
www.allitebooks.com

http://www.allitebooks.org

Firebug 1.5: Editing,
Debugging, and Monitoring
Web Pages

Arm yourself to destroy UI and JavaScript bugs

Chandan Luthra

Deepak Mittal

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Firebug 1.5: Editing, Debugging, and Monitoring Web
Pages

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2010

Production Reference: 1300310

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-96-1

www.packtpub.com

Cover Image by Filippo Sarti (filosarti@tiscali.it)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Chandan Luthra

Deepak Mittal

Reviewers
Balaji D Loganathan

Michael Ratcliffe

Michael Sync

Acquisition Editor
Dilip Venkatesh

Development Editor
Dilip Venkatesh

Technical Editors
Gaurav Datar

Rukhsana Khambatta

Copy Editor
Sanchari Mukherjee

Indexer
Hemangini Bari

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Poorvi Nair

Proofreader
Aaron Nash

Graphics
Geetanjali G. Sawant

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Chandan Luthra is a Software Development Engineer with IntelliGrape Software,
New Delhi, India—a company specializing in Groovy/Grails development. He is
an agile and pragmatic programmer and an active participant at local open source
software events, where he evangelizes Groovy, Grails, Jquery, and Firebug. Chandan
is a Linux and open source enthusiast. He also involves himself in writing blogs and
is an active member on various tech-related mailing lists. He has developed web
applications for various industries, including entertainment, finance, media and
publishing, as well as others.

He loves to share his knowledge and good coding practices with other team
members in order to hone their development skills. In his free time, he loves to
contribute to open source technologies.

Chandan also loves to code in jQuery and Firebug, which makes development very
easy for him. He is a very fond user of Firebug and has been using it since 2007.

I would like to thank my family for their love and support during
my far-flung adventures into esoteric nonsense. Thanks also to
all my cooperative colleagues at IntelliGrape for their feedback
and suggestions. I would also like to thank Deepak Mittal for
co-authoring and motivating me to write this book. Finally, I wish
to thank Dilip Venkatesh (Acquisition Editor at Packt), Poorvi Nair
(Project Coordinator at Packt), Micheal Sync (Reviewer), Micheal
Ratcliffe (Reviewer), and Balaji Loganathan (Reviewer) for giving a
perfect shape to this book. Special thanks to S. Vivek Krishna for his
help on the Preface of the book.

www.allitebooks.com

http://www.allitebooks.org

Deepak Mittal is a software developer based in New Delhi, India, and he has been
involved with software engineering and web programming in Java/JEE world since
the late 1990s. Deepak is a Linux and open source enthusiast. He is an agile practitioner
and speaks about open source, agile processes, and free software at various user group
meetings and conferences. He has designed and built web applications for industries
including pharmaceutical, travel, media, and publishing, as well as others. He loves
to explore new technologies and has been an early-adopter of quite a few mainstream
technologies of today's world.

In early 2008, he co-founded IntelliGrape Software, an agile web application
development company focused on Groovy and Grails. At IntelliGrape, he has been
occupied with building world class applications on Grails and also mentors and
trains other team members.

Deepak is a veteran user of Firebug and has been using it since 2006.

I want to thank all my colleagues at IntelliGrape for their valuable
feedback and suggestions, my family for putting up without me for
weeks, and all the contributors of Firebug. My special thanks go to
Dilip Venkatesh (Acquisition Editor at Packt), Poorvi Nair (Project
Coordinator at Packt), Chandan Luthra (my co-author), and all the
reviewers of the book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Balaji D Loganathan has 10+ years of experience in the software field, is a CEO
and Co-founder of Spritle Software—a software development company in Chennai,
India. Balaji is an Agile Guru specializing in Agile Offshore, a Certified Scrum
Master. Balaji has a Master's degree in IT from the RMIT, Australia and a Bachelors
Degree in Engineering from the Annamalai University, India.

When Michael Ratcliffe was 9 years old he saw a movie called "Wargames". Like
many kids his age he became very interested in computers. A few weeks later he
was playing "Roland in the Caves" on a friend's Amstrad CPC 464 when the game
crashed and the command prompt displayed "Illegal Operation." Believing that he
had hacked something, he decided that he wanted to become a full time hacker and
therefore became much more determined to learn how computers work and what
can be done with them.

At 12 years of age, his parents bought him an Acorn Electron Microcomputer as a
Christmas present. Within 6 months he had written his first game, Wargames, in BBC
Basic. By the time he was 14, he was regularly writing programs in 6502 Assembly
language and would regularly send pokes (infinite lives, invulnerability, and so on)
to computer magazines to help people with their new games.

At 15 years of age, he started work in IT as a support engineer. His use of
programming languages extended to Turbo C, C++, Pascal, Delphi, C#, VB, VBScript,
VB.NET, HTML, JavaScript, ASP, PHP, Perl, and so on. Some years later he discovered
that he was spending a large amount of time writing tools to help his colleagues with
their work and decided that he should get the paper qualifications he would need. He
started as a computer science major but, after receiving a ton of job offers in the field,
he just dropped out of university and has been professional ever since.

www.allitebooks.com

http://www.allitebooks.org

Michael is currently working for Comartis AG, Switzerland on e-Learning software
called i-qbox Human Performance Suite. He works daily with VB.NET, C#, and
JavaScript but prefers JavaScript, claiming that its quirks just make the language
more fun. As the "JavaScript Guy" he uses Firebug to get his work done properly. In
2008 he began logging Firebug issues and soon began spending lots of time fixing
bugs to make his work easier. He worked for a time on Firebug Lite but spends most
of his "spare time" now working on improving the Firebug Inspector, which he likes
to think of as "Aardvark on Steroids."

He would like to thank his wife Sabine for her patience during the
many hours spent performing technical reviews on this book.

Michael Sync has lately been associated with Memolife as a Solution Architect,
responsible for building their products using Silverlight and other .Net technologies.

Prior to venturing into this, he was creating a niche in Web Application
Development using ASP.NET, AJAX, JavaScript, and so on.

He had always believed in the concept of "Sharing Knowledge", which is the key to
building his in-depth understanding of the technology. That's the main reason why
he always tries to participate in public forums and local newsgroups for helping
fellow technologists; benefits are also received, as learning is a two-way process.

Being a member of Microsoft WPF/Silverlight Insider team, he really enjoys playing
with early drops of Silverlight and giving his feedback to the team.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Firebug 7

What is Firebug? 7
The history of Firebug 8
The need for Firebug 8
Firebug capabilities 9
Installing Firebug on different browsers 9

Installing Firebug on Firefox 10
Installing Firebug on non-Firefox browsers 10

Opening and closing Firebug 11
Firebug modes 11

Dock view 12
Window mode 12

Summary 13
Chapter 2: Firebug Window Overview 15

Console tab 15
Command line JavaScript 16
Errors and warnings 17

Status bar error indicator 18
Errors can be descriptive and informative 19
Executing JavaScript commands 19

HTML tab 20
The hierarchy of DOM nodes (the HTML source panel) 21

Options for HTML source panel 22
Editing HTML on the fly 23

Editing an existing attribute of HTML element 23
Editing an HTML element 24

Logging events 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

CSS tab 29
CSS inspector 29
List of CSS files 30
Modifying CSS 30

Script tab 34
DOM tab 36
Net tab 38
Summary 40

Chapter 3: Inspecting and Editing HTML 41
Viewing source live 41
Seeing changes highlighted 43
Modifying the source on the fly 44

How to modify the value of an HTML attribute 45
How to add a new attribute to an existing HTML element 46
How to delete an HTML element 47
How to modify the source for an HTML element 47

Inspecting page components, editing, and reloading 48
Searching within an HTML document 50
Finding an HTML element on the page 51
Copying HTML source for an HTML element 52
Setting breakpoints on HTML element 52
Summary 54

Chapter 4: CSS Development 55
Inspecting cascading rules 55
Preview colors and images 57
Tweaking CSS on the fly 58
Enabling and disabling specific CSS rules 60
Inspecting our stylesheet 62
Modifying CSS from Firebug's UI 62
Inspecting and tweaking the box model 65
Searching under the CSS tab 65
Summary 66

Chapter 5: JavaScript Development 67
The command line API 67

$(id) 67
$ $$(selector) 68
$x(xpath) 69
dir(object) 70
dirxml(node) 71
clear() 72

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

inspect(object[, tabName]) 72
keys(object) 73
values(object) 74
debug(fn) and undebug(fn) 74
monitor(functionName) and unmonitor(functionName) 74
monitorEvents(object[, types]) 76
unmonitorEvents(object[, types]) 76
profile([title]) and profileEnd() 77

Columns and description of the profiler 78
The console API 79

console.log(object[, object, ...]) 79
console.debug(object[, object, ...]) 80
console.info(object[, object, ...]) 80
console.warn(object[, object, ...]) 80
console.error(object[, object, ...]) 80
console.assert(expression[, object, ...]) 81
console.dir(object) 81
console.dirxml(node) 81
console.trace() 81
console.group(object[, object, ...]) 81
console.groupCollapsed(object[, object, ...]) 81
console.groupEnd() 81
console.time(name) 82
console.timeEnd(name) 82
console.profile([title]) 82
console.profileEnd() 82
console.count([title]) 82

JavaScript debugging 82
Steps to debug JavaScript code with Firebug 83
Conditional breakpoints 85

Summary 89
Chapter 6: Knowing Your DOM 91

Inspecting DOM 91
Filtering properties, functions, and constants 93

Modifying DOM on the fly 96
Auto-complete 97
Losing the starting element 97

Adding/removing the DOM elements' attributes 98
Removing attributes 98
Adding attributes 100

Table of Contents

[iv]

JavaScript code navigation 102
Summary 103

Chapter 7: Performance Tuning Our Web Application 105
Network monitoring 106

Description of information in the Net panel 107
Load-time bar color significance 108

Browser queue wait time 110
Breaking down various requests by type 110
Examining HTTP headers 112
Analyzing the browser cache 113
XMLHttpRequest monitoring 116
How to find out the download speed for a resource 117
Firebug extensions for analyzing performance 118
Summary 118

Chapter 8: AJAX Development 119
Tracking XmlHttpRequest 120

Request/response headers and parameters 120
GET/POST request 125

Viewing live modifications on DOM 128
Debugging AJAX calls using properties of a console object 130

console.debug(object[, object, ...]) 130
console.assert(expression[, object, ...]) 133
console.dir(object) 134

Summary 135
Chapter 9: Tips and Tricks for Firebug 137

Magical cd() 137
The hierarchical console 141
Configuring Firebug to our taste 143
Summary 145

Chapter 10: Necessary Firebug Extensions 147
YSlow 148
Firecookie 151
Pixel Perfect 153

Pixel Perfect options menu 155
Firefinder 155
FireQuery 157
CodeBurner 159
SenSEO 160
Page Speed 162
Summary 166

Table of Contents

[v]

Chapter 11: Extending Firebug 167
Setting up an extension development environment 167

Setting up the development profile 168
Development preferences 169

Getting started with a small "Hello World!" extension of Firebug 173
The chrome.manifest file 173
The install.rdf file 174
The helloWorldOverlay.xul file 175
The helloWorld.js file 176
Packaging and installation 177

Taking "Hello World!" to the next level 180
The "prefs.js" file 181
The "helloWorld.js" file revisited 181

Summary 183
Appendix: A Quick Overview of Firebug's Features and Options 185

Keyboard and mouse shortcuts reference 185
Global shortcuts 185
HTML tab shortcuts 186
HTML editor shortcuts 186
HTML inspect mode shortcuts 186
Script tab shortcuts 187
DOM tab shortcuts 187
DOM and watch editor shortcuts 187
CSS tab shortcuts 188
CSS editor tab shortcuts 188
Layout tab shortcuts 188
Layout editor shortcuts 189
Command line (small) shortcuts 189
Command line (large) shortcuts 189

Console API reference 190
Command line API reference 191
Firebug online resources 193
Features expected in future releases of Firebug 193

Firebug 1.6 193
Some improvements in this version 194

Firebug 1.7 196
Separate modules and panels 196
Components replaced by SharedObjects 197
Recode TabWatcher/DOMWindowWatcher 197
Sandboxed extension loading 198
Memory panel 198

Index 199

Preface
Firebug is a free and open source tool, available as a Mozilla Firefox extension, which
allows debugging, editing, and monitoring of any website's CSS, HTML, DOM,
XHR, and JavaScript. Firebug 1.0 beta was released in December 2006. Firebug usage
has grown very quickly since then. Approximately 1.3 million users have Firebug
installed as of January 2009. It is a very popular tool among web developers to aid
during web application development.

The book begins with the steps to install Firebug, followed by an overview of the
Firebug window. We will get the basic idea of Firebug and movement across the
different panels and tabs within Firebug.

From there, we will make our way towards more advanced usages of each tab, such
as CSS development, JavaScript development, and DOM modification. This will aid
us during client-side development and debugging of RIAs. We will also learn to
use Firebug for performance tuning our application on the browser. We have also
dealt with the tracking of XMLHttpRequest and XMLHttpResponse during AJAX
development, which is also an integral part of RIAs. We will also learn a few tips
and tricks for Firebug that will help us in configuring Firebug according to our
taste and make it a pleasurable experience to work with it.

Once we are comfortable with the usage of Firebug, we will learn to install and use
some popular Firebug extensions. This will be followed by a discussion on how to
develop our own Firebug extension.

Preface

[2]

What this book covers
Chapter 1: Getting Started with Firebug gives a quick introduction to Firebug, its origin
and history, who should use Firebug, and a glimpse of Firebug's main features,
hoping that this will spark your interest in both Firebug and the rest of this book.

Chapter 2: Firebug Window Overview explains Firebug's tabs and what they are
used for.

Chapter 3: Inspecting and Editing HTML provides an understanding of using
Firebug to inspect, edit, search, and play with the HTML source of the document.

Chapter 4: CSS Development aims to help the reader to understand the useful tools
and utilities provided by Firebug for CSS development.

Chapter 5: JavaScript Development explains command line API, console API of
Firebug, and debugging JavaScript in detail.

Chapter 6: Knowing your DOM gives a small introduction to DOM as well as
discussing how to modify/edit values of properties and constants of any DOM
object using Firebug.

Chapter 7: Performance Tuning Our Web Application explains various ways to analyze
the performance of your web application on the browser.

Chapter 8: AJAX Development discusses how to track XmlHttpRequest and
XmlHttpResponse as well as debugging AJAX calls.

Chapter 9: Tips and Tricks for Firebug discusses a few tips and tricks that can be
very useful while debugging and developing. We have explained how to play
with the features that Firebug provides and what other things you should know
about Firebug.

Chapter 10: Necessary Firebug Extensions explains some of the Firebug extensions, such
as YSlow, FireCookie, Page Speed, and so on. They are useful for development and
performance tuning.

Chapter 11: Extending Firebug discusses the steps to develop a Firebug extension.
We have also discussed how to set up a development environment, along with file
and directory structure for the extension.

Appendix, A Quick overview of Firebug's features and options gives a quick reference for
various Firebug features and options.

Preface

[3]

What you need for this book
We will need Mozilla Firefox v 3.5 - 3.6 installed on our systems. We also need
Firebug 1.4 - 1.5 installed on top of it. The latter is not a prerequisite as we will
discuss how to install it during the course of the book.

Having an Internet connection would be an added advantage as the examples
provided run on top of live websites. This will also help us in learning to install
and use Firebug extensions.

Who this book is for
The target audience is front-end web developers who are building software and
pages using HTML, CSS, JavaScript, and AJAX, and want to learn Firebug. The
book assumes that the reader has a very basic knowledge of HTML, JavaScript, and
CSS. The examples in the book can be understood by someone who has just been
introduced to web development.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code will be set as follows:

<body>

Enter a number to calculate its factorial
 <input type = "text" name="searchBox"
 onkeyup="calculateFactorial(this.value,event)"/>

</body>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

initialize: function() {
 Firebug.Panel.initialize.apply(this, arguments);
 },

Preface

[4]

getOptionsMenuItems: function(context)

Any command-line input or output is written as follows:

/Applications/Firefox.app/Contents/MacOS/firefox-bin -no-remote -P dev

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: " If we
want the information to persist, then we can click Persist button on the Console tab.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/4961_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with Firebug
In this chapter, we will have a quick introduction to Firebug—its origin and history,
who should use Firebug, and a glimpse of Firebug's main features. Hopefully this
will spark your interest in both Firebug and the rest of this book. We will also look at
how to install Firebug on several browsers and the different modes in which Firebug
can be opened.

In this chapter, we will look at the following:

•	 What is Firebug
•	 The history of Firebug
•	 The need for Firebug
•	 The capabilities of Firebug
•	 Installing Firebug on different browsers
•	 Opening and closing Firebug
•	 Firebug modes

What is Firebug?
Firebug is a free, open source tool that is available as a Mozilla Firefox extension,
and allows debugging, editing, and monitoring of any website's CSS, HTML, DOM,
and JavaScript. It also allows performance analysis of a website. Furthermore, it has
a JavaScript console for logging errors and watching values. Firebug has many other
tools to enhance the productivity of today's web developer.

Firebug integrates with Firefox to put a wealth of development tools at our fingertips
while we browse a website. Firebug allows us to understand and analyze the
complex interactions that take place between various elements of any web page
when it is loaded by a browser.

Getting Started with Firebug

[8]

Firebug simply makes it easier to develop websites/applications. It is one of the
best web development extensions for Firefox. Firebug provides all the tools that a
web developer needs to analyze, debug, and monitor JavaScript, CSS, HTML, and
AJAX. It also includes a debugger, error console, command line, and a variety of
useful inspectors.

Although Firebug allows us to make changes to the source code of our
web page, the changes are made to the copy of the HTML code that has
been sent to the browser by the server. Any changes to the code are made
in the copy that is available with the browser. The changes don't get
reflected in the code that is on the server. So, in order to ensure that the
changes are permanent, corresponding changes have to be made in the
code that resides on the server.

The history of Firebug
Firebug was initially developed by Joe Hewitt, one of the original Firefox creators,
while working at Parakey Inc. Facebook purchased Parakey in July, 2007.

Currently, the open source development and extension of Firebug is overseen by
the Firebug Working Group. It has representation from Mozilla, Google, Yahoo,
IBM, Facebook, and many other companies.

Firebug 1.0 Beta was released in December 2006. Firebug usage has grown
very fast since then. Approximately 1.3 million users have Firebug installed as
of January 2009.

The latest version of Firebug is 1.5. Today, Firebug has a very open and thriving
community. Some individuals as well as some companies have developed very
useful plugins on top of Firebug.

The need for Firebug
During the 90s, websites were mostly static HTML pages, JavaScript code was
considered a hack, and there were no interactions between page components on
the browser side.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[9]

The situation is not the same anymore. Today's websites are a product of several
distinct technologies and web developers must be proficient in all of them—HTML,
CSS, JavaScript, DOM, and AJAX, among others. Complex interactions happen
between various page components on the browser side. However, web browsers
have always focused on the needs of the end users; as a result, web developers have
long been deprived of a good tool on the client/browser side to help them develop
and debug their code.

Firebug fills this gap very nicely—it provides all the tools that today's web developer
needs in order to be productive and efficient with code that runs in the browser.

Firebug capabilities
Firebug has a host of features that allow us to do the following (and much more!):

•	 Inspect and edit HTML
•	 Inspect and edit CSS and visualize CSS metrics
•	 Use a performance tuning application
•	 Profile and debug JavaScript
•	 Explore the DOM
•	 Analyze AJAX calls

Installing Firebug on different browsers
Firebug is developed as a Firefox add-on and can be installed on Firefox similar to
all other add-ons. In order to make Firebug work for non-Firefox browsers, there is a
JavaScript available from Firebug that makes available a large set of Firebug features.

Based on your browser version, we can install the corresponding Firebug version.

Firebug version Browser version
Firebug 1.5 Firefox 3.5 and Firefox 3.6
Firebug 1.4 Firefox 3.0 and Firefox 3.5
Firebug 1.3 Firefox 2.0 and Firefox 3.0
Firebug Lite IE, Safari, and Opera

Getting Started with Firebug

[10]

Installing Firebug on Firefox
To install Firebug on Firefox, we will follow these steps:

1. Open Firefox browser and go to https://addons.mozilla.org.
2. In the search box of the site, type Firebug and hit Enter or click

on the Search for add-ons button.
3. In the search results, click on Add to Firefox button.
4. A pop up will appear asking whether we want to continue with

the installation. We will now click Install now.
5. After installation is complete, let's restart Firefox.

When the browser comes up, it will prompt us by saying a new add-on has been
installed. Now we are all set and ready to play with Firebug.

Installing Firebug on non-Firefox browsers
Firebug is an extension for Firefox, but that doesn't mean it works only on Firefox.
What happens when we want to test our pages against Internet Explorer, Opera,
or Safari? Firebug Lite is the solution for this. It's a product that can be easily
included in our file via a JavaScript call, just like any other JavaScript, to support
all non-Firefox browsers. It will simulate some of the features of Firebug in our
non-Firefox browsers.

To use Firebug Lite on non-Firefox browsers, we should include the following line
of code in our page:

<script type='text/javascript'
 src='http://getfirebug.com/releases/lite/1.2/firebug-lite-
 compressed.js'>
</script>

For more information and updates on Firebug Lite, refer to
http://getfirebug.com/lite.html

If we don't want to modify the source code of our page and still want to use Firebug
Lite on a non-Firefox browser, we can run Firebug as a bookmarklet by creating a
bookmark with the value of the URL as the following JavaScript code:

javascript:var firebug=document.createElement('script');
firebug.setAttribute('src','http://getfirebug.com/releases/lite/1.2/
 firebug-lite-compressed.js');
document.body.appendChild(firebug);

Chapter 1

[11]

(function()
{
if(window.firebug.version)
 {firebug.init();}
else
{setTimeout(arguments.callee);}
})();
void(firebug);

We can inject Firebug into any page by running the bookmarklet created with the
preceding URL.

Opening and closing Firebug
Opening and closing Firebug is very easy. We can open as well as close Firebug by
pressing the F12 key or by clicking the (bug) icon on the right-hand side of the
browser's status bar.

Undock Firebug
By default Firebug opens in a dock view. If we want to open it in its own
window, we can accomplish this by either clicking on the icon on the
upper right corner of Firebug or by pressing the keys Ctrl+F12.

Firebug modes
Firebug can be opened in the following two modes:

•	 Dock view
•	 Window mode

In the dock mode, the Firebug opens the document in the browser's window while
in the window mode the Firebug opens in its own window, which is separate from
the browser window.

Getting Started with Firebug

[12]

Dock view
Most often we use the dock view mode of Firebug while developing. In this mode,
the inspection and CSS tweaking can be done more easily than in window mode.
The advantage of this mode is that the user can view the rendered page while
simultaneously working on Firebug.

Window mode
The window mode is useful when we use its Console tab or Net tab. When we
execute a large JavaScript code, we expect a large area where we can write easily.
Similarly, the results shown by the Net tab require a big screen to examine it easily.
Window mode is the best solution in this case.

Chapter 1

[13]

Summary
Firebug is an extremely useful web design and development tool that integrates
seamlessly with Firefox. Firebug has a huge worldwide user base along with a very
open and thriving eco-system.

