
www.allitebooks.com

http://www.allitebooks.org

Getting Started with ASP.NET 4.5
Web Forms (Beta)
Erik Reitan

Summary: This series of tutorials guides you through the steps required to create an
ASP.NET Web Forms application using Visual Studio 11 Beta and ASP.NET 4.5 Beta.

Category: Step-By-Step
Applies to: ASP.NET 4.5 Beta, Visual Studio 11 Beta
Source: ASP.NET site (link to source content)
E-book publication date: May 2012
59 pages

www.allitebooks.com

http://www.asp.net/web-forms/tutorials/aspnet-45/getting-started-with-aspnet-45-web-forms/introduction-and-overview
http://www.allitebooks.org

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

www.allitebooks.com

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.allitebooks.org

Getting Started with ASP.NET 4.5 Web
Forms
By Erik Reitan | April 6th, 2012

Contents
Introduction and Overview .. 3

Introduction .. 3

Audience .. 3

Application Features .. 3

Application Scenarios and Tasks .. 3

Overview .. 3

Prerequisites ... 7

Download the Sample Application .. 8

Tutorial Support and Comments .. 8

After this Tutorial Series ... 9

Create the Project .. 10

Creating the Project ... 10

Reviewing the Project .. 12

Running the Default Web Application ... 13

ASP.NET Web Forms Background... 13

Web Application Features in the Web Forms Application Template 14

Touring Visual Studio ... 17

Summary ... 18

Additional Resources .. 18

Create the Data Access Layer .. 19

Creating the Data Models ... 19

Configuring the Application to Use the Data Model ... 30

Building the Application .. 31

Summary ... 32

Additional Resources .. 32

UI and Navigation .. 33

Modifying the UI .. 33

www.allitebooks.com

http://www.allitebooks.org

Updating the Master Page ... 36

Adding Image Files .. 38

Adding Pages .. 40

Updating the StyleSheet ... 41

Modifying the Default Navigation ... 42

Adding a Data Control to Display Navigation Data .. 42

Linking the Data Control to the Database ... 44

Running the Application and Creating the Database ... 44

Reviewing the Database ... 45

Summary ... 48

Additional Resources .. 48

Display Data Items and Details .. 49

Adding a Data Control to Display Products .. 49

Displaying Products ... 49

Adding Code to Display Products ... 52

Running the Application.. 53

Adding a Data Control to Display Product Details ... 55

Running the Application.. 57

Summary ... 58

Conclusion .. 58

Acknowledgements .. 58

www.allitebooks.com

http://www.allitebooks.org

Introduction and Overview

Introduction
This series of tutorials guides you through the steps required to create an ASP.NET Web Forms
applicationusing Visual Studio 11 Beta and ASP.NET 4.5 Beta.

The application you'llcreate is named the Wingtip Toys. It's a simplified example of a store front web site
that sells items online. This tutorial series highlights several of the new features available in ASP.NET 4.5
Beta.

This tutorial series is the first installment of two. Comments are welcome, and we'llmake every effort to
update this tutorial series based on your suggestions.

Audience
The intended audience of this tutorial series is experienced developers who are new to ASP.NET Web
Forms.A developer interested in this tutorial series should have the following skills:

• Familiar with an object oriented programming language
• Familiar with Web development concepts (HTML, CSS, JavaScript)
• Familiar with relational database concepts
• Familiar with n-tier architecture concepts

Application Features
The ASP.NET Web Form features presented in this series include:

• The Web Application Project (not Web Site Project)

• Web Forms

• Master Pages, Configuration

• Entity Framework Code First, LocalDB

• Request Validation

• Strongly Typed Data Controls, Model Binding, Data Annotations, and Value Providers

Application Scenarios and Tasks
Tasks demonstrated in this first series include:

• Creating, reviewing and running the new project
• Creating the database structure
• Initializing and seeding the database
• Customizing the UI using styles, graphics and a master page
• Adding pages and navigation
• Displaying menu details and product data

Overview
If you are new to ASP.NET Web Forms but have familiarity with programming concepts, you have the
right tutorial. If you are already familiar with ASP.NET Web Forms, you can benefit from this tutorial
series by the new features available in ASP.NET 4.5 Beta. If you are unfamiliar with programming
concepts and ASP.NET Web Forms, see Getting Started on the ASP.NET Web site.

www.allitebooks.com

http://www.asp.net/web-forms
http://www.allitebooks.org

The following screen shots provide a quick view of the ASP.NET Web forms application that you
willcreate in this tutorial series.When you run the application from Visual Studio 11 Beta, you willsee the
following web Home page.

You can register as a new user, or log in as an existing user. Navigation is provided at the top for each
product category. Each time the Home page is reached, one of the available products from the database
willbedisplayed.

By selecting the Products link, you willbe able to see a list of all available products.

www.allitebooks.com

http://www.allitebooks.org

You can also see individual product details by selecting any of the listed products.

www.allitebooks.com

http://www.allitebooks.org

As a user, you can register and login using the default functionality of the Web Forms template.

www.allitebooks.com

http://www.allitebooks.org

Prerequisites

Before you start, make sure that you have the following software installed on your computer:

• Microsoft Visual Studio 11 Beta or Microsoft Visual Studio 11 Express Beta for Web. The .NET

Framework is installed automatically.

This tutorial series uses Microsoft Visual Studio 11 Express Beta for Web. You can use either Microsoft

Visual Studio 11 Express Beta for Web or Microsoft Visual Studio 11 Beta to complete this tutorial series.

Note

Microsoft Visual Studio 11 Beta and Microsoft Visual Studio 11 Express Beta for Webwill often
bereferred to as Visual Studio throughout this tutorial series.

If you already have a Visual Studio version installed, the installation process willinstall Visual Studio 11
Beta or Microsoft Visual Studio 11 Express Beta for Webnext to the existing version. Sites that you

www.allitebooks.com

http://www.microsoft.com/visualstudio/11/en-us/downloads#vs
http://www.microsoft.com/visualstudio/11/en-us/downloads#express-web
http://www.allitebooks.org

created in earlier versions can be opened in the Beta version of Visual Studio 11 and continue to open in
previous versions.

Note

This walkthrough assumes that you selected the Web Development collection of settings the first
time that you started Visual Studio. For more information, see How to: Select Web Development
Environment Settings.

Download the Sample Application
After installing the prerequisites, you are ready to begin creatingthenewWeb project that is presented in
this tutorial series. If you would like to run the sample application that this tutorial series creates, you
can download it from the MSDN Samples site.This download contains the following:

• The sample application in the WingtipToys folder.
• The resources used when creating the sample application in the WingtipToys-Assets folder of

the WingtipToys folder.
• A PDF file containing this tutorial series in the WingtipToys folder.

Download the file from MSDN Samples site:
Getting Started with ASP.NET Web Forms 4.5

The download is a .zip file. To see the completed project that this tutorial series creates, find and select
theC# folder in the .zip file. Save theC# folderto the folder you use to work with Visual Studio 11 Beta
projects. By default this is the following folder:

C:\Users\<username>\Documents\Visual Studio 11\Projects

Rename the C# folder to WingtipToys.

Note

If you already have a folder named WingtipToys in your Projects folder, temporarily rename that
existing folder before renaming the C# folder to WingtipToys.

To run the completed project, open the WingtipToys folder that you copied to your Projects folder and
double-click the WingtipToys.sln file. Visual Studio 11 Beta will open the project. Next, right-click the
Default.aspxfile in the Solution Explorer window and click View In Browser from the right-click menu.

Tutorial Support and Comments
Use the Q AND Asection included with the Getting Started with ASP.NET Web Forms 4.5 sample for any
questions or comments.

http://msdn.microsoft.com/en-us/library/ff521558.aspx
http://msdn.microsoft.com/en-us/library/ff521558.aspx
http://code.msdn.microsoft.com/Getting-Started-with-221c01f5
http://code.msdn.microsoft.com/Getting-Started-with-221c01f5

Comments on this tutorial seriesare welcome, and when this tutorial series is updated every effort
willbemade to take into account corrections or suggestions for improvements that are provided in the
tutorial comments.

When an error happens during development, or if the Web site does not run correctly, the error
messages may give complex clues to the source of the problem or might not explain how to fix it. To
help you with some common problem scenarios, you can also use the ASP.NET forumsor the Q AND A
section included with the Getting Started with ASP.NET Web Forms 4.5 sample. If you get an error
message or something doesn't work as you go through the tutorials, be sure to check the above
locations.

After this Tutorial Series

As previously mentioned, this tutorial series is the first set of two. Tasks that willbepresented in the
second series include:

• Business logic and shopping cart functionality
• Membership, authorization and checkout functionality
• Exception handling
• Deployment considerations

http://forums.asp.net/
http://code.msdn.microsoft.com/Getting-Started-with-221c01f5

Create the Project
In this tutorial you will create, review, and run the default project in Visual Studio, which will allow you
to become familiar with features of ASP.NET. Also, you will review the Visual Studio environment.

