
www.allitebooks.com

http://www.allitebooks.org

Getting Started with Magento
Extension Development

Understand Magento extensions, and build your own
from scratch!

Branko Ajzele

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Magento Extension Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1180913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK

ISBN 978-1-78328-039-1

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Branko Ajzele

Reviewers
Matej Krivak

Andrea De Pirro

Alistair Stead

Acquisition Editor
Akram Hussain

Commissioning Editor
Priyanka Shah

Technical Editors
Novina Kewalramani

Amit Ramadas

Rohit Kumar Singh

Project Coordinator
Romal Karani

Proofreader
Jonathan Todd

Indexer
Priya Subramani

Graphics
Ronak Dhruv

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Branko Ajzele is a professional, certified, and highly experienced software
developer, focused on e-commerce-related applications. Inventive in problem
solving on a day-to-day basis, mostly thanks to his rich, hands-on experience with
Magento, he feels comfortable proposing alternatives to demands he feels can be
improved, even when this means pulling a late shift to meet deadlines. He is no
stranger when it comes to topics such as payment and shipping gateways, order and
invoice functionalities, various third-party ERP, and fulfillment system integrations
with Magento. He holds several respected IT certifications such as Zend Certified
Engineer, Magento Certified Developer Plus, and JavaScript Certified Developer.

He currently works as a Chief Technology Officer at Inchoo, a Magento Gold
Solution partner company that offers top-quality e-commerce solutions, specializing
in the Magento e-commerce platform. He was the first person to join Inchoo after
Tomislav (CEO) founded it in May 2008, in Osijek, Croatia.

Instant E-Commerce with Magento: Build a Shop by Packt Publishing was his first
Magento-related book oriented toward Magento newcomers, after which he decided
to write this one for developers.

Special thanks in writing this book go toward my understanding
family and co-workers who found themselves involved in the
process.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Matej Krivak is an experienced web/database developer, born and raised in
Osijek, Croatia.

He has a Master's degree in Engineering (more specifically, Process Computing)
from the Faculty of Electrical Engineering in Osijek where he graduated with
highest honors (that is, summa cum laude).

Matej is currently working for Inchoo, a Croatian company specializing in
the creation of e-commerce solutions based on Magento, as a team leader and
a senior back-end developer. In the past, he has worked for Dialog, a small
Croatian company, where he developed and maintained systems based on
Oracle technologies.

He has a good knowledge of Magento, Oracle Designer 9i/11g, and various
relational database management systems (for example, MySQL, Oracle, and
Microsoft SQL Server).

Andrea De Pirro graduated with a Master's degree in Computer Engineering at
Università degli Studi di Roma Tre in Rome. He started his career as a Symfony and
Drupal developer at Emoveo, an innovative startup in Rome, learning about Agile
methodologies and PHP best practices. His next step was moving to Bioversity
International, where he developed and managed a digital asset management project
with the Alfresco J2EE platform. Then he moved to Wind, one of the largest Italian
mobile operators, developing Java and PHP web services. Finally, he moved to
Barcelona, working at Newshore on large e-commerce projects based on Magento
and Zend Framework, for customers such as Privalia, Groupalia, and Intercom.
Now he's co-founder of Yameveo, a company specializing in e-commerce solutions
and web applications.

www.allitebooks.com

http://www.allitebooks.org

Alistair Stead is Technical Assurance Manager at Session Digital UK and a
Magento Certification board member. Alistair has been developing software with
PHP and other technologies since 2000 and has helped many enterprise clients
from the UK and Europe realize complex commerce solutions.

He speaks regularly at conferences, not only regarding Magento but also many
different technical topics relevant to current development practices, performance,
and scalability.

In his spare time you will find Alistair tinkering with new technology and tweeting
about the results.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: An Overview of Magento Extensions 5

The root directory structure 6
Code pools 9
The theme system 12
Basic extension configuration 15
Controllers 17
Blocks 19
The model, resource, and collection 22
The event/observer pattern 30
Cron jobs 34
Helpers 36
System configuration options 37
Summary 43

Chapter 2: Building the Extension – Maximum Order Amount 45
Planning your extension 45
Registering your extension 46
Building the configuration options interface 47
Adding the business logic 51
Summary 54

Chapter 3: Building the Extension – Logger 55
Planning your extension 55
Registering your extension 56

Setting up the model and install script 57
Building the visual components 62
Adding the business logic 66

Summary 68

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 4: Building the Extension – Shipping 69
Shipping methods 69
Planning your extension 70
Registering your extension 70
Dissecting the existing shipping method 71
Defining your shipping method 73
Adding the business logic 77
Summary 81

Chapter 5: Building the Extension – Payment 83
Payment methods 83
Planning your extension 84
Registering your extension 85
Dissecting the existing payment method 86
Defining your payment method 88
Extension business logic 97
Summary 97

Chapter 6: Packaging and Publishing Your Extension 99
Magento Connect 99

Free extensions versus commercial extensions 100
Packaging your extension 100
Creating an extension profile 105
Uploading the extension package 107
Summary 110

Index 111

Preface
Building Magento extensions can be a challenging task for several reasons. On one
side a developer is required to have a solid understanding of advanced PHP object-
oriented knowledge, while on the other side there are numerous Magento-specific
patterns and configuration options you need to master. This book will give you
enough insight into the structure and concepts, and teach you a few tricks that will
help you master Magento more easily. By the end of the book, you should familiarize
yourself with configuration files, models, blocks, controllers, event/observers,
shipping, and payment methods. All of these should form a solid foundation
for your developing modules later.

What this book covers
Chapter 1, An Overview of Magento Extensions, introduces you to the overall Magento
directory structure, digging all the way down to the individual module structure.
Important concepts such as Block, Model, Helper, and controller classes together
with configuration files are introduced and explained.

Chapter 2, Building the Extension – Maximum Order Amount, guides you through your
first real-world module. Using the event/observer system, you build a simple but
powerful module for limiting the amount of maximum purchase.

Chapter 3, Building the Extension – Logger, introduces you to the practical usage of
models and installation scripts in Magento, together with the use of administration
grids for displaying the entity data.

Chapter 4, Building the Extension – Shipping, introduces you to the Magento
shipping methods system, showing you a practical example for building your
own shipping method.

Preface

[2]

Chapter 5, Building the Extension – Payment, introduces you to the Magento
payment methods system, showing you a practical example for building
your own payment method.

Chapter 6, Packaging and Publishing Your Extension, introduces you to the
process of packaging your extension for distribution over the Magento
Connect extension marketplace.

What you need for this book
In order to successfully run all the examples provided in this book, you will need
either your own web server or third-party web hosting solution. The Magento
Community Edition platform itself comes with a detailed list of system requirements,
which you can find at http://www.magentocommerce.com/system-requirements.
If you are able to install Magento on your server, you should be able to follow all
the guidelines given in the book.

Who this book is for
This book is primarily intended for intermediate to advanced PHP developers
looking for a way into Magento module development. The existing Magento
developers might find certain chapters interesting as well, depending on their
previous experience.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "This is basically a .htaccess template
file used for creating new stores within subfolders."

A block of code is set as follows:

<?xml version="1.0"?>
<config>
 <modules>
 <Foggyline_HappyHour>
 <active>true</active>

Preface

[3]

 <codePool>community</codePool>
 </Foggyline_HappyHour>
 </modules>
</config>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You
can confirm that by going under the Magento administration under System |
Configuration | Advanced | Advanced | Disable Modules Output."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

An Overview of Magento
Extensions

Creating Magento extensions can be an extremely challenging and time-consuming
task depending on several factors such as your knowledge of Magento internals,
overall development skills, and the complexity of the extension functionality itself.
Having a deep insight into Magento internals, its structure, and accompanying tips
and tricks will provide you with a strong foundation for clean and unobtrusive
Magento extension development.

The word unobtrusive should be a constant thought throughout your entire
development process. The reason is simple; given the massiveness of the Magento
platform, it is way too easy to build extensions that clash with other third-party
extensions. This is usually a beginner's flaw, which we will hopefully avoid once we
have finished reading this book. The examples listed in this book are targeted toward
Magento Community Edition 1.7.0.2. Version 1.7.0.2 is the last stable release at the
time of writing.

You can download the full installation archive from the official Magento site at
http://www.magentocommerce.com. You might need to register as a user on a
site in order to initiate the download.

An Overview of Magento Extensions

[6]

The root directory structure
Once you download the full release and set up your work environment, you should
see a root Magento folder structure with the following files and folders in it:

• Folders: app, downloader, errors, includes, js, lib, media, pkginfo,
shell, skin, and var

• Files: .htaccess, cron.sh,.htaccess.sample, LICENSE.html, mage,
LICENSE.txt, favicon.ico, LICENSE_AFL.txt, get.php php.ini.
sample, RELEASE_NOTES.txt, api.php, index.php, index.php.sample,
cron.php, and install.php

Throughout this book we will be referencing our URL examples as if they are
executing on the magento.loc domain. You are free to set your local Apache virtual
host and host file to any domain you prefer, as long as you keep this in mind. If
you're hearing about virtual host terminology for the first time, please refer to the
Apache Virtual Host documentation at http://httpd.apache.org/docs/2.4/
vhosts/.

Here is a quick summary of each of those files and folders:

• .htaccess: This file is a directory-level configuration file supported by
several web servers, most notably the Apache web server. It controls mod_
rewrite for fancy URLs and sets configuration server variables (such as
memory limit) and PHP maximum execution time.

• .htaccess.sample: This is basically a .htaccess template file used for
creating new stores within subfolders.

• api.php: This is primarily used for the Magento REST API, but can be used
for SOAP and XML-RPC API server functionality as well.

• app: This is where you will find Magento core code files for the backend and
for the frontend. This folder is basically the heart of the Magento platform.
Later on, we will dive into this folder for more details, given that this is the
folder that you as an extension developer will spend most of your time on.

• cron.php: This file, when triggered via URL or via console PHP, will trigger
certain Magento cron jobs logic.

• cron.sh: This file is a Unix shell script version of cron.php.

Chapter 1

[7]

• downloader: This folder is used by the Magento Connect Manager, which
is the functionality you access from the Magento administration area by
navigating to System | Magento Connect | Magento Connect Manager.

• errors: This folder is a host for a slightly separate Magento functionality,
the one that jumps in with error handling when your Magento store gets an
exception during code execution.

• favicon.ico: This is your standard 16 x 16 px website icon.
• get.php: This file hosts a feature that allows core media files to be stored and

served from the database. With the Database File Storage system in place,
Magento would redirect requests for media files to get.php.

• includes: This folder is used by the Mage_Compiler extension whose
functionality can be accessed via Magento administration System | Tools |
Compilation. The idea behind the Magento compiler feature is that you end
up with a PHP system that pulls all of its classes from one folder, thus, giving
it a massive performance boost.

• index.php: This is a main entry point to your application, the main loader
file for Magento, and the file that initializes everything. Every request for
every Magento page goes through this file.

• index.php.sample: This file is just a backup copy of the index.php file.
• js: This folder holds the core Magento JavaScript libraries, such as Prototype,

scriptaculous.js, ExtJS, and a few others, some of which are from Magento
itself.

• lib: This folder holds the core Magento PHP libraries, such as 3DSecure,
Google Checkout, phpseclib, Zend, and a few others, some of which are from
Magento itself.

• LICENSE*: These are the Magento licence files in various formats (LICENSE_
AFL.txt, LICENSE.html, and LICENSE.txt).

• mage: This is a Magento Connect command-line tool. It allows you to add/
remove channels, install and uninstall packages (extensions), and various
other package-related tasks.

• media: This folder contains all the media files, mostly just images from
various products, categories, and CMS pages.

• php.ini.sample: This file is a sample php.ini file for PHP CGI/FastCGI
installations. Sample files are not actually used by the Magento application.

• pkginfo: This folder contains text files that largely operate as debug files to
inform us about changes when extensions are upgraded in any way.

An Overview of Magento Extensions

[8]

• RELEASE_NOTES.txt: This file contains the release notes and changes for
various Magento versions, starting from version 1.4.0.0 and later.

• shell: This folder contains several PHP-based shell tools, such as compiler,
indexer, and logger.

• skin: This folder contains various CSS and JavaScript files specific for
individual Magento themes. Files in this folder and its subfolder go hand in
hand with files in app/design folder, as these two locations actually result in
one fully featured Magento theme or package.

• var: This folder contains sessions, logs, reports, configuration cache, lock
files for application processes, and possible various other files distributed
among individual subfolders. During development, you can freely select all
the subfolders and delete them, as Magento will recreate all of them on the
next page request. From a standpoint of a Magento extension developer, you
might find yourself looking into the var/log and var/report folders every
now and then.

Now that we have covered the basic root folder structure, it's time to dig deeper into
the most used folder of all, the app folder, as shown in the following diagram:

app/
├── Mage.php
├── code
│ ├── community
│ │ └── Phoenix
│ │ └── Moneybookers
│ └── core
│ ├── Mage
│ └── Zend
├── design
│ ├── adminhtml
│ ├── frontend
│ │ ├── base
│ │ │ └── default
│ │ │ ├── etc
│ │ │ ├── layout
│ │ │ └── template
│ │ └── default
│ │ ├── blank
│ │ ├── default
│ │ ├── iphone
│ │ └── modern
│ └── install
├── etc

Chapter 1

[9]

│ ├── config.xml
│ ├── local.xml.additional
│ ├── local.xml.template
│ └── modules
└── local
 └── en_US

Code pools
The folder code is a placeholder for what is called a codePool in Magento. Usually,
there are three code pools in Magento, that is, three subfolders: community, core,
and local.

The folder local is sometimes missing from the downloaded installation archive,
as it is empty by default.

Let's take a deeper look at the community codePool for the default Magento
installation as shown in the following diagram:

community/
└── Phoenix
 └── Moneybookers
 ├── Block
 │ ├── Form.php
 │ ├── ...
 │ └── Redirect.php
 ├── Helper
 │ └── Data.php
 ├── Model
 │ ├── Abstract.php
 │ ├── ...
 │ └── Wlt.php
 ├── controllers
 │ ├── MoneybookersController.php
 │ └── ProcessingController.php
 ├── etc
 │ ├── config.xml
 │ └── system.xml
 └── sql
 └── moneybookers_setup
 ├── install-1.6.0.0.php
 └── mysql4-upgrade-1.2-1.2.0.1.php

www.allitebooks.com

http://www.allitebooks.org

An Overview of Magento Extensions

[10]

Here, the Phoenix folder is what is called the vendor namespace, and it usually
matches your company identifier or something else unique to you. Within the
Phoenix folder there is a Moneybookers subfolder that stands for your actual
extension name.

To summarize, the formula for your extension code location should be something
like app/code/community/YourNamespace/YourModuleName/ or app/code/local/
YourNamespace/YourModuleName/.

There is a simple rule as to whether to choose community or local codePool:

• Choose the community codePool for extensions that you plan to share across
projects, or possibly upload to Magento Connect

• Choose the local codePool for extensions that are specific for the project you
are working on and won't be shared with the public

For example, let's imagine that our company name is Foggyline and the extension
we are building is called Happy Hour. As we wish to share our extension with the
community, we can put it into a folder such as app/code/community/Foggyline/
HappyHour/.

All the Magento core code is also divided into extensions, and is located under the
app/code/core/Mage folder. You should never place any of your code or edit any of
the existing code under the app/code/core folder.

Let us get back to our example from the previous listing, the Moneybookers
extension. We can see that it has several subfolders within it:

• Block: This folder contains various PHP classes. You can think of the Block
folder as a placeholder for class objects that visually manifest themselves to
the user on a frontend. Most of these PHP classes extend the Mage_Core_
Block_Template class from within the app/code/core/Mage/Core/Block/
Template.php file. These PHP classes are then linked to various layouts and
template *.phtml files within the given theme under the app/design folder.

• controllers: This folder contains various PHP classes. You can think of
controllers as a glue between our URL actions, models, blocks, and views.
Most of these classes extend the Mage_Core_Controller_Front_Action
class from within the app/code/core/Mage/Core/Controller/Front/
Action.php file or the Mage_Adminhtml_Controller_Action class from
within the app/code/core/Mage/Adminhtml/Controller/Action.php file.

• etc: This folder contains various XML configuration files such as
adminhtml.xml, api.xml, config.xml, system.xml, wsdl.xml, wsdl2.xml,
and wsi.xml. Depending on what type of extension you are building, you
might find some configuration files used more than the others.

Chapter 1

[11]

• Helper: This folder contains various PHP classes, most of which extend the
Mage_Core_Helper_Abstract class from within the app/code/core/Mage/
Core/Helper/Abstract.php file. The Helper classes contain various utility
methods that will allow you to perform common tasks.

• Model: This folder contains various PHP classes that usually, but not
necessarily, represent an entity in a database. This is the folder where
you would place most of your business logic.

• sql: This folder contains one or more PHP files representing the installer
code to be executed during the installation of the extension.

With that said, we will temporarily conclude our trip to the app/code folder
structure and move on to the app/etc/modules folder.

This folder is basically a starting point for every Magento extension. The following
listing shows the default content of the app/etc/modules folder for the default
Magento installation, which is a collection of XML files:

• Mage_All.xml

• Mage_Downloadable.xml

• Mage_Api.xml

• Mage_ImportExport.xml

• Mage_Api2.xml

• Mage_Oauth.xml

• Mage_Authorizenet.xml

• Mage_PageCache.xml

• Mage_Bundle.xml

• Mage_Persistent.xml

• Mage_Captcha.xml

• Mage_Weee.xml

• Mage_Centinel.xml

• Mage_Widget.xml

• Mage_Compiler.xml

• Mage_XmlConnect.xml

• Mage_Connect.xml

• Phoenix_Moneybookers.xml

• Mage_CurrencySymbol.xml

For example, if we were to create our Foggyline/Happy Hour extension, we would
need to create a file app/etc/modules/Foggyline_HappyHour.xml as we will show
later on.

An Overview of Magento Extensions

[12]

Next, we move onto the app/local folder. This is where the translation files reside.
If you were building an extension that would support multiple languages, for
example English and German, you might want to create the following files:

• app/locale/en_US/Foggyline_HappyHour.csv

• app/locale/de_DE/Foggyline_HappyHour.csv

The exact filename in this case does not have to be Foggyline_HappyHour.csv;
this is something that is set by you within the extension configuration.

The theme system
In order to successfully build extensions that visually manifest themselves to the user
either on the backend or frontend, we need to get familiar with the theme system.
The theme system is comprised of two distributed parts: one found under the app/
design folder and the other under the root skin folder. Files found under the app/
design folder are PHP template files and XML layout configuration files. Within
the PHP template files you can find the mix of HTML, PHP, and some JavaScript.

