

gramming perspective.

As with all the WS-specifications, you can drill down as far as you want to go

and dive into increasing complexity. Inevitably, if you drill down far enough, then

you will discover a rich interaction between the specification elements, and the

overall conceptual picture will begin to blur. My goal here is to keep the concep-

tual discussion clear, and to provide you with a solid grounding so that you can

continue to explore on your own.

WSE 2.0 Implementation for WS-Addressing

WSE 2.0 implements the full WS-Addressing specification, in a dedicated name-

space called Microsoft.Web.Services2.Addressing. Table 9-2 summarizes some of

the important WS-Addressing classes (each of which corresponds to an XML ele-

ment in the WS-Addressing specification).

Table 9-2. Classes in the WSE 2.0 Addressing Namespace

Class Description

Action Specifies the XML qualified name of the operation that the

SOAP message is intended for.

Address Stores a binding-specific address, and may be assigned to

other classes, including To, From, and ReplyTo. The properties

of the Address class correspond to classes that are based on

endpoint references. For example, the Address.To property

corresponds to the WS-Addressing To class, which is an

endpoint reference.

AddressingHeaders Indicates the collection of properties that address a message,

including To, From, ReplyTo, and MessageID.

AddressingFault Occurs when there is an invalid header in the message, or

when an exception occurs along the message path.

EndPointReference Stores endpoint reference information, which is binding

information for a service.

Continued

Design Patterns for SOAP Messaging with WS-Addressing and Routing

223

Table 9-2. Classes in the WSE 2.0 Addressing Namespace (continued)

Class Description

ReferenceProperties Indicates the collection of properties that add additional

description elements for an endpoint.

To Stores the source address as an endpoint reference.

From Stores the destination address as an endpoint reference.

ReplyTo Stores the reply to address for the response as an endpoint

reference.

There are three interesting things to note about the Addressing classes:

1. Most of the Addressing classes derive from XML and SOAP base classes,

which reflect their obvious close ties to these specifications. (In fact, the

majority of WSE 2.0 specification classes have similarly close ties to XML

and SOAP base classes.)

2. You will not often need to instance these classes directly. Instead, it is

more likely that you will access them via properties on other classes. For

example, the SoapEnvelope class (in Microsoft.Web.Services2) provides

a Context.Addressing property that exposes the AddressingHeaders

class. Here, you can directly set message addressing information, such

as From, To, ReplyTo, and Action properties.

3. The Addressing classes are independent of the underlying transport pro-

tocol. It does not matter if the addressed SOAP message is transported

over HTTP, TCP, or SMTP. The addressing headers and references will

apply, regardless of how the message is transported.

The two more important classes in the Addressing namespace are the

AddressingHeaders class and the EndpointReference class. These correspond

to the two main constructs in the WS-Addressing specification: message infor-

mation headers and endpoint references. Your SOAP messages may use one or

the other, depending on how you prefer to set addressing to service endpoints.

In the future it is likely that most addressing will be done in terms of endpoint

references, particularly as the WSDL specification evolves, and as the WS-

Addressing specification becomes more established and refined.

Chapter 9

224

NOTE Do not confuse the message protocol with the transport protocol. SOAP
is a message protocol that provides a specification for constructing messages.
HTTP, TCP, and SMTP are transport protocols, which are different specifica-
tions for transporting messages. SOAP messages may be delivered using all of
these transport protocols.

Security Considerations for WS-Addressing

Addressing information can be sensitive, especially when it contains port numbers

and references to qualified endpoints. We are used to thinking of this information

as being public because Web services are often publicly accessible. But with WS-

Addressing, this information is attached to the SOAP message header directly. You

typically do not want the body of the SOAP message to be tampered with or viewed

by unauthorized parties. In the same way, you should feel equally protective about

the SOAP message headers.

Another sensitive case is when messages are routed between multiple end-

points, each of which writes additional WS-Addressing information to the message

header. The additional endpoints may not be designed to handle direct service

requests from outside clients. Their addressing information needs to be kept

protected.

There are three recommended options for securing the contents of a mes-

sage that contains addressing headers:

1. Digitally sign the message, including the body and header information.

2. Encrypt the message headers.

3. Add a message ID.

Digital signing allows you to detect whether a message has been tampered

with or compromised. Digital signing alone will not encrypt or hide the contents

of the message, but it will ensure that a tampered message will be automatically

rejected by the receiving Web service.

Encrypting the message headers will clearly protect its contents, but this

approach works best if the message is not being routed or referred to another

Web service endpoint. Intermediary Web services will need access to the address-

ing header information, so there is an additional burden on the developer to

ensure that the intermediaries can encrypt the message header contents.

The message ID (<wsa:MessageID>) is important because it allows you to

design against replay attacks, whereby a client repeatedly resends the same mes-

sage to a Web service endpoint in order to overwhelm the service and to bring

down its host server. The receiving Web service simply needs to cache this mes-

sage ID, and then ignore additional requests that come in.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

225

NOTE Refer to Chapter 6 for a detailed discussion on replay attacks and how
to prevent them.

There is no right way to implement security to protect addressing headers.

Each of these options are recommended, rather than required. You need to make

an individual determination as to whether security measures are required for

your service-oriented application.

At this point, you should be more comfortable with the concepts behind

WS-Addressing, but you are probably still wondering exactly how to put these

concepts, and the code, into action. Remember that WS-Addressing is a support

specification that is built for messaging. The next section on messaging will pro-

vide you with the context for addressing by showing you the important role that

addressing plays for messaging.

Overview of Messaging

WSE 2.0 includes support for messaging, which provides developers with a new

range of features for transporting and processing SOAP messages. Traditional

XML Web services support the HTTP transport protocol only, which limits the

client and server to communicating with a synchronous, Request/Response

design pattern.

WSE 2.0 messaging continues to support the HTTP protocol, but it also adds

support for two additional transport protocols:

• TCP: A low-level protocol that communicates across processes and

domain boundaries. Instant messenger and chat applications use the

TCP protocol.

• In-Process: This protocol is designed for communications between com-

ponents within the same application domain. It is an optimized, low-level

protocol that provides the flexibility of TCP.

In addition, WSE 2.0 provides classes that allow you to custom implement

additional transport protocols, such as SMTP and MSMQ.

Comparing Messaging with the HTTP and TCP Protocols

Services that communicate over HTTP must reside on a Web server in order for

their endpoints to be accessible. However, services that communicate over TCP

Chapter 9

226

are accessible over a direct port, without requiring a virtual directory. Here is an

example of an HTTP endpoint:

http://www.bluestonepartners.com/StockTrader.asmx

And here is an example of the equivalent TCP endpoint:

soap.tcp://216.70.214.118/StockTrader

The HTTP and TCP protocols have one thing in common, which is that they

both enable messaging between remote components that are running on sepa-

rate processes and on separate domains. TCP is a lower-level protocol that

operates on a port rather than a virtual directory, which is a higher-level abstrac-

tion of a port.

HTTP is designed for Request/Response messaging patterns, meaning that

a request generates a direct response. TCP is designed for decoupled messaging

patterns whereby a sender and a receiver communicate, but not necessarily as

a two-way conversation. TCP enables asynchronous messaging, whereby the

sender releases its calling thread as soon as the message has been delivered to

the receiver. By extension, TCP also enables one-way messaging, because once

a sender mails out a message, its resources are released, and the sender suffers

no resource or scalability problems waiting for a response that will never come.

This is the beauty of the decoupled TCP protocol: You can implement a Request/

Response messaging pattern if you want to, but unlike with HTTP, you do not

have to.

NOTE Technically, the HTTP protocol does support one-way messaging. The
response will generate an HTTP 202 status code, and no SOAP message will be
returned.

Representing SOAP Messages in the
WSE 2.0 Messaging Framework

The Microsoft.Web.Services2 namespace provides a class called SoapEnvelope,

which you use for generating SOAP messages in code. The SoapEnvelope class

derives from the System.Xml.XmlDocument class, not surprisingly, and so it sup-

ports XML document loading, so that you can load preformatted SOAP messages

into a SoapEnvelope object. Alternatively, you can construct the SOAP message

from scratch by setting properties on the SoapEnvelope object.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

227

Table 9-3 highlights important members of the SoapEnvelope class. Listing 9-4

shows you how to construct a SOAP message in code for requesting a stock quote

from the RequestQuote operation.

Table 9-3. The SoapEnvelope Class

Property Type Description

Envelope XmlElement The envelope is the root element of the message

XML. It contains the message body and message

header elements.

Body XmlElement The body element is required for all SOAP messages.

It contains qualified XML for the request and

response messages.

Header XmlElement The header contains optional extended information

for the SOAP message. The WS-Specification settings

are stored in the header.

Fault Exception Retrieves the SOAP fault from the envelope, if there

is one, and returns an Exception class.

Context SoapContext The Context property enables you to modify the

SOAP message contents within a custom WSE filter;

or to process the SOAP message contents within

a SoapReceiver processing class.

Listing 9-4. Constructing a SOAP Message in Code for the RequestQuote Operation

public SoapEnvelope CreateSoapMessage()

{

SoapEnvelope message = new SoapEnvelope();

RequestQuote q = new RequestQuote();

RequestQuote.Symbol = "MSFT";

message.SetBodyObject(q);

// Assign the addressing SOAP message headers

message.Context.Addressing.Action = new Action(➥

"http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote");

message.Context.Addressing.From = new From(fromUri);

message.Context.Addressing.ReplyTo = new ReplyTo(fromUri);

return message;

}

Chapter 9

228

Listing 9-4 illustrates several important points:

SOAP messages cannot be empty, because their purpose is to commu-

nicate requests or responses. Here, the SOAP message is designed to

transmit a stock quote request. It uses the RequestQuote class to gener-

ate a correctly formatted request. Recall that RequestQuote is defined

in an interface definition file that provides class representations for all

of the StockTrader custom data types.

The SoapEnvelope’s SetBodyObject method automatically generates the

SOAP message body for the RequestQuote object.

The SOAP message headers store addressing information directly, using

the WSE 2.0 addressing classes. The Action property is required, and

must reflect the operation that the sender is calling. If it calls a Web ser-

vice that supports multiple operations, then the Action property

enables the service to differentiate incoming requests, and to process

them correctly.

NOTE Refer back to Chapter 3 for a detailed discussion on the StockTrader
XML schema. This chapter shows you how to build the StockTrader XML
schema from scratch, and also shows you how to generate an interface defini-
tion file of classes based on the schema.

SOAP Senders and SOAP Receivers

We are all familiar with two common messaging modes: Peer-to-Peer (e.g., chat

applications) and Request/Response (e.g., Internet browsing). With SOAP mes-

saging, the concept of clients and services does not really apply, because this

implies a fixed communication pattern (meaning that the client always initiates

the request, and then the service responds). With SOAP messaging, it is more

accurate to refer to senders and receivers, which implies roles rather than func-

tions. A given service may function as a message receiver in some cases, and as

a message sender in others.

The WSE 2.0 messaging framework provides dedicated classes for the sender

and receiver roles. The SoapSender class sends a message out to a specified end-

point (URI). The class is straightforward to use, as shown in Listing 9-5.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

229

Listing 9-5. The SoapSender Class

SoapSender soapSender = new SoapSender(toUri);

soapSender.Send(message);

The SoapReceiver class is abstract and must be implemented in a custom

class that is assigned to receive the corresponding response for a message request.

In a sense, this custom SOAP receiver class acts like a callback function, in that it is

called when a response is ready. But unlike a traditional callback function, the cus-

tom SOAP receiver class is decoupled from the request.

There are three steps to implementing a custom SOAP receiver class:

1. Create a custom class that implements the SoapReceiver abstract class.

2. Override the Receive method with a custom implementation for pro-

cessing the incoming response message.

3. Register the custom receiver class so that the messaging framework

knows it is the handler for the incoming response message.

Listing 9-6 shows you these three steps in code.

Listing 9-6. Implementing a SOAP Message Receiver

class StockTrader

{

public void SendSoapMessage(SoapEnvelope message)

{

// Register the response receiver

SoapReceivers.Add(fromUri, typeof(StockTraderResponseReceiver));

// Send the SOAP request message

SoapSender soapSender = new SoapSender(toUri);

soapSender.Send(message);

}

}

public class StockTraderResponseReceiver : SoapReceiver

{

protected override void Receive(SoapEnvelope message)

{

// Process the incoming message...

}

}

Chapter 9

230

Listing 9-6 is implemented in the sender component, to process incoming

response messages. It turns out that the receiver component implements very simi-

lar code, but this time to process incoming request messages. This is the important

point: The SoapReceiver class does not care whether it is implemented in a sender

or receiver component. It is agnostic in this regard. Its purpose is to support the

processing of incoming SOAP messages, regardless of whether they originate from

a sender or a receiver component.

Listing 9-7 shows you how to process an incoming message. This listing is

taken from the receiver component, which processes the RequestQuote SOAP

request message. The receiver needs to do the following:

1. Deserialize the SOAP message body.

2. Examine the SOAP message Action to determine how to process the

incoming SOAP message. The SoapReceiver must be able to correlate

the incoming message body to a qualified data type, in this case, the

StockTrader Quote type.

3. Process the RequestQuote operation.

4. Generate a response message based on the Quote type, which is the

output type from the StockTrader’s RequestQuote operation. Inherent

in this step is the fact that the SoapReceiver must correlate this out-

going response message with the incoming SOAP request message.

5. Send the response message back to the sender.

Listing 9-7. Generating a SOAP Message Response

public class StockTraderRequestReceiver : SoapReceiver

{

protected override void Receive(SoapEnvelope message)

{

if(message.Context.Addressing.Action.Value.EndsWith("RequestQuote"))

{

// Retrieve the body of the SOAP request message

// Since we have screened the Action, we know what class to look for

RequestQuote request = ➥

(RequestQuote)message.GetBodyObject(typeof(RequestQuote));

string symbol = request.Symbol;

Design Patterns for SOAP Messaging with WS-Addressing and Routing

231

// Call the RequestQuote() method: delegate the call

// to a business assembly

Quote q = RequestQuote(symbol);

// Transform the result into a SOAP response message

SoapEnvelope response = new SoapEnvelope();

response.SetBodyObject(q);

// Create the URI address objects for send and receive

// Note, instead of hardcoding the URIs, we will pull them from

// the original request message

// Send response to the request message's ReplyTo address

Uri toUri = (Uri)message.Context.Addressing.ReplyTo;

// Return response from the request message's To address

Uri fromUri = (Uri)message.Context.Addressing.To;

// Assign the addressing SOAP message headers

response.Context.Addressing.Action = new Action(➥

"http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote#Quote");

response.Context.Addressing.From = new From(fromUri);

SoapSender soapSender = new SoapSender(toUri);

// Send the SOAP request message

soapSender.Send(response);

}

}

// Implementation for RequestQuote()

private Quote RequestQuote(string Symbol)

{

// Create a new Quote object

Quote q = new Quote();

// Retrieve the stock quote (code not shown)

// Return the Quote

return q;

}

}

Listing 9-7 highlights the following important points:

Chapter 9

232

This code is contained in a separate component from the sender, run-

ning on a separate process. However, both the sender and receiver

components must have the same understanding of the StockTrader

custom types, including RequestQuote and Quote. They can accom-

plish this in two ways: They can generate an interface definition file

of classes directly from the XSD schema, or they can each implement

a reference assembly of types, similar to the StockTraderTypes assem-

bly that is used throughout the sample solutions.