What you'll learn:

• How to create a new Web Forms project.
• The file structure of the Web Forms project.
• How to run the project in Visual Studio.
• The different features of the default Web forms application.
• Some basics about how to use the Visual Studio environment.

Creating the Project
1. Open Visual Studio.
2. Select New Project from the File menu in Visual Studio.

3. Select the Templates>Visual C#>Web templates group on the left.
4. Choose the ASP.NET Web Forms Application template in the center column.
5. Name your project WingtipToys and choose the OK button.

The project will take a little time to create. When it’s ready, it shows the Default.aspx page.

You can switch between Design view and Source view by selecting an option at the bottom of the center
window. Design view displays ASP.NET Web pages, master pages, content pages, HTML pages, and user
controls using a near-WYSIWYG view.Source view displays the HTML markup for your Web page, which
you can edit.

Understanding the Project Type
ASP.NET Web Forms lets you build dynamic websites using a familiar drag-and-drop, event-driven
model. A design surface and hundreds of controls and components let you rapidly build sophisticated,
powerful UI-driven sites with data access. The Wingtip Toys tutorial series is based on ASP.NET Web
Forms, but many of the concepts you learn in this tutorial series are applicable to all of ASP.NET.

ASP.NET offers three development frameworks:

• ASP.NET Web Forms
The Web Forms framework targets developers who prefer declarative and control-based
programming, such as Microsoft Windows Forms (WinForms) and WPF/XAML/Silverlight. It
offers a WYSIWYG designer-driven development model, so it's popular with developers looking
for a rapid application development (RAD) environment for web development. If you’re new to
web programming and are familiar with the traditional Microsoft RAD client development tools
(for example, for Visual Basic and Visual C#), you can quickly build a web application without
having experience in HTML and JavaScript.

• ASP.NET MVC

http://www.asp.net/web-forms
http://www.asp.net/mvc

ASP.NET MVC targets developers who are interested in patterns and principles like test-driven
development, separation of concerns, inversion of control (IoC), and dependency injection (DI).
This framework encourages separating the business logic layer of a web application from its
presentation layer.

• ASP.NET Web Pages
ASP.NET Web Pages targets developers who want a simple web development story, along the
lines of PHP. In the Web Pages model, you create HTML pages and then add server-based code
to the page in order to dynamically control how that markup is rendered. Web Pages is
specifically designed to be a lightweight framework, and it's the easiest entry point into ASP.NET
for people who know HTML but might not have broad programming experience — for example,
students or hobbyists. It's also a good way for web developers who know PHP or similar
frameworks to start using ASP.NET.

Reviewing the Project
In Visual Studio, the Solution Explorer window lets you manage files for the project. Let’s take a look at
the folders that have been added to your application in Solution Explorer. The web application template
adds a basic folder structure:

Visual Studio creates some initial folders and files for your project. The first files that you will be working
with later in this tutorial are the following:

File Purpose
Default.aspx Typically the first page displayed when the application is run in a browser.
Site.Master A page that allows you to create a consistent layout and use standard

http://www.asp.net/web-pages

behavior for pages in your application.
Global.asax An optional file that contains code for responding to application-level and

session-level events raised by ASP.NET or by HTTP modules.
Web.config The configuration data for an application.

Running the Default Web Application
The default Web application provides a rich experience based on built-in functionality and
support.Without any changes to the default Web forms project, the application is ready to run on your
local Web browser.

1. Press the Ctrl+F5 key in Visual Studio. The application will build and display in your Web
browser.

There are three main pages in this default Web application: Default.aspx (Home), About.aspx, and
Contact.aspx. Each of these pages can be reached from the top navigation bar. There are also two
additional pages contained in the Account folder, the Register.aspx page and Login.aspx page. These two
pages allow you to use the membership capabilities of ASP.NET to create, store, and validate user
credentials.

ASP.NET Web Forms Background
ASP.NET Web Forms are pages that are based on Microsoft ASP.NET technology, in which code that runs
on the server dynamically generates Web page output to the browser or client device.An ASP.NET Web
Forms page automatically renders the correct browser-compliant HTML for features such as styles,

layout, and so on. Web Forms are compatible with any language supported by the .NET common
language runtime, such as Microsoft Visual Basic and Microsoft Visual C#. Also, Web Forms are built on
the Microsoft .NET Framework, which provides benefits such as a managed environment, type safety,
and inheritance.

When an ASP.NET Web Forms page runs, the page goes through a life cycle in which it performs a series
of processing steps. These steps include initialization, instantiating controls, restoring and maintaining
state, running event handler code, and rendering. As you become more familiar with the power of
ASP.NET Web Forms, it is important for you to understand the page life cycle so that you can write code
at the appropriate life-cycle stage for the effect you intend.

When a Web server receives a request for a page, it finds the page, processes it, sends it to the browser,
and then discards all page information. If the user requests the same page again, the server repeats the
entire sequence, reprocessing the page from scratch. Put another way, a server has no memory of pages
that it has processed—page are stateless. The ASP.NET page framework automatically handles the task
of maintaining the state of your page and its controls, and it provides you with explicit ways to maintain
the state of application-specific information.

Web Application Features in the Web Forms Application Template
The ASP.NET Web Forms Applicationtemplate provides a rich set of built-in functionality. It not only
provides you with a Home.aspx page, an About.aspx page, a Contact.aspx page, but also includes
membership functionality that registers users and saves their credentials so that they can log in to your
website. This overview provides more information about some of the features contained in the ASP.NET
Web Forms Application template and how they are used in the Wingtip Toys application.

Membership
ASP.NET membership stores your users’ credentials in a database created by the application. When your
users log in, the application validates their credentials by reading the database. Your project's Account
folder contains the files that implement the various parts of membership: registering, logging in,
changing a password, and authorizing access.

http://msdn.microsoft.com/en-us/library/yh26yfzy.aspx

By default, the template creates a membership database using a default database name on an instance
of SQL Server Express LocalDB, the development database server that comes with Visual Studio 11 Beta.

SQL Server Express LocalDB
SQL Server Express LocalDB is a lightweight version of SQL Server that has many programmability
features of a SQL Server database. SQL Server Express LocalDB runs in user mode and has a fast, zero-
configuration installation that has a short list of installation prerequisites. In Microsoft SQL Server, any
database or Transact-SQL code can be moved from SQL Server Express LocalDB to SQL Server and
Windows Azure SQL Database without any upgrade steps. So, SQL Server Express LocalDB can be used as
a developer environment for applications targeting all editions of SQL Server.SQL Server Express LocalDB
enables features such as stored procedures, user-defined functions and aggregates, .NET Framework
integration, spatial types and others that are not available in SQL Server Compact.

Master Pages
An ASP.NET master page defines a consistent appearance and behavior for all of the pages in your
application. The layout of the master page merges with the content from an individual content page to
produce the final page that the user sees. In the Wingtip Toys application, you modify the Site.master
master page so that all the pages in the Wingtip Toys website share the same distinctive logo and
navigation bar.

HTML5
The ASP.NET Web Forms Application template uses HTML5, which is the latest version of the HTML

http://msdn.microsoft.com/en-us/library/wtxbf3hh.aspx
http://msdn.microsoft.com/en-us/library/hh673546(VS.85).aspx

markup language. HTML5 supports new elements and functionality that make it easier to create Web
sites. For example, the Wingtip Toys application uses HTML5 in the Site.Master master page to create a
navigation bar by placing a list of links inside the<nav> element. You can easily modify the nav element
in the Site.Master page to create navigation for your own web applications.

Additional HTML5 elements in the ASP.NET Web Forms Application template include <header>,
<footer>, <article>, <section>, and <hgroup>. The <header> element encloses a group of navigational
aids. The <footer> element typically contains information like who authored the section, copyright
information, and links to related documents. The <article> element encloses content that can stand on
its own and potentially be distributed independently of other content on the page. The <section>
element’s role is to enclose a thematic grouping of content, usually with a heading. The <hgroup>
element is useful when you want a group of a set of <h1> to <h6> elements that will be considered as a
unit within the overall document outline.

Modernizr
For browsers that do not support HTML5, you can use Modernizr. Modernizr is an open-source
JavaScript library that can detect whether a browser supports HTML5 features, and enable them if it
does not. In the ASP.NET Web Forms Application template, Modernizr is installed as a NuGet package.

NuGet Packages
The ASP.NET Web Forms Application template includes a set of NuGet packages. These packages
provide componentized functionality in the form of open source libraries and tools. There is a wide
variety of packages to help you create and test your applications. Visual Studio makes it easy to add,
remove, and update NuGet packages.Developers can create and add packages to NuGet as well.

