
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Future-Proof
Web Design

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Future-Proof
Web Design
A Survival Guide

Alexander Dawson

A John Wiley and Sons, Ltd, Publication

www.allitebooks.com

http://www.allitebooks.org

This edition first published 2012

© 2012 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission
to reuse the copyright material in this book, please see our Web site at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

DESIGNATIONS USED BY COMPANIES TO DISTINGUISH THEIR PRODUCTS ARE OFTEN CLAIMED AS TRADE-
MARKS. ALL BRAND NAMES AND PRODUCT NAMES USED IN THIS BOOK ARE TRADE NAMES, SERVICE MARKS,
TRADEMARKS OR REGISTERED TRADEMARKS OF THEIR RESPECTIVE OWNERS. THE PUBLISHER IS NOT ASSO-
CIATED WITH ANY PRODUCT OR VENDOR MENTIONED IN THIS BOOK. THIS PUBLICATION IS DESIGNED TO
PROVIDE ACCURATE AND AUTHORITATIVE INFORMATION IN REGARD TO THE SUBJECT MATTER COVERED. IT
IS SOLD ON THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING PROFESSIONAL
SERVICES. IF PROFESSIONAL ADVICE OR OTHER EXPERT ASSISTANCE IS REQUIRED, THE SERVICES OF A COM-
PETENT PROFESSIONAL SHOULD BE SOUGHT.

978-1-119-97877-0

A catalogue record for this book is available from the British Library.

Set in 10/14 Chaparral Pro by Wiley Composition Services

Printed in Italy by Trento

www.allitebooks.com

http://www.wiley.com
http://www.allitebooks.org

About the Author
ALEXANDER DAWSON (@AlexDawsonUK) is an award-winning, self-taught, freelance
web professional, writer, published author, and recreational software developer from
Brighton (UK). With more than 10 years of industry experience, he spends his days run-
ning his consultancy firm HiTechy (www.hitechy.com), writing professionally about web
design and giving his free time to assist others in the field.

In recent years, Alexander has become an established web writer, providing articles for
some of the industry’s most respected sites including Smashing Magazine and Six Revisions.
In addition, as a member of the Guild of Accessible Web Designers, he actively promotes
and advocates the benefits of a good user experience and web standards. When Alexander
isn’t coding or writing about design and development, he enjoys a game of tennis or chess
and watching movies.

www.allitebooks.com

http://www.allitebooks.org

Editorial and Production:
VP Consumer and Technology Publishing
Director: Michelle Leete
Associate Director- Book Content
Management: Martin Tribe
Associate Publisher: Chris Webb
Publishing Assistant: Ellie Scott
Development Editor: Colleen Totz
Diamond
Technical Editor: Kayla Knight
Copy Editor: Melba Hopper
Editorial Manager: Jodi Jensen
Senior Project Editor: Sara Shlaer
Editorial Assistant: Leslie Saxman

Marketing:
Senior Marketing Manager: Louise
Breinholt
Marketing Executive: Kate Parrett

Composition Services:
Compositor: Jennifer Mayberry
Proof Reader: Melissa D. Buddendeck
Indexer: Potomac Indexing, LLC

Credits
Some of the people who helped bring this book to market include the following:

www.allitebooks.com

http://www.allitebooks.org

For the long-suffering professionals who work tirelessly
to make the web a better place, and those individuals who continue

to strive for a more accessible, standards-compliant Internet.

www.allitebooks.com

http://www.allitebooks.org

Author’s Acknowledgments
Writing a book is always a challenge and this title, in particular, had more ahead of it than
many; but with a fantastic group of people behind you, anything becomes possible. As
always, my thanks firstly have to go out to the entire team at Wiley (including Chris Webb
and Ellie Scott in particular) whose hard work and effort in getting this unusual idea out
of my head and into print shouldn’t go unsung. Without such an understanding group of
individuals who’ve worked tirelessly at every level (behind the scenes) to ensure the qual-
ity of this book and its content, it likely wouldn’t have succeeded!

Next, there are three further individuals who deserve an incredible amount of credit.
Firstly, I need to give a shout out to my copy editor (Melba) who has done an exceptional
job at helping me craft my occasionally mind-boggling prose into something legible! Also,
there’s my great technical editor (Kayla Knight) who kept my facts in check and offered
lots of useful advice to improve the reading experience, making this title all the better for
you. Finally, my gratitude has to go out to my editor (Colleen Diamond) who undertook a
superhero-like performance, despite the universe attempting to disrupt our efforts.

Next, I would like to thank all of the people who have supported me throughout the writ-
ing process: from my friends and followers on social networks, IRC, instant messenger,
and the websites where I’ve written, to the amazing and inspiring individuals who I’ve
met at conferences or just chat to on a daily basis (you know who you are!). Ending this,
the biggest thanks of all go out to you, the reader. By purchasing this title, you are sup-
porting months of hard work, and if this book can help you craft flexible, future-proofed
layouts that withstand the test of time, accounting for the many variables at work in a
site, all of that effort I’ve put into writing this reference guide will have been worthwhile.

www.allitebooks.com

http://www.allitebooks.org

Contents

Introduction . 2

CHAPTER 1
Future-Proof Survival Techniques . 9

Understanding the Environment . 10
The truth behind terminology . 10
Mythology and folklore in design . 12

Myth #1: Layouts can be made to appear pixel-perfect . 12
Myth #2: Designs can be considered “complete” . 13
Myth #3: A design can be totally bulletproof or future-proof 13
Myth #4: Validation ensures quality and compatibility . 14
Myth #5: The newer, the better — the more, the merrier . 14
Myth #6: You profile the average user or device . 15

Keeping up with the Joneses . 16
Planning for a Successful Website . 18

Determining project requirements . 18
Setting goals while dodging holes . 19
Planning for implementation . 21

Learning to Adapt or Evolve . 23
Taking advantage of new technologies . 23
Solutions for a successful layout . 25

Consideration #1: Need versus none . 25
Consideration #2: Rigid versus fluid . 26
Consideration #3: Dynamic versus static . 27
Consideration #4: Internal versus external . 28
Consideration #5: Redesign versus realign . 29
Consideration #6: App versus online site . 29

Beyond design: An essential business guide . 30
Resolving Issues of Compatibility . 32

Debugging for durable devices . 32
Cultivating customer service . 34
The Web: Survival of the fittest . 35

F U T U R E - P R O O F W E B D E S I G N x

CHAPTER 2
The Five Principles of Ubiquity . 39

Websites Are like Onions . 40
Level 1: Graceful Design . 42

Beginning graceful degradation . 42
Justification for applying graceful degradation . 44
Considerations of compatibility: Graceful design . 46

Level 2: Progressive Design . 47
Progressive enhancement . 47
Justification for applying progressive design . 50
Considerations of compatibility: Progressive design . 52

Level 3: Adaptive Design . 54
Adaptive paths to degradation . 54
Considerations and justifications: Adaptive design . 56

Level 4: Responsive Design . 58
Responsive design: A love story . 58
Considerations and justifications: Responsive design . 61

Level 5: Reactive Design . 62
Reactive sites: Beyond behavior . 62
Philosophies of a reactive Web . 64
Ubiquity to the power of five . 66

CHAPTER 3
Designing for the Desktop . 69

Knowing the Challenge: Compatibility . 70
Desktop . 72

Practical solutions . 73
Best Practices . 74

Laptop . 74
Practical solutions . 75
Best Practices . 77

Netbooks . 77
Practical solutions . 78
Best Practices . 79

Nettops . 79
Practical solutions . 80
Best Practices . 82

xiT A B L E O F C O N T E N T S

CHAPTER 4
Helping Out the Handheld . 85

Benefiting from Portability . 86
Tablet . 88

Practical solutions . 88
Best practices . 90

Smartphone . 90
Practical solutions . 91
Best practices . 92

Featurephone . 93
Practical solutions . 93
Best practices . 95

eReader . 95
Practical solutions . 96
Best practices . 97

PDA . 97
Practical solutions . 98
Best practices .100

Wristwatch .100
Practical solutions .101
Best practices .102

CHAPTER 5
Evolving for Entertainment . 105

Bringing the Web into the Living Room .106
Television .108

Practical solutions .109
Best practices .110

Game Console .110
Practical solutions .111
Best practices .113

Handheld Console .113
Practical solutions .114
Best practices .115

Media Player .115
Practical solutions .116
Best Practices .118

F U T U R E - P R O O F W E B D E S I G N xii

Set Top Box .118
Practical solutions .119
Best practices .121

CHAPTER 6
Automobiles and Appliances . 123

Preparing for Your Dream Reality .124
Embedded Gadgets .126

Practical solutions .127
Best practices .128

Connected Objects .128
Practical solutions .129
Best practices .131

Transportation .131
Practical solutions .132
Best practices .133

Physical Goods .133
Practical solutions .134
Best practices .135

CHAPTER 7
Designing for Input Tools . 137

Just Point and Flick! .138
Pointer .140

Practical solutions .140
Best practices .142

Touchpad .142
Practical solutions .143
Best practices .144

Keyboard .144
Practical solutions .145
Best practices .147

Remote Control .147
Practical solutions .148
Best practices .149

Microphone .149
Practical solutions .150
Best practices .152

xiiiT A B L E O F C O N T E N T S

Imaging .152
Practical solutions .153
Best practices .154

Scanner .154
Practical solutions .155
Best practices .157

Other Tools .157
Practical solutions .158
Best practices .159

CHAPTER 8
Designing for Output Tools . 161

Your Digital Eyes and Ears .162
Display .164

Practical solutions .165
Best practices .166

Projector .166
Practical solutions .167
Best practices .169

E Ink .169
Practical solutions .170
Best practices .171

Speakers .171
Practical solutions .172
Best practices .173

Printers .174
Practical solutions .174
Best practices .176

CHAPTER 9
Environmental Influences . 179

Internal and External Factors .180
Components .182

Practical solutions .183
Best practices .184

Connectivity .184
Practical solutions .185
Best practices .187

F U T U R E - P R O O F W E B D E S I G N xiv

Bandwidth .187
Practical solutions .188
Best practices .189

CHAPTER 10
Inf luencing Operating Systems. 191

Inside the System Shell .192
GUIs .194

Practical solutions .195
Best practices .196

Controls .196
Practical solutions .197
Best practices .199

Associations .199
Practical solutions .200
Best practices .201

Typefaces .201
Practical solutions .202
Best practices .204

Colors .204
Practical solutions .205
Best practices .206

Security .206
Practical solutions .207
Best practices .209

CHAPTER 11
Details on Design Software . 211

What You Code is What You Get .212
CMSs .214

Practical solutions .215
Best practices .216

Visual Editors (WYSIWYG) .216
Practical solutions .217
Best practices .219

Snippets .219
Practical solutions .220
Best practices .221

xvT A B L E O F C O N T E N T S

Wizards .221
Practical solutions .222
Best practices .224

CHAPTER 12
Befriend the Web Browser . 227

Windows to the Web .228
Trident .230

Practical solutions .231
Best practices .232

Gecko .232
Practical solutions .233
Best practices .235

WebKit .235
Practical solutions .236
Best practices .237

Presto .238
Practical solutions .238
Best practices .240

Mobile .240
Practical solutions .241
Best practices .242

Proxy .243
Practical solutions .244
Best practices .245

Alternates .245
Practical solutions .246
Best practices .247

CHAPTER 13
Providing Powerful Plug-Ins . 249

Plug-and-Play Interactivity .250
Enhancements .252

Practical solutions .253
Best practices .254

Extensions .254
Practical solutions .255
Best practices .257

F U T U R E - P R O O F W E B D E S I G N xvi

Multimedia . .257
Practical solutions .258
Best practices .260

CHAPTER 14
Alternative Content Applications . 263

Browsing Without a Browser .264
Reformatters .266

Practical solutions .267
Best practices .268

Apps and Widgets .268
Practical solutions .269
Best practices .270

Accessibility Aids .271
Practical solutions .272
Best practices .273

Augmented Reality .273
Practical solutions .274
Best practices .276

CHAPTER 1 5
The Consequences of Code . 279

The Compatibility of Code .280
(x)HTML .282

Practical solutions .283
Best practices .284

CSS .284
Practical solutions .285
Best practices .287

JavaScript .287
Practical solutions .288
Best practices .289

WML .289
Practical solutions .290
Best practices .292

Metadata .292
Practical solutions .293
Best practices .294

xviiT A B L E O F C O N T E N T S

Non-Standard Code .294
Practical Solutions .295
Best practices .297

CHAPTER 16
Third-Party Dependency. 299

The Weakest Link .300
Resources .302

Practical solutions .303
Best practices .304

Frameworks .304
Practical solutions .305
Best practices .307

Services .307
Practical solutions .308
Best practices .310

CHAPTER 17
Deliberations About Design . 313

The Art of Aging Gracefully .314
Architecture .316

Practical solutions .317
Best practices .318

Content .318
Practical solutions .319
Best practices .321

Layout .321
Practical solutions .322
Best practices .323

Iteration .323
Practical solutions .324
Best practices .326

CHAPTER 18
Fun with Futuristic Features . 329

The Tools of Tomorrow .330
Visual Effects .332

Practical solutions .332
Best practices .334

F U T U R E - P R O O F W E B D E S I G N xviii

Interoperability .334
Practical solutions .335
Best practices .336

Personalization .337
Practical solutions .337
Best practices .339

CHAPTER 19
Dealing with the Robot Army. 341

Of Machines and Men .342
Search Engines . .344

Practical solutions .345
Best practices .346

Social Networks .346
Practical solutions .347
Best practices .349

Automated Tools .349
Practical solutions .350
Best practices .351

Verification .351
Practical solutions .352
Best practices .353

CHAPTER 2 0
Factoring in the Human Element . 355

A Matter of Being Human .356
Physical Conditions .358

Practical solutions .358
Best practices .360

Intellectual Challenges .360
Practical solutions .361
Best practices .362

Emotional Factors .362
Practical solutions .363
Best practices .365

Social Expectations .365
Practical solutions .366
Best practices .367

Index . 368

www.allitebooks.com

http://www.allitebooks.org

Introduction

The Web is wondrous. From its humble beginnings as a text-only interface, to its modern
incarnation as an interactive, immersive experience, it has suffered many highs and lows
(like the move toward web standards or the past obtrusiveness of scripting). Throughout
the Web’s development, designers have been forced to innovate, endure, and push through
limitations to ensure that their sites retain stability and flexibility. By making sites usable
in a wide range of situations (future-proofed against changing usage), we can ensure that
sites may be enjoyed by the next generation of Internet users, no matter how they use
the Web.

Forget dogs. Man’s new best friend is the Internet. In a short period of time, the Web has
grown from being accessible solely upon a desktop or laptop with one or two browsers to
being experienced on netbooks (using one of many configurations), smartphones, and a
range of other devices like TV sets! It has become a vital means of communication for the
world as well as a port for those seeking knowledge, entertainment, or a place to voice
opinions. Also: It can be used practically anywhere and is only limited by our imagination.

With each change and improvement the Web has encountered comes an increasing range and
number of tools to help you build more engaging interfaces. However, with the sweet comes
the sour. This fast-paced, increasingly diverse medium provides web designers with more
challenges than ever to overcome and so many variables to account for. Making our layouts
continue to work with old (compatibility quirks in devices) and new situations (future-
proofing to withstand the test of time) is an investment to ensure long-term success.

What’s This Book About?
If you regularly build web sites, you’ve probably noticed that your content is consumed in
increasingly unique ways. Back in the ’90s, you could assume that users accessed your site
using a desktop computer, with one or two base resolutions and either Internet Explorer or
Netscape Navigator. Today, just trying to guesstimate how much screen real estate a user
has is like chasing a pot of gold at the end of a rainbow. You’ll either get lucky or end up
targeting what doesn’t exist (except in legend or mythology), such as the “average user.”

I N T R O D U C T I O N 3

During the browser wars (the time of Internet Explorer versus Netscape), web designers
focused heavily on ensuring that interfaces worked in specific situations, building rigid,
inflexible layouts (because of a lack of situations where diverse layouts would make a real
difference). Some designers still build fixed layouts and have failed to notice how the
Web’s landscape is changing. Variables that used to be considered a safe default no longer
apply, attitudes are altering, and the designer’s challenge is to understand the scenarios
visitors may encounter, determine whether these users require a specific solution, and
then account for these factors within his or her site (to encourage visitors to keep visiting
the site).

More and more, devices are gaining the “web enablement” treatment. Unique hardware
products have gained online support. Software is playing a more active role in how layouts
render. New standards and web languages are gaining traction. Even users are changing
and adapting their behavior to match new technologies. To stay ahead of the curve, you
must ensure that your site functions with what a user has, while also accounting for future
variables that may spring up and become popular (as they gain mainstream adoption).

Your work isn’t just affected by code and browsers. You need to split apart the various lay-
ers of the Web (such as devices, hardware, software, standards, and consumers) to uncover
the wealth of factors that can affect your site’s stability and users’ experiences. Accounting
for each layer involves considering what can impact how users interact with your site
(such as the operating system or browsers in the case of the software layer), and making
sure that your layouts can withstand any changes that may occur as a result of a user’s
environment.

No Artificial Flavorings
Now that you understand that the Web is evolving, allow me to introduce myself. My
name is Alexander Dawson, and I’m a web designer who’s been building and improving
sites for more than ten years (in addition to writing on the subject). If you’re the type of
person who relishes any opportunity for trial and error, enjoys learning from the perspec-
tive of users, and has a passion for straightforward advice, fantastic! You’ve got the right
book. For those of you who prefer detailed step-by-step instructions, this book may pres-
ent more of a challenge.

It’s worth cutting to the chase and saying that this isn’t going to be a progressive tutorial
to help you build some mobile layout (or an explicit design for any other type of device, for
that matter). Because every situation you design for will be different, my philosophy is

F U T U R E - P R O O F W E B D E S I G N 4

that the space in this book is better served by giving you the tools you need to make practi-
cal decisions, instead of providing you with a template (or “color by numbers” guide), which
really serves its purpose only in a generic environment aimed at a non-existent audience.

This book is not made up of tips and techniques for creating that perfect layout, and it’s not
a book of inspiration, reeling from the wonderful work of others (though I do encourage
design by inspiration). What you will find within these pages is a wealth of information
regarding the variables that can affect your sites or render them differently, occasionally
causing issues. If the Web were a living, breathing entity, it’s possible that this book would
be considered a guide to its ever-diverse biology and how to ensure its long term health!

My motivation for writing this book is straightforward. As is often the case with design-
ers, I noticed the recent upsurge in new technologies that demanded additional testing,
restrictive design considerations, or a more flexible method of serving data. So, my goal
within these pages is to break down the misconceptions regarding what makes user expe-
riences unique and to highlight some lesser-appreciated factors in the designer’s work-
flow. By examining the variables listed within this book, you can adapt your sites to meet
the needs of each user.

Conventions Within This Book
Many enjoy the free content that gives some extra insight into movies they watch. When
it comes to books, I like to think the same is also true. Of course, only so much informa-
tion will fit within a set number of pages we have to explore this subject, so to give you
more for your money, I have planted some useful “extras” within the pages of this book
where possible, all with the aim of giving you some food for thought, useful links, and
important details to keep you better informed. Keep an eye out for these extras as they
appear.

Below are the conventions, with details about their purpose and function:

> Tips and Notes: Throughout the book, I provide tips and tricks to give you ideas,
words of caution, and important, relevant details that can help you on your quest.

> Resources: Don’t just take my word for it. Throughout the book I include useful
links that expand upon the variables to help you design in various situations.

> Checklists: Marking your progress can be helpful and fun. The lists at the end of a
variable set goals to help you ensure a site will be as stable as possible.

I N T R O D U C T I O N 5

If you are new to the web design world, you probably should work through this book in
order (accounting for each variable as you read about it), but if you are a veteran, you may
want to use the book as a quick reference guide, jumping to sections you want to know
more about. This will allow you to account for the many cool new technologies on the
horizon that will soon become “required reading” and keep up-to-date with the subjects
that require our attention to ensure that our work continues to function on legacy devices.

Your Marauders Map
Keeping up-to-date with the latest trends and innovations is tough, especially in the field
of web design. Within this book, you’ll explore the variables in that environment, learn,
or see how designers are trying to maximize performance between platforms, and gain
basic advice to help you when venturing into the unknown.

Chapter 1 has one goal in mind: Survival. Because the Web is still evolving at a rapid pace,
from time to time new variables appear that must be catered to. They could literally be any-
thing making its first appearance into your workflow; don’t you just love surprises! Perhaps
it’ll be one of the predictions made by this book, or something totally obscure. As such, it
seems only fitting that you are prepared for whatever may happen, and this chapter acts as
a training session before you start engaging in the battle for site stability that’s ahead.

Chapter 2 builds on the work of the first chapter, showcasing the methodologies that
many designers are using to build increasingly flexible layouts. However you build your
sites, accounting for as many variables as possible is important. Getting used to the
concepts provided will help you better meet an audience’s needs. Because each variable
has its own requirements and considerations, applying these useful tricks requires some
imagination and clever coding, but this goal is entirely possible to achieve if you put in the
hard work.

Finally, you find the variables themselves, the true substance of this book, in a wealth of
useful chapters (denoted in the following bulleted list by the category each chapter falls
into). Each layer has several chapters, and each chapter has several variables that affect a
layout!

Here are the various layers (or factors) of the Web, as covered in this book:

> Devices: Desktops, handhelds, entertainment, and appliances (Chapters 3-6)

> Hardware: Input and output tools plus environmental factors (Chapters 7-9)

F U T U R E - P R O O F W E B D E S I G N 6

> Software: OSs, web editors, browsers, plug-ins, and more (Chapters 10-14)

> Standards: Code, third parties, design, and innovations (Chapters 15-18)

> Consumers: Robotic influences and human-based factors (Chapters 19-20)

Addressing problems with every variable goes beyond the scope of this book, as there are
far too many considerations to account for. If you think about a keyboard, users may have
faulty keys, be slow typists, and have access to backlighting or more! This book aims to
give you a few pointers in the right direction and actually showcase how complex and
intricate the web machine actually is; by doing so, you should be able to consider the tips
and tricks that are provided and build better personas and solutions accounting for these
variables.

This journey will serve as a landmark for your future design and development projects as
you come to appreciate how delicate our sites are against the veritable storm of the under-
lying processes involved. By coming to terms with the variables mentioned (and any yet
to make themselves known) and changing your way of thinking, you can become a better
designer! While this subject may seem overly theoretical, it needs to be explored and the
truth is, when we start asking the right questions, good decisions follow.

Building a site is a challenge, and it’s one that will only increase in complexity as the Web
evolves. We’ve gone from a world in which desktops ruled like dinosaurs to a landscape
filled with many creatures with their own unique characteristics. The thing to remember
is that visitors remain firmly in the driver’s seat, dictating how they’ll engage with your
sites. Mobile devices, 3D, new browsers, CSS3, social networks, and more have their
unique place in this scenario. As a designer of the next generation of sites, you need to be
prepared.

1

Future-Proof
Survival
Techniques
Tools for tomorrow’s Web

F U T U R E - P R O O F W E B D E S I G N 10

WEB DESIGN PROJECTS contain four essential components. First, you must know
your environment. Then you need to plan ahead, learn to adapt, and finish the process by
resolving compatibility issues as they arise. Meeting these objectives is challenging, but
the work is necessary if you are to successfully future-proof your site. This chapter
describes each of these components and illustrates the importance of being flexible to
change your way of thinking about your design methodology, now and in the future.

Understanding the Environment
When you design a site, understanding the environment where it will exist is critical. You
need to know what factors increase or decrease the chances of your site being noticed, and
you need to be familiar with the tools visitors will have at their disposal when interacting
with your site. Understanding what makes up the Web’s current incarnation is important,
as is learning what is and isn’t possible (or useful) when designing for it. Before you can
access any of that information, however, a number of untruths need to be dispelled.

The truth behind terminology
Throughout the Web’s history, designers have become adept at assigning names to things,
even if the names aren’t required or deserved. Names have been assigned to specific tech-
nologies, techniques, and events that occurred long ago, and abbreviations have been cre-
ated that try to encompass entire technologies. Although some of these terms (for
example, HTML and CSS) do a great job at identifying an important technology, an unfor-
tunate slew of buzzwords has been forged, leading to confusion among designers.

Here are three of the biggest offenders:

> AJAX

> Web 1.0, Web 2.0, and Web 3.0

> the Mobile Web

Although forged from the technologies it employs, AJAX (asynchronous JavaScript and
XML) didn’t need a shorthand name because developers were already employing these
techniques in their work. The mechanism behind AJAX is a sound one, in that you can
avoid page refreshes by pulling or pushing data from the server to a user’s device in the
background, but as far as the stability of your site is concerned, the mechanism can be
fraught with problems, such as the unavailability of scripting.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 11

Ubiquitous and future-friendly layouts cannot be obtained by jumping onboard with
every new technique or technology as it arrives (as AJAX shows). No matter how popular
these buzzwords become, the name of the technique is never important; what matters is
the problem that the technology aims to solve and whether it, in fact, solves it. A great
example of this is the Web 1.0 to 3.0 movement. The terms themselves have little mean-
ing except to try to “mark” the Web’s evolutionary progress. Yet, for all of its public appeal,
it solves nothing.

Note

What makes buzzwords extra confusing is that some of them have different
connotations, so they can mean different things to different people or in different
situations. Web 2.0, for example, isn’t just a defining era of the Web; it’s also a
highly recognized design trend.

Terms like Web 2.0 have come to mean different things to different people, and often just
stereotype sites as meeting a list of criteria that keeps them current. The trouble is that
not all users will demand the same things and not all devices or browsers will be capable
of reliably implementing the proposed features, which, as such terms imply, are critical to
the evolution of the Web. In essence, not all sites require AJAX or collaboration features,
and including them could damage a user’s experience on your site.

I’ve established that AJAX can be problem for certain users and that Web 2.0 doesn’t offer
a firm solution to help create or maintain a stable and usable site, so the next step is to
investigate what’s been dubbed the Mobile Web. This term appeared when the use of hand-
held, non-desktop, web-enabled devices increased, which put pressure on designers to
make their sites mobile friendly. Unlike Web 2.0, this term makes some practical sense,
but the trouble begins when you try to define what actually constitutes a “mobile” device,
and trying to define mobile variables just creates more questions, including these:

> If mobile just equates to a small screen, aren’t laptops mobile?

> If mobile is about not being “desktop,” are 100-inch TVs mobile?

> If mobile is focused on the new wave of technology, what about PDAs?

> Perhaps mobile equates to data speed, so what about dialup users?

If your aim is to make a flexible and usable layout, all that matters is that users of such
devices can take advantage of your site. To achieve this goal, avoid stereotyping users’ needs

F U T U R E - P R O O F W E B D E S I G N 12

and situations and build real-world solutions that are flexible and durable enough to
accommodate every environment, whether it’s a handheld device with a touch screen
attached or a desktop computer with a large display, mouse, and keyboard.

Mythology and folklore in design
In the following sections, I confront a few common myths in web design. The information
in these sections will help you look beyond the old one-size-fits-all environment and
begin to understand the need for layouts that flex to your users’ demands. The critical
thing to take away is that no silver bullets or shortcuts can ensure a stable site that’ll last
into the future. Instead, future-proofing your site includes balancing the needs of users
with the tools you can provide.

Myth #1: Layouts can be made to appear pixel-perfect
Web designers try to make the sites they design look and feel as consistent as possible in
various environments, but the idea of being pixel-perfect is flawed. By making something
pixel-perfect, I mean trying to enforce strict viewing guidelines akin to those in the print
industry, thereby making everything look the same in every situation. Because so many
variables play a role in a site’s rendering, situations will continue to exist where users
experience some kind of limitation. Perhaps they’re missing speakers for sound, or they
navigate using a dodgy browser. Not all experiences are created equal.

Note

For older devices, pixel-perfect layouts were impossible from the outset.
Desktops could handle feature-rich HTML and CSS layouts with plenty of
complex interactive features, but traditional featurephones could handle only
WML code devoid of the stylistic beauty and script-powered behavior that
desktops were afforded for years.

The truth is, user experiences don’t have to be identical for your site to work. You may
actually want to design so that user experiences differ among platforms and make your
site more usable. You might offer separate, altered experiences based on the capabilities
of the different devices. (Note that a unique WML layout was compelling for older hand-
held devices.) As long as your content remains visible and users are willing, within reason,
to adapt their navigation techniques to interact with your site in a way that matches the
requirements of their devices, you don’t need to worry about precision design.

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 13

Myth #2: Designs can be considered “complete”
I’m a big believer in continued improvement, and because standards and use of sites will
always be changing, based in large part on users’ activities and preferences, sticking with
one layout and declaring to the world “I’m finished” is . . . well, surely said in jest. Your
goal as a designer is to make sure your site continues to gauge the interests of users, and
although you don’t want to redesign a site every week, it makes sense to iterate and
improve your services regularly (as shown in Figure 1-1). As technologies and best prac-
tices change, new methods to help your visitors will appear.

Figure 1-1: Iteration allows designers to continually improve their work.

The idea behind a completed site is that nothing can be done to make it better, which
doesn’t add up. Improvements can always be made and new features can always be added.
Also, be sure to maintain and update the content on your site to encourage visitors to
return. If you own the site that you’re building, you can set it up so that iteration can
occur naturally. When you’re building for clients, suggest that they establish maintenance
schedules and frequently improve the content of their site.

Myth #3: A design can be totally bulletproof or future-proof
Although this book’s goal is to help you maintain stability in a layout and make your site
as future-proof as possible, ultimately no design is immune from all that the Web can
throw at it. When a site is said to be bulletproof, it means that the site won’t fall apart
under any circumstance. That a site can be bulletproof is an idealistic and unattainable
notion. When a site is said to be future-proof, the implication is that the site will work

F U T U R E - P R O O F W E B D E S I G N 14

successfully forever, across new devices and emerging platforms, all while maintaining
compatibility with previous browsers and devices. In this book, I do my best to help you
head toward that goal, but as much as I’d like to guarantee that goal, I can’t, because the
Web is far too unpredictable.

By considering the variables in this book, you can better address the concerns that design-
ers of today’s sites deal with. Keep in mind that those variables will play an important role
in the Web’s future landscape. But who knows what’s on the horizon? In ten years, the
Web may change so drastically that designers will once again find themselves building
sites in new, unconventional ways. Perhaps a whole new range of variables will exist.
Ultimately, all you can do is use the information you have and make the most of it.

Myth #4: Validation ensures quality and compatibility
Many Web designers make the mistake of taking validation of code as a guarantee of stan-
dards, which is why you see so many of those “Valid” buttons embedded within so many
sites (see Figure 1-2). However, as you probably already know, you can have some of the
best-formed code and still see quirks and inconsistencies in how a site will render among
browsers and devices. This isn’t to say that validation is useless because, for example,
knowing how to spot bugs that could lead to quirks is important. They just aren’t a silver
bullet for ensuring the stability of websites.

Figure 1-2: Validation buttons don’t guarantee the quality of code or impress average visitors.

Validation is a useful tool that can help identify common flaws and mistakes that design-
ers make when coding. Including validation in your workflow is useful, but it’s just a tool.
Don’t consider validation programs as an alternative to or replacement for testing your
work properly, and don’t assume that all validation programs work equally well.
Accessibility validators are notoriously bad at uncovering major failings in accessibility;
manual testing is the only safe option.

Myth #5: The newer, the better — the more, the merrier
Designers often get carried away in their bid to be creative, and more importantly, they
can be overly zealous about how much of a good thing their visitors will enjoy. In an effort
to stay current, some designers revamp their sites regularly, when redesigning is clearly

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 15

unnecessary; or they add too much information, media, or imagery to their pages think-
ing that substance in great quantity encourages more interaction. Of course, keeping your
design and content updated is necessary; just be rational about when and how to do so.

Note

Be sure to remove clutter from your interfaces. Often, pages become stagnant
and bloated as a result of mismanagement or residual features such as
animation effects that you think look great but offer no real benefit to users.
Overuse of design or content is a common problem, so try to keep your designs
tasteful.

Incorporating the latest and greatest features can be an improvement if your goal is to
improve users’ experiences. If you use these features mainly to compensate for poor-qual-
ity content, you could create a real problem for visitors to your site. For each new redesign
you create, just remember that your visitors’ learning curves will increase because they
must readapt to the new interface. The same goes for bundling more features and content
on a page. Simplicity is often better than complexity. Keep in mind that adding features
and too many choices may be a burden for some visitors.

Myth #6: You profile the average user or device
Design is rarely an objective art form, and as much as designers want to base their deci-
sions on the needs of users, designers’ personal biases and skewed perspectives can influ-
ence their work. For example, when designers think of a visitor, they often visualize an
idealized visitor rather than one based on reality. Moreover, when designers try to profile
the type of environment visitors will be using, those profiles may fail to take into account
the differences between different users’ experiences. The idea that an “average” user
(Figure 1-3) or browsing environment exists is unrealistic.

Figure 1-3: Designers often use personas to group variables together, forming a browsing scenario.

F U T U R E - P R O O F W E B D E S I G N 16

The differences among the environments where your site must function can be substan-
tial — for example, whether Flash or JavaScript are supported. The differences among
users are important, too. Some users may encounter accessibility issues, and others may
simply be more selective in the features they’ve enabled. Designing for ubiquity requires
looking beyond stereotypes; instead, you need to be open and adaptable in terms of your
audience. Promote equality and be flexible with whatever your site needs to function. By
doing so you’ll end up with a stable and usable layout.

Keeping up with the Joneses
Designing for next-generation devices poses a real challenge. After all, how can you be
expected to design for something that doesn’t exist or, if it does exist, hasn’t gained wide-
spread adoption? Consider how the Web works on cellphones and tablets. In a few years,
the Web may work on all sorts of other unique devices, such as televisions. When you
think about it, gadgets like the iPod Nano have the potential for web enablement, and it’s
only the size of a wristwatch, so imagine how diverse web experiences may become!

Hardware is becoming less expensive to produce, and infrastructure for web connectivity
is gaining adoption worldwide (even in hard-to-reach places like Mount Everest). This
situation fosters the perfect environment for ubiquity because reduced cost and low-bar-
rier entry encourages more people to go online using devices they have handy, be it in
their homes, offices, or on the move. As the number and variety of devices used on the
Web increases, you have two options: Patch as new devices appear, or be generic, yet flex-
ible, regarding usage.

When a new device gains popularity, many designers immediately patch their sites to sup-
port it, target the device for a special independent site that caters to the platform, or just
ignore it. These don’t seem like good options because they require you to choose what you
will support and provide constant patches to the ever-growing technologies that arrive
online. In some situations, but not all, a separate site might be helpful.

Reference

The debate over separate versus internal sites has been brewing for a while,
leading to the idea of “One Web.” Some individuals believe this principle can
achieve discrimination-free usability; others believe in the stricter definition
of eliminating all proprietary, single-case solutions (which means demands
ensuring that everything works for everyone). Check out Opera’s view of the
“One Web” debate at this site: http://www.opera.com/business/oneweb/.

http://www.opera.com/business/oneweb/

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 17

A better approach is to examine the symptoms, make a diagnosis, and find suitable solu-
tions to treat the condition. It isn’t the brand or model that makes a device; the compo-
nents make the device. The inside of an iPhone and the code it supports (such as HTML)
differ significantly from what you find in a Nokia 6610i (which supports only WML, as
shown in Figure 1-4). The issue boils down to two independently built renderers doing
what they can.

Figure 1-4: When compared to today’s rich and engaging HTML and CSS, WML is a real ugly
character.

Ultimately, the choice to keep up with the trends or retain support for only a select few of
your audience’s situations is entirely up to you. It may be impractical to produce a site that
is so flexible that it supports every type of product and situation without issue, and if you
know what your audience requires, there’s no need to go over the top, covering all possible
bases. However, unless you have a good reason to do otherwise, ensuring that your site
caters to as many situations as you can eliminates the need to patch your site’s code in the
future.

The browser wars proved that creating sites that depended on everything rendering in
one way was problematic. Designers have since adopted more stringent measures for test-
ing workflows. Currently, designers are struggling with the fact that devices and plat-
forms force you to rethink how you present and organize content. In the future, perhaps
your next tussle will be over dependency on frameworks, the continued support for dep-
recated code, or something else entirely. I do enjoy a good mystery—don’t you?

F U T U R E - P R O O F W E B D E S I G N 18

Planning for a Successful Website
Understanding the environment you’re designing for is critical when building a site, and
knowing the needs of your audience is critical to a successful design. After all, recognizing
potential situations beforehand allows you to make more informed, practical choices.
With information about a user’s environment, you can avoid making potentially costly
mistakes that could reduce a site’s usability, and by planning ahead, you can direct your
attention to specific aspects of a design that may be more open to implementation quirks
than others.

Determining project requirements
When developing for the Web, you must be able to determine the requirements and needs
of a project. Often, for service providers, the demands of a project include the additional
features, functionality, and layout choices that users may find helpful. For situations in
which you produce work for clients, the ability to look beyond just the scope of a site and
into the future needs of their businesses will help ensure that the design works for the
specific audiences the clients are targeting. Because every site will be different, catering to
niches is important.

The initial requirements that influence your tactics are those laid down by the users of the
site. Happy visitors often result in customer loyalty, so, whenever you can, put users first.
Ensuring that your users have access to sites and services regardless of the platform or
device they use (which equals ubiquity) means that you can more easily get them to
choose you over a competitor — and choice is a powerful motivator.

Here are some features that make for happy users:

> Consistency in a site’s design

> Accessible and easy-to-use layouts

> Aesthetically pleasing designs

> Goal-oriented, useful layouts

Remember, the benefits of a ubiquitous interface extend beyond what the user sees and
the devices the user uses to access your site. The number of social networks, search
engines, and third-party tools connecting to your site is increasing, and it’s likely that the
more demanding and restrictive methods they use to view and utilize your content will
become increasingly important. Just think about software like Instapaper or an RSS

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 19

reader, and you’ll understand how your site can be interpreted by a machine, not a human
being; any errors affecting it will certainly reflect in the output.

Here are some features that make for happy robots:

> Search engines may struggle with proprietary code.

> Social networks require meaningful, contextual data.

> Browsers demand well-formed code to render pages.

If you’re working for a client, you can’t just plan around the needs of your users and the
specific devices they use or the automated solutions that exist; you must also plan around
the business or client. Clients may have certain niche requirements — if they are making
an intranet, for example — or perhaps they want the added usefulness of platform-
explicit applications (such as those in Android’s marketplace or Apple’s App Store). These
days, sites encompass many more options than they used to, and every site’s require-
ments will be different.

Note

Consider the client-user scenario as an adaptation of the “three laws” from Isaac
Asimov’s I, Robot. Sites cannot harm a user, must obey clients’ orders (unless it
violates the first law), and must do the same for designers (unless it violates the
previous two). With this idealistic balance, the designer’s priorities should be set.

The needs of a site depend on the factors described in this section. You’ll probably spend
as much time researching what is needed on an interface as you do building it. In a design-
er’s ideal world, people would conform to stereotypes, devices would be standardized, and
clients would jump for joy at the thought of accessibility. Unfortunately, you don’t live in
an ideal world, and it’ll be many years before widespread compatibility and ubiquity will
exist (if it comes to exist) because meeting expectations can be fraught with hurdles.
Changing dogmas or perceptions takes time.

Setting goals while dodging holes
As the Web has evolved, designers have found themselves playing a superhero-like role,
which you’ll understand if you’re a fan of fantasy and shows such as Buffy the Vampire
Slayer. Buffy worked her way through demons, taking on increasingly dangerous and
deadly foes (you can relate to this if you’ve coded for Internet Explorer 6), and ended up in

F U T U R E - P R O O F W E B D E S I G N 20

a final showdown with the “big bad.” In the show, overcoming each challenge on the path
to winning the war wasn’t a matter of luck or charging in blindly; it involved careful plan-
ning and research.

Because each user and situation is different depending on the type of site being built, you
must carefully consider any implementation that enhances or degrades a user’s experi-
ence. You need to establish primary goals to ensure that decisions are made for the right
reasons. Perhaps your site will require visitors to enter some log-in details, but remember
that input mechanisms can vary among web devices. Maybe a visitor will browse while on
the move. These kinds of situations can trigger and affect the many variables you must
consider.

The following situations affect specific factors or variables:

> HD video is affected by bandwidth and connection speeds.

> Color is eliminated if a visitor has a monochrome display.

> Mouse precision and accuracy are affected by click regions.

During the brainstorming stage, establishing where and how a site might be used is a
great idea. Sites that compare prices of products are likely to be in heavy demand while
visitors are on the move — for example, traveling on primary business streets and in
shopping malls. The use of sites like the Internet Movie Database require specific consid-
eration because they may be used in collaboration with cinemas, rental shops, and media
retailers. Creating scenarios or profiles of these actions help you gauge targeted markets,
although, of course, users browse in other kinds of situations, too.

The trick is to determine which influences and variables will affect your users; what those
effects will be; how you can ensure that the interface will cater to your specific audience
without negatively affecting others; and how to implement required changes in the most
suitable way. Making these determinations requires a fundamental understanding of how
human-computer interactions work and of the subtleties of users’ devices. For example, a
smartphone may be subjected to data caps and roaming charges, and an old desktop com-
puter may have a slow or low-quality connection (see Figure 1-5). Goals must always be
identified within the context of acceptable methods of interaction.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 21

Figure 1-5: Certain situations may require you to consider how data-heavy your sites and pages are.

Dodging some of the major pitfalls in design can be tricky, especially if you’ve become
comfortable that what you have “works.” Ultimately, for any plan involving the longevity
of a site, you need to observe changes in patterns of use, determine methods for improve-
ment, and identify potential causes of concern. However, keep in mind that because the
Web is constantly evolving, new standards will make providing flexibility increasingly
convenient (as is the case with CSS media queries), and, as a result, your solutions can be
better implemented.

Planning for implementation
Planning for the implementation of a ubiquitous site can be challenging. All too often,
you’ll find yourself asking a variety of questions about your audience that have, in turn, a
variety of answers. For example, what screen resolutions do they use? What browsers do
they use? Do they visit the site on cellphones? Does your site please or somehow irritate
them? You have many design and development tools available, and with tweaks, they’ll
aid your ubiquity goals.

Planning ahead makes building a successful site more feasible. When envisioning your
site, plan for code and a design that are well formed and as uncomplicated as possible. Set
clear objectives and be willing to compromise for the sake of your users. While planning,
identify where you can make implementations more accessible to and useful for your
site’s users, as well as related variables they will interact with. Remember to set realistic
goals; otherwise, your site may fail users in some way.

F U T U R E - P R O O F W E B D E S I G N 22

Ideally, the process of determining site-specific goals begins with competitor analysis and
user testing. Next, you use wireframes, prototypes, mockups, concept sketches, and other
tools to discover the specific needs of the project. If you think users may want something,
don’t shy away from considering it. Planning can become second nature, once you get into
the swing of things. Moreover, if you determine the needs of clients or of visitors to a site,
you can implement suitable outcomes, right from the start. At its heart, web design
involves inspiration, iteration, formulation, and publication (see Figure 1-6).

Figure 1-6: Inspiration, iteration, formulation, and publication are critical elements of web design.

Consider the issue of whether to offer a secondary mobile-oriented site. If you provide a
separate site for visitors who are using less-capable devices, those visitors might avoid
optimized environments entirely. Therefore, it’s important to give them the option of
returning to the “full site” (if, for example, the optimized version is slimmed down, offer-
ing users less content). Remember, having choices empowers users.

When you empower users, you give them a sense of control, enabling them to feel as
though they aren’t just at the mercy of a site’s demands. Perhaps you deem CSS or JS a
necessity. That would be fine if it couldn’t be turned off, disabled, or unavailable. The best
approach is to plan for the worst and hope for the best. If you make your content available
to even the weakest link in the chain and, at the same time, enhance the experiences in
more unique situations, you’ll ensure the maximum visibility of your content.

Note

Treating how users will access and use your site as an afterthought is very risky.
Every site relies on content and functionality; nevertheless, the basic design of
the layout should always make users the top priority.

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 23

Learning to Adapt or Evolve
You know what’s going on, and you have a clever plan to provide a service that will be the
envy of your competitors. Fantastic! Next on the agenda is deciding how to adapt your
best-laid plans to particular environments. If you get dropped into a jungle, you don’t act
like you landed in Siberia. Likewise, online, you’ll need a box of tricks to cope with the
many different requirements a site may throw at you. Every site is different, as is its audi-
ence. Your job is to be prepared to find the answers to the difficult questions that environ-
ments can present.

Taking advantage of new technologies
Although you don’t want to use every new technology just for the sake of keeping up
appearances, you also don’t want to let your concern over compatibility get the better of
you. In an effort to appease the “old ones” (for example, Internet Explorer 6), many web
designers have failed to take advantage of CSS3 (for example) purely because it creates
inconsistencies with a browser’s older counterpart. Although I’m all for compatibility, as I
said earlier in this chapter, trying to be pixel-perfect is neither worth the effort nor possible.

Compatibility should always be possible because of the following:

> If everything is disabled, content is the one thing that remains visible.

> Many technologies, when unsupported, can have an appropriate alternative.

> Targeting specific variables allows you to offer independent fallbacks.

Going beyond the bare necessities with your code is, of course, entirely possible. If you
want to provide a particular piece of functionality, make sure you have a fallback (alterna-
tive) for users who are less fortunate. Such functionality can work against making a site
ubiquitous, but that will occur only if you fail to update the site as new and better solu-
tions arise. Ideally, rather than restrict yourself to a limited layout, train code around
issues as they appear (see Figure 1-7).

As a web designer, you have a responsibility to your clients and customers. Failings on
your site raise the risk of losing visitors, even if the failings are just small, but annoying,
quirks. Knowing how to write code for a site helps you understand in advance where expe-
riences can falter, provided that you take steps to ensure that your work flows and
responds appropriately to user interaction and the environment in which it’s consumed.
If you ignore the signs, however, issues are likely to occur and reoccur.

F U T U R E - P R O O F W E B D E S I G N 24

Figure 1-7: There’s no shame in providing Internet Explorer 6 users with a very usable and
satisfying experience.

As the use of tablets increased in popularity, web designers on the cutting edge began to
investigate how this unique input method could affect interactions on sites. At first, it
seemed strange that people might not be using a mouse or keyboard. Continued study is
the best route to understanding any device or design variable.

You want to make your site as unique and easy to use as possible—and give users a mem-
orable experience (don’t go over the top). Designers have come to look fondly on trends
(see Figure 1-8), conventions, and patterns for this very reason. Part of adaptation is
moving with the times, working with your surroundings, and recognizing when views of
how the Web should operate alter over the years. Maintaining a high level of awareness
and staying ahead of the curve makes sense.

Figure 1-8: Following trends isn’t a bad thing, especially because they’re usually based on established
solutions.

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 25

Sometimes cutting edge or bleeding edge is used in reference to designers or developers
who use tools that aren’t yet supported by the mainstream. Although both the cutting
and bleeding edge may appear as unsuitable candidates for crafting a stable site, using one
or a mixture of both can be done in such a way that those who have access to the support-
ing tools benefit and those who don’t have access have something just as fitting to use in
its place.

If your competitors are going to provide support for a tool, and you look around to find
that you could be the last person standing in the traditional-techniques circle, it may be
time to investigate whether moving on can benefit your audience. Often, new technolo-
gies provide designers with appealing solutions that otherwise wouldn’t be possible (for
example, CSS sprite rollover menus). Many designers keep an eye on sites that use cutting-
edge work, looking for inspiration and creative ways to polish their own skills.

Adapting your site to account for the many existing variables gives you insight into the
habits of users and how they embrace technology, and it gives you the opportunity to
offer them more user-centered designs. You will see an increase in the use of small screens
and the removal of the barriers of fixed-width design. Also, you’ll see how reducing the
requirement for inputting text helps users without quick access to a normal keyboard.
Creating future-proof sites is about molding platforms around experiences that can ben-
efit every user.

Solutions for a successful layout
This section covers techniques for producing first-rate, scalable layouts. Before you can
understand design variables in their entirety, you must first be conversant with the meth-
ods designers use to make layouts as flexible and future-proof as possible. This informa-
tion includes making decisions about which methods you will use, why using a particular
technique will benefit your audience, and which of the many layout techniques will sus-
tain the highest levels of ubiquity.

Consideration #1: Need versus none
At first glance, it may appear a bit silly to ask, “Do I really need a flexible site?” For the
purpose of this discussion, the aim isn’t to question whether having a flexible site is a
good thing, because clearly it is. Also, if you design flexible layouts from the outset, you
will reduce the chances that users will face problems with your site later on. However,

F U T U R E - P R O O F W E B D E S I G N 26

understanding the needs of your audience can tell you a lot about their specific require-
ments or about non-issues that may influence decisions to build or postpone the imple-
mentation (see Figure 1-9).

Figure 1-9: If a site primarily attracts users of desktop browsers, you could postpone the flexible
upgrade.

If you were to produce a site purely for consumers of Apple products, you would probably
question the need for a stress-testing spree to try out the site with as many emulators,
browsers, and devices as possible. On the other hand, making your site as flexible as pos-
sible is important, but there isn’t really much point in spending the next year and three
months scaling your site to be in line with every potential variable. Let your users and
their needs determine the level of flexibility and whether you can afford to cut corners.

Consideration #2: Rigid versus fluid
You can lay out content in different ways. In one camp, you have the grounded, rigid units
of measurement that can cause unpleasant horizontal scrolling when the available space
doesn’t match the demands of the interface (think fixed designs using pixel widths). In
the other camp, you have fluid designs that are pleasing, until there’s too much or too
little assigned space (causing occasional spillages or overflow from scrolling). In both
cases, entire layouts can break if the equations don’t add up.

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 27

Reference

An article I have written shows how the formats of layouts are changing. Not
too long ago, you had only fixed, fluid, and elastic to contend with. Today, you
have no less than ten choices! They range from units aimed at print or default
preferences to complex mathematically instigated alternatives. For details on
how each could affect a design’s flexibility, visit this site: http://sixrevisions.com/
web_design/a-guide-on-layout-types-in-web-design.

You can choose units of measurement based on compatibility (units aren’t treated equally
online), on a design method (such as responsive design), and even on a hybrid of one or
more techniques. Making the right decision about the mechanism of layouts can play a
critical role in how variables interact with a layout and, more importantly, how a page will
respond when under stress. You want to base such needs primarily on the requirements of
the content and then on the space required for functionality on the web page.

Consideration #3: Dynamic versus static
Dynamic and static layouts also play a part in the construction of sites. Static designs are
those with little to no interaction, are comprised entirely of text or images, and are more
focused on a read-only approach. Dynamic designs, on the other hand, usually include
scripts, changeable content, features, and perhaps some clever code in order to boost the
site’s core flexibility (as shown in Figure 1-10). Both of these design types have advan-
tages and disadvantages, and both affect a layout’s core stability.

Figure 1-10: You may be able to improve the flexibility of dynamic sites by structuring them around
visitors’ preferences.

http://sixrevisions.com/web_design/a-guide-on-layout-types-in-web-design/
http://sixrevisions.com/web_design/a-guide-on-layout-types-in-web-design/

F U T U R E - P R O O F W E B D E S I G N 28

Static sites have little going on under the hood. What you see is really what you get. The
benefits of this traditional form of layout are that once you’ve ensured the content scales
appropriately, little else beyond the visual arrangement can go wrong. With dynamic
sites, you may find that if scripting becomes unavailable or interaction requires additional
user involvement, trouble can occur. However, even with such concerns, dynamic sites
can offer a greater level of individually oriented flexibility than static sites can, so the
payoff might be worth the effort.

Consideration #4: Internal versus external
This consideration relates to how to handle alternative device requirements. Sometimes,
designers choose a “one site rules all” approach and account for variables by using scripts
or stylistic fallbacks. Tools such as browser-detection scripts, frameworks, and media que-
ries allow the layout’s appearance to change based on a user’s needs. Although this is the
best choice (requiring little added maintenance), the major catch is that it forces you to
rethink a site’s mechanics, based on assumed scenarios of use. Figure 1-11 illustrates the
concept of a script working as a robot to “build” a site around you.

Figure 1-11: Scripts act like little robots, reporting on what will or won’t work.

If the work of designing for the lowest common denominator isn’t your cup of tea, a
quick-and-dirty solution is to provide an external site that does the job, similar to what
you may have seen in mobile-specific sites. In these optimized layouts, however, you’ll
often find that content is either “dumbed down” to reduce the pressure of the layout or
condensed to make things more lightweight. These layouts, however, beg the question, “If
it’s not needed on a mobile site, why would you want it on the desktop?”

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 29

Consideration #5: Redesign versus realign
If you choose to accommodate various browsing environments, such as the use of specific
devices or products by creating separate layouts, you must determine whether to build a
new layout entirely from scratch or to realign an existing site’s design (if one exists) to
consider the more diverse uses being asked of it. Ultimately, situations will exist when a
new and separate layout may be beneficial (perhaps for a mobile-only service that’s not
available for desktops), but in the vast majority of cases, keeping sites together requires
less work.

Calculating whether to redesign or realign may be easy, depending on the state of the site
in question. For example, if the layout is falling apart, cannot match the needs of the con-
tent, or is simply unattractive, redesign it! After all, revitalizing the layout can’t make it
look, work, or feel any worse to your visitors than it does in the state it’s in now, right?

If you choose to redesign a site from the ground up, all your previous work may be wasted.
In addition, you’ll have to go through various iterations to regain the previous layout’s
level of flexibility before the total revamp (which means more testing and, perhaps, some
secret sauce). Just realigning can be tricky, too, because you may encounter various barri-
ers hiding under the hood, waiting for their moment to break the site or its underlying
system.

Consideration #6: App versus online site
This final consideration is a quick one, and it rounds off the fundamental considerations
involved in planning a site. First, my question: Should you provide your site in the form of
a native, downloadable app or within the wrapper of a well-crafted, browser-based site?
As with the previous issue, no one answer will work for everyone. Apps have the advan-
tage for offline use, guaranteed rendering, and more, but because they require no compil-
ing per device, sites require less work, if the variables are accounted for.

Note

The divide between services and applications is getting thinner by the day. You
can, in many ways, rightfully claim that most apps can be built using modern
web browsers, but compatibility remains a constant issue because you’ll attract
all sorts of platforms.

In the apps versus online debate, I have my own biases and preferences. Desktop apps are
suited for situations in which access to a device’s native hardware is essential. Also, desk-
top apps are ideally suited if you want to build a single app for a specific platform (such as

F U T U R E - P R O O F W E B D E S I G N 30

iOS). In my opinion, however, beyond those exceptions, web apps are the better option:
You ensure that users have the most recent version, you can build for every platform
equally, and in most cases, web apps can be made to perform offline.

Beyond design: An essential business guide
Because building sites is a business for many (if you’re reading this book in an attempt to
improve your own quality control, this includes you), I need to offer some cautionary
words about how striving to survive the Web’s future may affect the way you craft or
maintain interfaces, and how you bill for doing so.

First, the all-important consideration: money. Budgeting for the work you will do to bring
an older, less flexible site into the “here and now” is a complex calculation. At one time,
you could design sites so that they were cross-compatible by writing well-formed code
(which designers often failed to do). Justifying it as cost-effective wasn’t difficult because
you could literally see bandwidth bills drop (moving on from messy and inaccessible table-
based layouts). Now it’s a different story with fewer immediate gains or losses involved
(see Figure 1-12).

Figure 1-12: The extra costs of ensuring flexibility can result in a bigger audience.

Building a mobile-friendly site demands regular testing, and not on the same level as in
the old days. Testing on large numbers of browsers, both desktop and handheld, can
adversely affect billable hours, and testing on physical devices could potentially be very
costly if you want to guarantee device-specific support. Because of the overwhelming
array of possible combinations of browsers and devices, testing on all of them will be
impossible, so you need to find ways around this issue in order to test as economically and
accurately as possible.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 31

Also, you must consider the increased time it could take to build such a scalable site. If a
site was originally built with flexibility in mind, updating it with newer variables probably
will not take as much time as it would to bring an older, less flexible site up to modern
standards. Be sure to account for how long you’ll assign to the test phase, which types of
tests you’ll run, and if you want to consider only a baseline set of commonplace variables
in your package, providing less common ones as “billable extras.”

Tip

If you’re like me, you probably find checking off your progress helpful. By
determining a set range of variables you’re willing to test against and estimating
how long you believe each test will take, you can plan a release cycle fairly
accurately.

Furthermore, part of the process of running a business relates to how well you under-
stand your client’s niche, users, and community. Considering variables that will not affect
a site’s audience could be deemed wasteful. However, forgetting about or not adding sup-
port as it’s needed could just as easily be deemed neglectful! It’s a tightrope that you’ll
need to walk, so know who you’ll be coding for—a flexible site is more important than
ever in accurate designing!

Finally, there is the educational side of things, which could potentially create a few issues.
As a designer, you know that it’s good to remain vigilant and keep up with the ever-chang-
ing environment. Factoring in the effort it takes to retrain yourself (if needed) to a par-
ticular technique and making sure you have the tools required to test against variables is
critical. Ideally, you’ll spend as much time learning as you do coding.

Here are some ways to stay up-to-date:

> Read books, magazines, and blogs on what interests you.

> Attend web-design conferences and network with others.

> Listen to podcasts and do training via video tutorials.

> Examine the design code of others, and gain inspiration!

Running a business has all sorts of practical considerations, and it’s only natural that you
evaluate the need or your ability to consider everything in this book. Focusing your atten-
tion on what matters to your visitors is part of what makes a great designer. It takes a
good amount of common sense and experimentation to organize your workflow in a way
that benefits those who’ll be affected by it.

F U T U R E - P R O O F W E B D E S I G N 32

Resolving Issues of Compatibility
There is one final, essential survival skill that all designers must have if they want to over-
come the challenges of achieving compatibility. By understanding an environment, you
can identify the core issues you need to address; by planning ahead, you can reduce the
chances for errors; and by remaining open to adaptation, you can implement satisfactory
outcomes. But every now and then, you will encounter quirks that trip you up and solu-
tions that fall short of meeting your layouts’ requirements. Knowing what to do when
things go wrong will help you survive and maintain ubiquity.

Debugging for durable devices
Comprehending the complexities of the Web involves knowing how to spot errors, deter-
mining the cause of the problem, and finding a nice, clean, and workable solution. Ideally,
all your sites will look and feel amazing on every medium and in every environment, but
of course, things often don’t work out that way. By ensuring that your sites work well for
your many users, you provide a perception of professionalism and competence.

To the average person, the Web may be a bit of a mystery. People don’t understand its ori-
gins and complexity (Figure 1-13), but they marvel at how it can be experienced and uti-
lized through many mediums. Your responsibility to produce durable, bug-free experiences
for users is much an extension of this. Because the Web seems so mysterious, part of its
appeal is simply that it works. However, if compatibility on the Web falls apart, any illusion
is lost, the failings of a site are exposed, and its elegance and beauty evaporate.

Figure 1-13: The average website contains many variables.

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 33

In the past, bugs in browsers have caused a number of problems for designers. However,
because of the limited array of devices and circumstances in which sites were regularly
viewed, issues related to a damaged experience had a minimal impact (you could fix a
problem by throwing hacks at it, often resolving early browser bugs). So, the problems of
maintaining a stable and ubiquitous site have always existed; it’s just that the method of
interaction and content absorption has dramatically changed in the visitor’s favor.

Many site issues could be labeled as critical (severe), moderate, and mild, but I’m not one
to place labels on quirks because what may appear as an inconsequential error to one indi-
vidual may well be a catastrophic, game-changing bug for another! An essential part of
designing your sites to be durable on many different devices (and within many different
situations) is that you really focus on identifying flaws and solving them. Often, designers
get so caught up in the debate about best practices and ideals that they may lose sight of
the bigger picture.

When a problem occurs, don’t conclude that you must attack it in a “nuclear-warhead”
fashion. Actually, it’s rare for a site to be in such a poor state that users’ online experi-
ences become totally inaccessible. Often, the quirks and issues are mild enough to simply
cause irritation or confusion. On the other hand, don’t put off implementing a flexible
design just because it seems trivial to you, even if the fix for that quirk could have a simi-
lar effect!

You can debug code in many different ways. You have concurrent debugging that effec-
tively involves checking and retesting your work as you progress through a series of stages.
There’s elimination debugging, where you find a problem and begin crippling bits of code
in order to eliminate potential causes from the list (what Sherlock Homes would do if he
were a programmer). Finally, there’s proactive testing in which you uncover quirks or issues
(plus the effectiveness of fixes) by getting users to report faults (Figure 1-14).

Figure 1-14: Proactive testing can consist of structured usability studies or simple verification tests.

F U T U R E - P R O O F W E B D E S I G N 34

Uncovering problems can involve as much investigation as any detective novel does.
Throwing a site into all sorts of unique situations can also help you understand what users
may be seeing on their screens and in the case of really old technology, that view can turn
a classic detective novel into a horror franchise. Methods of testing vary among develop-
ers, and you probably have your own style. Just remember that you’ll probably need to
spend a good deal of time proactively trialing out use cases.

Cultivating customer service
If you don’t have visitors to your site, it will, of course, fail. If your site isn’t accessible or
usable in its current form, you will lose visitors. The Web is a beacon of ubiquity and uni-
versal access, and as its facilitator and representative, your job is to help ensure that this
beacon remains a reliable one over time. By empowering users with the tools they need
to engage with your site, you’re likely to see an increase in user activity. Also, if more
people can access and use your services effectively, they’re more likely to pass the link on
to their friends.

All of this discussion centers on the importance of understanding your users and their
needs. Also, it centers on looking beyond how individual pages or page elements appear to
you and considering what such features will look like to different users, whether they’re
using popular tools or ones with little recognition. Your selection of features to imple-
ment will depend on necessity, so calculating your options may involve working out a
“cost versus reward” ratio, prioritizing upgrade release cycles, and keeping visitors
informed while engaging them in this process.

Note

An example of testing by necessity includes, for example, the justification for
ensuring that a site works in older versions of Internet Explorer. Although we’d
happily like to see them evaporate from the earth’s atmosphere, they often stick
around for a long time!

Involving your clients in the design process has never been more important. Because their
satisfaction is central to achieving popularity and widespread use of the site, you’ll want
to take every opportunity you can to obtain meaningful feedback, useful assistance, and
potentially groundbreaking ideas. The key to gaining useful feedback is trust. Be ready
with open ears and mind and be honest and transparent with your processes. It also pays
to thank users when they get in touch with you, even if it’s uncomplimentary.

C H A P T E R O N E F U T U R E - P R O O F S U R V I V A L T E C H N I Q U E S 35

Don’t be afraid to ask a community for help in testing your work or letting you know what
things they’d like to see in future versions of your site. Feedback of a negative nature may
seem like a miserable way to spend a day of inbox catching-up, but it’s often the less-flat-
tering stuff that has the biggest impact. If everyone says that your work is perfect, be
suspicious; if some send hate mail, don’t take it personally — see it as a chance to improve.
Users matter in the design process, so don’t neglect this mighty resource.

Here are some ways you can initiate communication with your visitors:

> Direct methods like e-mail, instant messaging, and chat rooms.

> Indirect methods like forums, feedback systems, or bug trackers.

> External solutions like social networks and review websites.

Of the different ways that you can gauge this feedback, your two primary sources of useful
data will come from quantitative (numbers and statistics) and qualitative (descriptive and
opinionated) research. Measuring this data is a challenge, but the benefits that they bring
include faster identification of flaws and ideas to help you make your site more flexible. If
users want 3D video, for example, you can implement it.

Ultimately, as with any type of community involvement, there will be disputes, and not
everyone will agree on every action. Just know that, as you test to ensure compatibility
and durability, you’ll encounter a few bumps along the way. Finding a happy medium is
something many designers do in their daily jobs with clients, users, and each other.
Because going for broke and leaving users to their own devices aren’t acceptable options,
compromising (that is, going for adequate rather than optimal solutions) is a satisfactory
alternative.

The Web: Survival of the fittest
The modern Web presents many challenges. With competitors breathing down your neck,
a layout that fails to work on a range of devices and hardware, such as the simple ones of
the laptop shown in Figure 1-15, represents a missed opportunity. Sites are like children,
needing lots of care and attention. Nurturing unique devices will encourage return visits,
and providing enough education to ensure users can react appropriately in current situa-
tions helps, too. In this ever-demanding environment, you want to think in terms of tak-
ing small steps toward achieving long-term goals.

F U T U R E - P R O O F W E B D E S I G N 36

Figure 1-15: Devices contain input and output hardware, and your layout must work with both.

Design based on the experiences of users is an expanding area of interest, particularly with
the new ideas that are pushing us toward a more sociable and useful Web. Survival isn’t
just a matter of ensuring that your site looks great via Internet Explorer, Firefox, Chrome,
Safari, and Opera. Being future-proof depends on the devices, hardware, software, stan-
dards, and consumer variables explored in greater detail throughout this book. So, what-
ever you do, be sure to stay up with the times with updated and feature-rich layouts.

2

The Five
Principles of
Ubiquity
Methods and approaches to the flexible Web

F U T U R E - P R O O F W E B D E S I G N 40

OVER THE YEARS, two forces have offered a highly compatible environment for users.
In one corner, you have graceful degradation, which uses numerous fallbacks. In the other
corner, you have progressive enhancement, which layers nonessential features as optional
extras. With features, or variables, fighting for users’ attention online, selecting the best
method to implement a flexible layout is critical. This chapter examines the five available
options and shows how you can account for such variables and build a flexible design.

Websites Are like Onions
In the movie Shrek, it’s said that ogres are like onions because they have layers. The same
is true of the Web, which is represented as a collection of layers that comprise its finished
form. These layers include the content, structure, style, and behavior of your sites.

When you consider the layers of your sites, you must account for the variables that affect
users’ environments and understand the fragility of these factors. These variables and
their fragility play an active role in the rendered layout. Having this understanding allows
you to determine whether your site will survive in the future.

Targeting specific variables is a tough job because browsers generally provide little means
of detecting a user’s environment. Occasionally, you might strike it lucky by using
JavaScript or other tools like CSS media queries, HTTP header feedback, or conditional
comments, but these detectable events are the exceptions to the rule, and even when they
appear to work, they aren’t always reliable. Because variables intertwine and can affect
multiple features of a site, you need to think outside the box to ensure that you have con-
sidered and accounted for every angle.

As an example, consider the variable of screen real estate. Many factors affect this variable:

> The resolution within the OS

> Changes to DPI or text size

> Artificial zoom functionality

> The orientation of the window

> Open toolbars and sidebars

> The browser’s UI requirements

> Whether the window is maximized

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 41

> The use of frames in a window

> The size of the screen itself

Every issue you examine builds a profile of factors that can influence the environment in
which your site functions. You shouldn’t rest on your laurels or assume that one solution
will be perfect. For example, your visitors may browse in portrait mode, or they may view
your site in landscape mode (see Figure 2-1). Consider that your CSS background images
may look great now, but what happens when the user cripples his CSS? What if your visi-
tors use a text browser like Lynx? What if they use a custom stylesheet to aid their read-
ing? What if they use a craggy old browser that doesn’t support CSS3? These are the
factors you must consider.

Figure 2-1: Whether your visitors browse in portrait versus landscape mode is an important
consideration.

When you build layouts and consider variables, you need to look at the direct implications
of what you produce and its side effects. Consider the big picture and how variables will
interact with one another. The more questions and situations you pose and account for,
the more stable and flexible your site will be. When you design a site, establish particular
usage scenarios, environments, and events that could affect your visitors. By building this
audience profile, you can account for their unique needs and situations.

F U T U R E - P R O O F W E B D E S I G N 42

Level 1: Graceful Design
When web development first came on the scene, web designers had few variables meddling
with their pages, and the average user really did equate to something measurable. During
the browser wars, however, users required more flexibility. This is when the philosophy
behind graceful degradation was born. This philosophy purports that offering patches and
quick fixes, once the optimum experience has been designed, allows designers to stop
restricting their sites’ potential, all while keeping acceptable alternatives for visitors.