The structure of the app/design folder is shown in the following diagram:

app/
├── design
│ ├── adminhtml
│ ├── frontend
│ │ ├── base
│ │ │ └── default
│ │ │ ├── etc
│ │ │ ├── layout
│ │ │ └── template
│ │ └── default
│ │ ├── blank
│ │ ├── default
│ │ ├── iphone
│ │ └── modern
│ └── install

There are three main subfolders here as follows:

• adminhtml: This folder contains the XML layouts and PHTML view files
used for rendering the Magento administration area, the area that the admin
user sees

Chapter 1

[13]

• frontend: This folder contains the XML layouts and PHTML view files used
for rendering the Magento frontend area, the area that the customers see.

• install: This folder contains the XML layouts and PHTML view files used
for rendering the Magento installation process

Once you step into one of them you should see a list of so called packages.

For example, stepping into the frontend shows two packages available, base and
default. Drilling down into individual packages, come themes. For example, the
package default has four themes in it: blank, default, iphone, and modern. By
default, once you install the Magento package the initial active theme is default
within the default package.

You will often hear about the frontend developer using a shorthand when talking
about theme; for example, if they say default/hello, it would mean the default
package with the theme named hello.

There is one important thing to know about Magento themes; they have a fallback
mechanism; for example, if someone in the administration interface sets the
configuration to use a theme called hello from the default package; and if the theme
is missing, for example, the app/design/frontend/default/hello/template/
catalog/product/view.phtml file in its structure, Magento will use app/design/
frontend/default/default/template/catalog/product/view.phtml from
the default theme; and if that file is missing as well, Magento will fall back to the
base package for the app/design/frontend/base/default/template/catalog/
product/view.phtml file.

We won't get into the details of Magento design packages and themes. There is
plenty to be said about this topic that could fit into a new book. For the purpose
of this book, there are a few things that you need to know as a Magento extension
developer in terms of writing unobtrusive extensions.

Firstly, all your layout and view files should go under the /app/design/frontend/
defaultdefault/default directory.

Secondly, you should never overwrite the existing .xml layout or template .phtml
file from within the /app/design/frontend/default/default directory, rather
create your own. For example, imagine you are doing some product image switcher
extension, and you conclude that you need to do some modifications to the app/
design/frontend/default/default/template/catalog/product/view/media.
phtml file. A more valid approach would be to create a proper XML layout update
file with handles rewriting the media.phtml usage to, let's say, media_product_
image_switcher.phtml.

An Overview of Magento Extensions

[14]

This might not make much sense for you now; but once you get your head around
layout updates, the idea will be pretty clear. We will now temporarily conclude
our trip to the app/design folder structure and move on to the root skin folder.
The structure of the skin folder is similar to that of app/design, as shown in the
following diagram:

skin/
├── adminhtml
├── frontend
│ ├── base
│ │ └── default
│ │ ├── css
│ │ ├── favicon.ico
│ │ ├── images
│ │ ├── js
│ │ └── lib
│ │ └── prototype
│ └── default
│ ├── blank
│ ├── blue
│ ├── default
│ │ ├── css
│ │ ├── favicon.ico
│ │ └── images
│ ├── french
│ ├── german
│ ├── iphone
│ └── modern
└── install

There is not much to say about the skin folder. It's a placeholder for all your
theme-specific CSS, JavaScript, and image files. If you are developing community-
distributed extensions, it makes sense to reduce the usage of CSS to absolute
minimum, if any, in your extension. The reason is that you cannot know which
theme the user will use and how your extension visual components design will
impact its theme.

The same thing cannot be said for JavaScript, as you will most likely notice
yourself if you keep developing a lot of community extensions. Adding your
custom JavaScript code to a skin/frontend/default/default/js folder is a nice,
clean, and unobtrusive way of doing it. As the skin folder has the same fallback
functionality as the app/design folder, you do not need to know upfront the theme
that the user will use.

Chapter 1

[15]

Later on, as you sharpen your Magento developer skills you might ask yourself,
"Why not use the root js folder to add your JavaScript code?" Technically, you could,
and it would be perfectly valid; no tricks or hacks in that approach. However, the
root js folder should be looked upon as a third-party JavaScript library container,
while the skin/frontend/default/default/js folder should be looked upon
as your custom JavaScript extension-related code container. For example, it makes
no sense to place your product image switcher extension JavaScript into the
root js folder if it's a JavaScript code that works only with your extension
and is not intended for general re-use.

With this we can conclude the relevant Magento folder structure that you as a
Magento extension developer should be familiar with. In general, these five locations
should be all to build fully functional, clean, and unobtrusive extensions:

• app/etc/modules/ – required
• app/locale/ – optional
• app/code/community/YourNamespace/YourModuleName/ – required
• /app/design/frontend/default/default/ (or /app/design/adminhtml/

default/default/ for backend area) – optional
• skin/frontend/default/default/ (or skin/adminhtml/default/

default/) – optional

Depending on the complexity and the functionality your extension tries to fulfill,
you might end up using just a few or all of these directory locations within a single
extension.

Basic extension configuration
With everything said, by now we should have a solid understanding of the Magento
directory structure and be ready to grasp further concepts of the Magento internal
structure.

What better way to explain things than an example; so let's start off by creating the
simplest extension, which we will then extend bit by bit as we explain the Magento
way of doing the object-oriented Model-View-Controller (MVC) architecture.
If you are hearing of MVC for the first time, please take some time to familiarize
yourself with the concept. You can find good starting material about it at
http://en.wikipedia.org/wiki/Model–view–controller.

An Overview of Magento Extensions

[16]

Previously, we gave examples on the extension name Foggyline_HappyHour, so let's
start with that.

In Magento, everything starts with a configuration file; after all, Magento is what
we call the configuration-based MVC system. In a configuration-based system, in
addition to adding the new files and classes, you often need to explicitly tell the
system about them.

The first file we will create is app/etc/modules/Foggyline_HappyHour.xml with
the following content:

<?xml version="1.0"?>
<config>
 <modules>
 <Foggyline_HappyHour>
 <active>true</active>
 <codePool>community</codePool>
 </Foggyline_HappyHour>
 </modules>
</config>

With this file in place, Magento already becomes aware of your extension. You
can confirm that by going under the Magento administration under System |
Configuration | Advanced | Advanced | Disable Modules Output. Once you're
there, you should see your Foggyline_HappyHour extension on the list. It is
important to know that setting the Disable Modules Output value to Disabled and
saving the configuration has absolutely no impact on your extension being truly
enabled or disabled.

Disabling the extension output is not the same as disabling the extension itself.
Disabling the output of the extension via this configuration option has an effect
only on your extension block classes that represent the visually output part
of your extension. To truly disable the extension, one must edit the app/etc/
modules/Foggyline_HappyHour.xml file and change <active>true</active> to
<active>false</active>.

Now that Magento sees our extension, we move on to the next step: creating the app/
code/community/Foggyline/HappyHour/etc/config.xml file. This config.xml
file is what is usually referred to as the extension configuration file by developers.
The following code is the basic definition of our app/code/community/Foggyline/
HappyHour/etc/config.xml file:

<?xml version="1.0"?>
<config>
 <modules>

Chapter 1

[17]

 <Foggyline_HappyHour>
 <version>1.0.0.0</version>
 </Foggyline_HappyHour>
 </modules>
</config>

Controllers
By itself, the content of the app/code/community/Foggyline/HappyHour/etc/
config.xml file won't have any additional effect on Magento, so let's move on to
extending our extension. First, we will create a controller in order to output Hello
World to the browser. To do this, we need to add the routers definition in frontend
to our config.xml file.

<?xml version="1.0"?>"?>
<config>
<!-- … other elements ... -->
 <frontend>
 <routers>
 <foggyline_happyhour>
 <use>standard</use>
 <args>
 <module>Foggyline_HappyHour</module>
 <frontName>happyhour</frontName>
 </args>
 </foggyline_happyhour>
 </routers>
 </frontend>
<!-- … other elements ... -->
</config>

The frontend tag refers to a Magento area. Magento has three distinctive areas:
frontend, admin, and install. The frontend area is what your customers see, the
public facing shopping cart. The admin area is what your Magento admin users see,
the administrative interface. The install area is what you see the very first time you
install Magento, the installation process.

The routers tag encloses the configuration information about routers.

The frontName tag is sort of an alias for the desired route we want Magento to react to.

When a router parses a URL, it gets separated as follows: http://example.com/
frontName/actionControllerName/actionMethod/. By defining a value of
happyhour in the <frontName> tag, we're telling Magento that we want the system
to respond to URLs in the form of http://example.com/happyhour/*.

An Overview of Magento Extensions

[18]

It's important to understand that frontName and the Front Controller object are not
the same thing.

The foggyline_happyhour tag should be the lowercase version of your extension
name. Our extension name is Foggyline_HappyHour; this tag is foggyline_
happyhour.

The extension tag should be the full name of your extension, including its
namespace/extensionname name. This will be used by the system to locate your
controller files.

Now we need to create a controller file. The module controller files are stored under
the controllers subfolder. So let's create an app/code/community/Foggyline/
HappyHour/controllers/HelloController.php class file with the following
content:

<?php

class Foggyline_HappyHour_HelloController extends Mage_Core_
Controller_Front_Action
{
 public function helloWorldAction()
 {
 echo 'Hello World #1.';
 }
}

Once you are done, you can try opening the following URL in the browser: http://
magento.loc/index.php/happyhour/hello/helloWorld. You should be able to
see the Hello World #1. message. The URL path is constructed from your config.
xml router frontName, the controller name itself, and the controller action name.
There are two main types of controllers in Magento:

• frontend: This contains all the controller classes that extend (derive from)
the Mage_Core_Controller_Front_Action class

• backend / admin: This contains all the controller classes that extend (derive
from) the Mage_Adminhtml_Controller_Action class

URLs for admin controller actions can only be accessed if you are logged in to the
Magento administration interface.

Chapter 1

[19]

Blocks
Looking within the helloWorldAction() method, you can see a call towards the
createBlock() method with the string 'core/text' as a parameter. Where does
'core/text' come from and what does it mean? In order to understand that, we
will further extend our config.xml file by adding a blocks element to it as follows:

<?xml version="1.0"?>
<config>
<!-- … other elements ... -->
 <global>
 <blocks>
 <foggyline_happyhour>
 <class>Foggyline_HappyHour_Block</class>
 </foggyline_happyhour>
 </blocks>
 </global>
<!-- … other elements ... -->
</config>

The element foggyline_happyhour is known as the class group. The element
foggyline_happyhour is a class group name and its inner class element is basically
a shortcut for your extensions Block type PHP classes. For example, the following is
a modified code for our helloWorldAction() method shown previously:

<?php

class Foggyline_HappyHour_HelloController extends Mage_Core_
Controller_Front_Action
{
 public function helloWorldAction()
 {
 $this->loadLayout();

 $block = $this->getLayout()->createBlock('foggyline_happyhour/
hello');
 $block->setText('Hello World #2.');

 $this->getLayout()->getBlock('content')->insert($block);

 $this->renderLayout();
 }
}

www.allitebooks.com

http://www.allitebooks.org

An Overview of Magento Extensions

[20]

You can see that we are no longer calling the createBlock() method with 'core/
text' but with the 'foggyline_happyhour/hello' parameter. This is like telling
Magento to load the hello class (the Hello.php file) that can be found under the
classpath mapped by the foggyline_happyhour class group. As the foggyline_
happyhour class group has its class value set to Foggyline_HappyHour_Block,
Magento expects to find the app/code/community/Foggyline/HappyHour/Block/
Hello.php file.

How and why exactly does Magento expect the Hello.php file to be at a certain
location? The answer to this lies in a robust autoloading functionality of the Magento
system based on a configuration and file naming convention. You can split all
Magento classes into four parts that we'll call the vendor namespace, extension
name, class group, and filename itself.

The vendor namespace helps us prevent name collisions between extensions, letting
you know which extension is the owner of the class. For example, all core Magento
extensions use the mage namespace.

The module name plays a crucial part in the autoloading system. All the proper
customization of Magento is done through individual extensions.

The class group is a sort of alias defined within the extension's configuration file, an
alias towards a class folder within the extension directory. There are several main
types of class groups, such as the one for Model, Block, Helper.

Finally, the name of the file itself. Each class should have a unique name within a
class group that describes its intended use or function.

Magento's autoloading functionality uses these parts to determine where to find
the source for a given class as shown in the following example: VendorNamespace/
ModuleName/ClassGroup/FileName.php.

Go ahead and create the file Hello.php with the following content:

<?php

class Foggyline_HappyHour_Block_Hello extends Mage_Core_Block_Text
{

}

Chapter 1

[21]

Now that you have modified helloWorldAction() and created the Hello.php class
file, go ahead and open the http://magento.loc/index.php/happyhour/hello/
helloWorld URL in the browser. The result should be the same as in the previous
case; you should be able to see the fully loaded Magento page with the Hello World
#2. message shown under the content area.

Our Hello block class extends Mage_Core_Block_Text. However, chances are that
most of the time you will be extending the Mage_Core_Block_Template class, where
your Hello block class might look like something as follows:

<?php

class Foggyline_HappyHour_Block_Hello extends Mage_Core_Block_Template
{
 public function __construct()
 {
 parent::__construct();
 $this->setTemplate('foggyline_happyhour/hello.phtml');
 }
}

The difference between extending Mage_Core_Block_Text or Mage_Core_Block_
Template is that the latter requires you to define a view *.phtml file under the
theme folder, and thus, is more designer friendly. In order for it to successfully
work, you need to create the app/design/frontend/default/default/template/
foggyline_happyhour/hello.phtml or app/design/frontend/base/default/
template/foggyline_happyhour/hello.phtml file. You might find the latter to be
a safer location for your view files, as it is not dependent on your customer theme
and package settings. Thus, the Magento theme fallback mechanism will always pick
it up. Now if you put your Hello World #3. string within the hello.phtml file and
then re-open the http://magento.loc/index.php/happyhour/hello/helloWorld
URI in your browser, you should again see the fully loaded Magento page with the
Hello World #3. message shown under the content area. Our goal here is to give you
the basics of functional extension, so we will now leave the controllers and blocks
behind and move to the model.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/supportand register to have the files e-mailed directly to you.

An Overview of Magento Extensions

[22]

The model, resource, and collection
A model represents the data for the better part, and to a certain extent a business
logic of your application. Models in Magento take the Object Relational Mapping
(ORM) approach, thus having the developer to strictly deal with objects while their
data is then automatically persisted to the database. If you are hearing about ORM
for the first time, please take some time to familiarize yourself with the concept;
you can find good starting material about it at http://en.wikipedia.org/wiki/
Object-relational_mapping. Theoretically, you could write and execute raw SQL
queries in Magento. However, doing so is not advised, especially if you plan on
distributing your extensions.

There are two types of models in Magento:

• Basic Data Model: This is a simpler model type, sort of like an Active Record
pattern-based model. If you're hearing about Active Record for the first
time, please take some time to familiarize yourself with the concept; you can
find good starting material about it at https://en.wikipedia.org/wiki/
Active_record_pattern.

• EAV (Entity-Attribute-Value) Data Model: This is a complex model type,
which enables you to dynamically create new attributes on an entity. As EAV
Data Model is significantly more complex than Basic Data Model and Basic
Data Model will suffice for most of the time, we will focus on Basic Data
Model and everything important surrounding it. Each data model you plan
to persist to the database, that means models that present an entity, needs
to have four files in order for it to work fully:

 ° The model file: This extends the Mage_Core_Model_Abstract class.
This represents single entity, its properties (fields), and possible
business logic within it.

 ° The model resource file: This extends the Mage_Core_Model_
Resource_Db_Abstract class. This is your connection to the
database; think of it as the thing that saves your entity properties
(fields) database.

 ° The model collection file: This extends the Mage_Core_Model_
Resource_Db_Collection_Abstract class. This is your collection
of several entities, a collection that can be filtered, sorted, and
manipulated.

 ° The installation script file: In its simplest definition this is the
PHP file through which you, in an object-oriented way, create
your database table(s).

Chapter 1

[23]

For our example, we will go ahead and create our extensions User model. The first
thing we need to do is to set up its configuration within the config.xml file
as follows:

<?xml version="1.0"?>
<config>
 <global>
<!-- … other elements ... -->
 <models>
 <foggyline_happyhour>
 <class>Foggyline_HappyHour_Model</class>
 <resourceModel>foggyline_happyhour_resource</
resourceModel>
 </foggyline_happyhour>
 <foggyline_happyhour_resource>
 <class>Foggyline_HappyHour_Model_Resource</class>
 <entities>
 <user>
 <table>foggyline_happyhour_user</table>
 </user>
 </entities>
 </foggyline_happyhour_resource>
 </models>
 <resources>
 <foggyline_happyhour_setup>
 <setup>
 <model>Foggyline_HappyHour</model>
 </setup>
 </foggyline_happyhour_setup>
 </resources>
<!-- … other elements ... -->
 </global>
</config>

The amount of new elements added to XML might look a bit discouraging, try not to
get frightened by it. Let's break it down:

• The element foggyline_happyhour contains our class group model
definition, which actually tells Magento that our Model PHP class files can
be found under our extensions directory app/code/community/Foggyline/
HappyHour/Model/. Further, the foggyline_happyhour element contains
the resourceModel element whose value points further to the element
foggyline_happyhour_resource.

An Overview of Magento Extensions

[24]

• The element foggyline_happyhour_resource contains our class group
model resource definition, which actually tells Magento that our Model
Resource PHP class files can be found under our extensions directory app/
code/community/Foggyline/HappyHour/Model/Resource/. Further, the
foggyline_happyhour_resource element contains the entities element that
is a list of all our entities and their mapped database table names.

• The element foggyline_happyhour_setup contains the setup definition for
our extension. There is a lot more you can define here, which is not visible
in our example due to simplicity. For example, we could have defined
completely different read / write database connections here, specific to our
extension. The most important thing to keep in mind here, however, is the
following: the element name foggyline_happyhour_setup must match the
folder name for your installation script app/code/community/Foggyline/
HappyHour/sql/foggyline_happyhour_setup/.

Now let us create the four files required for our extensions model entity to work
fully.

First we will create a model file app/code/community/Foggyline/HappyHour/
Model/User.php with the following content:

<?php

class Foggyline_HappyHour_Model_User extends Mage_Core_Model_Abstract
{
 protected $_eventPrefix = 'foggyline_happyhour_user';
 protected $_eventObject = 'user';

 protected function _construct()
 {
 $this->_init('foggyline_happyhour/user');
 }
}

All basic data models, such as our Foggyline_HappyHour_Model_User, should
extend the Mage_Core_Model_Abstract class. This abstract class forces you to
implement a single method named _construct. Please note that this is not PHP's
constructor __construct.