When you install a package, NuGet copies files to your solution and automatically makes whatever
changes are needed, such as adding references and changing your web.config file. If you decide to
remove the library, NuGet removes files and reverses whatever changes it made in your project so that
no clutter is left. NuGet is available from the Tools menu in Visual Studio.

http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-header-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-footer-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-article-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-section-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-hgroup-element
http://www.modernizr.com/

jQuery
jQuery is a fast and concise JavaScript Library that simplifies HTML document traversing, event handling,
animating, and Ajax interactions for rapid web development. The jQuery JavaScript library is included in
the ASP.NET Web Forms Application template as a NuGet package.

Unobtrusive Validation
Built-in validator controls have been configured to use unobtrusive JavaScript for client-side validation
logic. This significantly reduces the amount of JavaScript rendered inline in the page markup and
reduces the overall page size. Unobtrusive validation is added globally to the ASP.NET Web Forms
Application template based on the setting in the <appSettings> element of the Web.config file at the
root of the application.

Anti-XSS Library
The ASP.NET Web Forms Application template provides encoding routines that help to protect your
application against cross-site scripting (XSS) attacks. XSS attacks attempt to inject client-side script into
the pages of your web application. The Anti-XSS library also helps you to protect your application against
LDAP injection attacks that are possible if user input is not properly validated.

Universal Providers
ASP.NET Universal Providers add provider support for all editions of SQL Server 2005 and later, as well as
Windows Azure SQL Database. By default, the ASP.NET Web Forms Application template includes the
ASP.NET Universal Providers package from NuGet. This means that cloud storage of membership data
can quickly be published to SQL Database.

Entity Framework Code First
Besides the features in the ASP.NET Web Forms Application template, the Wingtip Toys application uses
Entity Framework Code First, which is a NuGet library that enables code-centric development when you
work with data. Put simply, it creates the database portion of your application for you based on the
code that you write. Using the Entity Framework, you retrieve and manipulate data as strongly typed
objects. This lets you focus on the business logic in your application rather than the details of how data
is accessed.

Touring Visual Studio
The primary windows in Visual Studio include the Solution Explorer, the Server Explorer (Database
Explorer in Express), the Properties Window, the Toolbox, the Toolbar, and the Document Window.

www.allitebooks.com

https://www.owasp.org/index.php/XSS
http://www.asp.net/vnext/overview/whitepapers/whats-new#_Toc303354468
https://www.owasp.org/index.php/LDAP_injection
http://weblogs.asp.net/scottgu/archive/2010/12/08/announcing-entity-framework-code-first-ctp5-release.aspx
http://www.allitebooks.org

For more information about Visual Studio, see Dev11 Beta Visual Guide to the Web Development IDE in
Visual Studio.

Summary
In this tutorial you have created, reviewed and ran the default Web forms application. You have
reviewed the different features of the default Web forms application and learned some basics about
how to use the Visual Studio environment. In the following tutorials you'll create the data access layer.

Additional Resources
Choosing the Right Programming Model
Web Application Projects versus Web Site Projects
ASP.NET Web Forms Pages Overview

http://www.asp.net/web-forms/videos/how-do-i/choosing-the-right-programming-model
http://msdn.microsoft.com/en-us/library/dd547590.aspx
http://msdn.microsoft.com/en-us/library/428509ah.aspx

Create the Data Access Layer
This tutorial describes how to create, access, and review data from a database using ASP.NET Web
Forms and Entity Framework Code First. This tutorial builds on the previous tutorial “Create the Project”
and is part of the Wingtip Toy Store tutorial series. When you've completed this tutorial, you'll have a
new folder named Models and you will have built data-access classes in that folder.

What you'll learn:

• How to create the data models.
• How to initialize and seed the database.
• How to update and configure the application to support the database.

These are the features introduced in the tutorial:

• Entity Framework Code First
• LocalDB
• Data Annotations

Creating the Data Models
The Entity Framework is an object-relational mapping (ORM) framework. It lets you work with relational
data as objects, eliminating most of the data-access code that you'd usually need to write. Using the
Entity Framework, you can issue queries using LINQ, then retrieve and manipulate data as strongly
typed objects. LINQ provides patterns for querying and updating data. Using EF allows you to focus on
creating the rest of your application, rather than focusing on the data access fundamentals. Later in this
tutorial series, we’ll show you how to use the data to populate navigation and product queries.

Entity Framework supports a development paradigm called Code First. Code First lets you define your
data models using classes; you can then map these classes to an existing database or use them to
generate a database. In this tutorial, you’ll create the data models by writing data model classes. Then,
you’ll let the Entity Framework create the database on the fly from these new classes.

You’ll begin by creating the entity classes that define the data models for the Web Forms application.
Then you will create a context class that managestheentity classes and provides data access to the
database. You will also create an initializer class that you will use to populate the database.

Installing the Entity Framework
Before you can work with the Entity Framework, you must install it. This is easy using the NuGet
package installer.NuGet is a Visual Studio extension that makes it easy to install and update open source
libraries and tools in Visual Studio.

1. Within Visual Studio, from the Tools menu, select Library Package Manager ->Manage NuGet
Packages for Solution.

http://msdn.microsoft.com/en-us/data/aa937723
http://msdn.microsoft.com/en-us/library/bb397926.aspx

The Manage NuGet Packages dialog box is displayed within Visual Studio.

2. In theManage NuGet Packages dialog box, select NuGet official package source on the left.
Then, find and install the EntityFramework package.

You will need to have an internet connection to download the package.

3. In the Select Projects dialog box, make sure the WingtipToys selection is selected and click OK.

4. In the License Acceptance dialog box, select I Accept to agree to the license terms.

That’s it! The Entity Framework is ready to go. Now you need to add the data models using entity
classes.

Entity Classes
The classes you create to define the schema of the data are called entity classes. If you’re familiar with
database design, think of the entity classes as defining tables. Each property in the class specifies a
column in the table of the database. These classes provide a lightweight, object-relational interface
between object-oriented code and the relational table structure of the database.

In this tutorial, we’ll start out by adding simple entity classes representing the schemas for products and
categories.

1. Right-click the project name (Wingtip Toys) in Solution Explorer and select AddNew Folder.

2. Name the new folder Models.
3. Right-click the Models folder and then select AddNew Item.

The Add New Item dialog box is displayed.

4. Under Visual C# from the Installed pane on the left, select Code.
5. Select Class from the middle pane and name this new class Product.cs.
6. Click Add.

The new class file is displayed in the editor.

7. Replace the default code with the following code:

usingSystem.ComponentModel.DataAnnotations;

namespaceWingtipToys.Models
{
publicclassProduct
 {
 [ScaffoldColumn(false)]
publicintProductID { get; set; }

 [Required, StringLength(100), Display(Name = "Name")]
publicstringProductName { get; set; }

 [Required, StringLength(10000), Display(Name = "Product Description"),
DataType(DataType.MultilineText)]
publicstring Description { get; set; }

publicstringImagePath { get; set; }

 [Display(Name = "Price")]
publicdouble? UnitPrice { get; set; }

publicint? CategoryID { get; set; }

publicvirtualCategoryCategory { get; set; }
 }
}

8. Repeat steps 3 through 6, but add a class named Category.cs and replace the default code with
the following code:

usingSystem.Collections.Generic;
usingSystem.ComponentModel.DataAnnotations;

namespaceWingtipToys.Models
{
publicclassCategory
 {
 [ScaffoldColumn(false)]
publicintCategoryID { get; set; }

 [Required, StringLength(100), Display(Name = "Name")]
publicstringCategoryName { get; set; }

 [Display(Name = "Product Description")]
publicstring Description { get; set; }

publicvirtualICollection<Product> Products { get; set; }
 }
}

The Category class represents the type of product that the application is designed to sell (such as "Cars",
"Boats", "Rockets", and so on), and the Product class represents the products (toys) in the database.
Each instance of a Product object will correspond to a row within a database table, and each property of
the Product class will map to a column in the table. Later in this tutorial, you’ll review the product data
contained in the database.

Data Annotations
You may have noticed that certain members of the classes have attributes specifying details about the
member, such as [StringLength(15)]and [Key]. These are data annotations. The data annotation
attributes can describe how to validate user input for that member, to specify formatting for it, and to
specify how it is modeled.

Context Class
To start using the classes for data access, you must define a context class. As mentioned previously, the
context class manages the entity classes and provides data access to the database.

This procedure adds a new C# context class to the Models folder.

1. Right-click the Models folder and then select Add ->New Item.
The Add New Item dialog box is displayed.

2. Select Code from the Installed pane on the left.
3. Select Class from the middle pane and name it ProductContext.cs.
4. Click Add at the bottom of the dialog box.
5. Replace the default code contained in the class with the following code:

usingSystem.Data.Entity;

namespaceWingtipToys.Models
{
publicclassProductContext : DbContext
 {
publicProductContext()
 : base("WingtipToys")
 {
 }

publicDbSet<Category> Categories { get; set; }
publicDbSet<Product> Products { get; set; }
 }
}

This code adds the System.Data.Entity namespace so that you have access to all the core functionality
of the Entity Framework, which includes the capability to query, insert, update, and delete data by
working with strongly typed objects.