We now have an idea of how to install Firebug on Firefox and Firebug Lite on
non-Firefox browsers. Installing Firebug is as simple as installing any other add-on
or extension of Firefox. We have also seen some of the ways of opening, closing, and
undocking Firebug, and learned when to use dock view and when to use window
mode for different purposes.

Firebug Window Overview
This chapter gives a brief introduction to the different tabs, subtabs, and menu
options provided by Firebug.

Firebug is not about fixing the bugs and tweaking CSS; it consists of many tools that
can be of great help to a web developer and designer. Firebug is like a golf club bag.
Each club (tab) in Firebug is a powerful tool for web developers. Like a golf player, a
web developer has to choose a club (tab) for different situations. The tools are:

•	 Console tab
•	 HTML tab
•	 CSS tab
•	 Script tab
•	 DOM tab
•	 Net tab

Console tab
Firebug also provides a console panel with a command line to view warnings,
errors, info, logs, debug messages, JavaScript profiler output, XmlHttpRequest/
XmlHttpResponse, and many others, just like any other console output screen (for
example C, C++, or Java). Firebug gives us a good, old-fashioned command line for
JavaScript with an autocode completion feature and modern amenities. This feature
of Firebug is a boon for JavaScript developers.

Firebug Window Overview

[16]

There are two main questions that come to anyone's mind while working
with Console tab:

1. What do we do when we want to include a JavaScript on the web
page to give it a dynamic functionality?
Answer: We just type a few lines of JavaScript code wrapped
within a <script> tag and then wait for the browser to execute
that code to show us the output.

2. What do we do if that code has errors?
Answer: We repeat the same process; we try to debug that code in
our traditional style by inserting a few alert statements between
the lines of code.

Somehow we manage to figure out the problems and bugs, we fix them, and also
remove the unused code (alert messages).

Command line JavaScript
Command line JavaScript is a very powerful tool of Firebug. This feature provides
us with the power to execute JavaScript files and commands on the fly, without even
reloading the document. We love to execute complex JavaScripts using this feature.
Most of the time we execute commands and code snippets of jQuery, a framework
over traditional JavaScript, against the document to test whether the script that we
have written is running.

This tab is our favorite one as, before integrating any JavaScript on our page, we first
validate and execute it on a command line JavaScript provided under this tab.

The preceding screenshot shows the Console tab. The Console tab is highlighted,
showing that we are under this tab. There are three buttons under this tab—Clear,
Persist, and Profile.

Chapter 2

[17]

•	 Clear: This is used to clear the console
•	 Profile: This is used to profile our JavaScripts
•	 Persist: This will make sure that the errors, warnings, and information on the

Console tab persists even if the page is reloaded or refreshed in the browser

JavaScript profiler (as shown in the following screenshot) is used to find out how much
time (Avg, Min, and Max) a function or script consumed to execute on the browser.
We'll discuss the profiler in more detail later in Chapter 5, JavaScript Development.

Errors and warnings
When something goes wrong, Firebug lets us know the details and
relevant information:

•	 JavaScript errors and warnings
•	 CSS errors
•	 XML errors
•	 External errors
•	 Chrome errors and messages
•	 Network errors
•	 Strict warnings
•	 XHR (XMLHttpRequest) information

The following is the representative screenshot showing JavaScript and CSS errors:

Firebug Window Overview

[18]

The lines that have an '!' (exclamation) icon at the beginning
are warnings and lines with 'X' (cross) icon are errors.

Status bar error indicator
When a JavaScript error occurs, Firebug will display a red X icon on the bottom
right-hand side of the Firefox browser in the status bar. This is Firebug's way of
telling us that things are not correct and something has gone pear-shaped.

Click the X icon to open the Firebug error console, which will show us all of the
JavaScript errors that have occurred on the page.

The screenshot under the Errors and warnings section shows the expanded firebug
error console, which opened when we clicked on the X icon.

I don't want JUNK
These include errors and warnings associated with each page we have
ever visited. Firefox is better than those because it has Firebug; by default
it shows us the errors and warnings only for the page that we're looking
at. If we want the information to persist, then we can click the Persist
button on the Console tab. When the Persist button is clicked, the console
will copy information from old to new console when we reload the page.

Chapter 2

[19]

Errors can be descriptive and informative
With Firebug we have the power to easily find out the types of errors—JavaScript
errors, CSS errors, or XML errors.

Firebug shows very informative errors, which makes them easier to debug and fix.
JavaScript errors include a wealth of information about what went wrong. It includes
error description, the file and the line number, and the line of source code that caused
the error. Firebug shows the stack trace for JavaScript errors, which helps the debugging
of JavaScript to be easier and faster. The following screenshot gives an example of how
Firebug shows the informative and descriptive JavaScript and CSS errors:

Executing JavaScript commands
If we execute the following lines of JavaScript code in Firebug's command line
JavaScript console, we will get the output shown in the succeeding screenshot. The
command line is at the bottom of the Console tab; it starts with >>> and accepts
commands in JavaScript. The results of our JavaScript, if there are any, are then
displayed on Firebug's console. The following code explains debug, info, warning,
and error messages:

console.debug('This is a Debug message');
console.info('This is an Information');
console.warn('This is a Warning message');
console.error('This is an Error message');

To execute the preceding JavaScript code on Firebug's command line JavaScript
console, just follow these steps:

1. Open Firebug with the F12 key.
2. Click on the Console tab.

www.allitebooks.com

http://www.allitebooks.org

Firebug Window Overview

[20]

3. Type the code in the box that is next to the >>> symbol, as shown in the next
screenshot, and then press the Enter key.

HTML tab
The HTML tab is the next tab of Firebug's Console tab, which allows us to edit
HTML on the fly and play with our HTML DOM in our Firefox. There is an HTML
source panel to the left-hand side. The right-hand side contains four subtabs or
panels—Style, Computed, Layout, and DOM.

The HTML tab will quickly help us find how a particular web page is structured and
how Firefox interprets the HTML page. In the HTML source panel, one cannot see
the CSS hacks or other HTML tags that are meaningful for non-Firefox browsers. The
HTML tab also allows us to edit HTML and tweak CSS dynamically on the fly for
the live document that we are viewing.

The following is the list of things we can do with the HTML tab:

•	 Inspect an HTML element
•	 Explore the Style (CSS) of a particular HTML element in the document
•	 Explore full HTML DOM of the document
•	 Edit any existing HTML elements and CSS on the fly

Chapter 2

[21]

•	 Search the internal HTML element instead of text content on the page
•	 Set Break Points on the HTML nodes, which will be triggered whenever

an attribute is changed, a child element is added or removed, or the element
is removed

The hierarchy of DOM nodes (the HTML
source panel)
The HTML source panel is located to the left-hand side of the HTML tab. It shows a
more advanced view of HTML than the default view source of the Firefox browser.
It has many advanced features and shows us the HTML DOM in a hierarchical
structure or tree-view with highlighted colors. We can always expand or collapse
the HTML DOM so that it will be easy for us to understand and figure out the whole
structure and hierarchy of the page.

Firebug Window Overview

[22]

Options for HTML source panel
There are nine options in the HTML source panel. The following screenshot shows
the HTML source panel:

•	 Show Full Text: If the text within an element (example, <P> tag) is too long,
then Firebug will truncate this text and will append "…" after the string.

•	 Show White Space: This shows the white spaces between each
HTML element.

•	 Show Comments: Check this option if one wants to view the comments
in HTML source panel, otherwise uncheck this option.

•	 Show Basic Entities: This shows the basic HTML core entities and
whitespace entities in text nodes, attributes, and so on. While editing,
when one types "<", ">", and "," these are converted to entities automatically.
Editing with this option off, "<" and ">" are used to add elements as we
type and the text is interpreted as source code.

•	 Highlight Changes: This shows, in highlighted color, any changes we
make in the HTML view (that is, DOM).

•	 Expand Changes: This will expand the HTML element that has changes.
•	 Scroll Changes Into View: The scroll bar of the HTML source panel will

move to the place where something on the view/document has changed.

Chapter 2

[23]

•	 Shade Box Model: If we take our mouse pointer on any HTML tag/element
within HTML tab, Shade Box Model will shade the area (in blue and purple
color) covered by an HTML element on the page. Enabling this option helps
to quickly find out the width and height of an HTML element.

•	 Show Quick Info Box: Enabling this option will display a small grey-colored
box on the page, and we can see the CSS-related information about an element.
To see it working, we need to hover the mouse on any HTML element within
the HTML tab.

Editing HTML on the fly
By using this feature of Firebug, we can create or edit an HTML element and its
attributes on the live document.

Editing an existing attribute of HTML element
Click on the HTML ID attribute. A textbox will be shown on the attribute to edit the
content of the attribute, as shown in the following screenshot. We can just type and
press Enter after finishing. Pressing Esc will cancel the editing mode.

Firebug Window Overview

[24]

Editing an HTML element
To edit an HTML element, we just right-click on the HTML element we want to edit
and click or select the EDIT HTML… from the context menu, as shown in the next
screenshot. Or we can simply select an element and then click on the Edit button
on the toolbar of the HTML tab. Firebug provides another easier and simpler way
of editing the HTML element by double-clicking on the HTML tag. We will discuss
detailed HTML source-code editing in Chapter 3, Inspecting and Editing HTML. Let's
take an overview for now and wait for the real magic in the next chapter.

Chapter 2

[25]

The HTML source view panel will get converted into a text-editor-type panel, as
shown in the next screenshot. Now this is a playground for us, where we can easily
edit the live HTML source code on the fly.

Now we can edit the existing HTML source or can add a new HTML element to it. A
sample is shown in the next screenshot. Here we add a new attribute to a tag
and a new element to show bold text on HTML. We can also change the
tag to any tag; we can change it to a <div> tag, or <p> tag, and many more.

Firebug Window Overview

[26]

When we are done with our editing and want to view the changes on the live
document, we simply click Edit on the toolbar of the HTML tab. The next screenshot
shows the changes that are made on the edit HTML view panel:

Logging events
Logging an event in Firebug is very easy. In fact it is so easy that a fifth grader could
use this feature for logging events. The following are the few events that are logged
on an <input type=text/> element textbox:

•	 Blur
•	 Focus
•	 Mousemove
•	 Mouseout
•	 Mouseover
•	 Select

Chapter 2

[27]

•	 Keypress
•	 Keyup
•	 Keydown

To log events for an HTML element, just right-click on the HTML element and select
Log Events, as shown in the next screenshot:

Firebug Window Overview

[28]

Now move on to the Console tab on the toolbar of Firebug. The following screenshot
shows the logging of events as displayed on the Console tab:

After switching to the Console tab, just move the mouse pointer over the textbox (the
<input> element). Then immediately some mousemove and mouseover events start
getting fired, which can be seen on the Console tab. Now type some text (say Firebug)
into that textbox. We can see some keypress, keydown, and keyup events getting fired,
which can be seen on Firebug console as shown in the previous screenshot.

Chapter 2

[29]

CSS tab
The CSS tab allows the user to tweak the CSS stylesheet to his/her taste. We can use
this tab for viewing or editing CSS stylesheets on the fly and view the results live on
the current document. This tab is mostly used by the CSS developers to tweak the
pixels, position, look and feel, or area of an HTML element. This tab is also useful
for web developers when they want to view those elements whose CSS property
display is set to none or invisible elements.

The following is the list of things that we can do under the CSS tab:

•	 Inspect the CSS styles
•	 View a list of loaded CSS stylesheets
•	 Modify CSS on the fly
•	 Temporarily disable CSS rules

The next screenshot shows the CSS tab. If there are some CSS attached with our
HTML document, then they will be displayed under this tab.

CSS inspector
Firebug behaves like an inspector as well as an editor. All the properties of CSS
can be edited with a single-or double-click. As we type, the changes automatically
get applied to the current document open in the browser window, and we will get
immediate results.

www.allitebooks.com

http://www.allitebooks.org

Firebug Window Overview

[30]

Firebug hides those CSS rules and properties that Firefox ignores.

We will discuss more on developing and inspecting CSS in Chapter 5, JavaScript
Development. For now let's move on viewing a list of CSS stylesheets and modifying
CSS to our taste.

List of CSS files
To view all the CSS files of our page, we just go to http://www.google.com and
activate Firebug by pressing the F12 key.

Now go to the CSS tab and click the drop-down (www.google.com in my case) just
next to the Edit button, as shown in the following screenshot. A drop-down menu
will be shown and all CSS files will be listed. We can simply click on any CSS file
that we want to view.

Modifying CSS
In this section we will briefly discuss how we can modify the CSS on the fly. Like the
HTML tab, it also has an editable mode. The CSS tab screenshot that we have seen
earlier shows the normal mode, whereas the following screenshot shows the editable
mode of CSS tab:

Chapter 2

[31]

Editing and tweaking the CSS is very easy with Firebug. We only need to open
Firebug on the live page and enable the edit mode of the CSS, which will take us to
an editor where we can edit the CSS on the fly. Let's discuss the steps of modifying
the CSS with the following example:

<html>
<head>
 <style>
 p{color:red;font-size:12px}
 div{color:black;font-size:20px}
 </style>
</head>
<body>
 <div>
 This is some text
 <p>
 Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum
 </p>
 </div>
</body>
</html

Firebug Window Overview

[32]

Just create an HTML file on our file system and write the preceding code in it. After
saving this file, open it in Firefox. Now, open Firebug by pressing the F12 key and go
to the CSS tab; we will see the rendered HTML output of the previously mentioned
code, as shown in the following screenshot:

Click on the Edit button, which we can find in the top-left corner of the menu bar
under the CSS tab. A notepad-type editor panel will open, as shown in the next
screenshot. In this panel, the contents can be edited as discussed earlier.

Chapter 2

[33]

In this panel we can edit, add, and remove the CSS rules and properties. The next
screenshot shows some of the CSS properties that are changed and added, and the
styles that are edited.

Please note the difference between the old and new CSS styles in the
previous and next screenshot. The color property of <p> tag is changed
from red to blue. Similarly, the color property of <div> tag is
changed from black to red.

One more thing that we should notice when we try the previous example is that
while editing the CSS styles, we don't need to wait for styles to get applied and see a
preview; we get the result instantly on the browser's window. This editing of CSS on
the fly and getting results in real time on our live document makes CSS development
so easy and powerful that even a beginner, who wants to learn CSS, can easily and
quickly learn and understand the CSS rules and its properties.

Please don't forget to refresh the web page if something goes wrong with
Firebug while editing or debugging. Firebug is a very powerful tool for
inspecting, editing, and debugging; however, there are some issues and
limitations of Firebug. If we find any bug, then we can report it on
http://code.google.com/p/fbug/issues/entry or we can find an
existing issue on http://code.google.com/p/fbug/issues/list.

Firebug Window Overview

[34]

Script tab
The Script tab is the next gem that Firebug provides us with. This tab allows us to
debug JavaScript code on the browser. We'll not go into the details of debugging
JavaScript under this tab because in Chapter 5 we will cover all the details and ways
of debugging JavaScript. For now we take an overview of this tab and briefly discuss
the features of this tab.

The following can be performed under the Script tab:

•	 Viewing the list of JavaScript files that are loaded with our document
•	 Debugging the JavaScripts
•	 Inserting and removing breakpoints
•	 Inserting and removing conditional breakpoints
•	 Viewing the stack trace
•	 Viewing a list of breakpoints
•	 Adding new watch expressions
•	 Keeping an eye on the watches for viewing the values of variables
•	 Debugging an AJAX call

The next screenshot shows the layout of the Script tab. On the left panel, there is a
JavaScript editor for debugging the JavaScript. With the JavaScript editor, we can
debug the JavaScript code. In Firebug 1.4.x, an option called "Break on All Errors"
can be found under this editor. If we check this option, the script execution will be
paused if the error occurs in our JavaScript code.

In Firebug 1.5.x, the "Break on errors" option has been completely
redesigned and this option is no longer available under the Script tab.
We can still get this behavior by clicking the pause | | button next to the
Console tab. This pause button acts differently on the Script tab; it breaks
on the next executed line of JavaScript. On the HTML tab, it "Breaks on
Mutate", that is, the execution will be paused when the HTML's DOM
structure gets changed.

On the right-hand side panel, there are three more subtabs—Watch, Stack,
and Breakpoints.

•	 Watch: This panel displays the value of variables as a list in this panel. It
shows values of those variables that are in current scope.

Chapter 2

[35]

•	 Breakpoints: This panel displays the list of all the breakpoints that we have
attached with our code using Firebug or Firebug's API.

•	 Stack: This panel shows the stack of the function calls of the current function.

If we want to view the list of JavaScripts attached with the document then:

1. Open Firebug using the F12 key.
2. Go to the Script tab.
3. Click on the drop-down (in this case ajax.js) just next to the evals button.

The next screenshot shows the list of JavaScript files that are attached with the
document. To debug the JavaScript using Firebug, select any one of them from
the list and the JavaScript written in that file will get displayed on the left-hand
side of Firebug.

Firebug Window Overview

[36]

If Firebug doesn't display the list, then refresh the document without closing Firebug.

DOM tab
HTML elements are also known as DOM elements. DOM, that is, Document Object
Model, represents the hierarchy of the HTML elements and functions. One can
traverse in any direction within the DOM using JavaScript. The DOM elements have
parent, child, and sibling relationships between them.

The DOM tab in Firebug shows default values for the following:

•	 DOM properties
•	 DOM functions
•	 DOM constants
•	 User-defined properties
•	 User-defined functions

If we want to find out how many functions or properties included our scripts, then
we can easily find out by using this tab. This DOM tab is very useful for those who
know JavaScript but don't know the default methods and constants they can use.

Chapter 2

[37]

The following is a sample HTML code to illustrate the DOM tab:

<HTML>
<head>
 <script>
 function listOfStates(country){
 }
 function country(){
 }
 </script>
</head>
<body>
</body>
</HTML>

To see the working of the DOM tab against the preceding code, just follow these steps:

1. Write the preceding code in a file and save it with .html extension.
2. Open the saved file in Firefox and press the F12 key to open Firebug.
3. Go to DOM tab and choose Show User-defined Functions from

the drop-down menu.
Now we can see that the two functions—country() and listOfStates(country)—
that we have written in <script> tag are in the list, as shown in following screenshot:

Firebug Window Overview

[38]

Net tab
The Net tab allows us to monitor the network for our page. This tab measures the
performance of our web page and very quickly shows useful information such as:

•	 The time taken to load the page
•	 The size of each file
•	 The loading time of each file
•	 The number of requests the browser sends to load the page

The Net tab also shows whether the file that was requested by the browser is loaded
from cache or it has been fetched from the server. In the latest version of Firebug (1.5),
there are five columns in the Net tab to display the statistics. They are as follows:

•	 URL: This first column shows the name of each file that is included in our
web page. This column also shows which type of request (GET or POST) is
made to the server. When we hover the mouse over URL, we can see the full
URL of the file.

Chapter 2

[39]

•	 Status: This is the second column and shows the HTTP status code and the
message returned from the server.

•	 Domain: The third column shows the domain or base URL of each file. If we
are using some files from external servers (for example, image links from
another site, Google ads, or scripts), then the different URL(s) will be shown
in this column.

•	 Size: This is the fourth column and shows the size of each file.
•	 Timeline: This last column shows the loading time of each file and whether

or not those files are loaded from cache. It also shows the status of each file in
different colors:

	° Light Blue: DNS (Domain Name Server) lookup.
	° Green: Connecting to server.
	° Cream Pink: Represents queuing time.
	° Purple: Represents the waiting time.
	° Dark Grey: Request sent to server now receiving data from

server
	° Light Grey: Request sent to server, "Not Modified" received,

received data from the cache.
	° No bar for the file: No request sent to server, file loaded

from cache.

We can see the actual colored image in Firebug's Net panel.

www.allitebooks.com

http://www.allitebooks.org

Firebug Window Overview

[40]

Apart from loading time bars, we can also see two vertical lines—one in red and
another in blue. The vertical blue line represents that the DOM content is loaded
and the red vertical line represents that all the elements and events of the DOM are
loaded. We can assume that these two vertical lines are the milestones that a web
page has to achieve as quickly as possible to show the best results such as speed.

Summary
In this chapter, we discussed the overview of Firebug's tabs and for what purposes
they are used. We discussed some key features of each tab that Firebug offers.
Each tab in the Firebug is like a tool that the web developer can use to fight any
client-side-related bugs.

Editing HTML and CSS on the fly becomes very easy by using Firebug. In next
chapters, we'll discuss each feature of the Firebug individually. We will discuss how
easy it can be to debug a JavaScript code, and how easy it is to change the look and
feel of the live current page.

Inspecting and Editing HTML
This chapter provides an understanding of using Firebug to inspect, edit, search, and
play with the HTML source of the document.

The chapter will cover how to:

•	 View source live
•	 See changes highlighted
•	 Modify the source on the fly
•	 Inspect page components, edit, and reload
•	 Search within an HTML document
•	 Find an HTML element on the page
•	 Set breakpoints on an HTML element

Viewing source live
Firefox and most other browsers have a feature for viewing the "source" of the
HTML document sent by the server. However, it is possible to modify or transform
(add elements, modify CSS styles, remove or hide elements, and so on) using
JavaScript on the browser after the HTML document has been served. The "view
source" feature of the browser does not show the modified or transformed version of
the HTML source.

Firebug's HTML tab shows us what the HTML looks like right now. In addition
to the HTML tab, there are three tabs on the right that let us view and modify the
properties of an individual element, including the CSS rules that are being applied to
the element, the layout of the element in the document, and its DOM properties.

Inspecting and Editing HTML

[42]

Firebug's HTML view has more advanced features than the default source view of
the Firefox browser. It shows the HTML DOM in a hierarchical structure or tree view
with some highlighted color. It allows us to expand or collapse the HTML DOM
for easy navigation and visualization of the HTML page. It is a viewer as well as
an editor—it allows us to edit or delete the HTML elements or attributes on the fly,
and the changes are immediately applied to the page being currently viewed and
rendered by the browser.

The following screenshot displays the view of the HTML tab after the document has
been loaded by the browser, but before any modifications have been made to the
HTML document by JavaScript:

Executing the following JavaScript code would add an element to the HTML DOM:

jQuery('#lastRow').after('<tr><td>Total</td><td>147,553,000
 </td></tr>')

The following screenshot displays the view of the HTML tab after the document has
been loaded by the browser and any required modifications have been made to the
HTML document by JavaScript:

Chapter 3

[43]

Please note that the Firebug's HTML tab is showing the modified HTML
document. However, the browser view source window will continue to display
the original source.

Seeing changes highlighted
Real life web pages are complex and may require complex changes in the HTML
document in many ways. Sometimes, we have to understand JavaScript code not
written by ourselves and more importantly, understand the changes JavaScript code
makes to the HTML document. Sounds hard! Not really with Firebug's support for
highlighting the changes.

Expanding further the example used earlier in the chapter, the page has been
implemented such that when the mouse cursor goes over the table, the background
color of the rows in the table interchange. In order to understand what changes have
been made to the HTML DOM, let's quickly turn on the Highlight changes feature
and take a look at the HTML tab.

Inspecting and Editing HTML

[44]

The following screenshot displays the view of the HTML tab when the mouse is
hovered over the table:

As we can see, the changes made to the HTML document have been highlighted in
the HTML tab.