Beginning graceful degradation
Fault tolerance is something that has existed in the computing and electronics industry
for many years, so the concept of gracefully degrading code is nothing new. When you
build layouts, you must be prepared for those times when things go wrong, or when a
browser or device simply can’t keep up with the technology. The idea behind this method-
ology is as simple as you could hope for: You build for the best and most capable, fixing
sites for less-fortunate users.

When you build a gracefully degrading layout, you first forge whatever design you want
(use whatever tools you like, as you address issues and their resolutions post-process).
Then you identify situations in which your own scenario might differ from a user’s sce-
nario and build an alternative solution to ensure that the content remains useful (see
Figure 2-2). For example, if users had images disabled, they could rely on alt attributes.
If the user has IE6, you could offer a less complex or patch-supported layout.

Figure 2-2: The fault tolerance mechanics aren’t hard to grasp; it’s all about offering a safety net.

This style of thinking has led to all sorts of innovative solutions in design regarding “what
happens when something breaks.” This methodology only works (of course) if the solution

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 43

you offer provides a useful alternative to the original feature. Empty alt attributes, for
example, don’t help anyone who suffers broken images. However, you shouldn’t feel
ashamed in offering an alternative experience for less-capable environments, especially as
the visitor is more likely to appreciate a site that works well as opposed to a site that doesn’t.

Important

Offering alternatives is important. In today’s accessibility-regulated world, if you
don’t ensure that your work flexes and catches disabled users effectively, you
could face a lawsuit. Gracefully degrading code isn’t always pretty, but it at least
offers users something!

In the past, graceful degradation was predominantly used as a workaround method for
ensuring that every user saw the same thing (as often as possible), such as the hacking
that went on to make print layouts work across browsers. Since then, many designers
have taken to the use of detection scripts, and others have focused on offering in-page
safety features, instead of simply offering layers of patches or hacks.

The use of detection scripts in such cases has caused quite a debate, but with the arrival of
frameworks it’s undeniable that their use has become easier and more widespread. Many
designers are also using conditional comments, a perfect example of targeting code in a
non-destructive way, to implement browser-specific fixes (for Internet Explorer). Beyond
code targeting to avoid degraded experiences, you can use skip links and alternative text to
resolve feature dependency. Your aim is to offer fail-safe mechanisms to stave off disaster.

Some further examples of degrading code include the following:

> Video or audio transcripts for when the media isn’t available

> An alternative layout for when Flash isn’t installed or usable

> Print stylesheets to make using the device less ink wasteful

The modern philosophy toward producing gracefully degrading code has altered slightly in
its overall goal. When an experience degrades, it must do so gracefully and continue to aid
users, providing tools to achieve certain tasks. Modern incarnations of the technique focus
less on cheap, hacky workarounds, which ensure a consistent experience between every
browser (which, let’s face it, is next to impossible these days), and instead focus on the idea
that a graceful solution could involve something completely different to the ideal one.

F U T U R E - P R O O F W E B D E S I G N 44

Justification for applying graceful degradation
Many practical routes provide a gracefully degrading layout, some of which showcase its
inherent benefits more than others. However, there are three prime examples that offer
some ideal situations in which to apply the gracefully degrading methodology.

The three ideal situations in which to apply the gracefully degrading methodology are

> Audits (to make your site more disabled friendly)

> Retrofitted web designs (such as for intranets)

> Web apps

Post-production issues in complicated layouts are also a popular occasion to invoke the
graceful mentality.

The success of any site depends on the central point of your layout: its content. Without
content being available or visible, users are left with a “hollow shell” filled with nothing
but eye candy, which doesn’t sustain them.

In order to maintain the content’s visibility and readability, your site must be accessible.
Without your content maintaining this ubiquity, it may as well not exist for less-fortunate
users. Graceful degradation helps designers who struggle to make their sites accessible.

Reference

Making a layout accessible can be tricky if you’re not used to considering such
needs. However, the W3C provides you with a useful specification (known to
many as WCAG), that provides a good starting point. Ultimately, there will
always be a certain number of users who, because of unique circumstances,
will have issues accessing your site, but it’s your job to help as many of them
as you can. Here is the link for the W3C website with information on WCAG:
http://www.w3.org/TR/WCAG20/.

When you attempt to make a site accessible, it’s likely that you’ll recognize a few common
practices and implement them into your code as you go. Specifications like WCAG (men-
tioned in the preceding Reference paragraph) do help to underline these ideas, but you
may find yourself considering the implications of what you produce after you build it.
Auditing is pretty commonplace on the Web, and if you’re a fan of this particular way of
improvement, you’ll use graceful degradation as you’re literally offering a fail-safe mecha-
nism to cope with additional specialist needs which an audit would identify.

http://www.w3.org/TR/WCAG20/

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 45

And just when you thought wow, that’s a lot to consider — accessibility involves much
more than WCAG:

> Country-specific laws like the Disability Discrimination Act

> Testing with accessibility software

> WAI-ARIA and other best practices

Beyond auditing and tweaking, the same need to adjust a design for certain situations exists
for retrofitting existing layouts. Because of the costs and time involved, it’s unrealistic to
demand that an entire design be rebuilt from scratch to account for the variables that a user
may struggle with (unless the site is so poorly built that the only viable option is to totally
demolish it). When dealing with post-production or technical redesigns, degrading makes
sense as it also avoids wasting the old design, and reduces the learning curve for visitors.

The beauty of graceful degradation is that it mostly avoids the need to consider variables
until you have a solid backbone for the layout you’ve established. This is a good philoso-
phy if you are servicing an existing design, but it’s arguably not the cleanest method to
dodge future quirks and issues in a new site. Yet there is one situation that could poten-
tially require the use of a layout that is graceful from the outset, and that’s web apps (see
Figure 2-3), as they often rely on JavaScript and demand compromise if the user doesn’t
have it enabled.

Figure 2-3: If you feel that a web app is going to struggle under flexible requirements, go native
instead.

F U T U R E - P R O O F W E B D E S I G N 46

You may have justifiable reasons for using a technology that isn’t as cross-compatible as
you might like. Rare occasions exist when you must demand a feature be enabled (remem-
ber, regular sites should never be in this situation). If a user doesn’t have what you need
at the client side, you can, as a graceful fail safe, attempt it at the server side. If you need
users to view a video, for example, you can link to the file, and if all else fails, you should
inform them of any requirements and how to meet demands.

Considerations of compatibility: Graceful design
Because of the methodology it takes, graceful degradation can become quite the logistical
nightmare in terms of ensuring that all your bases are covered. I’m not saying that it’s better
to go without than to employ it, but you’ll find that the graceful methodology isn’t exactly
the friendliest method for users or designers. The ideal environment for using this tech-
nique is situations where small glitches occur, in post-production, and when you need a situ-
ational patch or fix. In all other situations, use the ever-durable progressive enhancement.

The first and most obvious compatibility issue that can occur from graceful degradation is
that it tends to discriminate against the “lesser beings” that fail to meet the layout’s own
primary requirements. If you don’t have JavaScript and the site wants the technology, the
graceful approach might allow you to still browse around the site, but you could find
major pieces of functionality out of action. As with individuals who build separate mobile
layouts, there has been a nasty trend of leaving outsiders with an unnecessarily lesser-
quality experience.

It’s worth stating at this point that all techniques and technologies can be used for good
or evil, and while graceful degradation isn’t alone, it does seem to be the most regular
offender in the past and present of design. In an effort to avoid additional work, many
designers dumb down their layouts to the point of absurdity in the premise that basic
accessibility and the ability to just browse a site (barely) is good enough. Alas, if we want
to ensure a stable foundation that will keep visitors coming back, we should give them an
equally enjoyable experience.

Note

The aim of graceful degradation isn’t to create a site that looks the same for
every user (or if that fails, falls back into something primitive); it’s to offer the
next best option that can be taken advantage of under the circumstances. Life
isn’t perfect, and nor is a site, but we can try to aim for equality by degrading
experiences to an acceptable quality level.

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 47

One effect of graceful degradation that causes the most concern is the flaw of backward
compatibility, which in basic terms highlights that we should only patch on the basis of “as
it’s needed on a one-to-one basis.” Users who aren’t as likely to come forward and declare
issues are unlikely to see their devices or environments get the support they desire. In
most cases, graceful degradation doesn’t consider the effect that future situations may
have because the truth is that designers are too busy dealing with current situations.

Over the lifespan of a site, you may find that a great deal of redundancy occurs in your
gracefully built code. Often, when designers write a bunch of purpose-built hacks for a
particular browser and it falls out of use, they are unlikely to weed out the dead code. This
causes pages to bloat, and maintenance demands to increase. Separating your structure,
style, and behavior makes code easier to maintain, yet few designers consistently opti-
mize their code to take advantage of doing so. Being graceful often comes at the cost of
being clean.

While things may appear pretty grim for designers using gracefully degrading techniques
such as patches and fail safes, never fear. Ultimately, as with any technique, it really comes
down to how you choose to implement and maintain your code that has the biggest overall
impact upon your users. Patching can be a good thing, if you control your workflow and
maintain your code regularly, and offering fail safes can be fantastic, but you’ll need to put
the time into testing the tripwires to ensure you don’t leave any users out in the cold.

Level 2: Progressive Design
While graceful degradation has gained popularity for its highly unconstrained attitude
toward hoping for the best but planning for the worst, it has proven less popular with
designers who are concerned that certain situations may be rendered incompatible by
design and by default. This movement has evolved into the formation of a safer but more
prudent methodology labeled progressive enhancement, which avoids any technique that’s
obtrusive or demanding, requiring fallbacks not fail safes, to ensure that solutions aren’t
exclusively for a certain browser or user, but instead provide an added layer of integrity to
your work, to assist those in need.

Progressive enhancement
Progressive enhancement is the flip side of the coin to graceful degradation. The graceful
degradation method (discussed in the section, “Level 1: Graceful Design”) works with a
top-down approach, providing the most satisfying experience it can, while using patches

F U T U R E - P R O O F W E B D E S I G N 48

and fail-safe solutions to offer an acceptable alternative experience. The progressive
enhancement approach reverses this effect by using a bottom-up methodology (shown in
Figure 2-4), demanding that less-critical features of a page be included only in a way that
doesn’t require crude fixes or hacks.

Figure 2-4: The top-down and bottom-up approaches rely upon how we apply the layers of the Web.

Almost everyone who designs sites is familiar with the concept of building a site’s structure
around the on-page content and then layering stylistic code on the structure, and finally
adding behavior, or scripting, events on what’s been built so far. The effect of separating
structure, style, and behavior not only breaks these easily identifiable layers of the Web
apart to make maintenance easier, it also forces us to design for situations in which layers
such as CSS or JavaScript can be turned off. And yes, that does happen occasionally, too.

Regarding the design methodology, progressive enhancement is much more prudent than
its graceful alternative because there must always be something to fall back on, even if it’s
the raw content. If the browser can handle JavaScript, then great, that behavior can be
invoked, and the functionality will work; if it’s not enabled, the page must still function.
Ultimately, progressive design has the benefit of relying on numerous safety nets at every
level so if one thing breaks — say, if CSS is disabled — something else, such as HTML, can
take over.

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 49

Progressive enhancement doesn’t have the “aim high” philosophy of degradation, in
which designers push for the best of both worlds, but the truth is that the Web has become
far too diverse for anyone to have any real expectations of their users. As part of this way
of thinking, attitudes toward progressive interfaces really tempt designers to remain with
what’s safe, mostly because they fear that any barrier to entry at a fundamental level is a
high price for products that have no reasonable fallback (unlike the degradation crowd
that patches fixes together).

To that end, the following components can be turned off easily:

> Images (embedded using HTML or CSS)

> Cookies, data caching, and local storage

> CSS and JavaScript (including jQuery)

> Flash, Java, Silverlight, and other plug-ins

To provide enhancements, you begin by ensuring that your content is marked up in a solid
manner (semantics matter). Once that looks and works fine, you can provide CSS (per-
haps some CSS3 if it has an older, stable CSS fallback for less-capable browsers). Then you
can throw in some scripts to provide that extra push of interactivity without messing up
what’s already there. From that you could even layer Flash or other features with less sup-
port or recognition. As Figure 2-5 shows, it’s all about layering one feature on top of its
backup.

Rather than building for the best case, progressive enhancement provides a philosophy
that reaches beyond simple browsers. Rather than assume features exist or that your visi-
tors can take advantage of what you require, you start thinking ahead and testing as you
go in preference to the graceful approach of “build now, ask questions later.” Because it’s a
less-risky approach, many designers have gone with this as the de facto method of creat-
ing barrier-free layouts, while adapting its philosophy for other quirky situations.

Note

In graceful degradation, you keep the structure, style, and behavior separate, as
each offers a range of advantages; however, unlike progressive enhancement,
you won’t be taking the time to finish and stress test each individual layer
before moving onto the next. This is because you’ll be fixing remaining quirks
individually as a post-production process.

F U T U R E - P R O O F W E B D E S I G N 50

Figure 2-5: Processing a progressive site will involve the layering of features upon your existing
content.

Justification for applying progressive design
The first tool in the progressive enhancement toolkit is feature detection. Suppose that
you want to take advantage of the latest, greatest techniques, but you don’t want to cause
a compatibility issue by implementing something that may not be supported by older or
less-capable browsers. What do you do? Avoid it? Not if you want to remain on the cutting
edge! The easy answer to this question is to test to see if the functionality you require is
supported. This may sound complicated, but it’s used whenever you browse the Internet!

Note

Waiting for specifications to complete or browser support to be 100% isn’t
an option (if you want to have a durable layout). CSS media queries have
shown that it’s become a necessity to push languages beyond the “current,”
recommended specifications in order to be flexible. And with CSS3 evolving
as it is (as independent modules), any hope of a general release that works for
everyone equally seems increasingly like a pipe dream.

When dealing with code and browsers, by default, verify support before trying to use it. If
you’ve used CSS3, you know that browsers that don’t support it simply ignore it, which is
great for code that can degrade well. The same goes for unobtrusive JavaScript in which
the site’s behavior is ignored and your fallbacks come into effect. By testing for support

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 51

within your browser, you can not only customize a layout for the environment a user may
be browsing in, but also provide some alternatives for when a component becomes
unavailable for use!

Another example of using progressive enhancement to your advantage is through the use
of unique experimental features called vendor prefixes (see Figure 2-6). We have already
noted how adept CSS3 is at being ignored if it’s not supported, which is good if a layout
doesn’t depend on it. Vendor prefixes within browsers go one step further to reiterate
how you can add useful flourishes and features without worrying that your design will
collapse. If a feature provides a benefit to the user’s experience, it’s worth attempting its
utilization.

Figure 2-6: Each rendering engine has a unique vendor prefix, allowing for selective browser utilization.

While code is the backbone that allows you to take all these points into consideration, you
must not forget that many aspects of progressive enhancement relate to concepts beyond
what you’d put in a code editor. Sure, it’s important to get those layers of structure, style, and
behavior in check, but you can also deal some progressive enhancement justice toward less
capable browsers, the aesthetic experience users enjoy, and the functionality you provide.
You can even promote this progressive style toward your automated robotic friends.

Note

Search engines are big fans of context and easy-to-read information (as are the
wealth of social networks that exist). You can increase the semantic relevance
of your content by offering things like microformats, metadata, and text-based
alternatives, too. In the context of “Web layers,” these tools add an additional
layer over your structure (HTML).

Regarding content, if you go down the reductionist route and weed out the material that
is unnecessary (the Web is full of wordy fluff), you would offer those with slower Internet
connections a better experience (Twitter, for example, limits the number of tweets per

F U T U R E - P R O O F W E B D E S I G N 52

page until you ask for more). With functionality, you could have a script-free search form
on the page, adding auto complete and other bonus features if scripting is enabled. And if
you want to use tools like Flash, you could layer the implementation upon an existing,
usable interface.

Putting this into perspective, I’ve come to like graceful and progressive design for very
different reasons. Graceful design is a real force for good in maintaining a site, and the
progressive route is an ideal way to begin building a flexible design. Arguably, people could
state that because you want to keep things as simple as possible, it might be worth follow-
ing the enhancing route in preference to degrading once it’s complete (for consistency’s
sake), but as we shall soon find out, things have evolved in both camps to become more
durable.

Considerations of compatibility: Progressive design
Compatibility in regard to progressive enhancement is relatively straightforward, which
actually helps give it the edge over graceful degradation in regard to providing a useful
and seamless experience for users. Up until the latest incarnations of both techniques (we
take a close look at these later on in this chapter), sites suffered epic scale redesigns to
take advantage of the increased flexibility and potential savings in both bandwidth and
maintenance costs. Progressive enhancement isn’t bulletproof or free of complications,
however.

The first compatibility consideration you need to account for in your design work is that
browsers and devices can behave very differently when asked to render something on the
page. A browser’s default fallback mechanism for a lack of viewport space may include the
use of scrolling (in any direction), zooming, or some other unique feature. These inconsis-
tencies in the way browsers handle variables and variations of those issues force you to
think outside the box and provide a more considerate alternative for users.

Note

One downside of these necessary fallbacks is that they absorb added bandwidth
and resources. Why? Even if that fallback code isn’t used, it still takes up space.
Also, if something falls back, the original effect (such as Flash) will be loaded.
You really can’t win as providing a fallback ultimately means that only one of the
two options is used, and what remains is hidden.

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 53

Although users of a site are willing to scroll (the fold being a print design myth), requiring
unnecessary scrolling can decrease the usability of the site. As another example, while a
Flash video could prove itself a useful alternative to boring text (for users with a short
attention span), you must be careful to provide something underneath that plug-in layer
for users of iOS who cannot access the Flash plug-in at all. Enhancement is as much about
offering substitute layered fallbacks as it is about letting variables drop to defaults.

Another compatibility factor to consider with progressive enhancement is that, as noted
earlier, because of the way your work needs to be layered (to ensure dependency doesn’t
occur), such an implementation can become hard to achieve in existing sites that are
extensive, multipage, or otherwise complex. A site with as much going on as Amazon or
eBay could easily be excused for putting off the progressive move because of the fact that
they’d likely have to invest in totally remodeling their code from the ground up, which
would take a lot of time.

Here are some options for larger layouts:

> Roll out a revamped progressive layout over numerous iterations.

> Redesign an entire website from scratch to match user needs.

> Supplement useful tools that won’t impact the existing design.

If you’re building a site from scratch or trying to improve an existing one, the progressive
route is a firm favorite to take. However, it’s a given that deciding what’s required and the
work involved in ensuring that everything stacks up without breaking when something is
turned off will take a great deal of planning. Rome wasn’t built in a day, and unless you
have a prebuilt CMS or template at hand, your site probably won’t be either. Layering all
of that useful material that could improve an interface requires plenty of consideration.

The final thing you need to know about the progressive model is that designers can get a
bit heavy handed with the layering, so be sure to plan your site’s production as if you were
an architect. As many designers get used to the available tools and begin taking advantage
of them, some get a bit overzealous and add “enhancements” that don’t really do anything
useful. Visual flourishes and animated effects can be a good thing if done in moderation,
but just because a browser lets you do something cool, doesn’t mean you always should.

F U T U R E - P R O O F W E B D E S I G N 54

Level 3: Adaptive Design
For all of its critics, graceful degradation has never been afraid to push boundaries in
order to offer users the best-possible, technology-rich experience. From within the foun-
dations of its parent, and the need for increasingly flexible layouts, appeared the ideology
of adaptive design (like a phoenix rising from the ashes). Built upon the increasing usabil-
ity demands of users, adaptive design forges an ideology that experiences shouldn’t be
identical, so designers should remain true to the graceful philosophy by just being both a
bit more tactful and creatively flexible.

Adaptive paths to degradation
Before the explosion of the “mobile Web,” which led numerous handheld devices among
other devices to demand access to the Web and our sites, both graceful degradation and
progressive enhancement could carry out their roles rather peacefully. The demands of
ensuring everything worked on different devices wasn’t taxing. So much for the good old
days! As of right now, users demand something more flexible, something that can handle
more variables than the older models can. And as of very recently, we can achieve that aim!

We’re going to examine responsive design, the darling of the web design world, in a little
bit, but before we get into that subject, we should, in proud tradition, showcase the mod-
ern-day evolution of the oldest of them all, graceful degradation. The idea for this evolu-
tion came out of the cries of one man who said something that really struck a chord with
a few designers. That man, who is no stranger to controversy, was Andy Clarke, a well-
known speaker in the web development community. He made a valid point: Why should
we wait for stuff to become ubiquitous instead of using it now?

Arguably, the graceful degradation crowd has been demanding the use of everything new
as it occurs, but its one critical failing point was that back in the day, the ultimate goal was
to ensure that everything looked and worked the same for visitors, no matter their situa-
tion. Today, designers know that this expectation isn’t realistic. So one thing that identi-
fies this modern iteration over its predecessor is that we should actually cultivate different
(even drastically different) experiences (see Figure 2-7) if the ideal solution can’t be made
viable.

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 55

Figure 2-7: You can provide alternatives based upon the browser, the OS, or the device’s capabilities.

Times have changed, the Web has evolved, and with this, we must now begin to reevaluate
how the online world has produced revolutionary expectations of our work. By taking
advantage of this philosophy, we still follow the ethos of planning for the best while expect-
ing the worst; however, the way we deal with the worst can drastically differ. Adaptive lay-
outs aren’t about feeling a need to omit HTML5 or CSS3 because it may not be available; it
encourages using them, but being more creative with necessary alternatives.

Consider how you code for Internet Explorer 6. Designers often try for a few conditional
comments and hacks to resolve inconsistencies (that’s the graceful bit); become selective in
what they offer but ensure that it works if functionality is turned off (that’s the enhance-
ment bit); or refuse to support it entirely (that’s the crazy bit). Adaptive design throws its
hands in the air and shouts, “They deserve a great experience, too, but if they can’t handle
the heat, give them a different design, one that matches their browser’s capabilities.”

Tip

When building an adaptive site, the idea isn’t that you would tell IE6 users to go
away and upgrade their browsers. Instead, you would offer them a dedicated IE6
layout using conditional comments to provide something equally lovely, but less
modern. Supporting old technology until it has too few users for the support to
be worthwhile is the only way to go, as a ubiquitous interface cannot ever really
go about denying access to anyone.

F U T U R E - P R O O F W E B D E S I G N 56

It’s an intriguing idea that designers might prefer to avoid degrading or enhancing in
place of a more drastic shift toward replacing the bits that won’t work, and in today’s ever-
diverse and crowded marketplace of variables, admitting the failings of earlier approaches
and providing a series of “fall forward” alternatives could really do the trick. For all the
benefits that pushing boundaries can offer, however, many designers fail to go outside of
their own comfort zone on the idea that they may upset the Internet gods (or more explic-
itly, IE).

This mechanism (which Andy Clarke refers to as hardboiled) forces us to rethink how we
design, rework the way we test, and, if I’m being honest, it’s a great evolutionary step to
admit that we don’t have much control, so we may as well throw caution to the wind and
have a little fun while we’re designing. When working with this method, you should treat
compatibility as an opportunity to find useful solutions for the new and exciting gaps in
the modern Web’s texture, doing so with consideration of the consequences.

Reference

For details on the hardboiled philosophy, which I refer to as adaptive design
because of its remodeling of a site based on the capabilities perspective, it’s
worth checking out the materials relating to Andy Clarke’s interesting ideology:
http://hardboiledwebdesign.com/talk/.

Considerations and justifications: Adaptive design
The adaptive technique builds on the ideology of graceful degradation by stating that a
design shouldn’t just be accessible and aesthetically pleasing, and it mustn’t limit or
restrict your realization of the finished design (or what you expect it to be). When it
comes to fixing problems, you literally work backward, patching as you find limitations in
the way a user’s environment can be experienced. You begin by gracefully degrading as
much of the site’s interface and functionality as possible, and for more major issues, add a
unique alternative.

You can’t hope for a future-proof site without having flexibility in your approach, and you
certainly won’t be ready for the future if you remain trapped in the old mentalities held
toward code. There are some things you can do by enriching your interfaces with visual
treats (a few of you may have toyed with CSS3’s box-shadow or border radius before), but
that just isn’t enough. Rather than limiting your potential for code usage, you should
instead admit that drastically different doesn’t mean unacceptable, and follow that.

http://hardboiledwebdesign.com/talk/

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 57

Regarding compatibility, you want to equip a site with the best-possible features and offer
whatever else that you could possibly imagine using, but then proceed to filter downward,
intelligently picking alternative routes to deal with problems as they occur. Perhaps you’ll
find that some conditional comments will do the trick, perhaps you’ll create an unobtru-
sive script to replicate functionality, or maybe you’ll need to go overboard and offer a
degraded stylesheet for the experience. What matters is that the user can enjoy it (see
Figure 2-8).

Figure 2-8: Visitors will make the most of whatever they’re given, so don’t be afraid to design
adaptively.

Some web designers argue that the top-down approach isn’t the most fluid method of
working (perhaps because they’re not used to it). You may have additional work ahead of
you, but it’s certainly a worthwhile technique to consider. An example of the top-down
approach in action is how we approach font stacks in web design. We don’t immediately
restrict ourselves to what we know will work for everyone. We start with the best-case
scenario and fall back with more recognizable iterations until the user hits something he
will have installed.

Tip

The CSS3 target selector can help you achieve content on demand, but web
browsers without its support would fail to show anything other than the default.
Rather than just not using it because of compatibility, you could offer old
browsers an alternative stylesheet.

F U T U R E - P R O O F W E B D E S I G N 58

The truth is that the average web user won’t really mind if things differ, depending on the
interface they use. In many cases, they may be used to browsing with mobile-oriented
layouts, which differ from the desktop ones (because of browsers trying to cope with a
rather oversized layout by zooming). CSS3 will never be announced as complete, allowing
everyone to upgrade in unison, and many of the traditional routes to compatibility can-
not cope with diversity, so attack becomes the best form of defense.

The final thing to consider is to what extent you should employ such techniques. The idea
behind being adaptive (or hardboiled) is to avoid the “graceful” part of degradation. While
this might seem like a risk too far for some people, if you’re determined to have a flexible
layout that adapts to the needs of the content, compromise is necessary, and you need to
make some hard decisions along the way. Building an adaptive design falls on your ability
to iterate the degrading ideology in reverse; if you can do this, consider it carefully.

Level 4: Responsive Design
Adaptive design revitalized the graceful degradation scene, providing a flexible but stable
second-generation model to work with. The now-popular responsive design theory makes
the same philosophical leap, except in this case, forging itself upon the work of progres-
sive enhancement. Knowing that various situations require a customized experience is
only one part of this whirlwind romance with designers. The ethos of responsive design
reaches into (and breaks) the old mentalities toward design (known as the one size fits all
model).

Responsive design: A love story
Based on the discipline of responsive architecture, Ethan Marcotte (who, like Andy Clarke,
is a well-known web designer) highlighted that because times were changing more rapidly
than ever before, our old ideas of targeting environments or platforms with purpose-built
experiences often weren’t in a user’s best interests. We have previously highlighted the

Reference

Typography on the Web has been a problematic affair for years. Not only are
there multiple ways of embedding a font into a page (such as directly from a
file you own or by using a service like Typekit), considerations must be made
regarding the fallbacks you want to use. The following site lists a few of the
potential typefaces you can include: http://www.speaking-in-styles.
com/web-typography/Web-Safe-Fonts/.

http://www.speaking-in-styles.com/web-typography/Web-Safe-Fonts/
http://www.speaking-in-styles.com/web-typography/Web-Safe-Fonts/

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 59

ill-advised justification that some use for a separate “mobile” layout because of the lack of a
good definition for what mobile constitutes and the diversity of devices. So what’s new?

This methodology brings together three useful techniques into one useful implementa-
tion, which progressively increases the flexibility of our sites for the better. Traditional
sites that used to be labeled compatible don’t appear to be so these days because what
looked great on the desktop doesn’t fit well in smaller- or larger-screened environments.
This technique interjects upon the work of progressive enhancement by offering the tools
to better account for diverse user environment variables, and offering layouts added elas-
ticity (see Figure 2-9).

Figure 2-9: Being flexible in the responsive sense involves fluid layouts, with clever showmanship.

By using a combination of media queries (conditional comments for the viewport, rather
than the browser), flexible images that scale to meet the demands of the available screen
space so not to waste bandwidth, and a flexible grid (the tricky act of balancing everything
into a non-fixed width layout that will further scale), you can produce designs that flex for
the needs of what’s using them more accurately. Basically, you’re breaking down a design
into “margins of scale,” thereby offering multiple, flexible methods to achieve the effect.

F U T U R E - P R O O F W E B D E S I G N 60

When you think about it, the old “flexible” liquid layouts worked fine in the restrictive, old
world of the desktop that only differed slightly in terms of resolution. Now that designers
must accommodate a whole range of devices that can jump from 6 to 106 inches, the task
of arranging content in that space becomes quite a task, and the issue is only going to get
worse as the technology divide increases. Getting this accurate to scale would be impossi-
ble if you had only one layout to work with; media queries help in this challenge.

Tip

Here’s an easy way to think of media queries. Consider the following clothes
analogy. If you go to a store and find a shirt in one size, it would fit only a few
people. Offering a range of sizes (while not tailor made) increases the audience
for them. That’s how it works! You’re just providing visitors with a size that
matches their own requirements.

Responsive design differs from progressive enhancement because designers don’t use it
just to go beyond the limitations of one situation; they try to take a bunch of intercon-
nected situations (relating to screen size) and resolve numerous scenarios with some
good, solid practices. Being progressive just means that you’re willing to look at things
from a holistic perspective, building upon early foundations as well as current trends.
Responsive design is about pushing past some common barriers, and toning your site’s
muscles for flexibility.

These are the muscles’ responsive design tones:

> The physical space users have, relative to the design

> Flexibility in regard to portrait or landscape orientation

> Fundamental layout options based on viewport sizes

Making smaller layouts more touch friendly is possible. Making larger layouts a bit easier
to use with strange input devices (like remote controls) is possible. Redesigning an entire
site to increase the usability of a complex interface on smaller screens (perhaps by using
progressive disclosure) is totally doable! Each customization you provide, if done for the
right reasons, can benefit the user, especially on restrictive devices. It helps you offer agile,
sensible layouts that don’t provide any more or less (time wasting) content than necessary.

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 61

Considerations and justifications: Responsive design
Responsive design isn’t a silver bullet, and the facts are that there may be occasions where
a different solution or separate layout may be appropriate. The cool thing about tech-
niques such as this is that they force you to reconsider what you believe is important and
they also help redefine what users need and how a site becomes more compatible for more
obscure configurations. As a result, we should end up focusing on the variables and capa-
bilities of a user’s environment and cease thinking in terms of mobile, desktop, or other
stereotypes.

One consideration with responsive design is that the widths applied to media queries or
the image scales provided need to represent your visitors and their needs. Being prepared
and knowing your audience’s requirements are of critical importance. In the application
of these techniques, or any other, it remains critically important that you source some
reliable statistics and act on them based on the needs of your content and visitors, in pref-
erence to just following along with the crowd and building a layout that may not appease
user needs.

Note

While media queries can be a useful tool in making your designs more
responsive, they cannot be used without some insights into how our visitors will
be using your pages. You will need to account for common resolutions, viewport
sizes, and situations in which the visible space will be affected. You can’t just rely
upon a single consideration at work.

There is also a compatibility issue that needs to be addressed. Media queries are part of the
CSS3 specification and as ironic as this appears, there of course will be a number of brows-
ers (old and new) that only have partial or non-existent support for the lovely and useful
technique. More worrying is that many devices and browsers still have quite spotty sup-
port for the @media rule in general (like handheld). This leaves you in a paradoxical situa-
tion in which your responsive designs must respond to not being able to be responsive!

If this issue confuses you, you’re not alone. Working around such a quirk can be frustrat-
ing. But it’s worth pointing out the adaptive philosophy in this instance as it really does
justify the need to be flexible. It’s not really a case of you either using media queries or
nothing at all; the fact that you can use them and they both enhance and degrade well in
equal measure is a justification to include the support they offer (amongst other tools sim-
ilar to them) to benefit whatever a user has that can use them. Perhaps this is also a case
for JavaScript.

F U T U R E - P R O O F W E B D E S I G N 62

Here are ways to layer flexibility using several mentioned techniques:

> Begin with a fluid or liquid layout that scales beautifully.

> Add media queries to scale the liquid into sensible portions.

> Increase the flexibility further with script-based solutions.

Either way, responsive design prefers a quite casual approach to the forging of designs. If we
build layers from the lowest denominator within our field of vision (like tiny screens, low
bandwidth, and measurable variables like the ones this book is based on), increasing to the
more capable environments with the flourishes or nifty enhancements users may want,
we’re on the road to success. Some deem this specific methodology as mobile first, but in
truth, no one really can say that mobile will remain the lowest rung on the stability ladder.

As a final note, one of the key components of responsive design is to be realistic in what
you can achieve, focusing on the best performing and most agile solution you can use
without your visitors suffering. It’s about making the most of the space and the time you
have, not making broad, sweeping assumptions about your users to dodge any common
perceptions such as “only handheld devices need speedy sites” (consider that desktop
users might have data caps or dialup access). Variables, after all, affect a diverse audience
for different reasons.

Level 5: Reactive Design
Graceful degradation and adaptive design are a perfect representation of the modern way
designers tackle the new range of technologies without limiting themselves to the safety
net of the lowest common compatibility denominator. But this isn’t the end of the story.
While the preceding levels simply focus on the “design layer” in order to account for vari-
ables that affect an experience, by using clever code and behavioral engineering, we can
build even more flexible, durable layouts, and it’s with this that we’ll introduce reactive
design.

Reactive sites: Beyond behavior
By using scripting in your interfaces, whether on the client side or the server side, you can
make interfaces and sites ever more responsive and adaptive. When you have the basics of
compatibility down, you can look beyond the limited and restrictive power behind CSS
media queries (which only tackle predetermined visual situations that occur within the
browser) and provide something more assertive but proactive in your goal to help users
receive the best experience possible. I call this methodology reactive design.

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 63

One of the major criticisms of responsive design and its counterparts is that for a layout to
truly live up to the identity of being responsive, we must actually offer feedback or some
form of response once an environment has been altered (or individual changes in the way
in which they’d prefer to experience a site). Traditional compatibility techniques tend not
to respond in the sense of offering feedback, but merely flex to an environment as needs
occur. While being non-static is an incredible feat for a design, I feel we can do more.

These points can make a site work better within its environment:

> The ability to personalize a layout based on your identity and needs

> Customization tools that put users in control of content they receive

> Scripting aids that autonomously try to help users make choices

Rather than being responsive, a reactive site actually analyzes its situation and makes key
changes as that variable is altered. If you consider something simple like bandwidth, while
a responsive design would prefer the mobile-first “nothing more than is necessary” route,
a reactive design would see what the environment would be able to handle, and provides
more or less content as is appropriate. This isn’t to say fluff would be inserted, but you
could, for example, push more blog entries to users, or HD video to faster, more capable
connections.

Previous compatibility considerations force us to look at statistics and feedback, so that
we can code ready-built prefixed solutions for our users, but ideally we shouldn’t need to
do all of the hard work ourselves. A truly responsive site will account for necessary vari-
able considerations and make an automated measured response by altering layouts
accordingly (perhaps like in Figure 2-10). This may seem a little farfetched, but it’s pre-
cisely what can be achieved using scripting if designers manage to create a framework to
account for it.

With regard to durable scripting, you can see at this point that a designer would need to
use a mixture of the client and server side because JavaScript can do things that can’t be
done at the server (but it can be crippled, limited, or disabled), and the server side can do
things that the client-side cannot. The situation isn’t perfect, and the technique to pro-
duce such a mechanized route to compatibility would be hard, but from the perspective of
the bigger picture, this is an ideal place for a framework or project to begin, means-testing
the user’s environment and personalizing on the move.

F U T U R E - P R O O F W E B D E S I G N 64

Figure 2-10: Dreams of a reactive framework. Who knows what we’ll be able to calculate in the future?

In essence, reactive websites can be produced, and all you need to do is put some thought
into how you can let a browser or script avoid the need for specifying defaults. If you were
to perform chemical experiments, reactions would occur as the variables came into con-
tact with each other. The Web may not be a test tube, but with the rapid rate of its evolu-
tion, a more scientific approach could be helpful when accounting for the variables
mentioned in this book. One size will never really fit all, and not everyone will fit into
ideal categories.

Philosophies of a reactive Web
Providing preset solutions isn’t necessarily a bad idea, as we need to take baby steps to
avoid going crazy with the markup and superglue. But the consequences for doing just
enough to get the job done are that 95 percent of your audience will be happy. While the
other 5 percent will demand more, it’s also true that at a certain point, the cost of building
a dedicated solution may outweigh the benefits. Ultimately, as reactive as we can make our
sites, it’s up to you to determine at what point you feel that a solution just isn’t economical.

Note

One thing worth remembering is you can’t satisfy everyone. Users will enter
your site with preconceptions about what they believe makes a good design, and
every user will have his own needs and limitations. The best you can hope for is a
happy majority.

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 65

I discussed the benefits of client-side detection in making sites more reactive by letting the
browser decide what is good for unique environments. Now, it’s worth giving some credit
to the work done in server-side development and how this could not only affect the visual
web layer but the behavioral one, too. By letting users create an account with a site, and
offering the option to manipulate objects and their positions upon the page as they see fit,
you’ll enrich the user experience, catering toward individual needs (see Figure 2-11).

Figure 2-11: At the server side, we can remember user preferences for an interface, no matter where
they are.

Not only can you provide tools to improve the readability of your site’s content, you can
actually improve the overall interface by becoming more personable. Reactive layouts that
allow for enriched customization can remember how a user browses, offer useful links
that relate to her browsing habits, and eliminate unnecessary data, based upon her pref-
erence (say, if she didn’t want to see images). While providing automation for compatibil-
ity can be a challenge, putting the power within the user’s own hands can ease any learning
curves.

Examples of reactive design in the wild would include any site that has a primary focus on
customization or personalization, based either all or in part on user activity or her own
explicit preferences. Experiences become more satisfying when they’re easy to use, and if
you can empower the visitor by giving her the choice in what appears, how the page will
render, or even what features she has; you can take the presumptions and throw them out
the window, leaving only individuals and their desire for a useful, handcrafted interface.

Note

You could provide a control panel that allows users to decide what appears
on-screen (in modes like small, medium, or large). Furthermore, you can allow
your users to build profiles of the devices they use, catering a UI around it (like a
programmable universal remote control). Also, consider how both preferences
and content may be ported between devices.

F U T U R E - P R O O F W E B D E S I G N 66

Personalizing user interfaces is a common practice when dealing with content manage-
ment systems. The practice is generally applied in behavioral engineering techniques
online. For example, consider how Google caters advertising toward its visitors or how a
blog can show related links to the material they’ve recently read. Being creative with these
useful mechanisms can aid compatibility by profiling the visitor’s concerns and site usage,
offering meaningful details to help you cater content toward a user’s specific require-
ments.

Ultimately, the Web is going to continue to evolve, and we must maintain our dedication
toward giving the user the best experience possible. Using this technique doesn’t mean
that we should get privacy intrusive, force user accounts to be created, or start logging a
user’s every move. It’s about rethinking the way we look at design beyond how we cur-
rently do, and then being able to look to the future and decide how we can provide an
automated, manual, or preconfigured solution to the situation. That’s what our job
revolves around.

Ubiquity to the power of five
If your site has taken into account the ideologies of the first two levels, why not consider
using adaptive and responsive design to provide some additional layers of functionality
and flexibility so that it can cope with previous, modern, and future standards? The key to
reimagining these techniques isn’t so much in that we’re going to just replace them or
throw degrading and enhancing code out the door. Instead, it gives us a chance to push our
code to new heights, embracing whatever the Web has to offer in a safe, useful manner!

To ensure compatibility, you will probably find yourself using a combination of different
techniques to ensure your site can withstand all the stress testing that a user can place on
it. Each technique has its own advantages and disadvantages, especially when certain
types of variables are involved, and each has its own route to success, so don’t feel that
you have to limit yourself in your endeavors to maintain a future-proof site. After all,
unless you’re a psychic, it’s highly unlikely that you’ll predict all that will appear over the
coming years.

C H A P T E R T W O T H E F I V E P R I N C I P L E S O F U B I Q U I T Y 67

Pick your weapon wisely, or create a hybrid:

> Graceful degradation

> Progressive enhancement

> Adaptive design

> Responsive design

> Reactive design

All of these techniques are best practices and it’s worth reiterating that the future of
design as we know it isn’t something that’s awaiting our permission from a far and distant
land—it’s here, right now! Handheld devices are on the rise, desktops are growing in
diversity, web-enabled television sets are gaining adoption, and we might potentially find
ourselves living in an Internet-powered house. Therefore, being both flexible and compat-
ible is web design, and anything that contradicts diversity is a relic of a world long gone.

3

Designing for the
Desktop
Accessing content and services from a variety of
devices

F U T U R E - P R O O F W E B D E S I G N 70

ONE DEFINING ASPECT of an online experience is that you can access content and ser-
vices from a wide variety of devices. Whether you use a cellphone, tablet, laptop, or desk-
top computer, your actions are restricted both by the limitations and features of your
device (such as the display’s quality and touch capability) and by the software running on
it. In this chapter, you see how traditional desktop devices can affect your site’s users by
the mixture of hardware and software that makes a distinction between product models.

Knowing the Challenge: Compatibility
In the early days of online computing, desktop PCs were the only devices commonly used
to access the Web. Even today, when thinking of average Internet users, many designers
still think in terms of the trusty desktop computer. Of course, modern computers aren’t
limited to big, boxy machines. Laptop computers and their smaller cousins, netbooks and
nettops, are in widespread use. These devices are gaining popularity because they make
the Web more easily accessible to users while they’re on the go. For your site to be success-
ful, you must take all these devices and their differences into account.

In addition to looking at the types of machines available, web designers must consider the
age of the machines. Although you’d like to think that each of your visitors browses your
site using the latest equipment, lower specification, legacy machines are likely to still be
commonplace (especially in large businesses where upgrade policies vary). As a result, you
may have slower hard disks and processors, less RAM, and even an old version of an OS
working against you. So, you must be open to addressing the needs of older technology.

Note

Often people have higher expectations of desktop machines than of other
devices, but this isn’t always accurate. Gaming laptops, for example, are often
more powerful than an entry-level desktop computer, and unlike their desktop
counterparts, laptops often come with webcams built in that can be used by
creative web designers and developers!

Within the realm of desktop computers, compatibility is a real challenge. All the possible
configurations can amount to a lot of unique machines. With all the possibilities and the
different ways each component can affect individual users, you need a flexible approach.
There is little restriction regarding what OS or software can be installed, and this unique-
ness means that you cannot rely on the machine as a whole, but on the sum of its parts. If
users can change their browsers, for example, the site may be visually affected.

C H A P T E R T H R E E D E S I G N I N G F O R T H E D E S K T O P 71

In the past, testing for desktop computers focused less on the hardware and more on the
software environment. But with the rise of cheap gadgets, some of which are explicitly for
use on the Web, the form factor becomes worth considering. Pages with process-heavy
CSS animations, hardware-accelerated scripts, and multimedia may find that they lag or
drain the battery of lower-specification devices. As developers try to provide users with
engaging, complex interactions, such optimizations have become increasingly important.

With a wider range of devices available to consumers comes the need to be more consider-
ate of the devices’ limitations and benefits. Each device will have advantages and disadvan-
tages, and it’s your job to analyze how your work may be affected. Whether you’re dealing
with the increasing numbers of legacy devices, or offering functionality to take advantage
of the coolest, latest, high-specification machine, desktop computers and their more por-
table counterparts continue to be fundamental to how users interact on the Web.

Addressing desktop compatibility issues
When you consider the range of desktop devices on the market, it’s not surprising that
compatibility among device types is an issue web designers must deal with. As an
example, suppose that one of your visitors is using an 11-inch netbook that is highly
portable but not powerful. The visitor is inexperienced when it comes to Windows and
hasn’t installed any service packs in the Windows XP system. Even worse, he isn’t even
aware that alternative browsers exist (so he still has Internet Explorer 6 running as the
default), and because the visitor lives in a rural area without low-cost broadband, he is
restricted to dialup access.

When the visitor browses to your site, he recognizes the fixed width layout but isn’t
too happy to have to side-scroll because of a lower resolution. The visitor also isn’t too
happy with the heavy use of Flash automatically playing video on the home page to
showcase your app. The video pushes heavily on his system’s resources, causing the
page to load slower than a delivery at the post office. Also, by not supporting the visi-
tor’s older browser, you inadvertently created a messed up visual interface, and
although it may be the fault of the browser, the user just expects things to work and
will blame you for the quirks.

Situations like this one aren’t uncommon. Desktop devices are not necessarily free of
the restrictions that handheld alternatives encounter. Many people still are restricted
to dialup or low-grade Internet access, screen sizes can vary dramatically, and power
behind the devices can vary, so diversity is as relevant for desktops as it is for mobile
devices. The trouble is that when thinking of a desktop machine, many designers think
of high resolutions, speedy machines, and the latest web technologies and browsers; in
the case of a netbook and other devices, this isn’t the case. Try to do all you can to work
around these real-world issues.

F U T U R E - P R O O F W E B D E S I G N 72

Desktop
Many web-enabled form factors exist, but none have sustained like the desktop computer.
From the early days of the Web, you’ve been able to use the traditional tower with a mon-
itor, a keyboard, and a mouse attached to browse the Web (see Figure 3-1). Even today,
these machines remain a popular choice for consumers. Desktop computers are highly
customizable with a wide range of features. These machines remain popular among online
gamers, businesses, and users who don’t want the upgrade constraints of portable devices.

Figure 3-1: Desktops have existed for a long time, so you need to take older web-capable devices
into account.

The following lists show this device’s family tree and some issues its members encounter.

Relatives: Considerations:

> Workstation > Institutional longevity

> Media center PC > App configurability

> Gaming computer > Hardware upgradability

> Kiosk systems

> All-in-one PCs

C H A P T E R T H R E E D E S I G N I N G F O R T H E D E S K T O P 73

Practical solutions
When designing for the desktop, the first issue that can affect your sites is institutional
longevity. In many academic and government organizations, computers tend to have a
longer “in-use” shelf life than you might expect, which can be particularly problematic if
you use the latest technologies or have high-specification-based requirements. With older
machines still in constant use and with demands for older, less-capable browsers (such as
Internet Explorer 6 for corporate intranets), compatibility becomes essential.

Dealing with institutional longevity within your web designs doesn’t have to mean being
old-fashioned; it just requires you to be practical when building a site around the specific
demands of a consumer’s system. Though you might want to take advantage of the latest
and greatest features of the Web, instead you should use either progressive enhancement
or graceful degradation to provide a stable fallback for when the best can’t be achieved.
After all, it could be years before these organizations decide to upgrade!

One of the great things about desktop computers is that they often support a wide range
of applications and browsers. In terms of the adoption of standards in browsers, desktops
still lead the arms race. Although many handheld devices are getting better at keeping up-
to-date with the Web’s latest innovations, adopting web standards on these platforms
often results from porting a desktop solution to the mobile environment. As a result, sta-
bility often comes at a cost to availability — and is affected by whether a user happens to
have the right tools installed.

Note

One reason legacy devices and software exist in institutions is because the cost
of upgrading can be enormous. If you have 100+ computers, you must deal
with the cost of licenses, installation, maintenance, support, and more for each
machine.

When novices buy a computer, they often use whatever is installed, out of the box. This
practice is fine if your site supports all the major browsers and if users have products such
as Microsoft Office installed (which opens up a range of websafe fonts); otherwise, this
practice can create complications. So, you’ll want to consider how ubiquitous a piece of
software is before depending on its features for sites and services, including anything
from typefaces, to frameworks (such as Adobe Air), to use of the Skype pseudo protocol.

F U T U R E - P R O O F W E B D E S I G N 74

With the latest hardware acceleration features included in modern browsers and with the
amazing things that can be achieved (without Adobe Flash) using HTML5, jQuery, CSS3
animations, and more, many consumers worry about having a computer powerful enough
to cope. Desktop computers are traditionally the most powerful device a user owns
(they’re also often easy to upgrade), so issues aren’t as likely with desktop computers as
they are with legacy or low-performance devices. Of course, even the performance of a
really beefy machine can take a hit.

To help assure your site’s stability, a good practice is to benchmark and stress test the
heck out of your Hollywood-style effects. Although being able to produce an interactive
comic book that uses more movement than a cartoon is great, effects that drain resources
can stress even the most powerful machines. This is a very real issue for desktop devices
and other computers, so avoid going over the top with anything that may cause bottle-
necks (unless required for performance, such as in a game).

Best Practices
> Consider that your visitors may not have high-specification machines.

> Remember that users can disable or uninstall software and plug-ins.

> Avoid performance-heavy functionality, or at least limit its impact.

> Benchmark and stress test how long it takes for your site to process.

> Be flexible and compatible with various hardware and software types.

Laptop
The portable Internet dream has been around for quite a while, and the humble laptop (see
Figure 3-2) has met the wishes of many surfers across the Web. Over the years, these small
form-factored devices have increased in power, and for those who don’t need the hardcore
energy of a traditional desktop computer, these highly streamlined devices are a great
alternative. In regard to stability on the Web, they do have limitations on the hardware
they contain (especially in legacy devices), but they remain flexible in terms of software.

C H A P T E R T H R E E D E S I G N I N G F O R T H E D E S K T O P 75

Figure 3-2: Laptops sacrifice upgradability for portability, which results in both benefits and pitfalls
for designers.

The following lists show this device’s family tree and some issues its members encounter.

Relatives: Considerations:

> Gaming laptop > Preinstalled systems

> Ultrabooks > Power supply limitations

> Desktop replacement > Hardware expectations

Practical solutions
Whenever you buy a new computer, software almost inevitably comes already loaded on
the device. Sometimes, a piece of software is a useless component, such as a trial version
of a graphic-intensive computer game, but in many cases, the software is beneficial to
designers and websites. Many laptops come with plug-ins preinstalled (such as Flash), and
often you get a range of websafe fonts in the machine, but preinstalled systems may also
come with toolbars bundled with the default browser, reducing the amount of real estate
for layouts!

F U T U R E - P R O O F W E B D E S I G N 76

Each manufacturer will install different products that, in general, will positively affect the
ubiquity of formats (such as Adobe’s PDF format). However, keep in mind that clutter can
bog down a system, and the performance of a site and the computer may drop as a result.
A best practice with preconfigured systems is to remember that some users may remove
software, others may format their hard disk and reinstall their OS on purchase, and sup-
port for certain file formats may vary considerably. Offer a range of document formats.

Laptops, and especially gaming laptops, have one major consideration in web design. It’s
not their portability (though that is certainly worth considering); it’s the amount of
power they guzzle! When users are on the move with a gaming laptop, it makes sense that
they’ll want to be able to browse their favorite sites (hopefully, yours will be among them).
As computers become more powerful, even if they’re more efficient, users may suddenly
find themselves running low on power, at which time, browsing becomes a time-sensitive
issue.

Tip

Power supplies can affect computers in all sorts of ways. Screen brightness
may be dimmed (so be sure your content has a good contrast), Wi-Fi may be
turned off (so allow users to browse offline), and media could be reserved for
later viewings. The implications are that you can’t expect users to see things the
same way you do.

Although you can’t really do much to conserve visitors’ use of power on your site (beyond
limiting the use of plug-ins such as Flash and intensive browser effects), you can ensure
that visitors take actions quickly and, if needed (when battery levels become critical), con-
tinue at a later date. Demanding that visitors complete a form in two minutes may seem
like a great way to motivate them; however, what if they need to power down to prevent a
crash? Obviously, in certain situations, you can’t realistically expect them to continue on
your site. Therefore, design your sites so that visitors can easily resume a session and, if
they want, continue an action they weren’t able to complete.

Finally, you need to examine hardware expectations. If you’ve ever owned a laptop, you
know that these devices come with a great deal of technology carefully encased in the
chassis. Pointer input devices (such as tracker pads and touch screens) have become a
mainstay as an alternative to the mouse, speakers and microphones have gained added
ubiquity, and users now expect to have the lowly webcam on many systems. Of course,
these cool technologies have implications for designers, and you must factor them into
your designs.

C H A P T E R T H R E E D E S I G N I N G F O R T H E D E S K T O P 77

Because of the expectations associated with these devices, avoid assuming that users will
have access to a mouse that can click with precision; remember that touch devices could be
used in preference to more tactile tools like keyboards (laptops have begun experimenting
with touchscreen sensitivity); and try taking advantage of tools that come with a machine
by default. Why settle for textual comments when you can provide optional YouTube-hosted
videos or an MP3 voice message via a laptop’s built-in microphone or webcam?

Best Practices
> Check that third-party toolbars and sidebars don’t obscure the viewport.

> Check that your documents work in a variety of viewer applications.

> Remember that your visitors may be working in a restricted environment.

> Power doesn’t last forever; balance battery use against feature usefulness!

> Consider utilizing webcams, speakers, microphones, and other hardware.

Netbooks
Calls for cheaper computers that are also highly portable have pushed the netbook revolu-
tion into a successful market. These highly mobile, lower-cost machines (see Figure 3-3) are
popular but can be tricky to accommodate. Many designers don’t consider the issues that
arise as a result of these machines’ smaller screens and the fact they’re less powerful than
laptops. The differences among these devices are as substantial as those between a laptop
and a tablet computer! They must, therefore, be treated with care as you work toward a sta-
ble site.

Figure 3-3: Netbooks may not be powerful, but they’re very popular tools for browsing the Web.

F U T U R E - P R O O F W E B D E S I G N 78

The following lists show this device’s family tree and some issues its members encounter.

Relatives: Considerations:

> Chromebook > Hardware fatigue

> Subnotebook > Visitor choices

 > High portability

Practical solutions
Although netbooks are fantastic as low-cost web browsing devices, they’re not the most
powerful beasts in the digital jungle. They tend to have great battery life, but very little
hardware power, so a real concern for designers is that lagging occurs if sites use proces-
sor-intensive animations or effects. Layouts and interfaces are becoming increasingly
complicated, so think about how much pressure and stress you place on machines in
terms of rendering and resources; otherwise, instability may occur.

Heavy Flash animations may result in unresponsiveness during rendering. Furthermore,
if a site becomes unresponsive, there is an increased chance that the tab or browser will
crash when interaction occurs. Obviously, crashing browsers and lagging, unresponsive
sites are unacceptable, so if you can reduce or better distribute the load (using AJAX, for
example), users will be happier. If a site crashes the browser consistently, users will likely
avoid the site. Try not to just progressively disclose or hide content not in use; instead,
scale it down (reducing the size to match the environment) and load it only when it’s actu-
ally required.

Although hardware fatigue and crashing have a huge influence on the general stability
and durability of a site, visitors’ choices can be just as central to ensuring a future-proof
layout. Today it’s commonplace for sites to offer different environments for devices of
varying capabilities and situations, yet site designers continue to make assumptions and
decisions on behalf of users — for example, by not allowing them to determine how inter-
faces should be presented.

Note

There are movements toward offering netbooks a unique browsing experience
not seen on PCs. The Google Chromebook, for example, is entirely web oriented
because it runs Google Chrome (with nothing else). Although this places a
strong emphasis on cloud-based services and limits system tweaks, users will
be unable to change their web browsers.

C H A P T E R T H R E E D E S I G N I N G F O R T H E D E S K T O P 79

If you provide alternative sites and decide to direct users toward a particular environment
(such as a handheld-reduced layout or a desktop design), design your site so that visitors
can jump between the two alternatives easily. Although there are debates about whether
two versions of the same site are ever needed, it’s accepted that there may be times when
a capable handheld device gets a weaker experience or a less-capable computer is forced
into using the heavy-going version. Choice is not only good in terms of usability but also
because it empowers users.

Because netbooks are generally so small, they have the added advantage of being highly
portable. This feature gives visitors the ability to access sites from many different environ-
ments, but the truth is that this ability can present its own fair share of issues. Beyond
the obvious issues of security (see Chapter 10) and connectivity (see Chapter 9), an imme-
diate concern is the environment in which users are working. They may be in a calm or
busy location, a noisy or quiet place, or in a small, crowded, or large open space.

Designing sites that are easy to browse is critical to the longevity of your users’ visits
(users will quickly press the Back button if they fail to find what they seek). Large-click
regions (links with plenty of clicking space) help users in cramped conditions or when a
page is scaled out. Be sure that links offer the capability to confirm actions (such as the
Delete option to correct mistakes if, for example, a user’s arm is bumped resulting in an
unwanted action). Avoid automatically playing audio (especially for users at work), and
design your site so that every page has focal points to pull users away from distractions
elsewhere on a screen.

Best Practices
> Ensure that your site and functionality won’t crash a user’s computer.

> Consider providing the ability to skip or turn off intensive flourishes.

> Always offer choices in how the content and service can be consumed.

> For perspective, browse the site in a variety of real-world situations.

> Avoid unexpected behavior that may embarrass visitors on the move.

Nettops
These devices, unlike netbooks, don’t get the attention they deserve. Nettops are low-cost
desktop PCs that have the same web-focused aim as netbooks (see Figure 3-4). They offer

F U T U R E - P R O O F W E B D E S I G N 80

users an easy way to browse the Web, with few of the bonus features of a full power
machine. Some people prefer a larger screen and added power over less portability, which
nettops, unlike netbooks, provide. Nettops haven’t caught the public’s imagination like
netbooks have, but they’re web-friendly devices worth considering for the sake of
compatibility.

Figure 3-4: Nettops are like desktop computers, but they have much less power and are more
web-oriented.

The following lists show this device’s family tree and some issues its members encounter.

Relatives: Considerations:

> Cloud PC > Flexible form factor

> Webtop > Cloud potential

 > Single-use services

Practical solutions
Nettops are an oddity in that the form factor and experience differ greatly among models.
Sometimes these devices are used as low-cost “nodes” to allow multiple users to share
system resources (workstations); other times they work as plug-and-play media center
units that can be hooked up to monitors as an alternative to a television. Nettops are even
durable enough to be used as cloud devices (using Google Chrome OS or another OS to
keep things web specific). As you can imagine, targeting this range of devices is tricky.

C H A P T E R T H R E E D E S I G N I N G F O R T H E D E S K T O P 81

Consider an Internet café in a developing nation utilizing this technology to allow a group
of people to share a low-cost web connection (via a central server). If such a site contains
numerous resources and files making HTTP requests, users will be forced to wait as the
priority system on the server delivers content at an inconsistent rate. As the designer, you
can help avoid this situation by consolidating external files. By combining your CSS and
JavaScript files, building image sprites, and caching objects, you can reduce waiting times.

Cloud computing is on the rise, and storing everything in a secure, continually accessible,
and globally available location is an appealing thought. Service designers are starting to
focus on this idea, taking everything online and using the hard disk purely for temporary
storage. Businesses such as Google, Dropbox, and Apple are helping to push this concept to
the maximum. So, as the idea of sustained user sessions evaporates and if you utilize cook-
ies or personalized features such as user profiles, alternatives must be provided.

Note

Nettops represent a new era of devices that are so bound by the constraints of
the equipment that users could frequently find themselves unable to browse
a site if it doesn’t have a fallback to rely upon (such as the capability to save
to Google Docs). Change isn’t an option when these devices cannot have their
hardware or software changed easily!

When you think of a user, you tend to picture a single person with his or her own com-
puter and unrestricted access to the OS. However, the issue is that cloud computing forces
local sessions to be treated like browsing at a public library (where you’re bound by the
vendor and their shared usage considerations). Data on a disk may be treated like the
movie 50 First Dates, in which memory is erased upon rebooting, caching is unpredictable,
and cookies become unreliable. For a fluid user experience, you always need to think about
what may happen if local data storage is lost.

Finally, you need to consider the case of single-use services. Never mind the minefield of
shared devices and the problems they can cause in regard to tracking users, session data,
and browsing habits. Have you considered how the site might be experienced by visitors
who are simply testing a device (or using the Web) on an unfamiliar system? Imagine, if
you will, a user in a PC retail store trying out a device or unit that could be his next PC. Or
imagine that he borrows a friend’s machine to visit your site. How do you handle this?

Part of having a stable site is making sure an experience is consistent on many platforms.
Although you don’t want to make everything look identical, you need an interface with a

F U T U R E - P R O O F W E B D E S I G N 82

recognizable flow. If, for example, your users have multiple devices (like a phone and a
laptop), the ability to use both devices makes or breaks the situation. When in the market
for a new computer, they might factor how well your site works into their decision. If they
use a friend’s machine or a PC at work, they’ll need their profile to migrate seamlessly to
the new machine.

Best Practices
> Avoid using profiles and user scenarios; stereotypes are dangerous.

> Learn how different devices browse the Web; your education matters.

> Reduce HTTP requests to help visitors whose data priority is queued.

> Use cloud storage or backups for apps and services to avoid data loss.

> Treat computers like public devices and account for differences in use.

4

Helping Out the
Handheld
Designing for handheld and ultra-portable
mobile devices

F U T U R E - P R O O F W E B D E S I G N 86

DESKTOP DEVICES HAVE a long and established history as the pioneers of online expe-
rience, and the (to play off the song) times they are a-changing. The ability to take your web
experience on the move is a compelling idea, and it’s one that has gained mass appeal
worldwide. This chapter analyzes the effects of small, handheld devices, showcasing why
they matter. The chapter also covers the different experiences that each device type and
model offers, and you discover how to be sure that your sites will work among them.

Benefiting from Portability
As far as web access goes, portability is the best game in town (if you need information
and cannot afford to wait). You can’t travel on the train, or go anywhere for that matter,
without seeing people using cellphones, tablets, eReaders, or even web-powered watches
to grab data on the move. Making your website usable on these popular platforms is
essential to the success of your site, because as the world becomes increasingly connected,
users are becoming more dependent on the benefits of technology.

Designing websites that are compatible with such a wide range of mobile devices poses a
unique set of challenges. Many mobile devices differ significantly from one another in terms
of hardware and software capabilities, which can make creating an interface that is stable on
all devices difficult. Users who aren’t web-savvy may not be willing to upgrade to smart-
phones, either through a lack of knowledge about the benefits they could bring or because
the more capable and powerful smartphones cost more than traditional cellphones.

Note

Obsolete technologies tend to linger more on handheld devices (such as
cellphones) than on desktops. WAP/WML, for example, still exists. It’s hard to
imagine that just five years ago, the capabilities of these handheld devices were
primitive! Because this industry is evolving fast, the ubiquity of such devices
is vital.

When choosing a layout for your website, keep in mind that mobile devices come in all
shapes and sizes. Some phones may have larger screens than others, some have keyboards
that are easier to use than others, and certain phones have better browsers than others.
The distinctiveness of these products justifies the need to treat handheld devices as a new
and exciting medium to work with. Responsive design will help to a certain extent (as will
adaptive design, another useful design tool), but you must be willing to compromise to
find a solution that meets your site’s needs.

C H A P T E R F O U R H E L P I N G O U T T H E H A N D H E L D 87

You also must consider the issues that touch screen devices present. They lack, for exam-
ple, a traditional number-based keypad (which is commonplace on older featurephones)
and mouse-click precision. Working on a small screen can be worrisome for designers
wanting to ensure that user interactions are as stable as possible. Furthermore, many
mobile devices have their own range of browsers, often with unique rendering engines,
which means the testing methods and variables you use must differ from those used in
desktop development.

A number of recommended best practices exist for dealing with the variables in handheld
devices. These solutions usually stem from common hardware and software problems,
such as the quirks for touch screens, highlighted in the upcoming sidebar, “The Apple fan-
boy.” By dealing with these common issues (such as offering a purpose-built site or layout
common for all screens under a certain size), designers can improve an experience and
help resolve many well-documented complications. Make this one of your goals!

The Apple
A visitor navigates to your site, and like many people, this visitor happens to be an
Apple fanboy. Apple products are pretty popular these days, so you need to consider
them as a factor (whether you like the platform or not). In this case, the visitor has an
iPhone and an iPad, using each device for different situations while visiting your site—
the former while on the move (such as commuting to and from work), and the latter
while at his office or at home, thereby overcoming the space restrictions that can occur
in a crowded train car.

The problems your visitor encounters when visiting your site may differ widely, even
regarding something as standardized as an iOS device. The visitor could, for example,
have an older model that doesn’t support Retina display (where HD video content will
waste bandwidth) or could be using another browser apart from Safari, perhaps one
like Opera Mini. Of course, all the devices are likely to have, or not have, certain things
that can affect the experience, such as the lack of Adobe Flash support in the system.

Once the visitor gets to your site, perhaps he is doing fine and his mobile experience is
equal to that on a desktop because of care and attention on your part. On the other
hand, he may struggle to cope with the tiny click regions on the links or with the drop-
down menu you provided because hovering events via a touch interface aren’t too
effective. Even worse, maybe those lovely, space-saving content overflows aren’t work-
ing that well because of the need to use two fingers rather than one to scroll in such
situations. Thinking about how these devices operate, and taking the time to code a
workaround, can often eliminate these types of issues.

F U T U R E - P R O O F W E B D E S I G N 88

Tablet
Creating a stable interface isn’t as easy as offering a desktop or cellphone solution. With
their touch-screen interfaces and portability, tablet computers such as that shown in
Figure 4-1 have many of the technical considerations of a phone. Tablets have a large
screen, more power, and often more capabilities than a cellphone, however. Some tablets
actually run a desktop operating system, and others run a mobile one. In this way, tablets
bridge the divide between a laptop and cellphone (at least in terms of usage scenarios).

Figure 4-1: Tablets offer a lightweight way to browse sites on the move.

The following lists show this device’s family tree and some issues its members encounter.

Relatives: Considerations:

> Ultra-mobile PC > Device sensitivity

> Tablet hybrid > User environment

 > Device legacy

Practical solutions
Many tablet computers come preloaded with a desktop OS, and although tablet-friendly
variants are beginning to make their mark, mobile operating systems are often used as a
desktop alternative. Beyond the complexities that this can cause in relation to an inter-
face’s user-friendliness, hardware capabilities can be limited and underpowered.
Combating such differences in scalability may require you to avoid behaviors that demand
the user to manage windows (such as pop-up boxes and dialog boxes), and offer fallbacks
to multi-touch gestures.

C H A P T E R F O U R H E L P I N G O U T T H E H A N D H E L D 89

Anyone with fat fingers will tell you that trying to tap one of two tiny links next to each
other is annoying, and nice chunky, easy-to-locate links turn this struggle into a pleasing
experience. By clearly organizing your navigation menus and laying out your page to avoid
squeezing too many interactive elements together, you can avoid such difficulties on
touch devices. That’s not to say everything on the page should be sumo-sized, but appro-
priately scaling an interface will make a big difference.

Depending on the environment, devices will often come with a method for allowing users
to reference their sites beyond the browser. On iOS, adding custom iconic shortcuts to the
home screen is possible; for desktop operating systems, the Bookmark and Favorites
menus allow users to revisit their favorite sites quickly. Although it may seem like a small
feature, the ability to add shortcut links (with custom-designed favicons) gives web
designers an opportunity to bridge the gap between native and web-based applications.

Reference

Creating a favicon or Apple touch icon is relatively straightforward, and
Wikipedia has a fantastic guide detailing the conventions and formats you must
provide for cross-device support (beyond ICO and 16x16 pixel formats):
http://en.wikipedia.org/wiki/Favicon.

If you’re providing a web app, it makes sense to include a favicon, an Apple touch icon,
and a meaningful title (to act as the filename) to be sure that the process of adding short-
cuts works well for software. However, don’t forget about the little things that can increase
a site’s ease of use. Consider the on-screen keyboard in iOS, which lets you pick from a
range of domains like dot com when you enter a URL. If you can get a domain name that
tablets and other devices will default to (and users will easily remember), do it.