The ProductContext class represents the Entity Framework product database context, which handles
fetching, storing, and updating Product class instances in the database. The ProductContextclass derives
from the DbContext base class provided by the Entity Framework.

Initializer Class
You will need to run some custom logic to initialize the database the first time the context is used. This
will allow seed data to be added to the databaseso that you can immediately display products and
categories.

This procedure adds a new C# initializer class to the Models folder.

1. Create another Class and name it ProductDatabaseInitializer.cs.
2. Replace the default code contained in the class with the following code:

usingSystem.Collections.Generic;
usingSystem.Data.Entity;

namespaceWingtipToys.Model
{
publicclassProductDatabaseInitializer : DropCreateDatabaseIfModelChanges<ProductContext>
 {
protectedoverridevoid Seed(ProductContext context)
 {
GetCategories().ForEach(c =>context.Categories.Add(c));
GetProducts().ForEach(p =>context.Products.Add(p));
 }

privatestaticList<Category>GetCategories()
 {
var categories = newList<Category> {
newCategory

 {
CategoryID = 1,
CategoryName = "Cars"
 },
newCategory
 {
CategoryID = 2,
CategoryName = "Planes"
 },
newCategory
 {
CategoryID = 3,
CategoryName = "Trucks"
 },
newCategory
 {
CategoryID = 4,
CategoryName = "Boats"
 },
newCategory
 {
CategoryID = 5,
CategoryName = "Rockets"
 },
 };

return categories;
 }

privatestaticList<Product>GetProducts()
 {
var products = newList<Product> {
newProduct
 {
ProductID = 1,
ProductName = "Convertible Car",
 Description = "Convertible Car Description.",
ImagePath="carconvert.jpg",
UnitPrice = 22.50,
CategoryID = 1
 },
newProduct
 {
ProductID = 2,
ProductName = "Old-time Car",
 Description = "Old-time Car Description.",
ImagePath="carearly.jpg",
UnitPrice = 15.95,
CategoryID = 1
 },
newProduct
 {
ProductID = 3,
ProductName = "Fast Car",
 Description = "Fast Car Description.",
ImagePath="carfast.jpg",
UnitPrice = 32.99,
CategoryID = 1

 },
newProduct
 {
ProductID = 4,
ProductName = "Super Fast Car",
 Description = "Super Fast Car Description.",
ImagePath="carfaster.jpg",
UnitPrice = 8.95,
CategoryID = 1
 },
newProduct
 {
ProductID = 5,
ProductName = "Old Style Racer",
 Description = "Old Style Racer Description.",
ImagePath="carracer.jpg",
UnitPrice = 34.95,
CategoryID = 1
 },
newProduct
 {
ProductID = 6,
ProductName = "Ace Plane",
 Description = "Ace Plane Description.",
ImagePath="planeace.jpg",
UnitPrice = 95.00,
CategoryID = 2
 },
newProduct
 {
ProductID = 7,
ProductName = "Glider",
 Description = "Description Glider Plane.",
ImagePath="planeglider.jpg",
UnitPrice = 4.95,
CategoryID = 2
 },
newProduct
 {
ProductID = 8,
ProductName = "Paper Plane",
 Description = "Description Paper Plane.",
ImagePath="planepaper.jpg",
UnitPrice = 342.95,
CategoryID = 2
 },
newProduct
 {
ProductID = 9,
ProductName = "Propeller Plane",
 Description = "Description Propeller Plane.",
ImagePath="planeprop.jpg",
UnitPrice = 32.95,
CategoryID = 2
 },
newProduct
 {
ProductID = 10,

www.allitebooks.com

http://www.allitebooks.org

ProductName = "Early Truck",
 Description = "Description Early Truck.",
ImagePath="truckearly.jpg",
UnitPrice = 15.00,
CategoryID = 3
 },
newProduct
 {
ProductID = 11,
ProductName = "Fire Truck",
 Description = "Description Fire Truck.",
ImagePath="truckfire.jpg",
UnitPrice = 26.00,
CategoryID = 3
 },
newProduct
 {
ProductID = 12,
ProductName = "Double Decker Bus",
 Description = "Description Double Decker Bus.",
ImagePath="busdouble.jpg",
UnitPrice = 49.95,
CategoryID = 3
 },
newProduct
 {
ProductID = 13,
ProductName = "Big Truck",
 Description = "Description Big Truck.",
ImagePath="truckbig.jpg",
UnitPrice = 29.00,
CategoryID = 3
 },
newProduct
 {
ProductID = 14,
ProductName = "Big Ship",
 Description = "Big Ship Description.",
ImagePath="boatbig.jpg",
UnitPrice = 95.00,
CategoryID = 4
 },
newProduct
 {
ProductID = 15,
ProductName = "Paper Boat",
 Description = "Description Paper Boat.",
ImagePath="boatpaper.jpg",
UnitPrice = 4.95,
CategoryID = 4
 },
newProduct
 {
ProductID = 16,
ProductName = "Sail Boat",
 Description = "Description Sail Boat.",
ImagePath="boatsail.jpg",
UnitPrice = 42.95,

CategoryID = 4
 },
newProduct
 {
ProductID = 17,
ProductName = "Rocket",
 Description = "Description Rocket.",
ImagePath="rocket.jpg",
UnitPrice = 12.95,
CategoryID = 5
 }
 };

return products;
 }
 }
}

When the database is created and initialized, the Seed property is overridden and set. When the Seed
property is set, the values from the categories and products are used to populate the database. If you
attempt to update the seed data by modifying the above code after the database has been created, you
won't see any updates when you run the Web application. The reason is the above code uses an
implementation of the DropCreateDatabaseIfModelChanges class to recognize if the model (schema)
has changed before resetting the seed data. If no changes are made to the Category and Product entity
classes, the database will not be reinitialized with the seed data.

At this point, you will have a new Models folder with four new classes:

Configuring the Application to Use the Data Model
Now that you've created the classes that represent the data, you have to configure the application to
use the classes. In the Global.asax file, you add code that initializes the model. In the Web.config file you
add information that tells the application what database you'll use to store the data that's represented
by the new data classes.

Updating the Global.asax file
To initialize the data models when the application starts, add the following code highlighted in yellow to
the Application_Start method in the Global.asax.cs file.

using System;
usingSystem.Collections.Generic;
usingSystem.Linq;
usingSystem.Web;
usingSystem.Web.Security;
usingSystem.Web.SessionState;
usingSystem.Data.Entity;
usingWingtipToys.Models;

namespace WingtipToys
{
publicclassGlobal : System.Web.HttpApplication
 {

voidApplication_Start(object sender, EventArgs e)
 {
// Code that runs on application startup
Database.SetInitializer<ProductContext>(newProductDatabaseInitializer());
 }

voidApplication_End(object sender, EventArgs e)
 {
// Code that runs on application shutdown

 }

voidApplication_Error(object sender, EventArgs e)
 {
// Code that runs when an unhandled error occurs

 }

voidSession_Start(object sender, EventArgs e)
 {
// Code that runs when a new session is started

 }

voidSession_End(object sender, EventArgs e)
 {
// Code that runs when a session ends.
// Note: The Session_End event is raised only when the sessionstate mode
// is set to InProc in the Web.config file. If session mode is set to StateServer

// or SQLServer, the event is not raised.

 }

 }
}

In this code, when the application starts, the application specifies the initializer that will run during the
first time the data is accessed.

Modifying the Web.Config File
Although Entity Framework Code First will generate a database for you in a default location when the
database is populated with seed data, adding your own connection information to your application gives
you control of the database location. You specify this database connection using a connection string in
the application’sWeb.config file at the root of the project. By adding a new connection string, you can
direct the location of the database (wingtiptoys.mdf) to be built in the application’s data directory
(App_Data), rather than its default location.

<connectionStrings>
<addname="DefaultConnection"connectionString="Data Source=(LocalDb)\v11.0;Initial
Catalog=aspnet-WingtipToys-20120110021050;Integrated Security=True"
providerName="System.Data.SqlClient" />
<addname="WingtipToys"connectionString="Data
Source=(LocalDB)\v11.0;AttachDbFilename=|DataDirectory|\wingtiptoys.mdf;Integrated
Security=True"providerName="System.Data.SqlClient" />
</connectionStrings>

When the application is run for the first time, it will build the database at the location specified by the
connection string. But before running the application, let’s build it first.

Building the Application
To make sure that all the classes and changes to your Web application work, you should
build the application.

1. From the Build menu, select Build WingtipToys.
The Output window is displayed, and if all went well, you see a “succeeded”
message.