Modifying the source on the fly
Firebug makes it really easy to make experimental HTML changes and see them
implement instantly. We can create, delete, modify HTML attributes, or create new
HTML elements, or completely modify the source of the document.

This feature is most useful for scenarios where we have to make minor tweaks to any
of the HTML attributes on the server side and then keep refreshing the browser page
to see how the changes look. Firebug allows us to tweak and fine tune our HTML
attributes very easily; the changes are applied immediately as we type.

Chapter 3

[45]

How to modify the value of an HTML attribute
In order to modify the value of an HTML attribute on a page, let's do the
following steps:

1. Open Firebug.
2. Click on the HTML tab. This will show the source of the document.
3. Locate the element that we want to modify in the source tree. (We

might have to expand nodes in order to reach the element that we are
trying to modify.)

4. Simply click on the attribute value that we want to modify. On clicking,
the attribute value turns into an editable textbox. We can modify the
value and see it taking effect instantly.

Inspecting and Editing HTML

[46]

Using the up and down arrow keys to modify attribute values
For HTML attributes that take a numeric value, it is possible to easily
increase and decrease the values by pressing the up and down arrow
keys. For example, if we are trying to set the width of a table column to
a certain size, then it is very easy to keep pressing the up or down arrow
keys and see the corresponding change in Firefox window.
Using tab to navigate between elements
If we find ourself navigating to many attributes by clicking on the
attribute names and values, then Firebug provides an easy way to do
that. We can use the Tab key to navigate forward and Shift + Tab keys to
navigate backward between different attributes.

How to add a new attribute to an existing
HTML element
In order to add a new HTML attribute to an element, let's do the following steps:

1. Open Firebug and locate the element (in the HTML tab) that we want
to modify.

2. Right-click on the element and choose the New Attribute... option.
3. Enter the name of the attribute, press the Tab key, and then enter the value

for the attribute. The new attribute gets applied as we type, without us
having to click outside the textbox or doing anything else.

Chapter 3

[47]

How to delete an HTML element
In order to delete an existing node in the HTML source tree, do the following steps:

1. Open Firebug and locate the element (in the HTML tab) that we
want to delete.

2. Right-click on the node that we want to delete and choose Delete Element.

How to modify the source for an HTML
element
If we're looking to do more than just make minor tweaks, Firebug allows us to edit
the entire HTML source of any element. In order to modify the source for an HTML
element, let's do the following steps:

1. Open Firebug and locate the element (in the HTML tab) that we want
to modify.

2. Right-click on the element and choose the Edit HTML... option from the
menu. This will open the HTML code for the element in a separate tab, which
allows us to edit the source just as we do in a text editor. The changes that we
made take effect as we type them. (We can also enter the Edit mode for an
HTML node by double-clicking on the node).

Inspecting and Editing HTML

[48]

3. Click on the Edit button again to go back to the HTML tab view to see the
complete document source tree.

Inspecting page components, editing,
and reloading
Something on our page doesn't look quite right and we want to know why. We
are looking at a page, and we want to understand how a particular section of the
page has been constructed. Firebug's "Inspect" functionality allows us to do that in
the fastest possible manner, using minimum clicks or mouse strokes. As we move
around the page, Firebug creates visual frames around various page components or
sections, and shows the HTML and CSS behind the page section.

The inspect button icon (shown in the next screenshot) to the left-hand side of HTML
toolbar allows us to inspect the HTML element of the web page we are looking at.
In order to inspect elements on a page, just click the inspect button icon and move
the mouse around the web page. The HTML element under the mouse cursor will
be highlighted and the related elements will be selected in the HTML tab of Firebug,
showing the HTML and CSS controlling the look and feel of the HTML element.

This feature is very useful for web developers and designers as it allows them to
understand very easily why a certain component on the web page looks the way
it does.

In order to inspect an element on a web page, let's do the following steps:

1. Click the inspect button icon on the Firebug console toolbar.
2. Move the mouse cursor on to the page component or section that we want

to inspect.

Chapter 3

[49]

3. Click on the page component or section to select the element in the
HTML panel.

In our experience, this is one of the most frequently used features while tweaking
the look and feel of our web application. Inspecting page elements and doing tweaks
(editing HTML attributes, CSS rules, and so on) are real time savers during fine
tuning of a web application's look and feel.

When we inspect an element, a visual frame is created around the element and the
HTML source of the element is shown highlighted in the Firebug window.

www.allitebooks.com

http://www.allitebooks.org

Inspecting and Editing HTML

[50]

Using right-click to inspect
We can even inspect an element by right-clicking on the element in the
browser window and selecting the Inspect Element option from the
menu. This allows us to inspect an element without opening the Firebug
window, and with minimum mouse-clicks.

The inspection feature also acts as a great learning tool when we are looking at web
pages developed by others. Firebug tells us exactly which code is used to make a
particular object on a web page.

When we inspect an element in the HTML tab, we can reload the page and Firebug
will continue to show that same element (if it still exists) after the reload. This makes
it easy to test when we make a change in an external editor (or on the server-side
code) and reload the page in Firefox to see how it looks.

Searching within an HTML document
Firefox has a search feature that allows us to search for the text on a web page.
Firefox's search feature is good for viewers of the web page who are searching for
some content on the page. But if we need to perform a search in the source code of
the HTML, then we have to view the source and search in the source window. There
are two main issues with using Firefox's default search feature:

•	 The HTML source appears as a flat file (without any structure)
•	 There is no linkage between the source window and the page

Firebug comes to the rescue here as well. Firebug provides a "search box" on the
right-hand side of the console toolbar. Using the quick search box in Firebug's
toolbar, we can search the HTML source and see the results highlighted as we type.

In order to search for something in the source of the web page that we are looking at,
simply open the Firebug console and type something in the search box.

Chapter 3

[51]

Finding an HTML element on the page
While looking into the code of an HTML document in the HTML tab of Firebug, if
we want to check where the element is displayed on the page, it is very easy to do
so using the Scroll Into View feature. In order to find where in the page the HTML
element is rendered, simply right-click on the HTML element and choose the Scroll
Into View option from the menu.

Inspecting and Editing HTML

[52]

This is the exact reverse of inspecting an element on the page when Firebug finds the
component on the page in the HTML source tree. Here we are finding an element in
the HTML source tree on the page.

Copying HTML source for an HTML
element
In order to copy the source of an HTML element, right-click on the element and
choose either the Copy HTML or the Copy innerHTML option from the menu.

Setting breakpoints on HTML element
We have already discussed this topic in Chapter 2, Firebug Window Overview, but here
we'll discuss it in detail.

In Firebug 1.5, there is an option for setting up the breakpoints on an HTML node
too. These breakpoints are triggered whenever an attribute is changed, a child
element is added or removed, or the element is removed. The following are the steps
to set up breakpoints on an HTML node:

1. Inspect the element on which we want breakpoint to be inserted. Within the
HTML tab, right-click on the element.

Chapter 3

[53]

2. Select an option (Break On Attribute Change, Break On Child Addition
or Removal, or Break On Element Removal) from the context menu. On
selecting one, Firebug will keep an eye on the node.

Inspecting and Editing HTML

[54]

3. Now, whenever the HTML within the marked node changes, Firebug will
trigger the breakpoint and take us to the line in the JavaScript code whose
execution is changing the DOM/HTML of the marked element.

4. By pressing F10 (Step Over) or F11 (Step Into), we can debug the JavaScript
in the Script tab.

Summary
In this chapter, we looked at various ways to analyze and study the HTML source
of the page we are looking at, using various tools and utilities provided by Firebug.
Firebug makes it extremely easy to understand the HTML source of a page. It allows
easy editing of the HTML document and viewing of the changes to the rendered
page. In the following chapter, we will learn how to control and enhance the look
and feel of web pages by changing the CSS of the page with the help of Firebug.

CSS Development
This chapter aims to help the reader to understand the useful tools and utilities
provided by Firebug for CSS development. Firebug is a great tool to increase one's
learning of CSS rules and how they will impact a document, whether an individual
is a beginner or has intermediate skills of CSS.

In this chapter, we'll learn step-by-step how CSS development can be done
using Firebug.

Throughout this chapter, we'll use http://www.csszengarden.com
as a sample to explain CSS development. This site demonstrates what
can be accomplished visually through CSS-based design.

Inspecting cascading rules
With non-Firefox browsers, one is left banging his/her head against a wall when the
color of a paragraph comes out red instead of blue. But thanks to Firebug we can
easily inspect the problematic HTML element, and find the CSS rule that is causing
the problem, before you can blink.

Inspecting a CSS element is very simple. It is similar to inspecting an HTML element
as described in the previous chapter. To inspect a CSS element, we just need to open
Firebug in inspect mode.

We can open Firebug in inspect mode in the following two ways:
•	 Directly in inspect mode by pressing Ctrl + Shift + C

•	 By pressing F12 and then clicking icon just next to the bug
icon on the top-left corner of the Firebug window

CSS Development

[56]

The following screenshot depicts the inspection of CSS for an HTML element
(observe the rectangular box around Zen Garden):

The following are the steps to find and inspect the CSS of an HTML element with
the mouse:

1. Open any site (in our case its http://www.csszengarden.com) and press
Ctrl + Shift + C (default shortcut) to open Firebug in inspect mode.

2. Move the mouse pointer on the HTML element on the page that we want to
inspect, as shown in the next screenshot (in our case it is the image on which
"Zen Garden" is engraved). With the movement of the pointer of the mouse
we can see a blue box beneath the pointer. Whatever is wrapped in that box
will be instantly revealed within Firebug, which shows HTML on the left
panel and CSS on the right panel.

3. When we reach the problematic HTML element, click on it. As soon as we
do that, the box will vanish, and the HTML and CSS rules of that element
will be shown.

Firebug also shows the link, with the line number indicated, to the CSS file that the
CSS property is getting applied to. When we click on the link, Firebug will switch to
the CSS tab and take us to that file, and specifically to the line number indicated in
the link. This property helps the web developer and web designer to easily find the
exact CSS file and line number that he or she wants to tweak.

Chapter 4

[57]

Preview colors and images
To verify whether we have selected the right element, move the mouse pointer
over the URL value of the background in the CSS rule, as shown in the following
screenshot, which illustrates the preview of the image within Firebug. As soon
as we move over that value, Firebug will show a handy tool tip that previews the
"Zen Garden" image with its width and height.

Similarly, we can also preview colors within Firebug. For example, we'll inspect
the <h3> element, The Road to Enlightment, as shown in the following screenshot:

CSS Development

[58]

To inspect the text or any other HTML element, follow the steps
explained under section Inspecting cascading rules of this chapter.

Now, we move our mouse pointer over the value of the CSS property—color
(in our case its #7D775C) as shown in the following screenshot:

Tweaking CSS on the fly
Gone are the days when one had to edit the CSS rules and properties, in the CSS file
associated with the document and reload the page to view changes. This is a new
generation folks; with Firebug one can edit the CSS rules, tweak the CSS properties on
the fly, and view the live changes on the page instantly in real time. We don't have to
reload the page every time some changes are made to CSS files. This feature of Firebug
not only saves our development time and cost but also helps us to get rid of CSS errors
and issues.

Firebug shows all the CSS rules that are impacting the selected HTML element
and the CSS rules that an element inherits from its ancestor elements. If some CSS
property or style is overridden, that rule and property is also shown by Firebug in
strike (for example, color : red) fashion.

While editing the CSS properties, one can press the ESC key
to cancel the editing.

Let's discuss tweaking CSS with our previous example, "The Road to Enlightment",
which we saw in the previous screenshots. Now, recall the color property on the
<h3> element or we can refer to the following CSS style:

h3 {
color:#7D775C;
font-family:georgia,sans-serif;
font-size:1.4em;

Chapter 4

[59]

font-size-adjust:none;
font-style:italic;
font-variant:normal;
font-weight:normal;
letter-spacing:1px;
line-height:normal;

}

To edit the CSS rule from Firebug, just follow these steps:

1. Open Firebug and inspect the problematic HTML element whose CSS
rule is to be edited.

2. Click on the value of the CSS property under the Style panel of the HTML
tab (in our case click on the value #7D775C of the CSS property color).
As soon as we click, a little text editor will appear as shown in the
following screenshot:

3. Now, type red in place of #7D775C. The result can be seen instantly on the
page; the color of the selected element's text turns to red without having to
reload the page.

When the CSS property is in editable mode, one can navigate
between the CSS properties and their values, to and fro, by
pressing the Tab key (to navigate in forward direction) and
Shift + Tab keys (to navigate in backward direction).

www.allitebooks.com

http://www.allitebooks.org

CSS Development

[60]

There is another easy way of editing the CSS stylesheet. Just click on the Edit button
under the CSS tab and Firebug will convert the CSS panel into a text editor. When
we are done with editing, click on the Edit button again. Clicking on this button will
save our changes and toggle the panel from the text editor to the normal CSS panel.

Enabling and disabling specific CSS
rules
Firebug allows us to turn off styles impacting an element within the CSS. When we
turn off an attribute, and if that attribute value was overriding a different value in
the cascade, then the formerly crossed out value will become active and we can test
the page with the attribute value removed. In order to turn off an attribute, click to
the left of the attribute in the Style panel where a red do not icon will appear; the
attribute will be grayed out or disappear. The strike-through of the new attribute
value affecting the element from the cascade will be removed. We can toggle the
attribute's value back to "on" by clicking on the do not icon again. However, if the
attribute has disappeared as it has been overwritten, we will have to re-inspect the
element to see the missing attribute and then turn it on.

Chapter 4

[61]

The next two screenshots illustrate enabling and disabling the CSS properties:

When we disable the color property of CSS from rule h3 the following
changes appear:

1. The color of the <h3> element, "The Road to Enlightment", is changed.
2. The property that we disable is grayed out.
3. The strike-through of the color attribute value affecting the element from

the body rule is removed.

CSS Development

[62]

The effects after enabling the CSS property are highlighted in the preceding screenshot.
The color of the text changes to red again, the CSS attribute color of the body rules gets
overridden and struck-through.

Inspecting our stylesheet
Firebug's HTML tab only lets us inspect the CSS of a single element, whereas the
main CSS tab allows us to view entire stylesheets imported in the page. To inspect
the stylesheets imported in the current HTML page, we need to go to CSS tab. The
following screenshot shows how to select the stylesheet from dropdown to inspect it:

In the CSS tab, we will find a drop-down in the top-left corner next to the Edit
button. On clicking the drop-down, it shows the list of the stylesheets that are
imported on the page. Now we can easily select any stylesheet for inspection in the
CSS tab.

As soon as we select a cascade stylesheet from the list, it will open in the CSS tab
for inspection.

Modifying CSS from Firebug's UI
When we right-click on the CSS property within Firebug, a context menu will appear
with few options related to CSS as shown in the following screenshot. The context
menu is dynamic and shows the edit, delete, disable options with respect to the CSS
property on which we have right-clicked:

Chapter 4

[63]

Let's now learn the various options of the context menu:

•	 New Rule:
When we click on the New Rule... option, a mini-editor will pop up in the
Firebug window. Here we can define a new CSS selector, that is, a CSS class
or an ID. Press the Tab key to commit the change.

•	 New Property:
When we click on the New Property option, Firebug will open a mini-editor
within the CSS rule to define new CSS properties of the rule on which we
have right-clicked. We can type any CSS property (such as margin, padding,
background, color, and so on) in this area.
To give the value to the new property, we press Tab key and type the value
that we want.

CSS Development

[64]

We can also define a new property by double-clicking in
front of any CSS rule.

The following screenshot shows the New Property option of the
context menu:

•	 Edit "<property>":
By selecting this option, Firebug allows us to edit the CSS property that is
shown in the option of the context menu.

We can also edit any CSS property simply by clicking on that
property. As soon as we click on the CSS property, Firebug makes
it editable. If we want to cancel the editing, we press the Esc key.

•	 Delete "<property>":
This option will remove the property from the CSS. If we want the removed
CSS property back then we refresh our page.

•	 Disable "<property>":

This option of context menu will disable the CSS property. Disabling the
property doesn't remove it from the document, we can always enable it by
clicking the red do not icon.

Chapter 4

[65]

Inspecting and tweaking the box model
The box model gives us the way to evaluate the height, width, padding, border, and
margin of a selected HTML element. While inspecting an element, the left panel
shows the HTML and the right panel displays the CSS. At the top of the right panel,
under the HTML tab, is a Layout tab. In order to evaluate the height or width of
any element on the page, click the inspect icon or press Ctrl + Shift + C while this
window is open and hover our mouse over the inline or block level element we wish
to inspect.

Searching under the CSS tab
To search within the CSS tab all we need to do is use Firebug's search box and write
the search string within that box. On the CSS tab, the search box behavior changes
and search space becomes the current CSS file.

To be more specific with upper/lower case string while searching, we can choose
the Force Case Sensitive option from the menu that appears when we focus on the
search box.

We can also choose the Multiple Files option from the menu. Selecting this option
increases the search space and Firebug will search the inputted string within all
the CSS files.

CSS Development

[66]

The Previous and Next buttons are used to navigate between the results.

Summary
In this chapter, we discussed how easily and quickly we can tweak the CSS styles
on the fly using Firebug. We can see live changes instantly on the page that we
are editing.

We learned how to inspect an element that is causing problems within the DOM
and tweak its styles/CSS rules. If an element has a color or background (image) CSS
attribute, then we can preview the colors and images within the tool tip pop up
of Firebug.

If we want to remove some CSS attributes from an element then we can
enable/disable those attributes by clicking on the do not icon.

JavaScript Development
In this chapter, we'll discuss the various tools/utilities provided by Firebug to aid
JavaScript development, debugging, profiling, and testing. Here, we take typical
use-cases with JavaScript and explain how they can be achieved using Firebug.

In this chapter we'll discuss the following topics:

•	 The command line API and its functions
•	 The console API
•	 Step-by-step JavaScript debugging
•	 Inserting conditional and non-conditional breakpoints

The command line API
As we have already seen the use of the command line in Chapter 2, Firebug Window
Overview here we'll discuss some methods provided by the command line API. These
methods help us in debugging JavaScript. The following are the methods with their
description and usage:

$(id)
This method is similar to document.getElementById() in JavaScript. It returns the
single element with the given ID.

JavaScript Development

[68]

The following is the HTML code snippet that we will use to explain the $(id)
method. Write the code in an HTML file and open it in Firefox.

<html>
 <body>
 <input name="myText" id="test_id" type="text">
 </body>
</html>

Now, considering that we are executing the following code line in Firebug's
command line, we will see the following output window:

$("test_id")

$ $$(selector)
This method returns an array of elements that matches the given CSS selector.

For more information on CSS selector, refer to this link
http://www.w3.org/TR/css3-selectors.

The following HTML code snippet has four <input> HTML elements in its DOM
and we'll select all four of them using the $$(selector) method:

<html>
 <body>
 <input name="myText1" type="text" class="test_class" >
 <input name="myText2" type="text" class="test_class" >
 <input name="myText3" type="text" class="test_class" >
 <input name="myText4" type="text" class="test_class" >
 </body>
</html>

Chapter 5

[69]

The following screenshot shows the output that we get after executing the
$$('input') method on the command line of Firebug:

To execute the code in Firebug's single line command line, make sure
we uncheck the Larger Command Line option in the drop-down list
for Console tab.

$x(xpath)
This method returns an array of elements that match the given XPath expression.

For information on XPath refer to
http://www.w3schools.com/xpath

For explaining this method we'll take the previous HTML file. Now, when we
execute the following code in the multiline command line of Firebug, we will
see the output in Firebug's Console tab:

var objs = $x('html/body/input')
console.log(objs[0].name)
console.log(objs[1].name)
console.log(objs[3].name)
console.log(objs[3].name)

JavaScript Development

[70]

Multiline command line: For our convenience, Firebug provides a
multiline command line editor. This is a mini text editor where we can
type multiple lines of JavaScript or even a full JavaScript program, and
can execute those lines on the fly. We can open the multiline command
line editor by clicking on a red color icon on the bottom-right-hand
side in the Console tab.

dir(object)
This method prints an interactive listing of all the properties of the object. This looks
identical to the view that we would see in the DOM tab.

Let's consider the same HTML code snippet that we used for the $$(selector)
method. If we execute the following code on the command line of Firebug, then
we'll get the output shown in next screenshot:

var objs = $x('html/body/input')
dir(objs)

Chapter 5

[71]

dirxml(node)
This method prints the XML source tree of an HTML or XML element. This looks
identical to the view that we would see in the HTML tab. We can click on any node
to inspect it in the HTML tab.

Consider the same HTML file and execute the following code in Firebug's
command line to get the XML source tree. The next screenshot shows the output
in the Console tab.

var obj = $$('body')[0]
dirxml(obj)

JavaScript Development

[72]

We can pass any node to this method by selecting it using the $(id) method, or any
other method similar to this which returns a single node.

By default, command line expressions are relative to the top-level window of the page.
cd() method, which allows us to use the window of a frame in the page instead.

clear()
This method clears the console. The functionality provided by the clear() method
can also be achieved by clicking on the Clear button, which can be found in the
top-left corner under the Console tab.

inspect(object[, tabName])
This method allows us to inspect an object in the most suitable tab, or the tab
identified by the optional argument tabName.

The available tab names are HTML, CSS, SCRIPT, and DOM.

Now, type the following code in the command line of Firebug against the opened
HTML document that we are using. The output will be seen in the HTML tab, as
shown in the next screenshot.

inspect($$('input')[0],'html')

Chapter 5

[73]

keys(object)
This method returns an array containing the names of all the properties of the object.

Executing the following code in the same HTML file that we are using shows all the
attributes, properties, functions, and constant of first input tag:

keys($$('input')[0])

JavaScript Development

[74]

values(object)
This method returns an array containing the values of all properties of the object.

Executing the following code would show the values of properties for first input tag
in DOM:

values($$('input')[0])

debug(fn) and undebug(fn)
These methods add or remove a breakpoint on the first line of a function.

We will learn these methods in the coming section and in detail in Chapter 8,
AJAX Development.

monitor(functionName) and
unmonitor(functionName)
These methods are used to turn on/off logging for all calls to a function.

Normally, to find whether a function in a JavaScript is invoked, we put an alert()
or console.log() method inside that method. This is a very cumbersome process.
First we have to find the method in a large JavaScript file, then we need to put alert
or log methods. Next, when we find that everything is fine, we need to remove all
the log statements from the code.

Chapter 5

[75]

Firebug does this monitoring in style. To determine whether a function is invoked,
we only need to know the function name. By using the monitor() method, we can
trace how many times that function is invoked. We will get the notifications in the
console, telling us whether the function that we monitored is invoked. Also, it will
give us a link that is pointing the function in script.

Let's discuss this by creating an HTML file with the following code and open it in the
Firefox browser:

<html>
 <script>
 function function1(){
 return true;
 //some statement
 }
 function function2(){
 return true;
 //some statement
 }
 function function3(){
 return true;
 //some statement
 }
 </script>

 <body>

 This is the body

 <input id="button1" type="button" value="Invoke function1()"
 onclick="function1();"/>
 <input id="button2" type="button" value="Invoke function2()"
 onclick="function2();"/>
 <input id="button3" type="button" value="Invoke function3()"
 onclick="function3();"/>
 </body>
</html>

Now, on the command line, type the following code and execute it:

monitor(function1);

Click the button Invoke function1() of the document. We will see that whenever a
call is made to function1(), Firebug shows its log on the Console tab. If we click
on the link to function1() on the Console tab, then it will take us to the exact line
number where the code for function1() is written.