The receiver component implements business processing logic for the

RequestQuote method. The sender component simply knows how to

construct a qualified RequestQuote message. However, the receiver

component must know how to process the operation. (Alternatively, the

receiver component could call a dedicated business assembly, which

centralizes all of the StockTrader processing. This approach is presented

in Chapter 4.)

The receiver component constructs a new response message with its own

addressing headers in order to return the stock quote result to the sender.

The receiver component uses the same SoapSender class to actually send

the message out to the specified endpoint.

NOTE The StockTraderTypes interface definition file used here is based on the
StockTraderWithOperations.xsd schema file from Chapter 3, which includes
complex elements to represent each of the four supported Web service opera-
tions. Please refer to Chapter 3 if you require more information.

Implement a Windows Forms–Based Receiver

The receiver component must be up and running to respond to incoming request

messages. To illustrate this, the sample solutions include a stand-alone Windows

Forms–based receiver called StockTraderSoapReceiver. Figure 9-1 shows the

Solution Explorer for this solution.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

233

Figure 9-1. Solution Explorer for the StockTraderSoapReceiver solution

The receiver references the Microsoft.Web.Services2 and System.Web assem-

blies. The startup code for the form registers the custom SoapReceiver class that

will handle the incoming request message, as shown in Listing 9-8.

Listing 9-8. Registering a Custom SoapReceiver Class

public class StockTrader : System.Windows.Forms.Form

{

class StockTrader()

{

// Use TCP

receiverUri = new Uri(String.Format(➥

"soap.tcp://{0}/StockTraderSoapReceiver", System.Net.Dns.GetHostName()));

// Register the SOAP receiver objects

StockTraderRequestReceiver request = new StockTraderRequestReceiver();

SoapReceivers.Add(receiverUri, request);

}

}

Listing 9-7 provides the code for the custom SoapReceiver class, called

StockTraderRequestReceiver.

Chapter 9

234

The StockTraderSoapReceiver project acts as a listener when it is compiled

and run. Figure 9-2 shows the form interface when the project is running.

This approach is a good shortcut for ensuring that the receiver component

stays up and running. In a production setting you should implement the listen-

ing receiver component as a Windows Service component.

The Interface Definition File and WSDL

The StockTraderTypes.cs class file in the sample receiver project provides the

interface definition file (IDF) that provides class representations of the StockTrader

custom data types. This type information must be available to both the sender

and the receiver, so it is best to compile a dedicated StockTraderTypes assembly,

and to reference it from both the sender and receiver solutions. The IDF is included

as a class file in the sample so that you can more easily inspect its contents.

Listing 9-9 shows an excerpt from the StockTraderTypes.cs file.

Listing 9-9. The StockTraderTypes Interface Definition File

using System;

using System.Xml.Serialization;

namespace StockTraderTypes

{

[System.Xml.Serialization.XmlTypeAttribute(Namespace=

"http://www.bluestonepartners.com/schemas/StockTrader/")]

public class RequestQuote

{

public String Symbol;

}

[System.Xml.Serialization.XmlTypeAttribute(Namespace=

"http://www.bluestonepartners.com/schemas/StockTrader/")]

public class Quote

Figure 9-2. The TCP-based receiver component

Design Patterns for SOAP Messaging with WS-Addressing and Routing

235

{

public string Symbol;

public string Company;

public string DateTime;

// Additional properties are not shown (e.g, Open, Last, etc.)

}

}

Since you are no longer working with the XML Web service project type,

you have lost your shortcut for generating a WSDL document directly from an

.asmx service file. The StockTraderTypes.cs file can in fact be generated directly

from the StockTrader XSD schema file, which you are guaranteed to have, so

technically you can do without a WSDL file when building a decoupled, TCP-

based sender-receiver solution. But a WSDL file contains essential metadata

information that is stored according to an established specification. You can-

not build a WS-I–compliant service without including a WSDL file.

So by no means am I advocating that you build services without WSDL files.

You cannot, because the service must be compliant with established specifica-

tions. If it is not compliant, then it is effectively unusable, because the WSDL

file stores essential metadata information on the service that is required for

widespread use by different clients. However, I am pointing out that if you bypass

building a traditional .asmx Web service, then you will be forced to manually

generate the WSDL file. I expect that future releases of the .NET Framework will

include alternate utilities for generating WSDL files. These will have to be made

available once non-HTTP-based Web services become a common service type as

XML Web services are today.

Traditional XML Web Services vs. SOAP Messaging
over HTTP

Traditional XML Web services are conveniently implemented using the HTTP proto-

col, and as a developer you never need to interact with the SOAP messages directly.

In fact, prior to WSE 2.0, if you needed to interact with the SOAP message directly

during processing, then you had to write a custom HTTP handler to intercept the

messages. You also needed to manually implement most of the plumbing for pars-

ing, modifying, and generally interacting with the SOAP message.

WSE 2.0 does not require you to use its messaging framework if you are

transporting SOAP messages over HTTP. But you will want to if you need to per-

form custom processing on these SOAP messages. With WSE 2.0 you do not have

to write an HTTP handler yourself because one is already provided for you. All

you have to do is to implement the processing code for the message itself. All of

the plumbing code has already been taken care of for you.

Chapter 9

236

Let’s assume that the sender, or client, is a Windows Forms–based applica-

tion, and that the receiver, or service, is enabled for HTTP. There are three steps

for implementing the service as an HTTP-enabled SOAP receiver:

1. Create a custom SoapReceiver class in the receiver component.

2. Register the custom SoapReceiver class as an HTTP handler in the

web.config file (see Listing 9-10).

3. Create a virtual directory to host the service (e.g.,

HttpMessagingService).

Listing 9-10 shows how you register a custom SoapReceiver class in the

web.config file, so that it is automatically enabled for the HTTP protocol. Listing 9-7

provides an example of a custom SoapReceiver class. Although Listing 9-7 was

developed for the TCP protocol, all you need to do to enable it for HTTP is to mod-

ify the URI of the SoapReceiver response endpoint, from soap.tcp://{endpoint} to

http://{virtual directory}.

Listing 9-10. Registering a SoapReceiver Class Using the HTTP Protocol

<configuration>

<system.web>

<httpHandlers>

<add verb="*" path="receiver.ashx" type="MyNamespace.MyReceiver,

MyAssemblyName" />

</httpHandlers>

<system.web>

<configuration>

Based on the earlier Listing 9-7, the type name of the HTTP handler would be

type="StockTrader.StockTraderRequestReceiver, StockTraderSoapReceiver"

Note that the <add /> section must be formatted as a single line in the

web.config file, or it will generate parsing errors at runtime.

The client application calls the HTTP-enabled service using a standard

HTTP link, which includes the name of the virtual directory that hosts the ser-

vice and the name of the standard HTTP handler. For this example, the link is

http://localhost/HttpMessagingService/receiver.ashx

The WSE 2.0 messaging framework makes it easy for you to continue work-

ing with the HTTP protocol, while at the same time making it much easier for

you to manually process SOAP request and response messages.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

237

Properties of Message-Enabled Web services

Traditional XML Web services are very limiting compared to the new capabilities

provided by WSE 2.0 messaging. As you explore WSE 2.0 in general, and the new

messaging capabilities in particular, you should clearly notice that

Web services are about both SOAP and XML.

SOAP messages are the key technology in a service-oriented architec-

ture. XML is essential because the SOAP and WSDL specifications are

XML-based, but without SOAP there would be no messages, and there-

fore no purpose for Web services.

SOAP messages are advanced communication instruments.

Previously, SOAP messages were limited to relatively simple constructs,

and could not be secured. But the WS-Specifications now enable SOAP

messages to record their own addressing information, and to be digitally

signed and encrypted (both in the header and the body). SOAP mes-

sages have become advanced instruments for communication.

SOAP messages are composable and have unlimited extensibility.

Technically, a Web service is what is composable, not a SOAP message.

But it is the message itself that must store and carry the required WS-

specification elements (specifically, the SOAP header block). When you

apply a communications trace, you are doing so on the exchanged SOAP

messages, not on the endpoints themselves. SOAP messages are tailored

to reflect the policies of their endpoints, and must correctly incorporate

the cumulative set of required custom elements. SOAP messages are

composable and have unlimited extensibility.

SOAP senders and receivers replace traditional clients and services.

We are all familiar with two modes of remote transport: Peer-to-Peer

(e.g., chat applications) and Request/Response (e.g., Internet browsing).

With SOAP messaging, the concept of clients and services does not

really apply because this implies a fixed communication pattern (mean-

ing that the client always initiates the request, and then the service

responds). With SOAP messaging, it is more accurate to refer to senders

and receivers, which implies roles rather than functions. A given service

may function as a message receiver in some cases, and as a message

sender in others.

Chapter 9

238

Overview of Routing and Referral

SOAP message routing is a topic that follows very naturally from the discussions

presented so far in this chapter. Routing allows you to set up a virtual network

for processing incoming SOAP messages, by enabling the flexible redirection of

SOAP messages to alternate servers that are not directly accessible by the origi-

nal sender. I use the term virtual network because the routing may only take

place on a subset of the actual physical network.

There are three main virtual network design models for routing:

Load Balancing: This model routes SOAP messages from a logical end-

point on to one server within a cluster of back-end servers that are

running the same services. This routing pattern overlaps what is pro-

vided by established network load balancing (NLB) solutions, including

Cisco LocalDirector and Microsoft Network Load Balancing Services.

Chain: This model routes SOAP messages through a chain of so-called

SOAP intermediaries, which are intermediate services that process

a SOAP message on the way to its ultimate receiving endpoint.

Content-Based: This model routes SOAP messages based on header-

specific content.

Figure 9-3 provides schematic views of each of these patterns. Notice that

each of them defines a common entity called the SOAP router. This is the immedi-

ate destination endpoint for an incoming SOAP request message. In the Load

Balancing model, the SOAP router does no direct message processing; its sole pur-

pose is to redirect the message to alternate servers for processing. However, in the

other models the SOAP router may process the SOAP message in addition to rout-

ing it.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

239

Figure 9-3. Network design patterns for SOAP message routing

WSE 2.0 provides an elegant implementation of routing and WS-Referral for

the Load Balancing model that does not require you to write any code in the SOAP

router. Everything is driven by configuration file settings that reflect the routing

model that you want to put in place. WSE 2.0 is generally good about saving you

from writing code. But with routing, this is even truer since you do not need to

modify the core business logic in the receiving services. However, if you are imple-

menting the chain routing model, or the content-based routing model, then the

intermediary services will need to update addressing headers on the message to

reflect the next destination in the chain.

WSE 2.0 provides out-of-the-box support for routing and WS-Referral using the

HTTP protocol only. In theory, the specifications can apply to other transport pro-

tocols as well, such as TCP and SMTP. However, the WS-Addressing specification

provides a more efficient routing and referral implementation for these protocols.

In addition, WS-Addressing may be more efficient for implementing the chain rout-

ing model. For more on this, refer to the section “Routing vs. WS-Addressing” later

in this chapter.

Now let’s look at an example of how to build a SOAP router that implements

a combination of the Chain and Load Balancing routing models.

Build a SOAP Router for the Load Balancing
Routing Model

This example SOAP routing solution is included in the sample files as

SOAPRouter.sln. It consists of three projects, as shown in Figure 9-4.

Chapter 9

240

The three projects are

1. SOAPRouter: A Web service-based SOAP router application

2. SOAPSender: A console-based client application

3. SOAPService: A Web service application that processes stock quotes

and trades

These projects continue to use the StockTrader application that you have seen

developed throughout the book. I renamed the projects using clear names so that

there is no ambiguity about the purpose of each project. Technically, this solution

is a combination of the Chain and Load Balancing routing models because it con-

tains only one referral Web service.

Let’s discuss each of the solution projects in turn.

Figure 9-4. Solution Explorer for the SOAPRouter sample solution

Design Patterns for SOAP Messaging with WS-Addressing and Routing

241

Overview of the SOAP Sender

The SOAP sender application requests stock quotes from the SOAP service using

two possible internal method calls:

• SendUnsignedRequest: Sends an unsigned stock quote request to the

SOAPService RequestQuote operation.

• SignRequestUsingX509Certificate: Sends a digitally signed stock quote

request to the SOAPService RequestQuote operation. The digital signature

is based on an X.509 certificate.

Each of these method calls invokes the same proxy class. The difference

between the two methods is simply whether the request message will be sent out

as signed or not.

The Web service proxy class provides two possible URIs for requesting a stock

quote, as shown in Listing 9-11. One URI requests the quote directly from the

Web service, while the other URI requests the quote via the SOAP router, which

provides an .asmx file of the same name, although the virtual directory name is

different.

Listing 9-11. Service Endpoints for the SOAPSender Application

public StockTraderServiceWse()

{

// Note to user: toggle between each of these URLs

// 1. SOAPService goes directly to the service

//this.Url = "http://localhost/SOAPService/StockTrader.asmx";

// 2. SOAPRouter goes to the service via a router

this.Url = "http://localhost/SOAPRouter/StockTrader.asmx";

}

Of course, in a production setting, the SOAPService would not be directly

accessible from outside clients. Instead, they would be forced to route their request

through the SOAPRouter.

Overview of the SOAP Service

The implementation code for the SOAP service RequestQuote method is shown

in Listing 9-12. The listing checks for the presence of a digital signature, and vali-

dates it if it is present. However, the most important aspect of this code listing is

the SoapActor attribute, which decorates the Web service class (shown in bold).

Chapter 9

242

This attribute designates the specific recipient of the message response, in this

case, the SOAP router, which will in turn pass the response back to the original

sender. If the SoapActor attribute is not provided, then the Web service request

will generate an addressing error upon receipt, because the most recent sender

of the request (the SOAP router) will not match the first sender and ultimate

recipient of the response (the SOAP sender). The SoapActor attribute allows for

messages to be accepted by services after passing through intermediaries.