Chapter 1

[25]

The _construct method should call the extending class' _init method with the
same identifying URI you will be using in the Mage::getModel method call. Also,
note the class-protected properties $_eventPrefix and $_eventObject. It is highly
recommended, although not required, for you to define these properties. Values
of both the properties can be freely assigned; however, you should follow your
extension-naming scheme here as shown earlier.

Once we get to the Magento event/observer system later in the chapters,
the meaning of these properties and how they make your code extendible
by third-party developers will become more clear.

Every model has its own resource class. When a model in Magento needs to talk
to the database, Magento will make the following method call to get the model
resource Mage::getResourceModel('class_group/modelname');. Without
resource classes, models would not be able to write to the database. Having that
in mind, we create the model resource file app/code/community/Foggyline/
HappyHour/Model/Resource/User.php with the following content:

<?php

class Foggyline_HappyHour_Model_Resource_User extends Mage_Core_Model_
Resource_Db_Abstract
{
 protected function _construct()
 {
 $this->_init('foggyline_happyhour/user', 'user_id');
 }
}

Again, we have the same pattern: the construct method should call the extending
class' init method with the same identifying URI, with a slight exception of the
existing second parameter in this case, which matches the primary key column name
in the database. So in this case, the string user_id matches the primary key column
name in the database.

Finally, we address the model collection file. As Magento does not like juggling
its model objects through plain PHP arrays, it defines a unique collection object
associated with each model. Collection objects implement the PHP IteratorAggregate
and Countable interfaces, which means they can be passed to the count function and
used for each constructs.

An Overview of Magento Extensions

[26]

We create the model collection file app/code/community/Foggyline/HappyHour/
Model/Resource/User/Collection.php with the following content:

<?php

class Foggyline_HappyHour_Model_Resource_User_Collection extends Mage_
Core_Model_Resource_Db_Collection_Abstract
{
 public function _construct()
 {
 $this->_init('foggyline_happyhour/user');
 }
}

Just as we did with our other classes we define the construct method, which calls the
extending class' init method with the same identifying URI.

Finally, we create an installation script file app/code/community/Foggyline/
HappyHour/sql/foggyline_happyhour_setup/install-1.0.0.0.php with the
following content:

<?php

/* @var $installer Mage_Core_Model_Resource_Setup */
$installer = $this;

$installer->startSetup();

$table = $installer->getConnection()
 ->newTable($installer->getTable('foggyline_happyhour/user'))
 ->addColumn('user_id', Varien_Db_Ddl_Table::TYPE_INTEGER, null,
array(
 'identity' => true,
 'unsigned' => true,
 'nullable' => false,
 'primary' => true,
), 'Id')
 ->addColumn('firstname', Varien_Db_Ddl_Table::TYPE_VARCHAR, null,
array(
 'nullable' => false,
), 'User first name')
 ->addColumn('lastname', Varien_Db_Ddl_Table::TYPE_VARCHAR, null,
array(
 'nullable' => false,
), 'User last name')

Chapter 1

[27]

 ->setComment('Foggyline_HappyHour User Entity');

$installer->getConnection()->createTable($table);

$installer->endSetup();

There is one thing we need to pay special attention to here, the naming of the
install-1.0.0.0.php file. The number 1.0.0.0 must be equal to the numbers
placed under the version element value, or else Magento won't trigger your
installation script.

Ever since version 1.6, Magento (in theory) supports more database backends than
only MySQL. Thus, technically, the meaning of code within this install script may
vary from database to database depending on the implementation.

Given that MySQL is still the default and far more dominant database backend for
Magento, it is worth noting what actually goes on behind this installation script. It
starts by calling $installer->startSetup(), which internally sets SQL_MODE to
NO_AUTO_VALUE_ON_ZERO, and FOREIGN_KEY_CHECKS to 0. The call to $installer-
>startSetup(), on the other hand restores the two mentioned values to their
previous states. The rest of the code that lies in between is responsible for the actual
table definition and creation.

In our preceding example, we defined a table that will be named foggyline_
happyhour_user, and three columns named user_id, firstname, and lastname.

These four files conclude our requirement for a fully persistent entity model. In order
to check if everything is functioning, load any Magento URL in the browser and then
take a look at the database. If the extension is installed correctly, there should be two
changes to the database:

• The table core_resource should contain an entry with the column code
value foggyline_happyhour_setup and column version value 1.0.0.0.

• The table foggyline_happyhour_user should have been successfully
created in the database with all the columns as defined within the install-
1.0.0.0.php file.

Note, if you experience issues with your installation script during their execution,
such as breaking up due to invalid instructions, be sure to remove the core_
resource table entry that your extension might have created. After that, simply
open the browser and reload any web page from your shop; this will trigger the
installation process again.

An Overview of Magento Extensions

[28]

Now that we have successfully created single entity (User) model file, we need to
make sure it's working. We can do so by going back to our Foggyline_HappyHour_
HelloController class and adding the following action to it:

<?php

class Foggyline_HappyHour_HelloController extends Mage_Core_
Controller_Front_Action
{
 /* … other code … */
 public function testUserSaveAction()
 {
 $user = Mage::getModel('foggyline_happyhour/user');

 $user->setFirstname('John');
 /* or: $user->setData('firstname', 'John'); */

 $user->setLastname('Doe');
 /* or: $user->setDatata('lastname', 'Doe'); */

 try {
 $user->save();
 echo 'Successfully saved user.';
 } catch (Exception $e) {
 echo $e->getMessage();
 Mage::logException($e);
/* oror: Mage::log($e->getTraceAsString(), null, 'exception.log',
true); */
 }
 }
 /* … other code … */
}

Models in Magento get called (instantiated) all across the code. Instantiating the
model class is done by the statement $model = Mage::getModel('classGroup/
modelClassName); which can be seen in the preceding code.

What confuses most of the Magento newcomers is the fact that our model class
Foggyline_HappyHour_Model_User has absolutely no methods defined other than
_construct(), which is not the default PHP construct (__construct()).

Chapter 1

[29]

So how is it then that the statements such as $user->setLastname('Doe'); work?
The answer lies in the derived from the Varien_Object class found in the lib/
Varien/Object.php file. One of the things Varien_Object provides is Magento's
famous getter and setter methods. If you study the class code, you will see that
Magento actually uses the class protected $_data property internally via the help
of PHP magic methods. Executing $user->setLastname('Doe'); actually sets
$_data['username'] = 'Doe';. Or to put it differently, it would virtually create a
property named 'úsername' with the value 'Doe' on a $user object instance.

The same logic goes for setting values. Executing a statement such as $user-
>setData('firstname', 'John'); does almost the same as the previous example.

The difference between the two is that setData() directly changes the value on the
protected $_data['username'] property, while setLastname('Doe'); will first try
to look for the setLastname() method within the Foggyline_HappyHour_Model_
User class. If the method is found, the value is passed to the method and the method
is in charge of passing the value to the protected $_data['username'] property,
possibly doing some modifications on it.

You should take some time to study the inner workings of the Varien_Object class,
as it is the base class for all of your models.

To continue with our preceding example, if you now try to open the URL http://
magento1702ce.loc/index.php/happyhour/hello/testUserSave in your
browser, you should be able to see the Successfully saved user message.

Once you confirm that the entity save action is working, you should test and confirm
that the model collection is working too. Create a new action under the Foggyline_
HappyHour_HelloController class as follows:

<?php

class Foggyline_HappyHour_HelloController extends Mage_Core_
Controller_Front_Action
{
 /* … other code … */
 public function testUserCollectionAction()
 {
 $users = Mage::getModel('foggyline_happyhour/user')
 ->getCollection();

 foreach ($users as $user) {
 $firstname = $user->getFirstname();

www.allitebooks.com

http://www.allitebooks.org

An Overview of Magento Extensions

[30]

 /* or: $user->getData('firstname') */

 $lastname = $user->getLastname();
 /* or: $user->getData('lastname') */

 echo "$firstname $lastname
";
 }
 }
 /* … other code … */
}

If you now try to open the URL http://magento.loc/index.php/happyhour/
hello/testUserCollection in your browser, you should be able to see the list of
your users within the foggyline_happyhour_user database table.

If you were able to follow up and all went well, you should now have a fully
working model entity. There is a lot more to be said about models; however, this is
enough to get you started.

The event/observer pattern
Next, we will move on to an event/observer pattern implemented by Magento.
Events and observers are extremely important in Magento because they enable you
to easily hook onto various parts of Magento and add your own pieces of code to it.
In certain situations they are slightly underestimated by extension developers, either
due to their knowledge of the platform, or due to the lack of grand vision or forced
quick and dirty implementations.

Events and observers are the key to writing unobtrusive code in cases where you
need to change or add to the default Magento behavior. For example, if you need
to send all your newly created orders to an external fulfillment system, most of the
time you simply need to observe a proper event and implement your business logic
within an observer.

There are several types of events getting fired in Magento depending on how
you differentiate them. For example, we could divide them into static and
dynamic events.

Chapter 1

[31]

Static events are all those events defined through code with full event
names such as Mage::dispatchEvent('admin_session_user_login_
failed', array('user_name' => $username, 'exception' => $e));,
Mage::dispatchEvent('cms_page_prepare_save', array('page' => $model,
'request' => $this->getRequest()));, Mage::dispatchEvent('catalog_
product_get_final_price', array('product' => $product, 'qty' =>
$qty));, Mage::dispatchEvent('catalog_product_flat_prepare_columns',
array('columns' => $columnsObject));, and Mage::dispatchEvent('catalog_
prepare_price_select', $eventArgs);.

Dynamic events are all those events defined through code dynamically at runtime
such as Mage::dispatchEvent($this->_eventPrefix.'_load_before',
$params);, Mage::dispatchEvent($this->_eventPrefix.'_load_after',
$this->_getEventData());, Mage::dispatchEvent($this->_eventPrefix.'_
save_before', $this->_getEventData());, Mage::dispatchEvent($this->_
eventPrefix.'_save_after', $this->_getEventData());, and
Mage::dispatchEvent('controller_action_layout_render_before_'.$this-
>getFullActionName());.

Both types of events are absolutely the same; they function the same, and the
preceding differentiation is simply a matter of terminology. We are calling the
other ones dynamic because their full name is not known until the runtime.

For example, each time you wish to intercept certain parameters passed to
a controller action, you could simply create an event observer that would
observe the controller_action_predispatch_* event, which is triggered
within the Mage_Core_Controller_Varien_Action class file as follows:
Mage::dispatchEvent('controller_action_predispatch_' . $this-
>getFullActionName(), array('controller_action' => $this));.

Now, let us see how exactly do we define the event observer and place some of our
code to be executed upon certain events. First, we need to create an entry within our
extensions config.xml file.

Let's say we want to introspect all the parameters passed to the controller action
during the customer registration process. When a customer fills in the required
registration fields and clicks on Submit, the form posts the data to the http://
{{shop.domain}}/index.php/customer/account/createpost/ URL.

An Overview of Magento Extensions

[32]

If you look at the previously mentioned the controller_action_predispatch_*
event, the expression $this->getFullActionName() would return the customer_
account_createpost string. You can find that out easily by placing the var_
dump($this->getFullActionName()); exit; expression right there under the
Mage::dispatchEvent('controller_action_predispatch_... expression. Please
note that we are using var_dump here just for the simplicity of demonstration. So
now that we know this, we can safely conclude that the full event name we need
to observe in this case is controller_action_predispatch_customer_account_
createpost.

Now we know that the event name is a requirement upon which we create a proper
config.xml entry for defining our event observer as shown in the following code:

<?xml version="1.0"?>
<config>
 <!-- … other elements ... -->
 <frontend>
 <events>
 <controller_action_predispatch_customer_account_createpost>
 <observers>
 <foggyline_happyhour_intercept>
 <class>foggyline_happyhour/observerobserver</class>
 <method>intercept</method>
 </foggyline_happyhour_intercept>
 </observers>
 </controller_action_predispatch_customer_account_createpost>
 </events>
 </frontend>
 <!-- … other elements ... -->
</config>

Within the observer's element comes the definition of our observer, which we call
foggyline_happyhour_intercept in this case. Each observer needs two properties-
defined classes, which in this case points to the foggyline_happyhour class group
and Observer class file thus, the string foggyline_happyhour/observer; the other
one is the method within the Observer class file.

Chapter 1

[33]

Next, we create the actual Observer class file app/code/community/Foggyline/
HappyHour/Model/Observer.php with the following content:

<?php

class Foggyline_HappyHour_Model_Observer
{
 public function intercept($observer = null)
 {
 $event = $observer->getEvent();
 $controllerAction = $event->getControllerAction();
 $params = $controllerAction->getRequest()->getParams();

 Mage::log($params);
 }
}

A quick look at Foggyline_HappyHour_Model_Observer reveals one important
thing: unlike Model, Block, and Controller classes, the Observer classes do not
need to extend anything.

If you now go to your browser and try to create a new customer account, you will
get your var/log/system.log file filled with the HTTP POST parameters provided
by the customer during the registration process. You might need to refresh/re-open
system.log in your editor in order to pick up the changes, in case you don't see the
log entries.

Sometimes, the right event might not be there; so you might need to look for
the second best. For example, if we did not have the controller_action_
predispatch_customer_account_createpost event dispatched, the next best
event would probably be the following one: Mage::dispatchEvent('controller_
action_predispatch', array('controller_action' => $this));.

However, the event controller_action_predispatch is pretty generic, which
means it will get triggered for every controller action predispatch. In this case, you
would have to do a little if/else logic within your event observer code. Just as we
have controller fired events, we also have model-fired events. If you open a class file
like Mage_Catalog_Model_Product, you can see property definitions like protected
$_eventPrefix = 'catalog_product'; and protected $_eventObject =
'product';.

An Overview of Magento Extensions

[34]

Now, if you trace the code a little bit down to the Mage_Core_Model_Abstract
class file, you will see that the properties $_eventPrefix and $_eventObject are
used for dynamic events such as (along with the static events for the same action)
Mage::dispatchEvent($this->_eventPrefix.'_load_before', $params);,
Mage::dispatchEvent($this->_eventPrefix.'_load_after', $this->_
getEventData());, Mage::dispatchEvent($this->_eventPrefix.'_save_
commit_after', $this->_getEventData());, Mage::dispatchEvent($this->_
eventPrefix.'_save_before', $this->_getEventData());,
Mage::dispatchEvent($this->_eventPrefix.'_save_after', $this->_
getEventData());, Mage::dispatchEvent($this->_eventPrefix.'_delete_
before', $this->_getEventData());, Mage::dispatchEvent($this->_
eventPrefix.'_delete_after', $this->_getEventData());,
Mage::dispatchEvent($this->_eventPrefix.'_delete_commit_after',
$this->_getEventData());, and Mage::dispatchEvent($this->_
eventPrefix.'_clear', $this->_getEventData());.

Knowing this is extremely important, as it enables you to create all sorts of event
observers for specific models and their actions, for example customer, order, and
invoice entity create/update/delete actions. This is why defining the $_eventPrefix
and $_eventObject properties on your custom model classes is something you
should adopt as a sign of good coding practice. Doing so enables other third-party
developers to easily hook onto your extension code via the observer in a clean and
unobtrusive way.

Cron jobs
Cron jobs are used to schedule commands to be executed periodically by the cron.
Cron is a a time-based job scheduler software in Unix-like computer operating
systems. It is driven by a crontab (cron table) file, a configuration file that specifies
shell commands to run periodically on a given schedule.

Magento cron jobs is a different kind of functionality than that just mentioned. It
merely relies on the system cron software to trigger the root Magento cron.php or
cron.sh files periodically. Keep that in mind while talking about cron and Magento
cron jobs.

It is highly important that the system administrator has the system cron set to trigger
the Magento cron.sh file at regular intervals, at least every five minutes. This can
be done by adding the following line to system cron:*/5 * * * * /path/to /
magento/root/folder/cron.sh. This way, you as a Magento extension developer
have the ability to create a new Magento cron jobs definitions through your
extensions configuration files and rest assured they will get executed. Magento cron
jobs are defined in the config.xml file as follows:

Chapter 1

[35]

<?xml version="1.0"?>
<config>
<!-- … other elements ... -->
 <crontab>
 <jobs>
 <foggyline_happyhour_ordersToFulfilment>
 <schedule>
 <cron_expr>*/2 * * * *</cron_expr>
 </schedule>
 <run>
 <model>foggyline_happyhour/
service::ordersToFulfilment</model>
 </run>
 </foggyline_happyhour_ordersToFulfilment>
 </jobs>
 </crontab>
<!-- … other elements ... -->
</config>

In this example, our cron job has been defined with the name foggyline_
happyhour_ordersToFulfilment and set to execute every two minutes, which
can be seen by the schedule >cron_expr value. For more details on writing cron
expressions, check out the following URL: http://en.wikipedia.org/wiki/Cron.

The model element, which in this case is set to foggyline_happyhour/
service::ordersToFulfilment, means that the following code from the app/code/
community/Foggyline/HappyHour/Model/Service.php file would get executed by
this cron job:

<?php

class Foggyline_HappyHour_Model_Service
{
 public function ping()
 {
 Mage::log('ping');
 }
}

The same as with observer classes, cron-defined model classes do not need to
extend anything.

An Overview of Magento Extensions

[36]

Even though this Magento cron job has been set to run every two minutes, you as
an extension developer have no guarantee that the system cron will ever be run on a
third-party website, or if it's run it might not be run in small enough intervals. Thus,
you might end up with a code logic that never gets executed, or gets executed in
larger than planned intervals.

During development, however, you do not need to have the system cron set up. It is
sufficient to just execute the http://magento.loc/cron.php URL in the browser, as
this will trigger the Magento cron system.

For example, if you were writing an extension that has one or more Magento cron
jobs defined in config.xml, the easiest way to check if you correctly defined your
cron job would be to truncate the cron_schedule database table and then trigger
the http://magento.loc/cron.php URL in the browser. Obviously, in this case,
later on you would have to periodically trigger the http://magento.loc/cron.php
URL to check if your cron job execution went through, monitoring the executed_at
column within the cron_schedule database table.

Helpers
There is one part of Magento functionality that gets equally used across all the
individual functionality mentioned so far, and that's helpers. Magento helper is a
class that usually extends the Mage_Core_Helper_Data class directly found in the
app/code/core/Mage/Core/Helper/Data.php file or at the very least derived from
the Mage_Core_Helper_Abstract class found under the app/code/core/Mage/
Core/Helper/Abstract.php file.

The Helper classes contain various utility methods that will allow you to perform
common tasks on different objects and variables. Helpers too are defined via the
config.xml elements as follows:

<?xml version="1.0"?>
<config>
 <!-- … other elements ... -->
 <global>
 <helpers>
 <foggyline_happyhour>
 <class>Foggyline_HappyHour_Helper</class>
 </foggyline_happyhour>
 </helpers>
 </global>
 <!-- … other elements ... -->
</config>

Chapter 1

[37]

Similar to blocks and models, helpers have a class element defined to point to their
folder locations within an extension. In this example, a helper is defined with the
name foggyline_happyhour.