JavaScript Development

[76]

The following code will unmonitor the function1():

unmonitor(function1)

monitorEvents(object[, types])
This method turns on logging for all events dispatched to an object. The optional
argument types may specify a specific family of events to log. The most commonly
used values for types are mouse and key.

The full list of available types include—composition, context menu, drag, focus,
form, key, load, mouse, mutation, paint, scroll, text, ui, and xul.

unmonitorEvents(object[, types])
This turns off logging for all events dispatched to an object.

Monitoring and unmonitoring events is the same as logging events, which we have
already discussed in previous chapters.

Let's consider the previous HTML file that we used for monitoring and
unmonitoring methods. Execute the following code in the command line and click on
the first button:

monitorEvents($("button1"))

Chapter 5

[77]

The following screenshot shows the monitoring of events:

profile([title]) and profileEnd()
This turns on/off the JavaScript profiler. The optional argument title would
contain the text to be printed in the header of the profile report.

Here are three ways to start the JavaScript profiler in Firebug:

•	 By clicking the Profile button under the Console tab
•	 By using console.profile("Profiler Title") from JavaScript code
•	 By using profile("Profiler Title") from the command line

To view statistics generated by the profiler, type the following HTML code, save it as
an HTML file, and open it in the browser. Press F12 to open Firebug and click on the
Start button.

<html>
<head>
<title>Firebug</title>
<script>

function bar(){
 console.profile('Measuring time');
 foo();
 console.profileEnd();
}

JavaScript Development

[78]

function foo(){
 loop(1000);
 loop(100000);
 loop(10000);
}

function loop(count){
 for(var i=0;i<count;i++){}
}

</script>
</head>
<body>
 Click this button to profile JavaScript
 <input type="button" value="Start" onclick="bar();"/>
</body>
</html>

The following screenshot shows the statistics generated by the profiler:

Columns and description of the profiler
•	 Function: This column shows the name of each function.
•	 Call: This shows the count of how many times a particular function has

been invoked. (3 times for loop()in our case.)
•	 Percent: This shows the time consumption of each function as a percentage.
•	 Own Time: This shows the duration of own script in a particular function.

For example, foo()has none of its own code. Instead, it is just calling other
functions. So, its own execution time will be approximately ~0ms. If we want
to see some values for that column, we add some looping in this function.

Chapter 5

[79]

•	 Time: This shows the duration of execution from the start point of a function
to the end point of a function. For example, foo() has no code. So, its own
execution time is approx ~0ms, but we call other functions in that function.
So, the total execution time of other functions is 4.491ms. So, it shows 4.54ms
in that column, which is equal to own time taken by three loop() functions
plus the own time of foo().

•	 Avg: This shows the average execution time of a particular function. If we are
calling a function only once, we won't see the difference. But if the function is
called more than once, the difference can be seen. The formula for calculating
the average is:
 Avg = Own time / Calls

•	 Min and Max columns: This shows the minimum execution time of a
particular function. In our example, we call loop()three times. When we
passed 1000 as a parameter, it probably took only a few millisecond (let's say
0.045ms) and when, we passed 100000 to that function, it took much longer
than the first time (say 4.036ms). So, in that case, 0.045ms will be shown in
Min column and 4.036ms will be shown in Max column.

•	 File: This shows the filename of the file with the line number where the function
is located.

The console API
Firebug adds a global variable named "console" to all web pages loaded in Firefox.
This object contains many methods that allow us to write to the Firebug console to
expose information that is flowing through our scripts.

console.log(object[, object, ...])
This method writes a message to the console. We may pass as many arguments as we
like, and they will all be joined together in a space-delimited line.

The first argument to log may be a string containing printf-like string substitution
patterns. For example:

console.log("The %s jumped over %d tall buildings", animal, count);

The previous example can be re-written without string substitution to achieve the
same result:

console.log("The", animal, "jumped over", count, "tall buildings");

JavaScript Development

[80]

These two techniques can be combined. If we use string substitution but provide
more arguments than there are in the substitution patterns, the remaining arguments
will be appended in a space-delimited line, as shown in the following code:

console.log("I am %s and I have:", myName, thing1, thing2, thing3);

If objects are logged, they will be written not as static text, but as interactive
hyperlinks that can be clicked to inspect the object in Firebug's HTML, CSS, Script, or
DOM tabs. We may also use the %o pattern to substitute a hyperlink in a string.

Here is the complete set of patterns that we may use for string substitution:

String Substitution patterns

%s String
%d, %i Integer (numeric formatting is not yet supported)
%f Floating point number (numeric formatting is not yet

supported)
%o Object hyperlink

console.debug(object[, object, ...])
This method writes a message to the console, including a hyperlink to the line where
it is called.

console.info(object[, object, ...])
This method writes a message to the console with the visual info icon, color coding,
and a hyperlink to the line where it is called.

console.warn(object[, object, ...])
This method writes a message to the console with the visual warning icon, color
coding, and a hyperlink to the line where it is called.

console.error(object[, object, ...])
This method writes a message to the console, with the visual error icon, color coding,
along with a hyperlink to the line where it was called.

Chapter 5

[81]

console.assert(expression[, object, ...])
This method tests whether an expression is true. If not, it will write a message to the
console and throw an exception.

console.dir(object)
This method prints an interactive listing of all the properties of the object. This looks
identical to the view that we would see in the DOM tab.

console.dirxml(node)
This method prints the XML source tree of an HTML or XML element. This looks
identical to the view that we would see in the HTML tab. We can click on any node
to inspect it in the HTML tab.

console.trace()
This method prints an interactive stack trace of JavaScript execution at the point
where it is called.

The stack trace details the functions on the stack, as well as the values that were
passed as arguments to each function. We can click each function to take us to its
source in the Script tab, and click each argument value to inspect it in the DOM or
HTML tab.

console.group(object[, object, ...])
This method writes a message to the console and opens a nested block to indent all
future messages sent to the console. Call console.groupEnd() to close the block.

console.groupCollapsed(object[, object, ...])
This method works just like console.group(), but the block is initially collapsed.

console.groupEnd()
This method closes the most recently opened block created by a call to
console.group() or console.groupEnd().

JavaScript Development

[82]

console.time(name)
This method creates a new timer under the given name. Call console.timeEnd(name)
with the same name to stop the timer and print the time elapsed.

console.timeEnd(name)
This method stops a timer created by a call to console.time(name) and writes the
time elapsed.

console.profile([title])
This method turns on the JavaScript profiler. The optional argument title would
contain the text to be printed in the header of the profile report.

console.profileEnd()
This method turns off the JavaScript profiler and prints its report.

console.count([title])
This method returns the number of times that the line of code is executed where
count is called. The optional argument title will print a message in addition to the
number of the count.

The console is an object attached to the window object in the
web page. In Firebug for Firefox the object is attached only if the
console panel is enabled. In Firebug Lite, the console is attached
if Lite is installed in the page.

JavaScript debugging
This section explains how to debug the JavaScript(s), internal or external, using
Firebug. Before starting this section, just recall the following things from the previous
chapters and sections:

•	 Script tab
•	 Command line API
•	 Console API

Chapter 5

[83]

Debugging JavaScript is a very straightforward process with Mozilla Firefox and
Firebug. If we are Visual Studio developers, we won't see any difference when
debugging the JavaScript code with Firebug, except that the debugger runs as part
of browser.

Steps to debug JavaScript code with Firebug
Type the following code in some text editor, save the file as .html, and open
it in Firefox:

<html>
<head>
<title>Javascript Debugging</title>
<script>
 function populateDiv(){
 var divElement = document.getElementById('messageLabel');
 divElement.innerHTML = "Lorem ipsum dollor";
 }
</script>
</head>
<body>
 <div id="messageLabel"></div>
 <input type="button" value="Click Me!" onclick="populateDiv();" />
</body>
</html>

Now, open/activate Firebug on the browser by pressing the F12 key. Click on the Script
tab and insert a break point on line number 6, as shown in the following screenshot:

JavaScript Development

[84]

To verify that we have inserted a break point, we can see the list of
breakpoints in the Breakpoints panel on the right-hand side of the
Script tab.

A big red dot on line 6 shows that a breakpoint is inserted. Now, click on the Click
Me! button to start the execution of JavaScript.

As soon as we click, the JavaScript execution will stop at the breakpoint that we set
on line 6.

We can now step debug the JavaScript by pressing one of these buttons(Continue,
Step Into, Step Over, and Step Out) under the Script tab.

•	 Continue (F8): Allows us to resume the script execution once it has been
stopped via another breakpoint

•	 Step Into (F11): Allows us to step into the body of another function
•	 Step Over (F10): Allows us to step over the function call
•	 Step Out: Allows us to resume the script execution and will stop at the

next breakpoint

Chapter 5

[85]

Now, let's click on Step Over or press the F10 key to execute the line 6 and move on
to line 7. Notice the value of divElement in the Watch panel on the right-hand side.
Before the execution of line 6 the value for the variable divElement was undefined,
and after the execution of line 6 it is populated with an HTML div element. Let's
look at the following screenshot:

If we want to see the stack of call and execution flow, then just click on the Stack tab
on the right panel of Script tab.

The stack for our example is:

populateDiv

onclick

The stack (in our case) shows that first we fired an onclick event and then the
function populateDiv was invoked.

Now, again press F10 or click the Step Over icon to take the execution on to the next
line. As there is no other line in our example, the execution would stop.

If we want to debug external JavaScripts files, then we can select that
file from the drop-down under the Script tab. This has already been
discussed in Chapter 2, Firebug Window Overview.

Conditional breakpoints
Sometimes we have an error inside a loop that can be really difficult to get to. We
definitely don't want to put a breakpoint inside a loop and hit F10 (Step Over) a few
thousand times until we get to the error condition. Thankfully, Firebug provides us
with a utility we can use to insert breakpoints on the basis of certain conditions.

JavaScript Development

[86]

Perhaps the most important tool for debugging inside the loops is the conditional
breakpoint. We can set a condition on a breakpoint, so that it will break only when
a specified condition is true.

To see conditional breakpoints in action, type the following code in some text editor,
save it as an HTML file, open in Firefox, and open Firebug:

<html>
<head>
<title>Javascript Debugging-Conditional Breakpoint</title>
<script>
 var myArray = new Array(9);
 function printTableOf(num){
 for(i = 1; i<=9; i++){
 myArray[i] = i*num;
 document.getElementById("myId"+i).innerHtml = myArray[i];
 }
 }
</script>
</head>
<body>
 <div id="myId1"></div>
 <div id="myId2"></div>
 <div id="myId3"></div>
 <div id="myId4"></div>
 <div id="myId5"></div>
 <input type="button" value="Click Me!" onclick="printTableOf(2);"
/>
</body>
</html>

When we click on the Click Me! button, we will see the following error on Firebug's
console:

The error contains very useful information that can be of great help
while debugging the code. It shows line number where the error
occurs, cause of error, and stack.

Chapter 5

[87]

Now, refresh the page and go to the Script tab. Right-click on the line number where the
error occurred. Firebug will show us a blue balloon where we can give condition, and
when to pause the execution. Generally, the condition is decided by the cause of the
error. In our case the cause is:

document.getElementById("myId"+i) is null

So, the condition would be:

document.getElementById("myId"+i) == null

JavaScript Development

[88]

As soon as we hit Enter, we can see the breakpoint is inserted on the
Breakpoints panel.

Removing breakpoints: To remove breakpoints, uncheck the
checkbox(es) in the Breakpoints panel or simply click on the
big red dot.

Now, let's click on the Click Me! to start the execution of the script. As soon as we
click, we will notice that the execution of the JavaScript is paused on the line where
we inserted a conditional breakpoint.

To see the current values of variables in the current scope, check the Watch panel.
Notice that the value of variable i=6 when the execution is paused.

Chapter 5

[89]

Summary
In this chapter, we discussed the command line API, the console API, and debugging
JavaScript with Firebug in detail.

We discussed how to insert conditional and unconditional breakpoints, and how one
to use the step debugger of Firebug to debug the script (internal or external). We also
focused on watches, stack trace, and the error console, which can all be of great help in
the debugging process.

You may be wondering why we haven't discussed debugging JavaScript with the
console and the command line API. Well, the answer is, we'll discuss all this once
again in Chapter 8. There, we'll see how one can debug an AJAX call by using the
console and the command line API.

Knowing Your DOM
Document Object Model (DOM) is a cross-platform and language-independent
convention for representing and interacting with objects in HTML. DOM supports
navigation in any direction (such as parent and previous sibling) and allows for
arbitrary modifications. Through JavaScript, one can easily traverse within the DOM.
Browsers rely on layout engine (for example, Gecko, Trident/MSHTML, Presto, and
so on) to parse HTML into DOM. In other words, DOM is a huge hierarchy of objects
and functions, just waiting to be tickled by JavaScript. Firebug helps us find DOM
objects quickly and then edit them on the fly.

We will be discussing the following features of Firebug in this chapter:

•	 Inspecting DOM
•	 Filtering properties, functions, and constants
•	 Modifying DOM on the fly
•	 JavaScript code navigation

Inspecting DOM
The DOM inspector allows for full, in-place editing of our document structure, not
just text nodes. In the DOM inspector, Firebug auto completes property value when
we press the Tab key. The following are the steps to inspect an element under the
DOM tab:

1. Press Ctrl+Shift+C—the shortcut key to open Firebug in inspect mode.
2. Let's move the mouse pointer over the HTML element that we want to

inspect and click on that element. The HTML script of that element will
be shown in Firebug's HTML tab.

Knowing Your DOM

[92]

3. Right-clicking on the selected DOM element will open a context menu.
Let's select the Inspect in DOM Tab option from the context menu.

4. As soon as we do that, Firebug will take us to its DOM tab.

Chapter 6

[93]

Filtering properties, functions, and constants
Many times we want to analyze whether a function written by us is associated with
an HTML element. Firebug provides us an easy way to figure out whether an event,
listener, function, property, or constants are associated with a particular element.

The DOM tab is not only a tab but also a drop-down menu.

When we click on the down arrow icon on the DOM tab, Firebug will show a
drop-down list from which one can select the filtering options and inspect the
element thoroughly. The following are the options provided by this menu:

•	 Show User-defined Properties
•	 Show User-defined Functions
•	 Show DOM Properties
•	 Show DOM Functions
•	 Show DOM Constants
•	 Refresh

Knowing Your DOM

[94]

There are two kinds of objects and functions:

•	 Part of the standard DOM
•	 Part of our own JavaScript code

Firebug can notify the difference, and shows us our own script-created objects and
functions in bold at the top of the list.

•	 The text that is bold and green is a user-defined function.
•	 The text that is bold and black is a user-defined property.
•	 The text whose size is normal and is green in color is a DOM-defined function.
•	 The text whose size is normal and is black in color is a DOM-defined property.
•	 The upper case letters (capital letters) are the DOM constants.

We can see the actual colored depiction in Firebug's DOM tab.

In the following code, the onkeyup() event is a user-defined function for <input/>
and calculatefactorial() is a user-defined function for the current window. To
test this code, let's type the code in an HTML file, open it with Firefox, and enable
Firebug by pressing the F12 key. Inspect the input element in the DOM.

<html>
 <head>
 <script>
 function calculateFactorial(num,event){
 if(event.keyCode!=13){
 return;
 }
 var fact=1;
 for(i=1;i<=num;i++){
 fact*=i;
 }
 alert ("The Factorial of "+ num + " is: " +
 fact)
 }

 </script>
<title>code_6_1.html.html</title>
</head>
<body>
 Enter a number to calculate its factorial

Chapter 6

[95]

 <input type = "text" name="searchBox" onkeyup="calculateFact
orial(this.value,event)"/>

</body>
</html>

Intuitive DOM element summaries
There are many different kinds of DOM and JavaScript objects, and
Firebug does its best to visually distinguish each, while providing as
much information as possible. When appropriate, objects include brief
summaries of their contents so that we can see what's there without
having to click. Objects are color coded so that HTML elements, numbers,
strings, functions, arrays, objects, and nulls are all easy to distinguish.

Knowing Your DOM

[96]

Modifying DOM on the fly
There are lots of great features of Firebug, one of them being editing the DOM
element's properties and constants on the fly.

It's no fun to just look at the DOM; many times we want to change it. The reason for
changing it could be related to debugging JavaScript. Consider a scenario where we
have an <input/> element in our DOM whose disabled attribute is set to true (that
is, the input box is locked and no event would be fired for that element). Now, we
have written a JavaScript code that expects the <input/> element is not disabled.
Firebug notifies us on the error console that this particular element is disabled and
access to the element is denied. What will we do here?

We can edit our source code and reload the page to test the JavaScript code or
inspect the <input/> element by double-clicking the white space of the row in
the tree where the disable attribute is written. Firebug is smart enough to toggle
between true and false. Therefore, if the value for disable is true, Firebug will
automatically make it false.

If the property or constant value is string/integer/decimal type (that is,
non-Boolean) then a little editor will appear that will let us change the
value of the variable in question.

Never forget
The DOM editor is a miniature JavaScript command line. This means we
can write any JavaScript expression we want. When we press Enter, the
expression will be evaluated and the result will be assigned to the variable.

Chapter 6

[97]

Auto-complete
Editing the DOM is a lot easier with auto-complete. Using the Tab key we can
complete the name of object properties. Keep hitting it to cycle through the complete
set of possibilities, and use Shift+Tab to go backwards.

As the mini editor on the DOM tab is a JavaScript command line, we can always enjoy
the auto-complete feature while editing the values in the DOM tab. Auto-complete
works like a charm at many levels. We can start pressing the Tab key before we type
anything to cycle through global variables. We can press the Tab key after typing
document.b to cycle through all properties that start with b. We can even press the Tab
key after a complex expression such as document.getElementsByTagName('a')[0]
to see all properties of the first link in the document.

Sometimes while editing a value, we may realize that it is not supposed to
be edited. In this case simply use the Esc key to cancel editing.

Losing the starting element
Some of the properties of the DOM tree are expandable. We can see a + symbol next
to some properties. If we click on the + (expandable column) of the explorer, Firebug
will expand the object within the current view, but if we want to give an object the
full view, just click the link (that appears in the right column) to the object.

Knowing Your DOM

[98]

Each time we click an object, Firebug will append to the path in the toolbar. That
shows us the breadcrumb trail of properties that were accessed on the way to
locating that object. We can click any part of the path to jump back to it.

Adding/removing the DOM elements'
attributes
We can add or remove the attributes (and their values) of an element on the fly.
And for doing this we don't need to dig in the DOM tab. Adding and removing the
attributes of any element in the DOM is very simple. Let's see an example of how to
add/remove the elements' attributes.

Here we used http://www.google.com as a sample to discuss adding
and removing attributes.

Removing attributes
To remove attributes from a particular DOM element, just follow these steps:

1. First, let's open Firebug in inspect mode by pressing Ctrl+Shift+C, and then
select the element whose attributes are to be altered. (In our case we will
choose the big input box of Google.)

Chapter 6

[99]

2. Let's drag our mouse pointer over the selected element in the HTML tab and
click on the attribute that we want to remove. As soon as we do that, a mini
text editor will pop up.

3. Now we can remove the attribute by pressing Delete or the Backspace key
followed by the Enter key.

Knowing Your DOM

[100]

If at any point we don't want to remove/modify the attribute, we can
always press the Esc key to cancel modifications.

Adding attributes
Adding new attributes to any DOM element is very simple. To add attributes from
a particular DOM element, just follow these steps:

1. We need to open Firebug in inspect mode and choose the element
from DOM.

2. Now, let's right-click on the selected element in the HTML tab.
3. When we right-click on the DOM element, a context menu will open.

Let's select the New Attribute… option from it.

Chapter 6

[101]

4. Again, the mini text editor will pop up. Let's start typing the attribute's name
(in our case "class" is the attribute name).

Knowing Your DOM

[102]

5. Press the Tab key to input the value of this attribute. When we press the Tab
key, our smart Firebug automatically adds an equal symbol = between the
attribute's name and value.

6. Now we can give value to our new attribute.

If we want to continue adding more attributes, Firebug provides a very easy way
for doing this. All we need to do is press the Tab key when we are done with the
attribute's value part.

JavaScript code navigation
The DOM tree explorer is also a great way to find JavaScript functions that we wish
to debug. If we click on a function in the DOM explorer, Firebug will take us right to
the Script tab and highlight that function.

Chapter 6

[103]

Now in Script tab, we can insert conditional/unconditional breakpoints in that
function and debug our code.

If we move our mouse pointer over the function name on the DOM tree, then it will
show a preview of the code that is written inside the definition of the function.

Summary
Let's recall what we discussed in this chapter. DOM is just a big hierarchy of objects.
Objects can be HTML objects or JavaScript objects. We saw how Firebug shows the
difference between user-defined and DOM-defined properties and functions. We can
also filter the DOM tree by simply selecting the drop-down options from the list in
the DOM tab.

We discussed how we can modify/edit the values of properties and constants of any
DOM object. We also saw how smart Firebug is in differentiating between values of
different properties based on their types, such as String, Boolean, and so on.

We also saw how Firebug helps us to easily add and remove the attributes of any
particular DOM element.

Performance Tuning Our
Web Application

This chapter explains various ways to analyze the performance of our web
application on the browser. There are plenty of tools available to measure and
analyze the performance of a web application on the server side; most of the
databases provide tools to profile the time taken by database queries. Similarly,
almost all application servers provide various statistics about the time taken to
serve each request (along with a break up of the time into various components).

However, most web developers don't give much attention to the performance of the
application from the browser's perspective. Not only it is important that the server
serves a request in the minimum possible time, but it is also important that the
response is rendered on the browser in the minimum time.

In this chapter, we will learn how to do the following things to analyze and tune
the performance of our web applications:

•	 Network monitoring
•	 Breaking down various requests by type
•	 Examining HTTP headers
•	 Analyzing the browser cache
•	 XMLHttpRequest monitoring

Performance Tuning Our Web Application

[106]

Network monitoring
Even if the server does not take much time to process a request, a web application
might appear slow to an end user because of various reasons, such as:

•	 Network latency
•	 The order in which the files are loaded
•	 The number of requests made to the server
•	 Browser caching (or the absence of it!)

Firebug's Net panel helps us detect such problems very easily.

The Net panel is set to Disabled by default in Firebug. In order to use it, we must
first set the option to Enabled.

The main purpose of the Net panel is to monitor HTTP traffic initiated by a web page
and simply present all collected and computed information to the user in a graphical
and intuitive interface.

The following screenshot shows various requests made by the browser to load the
homepage of the Packt website (www.packtpub.com):

Chapter 7

[107]

Description of information in the Net panel
Each entry/row in the Net panel displays basic information about the request and a
graphical timeline that depicts load phases in time.

The files shown in the Net panel are sorted based on the order of how the files were
loaded by Firefox.