Listing 9-12. The SOAPService RequestQuote Method

using Microsoft.Web.Services2;

using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

using Microsoft.Web.Services2.Messaging;

[SoapActor("http://localhost/SOAPRouter/StockTrader.asmx")]

public class StockTraderService : Microsoft.Web.Services2.WebService

{

public Quote RequestQuote(string Symbol)

{

// Step 1: Verify the signature on the Web service request to this method

bool SignatureIsValid = true;

// Code to verify that the request is digitally signed

SoapContext requestContext = RequestSoapContext.Current;

foreach (ISecurityElement objElem in requestContext.Security.Elements)

{

if (objElem is MessageSignature)

{

Signature clientSignature = (MessageSignature)objElem;

if (clientSignature.SecurityToken is X509SecurityToken)

{

SignatureIsValid = true;

}

else

{

SignatureIsValid = false;

}

}

}

// Step 2: Create a new Quote object, but only populate it

// if the signature is valid

Design Patterns for SOAP Messaging with WS-Addressing and Routing

243

Quote q = new Quote();

if (SignatureIsValid)

{

return q; // Return a populated Quote object

}

}

}

The validation portion of this code listing may seem a step backward given

that Chapter 7 shows how to accomplish the same validation using policy expres-

sion files. The code is presented this way for illustrative purposes only.

Listing 9-13 shows you what the SOAPService’s web.config file should look like.

Listing 9-13. The SOAPService web.config File

<configuration>

<configSections>

<section name="microsoft.web.services2"

type="Microsoft.Web.Services2.Configuration.WebServicesConfiguration,

Microsoft.Web.Services, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" />

</configSections>

<system.web>

<webServices>

<soapExtensionTypes>

<add type="Microsoft.Web.Services2.WebServicesExtension,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" priority="1" group="0" />

</soapExtensionTypes>

</webServices>

</system.web>

<microsoft.web.services2>

<diagnostics />

<security>

<x509 storeLocation="LocalMachine" allowTestRoot="true"

allowRevocationUrlRetrieval="false" verifyTrust="false" />

</security>

</microsoft.web.services2>

</configuration>

Chapter 9

244

Recall from Chapter 6 that no additional code is required to verify the

incoming digital signature, since WSE performs this validation automatically

before the method is called. However, you do need to add an <x509> element

to the SOAPService’s web.config file.

Overview of the SOAP Router

The SOAP router implements a configuration file called the referral cache, which

stores destination endpoints for the message to be routed to. Listing 9-14 pro-

vides an example of a referral cache for a chain SOAP router that forwards

incoming messages on to a single back-end service.

Listing 9-14. The Referral Cache Configuration File

<?xml version="1.0" ?>

<r:referrals xmlns:r="http://schemas.xmlsoap.org/ws/2001/10/referral">

<r:ref>

<r:for>

<r:exact>http://localhost/SOAPRouter/StockTrader.asmx</r:exact>

</r:for>

<r:if />

<r:go>

<r:via>http://localhost/SOAPService/StockTrader.asmx</r:via>

</r:go>

<r:refId>uuid:fa469956-0057-4e77-962a-81c5e292f2ae</r:refId>

</r:ref>

</r:referrals>

This configuration file is stored as a separate configuration file within the

SOAP router project. In order to find it, you also need to update the project’s

web.config or app.config configuration files to point to the location of the referral

cache file. Listing 9-15 provides an example of how to update the web.config file.

Listing 9-15. Storing the Location of the Referral Cache File in web.config

<microsoft.web.services2>

<referral>

<cache name="referralCache.config" />

</referral>

</microsoft.web.services2>

Design Patterns for SOAP Messaging with WS-Addressing and Routing

245

Note that referral cache files are cached in memory, just as web.config files

are. The referral cache file will refresh in the cache whenever it gets updated.

CAUTION You must give the ASP.NET worker process read-write access permis-
sions to the referral cache configuration file. Browse to the file location using
Windows Explorer, right-click the file properties, and switch to the Security tab.
Add the ASP.NET worker process account (by default, [MachineName]\ASPNET),
and set read-write permissions. If you do not take this step, then you will get an
exceedingly ugly SOAP exception call stack!

Send a Stock Quote Request Using the SOAP Sender

Now all that is left is to execute the project. First verify that the SOAP sender

proxy class is pointing to the SOAP router URI. Then start the SOAPSender proj-

ect, and test out each of the two possible request calls:

• SendUnsignedRequest

• SignRequestUsingX509Certificate

Each method call returns a successful stock quote result. This result is so

uneventful that you would be forgiven for wondering whether the SOAP router

actually did anything. You can quickly put these doubts to rest by renaming the

referral cache configuration file, so that it cannot be loaded at runtime. This will

generate a SOAP exception back to the client indicating that the configuration

file could not be loaded.

What is remarkable about this code example is that the destination Web ser-

vice, SOAPService, does not complain when it receives a digitally signed SOAP

message from the SOAPRouter, rather than from the SOAPSender, which origi-

nally signed and sent the request. The routing and WS-Referral infrastructure

automatically handles this contingency, and prevents you from receiving excep-

tions about an invalid digital signature.

In summary, chain SOAP routers give service providers flexibility to imple-

ment an optimum service processing solution for incoming SOAP messages. Load

balancing SOAP routers help network administrators maintain service networks.

As servers are taken offline for maintenance, the information in the referral cache

can be updated to remove the server from the list of available referral servers.

Finally, content-based SOAP routers make strategic routing decisions based on

the contents of the SOAP message headers.

Chapter 9

246

NOTE The sample project SOAPSender.csproj (contained within the solution
SOAPRouter.sln) allows you to toggle between a direct Web service call and an
indirect one via a SOAP router (see StockTraderProxy.cs, Line 38). If you modify
the URL for the Web service request, then you must also modify the SoapActor
attribute on the target Web service method to reflect the same target URL (see
StockTrader.asmx, Line 33, in the SOAPService project). If you do not, then you
will receive addressing errors because the <to> header on the request must
match the Actor attribute on the receiver. The sample projects contain clear
notes describing how to toggle the SoapActor attribute, in response to a dif-
ferent target URL from the sender.

Routing vs. WS-Referral

As we talk about routing, we are actually talking about both routing and referral.

The term routing refers to the infrastructure that enables SOAP messages to be

forwarded on to other destination endpoints. The term referral describes the

physical act of forwarding a message on. It is common practice to use the term

routing to describe the combined process of routing and referral.

Routing and Security

Remember that all Web service specifications are composable. Routing does not

implement any kind of security for referred messages. However, you can use WS-

Security in conjunction with routing to provide a security solution for the referred

messages. For example, you can digitally sign or encrypt incoming messages, as

you saw in the SOAPSender solution. Note that encrypted messages can pass

through intermediary routers even if those routers do not know how to decrypt

the message. Routing configuration is separate from the message contents. The

intermediary only needs to decrypt the message if this is required in order to make

a specialized routing decision. But in most cases this will not be necessary. If the

routers do need to decrypt the message and you use X.509 certificates for encryp-

tion, then you must ensure that each of the intermediary services has access to

the necessary keys. In fact, this applies whenever you use an X.509 certificate,

whether for digital signatures or encryption.

In a Chain routing model, it is likely that intermediary services will modify

the contents of an incoming SOAP request message. If the incoming SOAP mes-

sage is digitally signed, then the intermediary service will need to resign the

message before forwarding it on to the next service. However, as the SOAPSender

solution showed you, digital signature validation will not fail if the SOAP router

simply passes on the SOAP message to a destination endpoint, without altering

the message contents.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

247

There is no question that routing solutions add an administrative and devel-

opment burden to implementing a service-oriented architecture. And when you

add security policies into the mix, the burden will become even greater. It is likely

that future releases of WSE will include provisions to address this issue. To this

date, subsequent releases of WSE have always managed to reduce complexity

compared to earlier releases of the same features.

Routing vs. WS-Addressing

My first thought when I saw the WSE 2.0 WS-Addressing implementation was

whether it overlaps with the pre-WSE 2.0 releases for routing and WS-Referral.

There is no definitive answer to this question, but it seems very likely that the

WS-Addressing specification does indeed supercede the WS-Routing and WS-

Referral specifications for all SOAP routing models other than perhaps the Load

Balancing model.

The reason is that WSE 2.0 currently implements routing for the HTTP trans-

port protocol only. This model requires the service endpoints to be .asmx service

files or custom SOAP handlers. Either way, you need to configure a virtual direc-

tory to host the service. This can be a significant administrative burden if your

virtual network infrastructure includes multiple chained services. By compari-

son, the WS-Addressing specification is implemented for non-HTTP protocols,

such as TCP, which does not require you to configure a virtual directory.

NOTE WSE 2.0 supports routing for HTTP only due to a technical issue with
the Request/Response model and TCP. With the TCP protocol, the intermediary
does not know whether to hold a thread open to wait for a response. With
HTTP, the intermediary either receives a response or receives an HTTP 202
error. TCP-compliant intermediaries must be custom written.

Perhaps the clearest indication for potential overlap between routing and

WS-Addressing is the fact that WSE 2.0 continues to implement routing for the

HTTP transport protocol only. I believe this was a purposeful decision to avoid

implementing overlapping specifications that accomplish the same thing. In this

scenario, one specification will always be more efficient than the other.

You can further enhance your productivity with WS-Addressing by using

classes called SoapClient and SoapService, which are higher-level classes than

their counterparts SoapSender and SoapReceiver. The SoapClient and SoapService

classes automatically handle much of the plumbing code that SoapSender and

SoapReceiver require you to write for processing SOAP messages. I will not be

discussing these higher-level classes here, because they shield details that are

important to understanding how SOAP messaging actually works. In addition,

these classes are very easy to understand once you are comfortable with the

Chapter 9

248

lower-level SoapSender and SoapReceiver classes. But once you find yourself

writing the same kind of messaging code over again, then by all means use these

classes and avoid some manual coding.

NOTE WSE 2.0 provides support for routing, but does not implement the
WS-Routing specification. This is because the WS-Addressing specification
supercedes the WS-Routing specification. (The WS-Referral specification is
orthogonal to the WS-Routing specification.)

Integrate Web Services and MSMQ

This chapter ends with a bonus section that shows you one possible approach

for integrating Web services and message queuing (with MSMQ). I should quickly

point out that I am not going to show you how to create an MSMQ custom trans-

port channel. Instead, I am going discuss how to configure a message queue, and

then access it from a Web service using the System.Messaging namespace.

WSE 2.0 does not implement reliable messaging, nor does it provide any kind

of support for managing message delivery. If you want to implement this capability

today, then you will need to custom build the support infrastructure using MSMQ

(or another middleware product such as MQSeries).

Use MSMQ for Reliable Messaging

Consider the following application design for a StockTrader application for

mutual fund trades, which cannot be executed until after the stock exchange

closes for the day. Clients can send trade requests to their broker, but they will

be stored and processed later, once the stock exchange is closed. Here is the

workflow between the client and service:

1. A client decides that they want to place a mutual fund trade.

2. The client formats an XML message with the details of the trade and

sends it to the StockTrader Web service.

3. The StockTrader Web service receives the message but does not process

the trade immediately. Instead, the Web service drops the message into

a queue for later processing.

4. The StockTrader Web service formats an acknowledgment response

message to the client to let them know that the trade request has been

received, and that it will be processed shortly.

5. The client receives the response message.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

249

Figure 9-5. The Computer Management MMC snap-in, including MSMQ

Let’s implement this workflow using a TCP-based StockTrader Web service

that integrates with a message queue on its host server.

Create a Message Queue Trigger

Our first step is to create the message queue using MSMQ, and then to create

a message queue trigger, which will respond to incoming messages. MSMQ is

available with the Windows 2000 operating system and higher. If you do not have

MSMQ installed then, you can add it using the Control Panel ➤ Add or Remove

Programs option (select Add/Remove Windows Components from the selection

screen).

MSMQ is included under the Computer Management MMC snap-in, as

shown in Figure 9-5.

To create a new private queue, expand the Message Queuing node and right-

click the Private Queues subfolder. Expand and select the New ➤ Private Queue

menu option. Enter a name for the queue (I used wsmessaging) and click OK.

You will see the new queue listed under the Private Queues subfolder.

Chapter 9

250

Figure 9-6. Creating a new MSMQ message trigger

Next, expand the wsmessaging node, right-click the Triggers node, and select

the New ➤ Trigger menu option. You will see a property page, shown in Figure 9-6.

Enter the configuration information as shown, selecting the Retrieval processing

type.

Note that you are not creating a fully functional trigger that will fire off a process

when a message is received. Instead, you will allow the message to sit in the queue

so that you can examine its contents manually.

Create a Web Service That Uses MSMQ

The Web service is written as a TCP-enabled service, and is included in a sample

solution called StockTraderMSMQReceiver.sln. The solution includes a reference

to the System.Messaging assembly, which is not included with WSE 2.0, but is

instead a separate assembly within the .NET Framework.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

251

The Web service provides a Receive method that examines incoming SOAP

request messages. All messages with an action value of PlaceTrader are dropped

into the message queue. Listing 9-16 provides the code listing for the Receive

method and a helper method called AddSoapMessageToQueue.

Listing 9-16. A Web Service That Uses MSMQ

// This class represents the Request Receiver (i.e., the service)

public class StockTraderRequestReceiver : SoapReceiver

{

protected override void Receive(SoapEnvelope message)

{

if(message.Context.Addressing.Action.Value.EndsWith("PlaceTrade"))

{

bool status = false;

// Drop the incoming SOAP message to a queue, for later processing

status = AddSoapMessageToQueue(message);

// Generate a return status message

AcknowledgeMessage a = new AcknowledgeMessage();

a.AcceptedToQueue = status;

// Transform the result into a SOAP response message

SoapEnvelope response = new SoapEnvelope();

response.SetBodyObject(a);

// Create the URI address objects for send and receive

// Do not hardcode the URIs, pull them from original request message

// Send response to the request message's ReplyTo address

Uri toUri = (Uri)message.Context.Addressing.ReplyTo;

// Return response from the request message's To address

Uri fromUri = (Uri)message.Context.Addressing.To;

// Assign the addressing SOAP message headers

response.Context.Addressing.Action = new Action(➥

"http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote#PlaceTrade");

response.Context.Addressing.From = new From(fromUri);

SoapSender soapSender = new SoapSender(toUri);

// Send the SOAP request message

soapSender.Send(response);

}

}

Chapter 9

252

private bool AddSoapMessageToQueue(SoapEnvelope message)

{

bool status = true;

MessageQueue mq;

// Verify that the Queue exists

if (MessageQueue.Exists(@".\private$\wsmessaging"))

{

// Assign a reference to the queue

mq = new MessageQueue(@".\private$\wsmessaging");

// Drop the incoming message to the queue

mq.Send((SoapEnvelope)message, ➥

message.Context.Addressing.MessageID.Value.ToString());

}

else

{

// Error condition if queue does not exist

status = false;

}

return status;

}

}

Notice that the Receive method formats an acknowledgement message that

corresponds to a custom data type called AcknowledgeMessage, which is included

in both the Web service XML schema file and client proxy class file, and is also

shown in Listing 9-17.