As you are allowed to have multiple helpers under the app/code/community/
Foggyline/HappyHour/Helper/ folder, it is important to know that the default
helper PHP filename is Data.php.

What this really means is that when you execute a statement such as
Mage::helper('foggyline_happyhour');, Magento will load the Data.php
helper. If, however, you execute a statement such as Mage::helper('foggyline_
happyhour/image');, Magento will load the Image.php helper (the app/code/
community/Foggyline/HappyHour/Helper/Image.php file).

System configuration options
Besides being a utility method container, the Helper classes play an indispensable
role for extensions that provide Magento-style configuration options for users. For
example, if you were building a payment extension, you would most certainly need
a configuration area in order to set up the access data for it. Magento comes with its
own built-in configuration area, located under System | Configuration. This entire
section is built from the XML elements found under the extension etc/system.xml.

Here is where things get a little complicated. In order for the Magento admin user to
have access to your extension configuration interface defined through system.xml,
it needs permissions for that. These permissions are defined in another configuration
file located in the same folder called adminhtml.xml.

Let us demonstrate this with a simple example. We will create a configuration
options section for our extension within system.xml, define permissions to it via
adminhtml.xml, and then use the data helper class to fetch that configuration value
from within our controller.

First, we need to create the app/code/community/Foggyline/HappyHour/etc/
system.xml configuration file with the following content:

<?xml version="1.0"?>
<config>
 <tabs>
 <foggyline module="foggyline_happyhour">">
 <label>Foggyline</label>
 <sort_order>10</sort_order>
 </foggyline>
 </tabs>

An Overview of Magento Extensions

[38]

 <sections>
 <foggyline_happyhour module="foggyline_happyhour">
 <label>FoggylineHappyHour</label>
 <tab>foggyline</tab>
 <sort_order>10</sort_order>
 <show_in_default>1</show_in_default>
 <groups>
 <settings>
 <label>FoggylineHappyHour Settings</label>
 <sort_order>10</sort_order>
 <show_in_default>1</show_in_default>
 <fields>
 <custom_message>
 <label>Custom Message</label>
 <frontend_type>text</frontend_type>
 <sort_order>20</sort_order>
 <show_in_default>1</show_in_default>
 </custom_message>
 </fields>
 </settings>
 </groups>
 </foggyline_happyhour>
 </sections>
</config>

The first thing that we did was add a custom tab called Foggyline to the system
configuration. Tabs are the navigation headers down the left-hand side of the
Magento administration are a under System | Configuration. The default tabs
are General, Catalog, Customers, Sales, Services, and Advanced. Adding a new
tab is as simple as defining your own element under Configuration | Tabs. In our
example, we have defined the foggyline element, where foggyline is a freely given
element name. The attribute module="foggyline_happyhour" simply tells Magento
what helper to use for this part of functionality while referencing helpers internally.
The string foggyline_happyhour points to the helper group defined under config.
xml. The label element specifies the label for this tab to be shown under the
navigation sidebar. The sort_order element specifies the order in the sidebar with
regards to other elements; a larger number pushes the item in the sidebar to the
bottom after other elements.

Once we have defined the actual tab, we need to add one or more sections to it. In our
example, we have defined one section through the foggyline_happyhour element.

The foggyline_happyhour element is an arbitrary name that's used to identify your
new section.

Chapter 1

[39]

The label element defines the display value used in the HTML interface for your
new section.

The tab element identifies which tab your new section should be grouped under.
We want our section to show up under our new Foggyline tab. The name foggyline
comes from the tag used to create the Foggyline tab.

The sort_order element determines where this section shows up vertically
compared to other sections in the tab.

The show_in_default element is a Boolean configuration option with a valid value
of 1 or 0. They determine the level of configuration scope this section has.

The groups element determines the logical grouping of configuration options, sort of
like the fieldset element in HTML forms.

The settings element within groups is an arbitrary name that's used to identify this
group.

The elements label, sort_order, and show_in_default are analogous to those
previously explained for this section.

The fields element is a container for one or more elements that will be visually
manifested into HTML form elements later. Within the fields element, again we
have label, sort_order, show_in_default, and this time one new element called
frontend_type. The frontend_type element determines what HTML element will
be used for rendering in the browser.

At this point if you try to log in to Magento and navigate to System | Configuration,
you will be able to see the FoggylineHappyHour menu in the left sidebar. However,
accessing the menu item would give you a 404 Error Page not found error.

This might be a good time to explain what ACL actually is. ACL, short for Access
Control Lists, is a functionality that allows a store owner to create fine-grained roles
for each and every user in their system. A default Magento installation comes with
one role, Administrators. Magento ACL implementation allows you to add new roles
to the system via System | Permissions | Roles. A role is essentially a collection of
resources, while a resource is basically an action such as "delete user".

While adding new system configuration sections, you need to define resources for
it so that Magento can use it via its ACL system. So the reason why we might be
getting a 404 Error Page not found error is that we are missing the ACL definition.

www.allitebooks.com

http://www.allitebooks.org

An Overview of Magento Extensions

[40]

This is why we need to create the app/code/community/Foggyline/HappyHour/
etc/adminhtml.xml file with the following content:

<?xml version="1.0"?>
<config>
 <acl>
 <resources>
 <admin>
 <children>
 <system>
 <children>
 <config>
 <children>
 <foggyline_happyhour module="foggyline_
happyhour">">
 <title>FoggylineHappyHour</title>
 </foggyline_happyhour>
 </children>
 </config>
 </children>
 </system>
 </children>
 </admin>
 </resources>
 </acl>
</config>

Once done, you need to log out and then log back in to Magento administration in
order for acl (access list) to kick in, otherwise you will still be getting a 404 Error
Page not found error when you try to access System | Configuration | Foggyline |
FoggylineHappyHour.

Now get back to the adminhtml.xml file. The syntax of the file seems somewhat
recursive with all those children elements repeating. We could say that we need to
define a resource whose path matches the system configuration option defined under
system.xml. So if a base path for the acl resource within adminhtml.xml is config
> acl > resources > admin > children > system > children > config
> children, we simply need to define a new child within it called foggyline_
happyhour like we did in the preceding example. The element name foggyline_
happyhour must match the element name of the section from within system.xml.

Chapter 1

[41]

The title element simply dictates what will show up in the Magento administration
panel when the node tree is displayed.

If all went well, you should be able to see your configuration options interface as
shown in the following screenshot:

Magento allows each configuration option defined through system.xml to have
a default value. For example, let's say we want the default value of our custom_
message to be Hello World string. To do so, we turn to our config.xml file
as follows:

<?xml version="1.0"?>
<config>
 <!-- … other elements ... -->
 <default>
 <foggyline_happyhour>
 <settings>
 <custom_message><![CDATA[Hello World]]></custom_message>
 </settings>
 </foggyline_happyhour>
 </default>
 <!-- … other elements ... -->
</config>

It might look a bit confusing at first, but notice how the config.xml element paths
within the default element path foggyline_happyhour> settings >foggyline_
happyhour follow the system.xml element paths within the sections element
path foggyline_happyhour> settings > foggyline_happyhour (minus the
groups element). Now if you open the System | Configuration | Foggyline |
FoggylineHappyHour, you should see, if you haven't previously saved some other
value, the text Hello World under the Custom Message option value.

An Overview of Magento Extensions

[42]

Finally, as shown in the following code snippet, we will use the helper Data class to
add utility methods for extracting our configuration option value from the system.
xml:

<?php

class Foggyline_HappyHour_Helper_Data extends Mage_Core_Helper_Data
{
 const XML_PATH_CUSTOM_MESSAGE = 'foggyline_happyhour/settings/
custom_message';

 public function getCustomMessage($storestore = null)
 {
 return Mage::getStoreConfig(self::XML_PATH_CUSTOM_MESSAGE,
$store);
 }
}

Looking at the preceding code, it is easy to conclude how the const XML_
PATH_CUSTOM_MESSAGE string value follows the same XML elements path as
previously mentioned for system.xml and config.xml. Passing that string to
Mage::getStoreConfig() will retrieve our custom message.

To confirm everything is working, add the following action to your app/code/
community/Foggyline/HappyHour/controllers/HelloController.php class file:

<?php

class Foggyline_HappyHour_HelloController extends Mage_Core_
Controller_Front_Action
{
 public function helperTestAction()
 {
 echo Mage::helper('foggyline_happyhour')->getCustomMessage();
 }
}

Now open the http://magento.loc/index.php/happyhour/hello/helperTest
URL in the browser; if all is good, you should be able to see the Hello World
message.

Chapter 1

[43]

Even though we have covered a lot of ground so far, we have barely scratched the
surface. The massiveness of the Magento platform hides far more features. These,
however, are left for you to discover.

Magento is known for its poor developer documentation regarding certain features.
Every now and then you will find yourself tracing the Magento core code trying to
understand its inner workings. Hopefully, the preceding introduction will give you
a good starting point.

Summary
Up until now, we have covered the basics of Magento's overall structure. We took
a dive into the extension structure itself. As we progressed through individual
extension structures, we familiarized ourselves with configuration file, Model, Block,
Helper, controller classes, and a few other important concepts. We gave a brief intro
to the Magento event/observer pattern, cron jobs functionality, and access lists.
With this combined knowledge, we should now be ready for the next chapter,
the full-blown extension.

Building the Extension –
Maximum Order Amount

If you successfully made it through the first chapter, it is time to use what we have
learned so far and get our hands dirty with building a real and usable extension.
The functional requirement of the extension that we are going to develop is a simple,
light fraud-prevention mechanism. The merchant needs a configuration option
through which he can set a maximum order amount allowed for purchase and an
e-mail notification for orders above certain suspicious amount. Functionality like
this can serve as a mini fraud-protection system.

Planning your extension
Once you are clear with the basic functional requirement, you should take some time
to think about its implementation in the form of a Magento extension. For example,
an extension like this would require the following contents:

• A system.xml file through which we would define configuration options,
one of which is the maximum allowed order amount

• Usage of a proper event observer through which we would observe products
being added to the cart, and then intercept the addition of entirely new
products or product quantities that would break the maximum order amount
barrier when added to the cart

Building the Extension – Maximum Order Amount

[46]

Registering your extension
The following is a list of steps required for successfully registering your extension
via configuration files:

1. We start off by defining our extension namespace, which is usually our
company name or website domain, or something else that is unique to us. In
our case, the namespace will be Foggyline. Once we define the namespace,
we need to define our extension name; let's call it MaxOrderAmount.

2. Next, we need to decide on codePool. Since we will distribute this extension
to more than one merchant, possibly uploading it to Magento Connect, the
decision is simple; we will use community as codePool.

3. Now we go ahead and create an extension registration file, app/etc/modules/
Foggyline_MaxOrderAmount.xml, with the following code content:
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <modules>
 <Foggyline_MaxOrderAmount>
 <active>true</active>
 <codePool>community</codePool>
 </Foggyline_MaxOrderAmount>
 </modules>
</config>

4. Once the file is in place, log in to the Magento administration interface, then
navigate to System | Configuration | Advanced | Advanced. You should
see your extension appear on the Disable Module Output list.

If for some reason you do not see your extension there on the list,
then navigate to System | Cache and click on the Clear Magento
Cache button. If you still do not see your extension on the Disable
Module Output list, then the chances are that you have an invalid
XML within the Foggyline_MaxOrderAmount.xml file or
possible file access permission restrictions.

5. Once you confirm that Magento sees your extension, the next file we need to
create is app/code/community/Foggyline/MaxOrderAmount/etc/config.
xml with the following initial code content:

<?xml version="1.0" encoding="UTF-8"?>
<config>
 <modules>
 <Foggyline_MaxOrderAmount>

Chapter 2

[47]

 <version>1.0.0.0</version>
 </Foggyline_MaxOrderAmount>
 </modules>
 </global>
</config>

This is the so-called extension configuration file, in which we define
models, helpers, blocks, routers, and many other things.

Building the configuration options
interface
The following is a list of steps for defining the system configuration options for
your extension:

1. We will first go ahead and build our configuration option's interface. Thus
we need to create the app/code/community/Foggyline/MaxOrderAmount/
etc/system.xml file with the following code content:
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <sections>
 <sales module="sales">
 <groups>
 <foggyline_maxorderamount>
 <label>Maximum Order Amount</label>
 <sort_order>10</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 <fields>
 <active>
 <label>Enable</label>
 <sort_order>10</sort_order>
 <frontend_type>select</frontend_type>
 <source_model>
 adminhtml/system_config_source_yesno
 </source_model>
 <show_in_default>
 1</show_in_default>
 <show_in_website>
 1</show_in_website>

Building the Extension – Maximum Order Amount

[48]

 <show_in_store>
 0</show_in_store>
 </active>
 <single_order_top_amount>
 <label>Single Order Maximum Amount</label>
 <frontend_type>text</frontend_type>
 <sort_order>20</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 </single_order_top_amount>
 <single_order_top_amount_msg>
 <label>Single Order Maximum Amount
 Message</label>
 <frontend_type>text</frontend_type>
 <sort_order>30</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 </single_order_top_amount_msg>
 </fields>
 </foggyline_maxorderamount>
 </groups>
 </sales>
 </sections>
</config>

This is quite a big chunk of XML code, but do not be afraid, since we should
already be familiar with its structure from the first chapter. There are a few
new XML elements here; however, if you take a look under the individual
field's element definition, for example single_order_top_amount, you can
see elements, namely show_in_default, show_in_website, show_in_store.
Since Magento is a multiwebsite or multistore platform, these are used
internally to enable you to set and get configuration options all the way
down to individual store level. For example, our configuration options won't
be visible on the backend when the admin changes the configuration scope to
store level, since show_in_store is set to 0.
The source_model element is used to supply possible options through a
model class that you specify. The value we supply here is in the form model
class group / directory, and the file path Directory Mage/Adminhtml/
Model/System/Config/Source contains a lot of useful sources already
defined, such as Yes or No, or Enable or Disable, or lists of countries,
currencies, or languages. In our example, we are basically using a Mage/
Adminhtml/Model/System/Config/Source/Yesno.php class file.

Chapter 2

[49]

Depending on what type of extensions you are developing, you might never
need to use show_in_store, or even show_in_website. In Chapter 1, An
Overview of Magento Extensions, the system.xml file had a definition of the
tab element. Here, we are not creating our own tab, thus we do not need to
define it. The element config/sections/sales has already been defined
under Magento core extension, called Mage_Sales, so on defining it again
here Magento sees as simply extending it. This is why we have defined the
groups element only, with our specific foggyline_maxorderamount element
under it, in order to prevent rewriting the entire sales element.

2. Once we have system.xml all in place, we need to log in to Magento and
navigate to System | Configuration | Sales to confirm that Magento sees it.
You should see your configuration options here.
If all is OK, we get back to our config.xml. There we will add default values
to some of our configuration options defined under system.xml as shown
in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<config>
 <!-- ...other elements... -->
 <default>
 <sales>
 <foggyline_maxorderamount>
 <active>0</active>
 <single_order_top_amount>
 15001500</single_order_top_amount>
 <single_order_top_amount_msg>
 <![CDATA[No single order allowed with amount over
 %s.]]></single_order_top_amount_msg>
 </foggyline_maxorderamount>
 </sales>
 </default>
 <!-- ...other elements... -->
</config>

Our next move will be to write a helper that will read these
configuration values. However, before we write the helper, we need
to define its class group under config.xml. While there we will add
class group definitions for models as well.

www.allitebooks.com

http://www.allitebooks.org

Building the Extension – Maximum Order Amount

[50]

3. Edit the config.xml file by adding the following to it:
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <!-- ...other elements... -->
 <global>
 <models>
 <foggyline_maxorderamount>
 <class>Foggyline_MaxOrderAmount_Model</class>
 </foggyline_maxorderamount>
 </models>
 <helpers>
 <foggyline_maxorderamount>
 <class>Foggyline_MaxOrderAmount_Helper</class>
 </foggyline_maxorderamount>
 </helpers>
 </global>
 <!-- ...other elements... -->
</config>

4. Now, we can go ahead and create our app/code/community/Foggyline/
MaxOrderAmount/Helper/Data.php file with the following code content:

<?php
class Foggyline_MaxOrderAmount_Helper_Data extends
 Mage_Core_Helper_Abstract
{
 const XML_PATH_ACTIVE =
 'sales/foggyline_maxorderamount/active';
 const XML_PATH_SINGLE_ORDER_TOP_AMOUNT =
 'sales/foggyline_maxorderamount/
 single_order_top_amount';
 const XML_PATH_SINGLE_ORDER_TOP_AMOUNT_MSG =
 'sales/foggyline_maxorderamount/
 single_order_top_amount_msg';

 public function isModuleEnabled($moduleName = null)
 {
 if ((int)Mage::getStoreConfig(self::XML_PATH_ACTIVE,
 Mage::app()->getStore()) != 1) {
 return false;
 }
 return parent::isModuleEnabled($moduleName);
 }

Chapter 2

[51]

 public function getSingleOrderTopAmount($store = null)
 {
 return
 (int)Mage::getStoreConfig
 (self::XML_PATH_SINGLE_ORDER_TOP_AMOUNT, $store);
 }

 public function getSingleOrderTopAmountMsg($store = null)
 {
 return
 Mage::getStoreConfig
 (self::XML_PATH_SINGLE_ORDER_TOP_AMOUNT_MSG,
 $store);
 }
}

The helper class is pretty straightforward and simple. In this extension, it will serve
merely to read configuration values. The most important thing here, and one that
causes most errors if not done right, is the value of all those XML_PATH_* constants.
These values must follow the same config.xml and system.xml element tree,
for example sales/foggyline_maxorderamount/single_order_top_amount
from within Data.php must follow the sections/sales/groups/foggyline_
maxorderamount/fields/single_order_top_amount element's structure from
within system.xml (minus the sections, groups, and fields as these are stripped
by the internal Magento system).