Column name Description
URL The URL of the file that was loaded as part of the request. The

GET prefix for most of the requests depicts the method of the
request (GET, POST, and so on).

Status The status of the HTTP request and the code.

For example, code 200 denotes a successful HTTP request and
code 304 denotes that the file was not modified since the last
request (based on some caching time limit).

Performance Tuning Our Web Application

[108]

Column name Description
Domain The domain to which the request is sent. If we are loading

files from other sites (for example, linking images from other
sites, putting ads from an ad server), then a different Domain
will be shown for that particular file/request.

Size The size of the response data.
Timeline The time it took to load the particular file/request. It also

shows whether or not the file is loaded from the cache. The
bar shows us when the file started and stopped loading
relative to other files.

It is possible to hide certain columns that Net panel shows us by default. In order to
customize the columns that we want to see in the Net panel, simply right-click on the
table header and choose the columns that we want to see.

Load-time bar color significance
The different colors used in the timeline bar are significant. The following table
describes what each color means in the timeline bar:

Chapter 7

[109]

We can see the actual colored image in Firebug's Net panel.

Color Description
Green Time for DNS Lookup
Light Green Time to connect to the server
Light Brown Time the request had to wait in the queue.
Purple Time waiting for a response from the server
Dark Grey Request was sent to server, request served by the server and not

from browser cache.
Light Grey Request was sent to the server, "304 Not Modified" received from

server, response loaded from the browser cache.

In order to understand information provided by the Net panel of Firebug, it is
important to understand the various steps between requesting for a page and when
the page has been fully rendered on the browser.

At a higher level, the following steps are involved in serving a "page request" at the
browser end:

•	 Resolving DNS names
•	 Setting up TCP connections
•	 Transmitting HTTP requests
•	 Downloading resources
•	 Fetching resources from cache
•	 Parsing and executing scripts
•	 Rendering objects on the page

Performance Tuning Our Web Application

[110]

Browser queue wait time
There can be multiple reasons for a request to wait in the browser queue before it is
sent to the server. The two most common reasons are:

•	 If there are multiple JavaScript files on a web page, they are loaded one after
the other by the browser and not loaded simultaneously. They are loaded
in the same sequence as they are present on the web page. A web developer
should always consider if it is possible to convert multiple JavaScript files on
a page into a single JavaScript file.

•	 Each browser has a limit on the number of concurrent requests that can be
made to a single domain by a web page. For example, this limit is six for
Firefox 3. If there are eight images on a web page that have to be loaded from
the same domain, six requests will be made simultaneously, and the request
for two images has to wait before a response for any of the previous two
requests is received from the server.

When optimizing the performance of a web application from the browser's
perspective, browser queue wait time is a very important consideration.

How to bypass the maximum concurrent requests limit by the
browser
If, for whatever reason, a web page needs to make a lot of requests
to the server to get images, CSS files, AJAX responses, and so on,
then one common technique is to host the image files on a separate
subdomain. For example, host all the images for the Packt site on
images.packtpub.com instead of the www.packtpub.com
subdomain. However, it is important to keep in mind that every
subdomain that is added also requires a DNS lookup. Based on a
study by Yahoo, having two to four subdomains for a site is a good
compromise between parallel requests and DNS lookups.

Breaking down various requests by type
If there are a lot of requests shown on the Net panel and we wish to view requests
only for a particular type of file, we can filter the requests based on that particular
type. This also allows us to find out the total size and download time for a particular
type of file.

For example, if we like to check the requests for only images, we can click the Images
button on the toolbar to filter the requests for images.

Chapter 7

[111]

Similarly, clicking on the CSS button shows requests for the CSS files only.

Performance Tuning Our Web Application

[112]

Examining HTTP headers
HTTP headers contain a wealth of interesting information, such as the MIME type of
the file, the type of web server, caching directives, the cookie, and lots more. To see
the HTTP headers, just click the arrow to the left of each request to expand it.

For each HTTP request, Firebug displays the following tabs when we click on
the + button:

•	 Headers
•	 Response

In addition to the previously mentioned tabs, Firebug displays the following tabs
if applicable:

•	 HTML
•	 Params
•	 Cache
•	 Post

Chapter 7

[113]

In order to get a complete understanding of what each
HTTP request/response header means, please refer to
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

Analyzing the browser cache
Not all network requests are equal—some of them are loaded from the browser
cache instead of the network. Firebug color code requests are served by the cache in
a lighter gray shade so that we can quickly scan and see how effectively our site is
using the cache to optimize page load times.

The following screenshot shows the Net panel view when the
http://www.getfirebug.com page is loaded for the first time by the browser:

Performance Tuning Our Web Application

[114]

The following screenshot shows the Net panel view for subsequent requests to the
getfirebug.com homepage. Note the difference in the number of requests made by
the browser to load the same page. The difference is because of the images and CSS,
along with JavaScript and some other files that are cached by the browser.

In order to dig deeper into how browser caching works, it is important to understand
the following HTTP response headers:

Header name Description
Last-Modified This entity-header field indicates the date and time at which the

origin server believes the variant was last modified.
ETag This response-header field provides the current value of the

entity tag for the requested variant.
Expires This entity-header field gives the date/time after which the

response is considered stale. A stale cache entry may not
normally be returned by a cache (either a proxy cache or a user
agent cache) unless it is first validated with the origin server (or
with an intermediate cache that has a fresh copy of the entity).

Cache-Control This general-header field is used to specify directives that MUST
be obeyed by all caching mechanisms along the request/response
chain. The directives specify behavior intended to prevent caches
from adversely interfering with the request or response.

The following screenshot shows the HTTP response header for a CSS file that is
loaded from the cache by the browser for rendering a page instead of fetching the file
from the web server:

Chapter 7

[115]

Clicking on the Cache tab shows various statistics related to the cache usage by
the browser:

Performance Tuning Our Web Application

[116]

XMLHttpRequest monitoring
Until now, we have talked about how to analyze the requests and responses that are
made and received when a page is loaded by the browser. However, current web
applications make a lot of asynchronous XML requests (yes, we are talking about
AJAX requests). In order to view the AJAX requests that are made by a web page,
take a look at Firebug's XHR tab.

The XHR tab displays the AJAX requests made and the responses received by the
web page that we are currently viewing. We can see the start and completion of
these AJAX requests and whether they were successful and what is returned from
the server.

As we will notice, an XMLHttpRequest is not much different from a normal request.
The previous image shows the AJAX requests made by Gmail when the user clicks
on the Inbox link.

Chapter 7

[117]

The XHR tab displays the AJAX events as they happen on a page. If our view
becomes too crowded while viewing and analyzing AJAX events, simply click
on the Clear button to remove the events that are currently being displayed.

How to find out the download speed for
a resource
The download speed of a web resource (CSS, HTML, image, JavaScript) plays an
important part in the overall perceptible performance of the web page. If the download
speed of a resource from the server is slow (because of the speed of the connection
between the client and the server machine), then no amount of performance tuning at
the server level or HTML level will result in a fast page response.

Firebug's Net panel displays the size of the resource and the amount of time it took
to simply download the resource from the server.

For example, the previous screenshot shows the following information that
is required to find out the download speed of the jquery.js file from the
firebug.com server:

•	 Size of the file: 32 KB
•	 Time it took for download of the file: 372 ms

Performance Tuning Our Web Application

[118]

Using this information, we can calculate that the download speed of the file is
86 KB/second. It becomes especially important when we are fetching images
or JavaScript files from external servers. In those cases, it becomes important to
determine if the upload speed of the external servers is good enough and does not
slow down the performance of our web application.

Firebug extensions for analyzing
performance
Firebug packs a lot of features right out of the box, to monitor, analyze, and fine tune
the performance of our web application at the browser layer. There are some very
useful plugins/extensions that provide additional information and features to make
it even easier to analyze web application performance. The two most important
extensions are:

•	 Yahoo YSlow
•	 Google Page Speed

These extensions will be discussed in detail in subsequent chapters dedicated to the
most useful Firebug extensions. It is strongly recommended to make use of one or
both of these extensions in order to supplement the features available out of the box
from Firebug.

Summary
In this chapter, we looked at ways to analyze the time taken by a web page to load
on the browser using Firebug. We also saw how Firebug's Net panel can provide
insights into various bottlenecks in a web application. Firebug provides an easy way
to study the HTTP headers of the requests made by the web page and responses
received from the server.

AJAX Development
JavaScript has always been an extremely difficult language to debug, due to the fact
that it's loosely typed and no good tools have been made available for debugging.
Therefore, it's difficult to debug AJAX (Asynchronous JavaScript and XML) because
the requests and the responses are all handled by JavaScript. Luckily, Firebug is
extremely useful for debugging JavaScript and AJAX requests/responses. In this
chapter, we'll discuss the features that Firebug offers to help us debug any AJAX
requests we make.

In this amazing chapter, we'll discuss the following ways that help debug AJAX:

•	 Tracking XmlHttpRequest
•	 GET and POST methods
•	 Viewing live modifications on DOM
•	 Debugging AJAX calls using properties of Firebug's console object

AJAX Development

[120]

Tracking XmlHttpRequest
The most relevant part of the Firebug tool in terms of AJAX is the option to show XML
HTTP requests and responses. This feature allows us to view all requests made on the
web. We can see whether this feature is active/enabled by clicking on the drop-down
list of the Console tab and making sure that the Show XMLHttpRequests option is
checked. Once it's working, we'll see all XML HTTP requests that are made.

Request/response headers and parameters
After enabling Show XMLHttpRequests option on the Console tab, the Console
tab acts like an AJAX spy. Each XMLHttpRequest will be automatically logged to the
console, where we can inspect its response as text, JSON, or XML. This is extremely
useful for debugging any AJAX code, and it's also quite fun to analyze how other
web pages use AJAX.

Chapter 8

[121]

We'll discuss all of this with the help of an example. Let's write the following HTML
code in a file and save it with .html extension (that is, create an HTML file and write
this following code to that file):

This code uses the jQuery (a framework over JavaScript). We can download
jQuery framework from http://jquery.com and include that
jquery.js file in the same way that we include any other JavaScript file.

<html>
<head>
<script src="jquery.js"></script>
<script>
 $(document).ready(function(){
 $('#btn_json').click(function(){
 $.getJSON('data.json',function(data){
 var htmlString = "Name: " +
 data[0].name;
 htmlString += "
Occupation: " +
 data[0].occupation;
 htmlString += "
Company: " +
 data[0].company;
 $('#result').html(htmlString);
 })
 })
 })

AJAX Development

[122]

</script>
</head>
 <body>
 Click this button to get JSON response
 <input type="button" value="JSON Request" id="btn_json"/>
 <div id="result"></div>

 </body>
</html>

Let's place the jquery.js file in the same folder where we saved the HTML file.

The jQuery's function, getJSON(URL, callback), sends a request to the server and
expects the server to respond in the JSON format.

JSON (JavaScript Object Notation) is a way of representing an object's
value in a key-value form. The term JSON was coined by Douglas
Crockford to capitalize on this simple syntax. The following notation
can offer a concise alternative to the sometimes-bulky XML format:

{

"key": "value",

"key 2": ["array","of","items"]

}

For information on some of the potential advantages of JSON, as
well as implementations in many programming languages, refer
to http://json.org/.

There are two parameters of getJSON(URL, callback). The first parameter, URL,
is used to specify the URL of the server to which the request is to be made. The
second parameter, callback, comes into the picture with server responses. The
callback is again a function or a closure to which the JSON response is passed. The
manipulation or processing of the JSON is done here.

Now, let's install the Apache server on our machine to simulate the client-server
scenario locally and view the request header and parameters along with response
header and data, which can be in different forms such as text, JSON, or XML.

Apache is used to serve the static contents of the website.
To download, install, and know more about Apache, visit
http://httpd.apache.org/download.cgi.

Chapter 8

[123]

Let's create a file, say data.json, with the following contents and place that file, along
with other HTML file(s), into the static directory under Apache's installation directory:

[
 {
 "name" : "Chandan Luthra",
 "occupation" : "Software Developer",
 "company" : "Intelligrape Softwares"
 }
]

All the files, that is HTML, JSON, and JavaScript files, should be in
the same folder.

After placing the files in Apache, let's start our server (Apache).

Now the playground is set for shooting AJAX calls/requests from the browser
using JavaScript.

Let's run the HTML file (by typing its URL in the browser) in which we have written
the code for firing AJAX call in the Firefox, and enable the Firebug.

AJAX Development

[124]

Let's click on the JSON Request button to make an AJAX call/request to the server.
As soon as we click the button, a GET request is made to the server in the Console
tab , as shown in the next screenshot. If we expand the GET request by clicking the +
button we'll see three tabs.

•	 Headers:
This tab will show all the request and response headers and their values for a
particular HTTP protocol transaction.

For more information on HTTP headers, visit
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

•	 Response:
This tab shows the response returned from the server. The response could
be in any type; it could be in XML, JSON, or plain text. In our case it is JSON
response. We can also see the response code (for example, 200, 404, 500, 304,
and so on) just next to the bold request URL in the Console tab.

Chapter 8

[125]

•	 JSON:
In our example, the server returned a JSON string. Therefore, Firebug shows
an extra tab, that is, the JSON tab, for this special response. This tab shows
how Firefox/Firebug parses this JSON response into a JavaScript object that
can be used and interpreted by JavaScript.

GET/POST request
GET and POST methods act as the carrier of the data from client side to server side.
HTTP requests using the POST method are almost the same as those using GET.
The difference between the methods is that GET is insecure and limited data can be
transferred, whereas through POST, one can transfer unlimited data and the method
is more secure. One of the most visible differences is that GET places its arguments
in the query string portion of the URL, whereas POST requests do not. However,
in AJAX calls, even this distinction is invisible to the average user. Generally, the
only reason to choose one method over the other is to conform to the norms of the
server-side code, or to provide for large amounts of transmitted data; GET has a more
stringent limit.

AJAX Development

[126]

We have already seen an example of a GET request in the previous section; we will
now focus on the POST request. Let's try the following example to make a POST call
to the server and see the differences between GET and POST:

<html>
<head>
<script src="jquery.js"></script>
<script>
 $(document).ready(function() {
 $('#btn_post').click(function() {
 $.post('data.json', {'q': 'test'}, function(data) {
 $('#result').html(data);
 });
 return false;
 });
 });

 </script>
</head>
 <body>
 Click this button to make a POST request
 <input type="button" value="POST Request" id="btn_post"/>
 <div id="result"></div>

 </body>
</html>

In the preceding code, the jQuery's post()is used to post the data to the server in
AJAX fashion. It has three parameters. The first parameter defines the URL of the
server to which the data is posted. The second parameter is a key-value pair of the
actual parameter (that is, parameters and values that are sent to the server) name,
and their values. The third parameter is a jQuery's closure/callback function, which
would be executed when the response is received from the server.

Chapter 8

[127]

Now, let's click on the POST Request button to mock the post request via AJAX.
Here we will find that the request is a POST request and one new tab, the Post tab,
can be seen. Under the Post tab, all the parameters and values that we sent to the
server can be seen.

AJAX Development

[128]

Viewing live modifications on DOM
Firebug allows us to view the current DOM. The current DOM here means that if we
have written a JavaScript code that changes the DOM, then we can't see the modified
DOM by viewing the page source. The Page Source option of Firefox will only show
us the initial DOM, not the modified one.

Thankfully, Firebug provides us with an HTML tab that allows us to view the live
modifications of the DOM. To explain this section, we'll pick the first example of
this chapter, in which we populate a <div> to show the information returned by the
server after successful completion of an AJAX call. The following screenshot shows
the HTML tab, in which the <div id="result" /> is an empty element:

Now, as soon as we click the JSON Request button on the page, an AJAX call
is made to the server and it returns the data to the client. Our JavaScript code
manipulates that data and populates the empty <div>. Here, Firebug keeps an eye
on the DOM and tracks the changes that are made.

Chapter 8

[129]

Firebug highlights that <div> (and all the area that is modified) and we can see a
+ (expand) button beside the <div>, which means that the <div> can be expanded
now. In other words, the <div> is populated with some HTML or child elements.

To see the inner HTML of the populated <div>, click on the + (expand) button. We
will see that there is some HTML within that <div>. This new HTML was not on our
DOM before. It can be seen only through Firebug and not by the normal Page Source
option of Firefox.

AJAX Development

[130]

Debugging AJAX calls using properties
of a console object
Debugging the AJAX calls was never easy. Thanks to Firebug and its console
API that blesses us with many methods or functions, we can debug our
JavaScript code. To know more about the console object and its API, refer to
Chapter 5, JavaScript Development.

For now let's discuss a typical case where one can never debug a code without
Firebug. Consider a case where the function foo() requests the JavaScript function
bar() using AJAX; that is, foo() is on the client side (browser). The function foo()
requests a JavaScript function bar() from the server and executes the bar() without
refreshing the page. Now, suppose there is some bug in bar(), how can we debug
that code and how can we place the breakpoints on it?

Firebug has the solution for these types of weird bugs.

console.debug(object[, object, ...])
As we already know that console.debug() writes a message to the console,
including a hyperlink to the line where it was called, we'll take a look at its usage
while debugging an AJAX call.

Consider the following example. This example does the same as our first example in
this chapter, but in a different manner. Here we have invoked another JavaScript that
we fetched from the server using AJAX.

<html>
<head>
 <script src="jquery.js"></script>
 <script>
 $(document).ready(function(){
 $('#btn_js').click(function(){
 $.getScript('myScript.js')
 })
 })
 </script>
</head>
 <body>
 Click this button to fetch a JAVASCRIPT from the SERVER
 <input type="button" value="Get Script" id="btn_js"/>
 <div id="result">
</div>
 </body>
</html>

Chapter 8

[131]

The jQuery's function getScript() fetches a JavaScript from the server over AJAX
and executes that code in the browser.

Save the preceding code as an HTML file, and the following JavaScript code in a
separate file, myScript.js:

function populateDiv(){
var htmlString = "Name:Chandan Luthra" ;
htmlString +="
Occupation: Software Developer" ;
htmlString +="
Company: IntelliGrape Softwares";
$('#result').html(htmlString)
}
console.debug(populateDiv);
populateDiv();

Let's place both the files in the same folder and host them on any server that serves
static content, such as Apache or IIS.

Hit the URL of the HTML file from Firefox and enable Firebug. We will see
something like the following screenshot:

AJAX Development

[132]

Now, the playground is set to fire an AJAX call to the server to fetch a JavaScript.
Let's click the Get Script button on the page and keep our eyes on the Console tab.

Now if we move our mouse cursor over the populateDiv() link on the console,
then a small pop up will open that shows us the definition of the function.

We can also insert some assert statements to debug our JavaScript code.

Chapter 8

[133]

console.assert(expression[, object, ...])
This function is also covered in Chapter 5. But we didn't discuss it in detail there as
we all know that we use assert statements to write a bug-free code. Asserts are very
powerful and useful while doing Test-driven developments (TDD).

In AJAX development, these assert statements play a very significant role in
debugging the JavaScript code easily. Let's continue with our previous example and
include some assert statements between the lines. Our new myScript.js will look
something like the following:

function populateDiv(){
var htmlString = "Name:Chandan Luthra" ;
console.assert(htmlString!=null);
htmlString +="
Occupation: Software Developer" ;
console.assert(htmlString!=null);
htmlString +="
Company: IntelliGrape Softwares";
console.assert(htmlString==null); //Assertion would fail here
$('#result').html(htmlString)
}
console.debug(populateDiv);
populateDiv();

The following screenshot shows an Assertion Failure:

AJAX Development

[134]

console.dir(object)
This one is interesting because it prints an interactive listing of all properties of the
object. This looks identical to the view that we would see in the DOM tab. We have
included a new statement, console.dir(), in our example.

function populateDiv(){
var htmlString = "Name:Chandan Luthra" ;
htmlString +="
Occupation: Software Developer" ;
htmlString +="
Company: IntelliGrape Softwares";
console.dir($(htmlString));
$('#result').html(htmlString)
}
console.debug(populateDiv);
populateDiv();

The console.dir() function of Firebug will display all the nodes that would be
attached under the <div id="result">.

We can see that each node that is represented by 0, 1, 2, 3, 4, 5, can be expanded. On
expanding each node, we find something familiar. Try this yourself and see what
would happen and what information is hidden beneath these nodes.

Chapter 8

[135]

Summary
In this chapter, we learned how to track XmlHttpRequest. We understood the
request and response headers by making GET and POST requests.

We saw how console API helps us debug the AJAX calls. If our JavaScript code
modifies our current DOM, then we can view those modifications on HTML source,
live on the HTML tab. We can also dig deeper into the console API to find all the
functions of the API that can help us debug AJAX.

Tips and Tricks for Firebug
In this chapter, we'll discuss a few tips and tricks that can be very useful while
debugging and developing. We'll learn how to play with the features that Firebug
provides and what else we should know about Firebug.

We will discuss the following in this chapter:

•	 The magical cd() function
•	 How console.group() and console.groupEnd() can be useful
•	 Configuring Firebug and shortcuts

Magical cd()
We already know a fact about the command line—all the expressions and functions
that we execute in the command line are relative to the top level window of the page.
For example, we cannot invoke any function from Firebug's command line if that
function is defined in an iFrame within a page.

Don't worry, Firebug provides us with solutions for such a situation. Let's discuss
this scenario with an example.

Here we have two iFrames within the main container page.

The following is the main page code:

<html>
<head>

</head>
<body>
 <script>
 function printMe(){
 console.log("In the Page")

Tips and Tricks for Firebug

[138]

 }
 </script>
 This is Main Container Page

 <iframe name="myFrame1" id="myFrame1"
 src="code_9_1_frame1.html">

 </iframe>

 <iframe name="myFrame2" id="myFrame2"
 src="code_9_1_frame2.html">

 </iframe>
</body>
</html>

The following is the first iFrame code:

<html>
 <body>
 <script>
 function printMe(){
 console.info("Context Changed to 'myFrame1'")
 console.log("In Frame One")
 }
 </script>
 This is Frame one
 </body>
</html>

The following is the second iFrame code:

<html>
 <body>
 <script>
 function printMe(){
 console.info("Context Changed to 'myFrame2'")
 console.log("In Frame Two")
 }
 </script>
 This is Frame two
 </body>
</html>

Chapter 9

[139]

The three code snippets that we just saw are three different HTML files. The main
page file contains the two iframes—myFrame1 and myFrame2. The src attribute
(source) for iFrames—myFrame1 and myFrame2—will be the other two files.

All the three files should be placed in the same folder and the name
should be given to both iFrames as the one we have used in the code of
the main page. When we are done setting the playground for the magic to
begin, let's open the file in Firefox and enable Firebug.

Let's press Ctrl+Shift+L; this keyboard shortcut will take us directly to the command
line of Firebug. Next we open the command line of Firebug in the multiline mode by
clicking the (icon) on the bottom right-hand side of Firebug, and then type the
following code in that editor and click Run:

printMe();
cd(window.frames[0]);
printMe();
cd(window.parent.frames[1]);
printMe();
cd(window.parent);
printMe();

Tips and Tricks for Firebug

[140]

As the cd() method takes some time to change the context of the
window, in order to see the workings of the cd() function, please
type and execute the previously mentioned code, line by line.

You must be wondering what the code is doing and how the context is being
changed? Let's discuss the code line by line.