Listing 9-17. The AcknowledgeMessage Custom Data Type

[System.Xml.Serialization.XmlTypeAttribute(Namespace=

"http://www.bluestonepartners.com/schemas/StockTrader/")]

public class AcknowledgeMessage

{

public bool AcceptedToQueue;

}

The sample project does not include code for processing the message because

this is beyond what I am trying to show. If you open the message queue in the

MMC console, you will see a new message in the queue. Figure 9-7 shows an

example of what the message body looks like. The property page displays both

the byte array and the readable message body. Notice the SOAP contents on the

right side of the figure.

Design Patterns for SOAP Messaging with WS-Addressing and Routing

253

Figure 9-7. The body contents for an MSMQ message

Implement the Web Service Client

The Web service client is written as a TCP-enabled console application, and is

included in a sample solution called StockTraderMSMQClient.sln.

The Web service client sends out a trade request and provides a Receive

method that examines incoming SOAP response messages. All messages with an

action value of PlaceTrader are dropped into the message queue. Listing 9-18

provides the code listing for the Receive method, showing how the client processes

the acknowledgement message.

Listing 9-18. A Web Service Client That Processes an Acknowledgement Message

// This class represents the Response Receiver (i.e., the client)

public class StockTraderResponseReceiver : SoapReceiver

{

protected override void Receive(SoapEnvelope message)

Chapter 9

254

{

if (message.Fault != null)

{

Console.WriteLine(message.Fault.ToString());

}

else

{

if (message.Context.Addressing.Action.Value.EndsWith(➥

"RequestQuote#PlaceTrade"))

{

// Deserialize the message body into an AcknowledgeMessage object

// Since we have screened the Action, we know

// what class to look for

AcknowledgeMessage a = ➥

(AcknowledgeMessage)message.GetBodyObject(➥

typeof(AcknowledgeMessage));

if (a.AcceptedToQueue)

{

Console.WriteLine("Your trade will be processed at 4PM EST today.");

}

else

{

Console.WriteLine("Your trade can’t be processed at this time.");

}

}

}

}

}

This concludes the discussion on the WSE 2.0 messaging framework, and the

discussion of one approach for integrating MSMQ with Web services.

Summary

The most challenging aspect of understanding the WSE 2.0 messaging frame-

work is in the concepts, not in the code. The code is straightforward, but the

concepts are difficult if you are used to working with the familiar HTTP Request/

Response model. The key to understanding messaging is to stop thinking in

Design Patterns for SOAP Messaging with WS-Addressing and Routing

255

terms of fixed clients and services and to instead think in terms of flexible sender

and receiver roles.

I began this chapter by reviewing several communication models for Web

services beyond classic Request/Response. I then discussed the WS-Addressing

specification, which provides important support functionality for Web services

that communicate over alternate transport channels, such as TCP.

Next I discussed the messaging, and showed you how to implement truly

asynchronous client-service communication using SOAP over TCP and the WSE

2.0 messaging framework classes. WSE 2.0 provides both lower-level and higher-

level classes that provide a consistent messaging framework independent of the

transport channel. The framework classes shield developers from the underlying

complexities of the transport layer, which increases productivity and makes it

relatively easy to implement a wider range of service-oriented solutions.

Next, you saw the routing and WS-Referral specifications, which provide

support for messages that are referred between multiple endpoints. I noted that

there is some overlap between the routing and addressing specifications.

Finally, I provided one example of how to integrate message queuing with

Web services. This approach does not implement MSMQ as an alternative trans-

port channel, but it is a good first step towards implementing reliable messaging.

The central focus of this book is to make you rethink what Web services are

all about, and nowhere is this more apparent than with the WSE 2.0 messaging

framework. This chapter marks the end of the discussion on WSE 2.0. Service-

oriented architecture is constantly evolving, so in the next chapter I will focus

beyond WSE 2.0, and show you what specifications and technologies are in store

for the near future.

257

CHAPTER 10

Beyond WSE 2.0:

Looking Ahead

to Indigo

TODAY, WEB SERVICES ENHANCEMENTS (WSE) 2.0 is the easiest way to implement

selected WS-Specifications in your .NET Web services and service-oriented

applications. WSE 2.0 provides developer support for building service-oriented

applications and infrastructure support for running them. Web services and

service-oriented applications require a lot of support to build and run. Developers

require classes that make it easier to work with messages without having to inter-

act with the raw SOAP. In addition, they require infrastructure support to make it

easier to run service-oriented applications. WSE 2.0 provides all of these levels of

support by providing

• A rich class framework for implementing important WS-Specifications

such as WS-Security and WS-Addressing.

• Infrastructure support, in the form of the WSE pipeline, which automati-

cally intercepts and processes incoming and outgoing SOAP messages.

• Infrastructure support for common service requirements, such as policy

verification (using WS-Policy). For example, WSE 2.0 automatically pro-

cesses XML-based policy framework files, which saves you from needing

to write additional processing code in both the service and the client.

WSE is very good at implementing discrete WS-Specifications such as

WS-Security and WS-Policy, which can be boiled down to a set of specific oper-

ations. But where WSE falls short is in being able to provide the infrastructure

support for broad-based WS-Specifications such as WS-Reliable Messaging,

which provide service guarantees for message delivery.

This is where Indigo and Longhorn (the next version of the Microsoft

Windows operating system) come into play. Indigo is the code name for a new

unified programming and infrastructure support model for service-oriented

Chapter 10

258

applications. It provides built-in support for message-oriented and service-

oriented architectures, built of course on the managed .NET Framework. Indigo

will greatly enhance developer productivity in these application areas.

There are many reasons why you should start learning about Indigo today.

The most important reason in my opinion is that you need to know how relevant

your existing service-oriented applications will be with a new support infrastruc-

ture such as Indigo. The questions you should be asking yourself are

• How will I build service-oriented applications in the future using Indigo?

• How do I preserve the existing investment that I have made in my XML

Web services and .NET Remoting development?

• What current technologies are going to be phased out in Indigo?

• Should I be using Web Services Enhancements (WSE) 2.0 today?

The purpose of this chapter is to give you a preview of Indigo from the per-

spective of where we are today with WSE 2.0. As you will see, every hour spent

learning and working with WSE is a worthwhile investment that is directly

applicable to Web service development with Indigo. This should be of no sur-

prise because Indigo is still based on the standards and specifications that we

are comfortable with today. Indigo does not reinvent the WS-Specifications, or

use exotic transport channels that we have never seen before. Instead, it pro-

vides a better support infrastructure for building service-oriented applications

that implement today’s important standards and specifications, including the

WS-Specifications. And best of all, Indigo is strongly oriented towards services

and messages.

Overview of Indigo

Indigo is an exciting technology because it unifies all of the concepts that have

been presented throughout this book. Developers today must contend with

a variety of different technology choices for building distributed applications,

including

• XML Web services (.asmx)

• Web Services Enhancements (WSE)

• .NET Remoting

Beyond WSE 2.0: Looking Ahead to Indigo

259

Figure 10-1. The high-level Indigo architecture (adapted from MSDN Magazine,
January 2004)

• MSMQ (provided by the .NET Framework System.Messaging namespace)

• Enterprise Services (The .NET Framework namespace for COM+)

These various technologies overlap and complement each other in different

ways. In many cases, an application requirement can be fulfilled with two or

more of these technologies. Perhaps the clearest example of a potential overlap

is with XML Web services and .NET Remoting. Both technologies operate on the

same principle, namely that they facilitate remote service invocation over

a defined transport channel. .NET Remoting solutions are generally more focused

on object invocation using Remote Procedure Calls (RPCs). On the other hand,

XML Web service solutions tend to be more focused on invoking services by pass-

ing message-based requests. But these differences are simply a function of what

the technologies are best at today. With today’s technology, you do have flexibility

and a choice on whether to deploy .NET Remoting versus XML Web services for

the same application solution. And where you do not, it is fair to ask why the

technologies should have different capabilities. After all, they are based on the

same concept: allowing remote service calls over a defined transport channel.

Figure 10-1 illustrates the high-level architecture for Indigo. Note that this

diagram is adapted from a January 2004 MSDN Magazine article on Indigo (see

the Appendix for detailed reference information).

There are five major areas within the Indigo architecture:

The Indigo service model: Provides general support for services and

messages. The service model provides programming and infrastructure

support for implementing and managing code as a message-oriented

service.

Chapter 10

260

The Indigo connector: Provides communications support for services

and messages, including multiple transport channels, ports, and built-in

support for reliable message delivery. The connector provides the infra-

structure that allows your service to exchange messages with the outside

world in a secure, reliable fashion.

Hosting environments: Provides support for several different hosting

environments for message-oriented services, including traditional

IIS-based ASP.NET hosting.

Messaging services: Provides support for managing messages, including

message queuing and routing. Messaging services provides the func-

tionality that we currently associate with MSMQ.

System services: Provides support for transactions and other low-level

system support infrastructure that is complex and which needs to be

managed by the framework on behalf of the service.

Let’s review each of these areas in more detail.

The Indigo Service Model

The Indigo service model provides a wide range of support for service-oriented

Web services, including

• Associating Web methods with incoming service messages

• Session management for Web services

• Transaction management for Web services

• Support for security and policy

• Support for reliable message exchange

Indigo contains built-in support for many of the tasks that are currently

handled by Web Services Enhancements 2.0. In a sense, WSE 2.0 is a prerelease

of the Indigo service model. Of course, WSE 2.0 is not completely built out, and

certain tasks still require you to write manual code. Indigo will integrate the WSE

2.0 functionality in a much tighter way. But there is no better preparation for

Indigo than to start working with WSE 2.0 and all of the subsequent releases

leading up to the release of Indigo (as part of the Longhorn operating system).

Indigo associates Web methods with incoming service messages using a set

of declarative attributes. The service model operates in a similar way to .asmx

files, which allow you to declaratively mark up methods and to associate them

Beyond WSE 2.0: Looking Ahead to Indigo

261

with incoming Web requests. Today, .asmx files provide a [WebMethod] attribute

for marking methods. Tomorrow, Indigo will provide a [ServiceMethod] attribute

for marking up methods.

The qualified data types that are used by Web services can be represented as

typed objects, and manipulated directly in code, without having to process the

raw SOAP and XML directly. Listings 10-1 and 10-2 illustrate this point with

a custom data type called Trade. Listing 10-1 displays the qualified XML for the

data type, while Listing 10-2 displays its object representation.

Listing 10-1. XML for the Trade Custom Data Type

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema id="StockTrader"

targetNamespace="http://www.bluestonepartners.com/Schemas/StockTrader/"

elementFormDefault="qualified"

xmlns="http://www.bluestonepartners.com/Schemas/StockTrader/"

xmlns:mstns="http://www.bluestonepartners.com/Schemas/StockTrader/"

xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">

<xs:complexType name="Trade">

<xs:sequence>

<xs:element name="TradeID" type="xs:string" />

<xs:element name="Symbol" type="xs:string" />

<xs:element name="Price" type="xs:double" />

<xs:element name="Shares" type="xs:int" />

<xs:element name="tradeType" type="TradeType" />

<xs:element name="tradeStatus" type="TradeStatus" />

<xs:element name="OrderDateTime" type="xs:string" />

<xs:element name="LastActivityDateTime" type="xs:string" />

</xs:sequence>

</xs:complexType>

</xs:schema>

Listing 10-2. Object Representation for the Trade Custom Data Type

[System.Xml.Serialization.XmlTypeAttribute(➥

Namespace="http://www.bluestonepartners.com/schemas/StockTrader/")]

public class Trade {

public string TradeID;

public string Symbol;

public System.Double Price;

public int Shares;

public TradeType tradeType;

public TradeStatus tradeStatus;

public string OrderDateTime;

public string LastActivityDateTime;

}

Chapter 10

262

Today, ASP.NET gives you the flexibility to work with raw SOAP and XML

directly, or to interact with object representations instead. Indigo will continue

to support this approach, allowing you to work with either. Not only are typed

objects easier to work with, but they are also managed, custom .NET class frame-

work types, which means that you get all the support of the managed .NET

runtime, including trustworthy compilation. If you interact with the raw XML

directly, then you lose this automatic verification that you are using the custom

data type correctly.

In service-oriented architecture, Web services provide WSDL-based interfaces,

and all of the nonstandard data types are represented by qualified XML schemas.

Even the interface methods themselves can be described using XML, and can be

included in a reference schema file for the Web service. I focused on this in great

detail in Chapters 3 and 4.

To use SOA terminology, service-oriented components support and conform

to contracts. The term contract implies a formal, established agreement between

two or more parties. Indigo formalizes data constructs and message constructs

as contracts, and defines them as follows:

Data contracts: These are analogous to XML schema files, and they doc-

ument the data types that a Web service supports and exchanges.

Service contracts: These are analogous to WSDL document definitions,

specifically the <portType> and <message> sections of the WSDL docu-

ment. Service contracts document the messages that a Web service

supports, both for request and response messages.

Listing 10-3 illustrates a portion of the StockTrader Web service WSDL file,

showing the <portType> and <message> definitions related to the PlaceTrade

Web method.

Listing 10-3. Excerpt from the StockTrader Web Service WSDL File Showing the
<portType> and <message> Definitions

<portType name="StockTraderServiceSoap">

<operation name="PlaceTrade">

<input message="tns:PlaceTradeSoapIn" />

<output message="tns:PlaceTradeSoapOut" />

</operation>

</portType>

<message name="PlaceTradeSoapIn">

<part name="Account" element="s0:Account" />

<part name="Symbol" element="s0:Symbol" />

<part name="Shares" element="s0:Shares" />

Beyond WSE 2.0: Looking Ahead to Indigo

263

<part name="Price" element="s0:Price" />

<part name="tradeType" element="s0:tradeType" />

</message>

<message name="PlaceTradeSoapOut">

<part name="PlaceTradeResult" element="s0:Trade" />

</message>

The purpose of Listings 10-1 through 10-3 is ultimately to show you that the

service-oriented concepts you have learned in this book apply to Indigo, and that

Indigo implements very familiar service-oriented concepts, despite supporting

a very different class framework than the current ASP.NET class framework.