Tablets may be wonderful devices, but they can’t be upgraded quickly and cheaply. As a
result, many users hang onto their devices for a long time. Although this does give web
designers an idea about how much power they might have to work with, it’s also true that
legacy devices become a real side effect of these situations. If the device, hardware, or
software can’t be easily (or cheaply) upgraded, users will tend to delay purchasing a com-
plete replacement.

Take the time to understand the base configurations of different types of devices, not just
the current ones, but also ones in the past. Understanding these defaults allows you to
use data you find in analytics packages. If you have visitors using an iPad, you’ll be able to

http://en.wikipedia.org/wiki/Favicon

F U T U R E - P R O O F W E B D E S I G N 90

determine what they can work with, and if they’re using a device that has ten-year-old
components and an outdated copy of Windows Mobile, you know it’s time to despair!
Knowledge is the key to successful website design, and without it, you’re running blind.

Best practices
> Be sure interactive on-page elements don’t require pinpoint accuracy.

> Tablet computer users hate tiny objects; scale your site accordingly.

> Remember to add favicons; doing so brings the device and site closer.

> Provide interface shortcuts within your site to aid efficient browsing.

> Learn about individual devices and their capabilities to guide your work.

Smartphone
Part cellphone, computer, game console, and just about everything else, these small yet
durable devices have gained widespread popularity for their capability to undertake mul-
tiple tasks on the move. Because of their size and compact nature, smartphones (see
Figure 4-2) are a genuine challenge for designers. Because they often sport high-quality
browsers using the latest web standards, smartphones aren’t as limited as many expect.
Also, enhancing an experience by offering custom-built apps can supplement a site’s use-
fulness.

Figure 4-2: Smartphones are capable devices, but scrolling a small screen can become tiring.

C H A P T E R F O U R H E L P I N G O U T T H E H A N D H E L D 91

The following lists show this device’s family tree and some issues its members encounter.

Relatives: Considerations:

> Android (Google) > Model abundance

> BlackBerry (RIM) > Popularity bias

> iOS (Apple) > Function simplicity

> Symbian (Nokia)

> Palm OS (Palm)

> Windows (MS)

Practical solutions
When dealing with smartphones, an immediate issue to contend with is the sheer number
of these devices. Literally hundreds of different models are out there, roaming people’s
pockets, and as a designer, you need to contend with the diversity they bring. Some
smartphones have their own dedicated custom-built browsers (and rendering engines),
which can be a problem in terms supporting standards. Others put staggering ranges of
component quality into the mix. Coping with the diversity in this market is a real issue.

Because of the range of smartphones, testing is also a challenge. Getting your hands on
the physical devices is always the best practice because you’ll get an idea of what the aver-
age individual is actually (or likely) seeing, but buying loads of devices could quickly
become very expensive. As a result, many web designers rely on emulators to provide a
simulated example of how sites will appear under the devices’ constrained conditions. The
great news is that emulators are usually free, and you’ll need to search for each one online.

When it comes to choosing devices for testing, you will find a wide selection of smart-
phones. The popularity of these phones is without question, and the number of mobile
users is set to overtake desktop numbers in the future. Knowing that these devices are
increasingly important, you want to cover all popular bases. Although it would be nice to
treat all devices equally, not all of them are born equal in terms of popularity or demand
(and, of course, users’ preferences change over time).

F U T U R E - P R O O F W E B D E S I G N 92

You can’t please everyone. So, always test your site on the most-used devices first (this
form of targeting will have the greatest effect on users). Often, the most talked-about
devices aren’t the most-used ones. Although iOS and Android often get the most media
attention, unless your niche relates to Apple, Microsoft, or Google, a platform like Nokia
is equally likely to have high usage stats. Research your options, set the most-used devices
as a best-case scenario, and allow the site to flex beyond those proportions for other
devices.

Because smartphones are compact devices without much space or many resources to go
around, device makers employ all sorts of techniques to make life easier for users.
Interfaces in browsers tend to be much more refined, and functionality is often simpler
than in their desktop counterparts. This situation can cause problems when designers
rely on browser-based functionality in order to use an interface, and it can also be a prob-
lem if the user’s device (on any type of platform) has little to no functionality (such as the
Lynx web browser).

Users often use the default browsers in smartphones to avoid incurring additional cost or
complexity in an app store. As with the desktop, many users may not understand the
advantage of getting a different browser and will continue to use what they’ve been given.
Want users to make use of in-page searching? Looking to push a browser extension?
Aiming to use some quirky JavaScript alerts? Beware. The resulting behavior may be
highly unpredictable, so reduce your demands on their devices.

Best practices
> If you want to test on a range of phones for free, try some in-store models.

> Be sure that you don’t forget older, deprecated versions of smartphones.

> Every device manufacturer has an emulator; don’t forget to test on them.

> Find out about popular devices from independent sources like NetApplications.

> Avoid relying on browser functionality because it may not be available to users.

Reference

If you’re looking for some free emulators, go directly to http://sixrevisions.com/
web-development/mobile-web-design-best-practices/ and check the end of the
article. If you’re seriously looking for some cheap testing devices, perhaps look
on eBay!

http://sixrevisions.com/web-development/mobile-web-design-best-practices/
http://sixrevisions.com/web-development/mobile-web-design-best-practices/

C H A P T E R F O U R H E L P I N G O U T T H E H A N D H E L D 93

Featurephone
While the latest, greatest smartphones represent the best of breed in the handheld mar-
ket, the classic featurephone (Figure 4-3) in its many task-oriented forms remains a popu-
lar option worldwide. Known for their low cost and availability, these devices come with
access to the Web (a low-quality WAP browser, perhaps with HTML if you’re lucky) and
usually sport number keypads, low color or monochrome screens, and little in the way of
general computing features. Essentially, they’re a throwback to the old days of the
Internet.

Figure 4-3: Featurephones may be basic, but they outnumber smartphones significantly.

The following lists show this device’s family tree and some issues its members encounter.

Relatives: Considerations:

> Cameraphone > Information entry

> Musicphone > Secondary features

 > Hardware quality

Practical solutions
One problem with older featurephones is that they often come with a very limited input
method. Only having 12 to 15 tactile buttons can make life difficult if you’re trying to
enter data (and aren’t a texting speed demon). Also, these devices are usually limited to
supporting only basic HTML (on a good device) or WML (the norm), which makes orga-
nizing forms rather difficult. These devices are mostly oriented toward viewing textual
content, so tackling the demands of interaction is critical.

F U T U R E - P R O O F W E B D E S I G N 94

Sites requiring input from users will have issues attracting users of these devices. Typing
on a numeric keypad with support for alphabetic input takes time and energy; it’s also an
unnatural way to type if you’re used to working on a QWERTY keyboard. Always allow
your visitors to avoid filling in forms whenever possible, only requiring that they enter
information when necessary; even then consider offering choices in drop-down menus.
Progressive disclosure is the order of the day, and reducing the number of entry fields will
save time.

The feature aspect of the featurephone has represented the diversity that can be achieved
on these limited, single-focus devices. In particular, two types of featurephones, the cam-
eraphone and the musicphone, have the potential to affect how your site will be accessed
and used. For these low-quality devices, manufacturers must offer a unique selling point.

Tip

Don’t spend too much time worrying about the different types of featurephones
that exist. Instead, spend your time worrying about the quality of the underlying
browser and whether users can successfully navigate your site with ease (when
it’s stripped).

Cameraphones in some devices may be able to take a snapshot or picture and upload that
content to a site (which might be nice if you allow avatars in user profiles). Musicphones
may let users hear podcasts or download MP3 files. Also, some featurephones may have
superior-quality screens or perhaps a more technically capable browser. These differences
can make or break a site, and there’s little you can do about it. Still, they’re worth knowing
about — for example, you could offer MP3 formats for users who can’t use a Flash player.

Face the facts: Featurephones are cheap, and with cheapness comes a lack of quality and
generally low system specifications. One thing that particularly frustrates me is that
despite their low quality (hardware and software), featurephones represent a huge por-
tion of the Internet-browsing mobile-market share. Recent statistics show that up to 70
percent of all phone sales are for featurephones, not smartphones, and this reinforces the
theory that the most popular devices often aren’t the ones that are used the most.

With so many featurephones in use, you need to focus on the structure of your site. If the
device supports only HTML or WML, you won’t have the style you’d like to have available
to help you define the site’s quality. Working with these bare-boned devices requires a

C H A P T E R F O U R H E L P I N G O U T T H E H A N D H E L D 95

look back to the days of old. Forget all the flourishes and concentrate on a good navigation
menu and some high-quality content. That’s all these users can hope for, and honestly,
when you boil the design process down, it’s actually what the Web is all about.

Best practices
> Forms are the enemy of featurephones; make them optional if possible.

> Focus on ensuring content visibility to give cellphones a chance to work.

> Allow the use of a featurephone’s camera, microphone, or speaker on a site.

> Structure your navigation menus carefully, with emphasis on simplicity.

> Write high-quality, succinct content; focus on reducing the fluff.

eReader
With the popularity of digital publishing, devices such as the Amazon Kindle have become
popular reading devices. Built to improve the readability of print-based media on digital
screens (using eInk), eReaders (Figure 4-4) deserve consideration in design. While these
devices aren’t powerful, the majority contain (at least for the time being) a black and
white display and little support for animation or Flash. One feature that eReaders do have
is that the devices are often the size of a book, and have rather unique screen sizes.

Figure 4-4: While eReaders may not be powerful, they often have good rendering engines.

The following lists show this device’s family tree and some issues its members encounter.

F U T U R E - P R O O F W E B D E S I G N 96

Relatives: Considerations:

> Cybook (Bookeen) > Visual content

> Kindle (Amazon) > Vendor lock-ins

> Nook (Barnes & Noble) > Readability levels

> Pocketbook (Pocketbook)

> Reader (Sony)

Practical solutions
eReaders are built to view content (in the form of digital books). As such, when it comes
to something like web functionality, they can become overwhelmed with the dynamic and
less than static nature of the average site. Although many early eReaders might have a few
problems viewing images in general, modern devices really do struggle to deal with inten-
sive animated effects or videos. Times are changing, and this limitation may soon be over-
come, but for legacy support, you want to at least consider offering a static fallback.

Dealing with online movement shouldn’t give you too much trouble. Libraries like jQuery
are built to gracefully degrade when accordion effects or visual flourishes aren’t available,
and if your scripts are not intrusive, the alternative shouldn’t be a problem. Also, if CSS
animations aren’t supported, they will be ignored. Additionally, for the sake of accessibil-
ity, offer Flash fallbacks so that if a plug-in is unavailable, content will load. Dropping or
reducing the use of animated GIFs may also be a good option.

eReaders are pretty strict, and for good reason. Although, as a secondary feature, they are
Internet-enabled devices, primarily they are meant for reading content. Because of this,
vendors tend to restrict their devices to supporting only the rudimentary tools that come
shipped on the device to read online content. With firmware being upgraded only occa-
sionally and with the dependency on device makers, you have to rely on choices that are
offered or preset by default (which is different than the situation with desktops).

Note

JavaScript, in particular, has a few issues to contend with when it comes to the
Amazon Kindle. Although scripting support comes natively with the device and
can be used, it’s unfortunately disabled by default. So you might literally have to
ask users to turn it on!

C H A P T E R F O U R H E L P I N G O U T T H E H A N D H E L D 97

Dealing with this feature, which is described by Amazon as an “experimental application,”
can be challenging because the end user will have a limited browser to work with. Yes,
users can zoom in on the page. Sure, they can have the text read out to them (having the
screen reader might be useful). However, there’s no opportunity for users to get a better
browser, use a different rendering engine, or use cool plug-in technologies. As in many
cases, it’s the content that matters most, and designers need to focus on that aspect.

It’s definitely worth reiterating and placing emphasis on the eReader’s readability levels.
Looking on the bright side of life is a great idea when you’re working with devices (after
all, if you looked at all the negatives, you’d be too depressed to get anything done), and
with eReaders, once you get the content on the screen, the reading experience is usually a
very high-quality one. Therefore, focus on what these devices are good at, offering a great,
elegant way to read content, free of interference and distractions.

First, pick decent, readable typefaces that scale in size to match users’ needs. Users of
smaller devices will always appreciate something that is highly readable without zooming.
Users of eReaders in particular will love seeing some well-defined text and characters (so
choose fonts well). White space (giving breathing room) and single-column layouts are
also good choices because many books follow these conventions (small screen users will
also benefit). If users expect book formatting, why not offer it?

Best practices
> Keep animation to a minimum for devices with a slow refresh frame rate.

> Avoid telling users to change browsers because they probably won’t have that option.

> Don’t expect functionality to always be enabled, even if it’s included.

> Offer a print-friendly UI for devices that use them.

> Try to define appropriate font sizes for an optimal reading experience.

PDA
Before the days of smartphones and after the days of pocket calculators, the PDA (per-
sonal digital assistant) took the idea of computing into a tiny form factor offering a
scaled-down experience with comparable features (think the Apple Newton). Although
these devices aren’t as popular as they used to be, their web enablement entitles them to
support on your sites. Many PDAs (Figure 4-5) offer scaled-down keyboards and stylus

F U T U R E - P R O O F W E B D E S I G N 98

pointers and sport smartphone-sized displays (but with fewer or no colors), and outdated
and weak browsers.

Figure 4-5: PDAs were the precursor to smartphones, and many are still in use requiring legacy
support.

The following lists show this device’s family tree and some issues its members encounter.

Relatives: Considerations:

> BlackBerry > Layout degradability

> HTC > “Pen point” accuracy

> Palm Pilot (Palm) > Postmortem viability

> WinMo (Microsoft)

> Other (Ogo & Sony Mylo)

Practical solutions
Without pulling any punches, browsing the Web on a PDA is pretty awful. These devices,
which are the precursors to smartphones, have a number of issues in usability, rendering,
and a whole lot in between! The problems become critical enough that in designing for a
PDA device, you need to try to patch together a stable interface by ensuring everything
degrades with a fallback and a purpose. Consider something like Windows Mobile, which
takes advantage (or should that be disadvantage) of dead versions of Internet Explorer.

Degrading your layout is as much a matter of making use of your space as it is utilizing the
patching technologies available to code to regain some control over layouts. A few out-
dated PDAs have monochrome displays, plenty don’t have a high pixel depth (making

C H A P T E R F O U R H E L P I N G O U T T H E H A N D H E L D 99

images look substandard), and with browsers comprised mostly of early adopter support
for CSS 2.1, the result of your style and behavior could be crippling. If a site breaks upon
testing, conditional comments, code compilation, hacks, and filters may be useful.

Browsing the Web on a PDA comes with an advantage and an input device that gets around
the small screen issue: the digital pen (or stylus). By offering these tools with the device,
users can tap the screen with accuracy (that is, if they don’t just use their fingers, instead).
Slightly counterproductive is that in preference to offering zoom functions, many PDAs
predating the smartphone era overwrite CSS styling to scale content correctly or use scroll-
bars (in both directions) to simulate a full screen, keyhole preview in the window.

Tip

Looking for some PDA browsers? Plenty of archive sites and download portals
retain their collections so that fans can still use the now mostly obsolete devices
on the Web. While the PDA may be an old platform, it is worth finding some
emulators for testing.

When dealing with PDAs, you must treat the device with care. Click-region sizes are prob-
ably not going to be a major issue because of the stylus, though small text could prove a
bit tricky for those who want to actually read what’s on the screen. In addition, PDA
devices of old seem to have a few issues with images. I’ve encountered cases when images
more than 150 pixels wide may not be rendered (correctly or at all). So, scale down your
images for the device’s capability, and in the process, save some bandwidth, too.

It may sound harsh, but with the advent of smartphones and the increasingly popular
featurephone, the good old PDA has fallen into a bit of disrepair. Even though the devices
may have entered retirement, retro fanboys and enterprising users of the devices con-
tinue to develop for these platforms, giving even the oldest of devices a better experience
and a refreshing attempt at compatibility. Although users are required to download the
apps and make the change, doing so helps to resurrect the dead devices.

Apps cannot solve hardware problems like a poor screen, a weak input medium, or a worn-
out battery, but what they can do is provide users with a browser that (at least) supports
the latest web standards and makes better use of the viewport. When designing for PDAs
and older handheld devices, encouraging users to upgrade their software can help (if it’s
done responsibly as a request, not a demand). If users decide not to upgrade, check that
links on the page function correctly, and try to ensure that designs offer a handheld
stylesheet, too.

F U T U R E - P R O O F W E B D E S I G N 100

Best practices
> Be sure your images are legible on resolution-poor displays.

> Squeeze your content into one column, avoiding scrollbars.

> Try the site on a PDA without the stylus to really push its usability.

> Install a variety of browsers for each PDA platform for testing.

> Offer users a mobile handheld stylesheet for compatible devices.

Wristwatch
Although other handheld devices have already gained support, it’s worth looking to the
future and to what tiny devices like digital watches (Figure 4-6) may have in store. It may
be surprising that something so small can be used as a web device, but with gadgets like
the iPod Nano going mainstream, and companies already beginning to put WAP and web-
capable watches into production, supporting micro-devices is surely going to be worth
considering in the coming years. How does your site look on a 3-inch display?

Figure 4-6: A web-enabled computer on your wrist? It’s entirely possible and likely to happen!

The following lists show this device’s family tree and some issues its members encounter.

C H A P T E R F O U R H E L P I N G O U T T H E H A N D H E L D 101

Relatives: Considerations:

> Fossil Wrist > Device usability

> sWaP watch > Update frequency

> ZYPAD > Feed syndication

Practical solutions
Although the number of web-enabled wristwatches is fairly limited at the moment, the
basic principle of creating technology that is smaller and lighter is making them a viable
option for the near future. When designing for such devices, the main issue is that as
devices become more compact, you have to work harder to prioritize content within the
available physical space. Maintaining a usable interface on a 3-inch screen is tricky, and
scrolling becomes a necessity. But as with life, all things are possible!

Without focusing too much on the screen, offering a usable interface for watches requires
considerable visual changes to your layouts. One popular idea based on the iPod Nano is
to turn your navigation menu into a series of icons that progressively disclose the content
once a selection has been made. Achieving this could involve either using an entire page
for menu options (for WAP-only devices) or using media queries and some other clever
scripting toolkit to account for the exceptionally cramped environment and requirements.

Because, in the past, many of the digital watches were proof of concept designs rather
than serious mainstream computing devices, updates for the platforms have been few and
far between. Earlier models focused on single firmware versions with no upgrades, and
this really pushes web compatibility to the limit. However, as with many of the old, retro
devices, the rush of users with a renewed interest in this type of device has inspired indi-
viduals to hack or modify the devices into doing what they want. Fun for all indeed!

Reference

A number of apps offer VNC-style remote control of a normal computer
 (making it an input device). A couple of my favorites are Splashtop
Remote (www.splashtop.com/remote/) and Mobile Mouse Pro
(http://mobilemouse.com/).

http://www.splashtop.com/remote/
http://mobilemouse.com/

F U T U R E - P R O O F W E B D E S I G N 102

Realistically, making a site compatible with this platform isn’t something that many peo-
ple should worry about (for now), but with the future of devices in question and with
nanotech getting better, accounting for micro-devices and their future in browsing expe-
riences makes sense. Another practical consideration is that watches could become remote
controls for TVs, PCs, and more (affecting browsers as an input device). If this does hap-
pen, your content must be able to scroll easily, and the browser’s UI (notably the Back
button) should continue to function with stuff like AJAX.

When you have a page filled with content and a device with reduced capabilities, size does
seem to matter. It would be unfair to place the entire blame on these devices’ native capa-
bilities because over the years sites have increased in size, density, and features. Previously,
lots of energy was put into trimming pages into small, efficient machines, but in this
modern era of broadband and high-speed connections, this art form has been all but lost.

Easy ways to deal with this issue are to work through the content, eliminating marketing
text, unnecessary data, and fluff. Content management is something that more designers
need to take advantage of, and tightening the copy helps in a number of ways. Beyond
this (and the reductionist approach), many sites offer syndication feeds such as RSS and
Atom to offer content to those who want quick, efficient updates. Finally, if your site isn’t
ideally suited for newslike updates, you could just break down pages into smaller ones!

Best practices
> Try experimental interfaces for more uncommon situations.

> Don’t just focus on native capabilities; devices can be remote controllers.

> Ensure that default browser functionality isn’t crippled by your code.

> Break down lengthy pages of content to reduce the pressure caused by scrolling.

> Offer your content in a variety of syndication formats.

5

Evolving for
Entertainment
Designing for the latest generation of
web-enabled devices

F U T U R E - P R O O F W E B D E S I G N 106

ENTERTAINMENT DEVICES ARE shaking up the Web. Although we currently live in
the age of a handheld revolution, it’s correct to say that entertainment devices such as the
humble television set are ready to join their digital cousins in becoming the latest web-
enabled tools. In this chapter, you find out about the entertainment devices that have
already shaken up the Web, and you also take a look at the practices that could help you
retain a compatible layout.

Bringing the Web into the Living Room
In recent years, attitudes about the use of the Web have changed. Designers have been
worrying about the impact of handheld devices on site experiences for a while, but the
more subtle forces of beginner-friendly and web-friendly entertainment gadgets have
been gaining momentum. The benefits of bringing the Web and its hours of entertain-
ment into the living room are easy to see, and the simple, easy-to-use interfaces that such
devices are equipped with make them worth considering.

When thinking of Internet television, you may consider the early experiments like MSN
WebTV or a game console’s multiplayer mode. Your sites and services can and will be
accessed on these devices (game consoles and set top boxes act like intermediary bodies,
giving an online experience to those who don’t want to replace their existing hardware).
However, because of their cost, the adoption of all-inclusive Internet TVs has been slow,
though like HD and 3D, web access has become an expected feature of such devices.

Tip

Many barriers to entry exist in web interaction, and entertainment devices in
particular will struggle with complex layouts. Bulking your interface with larger
click regions and reducing the visible content per page will help the device and
any TV it’s connected to.

Regarding compatibility, the problems with multimedia devices don’t often stem from the
hardware they provide because they’re mostly standardized. Legacy issues with older
devices that fail to get any firmware upgrades are problematic and will remain a major fac-
tor, but unlike cellphones, the upgrade ratio for game consoles and set top boxes is a gam-
ble these days. When contemplating old devices (retro gaming could keep old stuff in the
mix for decades), the situation with browser quality and input devices becomes messy.

C H A P T E R F I V E E V O L V I N G F O R E N T E R T A I N M E N T 107

Television devices with web access, though not entirely ubiquitous or standardized at the
moment, will very likely become a mainstay in future Internet use. These types of devices
are highly appealing to those wanting to rent or gain access to onDemand media without
needing to use or buy a computer (increasing the usefulness of their TV). However, the
fact that this technology exists and will become a standard as part of the traditional
upgrade technique means that it’s a case of “sooner or later,” not a vaporware pipedream!

As the Web becomes embedded in gadgets used for entertainment and the technology
matures, your visitors will find themselves experiencing your work in evermore-diverse
situations. If you make your work as flexible and platform-friendly as possible, your sites
are more likely to attract the increasing audience for this medium. New breeds of Internet-
capable devices also show that, even though many people assume that responsive design
is aimed at handheld devices, these new devices can also be useful in catering to grander,
more niche situations.

Accessing the Web with a PS3
Imagine that one of your visitors goes out to buy a game console such as the popular
Sony PlayStation 3, and in addition to using it for movies (via the built-in Blu-ray
player) and its native gaming functionality, the visitor decides at that point in time
that she wants to see what’s new on your site. Perhaps you’ve published a new video or
screencast; perhaps you’ve included an exciting story; you might even have a live event
going on! Any reason will work — for the last few years, most game consoles have pro-
vided built-in browsers.

Upon opening the PlayStation 3’s native browser and typing your site’s address (if she
doesn’t have a keyboard attached and frequently uses the built-in browser), the visi-
tor’s first issue may be that your site was designed with desktop devices in mind.
Because few sites are designed with television screens in mind (not PC monitors and
perhaps a cellphone or tablet), it’s likely that the fixed-width layout you’ve built won’t
look first-rate. In addition, many game consoles currently do not have great browsers,
so the latest web standards may be a problem for them.

Visitors on an entertainment device are likely to have significant issues inputting data
if they’re relying on a TV’s remote control. Additionally, game controllers such as a
Microsoft Kinect or a joystick can be particularly quirky to interact with. As users sign
up for your service, they may find themselves struggling to fill in lengthy registration
forms. In addition, your site doesn’t scale well on their “40+ inch” TV set, which
stretches things out as a result of its low resolution. These factors may all seem rather
farfetched, but they present a situation that’s on the horizon.

F U T U R E - P R O O F W E B D E S I G N 108

Television
Being able to browse the Web on a television (shown in Figure 5-1) isn’t a new invention.
Back in the 1990s, MSN offered a product called WebTV, allowing a browser-based experi-
ence to be served through a dedicated TV set (using a tweaked copy of Internet Explorer).
Although the product is no longer available, its users still exist and require support.
Modern TVs, unlike WebTV, sport widgets, standards-compliant browsers, and tools to
make browsing easier. These modern TV offerings boost the general usefulness of the
feature into something users want.

Figure 5-1: Televisions are an ideal way for novices to get a taste of the Web, without the expense of
a computer.

The following lists show members of the television’s family tree and some issues its mem-
bers encounter:

Relatives: Considerations:

> Smart TV > Distance viewing

> Hybrid TV > Non-standard features

> WebTV (MSN) > Task efficiency

C H A P T E R F I V E E V O L V I N G F O R E N T E R T A I N M E N T 109

Practical solutions
Diversity in size is one of the defining characteristics of televisions. You can buy TVs that
are anything from 10 to 100 inches (and potentially bigger, if you really have money to
burn). However, even if your sites are scaled up to enormous representations of their
desktop counterparts, you need to consider how viewing distance could affect the con-
tent’s visibility. Televisions, in general, have lower resolutions than computer displays, so
you can’t rest on your laurels when it comes to ensuring good visibility of your site.

When most people use a computer, they tend to sit only a couple of feet away from the
screen and are able to make out the crisp, high-resolution on-screen details. However, this
is not the case with TVs, and now especially with large TV screens, people are sitting far-
ther away from the device, allowing their field of vision to account for the larger screen
size (greater distances may also relieve eye strain). To see how visible the content and
imagery of your site is, try sitting in various positions and distances from the screen and
then increase the size of your text if needed.

Another consideration with television displays is that a number of non-standard features
can affect your sites. It’s not uncommon in the electronics world for a company to put its
own spin on a technology. Just think about how cellphone makers have turned the con-
cept of a featurephone into an excuse to customize everything. However, the innovations
that are produced can result in inconsistencies with browser rendering (MSN WebTV) or
with a demand to use proprietary non-browser-based applications or widgets.

Reference

Microsoft has discontinued the WebTV download, but you can still test on the
WebTV platform using the Windows- and Mac-compatible emulator, available at
http://web.archive.org/web/20070622144935/http://developer.msntv.com/
Tools/WebTVVwr.asp.

If you look at the earliest example, WebTV, a number of proprietary elements were added
into the browser to help designers make their pages better suited to television displays. In
modern televisions, technologies like RSS or Atom feeds can be handled via a widget plat-
form. Handling inconsistencies may seem tricky, but if you follow modern standards and
ensure that your code is well formed, there shouldn’t be too much of an issue. Although
user-agents should render things correctly, you’ll likely need to code around their oddities!

http://web.archive.org/web/20070622144935/http://developer.msntv.com/Tools/WebTVVwr.asp
http://web.archive.org/web/20070622144935/http://developer.msntv.com/Tools/WebTVVwr.asp

F U T U R E - P R O O F W E B D E S I G N 110

People visit websites to achieve goals, and this doesn’t change when a television is
involved. One of the critical issues with browsing the Web on a TV is that navigating
around a page is more involved. Consider how hard it is to negotiate a layout using noth-
ing but a remote control. Without a mouse or keyboard (which most sites assume will be
used), the ability to scroll, zoom, or click links will require a great deal of precision. You
want to make these tasks as easy as possible.

Dealing with the restrictions of televisual hardware requires you to reconsider how you
design sites. Many designers concentrate so much on the visuals that they forget about
efficiency. Being able to achieve a job in the shortest possible time and with the least
amount of effort is a good thing, and psychology shows that visitors appreciate those
attributes. Ensuring that navigation menus are informative, well described, and easy to
access (without a mouse or pointer available) makes for a better, more useful, and acces-
sible viewing experience.

Best practices
> Ensure that designs scale up effectively (try zooming pages, for example).

> Put yourself in a similar situation as users; check readability from a distance.

> Avoid proprietary features if you can; they only add additional complexity.

> As always, test on as many devices as possible (and the WebTV emulator).

> Try reducing the number of clicks or keys required to reach a destination.

Game Console
Game consoles such as the Nintendo Wii (see Figure 5-2) have gotten into the web ecosys-
tem by embedding a browser (to varying degrees of success) within their devices. Consoles
not only increase the ubiquity of browsing via a TV, but it brings a new set of interaction
and usage concerns for designers. Unlike televisions, game consoles tend to upgrade their
firmware frequently, leading to better browsers. Also, because of tools like the Nintendo
Wii Wiimote, navigating the page can be a real experience.

The following lists show members of the game console family tree and some issues they
encounter:

C H A P T E R F I V E E V O L V I N G F O R E N T E R T A I N M E N T 111

Relatives: Considerations:

> Dreamcast (Sega) > Unusual interactions

> PlayStation (Sony) > Interface guidance

> Wii (Nintendo) > Game mechanics

Figure 5-2: Unlike the Xbox, the Nintendo Wii comes with a browser.

Practical solutions
Game consoles are entertaining devices, and because they come with built-in browsers
and are traditionally hooked up to a television, they offer an easy portal to the Web.
Ensuring that your site is compatible with gaming computers requires being more aware
of input mediums because users are used to having joysticks, gamepads, and gesture con-
trollers attached to their devices. Moreover, consoles and televisions don’t handle scroll-
ing with dexterity.

When dealing with these devices, you first need to note the differences among platforms
(consoles use desktop or mobile browsers). The browsers that are built into TVs don’t par-
ticularly like the jagged movement of scrolling, so reducing the need to do so via progres-
sive disclosure can be useful. Because hardware keyboards aren’t common in game consoles,
reducing the need for text input makes sense. Ways to achieve this include aids like auto-
complete and autosuggestion features, breadcrumb menus, and drop-down menus.

F U T U R E - P R O O F W E B D E S I G N 112

One prize feature offered by many game consoles is the use of logical interfaces. Although
many TV interfaces probably won’t translate over to the desktop web because of their
high dependency on video and audio, designers can learn a few lessons about the ever-
evolving expectations of visitors. Depending on the platform they utilize, users will
expect different experiences and features (suited to that device). Mobile users often pre-
fer streamlined interfaces; gamers like visuals. So, be sure to keep these differences in
mind.

Reference

Best practices can be gleaned by looking at the components, uses, and features
of a device. Go to http://www.sean.co.uk/a/webdesign/webdesign_
for_nintendo_ds_opera_browser.shtm to find out how you can adapt a
site for the Nintendo DS handheld console.

Consider something as basic, but essential, as a contact form. We’ve gotten so used to let-
ting our hunger for information overload and overwhelm users that the basic usability of
a site suffers as a result. When offering contact forms to devices with smaller screens or
scrolling issues, consider dividing the forms into logical sections with boxes and progres-
sive steps so that users can fill in the forms at their own pace. You can make such drastic
UI changes with televisions by detecting the unique user-agent strings for browsers.

Modern gaming isn’t the occupation of geeks with no friends; instead, it has become an
event that brings together entire families or groups of people, socially connected around
the world. With the Web being an equally expressive and communicative medium, taking
advantage of the TV platform to encourage interaction within a site makes perfect sense.
By utilizing game mechanics, you can add another dimension to your layouts and also
help a website retain a diverse audience, which is necessary for a site to survive.

Examples of game mechanics that encourage interaction and sustain interest levels
include offering user profiles, statistics, and point systems. These common game console
features may seem trivial to the owner of a site, but their addictive nature means you may
achieve a sustained presence on your sites. You’ll also want to consider gaining feedback
by using simple tools such as polls, which, unlike surveys for getting user feedback, don’t
require a lot of time or energy to answer. Gamers tend to become easily frustrated or
impatient, so they’ll want to perceive whatever they undertake as offering them an inher-
ent benefit.

http://www.sean.co.uk/a/webdesign/webdesign_for_nintendo_ds_opera_browser.shtm
http://www.sean.co.uk/a/webdesign/webdesign_for_nintendo_ds_opera_browser.shtm

C H A P T E R F I V E E V O L V I N G F O R E N T E R T A I N M E N T 113

Best practices
> Progressively disclose your content to avoid information overload.

> Visitors expect interactivity, but ensure that it functions smoothly.

> Employ game mechanics to tempt console users to open a browser.

> Everything must have a purpose. If it doesn’t, then don’t include it!

Handheld Console
Although game consoles are bringing their unique charm to the browsing masses, more
mobile products are getting into the arena, too. Whether you’re browsing via a handheld
gaming device that’s provided by a console maker (like the Nintendo DS, see Figure 5-3)
or a dedicated gaming device with web connectivity by a cellphone manufacturer (like
the Nokia N-Gage), access to the Web is easy. Many have customized browsers to deal
with small screens and a range of unique inputs, and like featurephones they are tough to
design for.

Figure 5-3: Handheld game consoles can be just as web-friendly as their TV-connected counterparts.

The following lists show members of the handheld console family tree and some issues
they can encounter:

F U T U R E - P R O O F W E B D E S I G N 114

Relatives: Considerations:

> 3/DS (i) & Wii-U (Nintendo) > Multitasking

> N-Gage (Nokia) > Friendly URLs

> PSP (Sony) > Region responses

Practical solutions
Although desktop consoles can take advantage of a wonderfully large screen, the smaller
brothers of these giants of entertainment tend to be more restrictive, both in the view-
port they provide sites and in the durability of the experience. Consider something that
you take for granted, such as multitasking, or the ability to have a number of tabs hanging
around the top of a browser window. Being able to render windows side by side is some-
thing you may expect (such as opening a new window), but it’s not always available to
your users.

Handheld gaming consoles tend to follow the notion of keeping everything in one field of
vision to reduce confusion. For designers, this means your requests for pop-ups or a new
window or tab (scripted or otherwise) may not work. If you’re designing a site that’ll work
for everyone, avoid trying to do anything that draws attention to two separate pages.
Always allow users to choose whether to use pop-ups and new windows or tabs, especially
because their use can affect low-powered devices.

I’ve already mentioned the issues that data input can have on devices with limited or
more unusual input tools. Now, I want to discuss the effect these tools have on URLs.
Software-based on-screen keyboards are usable; however, they generally don’t have the
accuracy or tactile quality of a traditional keyboard. Although this feature differs greatly
based on the make and model of a device, it’s better to be safe than sorry by using short,
easy-to-read URLs, and avoiding complex strings of characters.

Tip

Extra windows and tabs make using a handheld device a little confusing, but
other on-page media may be detrimental to a user’s experience. Frames and
iFrames, for example, are known for poor accessibility and, if possible, should
also be avoided.

C H A P T E R F I V E E V O L V I N G F O R E N T E R T A I N M E N T 115

One of the more obvious ways to ensure that your site is data-entry friendly is to give it an
easy-to-type, friendly URL (using mod_rewrite) that doesn’t have misspelled words and
that an autocorrect feature (as commonly found in handheld devices) might overrule.
Another issue to contend with is the need for international domain names because input
could be limited to the language of the country in which the device was purchased. Finally,
it makes sense to avoid excessive character strings because inputting text can become
hard work.

Handheld gaming consoles can be useful little browsing devices, offering good resolu-
tions, plenty of colors, and a standards-compliant browser (or at least one that’s close).
Taking on the challenge of building a site that’s compatible for these devices requires
determining what your visitors need to know, when they need to know it, and how to
ensure that when they click a link or do something on the site, that site does what it’s told
to do. There is nothing worse than an unresponsive layout, and you can remedy this issue
in several ways.

Because handheld game consoles have relatively small screens, users must be able to
undertake actions on the device and know where those actions will lead. If the site offers a
lightbox effect, make the image appear at the center of a user’s field of vision. If users
incorrectly type a phone number (say, by slipping an alphabetical character in there), they
will appreciate receiving an alert about the issue next to or near the input box. Users don’t
appreciate unwelcomed surprises, and all actions should be accompanied by a reaction.

Best practices
> Sites need to be self-contained; avoid spreading them into multiple tabs.

> Frames within a page are an unnecessary evil; avoid them at all costs.

> Keep URLs short, sensible, and in English, if possible or applicable.

> Pages should be well-structured, so use friendly URLs to help visitors.

> Keep warnings, dialog boxes, or alerts within the user’s field of vision.

Media Player
The idea that your MP3 player can provide Internet access makes perfect sense. If you’re a
fan of Apple, you know all too well that certain iPods (Figure 5-4) provide such a feature.
In addition, Microsoft’s Zune and a range of other manufacturers offer a browser with

F U T U R E - P R O O F W E B D E S I G N 116

their devices. Like cellphones, media players tend to be compact with tiny screens and a
browser that does the job well. Plenty of these media-playing devices also use a mix of
touch screens with on-screen keyboards to limit the size of the physical hardware.

Figure 5-4: Web-enabled MP3 players are like cellphones, but without the phoning capability.

The following lists show the members of the media player family tree and some issues
they encounter:

Relatives: Considerations:

> Archos > Media richness

> Cowon > Proprietary media

> iPod touch (Apple) > Usage demands

> Zune (Microsoft)

Practical solutions
Many sites, even to this day, have failed to comprehend the help that media can give a
design. Providing video and audio that automatically begins playing without the user’s per-
mission certainly isn’t a good plan; nevertheless, utilizing the power of dedicated media-
playing devices with web capability is central to surviving in the home entertainment
market. If you have a product you want to sell, have you considered guided tour videos?
How about podcasts on news sites? An MP3 player can take advantage of many options.

The use of media on a device can be affected by the support and playability of supported
media formats, and certainly you need to account for browser plug-ins (such as the avail-
ability of Flash). However, if you want to offer media to consumers, you must first

C H A P T E R F I V E E V O L V I N G F O R E N T E R T A I N M E N T 117

consider the quality of the devices. Although an MP3 player will likely have a great set of
speakers and a good sound card, other devices may not have the same screen quality (for
video) or audio capabilities. In such cases, offer alternative, optimized content.

When dealing with MP3 players, you have two types to consider. First are the ones that
are dedicated to playing music with only a browser as a bonus feature. On the other side
of the equation are the tablet hybrids, such as the iPod touch, which are media players
that can perform other functions on the side (and can be treated like small computers).
These variations are central to understanding how media-focused these products are and
more important, how well they can handle the needs of someone browsing your site with
them.

Tip

When offering multimedia on a site, consider how compatible the content is
in terms of web accessibility. Providing audio descriptions, captions, subtitles,
sign language, or translations can go a long way toward giving disabled users a
chance with a device.

If you provide media on your site, be sure that your loyal viewers can access this useful
content. Two issues that dedicated media players experience are that they tend to support
streaming directly from the source, rather than downloading, and they can have a low-
quality browser with good levels of support for formats. Hybrid devices, with their multi-
function capabilities, often have a good browser with solid media support, offering
various video sizes and quality or compression levels to ensure that your users get the
best fit for their model.

Media players are like mobile phones in that people carry them everywhere. Particularly
interesting for web designers is that, with this kind of travel, using audio or video content
can be advantageous in certain situations. Podcasts can be listened to in an office or dur-
ing a gym session (when you need to multitask), screencasts can be watched on a bus or
when you are sitting down, and both need to be as user-friendly as possible to encourage
users to return. When it comes to online media players, resumability and tactility rear
their ugly heads.

Dealing with resumability (the ability to resume a media session) is critical because you
don’t want readers to be cut off during a session with no means of checking their prog-
ress. If the user’s MP3 player (or mobile device) runs out of power, if a browser or OS

F U T U R E - P R O O F W E B D E S I G N 118

crashes, or if the user loses connection with the Internet, having their playing book-
marked is helpful. Beyond offering this help, remember to ensure that a media player (if
you have any control over this) isn’t too fiddly to work with because the visitor may be
playing media on the move.

Best practices
> Consider offering podcasts or screencasts to expand content relevancy.

> Offer a range of compression and video sizes to match device capabilities.

> Provide a range of popular formats to compensate for a variety of devices.

> Always allow media to be resumed because connectivity isn’t guaranteed.

> Users play media in all sorts of places; players need extra flexibility!

Set Top Box
A number of providers have begun building dedicated boxes, called set top boxes (Figure
5-5), which offer the power of WebTV without needing to replace your equipment. These
devices are gaining popularity, not only because of brands like Google embedding Chrome
OS to offer a seamless experience, but also because many onDemand providers now allow
their media to be broadcast and integrated, giving bonus material and exclusive content
via the cloud. This capability offers non-gamers the opportunity to browse the Internet on
their sofas.

The following lists show members of the set top box family tree and some issues they
encounter:

Relatives: Considerations:

> Apple TV > Jailbroken devices

> Boxee > Single-task focus

> Google TV > Lacking in expansion

> TiVo

> YouView

C H A P T E R F I V E E V O L V I N G F O R E N T E R T A I N M E N T 119

Figure 5-5: Set top boxes provide web-browsing functionality to televisions that don’t have the
native capability to do so.

Practical solutions
With the Internet television revolution on the horizon, a good number of device makers
are working on building set top boxes that can offer web-browsing functionality to TVs
that don’t already have web capabilities built in. Many of these devices offer a wide range
of functionality, but there are always going to be a number of enthusiasts who want to
push the technology beyond what it was built to cope with. Jailbroken iPhones show that
web experiences can be dramatically altered with a hack, so let’s focus on the TV equivalent.

The great thing about compatibility for jailbroken devices is that in many cases, better or
more universal solutions present themselves. If a good browser can’t make it into an app
store, the jailbroken version may offer that extended (potentially better) functionality to
devices in a less-restricted environment. However, jailbreaking can go in another direc-
tion and leave devices open to malware, so you need to be sensible in how you support or
use such options. In terms of solutions, only support jailbroken technology if there’s a
demand for it.

F U T U R E - P R O O F W E B D E S I G N 120

Set top boxes in general aren’t known for their multitasking capabilities. Although people
do complain about how limiting a certain MP3 player’s methodology is, the truth is that
set top box devices are so bound by their infrastructure that multitasking is often out of
the question, which isn’t a bad thing because it can help to focus users on achieving one
goal at a time. However, visitors may find that Web browsing is challenging if they’re
forced to go from one site to the next, with little more than bookmarks or their History
tab for aid.

Note

Design is as much about anticipating and providing solutions for when
something goes wrong as it is about trying to keep things looking right. One
variable may topple a site by a quirk of nature, but a single, well-crafted feature
can save a site many times over!

Because these devices are always focused on the here and now rather than the journey
leading up to that point, you need to ensure that your visitors don’t become trapped in a
dead-end scenario. Examine your site’s visual hierarchy and provide relevant crosslinks
and a visible global navigation menu to content that will interest that particular niche
(perhaps this is where video content could be showcased); always be clear about the route
through your site (to avoid wrong turns); and provide some good documentation to help
lost souls.

Set top boxes aren’t known for their expandability. Although some offer a USB or HDMI
port to allow media to be transferred to another device, or in the latter case, a good con-
nection to a high-definition TV (these boxes are the middlemen for browsers as are game
consoles), you’re unlikely to be able to attach a printer or mouse to the box (though cer-
tain devices might offer a keyboard). The legacy consequences for such imposed limita-
tions may be huge.

If a set top box has firmware that isn’t upgraded frequently, browser support may not
move with the times. If the hardware locks itself into vendor-approved devices, how you
interact with the medium will be inhibited. With these boxes of destiny or doom, you
must follow the vendor’s specifications and guidelines if you want to explicitly cater expe-
riences to their users. As with the W3C specifications, you must RTFM (read the fluffy
manual), make appropriate changes, and test on the affected devices. There are no short-
cuts here!

C H A P T E R F I V E E V O L V I N G F O R E N T E R T A I N M E N T 121

Best practices
> Support jailbroken devices in your workflow, if your users have them.

> Regularly check your site to ensure that harmful exploits don’t exist.

> Reading a manual may be tedious, but doing so can be very helpful.

> Don’t punish users for making a mistake; instead, help them recover.

> Documentation is worth its weight in gold. Don’t forget to write it!

6

Automobiles and
Appliances
Considering compatibility with household
appliances and automobiles

F U T U R E - P R O O F W E B D E S I G N 124

HOUSEHOLD APPLIANCES HAVE gained connectivity on the Web, so it’s not surpris-
ing that compatibility considerations go far beyond just desktop, handheld, and enter-
tainment mediums. Of course, sci-fi films have always promoted the idea of living in some
kind of digital home, with robots and weird, yet wonderful, gadgets — and now the future
is here! In this chapter, you examine the ways in which household appliances, transporta-
tion, and even buildings themselves are gaining connectivity to the Web, and how you can
design for these new environments.

Preparing for Your Dream Reality
A few years back, people were making jokes about how Apple’s next product would be an
iToilet (perhaps based on those Japanese toilets that have more technology than a NASA
space mission). However, here we are today with big-brand companies such as Samsung
and LG embedding web enablement in household appliances like microwaves and refrig-
erators, and Microsoft has created cool Internet-enabled furniture (Surface). In addition,
you can now browse the Web in your car or in an airplane. It’s all becoming like a reenact-
ment of wacky races!

Although these devices may seem like gimmicks, they have potential and our vision of the
Web is changing even more than we may realize. A true digital home may be a long way
off, but that’s not to say that a web-connected house won’t happen. Rather than browsing
a traditional interface, these tools parse content and display that data in a unique way,
much like “feed readers.” Simply put, it’s still the Web, but not as we currently know it.

Note

Manufacturers use heavily customized systems, so limitations will be imposed
on users based on the device maker’s API. Objects like a web-enabled
refrigerator will be targeted toward performing specific tasks, so unless you’re
signed up to the system manufacturer’s API, your site probably won’t be directly
affected by such devices.

Some of this fabled technology already exists in a commonplace environment. Consider
transportation and the range of Internet-ready gadgets found in planes, trains, and auto-
mobiles. Many of us drive around with a SatNav, some cars even have some form of enter-
tainment system (such as televisions or DVD players), and lots of us take our MP3 players
on the move, which in the case of the iPod touch means remote web access. Even car
dashboards are becoming more digitally aware, which, of course, could interfere with
concentration!

C H A P T E R S I X A U T O M O B I L E S A N D A P P L I A N C E S 125

To further complicate matters, many of these devices rely on touch screens because
they’re easier to clean and take up less space. In addition, web connectivity is likely to
become an immediate issue as carrier coverage isn’t guaranteed, and to help avoid traffic
accidents, the car may limit or disable your access to gadgets while in motion. Using
hands-free navigation (perhaps using screen reader software that will audibly read con-
tent from the screen) and voice activation may help in this case, but it demands that your
sites be very accessible via the Web.

Regardless of the odd devices that piggyback existing products or those that do the inter-
acting on our behalf, there is an important lesson. Times change, devices change, and
visitors will continue to dictate which products you need to support. Ensuring that your
site works is fairly straightforward, but having a stable site that unconventional devices
can use is a challenge. With such interactions taking place, what you see isn’t always what
users get — it’s a marvelous environment that an increasing number of devices are using.

Creating a futuristic travel site
Imagine that a client has asked you to produce a travel site that offers guided tours to
popular destinations. Taking advantage of geolocation (GPS) capabilities and built-in
assistive technologies will be a useful addition to your site. Perhaps you want to allow
users to learn about a place they’re visiting by offering easy-to-read articles of local
attractions and directional maps. Also, you want to offer them the ability to connect to
the sites of those places and book any necessary tickets online. All within a car!

As cars connected with some form of web technology become roadworthy (some
already exist), you may want to make your site increasingly accessible for the hands-
free aids that many cars offer through voice navigation (this technology is similar to
that of screen reader tools). Assuming users have access to the required technology,
they can hear articles read aloud and continue driving safely. The use of friendly URLs
will also help them choose pages based on filenames or keywords.

By using voice assistance to read content, give directions, and potentially book or
reserve tickets, the only other things users will need to know are where the car is
located and what local attractions are available. Scripts could use geolocation and loca-
tion awareness (as in many smartphones) to confirm users’ locations (using a secure
connection), and then proceed to guide users through the various options that are
available from their cars. All of these capabilities are currently available to consumers.

F U T U R E - P R O O F W E B D E S I G N 126

Embedded Gadgets
The use of integrated technology within buildings or structures is likely to increase. Many
UK hospitals, for example, provide patients with a pay-to-use device containing a basic
phone, television, and web access, and although not perfect, they’re at least better than
nothing in situations where phones must be turned off and cleanliness is king. In the
future, you may see more in-house technology, such as interactive walls, but for now, just
keep your eyes open for innovative ways to access the Internet in various situations and
environments, as shown in Figure 6-1.

Figure 6-1: Embedded displays, such as those at conferences, offer clutter-free, icon-based navigation.

The following lists show members of this device’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Home automation > Shortcut routines

> Interactive displays > Shell redundancy

> Patient TV system > Baseline support

C H A P T E R S I X A U T O M O B I L E S A N D A P P L I A N C E S 127

Practical solutions
One of the biggest lessons you can glean from the adaptation of buildings into digitally
connected habitats is that achieving simple goals is important to users. Consider func-
tional tools like a light switch. Its purpose is straightforward, but while we appreciate the
ability to achieve the goal with one action, we often forget how fortunate we are to have
such a feature. When you apply this concept on the Web, always try to reduce the com-
plexity of a site as you try to achieve maximum user satisfaction levels.

To deal with the increasing need for fast, relevant results, provide a range of shortcuts to
common locations in your site (such as features, sale items, or links to popular sections).
Never force users to learn about or use features that are of no interest to them, and offer
only relevant links to pages. Calls to action and keyboard shortcuts can reduce the stress
of a site by lowering the number of steps users must take to find what they’re looking for
(saving bandwidth), and doing so helps avoid the stagnation and erosion of your informa-
tion architecture.

If there’s one thing that the movement toward the digital home has taught us, it’s that
manufacturers enjoy using proprietary solutions. Perhaps it’s because of the Web’s need
to reinvent itself, but every home automation device and household display unit seems to
run within its own unique environment. Although having other programs piggyback on
your browsers isn’t a new thing (just think of all the browsers using Internet Explorer’s
renderer), it can be a troublesome gremlin to deal with in terms of ensuring compatibility
for a device type.

Tip

Never underestimate the lingering power of old products. Internet Explorer 6
managed to sustain its lifespan beyond what anyone could have predicted. If
you stop supporting something (reducing stability for a good reason), be sure to
notify users about the situation.

Solutions for dealing with these proprietary shell apps that can connect to a site require
less in the way of targeted code and more in the way of testing on archived equipment and
software. Because these devices (like many others) depend on firmware upgrades, you
cannot be sure that users will have a modern system (Patient TV, for example, might use
an old version of Windows CE). Also, because of their limited ubiquity, it makes sense to
test on these devices only if you know that people in your niche use them.

F U T U R E - P R O O F W E B D E S I G N 128

Embedded systems are a concern for legacy support because they’re often tied into your
devices. With many gadgets, we’re lucky that manufacturers treat customers to frequent
(or infrequent, as the case may be) updates. The lifecycle of many consumer products
tends to be a year or more, and software in general has a good reputation for release cycles
(even if you need to pay an upgrade fee to get it). However, this isn’t often the case in
these embedded system devices. For example, it might seem unbelievable, but Windows
3.1 may still be in use on some of them.

When it comes to the technology behind a digital home, think very carefully about the
length of time you’ll continue to support certain devices. If you produce web apps, you
could find yourself tied to using an aging system for an extended period of time (this is
especially true of the fragmentation affecting certain niche devices). As you plan the site,
determine sustainable thresholds for long-term support and publish the details for your
users to see. Education and awareness are as important as implementation.

Best practices
> Reduce the number of steps to success by providing in-page shortcuts.

> Only test on niche usage scenarios if you’re affected.

> Check to be sure that the use of custom interfaces won’t affect your layout.

> Provide a support policy for your site, describing your lifecycle process.

> Extend your support for older browsers, operating systems, and devices.

Connected Objects
Household appliances are going digital, and I’m not just talking about a refrigerator that
tweets (Figure 6-2)! Because a mix of technologies can be used, household objects such as
certain microwaves are becoming web enabled. With the potential for API-based interac-
tivity on social networks, designers could soon be dealing with users through the limita-
tions of third-party services. Some devices, such as digital photo frames, have gained
huge levels of popularity; others, such as kitchen appliances, are still in their infancy (but
they do exist).

C H A P T E R S I X A U T O M O B I L E S A N D A P P L I A N C E S 129

Figure 6-2: Refrigerators with Internet access are no longer science fiction — they’re science fact now!

The following lists show members of this device’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Digital photo frames > MIME-type support

> Internet radios > Niche-explicit needs

> Microsoft Surface > One-function fads

> Smart appliances

Practical solutions
The first issue to examine is the increasing diversity in support for niche device formats,
which is an ancient foe of the Web that has turned many a site into an undecipherable col-
lection of random files. Think of the standards that exist for images that work within
every browser (such as JPEG), the standard downloadable document format (PDF), or the
types of web languages that are recognizable everywhere (like HTML, CSS, or JS). Some
devices may use a non-standard format, which could create incompatibility.

With some devices, such as digital photo frames, you can expect (or hope) that product
makers will support a wide range of formats. Although it may seem premature to get out
the champagne and begin throwing RAW or PSD files onto your site, you should consider

F U T U R E - P R O O F W E B D E S I G N 130

that, in an attempt to be competitive, certain manufacturers may “choose” not to support
their competitors’ files. To ensure the greatest compatibility ratio, your best bet is to keep
things simple and use the standardized, popular file formats.

Designing a site for a particular type of device is totally different than designing a site to be
compatible with as many devices as possible. If you’re in a lucky position and only have to
work an interface around a particular device, app, or niche system, you know what you’re
dealing with! Because there will be times when you need to design a site for specific situa-
tions (whether it’s an intranet, in-app content, or something else), I want to offer a few
essential tricks that can help you maximize your site’s compatibility for the environment.

Best practices for dealing with such a situation include building a complete list of business
and device requirements, ensuring that the site matches in-house stylistic or behavioral
requirements, and trying to sustain the visual flow of connected variables (such as an app,
which will often reflect the device’s look and feel). If your site can match an app’s inter-
face, the UI should feel like a natural extension of the product. Intranets can be particu-
larly difficult for compatibility because of slow upgrade policies (it’s one reason why
Internet Explorer 6 has held on for so long), so be sure to cover every base.

Tip

Connected objects are often very basic, which affects how users interact with
sites. Some devices may have no screen; others may have few options. For your
interfaces, it makes sense to follow the KISS principle: Keep it simple, stupid!

Let’s face it, for every device that can accomplish loads of wonderful things (leaving you
with an endless checklist of potential factors to consider and deal with), a dedicated group
of devices with a single purpose or function will remain. Having a microwave check the
Internet for cooking instructions is one example (and, yes, such an appliance does exist);
another example of a device built to do one thing particularly well is a pager. If your site
offers something that may affect such a device, consider offering it support.

If the device requires the use of an API or a specific piece of software (the tweeting refrig-
erator, for example, is built around that functionality), make sure the service performs as
expected in that environment (for example, use Twitter to allow its audience to find you).
The last thing users want is for a service to change and, as a result, find that their tool no
longer works. Build layouts to match the capabilities of the browser or variables in effect.
Asking users without access to a mouse to make precision clicks just isn’t practical.

C H A P T E R S I X A U T O M O B I L E S A N D A P P L I A N C E S 131

Best practices
> Devices may not support odd proprietary formats, so stick to common ones.

> Ensure that the formats you provide work outside the niche device’s application.

> Optimize solutions around an individual device’s functionality and capability.

> Account for limitations or expectations that exist within a niche environment.

> List ten critical factors to deal with, and implement them on a priority basis.

Transportation
In recent years, vehicles have become increasingly like computers. Being able to connect
an iPhone to your in-car entertainment system isn’t the only way to access the Web in
your vehicle. People and manufacturers have been modding cars to include PCs, voice-
activated systems (Figure 6-3), and dashboards—and even windshields—are being digi-
tized. Although they’re still in the early stages, consider supporting these technologies
because browsing on the move is gaining momentum. Trains and planes are receiving lim-
ited web enablement, too, in the form of embedded tools.

Figure 6-3: GPS navigation systems are just one type of transportation device with web capabilities.

The following lists show members of this device’s family tree and some issues they can
encounter.

Relatives: Considerations:

> SatNav devices > Micro-activities

> In-car dashboards > Aural communication

> Web-enabled vehicle > Localization tools

F U T U R E - P R O O F W E B D E S I G N 132

Practical solutions
Keep in mind that when devices with visual displays (rather than just sound) are used,
being on the move means that the ability to look and interact with a screen may be limited
by various situations. Users may visit your site while stopped in heavy traffic, but when
the traffic starts moving again, they’ll need to look away and get back to driving. Similarly,
in the case of trains and aircraft, you may be trapped into using their facilities for the
duration of the trip. Of course, ordinary web users may need to take breaks, too!

In Chapter 5, I talk about the importance of resumability and provide some easy, sensible
principles that you can use — for example, allowing users to pick up where they left off
and ensuring that your content has logical breaks and is formatted so that it can be read
in easy-to-consume sections. Offering presentations and slide shows that progress only
when a user clicks is great because they allow users to take simple steps and micromanage
their time while driving safely. These are just a few ways to ensure that content is resum-
able and consumable.

When designing sites for transportation, your first consideration relates to the expecta-
tions for input. When you drive a car, your eyes should be firmly on the road. Although cars
are starting to offer displays that let users access useful information (via projections on the
dashboard), don’t depend on this option because it may be distracting. Some device mak-
ers had the great idea of porting screen reader software into these in-car systems, thereby
allowing a car to do all the reading for you (aloud), while you continue on your journey.

Reference

Test content in a screen reader for clarity (the web browser Opera has a built-in
read-aloud feature that can emulate such functionality), check that the content
is ordered correctly (text browsers such as Lynx may help), and help train
pronunciation by using the speech CSS3 spec at http://www.w3.org/TR/
css3-speech/.

When focusing on aural considerations in web design, visuals won’t be part of the equa-
tion. Because the focus is firmly on the content, be sure that what you do write is concise,
conversational, and easy to understand. Using unusual wording can be a problem if the
car’s voice-training doesn’t recognize or know how to pronounce what you’ve written. A
practical solution for this issue is to use CSS speech stylesheets (and DFN and ABBR tags
in HTML to better explain underlying meanings).

A major benefit of web browsing on the move is that a large number of sites offer travel
information and contact details. The SatNav inside a car allows you to find what you want,

http://www.w3.org/TR/css3-speech/
http://www.w3.org/TR/css3-speech/

C H A P T E R S I X A U T O M O B I L E S A N D A P P L I A N C E S 133

when and where you want it. If you own or build sites for a business that relies on brick-
and-mortar locations (be it a store, a museum, a school, a landmark, an office, or some-
thing else), you can use localization in your work to provide more country-specific
features. By including location details like phone numbers or an address, GPS tools can
help localize the results.

To ensure stability when working with localization tools, design your site so that visitors
can override their location (in case the detection is incorrect, or if they want to plan a trip
outside the country they reside in). If you’re working on something like a travel site,
engage users by allowing them to input target destinations and distances they’re willing
to travel, and refine the site’s content to match their needs. Avoid bombarding them with
irrelevant data, and offer a wide range of ways for them to input data on their destination.

Best practices
> Make your site screen-reader friendly, to allow in-car dictation.

> Ensure that your site is structured in logical sections for readability.

> Visually break down content using slide shows and presentations.

> Avoid time-sensitive code (marquees and auto-refreshing pages).

> Allow users to change their locale or have it dynamically updated.

Physical Goods
When you have something that could be web enabled but isn’t, what can you do? Create a
custom solution! People have been building web-friendly hybrid devices for some time
now. From RFID-tagged smart objects (as shown in Figure 6-4) to cat feeders (I’m not kid-
ding here, either), pretty much anything is possible. The end user will be niche, the func-
tionality will be limited, and you can’t guarantee that anything will be as you expect.
Strange as some of these innovations may seem, if they become popular, we may all end
up designing for them!

The following lists show members of this device’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Evrythng.net > Device context

> Touchatag > Outsourced parsing

> Violet > Custom solutions

F U T U R E - P R O O F W E B D E S I G N 134

Figure 6-4: RFID is a technology that allows you to tag objects with useful digital information.

Practical solutions
Each item you see and own has expectations associated with it. You expect your tables to
withstand the force of whatever objects you place on them, you expect chairs to be com-
fortable to sit on. When it comes to the Web, you expect it to work using whatever
you use. On the Web as in real life, context plays a huge role; therefore, when it comes to
going forward and turning a non-web-enabled object into one that’ll connect and under-
take a task, you need to consider the extenuating circumstances and adjust your work
accordingly.

Imagine that you own an eBay-like site, or want to resell goods, which is fairly common
these days. You could use RFID to track an object’s ownership and history, verify its
authenticity, and more! When scanned the chip could help users understand where their
products originated (great for transparency and warranties), and this verification process
could be processed anywhere. It’s the same kind of technology sites use with barcodes,
and it could be tied in with other useful technologies like near-field communication.

In addition to track-and-scan or track-and-pay options, which retailers can use to help
users get to know their products better, outsourced parsing is another example of how
supporting such objects can enhance a site’s flexibility. We all know what bar codes have
done for the retail sector. Well, as a designer, you have another form of bar code that can
help non-web objects get a digital presence: the QR code. Very common in Japan and Asia
(and catching on elsewhere), this code helps you offer real-world web interactivity.

C H A P T E R S I X A U T O M O B I L E S A N D A P P L I A N C E S 135

Reference

To find out more about the digital applications of RFID, go to the University of
Washington website: http://www.cs.washington.edu/homes/magda/
papers/welbourne-ieeeic09.pdf. Also, IEEE has an excellent paper on
what’s been dubbed “The Internet of Things.”

Attaching one of these codes to physical goods means that you embed it with digital data!
You can design the code to produce an image, text, or something else, but most useful for
web-savvy readers, you can have them encode a URL or e-mail address that opens when
scanned. If users sell physical goods or packages, or if they have a business that sends out
letters rather than e-mails, by using a clever mixture of something like PayPal scripts and
QR codes, you can accept quick payments. Or more traditionally, promote your stuff in
print.

Luckily, beyond the track-and-scan potential just mentioned, variables that affect physi-
cal objects are few and far between (regarding web enablement). People will always build
new devices and customize objects for web-specific purposes, but all you need to know at
this point is that everything the bandwidth touches will generally be made up of hardware
components in a hybridized fashion. Ultimately, dealing with custom builds isn’t that
complex if you’re open to the limitations and factors that each component brings.

Best practices for dealing with devices vary, depending on the purpose of the object and the
capabilities it offers. Although future chapters in this book push deeper into the issues that
underpin all devices, a holistic approach doesn’t hurt! If a new web-enabled gadget enters
the market, don’t just walk into the corner of an electronics store and begin crying; don’t
ignore it either. Show your enthusiasm and curiosity by learning about the object and what
it offers users. To quote the movie, Galaxy Quest, “Never give up; never surrender!”

Best practices
> Research whether RFID can increase users’ levels of trust for your brand.

> You can use QR anywhere; if visitors have smartphones, use them!

> Keep looking for new web-enabled devices that your visitors are using.

> Universal site stability requires adaptation, and it’s a long-term goal.

> As future devices are released and gain popularity, ensure compatibility with them.

http://www.cs.washington.edu/homes/magda/papers/welbourne-ieeeic09.pdf
http://www.cs.washington.edu/homes/magda/papers/welbourne-ieeeic09.pdf

7

Designing for
Input Tools
Examining human-computer interactions

F U T U R E - P R O O F W E B D E S I G N 138

DEVICES REFLECT HOLISTIC views of interactivity and show a unique combination of
variables affecting your layouts; however, not every device behaves the same. One of the
primary variables that dictates how we interact with the Web is the hardware lying under
the hood, and with customization being commonplace, data input methods can vary. In
this chapter, you explore the hardware that translates human actions and responses onto
interfaces, allowing users to explore the Web. Essentially, you examine human-computer
interactions.

Just Point and Flick!
Designing sites with input tools in mind is rarely something designers think about. They
regularly measure usage in terms of users and devices, rather than the components that
comprise them. However, when your visitor’s ability to interact with your offerings is
affected, the cause is almost always related to an issue that many devices containing similar
components will experience. Screen size is a typical output variable, affecting PCs to PDAs.
Yet other input factors such as browsing a site on a keyboard are frequently overlooked.

There are many types of input tools, and each can provide a substantial amount of control
over interaction within your pages. Some input tools can increase the precision on a page
to a fixed point of reference (such as a mouse, rather than a tracker pad); others can be
rather clunky and procedural, requiring users to hack their way through sections (for
example, with a keyboard or number pad). Perhaps users may be lucky enough to have a
choice of varying input methods, but as with many variables, you cannot simply count on
that being the case.

Tip

Keyboard navigation can become complicated online, especially if your site uses
AJAX or functionality that resets or refreshes pages, which can easily cause
loss of focus on elements. Too much content or a lack of organization on a page
can also affect keyboard navigation. Be sure to test the site using a keyboard to
ensure that input tools have a chance.

Although you don’t need to buy and test on every existing input tool, you can follow a
number of best practices to maximize the compatibility of your sites. In addition, it’s
worth looking at how some of the more unusual input tools can affect and benefit certain
types of sites (benefits will vary depending on the tool used). Options include voice brows-
ing, video input via webcams, gesture input on a gaming controller, and even quirkier

C H A P T E R S E V E N D E S I G N I N G F O R I N P U T T O O L S 139

niche tools that can be connected using a USB port. If they can be connected, they can be
used online.

It’s actually very hard to measure which input tools consumers will use. Although sales
data exists about the devices that use such tools, and data exists about the volume of sales
for specific hardware (for example, digital drawing tablets), neither scripting nor analytics
can interpret what kind of input medium is used, how sensitive it is, how restrictive it
might be, and what you can do about it (it’s beyond JavaScript’s capabilities). Also, when
dealing with the compatibility of input tools, don’t assume that every user will have com-
ponents identical to yours.

Always ensure that your site is compatible with all common methods of input that visitors
may have access to (tools preloaded into devices, and sold separately). Also, consider the
benefits that tools like webcams and microphones can offer sites. Interactivity is the focus
of most online experiences; without the ability to communicate with pages, accessing new
content will be impossible. These tools simply act as a “middleman” between humans and
the Web, so you need to consider such issues seriously to retain stability within your sites.

Alternative navigation
For perspective, say that you have a visitor browse to your site on his laptop. He is in a
good position to successfully navigate your site. He can use the keyboard built into the
base of the device, and he also has a built-in webcam, microphone, and touchpad, all of
which can be used at any interval to undertake actions on the device. Although some
laptops may have more features (and some fewer), this visitor has a good range of
methods at hand for visiting your site.

Designers tend to expect users to have the ability to move a cursor around a screen by
using point-and-click technologies. But what if your visitor is unable to use his touch-
pad for some reason, but still wants to be able to visit your site conveniently? In this
case, his next best option is the keyboard, but without keyboard shortcuts and the vis-
ibility needed to identify selected links, browsing the site is difficult and stressful for
your visitor. He then tries the last option, voice input, but soon realizes that training
the speech recognition would take time, so he gives up visiting your site until his lap-
top is fixed.