The printMe()function is defined at three different places:

•	 On the main page
•	 In the first frame, that is, myFrame1
•	 In the second frame, that is, myFrame2

The printMe() function prints some information on the console about its
parent window.

To access the first frame of the window or page, window.frames[0] is used. When
cd() is invoked with this frame as a parameter, the context of the expressions of the
command line is changed to myFrame1.

Chapter 9

[141]

Similarly, window.parent.frames[1] is used to access the second frame within
the first frame. The cd(window.parent) function is used for switching Firebug's
command line context back to the default page (the main container page).

This cd() function is very useful when we want to fire JavaScript code against
some other window or frame that is an element of the parent page.

The hierarchical console
We can always group the output in the console window by using the following
two console functions:

•	 console.group()

•	 console.groupEnd()

The console.group() function creates a new group in the output console, and all
the log, warning, debug, and error statements' output are shown in a new group.
The following code explains the use of this function:

<html>
<head>
</head>
<body>
 <script>
 function groupedOutput(){
 console.group("group level 1");
 console.log("level 1 log")
 console.group("group level 2");
 console.warn("level 2 warn")
 console.info("level 2 info")
 console.error("level 2 error")
 console.groupEnd();
 console.log("level 1 log");
 console.groupEnd();
 console.log("ungrouped log");
 }
 </script>
 <input type="button" onclick="groupedOutput()" value="Show grouped
output"/>
</body>
</html>

Tips and Tricks for Firebug

[142]

We already know what we have to do with this code. Let's write the preceding
code in a file, save it as an .html file, and then open this HTML file in Firefox with
Firebug enabled.

When we open this HTML file in Firefox, we can see a button called Show grouped
output. A click on this button will invoke the groupedOutput() function of the
JavaScript written in the file.

Wow, we can see the output now in a well formatted and grouped fashion:

Chapter 9

[143]

Configuring Firebug to our taste
If we don't want to remember the default shortcut keys provided by Firebug, we can
always configure it to remember our set of keys.

On the top left-hand side of the Firebug window, we will find a button, and clicking
on it will open the Firebug menu. Now, let's select the Customize Shortcuts option
from the menu.

A modal window will open and now we can easily customize our
keyboard shortcuts.

There is a list of the shortcut keys that we can use on Firebug. If we want to change
the combination of the keys, we can move the cursor to the respective textbox whose
shortcut we want to change, and press our favorite combinations of keys that we
want to set for that functionality.

Tips and Tricks for Firebug

[144]

Firebug also provides us with a reset button for each keyboard shortcut. If we messed
up the combinations, we can always reset the key combinations to the defaults.

Chapter 9

[145]

Summary
In this chapter, we discussed some tips and tricks, which we can use to format our
output in the console window. We saw how to use the console.group() function
and how useful it can be for debugging the code. This function could also be very
useful for debugging the recursive functions and in loops.

We also looked at how to use the command line's cd() function to change the
context of the window. By default the context of the expressions executed from the
command line is the main parent page. If we want to debug and fire JavaScripts
command against any other frame in the page, we need to change the context of the
Firebug command to that frame.

Firebug also allows us to set our own keyboard shortcut keys if we find the
default shortcuts provided by Firebug difficult to use.

Necessary Firebug
Extensions

Firebug is packed with tons of useful features to make web development an
easier task. Firebug also has a plugin architecture that allows developers to write
extensions on top of Firebug (just like Firebug is an extension to Firefox browsers),
in order to enhance the utility of Firebug and Firefox.

Many developers have written various Firebug extensions and made them publicly
available. The Firebug extensions page (http://getfirebug.com/extensions/)
contains a list of around 30 extensions that are currently available.

In this chapter, we go through the following few extensions, which we consider
particularly useful for web development:

•	 YSlow
•	 Firecookie
•	 Pixel Perfect
•	 Firefinder
•	 FireQuery
•	 CodeBurner
•	 SenSEO
•	 Page Speed

Necessary Firebug Extensions

[148]

YSlow
YSlow is a Firebug extension that evaluates a web page for performance and
suggests potential places for improvements. YSlow is based on 22 rules that affect
the performance of a web page on the browser. These rules are identified by the
Yahoo performance team—the team has identified a total of 34 rules, of which 22
are testable by Firebug.

YSlow gives us letter grades on one of the three predefined (or user defined) rule
sets. It has a handful of useful features, such as displaying information and statistics
about web page components, and integration of optimization tools such as JSLint
and Smush.it.

YSlow analyzes web page performance by examining all the components on the
page, including components dynamically created by using JavaScript. It measures
the performance of the page and offers suggestions for improving it.

The 22 rules on which YSlow is based are listed here in order of importance
and effectiveness:

1. Minimize HTTP Requests

2. Use a Content Delivery Network

3. Add an Expires or a Cache-Control Header

4. Gzip Components

5. Put StyleSheets at the Top

6. Put Scripts at the Bottom

7. Avoid CSS Expressions

8. Make JavaScript and CSS External

9. Reduce DNS Lookups

10. Minify JavaScript and CSS

11. Avoid Redirects

12. Remove Duplicate Scripts

13. Configure ETags

14. Make AJAX Cacheable

15. Use GET for AJAX Requests

Chapter 10

[149]

16. Reduce the Number of DOM Elements

17. No 404s

18. Reduce Cookie Size

19. Use Cookie-Free Domains for Components

20. Avoid Filters

21. Do Not Scale Images in HTML

22. Make favicon.ico Small and Cacheable

When analyzing a web page, YSlow deducts points for each infraction of these rules
and then applies a grade to each rule. In YSlow 2.0, users can create their
own custom rulesets in addition to the following three predefined rulesets:

•	 YSlow (V2): This ruleset contains the 22 rules that we have just seen
•	 Classic (V1): This ruleset contains the first 13 rules
•	 Small Site or Blog: This ruleset contains 14 rules that are applicable to

small websites or blogs

After analyzing the performance of the web page based on the chosen ruleset, YSlow
shows the report in the following four tabs:

•	 Grade
This tab (as the name suggests) gives an overall grade to our page for each
rule that YSlow suggests.

Necessary Firebug Extensions

[150]

•	 Components
This tab shows various components that the page consists of and information
related to those components, which affect the performance of the page on
the browser.

•	 Statistics
This tab provides a graphical representation of the number of requests made
to the server for the page to be served in both cases—when the user browser
makes its very first request to the page (without any browser cache) and
when the user browser has a cached version of the page.

Chapter 10

[151]

•	 Tools

This tab shows a listing of various tools that YSlow suggests and that can be
used to run on page resources (JavaScript, CSS, image files) to improve the
performance of the page.

YSlow is an indispensible extension before we launch a new application. Spending
some time analyzing the performance of an application using YSlow has always
provided us with some very useful insights about increasing application performance
for the end users. One of the most common ones is the way the application has been set
up on the web server (Apache, IIS, and so on) with regards to caching.

Yahoo has provided comprehensive documentation on various
rules that YSlow checks and the reasons behind those rules at
http://developer.yahoo.com/yslow/help/. The reader
is encouraged to go through this documentation in order to
understand YSlow and frontend web page performance.

Firecookie
If our web application utilizes cookies to a great extent, then analyzing the cookies
that are sent by the application to the browser can become a time consuming and
tedious task. The Firecookie extension provides a host of features and options to
manage and analyze cookies.

Necessary Firebug Extensions

[152]

Firecookie helps us view and manage cookies in our browser. It displays a list of all
cookies associated with the currently displayed website. It displays basic information
about a cookie such as its name, value, domain, expiry date, and so on. We can use
it to inspect cookies, view cookie permissions, events, expire time, and much more.
Firecookie allows us to do the following (all from within Firebug's panel):

•	 View cookies
•	 Create a cookie
•	 Remove a cookie
•	 Filter cookies
•	 Export cookies
•	 Log cookie events (creation, deletion, and so on)
•	 Modify cookies' settings (for example, accepting only from a certain site)
•	 Search for a particular cookie

One of the best things about Firecookie is that we can see the cookies change as
events on the Console tab. With Firecookie installed, the Console tab also shows the
cookie changes that take place when a page is loaded, or due to any JavaScript code.
For example, it is common practice on content websites to store the font preference
(smaller or bigger font than usual) using cookies on the user's browser if the user
does not have an account on the website, but still wants font preference to be
remembered when he/she opens the same website again (on the same machine).

Chapter 10

[153]

Pixel Perfect
Pixel Perfect is a very useful extension for web developers and web designers. It
allows developers and designers to easily overlay a web composition on top of the
developed HTML page and compare them minutely instead of relying on subjective
visual inspection. Switching the composition on and off allows the developer to see
how many pixels they are off while in development.

Pixel Perfect also has an opacity option so that we can view the HTML below the
composition. By being able to see both the composition and the HTML we can now
simultaneously use Firebug while Pixel Perfect is still in action. Pixel Perfect allows
us to adjust the opacity of the overlay and drag it around to make sure it all lines up
just right, and then we can measure the accuracy of the position and dimensions of
the web page components against the original design.

In order to use Pixel Perfect, let's follow these steps:

1. Load a sample website that we would like to test and click on the icon to
launch the Pixel Perfect panel.

Necessary Firebug Extensions

[154]

2. To load our design compositions into the overlay list, let's click the Add
overlay button. A standard file browser will appear and we can select any
standard graphic format that can be loaded into a regular XHTML page (JPG,
PNG, and so on). We can add as many overlay files as we like.

3. Click on the square box located to the left of our overlay icon to toggle the
overlay on. The overlay should now appear in the main browser window.
By default, the overlay is positioned to absolute top left. We can delete any
overlay by clicking on the trash icon located to the right of the overlay icon.

4. Change the Opacity to make our composition either more transparent or less
transparent. Making the composition more transparent will allow us to see
our changes on the actual developed HTML code below the composition.
Less transparency is useful for toggling the composition on and off to see
pixel shifts. By default the Opacity is set to 0.5.

5. We can now move the overlay to the position of our choice by either
dragging the overlay using mouse or by manipulating the left/right and up/
down arrow keys.

Chapter 10

[155]

Pixel Perfect options menu
Pixel Perfect provides the following two configuration options:

•	 Hide statusbar info:
Selecting this option will hide the Pixel Perfect icon in the status bar. This
can be useful if we have many plugins installed and our status bar is getting
cluttered. We can then access Pixel Perfect by clicking the Firebug icon.

•	 Hide overlay when inspecting:
By default, our overlay will become invisible when we switch to a Firebug
tab (that is, HTML view). This allows us to inspect our HTML and make
changes without having the overlay block inspection. However, we can
keep the overlay on at all times by turning this option off.

For a video demonstration on how to use Pixel Perfect, refer to
 http://pixelperfectplugin.com/how-to-use/video/

Firefinder
The Firefinder extension allows us to quickly find web page elements that match
CSS or Xpath selectors, and that we input as our search criteria. Firefinder is great
for testing the page elements that are affected by a CSS style rule as well as for
highlighting and finding elements that match our searches.

In order to search for page elements using Firefinder, let's do the following steps:

1. Open the Firebug panel.
2. Click on the Firefinder tab.
3. Enter the search expression in the search box (for example, div) and

click on the Filter button.
4. Matching elements (with a total count of the elements found) are displayed.

Necessary Firebug Extensions

[156]

5. In the search results, we can click on the Inspect button to jump to the HTML
source of the element in the HTML tab. We can also share the HTML source
of the element with a friend via the FriendlyFire button.

If we are jQuery fans, then Firefinder can be a very helpful tool. Most of the
jQuery work starts with creating a selector and we can test those selectors very
easily with the Firefinder.

Firefinder provides another handy feature called Auto-select. We can auto-select
elements when hovering or via the context menu. In order to auto-select an
element while hovering, click on the Auto-select button under the Firefinder tab
in Firebug panel.

Chapter 10

[157]

FireQuery
The FireQuery extension extends Firebug with jQuery-focused features. It adds extra
functionality to the HTML tab and allows us to visually see embedded data elements
and event handlers that were added via jQuery.

FireQuery is a collection of Firebug enhancements for jQuery—a very handy
extension for jQuery fans. If the page that we are viewing does not make use of
jQuery JavaScript library, then it also allows us to inject jQuery into those pages very
easily. This enables us to play around with jQuery or extract information for a web
page that might not have jQuery installed previously.

The extension provides the following functionalities:

•	 jQuery expressions are intelligently presented in the Firebug console and
DOM inspector

•	 Attached jQuery data objects are shown as proper JavaScript objects
•	 Elements in jQuery collections are highlighted when the mouse pointer is

hovered over them

Necessary Firebug Extensions

[158]

•	 It enables us to inject jQuery into any web page using the jQuerify button
under the Console tab.

•	 After we run the jQuery, the HTML tab will look like the following screenshot:

Chapter 10

[159]

CodeBurner
CodeBurner is a Firefox add-on that integrates with Firebug, to extend it with
reference material for HTML and CSS.

The extension's core functionality is centered on a new reference panel, which
contains a search tool for looking up HTML elements, attributes, and CSS properties.

This extension also integrates nicely with the context menus in HTML, CSS, and
DOM panels. This allows the user to look-up for the selected item via the context
menu on the item.

In order to search for help on a particular HTML or CSS element, let's do the
following steps:

1. Open the Firebug panel.
2. Click on the Reference tab.
3. Enter the element name in the Search for textbox on the right-hand side.
4. HTML and CSS elements that match the search criteria are shown on the

left-hand side of the window.

Necessary Firebug Extensions

[160]

The following screenshot shows what each element depicts:

So, overall CodeBurner is a very useful tool for any web developer working on
HTML and CSS, and serves as a good and useful reference for HTML and CSS.

SenSEO
The SenSEO extension checks the most important on-page SEO criteria and
calculates a grade of how good our page fulfills these criteria. SenSEO evaluates
our page with respect to Google's webmaster guidelines for search engine
optimization, just like YSlow evaluates the page with respect to Yahoo's best
practices for performance optimization.

SenSEO provides an overview of SEO-important web page components and analysis
of on-page SEO criteria such as the document title, meta description, meta keywords,
headings, and many more. SenSEO can be very handy before a launch to catch any
simple tweaks that we may have overlooked during development. The rules that
SenSEO checks our page against are:

•	 Use Title-Tag correctly
•	 Use Meta-Description correctly
•	 Use Meta-Keywords keywords correctly

Chapter 10

[161]

•	 Use Meta-Robots correctly
•	 Headline-Tags
•	 Page-Content
•	 Domain
•	 Path
•	 Code is semantic and valid

In order to know more about the rules that SenSEO checks, go to
http://sensational-seo.com/on-page-criteria.html.

In order to analyze the performance of our web page against a particular keyword,
let's follow the steps mentioned:

1. Open the web page that we want to analyze in Firefox.
2. Open Firebug.
3. Click on the SenSEO tab.
4. In the Keywords textbox, enter the keyword (for example, book) and click

Inspect SEO Criteria.

Necessary Firebug Extensions

[162]

4. SenSEO will analyze the page and present the results in the same window.
5. In order to view the page components, click on the Show

Components button.

6. If we want to print the results, then click on Printview and the results will
open in a new Firefox tab in printer-friendly mode.

Page Speed
The Page Speed extension has been open sourced by Google. In many respects,
it is quite similar to YSlow; however, it is relatively new compared to YSlow. In
terms of the number of rules that are checked against, Page Speed does a more
comprehensive analysis. Page Speed is designed to analyze website performance
and offer suggestions on how to improve page load times. Web masters and web
developers can use Page Speed to evaluate the performance of their web pages and
to get suggestions for how to improve them.

When we profile a web page with Page Speed, it evaluates the page's conformance
to a number of different rules. These rules are general frontend best practices that
we can apply at any stage of web development.

Chapter 10

[163]

Page Speed evaluates performance from the browser's point of view, typically
measured as the page load time. This is the lapsed time between the moment a user
requests a new page and the moment the page is fully rendered by the browser.

The rules cover various steps that are involved in requesting a page and rendering
the page on the browser:

•	 Resolving DNS names
•	 Setting up TCP connections
•	 Transmitting HTTP requests
•	 Downloading resources
•	 Fetching resources from cache
•	 Parsing and executing scripts
•	 Rendering objects on the page

Page Speed evaluates how well our page eliminates these steps altogether,
parallelizes them, and shortens the time they need for their execution.

In order to run Page Speed against a web page, let's follow these steps:

To download the Page Speed extension, go to
http://code.google.com/speed/page-speed/download.html.

1. Open Firefox.
2. Open the Firebug panel.
3. Click on the Page Speed tab.
4. Navigate to the web page we want to analyze and click Analyze

Performance. Wait until the Done message appears on the browser
status bar and the progress bar disappears.

Necessary Firebug Extensions

[164]

5. When the page is analyzed, Page Speed displays the list of web
performance best practices and the page's score on each one, sorted
by importance/priority for this page.

6. In the performance summary report, we can do any of the following:
	° Expand any of the rules to see specific suggestions for

improvement.
	° Click any of the rule names to see documentation about

each rule.
	° Click the Show Resources button to show a detailed list of

resources referenced from this page.
	° Select Export | Write Results in JSON Format to export the

results in JSON format.

Chapter 10

[165]

The report generated by Page Speed groups the findings into priorities. The high
and medium priority groups list elements that must be optimized to increase the
performance of the website. Low priority items can still provide some performance
gains, but not as much as the medium or high priority items.

The Page Speed Activity tab displays a timeline of all browser activities, including
JavaScript processing, which makes it easier to spot scripts and elements that are
increasing the loading times. The data shown on the Page Speed Activity tab
is divided into various blocks that define events such as network latency, DNS
lookups, connection establishment, and JavaScript processing.

The best practices that Page Speed checks against the loading of a page are divided
into five categories that cover different aspects of page-load optimization.

•	 Optimizing caching—keeping our application's data and logic off
the network altogether:

	° Leverage browser caching
	° Leverage proxy caching

•	 Minimizing round-trip times—reducing the number of serial
request-response cycles:

	° Minimize DNS lookups
	° Minimize redirects
	° Combine external JavaScript
	° Combine external CSS
	° Optimize the order of styles and scripts
	° Parallelize downloads across hostnames

Necessary Firebug Extensions

[166]

•	 Minimizing request size—reducing upload size:
	° Minimize cookie size
	° Serve static content from a cookieless domain

•	 Minimizing payload size—reducing the size of responses, downloads,
and cached pages:

	° Enable gzip compression
	° Remove unused CSS
	° Minify JavaScript
	° Minify CSS
	° Defer loading of JavaScript
	° Optimize images
	° Serve resources from a consistent URL

•	 Optimizing browser rendering—improving the browser's layout of a page:
	° Use efficient CSS selectors
	° Avoid CSS expressions
	° Put CSS in the document head
	° Specify image dimensions

In order to understand the various rules checked by Page Speed
in detail and the rationale behind those rules, the reader is
encouraged to take a look at the excellent documentation available
at http://code.google.com/speed/page-speed/.

Summary
In this chapter, we looked at some of the useful Firebug extensions. There are
many more extensions that are available and are very useful; however, it is not
possible to cover all of them in this chapter. Firebug users should take a look at
all of the available extensions.

http://code.google.com/speed/page-speed/docs/payload.html#GzipCompression

Extending Firebug
In this chapter, we'll discuss the steps that can be used to develop an extension of
Firebug. We will discuss setting up a development environment, file and directory
structure, and some JavaScript code.

Extensions are packaged and distributed in ZIP files or bundles, with the XPI
(pronounced as "zippy") file extension. Developing an extension to Firebug is the
same as developing an extension to Firefox. This means that the directory structure,
the files, the coding language, the style, and other things are the same for an
extension of both Firebug and Firefox.

In this chapter, we'll discuss the following on extending Firebug:

•	 Setting up an extension development environment
•	 Getting started with a small "Hello World" extension of Firebug
•	 Taking "Hello World" to the next level

Setting up an extension development
environment
To develop a Firebug extension, we first need to set up the development
environment on the system. There is no difference between environments while
developing an extension for Firebug or Firefox. The directory structure and files
in Firebug extension are also similar to a Firefox extension. The following is an
overview of what we need to configure to set up the environment for developing
an extension to Firebug:

1. Create a development user profile to run our development Firefox session,
with special development preferences in about:config.

Extending Firebug

[168]

2. Install some Firefox development extensions to our dev profile.
3. Edit files in the extensions folder of our profile and restart the application

with the dev profile.

Setting up the development profile
To avoid performance degradation from development-related preferences and
extensions, and to avoid losing our personal data, we can create a dev profile for
development work, which will be separate from the default profile.

We can run two instances of Firefox at the same time by using separate profiles and
starting the application with the -no-remote parameter. For example, the following
command will start Firefox with a profile called dev, whether an instance of Firefox is
already running or not:

•	 On Ubuntu:
 /usr/bin/firefox -no-remote -P dev

•	 On other distributions of Linux:
 /usr/local/bin/firefox -no-remote -P dev

•	 On Mac:
 /Applications/Firefox.app/Contents/MacOS/firefox-bin -no-remote -P
 dev

•	 On Windows:
•	 Start | Run. Then type the following command:

 "%ProgramFiles%\Mozilla Firefox\firefox.exe" -no-remote -P dev

If the profile specified does not exist (or if no profile is specified), Firefox will display
the Profile Manager window. To run with the default profile, specify default as the
profile (or omit the -P switch).

Now let's execute the command firefox –no-remote –P dev. If a dev profile
already exists, then Firefox will open up with dev profile mode; otherwise it will
prompt us to create one on the fly.

Chapter 11

[169]

If we don't have a dev profile, then we can click on the Create Profile... button
to create a new dev profile and follow the wizard's instructions for creating a
new profile.

Development preferences
There is a set of development preferences that, when enabled, allows us to view more
information about application activity, thus making debugging easier. However,
these preferences can degrade the performance of Firefox, so we may want to use a
separate development profile when we enable these preferences. Open Firefox with a
dev profile, as discussed in the previous section, and change the preference settings in
Firefox. Type about:config in the address bar of the browser.

Extending Firebug

[170]

A new page will open in Firefox where we can set our own customized preferences.
There are many preferences and settings in the Firefox, so it would be difficult to find
a particular preference. Firefox provides a Filter box which we can use to filter the
Preference Name and find the desired preference in no time.

To change the value of a preference, double-click on the preference name.
A small input form will appear in which we can provide/set the desired value.

Not all preferences are defined by default, and they are therefore not listed in
about:config by default. We will have to create new entries for them.

For adding the new preferences, right-click anywhere on the page. Select New and
we will see a submenu with the options—Boolean, String, and Integer. Choose any
one from the menu. An input window will appear asking us the preference name
and its value.

Chapter 11

[171]

The following are the preferences that we need to set before developing an extension:

•	 javascript.options.showInConsole = true: This logs errors in chrome
files to the error console.

•	 nglayout.debug.disable_xul_cache = true: This disables the XUL
cache so that changes to windows and dialogs do not require a restart. This
assumes we're using directories rather than JARs. Changes to XUL overlays
will still require reloading of the document overlaid.

•	 browser.dom.window.dump.enabled = true: This enables the use of the
dump(message) statement to print to the standard console.