The Indigo service model will end up being where you as a developer spend

much of your time working because it provides the programmatic classes and

the declarative attributes for your service-oriented applications.

The Indigo Connector

The Indigo connector provides transport-independent support for message-

based, service-oriented applications. Recall Chapter 2, where I discussed WSDL

elements such as ports and bindings. These elements play an important role in

the Indigo connector because they govern how services provide endpoints for

message requests.

The three most important Indigo connector elements are

Ports: These provide URI-accessible endpoints for delivering messages

to a service.

Transport channels: These provide a way to deliver messages, and they

are based on established protocols, including HTTP, TCP, and IPC.

Message channels: These channels operate in conjunction with the

transport channels, and provide additional message delivery support,

including reliable message delivery.

Security support for message-oriented communications is provided through-

out the Indigo framework, including within the Indigo connector. Indigo provides

three types of security support for messages:

Session-based security: Session-based support uses an on-demand ses-

sion key to provide encryption and digital signatures. This mode closely

follows the approach taken by the WS-Secure Conversation specification,

which is discussed in detail in Chapter 8.

Chapter 10

264

Message-based security: Provided for reliable messaging scenarios

where the receiver may not be online at the time that the message is

received. Message-based security ensures that message integrity and

security are provided during asynchronous communication between

a sender and receiver.

Transport-level security: Using a direct security protocol such as Secure

Sockets Layer (SSL) which automatically provides message encryption

and signatures, based on digital certificates.

As with the Indigo service model, WSE 2.0 and today’s ASP.NET Web services

clearly prepare you for working with the future Indigo connector. Make sure that

you understand the concepts that are presented in Chapter 2 on the WSDL doc-

ument. The Indigo connector rolls up all of these concepts and more, including

transport and communication channels, and message security.

Hosting Environments

ASP.NET Web services must currently be hosted within a virtual directory man-

aged by Internet Information Service (IIS), and they will only communicate over

HTTP. With WSE 2.0 you have additional messaging capabilities, so you can build

TCP-based services in addition to HTTP-enabled services. TCP-enabled services

do not have to be hosted by IIS, although they must be running at all times and

listening on a defined port. WSE 2.0 also provides the Interprocess Communication

(IPC) transport protocol.

Indigo expands the number of available hosting options for services, and also

introduces on-demand services. These are activated by the Indigo framework

when it identifies a targeted incoming service request message that is intended for

a specific service. The other available hosting options in Indigo are not necessarily

new, but the difference is that Indigo provides a good level of automated support

for different hosting environments, which makes it easier for you to deploy your

services. Here are some examples of hosting environments that Indigo supports:

• ASP.NET: Traditional IIS-based, HTTP-enabled hosting environment

• Windows Service: A hosting environment for TCP-enabled services

• DLLHost: A hosting environment for IPC-enabled services

This list is not comprehensive; it represents just some of the available host-

ing environments and just some of the possibilities for using them.

It is important to note that the hosting environment is independent of a Web

service’s data and service contracts. As a developer, you can create your Web services

Beyond WSE 2.0: Looking Ahead to Indigo

265

and service components independently of the intended hosting environment.

Indigo will relay messages across to your services equally well in all of the sup-

ported environments.

Messaging Services

Today, MSMQ-based applications support message queues for reliable message

delivery, and they also support a trigger-based event model that fires up the

application code when an incoming message is received. Today, messaging appli-

cations that are built around MSMQ are almost considered to be a nonstandard

type of application. If they were standard, then all of us would be incorporating

message queues into every application that we built. Of course this is not the

case, largely because it creates a level of overhead that is considered unnecessary

for many applications.

But in service-oriented applications, reliable message delivery is not an

abstract concept; instead, it represents a quality of service expectation on the part

of your clients. Message delivery and the potential for message loss are critically

important to service-oriented applications. Indigo provides built-in messaging

support, including message queues and events, and makes it easier for you to

implement reliable messaging in your service applications. Indigo will provide

a set of classes for interfacing with the messaging infrastructure.

Today’s WSE 2.0 does not natively integrate with MSMQ, which is essentially

just an alternate transport channel for messages. With some effort, you could cus-

tom integrate MSMQ with WSE today as a transport channel, although this is an

advanced programming task. Alternatively, you could take a simpler approach

and have your service simply interact with an MSMQ queue that you configure

separately. The .NET Framework provides a namespace called System.Messaging,

which allows you to interact with an MSMQ queue.

You can expect that a future version of WSE will support MSMQ as a new inte-

grated transport channel. It is very likely that this will happen because of the fact

that reliable message delivery is so important to service-oriented applications.

System Services

This category represents a catch-all of features, many of which provide

infrastructure-level support that may be fully out of direct sight, but which is

working on your behalf nonetheless. The System services includes infrastructure-

level support for transactions (via a distributed transaction coordinator) and

security. The security portion of the System services are expected to support the

WS-Federation specification, which allows you to set up and manage trusted

communications across application and domain boundaries. This is not the same

Chapter 10

266

thing as the WS-Secure Conversation specification, which I discussed in Chapter

8. However, there are shared concepts between the two specifications.

Understanding Indigo Web Services

One of my first thoughts when I heard about Indigo was whether Indigo Web ser-

vices would be different compared to ASP.NET Web services. And if so, how would

they differ? The good news is that while Indigo Web services are different, they

still retain the core characteristics of a traditional ASP.NET Web service, but with

even more functionality and flexibility. Indigo Web services support the standard

WSDL and SOAP specifications, in addition to the extended WS-specifications.

What Is an Indigo Web Service?

Traditional .ASMX pages can still be used within Indigo, which will interoperate

with them in addition to supporting a newer form of Web service. ASP.NET-style

Web services will continue to be limited within Indigo to simple HTTP-based

Request/Response message patterns. However, Indigo Web services will provide

all of the extended communication capabilities that WSE 2.0 provides (and

more) including alternate transport protocols and true asynchronous and one-

way communications.

The characteristics of an Indigo Web service are documented in the

Longhorn SDK as follows:

• Secure communication across any number of intermediaries, including

firewalls.

• Participate in widely distributed transactions.

• Encapsulate two way conversations that allow clients and servers to send

messages in both directions.

• Provide guarantees about the reliability of message delivery.

• Support situations requiring scalability, such as Web service farms.

• Support advanced features even with participants that are not built on

Microsoft platforms.

• Enable developers familiar with the .NET Framework to build messaging

applications without knowing anything about XML or SOAP.

Beyond WSE 2.0: Looking Ahead to Indigo

267

• Enable developers familiar with XML Web services to leverage their XML,

WSDL, and SOAP knowledge to work with XML messages described by XSD.

• Support smooth management of deployed applications.

Indigo Web Services vs. Indigo RemoteObjects

The two types of distributed objects that you can build with Indigo are Web ser-

vices and so-called RemoteObjects. Both service types provide the same benefits

of Indigo: secure, reliable, transacted message delivery and processing.

RemoteObjects are the functional equivalent of .NET Remoting solutions;

namely, they are RPC-style distributed objects that can communicate across

a small or large domain area, from an intranet to an internet. The important

limitation with RemoteObjects is that Indigo must be installed both at the

sender and at the receiver. If type fidelity is important, then you should choose

to build RemoteObjects. This is because RemoteObjects can serialize and trans-

port objects exactly. In contrast, Web services must approximate their data

types using XML schema files, which are accurate for standard data types and

for custom data types that are a compilation of standard data types. However,

XML schema files will not accurately represent more exotic data types such as

specific integer and floating point data types.

For interoperability, you should always choose Indigo Web services over

Indigo RemoteObjects. Indigo Web services do not require both the sender and

the receiver to have Indigo installed, although they do require that both sender

and receiver conform to standard WS-I specifications, including SOAP and WSDL.

Security-wise, Web services are more secure than RemoteObjects across

application domains that cross trust boundaries (meaning that you do not have

a trusted or established relationship with the other party). This is because Web

services implement advanced specifications, including WS-Security and WS-Secure

Conversation. In addition, Web services work with digital certificates (and other

security tokens) very easily. You can certainly leverage these in RemoteObjects as

well, but the supporting infrastructure is not as well developed, and you will need

to write much more manual code compared with the limited amount of support

coding required in Web services.

Scalability-wise, RemoteObjects are optimized for communications within

the same process, or across different processes that are on the same computer.

Traditional ASP.NET Web services are built for interoperability more than for

scalability. It remains to be seen what performance advances Indigo Web ser-

vices have made by comparison.

Web services and RemoteObjects preserve similar clear choices to what we

have today with ASP.NET Web services and .NET Remoting.

Chapter 10

268

CLIENT

SERVICE

SERVICE

Figure 10-2. High-level schematic architecture for an Indigo application

Understanding Indigo Applications and Infrastructure

Indigo applications decouple the messaging and transport layer from the service

layer, which allows you as the developer to focus on programming the service

without having to worry about implementing the lower-level communications

infrastructure. The service layer is built using the class framework that is pro-

vided by the Indigo service model. It includes classes that allow you to interact

programmatically with the messaging layer.

In this section, I will review five important aspects of Indigo that provide

support for managing and processing service-oriented applications:

• The Indigo service layer

• Ports

• Typed channels

• Service managers

• Transports and formatters

The Indigo Service Layer

Figure 10-2 illustrates the high-level schematic architecture for a typical

message-based, service-oriented application that you might build using Indigo.

Beyond WSE 2.0: Looking Ahead to Indigo

269

The application architecture uses arrows to describe the path that a message

takes between service endpoints. Although they are not shown in the diagram,

the service endpoints are located where the arrow head contacts the client or

service. Another interesting aspect of this diagram is the chained path that the

messages take. Indigo supports this level of complex message pathways because

of its infrastructure-level support for addressing and routing specifications. Finally,

the diagram makes no mention of a specific transport channel. This implicitly

emphasizes Indigo’s most important advantage of not having to factor in the

transport and messaging infrastructure into the application design. In contrast,

today’s ASP.NET Web services that leverage WSE 2.0 still require the developer to

write manual code that is specific to alternate transport channels, such as TCP.

In Indigo, the service is the basic component of an application, and it sup-

ports a special kind of object called a typed channel that is equivalent to today’s

proxy objects for Web service clients. The typed channel provides an interface for

sending and receiving messages between service components. Indigo provides

a utility called WSDLgen.exe, which is similar to today’s wsdl.exe utility, and which

allows you to generate proxy class files for clients to use for accessing your service.

Typed channels are independent of the actual objects that process the ser-

vice request. Indigo employs Service Manager objects that are responsible for

mapping typed channels to their associated business objects, including the

DialogManager and ListenerManager objects.

The Indigo service layer automatically handles the receiving, processing, and

sending of messages, including all of the serialization work that is required to build

and process a message. This is very similar to the way that the ASP.NET infrastruc-

ture processes messages that are received and sent via an .asmx Web page. Indigo

provides the Service object for its services, which is conceptually equivalent to the

ASP.NET WebService object. The Service object provides you with programmatic

access to the underlying messaging and transport infrastructure.

The Indigo service layer also supports a special kind of service called

RemoteObjects, which is functionally equivalent to today’s .NET Remoting–enabled

solutions in that it allows you to invoke remote distributed objects, while preserving

object type fidelity during transport. RemoteObjects uses RPC-style communica-

tions, and like .NET Remoting, it can be used for both interprocess communications

and internet communications that operate across different application domains.

Ports

Service-oriented applications send and receive messages to SOAP endpoints. In

Indigo, the Port object defines two things:

1. Service layer information, including the operations that the service sup-

ports, and

2. The supported transport mechanisms and wire formats (e.g., SOAP 1.2

encoding over HTTP)

Chapter 10

270

As I have done throughout this chapter, I want to emphasize the tie-in

between Indigo technology and today’s technology. The Indigo Port object is

equivalent to a WS-Addressing construct called the endpoint reference. In

Chapter 9, I discussed endpoint references, which are equivalent to the <ser-

vice> element in the WSDL document, and which provide both addressing and

binding information for a Web service. Listing 10-4 provides an excerpt from

the StockTrader WSDL document showing how the <service> and associated

<binding> tags work together to document the location of a service, and the

operations that it provides.

Listing 10-4. Excerpt from the StockTrader Web Service WSDL File Showing the
<service> and <binding> Definitions

<service name="StockTraderService">

<port name="StockTraderServiceSoap" binding="tns:StockTraderServiceSoap">

<soap:address location="http://localhost/StockTrader/StockTrader.asmx" />

</port>

</service>

<binding name="StockTraderServiceSoap" type="tns:StockTraderServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="RequestAllTradesSummary">

<soap:operation

soapAction="http://www.bluestonepartners.com/schemas/StockTrader/

RequestAllTradesSummary" style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

<!- Additional operations are not shown ->

<operation />

</binding>

The WS-Addressing specification takes this concept one step further by

encapsulating addressing, binding, and security policy information within a

single reference, as shown in Listing 10-5.

Beyond WSE 2.0: Looking Ahead to Indigo

271

Listing 10-5. Endpoint Reference XML

<wsa:EndpointReference>

<wsa:Address>soap.tcp://stocktrader.com/StockTrader</wsa:Address>

<wsa:ReferenceProperties>

<st:AccountID>123A</st:AccountID>

</wsa:ReferenceProperties>

<wsa:PortType>st:StockTraderSoap</wsa:PortType>

<wsp:Policy/>

</wsa:EndpointReference>

You can clearly see how the Indigo Port object maps to familiar constructs

such as endpoint references and the WSDL <service> and <binding> definitions.

The Indigo Port object is tied into an extended processing pipeline that sup-

ports common message-processing features, including security, policy, routing,

and transactions. When you write a service method, you need to add attributes

for each of the specifications that you want to implement; for example, you can

specify authorization access for a specific user or role. Assuming that the incom-

ing message includes the right specification information, it will be routed through

the Port object and into an extended processing pipeline. You can programmati-

cally control the processing further by modifying property settings on one or more

dedicated manager objects. For example, security processing is handled by the

SecurityManager object.

Listing 10-6 provides a very simple example of an Indigo service method,

showing the annotations that you require for specifying basic authorization

security processing.

Listing 10-6. An Indigo Service Method Specifying Authorization
Security Processing

[DatagramPortType(Name="PlaceTrader", ➥

Namespace="http://www.tempuri.org/quickstarts")]

public class Hello

{

[ServiceSecurity(Name = "Brokerage", Role = "Traders")]

[ServiceMethod]

public string PlaceTrade(string Account, string Symbol, int Shares, ➥

System.Double Price, TradeType tradeType)

{

// Code to execute trade not shown

return ("Your confirmation code is: " + TradeID);

}

}

Chapter 10

272

This service must still implement a policy framework file to specify authenti-

cation security, such as encryption and digital signature requirements.