If you run into an error, re-check the above steps. The information in the Output window
will indicate which file has a problem and where in the file a change is required. This
information will allow you to determine what part of the above steps need to be fixed.

Summary
In this tutorial of the series you have created the data model, as well as, added the code
that will be used to initialize and seed the database. You have also configured the
application to use the data models when the application is run.

In the next tutorial, you'll update the UI, add navigation, and retrieve data from the
database. This will result in the database being automatically created based on the entity
classes that you created in this tutorial.

Additional Resources
Entity Framework Overview
Beginner's Guide to the ADO.NET Entity Framework
Code First Development with Entity Framework (video)
Code First Relationships Fluent API
Code First Data Annotations
Productivity Improvements for the Entity Framework

http://msdn.microsoft.com/en-us/library/bb399567.aspx
http://msdn.microsoft.com/en-us/data/ee712907
http://www.msteched.com/2010/Europe/DEV212
http://msdn.microsoft.com/en-us/data/hh134698
http://msdn.microsoft.com/en-us/data/gg193958
http://blogs.msdn.com/b/efdesign/archive/2010/06/21/productivity-improvements-for-the-entity-framework.aspx?wa=wsignin1.0

UI and Navigation

In this tutorial, you will modify the UI of the default Web application to support features of the Wingtip
Toys store front application. Also, you will add simple and data bound navigation. This tutorial builds on
the previous tutorial “Create the Data Access Layer” and is part of the Wingtip Toys tutorial series.

What you'll learn:

• How to change the UI to support features of the Wingtip Toys store front application.
• How to configure an HTML5 element to include page navigation.
• How to create a data-driven control to navigate to specific product data.
• How to display data from a database created using Entity Framework Code First.

ASP.NET Web Forms allow you to create dynamic content for your Web application. Each
ASP.NET Web page is created in a manner similar to a static HTML Web page (a page that
does not include server-based processing), but ASP.NET Web page includes extra elements
that ASP.NET recognizes and processes to generate HTML when the page runs.

With a static HTML page (.htm or .html file), the server fulfills a Web request by reading the
file and sending it as-is to the browser. In contrast, when someone requests an ASP.NET
Web page (.aspx file), the page runs as a program on the Web server. While the page is
running, it can perform any task that your Web site requires, including calculating values,
reading or writing database information, or calling other programs. As its output, the page
dynamically produces markup (such as elements in HTML) and sends this dynamic output to
the browser.

Modifying the UI
You’ll continue this tutorial series by modifying the Default.aspx page. You will modify the UI that’s
already established by the default template used to create the application. The type of modifications
you’ll do are typical when creating any Web Forms application. You’ll do this by changing the title,
replacing some content, and removing unneeded default content.

1. Open or switch to the Default.aspx page.
2. If the page appears in Design view, switch to Source view.
3. At the top of the page in the @Page directive, change the Title attribute to “Welcome”, as

shown below.

<%@PageTitle="Welcome"Language="C#"MasterPageFile="~/Site.Master"AutoEventWireup="true"Co
deBehind="Default.aspx.cs"Inherits="WingtipToys._Default"%>

4. Replace default content with the content highlighted in yellow below.

<asp:Contentrunat="server"ID="FeaturedContent"ContentPlaceHolderID="FeaturedContent">
<sectionclass="featured">
<divclass="content-wrapper">
<hgroupclass="title">
<h1><%:Page.Title%>!</h1>

<h2>Wingtip Toys can help you find the perfect gift</h2>
</hgroup>
<p>
We're all about transportation toys. You can order
any of our toys today. Each toy listing has detailed
information to help you choose the right toy.
</p>
</div>
</section>
</asp:Content>

5. Replace all the content contained in the MainContent placeholder , so that this HTML section
will now be the following:

<asp:Contentrunat="server"ID="BodyContent"ContentPlaceHolderID="MainContent">
<sectionstyle="alignment-adjust: middle">
</section>
</asp:Content>

6. Save the Default.aspx page by selecting Save Default.aspx from the File menu.

The resulting page will appear as follows:

<%@PageTitle="Welcome"Language="C#"MasterPageFile="~/Site.Master"AutoEventWireup="true"Co
deBehind="Default.aspx.cs"Inherits="WingtipToys._Default"%>

<asp:ContentID="Content1"ContentPlaceHolderID="HeadContent"runat="server">
</asp:Content>
<asp:Contentrunat="server"ID="FeaturedContent"ContentPlaceHolderID="FeaturedContent">
<sectionclass="featured">
<divclass="content-wrapper">
<hgroupclass="title">
<h1><%:Page.Title%>!</h1>
<h2>Wingtip Toys can help you find the perfect gift</h2>
</hgroup>
<p>
 We're all about toys and transportation. You can order
any of our toys today. Each toy listing has detailed
information to help you find the right toy.
</p>
</div>
</section>
</asp:Content>
<asp:Contentrunat="server"ID="BodyContent"ContentPlaceHolderID="MainContent">
<sectionstyle="alignment-adjust: middle">
</section>
</asp:Content>

In the example, you have set the Title attribute of the @Page directive. When the HTML is displayed in a
browser, the server code <%:Page.Title%> resolves to the content contained in the Title attribute.

The example page includes the basic elements that constitute an ASP.NET Web page. The
page contains static text as you might have in an HTML page, along with elements that are
specific to ASP.NET.

@Page Directive
ASP.NET Web Forms usually contain directives that allow you to specify page properties and
configuration information for the page. The directives are used by ASP.NET as instructions for how to
process the page, but they are not rendered as part of the markup that is sent to the browser.

The most commonly used directive is the @Page directive, which allows you to specify many
configuration options for the page, including the following:

• The server programming language for code in the page, such as C#.
• Whether the page is a page with server code directly in the page, which is called a single-file

page, or whether it is a page with code in a separate class file, which is called a code-behind
page.

• Whether the page has an associated master page and should therefore be treated as a content
page.

• Debugging and tracing options.

If you do not include an@Page directive in the page, or if the directive does not include a specific
setting, a setting will be inherited from the Web.config configuration file or from the Machine.config
configuration file. The Machine.config file provides additional configuration settings to all applications
running on a machine.

Web Server Controls
In most ASP.NET Web Forms applications, you will add controls that allow the user to interact with the
page, including buttons, text boxes, lists, and so on. These Web server controls are similar to HTML
buttons and input elements. However, they are processed on the server, allowing you to use server code
to set their properties. These controls also raise events that you can handle in server code.

Server controls use a special syntax that ASP.NET recognizes when the page runs. The tag name for
ASP.NET server controls starts with an asp: prefix. This allows ASP.NET to recognize and process these
server controls. The prefix might be different if the control is not part of the .NET Framework. In
addition to the asp: prefix, ASP.NET server controls also include the runat="server" attribute and an ID
that you can use to reference the control in server code.

When the page runs, ASP.NET identifies the server controls and runs the code that is associated with
those controls. Many controls render some HTML or other markup into the page when it is displayed in
a browser.

Server Code
Most ASP.NET Web Forms applications include code that runs on the server when the page is processed.
As mentioned above, server code can be used to do a variety of things, such as adding data to a ListView
control. ASP.NET supports many languages to run on the server, including C#, Visual Basic, J#, and
others.

ASP.NET supports two models for writing server code for a Web page. In the single-file model, the code
for the page is in a script element where the opening tag includes the runat="server" attribute.
Alternatively, you can create the code for the page in a separate class file, which is referred to as the
code-behind model. In this case, the ASP.NET Web Forms page generally contains no server code.
Instead, the @Page directive includes information that links the .aspx page with its associated code-
behind file.

The CodeBehindattribute contained in the @Page directive specifies the name of the separate class file,
and the Inherits attribute specifies the name of the class within the code-behind file that corresponds to
the page.

Updating the Master Page
In ASP.NET Web Forms, master pages allow you to create a consistent layout for the pages
in your application. A single master page defines the look and feel and standard behavior
that you want for all of the pages (or a group of pages) in your application. You can then
create individual content pages that contain the content you want to display, as explained
above. When users request the content pages, ASP.NET merges them with the master page
to produce output that combines the layout of the master page with the content from the
content page.

The new site needs a single logo to display on every page. To do this, you can modify the HTML on the
master page.