•	 javascript.options.strict = true: This enables strict JavaScript
warnings in the error console. Note that as many people have this setting
turned off when developing, we will see lots of warnings for problems with
their code, in addition to warnings for our own extension. We can filter those
with Firebug's console filter options (as illustrated in Chapter 2, Firebug
Window Overview).

•	 extensions.logging.enabled = true: This will send more detailed
information about installation and update problems to the error console.
(Note that the extension manager automatically restarts the application at
startup sometimes, which may mean we won't have time to see the messages
logged before the automatic restart happens. To see them, prevent the
automatic restart by setting the Environment Variable NO_EM_RESTART to 1
before starting the application.)

Extending Firebug

[172]

•	 dom.report_all_js_exceptions = true: As this key is not available
by default, we need to create this key. Setting up this key will log all the
exceptions from inner frames. Alternatively, we can set the Environment
Variable MOZ_REPORT_ALL_JS_EXCEPTIONS. It doesn't matter what value we
set this to (it can even be 0). If the variable exists, all exceptions from inner
frames will be reported.

There are a few extensions that we might want to install on our Firefox for
debugging and development purposes. The following are some of them:

•	 DOM Inspector: This is used to inspect and edit the live DOM of any
web document or XUL application.

•	 Venkman: This is a JavaScript debugger.
•	 Extension Developer's Extension: This is a suite of tools for

extension development.
•	 Console2: This is an enhanced JavaScript console.
•	 JavaScript Command: This is for writing/testing JavaScript on

Firefox windows.
•	 Chrome List: This is for navigating and viewing files in chrome://.
•	 Chrome Edit Plus: This is a user file editor.
•	 Extension Wizard: This is a web-based application that generates an

extension skeleton.
•	 Chromebug: This combines elements of a JavaScript debugger and DOM.
•	 MozRepl: This explores and modifies Firefox and other Mozilla applications

while they run.
•	 ExecuteJS: This is an enhanced JavaScript console.
•	 XPCOMViewer: This is an XPCOM inspector.
•	 JavaScript: This shells to test snippets of JavaScript.
•	 SQLite Manager: This manages the SQL Lite database.
•	 ViewAbout: This enables access to various about: dialogs from the

View menu.
•	 Crash Me Now!: This is useful for testing debug symbols and the crash

reporting system.

Chapter 11

[173]

Getting started with a small "Hello
World!" extension of Firebug
Let's not waste any more time and quickly move on to developing a small
"Hello World!" extension to Firebug. This extension explains how to add a new
tab to Firebug.

To start developing a "Hello World!" extension, we need to set up a directory and
file structure of the extension. The directory structure should look similar to the
following one:

chrome/

content/

helloWorld/

helloWorldOverlay.xul

helloWorld.js

chrome.manifest

istall.rdf

hello world

As we can see, helloWorldOverlay.xul and helloWorld.js are the main files where
the actual implementation code resides. The other two files—chrome.manifest and
install.rdf—are used by Firefox to install the extension.

The chrome.manifest file
The chrome.manifest file specifies that there is content under chrome | content
| helloWorld. The second line signifies that the helloWorldOverlay.xul overlay
represents an overlay for firebugOverlay.xul. The configuration in XUL files is
called chrome registration.

To know more about chrome and chrome registry, one can visit
https://developer.mozilla.org/en/Chrome_Registration.

Extending Firebug

[174]

The following is the content of the chrome.manifest file:

content helloworld chrome/content/helloWorld/ xpcnativewrappers=no
overlay chrome://firebug/content/firebugOverlay.xul chrome://
helloworld/content/helloWorldOverlay.xul

We can also disable the security tests that Firefox runs before installing the extension
by setting the value of xpcnativewrappers to no.

The install.rdf file
The general information about the extension is placed in the install.rdf file. The
general information such as e-mail ID, extension version, description of extension,
creator, and so on, are provided in this file.

The following is the content of the install.rdf file:

<?xml version="1.0"?>
<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:em="http://www.mozilla.org/2004/em-rdf#">
<Description about="urn:mozilla:install-manifest">
<em:id>awesome@coder.com</em:id>
<em:type>2</em:type>
<em:version>0.1</em:version>
<em:targetApplication>
<Description>
<em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>
<em:minVersion>0.1</em:minVersion>
<em:maxVersion>3.7.*.*</em:maxVersion>
</Description>
</em:targetApplication>
<em:name>Hello World!</em:name>
<em:description>A Simple Firebug's Extension</em:description>
<em:creator>Chandan Luthra</em:creator>
<em:homepageURL>http://www.myHomePageUrl.com</em:homepageURL>
</Description>
</RDF>

Chapter 11

[175]

Let's look at the parameters used in the file:

•	 awesome@coder.com : This is the ID of the extension. This is a value we come
up with to identify our extension in an e-mail address format (that it should
not be our e-mail). Make it unique. We can also use a GUID.

This parameter must be in the format of an e-mail address, although it does
not have to be a valid e-mail address. (example@example.example)

•	 <em:type>2</em:type> : The 2 declares that it is installing an extension.
If we were to install a theme it would be 4.

•	 {ec8030f7-c20a-464f-9b0e-13a3a9e97384}: This is Firefox's
application ID.

•	 <em:minVersion>0.1</em:minVersion>: This is the exact version number
of the earliest version of Firefox that we're saying this extension will work
with. Never use a * in a minVersion, it almost certainly will not do what we
expect it to.

•	 <em:maxVersion>3.7.*.*</em:maxVersion>: This is the maximum version
of Firefox that we're saying this extension will work with. Let's make sure
we set this to be no newer than the newest currently available version! In this
case, 3.7.*.* indicates that the extension works with Firefox 3.5 and any
subsequent 3.5.x release.

The helloWorldOverlay.xul file
The Gecko engine behind Firefox is designed to allow us to build user interfaces
using an XML-based language called XUL (XML User Interface Language). One
primary objective of this language is to allow us to overlay new components by
essentially inserting them into existing XUL-based applications such as Firefox.
Firefox extensions make heavy use of overlays to add functionality to Firefox
without needing to modify the Firefox code.

To know more about XUL and overlays, visit
https://developer.mozilla.org/en/XUL.

Extending Firebug

[176]

The following XUL code specifies that the helloWorld.js file is to be included and
it also helps the Firefox to know which JavaScript file(s) are to be executed and in
which order:

<?xml version="1.0"?>
<overlay
xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.
xul"><script src="helloWorld.js"/>
</overlay>

The helloWorld.js file
The helloWorld.js file will create a new tab on the Firebug menu bar and register
a new panel with it. The new panel behaves like a container and it will be used to
show the contents/results/statistics or any information that we want the end user
to see.

We will notice that the actual logic is encapsulated in FBL.ns(function()
{with (FBL){………}});. This encapsulation is used to avoid naming
collisions between local and global variables, and it acts like a namespace for
our code.

The following is the content of the helloWorld.js file:

FBL.ns(function() { with (FBL) {
function MyPanel() {}
MyPanel.prototype = extend(Firebug.Panel,{
 name: "HelloWorld",
 title: "Hello World!",
 initialize: function() {
 Firebug.Panel.initialize.apply(this, arguments);
 }
});
Firebug.registerPanel(MyPanel);
}});

Now there is a MyPanel panel in Firebug that extends the Firebug.Panel object.
The extend() function in the code is used for extension mechanism; through this
function we can inherit the properties of any other object in the current scope.
Extending the object is similar to the class inheritance. Here, in our example,
inherit means that the extend() function copies all the properties from the first
parameter(Firebug.Panel) to the second parameter(MyPanel).

Chapter 11

[177]

There are a few name value pairs in the code. The name and title are the properties
of MyPanel and initialize is a function. The name is used to identify the panel
uniquely so that we can access MyPanel through the getPanel() function. The
title is a display name of the tab, which will be shown on Firebug's menu bar. The
initialize function automatically gets invoked by Firebug's framework when the
panel is activated for the first time.

Now our new panel MyPanel is ready and needs to be registered with Firebug
so that Firebug ensures that it will be properly shown on its menu bar. The
registerPanel() function of Firebug is used to register the new panel by passing
the MyPanel as parameter to this function.

Packaging and installation
Now we are done with this small example of Hello World! extension, it is ready
to package and install. Packaging the extension is very simple, we only need to
compress (ZIP) the root directory in a single zippy file with XPI as the file extension
to it.

In our example, the root directory is helloWorld.

On Ubuntu:

$ cd helloWorld

$ zip –r myExtension.xpi *

On Windows:

•	 Right-click on the root directory and select the Send To | Compressed
(zipped) Folder option

•	 Rename the new zipped file and change the file extension from ZIP to XPI

Extending Firebug

[178]

After packaging the extension, open the zippy file with Firefox by dragging the
zippy (XPI) file into the Firefox window. Firefox will then check the version
compatibility and a small window will open asking to install the extension.

After installation, Firefox will ask us to restart it in order to invoke the extension.

Chapter 11

[179]

When Firefox comes up, it will inform us about the installed add-on. We can always
disable and uninstall the extension from here.

Now our test extension Hello World! is ready and installed on Firefox. To see it on
Firebug, just press the F12 key and we will see a new tab on Firebug's menu bar.

Extending Firebug

[180]

Taking "Hello World!" to the next level
Here we will learn how to attach the drop-down list of options to our Hello World!
tab. The purpose of this drop-down list is to allow the user to set some specific
preferences on the panel. Suppose the extension shows hundreds of results (like Net
panel) and the user is interested in only those results that contain "advertisements" as
a keyword. So, the options on the tab can be configured in such a way that the user
can select the option and customize the results.

To display the options drop-down on the tab, we need to implement the
getOptionsMenuItems() function in the MyPanel object.

There will be a slight change in the directory structure of the extension and a new file
prefs.js will be included under defaults | preferences.

This is how the new directory structure would look:

hello world/

chrome/

content/

helloWorldOverlay.xul

helloWorld.js

chrome.manifest

install.rdf

defaults

preferences

prefs.js

hello world/

Chapter 11

[181]

The "prefs.js" file
In spite of having .js as a file extension, the prefs.js file is not a JavaScript file.
We can think of this file as a .ini file, which is used to inform the Firefox that
key:value pairs written in this file are the default preferences and need to be set up
on starting Firefox.

pref("extensions.firebug.helloworld.firstOption", true);
pref("extensions.firebug.helloworld.secondOption", false);

These two lines in prefs.js create preferences in Firefox, which can be seen by
writing about:config in the address bar.

The "helloWorld.js" file revisited
Now we'll tweak our test extension's helloWorld.js file so that the extension is able
to show both the options drop down on the Hello World! tab of Firebug. This will
need to provide the implementation of the getOptionsMenuItems() function.

FBL.ns(function() { with (FBL) {
function MyPanel() {}
MyPanel.prototype = extend(Firebug.Panel,{
 name: "HelloWorld",
 title: "Hello World!",

 initialize: function() {
 Firebug.Panel.initialize.apply(this, arguments);

Extending Firebug

[182]

 },

 getOptionsMenuItems: function(context)
 {
 return [this.optionMenu("MyFirstOption", "helloworld.
firstOption"), "-", this.optionMenu("MySecondOption", "helloworld.
secondOption")];
 },

 optionMenu: function(label, option)
 {
 var value = Firebug.getPref(Firebug.prefDomain, option);
 return {
 label: label,
 nol10n: true,
 type: "checkbox",
 checked: value,
 command: bindFixed(Firebug.setPref, this,
 Firebug.prefDomain, option, !value)
 };
 }
});
Firebug.registerPanel(MyPanel);
}});

In the code, the getOptionsMenuItems() function returns the list of option objects
that Firebug understands and it places them on the drop-down.

The hyphen in the getOptionsMenuItem() is only for UI purposes, to display the
separator between the options.

The most interesting thing is probably the implementation of the
optionMenu() function. First of all, we are utilizing get and setPref
methods from Firebug namespace:
Firebug.getPref(prefDomain, name);

Firebug.setPref(prefDomain, name, value);

The usage is quite obvious. The first parameter is used to specify the preference
domain, the second specifies the preference name, and the third specifies the new
preference value. The domain should be extensions.firebug (there is a constant
Firebug.prefDomain for that).

Chapter 11

[183]

Further, there is a new bindFixed function. Here bindFixed() is used to bind
a method (Firebug.setPref) to a handler (command), with three parameters
(Firebug.prefDomain, option, !value).

Now install the extension in a similar way as we did earlier. To view the extension in
action we need to open about:config in the browser, open Firebug, and click on the
HelloWorld! tab's option drop-down. We will see the value of that the preferences
that we added in prefs.js file is getting toggled.

Summary
In this chapter we discussed setting up the development environment on our
machines. The Firefox extensions are simply compressed files with XPI file
extensions. We saw that we can restrict the extension to a particular version of
the Firefox by modifying the minVersion and maxVersion elements in the
install.rdf file.

In the development process, sometimes the browser gets crashed, which can corrupt
the default user profile. Therefore, it is recommended to create a new dev profile for
developing purposes.

There is a very good tutorial on developing Firebug extensions by Jan Odvarko (a
contributor of Firebug). We suggest that you go through his blogs; you can visit his
site at http://www.softwareishard.com.

A Quick Overview of Firebug's
Features and Options

This appendix acts as a reference for various Firebug features and options. We will
also take a look at some of the features that are expected in future releases of Firebug.

Keyboard and mouse shortcuts reference
Firebug provides a lot of keyboard and mouse shortcuts in order to make working
with Firebug an easier and faster experience. As we become more experienced with
Firebug, we will find ourselves making more and more use of these shortcuts to
accomplish common tasks, instead of opening the Firebug panel and then clicking on
various tabs and buttons.

The following shortcuts are divided into the various categories. Please note that these
shortcuts work with Windows and Linux.

Global shortcuts
Task / operation Shortcut
Open Firebug panel F12

Close Firebug panel F12
Open Firebug in window Ctrl+Shift+L
Switch to previous tab Ctrl+`
Focus command line Ctrl+Shift+L
Focus search box Ctrl+Shift+L
Toggle inspect mode Ctrl+Shift+C

A Quick Overview of Firebug's Features and Options

[186]

Task / operation Shortcut
Toggle JavaScript profiler Ctrl+Shift+P
Re-execute last command line Ctrl+Shift+E

HTML tab shortcuts
Task / operation Shortcut
Edit attribute Click on name or value

Edit text node Click on text
Edit element Double-click tag name
Next node in path Ctrl+.
Previous node in path Ctrl+,

HTML editor shortcuts
Task / operation Shortcut
Finish editing Return

Cancel editing Esc
Advance to next field Tab
Go back to previous field Shift+Tab

HTML inspect mode shortcuts
Task / operation Shortcut
Cancel inspection Esc
Inspect parent Ctrl+Up
Insect child Ctrl+Down

Toggle inspection Ctrl+Shift+C

Appendix

[187]

Script tab shortcuts
Task / operation Shortcut
Continue Esc or Ctrl+ /

Step over F10 or Ctrl+ '
Step into F11 or Ctrl+ ;
Step out Shift+F11 or Ctrl+Shift+;
Toggle breakpoint Click on line number
Disable breakpoint Shift+Click on line number
Edit breakpoint condition Right-click on line number
Run to line Middle-click on line number

or
Ctrl+click on line number

Next function on stack Ctrl+.
Previous function on stack Ctrl+,
Focus menu of scripts Ctrl+press space bar
Focus watch editor Ctrl+Shift+N

DOM tab shortcuts
Task / operation Shortcut
Edit property Double-click on empty space

Next object in path Ctrl+.
Previous object in path Ctrl+,

DOM and watch editor shortcuts
Task / operation Shortcut
Finish editing Return

Cancel editing Esc
Autocomplete next property Tab
Autocomplete previous property Shift+Tab

A Quick Overview of Firebug's Features and Options

[188]

CSS tab shortcuts
Task / operation Shortcut
Edit property Click on property

Insert new property Double-click on white space
Focus menu of stylesheets Ctrl+Space

CSS editor tab shortcuts
Task / operation Shortcut
Finish editing Return

Cancel editing Esc
Advance to next field Tab
Advance to previous field Shift+Tab
Increase number by one Up arrow key
Decrease number by one Down arrow key
Increase number by ten Page Up
Decrease number by ten Page Down
Autocomplete next keyword Up arrow key
Autocomplete previous keyword Down arrow key

Layout tab shortcuts
Task / operation Shortcut
Edit value Click on value

Appendix

[189]

Layout editor shortcuts
Task / operation Shortcut
Finish editing Return
Cancel editing Esc
Advance to next field Tab
Advance to previous field Shift+Tab
Increase number by one Up arrow key
Decrease number by one Down arrow key
Increase number by ten Page Up
Decrease number by ten Page Down

Command line (small) shortcuts
Task / operation Shortcut
Autocomplete next property Tab

Autocomplete previous property Shift+Tab
Execute Return
Inspect result Shift+Return
Open result's context menu Ctrl+Return

Command line (large) shortcuts
Task / operation Shortcut
Execute Ctrl+Return

A Quick Overview of Firebug's Features and Options

[190]

Console API reference
The Console API is very powerful for development and debugging. The following is
a quick reference table for the Console API, which explains all the console functions
in short:

Task / operation Purpose
console.log(object[, object,
...])

Writes a message to the console. We may pass
as many arguments as we like, and they will be
joined together in a space-delimited line.

console.debug(object[,
object, ...])

Writes a message to the console, including a
hyperlink to the line where it was called.

console.info(object[, object,
...])

Writes a message to the console with the visual
info icon, color coding, and a hyperlink to the
line where it was called.

console.warn(object[, object,
...])

Writes a message to the console with the visual
warning icon, color coding, and a hyperlink to
the line where it was called.

console.error(object[,
object, ...])

Writes a message to the console with the visual
error icon, color coding, and a hyperlink to the
line where it was called.

console.assert(expression[,
object, ...])

Tests that an expression is true. If not, it
will write a message to the console and throw
an exception.

console.dir(object) Prints an interactive listing of all the properties
of the object. This looks identical to the view
that you would see in the DOM tab.

console.dirxml(node) Prints the XML source tree of an HTML or XML
element. This looks identical to the view that
you would see in the HTML tab. We can click
on any node to inspect it in the HTML tab.

console.trace() Prints an interactive stack trace of JavaScript
execution at the point where it is called.

console.group(object[,
object, ...])

Writes a message to the console and opens a
nested block to indent all future messages sent
to the console. Call console.groupEnd() to
close the block.

console.
groupCollapsed(object[,
object, ...])

Similar to console.group(), but the block is
initially collapsed.

Appendix

[191]

Task / operation Purpose
console.groupEnd() Closes the most recently opened block created

by a call to console.group() or console.
groupEnd().

console.time(name) Creates a new timer under the given name.
Call console.timeEnd(name) with the
same name to stop the timer and print the
time elapsed.

console.timeEnd(name) Stops a timer created by a call to console.
time(name) and writes the time elapsed.

console.profile([title]) Turns on the JavaScript profiler. The optional
argument title would contain the text to be
printed in the header of the profile report.

console.profileEnd() Turns off the JavaScript profiler and prints
its report.

console.count([title]) Returns the count of how many times the line
of code is executed. The optional argument title
will print a message in addition to the number
of the count.

Command line API reference
The Firebug command line allows user-entered expressions to be evaluated in the
page, similar to having scripts in our page. It is one of the most useful and powerful
features of Firebug. Here is the quick cheat sheet for command line:

Command Purpose
$(id) Returns a single element with the given ID
$$(selector) Returns an array of elements that match the given

CSS selector.
$x(xpath) Returns an array of elements that match the given

XPath expression.
dir(object) Prints an interactive listing of all properties of the

object. This looks identical to the view that we would
see in the DOM tab.

dirxml(node) Prints the XML source tree of an HTML or XML
element. This looks identical to the view that we
would see in the HTML tab. We can click on any node
to inspect it in the HTML tab.

A Quick Overview of Firebug's Features and Options

[192]

Command Purpose
cd(window) By default, command line expressions are relative to

the top-level window of the page. cd() allows us to
use the window of a frame in the page instead.

clear() Clears the console.
inspect(object[,
tabName])

Inspects an object in the most suitable tab, or the tab
identified by the optional argument tabName.

The available tab names are HTML, CSS, SCRIPT,
and DOM.

keys(object) Returns an array containing the names of all
properties of the object.

values(object) Returns an array containing the values of all
properties of the object.

debug(fn) Adds a breakpoint on the first line of a function.
undebug(fn) Removes the breakpoint on the first line of a function.
monitor(fn) Turns on logging for all calls to a function.
unmonitor(fn) Turns off logging for all calls to a function.
monitorEvents(object[,
types])

Turns on logging for all events dispatched to an
object. The optional argument types may specify a
specific family of events to log. The most commonly
used values for types are mouse and key.

The full list of available types includes composition,
contextmenu, drag, focus, form, key, load, mouse,
mutation, paint, scroll, text, ui, and xul.

unmonitorEvents(object[,
types])

Turns off logging for all events dispatched to
an object.

profile([title]) Turns on the JavaScript profiler. The optional
argument title would contain the text to be printed
in the header of the profile report.

profileEnd() Turns off the JavaScript profiler and prints its report.

Appendix

[193]

Firebug online resources
The following are a few online references for some useful information, such as releases,
issues, new features, extensions, and so on:

Resource description URL
Firebug site homepage http://getfirebug.com/

Firebug wiki homepage http://getfirebug.com/wiki/index.php/
Main_Page

Firebug video by Joe Hewitt http://video.yahoo.com/
watch/111581/938140

Firebug Google group http://groups.google.com/group/firebug

Firebug issues tracking system on
Google code

http://code.google.com/p/fbug/issues/
list

Firebug internals page on Mozilla
site

https://developer.mozilla.org/en/
FirebugInternals

Firebug plugins page on Firebug
site

http://getfirebug.com/extensions/

Features expected in future releases of
Firebug
Firebug is a rapidly growing application and every new version of it has major
changes as compared to the previous versions. The Firebug Working Group has
some initial plans for Firebug 1.6 and 1.7, the short versions.

Firebug 1.6
In this version, Firebug will focus on Firebug extension technologies and
deliver most of its new functions as extensions. The major new work will be
the Swarm implementation.

A Firebug Swarm is a collection of Firebug extensions that are
tested, maintained, and marketed together. It is a scheme for
distributed development and installation, combined with centralized
testing and marketing.

A Quick Overview of Firebug's Features and Options

[194]

The Firebug development team is aiming for a release in April 2010. Some of
the features can be implemented as separate extensions that could be part of
the Firebug bundle.

Some improvements in this version
The Firebug team plans what will be included in new releases on the basis of
discussions on the mailing list, the forums, and the community, as well as issues and
bugs. Here are some enhancements and improvements that Firebug will have in its
next release.

Scrolling panel tab bar
Some scrolling support is necessary as extensions often create a new panel and there
is not enough space for displaying all of them.

FBTest support for Firebug extensions
The Swarm will support testing of Firebug extensions together with Firebug,
but using Firebug's tests. Firebug also needs a solution for extensions to add
their own tests.

Locales as extensions
Having this has two advantages:

•	 Users can switch back to the default en-US language
•	 If some strings are not translated, we can use them from the default language

Currently the string key (formatted for this purpose) itself is used as the default.