Typed Channels

A typed channel is similar to a Web service proxy object, which provides a typed

object representation of the Web services WSDL interface. In a similar fashion,

an Indigo typed channel provides a typed object reference to a messaging end-

point and its associated operations.

In order to create a typed channel, you need to first create the Web service and

define its methods. This in turn defines a WSDL interface, which you can then

extract automatically (for example, you can append ?WSDL to the Web service URI,

in order to review the WSDL document). Finally, you can use a code-generation tool

to generate a proxy class based on the WSDL file. Today, we have a utility called

wsdl.exe. Indigo ships with an equivalent utility called WSDLgen.exe.

The output of the code-generation utility is the typed channel, which pro-

vides a proxy representation of the WSDL interface as a managed object.

Service Manager

The Service Manager objects do all of the heavy lifting in processing messages and

providing the support infrastructure for managing communications. Table 10-1

summarizes the important Service Manager objects and their purpose.

Table 10-1. The Indigo Service Manager Objects

Service Manager Description

ListenerManager Used by user-mode listener implementation to handle

Listener messages and perform the appropriate actions on

the router, service environment

PolicyManager Provides support for consuming, applying, processing,

and generating policy on a specific port

RemotingManager Manages the Indigo remoting infrastructure

RequestReplyManager Creates SendRequestChannel objects through which

messages can be sent and replies received

RoutingPolicyManager Controls the consumption and application of routing and

transport policy

RuleManager Represents the factory for rules, and through its

namespace hierarchy, the associated properties

Continued

Beyond WSE 2.0: Looking Ahead to Indigo

273

Table 10-1. The Indigo Service Manager Objects (continued)

Service Manager Description

SecurityManager Controls application security requirements either

programmatically or using application and machine

configuration files

ServiceManager Manages the associations between communication channels

and service instances; registers services; and produces typed

channels to make requests of other services

TransactionManager Represents the base class for a transaction manager

DialogManager Manages creation and deletion of the participants in

a dialog

The Service Manager objects work with the Port object as extensions into

a processing pipeline for incoming and outgoing messages. Service Managers

automatically process messages as long as the associated service method has the

appropriate annotations. Figure 10-3 shows the architecture of the port process-

ing pipeline, including Service Managers.

RequestReplyManager RuleManager

The Port Processing Pipeline: Receive Channel

Incoming MessageProcessed Message

Figure 10-3. The port processing pipeline architecture

Transports and Formatters

The transport and formatter layer is the low-level infrastructure that sits below

the activity that is occurring in the port processing pipeline. You will rarely need

to interact with the transport and formatter layer directly, beyond specifying

what the service will support. You can also specify directional message transport

information, such as whether a service is receive-only or is enabled for both send

and receive operations.

The transport and formatter layer is what enables messages to be moved

across the wire. Indigo supports a wide range of transport protocols, as shown in

Chapter 10

274

Table 10-2, which indicates the associated Indigo object that abstracts the trans-

port protocol information.

Table 10-2. Indigo-Supported Transport Protocols

Protocol Indigo Object

HTTP HttpTransport

POP3 Pop3Transport

SMTP SmtpTransport

SOAP SoapTransport

TCP TcpTransport

InProc InProcessTransport (on the same machine)

CrossProc CrossProcessTransport (on the same machine)

The transport and formatter layer delegates message serialization (and deseri-

alization) to a dedicated object called the MessageFormatter, which is responsible

for translating a byte stream between a formatted message and an in-memory

Message object representation of the message.

How to Get Ready for Indigo

Most developers are understandably ambivalent about a major upcoming release

like Indigo. On the one hand, we welcome advancements in technology and the

improvements in functionality and productivity that it will hopefully bring. On the

other hand, we dread having to learn a new way of doing things, and we wonder

whether we will be able to migrate our existing code to the new infrastructure.

These are valid concerns, especially with Indigo. But the issue is less about

Indigo changing things than it is about things needing to change. Developers

today are faced with multiple and often competing technologies for building dis-

tributed applications, including the classic choice between XML Web services

versus .NET Remoting. Certainly, there are cases where there is no overlap and

no ambivalence, and where one technology is clearly the better choice than

another. But these technologies share too much in common to be treated differ-

ently. They are simply variations of the same technology. In the case of XML Web

services and .NET Remoting, they are both concerned with remote, distributed

object and service invocation over a defined transport channel.

Microsoft is starting to address developer concerns by providing guidelines

for how to get ready for Indigo. They are already making sure to bring this topic

Beyond WSE 2.0: Looking Ahead to Indigo

275

up at professional conferences, and they will certainly continue to do so until

the release of Indigo. There has simply been too much investment in existing

technologies for them not to.

Indigo is obviously not a replacement for the entire set of .NET Framework

functionality. Instead, it is focused on supporting distributed, service-oriented

applications with security, transaction support, and reliable messaging. Indigo

primarily extends five core technologies that are available today:

• ASP.NET Web services (built with .asmx pages)

• Web Services Enhancements (WSE)

• .NET Remoting

• System.Messaging

• System.EnterpriseServices

Microsoft has stated that they will make the migration to Indigo from cur-

rent technologies a straightforward process. Here are some guidelines on how to

get ready for Indigo today, based on professional conferences, published white-

papers, and conversations with members of product development teams:

• Build services using .asmx pages.

• Use WSE 2.0 for additional, extended functionality, including security, pol-

icy, and secure conversation.

• Build qualified XML schema files for all custom data types used by the ser-

vice.

• Use managed framework classes for integrating your services with MSMQ

message queues, and with COM+ components. Use the managed

System.Messaging namespace for MSMQ, and the

System.EnterpriseServices namespace for COM+ components.

• Avoid using the HTTP Context object in your .asmx pages.

• Avoid using .NET Remoting sinks and channels.

Given that WSE 2.0 is such an important part of this book, let’s look in more

detail at how you can use the toolkit to prepare for Indigo.

Chapter 10

276

WSE 2.0 and Indigo

WSE 2.0 allows developers to become early adopters of the next generation of

service-oriented application technology. Every hour that you spend working with

WSE 2.0 is an hour that you have contributed towards Indigo. Applications that are

built using WSE should migrate smoothly to the Indigo framework, with only minor

modifications required. The caveat is that WSE is expected to undergo several revi-

sions and releases prior to the release of Indigo. If you choose to implement WSE

today, then you should expect to accommodate changes to WSE between now and

the release of Indigo. For this reason, WSE 2.0 should not be used as the basis for

production-level applications unless you are prepared to make multiple revisions.

The one thing lacking with WSE 2.0 is that it does not provide wide system-

level or infrastructure-level support for the enterprise aspect of service-oriented

applications. Specifically, it does not provide support for transactions or reliable

messaging. Certainly, WSE 2.0 provides many of the required parts, but it does

not provide the whole. For example, WSE 2.0 provides support for message address-

ing, and it also integrates with MSMQ via the System.Messaging namespace classes.

So WSE 2.0 gives you the ability today to custom build a service-oriented appli-

cation that implements “reliable” messaging (via MSMQ) and which can process

message addressing information and provide message correlation. But this is not

the same as a built-in support infrastructure that manages these tasks for you.

These limitations are not a weakness of the WSE 2.0 technology. They simply

underscore two things:

1. Infrastructure support for message-based, service-oriented architecture

is most effectively handled at the operating system level. This level of

support must wait until a future release of the operating system (i.e.,

Longhorn).

2. WSE 2.0 allows early adopters to start designing and building their code for

the future Indigo infrastructure. More importantly, it gets developers think-

ing about application design in new ways. There is a large conceptual jump

between traditional RPC-based applications and message-based, service-

oriented applications.

With this being said, let’s review the major feature areas of WSE 2.0 (which

you should by now feel very familiar with) and explain where they fit within the

Indigo framework:

Security and policy specifications: The WS-Security and WS-Policy

specifications are supported by the Indigo connector.

Beyond WSE 2.0: Looking Ahead to Indigo

277

Messaging specifications: Indigo provides Messaging services that sub-

sume the functionality currently provided by MSMQ. In addition, it

provides support for reliable messaging. WSE does not currently provide

comprehensive support for the WS-Reliable Messaging specification,

but it does provide some of the component parts that you can cobble

together to approximate the specification. Specifically, WSE includes

support for WS-Addressing, and it integrates with MSMQ via the man-

aged System.Messaging namespace.

Routing and referral specifications: Indigo includes these within its

Messaging services functionality.

Alternate transport channels: Indigo provides support for several trans-

port channels, including HTTP, TCP, and IPC. WSE 2.0 currently provides

support for the same three channels, so you can begin coding with them

today.

In closing, I hope that this book has ultimately convinced you of three

important things:

1. Message orientation and service orientation are the way to go.

2. Indigo provides a welcome level of support for this technology, which

will increase developer productivity and minimize confusion by unify-

ing today’s disparate technologies.

3. WSE 2.0 is an excellent way for developers to become early adopters

for Indigo.

Good luck with your future adventures in service-oriented architecture!

Summary

Indigo provides infrastructure and programming support for service-oriented

applications. It is focused on messages, and provides support for creating mes-

sages, for delivering messages, and for processing messages. With Indigo, there

is less ambiguity in your services: The infrastructure forces you to be message

oriented, and to work with well-qualified XML-based data types.

Indigo is built on five major areas:

Chapter 10

278

• The Indigo service model: Provides support for processing incoming ser-

vice request messages

• The Indigo connector: Provides support for communicating with services

reliably and securely

• Hosting environments: Provides several different hosting options for services

• Messaging services: Provides reliable messaging support

• System services: Provides a wide range of support infrastructure, includ-

ing for transactions and trusted communications

WSE 2.0 allows early adopters to start building service-oriented applications

today, using the next generation of service-oriented and message-oriented tech-

nologies. Working with WSE 2.0 provides you with excellent preparation for Indigo.

In addition, you should be familiar with Microsoft’s guidelines for how to tailor

today’s development to be more compatible with Indigo-based applications in

the future.

A
abstract classes, 50
abstract description elements, 20–21,

22–27
AcknowledgeMessage custom data type,

252
Add Web Reference Wizard, 59–61, 134
Addressing namespace, 222–223
architecture. See also SOA

client interactions with Web service,
40–44

Indigo, 259
n-tier application, 7
port processing pipeline, 273
secure conversations, 190
service layer for Indigo, 268–269
service-oriented Web services, 10–13,

67–68
Web service clients, 41

ASP.NET
permissions for X.509 certificates,

117–120
read-write access for worker process,

245
WSE API and, 105–110

AssignSecurityContextToken Web
method, 203

asymmetric encryption
defined, 140
setting up, 141–142
using, 114

asynchronous communications,
217–218

attributes
reflection, 52, 73
XML serialization, 50–52

authentication
authorization and, 177
defined, 123
WS-Security specification for, 124

authorization
defined, 123
defining with custom token manager,

183–185
design pattern for, 177–178
making within Web method, 178
overview, 185
role-based, 176–177
shared Windows group policy-based,

181–183
autogenerating proxy classes, 34, 61–62

B
<binding> element, 21, 27–28, 35
bibliography. See references
BinarySecurityToken class, 130
business assemblies, 77–79. See also

eCommerce businesses
business logic in, 70, 79
function of dedicated, 71–72
implementing business interface,

72–73
pseudo-code listing for

StockTraderBusiness, 78
steps for creating, 78

business façade
defined, 10
function of, 12–13
illustrated, 10

C
Certificate Authorities, 150
Certificate Manager snap-in, 115
certificate stores

about, 115–116
retrieving certificates from, 119, 120

certificates. See also X.509 certificates
difficulties working with, 142
retrieving by key identifier, 119, 120
test, 115, 141
using in SOA, 115

chain routing
defined, 238
illustrated, 239
security for, 246

client console applications
secure conversation clients, 204
StockTraderContracts Web service,

86
client proxy class. See also proxy classes

architecture for interactions with
Web service via, 50–44

generating, 34, 58–61
security context token generated

from STS provider’s, 206
clients. See also secure conversation

clients
access to WSE API, 109–110
acknowledgement message from,

253–254
architecture for interactions with

Web service, 40–44

293

Index

clients (continued)
building for secure conversations,

194–195, 203–210
call for RequestQuote Web method,

85–86
creating for WSStockTraderSecure,

134–137
creating WSStockTraderSecure Web

service, 134–137
implementing web service, 39, 61–65
issuing security context tokens back

to, 191
loosely and tightly coupled, 73–74, 82
proxy class file for, 39, 58–61
request for security context tokens,

194, 206–207
RequestStockQuote method for, 208
unsigned code listing for, 135
using security context token for

communications, 191
code-behind files

designing for SOA applications, 69
implementing IDF for, 39, 54–56

command-line tools
makecert.exe, 141
wsdl.exe, 34, 38, 53–54, 58–59
xsd.exe, 38, 53

communication models for Web
services, 216–218

composability of Web services, 97–98, 99
Computer Management MMC snap-in,

249
concrete implementation elements,

20–21, 27–28
Configuration Editor

creating XML markup for policy files,
172–173

defined, 102
General tab settings, 113
generating configuration class and

SOAP extension type, 104
implementing WS-Policy

specifications in, 176
menus, 112

connector for Indigo, 260, 263–264, 278
consumers. See service consumers
content-based routing, 238, 239
Current User certificate store, 116, 117
custom token manager

creating, 193, 197–200
defining for authorization, 139–140
registering in web.config file, 198
troubleshooting, 200

D
<definitions> root element, 20, 35
data contracts, 262

data types
AcknowledgeMessage custom, 252
building XSD schemas for, 38, 46–48
designing, 38, 44–46
including message as custom, 57
Indigo object representation for, 261
XML for trade custom, 261

definition assemblies, 74–77
creating Web service based on type, 72
interface definition files vs., 74–75
overview, 71
StockTraderTypes, 71, 75, 76–77

delegation in RequestQuote Web
method, 80–81

description and discovery Web services,
99

design patterns, 40
digital certificates. See certificates
digital signatures

adding, 130–137
digitally signing SOAP request

message, 109
looping through, 137–138
modifying Web service to process,

137–140
signing process with X.509

certificates, 129–130
tokens for generating, 127–128
UsernameToken security token,