1. In Solution Explorer, find and open the Site.Master page.
2. If the page is in Design view, switch to Source view.
3. Update the master page by replacing the existing <title> element with the markup shown

below:

<title><%:Page.Title%> - Wingtip Toys</title>

4. Update the master page again by replacing the existing <header> element with the following
markup:

<header>
<divclass="content-wrapper">
<divclass="float-left">
<pclass="site-title">
<aid="A2"runat="server" href="~/">
<asp:ImageID="Logo"runat="server"
ImageUrl="~/images/logo.jpg"
BorderStyle="None"/>

</p>
</div>
<divclass="float-right">
<sectionid="login">
<asp:LoginViewrunat="server"ViewStateMode="Disabled">
<AnonymousTemplate>

<arunat="server"
href="~/Account/Register.aspx">Register

<arunat="server"
href="~/Account/Login.aspx">Log in

</AnonymousTemplate>
<LoggedInTemplate>
<p>
 Hello, <arunat="server"
class="username"
href="~/Account/ChangePassword.aspx"
title="Change password">
<asp:LoginNamerunat="server"
CssClass="username"/>
!
<asp:LoginStatusrunat="server"
LogoutAction="Redirect"
LogoutText="Log off"
LogoutPageUrl="~/"/>
</p>
</LoggedInTemplate>
</asp:LoginView>
</section>
<nav>
<ulid="menu">
<arunat="server"href="~/">Home
<arunat="server"href="~/About.aspx">About
<arunat="server"href="~/Contact.aspx">Contact

</nav>
</div>
</div>
</header>

This HTML will display the image named logo.jpg from the root of the Web application which you’ll add
later. When a page that uses the master page is displayed in a browser, the logo will be displayed. If a
user clicks on the logo, the user will navigate back to the Default.aspx page. The HTML anchor tag <a>
wraps the image server control and allows the image to be included as part of the link. The href
attribute for the anchor tag specifies the root "~/"of the Web site as the link location. By default, the
Default.aspx page is displayed when the user navigates to the root of the Web site. The
Image<asp:Image> server control includes addition properties, such as BorderStyle, that render as
HTML when displayed in a browser.

Master Pages
A master page is an ASP.NET file with the extension .master (for example, Site.Master) with a predefined
layout that can include static text, HTML elements, and server controls. The master page is identified by
a special @Master directive that replaces the @Page directive that is used for ordinary .aspx pages.

In addition to the @Master directive, the master page also contains all of the top-level HTML elements
for a page, such as html, head, and form. For example, on the master page you added above, you use an

www.allitebooks.com

http://www.allitebooks.org

HTML table for the layout, an img element for the company logo, static text, and server controls to
handle common membership for your site. You can use any HTML and any ASP.NET elements as part of
your master page.

In addition to static text and controls that will appear on all pages, the master page also includes one or
more ContentPlaceHolder controls. These placeholder controls define regions where replaceable
content will appear. In turn, the replaceable content is defined in content pages, such as Default.aspx,
using the Content server control.

Adding Image Files
The logo image that is referenced above, along with all the product images, must be added to the Web
application so that they can be seen when the project is displayed in a browser.

Download from MSDN Samples site:
Getting Started with ASP.NET Web Forms 4.5

The download includes resources in the WingtipToys-Assets folder that are used to create the sample
application.

1. If you haven’t already done so, download the compressed sample files using the above link from
the MSDN Samples site.

2. Once downloaded, open the .zip file and copy the contents to a local folder on your machine.
3. Find and open the WingtipToys-Assets folder.
4. By dragging and dropping, copy the Catalog folder from your local folder to the root of the Web

application project in the Solution Explorer of Visual Studio.

http://code.msdn.microsoft.com/Getting-Started-with-221c01f5

5. Next, copy the logo.jpg file from the WingtipToys-Assets folder to the Images folder of the Web
application project in the Solution Explorer of Visual Studio.

6. Click the Show All Files option at the top of the Solution Explorer to update the list of files if you
don’t see the new files.

Solution Explorer now shows the updated project files.

Adding Pages
Before adding navigation to the Web application, you’ll first add the new pages that you’ll navigate to.
Later in this tutorial series, you’ll display products and product details on these new pages.

1. In Solution Explorer, right-click WingtipToys, click Add, and then click New Item.

The Add New Item dialog box is displayed.

2. Select the Visual C#>Web templates group on the left. Then, select Web Form using
Master Page from the middle list and name it ProductList.aspx.

3. Select Site.Master to attach the master page to the newly created .aspx page.

4. Add an additional page named ProductDetails.aspx by following these steps.

Updating the StyleSheet
The default project template includes a cascading style sheet (CSS) file named Site.css. This
file contains style rules that are applied to elements in the Web pages of the site. CSS styles
define how elements are displayed and where they are positioned on the page. CSS styles

can be placed inline within a single HTML element, grouped in a style block within the head
section of a Web page, or imported from a separate style sheet.

In this tutorial you will comment out two styles to change the look of the Web site.

1. In Solution Explorer, find the Content folder and open the Site.css file.
2. Find the .main-content style and comment out the lines that it contains by selecting the

lines and clicking the comment out icon on the tool bar.
The styles will appear as shown below:

Modifying the Default Navigation
The default navigation for every page in the application can be modified by changing the nav element
that's in the Site.Master page.

1. In Solution Explorer, locate and open the Site.Master page.
2. Find the nav element and modify the items as shown below:

<nav>
<ulid="menu">
<ahref="/">Home
<ahref="/About.aspx">About
<ahref="/Contact.aspx">Contact
<ahref="/ProductList.aspx">Products

</nav>

The nav element is new with HTML5. It makes adding and displaying navigation easy. As you can see in
the above HTML, you modified each line item containing an anchor tag <a> with a link href
attribute. Each href points to a page in the Web application. In the browser, when a user clicks on one of
these links (such as Products), they will navigate to the page contained in the href(such as
ProductList.aspx).

Adding a Data Control to Display Navigation Data
Next, you’ll add a control to display all of the categories from the database. Each category will act as a
link to the ProductList.aspx page. When a user clicks on a category linkin the browser, they will navigate
to the products page and see only the products associated with the selected category.

You’ll use a ListView control to display all the categories contained in the database.

To add a ListView control to the master page:

1. In the Site.Master page, update the <div> element containing the id="body" attribute with the
following markup:

<divid="body">
<sectionstyle="text-align: center">
<asp:ListViewID="categoryList"
ItemType="WingtipToys.Models.Category"
runat="server"
SelectMethod="GetCategories">
<ItemTemplate>
<bstyle="font-size: large; font-style: normal">
<ahref="ProductList.aspx?id=<%#:Item.CategoryID%>">
<%#:Item.CategoryName%>

</ItemTemplate>
<ItemSeparatorTemplate> - </ItemSeparatorTemplate>
</asp:ListView>
</section>

<asp:ContentPlaceHolderrunat="server"ID="FeaturedContent"/>
<sectionclass="content-wrapper main-content clear-fix">
<asp:ContentPlaceHolderrunat="server"ID="MainContent"/>
</section>
</div>

This code will display all the categories from the database. The ListView control displays each category
name as link text and includes a link to the ProductList.aspx page with a query-string value containing
the ID of the category. By setting the ItemType property in the ListView control, the data-binding
expression Item is available within the ItemTemplate node and the control becomes strongly typed. You
can select details of the Item object using IntelliSense, such as specifying the CategoryName. This code
is contained inside the container <%#:%> that marks a data-binding expression. By adding the (:) to the
end of the <%# prefix, the result of the data-binding expression is HTML-encoded. When the result is
HTML-encoded, your application is better protected against cross-site script injection (XSS) and HTML
injection attacks.

Note

When you add code by typing during development, you can be certain that a valid
member of an object is found because strongly typed data controls show the available
members based on IntelliSense. IntelliSense offers context-appropriate code choices as
you type code, such as properties, methods, and objects.

Linking the Data Control to the Database
Before you can display data in the data control, you need to link the data control to the database. To
make the link, you can modify the code behind of the Site.Master.cs file.

1. In Solution Explorer, right-click the Site.Master page and then click View Code. The
Site.Master.cs file is opened in the editor.

2. Replace the existing code with the following code:

using System;
usingSystem.Collections.Generic;
usingSystem.Linq;
usingSystem.Web;
usingSystem.Web.UI;
usingSystem.Web.UI.WebControls;
usingWingtipToys.Models;

namespace WingtipToys
{
publicpartialclassSiteMaster : MasterPage
 {
protectedvoidPage_Load(object sender, EventArgs e)
 {

 }
publicIQueryable<Category>GetCategories()
 {
vardb = newWingtipToys.Models.ProductContext();
IQueryable<Category> query = db.Categories;
return query;
 }
 }
}

The above code is executed when any page that uses the master page is loaded in the browser. The
ListView control (named “categoryList”) that you added earlier in this tutorial uses model binding to
select data. In the markup of the ListView control you set the control's SelectMethod property to the
GetCategories method, shown above.The ListView control calls the GetCategoriesmethod at the
appropriate time in the page life cycle and automatically binds the returned data. You will learn more
about binding data in the next tutorial.

Running the Application and Creating the Database
Earlier in this tutorial series you created an initializer class (named “ProductDatabaseInitializer”) and
specified this class in the global.asax file. The Entity Framework will generate the database when the
application is run the first time because the Application_Start method contained in the global.asax.cs
file will call the initializer class. The initializer class will use the model classes (Category and Product)
that you added earlier in this tutorial series to create the database.