Providing support for device-native hardware is important, even if it’s not the most
popular or obvious route to browsing a website because sometimes a particular input
tool may fail, become unusable, or simply not exist on a particular device. By making a
few changes to the code you build or the design you engineer, you’re more likely to
guarantee that no one entering your site will have a low-quality experience. By offering
fallbacks (for example, skip links and ensuring that images contain alternative text for
voice navigation), you enhance the usability of your site.

F U T U R E - P R O O F W E B D E S I G N 140

Pointer
Among the various types of input tools people use when browsing a website, few tools are
as suited for interaction as the pointer. Many different types of pointing devices are on the
market (the most well-known being the mouse; see Figure 7-1), and they allow users to
move around a screen with precision. Pointing and clicking wherever you like is highly val-
ued (as is the ability to drag and drop), and these devices have sustained their popularity
and ubiquity for many years. So, ensuring compatibility with these tools is worthwhile.

Figure 7-1: Pointing devices like the mouse and pen stylus allow users to click with accuracy.

The following lists show members of this hardware’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Mouse > Drag-and-drop interfaces

> Trackball > Click support

> Joystick > Cursor style

> Stylus

Practical solutions
Interactivity is becoming an increasingly critical part of designing, so web designers are
spending a great deal of time considering how their sites’ interaction can better serve its

C H A P T E R S E V E N D E S I G N I N G F O R I N P U T T O O L S 141

users. Many applications are moving from the realm of desktops to the Web’s cloudy back-
bone, and one feature showing potential is the drag-and-drop interface. This interface can
help visitors use the relevant parts of a site. Think for a minute how handy being able to
visually organize content would be, and how it would revolutionize how sites are read.

Through scripting, drag-and-drop mechanisms are already being implemented. However,
because these tools rely on JavaScript, the code doesn’t work if scripting is unavailable or
disabled. If your visitors are likely to have access to scripting, using such techniques could
help you offer a choice to users by allowing them to use their pointer input tools to group
content that matches their interests. Users could then prioritize relevant parts of a site,
reducing how far down a page they have to travel if on a restricted screen (and be less
distracted as a result).

Empowering users to decide how they consume your content will surely be an important
step in ensuring the longevity of your interfaces because friendly interactions often invite
frequent use. However, click requirements are just one issue that pointer tools experi-
ence, not only in drag-and-drop actions but also in other areas of user interactions. Users
will always have specific expectations of an interface based on the capabilities of the input
tools they use; designers must now try to encourage users to use their available tools
effectively.

Tip

Although you can intercept actions such as right-clicking or text selection to
enhance or disable a browser or script-implemented feature, remember that
users expect actions to work a certain way. Ignoring their expectations and
blocking their natural responses could have consequences. As such, avoid
messing with a pointer’s capability to do its job.

Does your interface anticipate that users will right-click? Does your site and its scripts
support feature buttons or other unique properties such as those found on gaming mice
(middle clicks, wheel scrolling, gaming buttons, and more)? Another critical issue con-
cerns what happens when users can’t hover (if, for example, they have a PDA and stylus or
certain smartphones). Remember, pointer tools aren’t born equal, and because users with
different input mediums will experience sites differently, your site needs to adapt to their
particular gadgets.

One common feature of pointers that everyone recognizes is the cursor. Although this
often underappreciated part of an OS may seem trivial, that assumption couldn’t be more

F U T U R E - P R O O F W E B D E S I G N 142

wrong! Users must know where they’re clicking and what they’re hovering over; otherwise,
they’re flying blind. The cursor represents more than a distinction within text, white space,
and links; it represents a digital positioning system that designers can take advantage of.

CSS allows you to customize cursors, and although swapping the expected cursor with
something a bit more fun may seem harmless, doing so can confuse users and reduce
their productivity. For example, if you change the cursor to an animated snowflake, it
might look appealing, but you’ll lose the precision of the usual pointer. Also, if you use the
hand cursor on anything other than a link, users may think that object is clickable. Only
change the user’s cursor if you have a valid reason!

Best practices
> Use scripting to enhance existing behavior, but make sure the code degrades.

> Never, ever cripple functionality to attempt to stop piracy; it doesn’t work.

> The only action you can realistically expect of users is a single, left-click.

> Use custom cursors on non-hyperlinked objects that respond to users’ actions.

> Avoid needless, stylistic cursor changes, especially if they reduce visibility.

Touchpad
With the rapid adoption of tablet computers and smartphones, the race to move away
from the traditional mouse and keyboard is on. These tools’ capability to offer both input
and output interactivity means that devices using them require less physical space, but
achieve a more fluid experience. These tools, although notably lacking the high precision
a mouse offers (fingers rather than a cursor), are ubiquitous enough to warrant your
attention, and multi-touch features, such as pinching (shown in Figure 7-2), allow natural
interactions between hands and displays.

The following lists show members of this hardware’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Touch screen > Sensitivity level

> Multi-touch > Multi-touch issues

 > Click precision

C H A P T E R S E V E N D E S I G N I N G F O R I N P U T T O O L S 143

Figure 7-2: Multi-touch devices like the latest iPhones allow actions such as pinching.

Practical solutions
When adapting your sites for touch-friendly devices such as the tablet, you must consider
a number of things to ensure the usability of your interfaces. The first issue relates directly
to the sensitivity level of the surface being used. Sometimes, for example, visitors will
have a touch screen; other times, they may have a tracker pad, as commonly found on
laptops or netbooks. Touchpads tend to provide more precision than a touch screen; they
often also have multi-touch support, and you can also see the screen as you use the tool.

Sensitivity levels of these tools can differ depending on a number of variables. First, the
device could just be a poor-quality tool that isn’t very sensitive to an easy touch, and per-
haps it also doesn’t support multi-touch. On the other hand, something on the tool’s sur-
face (such as dust) could make it a bit jerky. The best course of action is to offer a buffer or
margin for error, such as increasing on-page white space so that clicking and actions like
drag-and-drop won’t demand too much precision.

Also, touch screens are becoming more adept at interpreting users’ actions. In the old
days, you could instigate only a few core actions like click and double-click and the basic
movement of the cursor along the screen. Now, with the aid of technologies like multi-
touch, you can make the computer do all sorts of things based on actions like strokes,
flicks, and pinches. As touch screens gain precision and added gesture support, their capa-
bilities will increase, leading to better support for such features in sites.

Tip

If you use a script library like jQuery, you’ll be happy to know a few scripts have
been created to allow gesture and touch interactions (beyond what a browser
natively uses). A great example of this is Apple’s iOS multi-touch event-handling
API, which can be targeted with JavaScript. Just remember that not all devices
will support scripting!

F U T U R E - P R O O F W E B D E S I G N 144

First, you need to know that many touch screens cannot initiate a hover action. Because a
touch usually equates to a click, drop-down menus requiring a hover event will likely
require an alternative route of access (perhaps click, rather than hover). Also, some
devices have a unique method of dealing with overflowing content, if scrolling is required.
By default, it may require two finger motions rather than one, and because iOS doesn’t
show scroll bars until you’re scrolling, users need to be notified about which direction
scrolling can occur.

Beyond coping with the complexities of scrolling when you can’t see the scroll bar or its
position on the screen, there are the potential issues surrounding the ability to click on
the screen when using a touch device. For many users, the idea of prodding a device to
click is a bit unnerving. Why? Because many people have fat fingers! It stands to reason
that if we need to make a gesture or click a link on the screen, we want to do so with preci-
sion; however, unlike a mouse, fingers tend to have a wider surface area.

To ensure that your site works for touch interfaces, provide all clickable objects and links
with enough space so that users can avoid making accidental errors. Providing anchor
links with padding via the CSS property with the same name is one easy way to achieve
this; another is to provide adequate white space between links. To understand the issues
involved, imagine that you own a smartphone and suddenly find that a site’s links are
hard to click because the layout is being panned and zoomed out or links are too close
together.

Best practices
> Touch experiences may not be smooth; don’t expect lengthy interactions.

> Use scripting to enable gesture support (iOS offers some custom events, too).

> Avoid overflow scrolling and hover events, or at least provide fallbacks.

> Enlarge click regions and input boxes for people with large fingers!

> Avoid disabling the native zoom feature that iOS offers for input fields.

Keyboard
One of the oldest pieces of hardware, the keyboard (see Figure 7-3), has been gracing PCs
for many a year. Designers could be fooled into underestimating this tool’s capability to
browse the Web because the mouse and touchpad offer much cleaner, optimized methods

C H A P T E R S E V E N D E S I G N I N G F O R I N P U T T O O L S 145

of interaction. However, for those lacking a better option, the ability to tab or cycle through
your UI is a critical feature. Beyond the traditional keyboard, some users may also use
shortcut keys, custom buttons (such as function keys), and even a numeric keypad!

Figure 7-3: Keyboards come in all shapes and sizes, but users are most familiar with the QWERTY
format.

The following lists show members of this hardware’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Input buttons > Access shortcuts

> Numeric keypad > Visible tabbing

> Function keys > Auto completion

Practical solutions
Browsing with just a keyboard is something that most people avoid if at all possible, and a
good reason is because many sites aren’t equipped to handle the effect it has on users’
experiences. Taking the time to bounce around objects that can hold an active state on the
screen (by way of the Tab key) is a tricky process for average users, though there will
always be situations in which keyboard navigation is the only option. Therefore, reducing
this burden on users is central to compatibility.

When it comes to lowering the hassle of keyboard navigation, the most obvious solution
is the humble shortcut. We’ve all used shortcuts at some point (such as Ctrl+V to paste
content from a clipboard), and with some scripting, it’s entirely possible to assign them.
The thing holding designers back is that some shortcuts (with browser defaults) are

F U T U R E - P R O O F W E B D E S I G N 146

inconsistently implemented, causing cross-compatibility issues. Use scripted solutions
(rather than access keys) because they can be unified to match conventions.

If you browse via the keyboard regularly, you’ll recognize the key that is used most often
when navigating a page: the Tab. When you press Tab, you jump to the currently most
active element (with the highest tabindex value) on the page, and the page will scroll,
placing the object within your field of vision. Unfortunately, because of the complexities of
many dynamic layouts, things may not always work as expected. Because the keyboard is
unlikely to disappear anytime soon, it makes sense to allow such navigation on your site.

Reference

Although ensuring the visibility of an active link is tricky, partly because you may
need to alter your site’s visuals to make the invisible outline surrounding a link
visible, doing so is well worth the effort. A site explaining the issues surrounding
the CSS “outline: none” property/value combination is located here:
http://outlinenone.com/.

To overcome the issues of keyboard navigation, try to reduce the number of active links
within a page; this reduces the number of Tab keystrokes needed to select a link for navi-
gation. Also make sure every link on your site uses the CSS outline property so that key-
board users can identify which link is currently in focus, avoiding any hidden content in
preference of AJAX or some scripted focus switching event that’ll cause key presses to be
ignored or hidden on the screen. It’s all about trying to maintain visibility.

Finally, you have another handy little feature that many products enjoy: auto completion.
This feature attempts to correct typos and all sorts of mistakes as they occur, helping
users make faster, more accurate decisions. It can reduce the need for changing or adding
input and, thus, enhance speed. Many sites and browsers implement such a feature, which
can be both helpful and a hindrance, as it attempts to assist with search boxes, sign-up
forms, and other input mediums.

The accuracy of auto complete varies among countries and devices because it’s dependent
on the dictionary used and on previous entries. To avoid having users wonder if they’ve
made an error or letting the device try to (unhelpfully) correct something, use autosug-
gestion in search boxes. Unlike auto completion, autosuggestion tries to provide alterna-
tive search terms, not guesswork. Also, for the sake of consistency, unless you’re aiming
your site at a specific nation, default to U.S. English.

http://outlinenone.com/

C H A P T E R S E V E N D E S I G N I N G F O R I N P U T T O O L S 147

Best practices
> Avoid access keys and instead use common, script-powered shortcuts.

> Ignore your mouse and browse with a keyboard to test your site’s usability.

> Provide actionable objects with a CSS outline to highlight what’s selected.

> If you use progressive disclosure, ensure outlining avoids hidden content.

> Make sure typos, nicknames, and abbreviations are accounted for in code.

Remote Control
Since the dawn of gaming, the ability to slouch into a chair and press an odd range of keys on
a remote control or gaming pad has been a pastime for many users. However, since the incor-
poration of browsers within these entertainment devices, compatibility with such input tools
has become a serious affair. Including the absurdities of controlling a site via a universal
remote control (which is more restrictive than a keyboard), we’re on the verge of gesture
browsing. So waving your Wiimote (shown in Figure 7-4) like a ninja is a serious business!

Figure 7-4: The Nintendo Wii’s Wiimote turns physical gestures into web-browser controls.

The following lists show members of this hardware’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Remote control > Multi-tap stress

> Gamepad > Motion fatigue

> Motion-capture > Hybrid inputs

> Gesture sensors

F U T U R E - P R O O F W E B D E S I G N 148

Practical solutions
Dealing with remote controls in your site’s interactions comes with many cautionary
tales, but none as widely recognized or frustrating as the stress of multi-tap inputs. If you
think back to the issues affecting featurephones, inputting data with only a limited
amount of buttons is challenging. The issues surrounding multi-tap also apply to other
forms of input like television remote controls, where the expectation of data entry is
rarely considered. To ensure that your site works on such devices, you must work around
this common issue.

Because of the expectations surrounding remote controls, we assume that as each button
is pressed, a particular reaction will occur (such as changing the station). Visitors expect
the effect of these limited devices to go a long way, so it might be worth exploring the
option of offering in-page microsites, in which each part of your site will have its own “sta-
tion.” Offering a highly visible navigation menu on TVs with numeric shortcut keys would
allow users to quickly jump between sections, and CSS3 selectors could be used to achieve
the effect.

In regard to relieving multi-tap stress by using techniques like keypad shortcuts and
reducing the need for form entry, there is a downside: You automatically restrict the
interactivity levels afforded to users. The benefit of being able to avoid such tools is a great
idea, but with physical demands on users increasing, the chance of causing injury or
fatigue over time rises, too. Granted this style of input wasn’t intended as a mainstream
alternative to a keyboard or mouse, but because it’s used to interact with a site, you need
to cater to this style of input.

Fitt’s Law describes how motion and distance can affect users trying to browse a site, and
how user interaction is affected by an object’s size and position. Although the rule also
applies to other pointing devices, Fitts’s Law particularly applies to the compatibility of
tools like gesture controllers. Because people stand farther away from a screen when tak-
ing advantage of these input mediums and because of the three-dimensional space in
which they’re used, selecting parts of a screen becomes more difficult. To deal with this
issue, decrease the amount of movement required to browse around a page by reducing
distractions and keep the navigation simple.

Reference

The psychology of human-computer interaction is interesting. To learn how
motion and distance can affect users trying to browse a site, read this article
about Fitts’s Law (it applies to your designs): http://particletree.com/
features/visualizing-fittss-law/.

http://particletree.com/features/visualizing-fittss-law/
http://particletree.com/features/visualizing-fittss-law/

C H A P T E R S E V E N D E S I G N I N G F O R I N P U T T O O L S 149

The one remote control tool that has the biggest implications for your sites is ironically
the one device that seems to swallow up most of the others: smartphones. In this age of
an app for almost everything, clever people have built hardware and apps to provide a
fully functioning remote control to anyone with access to the device. Often, it’s not just a
TV remote or a mouse; it’s a touchpad and virtual keyboard, too. Put testing against tools
that turn a device into a functioning input tool at the top of your priority list because
they’re very popular.

Dealing with these virtualized remote controllers forces you to consider a couple of things
when users enter your site using a device. They could be using a virtual PC application such
as Splashtop Remote, which allows a smartphone to be used as a portal for a desktop com-
puter. This kind of functionality lets people use plug-ins like Flash on iOS devices . . . excit-
ing news! Once the user initiates such an application, compatibility rules for devices will
change because although the hardware remains identical, software will be desktop oriented.

Best practices
> Try to offer the maximum effect with minimal input demands from users.

> Allow users to select from a range of options in preference to entering text.

> When designing web interactivity, try to group related objects together.

> Allow for unstable physical motions — for example the Wiimote or Logitech MX Air.

> Determine whether a virtualized environment will affect your site’s usability.

Microphone
Modern computing has become incredibly adept at dealing with unique input situations
(such as the need for hands-free use), and with modern speech recognition software, the
age of microphone-based browsing (see Figure 7-5) has become a reality. If you speak cer-
tain commands into a device, the software will translate the requests into actionable
responses. What is particularly cool is that the technology has, in recent years, matured
enough that you can even use voice browsing to accomplish more complex web-navigation
tasks.

F U T U R E - P R O O F W E B D E S I G N 150

Figure 7-5: With microphones and voice recognition, you can use voice instructions to direct a
device to carry out actions.

The following lists show members of this hardware’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Aural commands > Accent interpretation

> Voice recognition > Language support

 > Background distortion

Practical solutions
On the surface, it may seem apparent that voice control has little functional purpose
within your sites and that compatibility for something that requires a voice recognition
application is of little use to your visitors, but you would be rather surprised as to the
impact a little bit of audio input can have on a site. When you think about it, such features
go beyond a sci-fi fantasy or the tools found in a car; they can also help users with specific
accessibility needs by enabling them to navigate a site without requiring limb usage or
tactile input.

Over the years, voice recognition software has matured to such a level that the accuracy is
pretty decent, and by using these tools, users can bark browser commands and have them
undertaken, or perhaps leave a voice comment on a site or even contact a site owner using
Skype. The trouble is, when you go from regular voice input to voice-to-text input, things
can get a bit muddled; for example, individuals with strong accents may be misinterpreted.
Avoiding this problem involves using common keywords that can be easily pronounced.

C H A P T E R S E V E N D E S I G N I N G F O R I N P U T T O O L S 151

Beyond the lost-in-translation issues that could leave us all with a mild case of insomnia,
not everyone speaks English, so the rules that apply to content will also affect vocal input
within sites. Perhaps that Flash voice input feature you bundled in a site can’t understand
Spanish; ensure that users know that. Maybe you want voice comments you can moder-
ate. If so, the obvious solution is to stick with a standardized language. As for any
CAPTCHA mechanisms, don’t even hope that voice-dependent users can input that with-
out difficulty.

Overcoming language issues when dealing with voice input depends upon your audience’s
needs and if support for the language is required. Luck is on the majority of our users’
sides in this situation because most computers come with multilingual support. In addi-
tion, if users own a smartphone and want a quick way to leave voice comments (in text
format) on your site, they can get an app like Dragon Dictation, which will do the hard
work for them. So, even if you don’t offer voice support natively, it can still affect site-
based interactions.

Reference

Dragon Dictation turns your speech into a fully formed paragraph of text. This
has some really awesome potential for situations where typing is less than ideal
and touch isn’t great for data input: http://itunes.apple.com/us/app/
dragon-dictation/id341446764?mt=8.

One problem that can readily occur with voice input tools but doesn’t affect other styles of
online interaction is the issue of distortion. When you press a key, you perform a func-
tion. Distortion won’t occur because there’s a limited channel of input for it to deal with.
With any kind of voice recording, however, background noise and other ambiguous infor-
mation can interfere with the quality of the results. Because of the distortion, in some
cases the content loses its usefulness and should not be depended on for critical site
functionality.

Dealing with the discrepancy in the quality of sound often requires manual intervention
from the site author, though in speech-to-text cases you won’t have to worry because the
processing is done from the users’ machines, and they’ll be given an opportunity to both
proofread and verify the content before submitting it. Justifying the use of audio input
with this issue present is a leap of faith. However, with microphones being built into so
many devices these days, it’s a shocker that few designers have pushed the medium any
further.

http://itunes.apple.com/us/app/dragon-dictation/id341446764?mt=8
http://itunes.apple.com/us/app/dragon-dictation/id341446764?mt=8

F U T U R E - P R O O F W E B D E S I G N 152

Best practices
> Identify potential functionality for this underused, hands-free input tool.

> Remember that not everyone speaks English; always offer alternatives.

> Convert uploaded audio into a compressed format to save bandwidth.

> Test using voice-to-text software, and ensure that the output can be used.

> Allow the reporting of any low-quality audio comments, for moderation.

Imaging
Photography has become a hobby and obsession for many socially connected Web users.
From sites like Facebook allowing digital albums to be stored in your account to sites like
YouTube letting people become stars, the age of the imaging input device has really come
into its own. Although many dismiss the potential of using image-capturing tools, which
professionals and amateurs use regularly, some devices like cellphones or laptops with
webcams provide imaging input tools, so their uses are worth investigating. Figure 7-6
shows a webcam.

Figure 7-6: Users who own a webcam provide an entirely new level of potential interactivity.

The following lists show members of this hardware’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Camera > Plug-in dependency

> Camcorder > Metadata support

> Webcam > Hardware quality

C H A P T E R S E V E N D E S I G N I N G F O R I N P U T T O O L S 153

Practical solutions
One of the first issues to contend with regarding this type of input is that it’s not exactly
a standardized or simple process, which is why it probably hasn’t had much attention
lately. Although photographs have managed to gain a level of support with devices con-
taining built-in upload mechanisms to certain sites, video input potentially requires using
numerous video formats and a player that requires and depends on Flash or the less than
ubiquitous, but gradually gaining adoption, HTML5. As for webcams, it’s a plug-in or
nothing situation.

Although this may seem like a lackluster opportunity, to be fully supportive of the way
sites may evolve in the future you need to keep an eye on any technology that can help
your users communicate with your site. For the lucky people with smartphones, a custom
app can give them some real image, video, and webcam interaction, by either streaming
the media you capture, or by using some post-processing effects. Overcoming third-party
dependency issues will take time, thus this high-end feature should go on the waiting list.

Because images are exposed to the Web in a number of ways (such as through progressive
disclosure slide shows), and with support for image formats fairly standardized and usable
on many devices, you want to ensure that the greatest number of people can benefit from
the photos and the data captured and uploaded using camera tools. Because images can be
disabled and aren’t appropriate for the visually impaired, you’ll need a good fallback in
place. Offering textual fallbacks also enriches images for other purposes (like SEO).

Tip

If you do offer a mechanism that encourages users to get involved with your
site, and thereby add their own content, remember to ensure that the provided
content has the necessary required fields to ensure a suitable fallback. Not
everyone can see video or images or hear audio, and it’s important that you be
fair to their situation.

When you take a photo, the camera will usually build up a whole series of metadata in a
format like EXIF, which can contain cool metadata like Geodata and more. Drawing this
information from an image and putting it to use in image attributes or figure references
will help make the image more semantic and potentially useful. Because text is the only
online format that has no barrier to entry for visitors, it’s important that all images and
captured media from imaging devices offer a metadata-rich, descriptive explanation of
the visuals.

F U T U R E - P R O O F W E B D E S I G N 154

Although these input tools come in all shapes and sizes, quality is a real problem with the
imaging variable. Low-quality cameras and webcams often result in low-quality images,
and low-quality images essentially degrade the quality of content. As a consequence, low-
quality media input could be illegible. Keep in mind that the use of low-quality media will
affect how the site ages. Certainly, it’s worth compressing images as a post-production
event to avoid bandwidth sapping, but quality is an important issue to consider.

Just like the issues that PDA and E Ink users suffer in regard to quality and color, you
can’t do much to improve a poor-quality input tool, though with high-quality cameras
appearing as standard in modern devices (and on shelves at consumer-friendly prices),
the situation is getting better. A best practice for dealing with this input tool is to simply
make the most of what you’re given; allow users to crop and/or scale down their files and
try to improve the quality of the content. Once completed, check that the format works
and publish the media.

Best practices
> Keep up-to-date with any media input-formatting best practices.

> Use server-side code to make the most of the user’s input tools.

> Offer a range of imaging-input consumption features like subtitles.

> Consider exploiting any EXIF metadata and putting it to good use.

> Determine quality versus compression ratios based on user needs.

Scanner
Cameras have gone the distance in providing us with the tools to offer photos and media in
our web experiences, but scanner devices (Figure 7-7) have made their own mark in our
ever-growing pursuit to digitize the world’s information. Hardware scanners, for example,
can reproduce print formats into web-friendly images. As for software scanners, they take
data that already exists in the digital (or real) world (like bar codes or QR codes) and turns
that seemingly random image into a feature (with hidden context) that users can use.

C H A P T E R S E V E N D E S I G N I N G F O R I N P U T T O O L S 155

Figure 7-7: Document scanners can be useful for submitting digital forms that are filled in by hand.

The following lists show members of this hardware’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Biometrics > Limited potential

> QR code scanner > Physical verification

> OCR imaging > Cloud conversion

> Bar code scanner

Practical solutions
Scanners are an interesting case for the Web, because, while they’re not exactly the most
ubiquitous of objects and don’t have a direct web connection, they offer a wide range of
niche web purposes, depending on the scanner used with the device. Consider the classic
example of biometric fingerprint scanners now widely used in business laptops. Because
of their limited potential online, they might not be the most obvious source for providing
bonus functionality, but if you consider tools like biometrics, scanners could help a lot.

If your site can support the outputted code that a biometric fingerprint scanner provides,
you can use the scanner as a simple security feature, and if you can use QR codes (digital
codes with web applications) or identify bar codes (if they’re relevant to the products you
offer), smartphone users can capture the data they need in order to find details about
your products. With each unique scanning implementation, potential benefits for certain
sites become apparent, and if the cost of implementation is isn’t high, support can be
justified.

F U T U R E - P R O O F W E B D E S I G N 156

Now that you’re aware of the justification for offering tools with limited online potential,
an opportunity will exist for you to implement support on your sites and services for such
interesting features (depending on the likelihood of user adoption). Certain scanners may
prove more useful in certain niches, such as biometric fingerprint scanners, which can be
found within laptops offering a solution to more-secure passwords. But in every case, the
idea that something physical can be digitized certainly still has value associated with it.

Tip

I’ve already highlighted the potential of QR codes in being able to launch a
URL from a physical product, but the technology can also be used virtually
by embedding the code within a web page. Consider it as another layer of
interaction as you can provide links, e-mail addresses, phone numbers, and a
wealth of useful “snap and save” information.

Getting users to verify their identities or provide secure-enough passwords on sites is always
a challenge. Complex passwords tend to be forgotten, simple ones can be hacked, and often,
people use the same password for every site, which isn’t good. Using the software provided
with a fingerprint reader and supporting the outputted code could reduce issues relating to
security. Enabling this support can be as simple as not placing limits on the length of pass-
words, allowing non-alphanumeric characters, and enforcing case sensitivity.

Although many things are being transferred to the Web, and physical tools are becoming
more web aware, plenty of analog pieces of data are still lying around, sometimes held in
books, other times in rough printouts of pages that no longer exist in a digital format. A
time may come when you want to recover such data or allow this free-range information
to be used on your site in some way, shape, or form. Because scanners are incredibly use-
ful for making hard copy files digital, it’s no surprise that they have Internet potential.

The process of transferring analog to digital requires a few steps, but the output can be
worth its weight in gold. If you use a business management app in the cloud, being able to
store all your paper receipts, documents, letters, and invoices is critical. Depending on
what you offer, this may or may not be useful to you, but as an input tool that can be used
to take things online, it’s worth a mention. Supporting this could include a PDF transfer of
the uploaded file, or if you’re adventurous, using OCR to turn images into bloggable text.

C H A P T E R S E V E N D E S I G N I N G F O R I N P U T T O O L S 157

Best practices
> Not everyone has access to a scanner; don’t demand one for data input.

> Smartphone cameras can work like scanners; offer support for these, too.

> Biometric codes are unique; allow them to be used for secure passwords.

> Supplement scanning functionality by allowing prescanned image uploads.

> When using OCR, allow users to verify its contents (to reduce error ratios).

Other Tools
Although scanners have rightfully earned their place in the digital ecosystem by offering a
bridge between print and digital goods, there is something to say for the thousands of
other gadgets that can be connected to a device to offer some innovative, new level of inter-
action via a USB, Thunderbolt or Firewire port, or even using Wi-Fi or Bluetooth connec-
tions. These gadgets range from practical (like credit card and RFID readers, see Figure 7-8)
to outright silly (desk robots that read your RSS feeds aloud), but they’re all web connected!

Figure 7-8: RFID allows you to associate physical objects with data that can be used by readers.

The following lists show members of this hardware’s family tree and some issues they can
encounter.

F U T U R E - P R O O F W E B D E S I G N 158

Relatives: Considerations:

> Card reader > Feature demands

> Nabaztag/Karotz > Secondary usage

> GPS positioning > Reduced ubiquity

> Brain-powered

> USB devices

Practical solutions
If you’re planning on offering support and sitewide compatibility for any number of the
thousands of niche tools, I salute you! Not only do the tools in this category often connect
to sites or undertake activities through a controlling third party, just using them requires
meeting demands and expectations that can be undeniably harsh. Although the general
rule for dealing with any of these devices is to read the manual, do nothing unexpected,
and hope for the best (praying to the Internet gods may help), there are some things you
can do.

Something like the absolutely adorable Karotz talking robot will read a site’s RSS feed but
nothing else relating to individual sites, at least for now, but more capable robots like it may
well appear in the future. It may seem like a pointless product, but if you offer a site aimed
at kids or people with children, the animated talking toy might encourage learning (or be a
great way to get update alerts). This is, of course, just one example of an alternative tool in
action. The point is that even if a product supports only RSS feeds, be sure to offer them.

Another issue that can affect your site’s stability relates to unusual tools with the potential
to offer secondary enhancements, which may be deemed as bonus features in the hardware
world. Many web-enabled USB devices don’t just connect and do the job on their own; they
often use existing devices, OSs, software, and more. The use of enhancements on sites is
dependent on the environment on which they’re used, so you’ll want to determine the
popularity of such tools before supporting them (ask your users and check site analytics).

Reference

Because of space, or because they just aren’t in users’ hands yet, only a few
unique devices are touched on in this chapter. For a few friendly faces and some
new ones, see this article: http://sixrevisions.com/user-interface/
the-future-of-user-interfaces/.

http://sixrevisions.com/user-interface/the-future-of-user-interfaces/
http://sixrevisions.com/user-interface/the-future-of-user-interfaces/

C H A P T E R S E V E N D E S I G N I N G F O R I N P U T T O O L S 159

Ensuring compatibility for these devices can be relatively easy if the environment is self-
contained (as in the Karotz example), but in cases where the technology relies on drivers,
software, or other mission-critical components, you may need to offer basic details on
how to get the equipment up and running (or link to the manual) to help users take
advantage of these enhancements. Perhaps the tool will need a runtime file or a Windows
update; maybe the tool will need configuring. To use the tools, you may need to help users
get started.

There’s one final point to consider with these more exotic types of hardware; because of
these tools’ limited audience, ubiquity and the need for support and compatibility are less
than you’d find with other input mediums. GPS these days could be deemed the exception
to the rule because many smartphones (and some tablets) have location awareness built
in, increasing the ubiquity of GPS input tools and making support justifiable. As for the
rest (like mind-controlling tools), it’s up to you to decide on appropriate levels of support.

Encouraging any new tool with a good idea is always worth the effort if you can spare the
time and if it can benefit the users of your site and the tools they have access to, but most
designers are busy people, focusing on the stuff they must cater to in the here and now.
Giving support to underdog technologies helps enhance their ubiquity, forcing others to
adapt or fail, and helping useful technologies online encourages further innovation.
However, every audience will have different needs of an interface, so nothing should be
taken for granted.

Best practices
> Check the gadget’s demands and provide whatever it needs (within reason).

> Identify new technologies and ask your users if they’d find support useful.

> Offer basic (if not full) support to deal with issues common to getting started.

> Prioritize the hardware your users need support for, and work in that order.

> Support innovations if they can help visitors achieve specific goals easier.

8

Designing for
Output Tools
Managing visual displays, printers, and other
hardware

F U T U R E - P R O O F W E B D E S I G N 162

HARDWARE ISN’T ONLY about the interaction and input that users can provide to our
sites. What visitors get out of it and how they interpret the feedback and responses of
such tools matters, too. Hardware exists to help users consume digital data, and your job
is to ensure that sites are compatible with these personable tools so a user’s journey can
be successful. In this chapter, you explore the displays, printers, and hardware that can
impact what we see, uncovering best practices to account for their inconsistencies and
differences.

Your Digital Eyes and Ears
Output tools within specific categories such as visual displays are generally fairly similar,
but don’t be fooled into thinking that they’re all the same. There are many different sorts
of displays, from mainstream monitors and self-contained displays (with computers built
in), to projectors and tools utilizing more unusual technologies, such as E Ink. Also, don’t
forget touch displays, which have gained widespread popularity. In the future we may
likely find mainstream wearable displays that allow displays via projection glasses and
contact lenses!

Because output tools achieve their tasks in quite unique ways, compatibility with various
types of tools can be particularly hard to account for (universally). For example, the out-
put on a display that refreshes as you browse a site has little in common with a printer
(even if the function is similar). Obviously, you want to ensure that your work accommo-
dates a wide variety of output mediums, so don’t forget factors such as the quality of the
tool and the technological limitations of particular variables (as future tools will likely
remain diverse).

Tip

Keep in mind that the screen on a device may not be accessible or useful to all
your users (such as the visually impaired). Although expensive applications do
exist for testing in these scenarios, you could install a screen reader and turn
off the display to see if your content can be read aloud. Sites need to remain
accessible in the future,

While visual output is a critical feature in terms of the Web’s beauty and elegance, other
output tools exist, and some are critical to certain audience niches. For example, speakers,
though an optional piece of hardware, are key technologies that allow the blind to visit a
site. Another is the printer, which still manages to linger on, offering hard copies of your
work, despite pushes to the cloud. Being compatible with these tools makes perfect sense as
they offer alternative, friendly methods of consuming content and enriching experiences.

C H A P T E R E I G H T D E S I G N I N G F O R O U T P U T T O O L S 163

If your site is media oriented, understand the value of providing visual and aural content
that users can initiate. Engaging multiple human senses adds richness to an experience,
and certainly you want your sites to use these forms of content. Sometimes, optimizing a
site for different output tools is a challenge; for example, consider varying screen sizes.
Other output tools such printers have a more direct, universal solution (print style
sheets), though in every case, users must have access to at least one usable output (and
input) tool.

From a compatibility perspective, often it’s the variables within a computer that affect the
visuals that users see on their screens, which makes it harder to design around output
tools (while input tools often just rely upon an event being triggered, whether that be a
click, tap, or key press). Often, it’s not the hardware users own that breaks a site visually;
instead, it’s usually something interjecting at a lower level, such as a browser or the code
being used. That said, differences do exist purely at the output level, and they’re worth
investigating.

Working with a variety of display sizes
Try to imagine for a moment that one of your loyal visitors who has previously experi-
enced your site upon their 21-inch LCD monitor bought a smartphone and tablet com-
bination to complement their workflow. Upon buying their choice of smartphone (in
this case an Android device) and a tablet (an iPad), they decide to try out their coveted
new gadgets by visiting your site only to find that your layout isn’t flexible enough to
be friendly on the tablet, and the separate mobile site you provide makes the visual
experience unfamiliar.

Confused by the differences on the mobile site, they look for a link to visit the full ver-
sion of the layout and find that one doesn’t exist, meaning that their powerful device is
trapped by the assumed limitations of the screen (because of its physical size and view-
port). Additionally, the user isn’t exactly happy about browsing your work on the tab-
let, as it’s nether touch friendly nor able to cope with the unique screen size without
initiating scroll bars in every direction. Alas, this isn’t an out-of-the-ordinary situa-
tion; in fact, with many older sites, the issue is common.

Ensuring that your layouts work for a variety of display sizes, types, and models is
critical in determining that your content is readable. If there isn’t enough contrast,
flexibility, or scale in your work, small screens or displays with little brightness may
simply become unusable. In addition, with the range of displays being so diverse, it’s
quite likely that the visitor may have subtle yet different experiences simply by using a
product with unique dimensions. This issue is similar to that of printers that can differ
based on the type or output capabilities of the tool.

F U T U R E - P R O O F W E B D E S I G N 164

Display
Beyond a shadow of a doubt, your device’s display is the most frequently used hardware
output tool. In terms of engaging your senses, there’s no comparison: Experiencing a site
with your eyes will beat just experiencing it with your ears every time! This tool regularly
trips up designers wanting the mythological pixel-perfect layout, because of the available
range in quality, features, or size. It’s important to ensure that every site caters to various
displays gracefully to ensure layouts continue to work within various unique situations.
Figure 8-1 shows the type of visual display typical to a television.

Figure 8-1: Displays visualize your content using technologies like CRT, LCD, Plasma, and OLED.

The following lists this hardware’s family tree and some issues its members encounter:

Relatives: Considerations:

> Monitor > Technology used

> Touch screen > Size and resolution

> In-dash > Visual orientation

> Television

C H A P T E R E I G H T D E S I G N I N G F O R O U T P U T T O O L S 165

Practical solutions
Different screens have different effects on visual objects. Not all screens have equal pixel
density, not all have the same luminosity, and not all are equally popular. If you want to
cater to the widest-possible audience, you need to consider the effects of different screen
technologies (such as how black the blacks really are) and the extent to which they can be
calibrated within the gadgets that contain them. The importance of this is because contrast
and color visualization play a huge role in how images are interpreted by the human eye.

Dealing with the wide range of formats is tricky because users may have an old-style CRT
screen, TFT, LCD, or Plasma screen attached to their computer (as commonly seen in TV
sets). You also have other display technologies of note such as LED, Retina Display (for
Apple), and OLED. Dealing with different compatibility quirks will require you to read up
about the mechanics of the technology (a good place to start is Wikipedia, as it has quite a
bit of information on the subject, and some useful comparisons), and try them for yourself.

When ensuring stability with displays, the most obvious issues to consider are the physi-
cal dimensions of a product and the resolution being utilized. Obviously, a 5-inch display
will show content differently than one that’s more than 100 inches (in the diagonal); and
an 800-x-600 resolution will offer less space than a 1024-x-768 resolution. Accommodate
diverse audiences and their devices by embracing and accounting for these differences, as
in the future CRT may totally disappear, and high definition OLED may be the standard.

Reference

CSS3 media queries can help you better define and use the available viewport
space. It’s also one of the primary tools used in responsive design. To learn how
to target both resolution and orientation, offering a range of flexible layouts that
work within a range of defined dimensions, read this W3C specification:
www.w3.org/TR/css3-mediaqueries/.

Dealing with different product sizes can be mystifying because not all large screens will
have a high resolution and not all small ones will have low resolutions. Some may support
HD, and some may support only standard definition. You can’t do much about the size of
physical objects except consider how the content will scale and cater to different window
sizes (no matter how they scale up or down). Rather than offer separate fixed-width sites,
you should use liquid layouts (that utilize flexible units like percentage widths) and CSS3.

http://www.w3.org/TR/css3-mediaqueries/

F U T U R E - P R O O F W E B D E S I G N 166

As I continue talking about displays, it’s worth mentioning their capability to work in both
landscape and portrait modes, as popularly utilized in smartphone devices that need deep,
lengthy document displays and widescreen video and gaming visuals. On the Web, you
must consider the differences between these two modes of orientation, if only to ensure
that your sites are as responsive as you hope they are! CSS3 media queries, liquid layouts
and content, and object and image responsiveness are central to achieving such flexibility.

If you tip your screen into landscape mode, you’ll obviously have less space above the fold
(visible on the vertical scroll line) but have a wider angle that can be ideal for sites needing
multiple columns. By turning things to portrait, you provide more space to show a full,
vertical document, but with less room for columns. Every site should work in both modes,
which you can implement using the viewport Meta tag (to avoid scaling); so test, using
fewer (or collapsible) columns, and reinforce this with well-defined CSS3 media queries.

Best practices
> Research different visual technologies; screen quality can differ greatly.

> Avoid using small text as it might downscale on various screen sizes.

> Never build for resolutions; instead, scale to relative, satisfactory levels.

> Learn CSS3 media queries; it’s the visual bread and butter of web design.

> Devices can turn on their side, so test in both portrait and landscape modes.

Projector
Being able to look at a glass display with a range of colors and pretty visuals is great for
many browsing experiences, but if you’ve ever been to a conference, you will know that
sometimes a monitor isn’t enough to meet an audience’s needs. While projectors such as
the one shown in Figure 8-2 have been around for a long time, they aren’t as popular as
other displays like computer monitors, though you shouldn’t let that keep you from con-
sidering them because your design’s effectiveness and the visibility of content can be
affected by these external units.

C H A P T E R E I G H T D E S I G N I N G F O R O U T P U T T O O L S 167

Figure 8-2: Projectors allow entire groups of people to see a Web site at the same time.

The following lists show this hardware’s family tree and some issues its members encounter:

Relatives: Considerations:

> Head-mounted display > Brightness problems

> Virtual-reality headset > Split concentration

> Projection glasses > Upscaling distortion

Practical solutions
Projectors are unique output devices that transmit images onto another physical object,
rather than keeping them within a device. Compatibility with such tools isn’t as common as
with desktop monitors, and to be honest, not many of them will be found in a user’s home.
That isn’t to say, however, that projectors aren’t heavily used, because they are in business
and education, for example. Still, if you’ve seen a projector in action, you know screen
brightness is a real issue, and this is one of a few projection factors that we must deal with.

A projector is normally used in a darkened room, such as an auditorium or a theater. Because
of the beams of light transferring the on-screen visuals onto a wall or specially crafted
canvas, heavy amounts of outside light or reflections can seriously distort what’s being
displayed. As a designer, you can’t do much about such interference; however, you can be
aware that sites will need a good amount of contrast to counteract potential low-visibility
situations. A more common light situation can be seen with cellphones used in sunlight.

F U T U R E - P R O O F W E B D E S I G N 168

Projectors are like TVs in that they tend to have low resolutions (preferring to upscale
content as required), and projectors that augment reality can provide endless entertain-
ment. Avoiding upscale distortion in projectors can be achieved by increasing the physical
size of objects on the page (so that clarity isn’t lost in the scaling). Avoiding the other
issue of wearable projectors (like glasses, which can give users the opportunity to browse
sites as they walk) requires keeping the display aspect as a secondary feature to the real
world.

Tip

Projection glasses already exist! One common brand among gadget sites is
Vuzix’s iWear range, which projects a virtual screen to a user’s eyes. While this
technology is more of an enthusiast product, it could soon catch on for browsing
the Web while on the move (especially for users who like the idea of gaming or
watching movies outdoors).

Because projections are normally shown to many people sitting together (monitors are
more for one-on-one experiences), such as at a conference, the user’s concentration levels
may wane as a result of outside distractions such as other people or objects in the room.
In the case of a regular PC display or touch screen, attention deficits are less frequent as
the eyes focus on objects rather than a region. Because of the natural displacement
between user choices and the environment they view the displays within, holding atten-
tion is tricky.

Keeping a user’s attention is difficult when that person has no direct, interactive route to
visualize content, sits some distance from the screen, and just follows along with the host
who is presenting the visuals. Moreover, the projectionist can encounter problems
because he ends up having to browse between the device and the projection to ensure
what appears on one also appears on the other. For compatibility within your designs, try
to keep the site’s content visibly clear and concise, and a splash of multimedia can keep
things lively.

Spiderman fans around the world will know by heart the phrase, “With great power comes
great responsibility.” It’s one of those statements that applies to many facets of life. In the
case of projectors, these powerful producers of visual output can showcase a site like
yours to hundreds or thousands of people in one shot. Yet, with this awesome tool at a
visitor’s disposal, the likelihood of distortion, blurriness, and quirks increase, as does the
likelihood of issues such as problems with viewing angles, distance, and partially blocked
viewpoints.

C H A P T E R E I G H T D E S I G N I N G F O R O U T P U T T O O L S 169

Best practices
> Provide a high-contrast layout fit for poor lighting conditions.

> Increase visibility by allowing increasing typography sizes.

> Consider where attention will be focused within each split second.

> Aim for clarity and provide visual shortcuts to aid reading flow.

> Never distort a user’s vision while moving (via projection glasses).

E Ink
In a quest for more natural-looking visuals that are frequently less affected by reflections
from natural sunlight and consume less power, E Ink screens in the form of digital paper
and glass displays have gained popularity (see Figure 8-3). Most commonly found today in
book reading devices like the Kindle and the Nook, the technology has gained a level of
Internet ubiquity with the attachment of browsers into the devices. However, E Ink can be
hard to design for as it lacks things we take for granted (like color—that’s coming soon).

Figure 8-3: E Ink displays aim to give a more natural reading experience (free of reflections).

The below lists this hardware’s family tree and some issues they can encounter:

Relatives: Considerations:

> Electronic paper > Low refresh rates

> Digitized glass > Monochromatic

 > Readability impact

F U T U R E - P R O O F W E B D E S I G N 170

Practical solutions
Electronic ink is a funny sort of display medium when you think about it. Unlike many of
the others, it has a paperlike look about it. However, when it comes to ensuring that your
sites work with each output medium, E Ink is one of those unfortunate examples of where
the technology hasn’t caught up with the feature sets that many Internet users expect. In
many E Ink devices, low refresh rates and ghosting (pixels getting stuck) is a considerable
problem, which means moving objects aren’t treated with much dignity or durability.

Best practices when dealing with the aforementioned issues on eReaders or related gadgets
require that sites avoid page refreshes and Flash effects unless absolutely necessary. Some
sites, out of fantasy that their actions are beneficial, automatically force pages to refresh at
set intervals. Not only does this “feature” affect screen readers, but it causes E Ink to flicker
the screen to reset the pixels. As for low refresh rates, avoid any animation on a page as
older eReaders either won’t support the technology, or it may hurt users’ eyes.

As I mentioned previously, E Ink isn’t just limited in its capability to render animated effects
on a page; most E Ink-powered devices of this type are still incapable of viewing any color
(the display uses a gray palette). In the future, color eReaders will exist, and the technology
is really being pushed in that direction. For now, though, you can expect the lack of color
support to affect how your pages visually appear (in most eReaders). To ensure sites work
on monochrome displays, try using a color-blindness filter to see how it affects visibility.

Note

Color E Ink products (like the Hanvon eReader) exist, but the refresh rate they
employ is unfortunately still very low. So, although the upgrade to such a device
could bring some lovely color to your layouts, animation still will not be a stable
feature to display.

You can work around monochrome screens by testing how your site stacks up against the
lack of color availability. Most decent graphics applications can take a screenshot of a page
or an image and produce a grayscale or monochrome version (if the image is readable, it
can stay as it is). If you do find the grayscale doesn’t work that well, try to increase the
contrast and use stronger background and foreground shades. The aim isn’t to turn your
whole site into a gothic wonderland; it’s to help your visuals work in either situation.

The main selling point of E Ink is that, above anything else you’ll find it’s seriously easy on
the eyes and built for looking at over long periods of time. Not only will the device work
well in bright sunlight (absorbing and reflecting the light instead of glaring it back in the

C H A P T E R E I G H T D E S I G N I N G F O R O U T P U T T O O L S 171

user’s face), but also it has an encouraging battery lifespan because of the lack of backlit
elements in the display. However, while it may have a superior reading experience (when
the technology catches up), you still need to support it to maximize compatibility chances.

First, while E Ink may be a great reading experience, you need to ensure that the legibility
of the text transfers from traditional screens well. By testing on a device that uses E Ink,
you’ll gain perspective on the clarity of the platform and an idea of how legible content
will be. Ensuring that your text is appropriately sized and not too small will help with
readability, too. Additionally, because E Ink devices have a lengthy battery life, don’t time-
out sessions for on-screen activity (as users might pause reading for hours on end).

Best practices
> Avoid forcing a page refresh as doing so causes E Ink displays to flicker.

> Block animated content and video multimedia from various E Ink devices.

> Although animated GIFs are supported, it’s safer to avoid using them.

> Check your site under a monochrome filter to see how it’s likely to look.

> Don’t time-out sessions (the impact of sites on the battery is negligible).

Speakers
Let’s face it, when it comes to outputting your data into something that users can con-
sume as they like, we tend to default to supporting displays and little else. Yet, as you
know, the ability to provide audio content within your pages is worthy of your attention.
In terms of output tools, many of us have in-ear headphones, headsets, or speakers, such
as the ones shown in Figure 8-4, either built into a device or attached separately via a
sound card. With such a cool implement at many users’ disposal, it makes sense to con-
sider the availability and usefulness of sound.

The following lists show this hardware’s family tree and some issues its members encounter:

Relatives: Considerations:

> Headsets > Automatic playing

> Media speakers > Integration methods

> PC speakers > Portability issues

> Earphones

F U T U R E - P R O O F W E B D E S I G N 172

Figure 8-4: Speakers play sound, so why not use them to further help users consume content?

Practical solutions
When considering the implications of audio and ensuring a site’s stability, the web design
community regularly frowns on one commonly used technique: automatically playing
music. Although doing so might seem like a logical step toward tapping into emotions, set-
ting a beat to a page, or perhaps introducing users to something you’ve created or the con-
tent that a band recorded for purchasing. However, in the Web hall of shame, auto-playing
media has a permanent spot as one of the most annoying things you can do to a visitor.

If you imagine a situation in which a user is multitasking, perhaps listening to tracks on an
MP3 player or iTunes, the seriousness of the mistake is obvious. Having audio you didn’t
ask for blasting from your speakers, bleeding into something you’re already playing (or
annoying everyone in an office) doesn’t do anyone any good. Audio or video use must be
user-initiated or accepted by them. So, never make the mistake of forcing “noise” on users!
This not only counts for the audio that you create, but video or Flash multimedia as well.

Speakers and headsets come in all shapes and sizes. Some are better suited to channeling
the sounds to an entire room, whereas others focus on the personalization of the output
(to one user’s ears). Not all speakers are going to be of the same quality, and some will
have better clarity and quality than others. Web designers aren’t expected to be some
kind of supernatural audiophiles who can make out every tone, but it’s worth noting that
some users will be more critical of the output quality than others, depending on their
personal tastes.

C H A P T E R E I G H T D E S I G N I N G F O R O U T P U T T O O L S 173

Hardware speakers, headphones, and the software these products offer allow the altera-
tion of the volume of the output media (within a control panel). Because users may be
listening in a busy environment, your content needs to be audible at lower levels. If you’re
offering a recording of a speech, avoid having too much background noise behind the
track (such as a loud soundtrack) or keep it at a lower level than the speaking volume
level. Also, avoid being monotonous and signify and structure the file accurately to aid the
file navigation.

With the rise in online piracy and worries about the security of their media, many sites
try to encase audio files within media players that prevent downloading or copying. Sure,
it makes sense to want to protect what you own; however, when trying to protect any
object published online (images and content included), know that once it goes online, you
cannot control distribution. Tools like Audacity can record “what u hear” and form an
MP3 file as a result. Moreover, to be compatible with every type of user, physical files are
needed.

Because of how some audio output devices offer docks for popular MP3 players, you first
must recognize that the way users access your audio may differ greatly. To cover the many
integration methods, you must not only provide an inline MP3 playing application (using
Flash or a relative system), you also must provide compatible fallback formats that match
the needs of your audience (popular formats like MP3 are always a winner). It’s also worth
setting up an RSS feed for podcasts, as dedicated streaming apps may request such a feed.

Best practices
> Automatically playing audio is a sin worthy of abandonment; don’t do it!

> Offer a range of varying quality levels to offer users quicker downloads.

> Volume or EQ levels may vary, so ensure sections are as clear as possible.

> Don’t just offer a Flash player; offer physical files that can be downloaded.

> Podcasts need an episode feed and submission into directories like iTunes.

Note

Environment plays a big role in how sites are consumed; it can actually increase
the level of use, too. If users listen to a podcast of your site’s news while driving
or working out, they’ll accomplish more things at one time than they would
otherwise be able to; and like listening to music while moving, it’s a popular
method of consumption.

F U T U R E - P R O O F W E B D E S I G N 174

Printers
Finally on the list of output tools is a golden oldie: the printer. Sometimes found attached
and integrated with scanners but mostly as a separate gadget, printers (shown in Figure
8-5) have been enabling you to make paper copies of digitally formatted sites since the
inception of the Web. These products have high ubiquity levels and are almost the polar
opposite of scanners in terms of functionality (as they turn digital files into print, rather
than print into digital files). As you can provide dedicated support for them on your sites,
why not do so?

Figure 8-5: Printers format Web pages for paper (and thus require a unique styling approach).

The following lists show this hardware’s family tree and some issues its members ncounter:

Relatives: Considerations:

> Desktop printer > Printworthy objects

> Label printer > Eco-friendliness

> File printer > Stylistic formatting

Practical solutions
Compatibility with printers no longer requires having a dedicated printer-friendly site as it
did in the 1990s (because of innovations in how we can format layouts). Along with the
evolution of CSS came the benefits of the print media type, letting you offer a customized
experience on paper unique to what users could expect on their screens. Rather than leave
browsers to either strip away all the style or squeeze everything onto a page, you can easily
improve the core compatibility of your content in that environment, without a lot of work!

C H A P T E R E I G H T D E S I G N I N G F O R O U T P U T T O O L S 175

One critical factor in providing a stable and useful print experience is to determine what
is relevant to the user and what translates well onto a printed page. Things like the naviga-
tion menu, search box, and functionality provided in sidebars aren’t usable (or clickable)
with paper and ink, and showing them doesn’t make sense as they have no practical func-
tion on paper. Instead, hide them using the CSS display property. Links can be made use-
ful if you use the CSS content property to showcase the URL for retyping from the paper
document.

It’s worth noting that in the current endeavor to be environmentally friendly, we all need
to do our part to reduce the amount of ink and paper we waste. By helping users reduce
their print output, you can actually save them money in ink and paper costs (which will
give you bonus points in places where printing occurs regularly, such as within schools),
and you’ll reduce the ecological impact of your work as well, helping you to boost your
business’s green credentials. Removing fluff is, of course, a great start, but there’s more
you can do.

Reference

I suggest reading two fantastic guides for ensuring a great quality print
stylesheet. The first guide can be found at www.webcredible.co.uk/user-
friendly-resources/css/print-stylesheet.shtml and the second at
www.alistapart.com/articles/goingtoprint. Many of these practices
have been recommended by designers, and do improve Web experience.

Although CSS2 offers you the option to target printers with some predefined stylistic
effects, CSS3 and the power of media queries can help you offer monochrome displays and
printouts a customized style sheet of their own (to further optimize the experience). It
makes sense to remove stylistic, unessential images and objects from a page, as well as
things that aren’t appropriate for printing. Animated images, banner adverts, and media
files, for example, are common features that serve no purpose on paper-based formats.

You also need to think about the paper layout because few designers give the same level of
care and attention to what their printed pages look like as they do to what appears on a
digital display (most just assume it works and little else). Printing to paper may end up
being gradually phased out as everything goes digital, but for the sake of maximizing and
ensuring the flexibility of the format, try to be a bit creative with your layouts and con-
tinue to offer printer-friendly versions, as printing to PDF or other formats will remain
popular.

http://www.webcredible.co.uk/user-friendly-resources/css/print-stylesheet.shtml
http://www.webcredible.co.uk/user-friendly-resources/css/print-stylesheet.shtml
http://www.alistapart.com/articles/goingtoprint/

F U T U R E - P R O O F W E B D E S I G N 176

Because printed documents are static, they’re the only format on the Web where respon-
sive design and the other flexible layout techniques hold little relevance. Take a page out
of print publications in order to see what layout, color, and typography choices will work
best in print formats. The great thing is that printers are adept at turning a printable lay-
out into an exact (or nearly exact) copy of what’s shown on a page; however, be warned
that using fixed-width layouts may result in content being cut off and/or spanning addi-
tional pages.

Best practices
> If it has no purpose on a printed page, it should be marked for removal.

> Use the CSS display: none combo and print media queries to target fluff.

> Optimize your printed layouts to ensure they’re as eco-friendly as possible.

> Flash-based sites require an HTML fallback to ensure print compatibility.

> Design stylesheets for what looks good on paper, rather than on-screen.

9

Environmental
Influences
Ensuring stability with components,
connectivity, and bandwidth

F U T U R E - P R O O F W E B D E S I G N 180

HARDWARE CAN BE a tricky business. When it comes to ensuring that sites remain
compatible with a user’s needs, you often must look far beyond the obvious demands of
existing input and output tools. The internal components of a device that users rarely get
to see (such as the hard disk) and the Internet connection that provides access to sites
affects how stable your site will be. In this chapter, you examine these environmental
concepts, their consequences, and what (if anything) you can do to avoid complications.

Internal and External Factors
Manufacturers release faster and more powerful hardware regularly. Upgrades frequently
become available for hard disks, graphics cards, audio cards, processors, and RAM, and all
have an impact on a device’s performance. However, not all users will upgrade as soon as
these components are released. Try to design with every user in mind, from the user with
an older device to those using the latest equipment, and avoid overtaxing their hardware,
as our sites will increasingly utilize hardware to boost performance in the future.

You need to consider the connection between the visitor’s computer and a site. Obviously,
without connectivity, a site isn’t useful to the consumer, but as with many other vari-
ables, things just aren’t that simple. Today, many web apps are designed to offer some
degree of offline usage capabilities to ensure that work or access to critical services won’t
be lost if the user’s connection fails at any time, and there are always server issues and
issues related to bandwidth, speed, and roaming charges that can interrupt the user’s
online experience.

Tip

Determining how large or small to make your pages is difficult. However,
excluding content (text and images critical and unique to a page), I recommend
that the design (code and graphics) ideally be under 100K. Keeping pages
to a predetermined limit helps to ensure that download times won’t become
excessive on slow connections.

Environmental issues are often outside both your control and the user’s control. Although
the problem can’t be entirely averted, you can make a number of tweaks and optimiza-
tions to your sites to aid users and to help reduce the likelihood of such complaints occur-
ring. In recent years, Internet speeds have increased for many, but the old enemy, dialup
access (or speeds equally as slow), is still in circulation around the world. Also, handheld

C H A P T E R N I N E E N V I R O N M E N T A L I N F L U E N C E S 181

device users are increasingly finding that data charges can be costly, especially when
roaming abroad.

Compatibility with slower computer systems is important because lagging can result from
the intensive utilization of too many Flash or feature-rich components. In addition, be
sure that sites aren’t too bandwidth heavy and they don’t misuse precious system
resources in other ways. The days of limited connectivity may seem numbered as Internet
access gains increasing levels of adoption, even in the remotest of areas; however, for
some Web users, such issues could be a reality that’s as harmful to their experience as it
was in the 1990s.

Ultimately, the most stable sites on the Web are easy to maintain and require few system
resources. Small sites tend to load quicker and put less strain on users’ devices, and they’re
often more flexible in low-yield environments (for example, being friendly to cellphones as
well as desktops). This is because, in part, to browsers having less code to render and fewer
files to load. Don’t downscale everything on a site unnecessarily, but use simplicity and
avoid redundancy as they’re gifts that we should treasure that benefit everyone involved.

Dealing with slow connections
Consider users who live in a rural part of the country, use a fairly old computer, and are
still getting used to the Internet. One of these users finds your site by using a search
engine and decides to give the site a read. As the site begins to load, the user suddenly
finds herself in a spot of trouble. Her computer is really lagging under the stress of
loading a Flash intro, and everything is excruciatingly slow. In this scenario, the user
with the slow connection wants to invest in faster access and get broadband, but
because of where she lives, no ISP will support her.

As the user manages to push past the Flash introduction and onto the site, things go
from bad to worse. Large images seriously affect her dialup connection, the graphics-
accelerated material provided to the browser starts cooking her humble processor to
high temperatures, and the frameworks being batch-loaded into each document starts
to absorb bandwidth like crazy (and in this case, little of it was actually being utilized
to achieve effects). Moreover, not all of the styles and scripting were being cached in
external files, resulting in large file sizes.

One solution is to use external stylesheets and scripts to offer a lo-fi edition of the site
that eliminates surplus flourishes. This will improve the overall flow of an interface,
even one being used on older devices requiring legacy support. So, even with the excite-
ment offered by new standards and innovations, you should offer a reasonably opti-
mized experience for all users. If you can reduce the size of a site and avoid bundling
unnecessary resource-heavy features, do so. More often than not, users have a lower
emotional threshold for loading times than errors, so efficiency is a worthwhile goal (it
could have helped that visitor to browse more easily).

F U T U R E - P R O O F W E B D E S I G N 182

Components
Many hardware components, such as those shown in Figure 9-1, can affect your website’s
performance, and with the browser’s rendering increasingly being tied to your machine’s
capabilities, the relevance of this trend is certain to increase. As a designer, it’s critical
that you know your hardware and that you ensure the stability of even the weakest link,
from storage mediums to the processors that render objects. These components range
from the tools that give us speed like CPUs, GPUs, or RAM, to the tools that store or affect
our content’s playback capability.

Figure 9-1: Memory, processors, and hard drives are internal components.

The following lists show this hardware’s family tree and some issues its members encounter:

Relatives: Considerations:

> Hard disk > Hardware acceleration

> GPU > Local object storage

> Audio card > Resource overhead

> CPU

> RAM

C H A P T E R N I N E E N V I R O N M E N T A L I N F L U E N C E S 183

Practical solutions
When determining whether a layout is sustainable and compatible with internal hardware
components, you must consider the hardware’s stress levels while the browser is viewing
your site. If a user’s device suffers performance issues while the site is open, she will not
visit your site again. If performance excels, or is at least reliable, the site is likely to survive
even the oldest of machines. Hardware acceleration in browsers is perhaps one of the best
examples of the developing relationship between web designs and computer hardware.

Making sure that your site works with some device’s hardware isn’t just about using some
neat piece of code or ensuring your site renders to a recognized speed benchmark. Often
rendering happens automatically in modern browsers. Except, rather than rendering like
in the old days, browsers now use the system’s CPUs, GPUs, and RAM to process and
churn through graphics, scripts, and other heavy-going files, at epic speeds. The only way
to help users with weaker devices is to reduce the level of resource-intensive scripts in
designs.

Reducing the demand on resources in your pages is relatively straightforward, as you just
need to make your work as clean, lean, and mean as possible. However, everyday actions
can affect the performance of your hardware. Consider, for example, the humble hard
drive, which handles caching, offline storage, temporary files (like cookies), and does so by
writing data to the disk when required. If the user has other programs that intensively
read and write from the disk (like an antivirus product), performance issues may occur.

Reference

Cookies and local storage have become a perilous subject with the controversial
new EU laws becoming effective. You might want to consider taking the hit
and transporting all of your stored user data into cloud-hosted (secure)
solutions as a safer option. For details, check out the article, video, and eBook
at http://www.silktide.com/cookielaw.

Everyone on the Web makes a big deal about HTTP requests and the latency they cause, but
from a desktop angle, levels of cached or fresh content vary greatly. Although SSDs (solid
state disks) are becoming more ubiquitous, plenty of older, traditional disks are out there,
and having to keep writing data to the disk and grabbing it back adds to machine stress.
When possible, reduce the number of files you use. Also, caching keeps files on the disk for
longer, reducing the need for constant rewrites, which lowers the load on the machine.

http://www.silktide.com/cookielaw

F U T U R E - P R O O F W E B D E S I G N 184

The resources required for data are enormous. If you open your operating system’s
process-management application and examine how a browser absorbs memory when
loading a page, you’ll be shocked. The average site is increasing in size, and the use of
extensions and other features (like plug-ins) increase the scale of the issue. This double-
edged sword is equally problematic because downloading and uploading files between the
client and server side takes additional time. Weighing your options allows you to plan for
the future.

If your site is to withstand the demands of different device types, you should balance the
needs of a site with the capabilities of the tool being used to access the Web. Don’t burn
resources on needless features and effects. More importantly, deciding where to store
user settings can make a real difference. Data stored on the client side is great for data
that will be requested constantly. Server-side storage costs more in terms of latency
(awaiting files to download) but offers portability for multi-device users. So pick your
methods wisely!

Best practices
> Reduce the level of intensive-rendering scripts for performance gains.

> Splash screens are an example of wasting resources. Don’t use them.

> Try to reduce the frequency of disk-writes to assist slow hard drives.

> Keep repeat requests local as disk-writes are faster than bandwidth.

> Resources are precious; don’t squander them on pointless or large files.

Connectivity
While you can applaud the Web’s many useful innovations, the availability of sites remains
an issue to this day. The problem could be on the client side, ranging from issues involving
lack of Web connectivity (see Figure 9-2) to DNS issues; or it can be on the server side,
ranging from a server’s availability, domain pointers, and downtime, either accidentally
or purposefully. Of course, no one will ever eliminate every issue surrounding connectiv-
ity, but it’s worth determining how your site may be affected, and what you can do to
ensure its availability.

C H A P T E R N I N E E N V I R O N M E N T A L I N F L U E N C E S 185

Figure 9-2: Problems can exist on the client side, caused by lack of Web connectivity or DNS issues.

The following lists show this hardware’s family tree and some issues its members encounter:

Relatives: Considerations:

> Web connectivity > Archive mirrors

> Domain pointers > Issue handling

> Site maintenance > Offline browsing

> Server downtime

Practical solutions
Naturally, when you talk about connectivity on the Web, availability of the site matters;
otherwise, the site is basically offline. Downtime still troubles designers, but there are
potential solutions at hand, so you’re not entirely defenseless against the tides of hosting
providers. For example, many hosts provide backup solutions that can help reduce the
potential for downtime (such as distributed hosting, cloud architecture, backup devices,
and other features that are designed to ensure that if one server fails, another kicks in).

When talking to a computer user who understands the dangers of hard disk failures, you’ll
keep hearing that they wish they’d backed up their data. Regularly synchronizing data to
backup sites, mirrors, or archives offering identical sites may not seem that useful, but it’s
probably one of the single most important aspects of running an online service. Using

F U T U R E - P R O O F W E B D E S I G N 186

backup hosts comes the added cost of maintaining this second tier of hosting; but, if your
site requires 100% uptime (or something close), you might want to consider investing in it.

Ultimately, no matter how hard you try, problems will occur on sites. Compatibility and
ensuring a future-proof layout doesn’t mean a total lack of downtime, which unfortu-
nately, is unavoidable (so you can’t be blamed for what is often out of your control),
though you’ll want to reduce the likelihood of it occurring. The old adage, “An ounce of
prevention is worth a pound of cure,” makes perfect sense here, and having a protocol or
plan about how you’ll deal with unexpected failures or situations can help preserve a site’s
longevity.

Tip

Many of the world’s largest companies have seen the benefits that social
networking can provide in terms of user satisfaction and maintaining an online
presence when their sites have issues (thus upholding the stability of a site using
flexible approaches). So get yourself a Twitter or Facebook account and keep
users abreast of systemwide issues.

Monitoring your sites for bugs and issues relating to connectivity is important, whether
the problem is that the entire site is unavailable or there’s a bug in an PayPal IPN script.
Rather than leave minor errors to fester, resolve them immediately. Also, regularly back
up your data to reduce long-term harm to a site, especially one that has a rich, active com-
munity, such as a forum filled with members and feedback in public view! When things go
wrong, informing users and providing good communication are just as important as
resolving the issue itself.

Finally, you need to cover offline browsing. Offline browsing has been around for years,
and the technology has moved on a bit because people are using scrapbook apps, snippet
managers, capture tools, and offline readers to use sites without connectivity. Because
users are beginning to save files to read later, be sure to allow and encourage that behav-
ior. Yes, there are issues about piracy due to content being downloaded, but as many
handheld devices encourage offline reading (for if connectivity isn’t available), it should
be allowed.

Offering a PDF version of an article, for example, is a great route to offline reading (and it
has the benefit of letting visitors read your work anywhere). Rather than make users copy
and paste entire blocks of text, you can use DRM or features that are non-intrusive and

C H A P T E R N I N E E N V I R O N M E N T A L I N F L U E N C E S 187

not distracting. When users can’t get online for some reason but want to promote some-
thing they found on a site, they may open what they saved in their Web browser. In the
future, offline availability will become less critical because of advances in Internet coverage.

Best practices
> A backup site is a great way to dodge downtime and increase bandwidth.

> Whenever downtime is noticed, immediately try to resolve the situation.

> Use social networks to alert users about situations and potential timeframes.