128–129
WS-Security specification for, 124

documents. See WSDL documents

E
eCommerce businesses. See also

business assemblies
business functionality in service-

oriented Web services, 69–71
workflow for, 1–2

encryption
asymmetric, 114, 140, 141–142
kinds of, 140
overview, 150–151
SOAP request messages, 140–146
SOAP response messages, 146–150
WS-Security specification for, 124

endpoint references
about, 221–222
Indigo Port object and, 270
XML, 221, 271

environment variables, 54
Extensible Markup Language. See XML

F
formatters, 273–274
further reading. See references

Index

294

G
General tab of Configuration Editor, 113
generating WSDL documents, 33–34
GetSigningToken Web method, 201, 202

H
hosting environments in Indigo, 260,

264–265, 278
HTTP (HyperText Transport Protocol)

registering SoapReceiver class using,
236

Request/Response model of, 215
SOAP messaging over, 235–236
TCP vs., 225–226
WSE 2.0 support for, 225, 247

HTTPS (HyperText Transport Protocol
Secure), 189

I
IDFs (interface definition files), 48–56

avoiding WSDL documents as
reference point for, 70

creating for code-behind file, 39,
54–56

definition assemblies vs., 74–75
implementing, 38, 53–54
information found in, 48
messages vs. types for, 56–58
for RequestQuote operation and

associated types, 49–50
StockTraderTypes, 234–235
XML serialization attributes, 50–52

<import> root element, 22, 23
Indigo, 257–278

connector, 260, 263–264, 278
development of, 101
high-level architecture for, 259
hosting environments, 260, 264–265,

278
messaging services, 260, 265, 278
overview of, 258–260
ports, 263, 269–272
preparing for, 257, 274–275, 278
references, 290
RemoteObjects, 267
service layer, 268–269
Service Manager objects, 272–273
service method specifying

authorization, 271
service model, 259, 260–263, 277
system services, 260, 265–266, 278
transports and formatters, 273–274
typed channels, 272
Web services on, 266–267
WSE 2.0 and, 276–277

In-Process protocol, 216, 225
installing

WSE 2.0, 110–114
X.509 certificates, 115–117

InstallShield Wizard (WSE 2.0), 110
interface definition files. See IDFs
interfaces, 50
interoperability of Web services, 98
IsMessageEncrypted Web method, 201,

202–203
IStockTrader interface, 77

K
Kerberos security, 178

L
load balancing

building SOAP router for, 239–244
defined, 238
illustrated, 239

Local Computer certificate store, 116,
117, 120

Longhorn, 257
loosely coupled clients

building, 82–83
tightly coupled vs., 73–74, 82

loosely coupled services, 5

M
<message> element, 21, 23–24, 35
machine.config file, 111, 112
makecert.exe command-line tool, 141
mapping policies to Web service, 163,

170
menus for Configuration Editor, 112
message channels, 263
message correlation, 156
message information headers, 219–221

security for messages with
addressing headers, 224–225

SOAP message with, 220
XML elements for, 219–220

message protocols, 224
message verification

sequence numbers for, 156
timestamps for, 153–154
UsernameToken nonce values for,

154–155
message-oriented Web services, 37–65

about, 33
building XSD schemas for data types,

38, 46–48
configuring web service consumer,

61–65

Index

295

message-oriented Web services
(continued)

creating class file of interface
definitions, 38, 53–54

designing XML messages and XSD
schemas, 38, 44–46

generating WSDL document
manually, 38

implementing interface in code-
behind file, 39, 54–56

interface definition class file, 48–56
messages vs. types for IDFs, 56–58
proxy class file for clients, 39, 58–61
role of XML messages and XSD

schemas, 40–48
RPC methods vs., 37, 67
setting up web service client, 39,

61–65
steps for building, 37–40
web.config file for service

consumers, 65
messaging, 225–237. See also Microsoft

Message Queuing; SOAP; WS-
Reliable Messaging

comparing HTTP and TCP protocols
with, 225–226

creating message queue trigger,
249–250

Indigo framework for, 277
Microsoft Message Queuing, 248–254
properties of message-enabled Web

services, 237
protocols supported, 225
providing integrity against errors, 6
reliability of MSMQ, 248–249
services in Indigo, 260, 265, 278
SOAP messages in WSE framework,

226–228
SOAP senders and receivers, 228–235
synchronous and asynchronous

versions of Web methods, 217–218
traditional XML web services vs.

SOAP over HTTP, 235–236
types of Indigo security for, 263
WSE 2.0 support for, 215–216, 225

Microsoft Message Queuing (MSMQ),
248–254

body contents for message, 253
creating message queue trigger,

249–250
creating Web service to use, 250–253
illustrated, 249
implementing Web service client for,

253–254
reliable messaging with, 248–249

Microsoft.Web.Services2 assembly, 102,
106–108

Microsoft Web Services Enhancements
(WSE) 2.0. See also messaging; WSE
API; WS-Specifications

access to WSE API, 108–109
authorization and Principal object,

178–181
built-in policy assertions, 163–164
client access to WSE, 109–110
configuration class for, 104
configuring Web services to use, 193
implementing security token

provider in, 191
implementing WS-Addressing,

222–224
Indigo and, 276–277
installing and configuring, 110–114
messaging in, 215–216, 225
namespaces in

Microsoft.Web.Services2
assembly, 106–108

overview, 16–17, 95–96, 122
policy frameworks for Web services,

159–160
preparing for Indigo, 257, 274–275,

278
processing infrastructure for,

103–104
processing SOAP messages, 103
rapid evolution of, 121
references on, 283
scope of, 102
Security Setting Tool, 174
Setup Option Screen, 110
SOAP messaging in, 226–228,

235–236
support for secure conversations, 214
using WSE API, 103, 105–110
web.config updates, 111–112
WS-Specifications, 95–102
X.509 certificate support, 114–120
X.509 Certificate Tool, 117–119

miscellaneous references, 291–292
MSMQ. See Microsoft Message Queuing

N
namespaces

associated with WS-Policy
specification, 166

classes in WSE 2.0 Addressing,
222–223

expressing target namespaces as
URI, 44

in Microsoft.Web.Services2 assembly,
106–108

New Trigger dialog box (Computer
Management MMC snap-in), 250

Index

296

nonce values, 154–155
n-tier application architecture, 7

O
<operation> element

defined, 21, 35
defining operation modes, 25–26
modes of operations, 24–25

OASIS, 13
one-way messaging, 217, 226

P
PlaceTrade Web method, 55–56
policy assertions

adding to policy frameworks, 163,
168–170

built-in WSE, 163–164
defined, 160, 161
standard, 169

policy attachments, 161, 166–167
policy expression files

about, 160, 161
discovery or retrieval of, 171–172
elements of, 167–168
exception raised when request not

verified, 176
generating, 172–176
minimum requirements for, 168
policyCache.xml, 174–175
web.config settings attaching to, 175

policy frameworks, 162–176. See also
policy expression files; WS-Policy

adding policy assertions to, 163,
168–170

configuring, 163, 171
defined, 161
discovery or retrieval of policy files,

171–172
illustrated, 162
implementing, 167–171
mapping policy to Web service, 163,

170
overview, 162–163, 185
sample, 165–166
steps for creating, 163
verifying policy for secure

conversations, 193, 200–203
policy subjects, 160, 161
Policy Wizard, 102
policyCache.xml policy expression file,

174–175
<port> element, 21, 28
ports

Indigo, 263, 269–272
port processing pipeline, 273

<portType> element, 21, 26–27, 35, 167
Principal object

authorization roles and, 178–181
customizing, 185

private keys, 129
private-key encryption, 140
profiles. See WS-I Basic Profile
protocols. See also HTTP; SOAP

Indigo-supported transport, 274
In-Process, 216, 225
message vs. transport, 224
SSL, 123, 152
TCP, 225–226, 247

proxy classes
auto-generated, 34, 61–62
creating proxy reference for client’s

STS provider, 194, 205
generating client, 39, 58–61, 73
generating security context token

using STS provider’s client, 206
implementing Web service client

with, 39, 61–65
StockTraderContracts Web service, 84
for traditional XML Web service,

217–218
proxy stub files, 57
public keys, 129
public-key encryption, 114, 140

R
references

Indigo, 290
miscellaneous topics, 291–292
service-oriented architecture, 279–280
WS-Addressing, 287–288
WSE, 283
WS-Messaging, 288
WS-Policy, 286
WS-Reliable Messaging, 289
WS-Routing and WS-Referral, 289
WS-SecureConversation, 287
WS-Security, 283–285
WS-Specifications, 282
XML schemas and SOAP, 280–281

reflection attributes, 52, 73
Remote Procedure Call (RPC) methods,

37, 67
RemoteObjects, 267
replay attacks, 152–156

eliminating, 152
timestamps for message verification,

153–154
UsernameToken nonce values for

message verification, 154–155
verifying incoming request messages,

156

Index

297

request messages
authorizing SOAP, 177
digitally signing SOAP, 109, 127–129
encrypting, 140–146, 148–149
exception raised when unverified,

176
looping through signatures and

tokens in, 137–138
retrieving timestamp from SOAP, 153
securing, 151
sending with SOAP sender, 245–246
unsecured and digitally signed SOAP,

125–127
verifying, 152, 156

Request/Response communications. See
also request messages; response
messages

defined, 216
HTTP, 215, 226
with notification, 217
with polling, 216

RequestQuote Web method
client code calling, 85–86
delegation in, 80–81
IDF for, 49–50
including as custom data type, 57
pseudo-code for, 41–42
request and response encryption in,

200–201
UML class diagram for, 44–45
WSDL document showing, 42, 59–60

RequestSecureStockQuote Web method,
203

RequestSecurityContextToken Web
method, 203, 211–211

RequestStockQuote method, 208
response messages

encrypted SOAP, 146–150
generating SOAP, 230–232
securing, 151

RetrieveSecurityContextTokenFrom-
GlobalCache method, 213

routing and referral, 238–248
building SOAP router for load

balancing, 239–244
Indigo framework for, 276
routing vs. WS-Referral, 246
security and routing, 246–247
sending stock quote request with

SOAP sender, 245–246
SOAP router referral cache, 244–245
virtual network design models for

routing, 238
WS-Addressing vs. routing, 247–248

RPC (Remote Procedure Call) methods,
37, 67

S
<service> element, 21, 28, 35
sample listings

acknowledgement message from
client, 253–254

AcknowledgeMessage custom data
type, 252

app.config setting for STS provider’s
URI, 205

applying security context token to
service request, 207

authorizing message using Principal
object, 179–180

auto-generated service proxy class,
61–62

client code for calling RequestQuote,
85–86

client console application, 204
client’s RequestStockQuote method,

208
configuration class for WSE, 104
configuring policy frameworks, 171
configuring STS provider, 196
constructing message for

RequestQuote operation, 227–228
consumer code, 64, 82–83
creating client proxy class for STS

provider, 205
creating security tokens, 135–137
custom token manager, 139–140,

197–200
custom username token manager

with authorization, 184
developing StockTraderServiceAgent,

91–92
digitally signing SOAP request

message, 109
encrypting response message,

146–147, 148–149
encrypting SOAP request message,

142–143
endpoint reference XML, 221, 271
generating security context tokens,

206
generating SOAP message response,

230–232
generating UsernameToken security

token, 205
GetSigningToken method, 201, 202
IDF for RequestQuote operation,

49–50
implementing SOAP message

receiver, 229–230
Indigo service method with

authorization, 271
IsMessageEncrypted method, 201,

202–203

Index

298

looping through signatures and
tokens, 137–138

mapping policies to Web service, 170
object representation for custom

data type, 261
PlaceTrade Web method, 55–56
policy file for role-based

authorization, 181–183
policy framework, 165–166
policyCache.xml policy expression

file, 174–175
<portType> and <message>

definitions, 262–263
proxy class for StockTraderContracts

Web service, 84
proxy class for XML Web service,

217–218
proxy stub file as custom data type,

57
referral cache configuration file,

244–245
registering custom token manager in

web.config file, 198
registering SoapReceiver class, 233,

236
RequestQuote Web method, 41–42,

200–201
RequestSecurityContextToken

method with caching, 211–212
RetrieveSecurityContextTokenFrom-

GlobalCache method, 213
retrieving certificate from Local

Computer certificate store, 120
retrieving timestamp from request

message, 153
schema for quote and symbol types,

43
secure conversation within client,

208–210
<service> and <binding> definitions,

270
service endpoints, 241
SOAP exception for unverified

request message, 176
SoapDocumentMethod serialization

attribute, 51–52
SoapSender class, 229
SOAPService web.config file, 243–244
SOAPServiceRequestQuote method,

241–242
standard policy assertion, 169
StockTrader business component

calling service agent, 93
StockTraderBusiness business

assembly, 78
StockTraderContracts Web service,

79–80

StockTraderTypes definition
assembly, 76–77

StockTraderTypes IDF, 234–235
unsecured and digitally signed

request messages, 125–127
unsigned code listing for client, 135
verifying encryption of incoming

requests, 145–146
web.config settings, 133, 175,

198–199
web.config updates for WSE-enabled

service project, 111–112
Web service .asmx code-behind class,

54–55
Web service using MSMQ, 251–252
WSDL documents, 30–32, 42, 59–61
WSE SOAP extension type, 104
WSTestPolicy StockTrader Web

service, 173
X509SecurityToken class, 144–145
XML elements required for policy

expression file, 168
XML for trade custom data type, 261

secure conversation clients, 203–210
applying security context token to

service request, 195, 207
calling Web service, 195, 207–210
client console application for, 204
generating token for signing token

requests, 194, 204–205
implementing secure conversation

within, 208–210
issuing request for security context

token, 194, 206–207
security context tokens issued back

to, 191
setting proxy reference to STS

provider, 194, 205
workflow for, 190

secure conversations, 187–214. See also
secure conversation clients;
WS-Secure Conversation

architecture diagram for, 190
building Web service and STS

provider for, 195–203
caching security context tokens,

210–214
characteristics of, 188–191
client implementation for, 194–195,

203–210
configuring STS provider, 193,

196–197
creating custom token manager, 193,

197–200
defined, 188
implementing policy verifications,

193, 203

Index

299

secure conversations (continued)
setting up policy requirements for

business Web service, 193,
200–203

steps for conducting, 190–191
Secure Sockets Layer protocol. See SSL

protocol
security. See also replay attacks

authentication and authorization in,
123

considerations for WS-Addressing,
224–225

examining elements of message, 105
Kerberos, 178
routing and, 246–247
types of Indigo message, 263
WS-Security, 16, 97, 99

security context tokens
applying to Web service request, 195,

207
caching, 210–214
generating using STS provider’s client

proxy class, 206
IDs for, 210
issued back to client, 191
issuing client request for, 194,

206–207
requested by STS provider, 190
secure conversations and, 189
using for communications, 191

security tokens. See also custom token
manager; security context tokens;
STS providers

accessing Principal object from,
178–181

basing on X.509 certificate, 136–137
checking for digital signature and

encryption support, 130
creating on username-password

combination, 135–136, 137
custom token manager, 139–140
for generating digital signatures,

127–128
generating for signing service token

requests, 194, 204–205
looping through attached, 137–138
UsernameToken, 128–129

sequence numbers, 156
service agents

building external Web service, 90
defined, 10
designing and building, 86–93, 94
developing StockTraderServiceAgent,

91–92
how business component calls,

92–93
illustrated, 10, 68
implementing, 88–90

role of, 11, 86–87
SOA with, 88

service clients. See clients
service consumers

about, 3, 4
implementing, 61–65
listing of loosely coupled, 64, 82–83
StockTrader Web application for,

63–65
Web.config file for, 65

service contracts, 262
service directories, 3
service layer in Indigo, 268–269
Service Manager objects, 272–273
service model for Indigo, 259, 260–263,

277
service providers, 3. See also STS

providers
service-oriented architecture. See SOA
service-oriented Web services, 67–94.