1. In Visual Studio press Ctrl+F5.

2.

When the application is run, the application will be compiled and the database named
wingtiptoys.mdf will be created. It will take a little time to set everything up first this first run. In
the browser, you will see a category navigation menu. This menu was generated by retrieving
the categories from the database. The page navigation text that was rendered from the <nav>
element is on the right.

3. Close the browser.

Reviewing the Database
Open the Web.config file and look at the connection string section. You can see that the
AttachDbFilename value in the connection string points to the DataDirectory for the Web
application project. The value |DataDirectory| is a reserved value that represents the
App_Data folder in the project. This folder is where the database is located.

<connectionStrings>
<addname="DefaultConnection"connectionString="Data Source=(LocalDb)\v11.0;Initial
Catalog=aspnet-WingtipToys-20120110021050;Integrated Security=True"

providerName="System.Data.SqlClient" />
<addname="WingtipToys"connectionString="Data
Source=(LocalDB)\v11.0;AttachDbFilename=|DataDirectory|\wingtiptoys.mdf;Integrated
Security=True"providerName="System.Data.SqlClient" />
</connectionStrings>

Note

If the App_Data folder is not visible or if the folder is empty, select the Show All Files
icon and the Refresh icon at the top of the Solution Explorer window. Expanding the
width of the Solution Explorer windows may be required to show all available icons.

Now you can inspect the data contained in the wingtiptoys.mdf database file by using the Database
Explorer window (Server Explorer window in Visual Studio).

1. Expand the App_Data folder.
2. Right-click the wingtiptoys.mdf database file and select Open.

Database Explorer is displayed.

3. Expand the Tables folder.
4. Right-click the Products table and select Show Table Data.

The Products table is displayed.

This view lets you see and modify the data in the Products table by hand.

5. Close the Products table window.
6. In the Database Explorer, right-click the Products table and select Open Table Definition.

The data design for the Products table is displayed.

www.allitebooks.com

http://www.allitebooks.org

Here you see the SQL DDL statement that was used to create the table. You can also use the UI
to modify the schema. However, defining the schema as you did using entity classes in the
previous tutorial may be quicker and easier.

Summary
In this tutorial of the series you have added some basic UI, graphics, pages, and navigation.
Additionally, you ran the Web application, which created the database from the data classes
that you added in the previous tutorial. You also viewed the contents of the Products table
of the database. In the following tutorial, you'll display data items and details from the
database.

Additional Resources
Introduction to Programming ASP.NET Web Pages
ASP.NET Web Server Controls Overview
CSS Tutorial

http://msdn.microsoft.com/en-us/library/ms178125.aspx
http://msdn.microsoft.com/en-us/library/zsyt68f1.aspx
http://www.w3schools.com/css/default.asp

Display Data Items and Details
This tutorial describes how to display data items and data item details using ASP.NET Web Forms and
Entity Framework Code First. This tutorial builds on the previous tutorial “UI and Navigation” and is part
of the Wingtip Toy Store tutorial series. When you've completed this tutorial, you’ll be able to see
products on the ProductsList.aspx page and details about an individual product on the
ProductDetails.aspx page.

What you'll learn:

• How to add a data control to display products from the database.
• How to connect a data control to the selected data.
• How to add a data control to display product details from the database.
• How to retrieve a value from the query string and use that value to limit the data that's

retrieved from the database.

These are the features introduced in the tutorial:

• Model Binding
• Value providers

Adding a Data Control to Display Products
When binding data to a server control, there are a few different options you can use. The most common
options include adding a data source control, adding code by hand, or using model binding.

Using a Data Source Control to Bind Data

Adding a data source control allows you to link the data source control to the control that displays the
data. This approach allows you to declaratively connect server-side controls directly to data sources,
rather than using a programmatic approach.

Coding By Hand to Bind Data

Adding code by hand involves reading the value, checking for a null value, attempting to convert it to the
appropriate type, checking whether the conversion was successful, and finally, using the value in the
query. You would use this approach when you need to retain full control over your data-access logic.

Using Model Binding to Bind Data

Using model binding allows you to bind results using far less code and gives you the ability to reuse the
functionality throughout your application. Model binding aims to simplify working with code-focused
data-access logic while still retaining the benefits of a rich, data-binding framework.

Displaying Products
In this tutorial, you’ll use model binding to bind data. To configure a data control to use model binding
to select data, you set the control's SelectMethod property to the name of a method in the page's code.
The data control calls the method at the appropriate time in the page life cycle and automatically binds
the returned data. There's no need to explicitly call the DataBind method.

Using the steps below, you’ll modify the markup in the ProductList.aspx page so that the page can
display products.

1. In Solution Explorer, open the ProductList.aspx page.
2. Replace the existing markup with the following markup:

<%@PageTitle="Products"Language="C#"MasterPageFile="~/Site.Master"AutoEventWireup="true"
CodeBehind="ProductList.aspx.cs"Inherits="WingtipToys.ProductList"%>
<asp:ContentID="Content1"ContentPlaceHolderID="HeadContent"runat="server">
</asp:Content>
<asp:ContentID="Content2"ContentPlaceHolderID="FeaturedContent"runat="server">
<sectionclass="featured">
<divclass="content-wrapper">
<hgroupclass="title">
<h1><%:Page.Title%></h1>
</hgroup>

<sectionclass="featured">

<asp:ListViewID="productList"runat="server"
DataKeyNames="ProductID"
GroupItemCount="3"ItemType="WingtipToys.Models.Product"SelectMethod="GetProducts">
<EmptyDataTemplate>
<tablerunat="server">
<tr>
<td>No data was returned.</td>
</tr>
</table>
</EmptyDataTemplate>
<EmptyItemTemplate>
<tdrunat="server"/>
</EmptyItemTemplate>
<GroupTemplate>
<trID="itemPlaceholderContainer"runat="server">
<tdID="itemPlaceholder"runat="server"></td>
</tr>
</GroupTemplate>
<ItemTemplate>
<tdrunat="server">
<table>
<tr>
<td> </td>
<td>
<ahref='ProductDetails.aspx?productID=<%#:Item.ProductID%>'>
<imagesrc='Catalog/Images/Thumbs/<%#:Item.ImagePath%>'
width="100"height="75"border="1"/>
</td>
<td>
<ahref='ProductDetails.aspx?productID=<%#:Item.ProductID%>'>
<spanclass="ProductName">
<%#:Item.ProductName%>

<spanclass="ProductPrice">
Price: <%#:String.Format("{0:c}", Item.UnitPrice)%>

</td>

</tr>
</table>
</td>
</ItemTemplate>
<LayoutTemplate>
<tablerunat="server">
<trrunat="server">
<tdrunat="server">
<tableID="groupPlaceholderContainer"runat="server">
<trID="groupPlaceholder"runat="server"></tr>
</table>
</td>
</tr>
<trrunat="server"><tdrunat="server"></td></tr>
</table>
</LayoutTemplate>
</asp:ListView>

</section>
</div>
</section>
</asp:Content>
<asp:ContentID="Content3"ContentPlaceHolderID="MainContent"runat="server">
</asp:Content>

This code uses a ListView control named "productList" to display the products.

<asp:ListViewID="productList"runat="server"

The ListView control displays data in a format that you define by using templates and styles. It is useful
for data in any repeating structure. This ListView example simply shows data from the database,
however you can enable users to edit, insert, and delete data, and to sort and page data, all without
code.

By setting the ItemType property in the ListView control, the data-binding expression Item is available
and the control becomes strongly typed. As mentioned in the previous tutorial, you can select details of
the Item object using IntelliSense, such as specifying the ProductName:

In addition, you are using model binding to specify a SelectMethod value. This value (GetProducts) will
correspond to the method that you will add to the code behind to display products in the next step.

Adding Code to Display Products
In this step, you’ll add code to populate the ListView control with product data from the database. The
code will support showing products by individual category, as well as all products.

1. In Solution Explorer, right-click ProductList.aspx and then click View Code.
2. Replace the existing code in the ProductList.aspx.cs file with the following code:

using System;
usingSystem.Collections.Generic;
usingSystem.Linq;
usingSystem.Web;
usingSystem.Web.UI;
usingSystem.Web.UI.WebControls;
usingWingtipToys.Models;
usingSystem.Web.ModelBinding;

namespace WingtipToys
{
publicpartialclassProductList : System.Web.UI.Page
 {
protectedvoidPage_Load(object sender, EventArgs e)
 {

 }

publicIQueryable<Product>GetProducts([QueryString("id")] int? categoryId)
 {
var _db = newWingtipToys.Models.ProductContext();
IQueryable<Product> query = _db.Products;
if (categoryId.HasValue&&categoryId> 0)
 {
 query = query.Where(p =>p.CategoryID == categoryId);
 }

return query;
 }
 }
}

This code shows the GetProducts method that's referenced by the ItemType property of the ListView
control in the ProductList.aspx page. To limit the results to a specific category in the database, the code
sets the categoryId value from the query string value passed to the ProductList.aspx page when the
ProductList.aspx page is navigated to. The QueryStringAttribute class in the System.Web.ModelBinding
namespace is used to retrieve the value of the query string variable id. This instructs model binding to
try to bind a value from the query string to the categoryId parameter at run time.