Adding the business logic
Now that we have registered our extension with Magento and defined the
required configuration options, it's time to add the business logic as described
in the following steps:

1. Add the event observer to our config.xml file as shown in the following code:
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <!-- ...other elements... -->
 <frontend>
 <events>
 <sales_quote_save_before>
 <observers>
 <foggyline_maxorderamount_
 enforceSingleOrderLimit>

Building the Extension – Maximum Order Amount

[52]

 <class>
 foggyline_maxorderamount/observer</class>
 <method>enforceSingleOrderLimit</method>
 </foggyline_maxorderamount_
 enforceSingleOrderLimit>
 </observers>
 </sales_quote_save_before>
 </events>
 </frontend>
 <!-- ...other elements... -->
</config>

Event observers can be placed under config/global, config/adminhtml,
and config/frontend. Our extension uses config/frontend because
in Magento, the same event can be fired on the frontend and on the
administration area, for example Product entity after the save event.
Sometimes, depending on your extension functionality, you might want to
observe only events fired from either the frontend or administration area. In
our extension, we do not want to put the maximum order amount restriction
on the administration, thus blocking the admin users from creating large
orders, so we placed our event observer under config/frontend. The
reason why we choose exactly the sales_quote_save_before event to
observe is a bit more difficult to explain. This is one of those dynamic
events we described under Chapter 1, An Overview of Magento Extensions.
When a customer adds a product to the cart, Magento internally modifies
its singleton instance of the Mage_Sales_Model_Quote object. This object
further contains a collection of the Mage_Sales_Model_Quote_Item objects.
For every product you add to the cart, Magento creates an instance of Mage_
Sales_Model_Quote_Item, which it then further persists into a database.
The sales_quote_save_before event is especially interesting to us in this
case, because if an error occurs during its execution, Magento will fail to save
the object, and its possibly newly updated item's collection. What this means
is that with an error within the observer, products won't be added to the
cart. This fits perfectly for our extension functionality as it will enable us to
achieve the desired effect with just a few lines of code.

2. Now that we understand the reason for choosing the sales_quote_save_
before event, go ahead and create the app/code/community/Foggyline/
MaxOrderAmount/Model/Observer.php file with the following code content:

<?php

class Foggyline_MaxOrderAmount_Model_Observer
{

Chapter 2

[53]

 public function enforceSingleOrderLimit($observer)
 {
 $helper = Mage::helper('foggyline_maxorderamount');
 if (!$helper->isModuleEnabled()) {
 return;
 }

 $quote = $observer->getEvent()->getQuote();

 if ((float)$quote->getGrandTotal() >
 (float)$helper->getSingleOrderTopAmount()) {

 $formattedPrice =
 Mage::helper('core')->currency($helper-
 >getSingleOrderTopAmount(), true, false);

 Mage::getSingleton('checkout/session')->addError(
 $helper->__($helper->getSingleOrderTopAmountMsg(),
 $formattedPrice));

 Mage::app()->getFrontController()->getResponse()-
 >setRedirect(Mage::getUrl('checkout/cart'));
 Mage::app()->getResponse()->sendResponse();
 exit;
 }
 }
}

Code within the enforceSingleOrderLimit() method is pretty self-
explanatory. First, we are grabbing the quote object from the event. There
is no magic here, just remember the dynamic events, in this case, originating
from the Mage_Core_Model_Abstract method. Once we have the quote
object instance, we can compare its grand total value with the value set for
the maximum order amount. If the grand total value is greater than the
maximum order amount allowed, then we add the error message to the
checkout session and redirect the user to the cart page.

Now that everything is in place, you can go ahead and test your functionality. If you
haven't changed the default values for the single_order_top_amount configuration
option, then adding the product to the cart with the total price over $1500 (or other
currently active currency) will trigger the No single order allowed with amount
over %s. message.

This extension is an example of a relatively simple Magento extension that
requires a bit more advanced and experience-based knowledge of the Magento
order quote system.

Building the Extension – Maximum Order Amount

[54]

Summary
In this chapter, we learned how to create an extension from scratch. Specific to this
extension was the usage of an event or observer pattern. We got in touch with the
system configuration section by defining our own configuration option. Values
assigned to this configuration option were then read via the help of a Helper class
that we defined. In Chapter 3, Building the Extension - Logger, we will build a new
extension, expanding our knowledge with installation scripts, models, and the
other building blocks of an extension.

Building the
Extension – Logger

Moving forward with deepening our knowledge of Magento extensions, we will
familiarize ourselves with models, blocks, controllers, and other things throughout this
chapter. Unlike the Maximum Order Amount extension that we wrote in Chapter 1,
An Overview of Magento Extensions, that affected the customer part of functionality, the
Logger extension will be geared toward admin users. The functional requirement
of an extension is simple and it improves the logging system so that the admin user
gets an interface through which he can see all standard Magento logs recorded using
the Mage::log() method. The default Magento logging system only stores text
entries under /var/system.log, /var/exception.log, or other custom logfiles.

Planning your extension
Once you are clear with the basic functional requirement, you should take some
time to think about its implementation in the form of Magento extension, just
as we did in a previous chapter. For example, a similar extension would require
the following files:

• The adminhtml.xml file through which we will define admin menu
for accessing the logger grid listing

• The config.xml file through which we will define our Logger model,
admin router for listing our logger block entities

• Various blocks, models, and controller class files

Building the Extension – Logger

[56]

Registering your extension
The following are the steps to register your extension:

1. Governed by the same rules from Chapter 2, Building the Extension - Maximum
Order Amount, we will first set a name and location for our extension. Our
extension will be named as Foggyline_Logger and will be located under
community codePool.

2. Now, we need to create an extension of the registration file app/etc/
modules/Foggyline_Logger.xml with the following code content:
<?xml version="1.0"?>
<config>
 <modules>
 <Foggyline_Logger>
 <active>true</active>
 <codePool>community</codePool>
 <depends>
 <Mage_Core/>
 </depends>
 </Foggyline_Logger>
 </modules>
</config>

3. Once the file is in place, you need to confirm that Magento can see it under
System | Configuration | Advanced | Advanced. You will see your
extension appear on the Disable Module Output list.

4. Once you confirm that Magento sees your extension, the next file we need
to create is app/code/community/Foggyline/Logger/etc/config.xml
with the following initial code content:

<?xml version="1.0" encoding="UTF-8"?>
<config>
 <modules>
 <Foggyline_Logger>
 <version>1.0.0.0</version>
 </Foggyline_Logger>
 </modules>
</config>

Remember, this is the so-called extension configuration file.

Chapter 3

[57]

Setting up the model and install script
Since the basis of our extension functionality is to intercept the default Mage::log()
method calls and write the log entries to the database, we need to set up the model
and install a script that would create the necessary table for our model entity, by
performing the following steps:

1. Go ahead and add the following XML entities to your config.xml file.
<?xml version="1.0" encoding="UTF-8"?>
<config>
<!-- ...other elements... -->
 <global>
 <models>
 <foggyline_logger>
 <class>Foggyline_Logger_Model</class>
 <resourceModel>
 foggyline_logger_resource</resourceModel>
 </foggyline_logger>
 <foggyline_logger_resource>
 <class>Foggyline_Logger_Model_Resource</class>
 <entities>
 <logger>
 <table>foggyline_logger_logger</table>
 </logger>
 </entities>
 </foggyline_logger_resource>
 </models>
 <resources>
 <foggyline_logger_setup>
 <setup>
 <module>Foggyline_Logger</module>
 </setup>
 </foggyline_logger_setup>
 </resources>
 <helpers>
 <foggyline_logger>
 <class>Foggyline_Logger_Helper</class>
 </foggyline_logger>
 </helpers>
 </global>
<!-- ...other elements... -->
</config>

Building the Extension – Logger

[58]

Several things are happening in the previous code. Remember how we said
in Chapter 1, An Overview of Magento Extensions, that each entity model which
is to be persisted in a database needs to have four files defined. XML element
definitions that we just added in the previous code match the locations of
those four files. The config/global/models/foggyline_logger/class
path matches the part of the directory path where our model files will be
stored. Within this XML path definition, the foggyline_logger element is
named in a free manner, usually matching our extension name. The config/
global/models/foggyline_logger/resourceModel path stores a value
that points to the config/global/models/foggyline_logger_resource
path, where we define our model resource folder through the class
element definition and any entity model that will have a table in the database
through the entities element definition. The foggyline_logger_resource
element is given a free name, usually matching the "our extension name" and
_resource formula. The same goes for the foggyline_logger_resource/
entities/logger element, where the logger is freely given an XML element
name. Within the logger element, we have the table element definition,
whose value is set to foggyline_logger_logger, which is what our
database table will be called. If you are new to Magento, there is a lot to
digest here. Usually, developers who are new to Magento have this "XML is
easy, as long as I know where these element names come from" reaction.
Finally, the XML path config/global/resources/foggyline_logger_
setup is used for setting the installation script folder location within our
extension's SQL directory.

2. Let's go ahead and create an installation app/code/community/Foggyline/
Logger/sql/ foggyline_logger_setup/install-1.0.0.0.php file with
the following code content:
<?php

$installer = $this;

$installer->startSetup();

$table = $installer->getConnection()
 ->newTable($installer-
 >getTable('foggyline_logger/logger'))
 ->addColumn('entity_id',
 Varien_Db_Ddl_Table::TYPE_INTEGER, null, array(
 'identity' => true,
 'unsigned' => true,
 'nullable' => false,

Chapter 3

[59]

 'primary' => true,
), 'Id')
 ->addColumn('timestamp', Varien_Db_Ddl_Table::TYPE_CHAR,
 25, array(
 'nullable' => false,
), 'Timestamp')
 ->addColumn('message', Varien_Db_Ddl_Table::TYPE_TEXT,
 null, array(
 'nullable' => false,
), 'Message')
 ->addColumn('priority',
 Varien_Db_Ddl_Table::TYPE_INTEGER, 2, array(
 'nullable' => false,
), 'Priority')
 ->addColumn('priority_name',
 Varien_Db_Ddl_Table::TYPE_VARCHAR, 32, array(
 'nullable' => false,
), 'Priority Name')
 ->addColumn('file', Varien_Db_Ddl_Table::TYPE_TEXT, null,
 array(
 'nullable' => false,
), 'File');
$installer->getConnection()->createTable($table);

$installer->endSetup();

For more insight into the inner workings of $this ($installer)
object, take some time to study the code within the following two
classes:
Mage_Core_Model_Resource_Setup, found under the app/
code/core/Mage/Core/Model/Resource/Setup.php file
Varien_Db_Adapter_Pdo_Mysql, found under the lib/
Varien/Db/Adapter/Pdo/Mysql.php file

3. Now that we have defined our entities persistent storage and database table,
we will go forward and define the entity itself. First, we need to create the
app/code/community/Foggyline/Logger/Model/Logger.php file with the
following code content:
<?php
class Foggyline_Logger_Model_Logger extends Mage_Core_Model_
Abstract
{

www.allitebooks.com

http://www.allitebooks.org

Building the Extension – Logger

[60]

 protected function _construct()
 {
 $this->_init('foggyline_logger/logger');
 }
}

Code within the Foggyline_Logger_Model_Logger class is basic; we
extend the Mage_Core_Model_Abstract class and define the _construct()
method with a call towards the parent class _init() method, passing it
the 'foggyline_logger/logger' string parameter, which is basically a
resource model path. All Magento data entities extend the Mage_Core_
Model_Abstract. In this way they inherit all the logic required for proper
functioning. Pay special attention to the name of the _construct() method;
this is not your PHP constructor method.

4. Next, we create the app/code/community/Foggyline/Logger/Model/
Resource/Logger.php resource file with the following code content:
<?php
class Foggyline_Logger_Model_Resource_Logger extends
 Mage_Core_Model_Resource_Db_Abstract
{
 protected function _construct()
 {
 $this->_init('foggyline_logger/logger', 'entity_id');
 }
}

The same as with the previous class file, we have a basic class with just a
single method and a single statement within it. This time we are extending
the Mage_Core_Model_Resource_Db_Abstract class whose _init()
method takes two parameters. The first parameter, 'foggyline_logger/
logger', matches the database table name, and the second parameter
matches your entity database table primary key column name. Be sure
to correctly pass the underscores and lower or uppercase names used in
your config.xml file. Pay special attention to these parameters as they are
often the cause of my models are not working issues during extension
development.

Chapter 3

[61]

5. Our last model definition file is the collection file. For this, we need to create
the app/code/community/Foggyline/Logger/Model/Resource/Logger/
Collection.php file with the following code content:
<?php
class Foggyline_Logger_Model_Resource_Logger_Collection
 extends Mage_Core_Model_Resource_Db_Collection_Abstract
{
 public function _construct()
 {
 $this->_init('foggyline_logger/logger');
 }
}

We have a basic class with just a single method and a single statement
within it. This time we are extending the Mage_Core_Model_Resource_Db_
Collection_Abstract class whose _init() method takes one parameter,
string 'foggyline_logger/logger', which stands for the model name.

In order to grasp a deeper understanding of the code behind
the model entity, you are strongly encouraged to spare some
time and study the code within the Mage_Core_Model_
Abstract, Mage_Core_Model_Resource_Db_Abstract,
Mage_Core_Model_Resource_Db_Collection_
Abstract class, and their parent classes.

6. Finally, this is just for the sake of Magento, we will create our helper file with
the following code content:

<?php
class Foggyline_Logger_Helper_Data extends
 Mage_Core_Helper_Data
{
}

In this case, we have a helper class that merely inherits from
Mage_Core_Helper_Data, but does not implement any
methods of its own. Its purpose is to provide extension scope
translation.

Building the Extension – Logger

[62]

Building the visual components
Now that we have defined our model and helper, we will proceed with defining
the Block files that will render our logs under the Magento administration area,
by performing the following steps:

1. First we add the block class group definition into our config.xml file, as
shown in the following code:
<?xml version="1.0"?>
<config>
<!-- ...other elements... -->
 <global>
 <!-- ...other elements... -->
 <blocks>
 <foggyline_logger>
 <class>Foggyline_Logger_Block</class>
 </foggyline_logger>
 </blocks>
 <!-- ...other elements... -->
 </global>
<!-- ...other elements... -->
</config>

2. Once this is in place, we need to create two block-related classes. The first one
is the app/code/community/Foggyline/Logger/Block/Adminhtml/Edit.
php file with the following code content:
<?php
class Foggyline_Logger_Block_Adminhtml_Edit extends
 Mage_Adminhtml_Block_Widget_Grid_Container
{
 public function __construct()
 {
 $this->_blockGroup = 'foggyline_logger';
 $this->_controller = 'adminhtml_edit';
 $this->_headerText = Mage::helper('foggyline_logger')-
 >__('Logger - Log entries of everything that passed
 through Mage::log();');

 parent::__construct();

 $this->_removeButton('add');
 }
}

Chapter 3

[63]

3. The second one is the app/code/community/Foggyline/Logger/Block/
Adminhtml/Edit/Grid.php file with the following code content:
<?php
class Foggyline_Logger_Block_Adminhtml_Edit_Grid extends Mage_
Adminhtml_Block_Widget_Grid
{
 public function __construct()
 {
 parent::__construct();

 $this->setId('foggyline_logger');
 $this->setDefaultSort('entity_id');
 $this->setUseAjax(true);
 }

 protected function _prepareCollection()
 {
 $collection = Mage::getModel('foggyline_logger/logger')
 ->getCollection();

 $this->setCollection($collection);
 parent::_prepareCollection();
 return $this;
 }

 protected function _prepareColumns()
 {
 $this->addColumn('entity_id', array(
 'header' => Mage::helper('foggyline_logger')-
 >__('ID'),
 'sortable' => true,
 'index' => 'entity_id',
));

 $this->addColumn('timestamp', array(
 'header' => Mage::helper('foggyline_logger')-
 >__('Timestamp'),
 'index' => 'timestamp',
 'type' => 'text',
 'width' => '170px',
));

Building the Extension – Logger

[64]

 $this->addColumn('message', array(
 'header' => Mage::helper('foggyline_logger')-
 >__('Message'),
 'index' => 'message',
 'type' => 'text',
));

 return parent::_prepareColumns();
 }

 public function getGridUrl()
 {
 return $this->getUrl('*/*/grid', array('_current' =>
 true));
 }
}

These two files (classes) go hand in hand with each other. The reason is that
one extends the Mage_Adminhtml_Block_Widget_Grid_Container class
and the other one extends the Mage_Adminhtml_Block_Widget_Grid class,
which makes them parent and child.

Grid classes, such as Foggyline_Logger_Block_Adminhtml_
Edit_Grid, are usually pretty straightforward. You usually just
need to implement the __construct(), _prepareCollection(),
_prepareColumns(), getGridUrl() methods within them.

A great self-study resource when it comes to grid blocks is the app/
code/core/Mage/Adminhtml/Block/ folder, and you can find all
the Grid.php files under its subfolders.

4. Next, we add the controller file that will be used to render the
blocks that we just defined previously, so we add the app/code/
community/Foggyline/Logger/controllers/Adminhtml/Foggyline/
LoggerController.php file with the following code content:
<?php
class Foggyline_Logger_Adminhtml_Foggyline_LoggerController
 extends Mage_Adminhtml_Controller_Action
{
 public function indexAction()
 {

Chapter 3

[65]

 $this->loadLayout()-
 >_setActiveMenu('system/tools/foggyline_logger');
 $this->_addContent($this->getLayout()-
 >createBlock('foggyline_logger/adminhtml_edit'));
 $this->renderLayout();
 }

 public function gridAction()
 {
 $this->getResponse()->setBody(
 $this->getLayout()-
 >createBlock(
 'foggyline_logger/adminhtml_edit_grid')->toHtml()
);
 }
}

5. The preceding file extends the Mage_Adminhtml_Controller_Action class,
which makes it the admin controller. In order for Magento to react to it,
we need to add a special entry to our config.xml file, as shown in the
following code:
<?xml version="1.0"?>
<config>
 <!-- ...other elements... -->
 <admin>
 <routers>
 <adminhtml>
 <args>
 <modules>
 <Foggyline_Logger before="Mage_Adminhtml">
 Foggyline_Logger_Adminhtml
 </Foggyline_Logger>
 </modules>
 </args>
 </adminhtml>
 </routers>
 </admin>
 <!-- ...other elements... -->
</config>

Building the Extension – Logger

[66]

6. And finally, we need a menu item with a link to our controller, which is done
through the app/code/community/Foggyline/Logger/etc/adminhtml.xml
file, by adding the following code content to it:

<?xml version="1.0"?>
<config>
 <menu>
 <system>
 <children>
 <tools>
 <children>
 <foggyline_logger translate="title"
 module="foggyline_logger">
 <title>Logger</title>
 <action>adminhtml/foggyline_logger/index
 </action>
 <sort_order>25</sort_order>
 </foggyline_logger>
 </children>
 </tools>
 </children>
 </system>
 </menu>
</config>

Now, if you log in to the Magento administration interface and navigate to System
| Tools | Logger, you should see an empty grid. In case you see a 404 error, just log
out and log back in again.