> Don’t demand that a page connects to the Web unless really necessary.

> Users may want to browse content offline, so test if your site saves properly.

Bandwidth
Since the inception of broadband, users have enjoyed a rich online experience filled with
media and imagery. While some visitors have speedy connections (Figure 9-3), many have
issues with slow connections and a lack of bandwidth (especially in small countries and
third-world nations). Don’t neglect these less-fortunate users. Additionally, with the
mobile handheld market pushing worldwide connectivity to its limits, you should con-
sider the legacy of dialup, data limitations, and whether offline browsing can aid your
audience.

Figure 9-3: Users may have a fast DSL connection, or a dialup or limited 3G Internet connection.

F U T U R E - P R O O F W E B D E S I G N 188

The following lists show this hardware’s family tree and some issues its members encounter:

Relatives: Considerations:

> Reduced speeds > Semantic separation

> Bandwidth caps > Compression options

> Data throttling > Caching utilization

> Roaming charges

Practical solutions
If you’ve been building sites for a while, you’ll understand the need for easy-to-maintain,
small file sizes. Even today, many sites have scripts and CSS scattered throughout their
HTML files; even worse, designers are still pumping deprecated tags and dead attributes
for stylistic properties into code (and web editors that don’t know better). With the goal
of availing your site work to the widest possible audience, be careful about including such
features because they’re not exactly bandwidth friendly (bloated code uses more data).

Some legacy devices and browsers may not recognize new code, but very few people use
technology that can’t do things semantically (which is as good a reason as any to ensure
your code is well written). Maintain clean, efficient source code by eliminating duplicate
junk, and separate structure, style, and behavior as much as possible. By doing so, you not
only make updating the sites easier, but also you’ll often reduce the amount of bandwidth
used. As code becomes more complex, code separation will remain essential in the future.

Bandwidth is a well-documented issue on the Web. Because Internet speeds aren’t always
consistent for everyone and because of the data caps and roaming charges being applied
by ISPs and carriers alike, be careful that you don’t waste user resources needlessly.
Kilobytes soon add up when multiple pages and objects are being loaded frequently.
Beyond keeping code clean of deprecated, useless tags (in favor of well-supported options
with temporary fallbacks), the best and most useful weapon at your disposal in this battle
is compression.

Tip

Handheld devices tend to reserve less disk space for storing temporary files
so you may find caching less efficient than on the desktop, which is a shame
because that’s where the benefits are needed the most. So try not to cache
enormous MB+ sized files.

C H A P T E R N I N E E N V I R O N M E N T A L I N F L U E N C E S 189

You can compress quite a few things on a site with mixed results. For example, you can
shrink video or audio files by reducing the quality, or in the case of video the size of the
media and by using a good compression format (such as MP3 over WAV). Images are
much like media, except you have a few more compatible formats to work with. As for
code, you can remove white space and use other tricks (such as enabling GZIP on the
server) to reduce the size of files, though maintaining minified source code can be harder.

Caching is another option you can use to give users the most efficient experience possible.
Earlier, I said that with excessive disk writes, hard disks can develop a bit of latency, but
people choose to use the feature anyway because of its capability to shave megabytes, or
even more (gigabytes), in terms of data and hosting costs as revisited files are less frequently
downloaded! When using a smartphone roaming abroad, users could save a lot of money,
but even if they do have an unlimited plan, it may still speed up subsequent page loads.

When a file is downloaded, it will automatically attempt be cached by the browser (if that
is possible) and held until an updated file is detected online. This is almost like a hybrid
form of online and offline browsing. The fewer times the file is updated, the fewer times it
needs to be redownloaded for use, which is why designers frequently break their styles,
scripts, and resources into external files. Caching lets users recycle code they’ve already
downloaded and avoid duplicate downloads, so leverage this technique when possible.

Best practices
> Structure, style, and behavior do not belong together; separate them.

> Utilize server-side includes to separate and cache common content.

> Images and media take up the most space; compress them if possible.

> Enable GZIP compression if supported on the server side for savings.

> Prevent large files from caching as handhelds have a small datastore.

10

10 Influencing
Operating
Systems
GUIs, controls, typefaces, colors, and more

F U T U R E - P R O O F W E B D E S I G N 192

THE WEB ISN’T a physical entity that you can touch, and the layers involved in securing
a stable layout go beyond the devices and hardware at your disposal. Deep inside every
device, you’ll find a range of software variables that allows you to turn interactions with
devices into something meaningful and responsive. First we’ll examine the operating sys-
tem (OS) and like ice cream, everyone has their favorite OS (popular ones include
Windows, Mac, and Linux). OS directly affects how sites render, look, and feel.

Inside the System Shell
The idea behind an OS is to manage a computer’s hardware and software. Each OS has a
unique user interface and also a unique way of handling browser windows and other Web-
enabled applications. Visually, the most prominent differences relate to how much space
the components absorb. Consider the Windows taskbar: Some users may have it enabled;
others may have it disabled. The taskbar (or dock in OSX’s case) comes in different sizes,
can be modified, and absorbs a screen’s real estate (helping users manage open windows).

In addition, when running different operating systems (or versions of an OS), the most
popular browsers render websites differently. For example, font anti-aliasing, which is OS
controlled, makes the text in browsers render differently. In other words, your site may
appear differently on Safari for Mac and Safari for Windows, all because of how the OS
decides to handle the text that appears on-screen. To give users a consistent experience,
you must consider such differences upon each platform.

Note

Expected behavioral functions may not always work the way you want them to.
An example is the way browsers open a new window. Some mobile operating
systems will refuse to allow more than one instance of an app, and others may
not even allow pop-up windows to initiate. So, it doesn’t make sense to push
such features upon users.

Moreover, desktop computers aren’t the only game in town. Mobile operating systems
function in drastically different ways, and often their platform is more limiting in terms
of customizability than their desktop counterparts. The number of variants to account for
also jumps significantly from the three we know about for traditional computers to a
range that includes Android and iOS (which are, in part, based upon existing desktop sys-
tems). As the operating system controls both hardware and software, it should be taken
quite seriously.

http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Linux

C H A P T E R T E N I N F L U E N C I N G O P E R A T I N G S Y S T E M S 193

Getting users to change OSs is more difficult than getting them to move from a damaged
browser. If, for example, they use a handheld device or a tablet such as the Chromebook,
they’re locked into using the OS included on the device, because of restrictions imposed
by the manufacturer. When changing OSs, the learning curve for the average user is sig-
nificant. Making the most of an environment is a challenge, but with new operating sys-
tems being developed constantly, if you can ensure compatibility over time, you’ll have
happy visitors.

Many other aspects of an OS can affect your site, and different systems and shells can
affect a user’s interaction with your offerings. However, for the sake of simplicity, this
chapter focuses purely upon some of the more essential and game-changing factors, from
how the OS handles applications like browsers; to the color, typeface, security, and file-
handling capabilities they offer by default. Operating systems have considerable control
over what users see, so test upon multiple platforms, resolving any quirks you encounter.

Rasterized antialiasing
The user’s OS is instrumental in her journey through your site. Say that you just had
your site overhauled, and it takes advantage of the latest, greatest toys in CSS3. You
reference a beautiful, customized anti-aliased typeface to provide an emotional con-
nection to the content (using CSS3, which is now widely supported, but still requires a
legacy support fallback using font stacks) and some subtle low-contrasting shades in
the background, and your user is browsing on a solid browser like Opera. All good news
for you and the site’s visitor, right?

Sadly for this user, things aren’t going well. Although her browser does support the
CSS3 font-face technique, which allows typefaces to be embedded within a page, her
brand of OS (Windows XP) doesn’t have ClearType enabled by default — something
that her browser cannot work around. The lack of anti-aliasing on the font makes head-
ings look so jagged and blurry that they’re illegible. Also, her PC’s color calibration
settings are set up inaccurately (by OS default or user customization) and are uncali-
brated; the subtle shading on the site is lost to the site’s visitor!

Resolving such an issue is tricky because the process of enabling a tool like ClearType
or calibrating a monitor requires users to go out of their way to do so. And with certain
types of displays, there’s no guarantee that things will actually look clearer because one
bad move from the user could mess things up further! There’s no real answer to this
dilemma except to carefully consider the use of supporting typefaces. Beyond this, it
makes sense to build a traditional font stack so that if the typeface you want isn’t
installed, alternatives will kick in.

F U T U R E - P R O O F W E B D E S I G N 194

GUIs
The graphical user interface (GUI) dictates how objects appear on desktops (and screens,
by association). These powerful, visually engaging components control and restrict the
space a site can use, including everything from windows, dialog boxes, and pop-ups to the
many types of bars (status, menu, task, side, and so on). The GUI (Figure 10-1) controls
what happens between a browser and the OS it’s on. Although OSs come with a default
setup, users can customize these shells to a great extent, which in turn can affect a layout.

Figure 10-1: GUIs control and stylize the aesthetic of everything outside of a browser’s window.

The following lists show members of this software’s family tree and issues they can
encounter:

Relatives: Considerations:

> Desktop environment > Dialog notifications

> Window manager > Quick window scaling

> Interface shells > Theming and skinning

> Desktop metaphor

C H A P T E R T E N I N F L U E N C I N G O P E R A T I N G S Y S T E M S 195

Practical solutions
Regardless of whether we’re on a mobile platform or a desktop computer, our online expe-
rience seems to revolve around dialog boxes and notifications. From a real-estate perspec-
tive, notifications are more effective on a mobile platform than on a desktop, but with
their recognizable icons (which depend on the OS or browser) and notable penchant for
disabling app interactivity unless the message has been answered or acknowledged, it’s
true that your users will take notice of these distinctive tools, regardless of the platform.

Sites have been using dialog boxes within layouts since the dawn of JavaScript. Because
they are highly intrusive and overused, however, many users don’t care for them and get
annoyed at their use. Alerts and prompts have become so problematic that many brows-
ers limit how many can be shown (in sequence). To ensure consistency in interfaces, avoid
using them at all; instead, use a lightbox or related technique except on mobile platforms,
because there, dialogs match behavior expectations and reduce the potential for user
errors.

Every OS has title bars that provide a product (and/or document) title along with buttons
that aid window management. The capability to minimize, maximize, and close windows
will play a role in how a site appears to users. In addition to default functionality (like
zooming on a Mac), certain products can extend the functionality of the title bar and offer
features like pinning a window to be always on top. What’s more, users can resize win-
dows, which can affect viewport space (say they wanted two sites, running side by side on
a monitor).

Tip

Some browsers and applications defy an operating system’s GUI conventions
and offer customized interfaces. With this becoming a regular practice, don’t
assume that a user will have the same viewport (rendering space) or dimension
limits by default and avoid assuming the size, appearance, or behavior of objects
like buttons, scrollbars, or menus.

In terms of compatibility, your site will not always be visible to users; for example, you
cannot expect visitors to keep their windows maximized or in full-screen mode each time
they browse to your site. So, rather than thinking in terms of resolution, instead look at
the physical amount of space available for designs to appear within (this is commonly
called the viewport). Many users with large screens will not have their browser maximized,
and if the screen is small enough, horizontal scrolling may occur if responsive design isn’t
used.

F U T U R E - P R O O F W E B D E S I G N 196

Another interface complication is the capability to theme or skin the desktop. For many
years, companies like Stardock have been producing simple, effective software to give the
GUI an extreme makeover, which makes depending upon the look and feel of objects
unreliable. Plenty of alternative products exist, and to some extent, the OS also allows
customization. Consider how users can choose between the modern and classic Windows
themes. Now, imagine how this behavior can affect your website’s appearance as menus
visually change.

Users can increase or decrease font sizes within the title bar through skinning software or
the OS’s display properties, which will reduce or increase the viewport space available in a
maximized window. Also, users can alter default text sizes, native color schemes, and do
other things that globally affect screen real estate. To resolve theme-related issues, try to
avoid any precision JavaScript calculations that start from a base resolution, and account
for default object sizes that may reduce the overall viewport space to avoid scrolling.

Best practices
> Avoid using alerts or prompts except when a small screen is utilized.

> Use a lightbox script to create a customized, less-obtrusive dialog box.

> Try your site in a variety of different window modes, such as full screen.

> Avoid depending upon an OS’s look and feel in case themes are used.

> Avoid trying to calculate usable screen real estate by way of OS objects.

Controls
The capabilities of an OS extend beyond the desktop it maintains and regulates. Objects
used in browsers, such as tooltips, scroll bars, and input controls (like text boxes, drop-
downs and buttons), all garnish some default styling, and while they can be customized to
varying degrees, they largely remain the focus of the OS’s theme renderer (with excep-
tions where a browser takes over). As shown in Figure 10-2, a range of input elements can
be affected by control rendering, and with HTML5 offering several new elements, interac-
tivity is set to increase.

C H A P T E R T E N I N F L U E N C I N G O P E R A T I N G S Y S T E M S 197

Figure 10-2: Input controls affect how users interact with sites; if they fail, users are silenced!

The following lists show members of this software’s family tree and issues they can
encounter:

Relatives: Considerations:

> Graphical UI widgets > Input and output

> Interface controllers > Websafe widgets

 > Screen behavior

Practical solutions
Elements allowing interactivity are critical to the success of the Web. Each input widget,
whether it be a drop-down menu, text box, or any other embeddable element, has a spe-
cific goal to achieve, and each OS has its own way of implementing the widget to give it
the look and feel users can recognize and use throughout their online experiences.
Consider something like iOS. When you select a text box, the screen zooms to give the
object focus and the on-screen keyboard pops up, ready for input (this behavior is unique
to the OS).

F U T U R E - P R O O F W E B D E S I G N 198

When dealing with these interactive widgets, first you need to know that each browser
will have its own policy about how much the object can be customized. With critical fea-
ture (for example, scroll bars), it’s best to leave widgets to their own default styling mech-
anisms (as the user expect them to appear as), rather than replace them with special
effects or more exotic replacements that users may fail to spot. To help reduce confusion,
try disabling widgets that users may not need when performing a particular task (like fill-
ing out a form).

A range of input widgets has existed since the early days of HTML. For many years, this
select group of objects has been the center point for interactivity and inputting data online.
However, with the push to HTML5, a new bunch of input widgets has been created with
the intention of improving interactivity online, like being able to enter and parse e-mail
addresses, number values, URLs (in iOS it activates the URL-oriented virtual keyboard),
ranges (represented as a slider), search, and date or color pickers. Very exciting stuff!

Reference

If you want to have some fun with HTML5 forms and the new input widgets,
read the following article. It covers only a few general principles, but it shows the
potential for these new, exciting features: http://24ways.org/2009/have-
a-field-day-with-html5-forms.

Unfortunately, as is the case with all new HTML5 features, browsers that existed before
their creation will not be able to support these tools. Additionally, because some of these
objects don’t have an OS default control to fall back on, they can be very different in style
and function, especially between browser manufacturers. If you do use these new widgets
in sites, you’ll need to provide a fallback, or in the case of elements that function similarly
to others (such as e-mail to text), a script that can replicate the specific effect.

To reiterate, different environments may treat input widgets differently and thereby they
will render uniquely upon the page in those situations. Although they are not ideal for
those who take pleasure in styling every aspect of the page (because the level to which you
can customize these interactive objects is somewhat restricted), the lack of custom styling
options, which force users to see recognizable, non-stylized objects, does provide some
comfort in terms of usability because objects will be immediately identifiable on-screen.

If you own an iPhone, for example, and have completed a form, you will have come across
a drop-down menu and watched that beautiful roller wheel with the clicky noises appear.

http://24ways.org/2009/have-a-field-day-with-html5-forms
http://24ways.org/2009/have-a-field-day-with-html5-forms

C H A P T E R T E N I N F L U E N C I N G O P E R A T I N G S Y S T E M S 199

If you, the designer, demand that users enter a specific value into a drop-down while the
menu is active, they may find doing so tricky because they can’t see the page, and would
have to understand what needs entry by reading provided instructions before clicking the
menu (such as knowing they need to enter a country of origin rather than the destination).

Best practices
> Avoid coloring or replacing the scroll bar; doing so may confuse visitors.

> Input widgets can be styled, but don’t expect effects to work cross-browser.

> Utilize HTML5 inputs, but provide easy-to-use alternatives and fallbacks.

> Clearly state what users must do before asking them to interact with widgets.

> Input selection can trigger zooming, so keep form objects close together.

Associations
Most users maintain default settings on their computers. These settings affect the visual
style of their OS, the file associations (which determine how their applications open or
what file types will work), and other aspects of their computing experience. Understanding
such behaviors helps you assess what users may encounter while browsing with default
settings intact (Figure 10-3); for example, scripting could be turned off, support for XLS
files may not be offered, or the browser’s capability to input form data automatically may
be disabled.

Figure 10-3: Browsers come with default settings, and this could determine feature availability.

F U T U R E - P R O O F W E B D E S I G N 200

The following lists show members of this software’s family tree and issues they can
encounter:

Relatives: Considerations:

> Operating system defaults > Native behavior

> Manufacturer configurations > File associations

> Default format compatibility > Browser defaults

Practical solutions
The native behavior of an OS, browser, or device is important to consider. Although more
technology-minded individuals are able and willing to push equipment to its limits, the
average user isn’t likely to share this enthusiasm or competence. If something in an OS
must be turned on or off before it can be used, then it becomes intrusive. Don’t force users
to undertake such activity any more than necessary and use default behavior as the norm
when deciding whether to implement something that’s dependent on custom user settings.

When designing, consider a system’s default browser, the tools or plug-ins that may be
available and installed (ready to use), and the default theme or shell used within an OS.
It’s not that users are lazy and unwilling to work outside the box and make changes if
there is a real justification to do so; it just makes sense to reduce the learning curve and
barriers to entry so that beginners can browse without complications. For example, look
at what each browser has upon installation (in terms of default settings) to get you
started.

One of the biggest issues regarding the availability of content in specific formats is what
application (if any) will open files by default (associations). It is true that some file for-
mats have the luxury of ubiquitous support (such as txt, gif, and html, within the Web
browser), but other recognizable, popular formats have trouble getting the default sup-
port they need. This can be problematic if you depend on such formats because lack of
support or wrong file handling can affect your sites, reducing the availability of poten-
tially critical content.

Reference

Processing e-mails with a form and script combination is the best way to go, but
you can also launch the default e-mail client from within a browser. The following
reference describes the mailto syntax and how it influences apps and is
controlled by the default file associations offered by software: www.ianr.unl.
edu/internet/mailto.html.

http://www.ianr.unl.edu/internet/mailto.html
http://www.ianr.unl.edu/internet/mailto.html

C H A P T E R T E N I N F L U E N C I N G O P E R A T I N G S Y S T E M S 201

All browsers allow you to access a range of file formats (for example, txt) directly within the
browser window if a link to the file is provided. Some browsers may try to launch another
application from within the browser window, if users have the supported product already
installed and available. Consider something like iTunes pseudo protocol, which lets certain
links open the application (and automatically navigate to the intended page). Offering
alternatives for when these products aren’t installed is critical to avoid dead links.

When it comes to offering extended functionality (beyond the installed defaults), browsers
have become a complicated creature to account for. Because users can quite easily find and
install extensions, plug-ins, or other features—which can affect the daily operation of a
browser (positively or negatively)—the assembly of a toolbars and unessential components
that a user can accumulate will degrade a site’s performance over time. While most of these
products aren’t likely to cause much damage, some can affect defaults dramatically.

When you test for compatibility, be sure to factor in common alternative behaviors for
things like keyboard shortcuts, file associations, and site or browser interoperability. For
example, with something like screen resolutions, a few common configurations will enjoy
the majority of usage, but it’s also true that users with certain products installed may alter
the defaults, potentially without the user being aware it’s happening. Therefore, if a feature
like JavaScript can be turned off by third-party plug-ins (and it can), avoid depending on it.

Best practices
> Verify that “out of the box” defaults in OSs won’t affect usability.

> Make a list of popular configurations and extend support to these.

> As browsers function differently, don’t demand users override settings.

> Keep linking to pdf or doc files, but consider that the results may vary.

> Use mailto and other pseudo links, but always offer an alternative.

Typefaces
The typefaces you pick can affect the consistency and stability of your layout. Because a large
majority of sites are comprised of text-based content, it’s important that the fonts you
choose match what a user is likely to have installed. If the typefaces used can’t be found in
the OS’s collection, aren’t installed with software the user has, or are served via a service like
Typekit, the output can vary drastically. With typeface support being heavily fragmented
and anti-aliasing (Figure 10-4) varying between platforms, fonts are worth considering.

F U T U R E - P R O O F W E B D E S I G N 202

Figure 10-4: If font availability wasn’t enough, font-smoothing technologies can affect the aesthetic too!

The following lists show members of this software’s family tree and issues they can
encounter:

Relatives: Considerations:

> ClearType (Windows) > Non-rasterization

> CoreText (Mac) > Typeface formats

> CoolType (Adobe) > Websafe stacking

> FreeType (Linux)

Practical solutions
A critical aspect of typography that many of us fail to account for in our designs is the lack
of rasterization (or anti-aliasing) available to the user. Some typefaces are dependent
upon being optimized for LCD screens and their kin but aren’t necessarily any worse off if
the already-included capabilities aren’t taken advantage of, and others fall into the cate-
gory of useless without the technology being enabled. Windows XP is a classic case show-
ing what happens when the feature isn’t forced into being used (and users will feel its
effects).

The problem with working around the anti-aliasing issue is that you can’t magically force
users to turn on the feature. Moreover, different operating systems can use different sub-
pixel rendering methods, so typefaces will not look the same on Windows and a Mac. On

C H A P T E R T E N I N F L U E N C I N G O P E R A T I N G S Y S T E M S 203

Windows, Safari actually has its own built-in rasterizer, which just adds fuel to the fire!
Your choices are to either dodge fonts that depend on the feature, or test on each OS (and
Safari in Windows) with anti-aliasing technologies turned on and off to ensure readability.

When it comes to using typefaces in anything content related, the choices are many. This
diversity is especially visible in browsers where designs can be based around fonts, but the
recognition of typeface availability falls to the OS by default. Among the different formats
you can choose from, the choices (which can, in certain cases, be embedded) include
TrueType (TTF) and OpenType (OTF). But for compatibility, you’ll also need to cater to
the more openly supported WOFF, the IE-only EOT, and even SVG-based fonts . . . yikes!

Reference

Many services are available to help you determine and select the best font stack,
and some can help you find licensed typefaces for the Web. One of the best
CSS3 @font-face generators can be found here: www.fontsquirrel.com/
fontface/generator.

Supporting all of these necessary components is a pain in the neck, and ensuring that your
fonts fall back as you intend and degrade gracefully can be tricky. However, the simplest
option is to use a stack builder with websafe typefaces, an already-established typography
provider (which offers fonts that are ready for embedding on the Web), or a solution that’s
already gained support. Using established sites such as Fontdeck and Typekit guarantees
that you’ll have the required license to use a font for the purpose of online embedding.

If you’ve been building sites for a while, you have probably come across the font-family CSS
property. This property allows you to provide a prioritized list of fonts that you would like
to see your content in on users’ machines. The great thing about this property is that it
accurately matches the whole adaptive-design way of thinking: You design for the best, and
plan for the worst. Because visitors’ operating systems determine what typefaces can be
used (based on the collection they have installed on their machines), the browser will go
forth and use the font that becomes available first from the list you provide in your code.

To build a websafe and compatible font stack, you’ll need to first throw away any beliefs
you may hold about your visitors seeing text the same way you do. It’s a simple fact that
users can uninstall or disable fonts from their computers (or not have them installed in
the first place). Therefore, even popular fonts may not appear for a small group of your

http://www.fontsquirrel.com/fontface/generator
http://www.fontsquirrel.com/fontface/generator

F U T U R E - P R O O F W E B D E S I G N 204

users. Offering some similar fallbacks is the solution. Have one font that you’d like to see,
one alternative, one similar common font, one backup font, and the font family they
belong to.

Best practices
> Safari for Windows has its own font smoother; test to ensure readability.

> Avoid rasterizer-dependent typefaces until Windows XP is no longer used.

> Be sure to embed each Web typeface format; doing so increases support.

> Employ Web typography services to avoid embedding licensing issues.

> Build a solid font stack with plenty of typeface options and a font family.

Colors
Although some devices and hardware are more capable of viewing color than others, OSs
are inherently linked to showing colors on-screen. With the capability to switch between
color depths and brightness levels and to calibrate using preinstalled software, the OS
remains firmly in control when it comes to enhancing or reducing the accuracy and range
of colors displaying (Figure 10-5). Understanding this level of customizability helps you
to utilize the now-deprecated system of CSS color properties, controlled by the operating
system.

Figure 10-5: Even monochrome palettes come in a variety of shades, which software can control.

C H A P T E R T E N I N F L U E N C I N G O P E R A T I N G S Y S T E M S 205

The following lists show members of this software’s family tree and some issues they can
encounter:

Relatives: Considerations:

> Really-safe palette > Swatches and palettes

> Websafe palette > Calibration and control

> WebSmart palette > CSS 2.1 system colors

Practical solutions
In terms of color, as showcased within monitors and OSs, early devices limited the palette
and swatches that could be used, which made designing more colorful sites rather diffi-
cult. However, we’ve gone through various iterations of what’s defined as a websafe pal-
ette as technologies have evolved, and for compatibility, some designers still consider
restricting color use worthwhile. Though while not many old color-limited devices are still
being used today, some new devices still aren’t that color savvy.

Working around the issues of color compatibility in sites can be challenging. If a visitor
suffers from color blindness, for example, that person may be unable to see all colors or
shades of an existing one (or more). A key principle for color use is to have every color
contrast greatly against its environment (strong differences between the foreground and
background, for instance) and test your work in a color blindness filter. Also, start with a
basic palette and restrict the number of colors used to avoid flooding the user’s senses.

Operating systems provide a great deal of control over how visuals look on-screen, but if
you’re the pixel-pushing type, you know that screens are notoriously bad at representing
colors accurately. You can still spend thousands on a quality television set only to find out
it doesn’t have the settings required to make colors match real life as effectively as you’d
like. This issue is very common online, and only enthusiasts who are willing to test and
make the changes will resolve such issues by calibrating their screens.

Note

When providing compatibility with older devices, visual burn-in can play its part
in stability goals. This type of issue isn’t so common these days, but if a visitor
has an old display attached, it may distort visuals (emphasizing the need for
color clarity).

F U T U R E - P R O O F W E B D E S I G N 206

To check color accuracy, you must calibrate your device against a standardized test image.
Some OSs come with software built in (third-party products can also do the job); others
may offer nothing to help. To ensure the site remains effective when calibration settings
are incorrect, you must provide a sufficient amount of contrast to pages, check your work
by cranking the screen’s brightness up and down, and avoid very tiny text. As displays get
better at being precalibrated in the future, such issues will be easily noticeable on pages.

You need to consider one final color-related compatibility matter: system colors. System
colors are a range of old CSS color values that have been around since the dawn of the
language but are now being deprecated in CSS3. Unlike other color values in the CSS spec-
ification, this unique series of keywords allows you to demand that a browser styles your
site’s content as it would a control or a section of your operating system’s current theme,
like the color of the title bar, the default text colors, or even an inactive window.

Arguably, because this is a deprecated piece of code, many designers probably won’t be
using it, even though it could potentially be useful in ensuring that your theme matches
the user’s actual desktop environment. Because it’s one of the few CSS variables that
draws all its power from the OS, rather than the browser’s renderer, it is still worthy of
mention as a rather unique way to cater to individual devices. Though, as users can change
themes, the value can alter on a user-by-user basis and cause conflicts, so it’s probably
best to avoid it.

Best practices
> Use strong contrasts in your scheme to reduce color deficiency situations.

> Be smart with colors and try keeping color noise levels to a minimum.

> Recalibrate your device’s color to see how your site will look on-screen.

> Push your site’s visuals to their limits by testing in high and low brightness.

> Avoid using system colors in CSS because of their uncontrollable nature.

Security
The security precautions you take are some of the most overlooked aspects of interacting
with the Web. Security software comes in many forms, such as the applications that keep
our children safe (and our PCs free of malware); the systems that interject and prevent
pages loading for reasons provided by tools like antivirus or antimalware guards; search

C H A P T E R T E N I N F L U E N C I N G O P E R A T I N G S Y S T E M S 207

providers (Figure 10-6); and form-filling software that helps users increase productivity.
The consequences can mean getting blacklisted by browsers, or user data being hacked.

Figure 10-6: Browsers like Google Chrome will block infected sites before users can even load them.

The following lists show members of this software’s family tree and issues they can
encounter:

Relatives: Considerations:

> Security scanners > Safe browsing reports

> Safe-surfer filters > Standardized form labels

> Information manager > OS Level IP blockages

> HOSTS IP mapper

Practical solutions
One of the worst things that can happen to your site is to have it suddenly go offline. An
even worse situation occurs if your site is listed as dangerous for users by a security app.
As you can imagine, this will have long-term consequences for a brand and the longevity
of its site (hence, the future-proofing link). Many browsers these days possess some level
of quality control in that they find sites that could be infected with malware, blocking
access to them entirely. In addition, most Internet security apps will block sites within a
browser!

F U T U R E - P R O O F W E B D E S I G N 208

Prevention is better than cure when it comes to security issues on the Web. Test your site
for vulnerabilities and to ensure that your site’s administrative features are protected by a
complex range of passwords. Also, ensure that the software you use like CMSs forums or
tools with server-side write-privileges, are up-to-date (reducing the exploitation potential),
and regularly moderate input to your site so that you don’t get put in the infection sandbox
by the likes of Google. Security is a big issue, and stable sites must remain on top of it.

Many people use form-filling software to speed up common actions online. They may also
use a built-in form-filling solution provided by a browser vendor or a separate product with
added functionality or stronger security. Not only can these tools help visitors recall their
passwords more easily (which is actually better for security reasons because they’re less
likely to pick a weak one), but they also reduce the frequency of mistakes when filling in
those critical forms on your site as data entry becomes more automated and predictable.

Reference

A good method for checking whether visitors can use secure form-filling tools
(or if they need to keep reentering data) is to test your forms with existing
products. Beyond testing in the browser’s built-in form fillers, it may be worth
trying this: www.roboform.com/.

One of the best ways to accommodate such needs in your site and increase productivity is
to use sensible naming conventions for input forms. Because form-filling tools primarily
work by remembering data entry for specific input widgets (by name), they rely entirely
upon the form to ask for the right data type (as previously entered), and thereby deter-
mine what should be entered by default. For example, If you want a name, use the ID
“name,” for e-mail use “e-mail,” and for address use “address”; it generally is that simple,
really.

One final security trick that the OS has in store for us (which affects us on a security basis)
is the hosts file. Although its primary objective is relating to mapping the IP addresses of
hosted sites to domains, some security products will add certain records into a host file in
order to redirect the user or to prevent the site from being opened (leading it into a dead
end). Although this occurs on the client’s OS over which you have no control, it does pro-
vide a good lesson about how to treat connectivity issues regarding site unavailability.

http://www.roboform.com/

C H A P T E R T E N I N F L U E N C I N G O P E R A T I N G S Y S T E M S 209

If you get a message telling you that your site isn’t available or has suffered downtime, you
might try to load it yourself only to find that it works for you and seems to be free of any
errors. Initially, this may seem like good news; however, the fact a user is having problems
may mean that more users are having similar issues (they just haven’t come forward). If
you do get a message like this, investigate possibilities such as IP banning, DNS issues, or
a HOSTS incident as a result of some software product. Otherwise, you’ve lost a visitor.

Best practices
> Tighten your own security practices to reduce the exploitation of sites.

> Resolve issues immediately if the site is flagged by a security vendor.

> Follow existing form-naming conventions to help automated input tools.

> Don’t cripple text-pasting as password managers depend on the feature.

> If users have connectivity issues, appropriately investigate each case.

11

11 Details on
Design Software
Common pitfalls with CMSs, visual editors,
snippets, and wizards

F U T U R E - P R O O F W E B D E S I G N 212

DESIGNERS MAY DISAGREE, but users and their environments aren’t always the cause
of problems with interfaces. Occasionally, designers create the problem themselves. The
issue might result from something as simple as a software product you use to construct a
layout, causing you to inadvertently create a non-flexible design, which isn’t future-friendly.
In this chapter, you’ll explore the potential pitfalls of visual editors, content management
systems (CMS), and other code-generating products (like script frameworks).

What You Code is What You Get
If I had to hold one piece of software accountable for much of the mess many sites are in, it
would likely be the visual web editor. Some products are more code-oriented and produce
decent results, but the majority of them produce code that would strike fear into the heart
of the Flying Spaghetti Monster. Back in the early days of the WYSIWYG (what you see is
what you get) editor, Microsoft FrontPage was well known as a contributor to poorly gen-
erated source code. While these tools have gotten better, generated code issues remain.

Code generators can have a profound effect on your site. Sometimes, they manage to inter-
ject code that adds more fluff than features; other times, they may provide something that
doesn’t work across browsers. Coding by hand is considered beneficial as you remain in
control of the output, but doing so isn’t always a viable option as building your own CMS
isn’t straightforward or cost-effective, especially when programs like WordPress do a fair
job (though each product will differ in terms of flexibility and standards adoption).

Tip

If you’re going to use the automatically generated components of any service,
product, or framework, be sure that you understand how the underlying code
works. By blindly accepting outputted code, you leave your site vulnerable to a
range of instability issues.

Many CMS solutions come with mobile-friendly plug-ins (while others don’t), syndication
feeds (which are useful for supported devices), and a good level of interactivity with little
redundancy. The code can also usually be tweaked to take advantage of many extra tools.
Even the modern WYSIWYG editor can offer some pretty neat scripting framework hooks
that allow you to make your work increasingly flexible for a variety of mediums. Be aware
that the limitations of such features can seriously affect how optimized your code will be.

C H A P T E R E L E V E N D E T A I L S O N D E S I G N S O F T W A R E 213

Content management systems can work very well, and if used correctly, they can help you
avoid common problems within interfaces. If you don’t use these tools correctly, results of
unmaintained output can yield explosive results (namely layouts can break and variables
can be affected). CMSs tend to base a layout’s visual effect on one set of conditions and rely
on the techniques used by the manufacturers of the product (think of the default theme
used by a CMS). Avoid sticking with default themes to cater to your audience effectively.

As the complexities of the Web increase, the use of tools like CMS engines will become
increasingly common for the backbone of all projects as they offer a standardized solution
to being proficient in every technique and direction the Web seems to get pulled in. That’s
not to say handcrafted sites will disappear, but we must be wary of the blind acceptance of
these referencing tools as they create an additional layer between the browser and the user
(which could become a barrier). Outdated, broken, or poorly built programs could also trig-
ger issues.

The FrontPage WYSIWYG
How a site is constructed will determine just how likely it is to be stable upon many
different platforms. In this example we’ll use the case of a site that was built using a
WYSIWYG editor called Microsoft FrontPage. Within the Web design industry, this
product gained notoriety for its poor code quality output, and while arguably better
programs have superseded it, legacy software is still in regular use. In this case, a nov-
ice site designer put together something via the drag-and-drop visual interface, and
paid little attention to the code that was being output.

Unfortunately this has proven to be a huge mistake. Because the program is unable to
determine the right tag for the right job (as context is something only humans under-
stand without some assistance), the source code ends up littered with redundant code
and tags that shouldn’t be in use (it’s worth noting here that while modern products
like Dreamweaver are better at getting the code right, they aren’t excluded from over-
using DIV or container elements). As the site that’s been constructed uses a fixed-width
grid, this also makes the site’s users suffer.

The code our novice designer outputs sends shockwaves to users. They complain that
the layout doesn’t work properly outside of Internet Explorer (as the preview pane
only uses that, novices could easily miss testing outside of it with other browsers).
Additionally, the fixed-width layout looks hideous on a handheld device, as everything
is forced to scale outward to keep the full page in view. The redundant code isn’t help-
ing matters as it uses up more of the mobile user’s bandwidth and slows the speed of
page loading. If only the designer had kept to the code editor instead!

F U T U R E - P R O O F W E B D E S I G N 214

CMSs
Content management systems have been popular for many years; however, even though
CMS products have greatly improved over those created during the 1990s, if not handled
correctly, these products, just like WYSIWYG editors, can have a negative effect on the
longevity of code. Some CMSs (see Figure 11-1) are very customizable, enabling you to
edit an entire codebase and providing the extensibility for plenty of plug-in features (with
a low impact on users), while others that rely on third-party hosting can limit a website’s
options.

Figure 11-1: WordPress is the leader of CMS products in terms of popularity, and is worth considering.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> WordPress > Configuration potential

> Drupal > Semantics generation

> Joomla! > Upgrade frequency

> ExpressionEngine

> MODx

C H A P T E R E L E V E N D E T A I L S O N D E S I G N S O F T W A R E 215

Practical solutions
One issue that many CMS products can introduce into a design’s compatibility and overall
flexibility is how easily the products can be configured and customized. Some tools, such
as the ever-popular WordPress, allow the use of stylistic changes and extensions that
could revamp an interface to the extent it bears no resemblance to the default installa-
tion. Other CMSs only offer only a few settings and have a more limited range of choices,
but though they’re cross-browser compatible, they may not be as flexible as you’d want
them to be.

Choosing the right CMS is an important step. Doing so not only allows you to understand
the limitations of what you’re working with, but also you can see how well the platform is
supported. Also, having a good, open community that develops for the platform means
that you can find more support if something breaks, better-quality extensions, and poten-
tially a wider range of themes and flexible templates. So, to increase the chances of your
site being stable, do your research and be sure that what you’re using is right for the site’s
needs.

It’s fair to say that CMSs like WordPress are getting increasingly better at dealing with
browser discrepancies, but many still output far more code than is needed mostly because
they aren’t able to determine the right tag for the right job without human intervention.
Unfortunately, some of these tools can also create code that won’t validate, that uses in-
page styling, and that embeds scripts and styles within pages. This situation will improve
as CMSs mature in the future, so pick a product that seems to have some longevity in it.

Reference

Standards-compliant, accessible, well-forged CMS products exist. Consider the
forum software Vanilla as a case in point. Unlike comparable products, this one is
forward thinking in its emphasis on quality code. Get Vanilla here:
http://vanillaforums.org/.

If you look inside a CMS and really tweak its code output, you can make your sites more
semantically valid and accessible, which improves the sites’ performance as a result.
Optimizing your CMS’s performance requires work, but it’s worth the effort if you can
reduce any bandwidth waste, usability flaws, or bugs that can negatively affect an experi-
ence. In the future, browsers will likely become less forgiving of poorly constructed code,
and users will be less forgiving of frustrating usability issues (as they become more Web
aware).

http://vanillaforums.org/

F U T U R E - P R O O F W E B D E S I G N 216

Having a great foundation for a site is all well and good, but life isn’t this simple. You
might have a CMS with masses of extensions, yet it may not be deemed fit if the core
package isn’t kept up-to-date by the manufacturer. With security being a major concern
and with the emphasis placed on keeping up with the latest innovations, staying current
makes sense (though beware that upon upgrading, files will be overwritten). Ensure that
the CMS you choose is regularly updated, and that data can easily be migrated to another
platform if needed.

Dealing with updates is difficult because they can vary considerably, but whatever you do,
avoid CMS products that haven’t been updated in a year. If you find a CMS product that
has major milestone builds mapped out and if there are nightly builds along with a good
community developing the product further, you’ve found an ideal candidate. You could
use something updated less frequently if it’s open source and you can make the improve-
ments yourself, but this can be time-consuming, so it just makes sense to use what already
exists.

Best practices
> Always go for a downloadable CMS in preference to a hosted solution.

> Research your options carefully before committing to a particular CMS.

> Go for a product that is easy to customize and that has an active community.

> Check the product’s output for bloated, error-packed, low-quality code.

> Avoid tools that aren’t maintained or those that aren’t used as much as others.

Visual Editors (WYSIWYG)
WYSIWYG (what you see is what you get) editors (such as the one shown in Figure 11-2)
enable beginners and competent coders to construct sites without using an ounce of code.
Because of their lack of dependability in terms of quality output, many of these tools fail
to offer the same level of quality and stability that hand-coding offers. Nevertheless, their
popularity and ubiquity justifies considering them. Depending on the output quality and
the preview renderer used, these editors can negatively affect the flexibility and durability
of any site for your visitors.

C H A P T E R E L E V E N D E T A I L S O N D E S I G N S O F T W A R E 217

Figure 11-2: Visual editors focus on getting everything fixed in position, rather than flexibility.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Dreamweaver > Syntax redundancy

> iWeb > Cross compatibility

> FrontPage > Restrictive features

> ExpressionWeb

> NetObjects Fusion

Practical solutions
Although CMSs tend to produce some bloated markup, they at least are tested at the base
configuration level to ensure high-level cross-browser support. WYSIWYG editors, on the
other hand, aren’t in this category because there’s no base configuration to begin with.
Some simpler products of this type may require users to employ a series of templates to
overcome such issues, but if you want a highly personalized site that meets the needs of an
audience, limitations won’t cut it. Overcoming redundancy is a major issue in these tools.

F U T U R E - P R O O F W E B D E S I G N 218

When it comes to these editors, you really have only two ways to reduce redundancy in
your code. First, you can dump the product you’re using and find something that does the
same job but in a more standards-compliant and bloat-free way. Other than that, it’s up to
you to avoid all visual editors and hand-code everything. On the one hand, the poor out-
put from WYSIWYG editors could be excused for their behavior if you’re producing a rapid
prototype to get an idea for a final product, but for production sites, they’re unacceptable!

In addition to the fact that WYSIWYG editors produce a lot of bloat in their code out of
their attempts to squeeze everything into its rightful place, you need to consider the cross-
compatibility factor. Building a layout with something like Adobe Photoshop is equivalent
to using a WYSIWYG editor (the code it outputs is unlikely to be semantically sound). The
best practice here is to export Photoshop (or equivalent application) creations into a series
of cropped, web-ready images (for embedding), and code the structure by hand.

Note

WYSIWYG products can be very flexible when used as a general code editor,
but as Dreamweaver and its competitors tend to be priced much higher than a
simple non-visual code editor like Notepad++, Coda, or TextMate, justifying their
use is hard to do.

Sites that are dragged and dropped into existence suffer unwieldy code that demands a level
of compatibility for a pixel-perfect environment (which doesn’t exist). This is why, when you
export code from a non-coding environment, you must do some post-production work on
the graphics or layout to ensure everything remains flexible. To address this issue, turn the
fixed dimensions into relative ones (using percentage, not pixel widths), ensure your graph-
ics scale or skew appropriately, and test in various browsers (not a preview pane).

As you can see, I’m not exactly a fan of WYSIWYG editors, but if you stick to the code
window rather than the tempting visual editor, you can make even the most evil of edi-
tors do the job properly (even Microsoft FrontPage). One problem with visual editors
with no coding window is that you can’t be sure of how code will turn out until it’s pub-
lished or exported, which is often bad news for more temperamental browsers. Also,
because many of these tools may not have been equipped with the latest features, many
sites are limited.

Avoiding the limitations of previously built tools is part of what helps you stay on the cut-
ting edge and gives you the best chance of ensuring you have a site that will work for as

C H A P T E R E L E V E N D E T A I L S O N D E S I G N S O F T W A R E 219

many users as possible. If you’re already an established designer, the need to avoid these
products is probably something you already know all too well. However, for many who are
designing for the first time, the easy option proves all too tempting, and the wish to be
future-proofed against the many battles a site faces is quickly lost in the cloud of code.

Best practices
> Avoid the visual window and stick to coding by hand to avoid a nasty mess.

> Do post-production work on layouts exported directly from Photoshop.

> Avoid testing cross-browser compatibility only in a layout’s preview pane.

> Always use a good-quality CMS rather than a bad-quality visual editor.

> Never allow your code to go unchecked; maintain whatever you construct.

Snippets
Love them or hate them, code snippets (Figure 11-3) have been increasing Web designers’
productivity for many a year. However, the ability to produce generic cut-and-paste scripts
has created a legacy of poor coding, and ugly libraries have littered and proliferated the
Web. Although you must understand what the code within snippets does before using it,
it’s possible that an innocuous script with noble intentions can conflict with existing code
in a layout, affecting your work as a result. You need to avoid bad or temperamental code.

Figure 11-3: Code snippet managers can help designers retain reusable code they know works.

F U T U R E - P R O O F W E B D E S I G N 220

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Cut-and-paste scripts > Quality control levels

> Developer libraries > Conflicting variables

 > Repurposing limitations

Practical solutions
A simple Google search will bring forth a heap of results if you’re looking for some code
snippets to help you implement something quickly, and beyond this, a massive array of
frameworks and developer libraries also exist. A number of high-quality examples can be
found on the Web within articles, tutorials, and solutions to questions posed by other users,
but there are also many questionable snippets that unfortunately weren’t created to a very
high standard. So, you need to form some kind of quality control to weed out ugly code.

One of the best ways to resolve quality-control issues is to know and understand what your
code does. If you do take advantage of an existing solution, be sure to examine the code,
come to grips with how it operates, test it in a number of situations, and don’t be afraid to
reject it. Frequently, you don’t really need an entire prebuilt snippet to get what you need.
If you understand the mechanism and have an idea about how you need to use it, you’ll be
able to produce something clean and agile based upon it, which is better for your users.

One of the dangers of using code snippets is that the styles and behavior they output may
conflict with existing material on your page. If the snippet has HTML that shares an ID with
something on one of your pages, conflicts may occur. If the snippet has some general stylis-
tic properties that target an entire element or document, your existing styles will be over-
written by browsers. Additionally, using JavaScript-based behavior that clashes with a code
snippet’s demands could potentially break the entire site and its core functionality.

Tip

The importance of the software layer is undeniable, but the decisions of
an author and the intended or unintended consequences of his work on
an interface are without question. Designers can make mistakes (just like
browsers), so be careful in your code.

C H A P T E R E L E V E N D E T A I L S O N D E S I G N S O F T W A R E 221

Hopefully, most snippets you’ll encounter were built to ensure that such problems would
not happen. But problems can occur, especially because plenty of ugly scripts are left over
from the 1990s that could stomp around your site like Godzilla! Overcoming conflicts in
your code requires understanding what you’re putting in the site. To resolve issues with a
snippet, you’ll either need to edit the code to ensure that everything plays well together, or
(in the case of future-proofing) ensure that the code you inject works well across browsers.

One of the great things about code snippets is that they allow developers to repurpose
code regularly to avoid having to reenter the same data to get the required effect each and
every time. Established designers often build a vast collection of snippets they produce
and reuse regularly, which can speed up production times. Unfortunately, aside from con-
flicts, which can arise, the usefulness of snippets is bound by the need for every site to be
unique (this means that situations may require you to keep editing or adapting the code
for each use).

It makes sense to use code snippets if you’re regularly trying to create a certain piece of
functionality such as a drop-down menu or a social networking panel that will look and
work identically across each implementation. You must, however, organize code so that it
provides you with the hooks necessary to customize and style that object to an individual
site’s needs. Every site will have its own visitors, and each visitor will have unique demands
on your interfaces; never fall into the trap of a one-size-fits-all mentality.

Best practices
> Examine the contents of each snippet to identify harmful source code.

> Try to improve the quality or agility of every code snippet you include.

> Remove code from within a framework if it’s not being used in the site.

> Be on the lookout for conflicts and resolve them all before publication.

> Continuously revisit your code to ensure it works with future standards.

Wizards
Although WYSIWYG editors have been making their mark on the Web, software wizards
(Figure 11-4) that create code based on preconfigured routines remain a favorite of many
designers who want to achieve a commonly used effect (with best-practice requirements
taken care of). Found both in software packages and on sites (often hosted solutions),

F U T U R E - P R O O F W E B D E S I G N 222

these tools output the code required to put a wizard results into action. Although wizards
can suffer code quality issues like other editors, they generally achieve a reasonable result.

Figure 11-4: Wizards can achieve specific coding goals by customizing a well-made solution.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Code generators > Service maintenance

> Template builders > Limited applications

 > Agility and efficiency

Practical solutions
In this modern age of complex scripting, styling, and compatibility, tools offering a quick-
and-easy method of generating code have become increasingly popular. From animation
generators for CSS to specific JavaScript implementations, you can get an idea about
what’s commonly used by those who’ve refined the processes. If you compare these kinds
of tools to other tools that authors use, you’ll see that code generators mark a merging of
the WYSIWYG editor (with its lack of coding) and a snippet (with its tightly regulated
output). In the future, this trend of common, customized scripts will continue.

C H A P T E R E L E V E N D E T A I L S O N D E S I G N S O F T W A R E 223

Moreover, wizards tend to help you achieve one set goal (such as a font stack or patterned
background) that won’t affect the rest of a layout and will really be just one combination
of a popular feature or technique from a site (like a slide show builder). However, you do
need to be aware of how well the wizard is maintained. Perhaps the code it outputs is no
longer needed, or maybe something else needs to be added; weaknesses or bugs within
generated code will be reflected in your site’s visuals (so keep your knowledge of coding
updated).

Although most code wizards can do one thing well (because they rigidly control the basics
of outputted code and just make minor adjustments as required), they tend to be capable
of that one task alone. Although some wizards can do multiple things, the more complex
a wizard becomes, the more likely the quality of the code it outputs will suffer. By focusing
on generating one particular function (for example, an opacity script), the wizard allows
you to embed what’s needed, where it’s needed within your existing code structure.

Reference

Many code wizards for designers exist. You can find a few that are worth trying at
the following websites: http://css3generator.com, www.css3.me,
www.css3maker.com, www.phpform.org, www.codestyle.org/servlets/
FontStack, and http://animatable.com.

The limitations of a wizard’s functionality can be a real strength as it reduces the chances
of tweak-resulting errors. To ensure your code retains its compatibility with the generated
material of the wizard, carefully read the instructions provided with the tool and fill out
any required boxes or forms as accurately as possible. Although the author of the tool may
have taken a wide range of circumstances into account, if you fail to accommodate any
special requirements the code may have, you may end up making something fail or break.

The great thing about wizards is that they work like code snippets, providing previously
built code that can be used at a moment’s notice with the added benefit of being easier to
customize if you’re not that comfortable with code. One of the downsides with anything
pregenerated, however, including a wizard, is that it might provide style or functionality
limitations based on its offerings. Wizards can’t make assumptions about what your code
contains because they don’t analyze your code. They do their job independently of it.

Keeping your code agile and responsive can be tricky if you constantly use third-party
code that was generated at the source. Although wizards are cleaner and more agile than
libraries, frameworks and WYSIWYG editors (as you only need to copy, paste the output),

http://css3generator.com/
http://www.css3.me/
http://www.css3maker.com/
http://www.phpform.org/
http://www.codestyle.org/servlets/FontStack
http://www.codestyle.org/servlets/FontStack
http://animatable.com/

F U T U R E - P R O O F W E B D E S I G N 224

you’ll need to ensure the code a wizard outputs doesn’t conflict with anything you’ve used
previously in styles or scripts. Perhaps you already use a CSS reset, or perhaps you already
have that jQuery reference; if so, you don’t need to make the same declaration twice.

Best practices
> Stay on top of the latest techniques to avoid poorly aging code generators.

> Determine where a wizard’s capabilities end; then match any restrictions.

> Only use wizards for their primary purpose; it’s the safest-possible option.

> If the code a wizard outputs repeats already in-use code, reuse what exists.

> To make old code easy to retire, group it together for ease of maintenance.

12

12 Befriend the
Web Browser
Considering desktop, mobile, proxy and
alternative renderers

F U T U R E - P R O O F W E B D E S I G N 228

COMPATIBILITY ON THE WEB can be affected by numerous variables, but in times of
trouble you tend to go with what you know. If history has taught Web designers anything,
it’s that the browser is often the root cause of most unexpected visual problems. In this
chapter, you’ll explore the code-rendering engines that power these mission-critical appli-
cations, the variations among browsers optimized for various platforms (such as the
desktop and handheld market), and rules of thumb to become as bulletproof as you can.

Windows to the Web
One common feature that causes, and has always caused, designers a mixture of wonder
and frustration in equal amounts is the browser. When considering how flexible or future-
proofed your layout is, you’ll need to consider the numerous browsers as a top priority.
We are required to not only test our sites upon the legacy products, which have long since
been retired (to ensure compatibility), but to ensure that our work doesn’t break in the
latest and greatest iterations of these powerful tools (which may require adjusting your
code to cope).

Within each browser, you’ll find a rendering engine, which acts like the motor in a car that
drives the browser to take all of the code within a site and make something useful out of
it (based on the instructions set by the markup and scripts). Every designer must be
aware of the individual rendering engines, because as surprising as it may be, the brows-
er’s own software isn’t the only factor that affects how your sites render. It’s the engines
themselves that present what you’ve designed (and determines code compatibility). So,
this variable is doubly critical.

Note

Browsers often come with tools like stylesheet overrides, zooming, text resizing,
and the capability to alter a site’s encoding. These pieces of functionality are
independent on the rendering engine, but they can affect how a site is viewed
(so consider trying them on your site to see how your work may be affected if
such a feature were used).

When websites first came on the scene, browsers could only render HTML. Subsequent
advances in CSS have enabled vendors to be increasingly competitive in their support for the
latest standards; even to this day, the competition among the big brands is still as intense as
before. However, these days, many producers of browsers recognize the importance of stan-
dards and have high regard for using correct code for their renderers, as empowering design-
ers into using what they support encourages browser users get a good experience.

C H A P T E R T W E L V E B E F R I E N D T H E W E B B R O W S E R 229

Many browsers share a rendering engine (or a variation of one engine, known as a fork)
and, in some cases, a few can actually use more than one of them, which makes testing in
certain browsers rather pointless, as a shared rendering engine means the same output will
result. Though while some browsers may share a rendering engine, they could use their
own JavaScript interpreter or an older version of an engine, so it’s worth ensuring that no
differences in the output will exist before excluding them from your site testing workflow.

When dealing with browsers, consider their age; what engine (and version) they use; how
the interface or tools built into the browser may affect content visibility; whether it’s a text,
graphical, or unique environment; and whether it’s oriented toward handheld devices. These
types of consideration demand a lot of testing (and emulation) to ensure that both your site
and the entire family tree of browser genealogy work in the latest and greatest ways.
Compatibility with standards will determine the code you can use in such browsers.

Designing for old and new browsers
Examples of how a web browser may affect your site are very easy to come by. For
example, consider a user who browses to your site using a browser that causes design-
ers around the world to suffer nightmares: Internet Explorer 6. Perhaps you have a
lovely and well-crafted site that uses the latest web standards, has some interesting,
innovative features, and is built to a really high standard. Too bad, because as you’re
probably aware, Internet Explorer 6 has been lingering around like a zombie for far too
many years, and its capabilities are quite limited.

In another browsing session, one of your loyal visitors upgrades his browser to the lat-
est version of Mozilla Firefox. With the latest build he is able to take advantage of
standards that previously had little to no support within the browser and in this case,
as you utilized that code with the necessary fallback for users on products like IE 6, the
Firefox user finds that his experience is improved as a result of his browser gaining
support for the technology you’ve had in place. Perhaps it’s only a minor improvement,
but it’s one that this user may notice.

In an ideal world you would be rid of an old renderer like IE 6 and provide every user
with an equal aesthetic. However, the IE 6 user is trapped into using the product by the
organization he or she works for. With no upgrade policy in sight and a need for IE 6
for an intranet, your user is probably going to be stuck with it for a while. When using
new technologies, ensure a fallback for old browsers exists (alongside using the lovely
new code for where it’s supported). Make sure it works with rigorous testing, and use
tools like conditional comments if necessary.

F U T U R E - P R O O F W E B D E S I G N 230

Trident
When it comes to browser compatibility, Trident is the most notorious of them all. If you
weren’t aware or hadn’t guessed its origin already, it’s the rendering engine behind the
troublesome product, Microsoft Internet Explorer (known as IE, see Figure 12-1). Though
this notorious browser has improved in recent years and supports a range of standards,
it’s integration into Windows OS and upgrade policies have resulted in increased legacy
needs, proprietary code, and unwelcome, well-publicized surprise defects in its rendering
engine.

Figure 12-1: Internet Explorer is recognizable for its blue “E” icon, and being the default Windows
browser.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Internet Explorer > Upgrade policy and cycles

> Avant Browser > Inconsistent standards

> MSN Explorer > Proprietary innovations

> Maxthon

> Sleipnir

C H A P T E R T W E L V E B E F R I E N D T H E W E B B R O W S E R 231

Practical solutions
Trident’s first issue regarding rendering inconsistencies relates to how Microsoft handles
upgrades. In addition to upgrades being voluntary (which is troublesome for a product
bundled or embedded within Windows by default), individual versions have sustained a
staying power unlike any browser in history. IE 6, for example, is still in use and is 10
years old! This situation is made worse as users of older versions of Windows may not
even be able to install new versions of IE because of Microsoft’s lifecycle support policies.

To combat the issues of older versions of Windows being forced into old versions of
Internet Explorer, you’re going to need to maintain support for older versions of this prod-
uct unlike you would for something like Chrome, Opera, and Firefox that actively encour-
age upgrades. Check your analytics package or some independently verified and reliable
global statistics for usage details and try to maintain support for versions of the browser
that continue to have more than 1 percent of the combined usage total of your site.

Unfortunately, individual versions of Trident are so different in standards support that you
might think each one is an entirely different browser. Although most other vendors give
regular intermediary updates that fix bugs and offer new standards support over the apps
lifecycle, Internet Explorer just offers “major-version-releases” (beyond betas and RCs).
Additionally, older versions of Internet Explorer (6 and 7) are notorious for not supporting
standards and being exceptionally buggy; even their compatibility modes differ slightly!

Reference

Conditional code is useful for offering future-proofed support for degrading IE
versions. Although targeting browsers is generally frowned upon, this solution
is generally deemed to be the exception to the rule (because of the issues
surrounding old versions of the product), as described on Wikipedia:
http://en.wikipedia.org/wiki/Conditional_comment.

Working around the issues that occur in old versions of IE may require unhealthy hacks or
some conditional comments. Out of the two, the latter is better, though Internet Explorer
10 will not continue the tradition of offering them. You also will come to dislike Internet
Explorer 6’s “hasLayout” and quirks mode glitches if you choose to support it. To combat
the real inconsistencies in this browser, test your site against each version independently
and apply fixes (hacks and filters), fallbacks, or script and CSS replacements as necessary.

http://en.wikipedia.org/wiki/Conditional_comment

F U T U R E - P R O O F W E B D E S I G N 232

Nevertheless, Internet Explorer was responsible for introducing several useful features
that are now standards in browsers and W3C specifications alike. Although these innova-
tions don’t let Microsoft off the hook regarding its lackluster attitude toward the stan-
dards that did (and still do) exist, they have made compatibility for future standards less
problematic in situations like CSS3-embedded fonts, the overflow (x/y) property, AJAX,
and opacity (via proprietary code), which means that some current coding techniques can
be used now.

It makes sense to take advantage of any innovations made by Internet Explorer during
the early years of the Web, but you need to be careful if you take advantage of proprietary
code that is required to achieve the effect within the browser. Examples that spring to
mind include VML (which would need an SVG alternative for non-Internet Explorer
browsers), ActiveX, VBScript, and other proprietary code including CSS expressions
(which are now deprecated). If you can follow the standard, do to avoid such features.

Best practices
> Users may be trapped into old versions of IE; avoid ignoring them entirely.

> Set a threshold for continued browser support for older versions still in use.

> Use conditional comments and code compilation rather than outright hacks.

> Test each IE version independently and degrade the interface as necessary.

> Avoid proprietary code unless alternative solutions cannot be implemented.

Gecko
When Internet Explorer defeated Netscape during the browser wars, no one would have
imagined that the offspring of Internet Explorer’s nemesis would be the one to press it
into a corner. Gecko, the descendant of Netscape, is among the most popular renderers to
date and is found in Mozilla Firefox (Figure 12-2) and a range of other similar clients.
Highly extendible and open source, Gecko has become a cross-compatible giant with sup-
port in most OSs. It boasts good standards support and is prominent on many mobile
devices.

C H A P T E R T W E L V E B E F R I E N D T H E W E B B R O W S E R 233

Figure 12-2: Firefox is one of the most customizable products because of the thousands of add-ins
that exist.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Mozilla Firefox > Debugging environment

> SeaMonkey > Plug-and-play capabilities

> Netscape 6+ > Descendant family tree

> Camino\

> Epiphany

Practical solutions
Unlike Internet Explorer, Gecko, which is the basis of Firefox, is very good in adhering to
the latest, greatest web standards. Although it’s perhaps not as frequent with its updates
as Google Chrome (which feels like it gains major version upgrades every month or two),
Firefox does offer one of the greatest compatibility-testing features that a designer can
hope for: its extensibility for add-ins. To showcase the benefits it has, download extensions
like Firebug or the Accessibility toolbar. They can help you identify issues in your code.

F U T U R E - P R O O F W E B D E S I G N 234

One rule that many designers follow to this day: If a site looks and works well in Firefox,
it shouldn’t visibly break under the same conditions in any of the other browsers (except
Internet Explorer), as they all tend to render pretty equally in general. Firefox’s debugging
environment gives it a real advantage in identifying and resolving behavior or functional-
ity quirks in a site, and the scale of other browsers using the same renderer places it in a
good position to kill two (or more) birds with one stone. As a test-bed, Gecko is a great
choice.

One of the key features of a future-proof site is that it can handle any sudden changes in
the environment based on the unique choices made by users and the devices they use to
browse. Gecko is deeply extensible, with each add-in able to “plug and play” into your sites
and read, manipulate, and affect your code. It gives you a good point of reference to build
a site and ensures a compatible layout that can utilize add-ins. Whether a user wants a
screen reader, style reformatter, microformat extractor, or something else, Firefox has a
tool for it.

Note

If visitors have extensions installed, they may not have the latest version of
either the add-in or the browser. Luckily, browsers like Firefox automatically
disable extensions, which are known to be incompatible in a product version
before the user completes a product upgrade. This will reduce the impact of
outdated, broken extensions on sites.

This chapter doesn’t examine the extent to which each of these tools can affect a site’s
code, but it’s imperative that you test sites in environments where extensions are both
enabled and disabled. You may find that something functions differently on your version
of Firefox than on someone else’s because of a particular add-in running behind the scenes
or working itself into the interface. This isn’t to say that a test-bed (workflow for testing)
should always have an “out of the box” install, but it shouldn’t be out of the question.

The Gecko rendering engine isn’t entirely free from version-based complications. Because
a number of developers have created their own browsers based on the Firefox rendering
engine, people using tools that haven’t had frequent updates will have an older version of
Gecko installed (or Mozilla, the old Netscape renderer), which could subsequently affect
the compatibility of sites. There is also the possibility that a user may avoid recommended
updates and put his compatibility with your site into question (as updates may fix issues).

C H A P T E R T W E L V E B E F R I E N D T H E W E B B R O W S E R 235

Problems with “dead” projects in the Gecko family tree aren’t as troublesome as they are
with Internet Explorer, simply because there are fewer users of these forked projects. Try
to support at least one prior version of Firefox just for safety’s sake; also, you may want to
test against each of Firefox’s major milestone builds. Standards support within Gecko is
pretty high, so you’ll probably encounter only a few minor quirks. Be sure to test the use
of mobile Firefox, Fennec, and Minimo to be sure your site can support handheld devices.

Best practices
> Download extensions like Firebug to help you identify glitches in your code.

> Test using browsers with extensions enabled, and then all of them disabled.

> Have freshly installed browsers to avoid extension-based tampering.

> Stick to testing the current version (desktop and mobile) for compliance.

> More hardcore designers should test back in each major milestone version.

WebKit
Just as Firefox and its renderer Gecko showed that it’s possible to build standards-savvy
layouts without being trapped into version numbers, the true rockstar of the rendering age
has to be WebKit. Not only has it made its mark in the industry by being included within
two of the top five browsers in use today (Figure 12-3), its rapid development cycles and
speedy rendering makes it a solid environment to browse the Web. With the highest level
of handheld device support it’s a real workhorse and a critical renderer to support.

Figure 12-3: Google Chrome (whose icon is pictured) and Apple Safari share this popular WebKit
renderer.

F U T U R E - P R O O F W E B D E S I G N 236

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Google Chrome > Flash compatibility

> Apple Safari > Porting and updating

> iCab > Defaulted ubiquity

> OmniWeb

> Chromium

Practical solutions
One of the biggest clashes of compatibility (and one of the most debated design subjects
to date) is Apple’s refusal to support Flash in iOS. Ironically, while Safari for iOS doesn’t
allow Flash to be embedded, another popular browser, Google Chrome, actually embeds
Flash within its browser, keeping it up-to-date without any user actions required. That
makes it both the most- and least-supportive Flash browser online!

We already know that despite Flash being a non-ubiquitous proprietary technology, it has
its uses, especially when displaying rich multimedia. However, it’s worth taking the time
to consider whether Flash could be used to enhance sites over an already-constructed
base formed of HTML, CSS, and JavaScript (in preference to depending upon it). That is,
if you feel the technology could bring something useful to a site that can’t otherwise be
achieved by using more open standards. If you do decide to use Flash, always have an
equal fallback.

Finally, you should pay some attention to the ubiquity that WebKit seems to have sus-
tained among a wide range of devices. Although Trident is stuck inside Microsoft’s own
desktop and mobile platforms, and Gecko is still trying to find its footing in the handheld
sphere, the WebKit rendering engine has ended up getting fired onto a whole range of
platforms, including iOS, Android, Nokia, Palm, Symbian, and even the Amazon Kindle,
making it a dominant, successful force that you should cater to if you want to keep your
users happy.

C H A P T E R T W E L V E B E F R I E N D T H E W E B B R O W S E R 237

Ensuring compatibility with browsers isn’t the easiest job, because unlike desktop ver-
sions of the product, device manufacturers tend to customize their copy of the rendering
engine to give their users some suitable tweaks for the environment. While this is fine in
theory, it can mean that you may see code breaking in a user’s handheld environment. The
only way to test and ensure cross-compatibility is to get your hands on as many handheld
browsers (and devices) as possible, checking that your handheld visuals do in fact work
correctly.

One of the most notable things about WebKit is how amazingly rapid the release cycle has
been. If you consider that Google Chrome recently reached version 14 but is only 3 years
old; whereas Internet Explorer, which has been around for decades, is only reaching ver-
sion 10. The pace at which WebKit has pushed into the latest, greatest standards is stag-
gering. Also, WebKit was forked from a renderer called KTHML that powers the browser
Konqueror, and this factor could have implications.

Although rapid releases seem like an issue waiting to happen, Chrome silently installs
fresh versions as they become stable, reducing the impact on users. In the vast majority of
cases, users will have the most recent version. Regarding other WebKit browsers, such as
Safari, it isn’t upgraded as regularly, and the Windows installer is often bundled with
other products. So dialup users may find the update process time-consuming. But, this
savvy renderer is pretty forgiving and also standards compliant, so don’t be afraid to
experiment.

Best practices
> Use Flash, but be sure it has a viable fallback for iOS-like situations.

> Check your site on Konqueror (Linux) because it uses a forked renderer.

> WebKit renders for numerous handheld browsers; test on a range of them.

> Chrome and Safari both have minor differences, so test with them equally.

> Some renderers aren’t as fortunate as WebKit; do take pity on them!