When a valid category is passed as a query string to the page, the results of the query are limited to
those products in the database that match the categoryId value. For instance, if the URL to the
ProductsList.aspx page is the following:

http://localhost/ProductList.aspx?id=1

The page displays only the products where the category equals 1.

If no query string is included when navigating to the ProductList.aspx page, all products will be
displayed.

The sources of values for these methods are referred to as value providers (such as QueryString), and the
parameter attributes that indicate which value provider to use are referred to as value provider
attributes (such as "id"). ASP.NET includes value providers and corresponding attributes for all of the
typical sources of user input in a Web Forms application, such as the query string, cookies, form values,
controls, view state, session state, and profile properties. You can also write custom value providers.

Running the Application
Run the application now to see how you can view all of the products or just a set of products limited by
category.

1. In the Solution Explorer, right-click the Default.aspx page and select View in Browser.
The browser will open and show the Default.aspx page.

http://localhost/ProductList.aspx?id=1

2. Select “Cars” from the category navigation menu on the left.
The ProductList.aspx page is displayed showing only products included in the “Cars” category.

3. Select Products from the navigation menu at the top.
Again, the ProductList.aspx page is displayed with the entire list of products.

Adding a Data Control to Display Product Details
Next, you’ll modify the markup in the ProductDetails.aspx page so that the page can display information
about an individual product.

1. In Solution Explorer, open the ProductDetails.aspx page.
2. Replace the existing markup with the following markup:

<%@PageTitle="Product Details"Language="C#"MasterPageFile="~/Site.Master"AutoEventWireup="true"
CodeBehind="ProductDetails.aspx.cs"Inherits="WingtipToys.ProductDetails"%>
<asp:ContentID="Content1"ContentPlaceHolderID="HeadContent"runat="server">
</asp:Content>
<asp:ContentID="Content2"ContentPlaceHolderID="FeaturedContent"runat="server">
<asp:FormViewID="productDetails"runat="server"ItemType="WingtipToys.Models.Product"SelectMethod="GetProduct"
RenderOuterTable="false">
<ItemTemplate>
<div>
<h1><%#:Item.ProductName%></h1>
</div>

<table>
<tr>
<td>
<imagesrc='Catalog/Images/<%#:Item.ImagePath%>'border="1"alt='<%#:Item.ProductName%>'height="300"/>
</td>
<tdstyle="vertical-align: top">
Description:
<%#:Item.Description%>

Price: <%#:String.Format("{0:c}", Item.UnitPrice) %>

Product Number: <%#:Item.ProductID%>

</td>
</tr>
</table>
</ItemTemplate>
</asp:FormView>
</asp:Content>
<asp:ContentID="Content3"ContentPlaceHolderID="MainContent"runat="server">
</asp:Content>

This code uses a FormView control to display details about an individual product. The FormView control
is used to display a single record at a time from a data source. When you use the FormView control, you
create templates to display and edit data-bound values. The templates contain controls, binding
expressions, and formatting that define the look and functionality of the form.

To connect the above markup to the database, you must add additional code to the ProductDetails.aspx
code.

1. In Solution Explorer, right-click ProductDetails.aspx and then click View Code.
2. Replace the existing code with the following code:

using System;
usingSystem.Collections.Generic;
usingSystem.Linq;
usingSystem.Web;
usingSystem.Web.UI;
usingSystem.Web.UI.WebControls;
usingWingtipToys.Models;

usingSystem.Web.ModelBinding;

namespace WingtipToys
{
publicpartialclassProductDetails : System.Web.UI.Page
 {
protectedvoidPage_Load(object sender, EventArgs e)
 {

 }

publicIQueryable<Product>GetProduct([QueryString("productID")]int? productId)
 {
var _db = newWingtipToys.Models.ProductContext();
IQueryable<Product> query = _db.Products;
if (productId.HasValue&&productId> 0)
 {
 query = query.Where(p =>p.ProductID == productId);
 }
else
 {
 query = null;
 }
return query;
 }
 }
}

This code checks for a "productID" query-string value. If a valid query-string value is found, the matching
product is displayed. If no query-string is found, or the query-string value is not valid, no product is
displayed on the ProductDetails.aspx page.

Running the Application
Now you can run the application to see an individual product displayed based on the id of the product.

1. In the Solution Explorer, right-click the Default.aspx page and select View in Browser.
The browser will open and show the Default.aspx page.

2. Select "Boats" from the category navigation menu on the left.
The ProductList.aspx page is displayed.

www.allitebooks.com

http://www.allitebooks.org

3. Select the “Paper Boat” product from the product list.
The ProductDetails.aspx page is displayed.

Summary
In this tutorial of the series you have add markup and code to display a product list and to display product details.
During this process you have learned about strongly typed data controls, model binding, and value providers.

Conclusion
This completes part 1 of the ASP.NET 4.5 Web Forms tutorial series. For more information about new Web Forms
features available in ASP.NET 4.5 Beta and Visual Studio 11 Beta, see What's New in ASP.NET 4.5 and Visual Studio
11 Beta.

Acknowledgements
I would like to thank the following people who made significant contributions to the content of this tutorial series:

• Alberto Poblacion, MVP & MCT, Spain
• Alex Thissen, Netherlands(twitter:@alexthissen)
• Andre Tournier, USA
• Apurva Joshi, Microsoft

http://www.asp.net/vnext/overview/whitepapers/whats-new#_Toc318097385
http://www.asp.net/vnext/overview/whitepapers/whats-new#_Toc318097385
https://mvp.support.microsoft.com/profile/Alberto
http://blog.alexthissen.nl/
http://twitter.com/alexthissen
http://andret503.wordpress.com/

• BojanVrhovnik, Slovenia
• Bruno Sonnino, Brazil (twitter: @bsonnino)
• Carlos dos Santos, Brazil
• Dave Campbell, USA(twitter:@windowsdevnews)
• Michael Sharps, USA(twitter:@mrsharps)
• Mike Pope, Microsoft
• Mitchel Sellers, USA(twitter:@MitchelSellers)
• Paul Cociuba, Microsoft
• Paulo Morgado, Portugal
• Pranav Rastogi, Microsoft
• Tim Ammann, Microsoft
• Tom Dykstra, Microsoft

By Erik Reitan, Erik Reitan is a Senior Programming Writer on Microsoft's Web Platform & Tools
Content Team. During his spare time he enjoys developing Windows Phone and Windows 8
apps.

www.allitebooks.com

http://twitter.com/bvrhovnik
http://msmvps.com/blogs/bsonnino
http://twitter.com/bsonnino
http://www.carloscds.net/
http://www.wynapse.com/
http://twitter.com/windowsdevnews
http://www.930solutions.com/
http://twitter.com/mrsharps
http://www.mitchelsellers.com/
http://twitter.com/MitchelSellers
http://linqto.me/Links/pcociuba
http://paulomorgado.net/
http://blogs.msdn.com/b/pranav_rastogi
http://blogs.iis.net/timamm/default.aspx
http://blogs.msdn.com/aspnetue
http://blogs.msdn.com/erikreitan
http://blogs.msdn.com/erikreitan
http://www.allitebooks.org

	Cover
	Contents
	Introduction and Overview
	Introduction
	Audience
	Application Features
	Application Scenarios and Tasks
	Overview
	Prerequisites
	Download the Sample Application
	Tutorial Support and Comments
	After this Tutorial Series

	Create the Project
	Creating the Project
	Reviewing the Project
	Running the Default Web Application
	ASP.NET Web Forms Background
	Web Application Features in the Web Forms Application Template
	Touring Visual Studio
	Summary
	Additional Resources

	Create the Data Access Layer
	Creating the Data Models
	Configuring the Application to Use the Data Model
	Building the Application
	Summary
	Additional Resources

	UI and Navigation
	Modifying the UI
	Updating the Master Page
	Adding Image Files
	Adding Pages
	Updating the StyleSheet
	Modifying the Default Navigation
	Adding a Data Control to Display Navigation Data
	Linking the Data Control to the Database
	Running the Application and Creating the Database
	Reviewing the Database
	Summary
	Additional Resources

	Display Data Items and Details
	Adding a Data Control to Display Products
	Displaying Products
	Adding Code to Display Products
	Running the Application
	Adding a Data Control to Display Product Details
	Running the Application
	Summary
	Conclusion
	Acknowledgements