See also business assemblies;
definition assemblies; service
agents

architectural schema of, 10–13, 67–68
building Web service client, 73–74,

82–86
creating business assembly, 71–72,

77–79
creating definition assembly, 71,

74–77
designing effective Web services, 69
implementing Web service, 72–73,

79–81
loosely coupled clients, 82–83
steps for building, 69–74
tightly coupled clients, 83–86

services, 1
Setup Option Screen (WSE 2.0), 110
shared-secret encryption, 140
signatures. See digital signatures
Simple Object Access Protocol. See

SOAP
SOA (service-oriented architecture). See

also business façade; service agents
basic solution, 8–9
complex example of, 10–13, 67–68
components of, 7–13
designing and building service agent,

86–93, 94
designing code-behind for, 69
infrastructure of, 13–17, 276
overview, 1–7
purpose of Web services in, 37
references on, 279–280
role of service agents, 11, 86–87
service consumers in, 3, 4
service directories in, 3
service providers in, 3

Index

300

SOAP request and response
messages, 124–126

using certificates and keys in, 115
WSDL document in, 19

SOAP (Simple Object Access Protocol).
See also SOAP routers; SoapContext
class

authorization with Principal object,
179–180

authorizing requests, 177
building router, 239–244
communication models for

messages, 216–218
constructing message for

RequestQuote operation, 227–228
describing messages with <message>

element, 23
digitally signing request messages,

109, 127–129
encrypted response messages,

146–150
encrypting request messages,

140–146, 148–149
examining message security, 105
exception raised when request not

verified, 176
generating SOAP message response,

230–232
implementing message receiver,

229–230
looping through request’s signatures

and tokens, 137–138
message routing, 238–239
messaging properties of, 237
modifying Web services to process

signed messages, 137–140
references on, 280–281
registering SoapReceiver class, 233,

236
router referral cache, 244–245
securing communications with SSL,

123
security and routing, 246–247
senders and receivers, 228–235
sending request with SOAP sender,

245–246
serialization attributes in, 50–52
SOA applications and messages in,

124
SoapEnvelope class, 226–228
SOAPSender application, 241
SOAPServiceRequestQuote method,

241–242
timestamping messages, 153–154
traditional XML web services vs.

SOAP over HTTP, 235–236
unsecured and digitally signed

requests in, 125–127

WSDL documents and, 19
WSE processing of messages, 103

SoapContext class
caching during verification, 154
digitally signing request message via,

109
examining message security with,

105
properties of, 106

SoapDocumentMethod serialization
attribute, 51–52

SoapEnvelope class, 226–228
SOAPSender application, 241
SoapSender class, 229
SOAPSender.csproj, 246
SOAPService web.config file, 243–244
SOAP routers

about, 238–239
building, 239–244
router referral cache, 244–245
security and routing, 246–247

Solicit/Response communications, 217
Solution Explorer. See also Visual Studio

.NET
SOAPRouter sample solution, 240
StockTrader Web service viewed in,

56, 63
StockTraderAdvanced project in, 81
StockTraderSoapReceiver in, 232–233
WSSecureConversation solution in,

192
SSL (Secure Sockets Layer) protocol

features and limitations of, 123
replay attacks and, 152

StockTrader.asmx, 124–126
StockTrader Web service

.asmx code-behind class, 54–55
business logic implementation in,

70
consumer application for, 63–65
default client page for, 34
message-oriented design of, 67
PlaceTrade Web method, 55–56
RequestQuote Web method in, 41–42
revised service-oriented architecture

for, 71
schema for quote and symbol types,

43
secure conversation in, 192–193
service agents in, 88–90
viewed in Solution Explorer, 56, 63
WSDL documents for, 30–32, 42,

59–60
XSD schema for, 47

StockTraderAdvanced project, 81
StockTraderBusiness Web service

business assembly, 78
code listing, 92–93

Index

301

StockTraderContracts Web service
client console application for, 86
proxy class for, 84
pseudo-code listing for, 79–80

StockTraderSecure Web service. See
WSStockTraderSecure Web service

StockTraderServiceAgent code listing,
91–92

StockTraderServiceQuote Web service,
90

StockTraderSoapReceiver, 232–233
StockTraderTypes

definition assembly, 71, 75, 76–77
IDF, 234–235

StockTraderWithOperations.xsd, 57–58
STS (security token service) providers

app.config setting for URI, 205
building for secure conversations,

195–203
configuring, 193, 196–197
creating client proxy class for, 194,

205
generating security context token,

206
requesting security context token

from, 190
setting client reference to, 205
verifying integrity of signed requests,

191
web-config settings for, 198–199
workflow of, 190

symmetric encryption, 140
synchronous communications, 217–218
system services for Indigo, 260, 265–266,

278

T
<types> element, 20, 22–23, 34, 35
target namespaces, 44
TCP (Transmission Control Protocol)

defined, 225
HTTP vs., 225–226
WSE 2.0 and, 247

test certificates, 115, 141
tightly coupled clients, 73–74, 82
timestamps, 153–154
tokens. See security context tokens;

security tokens
transport channels in Indigo, 263
transport protocols

Indigo support for, 277
Indigo-supported, 274
message vs., 224
WSE 2.0 messaging, 225

transports and formatters in Indigo,
273–274

typed channels for Indigo, 272
types

defining XSD schema files, 44
IDFs and, 56–58
type definition assemblies, 72

U
UDDI (Universal Discovery,

Description, and Integration)
registry, 3, 7

UML (Unified Modeling Language) class
diagrams

designing messages and data types
schemas using, 38, 44–46

RequestQuote operation, 44–45
revised StockTrader service-oriented

architecture, 71
StockTraderTypes definition

assembly, 71, 75
URIs (Uniform Resource Identifiers)

app.config setting for STS provider’s,
205

expressing target namespaces as, 44
UsernameToken security token

about, 128–129
adding nonce values to, 154–155

V
verification. See also message

verification
message, 153–156
policy, 193, 203

Visual Studio .NET
Add Web Reference Wizard, 59–61
SOAPRouter sample solution, 240
StockTrader Web service viewed in,

56, 63
StockTraderAdvanced project in, 81
StockTraderSoapReceiver in, 232–233
using wsdl.exe and xsd.exe

command-line tools in, 54
WSSecureConversation solution in,

192
WSTestPolicy solution in, 173
X509SecurityToken class in, 144–145
XML Designer, 46–48

W
web.config files

attaching policy expression files with,
175

configuring STS provider in, 193
implementing secure conversation

in, 193

Index

302

registering custom token manager in,
198

service consumer, 65
SOAPService, 243–244
updating, 111
WSStockTraderSecure, 133

Web service clients. See clients
Web service consumers. See service

consumers
Web Service Description Language

documents. See WSDL documents
Web Service Specifications. See

WS-Specifications
Web services. See also message-oriented

Web services; service-oriented Web
services; and specific Web services

access to WSE API, 108–109
architecture of service-oriented,

10–13, 67–68
attaching policy expression files to,

175
business functionality in SOA, 69–71
business logic in, 70
calls from secure conversation

clients, 207–210
client implementation for MSMQ,

253–254
communication models for, 216–218
communications between client and,

41
composability of, 97–98, 99
defined, 4–5
described in WSDL document, 19–20
description and discovery of, 99
designing effective, 69
evolution of, 95–96
external, 86, 90
generating consumer class for, 61–65
Indigo, 266–267
interoperability of, 98
mapping policy frameworks to, 163,

170
message-enabled properties for, 237
message-orientation of, 33
messaging and delivery, 16, 97,

99–100
modifying to process SOAP

messages, 137–140, 145–146
MSMQ with, 248, 251–252, 253–254
policy frameworks, 159–160, 167–171
properties of, 5–7
proxy class for traditional XML,

217–218
purpose in SOA, 37
role of service agents, 11, 86–87
secure conversation in, 193, 196
security context tokens in, 191
security of, 16, 97, 99

SSL limitations for, 123
transactions in, 100

Web Services Enhancements. See
Microsoft Web Services
Enhancements 2.0

Web Services Interoperability (WS-I)
Basic Profile. See WS-I Basic Profile

workflow
eCommerce business, 1–2
secure conversation client, 190

WS-Addressing, 218–225
composability and, 97
constructs supported, 219
defined, 16
endpoint references, 221–222
message information headers,

219–221
overview, 218
references on, 287–288
routing vs., 247–248
security considerations for, 224–225
verifying message uniqueness, 156
WSE 2.0 implementation for, 222–224

wsdl.exe command-line tool
auto-generated service proxy class,

61–62
command-line switches for, 53
generating IDFs with, 38, 53–54
generating proxy stub for client proxy

file, 58–59
generating WSDL documents, 34, 38
setting environment variables for, 54

WSDL (Web Service Description
Language) documents

avoiding as reference point for
interface definitions, 70

<binding> element, 21, 27–28, 35
client proxy class files generated

from, 39, 58–61
defined, 4, 41
<definitions> root element, 20, 35
elements of, 20–22
generating, 33–34, 59–61
generating manually, 38
<message> element, 21, 23–24, 35
<operation> element, 21, 24–26, 35
overview, 5, 19–20
<port> element, 21, 28
<portType> element, 21, 26–27, 35,

167
<service> element, 21, 28, 35
StockTrader, 30–32
<types> element, 20, 22–23, 35
what to do with, 34
WSDL 1.1 specification for, 29–32

WSDLgen.exe, 269
WSE 2.0. See Microsoft Web Services

Enhancements 2.0

Index

303

WSE API, 105–110
applying WS-Specifications to SOAP

messages with, 105–108
client access to, 109–110
Web service access to, 108–109
WSE filters in, 103

WSE Security Setting Tool, 174
WS-I (Web Services Interoperability)

Basic Profile, 13–15. See also WS-
Specifications

high-level groupings of, 14–15
illustrated, 14
layers of, 14
WS-Specifications, 15–16, 95

WS-Messaging, 16, 288
WS-Policy, 159–185. See also

authorization; policy frameworks
authorization using custom token

manager, 183–185
defined, 16, 121
function of, 162
generating policy expression files,

172–176
policy-based authorization, 181–183
references on, 286
terms applying to specifications, 161
WSE built-in policy assertions,

163–164
XML markup for attachment

specification, 166–167
WS-Policy Assertions, 160
WS-Policy Attachments, 161, 166–167
WS-Referral

references, 289
SOAP routing models and, 247

WS-Reliable Messaging
overview, 16, 97, 99–100
references, 289
sequence numbers and, 156

WS-Routing, 289
WS-Secure Conversation, 150. See also

secure conversations
characteristics of secure

conversations, 188–191
defined, 16
implementing secure conversations,

192–193
overview, 187–188, 214
references on, 287

WSSecureConversation.sln, 192
WS-Security, 123–157. See also replay

attacks
authentication in, 124
defined, 16, 97, 99
digital signing, 124, 127–130
eliminating replay attacks, 152–156
encryption in, 124, 140–150
implementing, 127

references on, 283–285
secure conversations and, 191
specification for, 124–127, 151
unsecured and digitally signed

messages, 125–127
WS-Specifications, 95–102. See also

specific Web Service Specifications
composability, 97–98, 99
covered in book, 100–102
description and discovery, 99
interoperability of, 98
links to, 101
messaging and delivery, 99–100
overview of, 15–16, 95–96
references on, 282
security, 16, 97, 99
transaction processing, 100

WSStockTraderSecure Web service,
130–137

creating Web service client for,
134–137

encrypting SOAP response messages,
146–150

steps for adding digital signature, 132
web.config settings for, 133

WSTestPolicy.sln, 172–173
WS-Trust, 191

X
X509SecurityToken class, 144–145
X.509 Certificate Tool

about, 102, 143
illustrated, 118, 144
setting ASP.NET permissions in,

117–119
X.509 certificates, 114–120

creating security token based on,
136–137

digital signing process with, 129–130
encrypting SOAP request messages

with, 140–146
installing, 115–117
obtaining, 114
private and public keys, 129
setting ASP.NET permissions for,

117–120
test certificates, 115

XML (Extensible Markup Language)
abstract description elements, 20–21,

22–27
concrete implementation elements,

20–21, 27–28
designing messages for message-

oriented services, 38, 44–46
designing XSD schema files before

building messages, 46

Index

304

determining message exchange in
Web service, 40–41

elements for message information
headers, 219–220

endpoint reference, 221, 271
for Indigo data type, 261
markup for policy files, 172–173
markup for WS-Policy Attachment,

166–167
messaging in SOAP and, 237
policyCache.xml policy expression

file, 174–175
proxy class for traditional Web

services, 217–218
references on, 280–281
required elements for policy

expression file, 167–168
serialization attributes, 50–52
traditional web services vs. SOAP

over HTTP, 235–236

XML Designer
illustrated, 47
StockTraderWithOperations.xsd

schema in, 57–58
Toolbox for, 48

XML Schema Definition. See XSD
schema files

xsd.exe command-line tool
command-line switches, 53
generating IDFs with, 38, 53–54
setting environment variables for, 54

XSD (XML Schema Definition) schema
files

building, 38, 46–48
defining types in, 44
StockTrader quote and symbol types,

43
StockTrader Web service, 47
StockTraderWithOperations.xsd,

57–58
<types> element and, 22–23

Index

305

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database

programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,

administration, wireless, wired, storage, backup, certifications,

trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:

J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make

suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as

PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software

methodology, best practices, and how programmers interact with

the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your

projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let

anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where

technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get

help on Microsoft technologies covered in Apress books, or

provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