Adding the business logic
Finally, to make the whole thing work, we need to start recording our logs. To
do so, we will overwrite the existing log/core/writer_model with our own, by
performing the following steps:

1. We add the following rewrite definition under our existing config.xml file,
by adding the following code:
<?xml version="1.0"?>
<config>
<!-- ...other elements... -->
 <global>
 <log>
 <core>

Chapter 3

[67]

 <!--<writer_model>Zend_Log_Writer_Stream
 </writer_model>-->
 <writer_model>
 Foggyline_Logger_Model_Log_Writer_Stream
 </writer_model>
 </core>
 </log>
 </global>
<!-- ...other elements... -->
</config>

The previous rewrite definition is not the standard Magento model class
rewrite. The depends tag within the Foggyline_Logger.xml file makes
sure that the Mage_Core extension is loaded before the Foggyline_Logger
extension. Then, this definition of config/global/log/core/writer_model
simply overwrites the same one from Mage_Core extension during its
configuration files merge process, as our extension is loaded after the Mage_
Core extension.

2. Finally, we add the following code content to the app/code/community/
Foggyline/Logger/Model/Log/Writer/Stream.php file:

<?php
class Foggyline_Logger_Model_Log_Writer_Stream extends
 Zend_Log_Writer_Stream
{
 /* foggyline logger file path */
 private static $_flfp;

 public function __construct($streamOrUrl, $mode = NULL)
 {
 self::$_flfp = $streamOrUrl;
 return parent::__construct($streamOrUrl, $mode);
 }

 protected function _write($event)
 {
 $logger = Mage::getModel('foggyline_logger/logger');

 $logger->setTimestamp($event['timestamp']);
 $logger->setMessage($event['message']);
 $logger->setPriority($event['priority']);
 $logger->setPriorityName($event['priorityName']);

Building the Extension – Logger

[68]

 if (is_string(self::$_flfp)) {
 $logger->setFile(self::$_flfp);
 }

 try {
 $logger->save();
 } catch (Exception $e) {
 //echo $e->getMessage(); exit;
 /* Silently die... */
 }

 /* Now pass the execution to original parent code */
 return parent::_write($event);
 }
}

In order to understand what's happening in our Stream.php file, we need to take
a look inside the Zend_Log_Writer_Stream class. Our intention is to execute our
part of the code at the moment Magento writes to a logfile. This moment is caught
in the _write($event) method, which we are overriding with our own. Within the
method, we are simply instantiating our Logger model, setting its properties via
magic methods, and saving the model.

Summary
This chapter introduced the installation script, model entity, administration controller,
grid block class, and a configuration rewrite, thus demonstrating simple, clean, yet
powerful functionality that can be achieved in just a few lines of code. In Chapter 4,
Building the Extension – Shipping, we will take a look at the Magento shipping methods,
and learn how to code an extension for our custom shipping method.

Building the
Extension – Shipping

The default Magento installation comes with several built-in shipping methods
available: Flat Rate, Table Rates, Free Shipping UPS, USPS, FedEx, and DHL.
For some merchants, this is more than enough; for others, you are free to build
an additional custom shipping extension with support for one or more shipping
methods. Be careful about the terminology here. Shipping method resides within
shipping extension. A single extension can define one or more shipping methods.
In this chapter, we will learn how to create our own shipping method.

Shipping methods
There are two, unofficially divided, types of shipping methods:

• Static, where the shipping cost rates are based on a predefined set of rules.
For example, you can create a shipping method called 5+ and make it
available to the customer for selection under the checkout only if they
added more than five products to the cart.

• Dynamic, where retrieval of shipping cost rates comes from various shipping
providers. For example, you have a web service called ABC Shipping that
exposes a SOAP web service API which accepts products weight, length,
height, width, shipping address, and returns the calculated shipping cost
that you can then show to your customer.

Experienced developers would probably expect one or more PHP interfaces to
handle the implementation of new shipping methods. The same goes for Magento,
implementing a new shipping method is done via an interface and via proper
configuration.

Building the Extension – Shipping

[70]

Planning your extension
Just the same as with the previous extensions we built, we first need to lay out some
general plan for our shipping extension. We will build a simple shipping extension
with a single shipping method that conforms to the following functionality:

• Will only be applicable to the customers who selected United States as a
shipping country

• Will charge $20 for orders whose total value is below $100
• Will charge $10 for orders whose total value is above $100
• Will only be available for customers and not for admin users

Registering your extension
The following are the steps for registering your extension so that Magento can see it:

1. Prior to writing any real code, we first decide on a name for our extension.
We will call it Foggyline_Cargo, and it will be placed under the community
codePool.

2. Once we settle on a name, we go ahead and define an extension registration
file, app/etc/modules/Foggyline_Cargo.xml, with the following content:
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <modules>
 <Foggyline_Cargo>
 <active>true</active>
 <codePool>community</codePool>
 <depends>
 <Mage_Shipping/>
 </depends>
 </Foggyline_Cargo>
 </modules>
</config>

With the depends tag, Magento offers you the ability to load another
extension before yours, as it establishes a load order (or error) for the
extension config.xml.

Chapter 4

[71]

3. Once the file is in place, you need to confirm that Magento can see it under
System | Configuration | Advanced | Advanced. You should see your
extension appear on the Disable Module Output list.

4. Once you confirm that Magento sees your extension, go ahead and create
the main configuration file with the following content:
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <modules>
 <Foggyline_Cargo>
 <version>1.0.0.0</version>
 </Foggyline_Cargo>
 </modules>
</config>

Dissecting the existing shipping method
Magento defines its shipping methods, also called carriers, under the config/
default/carriers XML element.

If you take a look at app/code/core/Mage/Shipping/etc/config.xml, you
can see several carriers' definition as the one for the Flat Rate shipping method,
as the following code:

<?xml version="1.0"?>
<config>
 <!-- ... -->
 <default>
 <carriers>
 <flatrate>
 <active>1</active>
 <sallowspecific>0</sallowspecific>
 <model>shipping/carrier_flatrate</model>
 <name>Fixed</name>
 <price>5.00</price>
 <title>Flat Rate</title>
 <type>I</type>
 <specificerrmsg>This shipping method is currently
 unavailable. If you would like to ship using this
 shipping method, please contact us.</specificerrmsg>
 <handling_type>F</handling_type>
 </flatrate>
 </carriers>
 </default>
 <!-- ... -->
</config>

Building the Extension – Shipping

[72]

Since the Flat Rate method bares one of the simplest shipping method functionalities
with it, it is worth dissecting it a bit further. The most interesting part here is the
model element definition whose value shipping/carrier_flatrate points to the
app/code/core/Mage/Shipping/Model/Carrier/Flatrate.php class file. Taking
a quick look at the Flatrate.php class file, as shown in the following code, reveals
the magic behind the Magento shipping method:

<?php
class Mage_Shipping_Model_Carrier_Flatrate
 extends Mage_Shipping_Model_Carrier_Abstract
 implements Mage_Shipping_Model_Carrier_Interface
 {

 protected $_code = 'flatrate';
 protected $_isFixed = true;

 // ...

The interface Mage_Shipping_Model_Carrier_Interface is extremely simple,
and it only asks you to define two methods: isTrackingAvailable() and
getAllowedMethods(). The isTrackingAvailable() method is already defined
within the extended Mage_Shipping_Model_Carrier_Abstract class. A quick look
inside the Mage_Shipping_Model_Carrier_Abstract class reveals one bodiless
abstract method, collectRates(Mage_Shipping_Model_Rate_Request $request),
which also must be implemented in our class.

Next to the definitions within the config.xml file, are several definitions related
to shipping methods under the system.xml file that defines all the visually
configurable options available under the Magento administration area. In the case
of the Flat Rate shipping method these can be found under the config/sections/
carriers/groups/flatrate/fields XML element of the app/code/core/Mage/
Shipping/etc/system.xml file.

With regards our custom shipping method, a few things are clear from the
preceding code:

• We will have to add a proper carrier definition under the config/default/
carriers XML element, defining our own shipping method model

• We will have to extend from the Mage_Shipping_Model_Carrier_
Abstract class

• We will have to write our own implementation of the collectRates
(Mage_Shipping_Model_Rate_Request $request) method

• We will have to implement the Mage_Shipping_Model_Carrier_
Interface interface

Chapter 4

[73]

• We will have to write our own implementation of the getAllowedMethods()
method

• We will mimic some of the configuration options defined in system.xml
for config/sections/carriers/groups/flatrate/fields

Using the Flat Rate shipping method code as a reference
is a great starting point for your first shipping method.

Defining your shipping method
Now that we have a clear picture on different elements that comprise a single
shipping method, let's define one, by performing the following steps:

1. Edit the config.xml file by adding the following code to it. This defines
a model class group that we will use later for further defining the config/
default/carriers XML element.
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <!-- ... -->
 <global>
 <models>
 <foggyline_cargo>
 <class>Foggyline_Cargo_Model</class>
 </foggyline_cargo>
 </models>
 </global>
 <!-- ... -->
</config>

2. Edit the config.xml file by adding the following code to it. This adds
the definition for our shipping method (carrier).

<?xml version="1.0" encoding="UTF-8"?>
<config>
 <!-- ... -->
 <default>
 <carriers>
 <foggyline_cargo_fixy>
 <active>1</active>
 <model>foggyline_cargo/shipping_carrier_fixy
 </model>

Building the Extension – Shipping

[74]

 <title>Foggyline Cargo</title>
 <name>Fixy</name>
 </foggyline_cargo_fixy>
 </carriers>
 </default>
 <!-- ... -->
</config>

The value foggyline_cargo/shipping_carrier_fixy of config/
default /carriers/foggyline_cargo/model element tells us that
Magento will try to load the Foggyline_Cargo_Model_Shipping_Carrier_
Fixy class from within the app/code/community/Foggyline/Cargo/
Model/Shipping/Carrier/Fixy.php file.

3. Create the app/code/community/Foggyline/Cargo/etc/system.xml
file with the following content:
<?xml version="1.0"?>

<config>
 <sections>
 <carriers>
 <groups>
 <foggyline_cargo_fixy translate="label">
 <label>Foggyline Cargo Fixy</label>
 <frontend_type>text</frontend_type>
 <sort_order>999</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 <fields>
 <active translate="label">
 <label>Enabled</label>
 <frontend_type>select</frontend_type>
 <source_model>
 adminhtml/system_config_source_yesno
 </source_model>
 <sort_order>1</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 </active>
 <title translate="label">
 <label>Title</label>

Chapter 4

[75]

 <frontend_type>text</frontend_type>
 <sort_order>2</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </title>
 <name translate="label">
 <label>Method Name</label>
 <frontend_type>text</frontend_type>
 <sort_order>3</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </name>
 </fields>
 </foggyline_cargo_fixy>
 </groups>
 </carriers>
 </sections>
</config>

Right now, if you open the Magento administration area and go to System
| Configuration | Sales | Shipping Methods you should see a Foggyline
Cargo Fixy method on the list, as shown in the following screenshot:

Building the Extension – Shipping

[76]

4. Create the app/code/community/Foggyline/Cargo/Model/Shipping/
Carrier/Fixy.php file with the following initial content:

<?php
class Foggyline_Cargo_Model_Shipping_Carrier_Fixy
extends Mage_Shipping_Model_Carrier_Abstract
implements Mage_Shipping_Model_Carrier_Interface
{
 protected $_code = 'foggyline_cargo_fixy';

 public function
 collectRates(Mage_Shipping_Model_Rate_Request $request)
 {
 $result = Mage::getModel('shipping/rate_result');
 $method =
 Mage::getModel('shipping/rate_result_method');

 $method->setCarrier($this->_code);
 $method->setCarrierTitle($this-
 >getConfigData('title'));

 $method->setMethod($this->_code);
 $method->setMethodTitle($this->getConfigData('name'));

 $method->setPrice(14.99); /* temporary hard coded */
 $method->setCost(14.99); /* temporary hard coded */

 $result->append($method);

 return $result;
 }

 public function getAllowedMethods()
 {
 return array($this->_code => $this-
 >getConfigData('name'));
 }
}

Right now, if you add some products to the Magento cart on the frontend
and try to do a checkout you should see your Foggyline Cargo method on
the Shipping Method step as shown in the following screenshot:

Chapter 4

[77]

There is no technical reason why we placed the Fixy.php file within
Model/Shipping/Carrier folder and not directly within the Model
folder. This was merely to follow a certain pattern of Magento, where
later one might guess what the file is used for without even opening it.

Adding the business logic
If you successfully followed the previous instructions, you should now have a
bare minimum shipping extension. Consider it a starting point for adding further
business logic to it. Right now, our shipping method will always set the shipping
price to $14.99, since this value is currently hardcoded into the code, and it will
be applicable to customers from all states.

In order to achieve the Will only be applicable to the customers who
selected United States as a shipping country functionality as planned,
the following steps need to be performed:

1. Edit the app/code/community/Foggyline/Cargo/etc/system.xml file
by adding the following two fields to it, right below the name field:
<allowspecific translate="label">
 <label>Ship to Applicable Countries</label>
 <frontend_type>select</frontend_type>
 <sort_order>90</sort_order>

Building the Extension – Shipping

[78]

 <frontend_class>shipping-applicable-
 country</frontend_class>
 <source_model>adminhtml/
 system_config_source_shipping_allspecificcountries
 </source_model>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
</allowspecific>
<specificcountry translate="label">
 <label>Ship to Specific Countries</label>
 <frontend_type>multiselect</frontend_type>
 <sort_order>91</sort_order>
 <source_model>
 adminhtml/system_config_source_country</source_model>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 <can_be_empty>1</can_be_empty>
</specificcountry>

There are lot of things that Magento does internally just by looking for
the existence of certain XML elements within configuration files. In this
case, Magento sees allowspecific and specificcountry field
elements, and adds certain logic to your shipping method code, creating
the select and multiselect input fields in the backend.

2. Open the Magento administration interface, navigate to System |
Configuration | Sales | Shipping Methods | Foggyline Cargo Fixy, then
set the newly available Ship to Applicable Countries option to Specific
Countries value and Ship to Specific Countries option to United States
value. Only then click on the Save Config button.

3. Navigate to the frontend checkout page, and try to change your shipping
address to some country other than United States. Once you get to the
Shipping Method step, the Foggyline Cargo Fixy method should not be
available any more.

In order to achieve the Will charge $20 for orders whose total value is
below $100 and Will charge $10 for orders whose total value is above
$100 functionality as planned, the following steps need to be performed:

Chapter 4

[79]

1. Edit the app/code/community/Foggyline/Cargo/Model/Shipping/
Carrier/Fixy.php file by changing the entire collectRates method body
as shown in the following code:
public function
 collectRates(Mage_Shipping_Model_Rate_Request $request)
{
 $shippingPrice = 20;
 $grandTotal = Mage::getModel('checkout/session')
 ->getQuote()
 ->getGrandTotal();

 if ($grandTotal > 100) {
 $shippingPrice = 10;
 }

 $result = Mage::getModel('shipping/rate_result');
 $method = Mage::getModel('shipping/rate_result_method');

 $method->setCarrier($this->_code);
 $method->setCarrierTitle($this->getConfigData('title'));

 $method->setMethod($this->_code);
 $method->setMethodTitle($this->getConfigData('name'));

 $mthod->setPrice($shippingPrice);
 $method->setCost($shippingPrice);

 $result->append($method);

 return $result;
}

The essence of the code lies in getting the cart's grand total value. Take
some experience or code tracing to know that this can be fetched by
the Mage::getModel('checkout/session')->getQuote()-
>getGrandTotal(); statement. After you obtain the grand total, the
rest is basic PHP knowledge. Additionally, the store might have taxes
configured, so additional logic might be needed to extract the tax-free
grand total price.

Building the Extension – Shipping

[80]

2. Navigate to the frontend, and try adding some products to the cart in order
to test the functionality. On the Shipping Method checkout step, you should
be able to see the $10 shipping price for orders above $100, and the $20
shipping price for orders below $100.

In order to achieve the Will only be available on the frontend, not in
the administration area functionality as planned, the following steps need to
be performed:

1. Edit the app/code/community/Foggyline/Cargo/Model/Shipping/
Carrier/Fixy.php file by modifying the section of the collectRates
method body as shown in the following code:
public function
 collectRates(Mage_Shipping_Model_Rate_Request $request)
{
 if (!$this->getConfigFlag('active') ||
 Mage::app()->getStore()->isAdmin()) {
 return false;
 }

 $shippingPrice = 20;
 $grandTotal = Mage::getModel('checkout/session')
 ->getQuote()
 ->getGrandTotal();

 //...

Here we are covering two things actually. First, we are adding the general
extension, that is active or inactive logic via the use of the !$this-
>getConfigFlag('active') statement. This works in conjunction
with our system.xml active configuration option, which can be set to
Enabled or Disabled by the admin user. Secondly, we are conforming to the
functional requirement itself via the use of the Mage::app()->getStore()-
>isAdmin() statement.

2. Confirm that you can still see the Foggyline Cargo Fixy method on the
frontend Shipping Method checkout step.

3. Confirm that you cannot see the Foggyline Cargo Fixy method on the
administration area during the order creation process available under the Sales
| Orders | Create New Order screens, under the Shipping Method box.

If you successfully executed all the steps, you should now have a minimal, but fully
functional shipping extension. Although simple, the functionality of this extension
can be greatly extended just by implementing further business logic into the
collectRates method and by studying the core shipping methods code.

Chapter 4

[81]

Summary
In this chapter, we learned the basics of the Magento shipping method
implementation. Based on that, we built our own simple shipping method that
further implemented several business rules. Our extension was built with a
presumption of using the default Magento installation with USD ($) currency only
and no tax configured. When building an extension for distributing, you will need to
dig a bit deeper into it, covering the currency and tax calculations. Since the focus of
this chapter was on overall introduction and a basic shipping example, we leave it
up to you to handle more complex shipping methods.

In Chapter 5, Building the Extension - Payment, we will familiarize ourselves with
payment methods and build a payment extension.

Building the
Extension – Payment

The default Magento installation comes with several built-in payment methods
available: PayPal, Saved CC, Check/Money Order, Zero Subtotal Checkout, Bank
Transfer Payment, Cash On Delivery payment, Purchase Order, and Authorize.
Net. For some merchants this is more than enough. Various additional payment
extensions can be found on Magento Connect. For those that do not yet exist, you
are free to build an additional custom payment extension with support for one or
more payment methods. Building a payment extension is usually a non-trivial task
that requires a lot of focus.

Payment methods
There are several unofficially divided types of payment method implementations
such as redirect payment, hosted (on-site) payment, and an embedded iframe.
Two of them stand out as the most commonly used ones:

• Redirect payment: During the checkout, once the customer reaches the final
ORDER REVIEW step, he/she clicks on the Place Order button. Magento
then redirects the customer to specific payment provider website where the
customer is supposed to provide the credit card information and execute
the actual payment. What's specific about this is that prior to redirection,
Magento needs to create the order in the system, and it does so by assigning
this new order a Pending status. Later, if the customer provides the valid
credit card information on the payment provider website, the customer gets
redirected back to the Magento success page. The main concept to grasp here
is that the customer might just close the payment provider website and never
return to your store, leaving your order indefinitely in a Pending status. The
great thing about this redirect type of payment method providers (gateways)
is that they are relatively easy to implement in Magento.