Reference

Although WebKit has the highest market penetration levels (cross-platform),
unlike other rendering engines, a range of differences that could affect a site’s
visuals exist (so beware that WebKit isn’t always WebKit): www.quirksmode.
org/webkit.html.

http://www.quirksmode.org/webkit.html
http://www.quirksmode.org/webkit.html

F U T U R E - P R O O F W E B D E S I G N 238

Presto
Though not as well known as the engines discussed previously, the renderer Presto pow-
ers one of the longest-running browser applications and has managed to cling onto its
spot as one of the five “most-used” browsers on the Web. Just like Internet Explorer, it
makes use of a proprietary rendering engine. In its early days, Presto was a “shareware”
browser, which ultimately cost it in terms of popularity. Now a freeware product, it con-
tains a vast array of features and good standards support; nevertheless, Presto remains
eclipsed by its kinsmen.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Opera Browser > Browser connectivity

> Nintendo Browser > Markets-share potential

 > Proprietary problems

Practical solutions
The first issue you need to account for with the Presto renderer is its unique approach to
connectivity and integration. Not only does it support plug-ins within the Opera browser
(see Figure 12-4), it also supports extensions, widgets, and panels (for its speed dial tool),
all from within the same interface. This variety of different modes of integration makes the
browser easily one of the most durable in terms of features, and unlike other browsers, it
comes prepackaged with a wide range of tools, to the extent that you may not need to
install anything else.

With Opera, compatibility is a lesser problem than it is even with tools like Chrome and
Firefox; the browser takes a Swiss army knife approach (by providing multiple functions
built into the interface). Support for torrent downloads, RSS feeds, e-mail, newsgroups,
IRC, and more come right out of the box; with its extensibility, you can really have some
fun pushing the boundaries and integrating code with the browser. If you do choose to
use any features that can be unlocked, just be sure to check that they work for users.

C H A P T E R T W E L V E B E F R I E N D T H E W E B B R O W S E R 239

Figure 12-4: Opera is a small, all-inclusive, feature-rich browser that deserves more credit than it gets.

As a relatively unknown desktop browser, Opera doesn’t have the numbers in its favor,
though as a designer, this means that in stark contrast to Internet Explorer, Opera gives you
a pretty easy time in testing. It’s one browser that has kept on top of the latest standards,
with a fast rendering engine and good, all-around features, and users are readily willing to
upgrade versions. Like any rendering engine, it does have issues and things may render
incorrectly, but if you debug the code, determine the issue, and resolve it, you’ll be fine.

Note

Presto comes with a range of alternative Opera implementations for various
platforms, including cellphones, game consoles, tablets, and more. Interestingly,
it’s the second most-popular handheld browser going (beaten only by the
reigning kingpin, WebKit).

To maximize the Presto experience, make sure your Web site is as usable and accessible as
possible because unlike other browsers, the range of tools included in this application suite
for accessibility-dependent users is pretty extensive. It has predefined templates for high-
contrast styles (overriding your CSS), a very accurate voice controller (and built-in screen
reader), and it even comes with a built-in proxy browsing mode that speeds up sites for the
bandwidth-impaired. If users want to take advantage of these tools they should be able to.

One advantage that proprietary solutions such as Presto and Trident have over their
open-source competitors is that they’re less likely to be forked into many different brows-
ers, each with their own compatibility quirks and defects that are not as quickly resolved
if manufacturers neglect their users. Because everything is closed from public contribu-
tion, only Opera gets the say in what the Presto browser supports; though compared to

F U T U R E - P R O O F W E B D E S I G N 240

Internet Explorer, it’s been supporting standards and speed, not proprietary tools and
unfixed bugs!

When considering compatibility, some argue that keeping a browser proprietary reduces
the potential for hackers to find exploits to target, but that it also puts the responsibility of
fixing dangerous bugs firmly in the hands of vendors. With Opera, the lower desktop-user
ratio means your users should be safer from Opera exploits, but as Internet Explorer shows
us, a few lines of code can cause a crash (on purpose or by accident), which isn’t at all con-
sidered a good sign of stability, and needs to be dealt with by designers directly.

Best practices
> Test in Opera’s out-of-the-box experience because it’s quite extensive.

> Ensure reduced feature browsers aren’t left with broken functionality.

> Bugs and security exploits may take a while to fix; check for known issues.

> If your site crashes or lags a browser, find and resolve the offending code.

> Try your site with Opera’s various accessibility aids to see if they work.

Mobile
Even though the big four rendering engines account for 99 percent of all desktop traffic,
there are (of course) a range of dedicated renderers that have been produced solely to give
handheld users a basic level of standards support. See Figure 12-5. Many smartphones
stick with a mobile-oriented variation of an existing desktop renderer, and a number of
these devices have dropped their proprietary rendering solutions in favor of more estab-
lished browser engines, but as legacy support is integral to ensuring compatibility, you
cannot overlook such tools.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Blazer > Deprecated renderers

> NetFront > Reductionist aesthetics

> OpenWave > Stealthy user agents

C H A P T E R T W E L V E B E F R I E N D T H E W E B B R O W S E R 241

Figure 12-5: Handheld browsers allow gadgets like the Nintendo DS to access your sites and services.

Practical solutions
Many rendering engines have already come and gone in the mobile arena, being replaced
with ported desktop solutions, which is great for compatibility fans. Yet, the need to
ensure that your sites work on the widest range of devices forces you to still consider test-
ing on those rendering engines that have been largely deprecated but could be in use by
thousands or millions of featurephone users. Three examples of renderers that fall into
the category of lost but not forgotten include Lumi, Mango, and Fugu, and, no, they’re
not mushrooms.

Dealing with dropped rendering engines forces you to confront the fact that flaws and
bugs in the products aren’t going to be fixed. Standards support among these three in
particular offer fairly good support for HTML (version 4 and mobile editions, not the
newest version 5), patchy support for CSS (it’s a game of trial and error), and mixed sup-
port for scripting. Your best bet is to ensure your CSS degrades to what you’d expect in
Internet Explorer 5 (yes, I said IE 5!), avoid scripting, and try to keep each of your pages
under 100K in size.

An interesting thing about less-capable browsers, such as those you’d find in less-capable
devices like featurephones, is that they tend to break down a layout to avoid more com-
mon rendering defects such as the demand for multiple columns on a screen that’s only
capable of viewing one (and can only scroll in one direction). Although some handheld
renderers like NetFront are slightly more of a bridge between the likes of WebKit and

F U T U R E - P R O O F W E B D E S I G N 242

more limited tools like OpenWave, they all try to focus on a reduced aesthetic to maxi-
mize the usability.

Reference

The PSP uses the NetFront rendering engine, and there’s an old but still very
useful tutorial to designing around this hardware. To see how this device
can be made compatible, read this guide: www.brothercake.com/site/
resources/reference/psp/.

When dealing with featurephone browsers, NetFront really is the king of the jungle (in
terms of standards support). Although the newest version of the browser/renderer combo
uses WebKit, the classic NetFront renderer still exists, is supported, and offers most mod-
ern web standards to users who haven’t got a smartphone device. If you are unlucky
enough to be stuck with something else, be prepared for little to no CSS support, plain ole
HTML, and little to no JavaScript. In such cases, test your site with scripts crippled and
CSS off!

The final thing you need to consider regarding compatibility (and this applies to every one
of the rendering engines, desktop and handheld alike) is the issue of fake HTTP user
agent headers. If you’ve ever tried targeting a browser for style or behavior, you’ve prob-
ably encountered detection scripts or sniffers that try to figure out what users are brows-
ing with and then attempt to serve them a tailor-made layout. Because of abusive practices
of this in the past, browsers have tweaked their agents to make detection results highly
inaccurate.

To avoid “designed for X browser” messages, which would refuse entry to a site if a user
didn’t have the right browser installed (which were popular during the browser wars),
many clients like Opera allowed users to falsely identify themselves as another browser.
This spoofing technique rendered identification attempts useless, and as many desktop
and handheld browsers can still do this today, it’s important to avoid using such tech-
niques. Feature detection that examines what browsers can actually do is better than
guessing.

Best practices
> Deprecated renderers are still common in featurephones; don’t avoid them.

> Mobile browsers can’t handle too much, so keep pages as light as possible.

> NetFront is standards savvy, but avoid burdening it with laggy effects.

http://www.brothercake.com/site/resources/reference/psp/
http://www.brothercake.com/site/resources/reference/psp/

C H A P T E R T W E L V E B E F R I E N D T H E W E B B R O W S E R 243

> As a matter of principle, ensure the site works with CSS and JS turned off.

> Avoid using browser-detection scripts as many of these browsers fail them.

Proxy
As you analyze the effects of rendering engines on your interfaces, pay some attention to
the tools often referred to as proxy browsers. Traditional rendering engines take the code
that has been downloaded from a server and process it at the client side (thereby making
all your wonderful pages look and feel the way they do). Proxy browsers, alternatively, in an
attempt to save bandwidth for handheld users, process code at the server side and then
serve users with a more optimized, compressed layout, which they proceed to download.
See Figure 12-6.

Figure 12-6: Proxy browsers help cellphones access sites quickly, reducing bandwidth consumption.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Opera Mini > Small screen rendering

> UC Browser > Event process delays

> Bolt Browser > Compression artifacts

> Thunderhawk

> SkyFire

F U T U R E - P R O O F W E B D E S I G N 244

Practical solutions
Dealing with mobile browsers can become troublesome, but if you want a true guide to the
extent of handheld compatibility (and the range of renderers that exists), you need to come
to grips with proxy browsers and the manner in which they reduce bandwidth consumption
for users with data caps. Proxy browsers can be used on featurephones, smartphones, and
desktops alike, so they’re pretty ubiquitous as a platform browser. However, you’ll need to
make a few compromises, and real differences in how these products handle code exist.

For example, if you use Opera Mini for compatibility, note that, unlike a more traditional
browser, it deliberately tries to push everything into a single-column layout (if a handheld
stylesheet isn’t provided). By using this technique, the application helps avoid bidirectional
scrolling and allows the user to make better use of the available viewport space. Other
common features within proxy browsers include long lists being collapsed like content lists
in Wikipedia, reducing the need for extra scrolling (but they’ll expand upon clicking).

Many sites, even mobile ones, take advantage of scripting whenever possible, as there is
no realistic replacement for its capabilities. Although proxy browsers may be fairly limited
because everything has to go through a server, your client-side scripting is treated like a
server-side script. Because the proxy browser renders code before performing the size-
reducing compression, scripts run on the server end, and the results of that action are
rendered on your device. As you can imagine, this process can complicate interactions.

Tip

Because of the need to break highly complex sites into easy-to-view
components, more in-page objects like frames may be affected in dramatic ways
in browsers. Test your work using a selection of proxy-browsing services to see
how things will finally appear.

When utilizing scripts in your site, remember that “onclick” and other DOM events are per-
formed at the server, and once each action is undertaken, it’s sent back to the server for
processing (similar to submitting forms via PHP), and any future clicks or responses will
have to be dealt with separately. These events work on a “send and fetch” methodology,
so avoid animation, timed events, or AJAX, because the stuff sent to a browser will be
limited in seeing the results, not the interactive process. Scripted reactions should be
instantaneous.

Media and images suffer the most compatibility issues in a proxy-browsing experience,
mainly because of the amount of data the files consume and the techniques browsers use
to resolve the situation. Proxy browsers won’t support animation, sound, or video (even

C H A P T E R T W E L V E B E F R I E N D T H E W E B B R O W S E R 245

the blink tag and animated GIFs), limiting such features to avoid draining precious system
resources. In any event, supported images will be heavily compressed, quality lowered, and
the file downsized, which could make some images illegible as a result of the distortion.

I’m certainly not saying that you need to eliminate all images from your documents, but it’s
important to avoid using images purely to showcase text. CSS3 fonts have evolved enough
to replace this method, and because proxy browsers can be affected by using such images,
it makes sense to avoid them, offering a proper text description instead. Because other
browsers can turn them off, images aren’t considered reliable enough to be 100% future-
proof. Check any image use in proxy browsers to determine readability.

Best practices
> Allow your content to responsively collapse into a simple linear list.

> Offer a handheld CSS media rule; some devices will still support them.

> Treat your JavaScript as a server-side script, as events aren’t run locally.

> Stay as uncomplicated as possible; beyond scrolling, interaction is limited.

> Images will be heavily compressed; test their readability with pixilation.

Alternates
Traditional rendering engines have a huge effect on how accurate your layouts appear to
individual users. However, just because things can be shown in a traditional way doesn’t
mean that unconventional alternatives can’t be used or don’t exist. Sporting a range of
unique features like text-only browsing, 3D rendering of entire pages, or highly refined ren-
dering capabilities, you need to consider that your users may see your sites through unfamil-
iar eyes in these unusual, but equally experience-immersive, Web browsers. See Figure 12-7.

Figure 12-7: Lynx is the most popular alternative browser, and it only supports textual content!

F U T U R E - P R O O F W E B D E S I G N 246

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> 3B > Independent functionality

> Browse3D > Barebones readability

> KidZui > Means testing protocol

> Dillo

> Lynx

Practical solutions
You need to be aware that alternative browsers tend to go in an entirely different direc-
tion than many traditional browsers do. Consider something like a 3D web browser, which
is a bit of a novelty but actually exists. It takes advantage of the more unusual virtual real-
ity languages like VRML, X3D, and their kin to render sites similarly to a virtual world.
This independent functionality is tricky in terms of compatibility because, until the
industry decides to make the jump into that niche, browsers are unlikely to offer you
much help.

The choice of alternative browsers is mostly about being compatible for users in unusual
circumstances. It’s not something that every single site will have to deal with, and it’s not
something worth testing for (or supporting) right out of the gate; that is, unless your own
site’s offerings match something related to that niche’s capability. If, for example, you’ve
built a site for young kids, then testing the site in KidZui and other child-friendly browsers
should immediately be on your to-do list. Understanding your users’ needs really matters.

Although many browsers have numerous options and features, some go to extraordinary
lengths to keep things simple and clean and they subsequently lose sight of your interface.
Although they aren’t exceptionally popular outside cult niche circles and the web design
community, text browsers like Lynx have been showing you how simple sites can be if you
just remove the redundancy or anything unrelated to content. It’s certainly an extreme
style of browsing, but Lynx is worth investigating for its accessibility factor properties.

C H A P T E R T W E L V E B E F R I E N D T H E W E B B R O W S E R 247

Lynx doesn’t support images, CSS, scripts or anything apart from HTML and content. If
you need to test your site’s support and readability for older browsers that existed before
and midway through the first browser war, Lynx is an essential application to have. The app
runs with little overhead and can be very useful in severe bandwidth limitation cases (but
no handheld version exists yet). Test your site with Lynx if you want to test keyboard-only
browsing, the hierarchy of content, and to really push your site’s compatibility to its limits.

Finally, with regard to alternative browsers, we must mention means testing. As designers,
we tend to get so caught up in the ever-growing list of what we need to take care of that we
rarely find the time to actually focus on what’s really important for users, which is what
matters the most as they are the critics who will deem our sites useful or useless. When
you’re getting ready to build a site, knowing what browsers to test against is critical to your
workflow, so you need to do your research and find the top priorities before continuing.

When means testing browsers, the rule is to select a list of the ten highest-rated browsers
that visitors use. You should pick specific rendering engines or specific rendering versions
(just remember to focus on the rendering engine because you don’t want to end up testing
on the same thing 100 times over). The only exception is Internet Explorer because it
hides a multitude of sins beneath its shiny wrapper (as we all know). Once you’ve written
and prioritized the list, stick to it and support other browsers if and when you have the
time.

Best practices
> Look for unusual browsing trends and support them if they gain momentum.

> Consider specialist browsers like child-friendly products if the site is for kids.

> Test sites in Lynx; it really helps to see the layout stripped to its minimum.

> Get an analytics app if you haven’t already done so to track visitor trends.

> Prioritize your support; more users will utilize Internet Explorer than Lynx.

Reference

If you search Google, you’ll be able to locate some previously compiled versions
of Lynx for a number of different platforms. For you Windows users, I’ve done
the hard work and located a stable, good quality build with an installer:
http://csant.info/lynx.htm.

http://csant.info/lynx.htm

13

13 Providing
Powerful
Plug-Ins
Working with enhancements, extensions, and
multimedia

F U T U R E - P R O O F W E B D E S I G N 250

PLUG-INS LIKE SILVERLIGHT, Java, and Flash continue to play an active role in the
usefulness of many sites, and while it’s true that HTML5 is replacing the need for many of
these proprietary components, the Web wouldn’t be the same without them. This chapter
examines how browser plug-ins, extensions, and embeddable media players affect your
compatibility chances; the issues surrounding being dependent upon third-party compo-
nents; and the benefits and pitfalls such tools can provide an experience.

Plug-and-Play Interactivity
When aiming for compatibility, it’s important to examine the wonderful but sometimes
annoying plug-ins and extensions that add features and interactivity to your designs. You
can use extensions to help alleviate and supplement the somewhat lackluster standards
support that older browsers like Internet Explorer 6 offer, as well as provide useful func-
tionality to users that may otherwise be impossible (such as video playback). Plug-ins are
rather unique as they represent a variable that works between the browser, OS and user.

If you’ve been building sites for a while, I’m sure you’re aware of the Web’s most widely rec-
ognized, but lamented, proprietary plug-in technology: Adobe Flash. You’re probably also
aware of the incompatibilities between Apple’s iOS platform and the Flash platform. Many
plug-ins can suffer similar apathy levels regarding compatibility, so you’ll need to deal with
the fact that there’s no guarantee users will have them installed or activated on their devices
or systems, and that users will be required to keep such components up-to-date.

Note

Flash isn’t the only plug-in having issues with vendor support. For example, you
won’t find support for Microsoft Silverlight on anything other than a cellphone
powered by Microsoft’s mobile platform; Shockwave is a general no-go area
when it comes to levels of compatibility; and browser-based Java applet support
is fragmented. In cases where a technology is used but isn’t supported, offer a
HTML or media download fallback.

You also need to be aware of the extensions (installable toolbars or components) that can
be attached to user’s browsers and affect your sites, as all the major browsers now support
them. As with plug-ins, the impact of extensions depends greatly upon the level of ubiq-
uity or popularity they’ve attained. As a variable that’s become a central part of the brows-
ing experience, extensions contain the capability to customize not only the browser, but
affect (and in some cases override) how code and objects behave, interact, and appear
on-screen too.

C H A P T E R T H I R T E E N P R O V I D I N G P O W E R F U L P L U G - I N S 251

Because of the number of extensions that exist, you can’t expect to be compatible with them
all. It might be worth giving some of the more popular or influential extensions a test run
before going public, but do so on a needs-only basis because the effect they have on your site
can differ dramatically (some may just read page data, whereas others could write or over-
ride it). Among the extensibility that exists, Opera supports custom speed dials, IE 8x sup-
ports accelerators and hSlices, and all Web browsers support the OpenSearch protocol.

Another influential browser element to account for is the embedded media player. Back in
the 1990s, you had to place video or audio players directly into pages using a plug-in such
as QuickTime, Windows Media Player, or the RealOne Player. Because not everyone had
the software installed, issues with compatibility and support for formats occurred on a
very frequent basis. In due time, Flash came onto the scene bringing with it the ubiquity
needed to stabilize and standardize media playback online. However, Flash’s fall from
grace has resulted in a push back to in-browser playback via HTML5, which could lead to
trouble.

The issues of plug-ins
Imagine that a user is browsing to your site with Google Chrome. With this browser,
she’s particularly lucky because the Flash plug-in comes prepackaged, requiring no
maintenance from the user. Her system is therefore ready to always play Flash-powered
media. In addition, Chrome’s interface is designed so that plug-ins will have a minimal
impact on the browser’s performance (meaning less lagging for you, as unresponsive
plug-ins could be temporarily disabled). Unlike iOS users, she can happily utilize any
Flash interactivity within your pages.

But with the sweet comes the sour, and with Chrome’s scriptable extension capabilities
comes the use of valuable real estate (to show their toolbars and sidebars). This may
affect a site’s rendering. Because many of Chrome’s plug-ins will render within the
browser’s viewport, your user notices that styles have been overwritten by an exten-
sion (rather frustrating), and not only are your site’s PDFs redirecting her to Google’s
Docs, but RSS feeds are redirecting her to Google Reader. Sites need to accommodate
users like her who want to use such features.

Resolving extensions issues is complex, as we can neither rely upon them being avail-
able nor avoid the impact they can have upon our sites. While they often interact by
taking control of your site and its code, the motives of users for using extensions are
rarely bad. Users may be trying to make the content extra-readable, strip out some use-
ful metadata, block adverts (a popular option with ads as intrusive as they are), or
attempt to gain other meaningful ways to improve their experience. Essentially, all you
can do is resolve quirks by trial and error.

F U T U R E - P R O O F W E B D E S I G N 252

Enhancements
Because they can be embedded within any page, plug-in components allow you to do more
with the space you have available. A few of these tools are ubiquitous enough to be trusted
in production sites, but the user must have the required plug-in installed and enabled (see
Figure 13-1); their browser must support any proprietary file formats that the plug-in
uses. Compatibility becomes an all-or-nothing affair as the embedded data will either work
flawlessly or not at all, so using any plug-in (such as Microsoft Silverlight) is a risk.

Figure 13-1: Embedding a Flash movie into a site is commonplace, but it requires users install the
plug-in.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Adobe Flash > Self-contained rendering

> Microsoft Silverlight > Moving to open standards

> Oracle Java > Unique interaction usability

> Microsoft ActiveX

> Adobe Shockwave

C H A P T E R T H I R T E E N P R O V I D I N G P O W E R F U L P L U G - I N S 253

Practical solutions
When it comes to compatibility, plug-ins such as Flash and Silverlight, if installed, tend to
be extremely stable with regard to rendering. Because these potentially useful objects are
embedded directly within the page, the browser has little control over what happens once
the file is loaded. By embedding Flash into the page, the plug-in remains responsible for its
own rendering, and no matter what platform you use, that content will display identically.
While stable rendering is great for consistency, there are some finer points to consider.

One of the key points regarding these plug-ins’ dedication to self-rendering is that sup-
port isn’t exactly a given. Ensuring compatibility has to be done on a basis of usage statis-
tics, platform support, and the general availability or usefulness of the tool itself. Apart
from an iOS, Flash maintains fairly high levels of support, which makes it worthy of use
when it’s appropriate. As for its competitors, Silverlight has a lower adoption rate and is
supported by fewer devices, and Java applets, although quite ubiquitous, have limited
browser support.

Since the days of Flash and of Apple’s lack of unconditional support for its iOS devices,
the design community has pressed for more open and accessible standards. In recent
years, we’ve seen a sharp rise in cross-browser support for HTML5 and CSS3 and an
increased awareness about what can be achieved with JavaScript. This move toward
adopting new, non-proprietary standards does have its benefits for the Web’s future, but
because these tools aren’t self-contained, we return to the issues of compatibility within
web browsers.

Note

Because Flash and other plug-in products aren’t rendered by the browser (the
browser handles the embedding process, but the rendering is done entirely by
the plug-in), you have to consider that each instance of Flash uses more of a
visitor’s system resources. It might be better to try to keep the number of plug-in
instances to a minimum.

When using Flash’s more open replacements, you need to consider browser support, and
you need to identify what can be used within each renderer. Then you are in a position to
offer appropriate and equivalent functionality. With all of this in mind, note that you don’t
want to dump Flash entirely. When it comes to broadcasting and streaming media, Flash is,
for now, the best solution going. However, if you’re looking for some nifty effects to make
content fly around the page, CSS3 animations and transitions are better solutions.

F U T U R E - P R O O F W E B D E S I G N 254

Technologies like Flash were originally invented to create experiences that, at the time,
couldn’t be built using technologies such as HTML, CSS, and JavaScript. Although users
of plug-ins like Flash have the tendency to design feature-heavy layouts in order to get
some really unique interactions going, I suggest using constraint with that kind of thing.
Flash is capable of creating pretty much any type of design you might want to build, but
going over the top with unconventional styling could reduce the usability of your website.

Avoid building unnecessarily complex Flash designs and ensure that all Flash usage has a
suitable fallback. While Flash may seem like a harmless way of giving users something to
talk about, visitors expect the Web to look and behave in a certain way, and as much as
shock value or beautiful graphics may naturally want to deviate from this, browsing the
site will become more difficult. Also, try to keep the size of Flash files low by reducing the
amount of media or images you use; no one wants to wait ten minutes for a splash screen!

Best practices
> Don’t worry about code support, as plug-ins render themselves.

> Avoid using plug-ins that currently have minimal adoption rates.

> Use Flash when open standards aren’t supported.

> If stable alternatives do exist, use them for a more accessible site.

> Avoid unconventional navigation menus that degrade usability.

Extensions
Most desktop browsers offer some form of extensibility, and with this power comes the
potential for your interfaces to be manipulated. Your sites rely upon rendering engines to
ensure that everything loads in the correct position, but toolbars, sidebars (Figure 13-2),
and other components can extend a site’s functionality (beyond the browser’s capabilities).
Some of these extensions will influence a site’s code or layout; others extract data for their
own ends. However, these tools can also enhance the compatibility of certain functionality.

C H A P T E R T H I R T E E N P R O V I D I N G P O W E R F U L P L U G - I N S 255

Figure 13-2: You can’t just rely on screen resolutions; sidebars can absorb valuable real estate.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Toolbars > Viewport reductionism

> Sidebars > Scope for interoperability

 > JavaScript bookmarklets

Practical solutions
Extensions allow you to do a lot of cool things with a browser, but with the installation of
these tools come the demands for their own little plot of screen real estate in order to help
the user and continue to function. Because some extensions may require more space than
others, and some can be much more invasive to the browsing experience than others, be
considerate of users who’ve got these useful tools bolted into their browsers, whether by
choice or as part of a package or preinstalled configuration. The point is to be flexible.

F U T U R E - P R O O F W E B D E S I G N 256

Sometimes, extensions like browser toolbars and sidebars will consume physical space on
the screen, which reduces the available viewport space for users to consume your content
within. Toolbars are usually more forgiving because they tend to be relatively thin and
just increase the need for vertical scrolling. Sidebars, on the other hand, introduce hori-
zontal scrolling and can break fixed-width layouts. To check how flexible your site is,
enable a range of toolbars and sidebars and then determine whether your site responds
appropriately.

Although many plug-in tools can be docile creatures that keep to themselves, a number of
extensions can literally interact with a page. They can do useful things with the content of
a site, or they could seek code conventions or underlying features of a page and act upon it,
for example, by using microformats or increasing the page’s inherent accessibility.
Extensions can also change functionality on a page to suit themselves. Stylesheet swappers
or extensions that make phone numbers into clickable links are classic examples of this.

Tip

Toolbars and sidebars can be stretched and skewed like a browser window.
There are no guarantees, therefore, that extensions users have installed will
match an easy-to-determine set of dimensions you can measure against. Never
assume the size of any windows, and use a flexible layout to allow for temporary
fluctuations in viewport size.

Because of the sheer number of extensions that are available for browsers, don’t assume
that you can make your site work and render flawlessly for every single product. Chrome’s
StumbleUpon extension, for example, has given me trouble in the past because of the way in
which it interacts with CSS. You should find out which extensions visitors regularly use or
request, and try your work out within them. Who knows, if you find a particular extension
that could bring added usefulness to your visitors, you could promote it on your website!

Also, you may want to check out bookmarklets. Bookmarklets are clickable and actionable
pieces of JavaScript that are built to perform a particular function. They are formed of a
URL that is comprised entirely of JavaScript (using the javascript: pseudo-protocol).
For handheld devices that don’t support browser extensions, these tools can prove quite
useful. If the browser supports JavaScript, this functionality can be saved within the com-
fort of a user’s bookmarks menu, and it also carries the inherent benefit of not stealing
screen space!

C H A P T E R T H I R T E E N P R O V I D I N G P O W E R F U L P L U G - I N S 257

Code can be inserted directly into your pages by extensions and users can then take
advantage of these tools more easily, or it could simply be used to offer an easier way to
view a page (via CSS or JavaScript). The only time you should use JavaScript in a URL is
when you want to provide a bookmarklet for your site. Links should perform a clear
action, so if scripting is turned off, all attempts to use script-powered links would fail.

Best practices
> Ensure that your site works in a cramped, extension-rich environment.

> Design around the available viewport space, not around screen resolutions.

> Test popular add-ins and those associated with services your visitors use.

> Browsers handle extensions differently; test them on a case-by-case basis.

> Treat bookmarklets as extensions for less-capable browsers or devices.

Multimedia
The embedding of video and audio in sites has increased over recent years. In the past, you
could get away with using a built-in media player provided either by the operating system,
users (by choice), or the devices they used; times have changed. With a wide range of for-
mats to cater to, it’s no longer acceptable to rely on ActiveX components that place high
demands upon users. With plug-ins like Flash, compatibility issues have forced designers
to seek alternatives, looking to HTML5 and feature-rich, third-party services (Figure 13-3).

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Apple QuickTime > Prepackaged players

> HTML5 Elements > Embedding support

> Real Player > Buffering and formats

> Windows Media Player

F U T U R E - P R O O F W E B D E S I G N 258

Figure 13-3: Compatibility issues have forced designers to seek third-party alternatives to Flash.

Practical solutions
Multimedia remains one of the most popular types of embedded content, so it’s impor-
tant to understand how certain devices handle your media. At times, you may find that
using HTML5 video or audio will launch the default prepackaged player; other times, mul-
timedia plays inside a Flash browser object. Understanding how browsers treat media is
important because there’s no point in offering multimedia that won’t be visible on a spe-
cific user’s platform because of how it’s being served.

When preparing media for the Web, it’s worth having a mixture of output sources, from
Flash (for older browsers) to HTML5 (for newer browsers). It may also be worth offering
download links in a range of formats (for everyone else). Some devices may come with a
built-in media player that’ll take over the media-streaming responsibilities from browsers
and play the file in a lovely, full-screen environment. While full-screen playback is useful
on handheld devices, devices with larger screens can afford not to achieve this by default.

C H A P T E R T H I R T E E N P R O V I D I N G P O W E R F U L P L U G - I N S 259

Before Flash was available, a great deal of disparity existed among multimedia formats on
the Web. Because a video playback standard wasn’t in place, and Flash lacked the support
it has now, people used ActiveX objects (and alternatives provided for the other browsers,
such as Netscape) to embed the media players users had installed on their devices inside
the browser. This approach caused a great deal of confusion because there was no way to
know which player users were likely to have installed and if it could handle the media.

Note

There are far too many formats to list in this book. Some are better at
compression than others, some have more or less widespread recognition, and
some allow raw output at the highest quality. As a general best practice though,
you should look to sites that deal in multimedia regularly (like news sites or
podcasters) to find common practices.

Today, it’s much harder to find such embedding practices online, but they unfortunately
still occur. Some sites require users to have Windows Media Player, some demand Apple’s
QuickTime, some demand Real Player, and a few demand rarer formats such as DivX and
XViD. Because all of these applications and their plug-ins can be uninstalled or disabled,
you should never resort to using these products over browser-native players (if possible).
Users can remove file associations, the plug-ins, or apps, resulting in an unplayable video.

Finally, you need to know what happens after you have that multimedia embedded and
listed on the page, as well as the importance of format diversity. We already know that
media can cause accessibility hurdles, like the interruption of screen readers (the voice is
drowned out by the content). However, media that automatically downloads or buffers
without the user clicking Play isn’t good either. If a user has no intention of watching the
video, you’ve just wasted loads of his bandwidth and slowed his browsing experience.

To overcome issues of bandwidth waste and reduced speed, avoid triggering the download
or buffering of videos when a page is being rendered. If users only want to read the text
that appears on-screen, you’re draining bandwidth that could cost them a fortune if
they’re on a restrictive data plan. Also, offer a range of popular media formats for down-
loading or streaming at various quality levels. Offer MP3 for audio (varying compression)
and MOV, MPEG (H.264), WMV, and WebM (VP8) for video in HD, SD, and various dis-
play sizes.

F U T U R E - P R O O F W E B D E S I G N 260

Best practices
> If a device launches videos in a separate app, don’t try to block the action.

> Some devices cannot stream media, so downloads are a helpful alternative.

> Always use Flash or HTML5, in preference to media player embedding.

> Make sure that your media buffers and downloads only if users click Play.

> Offer a variety of formats and sizes so users can pick what works for them.

14

14 Alternative
Content
Applications
Designing for reformatters, apps, accessibility
tools, and more

F U T U R E - P R O O F W E B D E S I G N 264

SOFTWARE AFFECTS SITES in ways that can go beyond even the browser. Tools like
RSS readers and accessibility aids are classic examples. Users consume your content in
ever-more unique and interesting ways, such as reading it within purpose-built offline
clients and with browsers embedded in apps, so if you maintain a level of support for such
useful implementations, you’ll increase your content’s exposure (potentially increasing
your audience, too). This chapter examines these influential applications.

Browsing Without a Browser
A web designer’s biggest consideration when dealing with users’ non-browser software is
compatibility. Users install, remove, disable, and configure software, and they can select
the product of their choice to undertake the task. What’s more, users rarely upgrade their
software on a consistent basis. The power of the OS, browser, apps, and plug-ins may help
your work really stand out, but they ultimately affect how your work is utilized and have
the potential to affect the total readership of your site.

Because they can read content when, how, and wherever they want, users are more fre-
quently turning to products like reformatters to access content. These products can refor-
mat and standardize entire articles by removing objects that aren’t critical. For example,
Instapaper is a popular reformatter that strips extra formatting from a page but saves
content deemed important. When a user bookmarks a e-zine article to Instapaper, the
banner graphic might be eliminated from the article, but the text of the article will still
appear. At first, you may be concerned that users aren’t clicking your site frequently as a
result (opting for a selective viewing experience), but in this age of flexible design, you
want to do your best to support the products that users prefer.

Note

Some users may use your site through a web-enabled third-party application
rather than through a common browser within an OS. These third-party
applications can load sites without opening the browser. In these cases, your
users’ ability to interact with your site may be restricted because bookmarks or
features such as zooming may not be available in the app’s built-in menus.

Syndication clients (such as RSS and Atom readers) and reformatters (such as Safari’s
Reading List feature) will turn a site’s content into a tangible, browsable offline piece of
writing that refreshes when new content appears. Apps can “mine” a site’s code for useful
data, or utilize APIs; widgets can be embedded within pages to syndicate useful content

C H A P T E R F O U R T E E N A L T E R N A T I V E C O N T E N T A P P L I C A T I O N S 265

such as Facebook comments; and accessibility tools (such as screen readers) and augmented
reality tools can extend a site’s functionality and its value to users of such software.

Because of the availability and number of tools that can connect to your sites and take
advantage of your content, you want to avoid becoming too dependent on features or
functionality that’s provided within browsers. Some applications may load a site using the
browser’s default rendering engine, without actually opening the browser or offering
tools you’d expect, such as page zooming. Other applications may connect to the site,
download pages in the background, and then use the information to offer readers a unique
experience.

Be extra flexible when designing for users with disabilities so that you can accommodate
their needs. Many assistive tools exist, such as screen magnifiers that work independently
of a browser but offer functionality that allows users to use the product of their choice.
Products like these will affect how content is accessed and consumed, and creating an
accessible site is critical to future-proof design. With so many users needing tools to help
them browse, it’s important to support them as best you can.

Designing an accessible website
Consider the perspective of a visually impaired user who requires the use of screen-
reading software in order to browse the Web. Because the user has little to no vision
and cannot take advantage of a display, the aesthetic appeal of your content is of little
to no value to him. When the user enters your site, his screen reader kicks into action.
This tool examines your site’s content and reads it aloud using speech synthesizer soft-
ware. Your user listens to the content of the site through the speakers.

The user will have a positive experience if your site’s content is clean, free of typos, and
condensed to the extent that it doesn’t resemble a novel.

Keep in mind, too, that users of screen readers are affected by anything that interferes
with their ability to hear what’s being said, such as automatically playing media.

You also must consider your site’s layout. Although making a layout accessible doesn’t
require a great deal of work, you need to remember that you can’t simply redirect acces-
sibility aids to a separate speech optimized layout. Unlike a smartphone, which has
notable variables (for example, a fixed-dimension screen), a screen reader sits on top of
a normal browser (or within it) and processes the content with no traceable effect on
rendering inside the browser itself. If you include well-defined links, alternative text
for images, and well-structured content, the site is a joy to use, however.

It’s also worth noting that for budding businesses, ensuring that your website is acces-
sible is a legal requirement in many countries.

F U T U R E - P R O O F W E B D E S I G N 266

Reformatters
Ten years ago, you wouldn’t have thought about letting users reformat your carefully built
design or download it into a purpose-built app. You certainly wouldn’t have encouraged
viewing your site outside a browser. However, both of these things are now considered
best practices. From syndication feeds (shown in Figure 14-1) that allow meaningful
alerts to your latest posts to the content-acquisition tools that let users store and orga-
nize articles they’d like to read later, visitors are pushing the Web’s responsiveness to the
limit.

Figure 14-1: Many web browsers include RSS and Atom feed readers, but dedicated apps exist, too.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> RSS and Atom feeds > Client availability

> Instapaper > Structure handling

> Safari’s Reading List > Restreaming issues

C H A P T E R F O U R T E E N A L T E R N A T I V E C O N T E N T A P P L I C A T I O N S 267

Practical solutions
Reformatting software provides one of the few web-based interactions that can take place
both within and outside a browser. You can find podcatchers for audio and video feeds like
iTunes, and a wealth of RSS syndicators exist for every platform imaginable (some are built
into browsers or the OS). These tools are restricted in how they portray content, which
makes it easier to ensure consistency because content feeds are themed around the UI.

One of the major problems designers contend with in all syndication clients is whether
the user will have access to such a product. It’s fine to throw a feed at a user and tell her to
subscribe, but not all browsers have a built-in client (Google Chrome, for example). The
best way to ensure that users without a feed reader can view and use your content is to use
a third-party service like FeedBurner, which allows the feed to be turned into and visual-
ized as regular HTML. This feature allows regular web browsers to see the content.

When you use a reformatter application like Instapaper, the first thing you realize is that
software developers have become adept at stripping unnecessary features from a page,
showing only what’s useful to readers. To use Instapaper, for example, visitors are able to
use a JavaScript bookmarklet to save the formatted content to their server so that they
can view and manage it later. With this in mind, make sure that these useful, popular cli-
ents can handle your content easily.

Reference

Apple offers an excellent guide to building a feed, especially for working it
around the needs of the iTunes library. If you want to get your media into iTunes
and open a new avenue for visitors to enjoy your content, especially if you’re a
podcaster trying to get into their directory, read the following: http://www.
apple.com/itunes/podcasts/specs.html.

First, be sure that your content is formatted with semantic HTML because these products
won’t be able to handle content embedded in a Flash file. Next, don’t depend on CSS to
dictate how content appears within the page because these products ignore CSS styling
and positioned content may be affected. Finally, keep adverts and navigation in their
rightful place. Sure, having advertisements on the page is fine, but if you smear them
everywhere, the site will have readability issues. A clean, logical, and carefully thought-
out design is the order of the day here.

“Read it later” products like Instapaper function kind of like a proxy browser. By passing
the data through a third-party service, your site’s content is reformatted and presented to
match the best reading style the app can afford — that is to say, minus all the unnecessary

http://www.apple.com/itunes/podcasts/specs.html
http://www.apple.com/itunes/podcasts/specs.html

F U T U R E - P R O O F W E B D E S I G N 268

bits you usually find in a site. As with proxy tools, because the content is dealt with at the
server, you cannot depend on scripts to generate content on-the-fly because it won’t be
shown within the page. Hidden content will become visible, but AJAX will not.

JavaScript can be a powerful tool, but it can also be a pain in the neck when web designers
wrongly assume users have the technology available and usable. Although the major
browsers (such as Firefox) can happily work away with some lovely, functional script
(unless it’s disabled), plenty of reformatting tools that ignore scripts entirely will be
affected by dependency upon it. If you just want to progressively disclose data, use a sty-
listic method of altering visibility. Don’t use intrusive scripts to load data remotely.

Best practices
> Offer both an RSS and an Atom feed to support clients’ applications.

> Utilize tools like FeedBurner to ensure that Chrome users can read feeds.

> Make sure your HTML is appropriately marked up for consistency.

> Don’t try to smear adverts everywhere; these tools will block them.

> Avoid depending on scripts or images to render important content.

Apps and Widgets
Browsers aren’t the only applications that can have web connectivity. Many applications
(a greater number than the total number of browsers) offer built-in browser windows.
These browser windows can connect to sites and parse content, offering a reduced feature
set and overriding CSS or JavaScript preferences to ensure that the look and feel of your
site matches users’ expectations. These browser windows are also highly ubiquitous on a
number of platforms. Widgets built into the browser offering added functionality (see
Figure 14-2) are also very popular online.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> In-app browsers > Recognized data parsing

> Web-app widgets > Vendor-reduced feature set

> Desktop widgets > Pixel-precision engineering

C H A P T E R F O U R T E E N A L T E R N A T I V E C O N T E N T A P P L I C A T I O N S 269

Figure 14-2: Just as applications can use content, widgets can offer functionality through third parties.

Practical solutions
Widgets are selectively designed micro-applications that you can embed within a browser.
They take a site’s content and proceed to turn it into useful web functionality. Some wid-
gets require that APIs or specially produced code is used to connect and grab the required
data, whereas some older and perhaps less-stable variations use a method known as data
parsing. When a widget parses data, it grabs an entire file, uses its knowledge of the site’s
structure to chop out what’s unnecessary, and does something to the interface with what’s
left over.

Deciding whether to support data-parsing widgets isn’t easy. Not all of these products are
“good natured.” These tools can be built to leech content, stealing and republishing what
you provide. However, because every barrier put in their way seems to fail, swimming
against the tide makes little sense. To help data parsers carry out their job, just don’t
change a site’s structure regularly. As for apps, you can’t prevent them taking credit for
your work because they embed a browser window.

Because third-party applications can integrate rendering engines and small-scale brows-
ers, traveling around a site can become complex, especially if the user is left with little
other choice than to stick to the options available within a site (as opposed to the tools
you would hope to find within the browsing product). Things like the ability to print a
page or zooming might be missed, but other functionality that’s missing could prove to be
restrictive.

F U T U R E - P R O O F W E B D E S I G N 270

Note

Browsers within apps often have a good amount of viewport space available
because they usually come with fewer built-in features than standard browsers.
They may also come with spoofed user-agent strings that will further confuse
misguided attempts at web browser sniffing.

If a user makes a purchase on your site and you provide the option to print a receipt, you
must be sure that the user can download or access the document at a later date in order to
print it. (You might consider sending it to them by e-mail.) Not all browsers have the capa-
bility to print, and certain devices may not be able to connect to a printer. Also, be sure
that each page of the site has a clearly accessible global navigation system, and avoid forc-
ing pop-ups on visitors because some third-party apps may omit features like navigation
buttons and multi-tabbed pages.

Widgets are recognized as having unusual UIs. Nevertheless, you must allow these third-
party tools to retain the look and feel they require. The worst thing that can happen is that
when visiting your site, the widget is forced to deal with unruly behavior that interrupts
an experience. This variable is a rather unique one for sites to deal with (as seen in iGoogle),
but it’s one that can happily coexist with designs. Just make sure you put safety measures
in place so that these useful pieces of code are allowed to work without code conflicting
with them.

If users want to take advantage of desktop or web-based widgets that you or a third party
has built, let them. Grabbing useful bits of data on demand allows these helpful tools to
keep up-to-date with important events on your site. Widgets can also be beneficial in the
attempt to bring the best bits of your site to a user’s desktop, such as those found in
Yahoo! Widgets and Apple’s Dashboard. Use microformats and code conventions to better
define what data is relevant, and avoid blocking or redirecting unknown user-agents from
the site.

Best practices
> Don’t constantly change a site’s structure; it may confuse apps or widgets.

> Maintain conventions in your layout to assist common data parsing tools.

> Avoid replicating browser-native features; show how to use them instead.

> Don’t rely on browser-specific features; they may not always be available.

> Ensure that your site won’t break when being restyled for specific needs of users.

C H A P T E R F O U R T E E N A L T E R N A T I V E C O N T E N T A P P L I C A T I O N S 271

Accessibility Aids
Accessibility aids present themselves as “middlemen” between disabled users and the
software they choose to employ. By accommodating users’ needs (because of either inhibi-
tion or a disability), these products can affect your layouts in various ways. From on-
screen keyboards that’ll absorb real estate to screen readers (Figure 14-3) that focus users’
attention on just a small cluster of pixels at one time, these tools repurpose layouts and
interfaces by offering extended forms of on-screen input and output.

Figure 14-3: Screen readers like Jaws are terrific at helping visually impaired individuals use a PC.

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Screen readers > Aesthetic overriding

> Screen magnifiers > In-app accessibility

> Page zooming > Accessibility testing

> Real-time text

> Speech agents

F U T U R E - P R O O F W E B D E S I G N 272

Practical solutions
One of the great things about CSS is that it’s incredibly versatile. You can use media que-
ries to provide a whole range of differently formatted CSS-powered layouts based purely
on the amount of physical space within the viewport. Beyond this, custom stylesheet
switching or stylistic overriding techniques can help you offer specific browsers or envi-
ronments a layout that matches the requirements of an interface. With this level of power,
you need to remain considerate of those choosing to overwrite your best efforts to
increase content readability.

The accessibility tools built into browsers may allow content to be reformatted into a
high-contrast layout that is suitable for visually impaired users. External tools may help
focus a user’s vision on a portion of the screen via screen magnification. To ensure com-
patibility, never block the zooming functionality on platforms like iOS (setting no to the
viewport user-scalable meta tag), design so that scripts won’t interfere with important
stylistic changes, and offer a high-contrast alternative stylesheet with an on-page style
switcher.

Although it’s great that accessibility aids exist, the truth is that if you follow a few stan-
dard practices like the WCAG guidelines, you can decrease the need for users to invest in
expensive tools or depend on browser features. Making a site accessible doesn’t have to
require a lot of extra work if you go into the process with the right mindset. Ensuring
compatibility for accessibility aids is critical because many individuals do suffer from dis-
abilities or impairments that can affect how they view and use your site.

Reference

You can find plenty of free tools that allow you to see how a site copes under
the control of third-party assistive tools. Be sure to test the features offered
natively in each device, OS, and browser. Also test any commonly used tools.
The free screen reader at this site is an ideal place to start: http://www.
nvda-project.org/.

If you can avoid using very small font sizes and fixed-width pixel units in your content and
layout, users won’t need to zoom to magnify the screen as much. If you avoid unnecessary
data entry, the need for speech-to-text products will lessen. Providing large click regions

http://www.nvda-project.org/
http://www.nvda-project.org/

C H A P T E R F O U R T E E N A L T E R N A T I V E C O N T E N T A P P L I C A T I O N S 273

will make a big difference in usability, both for people using handheld devices and touch
screens and for individuals who have their viewport split into two screens in order to
increase readability.

When users are forced to take advantage of assistive tools, their interactions with sites
are often restricted. If they use an on-screen magnifier or zooming utility, their visible
space is limited to the section that has been zoomed or scaled. Additionally, if visitors
must use an on-screen keyboard for data entry, more than likely at least part of the win-
dow will be obscured while they type. As a designer, aim for accessibility from the offset,
and check that the use of these tools doesn’t break your layout.

Some platforms have access to a wider variety of assistive tools than others, and although
you can’t make the most of all of them, talk to your visitors to find out which features they
depend on, especially when it comes to supporting accessibility. Encouraging your chal-
lenged community to speak out about problems they encounter will help you better
understand what you can do, which may then be your justification for continually improv-
ing your site.

Best practices
> Avoid preventing in-page zooming; doing so can seriously impair readability.

> Some browsers allow alternative stylesheets; offer a high-contrast one.

> Make the site accessible to reduce the burden and need for the software.

> Test your site with a variety of built-in and popular assistive tools.

> Consider adding features that increase accessibility to help boost users’ productivity.

Augmented Reality
The real world and the Web are becoming increasingly interconnected. With computer
sensory input hardware (for example, a webcam, display, or GPS chip), browsers can pro-
vide us with a modified look at the world as we otherwise see it. With potential connectiv-
ity options for sightseeing, gaming, collaboration, entertainment (see Figure 14-4), and
more, this futuristic technology could change how we use the Web, how we interact with
sites, and even how we interact with each other.

F U T U R E - P R O O F W E B D E S I G N 274

Figure 14-4: You can view a building with a smartphone to get useful details about it!

The following lists show members of this software’s family tree and some issues they can
encounter.

Relatives: Considerations:

> Mediated reality > Social engineering potential

> Virtual reality > Physical service enhancement

 > Virtual-on-virtual layering

Practical solutions
If you’re the proud owner of a social networking site or even a site that engages in social
networking, the idea of being able to enhance an experience based on real-world events is
a cool prospect. Although support for the technology is currently in a niche category, a lot
can be said for the long-term future of augmented reality. Be sure to treat such features as
optional because the technology isn’t appropriate in all situations, and misusing it might
be considered intrusive.

Never demand that visitors hand over their location information or try to use their web-
cam without permission; such behavior will just lead to privacy concerns. If you offer aug-
mented reality services, use an opt-in model rather than an opt-out scheme. This way,
users control who can see or use the sensitive data they provide without interrupting
their regular browsing experience. If all goes well, users will recognize the value of using
the augmented reality features you’re offering, and will use them regularly.

C H A P T E R F O U R T E E N A L T E R N A T I V E C O N T E N T A P P L I C A T I O N S 275

Linking a virtual object to the real world is just another peculiar example of how things
have changed since the Web’s inception. If you’re a provider of real-world goods and ser-
vices or use real-world facets (for example, locations) to give information to your users,
the technology may be useful. Whether you’re Wikipedia offering pop-up details about
objects and places or a dating site that wants to give its members an augmented profile for
real-world meetings, you must weigh the benefits of using this technology against ethical
and safety concerns.

Reference

You can embed augmented reality functionality in business cards, merchandise,
books, or any physical product to connect the real and digital world or to offer
users helpful advice. The following tutorial provided by Web Designer Magazine
is just the tip of the iceberg: http://www.webdesignermag.co.uk/
tutorials/get-started-with-ar/.

Although it’s hard to imagine that augmented reality could do people harm in the real
world, such features can cause distractions with serious consequences. For example,
imagine that you provide an augmented reality video, and then imagine a user taking
advantage of it while walking along a street. With this scenario in mind, it’s clear that
your design must not obscure the entire screen — otherwise, the user might lose sight of
traffic and become involved in an accident. You may think such concerns aren’t serious,
but people have been led astray by their SatNav, so who knows where augmented reality
could lead them! Such technology may be seen as hazardous in the future because of the
issue of texting while driving.

As it stands now, the routine use of augmented reality is rather slim for the average
designer. However, this technology does have some cool tricks up its sleeve that could
give it some credibility, as well as the prospect for feature support. For example, if you
were to build a site for a museum or art gallery, you would be able to connect useful infor-
mation about the exhibits to the devices that visitors carry in their pockets. Imagine
being able to walk past a painting, find its history, and at the same time, order a poster of
it from the gift shop.

Much of this probably sounds rather sci-fi, and for the moment it is, but as hardware gets
better and the software is released, you may see this technology used more frequently on
sites. To ensure compatibility with these kinds of features, don’t be afraid to download or
build an augmented reality tool and see what it can do. As with designing a site, your
imagination is the limit, and if you can provide a startup with something that takes the
Web into the real world, users will have more to interact with.

http://www.webdesignermag.co.uk/tutorials/get-started-with-ar/
http://www.webdesignermag.co.uk/tutorials/get-started-with-ar/

F U T U R E - P R O O F W E B D E S I G N 276

Best practices
> Support for this tool is in its infancy, so don’t have unrealistic expectations.

> Don’t force augmented reality on users; allow them to maintain control in the
journey.

> Reality contains a lot of distractions, so allow users to pause their progress.

> Keep augmented interactions simple and avoid blocking the vision of users.

> Try some augmented reality in your business to enhance existing offerings.

15

15 The
Consequences
of Code
HTML, CSS, JavaScript, WML, and more

F U T U R E - P R O O F W E B D E S I G N 280

NOTHING IS MORE central to your site’s compatibility than the code that governs the
objects that exist upon a page. Code is the lifeblood of a site; without it, browsers, soft-
ware, hardware, and devices cannot see your work. Browsers interpret code and render
the pages, but your code’s diversity and prevalence make it worth considering on an
entirely separate level. In this chapter, you learn the importance of code and to identify
the bleeding edge of languages that can help your site survive future browsers.

The Compatibility of Code
Without the underlying code “telling” browsers how to format and present your lovely,
handcrafted layouts, there wouldn’t be much of an Internet today. Moreover, surviving the
advances of the Web means that you must ensure that the content, look, and feel of your
sites survive and remain useful to users as languages evolve and expectations alter. This
means you must make the most of the available development tools and identify where and
when your work needs to undergo some maintenance.

The legacy of code is a long and interesting story, starting with the inception of HTML, the
advancement of CSS, and the introduction of JavaScript as more than a cut-and-paste tool.
With each browser shipped to the Web, these technologies have remained deeply ingrained
in the renderer, leading to many innovations as the languages evolved, but also leading to
compatibility issues such as the legacy of the browser wars. You may find yourself fighting
the need to support both old and new code.

Tip

Sometimes you must account for two different implementations of a language
to retain a solid level of cross-browser compatibility. If you want to use SVG in
your pages, for example, you’ll need to offer a VML alternative for old versions of
Internet Explorer.

We won’t go through the gory details regarding how the Web and its modern standards
came to be — that is an entire book in itself. But it’s important to realize that the evolu-
tion of the Web and its languages have occurred over many years, and through each new
standard and advancement, designers have struggled to gain consistent code support
among browser manufacturers. In recent years, this has become less difficult, but the leg-
acy of bad behavior (and code) has led to many irritating compatibility quirks.

C H A P T E R F I F T E E N T H E C O N S E Q U E N C E S O F C O D E 281

One of the major issues regarding code compatibility is support. Browsers must support a
technology before you can use it, and code must be supported for users to get the bene-
fits. First, you have to be sure that your code works on browsers, such as early versions of
Internet Explorer, that can’t properly handle modern eye candy. Then, you have to con-
sider how browsers in the future will operate; what deprecated standards they may cease
to support; and when you should employ the latest and greatest tools within production
sites.

We’re now in the age of a third browser war. With battles for dominance still raging, and
with legacy tools such as featurephones still in common use, you must reinforce code with
good fallbacks to degrade an experience to match user capabilities. Tools like progressive
enhancement, graceful degradation, responsive design, and adaptive design can all help
achieve this goal. The lack of standardized support for code in renderers is a bitter pill to
swallow, however, as comprehensive browser testing and debugging become a necessity.

Disabled code issues
Imagine that a technically competent (if not slightly paranoid) visitor accesses your
site using Firefox with the NoScript extension installed. (It’s a popular extension, so
there is a good chance that it, or something like it, may affect your site one day.) The
visitor doesn’t trust your brand yet because it’s her first encounter and she’s worried
that intrusive scripting could negatively affect her experience on your site. Perhaps she
has also come across too many anti–right-click scripts or irritating marquee effects
that lead her to disable scripting by default.

As the visitor browses to the site with NoScript enabled, the tool does as it’s told and
turns off all script functionality within the page. JavaScript is enabled within the
browser, but NoScript manages to give site-based permissions to help users make deci-
sions about which sites they trust. Unfortunately, as is the case with many sites, you
presumed that she would have scripting enabled. Because the scripts are embedded in
areas they shouldn’t be, the visitor can’t browse the site because links became non-
functional as a result of your coding methods.

This is a perfect example of why you cannot depend on any technology that can be
turned off by visitors, even if the feature is something as readily used as JavaScript or
CSS (both can be easily disabled by users). Create non-obtrusive scripts by separating
HTML, CSS, and JavaScript code into separate files and layering behavior over styles
and styles over structure. This ensures each language works independently and
degrades gracefully. You can’t demand that code be supported by users, so avoid mak-
ing their dependency a prerequisite.

F U T U R E - P R O O F W E B D E S I G N 282

(x)HTML
HTML is the chief markup language used to create the structure (Figure 15-1) of web-
pages. When it comes to ensuring code compatibility, no language has the same level of
ubiquity as HTML (Hypertext Markup Language) and its strict brother, (x)HTML. As
these fundamental languages cannot be disabled inside browsers, they’re particularly
dependable in design. Both languages have passed through several iterations. Although
HTML compatibility issues exist, it remains the safest layer of the Web.

Figure 15-1: (x)HTML explains the semantic structure of your content, giving it contextual meaning.

The following lists show the HTML/(x)HTML family tree and some issues its members
encounter:

Relatives: Considerations:

> HTML 4.01 > Degrading HTML5 elements

> HTML 5 > The (x)HTML 1.1 conundrum

> (x)HTML 1.0 > Baseline rendering levels

> (x)HTML 1.1

http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Web_page
http://en.wikipedia.org/wiki/Web_page

C H A P T E R F I F T E E N T H E C O N S E Q U E N C E S O F C O D E 283

Practical solutions
Although HTML as a language is well supported, we can’t say the same about its youngest
prodigy. Browsers predating HTML5 (which is still in development) can’t be expected to
support this new version because HTML5 simply didn’t exist. HTML5 may offer a bunch
of new toys to play with, but the code may encounter issues because not all elements are
likely to be supported. This situation is especially prominent with the newest tags in the
specification because older versions of IE refuse to render what they don’t understand.

If you’re going to use HTML5, be wary of what features you choose to implement. Using
the HTML5 Doctype is fine because browsers don’t show it on-screen (and legacy brows-
ers can often interpret the code). However, more innovative features will likely require an
elegant fallback, some potentially invasive scripting, or a healthy alternative to ensure
that users can browse the site. This issue partially exists because of the way in which some
versions of IE ignore what they don’t like!

Before HTML5 became as popular as it is today, another specification called (x)HTML was
in its prime. (x)HTML was a stricter language than HTML and was less forgiving of errors.
(x)HTML currently is utilized in many CMS engines and websites, usually making use of
version 1.0 of the specification. One version of the language, 1.1, has compatibility issues
with the browser we keep complaining about: Internet Explorer (up to and including ver-
sion 8.0). Thus, even though (x)HTML is still widely used, you’re better off aiming for
HTML5.

Reference

The abolishment of table-based web design is a great example of how using
well-formed code reduces redundancy, helps your content make sense, and
aids accessibility and stability. The following site explains the justifications for
why you shouldn’t use table-based layouts: http://www.hotdesign.com/
seybold/everything.html.

Because of its demand for a specific MIME type (application/(x)HTML+xml), (x)HTML’s
purpose was to give designers a greater level of interconnectivity with XML documents
and several XML-based specifications. However, as Internet Explorer didn’t adopt the
strict MIME type, it fell into disrepute, and few people utilized the potential it offered.
Therefore, if you must use (x)HTML for compatibility reasons, stick to version 1.0 with
the classic text/html MIME type or use (x)HTML5. Otherwise, just use HTML 4.01.

http://www.hotdesign.com/seybold/everything.html
http://www.hotdesign.com/seybold/everything.html

F U T U R E - P R O O F W E B D E S I G N 284

You need to be sure that your code is semantic (uses the right tag for the right job) because
the meaning you give to your site’s structure determines how search engines will make
sense of it. Try to keep your code’s structure free of bloat because that enables you to more
easily target elements for style or behavior. If your code is correctly written, you can usu-
ally dodge bullets thrown by browsers and reduce the chances of quirks occurring as you
use CSS. In addition, if you build something that’s agile and beautiful, you’ll be proud of it.

You can help with semantics and also unearth your occasional mistakes (such as forget-
ting to close a tag that potentially affects your site’s style) by running your code through
the validator provided by the W3C. When you’re sure that your code is accurate and well
formed, see if you can reduce any redundancy that may have built up as you coded.
Perhaps you don’t need all those DIV or SPAN tags. Also, turn off scripting and styles so
you can see how browsers render your layout by default in case these items of functional-
ity become unavailable.

Best practices
> If you do use HTML5 elements with JavaScript crutches, offer a fallback.

> Replicate unsupported functionality with feature detection, but let it degrade.

> Avoid using (x)HTML 1.1 and the now-abandoned (x)HTML 2.0 in your sites.

> Be sure that the default styles that browsers apply won’t negatively affect the layout.

> Ensure that you use the proper element for the job and validate your code.

CSS
Cascading Style Sheets (CSS) is the primary language used to visually organize a design
(Figure 15-2). CSS has had a rocky time in terms of compatibility, and it suffers a range of
issues relating to inconsistencies in standards adoption and rendering within old brows-
ers. You must be careful if you want to ensure that CSS renders accurately across brows-
ers. The general role of CSS is to handle a layout’s aesthetics. With discrepancies in support
and its native capability to be overwritten or turned off, however, it can be a beast of a
variable to control.

C H A P T E R F I F T E E N T H E C O N S E Q U E N C E S O F C O D E 285

Figure 15-2: CSS allows you to visually control a site’s layout, but only if browsers support the code!

The following lists show the CSS family tree and some of the issues its members encounter:

Relatives: Considerations:

> CSS Level 1 > Stylistic interpretations

> CSS Level 2 > Layering complexity

> CSS Level 3 (Modules) > Flexibility over fixations

Practical solutions
The unreliability of CSS results from several things. First, there’s no guarantee that CSS
will be available because it can be turned off. Another possibility is that when the lan-
guage was implemented certain browsers didn’t follow the specifications properly. In
addition, you have the issue of stylistic interpretation, in which browsers may choose to
actively implement something in a different manner. Additionally, browsers can behave
rather oddly if quirks mode (rather than standards mode) is active. All these variables can
lead to inconsistencies.

F U T U R E - P R O O F W E B D E S I G N 286

In each of these circumstances, you can do a few things to reduce a browser’s influence
over how your code is interpreted to try to ensure compatibility. Regarding how browsers
interpret default styles, you could use a CSS reset mechanism to enforce one set of rules
for all browsers. As for quirks mode, it’s best to follow general browser recommendations
to avoid it entirely by using a valid DTD, not using quirky tools such as the proprietary
zoom property, and keeping in line with the W3C box model.

Unlike HTML, CSS is a relatively progressive language, which means that if something isn’t
supported it doesn’t necessarily mean that the whole layout will collapse. In many circum-
stances, you can adapt the existing CSS 2.1 specification, using properties that have ubiq-
uitous support and then layer on the extra functionality to take its place or to enhance
existing code. An example of this includes the box shadow property that naturally degrades
into not being visible if the property isn’t supported (unless you offer a fallback).

Reference

A number of CSS properties have inconsistent or partial support within certain
browsers. You can find several lists aimed at helping you substantiate where
issues exist, such as this enormous guide: http://westciv.com/wiki/CSS_
Compatibility_Guide.

Gracefully degrading CSS doesn’t work for every situation. The CSS3 target selector, for
example, allows you to restyle a page based on the fragment identifier in the address bar. If
you click a link and the pseudo selector is supported, all the wonderful effects will happen
on-page; if it’s not supported, the link won’t have much of an effect. In cases such as this,
you need to provide a fallback so that the link still works in older browsers, just without the
styling. Go further by adding support for the pseudo on top of an already-working link.

In addition to moving from a table-based design, the biggest evolution in the use of CSS is
related to fixed-width layouts. When you had to deal only with desktop compatibility, a
“960 grid” solution was acceptable. But when handheld devices came along, it became
necessary to offer a range of sizes. With devices becoming ever more diverse, and the con-
ditions for their use becoming ever more ambiguous, you must break away from a set way
of thinking. As a result, the technique of using fixed-width layouts has become outdated
and problematic.

To help assure compatibility and the flexibility of your site in the future, don’t use print or PX
unit measurements to define explicit layout boundaries. Using tools such as min/max width
can be helpful in defining less-rigid designs because it removes the explicit nature of the
units, in most situations. However, using percentage widths for a fluid or liquid layout and

http://westciv.com/wiki/CSS_Compatibility_Guide
http://westciv.com/wiki/CSS_Compatibility_Guide

C H A P T E R F I F T E E N T H E C O N S E Q U E N C E S O F C O D E 287

blending that with CSS media queries is much better than trying to treat your site like a shirt:
offering a set range of sizes, and turning less conventional body shapes away from the store.

Best practices
> Unless you feel comfortable with cross-browser CSS, use a reset technique.

> Always use an (x)HTML Doctype in a page’s header to avoid quirks mode.

> Ensure that your CSS will gracefully degrade if the code is not supported.

> Be responsible with your layouts; avoid code that’s prone to browser issues.

> Use a mixture of sizing techniques to help your layouts scale to demands.

JavaScript
When HTML and CSS aren’t enough to get the job done and you want to provide visitors
with some garnishes to encourage interactivity (Figure 15-3), get out the client-side
scripting language JavaScript. It allows you to provide unparalleled levels of interaction
within your pages, making the language highly useful and powerful. Even though the
ubiquity of scripting isn’t as high with JavaScript as it is in CSS and HTML — because
JavaScript can be crippled by users or by the browser, such as when it’s turned off by
default — it still remains extremely popular.

Figure 15-3: JavaScript lets you add exciting functionality, such as lightboxes, to your pages.

F U T U R E - P R O O F W E B D E S I G N 288

The following lists show the JavaScript family tree and some issues its members encounter:

Relatives: Considerations:

> jQuery > Obtrusive scripting

> JScript > Negative interactions

 > Server-side safety

Practical solutions
Many sites these days depend on JavaScript. It’s not really surprising considering the
demands users place on sites for interactivity. But trying to browse some websites with
scripting either unavailable or disabled can be unnerving. JavaScript can be turned off (as
with CSS or images), and your request for scripting can be denied by the browser or user. In
such cases, you must ensure that the entire site doesn’t become unresponsive or crippled.

The goal for unobtrusive scripting requires designers to take certain actions. First, you
must be sure that scripted behavior is taken out of the HTML page and put into separate
JS files that can be referenced, cached, and reused where needed. Second, you need to do
capability testing to ensure that the mechanism you want to use is supported; if it’s not, a
fallback is required. Avoid using event handlers within HTML, listen for each event in the
JS functions, and act on them. This means avoiding JavaScript-powered URLs, too!

Among all the web languages, JavaScript has one of the most jaded histories (even more so
than CSS). In its early years, it was perceived as a hackish tool to make pretty, but poten-
tially unhelpful, things happen, such as the anti–right-click scripts I mentioned earlier.
This behavior continued throughout the 1990s as designers used it to gain control over
users in sort of a James Bond-style, super-villain way. They crippled the native behavior of
browsers, reinvented existing functionality, and irritated their users frequently.

Note

Interestingly, to avoid the abuses of old and save users from script-inflicted
damage, a number of popular web browsers automatically cripple functionality
such as right-click prevention scripts. By reducing the impact of potentially
hazardous scripting, browsers may increase the usability of sites automatically
and help users out of potential pitfalls.

C H A P T E R F I F T E E N T H E C O N S E Q U E N C E S O F C O D E 289

People didn’t begin to catch on to the downside of such obtrusive behavior until the age of
user-centered design. At this point, designers agreed that firing multiple pop-ups, dis-
abling text selection, and blocking right-clicking were bad ideas. Damaging the browser
Back button became a no-no, and hijacking the title or status bar with ticker tapes was
deemed annoying and unprofessional. The lesson is to avoid doing these things and avoid
employing scripts such as “print this page.” Instead, encourage use of the browser’s exist-
ing functionality.

Although client-side scripting can be disabled, server-side scripting cannot because the
server processes everything before passing it onto users. Unfortunately, server-side
scripting will not give you as many options for interaction with users, and it requires
refreshes. Even so, server-side scripting may be a useful tool when you’re attempting to
give users a sensible fallback for scripts. Whether as an alternative to live-form validation,
option selection, or memorizing user preferences in a session, you can keep things run-
ning without JavaScript.

To ensure compatibility in these instances, begin by offering a server-side alternative that
can undertake the actions before continuing and provide the client-side version that
detects any mistakes before the data is submitted. Then, if scripting works, JavaScript will
notify users of issues immediately and no refresh will be needed; it will pass the checks at
the server. However, if JavaScript is turned off, the script that passed the script-checked
version will spot the issues and send the user back with details on how to resolve them.

Best practices
> Make scripts independent of the structure so they can be maintained.

> If scripting is turned off, don’t just make the tool redundant; offer a fallback.

> Never cripple text selection or right-clicking; many users rely on these tools.

> Don’t replicate browser functions because some of them won’t support the action.