Extension points for panel buttons and main menu options
Some smaller extensions are actually harder to write than new panels because
Firebug has no support for adding menu options and buttons. Therefore, some
extension points will be there in Firebug for panel buttons and main menu options
so that one can quickly develop a new extension.

Breakpoint column for the HTML panel
Similar to the Script, DOM, and Net panel, the HTML panel should also offer a
vertical column (on the left-hand side of the panel content) in order to easily create
a breakpoint. HTML mutation breakpoint creation is currently hidden behind a
context menu.

Appendix

[195]

Break on next CSS change and CSS breakpoints
Like HTML, Script, and Net panel, we can create breakpoints on the CSS panel. This
feature will allow user to set breakpoints, which will be triggered whenever CSS
change is encountered.

Options for the break on next feature (mainly a
UI-related issue)
The break on next feature should have options for every panel:

•	 XHR: Break on request/response
•	 Script: Break on click, mousemove, and so on

Net panel improvements
The following are mostly issues for improving the Net panel reported in the
Firebug issue list:

•	 New columns with additional information—for example, IP address
(hidden by default)

•	 Change the order of columns
•	 Showing cache reads (not network communication really)

Script panel improvements
The following is a list of proposed improvements of the script panel that need
to be done in this version of Firebug:

•	 Improve the script location menu. Group scripts (by inline, events, evaluated)
and use nested menus.

•	 Jump from function calls to their definition.
•	 Jump from the ID defined in getElementById() to element in HTML panel.
•	 Jump from a variable name to the DOM panel by holding down Ctrl and

clicking on it.
•	 Every variable could have a context menu entry for putting it to the

watch list.

A Quick Overview of Firebug's Features and Options

[196]

JavaScript function support
Firebug is aiming to rework on JavaScript's "function" support with new JavaScript
debugging features that will show us:

•	 A list all of the objects that refer to a function
•	 The property names

Firebug 1.7
This version of Firebug is targeted to be released in September 2010. In this version,
Firebug focuses on refactoring the architecture of Firebug. With this change in the
architecture, the following features will be added:

•	 Prepare to support remote debugging for mobile and multiprocessing
browsers:

	° Server side will be headless
	° Client side will have no access to Firefox data

•	 Allow simpler and more robust extensions:
	° JavaScript oriented loading, no XPCOM (Cross Platform

Component Object Model) loader required
	° Isolation and concentration of extension code

•	 Clean up expedient code and clarify the implementation:
	° Relation to platform window system
	° Relation of panels and modules
	° Prepare/exploit shift to jetpack

Following are some proposed changes for Firebug 1.7:

Separate modules and panels
Broadly speaking, Mike Collins' architecture for remote Firebug puts the module
code in the server and the panel code in the client (UI side). The Firebug's context
object (TabContext.js) is passed over the wire between them using CrossFire.

The first step in that direction is to divide all of the source into module and panel
files. For example, we might have debuggerModule.js and debuggerPanel.js.
Then firebug.js would be divided between module dispatch and panel dispatch
(dispatchModules.js and dispatchPanels.js). The API between these objects
would be the remote CrossFire API.

Appendix

[197]

Issue: File names versus folder names
However, it's more common to need to write with one kind of module and panel
rather than all the panels and modules. Creating a subdirectory for each feature, for
example, debugger.js/module.js, makes a lot of small folders. Any scheme where
the folder is used to disambiguate makes a lot of tools hard to use because we end
up with a lot of UI selections, such as module.js or debugger.js; we can't tell what
it means. That is how the Firebug team ended up with debuggerModule.js and
debuggerPanel.js— where a developer will follow some unambiguous naming
convention. The name starts with the feature name to make it unique, and hence
there is no conflict.

Components replaced by SharedObjects
Firebug currently has five XPCOM components. The Firebug team needs to create
two more XPCOM modules—ECMA harmony modules and CommonJS modules.
As these are all in JavaScript, the XPCOM infrastructure only exists to arrange
common access between Firebug windows. By creating a single SharedObject
XPCOM component, the amount of boiler plate code can be reduced. This will also
prepare for in-place JavaScript editing and dynamic update features in future.

Issue: SharedObject API
Leverage work by CommonJS:

•	 ECMA harmony modules
•	 CommonJS modules

This will put Firebug on the same path as jetpack proposals.

As far as we know the CommonJS as well as Mozilla platform,
Components.utils.module supports common code loading, but common object
sharing is also needed. So, there may be some additional work on API.

Recode TabWatcher/DOMWindowWatcher
TabWatcher is still very heuristic and relies on Firefox idiosyncrasies that can change.
Chromebug has its own watcher and even more guesses about the platform. Maybe
nsIXULWindow and nsIDOMWindow lifetime event notifications will be replaced with
a clean abstraction. Then we would put it in a SharedObject, so that only one per
application is needed, and get a clean API. This will require platform support.

A Quick Overview of Firebug's Features and Options

[198]

Sandboxed extension loading
By reapplying the module loading technology, a jetpack-like environmental wrapper
for Firebug extensions can be created. The extensions will be slightly simpler because
they'll just be ZIP files. The extensions would be slightly more robust too, as they
would be evaluated with eval() in a scope that only contains Firebug.

This enhancement depends upon the Firefox improvements. When Firefox
improves, only then can the Firebug team work on this enhancement.

Memory panel
Firebug will provide a new panel for its users. This is one of top features that
has been requested many times, and it would certainly be very helpful for web
application developers. It will show some memory profiling activity.

Apart from the preceding improvements some refactoring and bug fixing
will also feature in Firebug 1.7.

Symbols
$$(selector) 191
$$(selector) method 68, 69
$(id) 191
$(id) method 67, 68
$x(xpath) 191
$x(xpath) method 69
<em:maxVersion>3.7.*.*</em:maxVersion>

175
<em:minVersion>0.1</em:minVersion> 175
<em:type>2</em-type> 175

A
AJAX 119
AJAX calls

debugging, console object used 130
Asynchronous JavaScript and XML. See

AJAX
awesome@coder.com 175

B
bindFixed function 183
box model

inspecting 65
tweaking 65

browser cache
analyzing 113-115

C
callback parameter 122
cd() function 141
cd() method 140
cd(window) 192

cd(window) method 72
Chromebug 172, 197
Chrome Edit Plus 172
Chrome List 172
chrome.manifest file 173
clear() 192
clear() method 72
CodeBurner

about 159
steps, for using 159

command line API methods
$$(selector) 68
$(id) 67
$x(xpath) 69
cd(window) 72
clear() 72
debug(fn) 74
dir(object) 70
dirxml(node) 71
inspect(object[, tabName]) 72
keys(object) 73
monitorEvents(object[, types]) 76
monitor(functionName) 74, 75
profileEnd() 77
profile([title]) 77
undebug(fn) 74
unmonitorEvents(object[, types]) 76
unmonitor(functionName) 74, 75
values(object) 74

command line API reference 191
command line JavaScript 16
command line (large) shortcuts 189
command line (small) shortcuts 189
CommonJS modules 197

Index

[200]

conditional breakpoints
about 86
removing 88

configuration options, Pixel Perfect
hide overlay when inspecting 155
hide statusbar info 155

Console2 172
console API methods

console.assert(expression[, object, ...]) 81
console.count([title]) 82
console.debug(object[, object, ...]) 80
console.dir(object) 81
console.dirxml(node) 81
console.error(object[, object, ...]) 80
console.groupCollapsed(object[, object, ...])

81
console.groupEnd() 81
console.group(object[, object, ...]) 81
console.info(object[, object, ...]) 80
console.log(object[, object, ...]) 79
console.profileEnd() 82
console.profile([title]) 82
console.timeEnd(name) 82
console.time(name) 82
console.trace() 81
console.warn(object[, object, ...]) 80

Console API reference
about 190
console functions 190

console.assert(expression[, object, ...]) 190
console.assert(expression[, object, ...])

method 81
console.assert() function 133
console.count([title]) 191
console.count([title]) method 82
console.debug() 131
console.debug() function 130, 132
console.debug(object[, object, ...]) 190
console.debug(object[, object, ...])

method 80
console.dir() function 134
console.dir(object) 190
console.dir(object) method 81
console.dirxml(node) 190
console.dirxml(node) method 81
console.error(object[, object, ...]) 190
console.error(object[, object, ...]) method 80

console functions 190
console.groupCollapsed(object[, object, ...])

190
console.groupCollapsed(object[, object, ...])

method 81
console.groupEnd() 191
console.groupEnd() method 81
console.group() function 141
console.group(object[, object, ...]) 190
console.group(object[, object, ...]) method 81
console.info(object[, object, ...]) 190
console.info(object[, object, ...]) method 80
console.log(object[, object, ...]) 190
console.log(object[, object, ...]) method 79
console.profileEnd() 191
console.profileEnd() method 82
console.profile([title]) 191
console.profile([title]) method 82
console tab

about 16
command line JavaScript 16
errors and warnings section 17

console.timeEnd(name) 191
console.timeEnd(name) method 82
console.time(name) 191
console.time(name) method 82
console.trace() 190
console.trace() method 81
console.warn(object[, object, ...]) 190
console.warn(object[, object, ...]) method 80
Crash Me Now! 172
CrossFire API 196
CSS

tweaking 58, 60
CSS development

about 55
cascading rules, inspecting 55
colors, previewing 57, 58
images, previewing 57

CSS editor tab shortcuts 188
CSS element

inspecting 55, 56
CSS files

modifying 30-33
viewing 30

CSS inspector 29

[201]

CSS properties
enabling/disabling 60-62

CSS rule
editing 59

CSS stylesheet
box model, inspecting 65
box model, tweaking 65
delete <property> option 64
disable <property> option 64
edit <property> option 64
inspecting 62
new property option 63
new rule option 63

CSS tab
about 29
CSS files list 30
CSS inspector 29
CSS, modifying 30-33
functions 29
searching, within 65

CSS tab shortcuts 188

D
debug(fn) 192
debug(fn) method 74
development preferences, extension devel-

opment environment
about 169, 170
setting 171, 172
value, changing 170

dir(object) 191
dir(object) method 70
dirxml(node) 191
dirxml(node) method 71, 72
dock view, Firebug modes 12
Document Object Model. See DOM
DOM

about 91
constants, filtering 93, 94
functions, filtering 93, 94
inspecting 91, 92
live modifications, viewing 128, 129
modifying 96, 97
modifying, auto-complete used 97
properties, filtering 93, 94

Domain Specific Languages. See DSLs
DOM and watch editor shortcuts 187
DOM attributes

adding 100-102
removing 98, 99

DOM editor 96
DOM inspector 91
DOM Inspector 172
DOM tab

about 36
functions 36
working 37

DOM tab shortcuts 187
download speed, web resource

finding 117

E
ECMA harmony modules 197
errors and warnings section, console tab

about 17
descriptive errors 19
informative errors 19
JavaScript commands, executing 19
status bar error indicator 18

ExecuteJS 172
extend() function 176
Extension Developer Extension 172
extension development environment

development preferences 169, 170
development profile, setting up 168, 169
setting up 167

Extension Wizard 172

F
features, Firebug 1.6 193-195
features, Firebug 1.7 196-198
Firebug

about 7
closing 11
console.groupEnd() function 141
console.group() function 141
console tab 16
CSS tab 29
DOM tab 36
features 7, 9

[202]

highlight changes feature 43
history 8
HTML source, viewing 41-43
HTML tab 20
inspect functionality 48
installing, on FireFox 10
installing, on non-Firefox browsers 10
keyboard and mouse shortcuts 185
magical cd() function 137
modes 11
need for 8
Net panel 106
net tab 38
opening 11
script tab 34
search box 50
shortcut keys, configuring 143
source, modifying 44

Firebug 1.6
about 193
features 193, 195

Firebug 1.7
about 196
features 196

Firebug Extensions
about 147
Chromebug 172
Chrome Edit Plus 172
Chrome List 172
CodeBurner 159
Console2 172
DOM Inspector 172
ExecuteJS 172
Extension Developers Extension 172
Extension Wizard 172
Firecookie 151
Firefinder 155
FireQuery 157
for, analyzing performance 118
JavaScript 172
JavaScript Command 172
MozRepl 172
Page Speed 162
Pixel Perfect 153
SenSEO 160
Venkman 172
XPCOMViewer 172

YSlow 148
Firebug Google group

url 193
Firebug internals page on Mozilla site

url 193
Firebug issues tracking system on Google

code
url 193

Firebug Lite
about 10
using, on non-Firefox browsers 10

Firebug modes
about 11
dock view 12
window mode 12

Firebug online resources
about 193
Google group 193
internals page on Mozilla site 193
issues tracking system on Google code 193
plugins page on Firebug site 193
site homepage 193
video 193
wiki homepage 193

firebugOverlay.xul 173
Firebug.Panel object 176
Firebug plugins page on Firebug site

url 193
Firebug site homepage

url 193
Firebug Swarm 193
Firebug video

url 193
Firebug wiki homepage

url 193
Firecookie

about 151, 152
features 152
functions 152

Firefinder
about 155
features 156
steps, for using 155

Firefox
Firebug, installing 10

FireQuery
about 157

[203]

features 157
functionality 157

G
getOptionsMenuItems() function 180-182
getPanel() function 177
GET/POST request 125-127
GET request 124

headers tab 124
JSON tab 125
response tab 124

getScript() function 131
global shortcuts 185
groupedOutput() function 142

H
Hello World! extension

about 173
chrome.manifest file 173, 174
drop-down list, attaching 180
helloWorld.js file 176
helloWorld.js file, revisited 181, 182
helloWorldOverlay.xul file 175
installing 177-179
install.rdf file 174
packaging 177, 178
prefs.js file 181
starting 173

helloWorld.js file 176
helloWorldOverlay.xul 173
helloWorldOverlay.xul file 175
highlight changes feature, Firebug 43
HTML editor shortcuts 186
HTML element

attribute, editing 23
breakpoints, setting on 52-54
editing 24, 25
events, logging 26, 28
finding, on web page 51, 52

HTML inspect mode shortcuts 186
HTML source

copying, for HTML element 52
HTML source, Firebug

viewing 41

HTML source, modifying
about 44
attribute, adding to HTML element 46
HTML attribute, modifying 45
HTML element, deleting 47
HTML element source, modifying 47

HTML source panel
about 21
options 22, 23

HTML tab
about 20
events, logging 26, 28
functions 20
HTML element, editing 23
HTML source panel 21

HTML tab shortcuts 186
HTTP headers

examining 112

I
iFrames 137
iFrame code 138
inspect functionality 48
inspect(object[, tabName]) 192
inspect(object[, tabName]) method 72
installation, FireBug

on FireFox 9
on non-Firefox browsers 10

install.rdf file 174

J
JavaScript 172
JavaScript code

debugging, with Firebug 83-85
JavaScript code navigation 102, 103
JavaScript Command 172
JavaScript debugging

about 82
conditional breakpoints 85-88
with Firebug 83

JavaScript development
command line API methods 67
console API methods 79

JavaScript Object Notation. See JSON

[204]

JavaScript profiler
about 77
columns and description 78, 79

JSON 122

K
keyboard and mouse shortcuts

about 185
command line (large) shortcuts 189
command line (small) shortcuts 189
CSS editor tab shortcuts 188
CSS tab shortcuts 188
DOM and watch editor shortcuts 187
DOM tab shortcuts 187
global shortcuts 185
HTML editor shortcuts 186
HTML inspect mode shortcuts 186
HTML tab shortcuts 186
layout editor shortcuts 189
layout tab shortcuts 188
script tab shortcuts 187

keys(object) 192
keys(object) method 73

L
layout editor shortcuts 189
layout tab shortcuts 188

M
magical cd() function 137
monitorEvents(object[, types]) 192
monitorEvents(object[, types]) method 76
monitor(fn) 192
monitor(functionName) method 74, 75
MozRepl 172
multiline command line 70

N
Net panel

about 106
browser queue wait time 110
information 107, 108
load-time bar color significance 108, 109
request, breaking down by type 110, 111

net tab
about 38
columns 38, 39
functions 38

network monitoring 106
non-Firefox browsers

Firebug, installing on 10

O
optionMenu() function 182

P
page components

inspecting 48
page edit

inspecting 49
page reload

inspecting 50
Page Speed

about 162
rules 163

Page Speed Activity tab 165
Page Speed checks

best practices 165, 166
Pixel Perfect

about 153
configuration options 155
features 153
steps, for using 153, 154

prefs.js file 181
printMe()function 140
profileEnd() 192
profileEnd() method 77
profile([title]) 192
profile([title]) method 77

R
registerPanel() function 177
request/response headers 120-122
rulesets, YSlow

Classic (V1) 149
Small Site or Blog 149
YSlow (V2) 149

[205]

S
script tab

about 34
breakpoints, subtab 35
functions 34
stack, subtab 35
watch, subtab 34

script tab shortcuts 187
search box, Firebug 50
SenSEO

about 160
features 160
rules 160
steps, for using 161

setPref method 182
SharedObject API 197
shortcut keys, Firebug

configuring 143
SQLite Manager 172 172

T
TabWatcher/DOMWindowWatcher 197

U
undebug(fn) 192
undebug(fn) method 74
unmonitorEvents(object[, types]) 192
unmonitorEvents(object[, types]) method 76
unmonitor(fn) 192
unmonitor(functionName) method 74, 75
URL parameter 122

V
values(object) 192
values(object) method 74
Venkman 172
ViewAbout 172 172

W
web application performance

analyzing 105
web application performance, analyzing

browser cache, analyzing 113
HTTP headers, examining 112
network monitoring 106
requests, breaking down by type 110
XMLHttpRequest monitoring 116

window mode, Firebug modes 12

X
XmlHttpRequest

GET/POST request 125
request/response headers 120
tracking 120

XMLHttpRequest
monitoring 116

XML User Interface Language. See XUL
XPCOM components 197
XPCOM modules 197
XPCOMViewer 172
XUL 175

Y
YSlow

about 148
components tab 150
features 148
grade tab 149
rulesets 149
statistics tab 150
tools tab 151

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Started with Firebug
	What is Firebug?
	The history of Firebug
	The need for Firebug
	Firebug capabilities
	Installing Firebug on different browsers
	Installing Firebug on Firefox
	Installing Firebug on non-Firefox browsers

	Opening and closing Firebug
	Firebug modes
	Dock view
	Window mode

	Summary

	Chapter 2: Firebug Window Overview
	Console tab
	Command line JavaScript
	Errors and warnings
	Status bar error indicator
	Errors can be descriptive and informative
	Executing JavaScript commands

	HTML tab
	The hierarchy of DOM nodes (the HTML source panel)
	Options for HTML source panel

	Editing HTML on the fly
	Editing an existing attribute of HTML element
	Editing an HTML element

	Logging events

	CSS tab
	CSS inspector
	List of CSS files
	Modifying CSS

	Script tab
	DOM tab
	Net tab
	Summary

	Chapter 3: Inspecting and Editing HTML
	Viewing source live
	Seeing changes highlighted
	Modifying the source on the fly
	How to modify the value of an HTML attribute
	How to add a new attribute to an existing HTML element
	How to delete an HTML element
	How to modify the source for an HTML element

	Inspecting page components, editing,
and reloading
	Searching within an HTML document
	Finding an HTML element on the page
	Copying HTML source for an HTML
element
	Setting breakpoints on HTML element
	Summary

	Chapter 4: CSS Development
	Inspecting cascading rules
	Preview colors and images
	Tweaking CSS on the fly
	Enabling and disabling specific CSS rules
	Inspecting our stylesheet
	Modifying CSS from Firebug's UI
	Inspecting and tweaking the box model
	Searching under the CSS tab
	Summary

	Chapter 5: JavaScript Development
	The command line API
	$(id)
	$ $$(selector)
	$x(xpath)
	dir(object)
	dirxml(node)
	clear()
	inspect(object[, tabName])
	keys(object)
	values(object)
	debug(fn) and undebug(fn)
	monitor(functionName) and unmonitor(functionName)
	monitorEvents(object[, types])
	unmonitorEvents(object[, types])
	profile([title]) and profileEnd()
	Columns and description of the profiler

	The console API
	console.log(object[, object, ...])
	console.debug(object[, object, ...])
	console.info(object[, object, ...])
	console.warn(object[, object, ...])
	console.error(object[, object, ...])
	console.assert(expression[, object, ...])
	console.dir(object)
	console.dirxml(node)
	console.trace()
	console.group(object[, object, ...])
	console.groupCollapsed(object[, object, ...])
	console.groupEnd()
	console.time(name)
	console.timeEnd(name)
	console.profile([title])
	console.profileEnd()
	console.count([title])

	JavaScript debugging
	Steps to debug JavaScript code with Firebug
	Conditional breakpoints

	Summary

	Chapter 6: Knowing Your DOM
	Inspecting DOM
	Filtering properties, functions, and constants

	Modifying DOM on the fly
	Auto-complete
	Losing the starting element

	Adding/removing the DOM elements'
attributes
	Removing attributes
	Adding attributes

	JavaScript code navigation
	Summary

	Chapter 7: Performance Tuning Our Web Application
	Network monitoring
	Description of information in the Net panel
	Load-time bar color significance
	Browser queue wait time

	Breaking down various requests by type
	Examining HTTP headers
	Analyzing the browser cache
	XMLHttpRequest monitoring
	How to find out the download speed for
a resource
	Firebug extensions for analyzing
performance
	Summary

	Chapter 8: AJAX Development
	Tracking XmlHttpRequest
	Request/response headers and parameters
	GET/POST request

	Viewing live modifications on DOM
	Debugging AJAX calls using properties of a console object
	console.debug(object[, object, ...])
	console.assert(expression[, object, ...])
	console.dir(object)

	Summary

	Chapter 9: Tips and Tricks for Firebug
	Magical cd()
	The hierarchical console
	Configuring Firebug to our taste
	Summary

	Chapter 10: Necessary Firebug Extensions
	YSlow
	Firecookie
	Pixel Perfect
	Pixel Perfect options menu

	Firefinder
	FireQuery
	CodeBurner
	SenSEO
	Page Speed
	Summary

	Chapter 11: Extending Firebug
	Setting up an extension development
environment
	Setting up the development profile
	Development preferences

	Getting started with a small "Hello World!" extension of Firebug
	The chrome.manifest file
	The install.rdf file
	The helloWorldOverlay.xul file
	The helloWorld.js file
	Packaging and installation

	Taking "Hello World!" to the next level
	The "prefs.js" file
	The "helloWorld.js" file revisited

	Summary

	Appendix: A Quick Overview of Firebug's Features and Options
	Keyboard and mouse shortcuts reference
	Global shortcuts
	HTML tab shortcuts
	HTML editor shortcuts
	HTML inspect mode shortcuts
	Script tab shortcuts
	DOM tab shortcuts
	DOM and watch editor shortcuts
	CSS tab shortcuts
	CSS editor tab shortcuts
	Layout tab shortcuts	
	Layout editor shortcuts
	Command line (small) shortcuts
	Command line (large) shortcuts

	Console API reference
	Command line API reference
	Firebug online resources
	Features expected in future releases of Firebug
	Firebug 1.6
	Some improvements in this version

	Firebug 1.7
	Separate modules and panels
	Components replaced by SharedObjects
	Recode TabWatcher/DOMWindowWatcher
	Sandboxed extension loading
	Memory panel

	Index