Building the Extension – Payment

[84]

• Hosted (on-site) payment: Unlike redirect payment, there is no redirection
here. Everything is handled on the Magento store. During the checkout, once
the customer reaches the Payment Information step, he/she is presented with a
form for providing the credit card information. After which, when he/she clicks
on the Place Order button in the last ORDER REVIEW checkout step, Magento
then internally calls the appropriate payment provider web service, passing it
the billing information. Depending on the web service response, Magento then
internally sets the order status to either Processing or some other. For example,
this payment provider; web service can be a standard SOAP service with a few
methods such as orderSubmit. Additionally, we don't even have to use a real
payment provider, we can just make a "dummy" payment implementation
such as a built-in Check/Money Order payment. You will often find that
most of the merchants prefer this type of payment method, as they believe
that redirecting the customer to a third-party site might negatively affect their
sale. Obviously, with this payment method there is more overhead for you as
a developer to handle the implementation. On top of that there are security
concerns of handling the credit card data on the Magento side, in which
case PCI compliance is obligatory. If this is your first time hearing about PCI
compliance, please see https://www.pcisecuritystandards.org for more
information about it. This type of payment method is slightly more challenging
to implement than the redirect payment method.

Planning your extension
Within this chapter we will build a payment extension for the Stripe payment
gateway available at https://stripe.com. Unlike some other payment gateways,
Stripe is fully developer-friendly, well-documented, and easy to implement. If you
haven't already, now is the good time to:

1. Visit the Stripe web page and sign up for an account.
2. Once you sign up, follow the Stripe documentation for obtaining the API

key (https://manage.stripe.com/account/apikeys). You will need a
test secret key, which we will use later within Magento.

3. Additionally, you will need to obtain the PHP API library (stripe-php-
latest.zip) available at https://stripe.com/docs/libraries. Once
you unpack the downloaded archive, there should be a VERSION file in it.
The current version at the time of this writing is 1.8.0.

4. Spend some time studying/navigating the documentation page, https://
stripe.com/docs/tutorials/checkout, just to get an overview of things.

Please note that actual URLs might change throughout time. Once you are done with
the previously mentioned steps, we can proceed with actual extension development.

Chapter 5

[85]

Registering your extension
The steps for registering your extension, so that Magento can see it, are as follows:

1. Prior to writing any real code, we first decide on a name for our extension.
We will call it Foggyline_Stripe, and it will be placed under the
community codePool.

2. Once we settle on a name, we go ahead and define an extension registration
file, app/etc/modules/Foggyline_Stripe.xml, with the following
code snippet:
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <modules>
 <Foggyline_Stripe>
 <active>true</active>
 <codePool>community</codePool>
 <depends>
 <Mage_Payment/>
 </depends>
 </Foggyline_Stripe>
 </modules>
</config>

3. Once the file is in place, you need to confirm that Magento can see it under
System | Configuration | Advanced | Advanced. You should see your
extension appear on the Disable Extension Output list.

4. Once you confirm that Magento sees your extension, go ahead and create the
main configuration app/code/community/Foggyline/Stripe/etc/config.
xml file with the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<config>
 <modules>
 <Foggyline_Stripe>
 <version>1.0.0.0</version>
 </Foggyline_Stripe>
 </modules>
</config>

Building the Extension – Payment

[86]

Dissecting the existing payment method
Magento defines its payment methods across multiple extensions. For example,
dummy payment methods such as Saved CC, Check/Money Order, Zero Subtotal
Checkout, Bank Transfer Payment, Cash On Delivery payment, and Purchase
Order are defined within the Mage_Payment core extension, that is, under the
config | default | payment XML element of the app/code/core/Mage/Payment/
etc/config.xml file. The remaining two, PayPal and Authorize.Net, are each
defined within its own separate extension (Mage_Paypal, Mage_PaypalUk, Mage_
Authorizenet).

If you took some time to study the Stripe documentation, you could have concluded
that Stripe enables you to execute the payments right from your site, which would
position our extension as a hosted (on-site) payment method. If you think further,
accepting credit card payments on-site is something that the built-in Saved CC
payment method already does, even though it has no real web service API link
in the background. What it does have is the credit card data collecting form on
the checkout as shown in the following screenshot:

Chapter 5

[87]

This form is basically a generic form for any credit card data collecting payment
provider, so it fits perfectly into what we will need for Stripe. All of this makes
dissecting Saved CC a starting point for our new extension. Now, let's take a look
at the definition of Saved CC as shown in the following app/code/core/Mage/
Payment/etc/config.xml file:

<?xml version="1.0"?>
<config>
 <!-- ... -->
 <default>
 <!-- ... -->
 <payment>
 <!-- ... -->
 <ccsave>
 <active>1</active>
 <cctypes>AE,VI,MC,DI</cctypes>
 <model>payment/method_ccsave</model>
 <order_status>pending</order_status>
 <title>Credit Card (saved)</title>
 <allowspecific>0</allowspecific>
 <group>offline</group>
 </ccsave>
 <!-- ... -->

The most interesting part here is the model element definition whose value payment/
method_ccsave points to the app/code/core/Mage/Payment/Model/Method/
Ccsave.php class file. Taking a quick look at the Ccsave.php class file, as shown in
the following code snippet, reveals the magic behind the Magento payment method:

class Mage_Payment_Model_Method_Ccsave extends Mage_Payment_Model_
Method_Cc
{
 protected $_code = 'ccsave';
 protected $_canSaveCc = true;
 protected $_formBlockType = 'payment/form_ccsave';
 protected $_infoBlockType = 'payment/info_ccsave';
}

Building the Extension – Payment

[88]

The class Mage_Payment_Model_Method_Ccsave extends the Mage_Payment_Model_
Method_Cc class, which further extends the essential payment class, Mage_Payment_
Model_Method_Abstract. In order to be a successful Magento payment extension
developer, you need to have a deep understanding of the inner workings of the
Mage_Payment_Model_Method_Abstract class and the methods it declares. Magento
internally uses these methods through various steps of the checkout process. Some
of the most important methods are as follows:

• authorize(Varien_Object $payment, $amount)

• capture(Varien_Object $payment, $amount)

• refund(Varien_Object $payment, $amount)

• cancel(Varien_Object $payment)

In regards to our Stripe payment method, a few things are clear from the previous code:

• We will have to add a proper payment definition under the config |
default | payment XML element, defining our own payment method model

• We will have to extend from the Mage_Payment_Model_Method_Ccsave
class which will provide the full set of form fields for us

• We will have to write our own implementation of the capture(Varien_
Object $payment, $amount) method (for the sake of simplicity, we will
not implement the authorize, refund, and cancel methods)

• We will mimic some of the configuration options defined in system.xml
for config | sections | payment | groups | ccsave | fields

Using the Saved CC payment method code as a reference is a great
starting point for your first credit card accepting payment method.

Defining your payment method
Now that we have a clear picture on different elements that comprise the single
payment method, let's define one:

1. Edit the app/code/community/Foggyline/Stripe/etc/config.xml file by
adding the following code to it. This defines a model class group that we will
use later for further defining the config | default | payment XML element
and a helper class group.

Chapter 5

[89]

<?xml version="1.0" encoding="UTF-8"?>
<config>
 <!-- ... -->
 <global>
 <models>
 <foggyline_stripe>
 <class>Foggyline_Stripe_Model</class>
 </foggyline_stripe>
 </models>
 <helpers>
 <foggyline_stripe>
 <class>Foggyline_Stripe_Helper</class>
 </foggyline_stripe>
 </helpers>
 </global>
 <!-- ... -->

2. Edit the app/code/community/Foggyline/Stripe/etc/config.xml file
by adding the following code to it. This adds the definition for our Stripe
payment method.
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <!-- ... -->
 <default>
 <payment>
 <foggyline_stripe>
 <model>foggyline_stripe/payment</model>
 <api_key
 backend_model="adminhtml/system_config_backend_
 encrypted"/>
 <payment_action>authorize_capture</payment_action>
 <title>Foggyline Stripe</title>
 <cctypes>AE,VI,MC,DI,JCB</cctypes>
 <useccv>1</useccv>
 </foggyline_stripe>
 </payment>
 </default>
 <!-- ... -->

3. The value foggyline_stripe/payment of config | default | payment |
foggyline_stripe | model element tells us that Magento will try to load the
Foggyline_Stripe_Model_Payment from within the app/code/community/
Foggyline/Stripe/Model/Payment.php file.

Building the Extension – Payment

[90]

4. Create the app/code/community/Foggyline/Stripe/etc/system.xml
file with the following code snippet:
<?xml version="1.0" encoding="UTF-8"?>

<config>
 <sections>
 <payment>
 <groups>
 <foggyline_stripe>
 <label>Foggyline Stripe</label>
 <frontend_type>text</frontend_type>
 <sort_order>999</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 <fields>
 <active>
 <label>Enabled</label>
 <frontend_type>select</frontend_type>
 <source_model>adminhtml/system_config_
 source_yesno</source_model>
 <sort_order>10</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 </active>
 <title>
 <label>Title</label>
 <frontend_type>text</frontend_type>
 <sort_order>15</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </title>
 <api_key>
 <label>Api Key</label>
 <frontend_type>obscure</frontend_type>
 <backend_model>adminhtml/system_
 config_backend_encrypted</backend_
 model>

Chapter 5

[91]

 <sort_order>20</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 </api_key>
 <debug>
 <label>Debug</label>
 <frontend_type>select</frontend_type>
 <source_model>adminhtml/system_config_
 source_yesno</source_model>
 <sort_order>25</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 </debug>
 <cctypes>
 <label>Credit Card
 Types</label>
 <frontend_type>multiselect</frontend_
 type>
 <source_model>foggyline_stripe/source_
 cctype</source_model>
 <sort_order>30</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 </cctypes>
 <useccv>
 <label>Credit Card
 Verification</label>
 <frontend_type>select</frontend_type>
 <source_model>adminhtml/system_config_
 source_yesno</source_model>
 <sort_order>35</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 </useccv>

Building the Extension – Payment

[92]

 <allowspecific>
 <label>Payment from Applicable
 Countries</label>
 <frontend_type>allowspecific</
 frontend_type>
 <sort_order>40</sort_order>
 <source_model>adminhtml/system_config_
 source_payment_
 allspecificcountries</source_model>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 </allowspecific>
 <specificcountry>
 <label>Payment from Specific
 Countries</label>
 <frontend_type>multiselect</frontend_
 type>
 <sort_order>45</sort_order>
 <source_model>adminhtml/system_config_
 source_country</sourc e_model>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 <depends>
 <allowspecific>1</allowspecific>
 </depends>
 </specificcountry>
 </fields>
 </foggyline_stripe>
 </groups>
 </payment>
 </sections>
</config>

5. Right now, if you open the Magento administration area and navigate to
System | Configuration | Sales | Payment Methods, you should see a
Foggyline Stripe method on the list as shown in the following screenshot:

Chapter 5

[93]

6. Now create the lib folder within the app/code/community/Foggyline/
Stripe folder, and unpack the Stripe PHP API library within it, so that the
Stripe.php file is available at the path app/code/community/Foggyline/
Stripe/lib/Stripe.php. Right next to the Stripe.php file there should
be additional Stripe and data folders.

7. Create the app/code/community/Foggyline/Stripe/Helper/Data.php
file with the following code snippet, as it is needed for Magento, even
though it is an empty class:
<?php
class Foggyline_Stripe_Helper_Data extends
 Mage_Payment_Helper_Data
{
}

8. Create the app/code/community/Foggyline/Stripe/Model/Source/
Cctype.php file with the following code snippet:
<?php
class Foggyline_Stripe_Model_Source_Cctype extends
 Mage_Payment_Model_Source_Cctype
{
 protected $_allowedTypes =
 array('AE','VI','MC','DI','JCB','OT');
}

Building the Extension – Payment

[94]

9. Create the app/code/community/Foggyline/Stripe/Model/Payment.php
file with the following code snippet:
<?php
require_once dirname(__FILE__).'/../lib/Stripe.php';

class Foggyline_Stripe_Model_Payment extends
 Mage_Payment_Model_Method_Cc
{
 protected $_code = 'foggyline_stripe';
 protected $_isGateway = true;
 protected $_canCapture = true;
 protected $_supportedCurrencyCodes = array('USD');
 protected $_minOrderTotal = 0.5;

 public function __construct()
 {
 Stripe::setApiKey($this->getConfigData('api_key'));
 }

 public function capture(Varien_Object $payment,
 $amount)
 {
 $order = $payment->getOrder();
 $billingAddress = $order->getBillingAddress();

 try {
 $charge = Stripe_Charge::create(array(
 'amount' => $amount * 100,
 'currency' => strtolower($order-
 >getBaseCurrencyCode()),
 'card' => array(
 'number' => $payment->getCcNumber(),
 'exp_month' => sprintf('%02d',
 $payment->getCcExpMonth()),
 'exp_year' => $payment->getCcExpYear(),
 'cvc' => $payment->getCcCid(),
 'name' => $billingAddress->getName(),
 'address_line1' => $billingAddress-
 >getStreet(1),
 'address_line2' => $billingAddress-
 >getStreet(2),
 'address_zip' => $billingAddress-
 >getPostcode(),

Chapter 5

[95]

 'address_state' => $billingAddress-
 >getRegion(),
 'address_country' => $billingAddress-
 >getCountry(),
),
 'description' => sprintf('#%s, %s', $order-
 >getIncrementId(), $order-
 >getCustomerEmail())
));
 } catch (Exception $e) {
 $this->debugData($e->getMessage());
 Mage::throwException(Mage::helper('foggyline_sprite')-
 >__('Payment capturing error.'));
 }

 $payment->setTransactionId($charge->id)
 ->setIsTransactionClosed(0);

 return $this;
 }

 public function isAvailable($quote = null)
 {
 if ($quote && $quote->getBaseGrandTotal() < $this-
 >_minOrderTotal) {
 return false;
 }

 return $this->getConfigData('api_key', ($quote ?
 $quote->getStoreId() : null)) &&
 parent::isAvailable($quote);
 }

 public function canUseForCurrency($currencyCode)
 {
 if (!in_array($currencyCode, $this-
 >_supportedCurrencyCodes)) {
 return false;
 }

 return true;
 }

}

Building the Extension – Payment

[96]

10. Add some products to the cart and then go to the checkout. Confirm you can
see your payment method on the Payment Information checkout step as
shown in the following screenshot:

11. Once you click on the Place Order button in the final ORDER REVIEW
checkout step and you get to the order success page, you should be able to
see your order on the Stripe dashboard page under GENERAL | Payments
as well, as shown in the following screenshot:

Chapter 5

[97]

Extension business logic
In our extension, entire business logic is contained within a single app/code/
community/Foggyline/Stripe/Model/Payment.php file. We are including the
external Stripe library via the require_once dirname(__FILE__).'/../lib/
Stripe.php'; statement. Then we are implementing the Stripe_Charge::create
API call within the capture method, passing it the customer and credit card
information. Since we are using the Stripe PHP library, there is not much of the
code we need to write ourselves, so the implementation is pretty short and clean.

If you successfully executed all the previous steps, you should now have a functional
payment extension. Although simple, functionality of this extension can be further
extended by adding the rest of the methods such as authorize, refund, and
cancel. Authorize action is actually already contained within the capture method,
but sometimes you might want to first authorize the payment then later manually
capture it.

Summary
In this chapter we learned the basics of the Magento payment method
implementation. Based on that we built our own simple payment method.
Same as with the shipping extension, our extension was built with a presumption
of using the default Magento installation with only USD ($) currency and no
tax configuration.

When building an extension for distributing, you will need to dig a bit deeper
into it, covering the currency and tax calculations.

In the next chapter we will learn how to package and distribute your extensions.

Packaging and Publishing
Your Extension

Until now, we have learned some of the more important inner workings of the
Magento platform, through theory and a few practical extensions. Once you get
comfortable with building new extensions, you will most likely start thinking
of sharing or selling them. If so, then Magento Connect should interest you.

Magento Connect
Magento Connect is one of the world's largest e-commerce application marketplaces
where you can find various extensions to customize and enhance your Magento
store.

It allows Magento community members and partners to share their open source
or commercial contributions for Magento with the community.

You can access the Magento Connect marketplace at http://www.
magentocommerce.com/magento-connect url.

Publishing your extension to Magento Connect is a three-step process, consisting of
of the following steps:

1. Packaging your extension.
2. Creating an extension profile.
3. Uploading the extension package.

We'll discuss this process in detail later in the chapter.

Only the community members and partners have the ability to publish
their contributions.

Packaging and Publishing Your Extension

[100]

Becoming a community member is simple; just register as a user on the official
Magento website, https://www.magentocommerce.com. A member account
is a requirement for further packaging and publishing of your extension.

Those who are interested in becoming a partner should check out the information
provided by Magento at http://www.magentocommerce.com/partners.

Free extensions versus commercial
extensions
Free, sometimes called community extensions, are open source extensions created
by Magento community members or partners that are released under an open source
license. Please note that the community term, in this case, is not related to the code
pool community.

Commercial extensions are the extensions that are available for purchase by Magento
community members or partners. Commercial extensions may be sold, distributed,
and licensed directly through the seller.

If you are building a commercial extension, you should be aware that Magento
Connect does not actually do sales for you on its website. You can still list
commercial extensions on connect, but for that you will have to provide the payment
and delivery of the extension code through your own web store. Anyone interested
in purchasing your commercial extension gets redirected to your web store.

Packaging your extension
The first step in publishing your extension is to package and upload it to the
Magento Connect marketplace. For the purpose of packaging, we will choose
our Foggyline_Stripe extension that we have in Chapter 5, Building the
Extension – Payment.

Packaging an extension in Magento is done directly from its administration panel,
as described in the following steps:

1. Log in to your Magento administration panel.
2. From the administration panel, navigate to System | Magento Connect |

Package Extensions. This will take you to the New Extension page,
as shown in the following screenshot:

Chapter 6

[101]

3. The Create Extension Package area of the New Extension page is made
up of the following six sections:

 ° Package info
 ° Release info
 ° Authors
 ° Dependencies
 ° Contents
 ° Load Local Package

We start off by filling the first opened section, the Package info section,
as described in the following list, where most of the fields are required:

 ° Name is a required field. It is a good practice to keep the name as a
combination of your Vendor Namespace and Module Name. This value
is not set in the store. Once you actually upload a packed extension
to Magento Connect, you will once more provide an extension name
there. For now, let's set this value to Foggyline_Stripe.