> Try offering a server-side fallback for interactive aids such as form validation.

WML
Although modern devices can cope with the browsing needs of users by using a blend of
HTML, CSS, and JS, a less-fortunate array of legacy devices, such as featurephones, are
stuck with older standards. Wireless Markup Language (WML) (Figure 15-4) is a structural

F U T U R E - P R O O F W E B D E S I G N 290

language much like HTML, but WML must be coded independently of HTML. Although
WML doesn’t support complex styles or scripts, leading many designers to dislike it, it has
gained high ubiquity levels (even now, as a deprecated standard) on featurephones, which
cannot handle HTML. So don’t ignore it.

Figure 15-4: Consider WML as a much-simplified version of HTML aimed at entry-level devices.

The following lists show the WML family tree and some issues of the language:

Relatives: Considerations:

> WML 1.1 > Non-mobile support

> WML 1.2 > Card deck stacking

> WML 1.3 > Independent housing

> WML 2.0

Practical solutions
Although HTML has fairly ubiquitous support across a wide variety of platforms, WML is
entirely in the other camp. Because it’s predominantly found and utilized in featurephones
and devices with little processing power (or compatibility with the Web), users wanting the
same experience they’d have on higher-end devices or a desktop environment must go out
of their way to get what they want. Although support for WML on platforms such as
Windows and Mac isn’t impossible, achieving that support requires a heck of a lot of
designer effort.

C H A P T E R F I F T E E N T H E C O N S E Q U E N C E S O F C O D E 291

Users wanting to view WML pages on a desktop platform or designers looking to test the
pages need to either download the Opera browser (which supports WML natively), an
extension for Firefox (to handle WML), or get their hands on a special WML browser for
their OS. A number of free ones exist, such as Klondike, if you look hard enough. To make
your site fully compatible for non-WML devices (if you do support it), you’ll also need to
offer an HTML alternative. Although deprecated, WML does maintain a proportion of users.

Unlike HTML, WML has very few elements attached to it, which is why it is preferred by
developers of many handheld devices. Because of its general simplicity and lack of fantas-
tic features, it’s fairly easy for your site to achieve compatibility with WML browsers and
devices that can handle only WML. This ease of development, of course, comes at the cost
of support for CSS, JavaScript, and other features we like to use but that aren’t available.

Reference

WML isn’t exactly a well-known language, so you’ll probably need a good place
to get started with the environment if you plan on supporting it for users of
older devices that have no HTML support. The following site has tutorials
that can help you learn the essentials of WML development: http://www.
developershome.com/wap/wml/.

One of the cool things about WML is how it progressively discloses your content to users
by using a card deck stack. Each page contains a series of cards (known as a deck), stacked
in a logical order by the web designer. Some decks are used as index pages (page-long
navigation menus), others contain purely content. Every card should be linked to from
the index card (much like a sitemap). Cards that aren’t linked to won’t function, and users
won’t know about them. You should always break content into a deck of cards to reduce
information overload on tiny screens.

WML is oriented toward handheld rather than desktop devices. Because of its separation
from a traditional HTML site and its clearly defined objectives, you can safely promote the
WML site as an independent website without feeling guilty that you couldn’t make your
main layout work for every user. Although there are exceptions to the rule, such as if you
need to provide a Web application for specific devices, you should consider WML as the
only case where it’s necessary to build a separate dedicated site for a single audience.

Deciding whether to support WML-enabled users is a difficult decision; many more
mobile phones and devices use browsers based on HTML than on WML. To ensure that
your site is compatible with WML, however, if you see that audience as a worthwhile com-
patibility pursuit, you have to build the dedicated WML site and advertise it to featureph-
one users to ensure that they are aware of its existence. To help users find this separate

http://www.developershome.com/wap/wml/
http://www.developershome.com/wap/wml/

F U T U R E - P R O O F W E B D E S I G N 292

site more easily, host it on a subdomain named WAP. WAP is the convention because
WML sites uses the WAP protocol.

Best practices
> Check that your WML site works in a supporting browser (or a dedicated client).

> Ensure the WML site is served in coordination with a proper HTML layout.

> Break content into logical stacks and decks to avoid information overload.

> Be sure that every card is linked to from any index cards to avoid orphans.

> Offer a separate WML site from the HTML site; consider using a subdomain.

Metadata
Although HTML provides a great deal of contextual information about content on-screen,
a number of code conventions, namely metadata and microformats, can add relevance and
functionality to the content on your pages. Although the adoption rate of each one varies,
these conventions can enhance a site’s integration with services (Figure 15-5) or products
that support these tools. Whereas metadata primarily focuses on explaining the relevance
of entire pages (data about data), microformats enhance the semantic meaning of HTML.

Figure 15-5: Metadata and microformats can format data on the page into something more meaningful.

C H A P T E R F I F T E E N T H E C O N S E Q U E N C E S O F C O D E 293

The following lists show this variable’s family tree and some of the possible issues:

Relatives: Considerations:

> Semantic metadata > Adoption requirements

> Microformats > Active code maintenance

> Syntax schemas > Competing methodologies

Practical solutions
Making your metadata future-proof requires the same mentalities as a popularity contest
employs. Only the metadata that designers employ will gain the recognition and adoption
that “standardize” them. Although certain microformats and other metadata formats
may not be supported by particular browsers, search engines, or social networks, they
won’t cause a site to break (if they are retired in the future), as they don’t affect the physi-
cal structure or style of a page. The only negative effect they may have is wasting the user’s
bandwidth.

Using metadata whenever possible is an ideal way to future-proof your site (assuming
that support will continue for the code). The semantic Web and the rise of products, users,
and services interacting dynamically with your site’s content justifies turbocharging the
markup with these nifty, exploitable components of a site. If your content is ready for
interactions of this nature, your site will be ready when a user or service supports and
uses them natively or via extensions. If users don’t have support for such features, it’s not
a problem.

As with all coding conventions, new metadata formats will come into action, taking over
the responsibilities and jobs of older ones, and formats that used to be popular will fall
into disuse. These older formats can add unnecessary clutter to your site. Because there
are no specifications that explicitly prohibit the creation of new metadata standards (they
all rely on conventions and popular usage), the scale of options at your disposal can be
daunting. These tools give your content added contextual meaning, and that’s good for
everyone who visits your website.

Note

Semantic metadata can arrive in a variety of formats. You can choose among
metatags, RDFa files, DCMI metadata, schemas, and microformats. Sounds like
a lot? It is! Luckily though, they’re all very easy to use if you understand both
HTML and XML.

F U T U R E - P R O O F W E B D E S I G N 294

To ensure compatibility with the constantly evolving landscape of semantics and any new
metadata conventions, you must be aware of the most popular options. The ones that
have high levels of recognition in search engines are definitely worth supporting. The
ones that work within browser toolbars or extensions are also worth a look. But whatever
you do, note where you implement different microformats, schemas, or metadata; as time
moves on and formats are deprecated, you’ll want to clean up your source code as you go.

Although having these unique, extended methodologies to describe your content is a
really exciting prospect, be aware that the semantic Web is suffering a bit of competition
(akin to the browser wars). Although metadata has been around for a number of years, it’s
not as feature full as microformats. And although these cool, useful code extensions are
increasingly popular throughout the Web, a number of search engines have a competing
range of options that try to coax designers into altering their coding habits. Not exactly
fun at all.

There’s no telling where the winds will blow and what kind of metadata will wind up with
the most support; however, you can focus on what such implementations bring to brows-
ers and users, choosing the best from among them. For example, if designers utilize a
third-party service or browser-based extension, the hCard code microformat can be then
exported into a virtual business card that is compatible with many e-mail clients, address
book products, and more. Tools like this could dramatically help your site’s visitors.

Best practices
> Only use the metadata formats that best describe your pages’ content.

> Microformats and metadata degrade gracefully; feel free to adopt them.

> Maintain your code regularly and flush out deprecated semantic formatting.

> Test your implementations with browser extensions to ensure they work.

> Competing formats for metadata exist; research your options carefully.

Non-Standard Code
Just as there are devices that maintain popularity, so are there languages and code that
have more or less support in browsers. Being on the bleeding edge requires you to con-
sider the less popular but more capable options when they are being used to test code
within a new CSS standard, using a deprecated feature, or embracing a niche language

C H A P T E R F I F T E E N T H E C O N S E Q U E N C E S O F C O D E 295

requiring a plug-in to offer support. Ubiquity for such features has the potential to be low;
however, be aware that many of these unconventional formats may be useful to certain
niche audiences. See Figure 15-6.

Figure 15-6: Non-standard code is commonplace online; don’t be afraid to experiment if it’ll
improve a layout.

The following lists show this variable’s family tree and some of the possible issues:

Relatives: Considerations:

> Vendor prefixes > Multiformat rendering

> Deprecated code > Maintaining retired code

> Niche functionality > Competitive alternatives

> Proprietary code

Practical Solutions
It’s interesting that unsupported code is often attributed to certain rendering engines or
browsers that are experimenting with new technologies. Consider, for example, vendor

F U T U R E - P R O O F W E B D E S I G N 296

prefix code, which allows designers to play with bleeding edge goodies that haven’t made
the browser’s final cut, but still have some rudimentary level of support. Although every
major renderer and browser manufacturer is involved in offering some unsupported code
as vendor prefixes, you should consider how using this code will affect the site’s stability.

Although production sites need to be stable, allowing users to try great new technologies is
a sensible step for designers to take to ensure a diverse, aesthetically rich experience —
especially if you properly maintain your code. Returning to the example of vendor prefixes,
because each renderer has its own prefix you may need to employ up to six different refer-
ences to be sure each browser gets a piece of the experience. This may seem like a lot of
work, but it enables you to prepare sites for when the code is finalized.

Compatibility with deprecated code could be described as a ticking time bomb, waiting to
go off at the most inconvenient time. Many browsers do support deprecated code (often
perceived as old and unnecessary code) to help designers through their transition to the
use of the latest and greatest standards. However, the time will come when the switch will
be flipped by browser vendors and old sites using proprietary or vendor-prefixed code will
collapse into antiquity, leaving only old versions of browsers to support the outdated site.

Tip

Some proprietary features may actually offer quite widespread support and are
worth considering. Take something like Amazon’s OpenSearch protocol; most
browsers on the desktop already support in-browser search enhancements and
this useful format!

The best way to deal with deprecated code is to keep your site and code updated and use
the most recent, finalized version of a language. Also, ensure you separate the structure,
style, and behavior of a site to help with maintaining the code. Regarding compatibility in
older browsers, very old renderers that don’t recognize CSS will just show the HTML and
offer little else. Although this isn’t exactly elegant, you must offer a fair balance between
support for old and new tools. So keep in mind that outdated browsers may still be in use.

When it comes to consistent support for different formats, the Web is full of surprises. If
you want to use something like SVG, you must supply Internet Explorer with a VML alter-
native because early versions of the browser don’t support SVG; they do support Microsoft’s
alternative format. There are other examples in the wild where proprietary or unique

C H A P T E R F I F T E E N T H E C O N S E Q U E N C E S O F C O D E 297

formats have been adopted over the Web standard, leaving you with a nasty trail of destruc-
tion to clean up. Although it’s not an ideal scenario, proprietary code is everywhere.

When using HTML, you need to avoid certain proprietary tags by default, such as blink
and marquee. CSS also has some proprietary features, such as CSS expressions, zoom, and
scroll bar coloration, which you’ll want to avoid as well. JavaScript has the IE-only condi-
tional compilation that is essentially conditional comments for scripts (which might be
useful). In addition, proprietary languages or unsupported code such as X3D and KML
will demand software or a special plug-in to be installed; support these only if your users
ask for it.

Best practices
> Vendor prefixes degrade gracefully; don’t be afraid to play with them.

> Production sites can use bleeding edge code; just be sure to maintain it.

> After code becomes deprecated, upgrade it to the latest best practice.

> Maintain support for older code only if your users’ browsers require it.

> Don’t neglect users who depend upon formats with weak browser support.

16

16 Third-Party
Dependency
Relying on resources, frameworks, and services

F U T U R E - P R O O F W E B D E S I G N 300

WEB PROFESSIONALS MUST sometimes depend on objects and technologies that they
don’t own or that their users may not have access to, and these external influences can
take a toll on a site’s compatibility aims. In this chapter, I highlight some of the critical
third-party issues that play a role in the degradation of sites and their functionality, and
you’ll examine the dependency designers have on external resources, frameworks, for-
mats, and services. This interconnected and constantly moving environment makes sta-
bility an ongoing chore.

The Weakest Link
The ever-expanding list of third-party assets found on many sites can include frameworks,
hyperlinks, files in proprietary formats, media embedding (from sites like YouTube), and
even entire services (integrated as part of social networks using APIs). Such tools give your
site a relationship with other sites and their beneficial services, but force a dependency on
the support they provide. Because of this, a worry exists that links may die or services you
use will fail or disappear, leaving you and your users with a sudden loss in site functionality.

The number of links resulting in “file not found” errors highlights the damaging effects of
third-party dependency. Worse than broken links, there are cases where cloud storage
sites like Amazon S3 crash, taking thousands of sites down with it. If you use social net-
works, be aware that downtime on these tools could also render parts of your sites
unavailable if you rely upon their APIs. All things considered, dependency is a risky prop-
osition as we place our trust in often-critical features in the hands of providers we have
no control over.

Tip

Some products, such as iTunes and instant-messaging apps, offer browser-
based app launching. By using the provided pseudo-protocol (such as skype:),
you can provide users a handy shortcut to launch the product and run the
service or function offered.

In the past, you might have found people cross-linking pages or taking advantage of an
embedded video from your site, but these days, you embed all sorts of things onto your
pages, such as frameworks like jQuery hosted on third-party sites, Google services, font
providers like Typekit, and social networks that stream content. Yet all it takes is a DNS
error, server glitch, or an upgrade that changes the location of files and boom! There goes
the neighborhood! So, with each crosslink comes an increased potential for errors.

C H A P T E R S I X T E E N T H I R D - P A R T Y D E P E N D E N C Y 301

In terms of future-proofing sites, remember that no matter how good something is it
won’t last forever. Sure, bigger brands like Google have the resources needed to greatly
reduce the risk of offline time, but designers regularly utilize the offerings of small ser-
vices, rarely thinking of the consequences of untested scalability and longevity issues, and
this needs to change. If your aim is to maximize stability, address anything that can pose
a long-term risk to your site’s availability. If you can host code locally, do so; otherwise,
use a fallback.

Often, third-party tools are inconsistent in the levels of compatibility they provide for
older or less-capable browsers. You need to test regularly and resolve such complications.
Also, if a service has imposed limitations, you’ll need to research the best route available
before tying yourself to the service, as you don’t want to have to keep changing packages
every few months. Most importantly, maintain your site regularly to reduce the chances
of issues occurring and take immediate action to resolve or work around issues as they
appear.

Missing page mysteries
A classic example of third-party dependency gone wrong is the case of the missing link.
If you’re anything like me, you’ve probably encountered the HTTP “404” (page not
found) error many times before. So, it’s likely that your visitors may experience the
same fate. Imagine your site has some dead links, lying undiscovered and dormant. A
user finds you on Google and enters your site; the link works and things are fine so far.
However, when she scrolls down the page and clicks a link to find more information
from a third-party site, the error occurs.

You may think it’s unlikely that this situation will happen on your site. However, if
over time you’ve built up hundreds or thousands of pages of content, some links in the
archives may be missed, forgotten, or overlooked; in your visitor’s case, this happens to
be the link she needs. Shortened URLs are particularly prone to such errors because
some of these links are set up on a temporary basis, as are redirections (if you fail to
maintain them). Ensuring that your internal and external links continue to work helps
the site withstand the test of time.

It’s important to realize that errors can affect not only the sites you link to but also the
sites that link to you. You should take steps to eliminate such errors by frequently
checking your links for issues or asking your users to notify you upon spotting dead
links to keep navigation as error free as possible. Not all visitors will start their journey
from your home page. I highly recommend that you provide a sensible navigation
scheme and site map, which connects all of the pages on your site together. If you
don’t, users may end up trapped in an orphan page.

F U T U R E - P R O O F W E B D E S I G N 302

Resources
The Web is interconnected by an increasing range of resources and pages that link to each
other. Although it’s easy to control the internal links that you host on your sites, most
sites at some point reference files, pages, and sites located beyond your reach. Being able
to link pages together has many benefits, and embedding such solutions provides stable
features with minimum effort. However, when it comes to the compatibility and future-
proofing nature of your sites, remember that such references can degrade (Figure 16-1)
over time.

Figure 16-1: Over time, internal and external links can become disconnected from their source.

The below lists this variable’s family tree and some issues they can encounter:

Relatives: Considerations:

> External links > Corrosion probability ratio

> Resource leeching > Player-feature compatibility

> CDN hosting > Error page enhancements

C H A P T E R S I X T E E N T H I R D - P A R T Y D E P E N D E N C Y 303

Practical solutions
The longevity of links has always been a problem on the Web. Because of the number of
pages that have accumulated over the years, fragmentation is at an all-time high. For well-
established sites with a good catalog of content, the chances of your sites suffering a form
of link corrosion become an ever-greater threat as the number of pages you host increases.
The more pages you have, the harder they are to constantly maintain and update (think of
100+ pages); as internal or external pages disappear over time, dead links begin to fester.

Although the risk of dead links occurring is high, many people fail to realize this, leaving
long-forgotten pages to perish and archived links to go unchecked. Avoiding the problems
of links corrosion is fairly straightforward if you have the right tools and know-how, even
if you have a site with thousands of pages. Some free, high quality automated solutions
such as Xenu Link Sleuth exist, and they can dig up problematic links. As your site ages,
encourage users to notify you if they spot a dead URL; also occasionally check your links.

You also need to consider the issues that can occur with embeddable resources. We know
all too well that our video and audio content is often at the mercy of the player that runs
such content by default (or the prebuilt player we utilize). However, you need to examine
the potential for any complications that result from linking to content that is hosted in a
third-party service and cross-linked to your site. This particular behavior is popular among
sites like YouTube because their built-in players remove the need for custom solutions.

Tip

Even custom solutions need a proper fallback mechanism. If you do cross-link
to an image, ensure that it has some alternative text available, and if you link to a
media file, ensure that a text transcript of the feature exists for accessibility tool-
dependent users.

To reduce the issues that occur as a result of dependency on third-party resources, make
sure your site’s content (multimedia files like video and audio) is hosted on a service that’s
unlikely to experience downtime. Sites like YouTube or FlickR or Facebook aren’t likely to
suffer too much downtime that will break a player’s capability to showcase media on your
site (as they can afford the infrastructure). Also, pick a provider that offers a player that
has enough features to meet the user’s needs (such as subtitles, captions, or 3D support).

As a web designer, you also need to consider what happens when someone does stumble
across a dead or misguided link (just in case someone spots something that you missed

F U T U R E - P R O O F W E B D E S I G N 304

along the way). Sometimes these things will happen without you knowing about them,
and if third-party sites try to link to a dead link in your content, they’ll end up suffering
the same “page not found” errors. When errors do occur, you’ll need to provide users an
error page that tries to help them out of the mess, and directs them wherever they need
to go.

In dealing with dead links, first you need to redirect any pages that did exist (but now do
not) to their replacement, if one exists. Third-party sites may link to pages or content that
you’ve hosted in the past, so you need to redirect them to a page’s new location, rather
than force their users to start searching through your site’s architecture from scratch. If
users face an error message, don’t leave them with the browser default, as it’s not helpful.
Customize the links to your Web site, and perhaps offer links to similar pages to the one
they clicked.

Best practices
> Check your sites for dead links at least every three to six months.

> Maintain archive page references to avoid internal links rotting.

> Be sure that you use a reliable, stable third-party hosting provider.

> Make sure media players support specific tools your users need.

> Never rely on default error pages; instead, build a better solution.

Frameworks
The age of dynamic, increasingly interactive layouts has brought with it an era where
many of the limitations of older browsers and devices have been addressed through the
construction of agile, well-crafted scripting libraries, called frameworks. In some situa-
tions, these tools, often powered by CSS or JavaScript (see Figure 16-2), depending on
their purpose, bring new levels of functionality to environments (mostly) ubiquitously,
help address shortfalls in legacy support for such technologies, and give a standardized
rule-of-thumb for design.

C H A P T E R S I X T E E N T H I R D - P A R T Y D E P E N D E N C Y 305

Figure 16-2: Many frameworks exist, and each has a defined purpose in helping web developers.

Here is this variable’s family tree and some issues it can encounter:

Relatives: Considerations:

> Source code library > Potential for code redundancy

> Component toolkit > Standardized implementations

 > Cross-language enhancement

Practical solutions
Whether you’re using a CSS or JavaScript framework, one of the most troubling things you
must deal with is the amount of code that gets thrown into the layout; as it’s much more
than hand coding would require. Frequently, the use of JavaScript frameworks, in particu-
lar, tries to reinforce that code is agile and that it degrades gracefully, something hand cod-
ers may forget to do. However, the redundancy that can occur from features that aren’t
used (but are still included in the framework) can lead to severe bandwidth wastage.

F U T U R E - P R O O F W E B D E S I G N 306

In the case of JavaScript frameworks, the benefits outweigh the detriments, but it still pays
to understand what you’re using and to optimize what you have in order to be as succinct as
possible. Some libraries of code can be 20K, 50K, or even more, and all of those bytes add
up, even if they’re being cached (which could add to a user’s data bill or cap). The only solu-
tion is to determine if you can hand code a script to do the same job with less code. If the
answer is yes, you’ll want to consider hand coding, if you can ensure compatibility.

If you’re a designer who’s not comfortable with scripting, you are in luck. Frameworks
come with a wide range of common tools, such as accordion scripts, drop-down menus,
and animation effects, and they tend to undergo a great deal of testing before being put
into the ever-increasing library of code. Although you want your implementation to be
unique, frameworks often implement code in a way that retains the flexibility of custom-
ization, and matches that level of usefulness with an assured capability to ensure browser
support.

Reference

jQuery is one of the most comprehensive frameworks going. If you take a look
through its API reference, you’ll see that jQuery and its UI brother can do some
serious work. For a complete list of features and plug-ins, go to http://docs.
jquery.com/Main_Page.

You’ll need to check to see if your particular framework of choice adheres to best practices
like non-obtrusive scripting and responsive design, or whether it’s just a big, bundled
mass of previously defined templates or code with certain effects. Frameworks can’t do all
of the hard work for you, but they can certainly make life easier and allow you to avoid
some of the common bottlenecks and pitfalls JS can suffer. Frameworks are especially
useful if you want a quick route into AJAX. Just ensure you know what the code does
before using it!

Frameworks manage to integrate themselves into other languages like CSS, and they even
attempt to resolve defects within certain browsers in regard to how code is rendered and
supported. On the surface, frameworks may seem like an ideal solution to all of life’s little
woes. However, frameworks can be disabled, just as JavaScript can, which means that any
good they might accomplish can be done away with in a matter of seconds. This limitation
doesn’t mean you should avoid frameworks, just don’t think of them as a foolproof tool.

http://docs.jquery.com/Main_Page
http://docs.jquery.com/Main_Page

C H A P T E R S I X T E E N T H I R D - P A R T Y D E P E N D E N C Y 307

Frameworks can enable the use of HTML5 elements in old versions of Internet Explorer,
and they can even give older browsers support for certain CSS3 features that would other-
wise remain in the “give up” or “try again later” category. Because JavaScript can intercept
and edit HTML and CSS, frameworks can exercise a lot of power over your interfaces. All
of this is good; it lets you offer an alternative to broken standards and promises by ven-
dors. But to be truly ubiquitous, account for how the site functions when JavaScript is
disabled!

Best practices
> Determine if the JavaScript framework is worth the added bandwidth use.

> Remove all redundant code from CSS frameworks (if you utilize them).

> Check that your framework’s core features are compatible across browsers.

> Never implement scripts submitted by others without vetting them for issues.

> Use scripting to supplement inadequate code support; also retain a fallback.

Services
Since the Web’s inception, sites have demanded fairly similar features and components
within their pages. With increasing services offering prebuilt stable solutions like forums,
chat rooms, and social networking services (Figure 16-3), guaranteeing that your work
will continue to function over time is difficult. As the tools you utilize are maintained by
third-party operators who could update or abandon their own creations at any point, you
need to be especially careful when implementing them, even if they’re already widely used
online.

Here is this variable’s family tree and some issues it can encounter:

Relatives: Considerations:

> Hosted applications > Long-term interconnectivity

> Embedded services > Server-side environment

 > Migration and exportation

F U T U R E - P R O O F W E B D E S I G N 308

Figure 16-3: Prebuilt tools can be embedded in sites, but if they cease development, you’re out of
luck!

Practical solutions
Compatibility with third-party services requires considering the feasibility of embedding
content from another site into your own. For example, if you embed a Twitter feed into
your site, your layout needs the right amount of space to show what has been fetched by
the site through the Twitter API. Although in ordinary situations, this issue shouldn’t be
a problem (because embedded content usually has standardized or flexible dimensions),
you need to examine any of the API’s restrictions to determine how and what you can
display.

To be sure you’re compatible with a third-party service (and aren’t violating any of its
license terms), read the developer’s documentation before trying to embed a service into
your site. Also, look at the site’s history. If your research shows issues with malicious code
getting through and search engines or antivirus products spot this (when you embed the
service), your site could get blacklisted. The ability to embed content within a site is like a
direct debit; you’re placing a great deal of trust in the organization not to rob or hijack you.

Take the time to ponder what can occur with a connection between a service and your
site, and don’t be afraid to avoid embedding that service’s tools if you feel uncomfortable.

C H A P T E R S I X T E E N T H I R D - P A R T Y D E P E N D E N C Y 309

If you host a service that someone else has developed (such as analytics software or
forums), also take into account your hosting provider’s limitations and whether it is capa-
ble of running the functionality or feature set you want to install on it. Not all hosting
providers are born equal, and shared-hosting accounts in particular can have a lot of limi-
tations built in.

Tip

If you’re hosted on a Windows server, you may have a different range of server-
side languages or database formats available than a Mac or Linux provider
has. In addition, some hosts may not support certain languages like Ruby and
Python. If you plan on making use of certain languages, ensure that your host
supports what you require.

Compatibility between software products and a hosting provider can be problematic; in
some cases, your host may only allow you to install or use services that have been pre-
vetted (such as popular CMS products), known as quick installs. Check with your host to
determine if any installation limitations exist and how they will affect your ability to install
custom software tools. Limitations may mean that the site fails to function or the third-
party product will collapse. Also, check to be sure your host supports the language or data-
base you want to use.

No site or service lasts forever. Because services drop in popularity or go offline, your site
must move with the times and not tie itself to the demands of a badly aging API or client
(in the case of software). If a service you’re connecting with goes offline, consider what will
happen to that part of your site, and do you have a fallback? In addition, occasionally sites
will experience downtime (or in Twitter’s case, some more than others), so being able to
handle temporary breakages between your site and a service becomes mission critical.

To preserve compatibility with the third-party services that house your data and connect
it to your site from their network, make sure the feature you embed to connect the two
has a legitimate fallback (even if it’s just a link to a page). This fallback could be a helpful
status message or something like a backup or mirror of the last recorded message (to put
up as a placeholder). In addition, confirm that any service you use can export data, not
just for the sake of having a sensible fallback, but also as a safety net in case their service
closes down.

F U T U R E - P R O O F W E B D E S I G N 310

Best practices
> Read the manual to ensure that your implementation will work correctly.

> Beware of the potential for exploitation with third parties hosting your site.

> Check your host for limitations and support for packages you want to use.

> Remember to get a hosting package that meets the demands of your users.

> Services can (and do) disappear; maintain regular backups of hosted data.

17

17 Deliberations
About Design
Planning architecture, content, layout,
and iteration

F U T U R E - P R O O F W E B D E S I G N 314

PROVIDING A STABLE layout that meets the ever-growing, feature-rich demands of
users, their devices, and browsers (while keeping compatibility in mind) is something
many designers worry about. Because technologies evolve and sites increasingly need to
provide user-centered experiences, visitors come to expect more from the layouts you
offer. In this chapter, you’ll see a few variables that can affect how your work ages over
time. Although such variables won’t make or break a site in a literal sense, the need to
evolve remains.

The Art of Aging Gracefully
Designers are often surprised when I include a site’s design in the future-proofing equa-
tion. Though the average design can last a lifetime and remain fairly usable, you shouldn’t
just stop improving your site because it currently looks okay and functions well enough.
In the average site’s lifespan, designs tend to and should be frequently improved, iterated
upon, or refreshed over time. A number of justifiable reasons for this exist, including giv-
ing users a reason to keep returning, and to cope with any new demands of the tools we
use to browse the Web.

Of course, modern standards and conventions for Web layouts are so much more advanced
than they were in the 1990s. Those earlier layouts were often poorly coded and designed
and you would be forgiven for cringing at how primitive, static, and unusable many of
them were. Today’s designers are in a better position to offer longer-term solutions than
those from the “era of experimentation,” partly because of the availability of better tools
and agile frameworks, and also because of the focus designers now place upon usability.

Tip

Although it’s not a necessity, following design trends and conventions can help
reduce any barriers to entry for users. If a visitor recognizes objects on a page,
they’ll find it easier to locate important content. That said, don’t be afraid to put
a unique spin on any navigation system or tool you provide. Following trends
doesn’t mean don’t innovate!

As the Web continues to evolve, increasing numbers of devices, hardware, software, and
users are demanding access to your sites and services. In addition, the code you use and
the standards you follow will be updated continually with useful and capable technolo-
gies. If you were to design a site only once, with no further changes, you’ll still have to
spend your days patching your site to ensure it continues to survive over time. If you’re
building a site to represent you, commit to a maintenance plan to achieve usability in the
long term.

C H A P T E R S E V E N T E E N D E L I B E R A T I O N S A B O U T D E S I G N 315

Whether it’s your site’s information architecture (the way you organize pages), content,
or layout, you’ll always need to make improvements. Perhaps you can remove features
that have become redundant. Perhaps you can update your design to match the conven-
tions users frequently expect to find while browsing the Web. Perhaps your audience has
changed, as has their expectations of your service. Such considerations ultimately allow
you to meet the long-term needs of an audience, which if you own or maintain sites,
becomes critical.

Reviewing a design’s previous versions lets you pinpoint areas that need improvement
and address code that has become deprecated or outdated or that no longer matches an
intended audience’s needs. If you remain open to the possibility of redesigning or refining
a layout, you may be motivated to do some research and reassess your audience, their
requirements, and what you can do to keep them interested in your goods and services.
Communication is critical in the future-proofing process, so don’t be afraid to ask visitors
for feedback.

Iteration and improvements
Consider a visitor who has been loyal to your brand for a number of years. She has
become accustomed to your site’s interface and features, and upon hearing that you’re
giving the site an overhaul, she’s both excited and nervous about whether changes in
content will match her individual tastes. As the updated site is launched, the user
enters the site and sees plenty of objects in a familiar place (such as the logo and navi-
gation system), but other parts of the site are dramatically changed. She pokes around
the menus to see where her favorite tool resides, only to find that a feature she’d used
regularly has been removed, with no alternative offered.

In this instance, you fail to research your audience correctly (or at all) and other visi-
tors (like this one) begin to post complaints in the feedback form, asking for the fea-
tures they know and love to return. Unfortunately, this isn’t exactly an isolated
incident. Sites all over the Web redesign without gaining appropriate feedback. If one
of your competitors offers functionality that you fail to provide, your users may move
to the competitor’s site. When redesigning your site, remember the loyalty you have
earned from your users.

Understanding when to alter or invoke a site’s maintenance plan is as critical in design
as the work itself. If users are forced to keep adapting to demanding changes in an
environment, they may become impatient and look for an alternative that isn’t chang-
ing its layout so frequently. Designers are often the guiltiest party in this regard
because our aim is to give users the best experience possible. But we often overlook the
benefits and utility of what’s already working and produce throwaway reproductions
instead. Users will thrive on what they can recognize.

F U T U R E - P R O O F W E B D E S I G N 316

Architecture
A site’s architecture is comprised of the pages that interlink. Each site will contain links
that connect internal pages to each other, hopefully in an organized and constructive
manner. If optimized, visitors should be able to navigate with care and reach their final
destination within just a few clicks. This architecture variable is usually based on offering
consistency to aid the usefulness of content and uses the organization conventions often
found within site maps, navigation menus, drop downs, or other link-oriented systems
(Figure 17-1).

Figure 17-1: The architecture of a site depends on your ability to link pages together logically.

Here is this design feature’s family tree and some issues it can encounter:

Relatives: Considerations:

> Navigation menus > Self-contained layouts

> Form redirection > Human-readable site maps

> Site maps and indexes > Navigation formatting

> In-page shortcuts

C H A P T E R S E V E N T E E N D E L I B E R A T I O N S A B O U T D E S I G N 317

Practical solutions
One of the most popular design conventions today is the one-page layout. Often used in
portfolios and online brochures, this layout provides a range of unique options for space
utilization and for reducing the need for page refreshes. When examining the architecture
of these sites, one thing becomes strikingly clear: As innovative as their interfaces may be,
one-page layouts can still experience issues in ensuring that users find the content they’re
looking for, such as the use of navigation menus that fail to work if JS is disabled.

Navigation on any kind of site depends on clarity and accuracy. In addition to providing a link
that is accurately referenced and labeled, be sure that users can actually tell what the links are
and where they are. In an effort to improve your site’s aesthetics, you may change font colors,
remove underlines, change cursors, and more. But, for links to be compatible on a range of
platforms, they must be identifiable (so be careful which styles you do alter) and clickable,
thus they must function as expected. Otherwise, users will struggle to see content.

If there’s ever a competition to find the most important and frequently used feature of
any site (except content), the navigation menu will likely be the winner. However, because
you have so many options regarding how to present your pages, compatibility issues can
occur easily. You can do a number of things to avoid these issues, such as reducing the
number of objects in each menu list, or categorizing menu items based on its relevancy.
However, knowing which navigation menu type is appropriate or safe to use is extremely
helpful too!

Note

Simple things can hurt a user in terms of menu compatibility. For example,
powering menus with Flash is a big no-no if you want to ensure ubiquitous
browsing; the same goes for using unlabeled icon menus (which can be
confusing if images are disabled).

Now, I’d like to deal with disclosing navigation systems such as drop-down and breakout
menus. The main concern with these is with touch devices, which may have significant
problems utilizing hover events, so you need to substitute any mouseover events with an
appropriate fallback that opens when users click a link, and that fades with a delay if they
click outside of the menu. In cases where a drop-down menu is static, ensure that each
link’s click region is large enough accommodate touching and clicking on small screen
devices.

F U T U R E - P R O O F W E B D E S I G N 318

When you future-proof your site, you also must consider the method you use to reference
the pages of your site collectively. Most designers will already be aware of the importance
of a file called a site map (an index of your pages that search engines can use to catch all of
the important pages). One thing that very few people tend to do, however, is actually try
to take the functionality of a site map and make it into something that humans can read,
identify page relationships, and navigate (allowing people to find what they want faster).

To overcome this issue, the best practice is to have both an XML site map (to keep robots
happy) and an HTML site map (to keep humans happy). While it could be argued that you
really need only one or the other, having a specially customized human-readable version
ensures that no document is left orphaned and users who cannot find what they’re looking
for have a universal signpost. If users are browsing on a device with limited interaction
potential, a human site map allows scrolling a list of pages without typing search terms.

Best practices
> Links should look and behave differently to content that isn’t actionable.

> If the links use a pseudo protocol such as mailto, inform users in the page.

> Offer XML site maps for search engines needing a speedy list of your links.

> Also provide an HTML alternative site map for humans needing direction.

> Make navigation menus degrade to match the device’s core capabilities.

Content
If there’s one feature your sites cannot do without, it’s content. Content comes in all
shapes and sizes (from text to images, audio to video; see Figure 17-2), and it must be
designed so that visitors can consume it all. Content, on its own, has few requirements if
supported by an appropriate structure and style, and embedded content (such as images
and media) will function if it’s implemented correctly. Consider the ways you can fetch
and offer content, as it can suffer compatibility and readability issues based on the envi-
ronment it’s used in.

C H A P T E R S E V E N T E E N D E L I B E R A T I O N S A B O U T D E S I G N 319

Figure 17-2: Content comes in all shapes and sizes, with images and text being the most common.

Here is this design feature’s family tree and some issues it can encounter:

Relatives: Considerations:

> Textual content > Refreshing versus fetching

> Embedded images > Multipage breakdowns

> Audio and video > The format situation

Practical solutions
One major consideration in terms of content compatibility is the method you use to display
it on-screen. Using tools like AJAX, you can omit the need to refresh a page and swap out
content within your pages without thinking twice. However, as I’m sure you’re aware,
JavaScript isn’t a sure thing, and with an unhealthy dependency on these technologies, you
may find it challenging to ensure that even the fussiest of visitors can access content when
the content is served dynamically rather than statically (as each page is downloaded).

If you choose to use AJAX as a method of swapping out content on demand, begin by
providing users with a static, multipage, working site with no reliance upon scripting. If
AJAX and scripting are available, simply override the link’s behavior and have everything
fetched from those separate pages (or database), as they’re needed. This approach is the
same as you use for form validation, and it’s a time-honored fallback that users will find
reassuring as it gives JavaScript-free browsers and users a chance to navigate your site.

F U T U R E - P R O O F W E B D E S I G N 320

The amount of content you include within a web site’s pages is also a factor worthy of
consideration. Many sites manage to control the level of content that users are exposed to
in order to prevent information overload. Loading megabytes of text into a browser can
result in all sorts of problems for devices that just aren’t equipped to handle features such
as smooth scrolling, and it will certainly affect keyboard users who’ll need to press the Tab
key incessantly, or those with slow connections (or restrictive and costly data allowances).

Reference

For a complete guide to the various levels of support Web browsers have for
specific formats (such as images and videos) and plug-in capabilities, check
out the following Wikipedia article: http://en.wikipedia.org/wiki/
Comparison_of_web_browsers.

The main way to solve this content navigation issue is to divide content into logical page
sections (as occurs in WML decks) and show each block of content on a separate page or at
a different point in time (many sites provide page numbers or other indicators, such as
image galleries using lightboxes and thumbnails). Also, take into account that while some
visitors will appreciate such a friendly approach, others with more capable devices and
connections may want to avoid excessive clicking. Therefore, try to offer an “all in one
page” option or a complete PDF copy for download in addition to the logical structuring.

Finally, consider different file formats and how well they’re supported on the Web. Being
able to embed an image in your site is all well and good, but if your users’ browsers can’t
read the format, or if it’s in an obscure format, which they neither have a program that
can open it, nor any idea of what it does, they have no reason to download it! Although
you can utilize some standardized formats, new ones are appearing regularly, and depend-
ing on the device a visitor uses, you may find the compatibility list for file formats rather
restricted.

To maximize compatibility, only use formats supported by major browsers, such as JPEG,
GIF, and PNG. Internet Explorer prior to 9.0 will have issues with alpha transparency in
PNG files (9.0 itself isn’t perfect), some handheld devices cannot cope with animated GIF
files, and WML-only devices will likely just support WBMP (a monochrome format) or
PNG if you’re lucky. Avoid JPEG2000, APNG, TIFF, XBM, and BMP, though, because while
they have limited support on individual browsers, all the others will ignore them.

http://en.wikipedia.org/wiki/Comparison_of_web_browsers
http://en.wikipedia.org/wiki/Comparison_of_web_browsers

C H A P T E R S E V E N T E E N D E L I B E R A T I O N S A B O U T D E S I G N 321

Best practices
> Use JavaScript to override multipage, static layouts via AJAX functionality.

> Offer compiled and split copies of lengthy content to improve performance.

> Load individual files within image galleries only as thumbnails are clicked.

> Check that your images are in a Web-friendly, browser-supported format.

> If you have an exceptionally long document, consider using PDF instead.

Layout
Your design will underpin how a visitor sees and responds to your work. While layouts can
vary greatly, many of them will share certain similarities (Figure 17-3). Picking the right
number of columns, the right width and height for objects, and the right color scheme can
affect a wide variety of variables. Help your users by lowering the learning curve and aim
for as few barriers to entry as possible. Because each design you build should be unique,
the level to which your work may degrade (as consumer use evolves) could differ greatly.

Figure 17-3: Each layout will follow and set conventions like the logo or navigation menu’s position.

F U T U R E - P R O O F W E B D E S I G N 322

Here is this design feature’s family tree and some issues it can encounter:

Relatives: Considerations:

> Conventions > Cutting or bleeding edge

> Trends > Web application UIs

> Patterns > Unconventional layouts

Practical solutions
Chances are that at some point in time, you’ve wanted to put convention aside and use all
the latest technology and tools to create a site so unique and interesting it’ll blow your
visitors minds. Unfortunately, one of the many things that hold you back is that compat-
ibility with untested and untried techniques can be a real pain (to guarantee support).
Although issues that cause sites to break in a browser can be worked around, getting these
implementations to look or work as expected within various situations takes time, effort,
and dedication.

To make your layouts work as effectively as possible, try several different versions of an
implementation. In some situations, you might get away with just throwing something
new into a layout, but providing substantial alterations to an interface or its functionality
could annoy or confuse users that, in turn, could encourage them to seek out your com-
petitors. If what you’re doing can improve an existing situation (or help elevate issues on
your site), go for it. But if the upgrade you build doesn’t improve things, reconsider imple-
menting it.

While traditional layouts are often associated with common conventions, visitors who
visit on a specific platform will come to expect a different experience on others, based
upon the environment they browse within. Each platform will have its own interface
guidelines and recommendations built upon years of testing and usability tests, so it pays
to examine these documents to see how you can give users a more natural browsing expe-
rience (rather than potentially making visitors feel like they’ve suddenly crash-landed on
an alien planet).

Reference

A couple of the resources listed on the following web page no longer work, but
the ones that do work are exceptionally useful (and very comprehensive). These
UI guidelines can help Web apps feel like they run natively (like a compiled app)
by following device conventions: http://www.mobilexweb.com/blog/
ui-guidelines-mobile-tablet-design.

http://www.mobilexweb.com/blog/ui-guidelines-mobile-tablet-design
http://www.mobilexweb.com/blog/ui-guidelines-mobile-tablet-design

C H A P T E R S E V E N T E E N D E L I B E R A T I O N S A B O U T D E S I G N 323

Although Web apps don’t require you to cater your work to a specific platform (unlike
compiled apps), users will appreciate the effort. Whether the app is designed to work on
desktops, or a handheld platform like iOS or Android, you should help the device offer the
experience and visual theme that will match their expectations and requirements. In the
case of traditional websites (rather than apps), or any device you can’t or won’t support
(by way of a customized layout), offer a stable, flexibly designed default theme instead.

Unconventional layouts exist all over the Web, and this fabric of weird and wonderful
designs increases our enjoyment of an online experience. However, there will always be
people who go over the top and end up inhibiting the usability of a design, just for the
sake of doing something different (which could anger users). Compatibility in design is
about more than ensuring a site works on a series of platforms and with a series of vari-
ables; you need to consider the effect that unrecognizable layout conventions may have
on visitors.

If you’re using an unconventional layout (or a conventional one with some unconven-
tional features), it’s very important to undertake usability testing. By learning how real
visitors interact with sites on the devices they own, and gaining empathy for the many
variables they have to deal with themselves, you can gain an understanding of just how
your site could appear or work for them. While you can spend time ensuring your layout
works in emulators or browsers, ultimately it’s your users who’ll experience (or suffer) the
results.

Best practices
> Investigate different ways to design a feature before sticking with one.

> Provide a global theme for app interfaces that aren’t device oriented.

> Consider targeted designs if you want to offer a seamless experience.

> Good designs are invisible; try to make yours as efficient as possible.

> Conduct regular usability tests to avoid variable-based design pitfalls.

Iteration
Building a stable foundation is important for a site, but keeping up the good work is criti-
cal to its long-term success. As time goes by, sites naturally erode because of changes in
users’ expectations and requirements. Over a longer period, as web technologies and
standards improve, older methodologies will become redundant, older tools will lose

F U T U R E - P R O O F W E B D E S I G N 324

support, and web designers will have to catch up. Iteration (Figure 17-4) is the primary
method used to ensure code withstands the test of time, but maintenance itself isn’t an
issue-free pursuit.

Figure 17-4: Iteration is a long-term process of continual improvement to overcome new obstacles.

Here is this design feature’s family tree and some issues it can encounter:

Relatives: Considerations:

> Major upgrades > Legacy feature support

> Total reboots > Uncovered bugs or issues

> Minor updates > Reduction of usability

Practical solutions
Iteration gives designers the opportunity to seek out and remove any redundant or out-
dated functionality within sites you maintain (which is good for users and their bandwidth
caps), but be careful about what you do choose to replace or remove. Although you may
find that a particular navigation system is inferior to the updated rival you provide, some
users may prefer to use what they know and love. An example of this is the BBC’s iPlayer
service: It removed its A-Z listing and then reintroduced it after scores of complaints.

C H A P T E R S E V E N T E E N D E L I B E R A T I O N S A B O U T D E S I G N 325

Making the decision to improve a site by removing features that are no longer useful (or
used) makes sense, but doing so could also cause a few upsets along the way, which may
lead to visitors complaining. For every 100 users who are happy that you removed some
obsolete feature, there’ll often be a couple that want to stick with what they know and
depend on it. If the old system has too few users to support it, remove it and make room
for better tools, but if you don’t have a good reason, keep the old stuff running.

Bugs on your sites and services are just as much of a pest in the digital world as they are in
the natural world. When compatibility breaks down and a site cannot work in a particular
situation or environment, it’s your job to run around with a replacement part or some duct
tape, patching things up and helping the site survive for as long as possible until a more
permanent fix (or redesign) is provided. Regarding development: Nothing will ever be free
of bugs because when complexity increases, unforeseen issues become more common.

Tip

Before trying to resolve issues in a site, check to see if other people have come
up with some practical solutions for the problem. Of course, you shouldn’t steal
their ideas, but you may find that others have come up with a methodology you
haven’t considered.

Tools like responsive design can help you make your work more durable so that quirks are
less likely to occur, but there’ll always be a few situations that can act as the proverbial
“straw that broke the camel’s back.” To help resolve errors more effectively, do usability
testing at all levels of the build process and consider releasing your site or app in beta form
so that your entire user base can try out the new look and give feedback. In addition, give
users a place to report bugs (be it an e-mail form, forum, or some bug-tracking software).

Imagine that you build a totally new layout with a unique way of showing content and few
recognizable objects from within the old scheme remain (so what you’ve produced has no
resemblance to what stood before it). The layout and redesign may look nice, but does it
actually help your users or improve upon what existed beforehand? Total redesigns can be
fun, but they force you to retest everything you’ve produced as if it were a different site,
which probably means you’ll be checking against all of the book variables from scratch.

Redesigning isn’t always the best solution. If you iterate and use the existing structure
that you know works for a wide range of people, the impact of minor changes over time

F U T U R E - P R O O F W E B D E S I G N 326

will be minimal (and the impact on HCI will be reduced), as will the shock to the user’s
system. Starting from scratch demands that your visitors learn how to use the interface
again, and if you keep redesigning every few months (or less), users could struggle to
adapt more frequently. When you redesign a site, consider providing tutorials to aid the
transition.

Best practices
> Ensure that your visitors are happy with the removal of legacy functionality.

> Only update a component if your visitors agree it improves a situation.

> Let visitors notify you of any bugs or problems they encounter on your site.

> Avoid complete redesigns if iterations will work (to reduce learning curves).

> Use recognizable conventions to help users become familiar with your site.

18

18 Fun with
Futuristic
Features
Using visual effects, interactivity, and
personalization

F U T U R E - P R O O F W E B D E S I G N 330

AS STANDARDS EVOLVE, new languages and the potential for new technologies become
available in our sites. As a designer, you can use these tools to build fresh, exciting layouts.
Also, as new frameworks appear, you gain access to functionality that otherwise might
have been too time consuming to code by hand. Even with these benefits at your disposal,
you must be aware of the upcoming technologies that potentially could be used seamlessly
within your sites. This chapter discusses a few of these useful innovations.

The Tools of Tomorrow
As innovative and unique pieces of functionality present themselves (which could prove
useful to our users), compatibility can become a bit of a chore. Nevertheless, with each
new technology that arrives, awaiting our implementation and adoption, you gain new
opportunities to create better-designed layouts filled with ever-immersive functionality.
When the opportunity arrives to use such technologies and features, then certainly do
your best to achieve this goal. Just ensure that whatever you do provide degrades well.

In this age of 3D cinema and interactive layouts, you are provided with opportunities to
create simple flourishes that can charge your designs with emotion and depth unlike ever
before. Subtle uses of animation and parallax effects can turn simple actions like scrolling
or reading a page into creative features that users appreciate. Additionally, server-side
scripting has revolutionized our perceptions of static pages and encouraged turning them
into innovative mediums that are tweaked to users’ needs, preferences, and environments.

Note

Numerous mobile apps allow you to change traditional 2D photographs into
realistic 3D images (stereoscopic vision). As a result, the adoption of 3D-capable
cameras is higher than many statistics may indicate (especially on the
smartphone market). The results of these post-processing 3D effects can be
seen on 3D TVs, laptops, and with 3D glasses.

High definition (HD) media is taking the Web by storm, and being able to view very high-
quality content in a site is an exciting prospect. Three-dimensional (3D) media can utilize
existing image and media formats, and because it has few barriers to entry, 3D media is
moving closer to mainstream adoption online. Finally, you have virtual reality (VR).
Although it has a slew of different languages and software trying to become the standard,
VR does offer the 1980s vision of living in a Tron world, and has the potential to be popular.

C H A P T E R E I G H T E E N F U N W I T H F U T U R I S T I C F E A T U R E S 331

As consumers adopt the latest, greatest technologies (like 3D), you can think about using
it within your sites to provide a richer experience. High-definition equipment is afford-
able and many screens are already capable of viewing it. 3D may not be ubiquitous and
requires use of special 3D glasses, but implementing the technology and the necessary
fallbacks for both 3D and HD are achievable. As for virtual reality, the languages and soft-
ware both exist and work, and projects like SecondLife are already taking advantage of
this concept.

Using server-side scripting to make a layout visually unique isn’t new (user profiles have
existed for many years). However, designing your sites so that they can “flex” to match
what your visitors use, how they use it, and what they want to see (or not see) could well
shape how you handle compatibility in the future. As a designer, you spend a lot of time
trying to assess what is important to individuals, so why not let them be the critics? You
already have the technologies needed to craft behavior-rich interfaces; it’s just a matter of
being willing to take advantage of the technologies on both the client and server side.

Experimenting with 3D
Putting futuristic features like 3D into practice can have dramatic effects upon your
users. Consider a visitor who has an up-to-date computer with a quality browser, who’ll
be an ideal candidate for the latest and greatest technologies. In this case, he has a
high-quality Internet connection and a laptop computer with some horsepower behind
it. This user enters your site and notices that you offer 3D versions of images in a photo
gallery. Because he has a pair of disposable 3D glasses lying around, he selects the
“View in 3D” option you provide, and reaps the benefits immediately. I’m not talking
about science fiction; this is achievable right now!

Issues relating to compatibility with technologies like HD and 3D are closely linked to
the capabilities of the device being used. If someone like your visitor has the glasses
needed to view the images or media, it makes sense to offer such a unique experience.
After all, many sites are currently experimenting with different forms of 3D to give an
interface added depth. One problem that could arise might be if one of your visitor’s
friends gets a link to your site and finds that she doesn’t have the tools she needs to
view the stereoscopic 3D successfully.

Not everyone will receive the benefits of high definition video (just ask a lot of cellphone
users coping with tiny screens), and it’s certainly apparent that not everyone will have a
pair of 3D glasses handy. However, the potential for using such technologies may justify
offering them along with numerous other options. It’s better to stay ahead of the curve,
as new technologies such as 3D and HD are likely to be adopted by mainstream users in
the future. Just be wary of how these technologies can affect less-capable users, and
provide a fallback implementation.

F U T U R E - P R O O F W E B D E S I G N 332

Visual Effects
With new, exciting technologies being implemented into your entertainment devices,
game consoles, and more, a range of attractive, functional visual effects have made their
mark on websites (see Figure 18-1). This includes high-definition video (which can absorb
loads of bandwidth), 3D imagery (as seen the movie Avatar), and the 1980s fad, Virtual
Reality (that made everyone think they’d end up living online). As it stands, the technol-
ogy behind each of these tools exists, the equipment exists, and they’ve seen some
Internet support.

Figure 18-1: HD, 3D, and virtual reality exist; it’s just up to you to decide whether to support them.

Here is this design feature’s family tree and some issues it can encounter:

Relatives: Considerations:

> High-definition (HD) > Quality capability handling

> Stereoscopic 3D > Overproduction engagement

> Virtual reality (VR) > Technology sustainability

Practical solutions
When you consider using non-ubiquitous visual effects, first analyze how you can safely
implement HD, 3D, or VR without creating errors for users. Remember some devices, for
example, aren’t capable of handling HD or 3D. The problems may in part be because of the

C H A P T E R E I G H T E E N F U N W I T H F U T U R I S T I C F E A T U R E S 333

age of the hardware in the user’s device, or (in the case of 3D and VR) the need for additional
hardware such as 3D glasses for users to see the effect. If you do utilize these technologies,
fallbacks will therefore be required (such as low-definition media files and 2D imagery).

With high-definition video, sites like YouTube let users choose which video quality setting
(such as 1080p) best meets their screen capabilities, so you should consider this. You
could also provide a range of video sizes (set to different resolutions) so that visitors with
small screens can avoid the overhead of downscaling larger-sized media (the same can be
said for images). With 3D, however, the best approach is to offer two copies of the same
image (one in 2D and one in 3D) and to let users select the one they want to use. With 3D,
the default format for users should be 2D as it’s the preferred method of viewing images.

Virtual reality environments can experience an issue that could well be deemed as over-
production. Virtual Reality Modeling Language (VRML) and its successor X3D have made
their mark in the engineering sector, but as far as the Web goes, it’s never reached too far
beyond the niche, enthusiast market. This is partly because it was used as a cheap gim-
mick in the past, and more often than not, the time and production effort it takes to pro-
duce a virtual world goes far and beyond the rather speedy delivery of a normal site.

Note

Some visitors (such as the visually impaired) may be unable to watch 3D images
and others may experience side effects such as headaches when trying to
watch them. So, don’t just depend on the technology, but instead also offer an
accessible 2D alternative.

If your site could benefit from virtual reality code, then by all means go ahead and use the
formats that exist; you’ll need to ask your visitors to install the extensions they’ll require
for the world to render from within the browser that supports such a plug-in. However,
just like with Flash-based sites, you’ll need to maintain a regular HTML-based site as the
those users lacking the extensions required may still want to pay a visit to your site. If you
do consider building the environment just to accommodate a few users, consider the value
of doing so.

High-definition video, virtual reality, and 3D have been around for a long time, and they
have all evolved over many iterations, with each step making them more realistic. As a
result, people have become excited by these technologies and have begun to adopt them
in various situations. Remember that as a new version of 3D or HD or VR becomes avail-
able, whether a language or format, you’ll need to provide a compatible interface in order

F U T U R E - P R O O F W E B D E S I G N 334

for your site to implement these cool innovations and your users to see the wonderful
effects.

Because many of these technologies are evolving rapidly, it may be difficult to determine
what is best for your site. Different brands of 3D-capable televisions may require different
glasses and different formats for images and media files. For example, a stereoscopic red
and blue pair of 3D glasses won’t work on many televisions. As HD- and 3D-capable TVs
enter the living room, web usage and ubiquity will increase. Avoid missing out on the fun
by determining how useful they might be, based on the type of site that’s being designed.

Best practices
> Always offer the 2D, standard definition, non-virtual page as the default.

> Let visitors choose the environment they want to use to view your site.

> Avoid going over the top by trying to use every existing technology.

> Offer support for different formats and implementations of a technology.

> There are a number of different VR formats; consider supporting several.

Interoperability
Being able to produce reactive sites (those redesigning themselves around the needs of the
user, as shown in Figure 18-2) could have huge implications regarding how you can tackle
the issue of being less generic. It’s already being used, to a certain extent, by scripts that
simulate missing browser features. Considering the potential of catering layouts to capable
devices and functionality to capable tools allows us to better serve a widening and diverse
range of users. As a result, it could potentially make interfaces work more seamlessly.

Here is this design feature’s family tree and some issues it can encounter:

Relatives: Considerations:

> Layout engineering > Needs-based implementation

> Situational design > Testing workflow increases

 > Device-based limitations

C H A P T E R E I G H T E E N F U N W I T H F U T U R I S T I C F E A T U R E S 335

Figure 18-2: Reactive design is about tackling layout or variable issues before users see the page.

Practical solutions
When you use server-side and client-side scripting to make your layouts equip themselves
to each individual user’s situation, you must consider the added development time it’ll
take to account for each variable and circumstances (in preference to just offering a static
site). Whether you want to use feature detection or a drag-and-drop layout that can
automate some of the user’s preferences while remaining customizable, you’ll require
extra coding, extra time, and need the required knowledge to achieve such a technical
implementation.

When dealing with compatibility, you’ll need to ensure that implementing something
more interactive is in your user’s best interest, as the added work involved may not always
be cost effective, such as if you don’t have a technologically diverse audience, or if you
only have a small number of users to deal with. If you go down such a route, consider if an
existing solution such as a CMS may offer the flexibility you require. If not, then you may
want to begin by devising a framework that accounts for each variable you wish to target.

If you want to create a truly reactive layout that will flex to both the user’s environment
and the variables at work in their situation, you’ll want to first identify the issue; next
come up with a solution; and then finally go on to construct an implementation. An exam-
ple of this could include the problem of IE6’s lack of support for the CSS3 target pseudo
selector, the solution being a way to emulate the effect that otherwise occurs naturally
within CSS, and the implementation being the utilization of JavaScript’s location.hash
feature to detect the hash and activate the CSS!

F U T U R E - P R O O F W E B D E S I G N 336

Another example: Consider something like a “related articles” script; these clever, simple
features, found in most blogs, expose other content within the site that matches key-
words in the main body of the text on a given page. This is achieved using server-side
scripting. To ensure the script works correctly and remains usable, implement each fea-
ture you want gradually and iteratively, getting feedback and bug reports from users. By
removing issues from one section before working on the next, you reduce the chances of
post-fix conflicts.

Although you can produce highly customizable layouts, you may find that some features
are found only in certain devices and so fall into the category of non-essential secondary
features. For example, sometimes it may not be productive to allow users to drag and drop
a whole bunch of widgets around their screen (such as if they’re browsing on a tiny screen
with just a key-based input). When it becomes inappropriate for devices to take advantage
of these assistive features, the interface should just do what’s in the user’s best interests.

Some devices support location awareness (GPS or RFID) or gesture support. The former
feature could allow you to offer a geographically focused version of the site. The latter
would allow you to create interfaces that can utilize simple movements (useful on touch
screens). Ensure that your site asks users without localization awareness on their devices
which version they’d prefer to use. Also consider users lacking gesture support on their
devices, and offer links, buttons, and clickable regions that can carry out the same action.

Best practices
> Only implement automated features that users will be willing to accept.

> Determine the cost-effectiveness of automated fixes before building them.

> Engineer your layouts so that they work equally well in various situations.

> Always allow visitors to revert or undo an action made on their behalf.

> Don’t remove a user’s ability to make decisions over their choice of layout.

Tip

Many content management systems (CMS) already offer tools that can
automatically help users with their experiences. From scripting support for
missing browser features to automatically formatting a layout for handheld
devices, it all makes a difference to users. For example, WordPress can reformat
its default layout to be mobile friendly.

C H A P T E R E I G H T E E N F U N W I T H F U T U R I S T I C F E A T U R E S 337

Personalization
Personalization makes it easier for a user to remain in control, as they can make decisions
and set preferences over their experience. In addition, customizing an experience (Figure
18-3) allows you to memorize and carry user preferences forward as they browse on any
other devices they own (or login on public machines). Sometimes, client-side scripting
can help you avoid the need for logins, and other times you’ll need to use server-side ses-
sions to make the layout portable. The technology has a high ubiquity rate in CMSs,
scripts, and online services, even though privacy issues over user data storage will be a
future concern.

Figure 18-3: Many sites offer profiles; this level of customization is a classic sign of experience control.

Here is this design feature’s family tree and some issues it can encounter:

Relatives: Considerations:

> Cookie data > Portability and availability

> Session IDs > Accidental destruction

> Local storage > Multi-user environments

Practical solutions
Customizing and personalizing sites are a vital part of your job as a designer. Because
many people use the Web on the move, being able to pick up where they left off is very

F U T U R E - P R O O F W E B D E S I G N 338

important. You also need to design your sites to be portable because users will not always
remain in the same environment. For example, they may step away from their computer
and continue browsing with their cellphone or another portable device, or alternatively,
they may simply return to the computer they used previously, later on during the day.

To ensure a site remains portable and usable for the widest range of situations, you should
first eliminate cookies and their kin from the equation. Files like cookies and local storage
might help a user save and restore a session’s data without having to authorize them-
selves with a user account, but with the privacy implications on shared devices and that
the data is bound by the machine in which it’s stored, the ability to synchronize a user’s
progress will be interrupted. It’s therefore rather impractical for portability and longevity
applications.

Another downside to cookies is that they can be accidentally or deliberately destroyed. If
users clear their entire browsing history, the effort that went into building that cookie file
will evaporate. When empowering your visitors to customize a layout, temporary storage
is unlikely to be as useful to your users as solutions that can be associated with an identity
and exported to whatever device they choose to use. However, local storage and cookies
would be an appropriate choice for temporary session data, such as a progress meter.

Note

Cookies and offline storage can be an even bigger problem than you might
initially expect. Because offline, local storage is a feature of HTML5, legacy
browsers and devices won’t support it. Browsers can also prevent cookies from
being saved at all.

To design your site so that users can carry their experience with them, provide some tools
such as member accounts, which use a database to store layout preferences for a visitor.
Offer the ability to sign up as a voluntary feature, not a requirement, and allow users to
keep a backup of their data. You might find that increasing the general portability of your
site’s experience will make users feel more comfortable, wherever they are. A benefit of
server-side accounts (such as those used by Google) is that they are harder to accidentally
erase.

Be careful when targeting customizable features at a particular individual because he or
she might own several devices that use the same account. You will need to apply some
best practices to server-side profiles to help ensure that visitors can pre-set and share

C H A P T E R E I G H T E E N F U N W I T H F U T U R I S T I C F E A T U R E S 339

preferences between devices (consider building functionality like Apple’s authorization of
devices in iTunes). Additionally, it might be helpful to notify users if they’re logged into
multiple places at once, and allow the quitting or timeout of sessions to avoid conflicts.

No two users are alike, and situations may occur where several people use the same device
(like family-owned and shared computers). This has the potential to create privacy secu-
rity risks for each user and it makes personalizing for individuals difficult. Each site that
allows customization must let users sign out of their accounts; it also must allow them to
protect their preferences with passwords, and must not restrict users to one account per
machine. Consider how voting tools that track by IP unfairly block connection sharers
from voting!

Best practices
> Only use cookies for unimportant preferences or device-explicit data.

> Use server-side sessions to remember a user’s progress during a visit.

> Ensure that any user account services you provide remain voluntary.

> Remember that multiple users could have access to the same machine.

> Consider allowing users to set up unique profiles for different devices.

19

19 Dealing with the
Robot Army
Considering search engines, social networks,
verification, and more

F U T U R E - P R O O F W E B D E S I G N 342

ROBOTS, SCRIPTS, AND SPIDERS are important factors that determine how sites are
discovered by users and will remain so in the future. This chapter helps you survive this
ever-expanding group of non-human users that publicize your site via their own unique
methodology. These fussy “individuals,” which are less willing than your human users to
compromise (often browsing with few features active), could determine your site’s capa-
bility to become a success. Ultimately, these services and tools will play their part regard-
ing how your site is used, so you must consider them as you design your site.

Of Machines and Men
To be future-proofed against the ever-changing tides of how users locate resources on the
Web, your site needs the support of search engines and social networks. These robots
work tirelessly day and night to keep your content indexed, spread your links to everyone
with Internet access, and help your site receive the attention it deserves. Unlike many
third-party functions packed within the walls of your source code, these services remain
critical to your site’s success and underpin the importance of fallbacks and a solid user
experience.

Before there were so many pages on the Web, you primarily had to know an address in
order to find a site. Obviously, if users weren’t aware that the site even existed (no matter
how useful it would be to them), it may as well not have. This quirk of fate is an important
factor in the realization that your site’s longevity remains not in your users’ hands, or
yours, but in the hands of third parties. While others burned out like a dying star, unused
and glowing tragically as dead archives, successful sites were accessible to such tools.

Tip

Signing up on social networks and third-party services can increase activity on
your site as it allows visitors to interact with any social, web-connected clients
or apps installed upon their devices. Therefore, your site can become ingrained
in their consciousness as they check their Twitter stream or check their RSS
reader for updates you provide.

Visibility is at the heart of every successful site. If users can’t find your site, your hard
work is for nothing. Prior to Facebook and Google, directories that handpicked links to
sites were popular. They provided fans of one site with cool discoveries that might be use-
ful to them elsewhere online, and many sites continue this trend today. However, the
birth of search engines like Google, the mighty giant that eclipsed them all, has turned
the process of refining and helping users find sites and relevant content into an art form.

C H A P T E R N I N E T E E N D E A L I N G W I T H T H E R O B O T A R M Y 343

Although search engines like Google have remained strong through the years by reinvent-
ing their products as the Web has evolved, change is always on the horizon. Being compat-
ible with search engines is as useful today as it was during the days of handpicked sites
within META engines (which filtered results within the database). By being indexed by
these digital detectives, your site has a greater chance to survive becoming an obsolete
reference. Also, by offering active and frequently updated social-networking profiles with
popular sites, you connect users to your brand, even when they aren’t on your home page.

What goes on outside your site is as central to being responsive, flexible, and adaptive to
users’ needs and demands as the actual site is. Users expect to be able to follow brands for
updates on Twitter, provide feedback via a Facebook group, and perhaps use a niche social
network to help them bookmark your site easily. As you can imagine, these services have
changed the landscape drastically, and, as a result, your site’s durability will be measured
by how well it keeps up with the Web’s social trends, and how well your site uses them.

Visibility within Google
After launching your lovely new site onto the Web, one of the first visitors to check out
what you’ve provided is the spider, which gets your site indexed for the first time. In
this case, the spider is Googlebot, which is, of course, owned by the top-ranking search
engine Google. Upon entering your home page it first goes to look at your source code
to see what content exists on the page, and then by calculating the value of keywords
used (and semantics you offer), it ranks you in its results accordingly.

The exact process the search engines undertake isn’t known because they’re highly
guarded secrets to try to prevent people from gaming the system. However, it’s gener-
ally accepted that spiders catalog and cache your sites and continue to play an impor-
tant role in referrals. In this instance, the spider begins indexing your content;
however, it immediately notices that your site is entirely built using Flash. This situa-
tion was common in the 1990s and somewhat today, and as search engines are limited
to how far they can see into Flash files, indexing would likely be inhibited.

Luckily in this case, you realize that with the likes of iOS, not everyone has Flash
installed and you follow the best practice of including a fallback. The spider sees this
data all beautifully marked up in HTML, and it proceeds to use that information, plus
any built-in semantics via microformats and metadata to add contextual value.
Utilizing your site map and the robots.txt file, this spider is happy to browse
through all of your pages. However, unlike a user, it pays little attention to visuals and
only checks that code to detect keyword stuffing.

F U T U R E - P R O O F W E B D E S I G N 344

Search Engines
The great archivers of the Web, search engines and their robotic arms (generally referred
to as spiders), navigate around your site’s indexing content, categorizing it based on search
terms that users frequently look up. While social networks are partially replacing the role
of search engines by offering a more lively method of measuring trending popularity
among sites, the classic search engine (Figure 19-1) remains a dominant force online.
Spiders can read a range of file types, but content and context-rich material is what they
favor the most.