 ° Channel is a required field. Channel community is used for Magento
Version 1.5, or later. Since the examples in this book were written for
Magento 1.7, we will use community for the Channel value.

 ° Supported releases is a required field. Select the 1.5.0.0 & later option.
 ° Summary is a required field. Provide a brief summary about

your extension.
 ° Description is a required field. Provide a brief description about

your extension.

Packaging and Publishing Your Extension

[102]

 ° License is a required field. Select the license that your extension falls
under; it's a free-form entry, for example OSL v3.0.

 ° License URL is an optional field. For OSL v3.0, the license that we
set in the previous field, http://opensource.org/licenses/osl-
3.0.php. The license URL should match the selected license.

4. Switch to the Release info section, then fill in the fields as follows:
 ° Release Version is a required field. You should set its value to the

same value you have in your extension config.xml file under the
config/extensions/Foggyline_Stripe/version element, which
is 1.0.0. You can check out the http://semver.org website for more
information on forming the version number.

 ° Release Stability is a required field. You can choose from several
values such as Development, Alpha, Beta, and Stable. Extensions
with Development release stability will not be approved; this option
is used for testing purposes only. Keep in mind that by default,
Magento Connect users are only allowed to install Stable release
extensions. Choose Stable.

 ° Notes is a required field. You can add any notes you may have for
this release. Let's put something as First stable release of
Foggyline_Stripe.

5. Switch to the Authors section. Within this section, you are supposed to
add information about all the members who contributed to this extension.
Proceed with entering your own details for Name, User, and Email.

 ° The Name field value should contain your full name, for example
John Doe.

 ° The User field value should contain your Magento Connect account
username, the one you have been assigned, once you log in to
https://www.magentocommerce.com, for example john_doe.

 ° The Email field value should contain your Magento Connect
account's e-mail address, for example john_doe@example.com.

6. Switch to the Dependencies section. Here, you will see three distinctive
field sets, namely PHP Version, Packages, and Extensions. Besides a
minimum and maximum required PHP version, Magento allows you to
define dependence on other Magento extensions, or PHP libraries, such
as GD library. Proceed with just setting the Minimum to 5.2.0 and
Maximum to 6.0.0 PHP version values.

Chapter 6

[103]

7. Switch to the Contents section. This is one of the most important sections
in the extension packaging process. Take extreme caution while filling its
required fields, because it's easy to mess up.
When you click on the Add Contents Path button, a new row of the
following input fields appears: Target, Path, Type, Include, and Ignore.
It is essential that you understand the following values offered under
the Target drop-down menu:

 ° Magento Local module file: It refers to the ./app/code/local
directory

 ° Magento Community module file: It refers to the ./app/code/
community directory

 ° Magento Core team module file: It refers to the ./app/code/core
directory

 ° Magento User Interface (layouts, templates): It refers to the ./app/
design directory

 ° Magento Global Configuration: It refers to the ./app/etc directory
 ° Magento PHP Library file: It refers to the ./lib directory
 ° Magento Locale language file: It refers to the ./app/locale

directory
 ° Magento Media library: It refers to the ./media directory
 ° Magento Theme Skin (Images, CSS, JS): It refers to the ./skin

directory
 ° Magento Other web accessible file: It refers to the ./ directory
 ° Magento PHPUnit test: It refers to the ./tests directory
 ° Magento other: It refers to the ./ directory

In the preceding list string, ./ represents the Magento root directory.
Once you understand what Target value presents, it's easy to fill in the
Path field. All you have to do is to think about which files and folders your
extension is using. If we look back at our Foggyline_Stripe, the following
are the files and folders it uses:

 ° app/code/community/Foggyline/Stripe/

 ° app/etc/modules/Foggyline_Stripe.xml

Packaging and Publishing Your Extension

[104]

8. Now, fill in the first row of the Contents field with the following values:
 ° Target: Magento Global Configuration (./app/etc)
 ° Path: /modules/Foggyline_Stripe.xml
 ° Type: File
 ° Include: -leave blank-
 ° Ignore: -leave blank-, or possibly add a file to ignore, such as .git

or .DS_Store, something you would not like to package

Now, click on the Add Contents Path button again; this will add the second
row of data that you need to fill with the following values:

 ° Target: Magento Community module file (./app/code/
community)

 ° Path: /Foggyline/Stripe
 ° Type: Recursive Dir
 ° Include: -leave blank-
 ° Ignore: -leave blank-, or possibly add a file to ignore, such as

.git or .DS_Store, something you would not like to package

9. Remain on the Contents section, without going to the Load Local Package
section, and click on the Save Data and Create Package button. This saves
the form data in a package data file and creates an extension package file.

The package data file is an XML document that stores the rules for building the
package. This file is saved on the disk in the MAGENTO/var/connect/ folder. Based
on the data we filled in previously, this would generate a MAGENTO/var/connect/
Foggyline_Stripe.xml file.

The Extension Package file contains all source code needed. This file is saved on the
disk in the MAGENTO/var/connect/ folder, more precisely MAGENTO/var/connect/
Foggyline_Stripe-1.0.0.tgz. You should try to unpack the Foggyline_Stripe-
1.0.0.tgz file to confirm that the structure of its files and folders is correct. In
addition, the archive includes another file created by the packager package.xml,
more precisely MAGENTO/var/connect/package.xml. It contains information about
the extension, such as the description of the structure of files and folders included
in the package, and the md5 sum for each file. Overall, this file is the description of
the extension containing instructions about how to install it by listing paths to files
and target locations to place them. It also includes validation that the extension
is correctly formed and that the contents still match with what was created.

This concludes the process of creating an extension package. Now that our extension
package file is ready, it can be uploaded to Magento Connect.

Chapter 6

[105]

Creating an extension profile
The extension profile page describes your extension. Magento Connect forces
specific design guides for extensions, which you must follow or risk the extension
not being approved. You can obtain the design guideline from http://www.
magentocommerce.com/magento-connect/create_your_extension.

Besides design guidelines, a good extension profile should also include other
important information that users may need to be aware of to configure the extension,
as well as contact information for support questions.

To create an extension profile, perform the following steps:

1. Log in to http://www.magentocommerce.com.
2. From the top-right of the page, click on My Account, and then click on

your avatar image or username to access your account dashboard.
3. From the left-side bar, click on Developers to expand its options.
4. From the expanded Developers panel, click on Add New Extension. In

case you get a Terms and Conditions screen presented at this point, click
on the Agree button to proceed. You should now see a screen similar to the
following screenshot partially shown:

5. Now, start filling in the following form fields:
 ° Extension Title is a required field. There should be a short

descriptive title that explains your extension. Put something,
such as Stripe by Foggyline.

 ° Brief Description is a required field. Use this value to briefly describe
the extension's functionality, in a clear text format. You could put
something, such as Stripe payment implementation here.

Packaging and Publishing Your Extension

[106]

 ° Detailed Description is a required field. Use it to describe the
extension's functionality in depth, or at least in enough detail for
a user to understand its purpose. This field supports certain HTML
elements. Just for the sake of simplicity, you could put something
as Stripe payment implementation extension here.

 ° Extension Key is a required field. The value provided here must be
the exact same name you used during the packaging process under
Package Info | Name. It is case-sensitive.

 ° Extension Categories is a required field. It allows you to set one
or more categories, or subcategories of this extension, with its
functionality. Categories and subcategories classify your extension
so that merchants can more easily find it in Magento Connect.
Select Show/Hide subcategories to expand the subcategory menu,
then select the Checkout, Payment, and Gateways options.

 ° Extension Locale is a required field. Here, you select the languages
supported in the extension package. Since we haven't worked with
Magento translation functionality so far, we can select English
(United States) / English (United States) as a locale.

 ° Extension Icon is a required field for both the label and the image
upload. The image that you provide here will be your extension's
default image and it should adhere to the Magento Connect
design guidelines.

Next, we come to the Community fieldset that has a number of input fields
as well. However, it seems that all of the form fields are disabled. Under the
Versions section, click on the 1.7 checkbox; this will activate the rest of the
form fields that you should fill as follows:

 ° Is Free is an optional field. Select it.
 ° License Type is a required field. Set its value to OSL, as it needs

to match the value from the package process.
 ° License Name is a read-only field. Its value should now read Open

Software License, as it did during the packaging process.
 ° License URL is a read-only field. Its value is a link labeled as Official

license website.
 ° Versions is a multiple checkbox field starting from 1.0 all the way to

1.7. Select version 1.7 only.

Chapter 6

[107]

6. Click on the Save button to create this extension profile. If saved properly,
you will be redirected to your extensions list under My Extensions as shown
in the following screenshot:

Uploading the extension package
Even though we were able to save the extension profile page, there is one more
important piece of the puzzle missing, the extension package itself. Strangely,
Magento Connect does not allow us to upload the extension package from the
same screen where we define the overall information of our extension as we just
did. In order to upload the actual extension package, perform the following steps:

1. Make sure that you are still on the My Extensions page, which is actually
My Account | Developer | Manage Extensions page.

2. Click on the Edit link next to your Stripe by Foggyline extension.
This should open almost the same screen, as we did while creating
an extension profile steps. The main difference with this screen is
that we have two new tabs at the top, Screenshots and Versions.

If you open up the Screenshots tab, there should already be a single screenshot,
which you uploaded during the steps performed in the Creating an extension profile
section. Even though it's a good practice to add several screenshots of your extension
functionality, we will focus our attention on the Versions tab, because this is where
we actually upload the extension package.

Packaging and Publishing Your Extension

[108]

To upload the extension package, perform the following steps:

1. Click on the Versions tab. You should see a screen similar to the
following screenshot:

2. Click on the Add new version button. This should take you to a new page,
as shown on the following screenshot:

Chapter 6

[109]

3. Fill in all required fields with the same information used during the
extension packaging process, then click on the Continue to upload button.
This should take you to a screen, as shown in the following screenshot:

4. Finally, choose a MAGENTO/var/connect/Foggyline_Stripe-1.0.0.tgz
file to upload, and click on the Upload and save button. If all went well,
you would see a screen with the success message Package has been
successfully uploaded to Magento Connect channel ver.2.0, as shown
in the following screenshot:

You may also see the error message An error occurred during upload to channel
MagentoConnect 1.0: Unable to upload new release Foggyline_Stripe-1.0.0.tgz.
However, this is not an error you should be concerned with. Our extension was
built for Magento 1.7 and newer, where Magento Connect Channel 2.0 is used for
packaging. The error you see here is just the Magento upload system telling you
that it did not get the package for Magento Connect Channel 1.0, which is fine.

Packaging and Publishing Your Extension

[110]

Summary
In this chapter, we learned how to package and distribute our custom extensions.
This knowledge will most certainly be of use if you plan on selling your extensions,
or sharing them for free. With this we conclude the chapter and the book. Hopefully,
you got enough insight and knowledge for building your own extensions. There
are a lot of caveats that you might find along the way. Just remember, Magento has
a very active developer community over at http://www.magentocommerce.com/
boards and http://magento.stackexchange.com/, so feel free to ask for help.

Index
Symbols
$_eventObject property 25, 34
$_eventPrefix property 25, 34
_construct method 25
_construct() method 60
.htaccess file 6
.htaccess.sample file 6
_init method 25
_init() method 60
.phtml file 13
_prepareCollection() method 64
_prepareColumns() method 64
_write($event) method 68
.xml layout 13

A
Access Control Lists. See ACL
ACL 39
Add Contents Path button 104
Add new version button 108
adminhtml folder 12
Agree button 105
Apache Virtual Host documentation

URL 6
API key

URL 84
api.php 6
app folder 6
app/local folder 12
authorize method 88, 97

B
backend / admin controller 18
Basic Data Model 22
Block folder 10
blocks 19-21
Brief Description field 105
business logic

adding 51-80
extension 97

C
cancel method 88, 97
capture method 97
Channel field 101
Clear Magento Cache button 46
code pools 9-12
collection 22-30
collectRates method 79, 80
commercial extensions

versus free extensions 100
community codePool 10
Continue to upload button 109
controllers 17, 18
controllers folder 10
createBlock() method 19, 20
Cron

about 34
URL 35

Cron jobs 34, 35
cron.php file 6
cron.sh file 6

[112]

D
data model

installation script file 22
model collection file 22
model file 22
model resource file 22

default package 13
depends tag 70
Description field 101
Detailed Description field 106
downloader folder 7
Dynamic 69
Dynamic events 31

E
EAV Data Model 22
Email field 102
enforceSingleOrderLimit() method 53
Entity-Attribute-Value. See EAV Data

Model
errors folder 7
etc folder 10
event / observer pattern 30-34
extension

configuration 15, 16
output, disabling 16
packaging 100-104
planning 45, 55, 70, 84
registering 46, 47, 56, 70, 71, 85
system configuration options, defining

for 47-51
Extension Categories field 106
Extension Icon field 106
Extension Key field 106
Extension Locale field 106
extension package

uploading 107-109
extension profile

creating 105-107
extension, registering

business logic, adding 66-68
model, setting up 57-61

script, installing 57-61
visual components, building 62-66

Extension Title field 105

F
favicon.ico 7
fields element 39
fieldset element 39
Foggyline Cargo method 76
foggyline element 38
foggyline_happyhour element 38
foggyline_happyhour tag 18
Foggyline_Logger_Model_Logger class 60
Foggyline Stripe method 92
Foggyline tab 39
free extensions

versus commercial extensions 100
frontend controller 18
frontend folder 13
frontend tag 17
frontName tag 17

G
getAllowedMethods() method 72, 73
getGridUrl() method 64
get.php file 7
groups element 39

H
Happy Hour 10
helloWorldAction() method 19, 21
Helper folder 11
helpers 36
Hosted (on-site) payment 84

I
includes folder 7
index.php 7
index.php.sample file 7
init method 25, 26
installation script file 22
install folder 13
isTrackingAvailable() method 72

[113]

J
js folder 7

L
label element 38, 39
lib folder 7
License field 102
License URL field 102
local codePool 10
Logger extension 55

M
mage 7
Mage::getModel method 25
Mage::getStoreConfig() 42
Mage::log() method 57
Mage_Core_Model_Abstract class 60
Mage_Core_Model_Abstract method 53
Magento

Basic Data Model 22
EAV Data Model 22
URL 5, 100

Magento Connect
about 99
free extensions versus commercial

extensions 100
URL 99

Mage_Sales_Model_Quote_Item objects 52
Mage_Sales_Model_Quote object 52
media folder 7
model

about 22-30
setting up 57-61

model collection file 22
model file 22
Model folder 11
model resource file 22
Model-View-Controller. See MVC
MVC

about 15
URL 15

N
Name field 101, 102
No single order allowed with amount over

%s. message 53
Notes field 102

O
Object Relational Mapping. See ORM
Observer class 32
ORM 22

P
payment method

defining 88-96
dissecting 86- 88
Hosted (on-site) payment 84
Redirect payment 83

PCI compliance
URL 84

Pending status 83
Phoenix folder 10
PHP API library

URL 84
php.ini.sample file 7
pkginfo folder 7
Place Order button 83, 84, 96

Q
quote object instance 53

R
Redirect payment 83
refund method 88, 97
RELEASE_NOTES.txt file 8
Release Stability field 102
Release Version field 102
resource 22-30
root directory structure 6
routers tag 17

[114]

S
sales_quote_save_before event 52
Save button 107
script

installing 57-61
setData() 29
setLastname() method 29
settings element 39
shell folder 8
shipping method

defining 73-77
dissecting 71-73
Dynamic 69
Static 69

show_in_default element 39
single_order_top_amount configuration

option 53
skin folder 8, 12, 14
sort_order element 38, 39
source_model element 48
sql folder 11
Static 69
Static events 31
Stripe payment gateway

URL 84
Summary field 101
Supported releases field 101
system configuration options

about 37-43
defining, for extension 47-51

system.xml file 45

T
tab element 39
theme system 12-15
title element 41

U
User field 102

V
var folder 8
Varien_Object class 29
visual components

building 62-66

X
XML_PATH_* constants 51

Z
Zend_Log_Writer_Stream class 68

Thank you for buying
Getting Started with Magento Extension

Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Magento
ISBN: 978-1-849516-94-5 Paperback: 300 pages

Maximize the power of Magento: for developers,
designers, and store owners

1. Learn how to customize your Magento store for
maximum performance

2. Exploit little-known techniques for extending
and tuning your Magento installation.

3. Step-by-step guides for making your store run
faster, better, and more productively

Magento Mobile How-to
ISBN: 978-1-849693-66-0 Paperback: 78 pages

Create and configure your own Magento Mobile
application and publish it for the Android and
iOS platforms

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2. Style and theme your Magento Mobile
Application interface

3. Configure Product categories and add static
content for mobile

4. Prepare and publish your Magento mobile
application targeting iPhone/iPad and Android
platforms

Please check www.PacktPub.com for information on our titles

Magento Beginner's
Guide - Second Edition
ISBN: 978-1-782162-70-4 Paperback: 320 pages

Learn how to create a fully featured, attractive online
store with the most powerful open source solution for
e-commerce

1. Install, configure, and manage your own
e-commerce store

2. Extend and customize your store to reflect your
brand and personality

3. Handle tax, shipping, and custom orders

Magento 1.3 Sales Tactics
Cookbook
ISBN: 978-1-849510-12-7 Paperback: 292 pages

Improve your Magento store's sales and increase your
profits with this collection of simple and effective
tactical techniques

1. Build a professional Magento sales website,
with the help of easy-to-follow steps and ample
screenshots, to solve real-world business needs
and requirements

2. Develop your website by using your creativity
and exploiting the sales techniques that suit
your needs

3. Provide visitors with attractive and innovative
features to make your site sell

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Overview of Magento Extension
	The root directory structure
	Code pools
	The theme system
	Basic extension configuration
	Controllers
	Blocks
	The model, resource, and collection
	The event / observer pattern
	Cron jobs
	Helpers
	System configuration options
	Summary

	Chapter 2: Building the Extension – Maximum Order Amount
	Planning your extension
	Registering your extension
	Building the configuration options interface
	Adding the business logic
	Summary

	Chapter 3: Building the Extension – Logger
	Planning your extension
	Registering your extension
	Setting up the model and install script
	Building the visual components
	Adding the business logic

	Summary

	Chapter 4: Building the Extension – Shipping
	Shipping methods
	Planning your extension
	Registering your extension
	Dissecting the existing shipping method
	Defining your shipping method
	Adding the business logic
	Summary

	Chapter 5: Building the Extension – Payment
	Payment methods
	Planning your extension
	Registering your extension
	Dissecting the existing payment method
	Defining your payment method
	Extension business logic
	Summary

	Chapter 6: Packaging and Publishing Your Extension
	Magento Connect
	Free extensions versus commercial extensions

	Packaging your extension
	Creating an extension profile
	Uploading the extension package
	Summary

	Index