Figure 19-1: Google remains the most popular search engine, and it also offers social networks too!

Here is this consumer’s family tree and some issues it can encounter:

Relatives: Considerations:

> Google > Dynamic rank systems

> Bing > Regional fluctuations

> Yahoo! > Webmaster aiding tools

> Baidu

> Ask

C H A P T E R N I N E T E E N D E A L I N G W I T H T H E R O B O T A R M Y 345

Practical solutions
Making your site compatible with search engines isn’t that difficult, but influencing them to
give you a high ranking is another matter altogether. Trying to grab that elusive number-
one spot in Google takes patience and the right mindset, not to mention that results can be
affected by a site’s location, language, and more. This book doesn’t focus on SEO, but that
doesn’t mean we shouldn’t highlight the importance of being ranked and how being listed in
Google can affect your site’s reach and its potential to survive against competitors.

When users try to find information in a search engine, they enter keywords that relate to
what they’re looking for. If your site appears in those results, it may receive visits. Search
engines calculate rankings upon some top-secret variables, so you can’t be 100% sure how
the rankings are calculated. Nevertheless, as long as you have content for search engines to
index, spiders will be willing to put the data to good use. To make a site more appropriate
for indexing, avoid script-generated content, Flash files, or images with no alternative text.

Visibility in search engines is always a central goal in the web design process. Users rely on
search engines to an incredible degree. So, if they can’t find a site this way (in a purely theo-
retical sense, of course), to some users it’s as though the site doesn’t exist (sort of like the
debate, “If a tree falls in a forest and no one is around to hear it, does it make a sound?”).
One way to give your work a fair chance at being indexed is to use tools that direct spiders
toward the pages that should or shouldn’t be indexed; this is exactly what a site map does.

Reference

Google offers some useful documentation detailing how to comply with its
guidelines to improve a site’s chances of being seen in search results. You can
find details and its guide here: www.google.com/support/webmasters/
bin/answer.py?answer=35291.

The most well-known files for making sites compatible with search engines are robots.txt,
which restricts the indexing of certain pages, and sitemap.xml, which provides a complete
index of the pages within your site (plenty of tutorials on how to make these files exist). You
also can also request each search engine indexes your site (for free), which is a useful step to
take with every site launch. Finally, if you’re not already signed up, join and start using Google
Webmaster Central, as it can help you manage a site and its Google listing.

Search engines can understand a great deal about a site and its purpose based on the URL,
content, and technologies used in the site. Search engines also follow trends and measure
popularity. This behavior helps search engines interpret users’ interests and customize

http://www.google.com/support/webmasters/bin/answer.py?answer=35291
http://www.google.com/support/webmasters/bin/answer.py?answer=35291

F U T U R E - P R O O F W E B D E S I G N 346

the search results, thereby personalizing them, which, in turn, can affect your site. By
using a filter to narrow down the results, such as to just show pages written in English
and made in the USA, a user can make all international content invisible, yours poten-
tially included.

If you want your site to appeal to users in a certain country, you must find a way to get
your site into its regional search results. For users whose language is other than English,
provide your content in their language so that search engines can direct the content to
the targeted users. Be sure that your content is written clearly and that it provides enough
explanation to readers so they’ll understand the purposes of your site and/or service. Oh,
and to avoid getting banned, don’t try anything sneaky or spammy like keyword stuffing!

Best practices
> Focus on the content’s quality to ensure search engines “think” of you.

> Robots can’t understand images and media; always use text alternatives.

> Use your content and features to direct the product to its audience.

> Never try to manipulate search engines; keep your pages organic.

> Take advantage of search-specific features such as robots.txt files.

Social Networks
Social networks such as Facebook and Twitter (Figure 19-2) offer a way to communicate
with like-minded individuals. You can use social networks to expand the outreach of your
site by providing updates of events occurring on your site. You also can also offer users a
place to go in the event of your site going down because of a technical problem. Some
social networks are more customizable than others, and some have stronger APIs for inte-
gration or extensibility. In terms of importance, though, they’re way up there with search
engines.

C H A P T E R N I N E T E E N D E A L I N G W I T H T H E R O B O T A R M Y 347

Figure 19-2: Social networks provide status updates, which can promote sites or influence users.

Here is this consumer’s family tree and some issues it can encounter:

Relatives: Considerations:

> Facebook > General popularity ratio

> Twitter > Integration possibilities

> Google+ > Niche service offerings

> LinkedIn

> FlickR

Practical solutions
Users increasingly expect that designers will adopt and regularly engage in social-networking
activities. If your site isn’t taking advantage of the latest online fad, you potentially risk inad-
vertently distancing your brand from users. Users have changed their use of the Web, and
more than ever before, apps and tools connect to social networks, influencing when and how
your site is accessed. For example, Twitter has software clients that can access streams, and if
you let users know of updates to your site, activity may suddenly increase.

F U T U R E - P R O O F W E B D E S I G N 348

The main goal of the designer is to use whatever service is popular at any given time. Sites
that still rely on MySpace and refuse to move to Facebook or Twitter, for example, won’t
be labeled as cool. Also, the features that users of these networks employ, such as the Like
or Retweet buttons may not be able to work in your posts if the service suffers availability
issues (like the Twitter fail whale), which in turn could cost you free marketing. It’s this
mutual dependency between you and third-party networks that’s so dramatic and fragile.

Participating in social networking involves much more than simply having your site exist
within the environment it provides (such as a Facebook wall). The quality of the content
you provide must be of a high-enough quality to attract users to your site and to keep them
coming back. The API-based functionality you embed within pages and connect to these
social networks can help assure your site’s compatibility outside its own domain. Even if
some of these tools are more complex than others, users seem to enjoy social integration.

Reference

As a result of the social-networking revolution, a series of useful tools has appeared
that offers the functionality you need to integrate your site with many different
networks. These tools can help visitors easily bookmark the bits of your site they
like. Two examples of this include AddThis, http://www.addthis.com/, and
ShareThis, http://sharethis.com/.

Although users only need to read content to see Twitter streams, other social-networking
sites have features that require more interaction; for example, users must click a button
to submit a review for a site on StumbleUpon. For many sites, like Twitter, a user must
have an account to retweet (share) other users’ tweets (posts). These features add to an
already-functioning interface, so the impact of such demands on users is minimal; they
are free to do what they wish. However, supporting popular services is worth the effort
for their users.

Beyond its popularity potential for integration into sites, social networking allows you to
provide some niche features to an audience that will appreciate it. Although some sites, such
as Facebook, provide ways to expand the reach of your content (such as answering custom-
ers’ questions, giving details for events, and showing profiles), other sites exist for a central
purpose, with other features built around that niche. For example, LinkedIn lets you build a
visually standardized résumé that can easily be shared with potential employers.

To make the most of these services, investigate every nook and cranny of the features
they provide, read the documentation such services offer, and then determine how you
can go about bringing a bit of your site to the market that exists on these prepopulated

http://www.addthis.com/
http://sharethis.com/

C H A P T E R N I N E T E E N D E A L I N G W I T H T H E R O B O T A R M Y 349

gathering places. Sometimes, you’ll be able to extend your site in only small ways; other
times, you may find that they’re major game-changers. What matters to users is that
you’re supporting the environments they want to connect with and that you’re taking
your site into the future.

Best practices
> Use the most popular networks, and deprecate those losing market share.

> Signing up for accounts is one thing, but you must use them regularly, too.

> Use social networks to supplement your sites, but don’t force sign-ups.

> Consider using any social-networking tool that may benefit your visitors.

> Don’t just stick to using a single social network; all have benefits.

Automated Tools
In addition to the search engines and social networks that comprise the majority of robot-
ics on your site, other kinds of automated scripts and applications are available that can
reach into your site and extend its functionality. Ranging from content reformatters to
the more complex PayPal IPN scripts (Figure 19-3), these tools tend to work in the back-
ground, carrying out actions seamlessly, based on coded instructions provided by your
site in some instances, and in others, provided by the tools’ host, undertaking actions on
behalf of users.

Figure 19-3: PayPal’s IPN system allows sites to utilize payment information to process an order.

F U T U R E - P R O O F W E B D E S I G N 350

Here is this consumer’s family tree and some issues it can encounter:

Relatives: Considerations:

> Web applications > Assumed coding structure

> Integral services > API limitation considerations

> Automated scripts > Human verification demands

Practical solutions
Server-side scripts don’t interact with users but focus on getting a job done, yet we’ve all
been affected by these scripts that are just doing their jobs without any recognition or
appreciation. Whether you’re allowing users to buy something from a store or to e-mail
you a request for support, you can use these interpreted forms of interaction that demand
no human intervention to give your site a more-involving experience. When these tools
are being used, it’s important to maintain them effectively or your site could become
unstable.

For example, consider a PayPal IPN script that’s been designed to generate a serial num-
ber upon confirmation of payment for a piece of software. It takes only one wrong inci-
dent to produce negative results; for example, if the IPN script is missing, if your site is
down, or if you altered the script, which in turn causes previously processed payments to
be ignored or handled incorrectly when queried. Getting code to be reliable is possible,
but you also need to inform users when an error occurs, and ensure that they get support
for the issue.

You also need to consider the API limitations that automated scripts can impose. It’s a
given that when you’re using third-party tools from a service that you have no control
over, the compatibility of your site’s integration with that service is at the mercy of the
provider’s systems. If you must rely on other people, be prepared for any eventuality by
monitoring sites for downtime (if you run a service) and being quick to respond to issues.
Although there are plenty of reliable services out there, none can claim to be fully future-
proof (and neither can we).

Reference

To get an idea about how a status monitor lets users know about site
maintenance that might affect the user’s service, check out Skype’s Heartbeat
system status monitor at the following address. It really is a great example:
http://heartbeat.skype.com/.

http://heartbeat.skype.com/

C H A P T E R N I N E T E E N D E A L I N G W I T H T H E R O B O T A R M Y 351

Provide a section or page on your site that notifies users about the site’s status and about
any issues or scheduled downtime with third-party services (such as when critical updates
or maintenance is being undertaken). Also, try to provide an alternative service or try to
keep as much of the site in action as possible, as visitors will avoid a service that’s given
them memorable negative experiences in the past; this is especially true for payment sys-
tems. Finally, if things do break down, provide ways for users to get immediate help.

Automated scripts can be helpful when used for the right reasons, but because of the level
of abuse going on, spamming, content theft, and immoral acts are plaguing the Web and
affecting user experiences worldwide. Although you can’t really do much to future-proof
your site against unwelcomed self-promoters and serial fraudsters, some attempts have
been made to alleviate the situation through the use of CAPTCHAs, which ask users to
verify that they’re human. Unfortunately, those attempts haven’t been very satisfactory.

CAPTCHAs are challenges for attempts to submit and access data. The CAPTCHA’s goal is to
ensure that a human and not another computer is making the request or response by requir-
ing users solve a word, math, or picture puzzle. Although this seems like a clever idea, crack-
ers tend to stay one step ahead by using OCR (optical character recognition), speech
recognition, and spammers who are paid pennies to crack them. They make life harder for
legitimate users, so they aren’t worth considering as they do more harm than good.

Best practices
> If a social script breaks, ensure that users know how to report the issue.

> Check with the service producer if you require help with its API.

> Consider adding a system status page to notify users of potential issues.

> For critical system functions, be sure you have a fail-safe alternative.

> Do what you can to avoid spammers, but don’t use CAPTCHAs.

Verification
Interestingly, when it comes to robotic interactions with sites, some tools are powered
and regulated by people either verifying information or adding to collected materials.
While these third-party tools (such as non-automated link directories, expert reviews, or
child-safe parental filters; see Figure 19-4) are beyond the control of designers, they can
influence users who come to depend on such quality-filtering tools. Designing a future-
proofed site demands ensuring how the site appears on-screen and how other sites regard
your content.

F U T U R E - P R O O F W E B D E S I G N 352

Figure 19-4: Parental filters can be included in browsers, operating systems, or within devices!

Here is this consumer’s family tree and some issues it can encounter:

Relatives: Considerations:

> Review sites > Quality over quantity

> Directories > Control and appeals

> Parental filters > Software hardening

Practical solutions
Compatibility and the longevity of your site are closely linked to the availability of your
site to individuals who aren’t already aware of it. However, when thinking about services
that can make or break a site’s availability to an entire audience, surprisingly, few design-
ers consider products like parental filters (such as those built into child-friendly browsers
or operating systems) and other content-verification engines. It therefore makes sense to
please these authorities if your users put any stock into what they say or block.

To keep your site from being blacklisted (thereby added to users’ blocked sites filter list),
you need to be careful about what you put on a site. For example, if age-inappropriate
material is found your site could be labeled as a “for adults only” or “not safe for work”
site. This, of course, isn’t something you want to happen if you’re trying to run a family-
friendly site, so be sure to keep your site above suspicion. Methods of overcoming such
situations involve avoiding bad language, alcohol, drug, or any age-inappropriate content.

When you receive a bad review, are blacklisted, or experience any kind of external factor
that might influence or cause potential visitors to turn away from your site, try to deal
with the situation as quickly and calmly as you can (avoiding drawing unwanted attention
to yourself). If a site is blacklisted because of a security mistake, it may take time to resolve

C H A P T E R N I N E T E E N D E A L I N G W I T H T H E R O B O T A R M Y 353

the false positive in security software; the same is also true for a site that’s delisted from a
search engine’s index. Parental controls and review sites also require a tactful approach.

Note

People who use recommendation or review sites place a lot of trust in the
experiences provided by third parties. What makes these tools so dangerous is
they penetrate every search engine, browser, and device and can even influence
a user’s behavior! If a user reads a negative review of your site, it can sap your
service for many years to come.

Your first call of action is to determine exactly why you ended up in the situation you’re in.
Although glitches can occur or a service may have mistakenly put your site in the penalty
box, more often than not, it’s the fault of the designer and can often be fixed by patching
code exploits or removing bad code. If what occurred isn’t your fault, appeal to the product’s
manufacturer for a resolution. Other than that, there’s little else you can do, which can be
very frustrating if a user’s anti-malware guard cripples and blocks the site inappropriately.

Although this consumer-driven layer of the Web can throw all sorts of barriers at a site and
its users, these influential services can affect popular browsers that are deemed “kiddie
safe.” Because Internet Explorer and third-party products contain filters that automatically
scan for words or content that may be deemed unsuitable, sites containing the offending
material could be blocked by the product or browser. Also, with malware detectors getting
involved in the action, filtering is not something that you want to become associated with!

To help your site withstand filter products, you’ll just have to conform to the rules they lay
down, and hope that you don’t become one of their casualties. If this doesn’t sit well, just
remember that sometimes the filters can become so dominating that an entire nation is
banned from your site, so be thankful many of us aren’t in that position. For example, just
think about the great firewall of China or other traffic-shaping filters imposed by ISPs, and
consider yourself lucky if you’re not directly affected by them, as your users might be.

Best practices
> Avoid being blacklisted by steering clear of inappropriate subjects.

> If you are blacklisted, find out why and investigate how to resolve it.

> Don’t sully the site’s reputation by starting a war over bad reviews.

> Beware of word triggers that could make parental filters nervous.

> Make sites as trustworthy as possible to encourage user goodwill.

20

20 Factoring in the
Human Element
Accommodating physical, intellectual,
emotional, and social needs

F U T U R E - P R O O F W E B D E S I G N 356

THE END USER represents the one unique variable that no designer or developer can
control. You may be able to produce beautiful code that works on a multitude of different
devices, platforms, and browsers, but your site’s users will ultimately determine the over-
all success or failure of a layout. In this chapter, I round out the book by noting the unique-
ness of the individuals who interact with your site, humans being quite unpredictable
creatures, and the importance of relating (generally) to a growing and ever-diversifying
audience.

A Matter of Being Human
Before the days of accessibility, designers paid little attention to how individual factors
and circumstances might affect users taking advantage of their sites. However, it’s impor-
tant to remember that users may be unable to use devices as you might anticipate, or
perhaps they can’t use certain pieces of hardware. The result is that usability can be hard
to measure. Future-proof design demands a high regard for human-computer interac-
tions (HCI) and an understanding of how users consume content, and the variables influ-
encing their choices.

Users have unique ways of browsing sites. Accounting for this factor can be like trying to
cater a site to billions of devices formed of the same basic structure but with a few unique
characteristics thrown in. As people aren’t machines, and don’t act as such, you’ll need to
consider a wide range of variables that best show how certain types of users will identify
with a site, instead of hoping that everyone will behave alike. For example, you could tar-
get audiences based on the variables of gender, age, and other demographics.

Note

The basics of human-computer interaction rarely change because human
bodies have a limited set of input and output senses to relate with objects. This
means that unless users evolve super powers, we know exactly what people
have to work with but more importantly, what effects may be felt if their senses
or a bodily function breaks down.

A number of variables relating to individual human abilities can affect how a visitor
chooses to interact with your site. To help organize the wide range of accessibility issues
that comprise this list, I’ve categorized everything in four distinct types of variables using
a method known as the PIES methodology to deal with these issues. Put simply, you need
to understand how physical, intellectual, emotional, and social factors can limit, affect, or
even cripple a user’s ability to use a site, and what this means for your compatibility goals.

C H A P T E R T W E N T Y F A C T O R I N G I N T H E H U M A N E L E M E N T 357

Beyond accessibility, at the business side of things, you must balance your “instincts” of
what makes for a ubiquitous interface against the demands of your human clients (whom
you’ll battle against to implement many best practices) and the requirements of the site’s
users. Obviously, a human-centered approach is critical to the success of a Web site; your
primary goal must be to please visitors in preference to search engines or the business you
are doing the work for. If you can reach and maintain this healthy balance, good for you!

Ultimately, each site will have an audience, and its needs may well evolve over a period of
time. What’s important is that you continue to determine its needs and keep updating and
maintaining the site accordingly (and if not you, the people who you designed for must
carry out this role). Your unenviable job is to consider the “ifs and buts” of any situation
and to weigh the pros and cons of approaches. Usability testing, accessibility audits, and
statistics will certainly help, but you’ll need to be vigilant to stay ahead of the competition!

Humanizing an interface
Consider if a visitor from France requires the very service you offer. He’s in his mid-70s
and could easily be classified as a “silver surfer.” Enjoying his retirement, but with
issues such as reduced vision and arthritis holding him back, he finds your site and
begins exploring your offerings. He can speak, read, and write English, but it’s not his
native language. When he finds a term he doesn’t understand, he’s confused by the
content. As French isn’t offered on the site, he’s forced to try to find the term else-
where. Effectively, he’s “lost in translation.”

Culture and the study of ethnography and sociology can teach web designers a lot
because individuals who browse your site rarely fit into one category. Although you can
group users based on shared experiences, or things they have in common (such as
nationality or age), don’t stereotype them unless the statistics and data you have about
your users support the need to address a common, shared issue. Designers often inad-
vertently imagine that a user’s situation is similar to their own, which can lead to mis-
conceptions about visitors’ needs.

Medical conditions such as reduced vision can be aided by a browser. In your visitor’s
case, he could try to use the Text Size submenu in Internet Explorer. However, because
your site uses pixel-based text sizing rather than EM units, the visitor finds that the
options do nothing! Confused and frustrated, he turns to the browser’s zoom facility
that works well. Unfortunately, he must now scroll and pan the screen in order to see
everything, and this constant movement doesn’t help his arthritis. The moral of the
story: Be considerate of a user’s individual situation.

F U T U R E - P R O O F W E B D E S I G N 358

Physical Conditions
When it comes to accessibility and the successful navigation of a site, physical conditions
tend to be the most intrusive factors. If sites don’t match the needs of users with physical
impairments, such as those with visual impairments (see Figure 20-1), the site could be in
violation of disability laws worldwide. Websites must be designed to allow the disabled
community to access content and services. Being accessible in such situations offers the
benefit of a potentially larger visitor base, and it can increase your compatibility levels.

Figure 20-1: If a user can’t see a touch screen, navigating one becomes difficult (though not impossible).

Here is this consumer’s family tree and some issues it can encounter:

Relatives: Considerations:

> Visual impairment > Specialist interaction needs

> Auditory limitations > Learning curve adjustment

> Motor functionality > Fallback aid dependencies

> Speech impairment

> Seizure disability

Practical solutions
Depending on the tools provided by an environment, individuals with physical disabilities
can encounter all sorts of direct complications when trying to access a site. Extreme visual
impairments may be equal to that of using a monochrome screen (total color blindness) or
working without a monitor. Deafness could be like working without speakers. Even motor
impairments could restrict users to speech-only navigation. With these inhibiting factors
being equal to a loss of hardware function, you must ensure accessibility needs are met.

C H A P T E R T W E N T Y F A C T O R I N G I N T H E H U M A N E L E M E N T 359

Although the practice of ensuring accessibility in HCI is similar to dealing with devices
that have practical limitations or the inability to do things in the same way many users are
used to, the human factor of these often difficult conditions makes the need for solutions
evermore critical. To ensure your site works for varying accessibility needs, the best thing
you can do is get your site up-to-scratch with WCAG (the Web Content Accessibility
Guidelines) and be accommodating to how such users would navigate and read your site.

Getting to know and love any interface takes users’ time and energy, but coupled with a
physical impairment, and if the features they need aren’t provided, the process to achieve
simple goals can appear to be an endless struggle. Although it’s true that accessibility
tools do a pretty amazing job (it’s wonderful to think that severely disabled citizens can
browse Wikipedia or Google at their leisure, without being inhibited), offering users some
in-page assistive enhancements can make the task of browsing around a site both easier
and faster.

Reference

Writing accessibility statements isn’t that hard, but be sure to document the
features you provide to help different devices. It’s about being both proud of and
practical in your work. As the following site shows, if you can write a jargon-free
statement, your users will benefit: http://juicystudio.com/article/
writing-a-good-accessibility-statement.php.

The most important thing a site can do to combat the issues that disabled users experi-
ence is to double up on everything. By this I mean that sites shouldn’t just be interacted
with via one browser or one input control or one type of accessibility aid or a single input
or output medium. Broaden your scope to include a number of fallbacks and alternate
mechanisms to give users a choice in content consumption. In addition, offer users pop-
up tooltips and navigation aids like breadcrumb trails, calls to action, and a decent acces-
sibility statement.

You know that things can go wrong rather quickly if someone’s device doesn’t match the
specification you demand or their connection isn’t as fast as you’d like. But for users with
physical limitations in their interactions with computers, the need for a good fallback
plan is even more critical because users can’t replace the part of them that’s broken or
inhibited, and there’s no simple way that many users can just struggle through the site
and make the best of a poorly crafted situation. Being accessible, therefore, is central to
compatibility.

http://juicystudio.com/article/writing-a-good-accessibility-statement.php
http://juicystudio.com/article/writing-a-good-accessibility-statement.php

F U T U R E - P R O O F W E B D E S I G N 360

Every site of any reasonable size or complexity should come with documentation or a user
manual that’s easy to follow and that describes everything a beginner needs to know to
use the service on offer, whether it’s an accessibility statement you provide or a getting-
started guide with in-site functionality listed (consider a popular site and how useful its
support pages are). Offer videos, tutorials, and readme files if you feel they’ll aid users,
but ensure that you offer help files and continually improve the quality of this material for
your users.

Best practices
> Take any requests for accessibility changes from users seriously.

> Offer a statement of accessibility showing what the site supports.

> Reduce the learning curve by providing helpful aids within the site.

> If you provide a web application, ensure that it’s well documented.

> Check that the site still functions if human senses aren’t available.

Intellectual Challenges
Although physical disabilities account for a great number of variables that can influence a
site’s “user compatibility,” the readability and navigability of information can also lead to
issues about how the environment can be used. A user’s ability to memorize important
details and understand your content in order to make informed choices present a range of
potential issues that affects HCI (shown in Figure 20-2). More importantly, the number of
users affected by these issues is likely to be higher than those affected by physical disabilities.

Figure 20-2: Complicated choices can affect a visitor’s ability to select options with accuracy.

C H A P T E R T W E N T Y F A C T O R I N G I N T H E H U M A N E L E M E N T 361

Here is this consumer’s family tree and some issues it can encounter:

Relatives: Considerations:

> Memory impairments > Recollection of revisiting

> Learning difficulties > Use of content linguistics

> Cognitive processing > Choice or content fatigue

Practical solutions
There are a number of considerations to take into account when dealing with the human
“intellectual” variable, but the one that seems to affect a great many people in a negative
way is memory, and more specifically, how visitors manage to keep finding their way
around the rat maze we refer to as a website. The importance of hierarchy and your site’s
information architecture cannot be understated, but the necessity of revisiting pages can
lead to a few complications if you don’t maintain the site or handle the situation correctly.

Being able to find your site among the many others that get stored in a browser’s history
index can be complicated. Although browsers deal with their history databases differ-
ently, if your site doesn’t have a sensible title and a memorable domain name, more
restrictive browsers may limit the chance of locating a site in the user’s activity logs.
(After all, can you quickly find a non-bookmarked site you visited months ago?) Useful
titles will serve users well if they choose to add your site to their favorites list (or on a
social bookmarking site).

Because sites are so dominated by language, your visitors’ ability to comprehend what you
write is important. Whether they’re challenged by something like dyslexia, are still learn-
ing the language used on your site, or simply can’t understand the jargon or buzzwords
shown on-screen, you don’t want to leave users without direction, understanding, or the
ability to find what they’re looking for. The issue of understanding your site’s content, no
matter how easy to see it may be, is referred to as lingual incompatibility, and it affects a lot
of people.

Tip

Reductionism (known as the method of boiling down a site’s contents into
something more streamlined) is something I highly recommend with content.
Because sites may have a limited amount of space to work with (in small
viewport sizes) and scrolling for hours isn’t much fun, saying what you mean
and designing succinctly are worthwhile.

F U T U R E - P R O O F W E B D E S I G N 362

If you’ve ever tried talking to someone who doesn’t understand the language you speak,
you know that even with the latest equipment and the means to render a site, the content
is useless to someone who can’t read it. Ways to overcome such a problem include offering
translations (or links to something like Google Translate), reducing the amount of fluff,
buzzwords, or technical lingo that requires a background in the subject, and using things
like explaining the meaning of abbreviations or acronyms (via title attributes in HTML).

In addition, too much content of any type on a site can be equally problematic. Besides
the fact that older devices like featurephones may restrict the size of pages that will load
(for the user’s sake), as may a search engine or social network, because sites can use more
than text within a page, at least consider offering more expressive (and condensed) con-
tent that could raise the interest levels of your visitors. If an image can say 1,000 words,
what could a well-produced, informative 5-minute video say? Potentially, it could say
quite a lot.

The ideal text-to-image-to-media ratio differs depending on the site and the needs of the
content and target audience. Some people prefer to read everything in text; others may
want a bit of media to help them absorb information (for example, if they’re more visual
than textual learners). But the important thing is to use content with care and to avoid
presenting too much of it at any one time. If users suffer from information overload, they
could end up with choice paralysis and this could impact their ability to browse the site!

Best practices
> To help jog a user’s memory, provide signposts and directions throughout.

> Provide a proper title; it’ll come in handy for when users search the site.

> Avoid using technical jargon or buzzwords that will confuse non-geeks.

> Match the text-to-image-to-media ratio to the type of site and audience.

> Avoid information overload; try limiting the number of objects per page.

Emotional Factors
The human emotion variable is rather interesting. Emotion gives designers the opportu-
nity to encourage user interactions (Figure 20-3). Though this variable often gets less
attention when we talk about it in terms of disabilities, emotion is deeply ingrained in
psychological and sociological behavior, so it’s important to consider the effect of emo-
tional experiences upon our interfaces. If a user suffers from a disorder like anxiety

C H A P T E R T W E N T Y F A C T O R I N G I N T H E H U M A N E L E M E N T 363

attacks, the effects of the emotional variable and its side effects will likely influence any
interactions with your site.

Figure 20-3: While we can influence actions with psychology, we must avoid being too manipulative.

Here is this consumer’s family tree and some issues it can encounter:

Relatives: Considerations:

> Emotional stability > Attention prioritization

> Attention and focus > Design lead perception

> Psychological state > Addictive personalities

Practical solutions
When catering your designs to your visitors’ needs, consider how to pull their eyes to the
right sections of your pages at the right time. Be pragmatic in your design approaches and
avoid doing anything to make users regret visiting your site. Seek attention subtly and
with enough finesse that users will naturally accept the usefulness of the content. The
goal you are trying to aim for is to have a site that influences users in all the right ways,
rewards the loyalty and persistence of your visitors, and avoids causing undue stress or
anxiety.

To ensure that your interface doesn’t dramatically affect your site’s usability, avoid using
lightboxes or other centralized regions of attention on devices that have small screens
(where the effect will be lost). Additionally, try to keep things that a user needs to see at
the top of the page (think of the fold). Other than that, follow traditional design principles,
such as enlarging text for dominance and using color to form psychological associations.
The more subtly your interfaces flow, the more dramatic satisfaction levels may become.

F U T U R E - P R O O F W E B D E S I G N 364

Being compatible with a wide range of situations will often leave a site performing better in
some areas than it does in others. Of course, although you’d rather enhance your work than
design for the lowest common denominator (as you don’t want the site to look like a cave
painting), you have to put the brakes on occasionally to avoid landing in a situation that
could harm users. Additionally, if users don’t have a plug-in or scripting available, make the
most of the situation, and try not to just offer them a bare-bones, ugly alternative.

Reference

Injecting humor into a website can make a negative experience bearable. If
you stop supporting a variable or can’t resolve a quirk, put a happy spin on it.
Examples of 404 errors being given a lighthearted response can be seen here:
http://404lab.com.

Here’s a solution for dealing with the less-elegant fallbacks or alternatives you provide
(like that watered-down layout for Internet Explorer 6 that made your beautiful jQuery-
powered eye candy explode into an ash cloud): Don’t just leave things looking basic or
bland if you need to offer an alternative; be creative with this opportunity for a unique
experience. Just because you’ll occasionally have to degrade a site doesn’t mean that the
final experience can’t look good. Don’t make the mistake of just covering your behind and
just bailing out.

The final aspect of emotional design that has big future-proofing potential is the concept
of game mechanics. It is taken from the video game industry, and the ability to win points,
prizes, badges, or recognition for your achievements when participating in a site has
proven to be highly addictive. The downside of this addictive behavior is that it can cause
your site’s members to become overly competitive, adding tension and excitement (which
could then lead to bad behavior). On the other hand, it can help build communities quickly.

Enriching your site with features that reward good behavior and useful contributions may
seem like a funny way to go about ensuring that your site will last into the future. But with
interactivity being high on the agenda, and attentions being so displaced online, you may
want to take notice of these tools. Don’t just think of them as being limited to things like
forums. What if users got points or prizes for spotting bugs, suggesting a feature, being the
first to enter your site on a new device, or something else? The possibilities are endless!

http://404lab.com

C H A P T E R T W E N T Y F A C T O R I N G I N T H E H U M A N E L E M E N T 365

Best practices
> Make the most of the users’ tools and direct their attention where it’s needed.

> Don’t use aggressive advertising tactics; they’ll only increase stress levels.

> Use positive reinforcement to encourage interactivity and try to be friendly.

> Try to make interfaces a little more engaging; users appreciate the effort.

> Be aware of the side effects associated with reward-focused interactivity.

Social Expectations
When people get together, in addition to having their individual needs, they form group
expectations and needs. Accounting for this behavior helps you gain broad appeal. By con-
sidering the effects of a group upon your site, you can account for more variables of
human behavior, which could potentially affect how people use your site. Perhaps users
want to offer you some insightful feedback (see Figure 20-4). Perhaps visitors are looking
to discover like-minded users. All in all, communication is a variable of no insignificance.

Figure 20-4: Visitors want to be heard, and they want to communicate. Keep the two-way channel
open!

F U T U R E - P R O O F W E B D E S I G N 366

Here is this consumer’s family tree and some issues it can encounter:

Relatives: Considerations:

> Group dynamics > Encouraging interaction

> Physical environment > Antisocial behavior

> Community power > Cross-cultural increases

Practical solutions
One primary route to ensuring that your site will withstand the test of time is to iterate
and continue to improve upon what you offer, and the main way in which you can achieve
this goal is, of course, through testing. Although it’s perfectly fine to break open your big
box of gadgets and emulators and test your work using everything you can find, your
users can offer you a unique testing opportunity. They probably have a bunch of gadgets
you don’t have and they’re in a position to let you know how well these devices function
on the site.

To gain committed, friendly followers who’ll help you improve your service, encourage
interaction from the onset and build your community with a personal touch. Don’t start
off by creating a forum and hoping people will fly in all at once (if visitors see a dead
forum from the outset, they’ll just run away); start with smaller things like blog com-
ments and remember to reply to them so that the conversation is not one-sided. After
you’re sure that you have a regular, loyal crowd, you can then think about moving onto
grander projects.

Of course, in any community, there will always be users who’ll try to cause trouble or push
boundaries. Although you can be somewhat lenient and tolerant to a point (if you have
that level of patience), deal with issues of a more serious nature immediately. If, for exam-
ple, a user posts illegally copied content on the site, it would only take a DMCA (copy-
right) takedown notice to your host or Google to have your site suspended. At which
point, compatibility issues will very likely be the very least of your problems.

Note

The great thing about encouraging social interaction is that it cultivates content
for you. Consider the average web forum where you end up with hundreds or
even thousands of posts giving advice, feedback, or support along with general
interuser chatter.

C H A P T E R T W E N T Y F A C T O R I N G I N T H E H U M A N E L E M E N T 367

You’ll need to do your best to stay on top of things, as you’ll be held responsible for the
content that makes its way onto your site, making moderation mandatory. As the owner
and/or designer of a site, you must ensure that the site’s community is handled with care
and you stay on its good side. Online communities that are allowed to get out of control
can cause plenty of harm, but the ones that are cultivated correctly may become part of the
site’s extended family, serving you well in the future if you ever expand your offerings.

As time goes by, the users who frequent your site will change, and as new generations of
budding members visit your site using the devices and tools that are popular at that time
(each with new demands and expectations of your site), you should already have a solid
backbone to begin extending your site’s flexibility. This social interaction and commen-
tary may attract other users, as you increase the site’s flexibility. Who knows, maybe
they’ll add your site to their regular browsing list, and your site will continue to evolve
around them.

Obviously, when you receive advice regarding changes or potentially useful updates from
individual visitors, you must place their opinions and unique perspectives alongside those
of your site’s larger community of users. It’s a bad idea to make changes at the whim of a
single user’s request, if that change could potentially have a negative effect on other users.
By leveraging your community, your site, social networks, analytics, and the other useful
variables at your disposal, you’ll have a reason to keep aiming for a future-proof design.

Best practices
> Try to build a relaxed community early on to encourage repeat visitors.

> Get to know your audience; they’re the ones who make your site popular.

> Deal with vandalism, spam, or harmful behavior quickly and appropriately.

> Reward your loyal visitors if possible, as they’ll stand by you in the future.

> Keep referring to your visitors for improvements on a timely basis.

Index

A
accessibility aids

about, 271
best practices, 273
practical solutions, 272–273

active links, visibility of, 146
ActiveX (Microsoft), 257. See also enhancements
adapting and evolving

business guide, 30–31
layout solutions, 25–30
technologies, new, 23–25

adaptive design, 54–58
AddThis (website), 348
Adobe CoolType. See typefaces
Adobe Flash, 78. See also enhancements; plug-ins
Adobe Shockwave, 250. See also enhancements
AJAX (asynchronous JavaScript and XML),

10–12, 319–321
all-in-one PCs. See desktop, designing for
alternates

about, 245–246
best practices, 247
practical solutions, 246–247

alternative content applications
about, 264–265
accessibility aids

about, 271
best practices, 273
practical solutions, 272–273

apps and widgets
about, 268–269
best practices, 270
practical solutions, 269–270

augmented reality
about, 273–274
best practices, 276
embedding functionality, 275
practical solutions, 274–275

designing accessible websites, 265

reformatters
about, 266
best practices, 268
practical solutions, 267–268

alternative navigation, 139
Amazon Kindle. See eReader
Amazon’s OpenSearch protocol, 296
Android (Google). See smartphone
antialiasing (rasterized), 193
API, 124
‘app versus online site’ consideration, 29–30
Apple, 87, 89. See also media player; smartphone
Apple QuickTime, 251. See also multimedia
Apple Safari. See reformatters; WebKit
Apple TV. See set top box
apps and widgets

about, 268–269
best practices, 270
practical solutions, 269–270

architecture
about, 316
best practices, 318
practical solutions, 317–318

Archos. See media player
Asimov, Isaac (author), 19
Ask. See search engines
associations

about, 199–200
best practices, 201
practical solutions, 200–201

asynchronous JavaScript and XML (AJAX),
10–12, 319–321

Atom feeds. See reformatters
attention. See emotional factors
audio. See content
audio card. See components
auditory limitations. See physical conditions
augmented reality

about, 273–274
best practices, 276

I N D E X 369

embedding functionality, 275
practical solutions, 274–275

aural commands. See microphone
automated scripts. See automated tools
automated tools

about, 349–350
best practices, 351
practical solutions, 350–351

automobiles. See household appliances and
automobiles

Avant Browser. See Trident
“average” users, 15–16

B
Baidu. See search engines
bandwidth

about, 187–188
best practices, 189
practical solutions, 188–189

bar code scanner. See scanner
Barnes & Noble Nook. See eReader
best practices. See specific entries such as

accessibility aids
Bing. See search engines
biometrics. See scanner
BlackBerry (RIM). See PDA; smartphone
Blazer. See Mobile
bleeding edge, 25
Bolt Browser. See Proxy
Bookeen Cybook. See eReader
bookmarklets, 256–257
Boxee. See set top box
brain-powered. See tools, other
Browse3D. See alternates
browser-based app launching, 300
browsers. See also PDA

about, 228–229
alternates

about, 245–246
best practices, 247
practical solutions, 246–247

browsing without. See alternative content
applications

designing for old and new, 229
Gecko

about, 232–233
best practices, 235
practical solutions, 233–235

Mobile
about, 240–241
best practices, 242–243
practical solutions, 241–242

PDAs, 99
Presto

about, 238
best practices, 240
practical solutions, 238–240

Proxy
about, 243
best practices, 245
practical solutions, 244–245

Trident
about, 230
best practices, 232
practical solutions, 231–232

WebKit
about, 235–236
best practices, 237
practical solutions, 236–237

bulletproof designs, 13–14
buzzwords, 11

C
camcorder. See imaging
camera. See imaging
cameraphone. See featurephone
Camino. See Gecko
CAPTCHAs, 351
card reader. See tools, other
Cascading Style Sheets. See CSS (Cascading Style

Sheets)
CDN hosting. See resources
Chrome (Google), 251, 256. See also netbooks;

WebKit
Chromebook (Google), 78
Chromium. See WebKit
Clarke, Andy (speaker), 54, 56
ClearType, 193. See also typefaces
client-user scenario, 18–19
cloud computing, 81. See also nettops
cloud-hosted (secure) solutions, 183
CMS (content management systems)

about, 214, 336
best practices, 216
practical solutions, 215–216

Coda, 218

F U T U R E - P R O O F W E B D E S I G N 370

code
compatibility, 280–281
conditional, 231
CSS. See also CSS (Cascading Style Sheets)

about, 284–285
best practices, 287
practical solutions, 285–287

disabled, 281
JavaScript

about, 287–288
best practices, 289
practical solutions, 288–289

metadata
about, 292–293
best practices, 294
practical solutions, 293–294

non-standard code
about, 294–295
best practices, 297
practical solutions, 295–297

WML
about, 289–290
best practices, 292
practical solutions, 290–292

(x)HTML
about, 282
best practices, 284
practical solutions, 283–284

code generators, 212–213. See also wizards
cognitive processing. See intellectual challenges
colors

about, 204–205
best practices, 206
practical solutions, 205–206

communication, with website visitors, 35
community power. See social expectations
compatibility

code, 280–281
cultivating customer service, 34–35
debugging for durable devices, 32–34
designing for, 70–71
with new technologies, 23
survival of the fittest, 35–36

completed sites, 13
component toolkit. See frameworks
components

about, 182
best practices, 184
practical solutions, 183–184

conditional code, 231
connected objects

about, 128–129
best practices, 131
practical solutions, 129–130

connection speed, 181. See also bandwidth
connectivity

about, 184–185
best practices, 187
practical solutions, 185–187

content
about, 318–319
best practices, 321
practical solutions, 319–320

content management systems. See CMS (content
management systems)

controls
about, 196–197
best practices, 199
practical solutions, 197–199

conventions, 4–5. See also layouts
cookies, 183, 338. See also personalization
CoolType (Adobe). See typefaces
CoreText (Mac). See typefaces
Cowon. See media player
CPU. See components
CSS (Cascading Style Sheets)

about, 284–285
best practices, 287
@font-face generators, 203
media queries, 165
practical solutions, 285–287
properties, 175, 286
target selectors, 57

customer service, cultivating, 34–35
cut-and-paste scripts. See snippets
cutting edge, 25
Cybook (Bookeen). See eReader

D
data throttling. See bandwidth
debugging, for durable devices, 32–34
default format compatibility. See associations
degradation, 42–43, 54–56
deprecated code. See non-standard code
design

about, 314–315
for accessible websites, 265

I N D E X 371

architecture
about, 316
best practices, 318
practical solutions, 317–318

content
about, 318–319
best practices, 321
practical solutions, 319–320

iteration
about, 315, 323–324
best practices, 326
practical solutions, 324–326

layout
about, 321–322
best practices, 323
pixel-perfect, 12
practical solutions, 322–323
table-based, 283

mythology and folklore in, 12–16
for old and new, 229

design products
adapting and evolving

business guide, 30–31
layout solutions, 25–30
technologies, new, 23–25

compatibility issues
cultivating customer service, 34–35
debugging for durable devices, 32–34
survival of the fittest, 35–36

environment. See also environment
keeping up with trends, 16–17
mythology and folklore in design, 12–16
terminology, 10–12

planning for successful websites
determining project requirements, 18–19
implementation planning, 21–22
setting goals, 19–21

design software
CMSs

about, 214, 336
best practices, 216
practical solutions, 215–216

code generators, 212–213
snippets

about, 219–220
best practices, 221
practical solutions, 220–221

visual editors (WYSIWYG)
about, 213, 216–217
best practices, 219
practical solutions, 217–219

wizards
about, 221–222
best practices, 224
practical solutions, 222–224

desktop, designing for. See also GUIs
about, 72
best practices, 74
compatibility, 70–71
laptop

about, 74–75
best practices, 77
compatibility, 70–71
practical solutions, 75–77

netbooks
about, 77–78
best practices, 79
compatibility, 70–71
practical solutions, 78–79

nettops
about, 79–80
best practices, 82
compatibility, 70–71
practical solutions, 80–82

practical solutions, 73–74
desktop printers. See printers
desktop widgets. See apps and widgets
developer libraries. See snippets
digital photo frames. See connected objects
digitized glass. See E Ink
Dillo. See alternates
directories. See verification
disabled code, 281
disk space, for handheld devices, 188
display

about, 164
best practices, 166
practical solutions, 165–166
size, 163

DivX, 259
domain pointers. See connectivity
Dragon Dictation, 151
Dreamcast (Sega). See game console
Dreamweaver. See visual editors (WYSIWYG)

F U T U R E - P R O O F W E B D E S I G N 372

Drupal. See CMS (content management systems)
durable devices, debugging for, 32–34
‘dynamic versus static’ consideration, 27–28

E
E Ink

about, 169
best practices, 171
practical solutions, 170–171

earphones. See speakers
electronic paper. See E Ink
embedded gadgets

about, 126
best practices, 128
practical solutions, 127–128

embedded images. See content
embedded services. See services
emotional factors

about, 362–363
best practices, 365
practical solutions, 363–364

emulators, 92, 109
enhancements

about, 252
best practices, 254
practical solutions, 253–254
progressive, 47–50

entertainment devices
about, 106–107
game console

about, 110–111
best practices, 113
practical solutions, 111–112

handheld console
about, 113–114
best practices, 115
practical solutions, 114–115

media player
about, 115–116
best practices, 118
practical solutions, 116–118

set top box
about, 118–119
best practices, 121
practical solutions, 119–120

television
about, 108
best practices, 110
practical solutions, 109–110

environment
bandwidth

about, 187–188
best practices, 189
practical solutions, 188–189

components
about, 182
best practices, 184
practical solutions, 183–184

connection speed, 181
connectivity

about, 184–185
best practices, 187
practical solutions, 185–187

internal and external factors, 180–181
keeping up with trends, 16–17
mythology and folklore in design, 12–16
role in site consumption, 173
terminology, 10–12

Epiphany. See Gecko
eReader. See also E Ink

about, 95–96
best practices, 97
practical solutions, 96–97

evolving. See adapting and evolving
Evrythng.net. See physical goods
expandability, 120
ExpressionEngine. See CMS (content

management systems)
ExpressionWeb. See visual editors (WYSIWYG)
extensions

about, 254–255
best practices, 257
practical solutions, 255–257

external links. See resources

F
Facebook. See social networks
fallback code, 52
favicons, creating, 89

I N D E X 373

featurephone
about, 93
best practices, 95
practical solutions, 93–95

file printer. See printers
Firefox (Mozilla). See Gecko
Fitt’s Law, 148
Flash (Adobe), 78. See also enhancements;

plug-ins
flexibility, methods and approaches to

about, 25–30, 66–67
adaptive design, 54–58
graceful design, 42–47
layers, 40–41
progressive design, 47–53
reactive design, 62–66
responsive design, 58–62

FlickR. See social networks
focus. See emotional factors
Font Squirrel, 203
form redirection. See architecture
forms, testing, 208
Fossil Wrist. See wristwatch
404 errors, 301, 364
Frames, 114
frameworks

about, 304–305
best practices, 307
practical solutions, 305–307

FreeType (Linux). See typefaces
FrontPage (Microsoft), 213. See also visual

editors (WYSIWYG)
function keys. See keyboard
future-proof designs, 13–14. See also specific types
futuristic features

about, 330–331
interoperability

about, 334–335
best practices, 336
practical solutions, 335–336

personalization
about, 337
best practices, 339
practical solutions, 337–339

3D, 330, 331

visual effects
about, 332
best practices, 334
practical solutions, 332–334

G
game console

about, 110–111
best practices, 113
practical solutions, 111–112

gamepad. See remote control
gaming computer. See desktop, designing for;

laptop
Gecko

about, 232–233
best practices, 235
practical solutions, 233–235

gesture sensors. See remote control
goal setting, 19–21
Google, 343. See also search engines
Google+. See social networks
Google Android. See smartphone
Google Chrome, 251, 256. See also netbooks;

WebKit
Google Chromebook, 78
Google TV. See set top box
Google Webmaster Central, 345
GPS capabilities, 125. See also tools, other
GPU. See components
graceful design, 42–47
graphical UI widgets. See controls
group dynamics. See social expectations
GUIs

about, 194
best practices, 196
practical solutions, 195–196

H
handheld and ultra-portable mobile devices

Apple, 87, 89
benefits of portability, 86–87
disk space, 188
eReader

about, 95–96
best practices, 97
practical solutions, 96–97

F U T U R E - P R O O F W E B D E S I G N 374

handheld and ultra-portable mobile devices
(continued)

featurephone
about, 93
best practices, 95
practical solutions, 93–95

PDA
about, 97–98
best practices, 100
practical solutions, 98–99

smartphone
about, 90–91
best practices, 92
practical solutions, 91–92

tablets
about, 88
best practices, 90
practical solutions, 88–90

wristwatch
about, 100–101
best practices, 102
practical solutions, 101–102

handheld console
about, 113–114
best practices, 115
practical solutions, 114–115

Hanvon eReader, 170
hard disk. See components
hardware expectations, 74, 76–77
HD (high definition) media, 330–331. See also

visual effects
head-mounted display. See projector
headsets. See speakers
Heartbeat (Skype), 350
home automation. See embedded gadgets
hosted applications. See services
HOSTS IP mapper. See security
household appliances and automobiles

about, 124–125
connected objects

about, 128–129
best practices, 131
practical solutions, 129–130

embedded gadgets
about, 126
best practices, 128
practical solutions, 127–128

GPS capabilities, 125
physical goods

about, 133–134
best practices, 135
practical solutions, 134–135

transportation
about, 131
best practices, 133
practical solutions, 132–133

HTC. See PDA
HTML. See (x)HTML
human element

about, 356–357
emotional factors

about, 362–363
best practices, 365
practical solutions, 363–364

humanizing an interface, 357
intellectual challenges

about, 360–361
best practices, 362
practical solutions, 361–362

physical conditions
about, 358
best practices, 360
practical solutions, 358–360

social expectations
about, 365–366
best practices, 367
practical solutions, 366–367

Hybrid TV. See television

I
I. Robot (Asimov), 19
iCab. See WebKit
IEEE, 135
iFrames, 114
imaging

about, 152
best practices, 154
practical solutions, 153–154

implementation planning, 21–22
In-app browsers. See apps and widgets
In-car dashboards. See transportation
in-dash. See display
information manager. See security
in-page shortcuts. See architecture

I N D E X 375

input button. See keyboard
input tools, designing for

about, 138–139
alternative navigation, 139
imaging

about, 152
best practices, 154
practical solutions, 153–154

keyboard
about, 144–145
best practices, 147
navigation, 138
practical solutions, 145–146

microphone
about, 149–150
best practices, 152
practical solutions, 150–151

pointer
about, 140
best practices, 142
practical solutions, 140–142

remote control
about, 147
best practices, 149
practical solutions, 148–149

scanner
about, 154–155
best practices, 157
practical solutions, 155–156

tools, other
about, 157–158
best practices, 159
practical solutions, 158–159

touchpad
about, 142–143
best practices, 144
practical solutions, 143–144

Instapaper. See reformatters
integral services. See automated tools
intellectual challenges

about, 360–361
best practices, 362
practical solutions, 361–362

interactive displays. See embedded gadgets
interactivity, 250–251
interface controllers. See controls
interface shells. See GUIs

interfaces, 15, 357
internal factors, 180–181
‘internal versus external’ consideration, 28
Internet Explorer (Microsoft), 127. See also

Trident
Internet radios. See connected objects
interoperability

about, 334–335
best practices, 336
practical solutions, 335–336

iOS (Apple). See smartphone
iPod touch (Apple). See media player
iteration

about, 315, 323–324
best practices, 326
practical solutions, 324–326

iWear (Vuzix), 168
iWeb. See visual editors (WYSIWYG)

J
Java (Oracle). See enhancements; plug-ins
JavaScript

about, 96, 287–288
best practices, 289
practical solutions, 288–289

Joomla!. See CMS (content management
systems)

joystick. See pointer
jQuery, 96, 143, 306. See also JavaScript

K
Karotz, 158, 159. See also tools, other
keyboard

about, 144–145
best practices, 147
navigation, 138
practical solutions, 145–146

KidZui. See alternates
Kindle (Amazon). See eReader
kiosk systems. See desktop, designing for

L
label printer. See printers
laptop

about, 74–75
best practices, 77

F U T U R E - P R O O F W E B D E S I G N 376

laptop (continued)
compatibility, 70–71
practical solutions, 75–77

layers, 40–41
layout engineering. See interoperability
layouts

about, 321–322
best practices, 323
pixel-perfect, 12
practical solutions, 322–323
solutions, 25–30
table-based, 283

learning difficulties. See intellectual challenges
LinkedIn. See social networks
links (active), 146
Linux FreeType. See typefaces
local storage. See personalization
longevity (institutional), of desktops, 73
Lynx, 246–247. See also alternates

M
Mac CoreText. See typefaces
manufacturer configurations. See associations
Marcotte, Ethan (Web designer), 58–60
Maxathon. See Trident
media center PC. See desktop, designing for
media player

about, 115–116
best practices, 118
practical solutions, 116–118

Media Player (Windows), 251. See also
multimedia

media queries, 60, 61
media speakers. See speakers
mediated reality. See augmented reality
memory impairments. See intellectual challenges
metadata

about, 292–293
best practices, 294
practical solutions, 293–294

microformats. See metadata
microphone

about, 149–150
best practices, 152
practical solutions, 150–151

microsites, 148

Microsoft ActiveX, 257. See also enhancements
Microsoft FrontPage, 213. See also visual editors

(WYSIWYG)
Microsoft Internet Explorer, 127. See also Trident
Microsoft Silverlight. See enhancements; plug-ins
Microsoft Surface. See connected objects
Microsoft Web TV, 109. See also television
Microsoft WinMo. See PDA
Microsoft Zune. See media player
Mobile

about, 240–241
best practices, 242–243
practical solutions, 241–242

mobile devices. See handheld and ultra-portable
mobile devices

Mobile Mouse Pro (website), 101
MODx. See CMS (content management systems)
monitor. See display
motion-capture. See remote control
motor functionality. See physical conditions
mouse. See pointer
Mozilla Firefox. See Gecko
MSN Explorer. See Trident
multimedia

about, 257–258
best practices, 260
practical solutions, 258–259

multi-touch. See touchpad
musicphone. See featurephone
Mylo (Sony). See PDA
mythology and folklore, in design, 12–16

N
Nabaztag. See tools, other
navigation

alternative, 139
keyboard, 138
menus. See architecture

necessity, testing by, 34
‘need versus none’ consideration, 25–26
netbooks

about, 77–78
best practices, 79
compatibility, 70–71
practical solutions, 78–79

NetFront, 242. See also Mobile

I N D E X 377

NetObjects Fusion. See visual editors
(WYSIWYG)

Netscape 6+. See Gecko
nettops

about, 79–80
best practices, 82
compatibility, 70–71
practical solutions, 80–82

N-Gage (Nokia). See handheld console
niche functionality. See non-standard code
Nintendo, 112. See also game console; handheld

console; Presto
Nokia N-Gage. See handheld console
Nokia Symbian. See smartphone
non-standard code

about, 294–295
best practices, 297
practical solutions, 295–297

Nook (Barnes & Noble). See eReader
Notepad++, 218
numeric keypad. See keyboard

O
OCR imaging. See scanner
offline storage, 338
Ogo. See PDA
OmniWeb. See WebKit
“One Web”, 16
OpenSearch protocol (Amazon), 296
OpenWave. See Mobile
Opera, 16, 132, 239, 251. See also Presto; Proxy
operating systems, influencing

associations
about, 199–200
best practices, 201
practical solutions, 200–201

colors
about, 204–205
best practices, 206
practical solutions, 205–206

controls
about, 196–197
best practices, 199
practical solutions, 197–199

GUIs
about, 194
best practices, 196
practical solutions, 195–196

rasterized antialiasing, 193
security

about, 206–207
best practices, 209
practical solutions, 207–209

system shell, 192–193
typefaces

about, 201–202
best practices, 204
practical solutions, 202–204

Oracle Java. See enhancements; plug-ins
output tools, designing for

about, 162–163
display

about, 164
best practices, 166
practical solutions, 165–166
size, 163

E Ink
about, 169
best practices, 171
practical solutions, 170–171

printers
about, 174
best practices, 176
practical solutions, 174–176

projector
about, 166–167
best practices, 169
practical solutions, 167–168

speakers
about, 171–172
best practices, 173
practical solutions, 172–173

P
page zooming. See accessibility aids
Palm OS. See PDA; smartphone
parental filters. See verification
patient TV systems. See embedded gadgets
patterns. See layouts
PC speakers. See speakers
PDA

about, 97–98
best practices, 100
practical solutions, 98–99

F U T U R E - P R O O F W E B D E S I G N 378

personalization
about, 337
best practices, 339
practical solutions, 337–339

physical conditions
about, 358
best practices, 360
practical solutions, 358–360

physical environment. See social expectations
physical goods

about, 133–134
best practices, 135
practical solutions, 134–135

PIES methodology, 356
pixel-perfect layouts, 12
planning for successful websites

determining project requirements, 18–19
implementation planning, 21–22
setting goals, 19–21

PlayStation (Sony). See game console; handheld
console

plug-ins
enhancements

about, 252
best practices, 254
practical solutions, 253–254

extensions
about, 254–255
best practices, 257
practical solutions, 255–257

interactivity, 250–251
multimedia

about, 257–258
best practices, 260
practical solutions, 258–259

Pocketbook. See eReader
pointer

about, 140
best practices, 142
practical solutions, 140–142

portability
of handhelds and ultra-portable mobile

devices, 86–87
laptops, 76
netbooks, 79

power supplies, 76

practical solutions. See specific entries such as
accessibility aids

Presto
about, 238
best practices, 240
practical solutions, 238–240

printers
about, 174
best practices, 176
practical solutions, 174–176

progressive design, 47–53
project requirements, determining, 18–19
projection glasses, 168. See also projector
projector

about, 166–167
best practices, 169
practical solutions, 167–168

proprietary code. See non-standard code
Proxy

about, 243
best practices, 245
practical solutions, 244–245

psychological state. See emotional factors

Q
QR codes, 156. See also scanner
qualitative data, 35
quantitative data, 35
QuickTime (Apple), 251. See also multimedia
quirks mode, 231

R
RAM. See components
rasterized antialiasing, 193
reactive design, 62–66
Reader (Sony). See eReader
Real Player. See multimedia
Really-safe palette. See colors
RealOne Player, 251
real-time text. See accessibility aids
‘redesign versus realign’ consideration, 29
reductionism, 361
reformatters

about, 266
best practices, 268
practical solutions, 267–268

I N D E X 379

remote control
about, 147
best practices, 149
practical solutions, 148–149

resources
about, 302
best practices, 304
practical solutions, 303–304

responsive design, 58–62
resumability, 117–118
review sites. See verification
RFID, 135, 157
‘rigid versus fluid’ consideration, 26–27
RIM BlackBerry. See PDA; smartphone
roaming charges. See bandwidth
robots, scripts and spiders

about, 342–343
automated tools

about, 349–350
best practices, 351
practical solutions, 350–351

Google visibility, 343
search engines

about, 344
best practices, 346
practical solutions, 345–346

social networks
about, 346–347
best practices, 349
practical solutions, 347–349

verification
about, 351–352
best practices, 353
practical solutions, 352–353

RSS. See reformatters

S
Safari (Apple). See reformatters; WebKit
safe-surfer filters. See security
SatNav devices. See transportation
scanner

about, 154–155
best practices, 157
practical solutions, 155–156

screen magnifiers. See accessibility aids
screen readers. See accessibility aids

scripts. See robots, scripts and spiders
SeaMonkey. See Gecko
search engines

about, 51, 344
best practices, 346
practical solutions, 345–346

security
about, 206–207
best practices, 209
practical solutions, 207–209

Sega Dreamcast. See game console
seizure disability. See physical conditions
semantic metadata, 293. See also metadata
server downtime. See connectivity
services

about, 307–308
best practices, 310
practical solutions, 308–309

session IDs. See personalization
set top box

about, 118–119
best practices, 121
practical solutions, 119–120

ShareThis (website), 348
Shockwave (Adobe), 250. See also enhancements;

plug-ins
sidebars, 256. See also extensions
Silverlight (Microsoft). See enhancements;

plug-ins
single-use services, 81
site maintenance. See connectivity
site maps/indexes. See architecture
situational design. See interoperability
size (display), 163
SkyFire. See Proxy
Skype’s Heartbeat, 350
Sleipnir. See Trident
Smart appliances. See connected objects;

television
smartphone

about, 90–91
best practices, 92
practical solutions, 91–92

snippets
about, 219–220
best practices, 221
practical solutions, 220–221

F U T U R E - P R O O F W E B D E S I G N 380

social expectations
about, 365–366
best practices, 367
practical solutions, 366–367

social networks
about, 346–347
best practices, 349
practical solutions, 347–349

software. See design software
Sony Mylo. See PDA
Sony PlayStation. See game console; handheld

console
Sony Reader. See eReader
source code library. See frameworks
speakers

about, 171–172
best practices, 173
practical solutions, 172–173

speech agents. See accessibility aids
speech impairment. See physical conditions
speed (connection), 181. See also bandwidth
spiders. See robots, scripts and spiders
Splashtop Remote (website), 101
Stardock, 196
Stereoscopic 3D. See visual effects
StumbleUpon extension, 256
stylus. See pointer
Subnotebook. See netbooks
Surface (Microsoft). See connected objects
survival techniques

adapting and evolving, 23–31
compatibility issues, 32–36
environment, 10–17
planning for successful websites, 18–22

sWAP watch. See wristwatch
Symbian (Nokia). See smartphone
syntax schemas. See metadata
system shell, 192–193

T
table-based layouts, 283
tablets

about, 88
best practices, 90
practical solutions, 88–90

technologies, new, 23–25

television. See also display
about, 108
best practices, 110
practical solutions, 109–110

template builders. See wizards
terminology, 10–12
testing, 34, 208
TextMate, 218
textual content. See content
third-party dependency

about, 300–301
404 errors, 301, 364
frameworks

about, 304–305
best practices, 307
practical solutions, 305–307

resources
about, 302
best practices, 304
practical solutions, 303–304

services
about, 307–308
best practices, 310
practical solutions, 308–309

“three laws” (Asimov), 19
3B. See alternates
3D, 330, 331
3/DS. See handheld console
Thunderhawk. See Proxy
TiVo. See set top box
toolbars, 256. See also extensions
tools, other. See also specific types

about, 157–158
best practices, 159
practical solutions, 158–159

total reboots. See iteration
touch screen. See display
touchpad

about, 142–143
best practices, 144
practical solutions, 143–144

touchscreen. See touchpad
Touchtag. See physical goods
trackball. See pointer
transportation

about, 131
best practices, 133
practical solutions, 132–133

I N D E X 381

trends, 16–17. See also layouts
Trident

about, 230
best practices, 232
practical solutions, 231–232

Twitter. See social networks
2D photographs, making into 3D images, 330
typefaces

about, 201–202
best practices, 204
practical solutions, 202–204

U
UC Browser. See Proxy
UI guidelines, 322
ultrabooks. See laptop
ultra-mobile PC. See tablets
ultra-portable mobile devices. See handheld and

ultra-portable mobile devices
upgrades/updates. See iteration
USB devices. See tools, other

V
validation, 14
Vanilla software, 215
vendor prefixes, 51. See also non-standard code
verification

about, 351–352
best practices, 353
practical solutions, 352–353

video. See content
viewport, 195
Violet. See physical goods
virtual reality (VR), 330–331. See also augmented

reality; visual effects
virtual-reality headset. See projector
visibility

of active links, 146
Google, 343

visual editors (WYSIWYG)
about, 216–217
best practices, 219
practical solutions, 217–219

visual effects
about, 332
best practices, 334
practical solutions, 332–334

visual impairment. See physical conditions
VNC-style remote control, 101
voice recognition. See microphone
VR (virtual reality), 330–331. See also visual

effects
Vuzix’s iWear, 168

W
W3C, 44
WAP/WML, 86
WCAG (Web Content Accessibility Guidelines),

44, 359
Web 1.0/2.0/3.0, 10–11
web applications. See automated tools
web connectivity. See connectivity
web design products

adapting and evolving
business guide, 30–31
layout solutions, 25–30
technologies, new, 23–25

compatibility issues
cultivating customer service, 34–35
debugging for durable devices, 32–34
survival of the fittest, 35–36

environment
keeping up with trends, 16–17
mythology and folklore in design, 12–16
terminology, 10–12

planning for successful websites
determining project requirements, 18–19
implementation planning, 21–22
setting goals, 19–21

Web TV (Microsoft), 109. See also television
Web-app widgets. See apps and widgets
webcam. See imaging
Web-enabled vehicles. See transportation
WebKit

about, 235–236
best practices, 237
practical solutions, 236–237

Websafe palette. See colors
websites. See specific websites
WebSmart palette. See colors
webtop. See nettops
WebTV. See television
widgets. See apps and widgets

F U T U R E - P R O O F W E B D E S I G N 382

Wii (Nintendo). See game console; handheld
console

Wikipedia, 89, 231, 320
window manager. See GUIs
Windows Media Player, 251. See also multimedia
Windows Mobile, 98
WinMo (Microsoft). See PDA
wizards

about, 221–222
best practices, 224
practical solutions, 222–224

WML
about, 289–290
best practices, 292
practical solutions, 290–292

WordPress. See CMS (content management
systems)

workstation. See desktop, designing for
wristwatch

about, 100–101
best practices, 102
practical solutions, 101–102

WYSIWYG. See visual editors (WYSIWYG)

X
(x)HTML

about, 282
best practices, 284
practical solutions, 283–284

XViD, 259

Y
Yahoo!. See search engines
YouView. See set top box

Z
Zune (Microsoft). See media player
ZYPAD. See wristwatch

	Future-Proof Web Design: A Survival Guide
	Contents
	Introduction
	What’s This Book About?
	No Artificial Flavorings
	Conventions Within This Book
	Your Marauders Map

	Chapter 1: Future-Proof Survival Techniques
	Understanding the Environment
	Planning for a Successful Website
	Learning to Adapt or Evolve
	Resolving Issues of Compatibility

	Chapter 2: The Five Principles of Ubiquity
	Websites Are like Onions
	Level 1: Graceful Design
	Level 2: Progressive Design
	Level 3: Adaptive Design
	Level 4: Responsive Design
	Level 5: Reactive Design

	Chapter 3: Designing for the Desktop
	Knowing the Challenge: Compatibility
	Desktop
	Laptop
	Netbooks
	Nettops

	Chapter 4: Helping Out the Handheld
	Benefiting from Portability
	Tablet
	Smartphone
	Featurephone
	eReader
	PDA
	Wristwatch

	Chapter 5: Evolving for Entertainment
	Bringing the Web into the Living Room
	Television
	Game Console
	Handheld Console
	Media Player
	Set Top Box

	Chapter 6: Automobiles and Appliances
	Preparing for Your Dream Reality
	Embedded Gadgets
	Connected Objects
	Transportation
	Physical Goods

	Chapter 7: Designing for Input Tools
	Just Point and Flick!
	Pointer
	Touchpad
	Keyboard
	Remote Control
	Microphone
	Imaging
	Scanner
	Other Tools

	Chapter 8: Designing for Output Tools
	Your Digital Eyes and Ears
	Display
	Projector
	E Ink
	Speakers
	Printers

	Chapter 9: Environmental Influences
	Internal and External Factors
	Components
	Connectivity
	Bandwidth

	Chapter 10: Influencing Operating Systems
	Inside the System Shell
	GUIs
	Controls
	Associations
	Typefaces
	Colors
	Security

	Chapter 11: Details on Design Software
	What You Code is What You Get
	CMSs
	Visual Editors (WYSIWYG)
	Snippets
	Wizards

	Chapter 12: Befriend the Web Browser
	Windows to the Web
	Trident
	Gecko
	WebKit
	Presto
	Mobile
	Proxy
	Alternates

	Chapter 13: Providing Powerful Plug-Ins
	Plug-and-Play Interactivity
	Enhancements
	Extensions
	Multimedia

	Chapter 14: Alternative Content Applications
	Browsing Without a Browser
	Reformatters
	Apps and Widgets
	Accessibility Aids
	Augmented Reality

	Chapter 15: The Consequences of Code
	The Compatibility of Code
	(x)HTML
	CSS
	JavaScript
	WML
	Metadata
	Non-Standard Code

	Chapter 16: Third-Party Dependency
	The Weakest Link
	Resources
	Frameworks
	Services

	Chapter 17: Deliberations About Design
	The Art of Aging Gracefully
	Architecture
	Content
	Layout
	Iteration

	Chapter 18: Fun with Futuristic Features
	The Tools of Tomorrow
	Visual Effects
	Interoperability
	Personalization

	Chapter 19: Dealing with the Robot Army
	Of Machines and Men
	Search Engines
	Social Networks
	Automated Tools
	Verification

	Chapter 20: Factoring in the Human Element
	A Matter of Being Human
	Physical Conditions
	Intellectual Challenges
	Emotional Factors
	Social Expectations

	Index

